

Lecture Notes in Computer Science 4459
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Christophe Cérin Kuan-Ching Li (Eds.)

Advances in
Grid and
Pervasive Computing

Second International Conference, GPC 2007
Paris, France, May 2-4, 2007
Proceedings

13

Volume Editors

Christophe Cérin
Université de Paris Nord
LIPN, CNRS UMR 7030
99 avenue J.B. Clément, 93430 Villetaneuse, P.O. Box , France
E-mail: cerin@lipn.univ-paris13.fr

Kuan-Ching Li
Providence University
Department of Computer Science and Information and Engineering
200 Chung-Chi Road Shalu, Taichung 43301, Taiwan
E-mail: kuancli@pu.edu.tw

Library of Congress Control Number: 2007926259

CR Subject Classification (1998): F.1, F.2, D.1, D.2, D.4, C.2, C.4, H.4, K.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-72359-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72359-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12060115 06/3180 5 4 3 2 1 0

Preface

GPC 2007 provided a high-profile, leading-edge forum for researchers and devel-
opers from industry and academia to report on the latest scientific and technical
advances, discuss and debate the major issues, and showcase the latest systems
in merging grid computing and the pervasive computing field.

This year, a total of 217 high-quality papers were submitted by researchers
and practitioners from about 20 countries. All the submissions were rigorously
reviewed by the Program Committee members. To ensure fairness and the quality
of the papers, we put a number of measures in place. For example, each paper
was assigned at least one reviewer from Australia, one reviewer from America,
and one reviewer from Europe. Based on the originality, significance, correctness,
relevance, and clarity of presentation, 56 submissions were selected as regular
papers and 12 were selected as short papers. The acceptation rate is 32%. Also,
the authors of accepted papers were required to submit a read-me file along with
the camera-ready version of their paper explaining how the reviewers comments
were taken into account in the final version of their paper.

The publication Co-chairs, Lucian Finta (Paris XIII, France) and Jemal
H. Abawajy (Deakin University, Australia), painstakingly went through each
read-me file and reviewers’ comments to ensure that the comments were indeed
incorporated into the final version of the papers. Only those papers that included
reviewers’ comments were finally accepted for inclusion in the proceedings. Un-
doubtedly, Lucian and Jemal had to work long hours to meet the tight deadline,
which is greatly appreciated.

The overall outcome of the revision process is a selection of papers that
showcase the very best of grid and pervasive computing technology today. After
the conference, the proceedings editors selected and recommended some high-
quality papers from the GPC 2007 conference to be published in special issues
of international journals. Special thanks go to Jemal H. Abawajy for liasing with
the chief editors of the journals.

The GPC 2007 program included presentations by accepted paper authors,
keynote speeches, and a special round table on “Pervasive Grid.” The special
round table was organized by Lionel Brunie, Manish Parashar, and Jean-Marc
Pierson. We thank them for this initiative.

We allocated a slot of 30 minutes for each paper presentation so that the
participants had plenty of time for questions and answers. We were also delighted
to be able to welcome three well-known international researchers, Thierry Priol
(France) representing the European CoreGrid initiative, Minyi Guo, Professor
at the School of Computer Science and Engineering, University of Aizu (Japan),
and Laurence T. Yang representing St. Francis Xavier University (Canada), who
delivered the keynote speeches.

VI Preface

We would like to take this opportunity to thank everyone involved with the
organization of GPC 2007. First, we would like to thank all the authors for their
submissions to the conference as well as for travelling some distance to partici-
pate in the conference. Second, we would like to thank the Program Committee
members and external reviewers for their superb job in selecting a set of excel-
lent papers that reflect the current research and development states of grid and
pervasive computing.

Third, we would like to thank Franck Cappello (INRIA, France), Jean-Luc
Gaudiot (University of California at Irvine), and Hai Jin (Huazhong University
of Science and Technology, Wuhan) for their valuable comments during the year.
Our appreciation also extends to Alfred Hofmann and Anna Kramer, both from
Springer, for their helpful comments in strengthening the conferences. We will
continue to improve further, in particular with the selection of the Program
Committees and other scientific issues. We are also grateful to Christine Nora
and Cyril Drocourt from IEEE France for the secure Web payment and for
managing the finances. Jean-Christophe Dubacq (Paris XIII) was busy with the
review system, the Web server, registration, and many other important issues
regarding the technical program. Catherine Girard from the INRIA Office of the
Colloqium did a superb job once again with the organization and the INRIA
sponsorship. It is always a pleasure to work with Catherine Girard and her high
level of professionalism is highly appreciated.

GPC2007 was sponsored by Hewlett Packard through the strong support of
Franck Baetke, Philippe Devins, and Jean-Luc Assor, by INRIA and the Univer-
sity of Paris XIII through the ‘Conseil Scientifique’, and also through Laboratoire
de Recherche en Informatique de Paris Nord (LIPN - UMR CNRS 7030).

Last but not least, we express our gratitude to François and Ludivine from
Dakini Conseil for their help in organizing accommodation for conference atten-
dees, finding a venue for the conference and also for its banquet. We would also
like to thank Severine Bonnard from MGEN for allowing us to rent the beautiful
MGEN building with all the services that a speaker dreams to find on a site (e.g.,
comfortable rooms, a restaurant for the gourmets, etc.) in the center of Paris.

Remember also that on August 8, 1900, the German mathematician David
Hilbert during the International Congress of Mathematicians in Paris presented
a list of 23 unsolved problems that he saw as being the greatest challenges
for twentieth-century mathematics. One of them, the 10th problem, is about
Diophantine equations. It has been relevant for many years and the basis of the
work of many people including Church, Herbrand, Kleene, Godel, and Turing.
The 10th problem is about how to find a method (what we now call an algorithm)
for deciding whether a Diophantine equation has an (integral) solution. We hope
readers will be inspired by these proceedings. We hope that attendees will be
inspired by the spirit of Paris and by the great history of our discipline to achieve
new advance in the field of Grid and Pervasive computing.

March 2007 Christophe Cérin
Kuan-Ching Li

Organization

Steering Committee

Sajal K. Das (The University of Texas at Arlington, USA)
Jean-Luc Gaudiot (University of California - Irvine, USA)
Hai Jin (Huazhong University of Science and

Technology, PR China)
Chung-Ta King (National Tsing Hua University, Taiwan)
Kuan-Ching Li (Providence University, Taiwan)
Satoshi Sekiguchi (AIST, Japan)
Cho-Li Wang (The University of Hong Kong, PR China)
Chao-Tung Yang (Tunghai University, Taiwan)
Albert Y. Zomaya (The University of Sydney, Australia)
Michel Cosnard (INRIA, France)

General Co-chairs

Franck Cappello (INRIA Futurs, France)
Kai Hwang (University of Southern California, USA)

Program Co-chairs

Christophe Cérin (University of Paris XIII, France)
Kuan-Ching Li (Providence University, Taiwan)

Program Committee

Ali Pinar apinar@lbl.gov
Alvaro L.G.A. Coutinho alvaro@nacad.ufrj.br
Andrew Wendelborn andrew@cs.adelaide.edu.au
Celso L. Mendes cmendes@cs.uiuc.edu
Chao-Tung Yang ctyang@thu.edu.tw
Chien-Min Wang cmwang@iis.sinica.edu.tw
Ching-Hsien Hsu chh@chu.edu.tw
Cho-Li Wang clwang@cs.hku.hk
Christina Pinotti pinotti@unipg.it
Christophe Cérin christophe.cerin@lipn.univ-paris13.fr
Cynthia A. Phillips caphill@sandia.gov
Damon Shing-Min Liu damon@computer.org
Dan Grigoras d.grigoras@cs.ucc.ie
Dan Meng md@ncic.ac.cn

VIII Organization

Daniel Katz d.katz@ieee.org
Daniel Olmedilla olmedilla@l3s.de
David De Roure dder@soton.ac.uk
Deok-Gyu Lee hbrhcdbr@sch.ac.kr
Dominico Laforenza domenico.laforenza@isti.cnr.it
Dr. Jong Hyuk Park parkjonghyuk@gmail.com
Françis Lau fcmlau@cs.hku.hk
Franck Cappello fci@lri.fr
Frederic Loulergue frederic.loulergue@univ-orleans.fr
Guangwen Yang ygw@tsinghua.edu.cn
Hamid R. Arabnia hra@cs.uga.edu
Hao-Hua Chu haochu@ntu.edu.tw
Hui-Huang Hsu h-hsu@mail.tku.edu.tw
Hung-Chang Hsiao hchsiao@csie.ncku.edu.tw
Jairo Panetta panetta@cptec.inpe.br
Jan-Jan Wu wuj@iis.sinica.edu.tw
Jean-Christophe Dubacq jcdubacq@lipn.univ-paris13.fr
Jean-Louis Pazat pazat@irisa.fr
Jean-Louis Roch jean-louis.roch@imag.fr
Jean-Luc Gaudiot gaudiot@uci.edu
Jean-Marc Pierson pierson@irit.fr
Jemal Abawajy Jemal@deakin.edu.au
Jenq Kuen Lee klee@pllab.cs.nthu.edu.tw
Jerry Hsi-Ya Chang c00jhc00@nchc.org.tw
Jiannong Cao csjcao@comp.polyu.edu.hk
Jianzhong Li lijzh@hope.hit.edu.cn
Jingling Xue jxue@cse.unsw.edu.au
Jose Moreira jmoreira@us.ibm.com
Ken Barker barker@cpsc.ucalgary.ca
Kuan-Ching Li kuancli@gmail.com
Kuo-Chan Huang kchuang@mail.hku.edu.tw
Laurence T.Yang lyang@stfx.ca
Lionel Li ni@cs.ust.hk
Liria Matsumoto Sato liria.sato@poli.usp.br
Lucian Finta lf@lipn.univ-paris13.fr
Luiz DeRose ldr@cray.com
Marcin Paprzycki marcin.paprzycki@swps.edu.pl
Mark Baker mark.baker@computer.org
Matt Mutka mutka@cse.msu.edu
Michel Hobbs mick@deakin.edu.au
Michel Koskas michel.koskas@u-picardie.fr
Ming-Lu Li li-ml@cs.sjtu.edu.cn
Minyi Guo minyi@u-aizu.ac.jp
Mitsuhisa Sato msato@cs.tsukuba.ac.jp
Mohamed Jemni Mohamed.jemni@fst.rnu.tn

Organization IX

Mohamed Ould-Khaoua mohamed@dcs.gla.ac.uk
Nabil Abdennadher nabil.abdennadher@hesge.ch
Nong Xiao xiao-n@vip.sina.com
Noria Foukia nfoukia@infoscience.otago.ac.nz
Omer F Rana o.f.rana@cs.cardiff.ac.uk
Pangfeng Liu pangfeng@csie.ntu.edu.tw
Pedro Medeiros pm@di.fct.unl.pt
Philippe Navaux navaux@inf.ufrgs.br
Ronald Perrott r.perrott@qub.ac.uk
Rosa Badia rosab@ac.upc.es
Ruay-Shiung Chang rschang@mail.ndhu.edu.tw
Rudolf Eigenmann eigenman@ecn.purdue.edu
Sanjay Ranka ranka@cise.ufl.edu
Siang Wun Song song@ime.usp.br
Song Wu wusong@hust.edu.cn
Stephen Jenks sjenks@uci.edu
Sbastien Tixeuil tixeuil@lri.fr
Tien-Hsiung Weng thweng@pu.edu.tw
Ting-Wei Hou hou@nc.es.ncku.edu.tw
Tomas Margale tomas.margalef@uab.es
Toni Cortes toni@ac.upc.edu
Victor Malyshkin malysh@ssd.sscc.ru
Wang-Chien Lee wlee@cse.psu.edu
Weijia Jia itjia@cityu.edu.hk
Wenbin Jiang wenbinjiang@hust.edu.cn
Weng Fai Wong wongwf@comp.nus.edu.sg
Wenguang Chen cwg@tsinghua.edu.cn
Wolfgang Gentzsch wgentzsch@mcnc.org
Won W. Ro wro@csun.edu
Xiangjian He sean@it.uts.edu.au
Xiaowu Chen chen@buaa.edu.cn
Yeh-Ching Chung ychung@cs.nthu.edu.tw
Yong-Kee Jun jun@gnu.ac.kr
Yunhao Liu liu@cse.ust.hk

Organization

Publication Co-chair Jemal Abawajy (Deakin University, Australia)
Publication Co-chair Lucian Finta (University of Paris XIII, France)
Publicity Co-chair Philippe d’Anfray (Renater, France)
Publicity Co-chair Ching-Hsien Hsu

(Chung Hua University, Taiwan)
Finance Chair Christine Nora (IEEE France Section)

X Organization

Registration Co-chair Jean-Christophe Dubacq
(University of Paris XIII, France)

Registration Co-chair Sébastien Tixeuil
(University of Paris Sud, Orsay, France)

Local Arrangements Co-chair Catherine Girard (INRIA Futurs, France)
Local Arrangements Co-chair Sophie Toulouse

(University of Paris XIII, France)

External Reviewers

Adel Essafi
Ahmed Elleuch
Ala Rezmerita
Alexandre Tabbal
Andrei Hutanu
Ayon Basumallik
Bin Chen
Bing-Rong Lin
Brett Estrade
Camille Coti
Cao Linchun
Chia-Yen Shih
Chuang-wen You
Chunming Hu
Congxing Cai
Connor Gray
Dan Meng
Daniel Wang
Derrick Kondo
Edson Midorikawa
Fabrizio Silvestri
Fathi Essalmi
Feng Liu
Francoise Andre
Gilles Fedak
Gisele Craveiro
Gongwei zhang
Guangwen Yang
Hailong Sun
Hansang Bae

Hao Ren
Heithem Abbes
Hsi-Min Chen
Hsi-Ya Chang
Hsiao-Hsi Wang
Huajing Li
Jairo Panetta
Jan-Jan Wu
Jiannong Cao
Jingling Xue
Joanne Ren
Jose Moreira
Joshua Abadie
Julian Winter
Ken C.K. Tsang
Krzysztof Rzadca
Laukik Chitnis
Leonardo Ferreira
Lin Chen
Manas Somaiya
Marcia Cera
Mark C. M. Tsang
Marta Mattoso
Matt Mutka
Mohamed Ould-Khaoua
Monica Py
Oleg Lodygensky
Olivier Delannoy
Pan Linfeng
Partha Sarathi

Paul Malecot
Pierre Lemarinier
Qiang Wang
Rafael Bohrer vila
Rahim Lakhoo
Rodrigo Rosa Righi
Ruay-Shiung Chang
Sebastien Varrette
Sevin Fide
Seyong Lee
Shantenu Ja
Srinivas Vadlamani
Tao Chen
Tien-Hsiung Weng
Troy Johnson
Vincent Roca
Vlady Ravelomanana
Weng-Fai Wong
Wolfgang Gentzsch
Xuanhua Shi
Yaakoub El Khamra
Yang Yanqin
Yong Wang
Yosr Slama
Yosra Hlaoui
Yu Yong
Zhang Da Qiang
Zhihang Yu
Zhou Lei

Table of Contents

A Grid Resource Broker with Network Bandwidth-Aware Job
Scheduling for Computational Grids . 1

Chao-Tung Yang, Sung-Yi Chen, and Tsui-Ting Chen

Design of PeerSum: A Summary Service for P2P Applications 13
Rabab Hayek, Guillaume Raschia, Patrick Valduriez, and
Noureddine Mouaddib

A High-Performance Virtual Storage System for Taiwan UniGrid 27
Chien-Min Wang, Hsi-Min Chen, Chun-Chen Hsu, and Jan-Jan Wu

Interoperable Grid PKIs Among Untrusted Domains: An Architectural
Proposal . 39

Valentina Casola, Jesus Luna, Oscar Manso, Nicola Mazzocca,
Manel Medina, and Massimiliano Rak

TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 52
Hai Jin, Xuping Tu, Chao Zhang, Ke Liu, and Xiaofei Liao

Fault Management in P2P-MPI . 64
Stéphane Genaud and Choopan Rattanapoka

Heterogeneous Wireless Sensor Network Deployment and Topology
Control Based on Irregular Sensor Model . 78

Chun-Hsien Wu and Yeh-Ching Chung

Multiple Cluster Merging and Multihop Transmission in Wireless
Sensor Networks . 89

Siddeswara Mayura Guru, Matthias Steinbrecher,
Saman Halgamuge, and Rudolf Kruse

CFR: A Peer-to-Peer Collaborative File Repository System 100
Meng-Ru Lin, Ssu-Hsuan Lu, Tsung-Hsuan Ho, Peter Lin, and
Yeh-Ching Chung

Optimal Deployment of Mobile Sensor Networks and Its Maintenance
Strategy . 112

Xiaoling Wu, Jinsung Cho, Brian J. d’Auriol, and Sungyoung Lee

Server Placement in the Presence of Competition . 124
Pangfeng Liu, Yi-Min Chung, Jan-Jan Wu, and Chien-Min Wang

A Scalable Mechanism for Semantic Service Discovery in Multi-ontology
Environment . 136

Zhizhong Liu, Huaimin Wang, and Bin Zhou

XII Table of Contents

A Collaborative-Aware Task Balancing Delivery Model for Clusters 146
José Luis Bosque, Pilar Herrero, Manuel Salvadores, and
Maŕıa S. Pérez

An Improved Model for Predicting HPL Performance 158
Chau-Yi Chou, Hsi-Ya Chang, Shuen-Tai Wang,
Kuo-Chan Huang, and Cherng-Yeu Shen

An Ad Hoc Approach to Achieve Collaborative Computing with
Pervasive Devices . 169

Ren-Song Ko and Matt W. Mutka

Optimizing Server Placement for QoS Requirements in Hierarchical
Grid Environments . 181

Chien-Min Wang, Chun-Chen Hsu, Pangfeng Liu,
Hsi-Min Chen, and Jan-Jan Wu

AHSEN – Autonomic Healing-Based Self Management Engine for
Network Management in Hybrid Networks . 193

Junaid Ahsenali Chaudhry and Seungkyu Park

Development of a GT4-Based Resource Broker Service: An Application
to On-Demand Weather and Marine Forecasting . 204

R. Montella

Small-World Network Inspired Trustworthy Web Service Evaluation
and Management Model . 218

Qinghua Meng and Yongsheng Ding

Towards Feasible and Effective Load Sharing in a Heterogeneous
Computational Grid . 229

Kuo-Chan Huang, Po-Chi Shih, and Yeh-Ching Chung

Meeting QoS Requirements of Mobile Computing by Dual-Level
Congestion Control . 241

Yi-Ming Chen and Chih-Lun Su

A Transaction Model for Context-Aware Applications 252
Shaxun Chen, Jidong Ge, Xianping Tao, and Jian Lu

A Grid-Based Remote Experiment Environment in Civil Engineering . . . 263
Jang Ho Lee, Taikyeong Jeong, and Song-Yi Yi

Mobile Ad Hoc Grid Using Trace Based Mobility Model 274
V. Vetri Selvi, Shakir Sharfraz, and Ranjani Parthasarathi

Self Managing Middleware for Dynamic Grids . 286
Sachin Wasnik, Terence Harmer, Paul Donachy, Andrew Carson,
Peter Wright, John Hawkins, Christina Cunningham, and
Ron Perrott

Table of Contents XIII

Adaptive Workflow Scheduling Strategy in Service-Based Grids 298
JongHyuk Lee, SungHo Chin, HwaMin Lee, TaeMyoung Yoon,
KwangSik Chung, and HeonChang Yu

Scalable Thread Visualization for Debugging Data Races in OpenMP
Programs . 310

Young-Joo Kim, Jae-Seon Lim, and Yong-Kee Jun

MPIRace-Check: Detection of Message Races in MPI Programs 322
Mi-Young Park, Su Jeong Shim, Yong-Kee Jun, and Hyuk-Ro Park

The Modified Grid Location Service for Mobile Ad-Hoc Networks 334
Hau-Han Wang and Sheng-De Wang

Authentication and Access Control Using Trust Collaboration in
Pervasive Grid Environments . 348

Rachid Saadi, Jean Marc Pierson, and Lionel Brunie

Architecture-Based Autonomic Deployment of J2EE Systems in Grids . . 362
Didier Hoareau, Takoua Abdellatif, and Yves Mahéo

Dynamic Workload Balancing for Collaboration Strategy in Hybrid
P2P System . 374

Suhong Min, Byong Lee, and Dongsub Cho

Performance-Based Workload Distribution on Grid Environments 385
Wen-Chung Shih, Chao-Tung Yang, Tsui-Ting Chen, and
Shian-Shyong Tseng

A Visual Framework for Deploying and Managing Context-Aware
Services . 397

Ichiro Satoh

Towards a Peer-To-Peer Platform for High Performance Computing 412
Nabil Abdennadher and Régis Boesch

Assessing Contention Effects on MPI Alltoall Communications 424
Luiz Angelo Steffenel, Maxime Martinasso, and Denis Trystram

An Energy-Efficient Clustering Algorithm for Large-Scale Wireless
Sensor Networks . 436

Si-Ho Cha and Minho Jo

An Algorithm Testbed for the Biometrics Grid . 447
Anlong Ming and Huadong Ma

Task Migration in a Pervasive Multimodal Multimedia Computing
System for Visually-Impaired Users . 459

Ali Awde, Manolo Dulva Hina, Yacine Bellik,
Amar Ramdane-Cherif, and Chakib Tadj

XIV Table of Contents

Minimalist Object Oriented Service Discovery Protocol for Wireless
Sensor Networks . 472

D. Villa, F.J. Villanueva, F. Moya, F. Rincón, J. Barba, and
J.C. López

A Novel Data Grid Coherence Protocol Using Pipeline-Based
Aggressive Copy Method . 484

Reen-Cheng Wang, Su-Ling Wu, and Ruay-Shiung Chang

A Design of Cooperation Management System to Improve Reliability
in Resource Sharing Computing Environment . 496

Ji Su Park, Kwang Sik Chung, and Jin Gon Shon

A Peer-to-Peer Indexing Service for Data Grids . 507
Henrik Thostrup Jensen and Josva Kleist

A Novel Recovery Approach for Cluster Federations 519
Bidyut Gupta, Shahram Rahimi, Raheel Ahmad, and Raja Chirra

SONMAS: A Structured Overlay Network for Multidimensional
Attribute Space . 531

Hsiu-Chin Chen and Chung-Ta King

Formal Specification and Implementation of an Environment for
Automatic Distribution . 543

Saeed Parsa and Omid Bushehrian

Dynamic Distribution for Data Storage in a P2P Network 555
Olivier Soyez, Cyril Randriamaro, Gil Utard, and Francis Wlazinski

GRAVY: Towards Virtual File System for the Grid 567
Thi-Mai-Huong Nguyen, Frédéric Magoulès, and Cédric Révillon

A Framework for Dynamic Deployment of Scientific Applications Based
on WSRF . 579

Lei Yu and Frédéric Magoulès

Group-Based Self-organization Grid Architecture . 590
Jaime Lloret, Miguel Garcia, Fernando Boronat, and Jesus Tomas

UR-Tree: An Efficient Index for Uncertain Data in Ubiquitous Sensor
Networks . 603

Dong-Oh Kim, Dong-Suk Hong, Hong-Koo Kang, and Ki-Joon Han

ZebraX: A Model for Service Composition with Multiple QoS
Constraints . 614

Xingzhi Feng, Quanyuan Wu, Huaimin Wang, Yi Ren, and
Changguo Guo

Table of Contents XV

Middleware Support for Java Applications on Globus-Based Grids 627
Yudith Cardinale, Carlos Figueira, Emilio Hernández,
Eduardo Blanco, and Jesús De Oliveira

Component Assignment for Large Distributed Embedded Software
Development . 642

Zhigang Gao and Zhaohui Wu

LDFSA: A Learning-Based Dynamic Framed Slotted ALOHA for
Collision Arbitration in Active RFID Systems . 655

Hyuntae Cho, Woonghyun Lee, and Yunju Baek

Implementation of OSD Security Framework and Credential Cache 666
Gu Su Kim, Kwang Sun Ko, Ungmo Kim, and Young Ik Eom

SEMU: A Framework of Simulation Environment for Wireless Sensor
Networks with Co-simulation Model . 672

Shih-Hsiang Lo, Jiun-Hung Ding, Sheng-Je Hung, Jin-Wei Tang,
Wei-Lun Tsai, and Yeh-Ching Chung

Combining Software Agents and Grid Middleware . 678
Richard Olejnik, Bernard Toursel, Maria Ganzha, and
Marcin Paprzycki

A Web Service-Based Brokering Service for e-Procurement in Supply
Chains . 686

Giner Alor-Hernandez, Ruben Posada-Gomez,
Juan Miguel Gomez-Berbis, and Ma. Antonieta Abud-Figueroa

A Thin Client Approach to Supporting Adaptive Session Mobility 694
Dan MacCormac, Mark Deegan, Fred Mtenzi, and Brendan O’Shea

Automatic Execution of Tasks in MiPeG . 702
Antonio Coronato, Giuseppe De Pietro, and Luigi Gallo

Providing Service-Oriented Abstractions for the Wireless Sensor Grid . . . 710
Edgardo Avilés-López and J. Antonio Garćıa-Maćıas

Bio-inspired Grid Information System with Epidemic Tuning 716
Agostino Forestiero, Carlo Mastroianni, Fausto Pupo, and
Giandomenico Spezzano

Credibility Assignment in Knowledge Grid Environment 724
Saeed Parsa and Fereshteh-Azadi Parand

Image Streaming and Recognition for Vehicle Location Tracking Using
Mobile Devices . 730

Jin-Suk Kang, Taikyeong T. Jeong, Sang Hyun Oh, and
Mee Young Sung

XVI Table of Contents

Research on Planning and Deployment Platform for Wireless Sensor
Networks . 738

Yuebin Bai, Jinghao Li, Qingmian Han, Yujun Chen, and Depei Qian

Server-Side Parallel Data Reduction and Analysis . 744
Daniel L. Wang, Charles S. Zender, and Stephen F. Jenks

Parallel Edge Detection on a Virtual Hexagonal Structure 751
Xiangjian He, Wenjing Jia, Qiang Wu, and Tom Hintz

Author Index . 757

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 1 – 12, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Grid Resource Broker with Network Bandwidth-
Aware Job Scheduling for Computational Grids*

Chao-Tung Yang∗∗, Sung-Yi Chen, and Tsui-Ting Chen

High-Performance Computing Laboratory
Department of Computer Science and Information Engineering

Tunghai University, Taichung, 40704, Taiwan, ROC
{ctyang, g942805, g95280003}@thu.edu.tw

Abstract. This work presents a workflow-based computational resource broker
whose main functions are matching available resources with user requests and
considering network information statuses during matchmaking. The resource
broker provides an interface for accessing available and appropriate resources
via user credentials. We use the Ganglia and NWS tools to monitor resource
status and network-related information, respectively. We also report on using
the Globus Toolkit to construct a grid platform called the TIGER project that
integrates the distributed resources of five universities in Taichung, Taiwan,
where the resource broker was developed. The proposed broker provides se-
cure, updated information about available resources and serves as a link to the
diverse systems available in the Grid.

1 Introduction

Grid computing can be defined as coordinated re source sharing and problem solving
in dynamic, multi institutional collaborations [1, 2, 3, 4, 5, 6]. Grid computing in-
volves sharing heterogeneous resources, based on different platforms, hard-
ware/software, computer architecture, and computer languages, which located in
different places belonging to different administrative domains over a network using
open standards. The subject of this paper is the resource management for a grid
system that is primarily intended to support computationally expensive tasks like
simulations and optimizations on a grid [7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20].
Applications are represented as workflows that can be decomposed into single grid
jobs. These jobs require resources from the grid that are described as accurately as
necessary. The main task of the resource management is resource brokering to opti-
mize a global schedule for all requesting grid jobs and all requested resources. Conse-
quently, a global optimizing resource broker with network bandwidth-aware is pro-
posed. It’s embedding in the application and resource management system, and on
important implementation decisions. The performance of the optimization method is
demonstrated by an example.

* This work was partially supported by National Science Council of Republic of China under

the number of NSC95-2221-E-029-004 and NSC95-2218-E-007-025.
∗∗ Corresponding Author.

2 C.-T. Yang, S.-Y. Chen, and T.-T. Chen

In the grid environment, applications make use of shared grid resources to improve
performance. The target function usually depends on many parameters, e.g., the
scheduling strategies, the configurations of machines and links, the workloads in a
grid, the degree of data replication, etc. In this paper, we examine how those parame-
ters may affect performance. We choose an application’s overall response time as an
object function and focus on dynamically scheduling independent tasks. We define
the job, scheduler, and performance model of a grid site and conduct experiments on
TIGER grid platform [9]. We use the Ganglia [15] and NWS [16] tools to monitor
resource status and network-related information, respectively. Understanding influ-
ence of each parameter is not only crucial for an application to achieve good perform-
ance, but would also help to develop effective schedule heuristics and design high
quality grids.

The paper presents the design and the development of a Grid Network-Aware Re-
source Broker. It enhances the features of a Grid Resource Broker with the capabili-
ties provided by a network information service form NWS tool [15]. Here, we will
take a deeper look at what constitutes the scheduling discipline and its components.
Scheduling is generally not well understood because scheduling products often inte-
grate multiple functions into one package called a scheduler. So we are going to de-
construct scheduling into its constituent parts. The innovative contribution of the
presented integration is the possibility to design and implement new map-
ping/scheduling mechanisms to take into account both network and computational
resources.

The main contributions of this paper are listed in the following:

• The system design and implementation of computational grid resource broker is
presented.

• A workflow model is presented to solve the dependency problem of jobs.
• A network bandwidth-award job scheduling algorithm is proposed for communica-

tion-intensive jobs.
• A model of monitoring and information service for grid resources is provided.
• A user friendly Grid Portal is conducted for general users to submit their jobs and

monitor the detail status of resources.

2 Related Work

Among the research works focused on Grid Resource Broker (GRB) topics, in 2002
the authors in [17] described the Grid Resource Broker (GRB) portal, an advanced
Web gateway for computational Grids in use at the University of Lecce. The portal
allows trusted users seamless access to computational resources and Grid services,
providing a friendly computing environment that takes advantage of the underlying
Globus Toolkit middleware, enhancing its basic services and capabilities.

In [18, 20], the authors describe a resource management system which is the cen-
tral component of a distributed network computing system. There have been many
projects focused on network computing that have designed and implemented resource
management systems with a variety of architectures and services. In this paper, an
abstract model and a comprehensive taxonomy for describing resource management

 A GRB with Network Bandwidth-Aware Job Scheduling for Computational Grids 3

architectures is developed. The paper presents taxonomy for Grid RMSs. Require-
ments for RMSs are described and an abstract functional model has been developed.
The requirements and model have been used to develop a taxonomy focused on types
of Grid system, machine organization, resource model characterization, and schedul-
ing characterization. Representative Grid systems are surveyed and placed into their
various categories.

In [19], the authors present the design and implementation of an OGSI-compliant
Grid resource broker compatible with both GT2 and GT3. It focuses on resource dis-
covery and management, and dynamic policy management for job scheduling and
resource selection. The presented resource broker is designed in an extensible and
modular way using standard protocols and schemas to become compatible with new
middleware versions. The author also gave experimental results to demonstrate the
resource broker behavior.

3 Design and Implementation of Resource Broker

In the previous work [14], we implemented a computational grid resource broker
which is used to discover and evaluate grid resources, and make informed job submis-
sion decisions by matching requirements of a job with an appropriate grid resource to
meet user and deadline requirements. The system architecture of resource broker and
the relation of each component are shown in Figure 1. Each rectangular represents a
unique component of our system. Furthermore, this paper had implemented the bold-
face parts. Users could easily make use of our resource broker through a common
Grid portal [6, 9, 10, 11, 12, 13, 14].

The primary task of Resource Broker is to compare requests of users and resource
information provided by Information Service. After the most appropriate job assign-
ment scheme is selected, machines of the Grid are assigned and the Scheduler is

Grid User

Portal

Global Jobs
Queue

Resource
Broker

Information
Service

Monitoring
ServiceJob Monitor

Jobs DB

Login/Logout
Submit Jobs

Submit Jobs

Display

Job Description
Job Status
Used Resources

Query
Display

Information DB

Lookup Results Lookup Status

Query Inf.

Dispatch Jobs
Ask Resource status

 Work flow
System Maker

Store/Query Information
Resource Status
Network Status

Query information
Resource Status
Network Status
Historical Information
Data Visualization

Submit Jobs

Fig. 1. System architecture

4 C.-T. Yang, S.-Y. Chen, and T.-T. Chen

responsible to submit the job and execute the applications. The results are collected
and returned to Resource Broker. Then, Resource Broker records results of execution
in the database of Message Center through the Agent of Information Service. The user
can catch the results from grid portal.

These Grids may span several domain administrations via internet. As a result of
this, it may be difficult to monitor, control and manage those machines and resources.
This paper aims at providing a multi-platform Grid monitoring service which can
monitor resources such as CPU speed and utilization, memory usage, disk usage, and
network bandwidth in a real-time manner. Monitoring data is extracted form Ganglia
and NWS tools then stored and transmitted in XML form and then used for display-
ing. All the information is displayed using real-time graphs.

Most general resource brokers cannot handle jobs with dependencies, which
means, for example, that Job B may have to be executed after Job A because Job B
needs output from Job A as input data, as shown in Figure 2. The workflow-based
resource broker presented in this paper copes with this in two phases: Client-side
phase and Server-side phase.

Client-side phase is a GUI Java applet, called Workflow Maker, which is provided in
the Grid Portal for users to create workflows in workflow description language (WDL),
which allows job with dependency and sets the following attributes for each job:

• Job name
• Broker sorting algorithm
• Job type, parallel MPI or general sequential
• Job dependencies
• Working directory
• Program name
• Argument
• Number of processors

The Workflow Maker converts this workflow abstract into an actual XML file; and
then delivers it to the Resource Broker by uploading this XML file. The Resource
Broker parses the XML file, checking all job information and dependency relation-
ships, and then adds the job to the Global Job Queue.

The Global Job Queue is responsible for holding all pending subjobs delivered to
the Resource Broker. When the Job Scheduler retrieves a subjob from the Global Job
Queue, it checks all node statuses, and sets busy nodes to “occupied” to prevent over-
loading, allocates available nodes to satisfy subjob requirements, and sets these nodes
to “occupied”. The Job Scheduler then gets the next subjob and repeats the procedure.
If the Job Scheduler does not find sufficient nodes to meet job requirements, it pauses
until sufficient nodes are available. When a subjob finishes, the scheduler frees the
respective resources by changing their statuses to “available”.

Figure 3 shows an example of Workflow System operation. When the job series
A~F containing dependencies is submitted, the client-side Java applet applies a topo-
logical sort. Suppose Jobs A and E are independent of each other. The Workflow
System simply adds them to the Job Queue for execution in parallel. When Job A
finishes, it resolves its dependencies with Jobs B and C, and the Workflow System
adds them to the Job Queue, removing Job A. When Jobs B and C finish, the Work-
flow System then adds Job D to the Job Queue for execution.

 A GRB with Network Bandwidth-Aware Job Scheduling for Computational Grids 5

Input
Input

Input

Output

Output
OutputData

Data Data

Data

Job B

Job A

Job C

Fig. 2. A simple job dependency

FIFO

Job C

Job B

Job D

Job F

Job AJob E
Global
Queue

(a) Topological sort
 (b) Jobs A and E are executed

in parallel
(c) Job A finishes, eliminating
dependencies with Jobs B and C

(d) The Workflow System adds Jobs B and C
to the Job Queue and removes Job A

(e) Jobs B and C finish and Job D is
added to the Job Queue for execution

FIFO FIFOJob C Job B

Job DJob F

Job C

Job A
Job B

Job D

Job F

Topological
Sort

Job CJob B Job D

Job F

Job E

Job A

Job E

Job E Job E Job D

Job F

Job C

Job A FIFO

Job B

Job D

Job F

Job E
Global
Queue

Global
Queue

Global
Queue

Fig. 3. The detail steps of workflow operations

4 Design of Network Bandwidth-Award Job Scheduling

4.1 Mechanism of Performance Evaluation

Our grid environment is based on several clusters and the cluster nodes can directly
accept the job which is submitted from the resource broker. We use TP to represent
the total computing power of those machines in a single site which the resource bro-
ker can be allocated. The TP can be divided into three main parts (CPU, memory, and
intra networking). User needs to input the number of CPU (X) which they want to use
for job execution. Then, the information service of resource broker will check how
many CPUs are available in each site (cluster) and the node’s hardware information
(CPU speed, CPU utilization, memory size, and network speed). Afterward the re-
source broker will calculate TP of each site and choose the enough processors based
upon the value in this grid computing platform.

We use the statistics to analyze the execution results of HPL (High Performance
Linpack) application. Pvalij and Mvalij mean the performance value of each machine
based on the ith site and jth node’s CPU and memory, respectively. First, we fix the
memory size and change the number of CPU to conduct the HPL performance test.
Then, we fix the CPU number and changed the HPL problem size to conduct the
performance test to find out the incidence of different memory size which was been

6 C.-T. Yang, S.-Y. Chen, and T.-T. Chen

used. Finally, we give a performance value for each type of CPU and memory size in
our environment based on those performance tests. Then, Puij is processor utility rate
of each node over past one minute based on the jth node of the ith site.

There are two kinds of performance effect ratio in our formula: αPE and αNE. We
use αPE to represent performance effect ratio of processor, and 0≤αPE ≤1. The αPE
value is based on correlation coefficient value between CPU and HPL value. The (1-
αPE) value represents the performance effect ratio of memory size and HPL value. The
square bracket of our formula means the inner effect of the machine. So, the αPE value

is worked out by
(,)

(,) (,)

Cov CPU HPL

Cov CPU HPL Cov memory HPL+
. Then, we make the HPL performance

test in one of the cluster and change the switch from gigabit to 10/100 to find out the
effect of different network speed on performance test. There are two αNE ratios, one is
for gigabit, and another is for 10/100. The αNE value of gigabit is worked out by

(,)

(,) (10 / 100,)

Cov gigabit HPL

Cov gigabit HPL Cov HPL+
, and so does the αNE value of 10/100.

4.2 The Algorithm

In this subsection, all the parameters used in our resource broker are listed and ex-
plained in the following:

• Si: The number of sites (domains) in Grid environment, i = 1~n.
• SRB: The site which resource broker is in.
• P(Si): The number of available processors in site i, where Ni ≤ Pi, and total avail-

able processors for a job execution are summed as ∑ =
= n

i iSPY
1

)(.

• X: The number of processors used for executing a job.
• Pvalij: Processor performance value of each node based on the jth node of the ith

site, i = 1~n, j = 1~m.
• Mvalij: Memory performance value of each node based on the jth node of the ith

site, i = 1~n, j = 1~m.
• Puij: Processor utility rate of each node over past one minute based on the jth

node of the ith site, i = 1~n, j = 1~m.
• αPE: Performance effect ratio of processor, 0≤αPE ≤1.
• 1-αPE: Performance effect ratio of memory.
• αNE: Intra networking effect ratio in the site i, 0≤αNE ≤1.
• β: Internal networking effect ratio in the grid.
• Eij: The graph constructed between sites i and j, the edge corresponding to the

current available bandwidth forecasted by NWS tool.
• ATP(Si): The average total computing power of the site i, and

NEPE
i

n

j
ij

PE
i

n

j
ijij

i SP

Mval

SP

PuPval

SATP ααα ×

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−×+×
−×

=
∑∑

==)1(
)()(

)1(

)(11

 A GRB with Network Bandwidth-Aware Job Scheduling for Computational Grids 7

We summarize the Network Bandwidth-Aware (NB-aware) job scheduling algo-
rithm in Figure 4 and then illustrate an example below the algorithm.

//RB_Network Bandwidth-Aware Job Scheduler
{

//Calculate the number of total available processors in all sites of the grid.

∑ =
= n

i iSPY
1

)(; for GSi ∈∀ , G is the grid.

if (X≥Y) then break;
// R is a set including the sites which will be allocated.

R = ∅;
Count = 0;

// ∑=)()(iSPRP for RSi ∈∀

// n(R) is the amount of the elements in the set R
while (P(R) < X)
{

Count = Count + 1;
Find a set R which P(R) ≥ Y and n(R) = Count, such that

∑∑ ×−+×)()1(iij SATPE ββ is maximum for RSi ∈∀ ;

}
Allocate processors ranked in top X speed of the R.

}

Fig. 4. The job scheduling algorithm in resource broker

Here is an example of this algorithm as shown in Figure 5. Suppose the Grid is
constructed by five domains, and then resource broker is in Domain A. “A(8)” means
there are eight working nodes (processors) in site A. The number “40” represents
current communication bandwidth (Mbps) between sites A and B. At first, resource
broker will query information service to get the current status of whole working
nodes, there are three cases:

• Case 1: If the incoming current job needs 8 processors, resource broker will
check the possible site in this contains more than 8 processors. If the number of
available site is more than two, the resource broker will calculate the TP of each
site and then allocate processors into the best site. In this example, resource bro-
ker could allocate directly into site A or site C based on TP value for running
job.

• Case 2: If the incoming current job needs 12 processors, there does not exist in
any single site that resource broker could immediately allocate processors. In
this kind of situation, resource broker will sort all combination of the two sites in
which the sum of total processors is more than 12 by the value
of ∑∑ ×−+×)()1(iij SATPE ββ . The resource broker will select the best com-

bination to allocate processors ranking in top 12 speeds. In this example, re-
source broker will sort five kinds of combination of the two sites: (A, B), (A, C),
(A, E), (C, B) and (C, E) then select the best one.

8 C.-T. Yang, S.-Y. Chen, and T.-T. Chen

5.5

C (8)

E (4)

A (8)

D (2)

B (4)

5 4.8

5

40

926

9

25 9

Fig. 5. An example of grid testbed

5 Experimental Environment and Results

A metropolitan-scale Grid computing platform named TIGER Grid (standing for
Taichung Integrating Grid Environment and Resource) was used in this experiment.
The TIGER grid interconnects 12 computing clusters which are scattered among seven
educational institutes. The specifications, HPL performance value, and site ranking of
TIGER testbed, are listed in Table 1. Their networking bandwidth information is
listed in Table 2. The site topologies of THU and TIGER are shown in Figure 6,
respectively.

Table 1. The specifications, HPL performance, and site ranking of TIGER testbed

Site Number of
Node/CPU

Total Speed
(MHz)

Total Memory
(MB)

HPL
(G Flops)

Site
Ranking

alpha 4/8 16,000 4,096 12.5683 10
beta 4/8 22,400 4,096 20.1322 11

gamma 4/4 11,200 4,096 5.8089 5
delta 4/4 12,000 4,096 10.6146 7
eta 2/4 12,800 2,048 11.2116 8
mu 2/4 8,000 4,096 11.8500 9

ncue 4/16 32,000 16,384 28.1887 12
ntcu 4/5 3,250 1,024 1.0285 2
hit 4/4 11,200 2,048 7.0615 6
dali 4/4 7,200 512 2.8229 3
lz 4/4 2,700 768 0.8562 1
lf 1/1 3,000 1,024 3.0389 4

In this experiment, a sequence of 100 jobs is randomly generated with “Template
Job” and “np”, which is used to simulate 100 running jobs submission and the number
of processors used for each job. Dispatched by Network Bandwidth-Aware Job

 A GRB with Network Bandwidth-Aware Job Scheduling for Computational Grids 9

Table 2. The network information of each site

Scheduler, related information is logged, including queuing time, total execution time
and resource utilization. Figure 7 shows the distribution of “Template Job”. The
X-axis represents the content of jobs, and the Y-axis represents the number of jobs.

NCUE LF

DALI

NTCU LZ

HIT

THU beta

gammaalpha

mu

eta

delta

Fig. 6. The site topology of THU and TIGER, respectively

To show that RB_Network-Aware Job Scheduler has better performance, in this
experiment, the same job sequence is submitted to another two scheduling schemes,
Network-only and Speed-only, for execution and comparison.

• Network-only: considers network information only. If single cluster is enough to
process the workload, then the fast cluster system in the intranet is chosen. If
two cluster systems are needed, then the top-2 fast cluster systems in the intranet
are chosen.

10 C.-T. Yang, S.-Y. Chen, and T.-T. Chen

• Speed-only: considers CPU clock information only. If single cluster is enough to
process the workload, then the cluster system with largest CPU clock summation
in the intranet is chosen. If two cluster systems are needed, then the two cluster
systems with the top-2 largest CPU clock summation in the intranet are chosen.

Experimental results are shown in Figures 8 and 9. The total execution time of one
job is the average of queuing time and execution time. As shown in Figure 8,
RB_Network-Aware Job Scheduler is better than the other two. Finally, Figure 9
shows the statistics of resource usage. We can see that RB_Network-Aware Job
Scheduler can increase the utilization of powerful clustering systems, and decrease
total completion time.

Fig. 7. The distribution of template jobs

Fig. 8. The comparison of three policies for the average total time of jobs

 A GRB with Network Bandwidth-Aware Job Scheduling for Computational Grids 11

Fig. 9. The comparison of three policies for resource utilization

6 Conclusions

This paper is presented to help the user make better use of the grid resources avail-
able. This paper will look at the use of information services in a grid and discuss the
monitoring use of the Ganglia toolkit to enhance the information services already
present in the Globus environment. Our grid resource brokerage system discover and
evaluate grid resources, and make informed job submission decisions by matching a
job’s requirements with an appropriate grid resource to meet budget and deadline
requirements.

The paper presents the design and the development of a Grid Network-Aware Re-
source Broker. It enhances the features of a Grid Resource Broker with the capabili-
ties that considers network bandwidth for job scheduling. Our grid resource broker
provided a network information service by extract data form NWS tool. The innova-
tive contribution of the presented integration is the possibility to design and imple-
ment new mapping/scheduling mechanisms to take into account both network and
computational resources.

References

1. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid Information Services for
Distributed Resource Sharing,” Proceedings of the Tenth IEEE International Symposium
on High-Performance Distributed Computing, IEEE press, 2001.

2. I. Foster and C. Kesselman, “The Grid 2: Blueprint for a New Computing Infrastructure,”
Morgan Kaufmann, 2nd edition, 2003.

3. I. Foster, “The Grid: A New Infrastructure for 21st Century Science,” Physics Today,
2002, vol. 55, no. 2, pp. 42-47.

4. I. Foster and N. Karonis, “A Grid-Enabled MPI: Message Passing in Heterogeneous Dis-
tributed Computing Systems,” Proceedings of 1998 Supercomputing Conference, 1998.

12 C.-T. Yang, S.-Y. Chen, and T.-T. Chen

5. I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” Interna-
tional Journal of Supercomputer Applications, 1997, vol. 11, no. 2, pp. 115-128.

6. L. Ferreira, V. Berstis, J. Armstrong, M. Kendzierski, A. Neukoetter, MasanobuTakagi, R.
Bing-Wo, A. Amir, R. Murakawa, O. Hernandez, J. Magowan, and N. Bieberstein, “Intro-
duction to Grid Computing with Globus,” http://www.ibm.com/redbooks, 2003.

7. H. Le, P. Coddington, and A.L. Wendelborn, “A Data-Aware Resource Broker for Data
Grids,” IFIP International Conference on Network and Parallel Computing (NPC’2004),
LNCS, vol. 3222, Springer-Verlag, Oct. 2004.

8. C.T. Yang, P.C. Shih, and K.C. Li, “A High-Performance Computational Resource Broker
for Grid Computing Environments,” Proceedings of the International Conference on
AINA’05, vol. 2, pp. 333-336, Taipei, Taiwan, March 2005.

9. C.T. Yang, K.C. Li, W.C. Chiang, and P.C. Shih, “Design and Implementation of TIGER
Grid: an Integrated Metropolitan-Scale Grid Environment,” Proceedings of the 6th IEEE
International Conference on PDCAT’05, pp. 518-520, Dec. 2005.

10. J. Nabrzyski, J.M. Schopf, and J. Weglarz, Grid Rrsource Management, Kluwer Academic
Publishers, 2005.

11. S.M. Park and J.H. Kim, “Chameleon: A Resource Scheduler in a Data Grid Environ-
ment,” Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing
and the Grid, pp. 258-265, May 2003.

12. C.T. Yang, C.L. Lai, P.C. Shih, and K.C. Li, “A Resource Broker for Computing Nodes
Selection in Grid Environments,” Grid and Cooperative Computing - GCC 2004: 3rd In-
ternational Conference,, Lecture Notes in Computer Science, Springer-Verlag, vol. 3251,
pp. 931-934, Oct. 2004.

13. C.T. Yang, P.C Shih, S.Y. Chen, and W.C. Shih, “An Efficient Network Information Mod-
eling using NWS for Grid Computing Environments,” Grid and Cooperative Computing -
GCC 2005: 4th International Conference, Lecture Notes in Computer Science, vol. 3795,
pp. 287-299, Springer-Verlag, Nov. 2005.

14. C.T. Yang, C.F. Lin, and S.Y. Chen, “A Workflow-based Computational Resource Broker
with Information Monitoring in Grids,” Proceedings of the 5th International Conference on
Grid and Cooperative Computing (GCC 2006), IEEE CS Press, pp. 199-206, China, Oct.
2006

15. Ganglia, http://ganglia.sourceforge.net/
16. Network Weather Service, http://nws.cs.ucsb.edu/ewiki/
17. Giovanni Aloisio and Massimo Cafaro, “Web-based access to the Grid using the Grid Re-

source Broker portal,” Concurrency Computation: Practice and Experience, (14):1145-
1160, 2002.

18. Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran, “A taxonomy and sur-
vey of grid resource management systems for distributed computing,” Software Practice
and Experience, (32):135-164, 2002.

19. Ivan Rodero, Julita Corbalán, Rosa M. Badia, and Jesús Labarta, “eNANOS Grid Re-
source Broker”, LNCS, vol. 3470, pp. 111-121, Springer, 2005.

20. Srikumar Venugopal, Rajkumar Buyya, and Lyle Winton, “A Grid service broker for
scheduling e-Science applications on global data Grids,” Concurrency Computation: Prac-
tice and Experience, (18):685-699, 2006.

Design of PeerSum: A Summary Service for P2P
Applications

Rabab Hayek1, Guillaume Raschia1, Patrick Valduriez2, and Noureddine Mouaddib1

Atlas team, INRIA and LINA, University of Nantes, France
1FirstName.LastName@univ-nantes.fr, 2Patrick.Valduriez@inria.fr

Abstract. Sharing huge databases in distributed systems is inherently difficult.
As the amount of stored data increases, data localization techniques become
no longer sufficient. A more efficient approach is to rely on compact database
summaries rather than raw database records, whose access is costly in large dis-
tributed systems. In this paper, we propose PeerSum, a new service for managing
summaries over shared data in large P2P and Grid applications. Our summaries
are synthetic, multidimensional views with two main virtues. First, they can be
directly queried and used to approximately answer a query without exploring the
original data. Second, as semantic indexes, they support locating relevant nodes
based on data content. Our main contribution is to define a summary model for
P2P systems, and the algorithms for summary management. Our performance
evaluation shows that the cost of query routing is minimized, while incurring a
low cost of summary maintenance.

1 Introduction

Research on distributed systems is focusing on supporting advanced applications which
must deal with semantically rich data (e.g. XML documents, relational tables, etc.),
using a high-level SQL-like query language. As a potential example of applications,
consider the cooperation of scientists who are willing to share their private data for
the duration of a given experiment. Such cooperation may be efficiently supported by
improving the data localization and data description techniques.

Initially developed for moderate-sized scientific applications, Grid technology is now
evolving to provide database sharing services, in large virtual organizations. In [9], a
service-based architecture for database access (OGSA-DAI) has been defined over the
Grid. OGSA-DAI extends the distributed database architecture [13] to provide distri-
bution transparency using Web services. However, it relies on some centralized schema
and directory management, which is not an adequate solution for supporting highly
dynamic organizations, with a large number of autonomous members.

Peer-to-Peer (P2P) techniques that focus on scaling up, dynamicity, autonomy and
decentralized control can be very useful to Grid data management. The complemen-
tary nature of the strengths and weaknesses of the two technologies suggests that the
interests of the two communities are likely to grow closer over time [6]. For instance,
P-Grid [1] and Organic Grid [3] develop self-organizing and scalable services on top of
P2P systems.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 13–26, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 R. Hayek et al.

In unstructured P2P systems, query routing relies on flooding mechanisms which
suffer from high query execution cost and poor recall. To improve performance, several
techniques have been proposed to locate data relevant to a user query. These techniques
can be grouped in three classes: data indexing, mediation and content-based cluster-
ing. Data indexing maintains the location (e.g. [18], [15]) or the direction (e.g. [4]) to
nodes storing relevant data. However, efficient data indexes must be small, distributed
and refer to data based on their content, without compromising peer autonomy or man-
dating a specific network structure. Mediation consists in exploiting structural informa-
tion on data schemas to guide query propagation. For instance, in Piazza [19], a query
is propagated along pre-existing pairwise mappings between peer schemas. However,
many limitations prevent these techniques from scaling up. Content-based clustering
consists in organizing the network such that “similar” peers, e.g. peers answering simi-
lar queries, are grouped together ([12], [5]). Similarity between peers may be computed
using techniques of the two preceding classes (e.g. similarity between indexes [11]).

With the ever increasing amount of information stored into databases, data localiza-
tion techniques are no longer sufficient to support P2P data sharing. Today’s Decision-
Support and collaborative applications are typically exploratory. Thus, a user may prefer
a fast, approximate answer to a long, exact answer. In other words, reasoning on com-
pact data descriptions rather than raw database records, whose access is costly in large
P2P systems, may be much more efficient. For instance, a doctor asking queries like
“young and fat patients diagnosed with disease X” may prefer descriptions of result
tuples to rapidly make a decision based on similar situations, treated by other doctors.

In this paper, we propose PeerSum, a new service for managing summaries over
shared data in P2P systems. Our summaries are synthetic, multidimensional views with
two main virtues. First, they provide an intelligible representation of the underlying data
such that an approximate query can be processed entirely in their domain; that is, inputs
and outputs are summaries. Second, as indexing structures, they support locating rele-
vant nodes based on their data descriptions. PeerSum is done in the context of APPA, a
network-independent P2P data management system [2].

This paper makes the following contributions. First, we define a summary model
which deals with the distributed and autonomous nature of P2P systems. Second, we
propose efficient algorithms for summary management. We validated our algorithmic
solutions through simulation, using the BRITE topology generator and SimJava. The
performance results show that the cost of query routing is minimized, while incurring a
low cost of summary maintenance.

The rest of this paper is organized as follows. Section 2 describes PeerSum’s sum-
mary model. Section 3 describes PeerSum’s summary management with its algorithms.
Section 4 discusses query processing with PeerSum. Section 5 gives a performance
evaluation with a cost model and a simulation model. Section 6 compares our solution
with related work. Section 7 concludes.

2 PeerSum Summary Model

In this section, we first present our summary model architecture and the principle of
summary construction in P2P systems. Second, we discuss the scalability issues of
the summarization process that is integrated to a peer DataBase Management System

Design of PeerSum: A Summary Service for P2P Applications 15

(DBMS), to allow generating summaries of a relational database. Then, we formally
define the notion of data summary in a P2P network.

2.1 Model Architecture

Our ultimate goal is to build a complete summary that describes the content of all shared
data sources. However, such a summary is ideal in the context of P2P networks, because
of their autonomous and dynamic nature. It is difficult to build and to keep this sum-
mary consistent relative to the current data instances it describes. In our approach, we

Fig. 1. Summary Model Architecture

adopt an incremental mechanism for summary construction, and define the notion of
“summary coverage” as follows.

Definition 1. Summary coverage. The coverage of a summary S in a network of size
N is the fraction of the peers that own data described by the summary S.

The coverage of a summary quantifies its convergence to the complete summary which
is obviously characterized by a coverage = 1.

The architecture of our summary model is presented in Figure 1. Each peer generates
the Local Summary (LS) of its database, which is characterized by the lowest-coverage
level. Then, it cooperates with other peers through exchanging and merging summaries,
in order to build a Global Summary (GS). The last one is characterized by a continuous
evolution in term of coverage. In fact, the cooperation between two sets of peers, each
having constructed a global summary, will result in a higher-coverage one. That is, in a
large P2P system, one could see the global summary as an intermediate node in a global
hierarchy where the virtual root is the ideal complete summary.

In this work, we propose fully distributed algorithms for global summary construc-
tion and maintenance. However, we will first give a brief description of the summariza-
tion process that generates summaries of relational databases with interesting features,
making it scalable in a distributed environment.

16 R. Hayek et al.

2.2 Summarization Process: Scalability Issues

A summarization process is integrated to each peer’s DBMS to allow constructing the
local summary level of Figure 1. Our approach is based on SAINTETIQ [14], an on-
line linguistic approach for summarizing databases. The system is organized into two
separate web services. The translation service corresponds to the pre-processing step
that prepares data for summarization while the summarization service produces a set of
summaries arranged in a hierarchy. A unique feature of the summary system is its use of
Background Knowledge (BK), a priori built on each attribute. It supports the translation
of descriptions of database tuples into a user-defined vocabulary. Descriptors used for
summary content representation are defined as linguistic variables [21] on the attribute
domain. For example, Figure 2 shows a user-defined vocabulary on the attribute age.
A detailed description of the SAINTETIQ process is available in [14] and [16]. Con-
cerning our work, we are interested in the scalability of the summarization process in a
distributed environment.

Fig. 2. Fuzzy Linguistic Partition on age

Memory consumption and time complexity are the two main factors that need to
be taken care off in order to guaranty the capacity of the summary system to handle
massive datasets. First, the process time complexity is in O(n), where n is the number
of tuples to incorporate into a hierarchy of summaries. Besides, an important feature
is that in the summary algorithm raw data have to be parsed only once and it is per-
formed with a low time cost. Second, the system requires low memory consumption
for performing the summary construction algorithm as well as for storing the produced
summaries. Moreover, a cache manager is in charge of summary caching in memory
and it can be bounded to a given memory requirement. On the other hand, the paral-
lelization of the summary system is a key feature to ensure a smooth scalability. The im-
plementation of the system is based on the Message-Oriented Programming paradigm.
Each sub-system is autonomous and collaborates with the others through disconnected
asynchronous method invocations. It is among the least demanding approaches in terms
of availability and centralization. The autonomy of summary components allows for a
distributed computing of the process.

2.3 Summary Representation

A summary z is a pair (Iz , Rz) where Iz is the intentional content of the summary
and Rz is its extent, that is the group of database tuples described by Iz . The intent Iz

provides a short description of z in terms of linguistic labels defined in the Background
Knowledge (BK) and used in the pre-processing step.

Design of PeerSum: A Summary Service for P2P Applications 17

For our purpose, we consider a summary as an indexing structure over distributed
data in a P2P system. Thus, we added a third dimension to the definition of a summary
z: a peer-extent Pz , which provides the set of peers having data described by z.

Definition 2. Peer-extent. Let z be a node in a given hierarchy of summaries S, and
P the set of all peers who participated to the construction of S. The peer-extent Pz

of the summary z is the subset of peers owning, at least, one record of its extent Rz:
Pz = {p ∈ P | Rz ∩ Rp �= ∅} , where Rp is the view over the database of node p, used
to build summaries.

Due to the above definition, we extend the notion of data-oriented summary in a given
database, to a source-oriented summary in a given P2P network. In other words, our
summary can be used as a database index (e.g. referring to relevant tuples), as well as a
semantic index in a distributed database system (e.g. referring to relevant nodes).

A summary is an edge in the tree structure finally produced by the summarization
service. The summary hierarchy S will be characterized by its Coverage in the P2P
system; that is, the fraction of nodes (data sources) covered by S (see Definition1).
Relative to the hierarchy S, we call Partner Peer a peer whose data is described by at
least a summary node of S.

Definition 3. Partner peers. The set of Partner peers PS of a summary hierarchy S is
the union of peer-extents of all the summary nodes: PS = {∪z∈SPz} .

By now and for convenient purpose only, we designate by “summary” a hierarchy of
summaries maintained in a P2P system, unless otherwise specified.

3 Summary Management in PeerSum

We present PeerSum, a summary management service for P2P systems. First, we study
the integration of PeerSum in an existing P2P architecture. Here we work in the context
of APPA (Atlas Peer to Peer Architecture) [2]. Then, we propose algorithms for Peer-
Sum’s summary management. APPA has a network-independent architecture so it can
be implemented over different types of P2P networks. APPA provides three layers of
services: P2P network, basic services and advanced services. PeerSum is integrated at
the advanced layer and defined based on the underlying services. Due to space limita-
tions, we will only mention the services required for PeerSum definition. According to
Section 2.1, PeerSum must address the following requirements:

– Peers construct individually their local summaries,
– Peers cooperate for exchanging and merging summaries into a global summary,
– Peers share a common storage in which the global summary is maintained.

The first point is addressed by integrating the summarization process, previously de-
fined, to each peer’s DBMS. Second, the peer linking and peer communication services
of the APPA’s P2P network layer allow peers to communicate and exchange messages
(through service calls), while cooperating for a global summary construction. However,
two problems arise from the heterogeneous nature of peers in a P2P system. First, peers

18 R. Hayek et al.

may have different processing and storage capabilities. Therefore, a main function of
PeerSum is to ensure a distributed operation for summary merging. A partner peer that
requires merging two summaries, calls the service which then delegates the right peers
to perform merging calculations, using load balancing and distributed computing tech-
niques. This function can be implemented since the summarization process, at each
peer, can be distributed and parallelized, as discussed in Section 2.2.

Second, peers exchange summaries that are produced using local Background Know-
ledges (BKs). Thus, they may be represented in different vocabularies, making diffi-
cult their shared exploitation. In this work, we assume that the participants to a col-
laborative database application agree on a Common Background Knowledge (CBK)
that will be used locally by each summarization process. An example of such a CBK
is the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) [10],
which is a comprehensive clinical terminology covering diseases, clinical findings, and
procedures.

On the other hand, several works have addressed the problem of semantic hetero-
geneity in advanced P2P applications (e.g. [19], [2]). Since our summaries are data
structures that respect the original data schemas [16], we can assume that the techniques
they proposed for a decentralized schema management can be also used to overcome
the heterogeneity of summary representations, in the context of different BKs.

Finally, the P2P data management (P2PDM) service of the basic layer and the Key-
based Storage and Retrieval (KSR) service of the P2P network layer, work together to
provide a common storage in which a global summary is maintained. This common
storage increases the probability that “P2P data” (e.g. metadata, indexes, summaries)
produced and used by advanced services are available even if peers that have produced
them are disconnected. P2PDM and KSR manage data based on keys. A key is a data
identifier which determines which peer should store the data in the system, e.g. through
hashing over all peers in DHT networks or using super-peers for storage and retrieval
in super-peer networks. All data operations on the common storage are key-based, i.e.
they require a key as parameter.

In the following, we will describe our algorithms for summary construction and
maintenance. First, we work in a static context where all the participants remain con-
nected. Then, we address the dynamicity of peers and propose appropriate solutions.

3.1 Summary Construction

Starting up with a local summary level (see Figure 1), we present the algorithm for peer
cooperation that allows constructing a global summary GS. We assume that each global
summary is associated with a Cooperation List (CL) that provides information about its
partner peers. An element of the cooperation list is composed of two fields. A partner
peer identifier PeerID, and a 2-bit freshness value v that provides information about the
freshness of the descriptions as well as the availability of the corresponding database.

– value 0 (initial value): the descriptions are fresh relative to the original data,
– value 1: the descriptions need to be refreshed,
– value 2: the original data are not available. This value will be used while addressing

peer volatility in Section 3.3.

Design of PeerSum: A Summary Service for P2P Applications 19

Both the global summary and its cooperation list are considered as “summary data” and
are maintained in the common storage, using the P2PDM and KSR services.

Cooperation Request. The algorithm starts at an initiator peer Pinit who sends a co-
operation request message to its neighbors, to participate to a global summary construc-
tion. This message contains Pinit’s identifier and a given value of TTL (Time-To-Live).
One may think that a large value of TTL allows to obtain directly a high-coverage sum-
mary. However, due to the autonomous nature of P2P systems, Pinit may keep waiting
for a very long time without having constructed that global summary. Therefore, we
choose to limit the value to TTL and adopt an incremental construction mechanism, as
discussed in Section 2.1.

Cooperation Response. A peer p who receives the message, performs the following
steps. First, if the request has already been received, it discards the message. Else, it
saves the address of the sender as its parent. Then, its decrements TTL by one. If the
value of TTL remains positive, it sends the message to its neighbors (except the parent)
with the new TTL value. After propagating the message, p must wait to receive the
responses of its neighbors. However, since some of the neighbors may leave the system
and never response, the waiting time must be limited. We compute p’s waiting time
using a cost function based on TTL, and network dependent parameters.

A cooperation response of a peer p has the following structure: Coop Resp =〈CS,
PeerIDs, GSKeys〉. CS is the current summary obtained at p, PeerIDs is the list of
identifiers of peers that have responded to p, and GSKeys is the list of keys of global
summaries. If p is a partner peer, that is, p has already participated to an existing global
summary, its Coop Resp will include the key of the global summary it knows, as
well as the peer identifiers contained in the corresponding CL, i.e. Coop Resp =〈∅,
extractPeerIDs(CL), {GSKey}〉. In that case, p locates at the boundary of two knowl-
edge scopes of two different summaries. Hence, it allows merging them into a higher-
coverage one (i.e. incremental construction). Otherwise, its response will include its
local summary and its identifier, i.e. Coop Resp =〈p.LS, {p.ID}, ∅〉.

Summary Data Storage. In the waiting phase, when a child’s Coop Resp arrives, a
parent peer p merges it with its own response by making the union of PeerIDs and
GSKeys lists, and merging the current summaries. Once the time expires, p sends the
result to its parent. But, if p is the initiator peer Pinit, it will store the new summary data,
i.e. the new global summary GS and its cooperation list CL, using the KSR service:
GSKey := KSR insert(CS, CL). CL contains each peer identifier obtained in the final
PeerIDs list, associated with a freshness value v equal to zero. At the end, Pinit sends
the new key (GSKey) to all participant peers, which become GS’s partner peers.

3.2 Summary Maintenance

A crucial issue for any indexing structure is to maintain the index, relative to the current
data instances, without incurring high costs. For a local summary, it has been demon-
strated that the summarization process guarantees an incremental maintenance, using a
push mode for exchanging data with the DBMS, while performing with a low complex-
ity. In this section, we propose a strategy for maintaining a global summary based on

20 R. Hayek et al.

both push and pull techniques, in order to minimize the number of messages exchanged
in the system. The appropriate algorithm is divided into two phases: Data modification
and summary reconciliation.

Push: Data Modification. Let GS be a global summary and PGS the set of partner
peers. Each partner is responsible for refreshing its own element in the GS’s coopera-
tion list. A partner peer p observes the modification rate issued on its local summary LS.
When LS is considered as enough modified, p sets its freshness value v to 1, through a
push message. This value indicates that the local summary version being merged while
building GS does not correspond any more to the current instance of the database.

An important feature is that the frequency of push messages depends on modifica-
tions issued on local summaries, rather than on the underlying databases. It has been
demonstrated in [16] that, after a given process time, a summary becomes very stable.
As more tuples are processed, the need to adapt the hierarchy decreases. A summary
modification can be determined by observing the appearance/disappearance of descrip-
tors in summary intentions.

Pull: Service-Initiated Reconciliation. The summary service, in its turn, observes
the fraction of old descriptions (i.e. number of ones) in the cooperation list. Whenever
this fraction exceeds a threshold value, the global summary GS must be refreshed. In
that case, the service pulls all the partner peers to merge their current local summaries
into the new version of GS, which will be then under reconstruction. The algorithm is
described as follows.

A reconciliation message that contains a new summary NewGS (initially empty),
is propagated from a partner to another. When a partner p receives this message, it
first merges NewGS with its local summary. Then, it sends the message to another
partner (chosen from the cooperation list CL). If p is the last visited peer, it updates the
GS’s summary data, using the KSR service. All the freshness values in CL are reset to
zero. This strategy guarantees a high availability of the summary data, since only one
KSR Update operation is performed by the last partner.

3.3 Peer Dynamicity

In large P2P systems, a peer connects mainly to download some data and may leave
the system without any constraint. Therefore, the shared data can be submitted to a low
modification rate, while the rate of node arrival/departure is very important. We propose
now solutions for that peer dynamicity.

Peer Arrival. When a new peer p joins the system, it contacts some existing peers to
determine the set of its neighbors. If one of those neighbors is a partner peer, p becomes
a new partner: a new element is added to the cooperation list with a freshness value
v equal to one. Recall that the value 1 indicates the need of pulling the peer to get
new data descriptions. Furthermore, if p is a neighbor of two partners of two different
summaries, it allows merging them in a higher-coverage one (Section 3.1).

Peer Departure. When a partner peer p decides to leave the system, it first sets its
freshness value v to two in the cooperation list, through a push message. This value

Design of PeerSum: A Summary Service for P2P Applications 21

reminds the participation of the disconnected peer p to the corresponding global sum-
mary, but also indicates the unavailability of the original data. There are two alternatives
to deal with such a freshness value. First, we can keep the data descriptions and use it,
when a query is approximately answered using the global summary. A second alter-
native consists in considering the data descriptions as expired, since the original data
are not accessible. Thus, a partner departure will accelerate the summary reconcilia-
tion initiating. In the rest of this paper, we adopt the second alternative and consider
only a 1-bit freshness value v: a value 0 to indicate the freshness of data descriptions,
and a value 1 to indicate either their expiration or their unavailability. However, if p
failed, it could not notify its partners by its departure. In that case, its data descriptions
will remain in the global summary until we execute a new summary reconciliation. The
reconciliation algorithm does not require the participation of a disconnected peer. The
global summary GS is reconstructed, and descriptions of unavailable data will be then
omitted.

4 Query Processing

Now we discuss how a query Q, posed at a peer p, is processed. Our approach consists
in querying at first the available summary . This allows an efficient peer localization
since we exploit data descriptions rather than structural information on data schemas, in
order to propagate the query. Besides, when an exact answer is not required, summaries
can directly provide approximate answers without accessing original database records.
Query processing proceeds in two phases: 1) query extension and 2) query evaluation.

4.1 Query Extension

First, the query Q must be extended to a flexible query Q∗ in order to be handled by a
summary querying process. For instance, consider the following selection query Q1:

Select BMI From Patient Where age ≺ 30 And disease = “Malaria”

This phase consists in replacing the original value of each selection predicate by the
corresponding descriptors defined in the Background Knowledge (BK). According to
the fuzzy partition of Figure 2, the above query is transformed to Q∗:

Select BMI From Patient Where age In {young, adult} And disease =“Malaria”

Let QS (resp.QS∗) be the Query Scope of query Q (resp.Q∗), that is; the set of peers
that should be visited to answer the query. Obviously, the query extension phase may
induce false positives in query results. To illustrate, a patient having 35 years old will
be returned as an answer to the query Q∗, while the selection predicate on the attribute
age of the original query Q is not satisfied. However, false negatives can not occur
which is expressed by the following inclusion: QS ⊆ QS∗.

In the rest of this paper, we suppose that a user query is directly formulated using
descriptors defined in the BK (i.e. Q = Q∗). As we discussed in the introduction of this

1 Body Mass Index (BMI) is the patient’s body weight divided by the square of the height.

22 R. Hayek et al.

work, a doctor that participates to a given medical collaboration, may ask query Q like
“the BMI of young and adult patients diagnosed with malaria”.Thus, we eliminate
eventual false positives that result from query extension.

4.2 Query Evaluation

This phase deals with matching a set of summaries organized in a hierarchy S, against
the query Q. The query is transformed into a logical proposition P used to qualify the
link between a summary node and the query. P is under a conjunctive form in which
all descriptors appears as literals. In consequence, each set of descriptors yields on cor-
responding clause. For instance, the above query Q is transformed to P = (young OU
adult) ET (malaria). A valuation function has been defined to valuate the proposition
P in the context of a summary node z. Then, a selection algorithm performs a fast ex-
ploration of the hierarchy and returns the set ZQ of most precise summaries that satisfy
the query. For more details see [20]. Once ZQ determined, the query evaluation process
is able to achieve two distinct tasks depending on the user/application requirements:
1) Peer localization to return the original result records and 2) Summary answering to
return approximate answers.

Peer Localization. Since the extended definition of a summary node z provides a peer-
extent, i.e. the set of peers Pz having data described by its intent (see Definition 2), we
can define the set PQ of relevant peers for the query Q as follows: PQ = {∪z∈ZQPz}.

The query Q is directly propagated to these relevant peers. Thus, a distinctive feature
of our approach is that the number of hops the queries makes to find the matching nodes
is “ideally” reduced to one, and consequently, excessive delays are avoided. However,
the efficiency of this query routing depends on the completeness and the freshness of
summaries, since stale answers may occur in query results. We define a False Positive
as the case in which a peer p belongs to PQ and there is actually no data in the p source
that satisfies Q (i.e. p /∈ QS). A False Negative is the reverse case in which a p does not
belong to PQ, whereas there exists at least one tuple in the p data source that satisfies
Q (i.e. p ∈ QS).

Summary Answering. Another distinctive feature is that a query can be processed
entirely in the summary domain. An approximate answer can be provided from sum-
mary descriptions, without having to access original, distributed database records. The
selected summaries ZQ are aggregated according to their interpretation of proposition
P : summaries that have the same required characteristics on all predicates (i.e. age
and disease) form a class. The aggregation in a given class is a union of descriptors:
for each attribute of the selection list (i.e. BMI), the querying process supplies a set of
descriptors which characterize summaries that respond to the query through the same
interpretation [20]. For example, for the class {young, malaria}, we can obtain an out-
put set BMI = {underweight, normal}.

5 Performance Evaluation

In this section, we devise a simple model of the summary management cost in PeerSum.
Then, we evaluate and analyze our model with a simulation.

Design of PeerSum: A Summary Service for P2P Applications 23

5.1 Cost Model

A critical issue in summary management is to trade off the summary updating cost
against the benefits obtained for queries.

Summary Update Cost. Here, our first undertaking is to optimize the update cost
while taking into account query accuracy. In the next section, we discuss query accuracy
which is measured in terms of the percentage of false positives and false negatives in
query results. The cost of updating summaries is divided into: usage of peer resources,
i.e. time cost and storage cost, and the traffic overhead generated in the network.

Time cost: A unique feature of SAINTETIQ is that the changes in the database are re-
flected through an incremental maintenance of the summary hierarchy. The time com-
plexity of the summarization process is in O(n) where n is the number of tuples to
be incorporated in that hierarchy [16]. For a global summary, we are concerned with
the complexity of merging summaries. Recently, a new MERGING method has been
proposed, based on the SAINTETIQ engine. This method consists in incorporating the
leaves of a given summary hierarchy S1 into an another S2, using the same algorithm
described by the SAINTETIQ summarization service. It has been proved that the com-
plexity CM12 of the MERGING(S1, S2) process is constant w.r.t the number of tuples.

Storage cost: We denote by k the average size of a summary node. In the average-
case assumption, there are

∑d
i=0 Bi = (Bd+1 − 1)/(B − 1) nodes in a B-arity tree

with d, the average depth of the hierarchy. Thus the average space requirement is given
by: Cm = k.(Bd+1 − 1)/(B − 1). Based on real test, k = 512 bytes gives a rough
estimation of the space required for each summary node. An important issue is that the
size of the hierarchy is quite related to its stabilization (i.e. B and d). As more tuples
are processed, the need to adapt the hierarchy decreases and incorporating a new tuple
may consist only in sorting a tree. Hence, the structure of the hierarchy remains stable
and no additional space is required.

According to the above discussion, the usage of peer resources is optimized by the
summarization process itself. Thus, we restrict now our focus to the traffic overhead
generated in the P2P network.

Network traffic: Recall that there are two types of exchanged messages: push and
reconciliation. Let local summaries have an average lifetime of L seconds in a given
global summary. Once L expired, the node sends a (push) message to update its fresh-
ness value v in the cooperation list CL. The reconciliation algorithm is then initiated
whenever the following condition is satisfied:

∑
v∈CL v/|CL| ≥ α where α is a thresh-

old that represents the ratio of old descriptions tolerated in the global summary. During
reconciliation, only one message is propagated among all partner peers until the new
global summary version is inserted in the common storage. Let Frec be the reconcilia-
tion frequency. The update cost is: Cup = 1/L+Frec messages per node per second. In
this expression, 1/L represents the number of push messages which depends either on
the modification rate issued on local summaries or the connection/disconnection rate of
peers in the system. Higher is the rate, lower is the lifetime L, and thus a large number
of push messages are entailed in the system. Frec represents the number of reconcilia-
tion messages which depends on the value of α. This threshold is our system parameter

24 R. Hayek et al.

that provides a trade-off between the cost of summary updating and query accuracy. If
α is large, the update cost is low since a low frequency of reconciliation is required,
but query results may be less accurate due both to false positives stemming from the
descriptions of non existent data, and to false negatives due to the loss of relevant data
descriptions whereas they are available in the system. If α is small, the update cost is
high but there are few query results that refers to data no longer in the system, and
nearly all available results are returned by the query.

Query Cost. We have seen that the use of summaries as data indexes may improve
query processing. When a query Q is posed at a peer p, first it is matched against the
global summary to determine the set of peers PQ whose descriptions are considered as
answers. Then, Q is directly propagated to those peers. As a consequence, the number of
messages exchanged in the system is intended to be significantly reduced. Furthermore,
the cooperation list associated with a global summary provides information about the
relevance of each database description. Thus, it gives more flexibility in tuning the
trade-off recall ρ / precision π of the query answers. Let V be the set of peers visited
while processing a query. Then ρ = |QS ∩ V |/|QS| and π = |QS ∩ V |/|V |, where
QS is the set of all peers that really match the query (i.e. Query Scope).

The trade-off can be tuned by confronting the set PQ with the cooperation list CL.
The set of all partner peers PH in CL can be divided into two subsets: Pold = {p ∈
PH | p.v = 1}, the set of peers whose descriptions are considered old, and Pfresh =
{p ∈ PH | p.v = 0} the set of peers whose descriptions are considered fresh according
to their current data instances. Thus, if a query Q is propagated only to the set V =
PQ ∩ Pfresh, then precision is maximum since all visited peers are certainly matching
peers (no false positives), but recall depends on the fraction of false negatives in query
results that could be returned by the set of excluded peers PQ\Pfresh. On the contrary,
if the query Q is propagated to the extended set V = PQ∪Pold, recall value is maximum
since all matching peers are visited (no false negatives), but precision depends on the
fraction of false positives in query results that are returned by the set of peers Pold.

The above two situations are bounds of a range of strategies available to propagate
the query. In our experiments, we assume V = PQ, the initial peer set. Thus, the cost is
computed as CQ = 2 · |PQ| number of messages.

5.2 Discussion

We evaluated the performance of PeerSum through simulation, using the SimJava pack-
age [7] and the BRITE [8] universal topology generator. We calibrated our simulator
using real data gathered in [17].

In a first set of experiments we quantified the trade-off between query accuracy and
the cost of updating a global summary. Interesting results showed that the fraction of
stale answers in query results is limited to 3% for a network size lower than 2000
peers. For the update cost, we observed that the total number of messages increases
with the number of peers, but not surprisingly, the number of messages per node remains
almost the same. In the expression of the update cost Cup, the number of push messages
for a given peer is independent of network size. On the other hand, the number of
reconciliation messages decreases slowly with the number of peers, for a given value

Design of PeerSum: A Summary Service for P2P Applications 25

of the threshold α. More interestingly, when the threshold value decreases (from 0.8 to
0.3) we noticed a small cost increasing of 1.2 on average. However, a small value of the
threshold α allows to significantly reduce the fraction of stale answers in query results.
We concluded therefore that tuning our system parameter, i.e. the threshold α, do not
incur additional traffic overhead in the system, while improving query accuracy.

In the second set of experiments, we compare our algorithm for query processing
against non-index/flooding algorithms which are very used in real life, due to their
simplicity and the lack of complex state information at each peer. Here, we limit the
flooding by a value 3 of TTL (Time-To-Live). Our algorithm SI showed the best results
that can be expected from any query processing algorithm, when no stale answers occur
in query results (the ideal case). However, to give a real performance evaluation, we
decided to study our algorithm in the worst case where the stale answers occur in query
results. Even in that, SI showed a reduction of the number of messages, in comparison
with flooding algorithms, that becomes more important with a large size of network.
For instance, the query cost is reduced by a factor of 3 for a network of 2000 peers.

6 Conclusion

In this paper, we proposed PeerSum, a new service for managing data summaries in P2P
and Grid systems. PeerSum supports scaling up in terms of two dimensions: number of
participants and amount of data. As we discussed, our summaries are compact data
descriptions that can approximately answer a query without retrieving original records
from distributed databases. This is very interesting for Grid applications which tend to
be more data intensive. On the other hand, as indexing structures, they support locating
relevant data based on their content. Such semantic indexes are extremely efficient in
large distributed systems, where accessing data becomes difficult and costly. Besides,
we have addressed peer dynamicity which is critical in both P2P and Grid applications.

This paper made two main contributions. First, we defined a summary model for P2P
systems, based on the SAINTETIQ process. SAINTETIQ generates database summaries
with low complexity, and can be distributed and parallelized which makes it scalable
in a distributed environment. Second, we proposed efficient algorithms for summary
management in PeerSum. Our analysis and simulation results showed that the use of
summaries as data indexes reduces the cost of query routing by an important factor com-
pared to flooding approaches, without incurring high costs in terms of update messages
exchanged in the network. Furthermore, our system guarantees a good query accuracy
which is measured in terms of the fraction of stale answers in query results. Moreover,
tuning our system parameter, i.e. the freshness threshold α, improves query accuracy
while inducing a small increasing of summary update cost.

References

1. K. Aberer et al. P-grid: a self-organizing structured P2P system. SIGMOD Rec., 32(3), 2003.
2. R. Akbarinia, V. Martins, E. Pacitti, and P. Valduriez. Replication and query processing

in the APPA data management system. In Workshop on Distributed Data and Structures
(WDAS’2004), 2004.

26 R. Hayek et al.

3. A. Chakravarti, G. Baumgartner, and M. Lauria. The organic grid: self-organizing computa-
tion on a peer-to-peer network. IEEE Transactions on Systems, Man, and Cybernetics, Part
A, 35(3):373–384, 2005.

4. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In Proc. of the
28 tn Conference on Distributed Computing Systems, July 2002.

5. A. Crespo and H. Garcia-Molina. Semantic overlay networks for P2P systems. Technical
report, Computer Science Department, Stanford University, 2002.

6. I. Foster and A. Iamnitchi. On death, taxes, and the convergence of peer-to-peer and grid
computing. In IPTPS, pages 118–128, 2003.

7. F. Howell and R. McNab. Simjava: a discrete event simulation package for java with the
applications in computer systems modeling. In Int. Conf on Web-based Modelling and Sim-
ulation, San Diego CA, Society for Computer Simulation, 1998.

8. http://www.cs.bu.edu/brite/.
9. http://www.ogsadai.org.uk. Open grid services architecture data access and integration.

10. http://www.snomed.org/snomedct.
11. G. Koloniari, Y. Petrakis, and E. Pitoura. Content–based overlay networks of xml peers based

on multi-level bloom filters. In Proc VLDB, september 2003.
12. A. Oser, F. Naumann, W. Siberski, W. Nejdl, and U. Thaden. Semantic overlay clusters

within super-peer networks. In Proc of the International Workshop on Databases, Informa-
tion Systems and Peer-to-Peer Computing in Conjunction with the VLDB 2003, 2003.

13. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall, 1999.
14. G. Raschia and N. Mouaddib. A fuzzy set-based approach to database summarization. Fuzzy

sets and systems 129(2), pages 137–162, 2002.
15. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content–

addressable network. In Proc SIGCOMM, 2001.
16. R. Saint-Paul, G. Raschia, and N. Mouaddib. General purpose database summarization. In

Proc VLDB, pages 733–744, 2005.
17. S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-to-peer file sharing

systems. In Proc of Multimedia Computing and Networking (MMCN), 2002.
18. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A scalabale

peer-to-peer lookup service for internet applications. In Proc ACM SIGCOMM, 2001.
19. I. Tartinov et al. The piazza peer data management project. In SIGMOD Record, 32(3), 2003.
20. A. Voglozin, G. Raschia, L. Ughetto, and N. Mouaddib. Querying the SAINTETIQ

summaries-a first attempt. In Int Conf. On Flexible Query Answering Systems (FQAS), 2004.
21. L. Zadeh. Concept of a linguistic variable and its application to approximate reasoning.

Information and Systems, 1:119–249, 1975.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 27 – 38, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A High-Performance Virtual Storage System for
Taiwan UniGrid

Chien-Min Wang1, Hsi-Min Chen2, Chun-Chen Hsu3, and Jan-Jan Wu1

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
2 Department of Computer Science and Information Engineering,

National Central University, Taoyuan, Taiwan
3 Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan
{cmwang, seeme, tk, wuj}@iis.sinica.edu.tw

Abstract. In Taiwan, a community of educational and research organizations
interested in Grid computing technologies founded a Grid computing platform,
called Taiwan UniGrid. Taiwan UniGrid consists of three primary portions:
Computational Grid, Data Grid, and Web Portal. In this paper, we present the
development of a virtual data storage system for Taiwan UniGrid. In addition to
developing basic data storage functions, we identify three main requirements of
the current development: high-performance data transfer, data sharing and sin-
gle sing-on. For these requirements, we come up with three corresponding fea-
tures in our data storage system: Self-Adaptation for high-performance data
transfer, forming user groups and specifying admission control for data sharing,
and adopting GSI authentication to enable single sing-on. Besides, we also de-
velop a Java-based graphic user interface of the storage system that allows Grid
users to manage data transparently as using local file systems.

Keywords: Data Grid, data storage system, data transfer, web service, and sin-
gle sign-on.

1 Introduction

With the rapid growth of computing power and storage capacity of computers, many
researchers and scientists have been concentrated on the development of various Grid
systems to efficiently utilize distributed computing and storage resources in recent
years. In Taiwan, a community of educational and research organizations interested in
Grid computing technologies founded a Grid computing platform, called Taiwan
UniGrid [1]. These organizations contribute their resources of computer clusters for
sharing and collaboration. The objective of Taiwan UniGrid is to provide educational
and research organizations with a powerful computing platform where they can study
Grid-related issues, practice parallel programming on Grid environments and execute
computing/data-intensive applications.

As similar to other Grid systems, Taiwan UniGrid consists of three primary por-
tions: Computational Grid, Data Grid and Web Portal. Computational Grid is respon-
sible for managing scattered and heterogeneous computing resources and scheduling

28 C.-M. Wang et al.

the jobs submitted by users. Data Grid is a virtual storage infrastructure that integrates
distributed, independently managed data resources and allows users to save and re-
trieve their data without understanding the configuration of underlying storage re-
sources. Web Portal, developed by National Tsing Hua University, is a uniform user
interface by which Grid users can design workflow, submit jobs, manage data, moni-
tor job and resource status, etc. In this paper, we will present the development of the
data management system for Taiwan UniGrid.

As the distribution of storage resources and the growth of data size, the needs for
efficient Grid data management are continuously increasing. In these years, many
research and scientific organizations have engaged in building data management and
storage tools for Grids, such as SDSC SRB (Storage Resource Broker) [2], SciDAC
Data Grid Middleware [3], GriPhyN Virtual Data System [4], etc. SRB is a general
Data Grid middleware that integrates distributed and heterogeneous storage resources
and provides virtualized access interface. It has been a production data management
tool and adopted by several Grid projects. Thus, among these tools, we decide to build
our virtual storage system for Taiwan UniGrid based on SRB, while developing addi-
tional features that are not well supported by SRB.

Before implementing the virtual storage system, we elicited requirements from the
user and manager needs. Herein, in additional to the basic Data Grid functions pro-
vided by SRB, we identify three main requirements of the current development listed
as follows.

• High-performance data transfer: Since the size of data generated by scientific
instruments and Grid applications has grown into the range of Terabytes, large data
transfer over the Internet usually leads to a long latency and becomes a bottleneck
for job executions. Thus, the need for high-performance data transfer is an impor-
tant issue in Taiwan UniGrid.

• Data sharing: Two important concepts of Grids are sharing and collaboration.
Grid users, such as scientists and researchers, are accustomed to retrieve data col-
lected by remote scientific instruments, analyze these retrieved data via various
analysis tools, and share the analyzed results for further processing. Therefore, how
to facilitate Grid users to contribute or get shared data with ease is a crucial re-
quirement in the development of a data management system.

• Single sign-on: In essence, physical resources within a Grid system are distributed
in different organizations and managed independently. Each organization has its
own security policy. Without single sign-on mechanisms, Grid users have to keep a
list of accounts for each machine by themselves. This becomes an obstacle for us-
ers to use Grid systems. Hence, we have to take the problem of single sign-on into
account when we integrate our system with Computational Grid and UniGrid
Portal.

Consequently, in our system, we come up with three features with respect to the
corresponding requirements. For high-performance data transfer, we propose a multi-
source data transfer algorithm, called Self Adaptation [5], which can speed up the data
transfer rate in data replication, downloading, moving, and copying. For data sharing,
our system allows Grid users to share their data in a manner of forming user groups
and specifying admission control on each data object. For the issue of single sign-on,
we choose GSI (Grid Security Infrastructure) [6] as our user certification mechanism

 A High-Performance Virtual Storage System for Taiwan UniGrid 29

by which Grid users only have to login once and utilize Grid resources through cer-
tificates, so that they have no need to keep all accounts for each machine. Besides
these features, we also develop a Java-based graphic user interface of the storage
system that allows Grid users to manipulate data transparently as using local file
systems.

The remainder of the paper is organized as follows. In Section 2, we explain the
system framework and deployment. Section 3 presents main features, including multi-
source data transfer, data sharing, single sign-on, and the data management client. An
operational scenario of Taiwan UniGrid is demonstrated in Section 4. Finally, we
present some concluding remarks in the last section.

Fig. 1. The framework of the virtual storage system for Taiwan UniGrid

2 System Framework and Deployment

Figure 1 shows the framework of our virtual storage system. In the server side, the left
bottom of the framework is a set of physical storage resources, including hard disks,
tapes and databases, contributed by the members of Taiwan UniGrid. We adopt SRB
as a data management middleware to integrate these scattered storage resources. SRB
provides a list of data and storage management functions. Although SRB has fur-
nished an efficient data transfer approach by using multiple TCP connections, we
propose an alternative, called Self Adaptation, to get a higher data transfer rate in
comparison with the original one. We will explain the detail of Self Adaptation in
section 3. Therefore, we add the alternative (Self Adaptation Patch) into the original
functions of SRB. A set of extended SRB APIs are built on top of SRB and the Self
Adaptation Patch. The extended SRB APIs consist of primary APIs provided by SRB
and the APIs for high-performance data transfer, such as MSDTReplicate() and
MSDTCopy().

The right of the server side of the framework is a number of Web services used for
data management. Web service technologies are playing an increasingly important
role in the new generation of Grids. Such technologies encapsulate heterogeneous

30 C.-M. Wang et al.

software components, legacy systems and resources as services and simply describe
their interfaces in a standard description language, i.e. WSDL [7]. Service providers
can advertise their services in a registry, i.e. the UDDI [8] server, for clients to
browse. If clients want to use the services advertised in a registry, the SOAP [9] tech-
nology helps them access the services through standard transport protocols, such as
HTTP and SMTP. Therefore, we adopt Web services technologies in our system to
integrate other software developed by third parties. There are two services imple-
mented in the current system: the AutoReplication service, developed by Chung Hua
University, and the Account Management service. The AutoReplication service help
Grid users set various replication policies on data objects. The Account Management
service is developed by wrapping up the functions of user authentication in UniGrid
Portal for single sign-on.

In the client side, the bottom is the data management library for UniGrid which in-
teracts with the corresponding server-side extended SRB APIs and data management
services. We implemented two versions of the library. One is Java-based and another
is C-based. The data management library provides a uniform interface of data and
storage management by which programmers can build various Grid applications to
access the underling storage resources.

Fig. 2. The deployment of the virtual storage system for Taiwan UniGrid

Figure 2 presents the deployment of our virtual storage system. Since there is a
huge amount of storage resources distributed in Taiwan UniGrid, using a single in-
formation server to maintain the metadata regarding users, data and storages may
cause the problems of server overloading and single point of failure. To avoid these
problems, we divided all storage resources in Taiwan UniGrid into five zones, i.e.
Taipei_UniGrid, Hsinchu_UniGrid, Taichung_UniGrid, Tainan_UniGrid and
Hualien_UniGrid. Each zone has a MCAT (SRB Metadata Catalog) server installed

 A High-Performance Virtual Storage System for Taiwan UniGrid 31

for maintaining the metadata of the users, data, and storage resources. To enable the
flexibility of sharing, the administrators of a MCAT server can specify their won
sharing policies, for instance, some resources can be shared with users registered in
other zones, but some are utilized in private. In addition, each MCAT server periodi-
cally synchronizes its metadata with each other to keep the metadata consistency
among zones. By synchronization, Grid users registered in one zone can access stor-
age resources located in other zones and retrieve sharing data timely.

The members of Taiwan UniGrid contribute their storage resources by setting up
SRB servers. Each SRB server consists of one or more physical storage resources and
is registered to a MCAT server. Gird users can manipulate data objects in a specified
storage resource of a SRB server, for example uploading data objects, creating repli-
cas and modifying metadata of the data objects. Then the SRB server will automati-
cally ask the MCAT server, which registers the SRB server, to update the metadata of
the operated data object and synchronize with other MCAT servers. Thus, a Grid user
who logins to one of close SRB servers can utilize storage resources in any zone of
Taiwan UniGrid.

3 Main Features

In this section, we present the main features of our system, including multi-source
data transfer, data sharing, single sign-on, for the requirements listed in Section 1. In
addition, we also develop a friendly graphic user interface of the virtual storage sys-
tem that helps Grid users manage their data as using local file systems.

Fig. 3. (a) The replica selection approach. (b) The multi-source data transfer approach.

3.1 Multi-source Data Transfer

To achieve high-performance data transfer, data replication has been a widely used
technique that facilitates a Grid user to select a best replica site closest to the specific
destination and transfer the selected replica to it. Instead of transferring data from the
source site, selecting the best replica can reduce the data transfer time on the Internet.
A number of approaches have been proposed for selecting the best replica based on
various criteria [10, 11]. However, as shown in Figure 3(a), since such an approach

32 C.-M. Wang et al.

only allows users to specify one replica for transfer in each selection, they have two
major shortcomings:

• When several replicas have almost the same network performance, choosing a
slightly better replica and discarding all others does not fully utilize network re-
sources.

• Selecting only one replica may degrade transfer reliability because, if the connec-
tion to the selected replica fails, it has to execute the selection algorithm again and
reconnect to other replicas.

Some multi-source data transfer mechanisms have been presented recently to solve
the above problems [12, 13], whereby a transferred data object can be assembled in
parallel from multiple distributed replica sources as shown in Figure 3(b). To improve
the data transfer rate, we propose an efficient data transfer algorithm, called Self-
Adaptation. It not only enables the data transfer from multiple replica sites as other
multi-source data transfer algorithms, but is also more adaptive to the network band-
width fluctuations. Self-Adaptation assigns proper segments of transferred data to each
replica site based on the overhead and bandwidth measured from the previous data
transfer, so that it can achieve higher aggregate bandwidth. More information of Self-
Adaptation and performance comparisons with other approaches can be found in [5].

Multi-source data transfer is the major contribution to the development of the data
storage system. In the client-side library of the current system, we implement three
alternative functions of data transfer based on Self-Adaptation to enable high-
performance data transfer.

• MSDTDownload(): Grid users or programs can download data objects to their
local file systems and the downloaded objects are reassembled in parallel from the
source and replica sites.

• MSDTReplicate(): Grid users or programs, for example the AutoReplication
service, can make new data replicas to the specified destination resources and the
new replicas are reassembled in parallel from the source and replica sites.

• MSDTCopy(): Grid users or programs can make copies of data objects to the
specified directories of the virtual storage system and the copies are reassembled in
parallel from the source and replica sites of the original data objects.

3.2 Date Sharing

According to the literature survey, we found that Grid users usually need a platform
where they can work collaboratively. Although most Data Grid middleware provides
the sharing of storage resources, data sharing for collaborative work is not well sup-
ported. Therefore, in our system, we develop a collaborative platform through the
combinations of forming user groups and specifying access permissions on each data
object.

In our system, a group of users who need to work together can ask the administra-
tors to form a user group. For instance, a user group can be built according to some
research topics in which a group of users are interested. Each Grid user can take part
in many user groups simultaneously as long as he/she gets the grants from the admin-
istrators. Once an administrator creates a user group, the system will create a group

 A High-Performance Virtual Storage System for Taiwan UniGrid 33

workspace, i.e. a group home directory, for sharing and collaboration. Each group
workspace can assign one or more owners to manage the admission of the workspace.

In general, Grid users have their own personal workspace, i.e. a user home direc-
tory, where they can manage their private data objects. Data objects can be files, di-
rectories, replicas or links. Grid users can share their private data objects with others
via specifying access permissions on data objects. Figure 4 shows a screenshot of
admission control for data sharing, by which Grid users can specify read or write
permission for each data object to other users or groups. It also supports the owner
change of a specific data object. On the other hand, Grid users can share their data by
uploading or copying private data objects directly to the group workspaces.

Fig. 4. A screenshot of the data management client and admission control for data sharing

3.3 Single Sign-On

Since software components and resources within a Grid system are distributed in
different organizations and managed independently, using one account for a Grid user
to utilize all these software components and resources becomes a crucial issue. GSI
(Grid Security Infrastructure) [6] is a promising solution to the issue in Grids. GSI
uses X.509 certificates to securely authenticate users across the network. Moreover,
SRB supports two main methods of authentication, GSI and an SRB secure password
system known as Encrypt1. GSI in SRB makes use of the same certificates and Public
Key Infrastructure (PKI) [14] as do Globus Toolkit [15] such as GridFTP [16]. Since
we adopt Globus Toolkit as the middleware for managing computing resources, in
order to enable the single sign-on for utilizing Computational Grid and Data Grid, we
choose GSI as the main user authentication mechanism in our system.

To use Taiwan UniGrid, Grid users have to register in UniGrid Portal first. The us-
ers will receive certificates issued from UniGrid CA after approved by system admin-
istrators. Meanwhile, the users’ profiles are also registered to Computational Grid and

34 C.-M. Wang et al.

Data Grid, i.e. Globus and SRB. Once users want to use Taiwan UniGrid, they can
login to UniGrid Portal through their certificates and the system will automatically
generate corresponding secure proxy certificates which are good for a few hours to
submit jobs and manage data in distributed resources.

Fig. 5. The cross-zone problem

However, the current implementation of SRB does not well support the resource
utilization cross difference zones by GSI authentication. As shown in Figure 5, for
example, Grid_User1 and SRB_Server1 are registered in Zone A, as well as
SRB_Server2 is registered in Zone B. If we adopt the Java-based client-side APIs,
named Jargon, provided by SRB, Grid_User1 connecting to SRB_Server2 by GSI
authentication will be failed to access the resources (Resouce3 and Resource4) in
Zone B. We call this incident as the cross-zone problem. At present, SRB only sup-
ports the access to cross-zone resources through secure password authentication, En-
crypt1. Since we deployed our system in five zones and developed Self-Adaptation
approach to reassemble data objects in parallel from multiple replica sources, which
may be located in different zones, it causes the cross-zone problem. We will address
this problem from two perspectives, users and programs, in the following paragraphs.

From the perspective of users, we intent to make Grid users login once by certifi-
cates and launch the data management client to manipulate their data without con-
cerning with the cross-zone problem. Thus, we propose an authentication process, as
depicted in Figure 6(a), to enable single sing-on for UniGrid Portal and the data man-
agement client.

After a Grid user logins to Web Portal successfully, the portal asks the Account
Management service to create a session and returns necessary information, including
a generated session key and a profile for SRB to connect. The Grid user can launch
the data management client to access data in storage resources after login to Web
Portal. While launching the data management client, Web Portal passes the session
key and SRB-related information to the client and then the client uses the session key
to obtain the user’s password through SSL from the Account Management service.

 A High-Performance Virtual Storage System for Taiwan UniGrid 35

Finally, the client uses the password and SRB-related information to connect to a
SRB server in Encrypt1. Once connecting successfully, the Account Management
service removes the session. This prevents malicious users from using the cached
session keys to retrieve passwords from the Account Management service.

Fig. 6. (a) The proposed authentication process enabling single sing-on for UniGrid Portal and
the data management client. (b) The proposed authentication process enabling single sing-on
for computing nodes.

From the perspective of programs, Resource Broker delegates submitted jobs to
computing nodes with limited proxy certificates, not full proxy certificate, for authen-
tication. However, in the current implementation of SRB, the limited proxy certifi-
cates will be failed in accessing storage resources located in different zones. Only full
proxy certificates are allowed to access the cross-zone resources in SRB. Hence, we
propose an authentication process for computing nodes, as shown in Figure 6(b), to
deal with this problem. After Resource Broker submits jobs to computing nodes with
limited proxy certificates, the computing nodes use the limited proxy certificates to
get full proxy certificates from the Account Management service. Finally, the nodes
can connect to SRB servers located in different zones with full proxy certificates and
access programs and data in the storage resources.

Table 1. The supported operations for data objects in the virtual storage system

Data object Operations

File
download, upload, delete,
copy, paste, rename

Directory
create, download, upload,
delete, copy, paste, rename

Link
create, download, delete,
copy, paste, rename

Replica create, delete

3.4 The Data Management Client

We develop two kinds of clients of the virtual storage system. One is Java-based
standalone version not integrated with UniGrid Portal and Computational Gird. It is

36 C.-M. Wang et al.

suitable for users who just want to store their data without the need of computation
support. Another one is Java Web Start version which is embedded in UniGrid Portal.
Grid users can launch the client directly from UniGrid Portal after they login.

Figure 4 shows a screenshot of the data management client. The left of the client is
the file and directory list of local storage drives and the right is the file and directory
list of SRB storage drives. Once Grid users login to our system, the system directs
them to their default home directories automatically, and then they can access data or
traverse the whole storage system. As shown in Table 1, for various data objects, we
provide difference operations on them in the current implementation.

Unlike other FTP systems, our system allows users to specify storage resources, for
instance closest resources, to store uploaded data. An uploaded data object can further
be made several copies, i.e. replicas, disturbed in different resources for reliability and
efficiency of data transfer. In addition to creating replicas by users, we also integrate
the AutoReplication service in the client. Users can set replica policies on data objects
via the client. The AutoReplication service will automatically create replicas accord-
ing to the specified policies. Furthermore, through the data management client, users
can also specify access permissions on data objects, as shown in Figure 4, for sharing
and collaboration.

Fig. 7. The major components of Taiwan UniGrid and their interactions

4 Operation Scenario of Taiwan UniGrid

In this section, we will demonstrate an operation scenario of using Taiwan UniGrid.
Figure 7 shows the major components of Taiwan UniGrid and their interactions. The
high-level operation scenario is explained as follows.

• A Grid user logins to UniGrid Portal by entering his/her account and password and
UniGrid Portal employs Account Management service to verify user’s identity.

• If login successfully, UniGrid Portal directs the user to his/her working web page,
as shown in Figure 8.

• He/she launches the data management client (Figure 4) and uploads programs and
data needed for the jobs, which will be submitted later, to the data storage system.

 A High-Performance Virtual Storage System for Taiwan UniGrid 37

• The user makes an execution plan for a job or designs a workflow of jobs on the
working web page.

• Once the user has submitted a job, the portal asks Resource Broker to select com-
puting resources based on the requirement of the submitted job.

• Resource Broker assigns the submitted job to the selected computing nodes. The
selected computing nodes then retrieve programs and data from the storage system.

• The selected computing nodes start computing.
• Once all computing nodes finish their work, the computed results are merged and

stored back to the storage system.
• For reliability, the newly stored data can be replicated to other storage resources by

the user or the AutoReplocator service.

Fig. 8. The Taiwan UniGrid Portal

5 Conclusion

In this paper, we present the development of a high-performance virtual storage system
for Taiwan UniGrid. We employ SRB (Storage Resource Broker) as a basis to imple-
ment the functions of the storage system. Besides, we identify three main requirements
in the current implementation: high-performance data transfer, data sharing, and single
sign-on. To meet these requirements, we propose the corresponding features: Self-
Adaptation for high-performance data transfer, forming user groups and specifying
admission control for data sharing, and adopting GSI authentication to enable single
sing-on. We also develop a Java-based user interface of the storage system allowing
Grid users to manage their data transparently without concerning the low-level de-
ployment of storage resources. In the future, we will continue developing new features
in our system to make it more useful. On the other hand, we will execute more data-
intensive applications on our system to examine its reliability and scalability.

38 C.-M. Wang et al.

Acknowledgement

This work was supported in part by the National Center for High-performance Com-
puting under the national project, “Taiwan Knowledge Innovation National Grid”,
and in part by National Science Council under Contract No. NSC95-2221-E-001-002.

References

1. Taiwan UniGrid, http://www.unigrid.org.tw.
2. Chaitanya Baru, R. Moore, A. Rajasekar and M. Wan: The SDSC storage resource broker.

CASCON '98: Proceedings of the 1998 conference of the Centre for Advanced Studies on
Collaborative research, Canada (1998) also available at http://www.sdsc.edu/srb.

3. B. Allcock, A. Chervenak, I. Foster, C. Kesselman, and M. Livny: Data Grid tools: ena-
bling science on big distributed data,” Journal of Physics: Conference Series 16 (2005)
also available at http://www-fp.mcs.anl.gov/dsl/scidac/datagrid

4. Y. Zhao, M. Wilde, I. Foster, J. Voeckler, J. Dobson, E. Glibert, T. Jordan, and E. Quigg,:
Virtual Data Grid Middleware Services for Data-Intensive Science. Concurrency and
Computation: Practice & Experience, Vol. 18, Issue 6 (2004) also available at
http://vds.uchicago.edu/twiki/bin/view/VDSWeb/WebMain

5. Chien-Min Wang, C.C. Hsu, H.M. Chen, J.J. Wu: Efficient multi-source data transfer in
data grids,” 6th IEEE International Symposium on Cluster Computing and the Grid, Sin-
gapore (2006)

6. I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke: A security architecture for computa-
tional grids. In ACM Conference on Computers and Security, pages 83–91, ACM Press
(1998)

7. WSDL: Web Services Description Language 1.1. Available at http://www.w3.org/TR/wsdl
8. UDDI: Universal Description, Discovery and Integration (2001) Available at

http://www.uddi.org
9. SOAP: Simple Object Access Protocol 1.1. Global Grid Forum, available at

http://www.w3.org/TR/soap
10. Kavitha Ranganathan and I. Foster: Design and evaluation of dynamic replication strate-

gies for a high performance data grid. In International Conference on Computing in High
Energy and Nuclear Physics (2001)

11. S. Vazhkudai, S. Tuecke, and I. Foster: Replica selection in the globus data grid. In 1st In-
ternational Symposium on Cluster Computing and the Grid, pages (2001) 106-113

12. Jun Feng and M. Humphrey, “Eliminating Replica Selection - Using Multiple Replicas to
Accelerate Data Transfer on Grids,” In 10th International Conference on Parallel and Dis-
tributed Systems (2004). 359-366

13. C.T. Yang, S.Y. Wang, C.H. Lin, M.H. Lee, and T.Y Wu, “Cyber-Transformer: A Toolkit
for Files Transfer with Replica Management in Data Grid Environments,” In the 2nd
Workshop on Grid Technologies and Applications (WoGTA’05), Taiwan (2005)

14. Carlisle Adams and Steve Lloyd: Understanding Public-Key Infrastructure: Concepts,
Standards, and Deployment Considerations. New Riders Publishing (1999)

15. Ian Foster and C. Kesselman: Globus: A Metacomputing Infrastructure Toolkit. The Inter-
national Journal of Supercomputer Applications and High Performance Computing, vol.
11, No. 2, (1997) 115-128

16. B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder,
V. Nefedova, D. Quesnel, and S. Tuecke: Data Management and Transfer in High-
Performance Computational Grid Environments. Parallel Computing (2001)

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 39 – 51, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Interoperable Grid PKIs Among Untrusted Domains: An
Architectural Proposal

Valentina Casola1, Jesus Luna2, Oscar Manso2, Nicola Mazzocca1, Manel Medina2,
and Massimiliano Rak3

1 University of Naples, Italy
Phone: +39-0817683907; Fax: +39-0817683916
{casolav,n.mazzocca}@unina.it

2 Universitat Politècnica de Catalunya, Spain
Phone: +34-93 4016984; Fax: +34-9337947

{jluna, omanso, medina}@ac.upc.edu
3 Second University of Naples, Italy

massimiliano.rak@unina2.it

Abstract. In the last years several Grid Virtual Organizations -VOs- have been
proliferating, each one usually installing its own Certification Authority and
thus giving birth to a large set of different and possibly untrusted security
domains. Nevertheless, despite the fact that the adoption of Grid Certification
Authorities (CAs) has partially solved the problem of identification and authen-
tication between the involved parties, and that Public Key Infrastructure (PKI)
technologies are mature enough, we cannot make the same assumptions when
untrusted domains are involved. In this paper we propose an architecture to face
the problem of secure interoperability among untrusted Grid-domains. Our ap-
proach is based on building a dynamic federation of CAs, formed thorough the
quantitative and automatic evaluation of their Certificate Policies. In this paper
we describe the proposed architecture and its integration into Globus Toolkit 4.

1 Introduction

Grid Resource owners can control access to their resources by means of well-
established Authentication and Authorization processes for End-Entities. Nevertheless,
despite the fact that the adoption of Certification Authorities (CAs) has partially solved
the problem of identification and authentication between the involved parties, and that
Public Key Infrastructure (PKI) technologies are mature enough, we cannot make the
same assumptions when untrusted domains are involved. Let us take for example two
different Grid-CAs which do not have a direct interoperability agreement (i.e. explicit
cross-certifying procedure), but their researchers need to work together.

Furthermore, in the last years a lot of Grid Virtual Organizations (VOs) have been
proliferating, each one usually installing its own Certification Authority and thus
giving birth to a large set of different and possibly untrusted security domains. This
represents one of the biggest interoperability problems that could arise among all Grid
users and therefore one of the major security challenges to be faced before building a
wide distributed infrastructure allowing the cooperation of existing Grid installations.
In other words, this problem is related to the definition of a distributed infrastructure

40 V. Casola et al.

able to guarantee a secure degree of interoperability among all the involved Grid-
Certification Authorities.

In practice there are two commonly accepted approaches that provide interopera-
bility between different security domains based on PKI technology:

1. Involved CAs explicitly build a trusted domain, defining a new CA hierarchy
through cross certification techniques. In this case each CA explicitly trusts the
others and therefore is able to accept their certificates.

2. Involved CAs do not build an explicit trusted domain, but interoperate through a
“federation”: any CA belonging to the federation implicitly trusts the others thanks
to the definition of a well-established policy-based framework.

Even if the explicit trusted domain (first approach) is an attractive solution, it is not
always possible to implement in Grid environments, because of the required agree-
ments between the involved organizations, administrative overheads and technical
problems that arise with current software (this is the case of the Globus Toolkit [1]).

For the computational Grid, the second of the aforementioned options (building a
Federation of CAs) has been the most suitable solution for real-world projects so far.
At this aim, the Policy Management Authorities (PMAs) have established a minimum
set of requirements and best practices for Grid PKIs willing to join its federation.
These minimum requirements comprise the PMA’s Authentication Profile. It is impor-
tant to note that the PMA itself does not provide identity assertions, but instead asserts
that, within the scope of its charter, the certificates issued by their member-CAs meet
or exceed its Authentication Profile. In summary, Grid's Policy Management Authori-
ties represent "Federations of Grid PKIs" whose CA members accomplish minimum
levels of security.

In the case of the existing Grid PMAs (TAGPMA [2], EUGridPMA [3], APGridPMA
[4] and IGTF [5]) compliance with their respective authentication profile is given through
a well-defined, but mostly manual, process involving a careful analysis of the applicant
PKI’s Certificate Policy (CP) [6], performed just once, when a new CA wishes to be part
of an existing PMA. This is known as the PMA’s accreditation process.

It is also interesting to note that even though all the Grid CA members of a PMA
must fulfill with the established authentication profile, not all of them accomplish these
minimum requirement on the same level. Despite the importance of such information
for building comprehensive Grid PKI’s trust relationships and for Authentica-
tion/Authorization purposes, to date there is no automatic way to quantitatively com-
pute a CA’s compliance level according to a particular PMA’s Authentication Profile.

With independence of the interoperability mechanism chosen (explicit trust or CA-
federation), any client (commonly called End-Entity) invoking a Grid Service’s op-
eration from the server, activates an authentication process to attest his identity. This
process requires validating the end-entity’s digital certificate according to the path
validation procedure described in [7].

When involved CAs interoperate thanks to explicit trust agreements, only basic
path validation is required: cryptographic verifications and status’ checks over the
involved certificates. State of the art Grid software, like the Globus Toolkit, provides
static mechanisms for the basic path validation, i.e. the administrators manually de-
clares the accepted CAs, and locally update respective CRLs.

However, if the involved CAs are part of a Grid-federation, then extended path
validation is needed: basic validation path enhanced with a policy mapping process

 Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal 41

that compares the involved CAs’ Certificate Policies to assert that they fulfil with a
particular Accreditation Profile and therefore can interoperate among them.

In previous woerk towards achieving extended path validation, our research groups
proposed a Grid-Validation Infrastructure based on the use of the Online Certificate
Status Protocol (OCSP) [8], just as presented in [9] and [10]. On the trust-research
topic, in previous works we have proposed a formal methodology to compare and
evaluate Certificate Policies from different CAs as published in [11], [12] and [13].
This paper is the result of gathering both the experiences to propose an architecture
for enabling extended path validation in Grid environments, using both the validation
infrastructure and the evaluation methodology.

The remainder of the paper is structured as follows: next section outlines the state
of the art on Grid validation and PKI’s security evaluation. Section 3 details the
problem of Grid security interoperability and its relationship with the need of imple-
menting a Trusted Third Party (TTP), which we managed by using the extended path
validation concept. Section 4 outlines the basis of our approach, by showing our pro-
posal for an architectural model for Grid interoperability. Section 5 introduces
“POIS”, a real implementation of the proposed validation architecture for the Globus
Toolkit 4, which enables interoperability between untrusted domains. Section 6 sum-
marizes the conclusions and future work.

2 State of the Art

Next will be briefly reviewed two Grid security topics, milestones of the proposal
introduced later in this paper: the Grid validation and the PKI’s security evaluation.

2.1 Grid Validation

In a PKI, all entities (users and resources) are identified by a globally unique name
known as Distinguished Name (DN). In order for entities to prove their identity, they
possess a set of Grid credentials consisting of a X.509 version 3 digital certificates [7]
and a private key. The certificate is digitally signed by a Certification Authority that
guarantees for the binding of the entity’s DN to its private key.

The authentication mechanism, by means of digital certificates, involves the pres-
entation of the certificate and proving possession of the corresponding private key.
So, with the certificate being public, the only critical point is the preservation of the
private key; to limit the danger of an entity’s private key being stolen, two strategies
are commonly adopted: i) the key is protected with encryption or by storing it on a
hardware token (e.g. a smart card); ii) the private key has limited lifetime after which
it is no longer valid. The Globus Toolkit’s security implementation known as the Grid
Security Infrastructure (GSI) [14] follows the second strategy using Proxy Certificates
[15]: short-term credentials that are created by a user, which can then be used in place
of traditional long-term credentials to authenticate him. The proxy certificate has its
own private key and certificate, and is signed using the user’s long-term credential. A
typical session with the GSI would involve the Grid user (End-Entity) using its
passphrase and the GSI’s command grid-proxy-init to create a proxy certificate from
its long-term credential. The user could then use a GSI-enabled application to invoke

42 V. Casola et al.

a service’s operation from a Globus Toolkit’s Grid Services Container [16]. If Message
Level Security is being used for authentication [17], then the user’s application would
use the GSI library and the corresponding proxy certificate to authenticate to the
remote host by means of a digitally signed message containing the service invocation.

From the Grid resource point of view, to fully perform the authentication process, a
certificate validation service interface should be defined that can be used within the
Open Grid Services Architecture (OGSA) [18] implementation to:

1. Parse a certificate and return desired attribute values, as the validity period, the
Distinguish Name -to map it to a resource’s local user- and so on.

2. Perform path validation [7] on a certificate chain according to the local policy and
with local PKI facilities, such as certificate revocation lists (CRLs) or through an
Online Certificate Status Protocol [8].

3. Return attribute information for generic KeyInfo values, thus allowing the use of
different certificate formats or single keys, or to pull attribute information from di-
rectory services instead of certificates.

A certificate path validation process (step 2 above) must comprise at least the fol-
lowing four phases:

1. Cryptographic verifications over the certificate path (i.e. verifying the digital signa-
ture of each certificate).

2. Verifying each certificate validity period.
3. Verify that the first certificate in the chain is a Trust Anchor.
4. Verify the certificate’s status to ensure that is has not been revoked or suspended.

For the rest of this paper the process just described will be referenced as basic path
validation. Modern Grid installations like the Globus Toolkit [1] provide static
mechanisms to perform the last two phases of the basic path validation process
described above:

− The first certificate in the chain is considered a Trust Anchor if it has been stored
into the Grid node’s /etc/grid-security/certificates/ directory.

− The certificate’s status is retrieved from a locally stored Certificate Revocation List
(CRL).

Both processes have an inherent static nature and because of this diverse security
problems may arise into the Grid.

2.2 Evaluation of Grid PKIs

Next is described important related work on PKI’s evaluation; in particular are sum-
marized three techniques quite suitable for evaluating Grid PKIs policies, the core
functionality of the validation infrastructure proposed later.

The first of these techniques is the Reference Evaluation Model (REM) presented
in [11], and defined as a triplet (Formalization, Technique, ReferenceLevels) where a
formalized certificate policy is evaluated with a novel evaluation technique. The pro-
posed technique is based on the definition of a policy metric space and a distance
criteria to numerically evaluate the CA’s security level thus obtaining the so called
Global Security Level.

 Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal 43

In second place and closely related with REM is the work presented in [19] where
the authors propose on-demand evaluation of Grid CA’s policies and practices to
achieve interoperability. A prototype for a trust evaluation system is presented in that
paper, which is able to evaluate a CA based on its published policies and observed
practices with respect to a set of rules based on the requirements from an Authentica-
tion Profile. In particular, its evaluation methodology encodes some features from the
CP into a CA report file (involving key-value pairs coded in a Scheme-like language)
so afterwards they can be evaluated relative to rulesets, assurance levels allow rulesets
to be defined for each level specified by the GGF. A customized ruleset can be de-
fined either based on a minimum requirements document from a PMA, or even on a
set of rules created by the VO or the CA to override and extend the default ruleset. In
this way the authors introduce the “ruleset inclusion principle” as the base for evaluat-
ing chained rulesets.

Finally in [20] is proposed an extension to the Grid Security Infrastructure that
provides for dynamic establishment of trust between parties. This approach, called
Trust Negotiation, seeks to implement authorization and authentication by establish-
ing trust relationships in a bilateral and iterative way. This task is performed with the
disclosure of certificates and by requests for certificates; those requests may be in the
form of disclosures of access control policies that spell out exactly which certificates
are incrementally required to gain access to a particular resource (an approach that
differs from traditional identity-based access control systems that involves a trusted
third party).

3 The Problem of Grid Security Interoperability

As Grid computing became more popular, VOs proliferated at the same rate, and this
finally resulted in the breed of several Certification Authorities (as a common prac-
tice, each organization installing a Grid environment also defines its own Certification
Authority). Soon this represented a big interoperability problem between the users
and resources belonging to different institutions: the computing resources were in
different domains, but the need of cooperation through a Grid environment required to
share them all. A clear need arose for methodologies, techniques and tools able to
build interoperable systems. According to [21] the interoperability problem in Grid
environments can be subdivided into three levels:

• Protocol Level, i.e. the capability of Grid systems to communicate with known and
accepted standard protocols.

• Policy level, i.e. the capability of each party of the Grid to be able to specify its
security policy expressed in a way mutually comprehensible.

• Identity level, i.e. the capability of identifying users from one domain to another.

State of the art Grid solutions focus mainly on the first level, accepting the use of
SOAP/HTTP protocols as the common platform for system interoperability. The
proposal presented in this paper focuses on the Identity Level, adopting a policy-
based approach to implement an extended path validation mechanism as introduced
next.

44 V. Casola et al.

The main idea behind the extended path validation mechanism is to define an ap-
proach that enables any Grid relying-party to validate in real-time a digital certificate
issued by any other CA, even though they do not belong to the same trusted domain
(i.e. Institution or project). To perform an extended validation path we need:

• A methodology to automatically perform the policy mapping (i.e. comparison of
the Certificate Policies and their evaluation), to build a dynamic virtual CA
federation;

• A mechanism to validate on-line and near-real time the certificate status.

As mentioned in section 1, most Grid PKIs working together are not completely
unknown, but they have been previously accredited by a Policy Management Author-
ity (PMA), which defines a minimum set of security requirements – in the form of an
Authentication Profile as in [22]- that must be accomplished for interoperability rea-
sons. Even though all Grid CAs from a PMA must pass the accreditation process, not
all of them accomplish the respective Authentication Profile on the same level. There-
fore it is very important to measure the degree of compliance of a Grid-PKI’s Certifi-
cate Policy with respect to a PMA’s Authentication Profile; with this information it is
possible to build comprehensive trust relationships between those Grid PKIs.

At this aim we propose in this paper an architecture for building a Grid validation
system, which guarantees secure interoperability among untrusted domains by both
retrieving near real-time the status of any certificate issued by a CA, and evaluating
the security level associated with this Authority.

4 The Architectural Model of an Interoperability System

As pointed in the previous sections, the goal of the proposed architecture is to enable
extended path validation in untrusted Grid domains. Our approach is to build a dy-
namic federation of CAs by evaluating their certificate policies. In order to have
grants about the CAs minimum security requirements (and that each CA respects its
published Certificate Policy), we refer to a Trusted Third Party: the PMA.

At a coarse grain, the proposed Interoperability System (IS), see figure 1, acts as an
intermediary between the certificate verifiers (relying parties) and the issuing CAs by
managing (retrieving, elaborating and updating) the information needed to perform
the extended path validation: the list of accredited CAs, the list of revocation sources
and the Certificate Policies.

The IS may be collocated with the Trusted Third Party and must perform two main
tasks:

1. Online validation of the certificates’ status.
2. Evaluation of the issuing CA’s security level.

For the first task we will use a Grid Validation System able to retrieve the status of
a digital certificate through the OCSP protocol in a CA federation; further details of
this system are available in [9] and [10]. About the second task, for evaluating a CA’s
security level we have adopted the Reference Evaluation Methodology, briefly sum-
marized in 2.2 and which details are available in [11].

 Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal 45

Fig. 1. Functional blocks of the proposed Interoperability System (IS)

REM’s approach is based on the formalization of a Grid-CA’s Certificate Policy to i)
determine if this Authority is compliant with a PMA’s Authentication Profile and ii)
to quantitatively evaluate the Global Security Level of this CA. In figure 2 we show
the results of the REM application to some of the Certification Authorities members
of the EUGridPMA [3], in order to obtain their GSL; we have compared the EUGrid-
PMA’s minimum Authentication Profile [22] against Certificate Policies from IRIS
Grid CA [23], US Department of Energy Grids CA [24], CERN CA [25] and INFN
CA [26]. Further details about this results and the methodology are available in [27].

IGTF-AP

pkIRISGridCA

DoE CA
CERN CA

INFN CA

Fig. 2. GSLs obtained for a set of EUGridPMA's Certification Authorities

The GSL represents the CA security level that will be embedded as a Proxy Cer-
tificate extension using OGRO’s prevalidation mechanism (please refer to [10] for
more details about this feature), thus providing a final decision about a certificate
validation and the Grid-PKIs interoperability issues.

46 V. Casola et al.

5 POIS: Policy and OCSP Based Interoperability System

In this section we propose a validation system built over the basic blocks presented
previously: POIS - Policy and OCSP based Interoperability System (figure 3). POIS is
comprised of three basic elements: the OCSP Responder’s database (tentatively Cer-
tiVeR [28]), the Policy Evaluator and the OCSP Responder itself. At a coarse view
POIS offers the following features:

1. Manage (retrieve, update) the list of CAs accredited by PMA.
2. Manage (retrieve, update) the accredited CAs’ Certificate Policies.
3. Manage (retrieve, update) the accredited CAs’ CRLs.
4. Communicate validation information to relying parties over OCSP.
5. Perform Extended Path Validation:

− Perform Basic Path Validation.
− Evaluate and/or Compare Certificate Policies through precomputed GSLs.

In order to manage the list of accredited CAs and their policies (features 1 and 2)
POIS, modern techniques assume an off-line communication with both PMA and CAs
(the administrator manually downloads the list of accredited CAs and their Certificate
Policies). The CRLs (feature 3) from each accredited CA are managed using Cer-
tiVeR’s CRL Updater module (described in [28]), so they can be used later for the
Extended Path Validation algorithm. POIS implements in its Policy Evaluator subsys-
tem the REM technique explained in section 2.2, which allows offline evaluation of a
member CA’s Certificate Policy (after retrieving it) to obtain its respective Global
Security Level. Afterwards into the OCSP Responder’s database, the GSL data is
linked to the existing Certification Authority information (i.e. its revocation data from
the CRL).

Fig. 3. POIS’ Architecture

 Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal 47

POIS is able to perform the Extended Path Validation thanks to the OGRO mid-
dleware [29], which builds over GT4’s basic path validation algorithm the following
two enhancements: i) certificates’ statuses are extracted from the OCSP prevalidation
data and ii) embedded GSL (from the End-Entity’s CA) is compared against the GSL
value required by the Relying Party.

Figure 3 shows a typical POIS’ uses case, where interoperability is achieved be-
tween a Grid Client belonging to Institution A and a Grid Services Container from
Institution B. Sections 5.1 and 5.2 will explain in greater detail this process from the
point of view of both entities, the Grid Client and the Grid Services Container.

Fig. 4. End-Entity performing Extended Path Validation with POIS

5.1 Extended Path Validation: POIS and the End-Entity

When an End-Entity uses POIS to dynamically build Grid interoperability, the phases
depicted in figure 4 take place. It is easy to note the addition of the GSL concept in
the following steps:

− In an offline manner the CA submits its Certificate Policy (CP) to the POIS, and
then the Policy Evaluator subsystem feeds it to its REM implementation to obtain a
GSL. As mentioned in the previous section, this GSL is stored into OCSP Re-
sponder’s DB along with the CA data already there. A further enhancement may
provide a SOAP-based implementation for online CP’s submission and evaluation
(see section 6 for a discussion about our future works).

− The End-Entity builds an OCSP Request with a specific extension field (fully
compliant with [7]), that our OCSP Responder will understand as a requirement to
include its corresponding GSL, let us call it EEGSL , along with the OCSP

48 V. Casola et al.

Response. Note that each CA from the End-Entity’s certificate chain may be asso-
ciated with a different GSL.

− Finally, when the End-Entity receives the OCSP Response (with EEGSL embedded

also as an extension field), the prevalidation mechanism is executed to create a
proxy certificate with this data embedded.

Our belief is that thanks to OGRO’s prevalidation mechanism not only is the relying
party able to improve validation process’ performance, but also the Proxy Certificate is
self-contained in the sense that includes all the data required by relying parties to perform
the extended validation process without further contacting any authority. Performance
measures related to the underlying Grid-OCSP process can be found in [28].

5.2 Extended Path Validation: POIS and the Grid Services Container

Once the proxy certificate has been created with prevalidation data including GSL
value(s) according to 5.1, it is possible for the Grid Server to perform the interopera-
bility evaluation that will enable it to take a final validation decision on the End-
Entity invoking the Service’s operation.

Fig. 5. Modified Server for Extended Path Validation with POIS

Figure 5 extends the validation process with the following enhancements:

1. If OGRO’s prevalidation mechanism was used, then the End-Entity’s EEGSL is

extracted from this data, Otherwise, this GSL value is requested directly from the
OCSP Server.

 Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal 49

2. The interoperability test is performed by comparing EEGSL with the minimum

required-GSL defined by the relying-party in OGRO’s Grid Validation Policy, let
us call it SVRGSL . If SVREE GSLGSL ≥ then both Grid-CAs may interoperate.

Notice that with POIS it is possible to dynamically test for an interoperability con-
dition on the server-side, but the End-Entity could be also able to request a minimum
expected GSL from a Grid-node. This mutual-interoperability will be a future en-
hancement in POIS just as explained in the section 6.

6 Conclusions and Future Work

The research collaboration undertaken between the “Università di Napoli, Federico
II”, the “Seconda Università di Napoli” and the “Universitat Politècnica de Cata-
lunya” in the field of digital certificate path validation for the computational Grid has
resulted in POIS, a promising alternative towards a practical solution to the dilemma
of providing an interoperable and flexible trust environment between relying parties
belonging to different and not cross-certified Grid-Certification Authorities. The pro-
posal presented in this paper relies on a Grid-OCSP Validation System to convey the
Global Security Level of any Certification Authority, which quantitatively represents
the assurance level of its published Certificate Policy. Using this data any Grid-
relying party may dynamically decide to interoperate or not with any other, without
the need to perform cumbersome administrative processes.

For future extensions to the POIS implementation, we are working of the following
topics:

− GSL for hierarchical PKI: even though most Grid-PKIs are only comprised of one
Certification Authority (the Root CA itself), the entrance of Grid technology into
new fields (i.e. enterprise applications) is likely to employ hierarchical PKIs in
more than one case. GSL computation and OGRO’s interoperability-checks should
be extended to support these complex scenarios.

− Mutual interoperability: in this paper we have set up a scenario where the relying
party is the Grid Server itself, which in turn defines its interoperability condition.
But is it feasible to think that an end-entity can also define its own constraints? We
believe that it is convenient from a security point of view to implement this func-
tionality in the near future. This enhancement will allow us to differentiate among
policies linked to institutions (i.e. Certificate Policies) and policies from individu-
als (i.e. Use Policies).

− Extending the Certificate Policy to a Validation Policy: it is very likely that all the
entities participating in the computational Grid will require defining their own
Validation Policies, containing their minimum interoperability requirements in a
per-provision basis. These Validation Policies will be an instance of the Certificate
Policy used in our proposal, so it is feasible to expect that POIS could be scaled
easily to provide this requirement.

Finally with the development of the authentication and validation protocols around
OGSA, it is possible that POIS would need to implement protocol connectors for
specific functions: a SOAP-based protocol for CP conveying from CA to Policy

50 V. Casola et al.

Evaluator, OCSP for Certificate status, etc. This may also enhance POIS performance
and network bandwidth usage.

References

[1] “Globus Toolkit Version 4: Software for Service-Oriented Systems”. I. Foster. IFIP In-
ternational Conference on Network and Parallel Computing, Springer-Verlag LNCS
3779, pp 2-13, 2005.

[2] “The Americas Grid Policy Management Authority”. Octuber, 2006. http://
www.tagpma.org/

[3] “European Policy Management Authority for Grid Authentication”. Octuber, 2006.
http://www.eugridpma.org/

[4] “Asia-Pacific Grid Policy Management Authority”. Octuber, 2006. http://
www.apgridpma.org/

[5] “International Grid Trust Federation”. Octuber, 2006. http://www.gridpma.org/
[6] ”RFC 2527: Internet X.509 Public Key Infrastructure, Certificate Policy and Certification

Practices Framework”. Chokhani S. and Ford W. Internet Engineering Task Force. 1999.
http://www.ietf.org/rfc/rfc2527.txt

[7] “RFC 3280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revoca-
tion List (CRL) Profile”. Housley R., et. al. Internet Engineering Task Force. 2002.
http://www.ietf.org/rfc/rfc3280.txt

[8] “RFC 2560: X.509 Internet Public Key Infrastructure, Online Certificate Status Proto-
col”. Myers M, et. al. Internet Engineering Task Force. 1999. http://www.ietf.org/
rfc/rfc2560.txt

[9] “Using OGRO and CertiVeR to improve OCSP validation for Grids”. Luna J., Manso O.,
Manel M. In 1st Grid and Pervasive Conference (GPC2006). Proceedings by Springer in
Lecture Notes in Computer Science series. May 2006. http://hpc.csie.thu.edu.tw/gpc2006/

[10] “OCSP for Grids: Comparing Prevalidation versus Caching”. Luna, Jesús. Manso, Oscar.
Manel, Medina. In 7th IEEE/ACM International Conference on Grid Computing, Barce-
lona, September 2006. http://www.grid2006.org/

[11] “An innovative Policy-based Cross Certification methodology for Public Key Infrastruc-
tures”. Casola V., Mazzeo A., Mazzocca N., Rak M. 2nd EuroPKI Workshop. Springer-
Verlag LNCS 3545, pp 100-117, Editors: David Chadwick, Gansen Zhao. 2005.
http://sec.cs.kent.ac.uk/europki2005/

[12] “A Reference Model for Security Level Evaluation: Policy and Fuzzy Techniques”.
Casola V., Preziosi R., Rak M., Troiano L. JUCS - Journal of Universal Computer Sci-
ence. Editors: Ajith Abraham, L.C. January, 2005.

[13] “A SLA evaluation methodology in Service Oriented Architectures”. Casola V., Mazzeo
A., Mazzocca N., Rak M” in Proceedings of Quality of Protection Workshop 05, 15 Sep-
tember, 2005, Milan, in Advances in Information Security book series, Springer-Verlag

[14] “Globus Toolkit Version 4 Grid Security Infrastructure: A Standards Perspective”.
Welch, V. The Globus Security Team. 2005. http://www.globus.org/toolkit/docs/4.0/
security/GT4-GSI-Overview.pdf

[15] “Internet X.509 Public Key Infrastructure proxy certificate profile”. Tuecke S., et. al.
Internet Engineering Task Force. 2004. http://www.ietf.org/rfc/rfc3820.txt

[16] “The WS-Resource Framework”. 2006. http://www.globus.org/wsrf/
[17] “GT 4.0: Security: Message & Transport Level Security”. 2006. http://www.globus.org/

toolkit/docs/4.0/security/message/

 Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal 51

[18] “The Physiology of the Grid: An Open Grid Services Architecture for Distributed Sys-
tems Integration”. Foster, I., Kesselman, C., Nick, J. and Tuecke, S. Globus Project,
2002, http://www.globus.org/research/papers/ogsa.pdf

[19] “On-demand Trust Evaluation”. O’Callaghan, David. Coghlan, Brian. Accepted for the
7th IEEE/ACM International Conference on Grid Computing, Barcelona, September
2006. http://www.grid2006.org/

[20] “Negotiating Trust on the Grid”. Basney J., et. al.In 2nd Workshop on semantics in P2P
and Grid Computing at the 13th International World Wide Web Conference. May, 2004.
www.ncsa.uiuc.edu/~jbasney/sempgrid.pdf

[21] “The Security Architecture for Open Grid Services”. Nagaratnam N., et. al. 2002.
http://www.cs.virginia.edu/~humphrey/ogsa-sec-wg/OGSA-SecArch-v1-07192002.pdf

[22] “Classic AP Profile Version 4.03”. Approved by the EUGridPMA. Edited by David
Groep. 2005. http://www.eugridpma.org/igtf/IGTF-AP-classic-20050905-4-03.pdf

[23] “pkIRIS Grid Certification Authority: Certificate Policy”. August 2006.
http://www.irisgrid.es/pki/policy/

[24] “US Department of Energy Grids: Certificate Policy”. August 2006. http://
www.doegrids.org/Docs/CP-CPS.pdf

[25] “CERN Certification Authority: Certificate Policy”. August 2006. http://service-grid-
ca.web.cern.ch/service-grid-ca/cp_cps/cp_cps.html

[26] “INFN Certification Authority: Certificate Policy”. August 2006. http://security.fi.infn.it/
CA/CPS/

[27] “Static evaluation of Certificate Policies for GRID PKIs interoperability”. Casola, V. et.
al. Accepted in Second International Conference on Availability, Reliability and Security
(ARES 2007). April 2007. http://www.ares-conference.eu

[28] “CertiVeR: Certificate Revocation and Validation Service”. November 2006.
http://www.certiver.com/

[29] “OGRO - The Open GRid Ocsp client API”. November 2006. http://globus-
grid.certiver.com/info/ogro

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 52 – 63, 2007.
© Springer-Verlag Berlin Heidelberg 2007

TCMM: Hybrid Overlay Strategy for P2P Live
Streaming Services*

Hai Jin, Xuping Tu, Chao Zhang, Ke Liu, and Xiaofei Liao

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

Huazhong University of Science and Technology, Wuhan, 430074 China
hjin@hust.edu.cn

Abstract. This paper proposes an application level multicast approach called
Tree-Control-Mesh-Media (TCMM) to distribute live media streams to a large
number of users efficiently. In TCMM, transmissions of media data are con-
trolled by two independent relay protocols in a collaborative manner. One pro-
tocol here is used to help a peer to identify its neighbor peers using the location
information while the other one is used to deliver of media stream among the
peers. The two protocols organize all peers into two graphs with different to-
pologies that the communications can benefit a lot from the hybrid control to-
pology. We have studied the performance of TCMM approach using different
simulation cases. The experimental results have shown that the broadcasting
performance of TCMM can achieve that of a well constructed mesh network
while it can adapt more dynamic and irregular network environment. We also
see that the penalty of introducing two protocols is rarely low which implies the
high scalability of TCMM.

1 Introduction

Recent research works reveal the brilliant future to provide media streaming services
based on the P2P substrates. Many papers discuss the important roles that peer nodes
have played in distributing streaming media. Till now, many P2P media streaming
systems have been developed. They can be divided into three catalogues: tree-based
(or hierarchical-based) system [20], DHT-based system [22] and mesh-based system
[6]. In tree-based system, all peer nodes are organized as a spanning tree over the
existing IP network, and the streaming data are distributed along that tree. As the
parent nodes should provide streams to child nodes, the total bandwidth of a parent
node having n child nodes would be bw×(n+1), where the bw is the minimum band-
width needed by a peer. One disadvantage of the distribution topology is that a parent
node will require more in bandwidth to feed its child nodes. Also, this kind of systems
which only have one root node will become unstable when peers join and leave
frequently [19].

* This paper is supported by National Science Foundation of China under grant 60433040, and

CNGI projects under grant CNGI-04-12-2A and CNGI-04-12-1D.

 TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 53

The second distribution system is DHT-based. In this kind of systems, peers are
organized as a circle. Due to the ring-alike topology, one peer node just has to bypass
the stream to its neighbor peer. However, it also suffers for the instability and usually
lacks methods to optimize the communication. The systems belong to the third cata-
log are mesh-based. In these structures, every peer node provides data to and gets data
from several other nodes. Although this kind of structures have no stability problem,
it is also very difficult to do traffic optimization [14][26].

In this paper, we propose a hybrid communication scheme, Tree-Control-Mesh-
Media (TCMM). We organize all peers into two graphs, one is the spanning tree and
the other one is a pure mesh. In the spanning tree, only control messages can be
transmitted, therefore all the peers can quickly find its neighbor peers and establish
data links using the control messages. Then all the media data can be transmitted in a
constructed mesh network as traditional mesh-based systems. Extensive simulations
demonstrate that this kind of hybrid structure gives a better solution for the locality
optimization and stability. Usually, in a non mesh-based system, it is critical to avoid
high quantity of messages transmitted from the parent node to each child node. How-
ever, in TCMM, nodes can receive control data from different peers simultaneously,
which can reduce the risk of suffering from a high transmission rate.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents TCMM scheme. Performance evaluation of the TCMM is pre-
sented in section 4. Finally, we conclude our work in section 5.

2 Related Works

Based on different network topology, application level multicast used in P2P media
streaming systems can be divided into three categories: DHT-based, tree-based, and
mesh-based.

The systems belonging to the first kind rely on those existing DHT network to op-
timize the paths according to certain metrics such as latency and bandwidth. For ex-
ample, paper [18] is based on content addressable network (CAN) [17], and Bayeux
[27] is based on Tapestry [4]. CoopNet [22] supports both live and on demand stream-
ing. It employs multi-description coding (MDC) to construct multiple distribution
trees (one tree for one strip). SplitStream [15] is based on Scribe [3] which is based on
Pastry [2].

In tree-based systems (Yoid [9], ALMI [16], Nearcast [25], NICE [20], ZIGZAG
[21], Anysee [11], and Chunkyspread [23]), peers are organized into a hierarchal
structure. They just get streams from a single parent. The advantages of these systems
include low overhead and can get optimal nearby nodes as data provider. However
some peers usually have not enough bandwidth to support their children and it is
difficult to resist the churn. Hence it limits the deployment of tree-based systems.

The mesh-based systems are named for the reason that each peer has multiple data
senders and receivers, e.g., Narada [6], ScatterCast [5], PROMISE [13], DagStream
[10], RandPeer [12]. They overcome the difficulties in tree but lead to redundant
traffic of underlying physical networks.

CoolStreaming [24] is one of the most famous mesh-based application level multi-
cast systems. By using DONet protocol, each node first exchanges data available

54 H. Jin et al.

information with all the partners periodically, and then retrieves the data from one or
more partners. Actually, the data transferring mesh in our proposed approach is simi-
lar to CoolStreaming to inherit the efficiency of data exchanging.

BULLET [7] is the most similar structure to TCMM. It uses RanSub [8] to build an
overlay tree, one peer, if not fed enough, can receive data from multiple ancestors in
the tree. But the tree participating the data transferring is different from TCMM. Since
in TCMM, the tree is to organize the peers in a locality-aware overlay. The mesh
overlay is used to exchange media data.

Different from these systems, TCMM is proposed for the streaming system that
each receiver should have multiple senders. Here the tree topology is just used to
identify nearby senders.

3 Design of TCMM

The main focus of this paper is the design and implementation of TCMM which is
based on our previous work Nearcast [25]. First we will give a brief introduction of
TCMM, and then details of the TCMM approach will be introduced.

3.1 Overview of TCMM

All peers in TCMM are involved to distribute media data. They are organized into
two overlays – one is used as control tree and the other is used as media mesh. The
control tree structure is used to make all nodes in the tree close to each other physi-
cally, it means there must be few routers between each pair node, or the Round Trip
Time (RTT) should be small. Also, the messages transmitted over the tree should be
lightweighted messages such as ping/pong messages. Because the out-degree of each
node in the tree graph can be very large while the tree height (logN) is relatively low.
Further, when no media data transmitted, the tree can be loosely maintained, that is,
even if some peers have left, other peers still can postpone to update the tree informa-
tion without breaking transmitting media data in a long period.

The second overlay in TCMM is a data mesh which is similar to CoolStreaming. It
is used to transmit media data. Each peer first registers to the network to get a Global
Unique Identity (GUID). On the other hand, at the beginning, it is at the tree root, the
scheduling algorithm then guides it to route to a peer which has a relatively similar
GUID. In the routing path, this peer can collect information about the visited peers to
build its own candidate partner list. After that, it selects a group of nodes to connect to
for more partner information. Finally, it can start the media data exchanging. Fig.1
gives an overview of the two-layer structure of TCMM.

3.2 Tree Management

The tree management is based on Nearcast protocol [25]. In this protocol, leaf peers
in the overlay multicast tree are self-organized to form the H layer hierarchical
structures.

 TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 55

Fig. 1. Overview of TCMM, the dashed line stands for a data link, those of which construct a
mesh, while thick line stands for control link for constructing a loosely maintained tree

Based on the network position coordinates of leaf peers, the intra-subtree structure
is designed to be sensitive to the locality information. This strategy leads to that
nearby leaf peers in the physical network are nearby with each other in the overlay.
These two techniques help the overlay multicast tree to become a good represent of
the underlying physical network, therefore the link stress and the total (or average)
end-to-end delay can be effectively reduced.

The TCMM tree is constructed based on GUID, which consists of the peers’ loca-
tion information. It encodes the following information into 16-bytes of string: net-
work type (firewall or NAT or else), ISP (internet service provider), city, postcode,
public IP, and private IP, see Fig.2. Here we introduce briefly only the basic operation
of the tree maintenance: Join Process and Leave Process. For more details of how to
maintain the tree, readers can refer to Nearcast [25].

Fig. 2. The elements of GUID

Once an existing host Y receives the “Join” message from X, it uses the admission
algorithm to compare the joiner’s GUID with its own GUID, so as its children’s
GUIDs. Also, it tests the network bandwidth constraints to determine whether Y is the
nearest host to X. If so, X should be admitted to be a child of Y. Otherwise, it is redi-
rected to the nearest child of Y. This process will repeat until X finds its nearest
parent. If a child receives the “Leave” message from a leaving peer, it should immedi-
ately response by sending a “Join” message to its original grandparent. The parent
receives “Join” message, it will treat it as a new join process. Since in TCMM, the
control tree only helps to find close peers without transmitting media data. It is
unnecessary to absolutely maintain the tree structure.

56 H. Jin et al.

3.3 Mesh Management

In TCMM, each peer maintains an active partners set and an inactive partners set.
The active partners set is used to exchange media data while the inactive partners set
is used to select active candidates. A peer also maintains a local window, which stores
media data received from others and will be shared with others.

In this section, we mainly focus on partner management and window management
techniques. As we know, in real internet environment, peers usually have different
bandwidth as well as other network resources. Also, there always exist many partners
which receive much more media data than they contribute. Based on this observation,
we can classify active partners into two kinds, provider partner and receiver partner.
Suppose node A has a partner B, whose sequence number of its window’s first packet
is bigger than that of A (usually close to the media source), Here, B is the provider
partner of A, and A is the receiver partner of B. It is clear that each peer must maintain
a minimum number of provider partners in order to maintain continuity. The classifi-
cation of partners is illustrated in Fig.3. Fig.4 depicts the operations and algorithms
applied between a peer and its partners, including a) how to produce inactive partners,
b) how to select one from an inactive partners list to be an active partner, and c) how
to schedule when more than one active partner possess the data to a peer.

Fig. 3. Classification of partner

Fig. 4. Partner maintenance (origin node A), Ping/Pong with inactive partners and window map
exchange with active partners

3.3.1 Inactive Partner Generation
There are three ways for a peer to get inactive partners to build up its inactive peer
list: a) when a peer joins the overlay, it will receive a partner list as a piggyback mes-
sage of “OK Response” message from its father node; b) send requests to its active
partners when the peer’s count of provider partner is less than a predefined minimum
value. When a peer receives a “Partner Request” message, it responds by sending an

 TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 57

active partner list to the requester. It is because a partner’s active partners would
proverbially to be active partners. On receiving the partners reply, if they do not exist
in the inactive partners list, the peer will add them to the list to be candidates of active
partners; c) a peer will periodically collect children and father information in the con-
trol tree to build local partners list. Because the tree is maintained by “Alive” mes-
sage, the peers in the tree are very probable online and can perform data transmission
well. Thus, each peer will periodically send ping message to those inactive partners to
check whether they are still online. Suppose the number of members in inactive list is
Ninactive, ping interval is Iinactive, packet size of Ping/Pong is Sinactive the Ping/Pong overhead
is Oinactive= Ninactive×Iinactive×Sinactive.

3.3.2 Active Partner Generation
All active partners are inactive partners before they change their state, therefore, a
peer will prepare to select some inactive partners to become active partner candidates
when the number of local provider partner is less than a given threshold. Several fac-
tors are considered, including: a) the difference of GUID is lower; b) the RTT be-
tween is lower; c) more data that it needs is in the window. After choosing several
candidates, the peers send “Identity Request” message to them. On the other hand,
once the peer receives an “Identity Request” message, it will check whether this part-
ner can be accepted. If it is ok, then “Identity Agree Response” will be sent. Otherwise
a reject message will appear as a response. After that they begin to exchange window
map at a given interval. At the same time, another task will compare their window
maps independently and periodically. Also, a “Data Request” request will be sent for
the missing data. As the window sliding and the window map changing, the data pro-
ducing and consuming process continue until the end of the live streaming program. If
being rejected, a peer will try the second peer in the candidate list and if accepted, the
remote peer will become its active partner and be added into the active partner set.

3.3.3 Active Partner Schedule
Before discussing partner selection algorithm, some concepts about windows should
be introduced. Each peer maintains a sliding window to store data availability infor-
mation, including the sequence number of the first segment it is sliding to and the
segment states in bytes. In these bytes, each bit stands for a segment’s state, 1 is for
available, 0 for unavailable. Because each peer’s local window is limited, it has to
discard the old data and fill new data.

A peer will periodically check its window to request the missing segment by send-
ing a “Data Request” message to it. If multiple partners have the unavailable segment,
it will schedule which partner acts as the provider. Here, we give a principal to the
scheduler scheme, 1) MAX_REQ, which limits the maximum segment one “Data
Request” message can convey. 2) Every segment of data will have a transmitting
pending time Tpending, if a partner’s last transaction has not been completed and does
not encounter a timeout error during the transaction time, it should be added to current
task this time. 3) If two video segments are available simultaneously, the one with
bigger sequence number should have higher priority. This means, we always request
the video segment with higher sequence number than that with lower sequence num-
ber. The third principal can strengthen the “enlarge ability” of the system. Having the
three principals in mind, we implement our own algorithm in Fig.5.

58 H. Jin et al.

Input:
Band[k]: bandwidth from partner k;
wm[k]: window map of partner k;
task[k]: assigned task of k ;
pending[k]: not completed task of k;
num_partners: number of partners of the node;
local_window[i]: segment i of local window map is
available or not;
Scheduling:
for segment i =size(local_window) do
 i←i−1;
 if local_window[i]=1 then
 continue;//if segment i is available,schedule next
 end if
 for j to num_partners do
 n←n +wm[j,i];//get potential suppliers for i;
 end for j;
 if n =1 then
 k←argr{ wm[r,i]=1};// only one potential supplier;
 if task[k]+pending[k]>MAX_REQ then
 continue;
 end if
 supplier[i]←k; task[k]←task[k]+1;
 continue;
 end if;
 for j =2 to n
 if task[k]+pending[k]> MAX_REQ or
task[k]+pending[k]>band[k] then
 continue;
 end if
 supplier[i]←j; task[k]←task[k]+1;
 end for j;
end for i;
Output: supplier[i]: supplier for unavailable segment i

Fig. 5. Scheduling algorithm at a TCMM node

4 Performance Evaluation

4.1 Simulation Setup

To evaluate performance of TCMM, we first propose a GUID-based delay and band-
width simulation method instead of using traditional physical topology generation
tools to generate physical topology, such as GT-ITM [1]. Because the communication
between each pair of nodes is affected by delay and bandwidth, thus, if we try to
simulate the two characteristics in internet, we need not generate the physical topol-
ogy. In our simulation platform, we just generate a peer sets.

We suppose that the delay and bandwidth between two peers can be determined by
their GUIDs. In the sending queue, a packet can be sent when the previous sending

 TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 59

operation has been finished. The communication delay between two logical neighbors
is calculated according to formula 1. From formula 1, we can see that the delay will
affect the bandwidth. Also, using GUID-based methods, we generate 5 physical peer
sets each with 2000 nodes. The logical topologies are generated with a number of
peers (nodes) ranging from 100 to 1,024. Suppose N is the number of the total peers,
N/10 cities and N/5 postcodes are generated and randomly assign all the nodes to
them. The expected number of inactive partner is 20, and the minimum number of
each peer’s provider partners is 3, the maximum number of active partner numbers is
15. We start the broadcaster and let 2 randomly selected peers join the system every
second. The lifetime of each peer is set to 600 seconds. We collect the log to analyze
the performance of our TCMM system.

Delay(i,j)=ISPi⊕ISPj×WISP+Cityi⊕Cityj×Wcity+postcodei⊕postcodej×Wpostcode+I
P1i⊕IP1j×WIP1+IP2i⊕IP2j×WIP2+IP3i⊕IP3j×WIP3+IP4i⊕IP4j×WIP4

(1)

TotalDelay(i,j)= Delay(i,j)(1+L/2048) (2)

In formula 1, ⊕ means exclusive OR operation. If ISPi is equal to ISPj, then ISPi⊕

ISPj is 0, otherwise 1. WISP means the weight of ISP to the delay. It means that only
nodes from different ISP can affect the delay in ISP item, so does other factors in this
formula. Let the first byte of internet address of peer i is IP1i, IP1i⊕IP1j compares the
first byte of two addresses. Then IP2, IP3 and IP4 compare the second, third, fourth
byte of the two peers’ IP address, respectively. We set the weight of each factor as
WISP=500, Wcity=200, Wpostcode=100, WIP1=100, WIP2=100, WIP3=100, WIP4=50. Because
we send a message after its previous message has been sent, suppose we get a delay
50ms through formula 1, and formula 2 adds the effect of messages length to the
delay, if the sending queue consists of 3 messages with the size 50, 10240, 10240
bytes, we get the total delay 50ms, 100ms, 100ms according to formula 2, then the
completion sending time of the 3 messages are 50ms, 150ms and 250ms, respectively.

There are already some metrics to evaluate a peer to peer live streaming system,
such as link stress method [6], and data path quality method [20]. Because in TCMM,
there is no physical topology to evaluate the link stress, on the other hand, TCMM
does not transmit media data through a multicast tree, thus avoids evaluating the data
path quality either, therefore, in this paper, we use other metrics, such as starting
delay, dynamic resistance, and overhead to evaluate the performance of TCMM. Each
experiment result is got by averaging 5 tests cases.

4.2 Control Overhead

This index is categorized by tree overhead and mesh overhead. Tree overhead is de-
fined as the ratio of the bytes that a peer received to maintain the tree structure over
the total bytes a peer received. Mesh overhead is defined as the ratio of the bytes that
a peer received to exchange window map over the total bytes the peer received. The
tree overhead mainly includes alive messages cost happened in a peer periodically
sends this message to its children and receives them from its parents. Fig.6 presents
the average tree overhead of TCMM. The data are collected when sending an “Alive”
message every 5 seconds. This figure implies that the tree overhead is nearly inde-
pendent of the community size. That is because the alive messages are only sent to

60 H. Jin et al.

children by father, and children have no responsibility to answer them. So, when a
peer can accept more children, its own overhead increases, but its children’s overhead
will decrease. This will cause the average overhead changes a little. Fig.6 also depicts
that the tree maintain overhead is less than 0.5% of the total traffic.

Every peer also exchanges ping/pong messages with its inactive partners to declare
its aliveness and exchanges their window map messages with active partners as well.
Fig.7 shows that when the Ping/Pong interval is 9 seconds and window map exchange
interval is 2 seconds, the total mesh overhead is less than 2% when number of mini-
mum providers less than or equal to 6. Considering the mesh overhead increases with
more partners, we believe that minimum provider partner equal to 4 is a good practi-
cal choice. So it is adopted in the following experiments, and this result also meets the
point got from [24]. However, an important fact here is that number 4 is just for pro-
vider partner not for the total active partner.

Fig. 6. Overhead of tree maintaining Fig. 7. Overhead of mesh maintaining

4.3 Starting Delay

This index is defined as the time period from a peer joins the multicast system to a
peer starts to play back the media. This index describes how fast the system can pro-
vide service to a newcomer. Fig.8 presents the comparison of starting delay between
TCMM and mesh-based scheme, this figure is for 1024 nodes. Actually the starting
delay is almost independent of the system size.

We have ever thought that TCMM will have less starting delay than pure mesh-
based structure, because peers in pure mesh-based overlay need much time to opti-
mize their service providers, and this will increase the starting delay. However, data
in Fig.8 proves it wrong. This data leads to a conclusion that although the TCMM
provides a quick way to identify those nearby nodes, it has a little longer starting
delay to build the control tree before starting to get media data, which causes about
additional 4s-10s delay than pure mesh-based structure.

4.4 Dynamic Resistance

Because P2P environment is a dynamic environment, many peers’ frequently joining
and leaving will cause the source of each peer to become dynamic, therefore, a peer
should have the ability to change at least part of its service providers at any time. We
let the overlay with 1024 peers runs stably for 5 minutes, then we let a randomly

 TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 61

produced 2 new peers join the overlay and another randomly selected 2 peers leave
the overlay each second within 200 seconds.

In Fig.9, the y axis is sampling times of the window size of peers, x axis is the win-
dow size. We observe that the TCMM’s window is fuller than the pure mesh-based
method in most times. We set the dynamical peers ranging from 10 to 50, TCMM
scheme produces a better average window size as shown in Fig.10. There are two
reasons for this phenomenon. 1) Although the peers frequently join and leave, the
peers in TCMM always fetch and transmit new segments before old segments. Defi-
nitely, this will accelerate the distribution of new segments (since most of peers are
lacking new segments not old segments) and speeds up the data distribution dramati-
cally. Also, this strategy strengthens the collaboration among peers. 2) The peers in
TCMM can get provider partners efficiently from the control tree and reduce the ef-
fects of dynamics of peers.

Fig. 8. Comparison of startup delay Fig. 9. Comparison of continuity

Fig. 10. Comparison of resistance to dynamics

5 Conclusions

In this paper, we have presented TCMM approach, which can support large scale live
streaming service. TCMM just integrates two overlays, a tree based on GUID to over-
come the mismatch problem between logical overlay and underlying physical net-
works, and a mesh to resist peer dynamics, instead of excluding any of them. The
simulation results show that this approach not only benefits the overlay efficiently,

62 H. Jin et al.

decreases the time used to find close nodes, which is very important in reducing the
redundancy of the P2P traffic, but also it strengthens the stability in a rigorous dy-
namic environment just by introducing additional slight starting delay.

References

[1] GT-ITM. http://www.cc.gatech.edu/projects/gtitm/.
[2] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and Routing

for Large Scale Peer-to-Peer Systems”, In Proc. of IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), Nov. 2001.

[3] A. Rowstron, A. M. Kermarrec, M. Castro, and P. Druschel, “Scribe: The Design of a
Large Scale Event Notification Infrastructure”, In Proc. of 3rd International Workshop on
Networked Group Communication, Nov. 2001.

[4] B. Y. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: an Infrastructure for Fault-
Tolerant Wide-Area Location and Routing”, Technical Report, UCB/CSD-01-1141, Uni-
versity of California, Berkeley, CA. USA, Apr. 2001.

[5] Y. Chawathe, “Scattercast: An Architecture for Internet Broadcast Distribution as an In-
frastructure Service”, Ph.D. Thesis, University of California, Berkeley, Dec. 2000.

[6] Y. H. Chu, S. G. Rao, and H. Zhang, “A Case for End System Multicast”, In Proc. of
ACM SIGMETRICS 2000.

[7] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High Bandwidth Data Dis-
semination Using an Overlay Mesh”, In Proceedings of SOSP 2003.

[8] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat, “Using Random Subsets
to Build Scalable Network Services”, In Proc. of the USENIX Symposium on Internet
Technologies and Systems, March 2003.

[9] P. Francis, “Yoid: Extending the Multicast Internet Architecture”, White paper,
http://www.aciri.org/yoid/, 1999.

[10] J. Liang and K. Nahrstedt, “DagStream: Locality Aware and Failure Resilient Peer-to-
Peer Streaming”, In Proc. of SPIE MMCN 2006.

[11] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “AnySee: Peer-to-Peer Live Streaming
Service”, In Proc. of IEEE INFOCOM 2006.

[12] J. Liang and K. Nahrstedt, “Randpeer: Membership Management for QoS Sensitive Peer
to Peer Applications”, In Proceedings of IEEE INFOCOM 2006.

[13] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE: Peer to Peer Me-
dia Streaming Using CollectCast”, In Proc. of ACM Multimedia 2003.

[14] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the Gnutella Network”, IEEE Internet
Computing, 2002.

[15] M. Castro, P. Druschel, A M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Split-
Stream: High-bandwidth Multicast in a Cooperative Environment”, In Proc. of SOSP
2003.

[16] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI: An Application Level Mul-
ticast Infrastructure”, In Proc. of 3rd Usenix Symposium on Internet Technologies & Sys-
tems, March 2001.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable Content
Addressable Network”, In Proc. of ACM SIGCOM 2001.

[18] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-Level Multicast Using
Content Addressable Networks”, In Proc. of 3rd International Workshop on Networked
Group Communication, Nov. 2001.

 TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 63

[19] S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of Peer-to-Peer File Shar-
ing Systems”, In Proc. of MMCN 2002.

[20] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Application Layer Multi-
cast”, In Proc. of ACM SIGCOMM, 2002.

[21] D. A. Tran, K. A. Hua, and T. T. Do, “ZIGZAG: An Efficient Peer-to-Peer Scheme for
Media Streaming”, In Proceedings of IEEE INFOCOM 2003.

[22] V. N. Padamanabhan, H. J. Wang, P. A. Chou, and K. Scripanijkuichai, “Distributing
Streaming Media Content Using Cooperative Networking”, In Proc. of ACM NOSSDAV
2002.

[23] V. Venkataraman, P. Francis, and J. Calandrino, “Chunkyspread: Multi-tree Unstructured
Peer-to-Peer Multicast”, In Proc. of IEEE IPTPS 2006.

[24] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A Data-driven Over-
lay Network for Peer-to-Peer Live Media Streaming”, In Proc. of INFOCOM 2005.

[25] X. Tu, H. Jin, X. Liao, and J. Cao, “Nearcast: A Locality-Aware Application Level Mul-
ticast for Peer-to-Peer Live Streaming Service”, To appear in ACM Transactions on Inter-
net Technology, 2007.

[26] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang, “Location-aware Topology Matching in
Unstructured P2P Systems”, In Proc. of INFOCOM 2004.

[27] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and J. Kubiatowicz, “Bayeux: An Ar-
chitecture for Scalable and Fault Tolerant Wide-area Data Dissemination”, In Proc. of
NOSSDAV 2001.

Fault Management in P2P-MPI

Stéphane Genaud and Choopan Rattanapoka

ICPS-LSIIT - UMR 7005
Université Louis Pasteur, Strasbourg

{genaud,rattanapoka}@icps.u-strasbg.fr

Abstract. We present in this paper the recent developments done in
P2P-MPI, a grid middleware, concerning the fault management, which
covers fault-tolerance for applications and fault detection. P2P-MPI pro-
vides a transparent fault tolerance facility based on replication of com-
putations. Applications are monitored by a distributed set of external
modules called failure detectors. The contribution of this paper is the
analysis of the advantages and drawbacks of such detectors for a real
implementation, and its integration in P2P-MPI. We pay especially at-
tention to the reliability of the failure detection service and to the failure
detection speed. We propose a variant of the binary round-robin protocol,
which is more reliable than the application execution in any case. Exper-
iments on applications of up to 256 processes, carried out on Grid’5000
show that the real detection times closely match the predictions.

Keywords: Grid computing, middleware, Parallelism, Fault-tolerance.

1 Introduction

Many research works have been carried out these last years on the concept of grid.
Though the definition of grid is not unique, there are some common key concepts
shared by the various projects aiming at building grids. A grid is a distributed
system potentially spreading over multiple administrative domains which provide
its users with a transparent access to resources. The big picture may represent a
user requesting some complex computation involving remotely stored data from
its basic terminal. The grid middleware would then transparently query available
and appropriate computers (that the user is granted access to), fetch data and
eventually transfer results to the user.

Existing grids however, fall into different categories depending on needs and
resources managed. At one end of the spectrum are what is often called “in-
stitutional grids”, which gather well identified users and share resources that
are generally costly but not necessarily numerous. At the other end of the spec-
trum are grids with numerous, low-cost resources with few or no central system
administration. Users are often the administrators of their own resource that
they accept to share. Numerous projects have recently emerged in that category
[11, 5, 2] which have in common to target desktop computers or small clusters.
P2P-MPI is a grid middleware that falls into the last category. It has been de-
signed as a peer-to-peer system: each participant in the grid has an equal status

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 64–77, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Fault Management in P2P-MPI 65

and may alternatively share its CPU or requests other CPU to take part to a
computation. The proposed programming model is close to MPI. We give a brief
overview of the system in Section 2 and a longer presentation can be found in [7].
P2P-MPI is particularly suited to federate networks of workstations or unused
PCs on local networks.

In this context, a crucial point is fault management, which covers both failure
detection and fault tolerance for applications. We describe in the paper several
pitfalls arising when targeting such environments and what solutions have been
put forward in P2P-MPI. The main issues to be addressed are (i) scalability
since the fault detection system should work up to hundreds of processors, which
implies to keep the number of messages exchanged small while having the time
needed to detect a fault acceptable, and (ii) accuracy means the failure detection
should detect all failures and failures detected should be real failures (no false
positive).

This paper is organized as follows. Section 2 is a short overview of P2P-MPI
which outline the principle of robustness of an application execution, through
replication of its processes. Section 3 gives an expression of fault-tolerance as
the failure probability of the application depending on the replication degree
and on the failure events rate. To be effective, the failure detection must be far
more reliable than the application execution. We first review in Section 4 the
existing techniques to design a reliable fault detection service (FD hereafter).
Then, Section 5 examines strengths and weaknesses of candidate solutions con-
sidering P2P-MPI requirements. We underline the trade off between reliability
and detection speed and we propose a variant of an existing protocol to improve
reliability. P2P-MPI implementation integrates the two best protocols, and we
report in we report in Section 6 experimental results concerning detection speed
for 256 processes.

2 P2P-MPI Overview

P2P-MPI overall objective is to provide a grid programming environment for
parallel applications. P2P-MPI has two facets: it is a middleware and as such,
it has the duty of offering appropriate system-level services to the user, such as
finding requested resources, transferring files, launching remote jobs, etc. The
other facet is the parallel programming API it provides to programmers.

API. Most of the other comparable projects cited in introduction (apart from
P3 [11]) enable the computation of jobs made of independent tasks only, and the
proposed programming model is a client-server (or RPC) model. The advantage
of this model lies in its suitability to distributed computing environments but
lacks expressivity for parallel constructs. P2P-MPI offers a more general pro-
gramming model based on message passing, of which the client-server can be
seen as a particular case.

Contained in the P2P-MPI distribution is a communication library which ex-
poses an MPI-like API. Actually, our implementation of the MPI specification

66 S. Genaud and C. Rattanapoka

is in Java and we follow the MPJ recommendation [3]. Though Java is used for
the sake of portability of codes, the primitives are quite close to the original
C/C++/fortran specification [8].

Middleware. A user can simply make its computer join a P2P-MPI grid (it
becomes a peer of a peer group) by typing mpiboot which runs a local gatekeeper
process. The gatekeeper can play two roles: (i) it advertises the local computer
as available to the peer group, and decides to accept or decline job requests from
other peers as they arrive, and (ii) when the user issues a job request, it has the
charge of finding the requested number of peers and to organize the job launch.

Launching a MPI job requires to assign an identifier to each task (implemented
by a process) and then synchronize all processes at the MPI Init barrier. By
comparison, scheduling jobs made of independent tasks gives more flexibility
since no coordination is needed and a task can be assigned to a resource as soon
as the resource becomes available.

When a user (the submitter) issues a job request involving several processes,
its local gatekeeper initiates a discovery to find the requested number of re-
sources during a limited period of time. P2P-MPI uses the JXTA library [1]
to handle all usual peer-to-peer operations such as discovery. Resources can be
found because they advertised their presence together with their technical char-
acteristics when they joined the peer group. Once enough resources have been
selected, the gatekeeper first checks that advertised hosts are still available (by
pinging them) and builds a table listing the numbers assigned to each partici-
pant process (called the communicator in MPI). Then, the gatekeeper instructs
a specific service to send the program to execute along with the input data or
URL to fetch data from, to each selected host. Each selected host acknowledges
the transfer and starts running the received program. (If some hosts fail before
sending the acknowledgement, a timeout expires on the submitter side and the
job is canceled). The program starts by entering the MPI Init barrier, waiting
for the communicator. As soon as a process has received the communicator it
continues executing its application process.

Before dwelling into details of the application startup process and the way it is
monitored by the fault-detection service (described in section 5), let us motivate
the need for a failure detector by introducing the capability of P2P-MPI to
handle application execution robustly.

Robustness. Contrarily to parallel computers, MPI applications in our desktop
grid context must face frequent failures. A major feature of P2P-MPI is its ability
to manage replicated processes to increase the application robustness. In its run
request, the user can simply specify a replication degree r which means that each
MPI process will have r copies running simultaneously on different processors.
In case of failures, the application can continue as long as at least one copy
of each process survives. The communication library transparently handles all
extra-communications needed so that the source code of the application does
not need any modification.

Fault Management in P2P-MPI 67

3 Replication and Failure Probability

In this section, we quantify the failure probability of an application and how
much replication improves an application’s robustness.

Assume failures are independent events, occurring equiprobably at each host:
we note f the probability that a host fails during a chosen time unit. Thus, the
probability that a p process MPI application without replication crashes is

Papp(p) = probability that 1, or 2, . . . , or n processes crash
= 1 − (probability that no process crashes)
= 1 − (1 − f)p

Now, when an application has its processes replicated with a replication degree
r, a crash of the application occurs if and only if at least one MPI process has
all its r copies failed. The probability that all of the r copies of an MPI process
fail is f r. Thus, like in the expression above, the probability that a p process
MPI application with replication degree r crashes is

Papp(p,r) = 1 − (1 − f r)p

Figure 1 shows the failure probability curve depending on the replication
degree chosen (r = 1 means no replication) where f has been arbitrary set to
5%. Remark that doubling the replication degree increases far more than twice

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

F
ai

lu
re

 P
ro

ba
bi

lit
y

Number of processes

Application failure probability
r=1
r=2
r=3

Fig. 1. Failure probability depending on replication degree r (f=0.05)

the robustness. For example, a 128 processes MPI application with a replication
degree of only 2 reduces the failure probability from 99% to 27%.

But, for the replication to work properly, each process must reach in a definite
period, a global knowledge of other processes states to prevent incoherence. For
instance, running processes should stop sending messages to a failed process. This
problem becomes challenging when large scale systems are in the scope. When
an application starts, it registers with a local service called the fault-detection
service. In each host, this service is responsible to notify the local application

68 S. Genaud and C. Rattanapoka

process of failures happening on co-allocated processes. Thus, the design of the
failure detectors is of primary importance for fault-tolerance. For this discussion
we first need to review state of the art proposals concerning fault detection since
some of these concepts are the basis for our work.

4 Fault Detection: Background

Failure detection services have received much attention in the literature and
since they are considered as first class services of distributed systems [4], many
protocols for failure detection have been proposed and implemented. Two classic
approaches are the push and pull models discussed in [6], which rely on a cen-
tralized node which regularly triggers push or pull actions. Though they have
proved to be efficient on local area networks, they do not scale well and hence are
not adapted to large distributed systems such as those targeted for P2P-MPI.

A much more scalable protocol is called gossiping after the gossip-style fault
detection service presented in [10]. It is a distributed algorithm whose informative
messages are evenly dispatched amongst the links of the system. In the following,
we present this algorithm approach and its main variants.

A gossip failure detector is a set of distributed modules, with one module
residing at each host to monitor. Each module maintains a local table with one
entry per detector known to it. This entry includes a counter called heartbeat. In
a running state, each module repeatedly chooses some other modules and sends
them a gossip message consisting in its table with its heartbeat incremented.
When a module receives one or more gossip messages from other modules, it
merges its local table with all received tables and adopts for each host the max-
imum heartbeat found. If a heartbeat for a host A which is maintained by a
failure detector at host B has not increased after a certain timeout, host B sus-
pects that host A has crashed. In general, it follows a consensus phase about
host A failure in order to keep the system’s coherence.

Gossiping protocols are usually governed by three key parameters: the gos-
sip time, cleanup time, and the consensus time. Gossip time, noted Tgossip, is
the time interval between two consecutive gossip messages. Cleanup time, or
Tcleanup, is the time interval after which a host is suspected to have failed. Fi-
nally, consensus time noted Tconsensus, is the time interval after which consensus
is reached about a failed node.

Notice that a major difficulty in gossiping implementations lies in the setting
of Tcleanup: it is easy to compute a lower bound, referred to as T min

cleanup, which
is the time required for information to reach all other hosts, but this can serve
as Tcleanup only in synchronous systems. In asynchronous systems, the cleanup
time is usually set to some multiple of the gossip time, and must neither be too
long to avoid long detection times, nor too short to avoid frequent false failure
detections.

Starting from this basis, several proposals have been made to improve or
adapt this gossip-style failure detector to other contexts [9]. We briefly review
advantages and disadvantages of the original and modified gossip based protocols

Fault Management in P2P-MPI 69

and what is to be adapted to meet P2P-MPI requirements. Notably, we pay
attention to the detection time (T min

cleanup) and reliability of each protocol.

Random. In the gossip protocol originally proposed [10], each module randomly
chooses at each step, the hosts it sends its table to. In practice, random gossip
evens the communication load amongst the network links but has the disad-
vantage of being non-deterministic. It is possible that a node receives no gossip
message for a period long enough to cause a false failure detection, i.e. a node
is considered failed whereas it is still alive. To minimize this risk, the system
implementor can increase Tcleanup at the cost of a longer detection time.

Round-Robin (RR). This method aims to make gossip messages traffic more
uniform by employing a deterministic approach. In this protocol, gossiping takes
place in definite round every Tgossip seconds. In any one round, each node will
receive and send a single gossip message. The destination node d of a message
is determined from the source node s and the current round number r.

d = (s + r) mod n, 0 ≤ s < n, 1 ≤ r < n (1)

where n is the number of nodes. After r = n − 1 rounds, all nodes have commu-
nicated with each other, which ends a cycle and r (generally implemented as a
circular counter) is reset to 1. For a 6 nodes system, the set of communications
taking place is represented in the table in Figure 2.

r s → d

1 0 → 1 , 1 → 2 , 2 → 3 , 3 → 4 , 4 → 5 , 5 → 0
2 0 → 2 , 1 → 3 , 2 → 4 , 3 → 5 , 4 → 0 , 5 → 1
3 0 → 3 , 1 → 4 , 2 → 5 , 3 → 0 , 4 → 1 , 5 → 2
4 0 → 4 , 1 → 5 , 2 → 0 , 3 → 1 , 4 → 2 , 5 → 3
5 0 → 5 , 1 → 0 , 2 → 1 , 3 → 2 , 4 → 3 , 5 → 4

Fig. 2. Communication pattern in the round-robin protocol (n = 6)

This protocol guarantees that all nodes will receive a given node’s updated
heartbeat within a bounded time. The information about a state’s node is trans-
mitted to one other node in the first round, then to two other nodes in the second
round (one node gets the information directly from the initial node, the other
from the node previously informed), etc. At a given round r, there are 1+2+· · ·+r
nodes informed. Hence, knowing n we can deduce the minimum cleanup time,
depending on an integer number of rounds r such that:

T min
cleanup = r × Tgossip where r = �ρ� ,

ρ(ρ + 1)
2

= n

For instance in Figure 2, three rounds are required to inform the six nodes of the
initial state of node 0 (boxed). We have underlined the nodes when they receive
the information.

70 S. Genaud and C. Rattanapoka

Binary Round-Robin (BRR). The binary round-robin protocol attempts to min-
imize bandwidth used for gossiping by eliminating all redundant gossiping mes-
sages. The inherent redundancy of the round-robin protocol is avoided by skip-
ping the unnecessary steps. The algorithm determines sources and destination
nodes from the following relation:

d = (s + 2r−1) mod n, 1 ≤ r ≤ �log2(n)� (2)

The cycle length is �log2(n)� rounds, and we have T min
cleanup = �log2(n)�×Tgossip.

2

0

13

1st Round

2nd Round

Fig. 3. Communication pattern in the binary round-robin protocol (n = 4)

From our experience (also observed in experiments of Section 6), in a asyn-
chronous system, provided that we are able to make the distributed FD start
nearly a the same time, i.e. within a time slot shorter (logical time) than a cycle,
and that the time needed to send a heartbeat is less than Tgossip, a good choice
for Tcleanup is the smallest multiple of T min

cleanup, i.e. 2 × �log2(n)� × Tgossip. This
allows not to consider a fault, the frequent situation where the last messages
sent within a cycle c on source nodes arrive at cycle c+1 on their corresponding
receiver nodes.

Note however that the elimination of redundant gossip alleviates network load
and accelerate heartbeat status dissemination at the cost of an increased risk
of false detections. Figure 3 shows a 4 nodes system. From equation 2, we have
that node 2 gets incoming messages from node 1 (in the 1st round) and from
node 0 (2nd round) only. Therefore, if node 0 and 1 fail, node 2 will not receive
any more gossip messages. After Tcleanup units of time, node 2 will suspect node
3 to have failed even if it is not true. This point is thus to be considered in the
protocol choice.

5 Fault Detection in P2P-MPI

From the previous description of state of the art proposals for failure detection,
we retain BRR for its low bandwidth usage and quick detection time despite
it relative fragility. With this protocol often comes a consensus phase, which
follows a failure detection, to keep the coherence of the system (all nodes make
the same decision about other nodes states). Consensus if often based on a voting
procedure [9]: in that case all nodes transmit, in addition to their heartbeat table,

Fault Management in P2P-MPI 71

an extra (n × n) matrix M . The value Mi,j indicates what is the state of node
i according to node j. Thus, a FD suspecting a node to have failed can decide
the node is really failed if a majority of other nodes agree. However, the cost of
transmitting such matrices would induce an unacceptable overhead in our case.
For a 256 nodes system, each matrix represents at least a 64 Kib message (and
256 Kib for 512 nodes), transmitted every Tgossip. We replace the consensus by
a lighter procedure, called ping procedure in which a node suspecting another
node to have failed, directly ping this node to confirm the failure. If the node is
alive, it answers to the ping by returning its current heartbeat.

This is an illustration of problems we came across when studying the behavior
of P2P-MPI FD. We now describe the requirements we have set for the middle-
ware, and which algorithms have been implemented to fulfill these requirements.

5.1 Assumptions and Requirements

In our context, we call a (non-byzantine) fault the lack of response during a given
delay from a process enrolled for an application execution. A fault can have three
origins: (i) the process itself crashes (e.g. the program aborts on a DivideByZero
error), (ii) the host executing the process crashes (e.g. the computer is shut off),
or (iii) the fault-detection monitoring the process crashes and hence no more
notifications of aliveness are reported to other processes.

P2P-MPI is intended for grids and should be able to scale up to hundreds of
nodes. Hence, we demand its fault detection service to be: a) scalable, i.e. the
network traffic that it generates does not induce bottlenecks, b) efficient, i.e.
the detection time is acceptable relatively to the application execution time, c)
deterministic in the fault detection time, i.e. a fault is detected in a guaranteed
delay, d) reliable, i.e. its failure probability is several orders of magnitudes less
than the failure probability of the monitored application, since its failure would
results in false failure detections.

We make several assumptions that we consider realistic accordingly to the
above requirements and given current real systems. First, we assume an asyn-
chronous system, with no global clock but we assume the local clock drifts remain
constant. We also assume non-lossy channels: our implementation uses TCP to
transport fault detection service traffic because TCP insures message delivery.
TCP also has the advantage of being less often blocked than UDP between ad-
ministrative domains. We also require a few available ports (3 for services plus
1 for each application) for TCP communications, i.e. not blocked by firewalls
for any participating peer. Indeed, for sake of performances, we do not have
relay mechanisms. During the startup phase, if we detect that the communica-
tion could not be establish back and forth between the submitter and all other
peers, the application’s launch stops. Last, we assume that the time required to
transmit a message between any two hosts is generally less than Tgossip. Yet, we
tolerate unusually long transmission times (due to network hangup for instance)
thanks to a parameter Tmax hangup set by the user (actually Tcleanup is increased
by Tmax hangup in the implementation).

72 S. Genaud and C. Rattanapoka

5.2 Design Issues

Until the present work, P2P-MPI’s fault detection service was based on the
random gossip algorithm. In practice however, we were not fully satisfied with
it because of its non-deterministic detection time.

As stated above, the BRR protocol is optimal with respect to bandwidth usage
and fault detection delay. The low bandwidth usage is due to the small number
of nodes (we call them sources) in charge of informing a given node by sending
to it gossiping messages: in a system of n nodes, each node has at most log2(n)
sources. Hence, BRR is the most fragile system with respect to the simultaneous
failures of all sources for a node, and the probability that this situation happens
is not always negligible: In the example of the 4 nodes system with BRR, the
probability of failure can be counted as follows. Let f be the failure probability of
each individual node in a time unit T (T < Tcleanup), and let P (i) the probability
that i nodes simultaneously fail during T . In the case 2 nodes fail, if both of
them are source nodes then there will be a node that can not get any gossip
messages. Here, there are 4 such cases, which are the failures of {2,3},{0,3},{0,1}
or {1,2}. In the case 3 nodes fail, there is no chance FD can resist. There are

(4
3

)

ways of choosing 3 failed nodes among 4, namely {1,2,3},{0,2,3},{0,1,3},{0,1,2}.
And there is only 1 case 4 nodes fail. Finally, the FD failure has probability
Pbrr(4) = P (4) + P (3) + P (2) = f4 +

(4
3

)
f3(1 − f) + 4f2(1 − f)2.

In this case, using the numerical values of section 3 (i.e. f=0.05), the compar-
ison between the failure probability of the application (p=2, r=2) and the failure
probability of the BRR for n=4, leads to Papp(2,2) = 0.005 and Pbrr(4) = 0.0095
which means the application is more resistant than the fault detection system
itself. Even if the FD failure probability decreases quickly with the number of
nodes, the user may wish to increase FD robustness by not eliminating all re-
dundancy in the gossip protocol.

5.3 P2P-MPI Implementation

Users have various needs, depending on the number of nodes they intend to use
and on the network characteristics. In a reliable environment, BRR is a good
choice for its optimal detection speed. For more reliability, we may wish some
redundancy and we allow users to choose a variant of BRR described below.
The chosen protocol appears in the configuration file and may change for each
application (at startup, all FDs are instructed with which protocol they should
monitor a given application).

The choice of an appropriate protocol is important but not sufficient to get an
effective implementation. We also have to correctly initialize the heartbeating
system so that the delayed starts of processes are not considered failures. Also,
the application must occasionally make a decision against the FD prediction
about a failure to detect firewalls.

Double Binary Round-Robin (DBRR). We introduce the double binary
round-robin protocol which detects failures in a delay asymptotically equal to
BRR (O(log2(n)) and acceptably fast in practice, while re-inforcing robustness

Fault Management in P2P-MPI 73

of BRR. The idea is simply to avoid to have one-way connections only between
nodes. Thus, in the first half of a cycle, we use the BRR routing in a clock-wise
direction while in the second half, we establish a connection back by apply-
ing BRR in a counterclock-wise direction. The destination node for each gossip
message is determined by the following relation:

d =
{

(s + 2r−1) mod n if 1 ≤ r ≤ �log2(n)�
(s − 2r−�log2(n)�−1) mod n if �log2(n)� < r ≤ 2�log2(n)� (3)

The cycle length is 2�log2(n)� and hence we have T min
cleanup = 2�log2(n)�×Tgossip.

With the same assumptions as for BRR, we set Tcleanup = 3�log2(n)� × Tgossip

for DBRR.
To compare BRR and DBRR reliability, we can count following the principles

of Section 5.2 but this quickly becomes difficult for a large number of nodes.
Instead, we simulate a large number of scenarios, in which each node may fail
with a probability f . Then, we verify if the graph representing the BRR or
DBRR routing is connected: simultaneous nodes failures may cut all edges from
sources nodes to a destination node, which implies a FD failure. In Figure 4, we
repeat the simulation for 5.8× 109 trials with f=0.05. Notice that in the DBRR
protocol, we could not not find any FD failure when the number of nodes is more
than 16, which means the number of our trials is not sufficient to estimate the
DBRR failure probability for such n.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 256 128 64 32 16 8 4

F
ai

lu
re

 p
ro

ba
bi

lit
y

of
 fa

ul
t d

et
ec

tio
n

sy
st

em

Number of processes

BRR protocol
DBRR protocol

Fig. 4. Failure probabilities of the FD system using BRR and DBRR (f = 0.05)

Automatic Adjustment of Initial Heartbeat. In the startup phase of an
application execution (contained in MPI Init), the submitter process first queries
advertised resources for their availability and their will to accept the job. The
submitter construct a table numbering available resources called the communica-
tor1, which is sent in turn to participating peers. The remote peers acknowledge
this numbering by returning TCP sockets where the submitter can contact their
file transfer service. It follows the transfer of executable code and input data.
1 The submitter always has number 0.

74 S. Genaud and C. Rattanapoka

Once a remote node has completed the download, it starts the application which
registers with its local FD instance.

This causes the FDs to start asynchronously and because the time of trans-
ferring files may well exceed Tcleanup, the FD should (i) not declared nodes that
have not yet started their FD as failed, and (ii) should start with a heartbeat
value similar to all others at the end of the MPI Init barrier. The idea is thus
to estimate on each node, how many heartbeats have been missed since the
beginning of the startup phase, to set the local initial heartbeat accordingly.
This is achieved by making the submitter send to each node, together with the
communicator, the time spent sending information to previous nodes. Figure 5
illustrates the situation. We note tsi, 1 ≤ i < n the date when the submitter

...

Send the MPI
communicator
and necessary
information

T0

tr1

T1

tr2

T2
trn−1

Tn−1

Δt1

Δt2

Δtn−1

Register with MPD

ts1

ts2

tsn−1

Rank 0 Rank 1 Rank 2 Rank n − 1

FD monitors process
Register with FD

Fig. 5. Application startup

sends the communicator to peer i, and tri the date when peer i receives the
communicator. Each peer also stores the date Ti at which it registers with its
local FD. The submitter sends Δti = tsi − ts1 to any peer i (1 ≤ i < n) which
can then computes its initial heartbeat hi as:

hi = �(Ti − tri + Δti)/Tgossip�, 1 ≤ i < n (4)

while the submitter adjusts its initial heartbeat to h0 = �(T0 − ts1)/Tgossip�.
Note that we implement a flat tree broadcast to send the communicator in-

stead of any hierarchical broadcast scheme (e.g. binary tree, binomial tree) be-
cause we could not guarantee in that case, that intermediate nodes always stay
alive and pass the communicator information to others. If any would fail after
receiving the communicator and before it passes that information to others, then
the rest of that tree will not get any information about the communicator and
the execution could not continue.

Application-Failure Detector Interaction. At first sight, the application
could completely rely on its FD to decide whether a communication with a
given node is possible or not. For instance, in our first implementation of send
or related function calls (eg. Send, Bcast) the sender continuously tried to send
a message to the destination (ignoring socket timeouts) until it either succeeded
or received a notification that the destination node is down from its FD. This

Fault Management in P2P-MPI 75

allows to control the detection of network communication interruptions through
the FD configuration.

However, there exist firewall configurations that authorize connections from
some addresses only, which makes possible that a host receive gossip messages
(via other nodes) about the aliveness of a particular destination while the desti-
nation is blocked for direct communication. In that case, the send function will
loop forever and the application can not terminate. Our new send implementa-
tion simply installs a timeout to tackle this problem, which we set to 2×Tcleanup.
Reaching this timeout on a send stops the local application process, and soon
the rest of the nodes will detect the process death.

6 Experiments

The objective of the experiments is to evaluate the failure detection speed with
both BRR and DBRR monitoring a P2P-MPI application running on a real grid
testbed. We use the Grid’5000 platform, a federation of dedicated computers
hosted across nine campus sites in France, and organized in a virtual private
network over Renater, the national education and research network. Each site
has currently about 100 to 700 processors arranged in one to several clusters
at each site. In our experiment, we distribute the processes of our parallel test
application across three sites (Nancy, Rennes and Nice).

The experiment consists in running a parallel application without replication
and after 20 seconds, we kill all processes on a random node. We then log at
what time each node is notified of the failure and compute the time interval
between failure and detection. Figure 6 plots the average of these intervals on
all nodes and for both protocols, with Tgossip set to 0.5 second. Also plotted
for comparison is Tcleanup as specified previously, termed “theoretical” detection
time on the graph.

The detection speed observed is very similar to the theoretical predictions
whatever the number of processes involved, up to 256. The difference with the

 2

 4

 6

 8

 10

 12

 14

 256 128 64 32 16 8 4

T
ot

al
 ti

m
e

(s
)

Number of processes

BRR - observed
DBRR - observed
BRR - theoretical

DBRR - theoretical

Fig. 6. Time to detect a fault for BRR and DBRR

76 S. Genaud and C. Rattanapoka

predictions (about 0.5 s) comes from the ping procedure which adds an overhead,
and from the rounding to an integer number of heartbeats in Equation 4. This
difference is about the same as the Tgossip value used and hence we see that the
ping procedure does not induce a bottleneck.

It is also important to notice that no false detection has been observed
throughout our tests, hence the ping procedure has been triggered only for real
failures. There are two reasons for a false detection: either all sources of in-
formation for a node fail, or Tcleanup is too short with respect to the system
characteristics (communication delays, local clocks drifts, etc). Here, given the
briefness of execution, the former reason is out of the scope. Given the absence
of false failures we can conclude that we have chosen a correct detection time
Tcleanup, and our initial assumptions are correct, i.e. the initial hearbeat adjust-
ment is effective and message delays are less than Tgossip.

This experiment shows the scalability of the system on Grid’5000, despite
the presence of wide area network links between hosts. Further tests should
experiment smaller values of Tgossip for a quicker detection time. We also plan
to test the system at the scale of a thousand processes.

7 Conclusion

We have described in this paper the fault-detection service underlying P2P-MPI.
The first part is an overview of the principles of P2P-MPI among which is repli-
cation, used as a means to increase robustness of applications executions, and
external monitoring of application execution by a specific fault-detection mod-
ule. In the second part, we first describe the background of our work, based on
recent advances in the research field of fault detectors. We compare the main
protocols recently proposed regarding their robustness, their speed and their de-
terministic behavior, and we analyze which is best suited for our middleware.
We introduce an original protocol that increases the number of sources in the
gossip procedure, and thus improves the fault-tolerance of the failure detection
service, while the detection time remains low. Last, we present the experiments
conducted on Grid’5000. The results show that the fault detection speeds ob-
served in experiments for applications of up to 256 processes, are really close to
the theoretical figures, and demonstrate the system scalability.

Acknowledgments. Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, an initiative from the French Ministry
of Research through the ACI GRID incentive action, INRIA, CNRS and RE-
NATER and other contributing partners (see https://www.grid5000.fr)

References

[1] JXTA. http://www.jxta.org.
[2] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg. Our-grid: An approach

to easily assemble grids with equitable resource sharing. In 9thWorkshop on Job
Scheduling Strategies for Parallel Processing, June 2003.

http://www.jxta.org

Fault Management in P2P-MPI 77

[3] B. Carpenter, V. Getov, G. Judd, T. Skjellum, and G. Fox. Mpj: Mpi-like message
passing for java. Concurrency: Practice and Experience, 12(11), Sept. 2000.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

[5] G. Fedak, C. Germain, V. Néri, and F. Cappello. XtremWeb: A generic global
computing system. In CCGRID, pages 582–587. IEEE Computer Society, 2001.

[6] P. Felber, X. Defago, R. Guerraoui, and P. Oser. Failure detectors as first class
objects. In Proceeding of the 9th IEEE Intl. Symposium on Distributed Objects
and Applications (DOA’99), pages 132–141, Sept. 1999.

[7] S. Genaud and C. Rattanapoka. A peer-to-peer framework for robust execution
of message passing parallel programs. In EuroPVM/MPI 2005, volume 3666 of
LNCS, pages 276–284. Springer-Verlag, September 2005.

[8] MPI Forum. MPI: A message passing interface standard. Technical report, Uni-
versity of Tennessee, Knoxville, TN, USA, June 1995.

[9] S. Ranganathan, A. D. George, R. W. Todd, and M. C. Chidester. Gossip-style
failure detection and distributed consensus for scalable heterogeneous clusters.
Cluster Computing, 4(3):197–209, 2001.

[10] R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service.
In IFIP International Conference on Distributed Systems Platforms and Open
Distributed Middleware, pages 55–70, England, 1998.

[11] K. Shudo, Y. Tanaka, and S. Sekiguchi. P3: P2P-based middleware enabling
transfer and aggregation of computational resource. In 5th Intl. Workshop on
Global and Peer-to-Peer Computing. IEEE, May 2005.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 78 – 88, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Heterogeneous Wireless Sensor Network Deployment
and Topology Control Based on Irregular Sensor Model

Chun-Hsien Wu and Yeh-Ching Chung

Department of Computer Science, National Tsing Hua University,
Hsinchu 30013, Taiwan, R.O.C.

{chwu, ychung}@cs.nthu.edu.tw

Abstract. Heterogeneous wireless sensor network (heterogeneous WSN) con-
sists of sensor nodes with different ability, such as different computing power
and sensing range. Compared with homogeneous WSN, deployment and topol-
ogy control are more complex in heterogeneous WSN. In this paper, a deploy-
ment and topology control method is presented for heterogeneous sensor nodes
with different communication and sensing range. It is based on the irregular
sensor model used to approximate the behavior of sensor nodes. Besides, a cost
model is proposed to evaluate the deployment cost of heterogeneous WSN. Ac-
cording to experiment results, the proposed method can achieve higher cover-
age rate and lower deployment cost for the same deployable sensor nodes.

Keywords: Wireless sensor network, heterogeneous sensor deployment, topol-
ogy control, sensor coverage, irregular sensor model.

1 Introduction

Wireless sensor network (WSN) is a key element of the pervasive/ubiquitous comput-
ing. With the advancement of manufacturing and wireless technologies, many feasible
applications are proposed such as industrial sensor networks [4], volcano-monitoring
networks [10], and habitat monitoring [11], etc. The heterogeneous WSN consists of
sensor nodes with different abilities, such as various sensor types and communica-
tion/sensing range, thus provides more flexibility in deployment. For example, we can
construct a WSN in which nodes are equipped with different kinds of sensors to pro-
vide various sensing services. Besides, if there are two types of senor nodes: the high-
end ones have higher process throughput and longer communication/sensing range;
the low-end ones are much cheaper and with limited computation and communica-
tion/sensing abilities. A mixed deployment of these nodes can achieve a balance of
performance and cost of WSN. For example, some low-end sensor nodes can be used
to replace high-end ones without degrading the network lifetime of WSN. Many
research works have been proposed to address the deployment problem of heteroge-
neous WSN [3] [5].

To achieve a satisfying performance, the deployment of heterogeneous WSN is
more complicated than homogeneous WSN. Deployment simulation is essential be-
fore actual installation of sensor nodes, since different deployment configurations can

 Heterogeneous WSN Deployment and Topology Control 79

be tested without considering the cost of real node deployment. However, to reflect
the behavior of WSN correctly is a major challenge of sensor nodes deployment simu-
lation. In many research works, disk model is commonly used [6] [7] [8]. However,
a fixed communication or sensing range is not practical to a realistic senor node.
Moreover, node deployment in heterogeneous WSN has to consider the topology
control between different types of sensor nodes. For example, to maintain a symmet-
ric communication, the distance between high-end and low-end sensor nodes cannot
be larger than the maximum communication range of the low-end one. Besides, if the
sensor nodes have different detection range, the sensor coverage area of low-end node
cannot be fully covered by the high-end node.

In this paper, a heterogeneous sensor deployment and topology control method is
presented. It aims to deal with the deployment problem of heterogeneous sensor nodes
with different communication and sensing range. In addition, an irregular sensor
model is proposed to approximate the behavior of sensor nodes. According to experi-
ment results, the proposed method can achieve higher coverage rate under the same
deployable sensor nodes. Besides, the deployment cost is much lower with different
configurations of sensor nodes.

The rest of the paper is organized as follows. In Section 2, previous works related
to heterogeneous sensor deployment and irregular sensor model are addressed. In
Section 3, the irregular sensor model and some definitions of heterogeneous WSN
used in this paper are given. In Section 4, we present the details of heterogeneous
sensor node deployment. Section 5 evaluates the performance of the proposed method
under various scenarios. Finally, we conclude the paper in Section 6.

2 Related Work

The benefit of heterogeneous wireless sensor networks has been studied in many
research works. Lee et al. [5] analyze heterogeneous deployments both mathemati-
cally and through simulations in different deployment environments and network
operation models considering both coverage degree and coverage area. Experiment
results show that using an optimal mixture of many inexpensive low-capability
devices and some expensive high-capability devices can significantly extend the dura-
tion of a network’s sensing performance. In [3], Hu et al. investigate some fundamen-
tal questions for hybrid deployment of sensor network, and propose a cost model and
integer linear programming problem formulation for minimizing energy usage and
maximizing lifetime in a hybrid sensor network. Their studies show that network
lifetime can be increased dramatically with the addition of extra micro-servers, and
the locations of micro-servers can affect the lifetime of network significantly. In addi-
tion, the cost-effectiveness analysis shows that hybrid sensor network is financially
cost efficient for a large case.

In many research works [6] [7] [8], unit disk graph (UDG) is a commonly used
sensor model to reflect the correct behavior of sensor node. It assumes the effective
communication and sensing region of sensor node is a circle with fixed radius. How-
ever, a constant communication and sensing range is not practical for a realistic senor
node. In [2], He et al., propose a model with an upper and lower bound on signal
propagation. If the distance between a pair of nodes is larger than the upper bound,
they are out of communication range. If within the lower bound, they are guaranteed
to be within communication range. The parameter DOI (degree of irregularity) is used

80 C.-H. Wu and Y.-C. Chung

to denote the irregularity of the radio pattern. It is the maximum radio range variation
per unit degree change in the direction of radio propagation. When the DOI is set to
zero, there is no range variation, resulting in a UDG model. Zhou et al. [12] extended
the previous DOI model as radio irregularity model (RIM) based on the empirical data
obtained from the MICA2 and MICAZ platforms.

3 Preliminaries

3.1 Irregular Sensor Model

In this paper, an irregular sensor model is proposed based on the radio propagation
model inspired from Radio Irregularity Model (RIM) [12] and degree of irregularity
(DOI) [2]. The irregular sensor model assumes that the sensor node use the same
radio propagation model for communication and sensing. For each sensor node, a
radio propagation range is pre-defined and denoted as Rdef, and the effective radio
propagation range (Reffective) is decided by the normal (Gaussian) distribution with a
mean of Rdef and a standard derivation of DOI, where DOI represents for the degree of
irregularity of Reffective.

Figure 1 illustrates the radio propagation range under different DOI. According to
the “68-95-99.7 rule”, about 99.7% of the values are within three standard derivations
away from the mean (Rdef) [9]. Thus we define the Reffective is ranged from Rdef –
3*DOI (Rmin) to Rdef + 3*DOI (Rmax), and the relationship between Rdef, Rmin, and Rmax
is illustrated in Figure 2.

After the effective radio propagation range is calculated, we can use it to derive the
radio strength model based on the simple transmission formula for a radio circuit
made up of an isotropic transmitting and a receiving antenna in free space [1]:

Pr / Pt = Ar At / d
2 λ2 . (1)

where Pt is the power fed into the transmitting antenna at its input terminals, Pr is the
power available at the output terminals of the receiving antenna, Ar (or At) is the effec-
tive area of the receiving (or transmitting) antenna, d is the distance between anten-
nas, and λ is the wavelength. Suppose that Pt, Ar, At, and λ are constants, then the
received radio power (Pr) is proportional to 1/d2. Thus, we define the radio strength
of senor node n at point p as follows:

R(n, p) = (Reffective / d(n, p))2 . (2)

where d(n, p) is the Euclidean distance between node n and point p. If R(n, p) ≧ 1,
then there exists radio connection between node n and point p.

Fig. 1. The radio propagation range under different DOI

 Heterogeneous WSN Deployment and Topology Control 81

Fig. 2. The relationship between Rdef, Rmin, and Rmax

According to the definition of Reffective, we have the following observations:

1. If d(n, p) < Rmin, R(n, p) must be larger than 1.
2. If d(n, p) > Rmax, R(n, p) must be less than 1.
3. If d(n, p) > Reffective, the radio connection between two nodes cannot be guaranteed.

Here we define “out of range” as R(n, p) = min_strength, where min_strength is the
minimum threshold of radio strength that guarantees radio connection between
node n and point p, thus the maximum connectable distance between node n and
point p is Rmax/sqrt(min_strength).

4. Similarly, we define “too closed” as R(n, p) = max_strength, where max_strength
is the maximum acceptable radio strength for node n, thus the minimal distance be-
tween node n and point p is Rmin/sqrt(max_strength).

The relationship between R(n, p) and d(n, p) is illustrated in Figure 3. In the Section 4,
the proposed irregular sensor model will be used to select a proper sensor node loca-
tion and calculate coverage rate.

3.2 Some Definitions of Heterogeneous Wireless Sensor Network

In this paper, we define a heterogeneous WSN that consists of three types of nodes:
sink node, high-end senor node (NH), and low-end senor node (NL). Each node has
the same communication model and two types of sensor nodes have the same sensing
model. The difference between NH and NL is that the pre-defined communication and
sensing range are different. The default communication and sensing range of NH are
defined as RCH and RSH, respectively. Similarly, RCL and RSL are denoted as the de-
fault communication and sensing range of NL, where RCH > RCL, and RSH > RSL.

To evaluate the results of sensor node deployment, we define a deployment cost
model as:

deployment_cost = (Num(NH)* NH_cost + Num(NL)) / total_coverage_rate . (3)

82 C.-H. Wu and Y.-C. Chung

Fig. 3. The relationship between R(n, p) and d(n, p)

NH_cost = (RCH + RSH
2) / (RCL + RSL

2) . (4)

where deployment_cost is calculated as the total cost of deployed sensor nodes di-
vided by the total_coverage_rate produced by these sensor nodes, and NH_cost is the
difference of sensor node cost between NH and NL. The sensor node cost is deter-
mined by two factors: communication distance and coverage area of sensor, repre-
sented by Rc and Rs

2 respectively. The calculation of total_coverage_rate is based on
the irregular senor model described in Section 3.1. At first, the deployment area is
filled with grid points. For a senor node N, its coverage_rate at grid point p is based
on Equation (2) in Section 3.1:

coverage_rate = (effective_range / d(N, p))2 . (5)

where effective_range is a random value with normal distribution between min(RS)
and max(RS). After all sensor nodes are processed, each grid point will keep the high-
est coverage rate but not exceed one. The total_coverage_rate is equal to the sum of
coverage_rate divided by the number of grid points.

4 Heterogeneous Sensor Deployment

In this section, a heterogeneous sensor deployment method is proposed. Given a
deployment area and the upper bound of deployable high-end and low-end sensor
nodes, the objective is to construct a communication-connected sensor network, in
which high-end and low-end sensor nodes are deployed uniformly to achieve high
coverage rate. In the initialization step, a deployment area is initialized base on the
configuration file. In the neighbor-info collection step, starting from the sink node,
the information of adjacent sensor nodes within the communication range is collected.

 Heterogeneous WSN Deployment and Topology Control 83

It can be used to decide the deployment ratio of high-end and low-end sensor nodes.
In the candidate generation step, candidate positions are generated according to topol-
ogy control policies, and a scoring mechanism based on the irregular sensor model is
applied to each candidate. At least, a new sensor node with the most coverage gains
is deployed while maintaining the communication connectivity. The number of de-
ployable sensor nodes is limited by the pre-defined quota of sink/sensor node. If the
quota is reached, then a deployed sensor node with available quota will be selected.
The deployment process will be repeated until the upper bound of deployable sensor
nodes is reached or no suitable place available to add a sensor node. In the following,
we will describe each deployment step in details.

4.1 Initialization Step

In this step, a sensing area is generated from a given configuration file. This file
includes the size of deployment area, the location of pre-deployed sink node and sen-
sor nodes, the upper bound of deployable high-end and low-end sensor nodes, and
default value of parameters defined in Section 3. These parameters include the de-
fault communication and sensing distance of high-end/low-end sensor node (RCH, RSH,
RCL, and RSL), the degree of irregular (DOI), and the threshold of radio strength
(max_strength and min_strength). Then the maximum/minimum value of the effec-
tive radio propagation range (Reffective) is calculated for each type of node according to
the given DOI. For example, if the default RCH = 30 and DOI = 2.0, then the maxi-
mum effective communication distance max(RCH) = RCH + 3*DOI = 36 and the mini-
mum effective communication distance min(RCH) = RCH - 3*DOI = 24. Thus, the
effective communication distance of high-end sensor node fits a normal distribution
ranged from 24 to 36.

4.2 Neighbor-Info Collection Step

At first, a center node for deployment is selected. The selection of eligible center
node is starting from sink node, and then expanding to all deployed sensor nodes.
The criterion of eligible node is based on the available quota for node deployment,
which is limited by the degree of node defined in the configuration file. The number
of deployed high-end and low-end sensor nodes within minimum effective communi-
cation distance is denoted as Neighbor(NH) and Neighbor(NL). They will be used to
decide the deploy ratio of high-end and low-end sensor nodes. Suppose the number
of deployable high-end and low-end nodes is denoted as Remain(NH) and Re-
main(NL), respectively. Then the limit numbers of deployable high-end and low-end
senor node are represented as Equation (6) and (7):

Deploy(NH) = limit degree of center node * Remain(NH) / (Remain(NH)
+ Remain(NL)) .

(6)

Deploy(NL) = limit degree of center node – Deploy(NH) . (7)

If Deploy(NH) ≦ Neighbor(NH), then Deploy(NH) = 0, means that the number of high-
end sensor nodes is sufficient. At last, if Deploy(NH) + Deploy(NL) > 0, then the
following deployment step will be processed, otherwise, the deployment process for
current center node will be terminated and restarted on the next eligible node.

84 C.-H. Wu and Y.-C. Chung

4.3 Candidates Generation Step

In this step, the candidate positions for each type of the sensor node will be generated
separately. In heterogeneous sensor node deployment, the symmetric connection
must be maintained. It means that the distance between two sensor nodes cannot
larger than the maximum communication distance of the low-end one. Besides, the
overlap of sensor coverage area between two senor nodes has to be considered to
prevent the sensor coverage area of low-end node to be fully covered by the high-end
node, which means no coverage gains. In the following, we will discuss the require-
ment to produce coverage gains while maintaining symmetric connection under dif-
ferent conditions:

− Case I: RCH > RSH and RCL > RSL

In this case, the communication distance is larger than sensing range. Figure 4(a)
illustrates the condition when a low-end node NL is added to a high-end sensor node
NH. For NL, if d(NH, NL) < RCL, then the symmetric connection is established, and we
said that these two nodes are communication-connected. If d(NH, NL) ≦ (RSH - RSL),
then the sensor coverage area of NL is fully covered by NH, which means no coverage
gains. By combining these observations, if two nodes are communication-connected
and have coverage gains, then the distance between two nodes is:

(RSH - RSL) < d(NH, NL) < RCL . (8)

Thus, if we want to produce coverage gains while maintaining symmetric connection
when deploying a new sensor node, the following condition must be satisfied:

RCL - (RSH - RSL) > 0 . (9)

− Case II: RCH = RSH and RCL = RSL

From Figure 4(b), the requirement of communication-connected deployment with
coverage gains can be derived from Equation (9) by replacing RCL with RSL:

2 RSL > RSH or 2 RCL > RCH . (10)

 (a) RCH > RSH and RCL > RSL (b) RCH = RSH and RCL = RSL (c) RCH < RSH and RCL < RSL

Fig. 4. Sensor node connection and coverage under different conditions

 Heterogeneous WSN Deployment and Topology Control 85

− Case III: RCH < RSH and RCL < RSL

From Figure 4(c), we can find that the requirement of communication-connected
deployment with coverage gains is identical to Case I.

Based on above results, candidate position is generated by the following topology
control policies:

1. If a NH is selected for node deployment, then the candidate positions of high-
end/low-end senor nodes must be within the minimum effective communication
distance of high-end/low-end senor node. That is, d(NH, candidate position of high-
end node) ≦ min(RCH), and d(NH, candidate position of low-end node) ≦
min(RCL).

2. If a NL is selected for node deployment, then the candidate positions of two types
of sensor nodes must be within the minimum effective communication distance of
low-end senor node. That is, d(NH, candidate position of high-end/low-end node)
≦ min(RCL).

3. If d(NH, candidate position of low-end node) ≦ (RSH - RSL), then this candidate
position is discard because the sensor coverage area will be fully covered by NH.

4. The minimum distance between candidate position and deployed nodes is defined
as Rmin/sqrt(max_strength), where Rmin = min(RCH) or min(RCL) is the minimum ef-
fective communication distance of sensor node. It can prevent the deployed sensor
nodes are too closed.

4.4 Scoring Step

After candidate positions are generated for different types of sensor nodes, a scoring
mechanism to each position is defined as follows: total_score = connection_score +
coverage_score. The connection_score is the distance between candidate position and
center node. The coverage_score of candidate position is defined as the coverage
gains when a sensor node is deployed at the candidate position. The calculation of
coverage gains is described as follows: At first, a square around center node with edge
length = 2*max(RS) is filled with grid points. Based on Equation (5) in Section 3.2,
the total coverage rate produced by deployed sensor nodes is denoted as
base_coverage_rate. Next, the total coverage rate with the contribution of candidate
position is denoted as target_coverage_rate. Thus the coverage_score of candidate
position = target_coverage_rate - base_coverage_rate.

4.5 Sensor Addition Step

After all candidate positions are scored, the candidate with the highest score is
selected to deploy a new sensor, which has the most coverage gains while maintaining
the communication connectivity to center node. If the deploy quota of current center
node is reached, the next deployed sensor node with available quota will be selected.
The deployment process will be repeated until the upper bound of deployable sensor
nodes is reached or no suitable place available to add a sensor node.

86 C.-H. Wu and Y.-C. Chung

5 Experiments

In this section, we evaluate the performance of the proposed sensor deployment
method by comparing sensor coverage rate and deployment cost with several sensor
node configurations. A simulation tool written in C++ language is running on an
IBM eServer 326 (AMD Opteron 250 * 2 and 1GB memory). The deployment area is
a 2-D square with 500 × 500 units. A sink node is deployed at (200, 200). The total
number of deployable sensor nodes is ranged from 60 to 360. Other parameters are
defined as follows: DOI = 2.0, max_strength = 1.2 and min_strength = 0.8.

Fig. 5. Coverage rate of Test Case I Fig. 6. Deployment cost of Test Case I

Test Case I is the coverage rate and deployment cost under different deployment
ratio, where Num(NL):Num(NH) = 5:1 or 1:1. Besides, the ratio of communica-
tion/sensing range between NH and NL (RH : RL) is 1.5:1, and the ratio of communica-
tion and sensing range for NH / NL (RC : RS) is 1.5:1. We also compare the results with
sensor deployment without topology control (case 2* and 5*). The deployment with-
out topology control is based on the same deployment method, but it omits the topol-
ogy control policies described in Section 4.3. The experiment results are illustrated in
Figure 5 and Figure 6. In Figure 6, we compare the deployment cost of different
cases (5, 5*, and 1*) with case 1 (denoted as 5/1, 5*/1, and 1*/1). With the help of
topology control, the proposed method has higher coverage rate in comparison of the
deployment method without topology control. It can be found lower deployment ratio
can achieve higher coverage rate with the help of more high-end nodes. In addition,
the reduction of deployment cost is significant for the deployment method with topol-
ogy control. When deployment ratio is 5:1, it has higher coverage rate and lower
deployment cost than the deployment method without topology control under the
same deployment ratio.

 Heterogeneous WSN Deployment and Topology Control 87

Test Case II is the coverage rate and deployment cost under different ratio of the
communication/sensing range between NH and NL (RH : RL), where RCH : RSH = RCL :
RSL = 1.5:1, and deployment ratio of NH and NL is fixed to 5:1. Other configurations
are identical to the Test Case I. Figure 7 and Figure 8 are experiment results. If RH
/RL = 1, it can be regarded as homogeneous deployment since both NH and NL have
the same communication and sensing range. With the help of high-end sensor nodes,
the heterogeneous deployment can get higher coverage rate, but the homogeneous
deployment has lower deployment cost. The deployment method without topology
control still has higher deployment cost under the same ratio of RH and RL.

Fig. 7. Coverage rate of Test Case II Fig. 8. Deployment cost of Test Case II

6 Conclusions

In this paper, we propose a heterogeneous WSN deployment method based on irregu-
lar sensor model. It aims to deal with the deployment problem of heterogeneous sen-
sor nodes with different communication and sensing range. In addition, an irregular
sensor model is proposed to approximate the behavior of sensor nodes. The deploy-
ment process is starting from sink node, and new nodes are deployed to the region
centered with it. In neighbor-info collection step, the information of adjacent sensor
nodes is used to decide the deployment ratio of different types of sensor nodes. In the
scoring step, a scoring mechanism based on the irregular sensor model is applied to
candidate positions. At least, a new sensor node is placed to the position with the
most coverage gains while maintaining the communication connectivity to center
node. Above process is running repeatedly until all eligible sensor nodes are
processed.

88 C.-H. Wu and Y.-C. Chung

According to experiment results, the proposed method can achieve higher coverage
rate under the same deployable sensor nodes. Besides, the deployment cost is much
lower with different configurations of sensor nodes. In the future work, a sensor node
model considering environmental factors and individual behavior is needed. Besides,
considering the interactions between different types of sensors is important. At least,
the proposed method will be extended as the topology control protocol for heteroge-
neous WSN.

Acknowledgments. The work of this paper was partially supported by National Sci-
ence Council and Ministry of Economic Affairs of the Republic of China under con-
tract NSC 95-2221-E-007-018 and MOEA 95-EC-17-A-04-S1-044.

References

1. Friis, H.T.: A Note on a Simple Transmission Formula. In Proceedings of the IRE, Vol.
34, No. 5, (1946) 254- 256

2. He, T., Huang, C., Blum, B. M., Stankovic, J. A., and Abdelzaher, T.: Range-free localiza-
tion schemes for large scale sensor networks. In Proceedings of the 9th Annual interna-
tional Conference on Mobile Computing and Networking (MobiCom). (2003) 81-95

3. Hu, W., Chou, C.T., Jha, S., and Bulusu, N.: Deploying Long-Lived and Cost-effective
Hybrid Sensor Networks. Elsevier Ad-Hoc Networks, Vol. 4, Issue 6. (2006) 749-767

4. Krishnamurthy, L., Adler, R., Buonadonna, P., Chhabra, J., Flanigan, M., Kushalnagar, N.,
Nachman, L., and Yarvis, M.: Design and deployment of industrial sensor networks: ex-
periences from a semiconductor plant and the North Sea. In Proceedings of the 3rd inter-
national conference on Embedded networked sensor systems (SenSys). (2005) 64-75

5. Lee, J.J., Krishnamachari, B., Kuo, C.C.J.: Impact of Heterogeneous Deployment on Life-
time Sensing Coverage in Sensor Networks (IEEE SECON). (2004)

6. Li, L., Halpern, J. Y., Bahl, P., Wang, Y.-M., and Wattenhofer, R.: Analysis of cone-based
distributed topology control algorithms for wireless multi-hop networks. In Proceedings
of ACM Symposium on Principle of Distributed Computing (PODC). (2001)

7. Li, X.-Y., Wan, P.-J., Wang, Y., and Frieder, O.: Sparse power efficient topology for wire-
less networks. In Proceedings of IEEE Hawaii International Conference on System Sci-
ences (HICSS). (2002)

8. Ramanathan, R. and Rosales-Hain, R.: Topology control of multihop wireless networks
using transmit power adjustment. In Proceedings of the 20th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM). (2000)

9. Wikipedia contributors, “Normal distribution,” Wikipedia, The Free Encyclopedia.
(http://en.wikipedia.org/w/index.php?title=Normal_distribution&oldid=93201679)

10. Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., and Lees,
J.: Deploying a Wireless Sensor Network on an Active Volcano. IEEE Internet Comput-
ing 10(2) (2006) 18-25

11. Xu, N.: A Survey of Sensor Network Applications. University of Southern California.
(http://enl.usc.edu/~ningxu/papers/survey.pdf)

12. Zhou, G., He, T., Krishnamurthy, S., and Stankovic, J.: A. Models and solutions for radio
irregularity in wireless sensor networks. ACM Trans. Sen. Netw. 2(2) (2006) 221-262

Multiple Cluster Merging and Multihop

Transmission in Wireless Sensor Networks

Siddeswara Mayura Guru1, Matthias Steinbrecher2, Saman Halgamuge1,
and Rudolf Kruse2

1 Dynamic Systems and Control Group, Department of Mechanical and
Manufacturing Engineering

University of Melbourne, Parkville Vic 3010, Australia
s.guru@pgrad.unimelb.edu.au, saman@unimelb.edu.au

2 Department of Computer Engineering, University of Magdeburg,
Magdeburg, Germany D-39106.

msteinbr@iws.cs.uni-magdeburg.de, kruse@iws.cs.uni-magdeburg.de

Abstract. Wireless sensor networks consist of sensor nodes that are de-
ployed in a large area and collect information from a sensor field. Since
the nodes have very limited energy resources, the energy consuming op-
erations such as data collection, transmission and reception must be kept
to a minimum. Low Energy Adaptive Clustering Hierarchy (LEACH) is
a cluster based communication protocol where cluster-heads (CH) are
used to collect data from the cluster nodes and transmit it to the remote
base station. In this paper we propose two extensions to LEACH. Firstly,
nodes are evenly distributed during the cluster formation process, this
is accomplished by merging multiple overlapping clusters. Secondly, in-
stead of each CH directly transmitting data to remote base station, it
will do so via a CH closer to the base station. This reduces transmission
energy of cluster heads. The combination of above extensions increases
the data gathering at base station to 60% for the same amount of sensor
nodes energy used in LEACH.

1 Introduction

Wireless sensor networks have become popular because of the advancement in
the area of low power electronics, radio frequency communication and due to the
desire to monitor the environment remotely with minimum human intervention.
A large number of sensors can be deployed to form a self-organising network to
sense the environment and gather information. A sensor can be data driven or
event driven in nature and a network may be static or dynamic [1].

Sensor networks can be used in various applications ranging from military
to domestic. Sensors can be deployed in an inhospitable condition for moni-
toring purposes, in a forest for monitoring the animal movement or as early
fire detection systems. Sensor networks are used to improve the learning skill
in kindergarten [2], environment and habitat monitoring and also to measure
tension in a mechanical bolt [3].

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 89–99, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

90 S.M. Guru et al.

Low Energy Adaptive Clustering Hierarchy (LEACH), which was first pre-
sented in [4], is an application specific communication protocol based on cluster-
ing of sensor nodes. The main idea behind LEACH is that sensor nodes located
close to each other will have a high correlation in their measured data so that
it is not necessary for each node to communicate with the base station. Nodes
form clusters by grouping neighbouring nodes. Each cluster has a cluster-head
whose tasks are to collect data from other cluster members, aggregate and send
aggregated data to base station.

In LEACH, cluster-head will consume more energy than its member nodes.
Therefore, the CHs are rotated after a fixed amount of time called rounds. Each
round consists of two phases: the setup phase where the clusters are formed,
and the steady-state phase where the actual sensing and communication takes
place. The cluster-head election process takes place in a setup phase to determine
K cluster-heads in a network but, it does not guarantee K cluster-heads. Fur-
thermore, cluster-heads are selected randomly based on the probability given in
Equation 1. where N is the number of sensor nodes in a network, k is the number
of CHs required and r is the number of rounds passed. The Equation 1 increases
the chance that cluster-heads are not distributed uniformly in a network. Due
to above reasons there will be uneven cluster sizes and uneven distribution of
cluster-heads in a network . All this leads to rapid energy dissipation. In this
paper, the concept of merging of cluster-heads, which are in close proximity, is
introduced. In LEACH, each cluster-head transmit the aggregated data to the
base station. The base station is generally located far away from the network.
This increases the energy dissipation in CHs. Instead of each CH directly trans-
mitting to base station, a CH closest to the base station transmits aggregated
data from all the CHs. Thus, reducing the energy dissipation of other cluster-
heads. The combination of these two extensions improves the life span of the
network. The first extension is named LEACHM (LEACH-Merging) and due
to 2-hop communication to base station, the combination of first and second
extension is called 2-Level LEACHM.

Pi(t) =

{
k

N−k·(rmod N
k) : Ci(t) = 1

0 : Ci(t) = 0
(1)

There are few algorithms proposed and showed improvements to the LEACH pro-
tocol. PEGASIS (Power-Efficient Gathering in Sensor Information Systems) [5]
is a chain based data gathering protocol, where only one node transmits to the
base station. In this protocol the distance each node transmits is less than the
distance a node transmits in LEACH. However, this is a greedy based algorithm
with assumption that all nodes have global knowledge of the network. In [6],
the same authors proposed two new protocols: chain-based binary scheme with
CDMA (Code Division Multiple Access) nodes and a chain-based 3-level scheme
with non-CDMA nodes other than PEGASIS to reduce energy × delay to gather
data in sensor networks. Each protocol shows improvement over LEACH based
on the percentage of nodes dying for different network sizes. However, none of
the above protocols are cluster based and they may not give a consistent result

Multiple Cluster Merging and Multihop Transmission 91

for a randomly distributed varying population of the sensor network. This is
due to greedy approach used to find the nearest neighbour to form a chain. The
assumption that all the nodes have a global knowledge about the network is
difficult to realise because of node capacity and density of a network. There are
few centralised approaches to form clusters [7] based on [8]. The authors in [9]
have successfully developed a centralised protocol superior to LEACH. However,
we are not considering the centralised approach in our work. We want nodes to
decide among themselves to form clusters and identify CHs.

The rest of the paper is organised as follows. Section 2 describes the moti-
vation for the uniform cluster-head distribution and proposes a cluster merging
technique as an extension to the setup phase. In section 3, 2-level LEACHM is
proposed to transmit data by a single CH (master-cluster-head) to the base sta-
tion. In section 4, we are providing experimental results comparing the LEACH
protocol with LEACH-M and 2-level LEACHM. Finally, we conclude the paper
in section 5.

2 Uniform Cluster-Head Distribution

Efficient communication protocols for sensor networks are important to keep the
communication energy usage as low as possible to increase the system lifetime.
Therefore, it is important to consider every aspect of the total energy usage.
Since the cluster-head consumes more energy, it is reasonable to try to decrease
the energy spent in these nodes. From the energy model that is used in LEACH
[10], the energy dissipated in a cluster-head node during a single frame is:

ECH = ERECV (b, m) + EAGG(b, m) + EBS(d4
toBS), (2)

where b is the number of data bits sent by each cluster member, m is the average
number of nodes per cluster (N

k), ERECV is the energy used for reception of data
from cluster members, EAGG is the energy used for data aggregation, EBS is
the energy used for delivering results to base station and dtoBS is the distance
to base station. The behaviour of these three components against the change of
distance to the base station is shown in Figure 1.

In cases where the base station is in the range of 75m to 160m away from the
network from (Figure 1), it can be concluded that most of the energy is dissipated
while receiving data from the cluster members. The transmission energy increases
as the base station is moved further away from the sensor field.

In order to optimise the consumption of reception energy ERECV , its depen-
dencies on the system parameters must be known. Reception energy is computed
based on Equation 3.

ERECV = bEelec
N

k
. (3)

where b, N and Eelec (radio amplifier energy) would have constant value. The k
is the only value varies frequently because the number of cluster-members varies
in each round. Thus, k has more influence on Equation 3.

92 S.M. Guru et al.

Fig. 1. Energy dissipated at cluster-head node during one LEACH round versus dis-
tance to base station

The assumption in [10] that a node can be a cluster-head at least once in its
lifetime is valid only for an exact number of k cluster-head nodes. Since it is
also possible that there are less than k cluster-head nodes in certain rounds, this
leads to many nodes may have died before completing the first round of being a
cluster-head. Thus, it is necessary to maintain balanced cluster sizes such that
all nodes become cluster-head at least once in their lifetime.

2.1 Cluster Merging

A first approach in extending the cluster-head’s lifetime was proposed in [11].
Even though these improvements guarantee the most powerful nodes to be elected
as cluster-heads, the network may suffer from a malformed cluster in the initial
stage. Since all nodes start at the same level of energy EStart, no preference can
be achieved because the term is very close to unity in the initial few rounds.

En current

En max
(4)

In order to increase the probability of the survival of the first round of a node
being a cluster-head, it is necessary to avoid large clusters.Clusters being too
large are resulted due to the following reasons:

1. Less than k nodes elected themselves to be cluster-heads thus resulting in
large clusters covering the entire network.

2. The number of elected cluster-head nodes is at least k, but the cluster-heads
are distributed in an uneven way as shown in Figure 2 (for example, the
cluster-heads 3 and 4 are too close).

To avoid reason (2) the status of being a cluster-head is not declared until
the end of the setup phase. In addition, another negotiation stage is introduced
right after the cluster-head election. The nodes that have elected themselves to
be cluster-heads in the initial election phase are now called cluster-head aspirants
(CHA) because their status may change in the negotiation phase.

Multiple Cluster Merging and Multihop Transmission 93

Fig. 2. Even if there are exactly k clusters
(k = 5), there is no guarantee that the clus-
ter sizes are balanced. (The framed nodes
indicate the cluster-heads).

Fig. 3. Three cluster-head aspirants and
their AOI s

In the new negotiation phase, a small I-AM-HERE message is broadcasted by
each cluster-head aspirant to the others. Since a node can only be set to receive
or transmit mode at a given time, this broadcast has to be accomplished within
a TDMA frame, which has as many slots as number of nodes in the network.
Each node is assigned a slot by means of its node ID. The TDMA frame length
scales linearly by the network size. Each node transmit little amount of data
(Table 1), which is not a burden. The I-AM-HERE message only contains the
information depicted in Table 1.This message does not need to broadcast at
maximum transmitting power. It is sufficient to reach all cluster-head aspirants
in a special circumference with radius r. This area is called the area of interest
(AOI) of the cluster-head aspirant and specifies its territory ideally not shared
with another CHA, even though some overlap may be tolerated.

Table 1. Layout of I-AM-HERE message

Sender ID

Sender’s energy level

As stated above it may occur that in case of cluster-head aspirants being
located too close, these areas may overlap. In this case both clusters should be
merged into one cluster. We illustrate this in Figure 3. Each cluster-head aspirant
CHAi (having Ei energy) determines the energy Emax

i of the most powerful
cluster-head aspirant in its AOI. The future state of the cluster-head aspirant
CHAi is defined by the following policy: If Emax

i > Ei then CHAi abandons

94 S.M. Guru et al.

Table 2. Energy values for CHA nodes, Example 1

CHA Energy left

A 5
B 1
C 3

the cluster-head role and becomes a non-cluster-head node. Otherwise, CHAi

remains in its role and advances to become a proper cluster-head node. In case
of a tie, a CHA chooses its cluster-head state randomly.

This decision is done independently by all potential cluster-head nodes. We
assume the nodes A, B and C from Figure 3 have the energy levels as shown in
Table 2. After the broadcast, the knowledge of each node is as follows:

– A with the energy of 5 units, knows about B in its AOI with the energy of
1 unit.

– B with the energy of 1 unit, knows about A and C having energy levels of
5 and 3 units, respectively.

– C with the energy of 3 units, knows about B in its AOI with the energy of
1 unit.

The following decisions are made:

– Node A changes its status from CHA to cluster-head, since the only other
cluster-head aspirant known (B) has less than 5 units left.

– Node B becomes a non-cluster-head node since all other cluster-head aspi-
rants known to it (A and C) have more energy left.

– Node C changes its status from CHA to cluster-head, since the only other
cluster-head aspirant known (B) has less than 3 units left.

Thus, the number of cluster-head nodes located in AOI of each other can be
reduced. If n cluster-head aspirants know each other then exactly one node will
remain as a cluster-head, thus avoiding the overlap.

The proposed method will distribute nodes evenly among clusters. However,
there should be enough cluster-heads to cover all nodes in a sensor field. This
problem can be solved by increasing the value of ‘k’ in Equation 1. This also
reduces the disadvantage of having less CH nodes.

3 2-Level LEACHM

The steady phase happens once the set-up phase finished in the LEACH proto-
col. In steady phase, data is transmitted to the base-station. If the base-station is
located far away from the sensor field, it is more likely that the transmission dis-
tance from all the cluster-heads to base station is greater than dcrossover[10]. The
dcrossover (d = transmission distance) is the critical distance between transmit-
ter and receiver. The critical value is 86.2 m based on the channel propagation

Multiple Cluster Merging and Multihop Transmission 95

Fig. 4. The number of data packets reached to the base station located at (50,175)
against the number of rounds

model used in [10]. If transmission distance is greater than dcrossover the en-
ergy dissipation is proportional to d4 else it is d2. Therefore, it is important for
transmission to be proportional to d2. However, when base station is located
remotely, which is the case for majority of applications, nodes will dissipate en-
ergy proportional to d4. To improve the lifetime of a network, number of nodes
dissipating energy proportional to d4 should be minimum.

To minimise the transmission distance of cluster-heads, only master-cluster-
head transmits data to remote base station. Here, the assumption is that each
sensor knows the distance and direction of the base-station. It is a logical as-
sumption where all sensors are static once they are deployed and the base station
is also static. Once, the sensors are deployed, the base-station will broadcast a
beacon to the sensor field thus, all sensors know the distance of the base station
from them.

3.1 Master Cluster-Head Determination

After cluster-heads are elected, each of them will broadcast a message (MSG-
MCH) using non-persistent carrier sense multiple Access (CSMA) protocol. The
message consists of node’s ID and its distance from the base-station (Table 3).
This message will be broadcasted to reach all cluster-heads. Once each cluster-
head receives all other cluster-heads information, they decide by themselves the
master-cluster-head. The cluster-head closest to the base-station is determined as
master-cluster-head. After CHs get a frame of data from its members they will
transmit an aggregated data to the master-cluster-head using carrier sense mul-
tiple access (CSMA) approach. The master-cluster-head waits for data from all

Table 3. the format of the MSG-MCH message broadcast by each cluster-head

Node ID

BS distance from node

96 S.M. Guru et al.

Fig. 5. The graph shows the energy consumption for number of data received. 2-Level
LEACHM received more data spending lesser energy than LEACH and LEACHM. The
BS is located at (50,175), outside the network.

cluster-heads before it transmits an aggregated data to the base-station. There-
fore, except master-cluster-head all other CHs transmit short distance to save
transmission energy. The main motivation is to reduce the energy dissipation of
cluster-heads to the magnitude of d2 instead of d4 barring, master-cluster-head.

4 Simulation Results and Analysis

The simulation tool is developed in C++ to evaluate the LEACH protocol and
new proposal presented in this paper. The simulation setup, electronics param-
eters and energy model used in the simulation is similar to [10]. The basic
characteristics of the network setup is given in Table 4: In LEACH-M, dur-
ing the cluster-head election process, nodes selected using Equation 1 are called
potential-cluster-heads. Potential-cluster-heads decide among themselves as dis-
cussed in section 2 to become a cluster-head or non-cluster-head. The advantage
of negotiation phase of potential-cluster-heads is that the cluster-heads will be
distributed evenly in a network, which, LEACH fails. In the simulation, the
overhead energy involved for the negotiation phase is also considered. Since the
size of data broadcast is small (4 bytes) the energy spent to transmit 4 bytes of
data with maximum power to reduce hidden terminal problem is 16.44μJ . This
energy is spent once in every round. The proposed improvement to the LEACH
protocol can be seen from the results in Figure 4. The 2-Level LEACHM gathers

Table 4. Network setup for simulation

No. of nodes 100

Area of the sensor field 100m × 100m

Base station location (50,175)

Data size 500 bytes

Initial energy of each node 2J

Multiple Cluster Merging and Multihop Transmission 97

Fig. 6. The percentage of times number
of clusters formed in one run of simula-
tion. LEACHM formed majority of times
clusters between 3 and 5. Thus making it
energy efficient then LEACH.

Fig. 7. Cluster-head distribution in
LEACH and LEACHM

60% more data packets than LEACH and about 40% more than LEACHM. The
improvement is mainly due to the even distribution of cluster-heads in a network
and d2 power dissipation for most CHs except master-cluster-head, which dissi-
pate d4 most of the times. Figure 5 shows the simulation results for the energy
dissipation to number of data packet received. The 2-Level LEACHM transmits
60% more data packets than LEACH and 35% more data packets than LEACHM
for the same amount of energy consumed.

Finally, we compare the cluster formation in LEACH and LEACHM in Fig-
ure 6 (the comparison is only between LEACH and LEACHM because 2-Level
LEACHM has similar cluster formation as LEACHM). The results in Figure 4.4
of [10] shows that the LEACH is most energy-efficient when clusters are between
3 and 5. In Figure 6, LEACHM form clusters 60% of times between 3 and 5 when
compare to 30% in LEACH. This proves that the clusters are more uniform and
efficient in LEACHM. This is the main reason for LEACHM to perform better
than LEACH. Figure 7 shows that LEACHM has more occurrences of clusters
between 3 and 5 than LEACH. Overall results prove that LEACHM and 2-Level
LEACHM perform better than LEACH.

4.1 Sensitivity Analysis of LEACHM

In this section we analyse the sensitivity of Area of Interest (AOI) in LEACHM.
From Equation 4.22 of [10] the expected distance between nodes to a cluster-head
is given by:

E[d2
toCH] =

1
2π

M2

k
(5)

In the above equation the distance between the cluster-head and nodes varies
with the number of cluster-heads (k). From Figure 4.4 in [10], the energy is least
dissipated when number of clusters are between 3 and 5. Therefore, we vary
the number of clusters from 3 to 5 to find how LEACHM works. We conduct

98 S.M. Guru et al.

Fig. 8. Sensitivity of LEACHM for number of clusters

this experiments by simulating LEACHM with area of interest (AOI) of 18m
for 5 clusters, 20m for 4 clusters and 23m for 3 clusters. All the AOIs can be
calculated by substituting number of clusters to k in Equation 5. The result
given in Figure 8 shows that network with clusterheads of 20m radius transmit
more data to the base station.

5 Conclusion

The main focus of this paper was to improve the performance of LEACH. Based
on the performance criteria considered the improvement is about 60%. The im-
provement was possible due to the even distribution of clusters in the setup
phase and in the steady phase, instead of every cluster-heads transmitting data
to base station, only master-cluster-head transmits aggregated data of all CHs.
This reduces the transmission energy and further improves the performance of
the protocol.

Acknowledgment

Authors would like to thank Australian Research Council for partly funding this
project.

References

1. Tilak, S., Abu-Ghazaleh, N., Heinzelman, W.: A taxonomy of wireless micor-sensor
network models. ACM SIGMOBILE Mobile Computing and Communications Re-
view 6 (2002) 28–36

2. Park, S., Locher, I., Savvides, A., Srivastava, M., Chen, A., Muntz, R., Yuen, S.:
Design of a wearable sensor badge for smart kindergarten. In: Wearable Comput-
ers, 2002. (ISWC 2002). Proceedings. Sixth International Symposium on. (2002)
231–238

Multiple Cluster Merging and Multihop Transmission 99

3. Guru, S.M., Fernando, S., Halgamuge, S., Chan, K.: Intelligent fastening with
a-bolt technology and sensor networks. Assembly Automation, The International
Journal of assembly technology and management 24 (2004) 386–393

4. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: System Sciences, 2000.
Proceedings of the 33rd Annual Hawaii International Conference on. (2000)
3005–3014

5. Lindsey, S., Raghavendra, C., Sivalingam, K.: Data gathering algorithms in sensor
networks using energy metrics. Parallel and Distributed Systems, IEEE Transac-
tions on 13 (2002) 924–935

6. Lindsey, S., Raghavendra, C.: Pegasis: Power-efficient gathering in sensor infor-
mation systems. In: Aerospace Conference Proceedings, 2002. IEEE. Volume 3.
(2002) 3–1125–3–1130 vol.3

7. Guru, S.M., Hsu, A., Halgamuge, S., Fernando, S.: An extended growing self-
organising map for selection of clusters in sensor networks. International Journal
of Distributed Sensor Networks 1 (2005) 227–243

8. Hsu, A., Tang, S., Halgamuge, S.: An unsupervised hierarchical dynamic self-
organising approach to class discovery and marker gene identification in microarray
data. Bioinformatics 19 (2003) 2131–2140

9. Muruganathan, S., Ma, D., Bhasin, R., Fapojuwo, A.: A centralized energy-efficient
routing protocol for wireless sensor networks. Communications Magazine, IEEE
43 (2005) S8–13

10. Heinzelman, W.: Application-Specific Protocol Architectures for Wireless Net-
works. PhD thesis, Massachusetts Institute of Technology (2000)

11. Handy, M., Haase, M., Timmermann, D.: Low energy adaptive clustering hierarchy
with deterministic cluster-head selection. In: Mobile and Wireless Communications
Network, 2002. 4th International Workshop on. (2002) 368–372

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 100 – 111, 2007.
© Springer-Verlag Berlin Heidelberg 2007

CFR: A Peer-to-Peer Collaborative File Repository
System

Meng-Ru Lin, Ssu-Hsuan Lu, Tsung-Hsuan Ho, Peter Lin, and Yeh-Ching Chung*

Department of Computer Science, National Tsing Hua University
Hsin-Chu, Taiwan300, ROC

{mrlin, shlu, anson}@sslab.cs.nthu.edu.tw, peter@dr-lin.com,
ychung@cs.nthu.edu.tw

Abstract. Due to the high availability of the Internet, many large cross-
organization collaboration projects, such as SourceForge, grid systems etc.,
have emerged. One of the fundamental requirements of these collaboration
efforts is a storage system to store and exchange data. This storage system must
be highly scalable and can efficiently aggregate the storage resources
contributed by the participating organizations to deliver good performance for
users. In this paper, we propose a storage system, Collaborative File Repository
(CFR), for large scale collaboration projects. CFR uses peer-to-peer techniques
to achieve scalability, efficiency, and ease of management. In CFR, storage
nodes contributed by the participating organizations are partitioned according to
geographical regions. Files stored in CFR are automatically replicated to all
regions. Furthermore, popular files are duplicated to other storage nodes of the
same region. By doing so, data transfers between users and storage nodes are
confined within their regions and transfer efficiency is enhanced. Experiments
show that our replication can achieve high efficiency with a small number of
duplicates.

Keywords: peer-to-peer, storage system, Coupon Collection Problem, CFR.

1 Introduction

The exploding growth of the Internet has enabled organizations across the globe to
share resources and collaborate in large scale projects such as SourceForge [21],
SEEK[20], and grid systems [1] [5] [11] [25], etc. One of the most fundamental
needs of these types of projects is a platform to store and exchange data. A storage
system is needed for keeping and distributing the large amounts of source codes,
programs, and documentations. To construct such a storage system, machines
contributed by volunteering organizations are used to store and mirror the generated
data. How to build a scalable and efficient storage system to aggregate the resources
contributed by the participating organizations has been an active research issue.

The peer-to-peer computing has received much attention in the past few years.
Pioneering applications such as Napster [16] and KaZaA [9] offered platforms for
users to easily exchange files without a centralized storage. The second generation of

* Corresponding author.

 CFR: A Peer-to-Peer Collaborative File Repository System 101

peer-to-peer storage systems [2] [10] [15] [18], mostly built on top of structured
routing schemes [19][22], further provide mechanisms to guarantee on object
location, and adopt more sophisticated replication and caching schemes.

The benefits of peer-to-peer techniques include scalability, fault tolerance,
resource sharing, and load balancing among the participating machines. These
appealing properties closely match the requirements of storage systems used in large
scale collaboration projects mentioned above.

In this paper, we propose a scalable, loosely coupled, and efficient storage system,
Cooperative File Repository (CFR), for large scale collaboration projects. The CFR
consists of two modules, overlay management and file management modules. The
overlay management module maintains connectivity between the participating nodes
using a two-layer overlay network. The file management module provides an
interface for users to access CFR and manages the files stored in CFR. Replicas are
automatically created for all files stored in CFR. Caching is employed to further
enhance performance. CFR achieves scalability by incorporating peer-to-peer
techniques to aggregate the contributed storage nodes. Efficiency is achieved by
exploiting the geographic locality of the storage nodes. Using the region overlay,
CFR can replicate files to storage nodes in all geographic areas.

To evaluate the performance of CFR, both simulation analysis and experimental
test are conducted. Simulation results verify that our proposed caching scheme can
effectively reduce the average download time compared to the one without caching
scheme. For the experimental test, we implement CFR on Taiwan UniGrid [25].
Different region configurations are implemented and the top 10 download files from
the SourceForge site are used as the test data set. The experimental result shows that
the downloading time of the 4-region configuration is almost 3 times faster than that
of the 1-region configuration, that is, the region concept of CFR can enhance the
performance of file downloading.

The remainder of this paper is organized as follows. In Section 2, we discuss
various systems that are related to our system. In Section 3 we briefly describe the
system overview of our CFR. In Sections 4 and 5, we introduce the overlay
management and file management of CFR, respectively. The simulation results are
presented in Section 6. In Section 7, we perform the experimental test on Taiwan
UniGrid.

2 Related Work

Many peer-to-peer data storage systems have been proposed in the past, and there are
quite a few papers on comparisons of various peer-to-peer file sharing/storage
applications published [6] [7]. CFS [2] is a Unix-style read only file system layered
on top of the Chord [22] [23] protocol. A DHash layer lies between the file system
and Chord to handle block management. OceanStore [10] is a persistent wide-area
transactional storage, layered on top of its own probabilistic routing protocol.
OceanStore applies erasure coding to files, splitting them into multiple blocks, to
achieve robustness. PAST [18] is a large scale persistent storage system layered on
the Pastry [19] protocol. PAST can be layered on other routing protocols with some
loss of locality and fault resilience properties. All of the storage systems mentioned

102 M.-R. Lin et al.

above create replicas to the files or blocks stored in the system and employ caching.
IVY [15] is a log-based file system that supports concurrent write operations. IVY,
like CFS, uses Dhash to store the logs. Kelips [4] is a file system layered on its own
routing scheme with O(1) lookup time. The fast lookup, however, comes at the cost
of larger memory usage and background communication overhead.

CFR shares many similarities with PAST. Like PAST, CFR stores and replicates
whole files, and is not bounded to a specific routing scheme. Unlike PAST, we do not
rely on the underlying routing protocol to take locality into consideration. Our system
partitions the participating nodes into groups, like Kelips, but uses different partition
scheme. Kelips uses hashing to determine the group of a node while ours is based on
geographic locality.

Many past works have proposed different ideas of using hierarchical multiple ring
topologies in overlay networks. HIERAS [26] and [14] are both routing schemes that
adopt this topology. In [14], the participating peers are organized into multiple layers
of rings with separate identifier spaces to reflect administrative domains and
connectivity constraints. Boundary Chord [8] is a replica location mechanism used in
grid environments. Boundary Chord adopts a two-layer multiple ring topology to
group nodes according to logical domains. In comparison with these systems, CFR
adopts a two-layer hierarchy of multiple rings.

3 System Overview

Figure 1 shows the system architecture of CFR and the functions offered by the
system components. The CFR system consists of two modules: Overlay Management
Module (OMM) and File Management Module (FMM).

Fig. 1. The system architecture of CFR

OMM is responsible for maintaining connectivity between the participating storage
nodes using a two-layer overlay network. The two-layer overlay network consists of
two overlays, the base overlay and the region overlay. These two overlays are

 CFR: A Peer-to-Peer Collaborative File Repository System 103

maintained by the Base Overlay Management Component (BOMC) and Region
Overlay Management Component (ROMC), respectively. ROMC maintains the
required routing information in a data structure called the region table.

FMM is used for providing functions that are related to files in CFR. FMM
consists of two components: the User Interface Component (UIC) and the File
Duplication Component (FDC). UIC provides an interface for users to access the files
which are stored in CFR. Duplications of files in CFR are automatically created in
order to enhance performance and increase availability. The File Duplication
Component (FDC) is responsible for creating the duplications.

4 The Overlay Management of CFR

In this section, we will describe the overlay management of CFR. It can be divided
into the base overlay and the region overlay.

4.1 The Base Overlay

The purpose of the base overlay is to route messages between any two storage nodes
in the system. The base overlay is constructed and maintained by BOMC. In the base
overlay, each participating storage node has a node ID that is obtained by hashing the
IP address of the node using a consistent hash function, such as SHA-1 [3] or MD5
[17]. Using this method, participating storage nodes are organized as a ring, the base
ring, according to their IDs.

4.2 The Region Overlay

4.2.1 Regions
The basic concept of region is inspired by mirroring scheme on the internet such as
SourceForge. User usually can choose a server to download file according to their
own geographic locality to achieve efficient downloading. Therefore, the geographic
locality can be interpreted as network locality in two end hosts connected to the
Internet. In [24], it is shown that topology of the Internet today obeys the Power Law
and consists of several dense autonomous system clusters.

We adopt a model to capture the scenario that we mentioned above. We assume
that the connection between two participants (storage nodes or users) of CFR is
efficient if they are in the same geographic area. In our model, all storage nodes and
users, both end hosts in the Internet, are partitioned into disjoint sets called regions.
We assume that the partition reflects geographic locality.

4.2.2 Construct and Maintain the Region Overlay
Constructing the region overlay can allow the participating storage nodes to contact
other storage nodes that are in different regions quickly. This ability aids the file
duplication procedures to select target storage nodes to replicate desired files. Details
of the file duplication procedures are described in Section 5.

104 M.-R. Lin et al.

(a) (b)

Fig. 2. (a). An example of region overlay with 3 regions. (b). An example of the join process.

We now describe the construction and maintenance procedures of ROMC. First we
will introduce some terms and variables that will be used. R denotes the total number
of regions in the system. Nodes that belong to the same region are called locals of
each other. Nodes that belong to different regions are called contacts of each other. A
link is an ID-to-address mapping, used to convert node ID to actual network address.
Links that point to locals are called local links. Links that point to contacts are called
contact links. Links that are required to form the region overlay which are stored in
the region table of the participating nodes.

To form the region overlay, each node stores and maintains R links in their region
tables. The local links in the region table of each node connect nodes from the same
region into a ring, called the region ring. The region overlay is essentially made up of
R interconnected region rings. Figure 2(a) shows a system with 3 regions. Storage
node 9 stores and maintains 3 links in its region table. A local link points to the
clockwise neighbor in its region ring, node 13. Two contact links point to the closest
contacts from the remaining two regions in the base ring, nodes 11 and 22,
respectively.

A node constructs its region table when it first joins the system, and maintains its
region table throughout its lifetime in the system.

Figure 2(b) shows an example of the join process. In Figure 2(b), storage node 10
joins the system. As shown on top of Figure 2(b) all storage nodes between storage
node 9 and storage node 67 have a link to storage node 22 before storage node 10
joins. The region table of storage node 9 contains links to storage nodes 11, 13, and
22. After storage node 10 joins, all nodes between storage node 9 and storage 67 are
affected. As shown on the bottom of Figure 2(b), the region table of storage node 10
contains links to storage nodes 11, 13, and 22. These links are obtained from storage
node 9. All the links that point to storage node 22 are modified to point to storage
node 9.

 CFR: A Peer-to-Peer Collaborative File Repository System 105

5 The File Management of CFR

In this section, we give detailed descriptions of file management procedures in CFR.
Files that are stored in CFR can be classified into two types: permanent file, and
transient file. Permanent file will stay in the system until a remove operation is
performed on it. Each transient file has a lifetime to determine how long it can stay in
the system, and will be removed from the system when the system time exceeds its
lifetime. A permanent file is associated with a data structure called permanent table,
which contains all the necessary file management information about a permanent file.
Likewise, a transient file is associated with a transient table which contains the
necessary information about a transient file. The storage space of each storage node is
divided into to two areas: local and cache areas. Permanent files are stored in the
local areas of storage nodes, and transient files are stored in the cache areas.

Table 1. An example of a permanent table

filename App.tgz
 fileID 8

permNodes 8 11 22
caches 24 50

hort 359
long 50
path /opt/cfr/local

Table 2. An example of a transient table

filename App.tgz
fileID 8

lifetime 50000
path /opt/cfr/cache

Table 1 shows a permanent table. The filename and the fileID field record the
name of the file and the hash value of the filename. Each file will be replicated, and
the permNodes field records the storage nodes in different regions that store the
replicas when the caches field records the storage nodes in the same region that store
the replicas. The long and short fields record the long term and short term access rates
of that file, respectively. The path field stores the physical location of the file. Table 2
shows a transient table. The filename, fileID, and path fields are the same as the fields
in the permanent table. The lifetime field stores the lifetime of that transient file.

5.1 Insert Files and Create Duplicates in CFR

The put function provides by UIC allows users to insert files into CFR. In CFR, a file
will first be put to the node, ni, whose id is closest to fileID. After the first stage of
insertion is completed, node ni will replicate files to nodes in other regions according
to its contact link information.

Transient files are created for reducing the load of the storage nodes hosting
popular files as proposed in [12]. In order to cope with this phenomenon, we record
the long term download rate, in the scale of days, of each file in the long field of its
permanent tables. The transient file will be created when one of the download rates of
that file exceeds its threshold.

106 M.-R. Lin et al.

Figure 3(a) shows an example of file insertion and duplication process. The file
App.tgz, which is the same file in Table 1, is inserted into a system with 3 regions.
Since the fileID of App.tz is 8, its home is storage node 9. Storage node 9 uses its
region table to create two replicas on storage nodes 11 and 22 according to the
described creation procedure.

(a) (b)

Fig. 3. (a). An example of file insertion and duplication. (b). An example of file retrieval.

5.2 Retrieve and Remove Files in CFR

The get function provided by UIC allows users to retrieve files from CFR. To retrieve
a file fj from CFR, a user ui first finds the home of fj, nh. After nh is found, ui invokes
the getPerms function on nh to find the list of storage nodes that stores fj as a
permanent file, and selects the storage node that belongs to the same region as herself.
Let this storage node be nr. ui invokes the getTrans function on nr to obtain the list of
caches of fj. ui then chooses a storage node from all the caches and nr with equal
probability. This will evenly distribute the requests among all the storage nodes that
stores fj or transient file of fj in the same region.

The remove operation is similar to the get operation. A user first invokes the del
function on the home of a file, nh. nh then finds all the storage nodes that store replicas
and transient file of that file from the permanent tables, and issues requests to remove
the files from their storage space. Figure 3(b) shows an example of the file retrieval
process.

5.3 Dealing with Storage Node Dynamics

To ensure users can always locate their desired files, dynamic storage nodes must be
considered. The addition of new storage nodes and the departure of existing storage
nodes will cause files to migrate to different homes. If no corresponding actions are
taken, future requests will be routed to their new homes and dropped because the new
homes are unaware of their existence. However, migration of all files from one
storage node to another will be very costly especially when the total size of files is
large. We use redirection to deal with these problems. A storage node can store only
the permanent table of a file and records a link to the storage node that store the actual

 CFR: A Peer-to-Peer Collaborative File Repository System 107

file. This link is called a reference. References are created by storing links instead of
local paths in the path field of permanent tables.

A joining or leaving storage node will affect its clockwise neighbor in the base
ring. It will also affect the nodes between itself and the closest counter-clockwise
storage node in its region. In the case of join and voluntary departure, the affected
nodes will be notified. The affected nodes will first create references to deal with the
change of topology, and schedule physical file migration to be done in the future.

6 Simulation Results

To evaluate CFR, we implemented a simulator and performed several experiments to
further understand its behavior. All simulations were run on an IBM eServer,
equipped with two Intel(R) Xeon(TM) 2.40GHz CPUs and 1GB of memory. The OS
running on the eServer is Debian. The kernel version is 2.6.

6.1 Expected Number of Hops to Collect All Links

The objective of this experiment is to compare the average number of hops[13] to
obtain a complete set of R links to the derived expected number of hops. We would
also like to verify that the minimal average value appears when the population of
storage nodes in all regions is equal. We only show the results with two and three
regions. When the number of regions is larger than three, it is difficult to present the
results using graphs. However, all results show similar characteristics.

2

3

4

5

6

7

8

9

10

11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Expected Value

1000 Nodes

10000 Nodes

100000 Nodes

Fig. 4. Average number of hops and the expected number of hops to obtain all links in a system
consisting of two regions and different number of storage nodes

Figure 4 shows the average number of hops in a system with two regions, with
different node proportions and storage node populations. The x-axis is the proportion
of the first region. We can see that all results are close to the expected value[13]. Note
that the larger storage node population, the closer the average is to the derived value.
This is because the distribution of nodes over the identifier space is more uniform as
the number of nodes increase. Also note that the lowest expected value and average
values occur at the point where the proportions of the nodes are equal (0.5), which
concurs with our derived result.

108 M.-R. Lin et al.

6.2 Evaluation of File Management of CFR

The objective of next experiments is to evaluate the proposed replication strategy and
to compare the proposed strategy to PAST. The reason PAST is chosen is because it
shares most similarity with CFR. We use the download statistics from the “top 100
downloaded projects in 7 days” web page available from the SourceForge website.

Using this data, we simulated our replication strategy and compare it with the
replication strategy of PAST. The system consists of five hundred nodes. The average
download time of around 45000 downloads with varying number of replicas created
for each file inserted in both CFR and PAST, are shown in Figure 5(a). As shown in
the figure, download time decreases as the number of replicas created for both
systems. We can see that CFR achieves lower average download time than PAST
using the same number of replicas.

0

10000

20000

30000

40000

50000

50
0

15
00

25
00

35
00

45
00

55
00

65
00

>7
00
0

Download Time

C
o
u
n
t

Transients

No Transients

(a) (b)

Fig. 5. (a) The average download time of CFR versus PAST with different number of replicas.
(b). Comparisons the transfer time between with transient files and without transient files.

Next we evaluate the effect of creating transients on performance. In this
experiment, the setup is identical to the previous experiment. The result of the
experiment shows that the average download time is reduced to about one half when
transients are created. Figure 5(b) shows the comparisons the transfer time between
with transient files and without transient files.

As shown in Figure 5(b), the use of transient files effectively reduces transfer time.
With transient files, it has greatly reduced download time.

7 Experimental Results

To evaluate the real performance of CFR, we have implemented the CFR system on
Taiwan UniGrid [25]. The Taiwan UniGrid is a Grid platform for researchers in
Taiwan to do Grid related research. Currently, the platform contains about 30 sites.
We execute the CFR program on 12 sites in 4 cities of Taiwan as shown in Figure
6(a). Each site has 3 storage nodes. We select the top 10 download files, as shown in
Table 3, from the sourceforge.net [21] as our test data. To measure the performance of
CFR, we have 4 region configurations, 1, 2, 3, and 4, for these 12 sites. For the

 CFR: A Peer-to-Peer Collaborative File Repository System 109

1-region configuration, all sites form a region. For the 2-region configuration, sites in
{Taipei, Hsinchu} and {Tainan, Kaoshiung} form a region, respectively. For the 3-
region configuration, sites in {Taipei}, {Hsinchu}, and {Tainan, Kaoshiung} form a
region, respectively. For the 4-region configuration, sites in each city form a region.
For each region configuration, a download program is executed in each site to
randomly decide whether a client needs to download a particular program or not.

Table 3. Top 10 downloads from sourcesforge.net

Filename Size (bytes)
7-Zip_Portable_4.42_R2.paf.exe 1193218
7z443.exe 862846
aresregular195_installer.exe 1253674
audacity-win-1.2.6.exe 2228534
Azureus_2.5.0.0_Win32.setup.exe 8799656
DCPlusPlus-0.698.exe 3836577
eMule0.47c-Installer.exe 3534076
eMulePlus-1.2a.Binary.zip 3047952
gimp-2.3.12-i586-setup.zip 14267302
Shareaza_2.2.3.0.exe 4366779

Fig. 6. (a) Testbed map of CFR in TANET of Taiwan. (b) The average downloading time
against region number.

Figure 6(b) shows the average downloading time against the region number. From
Figure 6(b), we observe that the overall downloading time goes down while the
number of regions increases. Since the region partitioning exploits the geographical
relationships of sites, the experimental result also shows that the downloading time of
the 4-region configuration is almost 3 times faster than that of the 1-region
configuration.

110 M.-R. Lin et al.

8 Conclusions and Future Work

In this paper, we have proposed a scalable, loosely coupled, and efficient storage
system, Cooperative File Repository (CFR), for large scale collaboration projects. The
main concept of CFR is to use peer-to-peer techniques to achieve scalability, use a
two-layer hierarchy managing participating organizations to eliminate centralized
administration authority, and use the geographic locality of the storage nodes and
caching mechanism to achieve the efficiency. The simulation and experimental results
confirm that CFR can achieve those goals mentioned above.

From the simulation results, we observe that the CFR can produce the best
performance when all regions have the same number of storage nodes. In real
situation, the number of storage nodes of regions may not be equal. How to
dynamically combine small regions to one larger region or split one larger region to
small regions such that each region has approximate the same number of storages
node to keep CFR remain efficient is an important issue for the future study.

Acknowledgement

The work of this paper is partially supported by National Science Council, National
Center for High-Performance Computing of the Republic of China under contract
NSC 95-2752-E-007-004-PAE, NSC 94-2218-E-007-057, and NCHC-KING_010200.

References

1. China Grid, http://www.chinagrid.net
2. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area Cooperative

Storage with CFS,” in the Proceedings of 18th ACM Symposium on Operating Systems
Principles, Oct. 2001, pp. 202-215.

3. FIPS 180-1, Secure Hash Standard, U.S. Department of Commerce/NIST, National
Technical Information Service, Springfield, VA, Apr. 1995.

4. I. Gupta, K. Birman, P. Linga, A. Derms, and R. van Renessie, “Kelips: Building and
Efficient and Stable P2P DHT through Increased Memory and Background Overhead,” in
the Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03).

5. grid.org, http://www.grid.org/home.htm
6. R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, “A Survey of Peer-to-

Peer Storage Techniques for Distributed File Systems,” in the Proceedings of
International Conference on Information Technology: Coding and Computing, Apr. 4-6,
2005, vol: 2, pp. 205-213.

7. H. C. Hsiao and C. T. King, “Modeling and Evaluating Peer-to-Peer Storage
Architecture,” in the Proceedings of International Parallel and Distributed Processing
Symposium, Apr. 14-19, 2002, pp. 24-29.

8. H. Jin, C. H., and H. Chen,” Boundary Chord: A Novel Peer-to-Peer Algorithm for
Replica Location Mechanism in Grid Environment,” in the Proceedings of the 8th
International Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN
2005), Dec. 2005, Las Vegas.

9. Kazaa. http://www.kazaa.com

 CFR: A Peer-to-Peer Collaborative File Repository System 111

10. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S.
Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: An
Architecture for Global-Scale Persistent Storage,” in the Proceedings of 9th International
Conference on Architectural Support for Programming Languages and Operating
Systems, Nov. 2000.

11. LCG, http://lcg.web.cern.ch/LCG/
12. N. Leibowitz, M. Ripeanu, and A. Wierzbicki, “Deconstructing the Kazaa Network,” in

the Proceedings of 3rd IEEE Workshop on Internet Applications, Jun. 2003.
13. M. R. Lin, “CFR: A Peer-to-Peer Collaborative File Repository System,” National Tsing

Hua University, Dept. of Computer Science, Master Thesis, Taiwan, 2006.
14. A. Mislove, and P. Druschel, “Providing Administrative Control and Autonomy in

Structured Peer-to-Peer Overlays,” in the Proceedings of International Workshop on Peer-
to-peer Systems, Feb. 2004.

15. A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A Read/Write Peer-to-Peer
File System,” in the Proceedings of International 5th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Dec. 2002.

16. Napster, http://www.napster.com
17. R. Rivest, "Message Digest Algorithm MD5", RFC 1321, Apr. 1992.
18. A. Rowstron and P. Druschel, “Storage Management and Caching In PAST, a Large-

Scale, Persistent Peer-to-Peer Storage Utility,” in the Proceedings of 18th Symposium On
Operating Systems Principles (SOSP ’01), Oct. 2001.

19. A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and Routing
for Large-Scale Peer-to-Peer Systems,” in the Proceedings of 18th IFIP/ACM International
Conference on Distributed Systems Platforms, Nov. 2001, pp.329-350.

20. SEEK, http://seek.ecoinformatics.com
21. SourceForge.net, http://sourceforge.net
22. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, “Chord: A Scalable

Peertopeer Lookup Service for Internet Applications,” in the Proceedings of conference on
Applications, technologies, architectures, and protocols for computer communications
SIGCOMM '01, 2001, Volume 31, Issue 4, pp. 149-160.

23. I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek, H.
Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for Internet applications,” in
the IEEE/ACM Transactions on Networking, Feb. 2003, Volume 11, Issue 1, pp. 17-32.

24. G. Sagie and A. Wool, “A clustering approach for exploring the Internet structure,” in the
Proceedings of conference on 23rd IEEE Convention of Electrical & Electronics
Engineers, Sep. 2004.

25. Taiwan UniGrid, http://www.unigrid.org.tw/
26. Z. Xu, R. Min, and Y. Hu, “HIERAS: A DHT Based Hierarchical P2P Routing

Algorithm,” in the Proceedings of International Conference on Parallel Processing, Oct.
2003.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 112 – 123, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Optimal Deployment of Mobile Sensor Networks and Its
Maintenance Strategy

Xiaoling Wu, Jinsung Cho, Brian J. d'Auriol, and Sungyoung Lee∗

Department of Computer Engineering, Kyung Hee University, Korea
{xiaoling, brian, sylee}@oslab.khu.ac.kr

chojs@khu.ac.kr

Abstract. Sensor network deployment and its maintenance are very challenging
due to hostile and unpredictable nature of environments. The field coverage of a
wireless sensor network (WSN) can be enhanced and consequently network
lifetime can be prolonged by optimizing the sensor deployment with a finite
number of sensors. In this paper, we propose an energy-efficient fuzzy optimi-
zation algorithm (EFOA) for movement assisted self-deployment of sensor
networks based on three descriptors – energy, concentration and distance to
neighbors. The movement of each sensor node is assumed relatively limited to
further reduce energy consumption. The existing next-step move direction for-
mulas are improved to be more realistic. We also propose a network mainte-
nance strategy in the post-deployment phase based on the sensor node impor-
tance level ranking. Simulation results show that our approach not only
achieves fast and stable deployment but also greatly improves the network cov-
erage and energy efficiency as well as prolongs the lifetime.

Keywords: Sensor networks, fuzzy logic, deployment, mobility, coverage.

1 Introduction

Sensor networks which are composed of tiny and resource constrained computing
devices, have been widely deployed for monitoring and controlling applications in
physical environments [1]. Due to the unfamiliar nature of such environments, de-
ployment and maintenance of sensor networks has become a challenging problem and
has received considerable attention recently.

Some of the work [2], [3], [4] assume that the environment is sufficiently known
and under control. However, when the environment is unknown or inhospitable such
as remote inaccessible areas, disaster fields and toxic urban regions, sensor deploy-
ment cannot be performed manually. To scatter sensors by aircraft is one of the possi-
ble solutions. However, using this scheme, the actual landing position cannot be
predicted due to the existence of wind and obstacles such as trees and buildings. Con-
sequently, the coverage may not be able to satisfy the application requirements. Some
researchers suggest simply deploying large amount of static sensors to increase cover-
age; however it often ends up harming the performance of the network [5].Moreover,
in many cases, such as during in-building toxic-leaks detection [6], chemical sensors

∗ Corresponding author.

 Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy 113

must be placed inside a building from the entrance of the building. In such cases, it is
necessary to take advantage of mobile sensors, which can move to the appropriate
places to provide the required coverage.

To address this issue, a class of work has recently appeared where mobility of sen-
sors is utilized to achieve desired deployment [7], [8], [9], [10], [11], [12]. Typically
in such works, the sensors detect lack of desired deployment objectives such as cov-
erage holes, estimate new locations, and move to the resulting locations. For example,
in [9], the authors present the virtual force algorithm (VFA) as a new approach for
sensor deployment to improve the sensor field coverage after an initial random
placement of sensor nodes. The cluster head (CH) executes the VFA algorithm to find
new locations for sensors to enhance the overall coverage. However none of the
above work can well handle the random movement and unpredictable oscillation in
deployment. In [13], fuzzy logic theory is applied to handle the uncertainty in sensor
network deployment problem. Their approach achieve fast and relatively stable de-
ployment and increase the field coverage as well as communication quality. However,
their fuzzy inference system has only two antecedents, number of neighbors of each
sensor and average Euclidean distance between sensor node and its neighbors, with-
out energy consumption considered at all, which is one of the most critical issues in
sensor networks.

In this paper, our contribution relies on the two propose strategies. The first is an
energy-efficient fuzzy optimization algorithm (EFOA) for movement assisted self-
deployment of sensor networks. It outperforms [13] in three aspects. The first is that
we take the energy level of sensor node as one of the antecedents in fuzzy rules; the
second is that the mobility of sensor nodes is set to be relatively limited, i.e., the
movement distance is bounded by communication range, so that energy consumption
can be further reduced; the last is represented by the more realistic next-step moving
direction equations we derived. The second strategy we propose for network mainte-
nance in the post-deployment phase is based on the derived sensor node importance
level ranking.

The rest of the paper is organized as follows. Section 2 briefly introduces the
overview of fuzzy logic system and preliminaries. In section 3 the Energy-efficient
Fuzzy Optimization Algorithm (EFOA) is explained in detail for mobile nodes de-
ployment design. In section 4 network maintenance strategy is proposed based on
sensor node importance ranking. Simulation and performance evaluations of this
work are presented in Section 5. We conclude with a summary and discuss future
work in Section 6.

2 Technical Preliminaries

2.1 Fuzzy Logic Systems

The model of fuzzy logic system consists of a fuzzifier, fuzzy rules, fuzzy inference
engine, and a defuzzifier. We have used the most commonly used fuzzy inference
technique called Mamdani Method [14] due to its simplicity.

114 X. Wu et al.

The process is performed in four steps:

1) Fuzzification of the input variables energy, concentration and average distance to
neighbors - taking the crisp inputs from each of these and determining the degree
to which these inputs belong to each of the appropriate fuzzy sets.

2) Rule evaluation - taking and applying the fuzzified inputs to the antecedents of the
fuzzy rules. It is then applied to the consequent membership function.

3) Aggregation of the rule outputs - the process of unification of the outputs of all
rules.

4) Defuzzification - the input for the defuzzification process is the aggregate output
fuzzy set moving distance and the output is a single crisp number.

Information flows through the fuzzy inference diagram as shown in Figure 1.

1. If and

and

then

then2. If

Fig. 1. Fuzzy inference diagram

2.2 Coverage

Generally, coverage can be considered as the measure of quality of service of a sensor
network. In this paper, coverage [10] is defined as the ratio of the union of areas cov-
ered by each node and the area of the entire Region of Interest (ROI), as shown in Eq.
(1), and binary sensing model [10] is adopted. Here, the covered area of each node is
defined as the circular area within its sensing radius. Perfect detection of all interest-
ing events in the covered area is assumed.

A

A
C iNi ,...,1==

∪
 (1)

where

Ai is the area covered by the ith node;
N is the total number of nodes;
A stands for the area of the ROI.

In order to prevent recalculating the overlapped area, the coverage here is calcu-
lated using Monte Carlo method by creating a uniform grid in the ROI [11]. All the

 Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy 115

grid points being located in the sensing area are labeled 1 otherwise 0, depending on
whether the Euclidean distance between each grid point and the sensor node is longer
or shorter than sensing radius. Then the coverage can be approximated by the ratio of
the summation of ones to the total number of the grid points.

If a node is located well inside the ROI, its complete coverage area will lie within
the ROI. In this case, the full area of that circle is included in the covered region. If a
node is located near the boundary of the ROI, then only the part of the ROI covered
by that node is included in the computation.

3 Proposed Deployment Approach: EFOA

3.1 Assumptions and Model

Let G(V, E) be the graph defined on V with edges uv ∈E iff uv ≤ R. Here uv is the
Euclidean distance between nodes u and v, R is the communication range. A sensor
can detect any event within its sensing range r. Two sensors within R can communi-
cate with each other. Neighbors of a sensor are nodes within its communication range.
Detection and communication is modeled as a circle on the 2-D sensor field.

According to the radio energy dissipation model, in order to achieve an acceptable
Signal-to-Noise Ratio (SNR) in transmitting an l bit message over a distance d, the
energy expended by the radio is given by [15]:

⎪⎩

⎪
⎨
⎧

>+

≤+
=

0
4

0
2

),(
ddifdllE

ddifdllE
dlE

mpelec

fselec

T ε

ε
 (2)

where Eelec is the energy dissipated per bit to run the transmitter or the receiver circuit,

fsε and mpε are amplifier constants, and d is the distance between the sender and the

receiver. By equating the two expressions at d=d0, we have
mpfsd εε /0 = . Here we

set electronics energy as Eelec=50nJ/bit, whereas the amplifier constant, is taken as

fsε =10pJ/bit/m2, mpε = 0.0013pJ/bit/m2, the same as in [15].

To receive l bit message, the radio expends:

elecR lElE =)((3)

For simplicity, assume an area over which n nodes are uniformly distributed and
the sink is located in the center of the field, so the distance of any node to the sink or

its cluster head is 0d≤ .

3.2 Energy-Efficient Fuzzy Optimization Algorithm

Expert knowledge is represented based on the following three descriptors:

• Node Energy - energy level available in each node, denoted by the fuzzy variable
energy,

116 X. Wu et al.

• Node Concentration - number of neighbors in the vicinity, denoted by the fuzzy
variable concentration,

• Average distance to neighbors - average Euclidean distance between sensor node
and its neighbors, denoted by the fuzzy variable dn.

The linguistic variables used to represent the node energy and node concentration,
are divided into three levels: low, medium and high, respectively, and there are three
levels to represent the average distance to neighbors: close, moderate and far, respec-
tively. The outcome to represent the moving distance dm was divided into 5 levels:
very close, close, moderate, far and very far. The fuzzy rule base includes rules like
the following: IF the energy is high and the concentration is high and the distance to
neighbor is close THEN the moving distance of sensor node i is very far.

Thus we used 33 = 27 rules for the fuzzy rule base. We used triangle membership
functions to represent the fuzzy sets medium and moderate and trapezoid member-
ship functions to represent low, high, close and far fuzzy sets. The developed mem-
bership functions and their corresponding linguistic states are represented in Table
1 and Figures 2 through 5 respectively.

Table 1. Fuzzy rule base (dn=average distance to neighbors, dm=moving distance)

No. energy concentration dn dm
1 low low close close
2 low low moderate vclose
3 low low far vclose
4 low med close moderate
5 low med moderate close
6 low med far vclose
7 low high close moderate
8 low high moderate close
9 low high far close
10 med low close moderate
11 med low moderate close
12 med low far close
13 med med close far
14 med med moderate moderate
15 med med far close
16 med high close far
17 med high moderate moderate
18 med high far moderate
19 high low close far
20 high low moderate moderate
21 high low far moderate
22 high med close vfar
23 high med moderate far
24 high med far moderate
25 high high close vfar
26 high high moderate far
27 high high far far

Legend: vclose=very close, vfar=very far, med=medium.

 Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy 117

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

energy

D
eg

re
e

of
 m

em
be

rs
hi

p

low med high

Fig. 2. Fuzzy set for fuzzy variable energy

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

concentration

D
eg

re
e

of
 m

em
be

rs
hi

p

low med high

Fig. 3. Fuzzy set for fuzzy variable concentration

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

dn

D
eg

re
e

of
 m

em
be

rs
hi

p

close moderate far

Fig. 4. Fuzzy set for fuzzy variable dn

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

dm

D
eg

re
e

of
 m

em
be

rs
hi

p

vclose close vfarfarmoderate

Fig. 5. Fuzzy set for fuzzy variable dm

For the defuzzification, the Centroid is calculated and estimated over a sample of
points on the aggregate output membership function, using the following formula:

() ∑∑ ∗=)(/)(xxxCen AA μμ (4)

where, μA (x) is the membership function of x in A. The membership function maps
each element of X to a membership value between 0 and 1.

The control surface is central in fuzzy logic systems and describes the dynamics of
the controller and is generally a time-varying nonlinear surface. From Fig. 6 and Fig. 7
obtained by computation in Matlab Fuzzy Logic Toolbox, we can see that although the
concentration for a certain sensor is high, the moving distance can be smaller than some
sensor with higher energy or sensor with fewer neighbors but more crowded. With the
assistance of control surface, the next-step moving distance can be determined.

The next-step move direction is decided by virtual force. Assume sensor i has k
neighbors, k=k1+k2, in which k1 neighbors are within threshold distance dth to sensor
i, while k2 neighbors are farther than dth distance to sensor i. The coordinate of sensor
i is denoted as Ci = (Xi, Yi), and that of neighbor sensor j is Cj = (Xj, Yj). The next-step
move direction of sensor i is represented as Eq. (5) and (6), which are the improved
version of moving direction equation in [13]. It is improved in the sense that threshold
distance is set here so that attraction and repulsion forces can be represented in the
equations. Thus after getting moving distance dm and direction (angle α), sensor i
clearly knows its next-step moving position.

118 X. Wu et al.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

−
= ∑∑

==

21

11
2)()(

1 k

j
ij

k

j
ji

ji

CCCC
CC

v (5)

)(

)(
)tan(

vX

vY=α (6)

The threshold distance dth here is set to a proper value r3 which is proved as fol-
lows: We attempt to make distance between 2 sensor nodes moderate, i.e., not very
close and not very far. This kind of stable structure is illustrated in Figure 8. Non-
overlapped sensor coverage style is shown in Figure 8(a), however, an obvious draw-
back here is that a coverage hole exists which is not covered by any sensor. Note that
an alternative way is to allow overlap, as shown in Figure 8(b) and it ensures that all
grid points are covered. Therefore, we adopt the second strategy.

0

50

100

0

5

10

0.5

1

1.5

energyconcentration

dm

Fig. 6. Control surface (concentration, energy
vs dm)

0

5

10

0
0.51

1.5
2

0.5

1

1.5

concentration
dn

dm

Fig. 7. Control surface (dn, concentration
vs dm)

S1

S2 S3

 (a)

S1

S3S2

r

r
3/π

(b)

Fig. 8. Non-overlapped and overlapped sensor coverage cases

 Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy 119

In Fig. 8(b), it is obvious that △S1S2S3 is equilateral triangle. Because the sensing
radius is r, through some steps of simple geometry calculations, we can easily derive
the distance between two sensor nodes in the latter case S1S2 =S2S3=

S1S3=2× r3 /2= r3 .

4 Proposed Network Maintenance Strategy

After the first stage deployment, the network maintenance is also necessary to be
considered due to the uncertain environment. Thus, it is actually the post-deployment
stage after the fuzzy optimization deployment stage and a certain period of network
operation. The characteristic of the network in this situation is heterogeneous. The
proposed network maintenance strategy is based on the sensor node importance level
ranking. First, we take the importance level calculation of the node n as an example.
Assume the total number of nodes in the network is N. Let the probability that node i
can sense grid point j be denoted by Si(Pj), and then the probability C(Pj) that grid
point j is sensed by the whole network is derived as:

∏

∏

≠

=

−×−−=

−−=

N

ni
jijn

N

i
jij

PSPS

PSPC

))(1())(1(1

))(1(1)(
1

 (7)

If delete node n, then the probability C(Pj) becomes

∏
≠

−−=
N

ni
jij PSPC))(1(1)((8)

For point j, the detection probability loss due to the deletion of node n becomes

∏
≠

−×=Δ
N

ni
jijnjn PSPSPC))(1()()((9)

Considering the importance difference of each node in the network, the detection
ability loss of the whole network after deleting node n is:

∑ ∇×Δ=Δ
j

jjnn PPCC)()((10)

in which)(jP∇ is the temporal gradient of sensing value at grid point j. The higher

the gradient value the more often the interesting events occurrence. We assume that
sensor measurement physically has a range (0~xmax); if the sensing vale v>xmax, then
let v=xmax.

120 X. Wu et al.

According to importance level indicator nCΔ , the importance level ranking of

each node in the network can be sorted. Consequently we can either deploy several
new sensor nodes close to the most important nodes or remove redundant nodes from
“quiet” spot to the vicinity of those “busy” nodes as a backup.

5 Performance Evaluations

The proposed EFOA algorithm is evaluated first. For the convenience of comparison,
we set the initial parameters the same as in [13]: various number of sensors deployed
in a field of 10×10 square kilometers area are investigated; the r and R used in the
experiment are 1km and 2km (2km and 4km) respectively. So dn should be ranged as
0~2 (0~4), not 0~10 as set by [13]. We assume each sensor is equipped with an omni-
antenna to carry out the task of detection and communication. Evaluation of our
EFOA algorithm follows three criteria: field coverage, energy consumption and con-
vergence. Results are averaged over 100 Monte Carlo simulations.

Figure 9 shows that the coverage of the initial random deployment, fuzzy optimiza-
tion algorithm (FOA) proposed in [13] and our proposed algorithm EFOA when
r=1km and R=2km. The FOA and EFOA algorithm have similar results that both of
them can improve the network coverage by 20% ~ 30% in average.

Figure 10 gives the results when r=2km and R=4km, the coverage comparison be-
tween random deployment, FOA and EFOA. In the case when 20 sensors are de-
ployed, initially the coverage after random deployment is around 86%. After FOA
and EFOA algorithm are executed, the coverage reaches 97%. The coverage is dra-
matically improved in the low density network. The above two figures indicate that
instead of deploying large amount of sensors, the desired field coverage could also be
achieved with fewer sensors.

20 25 30 35 40 45 50 55 60
0.4

0.5

0.6

0.7

0.8

0.9

1

of Nodes

C
ov

er
ag

e

Random
FOA
EFOA

Fig. 9. Coverage vs. # of Nodes (R=2, r=1)

20 25 30 35 40 45 50 55 60
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

of Nodes

C
ov

er
ag

e

Random
FOA
EFOA

Fig. 10. Coverage vs. # of Nodes (R=4, r=2)

Figure 11 shows the total number of nodes that remain alive over time where each
node begins with 2J of energy and when R=4km and r=2km. The number of nodes in
EFOA remains the same for a long time and they die out quickly almost at the same
time while the first node dies early in FOA. The reason is that after some operation

 Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy 121

time, the network display heterogeneous characteristics, however, FOA doesn’t con-
sider the residual energy of nodes, so the energy difference among sensors becomes
significant as time goes on. Network lifetime is the time span from the deployment to
the instant when the network is considered nonfunctional. When a network should be
considered nonfunctional, it is generally the instant when the first sensor dies or a
percentage of sensors die and the loss of coverage occurs. Thus the lifetime is pro-
longed in EFOA compared with FOA.

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

Time(s)

of

 n
od

es
 a

liv
e

FOA

EFOA

Fig. 11. # of nodes alive over time where
each node begins with 2J energy. (R=4, r=2)

20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5

3

3.5

4

of nodes

st
d

of
 d

is
ta

nc
e

FOA,R=2,r=1

EFOA,R=2,r=1
FOA,R=4,r=2

EFOA,R=4,r=2

Fig. 12. Standard deviation of distance trav-
eled verses number of nodes

Figure 12 shows EFOA has lower standard deviation of distance compared with
FOA in both cases when R=4km, r=2km and R=2km, r=1km with various number of
nodes. When the standard deviation of distance traveled is small, the variation in
energy remaining at each node is not significant and thus a longer system lifetime
with desired coverage can be achieved.

The network maintenance strategy is simulated thereafter as Figure 13 shows. The pa-
rameter xmax is set to be 50, sampling period is 5s.Total number of nodes in the network is
30, and two of the most importance nodes are the nodes labeled as 18 and 19 which have

0 5 10 15 20 25 30
0

2

4

6

8

10

Node label

Im
po

rt
an

ce
 le

ve
l

(a) Before maintenance strategy

0 5 10 15 20 25 30
0

2

4

6

8

10

Node label

Im
po

rt
an

ce
 le

ve
l

(a) After maintenance strategy

Fig. 13. Importance level verses node serial number

122 X. Wu et al.

the highest importance level. After adding four new nodes close to node 18 and 19, the
importance level distribution become nearly uniform compared with the case before
executing network maintenance strategy. Thus the working load of the “busy” nodes can
be shared by the backup nodes and the lifetime can be further prolonged.

6 Conclusions and Future Work

In this paper, an energy-efficient fuzzy optimization algorithm (EFOA) for self- de-
ployment of mobile sensor networks was proposed. It was based on three descriptors
– energy level of nodes, concentration and average distance to neighbors. The move-
ment of each sensor node was assumed to be relatively limited for further reducing
energy consumption. The existing next-step move direction formulas were also im-
proved to be more realistic. Our approach has a great advantage to deal with the ran-
domness in sensor deployment as well as minimize energy consumption. We also
proposed a network maintenance strategy in the post-deployment phase based on the
sensor node importance level ranking. Simulation results showed that our approach
not only achieved fast and stable deployment but also greatly improved the network
coverage and energy efficiency as well as extended the lifetime.

In the future work, the integration of environmental factors and realistic sensing
model will be investigated.

Acknowledgments. This research was supported by the MIC (Ministry of Informa-
tion and Communication), Korea, under the ITRC (Information Technology Research
Center) support program supervised by the IITA (Institute of Information Technology
Advancement) (IITA-2006-C1090-0602-0002).

References

1. Xiaoling Wu, Hoon Heo, et al.: Individual Contour Extraction for Robust Wide Area Tar-
get Tracking in Visual Sensor Networks. Proc of 9th ISORC (2006)

2. S. Meguerdichian, F. Koushanfar, G. Qu and M. Potkonjak: Exposure in Wireless Ad-Hoc
Sensor Networks. Mobicom (2001)

3. S. Dhillon, K. Chakrabarty and S. Iyengar: Sensor placement for grid coverage under im-
precise detections. Proc. International Conference on Information Fusion (2002)

4. T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan and K. k. Saluja: Sensor Deployment
Strategy for Target Detection. WSNA, (2003)

5. Sameer Tilak, Nael B. AbuGhazaleh, and Wendi Heinzelman: Infrastructure Tradeoffs for
Sensor Networks.WSNA (2002)

6. A. Howard, M. J. Mataric and G. S. Sukhatme: An Incremental Self-Deployment Algo-
rithm for Mobile Sensor Networks. Autonomous Robots, Special Issue on Intelligent Em-
bedded Systems, September (2002)

7. J. Wu and S. Wang: Smart: A scan-based movement-assisted deployment method in wire-
less sensor networks. Proc. IEEE INFOCOM Conference, Miami, March (2005)

8. G. Wang, G. Cao, and T. La Porta: Movement-assisted sensor deployment. Proc. IEEE
INFOCOM Conference, Hong Kong (2004)

 Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy 123

9. Y. Zou and K. Chakrabarty: Sensor deployment and target localization based on virtual
forces. Proc. IEEE INFOCOM Conference, Vol. 2 (2003) 1293-1303

10. Nojeong Heo and Pramod K. Varshney: Energy-Efficient Deployment of Intelligent Mo-
bile Sensor Networks. IEEE Transactions on Systems, Man, and Cybernetics—Part A:
Systems And Humans, Vol. 35, No. 1 (2005) 78 - 92

11. Xiaoling Wu, Shu Lei, Yang Jie, Xu Hui, Jinsung Cho and Sungyoung Lee: Swarm Based
Sensor Deployment Optimization in Ad hoc Sensor Networks. Proc. of ICESS’ 05
(LNCS), Xi’an, China, (2005) 533-541

12. Xiaoling Wu, Yu Niu, Lei Shu, Jinsung Cho, Young-Koo Lee, and Sungyoung Lee: Relay
Shift Based Self-Deployment for Mobility Limited Sensor Networks. UIC-06 (LNCS),
Wuhan, China (2006)

13. Haining Shu, Qilian Liang: Fuzzy Optimization for Distributed Sensor Deployment. IEEE
Communications Society / Proc. of WCNC, New Orleans, USA (2005) 1903-1907

14. Indranil Gupta, Denis Riordan and Srinivas Sampalli: Cluster-head election using fuzzy
logic for wireless sensor networks. Proc of the 3rd Annual Communication Networks and
Services Research Conference (2005)

15. Wendi B. Heinzelman, Anantha P. Chandrakasan, and Hari Balakrishnan: An Application-
Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions on
Wireless Communications, Vol. 1, No. 4 (2002) 660 – 670

Server Placement in the Presence of

Competition

Pangfeng Liu1, Yi-Min Chung1, Jan-Jan Wu2, and Chien-Min Wang2

1 Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan, R.O.C.

2 Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C.

Abstract. This paper addresses the optimization problems of placing
servers in the presence of competition. We place a set of extra servers
on a graph to compete with the set of original servers. Our objective
is to find the placement that maximizes the benefit, which is defined
as the profits from the requests made to the extra servers despite the
competition, minus the cost of constructing those extra servers.

We propose an O(|V |3k) time dynamic programming algorithm to find
the optimal placement of k extra servers that maximizes the benefit in a
tree with |V | nodes. We also propose an O(|V |3) time dynamic program-
ming algorithm for finding the optimal placement of extra servers that
maximizes the benefit, without any constraint on the number of extra
servers. For general connected graphs, we prove that the optimization
problems are NP-complete. As a result, we present a greedy heuristic
for the problems. Experiment results indicate that the greedy heuristic
achieves good results, even when compared with the upper bounds found
by a linear programming algorithm. The greedy heuristic yields perfor-
mances within 15% of the upper bound in the worst case, and within 2%
of the same theoretical upper bound on average.

1 Introduction

This paper considers a strategy for setting up servers to compete with existing
ones. For example, we assume that there are originally a number of McDonald’s
restaurants in a city, but no Kentucky Fried Chicken (KFC) restaurants. Now,
if we decide to set up a number of KFC restaurants in the same city, where
should we place them? We need to determine the locations for KFC so that
they can compete with McDonald’s and maximize their profits. Due to heavy
competition among business of similar nature, it is important to choose locations
of new servers in the area where the competitors have deployed their servers.

We define the servers we would like to set up as extra servers, and the existing
(competitor) servers as original servers. Thus, in the above example, KFC restau-
rants are the extra servers and McDonald’s restaurants are the original servers.

We use a graph to model the locations of the servers and users. A node in the
graph represents a geographic location, and an edge represents a path between
two locations. Building servers in these locations enables users at a node to

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 124–135, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Server Placement in the Presence of Competition 125

request services from the servers. Each edge has a communication cost. The
distance between two nodes is the length of the shortest path that connects them.

For efficiency, We assume that requests from users always go to the nearest
server. However, when the shortest distances from a user to the original and ex-
tra servers are the same, the user will go to the original server. That is, a user will
NORMALLY go to the nearest restaurant, either McDonald’s or KFC; however, if
the distances to the two restaurants are the same, the user will go to McDonald’s.

After extra servers have been established, users who previously went to Mc-
Donald’s may now go to KFC. We define the benefit of an extra server placement
to be the profit derived from user requests made to the server, minus the cost of
constructing the server. The cost may vary, depending on the location of the ex-
tra server. This paper considers two placement problems related to extra servers,
in the presence of competition from original servers.

1. Given the city configuration and a number k, locate k extra servers such
that they will earn the most profit;

2. Given the city configuration, locate extra servers such that they earn the
most profit, without any constraint on the number of extra servers.

We solve these two problems for a tree graph in O(|V |3k) and O(|V |3) time,
respectively. For a general graph, we show that the two problems are intractable
(NP-complete) and propose a heuristic to solve them. We also run experiments
and compare our results for the heuristic with theoretical upper bounds.

Similar server placement problems, such as replica placement problems
[4,3,6,10], p-Medians [5], and facility location problems [8], have been studied
in the literature. For example, Kariv and Hakimi [5] formulate the p-median
problem as locating p points such that the sum of each node’s weight multiplied
by its shortest distance to the p points is minimized. However, the p-median
problem they considered does not take the building costs into account, and it
minimizes the costs, instead of maximizing the profits. The facility location prob-
lem is similar to the p-median problem, with the additional consideration of the
facility’s costs.

Our extra server model differs from the model in [5] because it introduces
the concept of competition. Extra servers must compete with original servers for
user requests, in order to maximize their profits. The number of extra servers
established is controlled by the building costs, which differ from location to
location. Our dynamic programming model uses a similar technique to that
in [4]. The presence of competition demands innovative proof techniques.

Tamir [9] described a dynamic programming model that solves p-median prob-
lems on a tree topology with building and access costs. The algorithm assumes
that the cost for a client to request services is an increasing function of the dis-
tance between the client and the server. If the benefit function in our model is a
decreasing function of the distance between the client and the server, our place-
ment problem can be solved by transforming it into a p-median problem, and
solving it by the dynamic programming described in [9]. However, the method
proposed in this paper can deal with any arbitrary benefit functions, and still
obtain the optimal solution for a tree topology.

126 P. Liu et al.

The remainder of this paper is organized as follows. Section 2 formally de-
scribes our server placement models. In Section 3, we introduce the dynamic
programming for finding the optimal extra server placement in a tree. Section 4
contains the proof that the problems are NP-complete for general graphs and
presents a heuristic algorithm to solve them. Section 5 reports the experiment
results, and Section 6 contains our conclusions.

2 Problem Formulation

We consider a connected graph G = (V, E), where V is the set of nodes and E
is the set of edges. Each edge (u, v) ∈ E has a positive integer distance denoted
by d(u, v). For any two nodes u, v ∈ V , d(u, v) also denotes the distance of the
shortest path between them. For ease of representation, we also let d(v, S) =
minu∈S d(v, u) be the length of the shortest path from v to any node in X ,
where X ⊆ V .

We consider servers that provide service to nodes in the graph. Every node v
must go to the nearest server u for service. If a server is located at node v, then
v will be serviced by that server. To simplify the concept of “the nearest server”,
we assuem that for every node v, its distances to all other nodes are different,
i.e., d(v, u) �= d(v, w) for u �= w. As a result the nearest server for every node is
uniquely defined.

By serving a client v, a server node u earns a benefit of b(v, u). Note that the
function b can be arbitrary. For example, unlike [9], we do not assume that, for
the same client node v, the function value must be monotonic with respect to
the distance between v and the server node u.

We assume that there are a number of original servers O ⊆ V in G. In addition
to the original server set O, and we would like to add a number of extra servers
to G to obtain the maximum benefit. Let c(v) be the cost of building a server
at node v ∈ V , and X be the set of new servers we would like to add into the
system. A node v ∈ V goes to either O or X for service - v goes to X for service
when d(v, X) < d(v, O); otherwise (d(v, X) > d(v, O)), v goes to O for service.
Let VX denote the set of nodes that go to X for service, and VO = V − VX be
the set of nodes that go to O for service.

We define the nearest servers NS(v) of v as the server v uses. Consequently
NS(v) ∈ O if v ∈ VO, and NS(v) ∈ X if v ∈ VX . We can now define the benefit
function of adding the servers X as follows.

B(X) =
∑

v∈VX

b(v, NS(v)) −
∑

v∈X
c(v). (1)

We now define the problem as follows.

k-Extra-Server Problem. Given an integer k, 1 ≤ k ≤ |V − X |, we want to
find the optimal placement of k extra servers such that the benefit function is
maximized (Equation (2)).

max
X⊆(V −X),|X |=k

B(X) (2)

Server Placement in the Presence of Competition 127

Extra-Server Problem. We want to place extra servers to maximize the benefit
function, without any constraint on the number of the extra servers. We call this
optimization problem the extra-server problem.

3 Finding Extra Server Locations

We present algorithms that utilize global information to solve server placement
problems. The use of global information facilitates the optimality of the algo-
rithm and the assumption of global information is reasonable since we are dealing
with a city or grid configuration and the location of servers are static and can
be known completely in advance.

We focus on the case where the graph G = (V, E) is a tree. Let T be the tree
and r be the root of T . For each node v ∈ V , let Tv be the subtree of T rooted
at v. If v is an internal node, then we use child(v) = {v1, v2, . . . , v|child(v)|} to
denote the children of v. Following the notations in [4], let T

(i)
v be the subtree

of T that consists of v and the subtrees rooted at the first i children of v, i.e.,
T

(i)
v = {v} ∪ ∪i

j=1Tvj .

Definition 1 (Benefit function, B). For nodes v, u ∈ V , an integer k, and
an integer i between 0 and |child(v)|, we define Bv,u

k,i to be the maximum benefit

derived by placing k extra servers in T
(i)
v , under the condition that u = NS(v).

Consequently u is either an original server or an extra server.

We now consider the benefit function Bv,u
k,i by placing X in T

(i)
v . We define X to

be the set of k extra servers that maximize the following benefit function. Recall
that O is the set of original servers.

Bv,u
k,i = max

X
{

∑

w∈T
(i)
v ,NS(w)∈X∪u

b(w, NS(w)) −
∑

s∈X
c(s)}, u /∈ O,

Bv,u
k,i = max

X
{

∑

w∈T
(i)
v ,NS(w)∈X

b(w, NS(w)) −
∑

s∈X
c(s)}, u ∈ O.

The definition indicates that the benefit includes those nodes that will either
go to the extra servers X or u (when u /∈ O) for service, minus the construction
cost of the extra server set X .

For the case where u is not in O, by definition u is v’s nearest server, so u

has an extra server. However, u can be a node outside of T
(i)
v , – in which case it

will not be in X because X is a subset of T
(i)
v . We still need to add the benefit

from T
(i)
v to u, since we assume that an extra server is placed in u.

Lemma 1. For every node v ∈ V and every child vi of v, if u ∈ Tvi is the
nearest server to v, then u is also the nearest server to vi.

Proof. We prove this lemma by contradictions and assume that the nearest server
for vi is u′, not u. Since u′ is the nearest server to vi, the distance d(vi, u

′) must

128 P. Liu et al.

be strictly smaller than d(vi, u). The length of the shortest path between v and
u′ is d(v, u′) ≤ d(v, vi) + d(vi, u

′) < d(v, vi) + d(vi, u) = d(v, u), which suggests
that u′ is closer to v than u; however, this contradicts the assumption that u is
the nearest server of v.

For ease of discussion of the following lemma, we define a node set Vv,u,i. This
set contains those nodes in Tvi that could be the nearest server for vi, under the
condition that u is the nearest server for v, but not for vi, i.e., NS(v) = u and
NS(vi) �= u. Intuitively, the set Vv,u,i stands for those nodes in Tvi that are far
enough from v so that it will not be the nearest server for v (when compared
with u), but close enough to vi so that it is the nearest server of vi.

Definition 2 (Vv,u,i). Let u be the nearest server of v and i be an integer
between 1 and |child(v)|. Vv,u,i is the subset of those u′ in Tvi such that u′ is
the nearest server to vi, but it is not the nearest server to v. That is, Vv,u,i =
{u′|u′ ∈ Tvi , d(vi, u

′) < d(vi, u), d(v, u)d(v, u′)}

Lemma 2. For every node v ∈ V and every child vi of v, if u /∈ Tvi is the
nearest server of v, then either u is the nearest server of vi or there exists a
node u′ ∈ Vv,u,i that is the nearest server of vi.

Proof. If u is the nearest server of vi, the lemma follows. Otherwise, we conclude
that the nearest server of vi must be within Tvi , since the path from vi to nodes
not in Tvi must pass through v, which already has u as its nearest server. The
lemma then follows by the definition of Vv,u,i.

Theorem 1. For every node v ∈ V and an integer i between 0 and |child(v)|, if
u is the nearest server of v, then for every node w in Tvi , we can find the nearest
server for w in Tvi ∪ {u}.

Proof. The only way a shortest path from a node w in Tvi to any node outside
Tvi is to go through the edge (vi, v). However, any such shortest path must end
at node u since u is the nearest server for v; otherwise we will be able to find a
closer server for v other than u – a contradiction to the fact that NS(v) = u.

Terminal Conditions. We first derive two terminal conditions for the recursion
of B, the benefit function.

k = 0. When k is 0, we do not place any extra servers in T
(i)
v . If u is an original

server in O, every node in T
(i)
v will go to O for service, so the benefit is 0. If

u is not in O, we consider two cases. First if u is not in T
(i)
v , every node in

T
(i)
v will either go to an original server or to u for service; thus, the benefit

can be determined by Equation (3).

B′ =
∑

w∈T
(i)
v ,d(w,u)<d(w,O)

b(w, u) (3)

Server Placement in the Presence of Competition 129

In the second case, u is not an original server but u is in T
(i)
v , which means

that there is at least one extra server in T
(i)
v . This contradicts the assumption

that k is 0. For the purpose of dynamic programming, we define the benefit
to be −∞.

k = 1,u /∈ O,u ∈ T(i)
v . When k is 1, u is in T

(i)
v , so it is not an original server,

but it is definitely the only extra server in T
(i)
v . Every node in T

(i)
v will either

go to O or u for service; thus, the benefit can be calculated in the same way
as B′ − c(u). Note that, since u is now in the X that maximizes the benefit
of T

(i)
v , c(u) should be deducted from the benefit.

Recursion. Next, we derive the recursion function for Bv,u
k,i .

Bv,u
k,i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if k = 0 and u ∈ O
B′, if k = 0, u /∈ O, and u /∈ T

(i)
v

B′ − c(u), if k = 1, u /∈ O, and u ∈ T
(i)
v

B′′, if u ∈ Tvi

max {B′′, B′′′}, if u /∈ Tvi

−∞, otherwise,

(4)

where
B′′ = max

0≤j≤k

{
Bv,u

k−j,i−1 + Bvi,u
j,|child(vi)|

}
, (5)

and
B′′′ = max

0≤j≤k

{
Bv,u

k−j,i−1 + Ev,u
j,i

}
. (6)

The first three cases were discussed as the terminal conditions in Section 3,
so we only need to consider the rest.

u ∈ Tvi

If u ∈ Tvi , u will also be the nearest server to vi by Lemma 1, since u is the
nearest server of v. Then, by Theorem 1, every node in Tvi goes to either
Tvi or u for service. In addition, u is the nearest server to v. By Theorem 1,
all nodes in T

(i−1)
v obtain service from u or T

(i−1)
v .

Assume that there are j extra servers in Tvi , then there will be k−j extra
servers in T

(i−1)
v , where 0 ≤ j ≤ k. To obtain the best X that maximizes

the benefit, we need to consider all possible values of j, as formulated in
Equation (5). The recursion follows.

u /∈ Tvi

If u is not in Tvi , we need to consider two sub-cases.
Case 1: If u is the nearest server of vi, the value of Bv,u

k,i is defined as
in Equation (5), because we can isolate two subtrees, as we did in the
previous case where u ∈ Tvi .

Case 2: If the nearest server of vi is not u, by Lemma 2, we can find the
nearest server u′ for vi in Tvi . We formulate the benefit as B′′′ in Equa-
tion (6).

Consider these two sub-cases, if u /∈ Tvi , Bv,u
k,i is formulated as max {B′′, B′′′}.

130 P. Liu et al.

Now, in order to finish the recursion the only missing element is the new cost
function Ev,u

k,i .

Definition 3 (Ev,u
k,i). For nodes v, u ∈ V , an integer k, and the i-th child of

node v (denoted by vi), we define Ev,u
k,i to be the maximum benefit derived by

placing k extra servers in the subtree Tvi , where u /∈ Tvi is the nearest server of
v, but u is not the nearest server of vi. Instead, the nearest server of vi is a u′

in Tvi . The benefit is similarly defined in Equation (7):

Ev,u
k,i = max

X
{

∑

w∈Tvi
,NS(w)∈X

b(w, NS(w)) −
∑

s∈X
c(s)}. (7)

From the above discussion, the maximum benefit Ev,u
k,i is derived by Equation (8).

That is, we need to enumerate all the possible u′ and use the one that maximizes
Bvi,u

′

k,|child(vi)|. The set Vv,u,i is exactly the possible set to select u′ from, since vi

will go to u′ for service, but not to u. This is exactly the definition of Vv,u,i.

Ev,u
k,i = max

u′∈Vv,u,i

{
Bvi,u

′

k,|child(vi)|
}

. (8)

The Final Solution. Finally, the maximum benefit of locating k extra servers in
the tree T can be calculated by Equation (9):

max
u∈T

{
Br,u

k,|child(r)|
}

. (9)

The possible candidates for u are subject to the following constraints: If u is
an original server d(r, u) must be d(r, O), i.e., u is the nearest original server to
the root. If u is not an original server, the distance d(r, u) must be smaller than
d(r, O) to ensure that u is the nearest extra server to the root.

Theorem 2. Given a tree T = (V, E) and a set O ⊆ V as the original servers,
the k-extra-server problem for T can be solved in O(|V |3k) time, where 0 ≤ k ≤
|V − O| is an integer.

Proof. The problem can be solved by Equations (3) to (9). The time of the
dynamic programming is derived by calculating all the entries of Bv,u

k,i and Ev,u
k,i .

Consider each pair of v and i, so that there are totally
∑

v∈V |child(v)| = |V |−1
pairs. Thus, the number of entries of Bv,u

k,i is (k+1)·|V |·(|V |−1) = O(|V |2k), and
it takes O(|V |) time to calculate each entry; hence, the time required to calculate
all the entries of Bv,u

k,i is bounded by O(|V |3k). Similarly, there are O(|V |2k)
entries of Ev,u

k,i , and it takes O(|V |) time to calculate each entry; therefore, the
time required to calculate all the entries of Ev,u

k,i is O(|V |3k). The total time
required is therefore O(|V |3k).

Using similar techniques we derive the following theorem. The proof is removed
due to space limitation.

Server Placement in the Presence of Competition 131

Theorem 3. Given a tree graph T = (V, E) and O ⊆ V are the original servers
of T , the extra-server problem for T can be solved in O(|V |3) time.

Proof. The proof is similar to that of Theorem 2. There are O(|V |2) entries
of Bv,u

i and O(|V |2) entries of Ev,u
i , and the calculation of each entry requires

at most O(|V |) computing time. Hence, the problem can be solved in O(|V |3)
time.

4 NP-Completeness

The NP-complete proof is derived from the dominating set problem [2], and is
removed due to space limitation. A subset V ′ ⊆ V is a dominating set if for all
u ∈ V − V ′, there is a v ∈ V ′ such that the edge (u, v) is in E. The decision
problem of the dominating set can be formulated as follows: Given a graph G =
(V, E) and a positive integer K ≤ |V |, is there a dominating set of size K or less?

k-EXTRA-SERVER. We now consider the k-extra-server problem and define the
corresponding decision problem as follows: In a k-extra-server problem instance,
is there a placement of k extra servers such that the benefit is at least B?

EXTRA-SERVER. Similarly, we define the decision problem of EXTRA-
SERVER as follows: In a extra-server problem instance, is there a placement
of extra servers such that the benefit is at least B?

Theorem 4. The k-EXTRA-SERVER problem is NP-complete.

Theorem 5. The EXTRA-SERVER problem is NP-complete.

Since the k-extra-server problem and the extra-server problem are both NP-
complete, we propose a greedy heuristic (denoted as Greedy) for these prob-
lems. Here, we only describe Greedy for the k-extra server problem because the
method for the extra-server problem is very similar.

The greedy method works in rounds. In each round, we locate an extra server
that maximizes its benefit. We add the benefit produced by the selected extra
server to the total benefit, which was set to 0 initially, and then mark the se-
lected server as an original server. We repeat the process until k extra servers
are selected.

5 Experiment Results

We conduct simulations to compare performance of Greedy with the linear pro-
gramming optimal solutions acquired using GLPK (GNU Linear Programming
Kit) [7] for the k-extra-server problem. GLPK is a set of routines designed to
solve large-scale linear programming (LP), mixed integer programming (MIP),
and other related problems. It is written in ANSI C and organized in the form

132 P. Liu et al.

of a library [7]. Let the 0-1 variable Xu and u ∈ V denote whether there is an
extra server on u, and let the 0-1 variable Zuv, u ∈ V , v ∈ V denote whether
v is a client of u. The integer programming for the k-extra-server problem is
formulated as follows:

maximize
∑

u∈(V −X)

∑

v∈V

Zuvb(v, u) −
∑

u∈V

Xuc(u), (10)

subject to

Xu ∈ {0, 1}, for each u ∈ V , (11a)
Zuv ∈ {0, 1}, for each u ∈ V , v ∈ V , (11b)

Xu = 0, for each u ∈ O, (11c)
∑

u∈V

Xu = k, (11d)

∑

u∈V

Zuv = 1, for each v ∈ V , (11e)

Xu − Zuv ≥ 0, for each u ∈ (V − O), each v ∈ V , (11f)
Zuv = 0, for each u ∈ V , each v ∈ V , and d(v, u) > d(v, O). (11g)

Consider the 0-1 variables Xu and Zuv in constraints (11a) and (11b) respec-
tively. We replace them with constraints (12a) and (12b) respectively, so that
we have a linear programming formulation.

0 ≤ Xu ≤ 1, for each u ∈ V , (12a)
0 ≤ Zuv ≤ 1, for each u ∈ V , v ∈ V . (12b)

The optimal benefit gained from linear programming only serves as a upper
bound, since it allows a fraction number of an extra server to be placed on a node.
However, in our experiments, we find that, in most cases, linear programming
produces integer solutions, i.e., Xu and Zuv are in the range {0, 1}.

5.1 Experiment Setting

In our experiments, we use GT-ITM [1] to generate random graphs according
to Waxman model [11]. Each of the graphs is connected, and nodes are added
randomly in a s×s square. The probability of an edge between u and v is given by

p(u, v) = αe−d/βL,

where 0 < α, β ≤ 1, d is the Euclidean distance between u and v, and L =
√

2s
is the largest possible distance between any two nodes. In our experiments, we
set s to 20, α to 0.2 and β to 1.

For each v, we set a value r(v) to be a random integer between 20 and 40,
and set the building cost c(v) to be r(v) plus a random integer between 1 and
10. The benefit function b(v, u) is defined as r(v) divided by the distance from
v to u. Finally, we place original servers randomly in the graph. We simulate up
to 150 nodes since this is a reasonable size for city or grid configuration.

Server Placement in the Presence of Competition 133

5.2 Effect of α

We evaluate the performance of Greedy compared with the upper bounds found
by linear programming under different values of α. In these experiments, for each
α we set |V | from 50 to 150, and for each |V | we set |O| from 0 to 0.1|V |. As a
result, we have 1066 graphs to simulate, and for each graph we set k from 1 to
0.1|V |. Figure 1 shows that when α increases the average degree of each node
also increases. Figure 1 shows that Greedy performs very well; on average, its
performance differs from the theoretical upper bounds by only 1% and in the
worst case the difference is no more than 15% of the upper bound.

Figure 1 also shows that as α increases, the average difference between Greedy
and the upper bound derived by linear programming also increases. Since the aver-
age degree of each node increases as α increases, there is a higher probability that
the extra servers will affect each other. However, to maximize the benefit, Greedy
only considers the current configuration when it selects the next location to place
an extra server; thus, it can not predict the “long range” effects and the interac-
tion among the extra servers. Hence, as α increases, the average difference (as a
percentage) between Greedy and the upper bound also increases.

|V | α = 0.2 α = 0.3 α = 0.4 α = 0.5

50 3.56 5.37 7.11 8.78
150 10.45 15.59 20.87 26.12

Average 8.11 12.01 16.03 20.03

α Avg. difference Max. difference

0.2 0.43% 9.54%
0.3 0.49% 14.35%
0.4 0.52% 13.20%
0.5 0.58% 11.95%

Fig. 1. The average degree of a node under different values of α and the average
difference (as a percentage) between Greedy and the upper bound under different
values of α

5.3 Effect of the Number of Original Servers

We now consider the effect of the number of original servers on the average dif-
ference as a percentage of the upper bounds. In these experiments we set |V | to
100, |O| from 1 to 50, and k to 10.

Figure 2 (a) shows the error-bar between Greedy and the upper bounds
derived by the linear programming. The upper markers are the average upper
bounds and the lower markers are the average benefits of Greedy. In the figure,
the average benefits produced by Greedy are so close to the upper bounds that
they coincide. Furthermore, the figure suggests that as |O| increases the benefit
will decrease. This is reasonable since a large number of competitors only have
a negative impacts on the extra servers.

5.4 Effect of k

Next, we consider the effects of k on the average difference as a percentage be-
tween Greedy and the theoretical upper bound. In these experiments we set

134 P. Liu et al.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 b
en

ef
it

Number of original servers

(a) The benefits of Greedy and the average upper
bounds under different numbers of original servers.

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 b
en

ef
it

k

(b) The average benefits of Greedy and the upper
bounds under different values of k.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 d
iff

er
en

ce
 p

er
ce

nt
ag

e
[%

]

k

(c) The average percentage difference for Greedy under
different values of k.

Fig. 2. Average benefits under different number of original and extra servers ((a) and
(b)), and derivation percentage from the theoretical bounds (c)

|V | to 100 and |O| to 10, so we generate 100 graphs in total. For each graph we
set k from 1 to 50, which gives us 5000 simulation results.

Figure 2 (b) shows the error-bars in our simulations. We observe that the ben-
efit of Greedy is extremely close to the theoretical upper bounds. The figure
also shows that, initially, as k increases, the benefit increases because we can
make more profit. As the number of extra servers increases substantially, the
benefit decreases due to the cost of constructing the extra servers.

Figure 2(c) shows that as k increases the average difference between Greedy
and the theoretical upper bound also increases. This is because Greedy places
an extra server to maximize the benefit at each step because it can not consider
the overall situation; thus, the difference accumulates at each step – more servers
means a larger difference between Greedy and the upper bound.

In summary, we conclude that the Greedy algorithm performs extremely well.
Considering all the simulation parameter setting, the greedy algorithm yields av-
erage benefits that are within 2% of the average theoretical upper bounds. It is
also extremely efficient and easy to implement.

6 Conclusion

We have formulated two optimization problems, the k-extra-server problem and
the extra-server problem. We consider the profit and construction costs at each
location, and place extra servers to maximize the benefit in the presence of

Server Placement in the Presence of Competition 135

competition from original servers. For trees, we formulate dynamic programming
algorithms to solve the k-extra-server problem and the extra-server problem in
O(|V |3k) time and O(|V |3) time, respectively. For general graphs, we prove that
the problems are NP-complete and propose a greedy heuristic to solve them. The
experiment results demonstrate that the greedy heuristic yields performances
within 15% of the theoretical upper bound in the worst case, and within 2% of
the same theoretical upper bound on average.

In the future we will investigate the possibility of designing efficient and effec-
tive algorithms for graphs other than trees. For example, our greedy algorithms
perform well on general graphs, so we should be able to show that the greedy
algorithm performance is guaranteed to be within a constant factor of the opti-
mum. We would also like to generalize dynamic programming to other graphs,
such as planar graphs.

References

1. K. Calvert and E. Zegura. Gt-itm: Georgia tech internetwork topology models.
http://www-static.cc.gatech.edu/projects/gtitm/.

2. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

3. X. Jia, D. Li, X. Hu, W. Wu, and D. Du. Placement of web-server proxies with
consideration of read and update operations on the internet. The Computer
Journal, 46(4):378–390, 2003.

4. K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of replicas in
trees with read, write, and storage costs. IEEE Transactions on Parallel and
Distributed Systems, 12(6):628–637, June 2001.

5. O. Kariv and S. L. Hakimi. An algorithmic approach to network location
problems. ii: The p-medians. SIAM J. Appl. Math., 37(3):539–560, 1979.

6. B.-J. Ko and D. Rubenstein. A greedy approach to replicated content placement
using graph coloring. In SPIE ITCom Conference on Scalability and Traffic
Control in IP Networks II, Boston, MA, July 2002.

7. A. Makhorin. http://www.gnu.org/software/glpk/glpk.html.
8. D. B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility

location problems (extended abstract). In Proc. 29th ACM STOC., pages 265–274,
1997.

9. A. Tamir. An o(pn2) algorithm for the p-median and related problems on tree
graphs. Operations Research Letters, 19(2):59–64, 1996.

10. O. Unger and I. Cidon. Optimal content location in multicast based overlay
networks with content updates. World Wide Web, 7(3):315–336, 2004.

11. B. M. Waxman. Routing of multipoint connections. pages 347–352, 1991.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 136 – 145, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Scalable Mechanism for Semantic Service Discovery in
Multi-ontology Environment

Zhizhong Liu, Huaimin Wang, and Bin Zhou

College of Computer Science, National University of Defense Technology, Changsha China
liuzane@gmail.com, whm_w@163.net, Bin.Zhou.cn@gmail.com

Abstract. Semantic service discovery improves the performance of service
matching, due to using ontology and logical reasoning. However, in open distributed
computing environment available mechanisms for semantic service discovery face
new challenges: increasing scale of systems, multiple coexistent ontologies and so
on. Aiming to these problems, a semantic service discovery mechanism based on
ontology community, SSD_OC, is proposed in this paper. Multiple coexistent
ontologies are supported by SSD_OC and bridging axioms between different
ontologies enable users to match services across ontologies. Experiment results
show that SSD_OC is scalable and outperform other systems in term of F-Measure.

1 Introduction

Semantic service discovery (SSD), the infrastructure of semantic web service, matches
services on the basis of their capability by using ontology and logical reasoning[1].
Semantics is both a blessing and a curse. It can improve the precision and recall of
service matching. On the negative side, logic reasoning results in greater responding
time of service discovery and worse scalability. In addition, most available SSDs
assume that all services refer to identical ontology. In practice, there are mostly
multiple coexistent ontologies, especially in open distributed computing environment
where providers provide services with similar functions, but refer to different
ontologies. For example, Google, Amazon.Com etc. provided some services with
similar functions according to their own class hierarchy. Ideal SSD should support
multiple coexistent ontologies and enable service discovery across ontologies. But
most available service discovery mechanisms can’t cover those requirements.

The aim of this paper is to study a novel SSD mechanism which supports multiple
coexistent ontologies and SSD across ontologies. In addition, it must be scalable. For these
aims, a SSD mechanism based on ontology community, SSD_OC, is proposed. SSD_OC
partitions advertised services into different ontology communities according to their
referred ontologies. It also establishes relations among communities as bridging axioms,
and implements service discovery across ontologies through ontology translation based on
these axioms. Within community, SSD builds upon previous works done by Paolucci on
semantic matching of web service capabilities [2] and importing semantics into UDDI [3].

This paper is organized as follows. Section 2 reviews related works. Then in section
3, the architecture of SSD_OC is described. The corresponding algorithms of service
matching are presented in section 4. To evaluate our approach, a set of experiments are
conducted in section 5. Finally, we conclude this article.

A Scalable Mechanism for Semantic Service Discovery in Multi-ontology Environment 137

2 Related Works

Ontology interoperability is the essential precondition for SSD across ontologies.
Ontology mapping is one of mature approaches[4] to achieve that interoperability. It
establishes relations between ontology entities by calculating semantic similarity
between them. There are many methods for ontology mapping, such as GLUE,
FCA-Merge, IF-MAP, QOM, Anchor-PROMPT/PROMPT, OLA and so on. Dejiang
Dou[5] claimed ontology translation can be thought of in terms of inference. Therefore
they represented mapping rules as first order axioms, and implemented OntoEngine, an
ontology translation engine basing on first order reasoning.

LARKS[6] is the first system implementing semantic service matching. LARKS
identified a set of filters that progressively restrict the number of candidate services.
LARKS identified four degrees of match: Exact, Plug-in, Subsumes, Fail. To enable
UDDI support semantic discovery, Paolucci added a DAML-S/UDDI engine on
UDDI[3]. Further, they proposed a matching algorithm on the basis of DAML
ontology[2]. Klusch[7] complemented logic based reasoning with approximate matching
based on syntactic IR, and proposed OWLS-MX, which applies this approach to match
services and requests specified in OWL-S. Furthermore, they provided a collection of
OWL-S service, OWLS-TC1 to test matching algorithms.

Meteor-S provided a federate of registry to enable service partition[8]. It supported
multiple ontologies and described the data partitioning criteria as Extended Registries
Ontology (XTRO) in MWSDI. And, they developed a Web service discovery algorithm for
a multi-ontology environment[9]. The matching process is based on a service template
related to WSDL-S. Based on Paolucci’s works, Akkiraju[10] added ontology selection
process during service discovery. But how to implement that is not mentioned. WSMO
matched service across ontologies by OO-Mediator[11]. It provided a conceptual model for
the semantic-based location of services. Jyotishman Pathak[12] described a framework for
ontology-based flexible discovery of Semantic Web services. The proposed approach relied
on user-supplied, context-specific mappings from user ontology to relevant domain
ontologies. YIN Nan[13] proposed a general framework of ontology-based service discovery
sub-system, where context-based domain matching algorithms located service domains;
ontology-based service matching algorithms matched services in specific domain. Most
approaches mentioned above supported multiple ontologies. But they considered domains
separately, that’s to say, they didn’t not support service discovery across ontologies.

3 Architecture of SSD_OC

To support multiple coexistent ontologies, we design the architecture of SSD_OC as
figure 1. The architecture consists of three components: Ontology Community,
Ontology Bridging and Translation, Request Parser and Community Selection.

Ontology community (OC) includes services referring to the identical consistent
ontology set. OC takes charge of service registration and management, and service
matchmaking within OC. OC adapts Paolucci’s UDDI + DAML-S framework[3] for

1 http://projects.semwebcentral.org/projects/owls-tc/

138 Z. Liu, H. Wang, and B. Zhou

OWL-S. It is composed of UDDI Register, UDDI/OWL-S Translator, OWL-S Matching
Engine, OWL Ontology and Communication Module. UDDI/OWL-S Translator maps
OWL-S description into UDDI specification (e.g. tModel). The OWL-S Matching
Engine performs the capability matching on basis of OWL-Lite ontology. The process of
service advertisement and discovery is similar to that in Paolucci’s study.

Fig. 1. Architecture for SSD_OC

Ontology Bridging and Translate module consists of an Ontology Mapping Generator,
a set of Bridging Axioms and an Ontology Translation Engine. The Generator establishes
the relations, namely Bridging Axioms, between entities. In this paper, how to establish
these mappings is not the focus. And we assume that bridging axioms are available.
Translator Engine translates the request for one community to another using Bridge
Axioms, which enables service discovery across communities. Our work is inspired by
the Bridge Axiom proposed by Dejiang Dou[5]. The aim of his work was to translate
dataset or queries for one ontology to another. And they implemented it in OntoEngine.

Request Parser and Community Selection parses user requests, and forwards the
request to corresponding communities after community selection. SSD_OC provides a
central register which manages the metadata of ontology community to support
community selection. The metadata includes the URL of community register; the
ontologies which some ontology community refers to. Therefore this register can
answer following questions: 1) where is the register of some community? 2) which
community refers to some ontologies? 3) which ontology is referred by a community?

4 Semantic Service Matching in SSD_OC

4.1 Related Definitions

From different viewpoints, ontology can be defined in different ways. In this paper,
ontology is defined formally as follows:

A Scalable Mechanism for Semantic Service Discovery in Multi-ontology Environment 139

Definition 1 Ontology. Ontology can be described as a 4-tuple : (, , ,)CO C R H A= ,

where C represents the set of concepts in ontology; CR C C⊆ × is the set of relations

over concepts; C CH R⊆ is a subset of CR , represents hierarchical relation set between

concepts; and axioms A characterize the relations.
In this paper, we focus on two special relations, i.e. equal semantically and

subsume semantically. Given two concepts ,α β in an ontology, if they are equivalent

concept, α is equal semantically to β , denoted as “α β “; if they have relation CH ,

β subsume semanticallyα , denoted as “α β∼≺ “. Within an ontology, the relations

between them are following:

(1) If ,α β β γ∼≺ ,α γ∼≺ ;

(2) If ,α β β γ∼≺ ,α γ∼≺ ;

(3) If ,α β β γ∼≺ ∼≺ , α γ∼≺ ;

(4) If ,α β β γ , α γ .

An ontology snapshot about book is shown as figure 2. In Sell_Book (shown as
Fig.2 (a)), the ontology defines concepts: “Book” “Price”, “Amount” as well as “Date”,
“Title”, “Author”; and the relations between them: “hasPrice”, “hasTitle”, “by” and so
on. However, Lib_Book defines concepts “Item” ,”RetDate” as well as “Date”, “Title”,
“Author”, and the relations between them: “Return”, “hasName”, “hasAuthor”,
“Available” etc. (shown as Fig.2 (b)).

Fig. 2. An Example of Ontology

As shown in the above figure, there are multiple ontologies for the same concepts.
Ontology mapping establishes relations between different ontology entities by
calculating the semantic similarity between them. It can be defined formally as follows:

Definition 2 Ontology Mapping. Given source ontology sO and target ontology tO ,
the mappings between them are described as:

: s tMapping O O→

() (,)s t s tMapping e e if Sim e e t= >

where ,s te e are entities of source and target ontologies respectively; (,)Sim x y is the

function calculating semantic similarity between ,x y ; t is the threshold. In this paper,

140 Z. Liu, H. Wang, and B. Zhou

we assume mappings were stored as Bridging Axioms in first logic knowledge base.
Fig.2 describes some mappings, including type equation and relation equation.

Definition 3 Ontology Translation. Ontology translation applies above bridging
axioms to translate user requests from one ontology to another. Given source ontology

sO , target ontology tO , and bridging axioms KB , ontology translation can be

represented by “ →∼ ”:

(;)s tKB α β→∼

where sα is a expression referring to sO and tβ referring to tO .

Definition 4 Service Template. Service Template (ST) depicts service advertisement
or service request. It specifies IOPEs of service using a specific domain ontology.
Formally, Service Template is describes as:

: (, , , , , ,)ST ST ST ST ST ST STST N D I O P E Ont=

where STN is the name of service; STD is the textual description of service; STI denotes

the Inputs set of service; STO denotes the Outputs set of service; STP is the Preconditions

set of service; STE is the Effects set of service; in addition, STOnt describes the referred

ontologies.
Many semantic service description languages, for instance OWL-S, WSDL-S, can

be mapped to ST easily. Therefore, our work doesn’t limit to specific language.

Definition 5 Ontology Community. Section 3 gave the definition of ontology
community informally. Here the formal definition of ontology community is presented
as : (,)OCOC S Ont= , where S is the set of Service Templates, OCOnt is the set of

referred ontologies, and , . .ST OCST S ST Ont OC Ont∀ ∈ = .

The matching algorithm within OC builds upon which proposed by Paolucci[2],
which matches all outputs of request against those of advertisements; and all inputs of
request against those of advertisements. Given candidate service Template

(, , , , , ,)CS CS CS CS CS CS CSCS N D I O P E Ont= and request service template

(, , , , , ,)SR SR SR SR SR SR SRSR N D I O P E Ont= , the match degree between CS and SR is

computed as following Table 1.

Table 1. Match Degree between CS and SR

CS SRI I= (Exact) SR CSI I≺ (Subsume) Others(Fail)

SR CSO O≺ (Plug-in) Subsume Subsume

CS SRO O= (Exact) Exact Subsume

CS SRO O≺ (Subsume) Plug_in Plug_in

Fail

Others(fail) Fail

A Scalable Mechanism for Semantic Service Discovery in Multi-ontology Environment 141

Where “≺ “ is a partial order relation between two sets; “ = “is the equal relation
between two sets. Given two sets ,A B , A B≺ if and only if, for every elements Ae in

A , there exists one elements Be in B such that B Ae e∼≺ ; and A B= if and only if,

for every elements Ae in A , there exists one elements Be in B such that B Ae e=∼ .

In this paper, only candidate services with match degree “Exact” or “Subsume” are
considered as matched services. Racer[14] is adapted the semantic equality and
subsumption.

Definition 6 Service Request Translation. While ,SR CS refer to different
ontologies, SSD_OC implements ontology translation for SR . Based on ontology
bridging axioms, service request translation translates request ST from one ontology to
another by first logic reasoning. Given service template

(, , , , , ,)SR SR SR SR SR SR SRSR N D I O P E Ont= and bridging axioms KB between
',SR SROnt Ont , service request translation can be denoted as:

'(;)KB SR SR→∼ ,

Where: '
' ' ' ' ' ' '(, , , , , ,)SR SR SR SR SR SR SRSR N D I O P E Ont= and

'
' '

' '

(;) (;) (;)

(;) (;)
ST SR SR SR

SR SR SR SR

KB SR SR KB I I KB O O

KB P P KB E E

→ ⇔ → ∧ → ∧
→ ∧ →

∼ ∼ ∼
∼ ∼

4.2 Semantic Service Matching in SSD_OC

Semantic service matching in SSD_OC consists of three steps (shown as algorithm 1):
SelectCommunity, MatchinOC and Ontology Translation. MatchinOC which based
on Paolocci’s study matches Service Template ST in OC.

Algorithm 1. Match(ServiceTemplate SR) : MatchedServiceList mL

1: OC ← SelectCommunity(SR)
2:Foreach Strict Match Community S_Com do
3: (,)m mL L MatchinOC OC SR← +

4:Endfor
3: For Relaxed Match Community R_Com do
4: T_ST ← OntoTranslate(SR)

5: (, _)m mL L MatchinOC ROC T SR← +

6:end for
7:return mL

SelectCommunity returns communities supporting ontologies referred by SR.
According to the relations between ,SR OCOnt Ont , those communities are classified into

two classes: S_Com whose ontologies subsume SR’s ontologies, and R_Com whose
ontologies overlap with SR’s ontologies. The details are shown as algorithm 2.

142 Z. Liu, H. Wang, and B. Zhou

Algorithm 2. SelectCommunity(ServiceTemplate SR): Communities LCom
1: Foreach Community C in Meta-Data Register do
2: If . .

RR S CS Ont C Ont⊆ then

3: LCom.S_Match.Append(C)
4: else if . .

RR S CS Ont C Ont φ∩ ≠ then

5: LCom.R_Match.Append(C)
6: endif
7:endfor
8:Return LCom

OntoTranslate translates service template of request from an ontology to
another by using the bridging axioms between them. It implements ontology
translation for each factor of service template. OntEngine[4] developed by Dou
Dejiang fufills the reasoning based on first order logical. Figure 4 demonstrates the
OntoTranslate and the OutputTrans. First logical reasoning is based on
Modus-Ponens.

Algorithm 3. OntologyTranslate(ServiceTemplate SR, OntologyCommunit S_OC,
 OntologyCommity T_OC): ServiceTempalte T_SR

1: if OutputTrans(ST.Outputs, S_OC, T_OC) is NULL then return NULL
2: T_ST.Outputs ← OutputTrans(ST.Outputs, S_OC, T_OC)
3: if OutputTrans(ST.Inputs, S_OC, T_OC) is NULL then return NULL
4:T_ST.Inputs ← OutputTrans(ST.Inputs, S_OC, T_OC)
5: Return T_ST

Algorithm 4. OutputTrans(Ouputs ST_Outputs, OntologyCommunit S_OC,
 OntologyCommity T_OC): Outputs T_ST_Outputs
1: KB is the bridging Axioms between S_OC and T_OC
2: for each elements Output in ST_Outputs
3: T_Output ← Modus-Ponens(Output,KB)
4 : if T_Output is NULL then return NULL
5 : T_ST_Outputs.Append(T_Output)
6 :end for
7 :return T_ST_OutPuts

4.3 Put Them Together-A Service Discovery Example

Table 2 shows a whole example of service discovery in SSD_OC. In this example, the
service discovery request described by Service Template requires services that have
capability of finding books with specific author and topic. And advertised services are
published in three ontology communities: Sell_Book, Lib_Book and Sell_Good. With
respect to referred ontologies, Sell_Book and Lib_Book are related. And
Trans_Request is the translated request.

A Scalable Mechanism for Semantic Service Discovery in Multi-ontology Environment 143

Table 2. The Requests and Advertised Services

 OC Name Inputs Outputs
Degree

of Match

Request Sell_Book
#_Author
#_Topic

#_Book

Trans_Requ
est

Lib_Book
#_Author
#_Topic

#_Item

QueryBook
Service

#_Author
#_Topic

#_Book Exact
Sell_Book

BrowseBook
Service

#_Name #_Book Fail

Lib_Book QueryItem
Service

#_Person #_Item Subsume

Advertised
Service

Sell_Good
SellGood
Service

#_ID #_Good

In this example, SellGoodService is in a community irrelative to service request,
therefore the matching algorithm does not take it as candidate services.
QueryBookService is discovered firstly in Sell_Book for it has same inputs and outputs
as request, and QueryItemService semantically matched with the translated request
Trans_Request, for its inputs subsume that of request and its outputs equal to that of
request. And BrowseBookService’s inputs are not matched, so it is not matched
service.

5 Experiments

The performance of service discovery is usually evaluated by Responding Time of
service discovery, scalability of system, recall and precision of service matching or
their harmonic mean F-measure (F-Measure=2*Recall*Precision/(Recall+
Precision)). To evaluate our mechanism, we conduct experiments in Java 1.4.2, using
OWL-S 1.0, and the tableaux OWL-DL reasoner Racer developed at Concordia
University. The service sample is a subset of OWLS-TC v2.1 provided by DFKI,
includes 3 communities (Education, Communication and Economy) and 220 services
in these community. And 20 requests are proposed to those services. Further, we
compare the results with that of JAXR Register2 and augment UDDI Register with
DAML-S[6].

Fig.3 shows the preliminary statistical results of those requests. Analysis of these
results provide, in particular, evidence in favor of the following conclusions:

1) SSD_OC and augment UDDI is outperformed by JAXR in term of responding time
for they match service using logical reasoning (cf. Fig. 3 (a)). For SSD_OC spare
time in ontology translation, it is outperformed by augment UDDI, when the system
scale is small. However, with the increasing of system scale, SSD_OC should
outperform augment UDDI.

2 http://www.sun.com/xml/jaxr

144 Z. Liu, H. Wang, and B. Zhou

2) Both augment UDDI and SSD_OC increase responding time with the increasing
scale of system, while JAXR holds the line. Further, because SSD_OC limits the
communities where semantic matching occurs, the increasing rate of SSD_OC is
lower than that of augment UDDI, that’s to say, the scalability of SSD_OC is better
than that of augment UDDI. And the scalability of system will be improved by the
number increasing of community (cf. Fig. 3 (a)).

Scalability

Number of service

0 20 40 60 80 100 120 140 160 180 200 220

R
es

po
nd

in
g

tim
e(

m
s)

0

200

400

600

800

1000

1200

JARX
Augment UDDI
Our Approach

JARX Augment UDDI Our Appoach

R
at

io
�
�
�

0

20

40

60

80

100

Precision
Recall
F-Measure

(a) (b)

Fig. 3. The Responding time, Precision, Recall and F-Measure of Different Mechanisms

3) With logical reasoning, SSD_OC and augment UDDI have higher recall, precision
and F-measure than JAXR. SSD_OC has higher Recall and F-measure for its
capability of service discovery across communities. However, due to loss of
information during ontology translation, SSD_OC is outperformed by augment
UDDI in term of precision (cf. Fig. 3 (b)).

6 Conclusions and Future Works

Aiming to support semantic service discovery in multi-ontology environment and
improve the scalability of SSD system, we proposed a mechanism based on ontology
community, SSD_OC. It uses the divide-and-conquer approach with respect to the
ontology used by services, to provide scalable data integration. Within community,
traditional semantic matchmaking is employed. And to enable service matching across
ontologies, the mechanism implements ontology translation by using bridging axioms.
The mechanism improves scalability of system and efficiency of service discovery due
to limiting service matchmaking in a relative small scope. Further service matching
across communities improves the recall of service matching. In addition, the coexistent
ontologies enable users describe their requirements with respect to their context, that’s
to say, users have more flexibility.

In the next step, we will improve the algorithms for service matchmaking, and mend
the service template with some personal information (e.g. across ontology or not, the
accepted degree of service match, etc.). Then service matching will be taken according

A Scalable Mechanism for Semantic Service Discovery in Multi-ontology Environment 145

to those preferences. Furthermore, we will take the QoS of service into account to
ranking and selecting services with similar functionality. And the loss of information
during ontology translation will be considered in our future work.

Acknowledgement. Research reported in this paper has been partially financed by
National Basic Research Program of China under Grant, No.2005CB321800, National
Natural Science Foundation of China under Grant, No.90412011

References

1. Sheila A, T.C.S., Honglei Zeng. , Semantic web service. IEEE Intelligent systems, 2001.
16(3): p. 46-53.

2. Massimo Paolucci, T.K., Terry R. Payne, Katia Sycara. Semantic Matching of Web Services
Capabilities. in Proceeding of 1st Int. Semantic Web Conference (ISWC). 2002. Sardinia,
Italy: Springer.

3. Massimo Paolucci, T.K., Terry R. Payne, and Katia Sycara. Importing the Semantic Web in
UDDI. in In Web Services, E-Business and Semantic Web Workshop. 2002.

4. Sure., M.E.a.Y. Ontology mapping - an integrated approach. in In Proceedings of the First
European Semantic Web Symposium. 2004. Heraklion, Greece: Lecture Notes in Computer
Science.

5. Dou, D., Ontology Translation by Ontology merging and Automated Reasoning. 2004, Yale.
6. K. Sycara, S.W., M. Klusch, J. Lu, LARKS: Dynamic Matchmaking Among Heterogeneous

Software Agents in Cyberspace. Autonomous Agents and Multi-Agent Systems, 2002.
Vol.5: p. 173-203.

7. Matthias Klusch, B.F., Mahboob Khalid Katia Sycara. OWLS-MX: Hybrid OWL-S Service
Matchmaking. in AAAI 2005 symposium on agents agent and semantic web. 2005.

8. Kaarthik Sivashanmugam, K.V., Amit Sheth Discovery of Web Services in a Federated
Registry Environment. in In the proceeding of ICWS'04. 2004. San Diago: IEEE Computer
Society.

9. Oundhakar, S., Semantic Web Service Discovery in a Multi-ontology Environment. 2004,
Georgia University.

10. Akkiraju R, G.R.D.P., et al. . A method for semantically enhancing the service discovery
capabilities of uddi. in in the proceeding the Workshop on Information Integration on the
Web. 2003. Acapulco,Mexico.

11. U. Keller, R.L., H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services. in
the 2nd European Semantic Web Conference (ESWC 2005). 2005. Crete Greece.

12. Jyotishman Pathak, N.K. A Framework for Semantic Web Service Discovery. in In
Proceedings of the 7th annual ACM international workshop on Web information and data
management. 2005. Bremen Germany: ACM Press.

13. Yin Nan, S.D.R., Yu Ge,Kou Yue ,Nie Tiezheng, CAO yu, A ontology-based service
matching strategy in Grid Enviroment Wuhan Univeristy journal of Natural science 2004.
9(5): p. 781-786.

14. M¨oller, V.H.R., Racer: A Core Inference Engine for the Semantic Web. 2004.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 146 – 157, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Collaborative-Aware Task Balancing Delivery Model
for Clusters

José Luis Bosque1, Pilar Herrero2, Manuel Salvadores2, and María S. Pérez2

1 Dpto. de Electrónica y Computadores. Universidad de Cantabria.
AV. de los Castros S/N, 39.005 Santander, Spain

joseluis.bosque@unican.es
2 Facultad de Informática. Universidad Politécnica de Madrid

Campus de Montegancedo S/N. 28.660 Boadilla del Monte. Madrid. Spain
{pherrero, mperez}@fi.upm.es

Abstract. In this paper, we present a new extension and reinterpretation of one
of the most successful models of awareness in Computer Supported
Cooperative Work (CSCW), called the Spatial Model of Interaction (SMI),
which manages awareness of interaction through a set of key concepts, to
provide task delivery in collaborative distributed systems. This model also
applies some theoretical principles and theories of multi-agents systems to
create a collaborative and cooperative environment that can be able to provide
an autonomous, efficient and independent management of the amount of
resources available in a cluster. This model has been implemented in a cluster
based on a multi-agent architecture. Some results are presented with the aim of
emphasizing the performance speedup of the system using the Collaborative
Awareness Model for Task-Balancing-Delivery (CAMT).

1 Introduction

Clusters of workstations provide a good price/performance ratio, which makes these
systems appropriate alternatives to supercomputers and dedicated mainframes. With
the aim of providing better capabilities on clusters, it is essential to use a resource
manager, which will take the suitable, and complex, decision about the allocation of
processes to the resources in the system.

Even though load balancing has received a considerable amount of interest, it is
still not definitely solved [11]. Nevertheless, this problem is central for minimizing
the applications' response time and optimizing the exploitation of resources. Clusters
require from load distributions that take into consideration each node's computational
features [5]. The resources utilization can be improved by assigning each processor a
workload proportional to its processing capabilities.

Multi-agent systems offer promising features to resource managers. The reactivity,
proactivity and autonomy, as essential properties of agents, can help in the complex
task of managing resources in dynamic and changing environments. Additionally, the
cooperation among agents, which interchange information and resources status,
allows load balancing mechanisms to be performed and efficiently deployed on
clusters. In this sense, these mechanisms have common goals with current
collaborative systems, and several synergies between both disciplines can be arisen.

 A Collaborative-Aware Task Balancing Delivery Model for Clusters 147

In this paper, we present a new extension and reinterpretation of the Spatial Model
of Interaction (SMI), an abstract awareness model designed to manage awareness of
interaction, in cooperative applications. Thus, this paper presents a new
reinterpretation of this model, and its key concepts, called CAMT (Collaborative
Awareness Model for Task-Balancing-Delivery), in the context of an asynchronous
collaboration in clusters. This reinterpretation has been designed, form the beginning
to be a parametrical, generic, open, scalable, free of bottleneck and extensible be
adapted easily to new ideas and purposes. CAMT takes advantage of the aggregated
power of all the cluster nodes.

The CAMT model manages not just resources and information but also interaction
and awareness. It allows: i) controlling the user interaction (through the aura concept);
ii) guiding the awareness towards specific users and resources; iii) scaling interaction
through the awareness concept. This model has also been designed to apply successful
agent-based theories, techniques and principles to deal with resources sharing as well
as resources assignment inside the cluster environment.

This paper is organized as follows: section 2 discusses the related work in the area;
section 3 provides an overview of the Spatial Model of Interaction (SMI) and presents
CAMT as an extension of the SMI; section 4 describes the load balancing algorithm
in CAMT; section 5 provides readers with more specific details about the architecture
of the model; section 6 describes the empirical evaluation and then section 7
concludes this paper with a summary of the research carried out and points out some
future research lines.

2 Related Work

A taxonomy of load balancing methods has been defined in [3], taking into account
different aspects. Three important criteria for this classification are: time in which
workload distribution is performed (static [5] or dynamic [11]); Control, which can be
centralized or distributed [6]; and finally the system state view that is can be global
[6] or local [4]. Other solution is presented in[15], which defines a generic and
scalable architecture for the efficient use of resources in a cluster based on CORBA.
However, CORBA has as main disadvantage its complexity, which has made difficult
to extend its use. DASH (Dynamic Agent System for Heterogeneous) [14] is an
agent-based architecture for load balancing in heterogeneous clusters. The most
noticeable characteristic of this proposal is the definition of a collaborative awareness
model, used for providing global information that helps establish a suitable load
balance. Unlike this work, our proposal (CAMT) extends and reinterprets one of the
most successful models of awareness, the Spatial Model of Interaction (SMI), which
manages awareness of interaction through a set of key concepts. Most of the agent-
based load balancing systems use mobile agents, which makes easier the migration of
tasks [7]. Nevertheless, the study published in [13] concludes that the task migration
only obtains moderate benefits for long duration tasks.

3 CAMT: Reinterpreting the Key Awareness Concepts

The Spatial Model of Interaction was defined for application to any Computer
Supported Cooperative Work (CSCW) system where a spatial metric can be identified

148 J.L. Bosque et al.

[2]. The model itself defines some key concepts: Aura is the sub-space which
effectively bounds the presence of an object within a given medium and which acts as
an enabler of potential interaction [8]. Focus, which delimits the observing object's
interest; Nimbus, that represents the observed object's projection; and Awareness,
which quantifies the degree, nature or quality of interaction between two objects. For
a simple discrete model of focus and nimbus, there are three possible classifications
of awareness values when two objects are negotiating [9].

Let’s consider a system containing a set of nodes {ni} and a task T that requires a
set of processes to be solved in the system. Each of these processes need some
specifics requirements, being ri the set of requirements associated to the process pi,
and therefore each of the processes will be identified by the tuple (pi, ri). The CAMT
model intends to increase the collaboration capabilities of the system to start by a
simple, abstract and preliminary interpretation of the SMI key concepts in the context
of an asynchronous collaboration. Thus the CAMT model proposes an awareness
infrastructure based on these concepts capable of managing the load management of
clusters. This model reinterprets the SMI key concepts as follow:

Focus: It is interpreted as the subset of the space on which the user has focused his
attention with the aim of interacting with. The focus will be delimited by the Aura of
the node in the system.

Nimbus: It is defined as a tuple (Nimbus=(NimbusState, NimbusSpace)) containing
information about: (a) the load of the system in a given time (NimbusState); (b) the
subset of the space in which a given node projects its presence (NimbusSpace). As for
the NimbusState, this concept will depend on the processor characteristics as well as
on the load of the system in a given time. In this way, the NimbusState could have
three possible values: Null, Medium or Maximum, as we will see in section 4. The
NimbusSpace will determine those machines that could be taking into account in the
tasks assignment process and it is delimited by the Aura of the node in the system.

Awareness of Interaction (AwareInt): This concept will quantify the degree, nature or
quality of asynchronous interaction between distributed resources. Following the
awareness classification introduced by Greenhalgh in [9], this awareness could be
Full, Peripheral or Null.

FulljninAwareInt =),(if)(})in({ jnNimbusinFocusjn ∈∧∈

Peripheral aware of interaction if

PeripheralnnAwareInt ji =),(if
)(})in({

)(})in({

jnNimbusinFocusjn

or

jnNimbusinFocusjn

∈∧∉

∉∧∈

The CAMT model is more than a reinterpretation of the SMI, it extends the SMI to
introduce some new concepts such us:

Interactive Pool: This function returns the set of nodes {nj} interacting with the ni
node in a given moment. Given a System and a task T to be executed in the node ni:

if FullnnAwareInt ji =),(then)(ij nePoolInteractivn ∈

 A Collaborative-Aware Task Balancing Delivery Model for Clusters 149

Task Resolution: This function determines if there is a service in the node ni, being
NimbusState(ni)/=Null, such that could be useful to execute the task T (or at least one
of its processes).

)},{(

Re}{

spTn

TaskTaskNodesolution:Tasksn

ii

i
ii

→×

→×= ∑

Where “s” is the “score” to execute pi in ni node, being its value within the range [0,
∞): 0 if the node ni fulfils the all the minimum requirements to execute the process pi;
the higher is the surplus over these requirements.

This concept would also complement the Nimbus concept, because the
NimbusSpace will determine those machines that could be taking into account in the
tasks assignment process because they are not overload yet. This only means that they
could receive more working load, but the task T or at least one of its processes pi will
be executed in ni if, an only if, there is a service si in the node ni that could be useful
to execute any of these pi processes

Collaborative Organization: This function will take into account the set of nodes
determined by the InteractivePool function and will return those nodes of the System
in which it is more suitable to execute the task T (or at least one of its processes pi).
This selection will be made by means of the TaskResolution function.

4 Load Balancing Algorithm in CAMT

In this section we will introduce the load balancing algorithm as it has been
introduced in the CAMT awareness model. The main characteristics of this algorithm
are that it is dynamic, distributed and global, and it takes into account the system
heterogeneity. The load balancing process can be performed by means of different
stages or phases [12], which are explained in this section.

4.1 State Measurement Rule

This rule will be in charge of getting information about the computational capabilities
of the node in the system. This information, quantified by a load index, provides
aware of the NimbusState of the node. Several authors have proposed different load
index and they have studied their effects on the system performance [10]. In this
paper the concept of CPU assignment is used to determine the load index. The CPU
assignment is defined as the CPU percentage that can be assigned to a new task to be
executed in a node. The calculation of this assignment is based on two dynamic
parameters: the number of tasks N, in the CPU queue and the percentage of
occupation of the CPU, U, and it would be calculated as:

1

1
)

1
(

+
==>≥

N
A

N
UIf CPU

UsageA

N
UIf CPU −=⇒< 1)

1
(

150 J.L. Bosque et al.

As the system is heterogeneous, a normalization with the computational power of the
more powerful node of the cluster, Pmax, is needed in order to compare load index of
different nodes:

MAX

CPUi

P

AP
I

⋅
=

The NimbusState of the node will be determined by the load index and it will depend
on the node capacity at a given time. This state determines if the node could execute
more (local or remotes) tasks. Its possible values would be:

• Maximum: The load index is low and therefore this infrautilized node will
execute all the local tasks, accepting all new remote execution requests.

• Medium: The node will execute all the local tasks, but they will not accept
requests to execute tasks from other nodes in the system.

• Null: The load index has a high value and therefore the node is overload. In
this situation, it will reject any request of new remote execution.

4.2 Information Exchange Rule

The knowledge of the global state of the system will be determined by a policy on the
information exchange. This policy should keep the information coherence without
overloading the network with an excessive number of unnecessary messages. An
optimum information exchange rule for the CAMT model should be based on events
[1]. This rule only collects information when a change in the Nimbus of the nodes is
made. If later, the node that has modified its nimbus will be in charge of notifying this
modification to all of the nodes in the system (global algorithm), avoiding thus
synchronization points. Each of the nodes has information about the rest of the nodes
of the cluster. This information is stored in a list containing the node’s NimbusState
and its NimbusSpace.

4.3 Initiation Rule

As the model implements a non user interruption algorithm, the selection of the node
must be made just before sending the task execution. Once the execution of the
process starts in a specific node it would have to finish in the same node. The decision
of starting a new load balancing operation is completely local. If an overloaded node
receives a new task T to be executed, and it can not execute it (NimbusState =Null),
the load balancing operation will be automatically thrown. Then the initialization rule
which the node has to evaluate is the following:

• If (NimbusState = Maximum) or (NimbusState = Medium), the task is accepted
to be executed locally.

• If (NimbusState = Null), a new load balancing operation is started.

4.4 Load Balancing Operation

Now the node has made the decision of starting a load balancing operation, which will
be divided in another three different rules: localization, distribution and selection.

 A Collaborative-Aware Task Balancing Delivery Model for Clusters 151

Localization Rule: Given a task T to be executed in the node ni, the localization rule
has to determine which nodes are involved in the CollaborativeOrganization of the
node ni. In order to make it possible, firstly, the CAMT model will need to determine
the awareness of interaction of this node with those nodes inside its focus. To
optimize the implementation, the previous awareness values are dynamically updated
based on the information exchange rule. Those nodes whose awareness of interaction
with ni was Full will be part of the Interactive Pool of ni to solve the task T, and from
that pre-selection the TaskResolution method will determine those nodes that are
suitable to solve efficiently the task in the environment.

Selection and Distribution Rule: This algorithm joins selection and distribution
rules because the proposed algorithm takes into account the NimbusState of each of
the nodes as well as the TaskResolution to solve any of the T’s processes. The goal of
this algorithm is to find the more equilibrate assignment of processes to
computational nodes based on a set of heuristics. This spread is made in an iterative
way. The sequence of steps that implements the assignment heuristic is:

1. The nodes belonging to the CollaborativeOrganization will be arranged by the
number of processes (associated to the T task) that could execute.

2. The first node of the arranged list is selected.
3. The process having the maximum score is assigned to the selected node and

both process assigned and node are removed from the list.
4. The following process of the ordered list is selected and the steps 2 and 3 of

this algorithm are repeated again.
5. This loop continues until the process had finalized with all the nodes of the

CollaborativeOrganization.
6. This algorithm doesn’t guarantee that all the processes could be assigned in a

first round. So, if any of the processes is out of the assignment, a new task
with all the pending processes is created, and the whole process starts again.

5 The CAMT Architecture

The load balancing multi-agent architecture, is composed of four agents replicated for
each of the nodes of the cluster (see figure 1): a) the Load Agent (LA), which in
charge of the state measurement rule; b) the Global State Agent (GSA), in charge of
the information rule; c) the Initiation Agent (IA), which decide if the task is executed
locally or if a new load balancing operation needs to be carried out; d) the Load
Balancer Agent (LBA) which implements the load balancing operation, strictly
speaking, including the localization, selection and distribution rules.

5.1 The Load Agent

The Load Agent calculates, periodically, the load index of the local node and
evaluates the changes on its NimbusState. When it detects a change on the state, this
modification is notified to the local GSA and IA. The load index is evaluated,
following the expressions introduced in section 4.1. The first step of the LA is to
obtain the node computational power, Pi. Then this information is communicated to

152 J.L. Bosque et al.

Fig. 1. CAMT Architecture

the rest of the nodes through the MPI_Reduce function, which is in charge of
calculating the maximum of the computational power of all the nodes, PMAX. Next,
the agent starts an infinite loop until the application is ended. In this loop the first step
is, to get dynamic node load information: the number of running task and the CPU
usage. Then the new state of the node is calculated and the agent determines if a node
state change has occurred. If the later, the agent communicates it to the local GSA and
IA. Finally, the agent sleep a time span, defined as a parameter by the user.

5.2 The Global State Agent

The main functionality of this agent is to manage the flux information exchanged
among the nodes of the system and provide LBA with this information as soon as it
requires it. Firstly, the agent gets information about its focus, its NimbusSpace and its
NimbusState. Once this information is communicated to the rest of the nodes, it
determines the current InteractivePool. Next, the agent enters in an infinite loop in
which it is waiting for receiving messages from other agents, which could be:

• LOCAL_STATE_CHANGE: This message comes from the Load Agent local
and it has to be notified to all the GSAs of all of the cluster nodes.

• REMOTE_STATE_CHANGE: In this case, only the local state list should be
modified to update the new state of the remote node.

• INTERACTIVE_POOL_REQUEST: The local LBA requests the
InteractivePool to the GSA.

• STATE_LIST_REQUEST: the local LBA requests the state list that the GSA
agent keeps updated with the state of all the nodes composing the cluster.

5.3 The Initiation Agent

When a user intends to execute a task in a node of the cluster, this request is sent to
the IA of that node. Then, this agent evaluates the initialisation rule to determine if it
can be executed locally or if a new load balancing operation has be carried out. Its

 A Collaborative-Aware Task Balancing Delivery Model for Clusters 153

main structure contains an infinite loop and, for each of these iterations, the pending
tasks in the execution queue are checked. There are two types of messages:

• LOCAL_STATE_CHANGE: It receives a message from the local LA to
notify a change on the local state.

• EXECUTE_TASK_REQUEST: It requests execution of a new task. For each
process of the task, the NimbusState is checked to corroborate if its value is
equal to Full or Medium. If later, the process is executed locally. This loop
will finish when all the processes had been executed or when NimbusState of
the local node changed its value. In that moment a message would be sent to
the local LBA to start a new load balancing operation.

5.4 The Load Balancer Agent

This agent contains an infinite loop that is waiting to receive messages from other
agents. Its functionality depends on the messages received:

• BALANCER_EXECUTION: This message comes from the local IA and it
indicates that a new load balancing operation needs to start. For the
localization rule, the LBA will follow the following sequence of steps:

1. Request the InteractivePool and the states list to the local GSA
2. Determine the TaskResolution, analyzing which nodes of the

InteractivePool have their NimbusState different to Null.
3. Request the scores, to the nodes included in the TaskResolution
4. Determine the CollaborativeOrganization by analyzing those nodes that,

belonging to the TaskResolution, can execute at least one of the processes
of the task.

As for the selection and distribution rule, the algorithm presented in section
4.4 has been implemented. Once all the processes had been assigned, they
would be sent to the designated nodes. If the process is accepted by the node,
the assignment of the process would have finalized otherwise the process
would be pending of assignment and it would add to the new task.

• REMOTE_EXECUTION: This message comes from the remote LBA, asking
for the remote execution of a process. Once the LBA has checked its own
state, it replies to the remote LBA with an acceptance or rejection message. If
the process is accepted, the LBA would execute the process locally. The
rejection could be due to a change on its NimbusState (to Null).

• SCORE_REQUEST: This message is a request to the LBA to send the scores
of a specific task. The LBA evaluates the scores for each of the processes
belonging to that task.

6 Experimental Results

These tests were performed over a 32 node PC cluster connected through a Myrinet
Network. The CAMT model has been developed using GNU tools and LAM/MPI
7.1.1 Library. In order to generate a set of CPU-bound task the NAS Parallel
Benchmark NPB 2.3 has been used. Besides the multi-agent architecture presented in
previous sections of this paper, an additional agent, named Task_Executor_Agent, has

154 J.L. Bosque et al.

been implemented to simulate the throwing of tasks to any node of the cluster. In all
the experiments presented the focus and the nimbus of each of the nodes include the
rest of the nodes, and therefore the algorithm has been processed as global. All the
tasks have been launched with a 3 seconds interval.

First Experiment: This experiment intends to get a measure of the overhead
introduced by the CAMT model in the execution of a set of tasks while the size of the
cluster increases. With this purpose, the algorithm has been executed in different
clusters configurations: 4, 8, 16 and 32 nodes. In all these cases, 50 tasks with 10
processes per task were run. The experimental results obtained from the execution of
this experiment are presented in the table 1 and in the figure 2.

Table 1. Speedup, maximal overhead, average overhead, number of load balancing operations
and number of attempts to assign a process with respect to the cluster size

Cluster
Size

Speedup Max. Overhead
per Process

Average Overhead
/process

Balancing
Operations

N.
attempts

4 2.85 59.4 17.12 41 30816
8 7,24 2.33 0.41 48 1338

16 15,87 1.59 0.28 44 0
32 31,65 1.92 0.29 48 1

These results show that cluster size has a benefit impact on the algorithm
performance when the number of tasks remains constant. From figure 2 we can point
out that when there are many more processes in the system that the cluster can
manage, all the nodes are overloaded and the overhead as well as the number of
attempts to assign a new process increases dramatically. On the other hand when the
cluster size is increased up to 32 nodes, the overhead remains almost constant.
Therefore this algorithm has very good scalability features.

Overhead per process with cluster size = 4 nodes

0

10

20

30

40

50

60

70

0 100 200 300 400 500

Processes

S
ec

o
n

d
s

Overhead per process with cluster size = 32 nodes

0

0,5

1

1,5

2

2,5

0 100 200 300 400 500

Processes

S
ec

o
n

d
s

Fig. 2. Overhead per process with 4 and 32 nodes in the cluster

Second Experiment: This second test has only been achieved for the biggest cluster,
32 nodes. In all these cases, 50 tasks have been thrown. The objective was to get a
measure of how the number of processes of the T task affects the algorithm
performance. The experimental results obtained from the execution of this experiment
are presented in the table 2 and in the figure 3.

 A Collaborative-Aware Task Balancing Delivery Model for Clusters 155

Table 2. Speedup, maximal overhead, average overhead, number of load balancing operations
and number of attempts to assign a process with respect to the number of processes per task

Processes/task N processes Speedup Max
overhead

Average
Overhead

Balancing
operations

N.
attempts

10 259 31.76 1.73 0.24 45 0
20 458 31.69 2,89 0.30 47 3
30 854 30.98 12.47 2.81 45 1401
40 1028 28.48 41.93 5.62 43 10299

Overhead per process with 10 process/task

0

0,5

1

1,5

2

0 50 100 150 200 250 300

Processes

S
ec

o
n

d
s

Overhead per process with 40 processes/task

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800 900 1000 1100

Processes

S
ec

o
n

d
s

Fig. 3. Overhead per process with 10 and 40 processes per task

It can be to highlight that increasing the number of processes of the task, even over
the number of the nodes, we get the situation in which all the processes can not be
assigned in the first round of the selection rule. Additionally, increasing the total
number of processes that the system has to manage causes an increment in the global
load of the system that could lead to a TaskResolution empty. These two factors
provoke an increase on the overhead introduced by the algorithm. Moreover, the
number of tries to assign each of the processes needs to be taken into account. This
can be seen in figure 3 when the number of processes is around 600 and the overhead
value is dramatically increased. On the other hand when the number of processes is
not so high the overhead remains almost constant for all of the processes and tasks. In
table 2 we can see that in these cases the number of attempts to assign the processes is
drastically increased too.

Third Experiment: The last test has been carried out on a cluster of 32 nodes. The
size of the task is between 1 and 16 processes. The aim of this experiment is to
measure the impact that the number of consecutive tasks executed over the overhead
of the system. In order to make this evaluation, this experiment has been
accomplished with a number of tasks between 25 and 100. The experimental results
obtained from the execution of his first experiment are presented in the table 3 and in
the figure 4.

156 J.L. Bosque et al.

Table 3. Speedup, maximal overhead, average overhead, number of load balancing operations
and number of attempts to assign a process with respect to the number of consecutive tasks.

N
Tasks

N.
Processes

Speedup Max.
overhead/
Process

Average
overhead/
process

Balancing
Operations

N.
attempts

25 227 29.11 2.42 0.38 23 0
50 443 30,24 2.54 0.35 47 0
75 708 31.85 2.63 0.28 72 2

100 919 32.03 3.1 0.32 96 7

The conditions given in the third experiment implies a higher global load of the
system, and it could drive to a situation in which all the nodes of the system would be
overload and the TaskResolution was empty. In this case the number of tries to make
the tasks assignment should increase and therefore the overhead of the system.
However in this experiment the overhead remains almost constant with the number of
tasks. Therefore we can conclude that the number of processes per task has a more
strong impact on the algorithm performance that the number of task. This is a
consequence of that this algorithm assigns only one process per round to each of the
nodes. Then if the number of processes in a task is much larger than the number of
cluster nodes the algorithm needs several rounds, increasing the overhead per process.

Overhead per Process

0

0,5

1

1,5

2

2,5

3

3,5

0 200 400 600 800 1000

Processes

S
ec

o
n

d
s

Fig. 4. Overhead per process with 100 consecutive tasks

7 Conclusions

This paper presents an awareness model for balancing the load in collaborative cluster
environments, CAMT (Collaborative Awareness Model for Task-Balancing-
Delivery), in a collaborative multi-agent system. CAMT is a new reinterpretation of
the SMI model in the context of an asynchronous collaboration in clusters. The
CAMT model allows managing not just resources and information but also interaction
and awareness; guiding the awareness towards specific users and resources; and
scaling interaction through the awareness concept. This model has also been designed
to apply successful agent-based theories, techniques and principles to deal with
resources sharing as well as resources assignment inside the cluster environment.
CAMT manages the interaction in the environment allowing the autonomous,
efficient and independent task allocation in the environment.

 A Collaborative-Aware Task Balancing Delivery Model for Clusters 157

This model has been evaluated in a real cluster infrastructure. Different scenarios
were designed for this purpose. The most important conclusions that could be
extracted from the experimental results presented in this paper are: Firstly, the
introduction of the load balancing algorithm based on the CAMT model on a cluster
achieves very important improvements with respect to the response time and speedup.
These results are reflected on the speedup figures and therefore on the scalability
degree of the algorithm. Secondly, we have to point out that the overhead incurred by
the algorithm to assign a process to a node is mainly determined by the number of
processes per tasks. Finally, the algorithm performs a number of load balancing
operations close to the maximum achievable value.

Acknowledgments. This work has been partially funded by the Government of the
Community of Madrid (grant S-0505/DPI/0235).

References

1. M. Beltrán, J. L. Bosque, A. Guzmán. Resource Disseminatioin policies on Grids.
Lectures Notes in Computer Science. Springer-Verlag 135 – 144. October 25-29, 2004

2. Benford S.D. and Fahlén L.E. A Spatial Model of Interaction in Large Virtual
Environments. Proceedings of the Third European Conference on Computer Supported
Cooperative Work. Milano. Italy. Kluwer Academic Publishers, 109-124, 1993.

3. T. L. Casavant and J. G. Kuhl. “A taxonomy of scheduling in general-purpose distributed
computing systems”, Readings and Distributed Computing Systems, pp. 31-51, 1994.

4. Corradi, L. Leonardi, and F. Zambonelli. “Diffusive load-balancing policies for dynamic
applications”, IEEE Concurrency 7(1), pp. 22-31, 1999.

5. Bajaj, R. and Agrawal, D. P. Improving Scheduling of Tasks in a Heterogeneous
Environment. IEEE Trans. Parallel Distrib. Syst. Vol 15, N. 2, 2004. 107-118.

6. S. K. Das, D. J. Harvey, and R. Biswas. Parallel processing of adaptive meshes with load
balancing. IEEE Trans. on Parallel and Distributed Systems, (12):1269–1280, 2001.

7. S. Desic and D. Huljenic. Agents based load balancing with component distribution
capability. Proc. of the 2nd Int. Symposium on Cluster Computing and the Grid 2002.

8. Fahlén, L. E. and Brown, C.G., The Use of a 3D Aura Metaphor for Compter Based
Conferencing and Teleworking. Proc. of the 4th Multi-G Workshop, 69-74, 1992.

9. Greenhalgh, C., Large Scale Collaborative Virtual Environments, Doctoral Thesis.
University of Nottingham. October 1997.

10. T. Kunz, “The influence of different workload descriptions on a heuristic load balancing
scheme,” IEEE Trans. on Software Engineering, vol. 17, no. 7, pp. 725–730, July 1991.

11. L. Xiao, S. Chen, and X. Zhang. Dynamic cluster resource allocations for jobs with known
and unknown memory demands. IEEE Trans. on Parallel and Distributed Systems,
13(3):223–240, March 2002.

12. C. Xu and F. Lau, Load balancing in parallel computers: theory and practice. Kluwer
Academic Publishers, 1997.

13. W. Leland and T. Ott. “Load-balancing heuristics and process behavior”, ACM
SIGMETRICS, pp. 54-69, 1986.

14. Rajagopalan and S. Hariri, An Agent Based Dynamic Load Balancing System, Proc. of the
International Workshop on Autonomous Decentralized Systems, 2000, pp. 164-171.

15. S. Vanhastel, et al. Design of a generic platform for efficient and scalable cluster
computing based on middleware technology. Proc. of the CCGRID 2001, 40-47.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 158 – 168, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Improved Model for Predicting HPL Performance

Chau-Yi Chou, Hsi-Ya Chang, Shuen-Tai Wang, Kuo-Chan Huang*,
and Cherng-Yeu Shen

National Center for High-Performance Computing
* Department of Electronic Commerce, Hsing Kuo University, Taiwan

Abstract. In this paper, we propose an improved model for predicting HPL
(High performance Linpack) performance. In order to accurately predict the
maximal LINPACK performance we first divide the performance model into two
parts: computational cost and message passing overhead. In the message passing
overhead, we adopt Xu and Hwang’s broadcast model instead of the
point-to-point message passing model. HPL performance prediction is a
multi-variables problem. In this proposed model we improved the existing model
by introducing a weighting function to account for many effects such that the
proposed model could more accurately predict the maximal LINPACK
performance Rmax . This improvement in prediction accuracy has been verified on
a variety of architectures, including IA64 and IA32 CPUs in a Myrinet-based
environment, as well as in Quadrics, Gigabits Ethernet and other network
environments. Our improved model can help cluster users in estimating the
maximal HPL performance of their systems.

1 Introduction

The continuous improvement in commodity hardware and software has made cluster
systems the most popular alternative [1-5] for high performance computing for both
academic institutions and industries.

In 1998, Pfister [5] estimated over 100,000 cluster systems were in use worldwide.
In November 2006, more than 70% of machines on the 26th Top500 List were labeled as
clusters [6]. Most of these clusters used HPL (High performance Linpack) to
benchmark their system performance, in accordance with the requirement of the
Top500 List.

HPL utilizes LU factorization with row partial pivoting to solve a dense linear
system while using a two-dimensional block-cyclic data distribution for load balance
and scalability. A number of analysis models [7, 8] have been developed for HPL
performance prediction for different architectures. However, these models did not
consider the effect of hardware overhead, such as cache misses, pipeline startups,
memory load or store and floating point arithmetic. Most models adhere to
Hockney’s message passing model [9] in dealing with the message interchange
overhead.

 An Improved Model for Predicting HPL Performance 159

In this paper we propose an improved HPL performance prediction model where
we use a weighting function to account for the hardware overhead on the
computation side. On the communication side we adopt Xu and Hwang’s broad-
cast model [10]. This improved model comes up with a closer prediction of the
actual performance than the other models in the literature, after a series of
experiments on the Myrinet-based, Gigabits Ethernet based, IA64- and IA32-based
architectures.

2 HPL Algorithm and Performance Score Model

We first introduce the HPL algorithm in Section 2.1 and then the existing HPL
performance prediction model from [7] in Sections 2.2.1-2.2.5. The improved model is
discussed in Section 2.2.6. Here we list the definitions of the pertinent variables in
Table 1.

Table 1. Definition of the variables

Variable Definition
B Block size

N×N Dimension of linear system
P×Q Two dimensional map of computational processors
α Latency of Hockney’s mode (point to point), constant
β The reciprocal of throughput of Hockney’s model (point to point), constant
α’ Latency of Xu and Hwang’s model (MPI broadcast), function of (PQ)

β’
The reciprocal of throughput of Xu and Hwang’s model (MPI broadcast),

function of (PQ)
g3 Floating-point operation rate of matrix-matrix operations
g2 Floating-point operation rate of matrix-vector operations

γ
3
 the approximate floating-point operations per second when the processor is

performing matrix-matrix operations
γ=

w×γ
3

The real computational performance of HPL, not including message passing
overhead. w is the weighting function in our proposed performance model

2.1 HPL Algorithm

The HPL algorithm is designed to solve a linear system by LU factorization with row
partial pivoting. The data are first logically partitioned into B×B blocks, and then
distributed onto a two-dimensional P×Q grid, according to the block-cyclic scheme to
ensure load balance as well as scalability. The block size B is for the data distribution as
well as for the computational granularity. The best B value is a function of the
computation-to-communication performance ratio in a system. A smaller B performs

160 C.-Y. Chou et al.

better load balance from a data distribution point of view; but when it becomes too
small, it may limit the computational performance because no data reuse occurs at the
higher level of the memory hierarchy from a computational point of view. The
recommended B value is between 32 and 256.

At a given iteration of the main loop, each panel factorization occurs in one column
of processes because of the Cartesian property of the distribution scheme. Once the
panel factorization has been computed, this panel of columns is broadcast to the other
process columns. The update of the trailing sub-matrix by the last panel in the
look-ahead pipe is made in two phases. First, the pivots must be applied to form the
current row panel U. U should then be solved by the upper triangle of the column panel.
Finally U needs to be broadcast to each process row so that the local rank-B update can
take place.

2.2 Performance Score Model

2.2.1 Assumption and Definition
Let the communication time to transfer L length of double precision messages be Tc =
α+βL, whereαandβare latency and the reciprocal of maximum bandwidth, respectively.
Both αandβare constants. Also, g1, g2 and g3 are defined as the times needed for
performing one floating point of the vector-vector, matrix-vector and matrix-matrix
operations, respectively. With the definitions behind us, we may proceed to solve an
N×N linear system.

2.2.2 Panel Factorization and Broadcast
Let us consider an I×J panel distributed over a P-process column. The execution time
for panel factorization and broadcast can be approximated by:

Tpfact(I, J) = (I/P - J/3) J2
 g3 + J ln(P)(α+ 2βJ) +α+ βI J / P (1)

2.2.3 Trailing Sub-matrix Update
Let’s consider the update phase of an I×I trailing sub-matrix distributed on a P×Q
process grid. From a computational point of view, one has to (triangular) solve I
right-hand sides and to perform a local rank-J update of this trailing sub-matrix. Thus,
the execution time for the update operation can be approximated by:

Tupdate(I, J) = g3 (I J
2/Q + 2 I2 J /P/Q) +α(ln(P)+P-1)+ 3βI J /Q. (2)

2.2.4 Backward Substitution
The number of floating point operations performed during the backward substitution is
given by N2/P/Q. Then, the execution time of the backward substitution can be
approximated by:

Tbacks(N, B)= g2 N
2 /(PQ) + N (α/ B + 2β). (3)

 An Improved Model for Predicting HPL Performance 161

2.2.5 The Original HPL Performance Model
The total execution time T is given by:

() ()[] ()BN,TB B,kNTB k,NTT backs
N

,2B B, 0,k
updatepfact +−−+−= ∑

=

() () () ()

() ()
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++

⎭
⎬
⎫

⎩
⎨
⎧ +++⎥⎦

⎤
⎢⎣
⎡ ++++

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++=

22

2

2
323

3

3
22

2

3
2

2

1

2

3

11

3

1121

2

1

2

1

3

2

B
Q

PlnBN
Q

Pln
P

N
PQ

QP

PPlogPlnB
B

PPlnB
N

PQ

N
gB

QPQ
BN

PQQP
N

PQ
g

β

α (4)

The algorithm totally perform 2N
3 /3 + 3 N

2
/2 of floating point operations, Then, the

performance score, hereinafter called Rest_original, becomes:

T

/N/N
R original_est

2232 23 +=

() () () ()

() ()
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ++

⎭
⎬
⎫

⎩
⎨
⎧

+++⎥⎦
⎤

⎢⎣
⎡ ++++

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++

+=

22

2

2
323

3

23

3
22

2

3
2

2

1

2

3

11

3

1121

2

1

2

1

3

2

2

3

3

2

B
Q

PlnBN
Q

Pln
P

N
PQ

QP

PPlnPlnB
B

PPlogB
N

PQ

N
gB

QPQ
BN

PQQP
N

PQ
g

/
NN

β

α

 (5)

For a very large N, we need only to consider the dominant term in g3, α, and β. Then,
Eq.(5) becomes:

()
Q P N 4

Q)Pβ(3

NB2

P]P1)ln[(Bα3

PQ

g
1

R

2
3

original_est +++++
=

3
 (6)

2.2.6 Our HPL Performance Model
Wang and co-workers [8] defined a new variationγ3 as the approximate floating point
operations per second when the processor is performing matrix-matrix operations.

Then,
3

3
1

g
=γ .

Now, we propose a weighting function w to include overheads such as cache misses,
pipeline startups, and memory load or store. This weighting function w will be taken as
the ratio of the time for matrix multiplication to the total HPL execution time on a

162 C.-Y. Chou et al.

single processor; and 10 ≤≤ w . Next, we define a new variable γ = w ×γ3 to represent
the approximate floating point operations per second for the total HPL solution.

The parameters representing the communication overhead, α and β in Eq.(5) and
Eq.(6), are based on Hockey’s model; that is, they are constants. However, in our
proposed model, we will adopt Xu and Hwang’s model to account for the
communication overhead. The communication time to transfer L length of double
precision messages is then Tc= α ′ + β ′ L, where α′ and β ′ are latency and the

reciprocal of maximum bandwidth, respectively. Now, both α′ and β ′ are functions

of the total number of processors (PQ). Therefore, the performance score of our
modified HPL performance model, hereinafter call Rest_modified , becomes:

For small size cluster, =ifiedmod_estR

() () () ()

() ()
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +′+

⎭
⎬
⎫

⎩
⎨
⎧ +++⎥⎦

⎤
⎢⎣
⎡ +++′+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++

+

22

2

2
323

23

3
22

2

3
2

2

1

2

3

11

3

1121

2

1

2

1

3

21

2

3

3

2

B
Q

PlogBN
Q

Plog
P

N
PQ

QP

PPlogPlogB
B

PPlogB
N

PQ

N
gB

QPQ
BN

PQQP
N

PQ

/
NN

β

α

γ (7)

For large cluster,

()
Q P N 4

Q)P(β 3

BN2

P]P1)log[(Bα3

PQ

1
1

R

2

ifiedmod_est +′
+++′

+
=

3

γ

 (8)

The denominator of Eq. (8) consists of three terms. The first term dominates the
performance of the system if communication overhead is not considered, with the best
score being PQγ. The second and the third terms account for the communication
overhead resulting from discrete computing, while α ′ and β ′ depend on the latency

and bandwidth of the network for MPI collective message, respectively. In general,
when the size of a cluster system increases, so do the influences of α′ and β ′ .

3 Comparative Analysis of Different Models on Various Clusters

We now proceed to analyze the HPL performance on three different cluster systems,
i.e., the Formosa Cluster [11], the Triton Cluster [12], and Dawning 4000A [13]. The
Formosa cluster is equipped with IA32 CPUs and in a Gigabit Ethernet environment.
The Triton Cluster uses the IA64 CPUs with Quadrics interconnection network [14].
The Dawning 4000A is a cluster of IA64 CPUs with Myrinet [15] network
environment. Details of the systems are described in Sections 3.1, 3.2, and 3.3.

 An Improved Model for Predicting HPL Performance 163

3.1 NCHC Formosa PC Cluster

This PC Cluster was built by the National Center for High-Performance Computing
(NCHC) in September 2003. Our team had diligently optimized the system, specifically
the network drive, the MTU, two network interface cards with two different private
subnets, and with unused services turned off. It was the 135th on the 22th Top500 List in
November 2003, and it was then the fastest computer system in Taiwan [11].

The system utilizes IBM X335 servers with Intel Xeon 2.8GHz dual processors.
There are 300 CPUs connected together by a Gigabit Ethernet network. We adopted
Debain 3.0 (kernel 2.6.0) operating system (OS), Intel compile 8.0 compiler,
LAM/MPI 7.0.6 [16], and GOTO BLAS [17].

To compare Eq.(7) with Eq.(5), we need to first decide the parameters in these two
equations. We apply the DGEMM function in HPL; that is, matrix multiplication of
double precision random numbers of HPL, to compute the floating-point operations per
second of matrix multiplication, shown in figure 1. From figure 1, we obtainγ3 = 4.6
GFLOPS. Similarly, 1/g2 = 633 MFLOPS.

Next, we determine the value of the weighting function, w, by adding a timing merit
of matrix multiplication in HPL software and enabling the option:
-DHPL_DETAILED_TIMING. The output is shown as figure 2, and then w = 516.42 /
586.77 = 0.88.

In our previous research [18], we obtain α= 51.8μs, β= 0.011μs,
8163315481 .)PQln(. −=′α , and 0085001930 .)PQln(. −=′β . Both α ′

and β ′ are inμs.
Table 2 lists the performance scores in GFLOPS of the measured Rmax value and the

Rest-original using Eq. (5), and Rest-modified using Eq. (7) on 4, 6, and 8 processors. It
demonstrates that Rest-modified is indeed closer to Rmax than Rest-original.

0

1000

2000

3000

4000

5000

0 2000 4000 6000 8000
Matrix Size

M
F

L
O

P
S

Fig. 1. MFLOPS vs. Matrix size on the Formosa Cluster

164 C.-Y. Chou et al.

T/V N NB P Q Time Gflops
W00L2L88 15840 88 1 1 586.77 4.516e+00
--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV--VVV-
Max aggregated wall time HPL_DGEMM. . : 516.42
Max aggregated wall time rfact. . . : 17.06
+ Max aggregated wall time pfact . . : 17.06
+ Max aggregated wall time mxswp . . : 0.27
Max aggregated wall time update . . : 569.30
+ Max aggregated wall time laswp . . : 9.71
Max aggregated wall time up tr sv . : 0.41

Fig. 2. The output of HPL

Table 2. Comparison of two Performance Scores in GFLOPS on 4-, 6-, and 8- CPUs on the
Formosa Cluster

No. of Procs Rmax Rest-original Rest-modified
Score 16.06 17.00 15.79

4
error -- 6 % 2 %
Score 23.47 26.98 23.47

6
error -- 15% 0%
Score 31.51 35.96 31.02

8
error -- 14% 2%

Note: Rmax is the maximal LINPACK performance achieved.

We reported a measured Rmax = 0.9975 TFLOPS to the Top500 List in October 2003.
Rmax, as defined in the Top500 List, represents the maximal LINPACK performance
achieved where B = 88, N = 188000, P = 12, and Q = 25.

Table 3 lists the performance scores in TFLOPS of the measured Rmax value and the
Rest-original using Eq. (6), and Rest-modified using Eq. (8). It demonstrates that Rest-modified of
1.05 is indeed closer to Rmax of 0.9975.

Table 3. Comparison of two Performance Scores in TFLOPS on 300 CPUs on the Formosa
Cluster

 Rmax Rest-original Rest-modified
Score 0.9975 1.35 1.05
error -- 35 % 5 %

Note: Rmax is the maximal LINPACK performance achieved.

3.2 NCHC Triton Cluster

This Cluster was built by NCHC in March 2005 and is currently the fastest computer
system in Taiwan [12]. The system contains 384 Intel Itanium 2 1.5GHz processors
(192 HP Integrity rx2600 servers) connected together by a Quadrics interconnection
network, with a RedHat AS3.0 operating system and Intel compile 8.1, HP MLIB
v.19B, and HP MPI v2.01 software.

 An Improved Model for Predicting HPL Performance 165

As in Section 3.1, we must first determine the parameters in Eqs. (6) and (8). With a
sequential static analysis and curve fitting, we obtainα= 2.48μs, α ′ = 20.55μs, β=
0.0040μs and β ′ = 0.010665μs.

Rmax = 2.03 was measured and reported to the Top500 List with the following
parameters B = 72, N = 25500, P = 12, and Q = 32.

By the DGEMM function in HPL, we plot figure 3 and obtainγ3 of 5.88 GFLOPS.

0
1000
2000
3000
4000
5000
6000
7000

0 4000 8000 12000
Matrix Size

M
FL

O
PS

Fig. 3. MFLOPS vs. Matrix size multiplication on the Triton Cluster

Following the similar procedure in Section 3.1 gives the weighting factor w of 0.93.
Table 4 lists the performance scores of the measured Rmax value and the scores using

Eq. (6) and Eq. (8) for the Triton Cluster. It is clear that Rest-modified yields a score of 2.07,
a much better prediction than Rest-original of 2.25 using the original model.

Table 4. Comparison of two Performance Scores in TFLOPS on Triton Cluster

 Rmax Rest-original Rest-modified
Score 2.03 2.25 2.07
error - 11 % 2 %

3.3 Dawning 4000A

This cluster system was ranked 10th in the 23rd Top500 List in November 2003. It
contains 2560 AMD Opterons running at 2.2 GHz connected together by a Myrinet
network. Parameters used on Eqs. (6) and (8) are: Rmax = 8.061 TFLOPS and N =
728400 from the Top500 List. P = 40 and Q = 64 are assumed.

We choose an B of 240 from reference [19], assuming identical behavior to the AMD
Opterons running at 1.6 GHz found in the literature (AMD 2.2 GHz Opteron were used
in the Dawning 4000A) andγ3 = 4.4 × 0.918 = 4.0392 GFLOPS [17].

166 C.-Y. Chou et al.

The message passing overhead is assumed to be similar to the Gunawan and Cai’s
results [20] with a Linux platform with 64bit 66 MHz PCI; then α = 14.08μs, α ′ =
259.79μs, β= 0.009μs and β ′ = 0.11μs.

Assuming that the behavior of HPL on the Dawning 4000 was similar to that of
reference [19], we then calculate the weighting function w to be 0.9. The prediction
results Rest-original and Rest-modified are listed in Table 6. Again, our improved model gives
an error of 4 % versus 27 % if we use the original model.

Table 6. Comparison of two Performance Scores in TFLOPS on the Dawning 4000A

 Rmax Rest-original Rest-modified
Score 8.061 10.28 8.417
error - 27 % 4 %

4 Prediction of Rmax on SIRAYA

The maximal LINPACK performance achieved Rmax in the Top500 List depends on
network communication overhead, BLAS, motherboard, PCI system, size and
bandwidth of main memory, compiler, MPI-middleware. In Sections 3.1-3.3, our
improved model of Eq. (8) has resulted in a better correlation with Rmax in all three
clusters: the Formosa, the Triton, and the Dawning 4000A clusters. It should be noted
on the first two clusters we use the actually measured parameters, and in the cases of the
last, only “estimated” parameters are used. We believe once the parameters for the last
become available, the prediction results should be even more accurate.

The authors of HPL suggest that the problem size N should be about 80% of the total
amount of memory in reference[7]; that is N = 0.8 × Nmax, where Nmax = SQRT(TM/8) is
the allowable maximum problem size, TM is total memory size, reserving 20% of the
total memory for system kernel overhead. In our experience, the problem sizes of the
IA32-based cluster, Formosa, is quite near Nmax, and may be larger than the suggested
values. On the other hand, the problem sizes for the two IA64-based platforms--both
Triton and Dawning--are smaller than the suggested, where N = 0.58 × Nmax for the
Triton and N = 0.46 × Nmax for the Dawning 4000A, because the IA64 based clusters
need to save large memory for system kernel overhead [6].

SIRAYA is a high-performance Beowulf cluster located within the Southern
Business Unit of NCHC. The cluster was designed and constructed by the 'HPC Cluster
Group' at NCHC for computational science applications.

The computing nodes in SIRAYA are 80 IBM eSeries e326 in 1U cases mounted in
three racks. Each IBM eSeries e326 has two AMD Opteron 275 DualCore processors
running at 2.2 GHz with 1 MB of L2 cache, 4 GB of DDR400 registered ECC SDRAM.
This means SIRAYA has 320 cores. All computers are connected together in a star
topology to six stackable Nortel BayStack 5510-48T 10/100/1000 Mbps switches.

Based on above elaboration, we use the following parameters to predict the maximal
performance score on SIRAYA. N = 0.5 × Nmax = 105, B = 240, w = 0.9, γ3 = 4.0392

 An Improved Model for Predicting HPL Performance 167

GFLOPS from section 3.4, α ′ = 405.24μs, and β ′ = 0.10283μs from section 3.1.

Then, Rest-modified of 835.6 GFLOPS using Eq. (8) is very close to Rmax of 848.2
GFLOPS.

Next phase, we will upgrade the system to 8 GB RAM for each node and fat-tree
high performance network. Moreover, the system will be increased sixteen nodes.
Then, the parameters become N = 1.5 × 105. Therefore, we predict the maximal
performance score on SIRAYA will be 1.37 TFLOPS after upgrade at the second
phase.

5 Conclusion

Building on Wang’s HPL performance model, we propose an improved HPL
performance prediction models. Four existing clusters are used for comparing the
prediction results. One of them is IA32 system and the other three are IA64 systems.
The intercommunication media used in these four clusters are Myrinet, Quadrics, and
Gigabit Ethernet network. In all cases, our improved model shows consistently better
predictions than those using the existing model.

Our improved HPL performance prediction model would be a great help for those
who wish to better understand their systems. It helps reduce the time for trial-and-error
runs; it provides a user in scientific computing with useful information in predicting the
performance and scalability of his own program as well.

References

1. Sterling, T., Becker, D., Savarese, D., et al.: BEOWULF: A Parallel Workstation for
Scientific Computation. Proc. Of the 1995 International Conf. On Parallel Processing
(1995)

2. Sterling, T., Savarese,D., Becker, D., et al.: Communication Overhead for Space Science
Applications on the Beowulf Parallel Workstation. Proc. of 4th IEEE Symposium on High
Performance Distributed Computing (1995)

3. Reschke, C., Sterling T. and Ridge, D.: A Design Study of Alternative Network Topologies
for the Beowulf Parallel Workstation. Proceedings of the 5th IEEE Symposium on High
Performance and Distributed Computing (1996)

4. Ridge, D., Becker, D. and Merkey, P.: Beowulf: Harnessing the Power of Parallelism in a
Pile-of-PCs. Proceedings of IEEE Aerospace (1997)

5. Pfister, G. F.: In Search of Clusters. Prentice-Hall, Inc. (1998)
6. Top 500 List, http://www.top500.org
7. HPL Web site, http://www.netlib.org/benchmark/hpl/
8. Wang, P., Turner, G., Lauer, D., Allen, M., Simms, S., Hart, D., Papakhian, M. and Stewart,

C.: LINPACK Performance on a Geographically Distributed Linux Cluster. 18th
International Parallel and Distributed Processing Symposium (IPDPS'04), Santa Fe, New
Mexico (2004)

9. Hockney, R. W.: The Communication Challenge for MPP: Intel Paragon and Meiko CS-2.
Parallel Computing 20 (1994) 389-398

10. Xu, Z. and Hwang, K.: Modeling Communication Overhead: MPI and MPL Performance
on the IBM SP2. IEEE Parallel & Distributed Technology 4(1) (1996) 9-23

168 C.-Y. Chou et al.

11. NCHC Formosa PC Cluster Home Page, http://formosa.nchc.org.tw
12. NCHC Triton Cluster Home Page, http://www/english/pcCluster.php
13. Zhang, W., Chen, M. and Fan, J. : HPL Performance Prevision to Intending System

Improvement. Second International Symposium on Parallel and Distributed Processing and
Applications (2004)

14. Boden, N. J., et al.: Myrinet: A Giga-bit-per-second Local-area Network. IEEE micro
(1995)

15. Burns, G.., Daoud, R. and Vaigl, J.: LAM:An Open Cluster Environment for MPI.
Proceedings of Supercomputing Symposium'94 (1994) 379-386

16. Petrini, F., et al. : Performance Evaluation of the Quadrics Interconnection Network. Cluster
Computing (2003)

17. GOTO library, http://www.cs.utexas.edu/users/kgoto
18. Chou, Chau-Yi, Chang, His-Ya, Wang, Shuen-Tai, Tcheng, Shou-Cheng: Modeling

Message-Passing overhead on NCHC Formosa PC Cluster. GPC 2006, LNCS 3947 (2006)
299 – 307

19. Zhang, W., Fan, J. and Chen, M. : Efficient Determination of Block Size NB for Parallel
Linpack Test. The 16th IASTED International Conference on Parallel and Distributed
Computing and Systems (2004)

20. Gunawan, T. and Cai, W.: Performance Analysis of a Myrinet-Based Cluster. Cluster
Computing 6 (2003) 229-313

An Ad Hoc Approach to Achieve Collaborative

Computing with Pervasive Devices

Ren-Song Ko1 and Matt W. Mutka2

1 National Chung Cheng University, Department of Computer Science and
Information Engineering,

Chia-Yi 621, Taiwan
korenson@cs.ccu.edu.tw

2 Michigan State University, Department of Computer Science and Engineering,
East Lansing MI 48824-1226, USA

mutka@cse.msu.edu

Abstract. Limited computing resources may often cause poor perfor-
mance and quality. To overcome these limitations, we introduce the idea
of ad hoc systems, which may break the resource limitation and give mo-
bile devices more potential usage. That is, several resource-limited de-
vices may be combined as an ad hoc system to complete a complex com-
puting task. We illustrate how the adaptive software framework, FRAME,
may realize ad hoc systems by automatically distribute software to ap-
propriate devices via the assembly process. We discuss the problem that
ad hoc systems may be unstable under mobile computing environments
since the participating devices may leave the ad hoc systems at their
will. We also propose the reassembly process for this instability problem;
i.e., assembly process will be re-invoked upon environmental changes. To
further reduce the performance impact of reassembly, two approaches,
partial reassembly and caching, are described. Our experimental results
show that the caching improves performance by a factor of 7 ∼ 40.

1 Introduction

As technology improves, small devices and task-specific hardware begin to emerge.
These devices usually have limited resources or specialized interfaces to address
the desired goal of mobility and friendly usage. Thus, it will be a challenge to
execute complex applications on these devices with reasonable performance and
quality. However, the ubiquitous existence of computers may bring many possi-
ble solutions for this challenge. For instance, it is possible for computers to move
and interact with their environment to seek the available resources to accomplish
resource-intensive tasks more efficiently.

That is, instead of running software on a single device, one may look for avail-
able devices nearby and connect them together to form a temporarily organized
system for short-term usage. Once the software is launched, the appropriate
part of the code will be automatically distributed to each participating device.
After that, these devices will execute the assigned code to accomplish the task
collaboratively. Such a system without prior planning is called ad hoc [5].

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 169–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 R.-S. Ko and M.W. Mutka

Image the scenario that a person may watch a movie with his mobile phone.
Because of limited computing capability, the video and audio quality may be
unacceptable, and the viewing experience may not be pleasant. On the other
hand, he may look for available intelligent devices nearby. For example, he may
find an ATM machine for its larger screen and a MP3 player for its stereo
sound quality. Thus, he may connect them together to form an ad hoc system as
shown in Fig. 1. After the video playback software is launched, the appropriate
part of the code will be distributed to each device, such as the code for audio
processing to the MP3 player and the code for video processing to the ATM.
As a consequence, instead of watching the movie on the mobile phone, he may
enjoy the movie on the ad hoc system with larger image on the screen of the
ATM and better sound on the MP3 player.

Fig. 1. A video playback application running on an ad hoc system

Such ad hoc systems may be realized by an adaptive Java software frame-
work, FRAME [6, 7]. FRAME may automatically distribute software components to
each participating devices and provide the functionalities of a middleware to
allow these components to execute cooperatively. However, mobile computing
environments are not likely static and, hence, ad hoc systems may be unstable.
For example, some participating devices may leave the ad hoc system during the
execution of the application. Therefore, the code on these leaving devices have
to migrate to other devices in the system for proper execution of the application.
In this paper, we shall illustrate the approach to improve FRAME for this chal-
lenge. We also discuss the issue of the performance impact on the application
execution, and introduce two possible performance improvement.

We shall briefly describe the architecture of FRAME in the next section. Section 3
illustrates an approach for solving instability problem of ad hoc systems, discusses
the performance issue, and describes how we improve it. We applied the improved
FRAME to a robot application and measured the performance impact. The results

An Ad Hoc Approach to Achieve Collaborative Computing 171

are illustrated in Sect. 4. Finally, the last two sections will give a summary, survey
of related work, and then discuss potential future investigations.

2 Adaptive Software Framework: FRAME

The central themes of FRAME are component, constraint, and assembly. The ar-
chitecture of FRAME [6, 7] may be summarized as follows.

Component: An application is composed of components. Each component pro-
vides services to cooperate with other components. The services define the
dependency of the components and form a software hierarchy tree, i.e., a par-
ent component requires services from its child components and vice versa.

Implementation: A component may have more than one implementation.
Each implementation provides the same functionality of the component but
with different performance, quality, and resource requirements. Only one
implementation of each component is needed to execute a program. For ex-
ample, the audio component of the video playback application may have two
implementations. Each is able to process the audio of the movie but with
different sound quality and computation resources. The implementation with
better sound quality may require more computation resources than the mo-
bile phone has. Of course, such an implementation should not be executed
on the mobile phone. The question for which implementation is feasible on
the given device will be answered with help from constraints. Finally, the
software hierarchy information, such as what components the application
has and what implementations of the component has, will be registered to a
database server called the component registry.

Constraint: Each implementation may have a set of constraints embedded. A
constraint is a predicate and used to specify whether the given computing
environment has resources that the implementation requires. It may also
specify the execution performance and quality of the implementation. The
constraints of the implementation are used by the assembly process to de-
termine whether the implementation is feasible on the given device.

Assembly: A process called assembly will resolve, on the fly by querying the
component registry, what components and their implementations an appli-
cation has. For each component, the assembly process will load each imple-
mentation and check its constraints on a given device. If all constraints are
satisfied, the implementation is feasible on the device. Hence, the compo-
nent with the feasible implementation will be distributed to the device. As
shown in Fig. 2, there may be an implementation for audio component with
better sound quality and all its constraints are satisfied on the MP3 player
but not the mobile phone and the ATM. Thus the audio component will be
distributed to the MP3 player.

Execution: After all the components are distributed, the application begin to
execute.

172 R.-S. Ko and M.W. Mutka

Fig. 2. Components will be distributed to appropriate devices based on their constraints

Table 1. if-else statement structure

if (constraints of component 1 with implementation 1)
{ // select component 1 with implementation 1

if (constraints of component 2 with implementation 1)
{ // select component 2 with implementation 1

// check each implementation of component 3, 4,...
}
else if (constraints of component 2 with implementation 2)
{ // select component 2 with implementation 2

// check each implementation of component 3, 4,...
}
... // more else if blocks for other implementations of component 2

}
else if (constraints of component 1 with implementation 2)
{ // select component 1 with implementation 2

// similar as the code in the if block of
// component 1 with implementation 1

}
... // more else if blocks for other implementations of component 1

The traditional approach to distribute components to appropriate devices
based on constraints is to use condition statements such as if-else statements. For
example, suppose there is an application that may have components 1, 2, . . . , N ,
where component i has Mi implementations. Thus, there may be nested if-else

An Ad Hoc Approach to Achieve Collaborative Computing 173

statements similar to Table 1. First, it checks if the constraints of component
1 with implementation 1 are true. If yes, it will has code in its if block to
check appropriate implementation of component 2, then 3, and so on. If not, it
will jump to else if block to check the component 1 with implementation 2.
The code in its else if block of implementation 2 are same as implementation
1. Thus, if constraints of implementation 2 are true, it will check appropriate
implementation of component 2, then 3, and so on. The process will find an
appropriate implementation for component 1 first, then 2, 3, and so on.

The condition statements approach is primitive from the software engineering
perspective. As the number of components and their implementations increase,
the code tends toward so called “spaghetti code” that has a complex and tangled
control structure and the software will become more difficult to maintain or
modify.

The most important limitation of the condition statements approach is that
condition statements are hard-coded. Thus, the availability of all implementa-
tions need to be known during the development stage. It is not flexible enough to
integrate newly developed implementations without rewriting and recompiling
the code, and, of course, the down-time.

To avoid the above limitations, the assembly process uses the following two-
step approach:

1. Components distribution: In this step, the assembly process will dis-
tribute components to participating devices. Note that there will be nc differ-
ent component distributions with n participating devices and c components.
By using the information stored in the component registry, the assembly
process may be able to identify all the component implementation of an
application. Since the assembly process queries this information during run-
time, the above limitations of the condition statements approach are avoided
as long as newly developed implementations register their information to the
component registry. When all components of a distribution are distributed,
all the constraints will be collected and the assembly process will proceed to
next step for solving these constraints.

2. Constraints solving: For each component, the assembly process will find
out if all the constraints are satisfied. If all the constraints of the distribution
are satisfied, the distribution is feasible and the application may execute on
this distribution. FRAME uses a backtracking algorithm [8] for solving con-
straint satisfaction problems. If one of the constraints within this distribu-
tion is not satisfied, the assembly process will return to the first step for next
distribution.

3 Reassembly

A straightforward idea for solving the instability problem of ad hoc systems
is to monitor the computing environment changes. If some of constraints fail
due to environmental changes, the application execution will be temporarily

174 R.-S. Ko and M.W. Mutka

suspended, the component assembly process will be re-invoked, and then the ap-
plication execution will resume with appropriate implementations of the compo-
nents. However, one challenge for this reassembly approach is performance, since
the assembly process involves I/O activities, such as communication between de-
vices, and intense computation, such as constraints solving to find the feasible
distribution. In our experiments, the assembly process of the robot application is
about 650 times slower than the similar application hard coded by if-else condi-
tion statements. It will be not feasible to simply re-invoke the assembly process
for the reassembly, especially on a small temporal scale of environment change.
Therefore, we propose two schemes, partial reassembly and caching, to improve
the performance.

First, we observe that not all components need to be changed for the reassem-
bly process and it is unnecessary to examine the constraints of these components.
Thus, developers may only specify the subset of the components to be examined
to reduce the run-time monitoring performance impact and the constraints solv-
ing time. For the video playback application example, the person may always
carry the mobile phone and MP3 player, but not the ATM. As the person walks
around, the connections between the ATM and other devices may drop, and
then the ATM will leave the ad hoc system. Therefore, as shown in Fig. 3, it is
only necessary to monitor the ATM and perform the video component migration
when the ATM leaves.

Fig. 3. Example of partial reassembly

The other performance improvement is to use cache, which may be done in two
different levels. The first level is to cache the component distribution results, i.e.,
the first step of the assembly process. The purpose of the first step is to find possi-
ble distributions and collect all the constraints of each distribution for constraints
solving. If no component implementation is added or removed, the constraints
of each distribution will remain the same and the first step may be avoided.

The second level is to cache the computing environment, a more aggressive
scheme based on the assumption that the computing environments will repeat.

An Ad Hoc Approach to Achieve Collaborative Computing 175

A computing environment will be used as a key, and its assembly results are
cached in a hash table with the key as shown in Fig. 4. That is, a computing
environment may contain information that an application requires for execution,
such as number of participating devices, network bandwidth, hardware, etc. Thus
the information may be converted to a key for caching via a hash function. If
the computing environment repeats, its assembly results may be obtained from
the cache with the key.

Fig. 4. Flow of reassembly cache

4 Performance Evaluation

We use a robot, XR4000 [12], to evaluate the performance of the component
reassembly process. We compare the performance of different implementation
selection schemes, including component reassembly with and without caching,
and also evaluate the performance of the similar application using hard coded if-
else condition statements. The performance is measured versus different number
of the component implementations registered in the component registry.

To highlight the relationship between the performance and these different im-
plementation selection schemes, we simplify the software hierarchy so the mea-
sured application has only one component with multiple implementations to be
assembled. As a consequence, what the reassembly process actually does is to
select an appropriate implementation of the component. Note that performance
is application dependent, and, therefore, the performance comparison may not
be same for different applications.

Figure 5 shows that the time required for the constraints solving step, which
is about 50% ∼ 60% of the total time for assembly or non-cached reassembly. If
the application hierarchy does not change and no new implementation is added,
the first level caching may be used. The non-cached reassembly may be approxi-
mately reduced to the constraint solving step, which is a 40% ∼ 50% time saving.

Figure 6 compares the time required to search for the appropriate implemen-
tation of the component by the different schemes, i.e., non-cached reassembly,
cached reassembly, and hard coded if-else statement. The if-else scheme requires
about 0.003 ∼ 0.018 ms that depends on the number of implementations. The

176 R.-S. Ko and M.W. Mutka

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Number of implementations

Reassembly Performance
Total

Constraint solving

Fig. 5. Constraints solving performance of reassembly

10-3

10-2

10-1

100

101

102

 2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Number of implementations

Performance Comparison
Cached
If-else

Non-cached

Fig. 6. Performance comparison for different component selection scheme

non-cached reassembly requires about 2.1 ∼ 12.1 ms that also depends on the
number of implementations, and it is about 650 times slower than the if-else
scheme.

The result also shows that the cached reassembly requires about 0.29 ms and
improves the reassembly speed by a factor of 7 ∼ 40, and may be only about 15
times slower than if-else scheme. Unlike if-else and non-cached schemes, the cache

An Ad Hoc Approach to Achieve Collaborative Computing 177

access time is constant and independent on the number of implementations.
Thus, the performance improvement becomes more significant while the number
of implementations increases. Also, the constant assembly time of cache makes
the execution time of the application more predictable, which is an important
issue for real-time applications.

Reassembly will load and unload the implementations of component whenever
necessary, which will free some unnecessary memory, a scarce resource in embed-
ded systems. Depending on how the application is developed, reassembly may
save the memory usage. For example, the robot application using hard coded
if-else statements has all implementations preloaded for better performance.
However, this is a trade-off with memory usage. Fig. 7 shows that preloaded
components require about 50% more memory than the reassembly scheme.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 18 20

M
em

or
y

si
ze

 (
M

B
)

Number of implementations

Memory Usage

Reassembly
Preload

Fig. 7. Memory usage comparison for ASAP and component-preloaded

5 Related Work

The original idea of ad hoc systems is introduced in [5]. Lai, et al. [9] use infrared
communication, which allows users to easily connect several devices as an ad hoc
system via infrared communication. They also propose an approach to improve
the performance of the assembly process by grouping the participating devices
into “virtual subsystems” based on the hardware characteristics of the devices.
With properly specifying the constraints, a component will only be distributed
to the devices of the specified virtual subsystem and the time for the assembly
process will be reduced.

There are several other related projects that may deliver applications on
resource-limited devices and perform adaptation when necessary. The Spectra

178 R.-S. Ko and M.W. Mutka

project [2] monitors both application resource usage and the availability of re-
sources in the environment, and dynamically determines how and where to exe-
cute application components. In making this determination, Spectra can gener-
ate a distributed execution plan to balance the competing goals of performance,
energy conservation, and application quality.

Puppeteer [1] is a system for adapting component-based applications in mo-
bile environments, which takes advantage of the exported interfaces of these
applications and the structured nature of the documents they manipulate to per-
form adaptation without modifying the applications. The system is structured
in a modular fashion, allowing easy addition of new applications and adaptation
policies.

Gu, et al. [3] propose an adaptive offloading system that includes two key
parts, a distributed offloading platform [11] and an offloading inference [4]. The
system will dynamically partition the application and offload part of the ap-
plication execution data to a powerful nearby surrogate. This allows delivery of
the application in a pervasive computing environment without significant fidelity
degradation.

Compositional adaptation exchanges algorithmic or structural system com-
ponents with others that improve a program’s fit to its current environment.
With this approach, an application can add new behaviors after deployment.
Compositional adaptation also enables dynamic recomposition of the software
during execution. McKinley, et al. [10] gives a review of current technologies
about compositional adaptation.

6 Conclusion and Future Work

Limited computing resources may often cause poor performance and quality.
To overcome these limitations, we introduce the idea of ad hoc systems, which
may break the resource limitation and give mobile devices more potential usage.
That is, several resource-limited devices may be combined as an ad hoc system to
complete a complex computing task. We also illustrate how the adaptive software
framework, FRAME, may realize ad hoc systems. FRAME provides the functionalities
of a middleware to allow software components to execute cooperatively. Most
importantly, with constraints embedded in the component implementations, the
assembly process of FRAME is able to automatically distribute these components
to appropriate devices.

However, mobile computing environments are dynamic and ad hoc systems
may be unstable since the participating devices may leave the ad hoc systems at
their will. Thus, the code on some devices may need to migrate to another de-
vices. We propose the reassembly process for this instability problem; i.e., if some
constraints fail due to environmental changes, the application execution will be
temporarily suspended, the component assembly process will be re-invoked, and
then the application execution will resume with appropriate implementations
of the components. Furthermore, the reassembly performance is an important
issue for seemlessly execution of applications. To further reduce the performance

An Ad Hoc Approach to Achieve Collaborative Computing 179

impact of the reassembly process, two approaches, partial reassembly and caching,
are proposed. Our experimental results show that the caching improves the re-
assembly speed by a factor of 7 ∼ 40 and the time for reassembly is constant
and hence predictable.

There is room for performance improvement. For instance, the constraints
solving performance depends on the number of distributions and the number
of constraints in each distribution. To improve the backtracking algorithm, if
more information may be extracted from the relationship between constraints,
some redundancy may be found between the constraints. Thus, truth checking
for some constraints may be avoided. Moreover, more performance evaluation
and measurement will be conducted in the future, including power consumption
of large-scale ad hoc systems.

One important aspect of ubiquitous computing is the existence of disappear-
ing hardware [13] that are mobile, have small form factor and usually limited
computation resources. Since the constraints solving may require a lot of com-
putation, these disappearing hardware may not have enough resources. One so-
lution is to use a dedicated server for the off-site assembly process. Therefore,
the participating devices may send the environment information to the server
for assembly, and retrieve assembly results and the appropriate implementations
of the components.

References

[1] E. de Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer: Component-based
Adaptation for Mobile Computing. In Proceedings of the 3rd USENIX Symposium
on Internet Technologies and Systems, San Francisco, California, Mar. 2001.

[2] J. Flinn, S. Park, and M. Satyanarayanan. Balancing Performance, Energy, and
Quality in Pervasive Computing. In Proceedings of the 22nd International Con-
ference on Distributed Computing Systems, Vienna, Austria, July 2002.

[3] X. Gu, A. Messer, I. Greenberg, D. Milojicic, and K. Nahrstedt. Adaptive of-
floading for pervasive computing. IEEE Pervasive Computing, 3(3):66–73, July-
September 2004.

[4] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic. Adaptive Offload-
ing Inference for Delivering Applications in Pervasive Computing Environments.
In Proceedings of IEEE International Conference on Pervasive Computing and
Communications, pages 107–114, 2003.

[5] R.-S. Ko. ASAP for Developing Adaptive Software within Dynamic Heterogeneous
Environments. PhD thesis, Michigan State University, May 2003.

[6] R.-S. Ko and M. W. Mutka. Adaptive Soft Real-Time Java within Heterogeneous
Environments. In Proceedings of Tenth International Workshop on Parallel and
Distributed Real-Time Systems, Fort Lauderdale, Florida, Apr. 2002.

[7] R.-S. Ko and M. W. Mutka. FRAME for Achieving Performance Portability within
Heterogeneous Environments. In Proceedings of the 9th IEEE Conference on En-
gineering Computer Based Systems (ECBS), Lund University, Lund, SWEDEN,
Apr. 2002.

[8] V. Kumar. Algorithms for Constraints Satisfaction problems: A Survey. The AI
Magazine, by the AAAI, 13(1):32–44, 1992.

180 R.-S. Ko and M.W. Mutka

[9] C.-C. Lai, R.-S. Ko, and C.-K. Yen. Ad Hoc System : a Software Architecture
for Ubiquitous Environment. In Proceedings of the 12th ASIA-PACIFIC Software
Engineering Conference, Taipei, Taiwan, Dec. 2005.

[10] P. K. Mckinley, S. M. Sadjadi, E. P. Kasten, and B. H. Cheng. Composing Adap-
tive Software. IEEE Computer, 37(7), July 2004.

[11] A. Messer, I. Greenberg, P. Bernadat, D. S. Milojicic, D. Chen, T. J. Giuli, and
X. Gu. Towards a Distributed Platform for Resource-Constrained Devices. In
Proceedings of the IEEE 22nd International Conference on Distributed Computing
Systems, pages 43–51, Vienna, Austria, 2002.

[12] Nomadic Technologies, Inc., Mountain View, CA. Nomad
XRDEV Software Manual, Mar. 1999. Information available at
http://nomadic.sourceforge.net/production/manuals/xrdev-1.0.pdf.gz.

[13] M. Weiser. The Computer for the 21st Century. Scientific American, 265(3):66–75,
Sept. 1991. Reprinted in IEEE Pervasive Computing, Jan-Mar 2002, pp. 19-25.

Optimizing Server Placement for QoS

Requirements in Hierarchical Grid Environments

Chien-Min Wang1, Chun-Chen Hsu2, Pangfeng Liu2,
Hsi-Min Chen3, and Jan-Jan Wu1

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C.
{cmwang,wuj}@iis.sinica.edu.tw

2 Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan, R.O.C.

{d95006,pangfeng}@csie.ntu.edu.tw
3 Department of Computer Science and Information Engineering, National Central

University, Taoyuan, Taiwan, R.O.C.
seeme@selab.csie.ncu.edu.tw

Abstract. This paper focuses on two problems related to QoS-aware
I/O server placement in hierarchical Grid environments. Given a hi-
erarchical network with requests from clients, the network latencies of
links, constraints on servers’ capabilities and the service quality require-
ment, the solution to the minimum server placement problem attempts
to place the minimum number of servers that meet both the constrains
on servers’ capabilities and the service quality requirement. As our model
considers both the different capabilities of servers and the network la-
tencies, it is more general than similar works in the literatures. Instead
of using a heuristic approach, we propose an optimal algorithm based
on dynamic programming to solve the problem. We also consider the
optimal service quality problem, which tries to place a given number of
servers appropriately so that the maximum expected response time is
minimized. We prove that an optimal server placement can be achieved
by combining the dynamic programming algorithm with a binary search
on the service quality requirement. The simulation results clearly show
the improvement in the number of servers and the maximum expected
response time.

1 Introduction

Grid technologies enable scientific applications to utilize a wide variety of dis-
tributed computing and data resources [1]. A Data Grid is a distributed storage
infrastructure that integrates distributed, independently managed data resources.
It addresses the problems of storage and data management, data transfers and
data access optimization, while maintaining high reliability and availability of
the data. In recent years, a number of Data Grid projects [2,3] have emerged in
various disciplines.

One of the research issues in Data Grid is the efficiency of data access. One
way of efficient data access is to distribute multiple copies of a file across different

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 181–192, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

182 C.-M. Wang et al.

server sites in the grid system. Researches [4,5,6,7,8,9] have shown that file repli-
cation can improve the performance of the applications.

The existing works focus on how to distribute the file replicas in Data Grid in
order to optimize different criteria such as I/O operation costs [5], mean access
latencies [8] and bandwidth consumption [9]. However, few works use the quality
of services as an performance metric of Data Grid. We believe the service quality
is also an important performance metric in Data Grid due to the dynamic nature
in the grid environment. In [10,11], quality of service is considered. Those works,
however, fail to take the heterogeneity of servers’ capabilities into consideration.
That is, in those works, servers are assumed to be able to serve all I/O requests
it received. This assumption omits one of the characteristics in grid computing
infrastructure: the heterogeneity of its nature. In an early work by Wang [12],
they considered the servers’ capabilities when minimizing the number of servers.

In this paper, we focus on two QoS-aware I/O server placement problems in
hierarchical Grid environments which consider the service quality requirement,
the capabilities of servers and the network latencies. As our model consider both
the different capabilities of servers and the network latencies, it is more general
than similar works in the literatures. The minimum server placement problem
asks how to place the minimum number of servers to meet both the constrains on
servers’ capabilities and the service quality requirement. We propose an optimal
algorithm based on dynamic programming to solve this problem. We also con-
sider the optimal service quality problem, which tries to place a given number of
servers appropriately so that the maximum expected response time is minimized.
We prove that such a server placement can be achieved by combining the dy-
namic programming algorithm with a binary search on the maximum expected
response time of servers. The experimental results clearly show the improvement
in the number of servers and the maximum expected response time.

2 The System Model

In this paper we use a hierarchical Grid model, one of the most common archi-
tectures in current use [7,9,10,11,12,13]. Consider Fig. 1 as an example. Given a
tree T = (V, E), V is the set of sites and E ∈ V × V represents network links
between sites. A distance duv associated with each edge (u, v) ∈ E represents
the latency of the network link between sites u and v. We may further extend
the definition of duv as the latency of a shortest path between any two sites u
and v.

Leaf nodes represent client sites that send out I/O requests. The root node is
assumed to be the I/O server that stores the master copies of all files. Without
loss of generality, we assume that the root node is the site 0. Intermediate nodes
can be either routers for network communications or I/O servers that store file
replicas. We assume that, initially, only one copy (i.e., the master copy) of a file
exists at the root site, as in [9,10,11,12,13]. Let Ti be the sub-tree rooted at node i.

Associated with each client site i, there is a parameter ri that represents the
arrival rate of read requests for client site i. A data request travels upward from

Optimizing Server Placement for QoS Requirements 183

Site 0

Site 5Site 4 Site 6 Site 7

Site 10 Site 11 Site 12 Site 13

Site 3

Site 2

Site 8

Site 1

Site 9

Fig. 1. The hierarchical Grid model

a client site and passes through routers until it reaches an I/O server on the
path. Upon receiving the request, the I/O server sends the requested file back to
the client site if it owns a copy of the requested file. Otherwise, it forwards the
request to its parent server. This process continues up the hierarchy recursively
until a node that has the requested file is encountered or the root node is reached.
The network latency of a I/O request from a client site to a server site can be
computed as the sum of the network latencies of all intermediate links between
both sites. The root server might update the contents of a file. For each update,
corresponding update requests are sent to the other I/O servers to maintain file
consistency. Let u be the arrival rate of update requests from the root server.

For each server site j, μ′
j and λ′

j are represented as the service rate and the
arrival rate of I/O requests of server site j respectively. λ′

j can be computed as:
λ′

j =
∑

i∈Cj
ri + u, where Cj is the set of clients served by server site j. We

assume each server in the grid system is a M/M/1 queueing system. Thus, the
expected waiting time at server j will be 1/(μ′

j − λ′
j) = 1/(μ′

j − u −
∑

i∈Cj
ri).

To simplify the notations, we will use μj = μ′
j − u and λj =

∑
i∈Cj

ri as the
service rate and the arrival rate of server site j throughout this paper.

μj and λj will be used to decide the expected response times of requests it
served. Suppose the I/O requests from site i are served by server j. The expected
response time of a request from site i can be defined as the sum of the network
latencies in the path and the server j’s expected waiting time, i.e., dij + 1

μj−λj
.

Given the service quality requirement t, a server site j must satisfy the follow-
ing conditions: (1) the arrival rate of all requests it served is less than its service
rate, i.e., λj < μj and (2) the expected response times of all requests it served
are less than or equal to t, i.e., maxi∈Cj {dij + 1

μj−λj
} ≤ t, where Cj is the set

of clients served by server site j. Let the expected response time of serverj be
the maximum expected response time of requests it served.

3 The Minimum Server Placement Problem

In this section, we formally define the minimum server placement problem and
introduce our optimal algorithm to this problem. Our first problem is to place
the minimum number of I/O servers that will satisfy capability constrains of
servers as well as the service quality requirement from clients.

184 C.-M. Wang et al.

Definition 1. Given the network topology, network latencies, request arrival
rates, I/O service rates and the service quality requirement, the minimum server
placement problem tries to place the minimum number of servers such that the
expected response time of any request is less than or equal to the service quality
requirement.

Before introducing the optimal algorithm, we first give definitions on three basic
functions as follows:

Definition 2. Let λ(i, m, d, t) be the minimum arrival rate of requests that reach
node i among all the server placements that meet the following three conditions.

1. At most m servers are placed in Ti − {i}
2. The expected response time of any request served by these servers must be

less than or equal to t.
3. If requests that reach node i exist, the maximum latency of these requests to

node i must be less than or equal to d.

Definition 3. Let ω(i, m, d, t) be the minimum arrival rate of leakage requests
that pass through node i among all the server placements that meet the following
three conditions.

1. At most m servers are placed in Ti.
2. The expected response time of any request served by these servers must be

less than or equal to t.
3. If leakage requests that pass through node i exist, the maximum latency of

these leakage requests to node i must be less than or equal to d.

Definition 4. Ω(i, m, d, t) is an optimal server placement that meets all the
requirements for ω(i, m, d, t).

Leakage requests that pass through node i are those requests generated by leaf
nodes in the sub-tree rooted at node i, but not served by servers in that sub-tree.
Such requests must be served by a server above node i in the hierarchy. Hence, it is
desirable to minimize the arrival rate of these leakage requests. Depending on the
server placement, the arrival rate of leakage requests may changes. ω(i, m, d, t)
represents the minimum arrival rate of leakage requests among all possible server
placements that satisfy the above three conditions while Ω(i, m, d, t) represents
an optimal server placement. If no server placement satisfy the above three con-
ditions, ω(i, m, d, t) simply returns null. Let n be the number of nodes in the grid
system. By definition, we can derive the following lemmas.

Lemma 1. ω(i, m1, d, t) ≤ ω(i, m2, d, t) for any node i, m1 ≥ m2 ≥ 0, d ≥ 0
and t ≥ 0.

Lemma 2. ω(i, m, d, t1) ≤ ω(i, m, d, t2) for any node i, m ≥ 0, d ≥ 0 and
t1 ≥ t2 ≥ 0.

Lemma 3. ω(i, m, d1, t) ≤ ω(i, m, d2, t) for any node i, m ≥ 0, d1 ≥ d2 ≥ 0 and
t ≥ 0.

Optimizing Server Placement for QoS Requirements 185

Lemma 4. If ω(i, m, d1, t) = 0 for some d1, then ω(i, m, d, t) = 0 for any d ≥ 0.

Based on the above lemmas, theorems for computing the minimum arrival rate of
leakage requests can be derived. We show that it can be computed in a recursive
manner.

Theorem 1. If node i is a leaf node, then ω(i, m, d, t) = λi and Ω(i, m, d, t) is
an empty set for 0 ≤ m ≤ n, d ≥ 0 and t ≥ 0.

Proof. Since a leaf node cannot be a server, all requests generated by a client
site will travel up the tree toward the leaf node’s parent. In addition, the latency
to node i must be 0. By definition, ω(i, m, d, t) = λi and Ω(i, m, d, t) is an empty
set for 0 ≤ m ≤ n, d ≥ 0 and t ≥ 0.

Theorem 2. For an intermediate node i with two child nodes, j and k, we can
derive:

λ(i, m, d, t) = min0≤r≤m{ω(j, r, d − dji, t) + ω(k, m − r, d − dki, t)}
ω(i, m, d, t) = 0 if there exists 0 ≤ d′ ≤ t such that

λ(i, m − 1, d′, t) + 1/(t − d′) ≤ μi.
ω(i, m, d, t) = λ(i, m, d, t), otherwise.

Proof. For node i, there are two possibilities for an optimal placement of at
most m servers:

Case 1: A server is placed on node i. At most m − 1 servers can be placed on Tj

and Tk. Suppose that, in an optimal server placement, there are p servers on Tj

and q servers on Tk, as shown in Fig. 2(a). Obviously, we have 0 ≤ p, q ≤ m − 1

j i
0

10ω (j ,p , d−d , t)

 (j ,q , d−d , t)ω

j i
2

1
ij

ω (i , m, d, t)

λ (i ,p , d, t)1 2

 (i ,p , d, t)λ

ikij

Sitej Sitek

(i, m, d, t) = 0ω

ω(j, p, d−d , t)

ji(j, p, d−d , t)ω

ω(i, m, d, t) = 0

kSitejSite

Sitej Sitek

(i, m, d, t) = 0ω

j0Site

j1Site

j2Site

iSite

Site jk−1

j0Site j1Site j2Site Site jk−1

iSite

j i
k−1

 (j ,q , d−d , t)

 (j ,q , d−d , t)

(k, m−1−p, d−d , t)

(e)

 (i ,p +q , d, t)λ

0 1

(d)

(c)

Sitei iμ

2ω

(b)

μiiSite

2ω1ω

(a)

Sitei iμ

...

...

k−1 k−1k−1

 (i ,p , d, t)λk−2 k−1 k−1 k−1

22ω

1 1ω

ω

Fig. 2. (a), (b) and (c) illustrate the concept of Theorem 2. (d) and (e) illustrate the
basic concept of Theorem 3.

186 C.-M. Wang et al.

and p + q ≤ m − 1. Without loss of generality, we may assume the arrival rates
of leakage requests from node j and node k are ω1 and ω2 and the maximum
latencies of their leakage requests are d1 and d2, respectively. The maximum
latency of requests that reach node i is assumed to be d′.

Next, we show that another optimal server placement can be generated by
substituting the placement of p servers on Tj with Ω(j, p, d′ − dji, t) as shown in
Fig. 2(b). If ω1 �= 0, then d′ ≥ d1 + dji. We can derive

ω1 ≥ ω(j, p, d1, t) ≥ ω(j, p, d′ − dji, t)

After the substitution, the arrival rate of requests that reach node i can be
reduced while the maximum latency of requests remains unchanged. Thus, it is
also an optimal server placement. On the other hand, if ω1 = 0, we can derive

0 = ω1 = ω(j, p, d1, t) = ω(j, p, d′ − dji, t)

In this case, it is also an optimal server placement. Therefore, another optimal
server placement can be generated by substituting the placement of p servers on
Tj with Ω(j, p, d′ − dji, t). Similarly, we can show that another optimal server
placement can be generated by replacing the placement of q servers on Tk with
Ω(k, m − 1 − p, d′ − dki, t) as shown in Fig. 2(c).

ω2 ≥ ω(k, q, d2, t) ≥ ω(k, q, d′ − dki, t) ≥ ω(k, m − 1 − p, d′ − dki, t) if ω2 �= 0

0 = ω2 = ω(k, q, d2, t) = ω(k, q, d′ − dki, t) = ω(k, m − 1 − p, d′ − dki, t) if ω2 = 0

By assumption, the maximum expected response time of leakage requests that
reach node i is less than or equal to t. In other words, d′ + 1/(μi − ω1 − ω2) ≤ t.
Accordingly, we an derive

μi ≥ ω1 + ω2 + 1/(t − d′)
≥ ω(j, p, d′ − dji, t) + ω(k, m − 1 − p, d′ − dki, t) + 1/(t − d′)
≥ λ(i, m − 1, d′, t) + 1/(t − d′)

Therefore, there exists 0 ≤ d′ ≤ t such that λ(i, m − 1, d′, t) + 1/(t − d′) ≤ μi.
In this case, Fig. 2(c) is an optimal server placement and ω(i, m, d, t) = 0. This
completes the proof of Case 1.

Case 2: No server is placed on node i. Consequently, at most m servers are placed
on Tj and Tk. Obviously, we have 0 ≤ p, q ≤ m and p + q ≤ m. Suppose that,
in an optimal server placement, there are p servers on Tj and q servers on Tk.
Without loss of generality, we may assume the arrival rates of leakage requests
from node j and node k are ω1 and ω2 and their maximum latencies are d1 and
d2, respectively. The maximum latency of requests that reach node i is assumed
to be d. Similar to the proof of Case 1, the optimal arrival rate of leakage requests
can be computed as

ω(i, m, d, t) = ω1 +ω2
≥ ω(j, p, d1, t) +ω(k, q, d2, t)
≥ ω(j, p, d − dji, t) +ω(k, q, d − dki, t)
≥ ω(j, p, d − dji, t) +ω(k, m − 1 − p, d − dki, t)
≥ λ(i, m, d, t)

Optimizing Server Placement for QoS Requirements 187

Since it is an optimal server placement, all the equalities must hold. Therefore,
this theorem holds for Case 2. Since an optimal server placement must be one
of the two cases, this completes the proof of this theorem.

Theorem 3. For an intermediate node i with k child nodes j0, . . . , jk−1, the
minimum arrival rate of leakage requests that pass through node i can be com-
puted iteratively as follows:

λ0(i, m, d, t) = ω(j0, m, d − dj0i, t)
λq(i, m, d, t) = min0≤r≤m{λq−1(i, r, d, t) + ω(jq, m − r, d − djqi, t)},

1 ≤ q ≤ k − 1,
ω(i, m, d, t) = 0 if there exists 0 ≤ d′ ≤ t such that

λk−1(i, m − 1, d′, t) + 1/(t − d′) ≤ μi

ω(i, m, d, t) = λk−1(i, m, d, t), otherwise

Proof. Fig. 2(d) and 2(e) illustrate the basic concept of this theorem. To find an
optimal server placement, we can view an intermediate node with k child nodes
in Fig. 2(d) as the sub-tree in Fig. 2(e). Then, the minimum arrival rate of
leakage requests can be computed recursively along the sub-tree. As the detailed
proof of this theorem is similar to that of Theorem 3, it is omitted here.

Theorem 4. The minimum number of I/O servers that meet their constraints
can be obtained by finding the minimum m such that ω(0, m, 0, t) = 0.

Corollary 1. Let m′ be the minimum number of servers found by the dynamic
programming algorithm. m′ grows nondecreasingly when the service quality re-
quirement t decreases.

Based on Theorems 1 to 3, we can compute the minimum arrival rates of leakage
requests that start from leaf nodes and work toward the root node. After the
minimum arrival rate of leakage requests that reach the root node has been
computed, the minimum number of I/O servers that meet their constraints can
be computed according to Theorem 4. The proposed algorithm is presented in
Fig. 3.

In the first line of the algorithm, we sort all nodes according to their distances
to the root node in decreasing order. This ensures that child nodes will be com-
puted before their parents so that Theorems 1 to 3 can be correctly applied. The
execution time of this step is O(n log n). The loop in line 2 iterates over every
node in the system. Note that there are at most n values on the maximum latency
to some node i. Thus, for each leaf node, it takes O(n2) execution time in line 4.
For an intermediate node that has k child nodes, it takes O(n3) execution time
in line 9, and iterates k−1 times in line 8. This results in O(kn3) execution time
for lines 8 to 10. Lines 11 to 16 also take O(n2) execution time. Consequently, the
complexity of lines 3 to 16 is O(kn3) and the complexity of the whole algorithm
is O(n4), where n is the number of nodes in the Grid system. The complexity
can be further reduced to O(p2n2), where p is the minimum number of servers,
by computing ω(i, m, d, t) incrementally from m = 0 to m = p.

188 C.-M. Wang et al.

Algorithm Minimum Leakage

Input: 1. the arrival rate λi for all leaf nodes.

2. the service rate μi for all intermediate nodes.

3. the network latency dji

4. the service quality requirement t.

Output: the minimum arrival rate ω(i, m, d, t) for 0 ≤ i, m ≤ n.

Procedure:
1. sort all nodes according to their distance to the root node in decreasing order.
2. for each node i do
3. if node i is a leaf node then
4. compute ω(i, m, d, t) = λi for 0 ≤ m ≤ n
5. else
6. let the child nodes of node i be nodes j0, . . . , jk−1
7. compute λ0(i, m, d, t) = ω(j0, m, d − dj0i, t), 0 ≤ m ≤ n
8. for q from 1 to k − 1 do
9. λq(i, m, d, t) = min0≤r≤m{λq−1(i, r, d, t) + ω(jq, m − r, d − djqi, t)}, 0 ≤ m ≤ n
10. endfor
11. for m from 0 to n do
12. if exists d′, 0 ≤ d′ ≤ t, such that λk−1(i, m − 1, d′, t) + 1/(t − d′) ≤ μi

13. ω(i, m, d, t) = 0
14. else
15. ω(i, m, d, t) = λk−1(i, m, d, t)
16. endfor
17. endif
18. endfor

Fig. 3. An optimal algorithm for the minimum server placement problem.

4 The Optimal Service Quality Problem

In this section, we try to place a given number of servers appropriately so that
the maximum expected response time of servers is minimized. We call this the
optimal service quality problem.

Definition 5. Given the network topology, request arrival rates, service rates
and network latencies of links, the optimal service quality problem aims at placing
a given number of I/O servers so that the maximum expected response time of
the Grid system is minimized.

Let m be the number of servers to be placed. We aim to place m servers such
that the maximum expected response time is minimized. To achieve this goal, we
can perform a binary search on the service quality requirement t. Given a service
quality requirement t, we can use the dynamic programming algorithm described
in Section 3 to find an optimal server placement such that the maximum expected
response time of servers is less or eqaul to t. Let the minimum number of servers
be m′. If m′ > m, according to Corollary 1, we cannot find a placement of
m servers whose maximum expected response time is less than or equal to t.
Therefore, when m′ > m, we need to increase t to find a server placement with
m servers and, when m′ < m, we may decrease t to find if a better server
placement exists.

Before applying a binary search, we have to determine an upper bound and
a lower bound. It is rather easy to get an upper bound and a lower bound on

Optimizing Server Placement for QoS Requirements 189

the maximum expected response time. We can use 1/(μmax − λmin) as a proper
lower bound, where μmax is the maximum server capability of servers and λmin

is the minimum requests of clients. A upper bound can be computed by the
following steps. First, we set t to a sufficient large value and find a server place-
ment. According to Corollary 1, the number of used servers must be smaller
than or equal to m. Then we can use the maximum expected response time of
servers as a proper upper bound. Next, we can combine a binary search of the
maximum expected response time and the dynamic programming algorithm for
the minimum server placement problem to find the optimal value of the maxi-
mum expected response time. Because the lower bound and the upper bound of
the binary search are both functions of the input parameters, the algorithm is
strongly polynomial.

5 Experimental Results

In this section we conduct several experiments to evaluate the proposed algo-
rithms. Test cases are generated based on the proposed Grid model. The height
of each case is at most 8. Each node has at most 4 children. The number of
nodes in each test case is between 1250 and 1500. The request arrival rates for
the leaf nodes and the service rates for intermediate nodes are generated from a
uniform distribution. There are four testing groups. Each group has a different
range of network latencies: 0.00005∼0.00015, 0.0005∼0.0015, 0.005∼0.015, and
0.05∼0.15. We will refer them as group 1, 2, 3 and 4, respectively. There are
1000 test cases in each group. Table 1 shows the summary of these parameters.

Table 1. Parameters of experiments

Parameter Description
Height of tree ≤ 8

Number of child nodes ≤ 4
Number of nodes in each case ≈ 1300

Range of arrival rates 1∼4
Range of service rates 50∼350

Range of network latencies 0.00005∼0.00015, 0.0005∼0.0015,
0.005∼0.015 and 0.05∼0.15

First, the experiments for the minimum server placement problem are con-
ducted. We use a greedy heuristic algorithm as a performance comparison with
our dynamic programming algorithm since, to the best of our knowledge, there
are no similar studies on QoS server placement problems that both consider
the server’s capacity and the network latency. The Greedy algorithm works as
follows: in each iteration, it first selects all candidate servers that can satisfy
the service quality requirement t, i.e., the expected response time of requests it
served will less than t. Then it selects a site who has the maximum arrival rate
of I/O requests. The process is repeated until all requests are served.

As the experiments with the four testing groups show similar results , we will
present only the result with group 4. The performance metric is the difference in

190 C.-M. Wang et al.

the number of servers used by Greedy and DP, i.e., the extra number of servers
used by Greedy. The experimental results for the minimum server placement
problem is shown in Fig. 4. The vertical axis shows the number of test cases,
while the horizontal axis shows the difference in the number of servers used by
these two algorithms.

 0

 50

 100

 150

 200

 250

 300

 350

 400

-1 0 1 2 3 4 5 6 7

Nu
mb

er
of

tes
t c

as
es

Improvement on the number of servers
(a)

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10

Nu
mb

er
of

tes
t c

as
es

Improvement on the number of servers
(b)

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16

Nu
mb

er
of

tes
t c

as
es

Improvement on the number of servers
(c)

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25

Nu
mb

er
of

tes
t c

as
es

Improvement on the number of servers
(d)

Fig. 4. Performance comparison for the minimum server problem. (a), (b), (c) and (d)
are experimental results when t is set to 1, 0.75, 0.6 and 0.45 respectively.

In Fig. 4, it is clear that the difference in the number of servers used becomes
significant as t decreases, i.e., as the service quality requirement becomes crucial.
In Fig. 4(a), Greedy generates optimal solutions in 23.9% of the test cases and,
in 84.4% of the test cases, the differences are between 0 and 2. However, in
Fig. 4(d), Greedy generates no optimal solution and over 80% of test cases, the
differences are between 10 and 28 when t is set to 0.45. Although Greedy is rather
fast and easy to implement, the results show that it cannot generate acceptable
solutions when the service quality requirement becomes crucial.

Av
era

ge
 R

es
po

ns
e T

im
e

Number of I/O Servers
(a)

WTB
Greedy

DP

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

 0.016

1201008060

Av
era

ge
 R

es
po

ns
e T

im
e

Number of I/O Servers
(b)

WTB
Greedy

DP

 0.011

 0.012

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 0.019

 0.02

 0.021

 0.022

1201008060

Av
era

ge
 R

es
po

ns
e T

im
e

Number of I/O Servers
(c)

WTB
Greedy

DP

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

1201008060

Av
era

ge
 R

es
po

ns
e T

im
e

Number of I/O Servers
(d)

WTB
Greedy

DP

 0.4
 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95

 1

1201008060

Fig. 5. Performance comparison for the optimal service quality problem. (a), (b), (c)
and (d) are experimental results for group 1, 2, 3, and 4 respectively.

We next conduct the following experiments for the optimal service quality
problem. We compare three algorithms: (1) the DP algorithm combined a binary
search as described in Section 4, (2) the Greedy algorithm combined a binary

Optimizing Server Placement for QoS Requirements 191

search and (3) a waiting-time based(WTB) server placement algorithm described
in [12]. Note that there is no guarantee of performance for the Greedy algorithm
combined a binary search since the Greedy algorithm does not have the property
of Corollary 1. A binary search is only used to adjust t such that Greedy can
generate a placement with m servers. The WTB algotithm is similar to the
algorithm described in Section 4 except it only tries to minimize the maximum
waiting time of servers.

In the experiments, for each group of test cases, we use 4 different values of
server numbers m: 60, 80, 100 and 120. The performance metric is the average of
maximum expected response times of test cases. For each test case, there will be
a maximum expected response time among those m servers. We use the average
of maximum expected response times in 1000 test cases as our performance
metric. The experimental results are shown in Fig. 5. The vertical axis shows
the average expected response time, while the horizontal axis shows the number
of servers m.

In Fig. 5, it is clear that the difference in performance between DP and WTB
becomes larger as the network latency increases. When the network latency is
small with respect to the server’s waiting time, the difference of the average
expected response time is less significant. However, as the network latency in-
creases, the difference becomes larger because the expected response time is
dominated by the network latency and WTB does not take network latencies
into consideration. This result explains the advantage of DP algorithm: it takes
both the server’s waiting time and the network latency into consideration. Thus,
DP can always get the best performance no matter the expected response time
is dominated by either server’s waiting time as the result shown in Fig. 5(a) or
the network latency as the result shown in Fig. 5(d).

In Fig. 5(c) and 5(d), Greedy has a good performance when the number of
I/O servers increases and the network latency dominates the expected response
time. This is mainly due to the power of the binary search. However, as the
expected waiting time dominates the expected response time, Greedy performs
worse than WTB as shown in Fig. 5(a). Therefore, Greedy does not perform well
in all kind of situations like DP does.

6 Conclusions

In this paper, we focus on two QoS I/O server placement problems in Data
Grid environments. We consider the minimum server placement problem which
asks how to place the minimum number of servers that meet both the con-
strains on servers’ capabilities and the service quality requirement. Instead of
using a heuristic approach, we propose an optimal algorithm based on dynamic
programming as a solution to this problem.

The optimal service quality problem is also considered, which tries to place a
given number of servers appropriately so that the maximum expected response
time of servers can be minimized. By combining the dynamic programming al-
gorithm with a binary search on the service quality requirement, we can find

192 C.-M. Wang et al.

an optimal server placement. Several experiments are also conducted, whose re-
sults clearly show the improvement on the number of servers and the maximum
expected response time compared with other algorithms.

Acknowledgments

The authors acknowledge the National Center for High-performance Computing
in providing resources under the national project, “Taiwan Knowledge Innova-
tion National Grid”. This research is supported in part by the National Science
Council, Taiwan, under Grant NSC NSC95-2221-E-001-002.

References

1. Johnston, W.E.: Computational and data Grids in large-scale science and engi-
neering. Future Generation Computer Systems. 18(8) (2002) 1085–1100

2. Grid Physics Network (GriphyN). (http://www.griphyn.org)
3. TeraGrid. (http://www.teragrid.org)
4. Wang, C.M., Hsu, C.C., Chen, H.M., Wu, J.J.: Efficient multi-source data transfer

in data grids. In: CCGRID ’06. (2006) 421–424
5. Lamehamedi, H., Shentu, Z., Szymanski, B.K., Deelman, E.: Simulation of Dy-

namic Data Replication Strategies in Data Grids. In: IPDPS 2003. (2003) 100
6. Deris, M.M., Abawajy, J.H., Suzuri, H.M.: An efficient replicated data access

approach for large-scale distributed systems. In: CCGRID. (2004) 588–594
7. Hoschek, W., Jaén-Mart́ınez, F.J., Samar, A., Stockinger, H., Stockinger, K.: Data

Management in an International Data Grid Project. In: GRID 2000. (2000) 77–90
8. Krishnan, P., Raz, D., Shavitt, Y.: The cache location problem. IEEE/ACM

Transactions on Networking 8(5) (2000) 568–582
9. Ranganathan, K., Foster, I.T.: Identifying Dynamic Replication Strategies for a

High-Performance Data Grid. In: GRID 2001. (2001) 75–86
10. Tang, M.X., Xu, M.J.: QoS-aware replica placement for content distribution. IEEE

Trans. Parallel Distrib. Syst. 16(10) (2005) 921–932
11. Wang, H., Liu, P., Wu, J.J.: A QoS-aware heuristic algorithm for replica placement.

In: International Conference on Grid Computing. (2006) 96–103
12. Wang, C.M., Hsu, C.C., Liu, P., Chen, H.M., Wu, J.J.: Optimizing server placement

in hierarchical grid environments. In: GPC. (2006) 1–11
13. Abawajy, J.H.: Placement of File Replicas in Data Grid Environments. In: Inter-

national Conference on Computational Science. (2004) 66–73

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 193 – 203, 2007.
© Springer-Verlag Berlin Heidelberg 2007

AHSEN – Autonomic Healing-Based Self Management
Engine for Network Management in Hybrid Networks

Junaid Ahsenali Chaudhry and Seungkyu Park

Graduate School of Information and Communication, Ajou University,
Woncheon-dong, Paldal-gu, Suwon, 443-749, Korea

{junaid,sparky}@ajou.ac.kr

Abstract. In this paper, we present a novel self-healing engine for autonomic
network management. A light weight Self Management Frame (SMF) performs
monitoring and optimization functions autonomously and the other self
management functions, driven by context, are invoked on demand from the
server. The policies are maintained to calculate the trust factor for network
entities and those trust factors will be used at the later stages of our project to
enforce resource utilization policies. The plug-ins, residing at the server, are
used to perform the on-demand management functions not performed by SMF
at client side. A Simple Network Management Protocol (SNMP) based
monitoring agent is applied that also triggers the local management entities and
passes the exceptions to the server which determines the appropriate plug-in.
Considering the amount of resources being put into current day management
functions and contemporary autonomic management architectures our findings
show improvement in certain areas that can go a long way to improve the
network performance and resilience.

1 Introduction

As the complexity and size of networks increase so does the costs of network
management [1]. The preemptive measures have done little to cut down on network
management cost. Hybrid networks cater with high levels of QoS, scalability, and
dynamic service delivery requirements. The amplified utilization of hybrid networks
i.e. ubiquitous-Zone based (u-Zone) networks has raised the importance of human
resources, down-time, and user training costs. The u-Zone networks [3] are the fusion
of the cluster of hybrid Mobile Ad-hoc NETworks (MANETs) and high speed mesh
network backbones. They provide robust wireless connectivity to heterogeneous
wireless devices and take less setup time. The clusters of hybrid networks feature
heterogeneity, mobility, dynamic topologies, limited physical security, and limited
survivability [2] and the mesh networks provide the high speed feedback to the
connected clusters. The applications of MANETs vary in a great range from disaster
and emergency response, to entertainment and internet connectivity to mobile users.
Ubiquitous networks are metropolitan area networks which cover great distances and
provide service to heterogeneous users. In this situation, the network availability is
critical for applications running on these networks. This distributed utilization and
network coverage requires some effective management framework that could bring

194 J.A. Chaudhry and S. Park

robustness and resilience to the functionality of these networks. A sample u-Zone
network scenario is shown in figure 1. There are various clusters of devices that are
attached with their gateways and are physically parted but connected with a high
speed backbone. The devices can have variable mobility levels and hence can roam
among various clusters.

Fig. 1. A Ubiquitous-Zone Based Network

Several network management solutions have been proposed in [3], [4], [5], [6], [7]
for wireless sensor networks. The schemes proposed in [4], [5], [6] are confined
strictly to their domains i.e. either mesh network or MANETs. The self management
architecture proposed in [8] might not be appropriate for thin clients. The following
questions rise while considering the self management architecture proposed in [8] for
MANETs.

1. If self healing is one of the FCAPS functions1 (Fault, Configuration, Accounting,
Performance, Security) then what is the physical location of self healing
functions?

2. How does the control, information etc flow from one function to another?
3. If self healing is a fault removing function, then what does the Fault Management

function do?
4. Are these sub-functions functionally independent? If so, then there is evidence of

significant redundancy and if not then how can self healing be thought of, as an
independent entity? In other words, what is the true functionality definition of self
healing?

There has not been a considerable amount of work published on self management
of u-Zone networks. In [3] the authors present unique management architecture for u-
Zone networks. The questions posted above motivates us to propose a flexible self
healing architecture [9] that can not only define the individual functionality of the
participating management functions but can also be lightweight for different nodes. In

1 FCAPS is the ISO Telecommunications Management Network model and framework for

network management.

 AHSEN – Autonomic Healing-Based Self Management Engine 195

this paper, we propose flexible autonomic self management architecture for u-Zone
networks. We propose that the Context Awareness and Self Optimization should be
‘always-on’ management functions and the rest should be ‘on-demand’ functions e.g.
Self Configuration, Fault Management etc. This way we split the information flow
between nodes and servers into two categories 1) service flow: containing service
information and its contents 2) Management plug-in flow: the plug-in(s) delivered to
remote user on request. We implement our scheme and compare it with the
contemporary architectures.

The proposed scheme follows in section 2. The implementation details are
furnished in section 3. In section 4 we compare our scheme with some of the
contemporary solutions proposed. This paper ends with a conclusion and discussion
of future work.

2 Related Work

A considerable amount of research has been done in the area of network management
and thus it is a mature research area. With the advent of Autonomic Computing (AC),
network management has acquired a new dimension. Since then there has not been a
lot of work done for ubiquitous autonomic network management. Although network
management has existed for some time, not much literature has been published on the
subject of autonomic self management in hybrid networks especially on ubiquitous
zone based networks. In this section we compare our research with the related work.
The Robust Self-configuring Embedded Systems (RoSES) project [13] aims to target
the management faults using self configuration. It uses graceful degradation as means
to achieve dependable systems.

In [14] the authors propose that there are certain faults that can not be removed
through configuration of the system, which means that RoSES does not fulfill the
definition of self management proposed in [18]. The AMUN is an autonomic middleware
that deals with intra-cluster communication issues better than RoSES with higher support
for multi-application environments. Both architectures rely mainly on regressive
configuration and do not address the issues such as higher traffic load leading to
management framework failure, link level management, and framework synchronization.

The AMUSE [15] is an autonomic management architecture proposed in the
domain of e-health. The peer-to-peer communication starts once the node enters into a
self-managed cluster. But publish-subscribe services can create serious issues like
service consistency, synchronization and coordination as discussed in [16]. An
Agent-based Middleware for Context-aware Ubiquitous Services proposed in [16]
gives a more distinct hierarchy for the management framework to define the
boundaries and performance optics but the payload attached with agents may not
work for weaker nodes this can be a big drawback in a heterogeneous environment.

The HYWINMARC [3] is novel autonomic network management architecture that
targets ubiquitous zone based networks. It aims at managing the hybrid clusters
supported by a high speed mesh backbone. The HYWINMARC uses cluster heads to
manage the clusters at local level but does not explain the criteria of their selection.
Moreover the Mobile Code Execution Environment (MCEE) and use of intelligent
agents can give similar results as discussed above in the case of [16] and [17]. To
enforce management at local level, the participating nodes should have some

196 J.A. Chaudhry and S. Park

management liberty. However HYWINMARC fails to answer the questions raised in
the previous section. We compare the architectures discussed in this section in a table
to observe their efficacy.

In table 1 we compare AHSEN with other architectures. The comparison reveals
that the entity profiling, functional classification of self management entities at
implementation level, and assurance of the functional compliance is not provided in
the schemes proposed. In very dynamic hybrid networks these functionalities go a
long way in improving the effectiveness of the self management system implemented.

Table 1. The comparison table

3 Proposed Architecture

3.1 Software Architecture

In hybrid wireless networks, there are many different kinds of devices attached with
the network. They vary from each other in the bases of their power, performance etc.

 AHSEN – Autonomic Healing-Based Self Management Engine 197

One of the characteristics not present in the related literature is the separate
classification of the client and the gateway architectures. Figure 2 shows the client
and gateway self-management software architectures.

 (a) (b)

Fig. 2. The AHSEN architectures for client (a) and gateway (b)

The Normal Functionality Model (NFM) is a device dependent ontology that is
downloaded on the device at network configuration level. It provides a mobile user
with an initial default profile at gateway level and device level functionality control at
user level. It contains the normal range of functional parameters of the device,
services environment and network which allows the prompt anomaly detection.

There are two kinds of Self Management Frameworks (SMFs) one for clients and
one for gateways. The SMF at client end constantly traps the user activities and sends
them to the SMF at the gateway. The SMF at the gateway directs the trap requests to
the context manager who updates the related profile of the user. The changes in
service pool, Trust Manager (TM), and Policy Manger (PM) are reported to the
context manager. The context manager consists of the Lightweight Directory Access
Protocol (LDAP) directory that saves sessions after regular intervals in the gateway
directory. LDAP directory servers store their information hierarchically. The
hierarchy provides a method for logically grouping (and sub grouping) certain items
together. It provides scalability, security and resolves many data integrity issues.

The Policy Manager (PM) and Service Manager (SM) follow the same registry
based approach to enlist their resources. The presence of NFM provides the decision
based reporting unlike ever-present SNMP. The Trust Manager uses the reputation-
based trust management scheme in public key certificates [10]. The trust is typically
decided on trustee’s reputation. The trust based access relies on “dynamic values”,
assigned to each client, to mitigate risks involved in interacting and collaborating with
unknown and potentially malicious users.

3.2 Operational Details

In this section we describe the operational details of the architecture proposed in this
paper through simple scenarios.

198 J.A. Chaudhry and S. Park

Scenario 1: Initial Mobile Node Configuration
When a mobile user enters into the area under the influence of a gateway, it sends a
join request to the gateway. The join message contains node specification, connection
type, previous session reference etc. After the join request is processed by the
gateway, the SMF and NFM is downloaded to the client and the node starts its normal
functionality. The NFM is an optional item for u-person because we can not restrict
the human user to a static policy file. The returning node presents its previous session
ID which helps the gateway to offer the appropriate services to the user and updated
NFM.

Scenario 2: Anomaly Detection and Reporting
We use the role based functionality model by enforcing the NFM at the joining node.
The processes registered with the local operating system are automatically trusted.
The network operations seek permission from NFM. The NFM contains the security
certificate generating algorithms, network connection monitoring entities (in/out
bound), trust based peer level access policies and some device related anomaly
solutions i.e. related plug-ins.

Scenario 3: Normal State Restoration
The SMF at gateway predicts the relevant plug-in needed at the requesting node and
notifies the plug-in manager along with the certificates to communicate with the
faulty node. The plug-in manager talks with node and provides the plug-ins
mentioned by the SMF. Once a plug-in finishes its operation, the node context is
provided to the SMF at the gateway which analyzes the context and specifies another
plug-in (if needed). This feed back loop continues until the normal status of the node
is restored.

3.3 Self Management Framework

Although there is not much published work on self management in hybrid networks,
Shafique et. al. [3] proposes an autonomic self management framework for hybrid
networks. Our approach is different from their work in basic understanding of the
functionality of self management functions. We argue that the self management
functions do not stem from one main set rather they are categorized in such a way that
they form on-demand functions and some functions are always-on/pervasive functions
[11]. Figure 3 gives a clearer description.

As shown in figure 3, we place self awareness and self optimization in the always-
on category and the others as on-demand functions. This approach is very useful in
hybrid environments where there are clients of various battery and computing powers.
The NFM regulates the usage of self management functions according to computing
ability of the client. This gives the client local self management. The management
services come in the form of plug-ins registered in the plug-in manager present on the
gateway. A SOAP request carries Simple Object Access Protocol-Remote Procedure
Call (SOAP-RPC) and the latest node context to the SMF located on the gateway
which decides the anomaly type and suggests the appropriate plug-in. The SOAP-
RPC requests are considered when the SMF at gateways polls for the nodes. The
frequency of the poll depends upon the network availability and traffic flux.

 AHSEN – Autonomic Healing-Based Self Management Engine 199

Fig. 3. The proposed Classification of Self Management Functions

The Self Management Framework (SMF) consists of a Traffic Manager that redirects
the traffic to all parts of SMF. As proposed in [18] the faults can be single root-cause
based or multiple root-causes based. We consider this scenario and classify a Root
Cause Analyzer (RCA) that checks the root cause of failure through the algorithms
proposed in [19]. After identifying the root causes, the Root Cause Fragmentation
Manager (RCF manager) looks up for the candidate plug-ins as solution. The RCF
manager also delegates the candidate plug-ins as possible replacement of the most
appropriate. The scheduler schedules the service delivery mechanism as proposed in
[20]. The processed fault signatures are stored in signature repository for future
utilization. The plug-in manager is a directory service for maintaining the latest plug-in
context. This directory service is not present at the client level.

In [3] the authors classify self management into individual functions and react to
the anomaly detected through SNMP messages. The clear demarcation of self-*
functions is absent in modern day systems as there is no taxonomy done for various
fault types. This is one of the main reasons why we prefer component integration over
conventional high granularity modules for self management [12]. A detailed
architecture of the Self Management Framework (SMF) is shown in figure 4.

The Root Cause Analyzer plays the central part in problem detection phase of self
healing. The State Transition Analysis based approaches [21] might not be
appropriate as Hidden Markov Models (HMMs) take long training time along with
their ‘exhaustive’ system resources utilization. The profile based Root Cause
Detection might not be appropriate mainly because the domain of errors expected is
very wide [22], [23], [24]. We use the meta-data obtained from NFM to trigger Finite
State Automata (FSA) series present at root cause analyzer. In future we plan to

200 J.A. Chaudhry and S. Park

Fig. 4. Architecture of Self Management Framework (SMF)

modify State Transition Analysis Tool [21] according to on fault analysis domains
[25]. After analyzing the root cause results from the RCA, the RCF manager,
Signature Repository and Scheduler searches for the already developed solutions, for
a particular fault if not, it arranges a time slot based scheduler as proposed in [26] for
plug-ins. The traffic manager directs the traffic towards different parts of AHSEN.

4 Implementation Details

In order to verify our scheme, we have implemented the design using Java Enterprise
Edition (Java EE) technologies. We used the template mechanism, nested classes and
parameter based system call and inheritance in our software prototype. We define the
properties of types of entities involved into various classes i.e. the mobile nodes differ
from each other on many bases power, mobility rates, speed, energy levels, and
hierarchical position in the cluster. We categorize the cluster headers into a separate
class derived from the base class mobnd. Due to their unique functionality, the
backbone servers are defined into a different class. The devices can be connected to
the wireless gateway through Wireless LAN interface and sensor nodes are connected
through miscellaneous interfaces i.e. blue tooth, 802.1.5 etc. The link type is also
defined into a separate class names lnktyp. The SMF is defined as a separate base
class with various entities i.e. RCF Manager, root cause analyzer, etc as independent
classes. A log service is used to keep track of instances and fault flow. The Java
Naming and Directory Interface (JNDI) provides unified interface to multiple naming
and directory services. We use JNDI as a directory service in our architecture.

The scenario mentioned above was developed for a past project but we consider
that it can provide good evaluation apparatus for testing the healing engine proposed
in this paper. The current prototype can handle very limited number of clusters and
mobile nodes. We plan to improve the system in future work. We defined two clusters
with 8 mobile nodes. Each cluster contains two cluster headers and 6 child nodes. At
first, we run our system without faulty nodes. After that in order to test the
performance of our system, we introduce a malicious node in each cluster. The

 AHSEN – Autonomic Healing-Based Self Management Engine 201

activities of that malicious node result into identifiable fault signatures that are
detected and removed by the SMF present at the gateway. As shown in figure 5 and
figure 6, the Transactions Per Second (TPS) decreases with increase in time as the
malicious node is introduced. We observe that a considerable decrease in transactions
is because every time a request times out, the SMF reacts and provides the healing
policies to cover the interruption in service delivery.

Fig. 5. Simulation Results of the scenario before the error node was introduced

Fig. 6. Simulation Results of the scenario after the error node was introduced

5 Concluding Remarks

In this paper we present a trust based autonomic network management framework
using self healing techniques. We re-categorize the self management functions and
dissolve the mapping created between errors and self management functions in [3].
We offer the healing solutions in the form of atomic plug-ins that can either work
independently and atomically or they can be meshed into a composed file. The
individual self management at the node level is done by NFM which sends the
exceptions to the SMF at gateway. The SMF at gateway is the entity that decides the
plug-in selection for an anomaly detected at the client level. The entity profiling
enables the trust calculation against every node which allows a user to use certain

202 J.A. Chaudhry and S. Park

privileged services. Some scenarios are described for better understanding. We share
our implementation experience and compare our work with cotemporary work.

In the scheme proposed in this research article we have put an effort to contour the
trust in device profiles but we have not studied effect on the trust of a migrating node.
Although, in our previous research, we studied the context migration from one cluster
to another we will try to study the relationship between the two research approaches.
Moreover we plan to study the signature independent anomaly identification at NFM
level. We also plan to implement the post-healing test strategy.

References

1. Firetide: Instant Mesh Networks: http://www.firetide.com.
2. Doufexi A., Tameh E., Nix A., Armour S., Molina, A.: Hotspot wireless LANs to

enhance the performance of 3G and beyond cellular networks. IEEE Communications
Magazine, July 2003, pp. 58- 65.

3. Chaudhry S.A., Akbar A.H., Kim K., Hong S., Yoon W.: HYWINMARC: An Autonomic
Management Architecture for Hybrid Wireless Networks. EUC Workshops 2006: 193-
202.

4. Burke J. R.: Network Management. Concepts and Practice: A Hands-on Approach.
Pearson Education, Inc., 2004.

5. Minseok O.: Network management agent allocation scheme in mesh networks. IEEE
Communications Letters, Dec. 2003, pp.601 – 603.

6. Kishi, Y. Tabata, K. Kitahara, T. Imagawa, Y. Idoue, A. Nomoto, S.: Implementation of
the integrated network and link control functions for multi-hop mesh networks. IEEE
Radio and Wireless Conference, September 2004, pp. 43- 46.

7. Shi Y., Gao D., Pan J., Shen P.: A mobile agent- and policy-based network management
architecture. Proceedings of the Fifth International Conference on Computational
Intelligence and Multimedia Applications (ICCIMA’03), September 2003, pp. 177-181.

8. IBM white paper, Autonomic Computing: Enabling Self-Managing Solutions, SOA and
Autonomic Computing December 2005.

9. Chaudhry J. A., Park S.: Some Enabling Technologies for Ubiquitous Systems, Journal of
Computer Science, 2006, pp. 627-633.

10. Garfinkel S.: PGP: Pretty Good Privacy. O’Reily & Associates Inc., 1995.
11. Chaudhry J. A., and Park S.: Using Artificial Immune Systems for Self Healing in Hybrid

Networks", To appear in Encyclopedia of Multimedia Technology and Networking, Idea
Group Inc., 2006.

12. Ma J., Zhao Q., Chaudhary V., Cheng J., Yang L. T., Huang H., and Jin Q.: Ubisafe
Computing: Vision and Challenges (I). Springer LNCS Vol.4158, Proc. of ATC-06, 2006,
pp. 386-397.

13. Shelton, C. & Koopman, P.: Improving System Dependability with Alternative
Functionality. Proceedings of the 2004 International Conference on Dependable Systems
and Networks (DSN'04), June 2004, pp. 295.

14. Morikawa, H.: The design and implementation of context-aware services. International
Symposium on Applications and the Internet Workshops (SAINT-W'04), 2004, pp. 293 – 298.

15. Strowes S., Badr N., Dulay N., Heeps S., Lupu E., Sloman M., Sventek J.: An Event
Service Supporting Autonomic Management of Ubiquitous Systems for e-Health. 26th
IEEE International Conference on Distributed Computing Systems Workshops 2006.
(ICDCS-w'06), pp. 22-22.

 AHSEN – Autonomic Healing-Based Self Management Engine 203

16. Chaudhry J. A., Park S.: A Novel Autonomic Rapid Application Composition Scheme for
Ubiquitous Systems. The 3rd International Conference on Autonomic and Trusted
Computing (ATC-06), September 2006, pp. 48-56.

17. Trumler W., Petzold J., Bagci J., Ungerer T.: AMUN – Autonomic Middleware for
Ubiquitious eNvironments Applied to the Smart Doorplate Project. International
Conference on Autonomic Computing (ICAC-04), May 2004, pp. 274-275.

18. Gao, J., Kar, G., Kermani, P.,: Approaches to building self healing systems using
dependency analysis. IEEE/IFIP Network Operations and Management Symposium 2004
(NOMS'04), April 2004, pp. 119-132.

19. Chaudhry J. A., Park S.: On Seamless Service Delivery", The 2nd International
Conference on Natural Computation (ICNC'06) and the 3rd International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD'06) , September 2006, pp. 253-261.

20. Ilgun, K., Kemmerer R.A., Porras P.A.,: State transition analysis: a rule-based intrusion
detection approach, IEEE Transactions on Software Engineering, March 1989, pp.181-199.

21. Lunt T. F.: Real-time intrusion detection. Thirty-Fourth IEEE Computer Society
International Conference: Intellectual Leverage, Digest of Papers (COMPCON Spring
'89.), March 1989, pp. 348-353.

22. Lunt T.F., Jagannathan R.: A prototype real-time intrusion-detection expert system.
Proceedings of IEEE Symposium on Security and Privacy 1988, Apr 1988, pp. 59-66.

23. Lunt T.F., Tamaru A., Gilham F., Jagannathan R., Neumann P.G., Jalali C.: IDES: a
progress report [Intrusion-Detection Expert System]. Proceedings of the Sixth Annual
Computer Security Applications Conference 1990, Dec 1990, pp.273-285.

24. Radosavac, S., Seamon, K., Baras, J.S.: Short Paper: bufSTAT - a tool for early detection
and classification of buffer overflow attacks. First International Conference on Security
and Privacy for Emerging Areas in Communications Networks 2005 (SecureComm 2005),
Sept. 2005, pp. 231- 233.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 204 – 217, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Development of a GT4-Based Resource Broker Service:
An Application to On-Demand Weather and Marine

Forecasting

R. Montella

Dept. of Applied Science, University of Naples “Parthenope” – Italy

Abstract. The discovery and selection of needed resources, taking into account
optimization criteria, local policies, computing and storage availability,
resource reservations, and grid dynamics, is a technological challenge in the
emerging technology of grid computing.

The Condor Project’s ClassAd language is commonly adopted as a “lingua
franca” for describing grid resources, but Condor itself does not make extensive
use of Web Services. In contrast, the strongly service-oriented Globus Toolkit is
implemented using the web services resource framework, and offers basic
services for job submission, data replica and location, reliable file transfers and
resource indexing, but does not provide a resource broker and matchmaking
service.

In this paper we describe the development of a Resource Broker Service
based on the Web Services technology offered by the Globus Toolkit version 4
(GT4). We implement a fully configurable and customizable matchmaking
algorithm within a framework that allows users to direct complex queries to the
GT4 index service and thus discover any published resource. The matchmaking
algorithm supports both the native simple query form and the Condor ClassAd
notation. We achieve this flexibility via a matchmaking API java class
framework implemented on the extensible GT4 index service, which maps
queries over ClassAds in a customizable fashion.

We show an example of the proposed grid application, namely an on demand
weather and marine forecasting system. This system implements a Job Flow
Scheduler and a Job Flow Description Language in order to access and exploit
shared and distributed observations, model software, and 2D/3D graphical
rendering resources. The system combines GT4 components and our Job Flow
Scheduler and Resource Broker services to provide a fully grid-aware system.

1 Introduction

Our proposed grid infrastructure is based on the Globus Toolkit [1] version 4.x (GT4)
middleware, developed within the Globus Alliance, a consortium of institutions from
academia, government, and industry. We choose GT4 because it exposes its features,
including service persistence, state and stateless behavior, event notification, data
element management and index services, via the web services resource framework
(WSRF).

The brokering service that we have developed is responsible for interpreting
requests and enforcing virtual organization policies on resource access, hiding many

 Development of a GT4-Based Resource Broker Service 205

details involved in locating suitable resources. Resources register themselves to the
resource broker, by performing an availability advertisement inside the virtual
organization index [4]. These entities are classified as resource producers using many
advertisement techniques, languages and interfaces. Resource are often discovered
and collected by means of a performance monitor system and are mapped in a
standard and well known description language [5] such as the Condor [8] ClassAd
[9]. Ideally, the entire resource broking process can be divided into two parts. First, a
matchmaking algorithm finds a set of matching resources using specific criteria such
as “all submission services available on computing elements with at least 16 nodes
using the PBS local scheduler and where the MM5 [3] weather forecast model is
installed.” Then, an optimization algorithm is used to select the best available
resource among the elements [6]. Usually, the broker returns a match by pointing the
consumer directly to the selected resource, after which the consumer contacts the
resource producer. Alternatively, the client may still use the resource broker as an
intermediary. When the resource broker selects a resource, the resource is tagged as
claimed in order to prevent the selection of the same resource by another query with
the same request. The resource will be unclaimed automatically when the resource
broker catalogue is refreshed reflecting the resource state change [10].

In this scenario, the resource broker service is a key element of grid-aware
applications development. Thus, users can totally ignore where their data are
processed and stored, because the application workflow reacts to the dynamic nature
of the grid, adapting automatically to the resource request and allocation according to
grid health and status.

The allocation and scheduling of applications on a set of heterogeneous,
dynamically changing resources is a complex problem without an efficient solution
for every grid computing system. Actually, the application scenario and the involved
resources influence the implemented scheduler and resource broker system while both
the implicit complexity and the dynamic nature of the grid do not permit an efficient
and effective static resource allocation.

Our demo applications are based on the use of software for the numerical
simulation in environmental science, and are built and developed using a grid
computing based virtual laboratory [11]. Weather and marine forecasts models need
high performance parallel computing platforms, to ensure an effective solution and
grid computing is a key technology, allowing the use of inhomogeneous and
geographically-spread computational resources, shared across virtual organization.
The resource broker service is the critical component to transform the grid computing
environment in a naturally used operational reality. The buildup of grid-aware
environmental science applications is a “grand challenge” for both computer and
environmental scientists, hence on-demand weather forecast is used by domain
experts, common people, amateur and enthusiasts sailing racers.

In this paper we describe the implementation of a GT4-based Resource Broker
Service and the application of this component to a grid-aware dynamic application,
developed using our grid based virtual laboratory tools. The resource broker
architecture and design is described in the section 2, while in sections 3 and 4 we give
a short description of the native matchmaking algorithm and of the interface to the
Condor ClassAd querying features. In section 5, we show how all these components
work together in an on-demand weather and marine forecasting application. The final
section contains concluding remarks and information about plans for future work.

206 R. Montella

2 The Resource Broker Architecture and Design

Our resource brokering system, leveraging on a 2-phase commit approach, enables
users to query a specified virtual organization index service for a specific resource,
and then mediates between the resource consumer and the resource producer(s) that
manage the resources of interest. Resources are represented by web services that
provide access to grid features such as job submission, implemented by the Grid
Resource Allocation Manager (GRAM) service and the file transfer feature,
implemented by the Reliable File Transfer (RFT) service [2].

The sequence begins when the Resource Broker service is loaded into the GT4
Web Services container to create an instance of a Resource Home component. The
Resource Home invokes the Resource initialization, triggering the creation of the
matchmaking environment and collecting the grid-distributed published resources
using the index service. The collector is a software component living inside the
matchmaker environment managing the lifetime of the local resource index. The
collector processes query results in order to evaluate and aggregate properties, map
one or more properties to new ones, and store the result(s) in a local data structure
ready to be interrogated by the requesting resource consumer.

The collector is a key component of the resource broker. Thus, we provide a fully
documented API to extend and customize its behavior. In the implementation, a
generic collector performs a query to the GT4 Monitor Discovery Service (MDS) [7]
to identify all returned elements where the local name is “Entry.” Element properties
are parsed and stored in a format suitable for the resource brokering algorithm. The
end point reference of each entry is retrieved to obtain the host name from which the
resource is available. This step is needed because the collected properties are stored in
a hostname-oriented form, more convenient for the matchmaking instead of the
resource-oriented form published by the index service. In this way, each grid element
is characterized by a collection of typed name/value properties.

Each entry has an aggregator content used to access the aggregator data. In the case
of the ManagedJobFactorySystem, the aggregator data contains a reference to a
GLUECE Useful Resource Property data type, where information about the grid
element is stored by the MDS data provider interfaced to a monitor system such as
Ganglia [13]. The collector navigates through the hierarchically organized properties
performing aggregation in the case of clusters where master/nodes relationships are
solved. A property builder helper component is used to perform this task, analyzing
the stored data and producing numeric properties concerning hosts, clusters and
nodes. In the collecting process new properties may be added to provide a better
representation of resources available on grid elements.

A configurable property mapping component is used by the collector to perform
some properties processing such as lookup: the value of a resource is extracted from a
lookup table using another resource value as key; ranging: the resource value is
evaluated using a step function defined using intervals; addition: a resource value is
retrieved using and external component and added to the resource set; averaging: the
value of a resource is calculated using the mean value of other resources.

The use of the property mapping component is needed in order to aggregate or better
define resources from the semantic point of view: in the resource broker native
representation, the available memory on a host is “MainMemory.RAMAvailable.Host,”

 Development of a GT4-Based Resource Broker Service 207

while usually the ClassAd uses the simple “Memory” notation, hence a copy operation
between two properties is needed. A less trivial use of the property mapping tool is done
by evaluating the Status property: there is no Status property definition in the GLUECE
Useful Resource Property, while ProcessorLoad information are available. The property
mapping algorithm averages the ProcessorLoad values storing this value in the
LoadAvg property, then the LoadAvg property is range evaluated to assign the value to
the Status property (Idle, Working) [14].

A principal resource broker service activity is to wait for index service values
changing notification in order to perform an index service entity query and to collect
data about the grid health represented by the availability of each VO resource. The
resource brokering initialization phase ends when the collector’s data structure is
filled by the local resource index and the Resource component registers itself to the
virtual organization main Index Services as a notification sink, and waits for index
resource property data renewal events. In our resource broker, many users have to
interact with the same stateful service querying resources that are tracked in order to
be in coherence with the grid health status. Due to these requirements, we create the
service using the singleton design pattern with the stateless web service side is
interfaced with the stateful one via resource properties [12]. Due to the dynamic
nature of grid resources, the resource property is not persistent and it is automatically
renewed each time the index service notifies to the resource broker service that its
entity status is changed. In this way the resource lifetime is automatically controlled
by the effective update availability and not scheduled in a time dependent fashion
[15]. Registered entity status changes are transferred upstream to the Index Service
and then propagated to the Resource notification sink. Due to our application
behavior, this approach could be inefficient because many events may be triggered
with high frequency, degrading performance. We choose a threshold time interval
value to trigger the data structure update.

From the resource consumer point of the view, the sequence starts when the user
runs the resource broker client using one of the query notations that our system
accepts.

Native notation: each selection criteria expression is separated by a space with the
meaning of the logical and. Properties reflects the GLUECE Useful Resource
Properties nomenclature with the dot symbol as property and sub property separator.
The criteria are the same of the majority of query languages, plus special ones such as
“max” and “min” to maximize or minimize a property and “dontcare” to ignore a pre-
set condition.

Globus.Services.GRAM!=”” Processor.InstructionSet.Host==”x86”
Cluster.WorkingNodes>=16 MainMemory.RAMAvailable.Average>=512
ComputingElement.PBS.WaitingJobs=min

This query looks for a PC cluster with at least 16 working nodes and 512
megabytes of available RAM using the PBS as local queue manager and where the
GRAM Globus web service is up and running. Computing elements with the
minimum number of waiting jobs are preferred.

ClassAd notation: the selection constraints are expressed as requirements using the
well-known Condor classified advertisement notation for non structured data
definition queries. In this notation, the query is enclosed in a brackets envelope and

208 R. Montella

each couple of property name/value is separated by a semicolon. Special mandatory
fields are Rank and Requirements. The Requirements field contains the constraints
criteria expressed using the standard C language notation.

[Type=”Job”; ImageSize=512; Rank=1/other.ComputingElement_PBS_WaitingJobs;
Requirements= other.Type==”Machine” && other.NumNodes>=16 && other.Arch==”x86” &&
other.Globus_Services_GRAM!=””]

The shown classad performs the same query previously shown with the native
notation. The NumNodes property is equivalent to the Cluster.WorkingNodes. The
underscore substitutes the dot for the property/sub property access notation to avoid
ambiguity with the dot meaning in ClassAd language. The ranking is mathematically
computed using a simple expression involving the number of PBS waiting jobs [16].

The implementation of the matchmaking algorithm differs in relation to the chosen
strategy, but can be formerly divided in two phases: the search and the selection.

In the search phase, some constraints are strictly satisfied, such as the number of
nodes equal to or greater than a particular value, and the available memory being not
less than a specified amount. If none suitable resource is available, the fail result is
notified to the client applying the right strategy in order to prevent deadlock and
starvation issues. After this step, resources satisfying the specified constraints are
passed to the second phase, where the best matching resource is found using an
optimization algorithm based on a ranking schema. The selected resource is tagged as
claimed to prevent another resource broker query selecting the same resource causing
a potential overload. At the end of the query process the resource broker client
receives the End Point Reference (EPR) of the best matching resource and is ready to
use it. The resource remains claimed until a new threshold filtered update is
performed and the resource status reflects their actual behavior.

3 The Native Latent Semantic Indexing Based Matchmaking
Algorithm

We implemented a matchmaking algorithm from scratch; it is based on an effective
and efficient application of Latent Semantic Indexing (LSI) [17].

In the case of search engines, a singular-value decomposition (SVD) of the terms by
document association matrix is computed producing a reduced dimensionality matrix
to approximate the original as the model of “semantic” space for the collection. This
simplification reflects the most important associative patterns in the data, while
ignoring some smaller variations that may be due to idiosyncrasies in the word usage
of individual documents [18]. The underlying “latent” semantic structure of the
information is carried out by the LSI algorithm. In common LSI document search
engine applications, this approach overcomes some of the problems of keyword
matching based on the higher level semantic structure rather than just the surface level
word choice [19].

In order to apply LSI to resource matchmaking, we have to map some concepts
from the document classification and indexing to the grid resource discovery and
selection field. As documents, in the web identified by URLs, are characterized by
some keywords, resources, identified by EPRs in the grid, have name properties typed
as string, integer, double and boolean values. A document may or may not contain a

 Development of a GT4-Based Resource Broker Service 209

particular word, so the matrix of occurrence document/words is large and sparse; in
the same way each grid resource is not characterized by a value for each defined
property, because not all properties are relevant to a specific grid resource description.
Documents and grid resources share the same unstructured characterization, but while
words and aggregated relations between words could have a special meaning because
of the intrinsic semantic of the aggregation itself, grid resource properties are self
descriptive, self contained and loosely coupled in the aggregation pattern. Under this
condition, we have no need to apply the dimension reduction in grid resource
properties indexing, while the application of the SVD is mandatory if dealing with
documents. The grid resource description property values can be numeric,
alphanumeric and boolean, but alphanumeric values have not hidden semantic mean
build by aggregation, while a query can be performed specifying the exact value of
one or more properties. Due to the deterministic behavior needed by the resource
matchmaking process, a criteria based selection process is done before grid resources
are threaded by our LSI based matchmaker algorithm. This kind of selection is
performed in order to extract from all available resources the set of close matching
requirements.

Fig. 1. The A ... F grid elements properties and the X query property. On the left in the
dimensional space, on the right in the adimensional space.

Our LSI approach to matchmaking is based on the assumption that all boolean and
alphanumeric query criteria are strictly satisfied in the selection phase, so the set of
available grid resources comprises all suitable resources, from which we must extract
the best one characterized by only numerical property values. After selection, the grid
resources have a specific position in a hyperspace with a number of dimensions equal
to those of the query: for example, after the ComputingElement.PBS.FreeCPUs>=25
Processor.ClockSpeed.Min==1500 Globus.Service.GRAM!=”” query, the hyperspace
is reduced to a Cartesian plane with the ComputingElement.PBS.FreeCPUs on the x
axis and the Processor.ClockSpeed.Min on the y axis (Figure 2, left side). We assume,
if the user asks for 25 CPUs or more, the best resource is the machine with 25 CPUs,
while more CPUs are acceptable but something of better as in the case of
ComputingElement.PBS.FreeCPUs=max. The best fitting resource could be
considered to be the one that minimize the distance between the position of the
requested resource and the offered one. This kind of ranking approach could be correct
if all property values are in the same unit. If Processor.ClockSpeed.Min is expressed as
GHz or MHz, and ComputingElement.PBS.FreeCPUs as an integer pure number the

210 R. Montella

computed distance is biased, because of the anisotropic space. An adimensionalization
process is needed in order to map all offered and asked grid resources in an isotropic
unitless n-dimensional space, with the goal of making distances comparable.

The goal of our adimensionalization process is to re-normalize property values so
that they have a mean of zero and standard deviation equal to one. In order to achieve
this result, we calculate the mean and standard deviation for each involved property.
Then, using a lookup data structure, both the asked and offered grid resource,
identified by their characteristics, are adimensionalized and projected in a isotropic
space in which distance units on each axis are the same. Finally, a ranking table,
ordered in ascending order of distance, is computed using the Euclidean distance; then
the resource in the first position represents the best one fitting the querying criteria
(Figure 2, right side).

4 The Condor ClassAd Based Matchmaking Algorithm

The world wide Condor open source ClassAds framework [20] is robust, scalable,
flexible and evolvable as demonstrated by the production-quality distributed high
throughput computing system developed at the University of Wisconsin-Madison.
Classified Advertisements are stated as the “lingua franca” of Condor and are used
for describing jobs, workstations, and other resources. In order to implement a GT4
resource oriented matchmaker algorithm using ClassAds framework, a mapping
between Index Service entries and ClassAds component is needed. The component
have to be flexible, full configurable, customizable and extensible in order to manage
any kind of entries. In the GT4 Index Service each entry represents a resource of a
specified type characterized by property values for which the ClassAd mapping
process is trivial or straightforward. Resource properties, such as the GLUECE, are
complex and data rich and the mapping process could be more tricky because some
aggregation, synthesis and evaluation work is needed (as in the case of clusters
computing elements).

Once the ClassAd representation of unclaimed GT4 grid element resources is
available thanks to the developed mapping component, our matchmaker algorithm
compares each ClassAd with the ClassAd form of the submitted query. The grid
element vector is filled and each element each is characterized by the self and other
Rank property (formerly the ClassAd Rank attribute computed from the query point
of view, self, and the resource one, other). The Rank ClassAd parameter is used to
perform a sort criteria in order to choose the best fitting resource represented by the
one that maximize both self.Rank and other.Rank properties. Thanks to the native
matchmaker algorithm, we have all tools needed to perform the best fitting resource
selection, using a native query in the form “self.Rank=max other.Rank=max”, that
selects the grid element that maximize both properties.

5 An Application to on Demand Weather and Marine Forecasting

In our grid computing based virtual laboratory we grid enabled several atmospheric,
marine and air/water quality models such as MM5 (Mesoscale Model 5) [3], POM
(Princeton Ocean Model) [21], the STdEM (Spatio-temporal distribution Emission

 Development of a GT4-Based Resource Broker Service 211

Model) [22], the PNAM (Parallel Naples Airsheld Model) [23], WRF (Weather and
Research Forecasting model), sea-wave propagation models WW3 (WaveWatch III)
and the CAMx (Comprehensive Air quality Model with eXtension) air quality model
[26]. We made this models grid enabled using the black-box approach implementing a
modular coupling system with the goal to perform several experiments and
environmental science simulations without the need of a deep knowledge about grid
computing. We are still working about the grid enabling of other environmental
models developing other virtual laboratory components in order to deliver a
comfortable environment for earth observation grid aware application deployment.

Fig. 3. The application workflow as represented by the JFDL file

We developed an on-demand weather and marine forecast, which is a full grid-
aware application running in an effective ad efficient fashion on our department grid
as test-bed for our resource broking service. The application environment in which the
application runs is based on our virtual laboratory runtime grid software integrating
our Job Flow Scheduler and the ResourceBroker Service. Using this tool, we develop
the application using the Job Flow Description Language (JFDL), based on XML,
with the needed extension for resource broking interfacing and late binding reference
management [24].

The user need only specify the starting date and the number of hours for the
simulation or the forecast. Then, all needed resources are requested from the resource
broker and allocated at runtime. In the job elements of the JFDL application file,
queries are coded to select resources using both the native and the ClassAd notation,
while some design optimizations are made using the dynamic reference management
syntax of the JFDL to run application components minimizing the data transfer time.

From the data point of view, the grid-aware application computes weather forecast
and wind driven sea wave propagation on four nested domains ranging from the
Mediterranean Europe (81 Km cell size) to the Bay of Naples (3 Km cell size),
produces both thematic maps and GRIB data files ready for other processes and uses
via standard, commercial or free software. This application is a smart and simplified
version of the one we run operationally for regional weather and marine forecasts
used by different local institutions.

212 R. Montella

The application workflow (Figure 3) begins with the starting event produced by the
on-demand request coming, for example, from a multi access, mobile device enabled
web portal. Then, the weather forecast model is initialized and the output data is
rendered by a presentation software and concurrently consumed by the sea wave
propagation model. Then each application branch proceeds on a separate thread.

The workflow could be represented as an acyclic direct graph into a JFDL file
where each job to be submitted is described by an inner coded RSL [25] file while the
launching scripts are stored in a separate repository (Figure 4). Our JFS component
permits the grid application implementation using a single XML self describing file,
while the RB service makes the application grid-aware.

jfs

rsls

rsl1 ... rsl

globalProperties jobs

job1 ... jobn

nodes

resourceBroker properties

node1
... noden

next prev

n

JFDL XML Schema

Fig. 4. The JFDL developed schema

In the element jfdl:globalProperties the developer can specify the values read in
each job definition and substituted at runtime. The jfdl:rsls element contains a
collection of jfdl:rsl named elements used to describe jobs with the Globus GRAM
RSL file. In this files the use of environment variables place holding for scratch
directory path and provided utility macros.

The file describing the grid aware application can be divided into two parts: inside
the element <jfdl:jobs> each job belonging to the application is described specifying
its symbolic name, the computing node where it will be submitted, and the name of
the RSL file specifying all needed resources.

The statically assigned grid element unique identifying name, specified in the job
element host attribute, could be omitted, in which case a resource broker
jfdl:resourceBroker element would have to be used. In this element could be specified
the classAlgorithm attribute to select the matchmaker implementation class
identifying the matchmaking algorithm using the native one if this parameter is
omitted as shown in the following example:

<jfdl:resourceBroker
 classAlgorithm=”it.uniparthenope.dsa.grid.ClassAdMatchmakingAlgorithm”>
 [Type=”Job”; ImageSize=512;
 Rank=1/other.ComputingElement.PBS.WaitingJobs;
 Requirements= other.Type==”Machine” &&
 other.Software_MM5_Regrid==true &&
 other.Disk>=64 && other.NumNodes==0]
</jfdl:resourceBroker>

 Development of a GT4-Based Resource Broker Service 213

Where the application is looking for a non cluster machine, such as a workstation
or a dedicated server, on which the Regrid component is installed. Moreover, the job
needs at least 64 MB of available space on disk, and the best fitting resource is the
one that minimizes the number of waiting jobs in the PBS queue manager (implicitly
the PBS local queue manager is needed as requirement).

In each job definition the user can specify local properties using the jfdl:propeties
element. Properties are runtime accessible using the conventional name
$propertyname; global properties referred to a particular job are referred by
$jobname.propertyname. This is really useful if a sort of optimization is needed using
an integrated grid-enabled/aware approach. In our application we want to assign grid
elements dynamically but some components have data strictly related as the case of
Regrid/Interpf pairs or mm52grads/makeWindMaps pairs, so it is better to execute
Regrid and Interpf, as well mm52grads and makeWindMaps, on the same computing
element to achieve best performances avoiding heavy data transfers.

0

1000

2000

3000

4000

5000

6000

7000

8000

24h 48h 72h 96h 120h 144h

Simulated Time (h)

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

No Grid

Globus+JFS

Globus+JFS/RB

-200

0

200

400

600

800

1000

1200

1400

1600

1800

24h 48h 72h 96h 120h 144h

Simultaed Time (h)

C
o

m
p

u
ti

n
g

 T
im

e
D

if
fe

re
n

ce
 (

s)

Diff NoGridJFS

Diff NoGridJFS/RB
Diff JFS/JFSRB

Fig. 5. Simulated Time versus Computing Time under several configurations. On the left
absolute times, on the right relative times.

In order to evaluate the grid-aware application performance, we repeated the
experiment 10 times and then averaged total computing time for 24, 48, 72, 96, 120,
and 144 simulated hours.

We evaluated three different grid behavior configuration scenarios:

No grid technology use: The application runs as a common Bash shell script on the
master node (Pentium IV at 2.8 GHz Hyper Threading equipped with 4 GByte of
RAM and 2 160 GB hard disk and running Fedora Core 3 Linux) of the computing
element named dgbeodi.uniparthenope.it formed by a cluster of 25 workstation
powered by a hyper heading PentiumIV at 2.8 GHz, each with 1GByte of RAM and
80 GB hard disk, running Fedora Core 3 Linux. The local network is a copper gigabit
using a high performance switch. This workstations are used also for student learning
activities running concurrently Windows XP Professional operating system hosted by
virtual environment. In this case no kind of explicit parallelism is performed and there
is no need to use an external network for data transfer.

Grid-enabled mode: Globus+JFS, the application is developed using JFDL and runs
under our virtual laboratory tools. Computational loads are distributed statically over
available grid elements, with a design optimization performed regarding computing
power and data file transfer needs. In this approach the Job Flow Scheduler

214 R. Montella

component is used, but the Resource Broker Service is switched off. The application
takes advantage of the explicit parallelism carried out by parallel execution of
regrid/intepf and mm52grads/makeWindMaps software modules pairs. As in the
previous case of not us of grid technology, MM5 and WW3 models run on the same
25 CPUs computing element dgbeodi.uniparthenope.it.

Grid-aware mode: Globus+JFS/RB, the application is developed using JFDL and
runs under our tools as in the previous case, but resources are assigned dynamically
using our resource broker service performing queries each time it is needed. To
achieve better performance and to avoid unnecessary data file transfers, Regrid and
Interpf jobs and mm52grads/makeWindMaps are submitted to the same computing
element using the Job Flow Scheduler late binding capabilities: the resource broker is
invoked to choose the computing element for the Regrid job and then the same CE is
used for the Interpf job. The query for parallel computing intensive load characterized
jobs MM5 and WW3 is performed, but dgbeodi.uniparthenope.it is always used
because the constraints.

From the performance analysis line graph (Figure 5, left side), we see that as
simulated time increases from 24 to 144 hours, the grid-enabled application (filled line)
performs well when compared to the no-grid (dotted line) technology use. This is
because of the parallel execution of loosely coupled jobs and the optimized data high
performance transfer. When resource broking capabilities are activated (outlined
graph), the grid-aware system still performs better than the no-grid application version,
but is slower than the grid-enabled version without resource brokering because of the
latency introduced by the Web Services interactions, the adopted matchmaking
technique related issues and the deadlock/starvation avoiding subsystem interactions.
In the other graph (Figure 5, right side) are drown computing time differences between
the no grid setup and the grid-enabled (filled line) and the grid-aware one (outlined
graph). The dotted line represents the difference in computing time between the two
approaches. The time consumed by the resource broker in all tests is quite constant
because our grid was used in a exclusive manner (without other users). On the other
hand, in production conditions (not exclusive grid use), the overall computing load of
the department grid is better distributed using the grid-aware behavior, allowing for
efficient and effective resource allocation optimization.

Fig. 6. Demo grid aware application results

 Development of a GT4-Based Resource Broker Service 215

6 Conclusions and Future Works

We have described some results in the field of grid computing research, with
particular regard to the challenging issue of resource discovery and selection with
matchmaking algorithms.

We developed a resource broker service, fully integrated with Globus Toolkit
version 4, that is both modular and easy to expand. The plug-in architecture for both
collector and matchmaking algorithm implementations we developed makes this tool
an excellent environment for resource handling algorithms experiments and
productions in the Globus Toolkit grid approach world. Our next goal develop an
accurate testing suite, based on both real and simulated grid environment, in order to
evaluate and compare native and ClassAd algorithm performances and effectiveness.
In this scenario is our interest in developing a matchmaking algorithm based on the
minimization of cost functions evaluated using resource characterization benchmarks
in order to implement dynamic performance contracts. A better self registering
approach to grid available application have to be followed to make the real use of our
tools in a straightforward fashion.

In order to achieve a better, and more standard, application workflow environment,
a Job Flow Scheduler refactoring is planned with the aim to be BPEL [27] compliant
leveraging on open source workflow engines [28].

Our virtual laboratory for earth observation and computational environmental
sciences based on the grid computing technology is enriched by the features provided
by the Resource Broker Service, making possible the design and the implementation
of truly grid-aware applications. The integration between the Job Flow Scheduler
service and the Resource Broker service is a powerful tool that can be used both for
research and application-oriented uses for running any kind of complex grid
application (Figure 6).

Acknowledgments. I would like to thank Ian Foster for his suggestions and support
in the revision of this paper.

References

1. I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented Systems,” I. Foster,
Journal of Computational Science and Technology, 21(4):523-530, 2006.

2. W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, I. Foster.
“The Globus Striped GridFTP Framework and Server,” .SC05, November 2005

3. The PSU/NCAR mesoscale model (MM5), Pennsylvania State University / National
Center for Atmospheric Research, www.mmm.ucar.edu/mm5/mm5-home.html

4. I. Foster, C. Kesselman, The Grid 2: Blueprint for a new Computing Infrastructure.
Morgan Kaufman, 2003

5. C. Liu, I. Foster. A Constraint Language Approach to Matchmaking. Proceedings of the
14th International Workshop on Research Issues on Data Engineering (RIDE 2004),
Boston, 2004

6. I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Intl. J. High Performance Computing Applications, 15(3):200-222, 2001.

216 R. Montella

7. J. M. Schopf, M. D'Arcy, N. Miller, L. Pearlman, I. Foster, and C. Kesselman. Monitoring
and Discovery in a Web Services Framework: Functionality and Performance of the
Globus Toolkit's MDS4. Argonne National Laboratory Tech Report ANL/MCS-P1248-
0405, April 2005.

8. D. Thain, T. Tannenbaum, M. Livny. Distributed Computing in Practice: The Condor
Experience. Concurrency and Computation: Practice and Experience, Vol. 17, No. 2-4,
pages 323-356, February-April, 2005.

9. R. Raman. Matchmaking Frameworks for Distributed Resource Management. Ph.D.
Dissertation, October 2000

10. R.Raman, M. Livny, M. Solomon. Matchmaking: Distributed Resource Management for
High Throughput Computing. Proceedings of the Seventh IEEE International Symposium
on High Performance Distributed Computing, July 28-31, 1998, Chicago, IL

11. I. Ascione, G. Giunta, R. Montella, P. Mariani, A. Riccio. A Grid Computing Based
Virtual Laboratory for Environmental Simulations. Proceedings of 12th International Euro-
Par 2006, Dresden, Germany, August/September 2006. LNCS 4128, Springer 2006

12. B. Sotomayor, L. Childers. Globus Toolkit 4: Programming Java Services. Morgan
Kaufman, 2005

13. M. L. Massie, B. N. Chunm D. E. Culler. The Ganglia Distributed Monitoring System:
Design, Implementation, and Experience. Parallel Computing, Elsevier 2004

14. S. Andreozzi, S. Burke, L. Field, S. Fisher, B. K´onya, M. Mambelli, J. M. Schopf, M.
Viljoen, and A. Wilson. Glue schema specification version 1.3 draft 1, INFN, 2006

15. R. Raman, M. Livny, M. Solomon. Policy Driven Heterogeneous Resource Co-Allocation
with Gangmatching. Proceedings of the Twelfth IEEE International Symposium on High-
Performance Distributed Computing, June, 2003, Seattle, WA.

16. S. Andreozzi, G. Garzoglio, S. Reddy, M Mambelli, A. Roy, S. Wang, T. Wenaus. GLUE
Schema v1.2 Mapping to Old ClassAd Format, INFN, July 2006

17. S.Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas and R. A. Harshman. Indexing
by latent semantic analysis. Journal of the Society for Information Science, 41(6), 391-
407, 1990

18. P. Drineas, A Frieze, R. Kannan, S. Vempala, V. Vinay.Clustering Large Graphs via the
Singular Value Decomposition.Machine Learning, 56, 9–33, 2004

19. S. T. Dumais. Using LSI for Information Retrieval, Information Filtering, and Other
Things". Cognitive Technology Workshop, April 4-5, 1997.

20. Condor High Throughput Computing. Classified Advertisements. Univeristy of
Wisconsin, http://www.cs.wisc.edu/condor/classad

21. G. Giunta, P. Mariani, R. Montella, A. Riccio. pPOM: A nested, scalable, parallel and
Fortran 90 implementation of the Princeton Ocean Model. Envirnonmental Modelling &
Software 22 (2007) pp 117-122.

22. G. Barone, P. D’Ambra, D. di Serafino, G. Giunta, R. Montella, A. Murli, A. Riccio, An
Operational Mesoscale Air Quality Model for the Campania Region – Proc. 3th
GLOREAM Workshop, Annali Istituto Universitario Navale (special issue), 179-189,
giugno 2000

23. G. Barone, P. D’Ambra, D. di Serafino, G. Giunta, A. Murli, A. Riccio, Parallel software
for air quality simulation in Naples area, J. Eviron. Manag. and Health, 2000(10), pp.
209-215

24. G. Giunta, R. Montella, A. Riccio. Globus GT4 based Job Flow Scheduler and Resource
Broker development for a grid computing based environmental simulations laboratory.
Technical Report 2006/07 Dept. of Applied Sciences, University of Naples "Parthenope"

 Development of a GT4-Based Resource Broker Service 217

25. Resource Specification Language (RSL), Globus Alliance, www-unix.globus.org/
developer/rsl-schema.html

26. G. Giunta, R. Montella, P. Mariani, A. Riccio. Modeling and computational issues for
air/water quality problems. A grid computing approach. Il Nuovo Cimento, vol 28C, N.2,
March-April 2005

27. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, S. Weerawarana, IBM, Business Process Execution
Language for Web Services Version 1.1, http://www.oasis-open.org, 2003

28. Active BPEL Engine Site. http://www.activebpel.org

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 218 – 228, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Small-World Network Inspired Trustworthy Web Service
Evaluation and Management Model

Qinghua Meng1,2 and Yongsheng Ding1

1 College of Information Sciences and Technology
Donghua University, Shanghai 201620, P.R. China

2 Department of Computer Sciences and Technology
Weifang University, Weifang, Shandong 261401, P.R. China

ysding@dhu.edu.cn

Abstract. The trustworthiness between anonymous web service client and
provider influences service stability and collaboration. Trustworthiness includes
some aspects such as service’s security, controllability and survivability. So, a
definition of trustworthiness for web service is given in the paper, and then a
web service trustworthiness evaluation and management model is brought forth
inspired by human small-world network. The model consists of three web
service federations: WSRRC, APAEAS and AWSORT. WSRRC is a Web
Service Resource Register Center, which is established by UDDI protocol.
APAEAS is an Area Proxy Authentication Evaluating Autonomy
System, which collects some authentication information of web service clients,
accepts clients’ special requirement and feedbacks service’s trustworthiness
values to AWSORT. AWSORT is an Area WS Resource Organizing Tree,
which organizes and manages web service resources; records web service
trustworthiness values, keeps web service state, assigning web service. The
model establishes a trustworthy environment for anonymous web service clients
and providers. Furthermore, some detailed evaluating parameters about service
trustworthiness and quality is discussed and some service management
algorithms are proposed in the paper. The simulation results show that model is
feasible for semantic grid integration and establishment for virtual organization.

Keywords: web service federation, trustworthy web service, small-world
network, loading-balance, quality of service.

1 Introduction

Web service (WS) are quickly maturing as a technology that allows for the integration
of applications belonging to different administrative domains, enabling much faster
and more efficient business-to-business arrangements [1]. For the integration to be
effective, the provider and the consumer of a service must negotiate some parameters,
such as quality of service, security auditing and communication speed [2-4]. However,
security auditing can be very challenging when the parties do not blindly trust each
other, which is expected to be the common case for large WS deployments [5, 6].

By now some WS-security specifications and trust auditing framework are
available [7, 8]. Microsoft and IBM propose a set of WS security specifications
includes a message security layer, a policy security layer, a federated security layer

 Small-World Network Inspired Trustworthy WS Evaluation and Management Model 219

[9-11]. However, the specifications demand all of the provider and customer be
authenticated by a trustworthy verification center [11]. Especially for anonymous WS
providers, the WS customer needs to pre-evaluate their trustworthiness, and then it
will choose a provider which trustworthiness is the highest.

Thus, we propose a trustworthiness evaluation and management model inspired by
human small-world network. The model establishes an integrated loosed-trustworthy
WS environment for the anonymous users and resources. Whether web clients and
services are authenticated or not, the model will ensure some initial effective
trustworthiness. Furthermore, it can optimize WS and manage effectively service traffic.

This paper is organized as follows: Section 2 introduces characters of
trustworthiness in human small word and gives the definition of trustworthiness.
Section 3 puts forward WS trustworthiness evaluating and managing model. Section 4
presents web service federation organization protocols, data structures and
instructions. Section 5 presents WS trustworthiness evaluating & managing algorithm.
Section 6 discusses the simulation of WS loading-balance in the web service
federation. Section 7 concludes the paper by discussing the research trends of the
trustworthiness model.

2 Small-World Network and WS Trustworthiness

2.1 Trustworthiness in the Human Small-World Network

M. Stanley proposed the assumption of ‘six degrees’ in human society as early as
1967. Watts and Strogatz built the small-world networks theory according to the
assumption in 1998. The small world model widely exists in the human society and
bio-network. It describes ubiquitous resource searching characteristics such as self-
like, self-organizing and self-adjusting. WS network presents some characteristics like
small world, and users would like to obtain service in the nearer ‘small world’ from
internet. So, we expect to establish a service evaluation framework to organize and
manage WS based on small world model.

Small world is a relation network centralized on a person in the human society, in
which he decides how to choose friends and what resource to select for use. From
another point of view, the small world is a trustworthiness evaluating and dynamically
selecting network, which structure and nodes’ trustworthiness values will change with
the environment and time. People add or delete the partial node to the small world
according to their needs. They constantly do some trustworthiness-evaluating work about
surrounding ‘node’, and at the same time they change their trustworthiness value and
adjust their behaviors. Thus, it is clear that the small world network is a trustworthiness
and benefit driven network. People choose these required resources or services and give
up those disabled nodes in order to get the largest benefits in minimum costs.

2.2 WS Trustworthiness

Along with SOA (service-oriented-architecture) is more and more popular, it is
necessary that the SOA applications should provide trustworthy services. Trustworthy
network should have three essential properties: security, controllability and
survivability [8]. From the view of trustworthiness, we attempt to give the definition
of the trustworthiness of WS. WS trustworthiness also should include three

220 Q. Meng and Y. Ding

properties: security, controllable and survivable. The following is the detailed
definition. Namely

)Sur,Ctrl,Seu(WS Γ=Τ

Define 1: Security
WS security includes a series of attributes: service entity being security, service
context being security, WS structure being security. That is service entity must be
legal and authenticated; WS content must be effective and security, no error and no
virus. As WS is stateless, WS structure security is that WS can keep its service state
and its state is stable in a certain period. Namely

)Stru,Con,En()Seu(seΨ=Γ

Define 2: Controllability
WS controllability is that WS role can be managed, its behavior can be controlled,
and its services quality can be ensured. WS client or provider should have right role in
the SOA system, and these roles should be managed in the security policy. WS
behavior being controlled means that WS’ access policy should have been integrated
managed. WS quality being controlled means that WS should satisfy different
business needs. Therefore, WS can provide different quality and security grade
service for different requirement. Namely

)QuaAct,,Role()Ctrl(Ω=Γ

Define 3: Survivability
WS survivability is that WS have the ability of withstanding intrusions or attacks.
That is that WS can still provide service in case of being damaged. WS survivability
includes fault-toleration, intrusion-toleration, and self-recovery.

)Rcov,tol_Intru,tol_Fault()Sur(Φ=Γ

WS Trustworthiness should include all of the three factors. So, the trustworthiness
value should be expressed as following:

)Rcov,tol_Intru,tol_Fault(*)QuaAct,,Role(*)Stru,Con,En(*

)Sur(*)Ctrl(*)Seu(*)Sur,Ctrl,Seu(

se

WS

Φ+Ω+Ψ=

Γ+Γ+Γ=Γ=Τ

γβα
γβα

Here, γβα ,, are the weights of the three factors. No matter what the detailed

parameters are changed, its value should be in a scope. Namely

]1,0[TWS ∈

3 WS Trustworthiness Evaluating and Managing Model

3.1 WS Trustworthy Management Model

Fig 1(a) describes normal WS structure. WS provider publishes its services into
WSRRC (WS Resources Register Center). Web client submits service querying to

 Small-World Network Inspired Trustworthy WS Evaluation and Management Model 221

(a) (b)

WS-c l i en ts WS-Provider

W S R R C

AWSROT

APAEAS

W S - c l i e n t s

W S R R C

AWSROT

APAEAS

Trusted-WSE

T-WSF

Fig. 1. WS Trustworthiness Evaluation & Management model

WSRRC, and after getting resource identification, then bind each other to deal with
corresponding transaction.

Inspired by human small-world network, we put forward a WS trustworthiness
evaluation and management model (fig.1 (a)). We add two modules: APAEAS (area
proxy authentication evaluating autonomy system) and AWSORT (area WS resource
organizing tree). APAEAS consists of a great many of authenticated or anonymous
WS-clients, and it will supervise and evaluate their trustworthiness. AWSORT is in
charge of recording WS quality, keeping its service state, and implementing loading-
balance. Thus, the two web service federations establish a trustworthy environment
for WS-clients and WS-providers, a normal WS-Provider become a trusted WS entity
(Trusted-WSE), shown in fig.1 (b).

APAEAS and AWSORT don’t change working patterns of WS-clients and WS-
providers. Furthermore they make simple and stateless service to become Trusted-WS.
Thus, APAEAS AWSORT and Trusted–WSE form a trusted WS federation (T-WSF).

3.2 APAEAS and AWSORT

3.2.1 APAEAS
APAEAS is a small-world web service federation for evaluating WS-client’s
trustworthiness and submitting service requirement instead of WS-client. Its functions
include:

① It collects security information of users, such as authentication information,
security grade and their personnel service demands. According to the information,
APAEAS will communicate with AWSORT to satisfy users’ needs.

② As to high-security grade WS, APAEES must authenticate users, and verify
whether the user is able to require a high-security grade services. Since only
authenticated user have the qualification to apply security transaction. If the
requirement is permitted, APAEES will record these events, and make logs about
users’ working states and results.

③ On the other hand, APAEES can automatically distribute these requirements
to different area AWSORT to prevent DOS (deny of service).

222 Q. Meng and Y. Ding

3.2.2 AWSROT
AWSROT is a self-organizing federation of WS resources. It organizes many WS
providers as a large service pool. Its functions include:

① AWSROT keeps WS service states, registers relevant parameters, and
records service trustworthiness values from APAEAS.

② AWSROT can be established according to trustworthiness values, service
quality of WS and maximum service capacity. When WS trustworthiness values and
service quality change, the position of the corresponding node should be adjusted in
order to provide the most effective service in minimum costs.

③ AWSROT can automatically design a the best WS-provider to a WS-client
with a set of service optimization policy.

④ AWSROT can implement WS loading-balance. When a WS-client roams in
different APAEAS, AWSROT will design a local optimized WS-provider instead of
previous WS-provider.

After the WS normal structure is changed by adding the two models, WSRRC
not only takes charge of registering and querying services, but also assign different
tasks to corresponding AWSROT. Therefore, WSRRC, APAEAS and AWSROT
together provide a trustworthy WS environment.

4 Web Service Federation Organization Protocols, Data
Structures and Instructions

4.1 AWSROT Protocol

Fig. 2. is the structure of AWSROT. AWSROT is the core of trustworthy web service
environment. Its functions include states keeping, service recommending, loading
balance, trustworthiness evaluating. Its organization structures are a hybrid structure.
It consists of a four-rank B-tree and some circulating double-linked-list.

The four-rank B-tree is used to locate and organizes different category service, and
the double circulating linked-list is used to organize the same category service.
Because for users, querying services is hoped to get a quick answer, B-tree can high-
effectively search for a resource; get a service is hoped the service provider is the best,
the circulating linked-list always place the best service in the header point.
Furthermore, the double circulating linked-list can dynamically adjust the location of
service provider by its trustworthiness value, QOS, capacity and responding speed. So,
the hybrid structure can high-effectively and quickly provide an optimized service.

4.2 APAEAS Protocol

APAEAS has a layered structure, shown in fig.3. It is a small world for WS-Clients. It
will register in WSRRC; some little APAEAS will form a large APAEAS. So, the
whole ARAEAS has a tree structure in logic. Each APAEAS is a management unit to
anonymous or authenticated users. Its main functions are collecting users’
information, accepting users’ service request, feed-backing trustworthiness value to
AWSROT and satisfying users’ special demand.

 Small-World Network Inspired Trustworthy WS Evaluation and Management Model 223

……

……

……

TTLTransmitting
 Bit

Security
grade

Living
State

Area IDService Service Service Service 11

Service Service Service Service 0011 Service 1100 Service 1101 Service 1110 Service 1111

Service 110000 Service 110001 Service 110010 Service 110011

Services CapacityLink List
ServicesHead Online Transmitting

 Bit

IP Service
Tail Service Service

Quality
Head
Pointe

Service
URL

Online
amount

TTLTrust
Value

Transmitting
 Bit

Living
State

……

Fig. 2. The Structure AWSROT

Service history
Personal
information
Special demanding
Trust values
……

… …
Service history
Personal
information
Special demanding
Trust values
……

Service history
Personal
information
Special demanding
Trust values
 ……

Fig. 3. The Structure of APAEAS

APAEAS keeps a great number of users’ information. The information has been
stored in database, and each user has a recorder in the database. The recorder includes
some information of WS-Clients, such as service access history, security grade,
personal information, particular service demands etc. So, actually an APAEAS is a
user authenticating server.

Table 1 is the record format of customer; in which APAEAS record recent used
resources. Service histories keep such items as service’s using frequency, service ID,
trust values and service’s quality etc. According to the information, APAEAS can

224 Q. Meng and Y. Ding

Table 1. User Recorder’s Format in the APAEAS

IP address

U
ser.ID

Security
G

rade

Individual
Feature

Last-used
R

esource ID

Frequency

R
esource.ID

Trust Value

Q
O

S

Frequency

R
esource.ID

Trust Value

Q
O

S

learn about WS-Client’s needs and provide appropriate services to satisfy its demand.
APAEAS also collect user’s authentication parameters in order to monitor web
service process.

4.3 Instruction System

The WSRRC, APAEAS and AWSROT together cooperate to make up a loosed
trustworthiness evaluating and managing framework. The model divide a whole large
work into some small procedures, and each finish a part work. So, all of WSRRC,
APAEAS and AWSROT is an integrated loosed security system for web service.
Although WSRRC, APAEAS and AWSROT have own attributes and instructions,
most of them are the same. So, we give a summary to the all attributes and instructions.

All attributes of these protocols include: *.state, *.TTL(), *.living(), *.warning,
*.security_grade, *.IP_address, *.fellow, *.SID, *.URL, *.service_type, *.federation_ID,
*.QOS, *.header, *.tail, *.trustworthiness_value, *.service_capacity,
*.online_connectting_amount, *.Connecting _online etc. Here, * denotes a certain object,
such as APAEAS, AWSROT, a node in the B-tree, a WS-Client, a service resource etc.
The attributes describe some characters of the object in the framework. The information
are collected and recorded to determine the object how to respond a special event.

The instructions of the model include: *.invite(), *.register(), *.authenticate(),
*.TTL(), *.roaming(), *.request(), *.respond(), *.Query(), *.cost(), *.connect(),
*.close(), *.trustworthiness_evaluating(), *.QOS_evaluating(), *.sort(),
*.adjust_position(), *.provide_service(), *.assign(); *.relay_assign() etc. As the same
way, * denotes a certain object, such as APAEAS, AWSROT, a node in the B-tree, a
WS-Client, a service resource etc. The whole function of these instructions cooperate
each other to drive the model to provide the best service in the lowest cost. Here, the
interpretation of how to use the each instruction is omitted.

5 WS Evaluating and Managing Algorithm

5.1 WS Assigning Algorithm

In order to provide high-quality and low-cost WS, we design two-layer assigning
structure. Firstly, by querying APAEAS or WSRRC, user can get the nearest
AWSROT; secondly, AWSROT will recommend proper WS-Provider according to
trustworthiness, QOS, responding speed and Maximum connecting capacity.

 Small-World Network Inspired Trustworthy WS Evaluation and Management Model 225

WSRRC divides the whole service area into some parts, each part has an
AWSROT, and all WS-Providers in a part will register itself into the local AWSROT.
So, in WSRRC, all the registered resources are organized according to geography
feature. Every AWSROT is a small word of resource. When a WS-Client queries a
WS-Provider, it will be relocated to the local AWSROT. Thus, communication
between the client and the provider is confined to a small word. Therefore, it will
reduce the main traffic of bone network.

In the AWSROT, all resources will be organized by services category and sorted
by trustworthiness, QOS, maximum connecting capacity and responding speed etc.
So, according to these parameters, AWSROT will recommend the most popular WS-
Provider to WS-Client. In order to fairly evaluate a service, we introduce an
evaluating concept: believed zone.

Believed zone is an evaluating range, when two or more values of an item are in a
range of]m,m[ε+ , we consider that they have the same value. So, believed zone is
a range of probability. We evaluate trustworthiness and QOS using the method of
believed zone. But for maximum connecting capacity and online connecting amount,
we use precise values to evaluate them.

WS assigning algorithm is shown as the following:

While (Double_cir_link.live and Double_cir_link.state) {
if (Double_cir_link.ttl())
{Double_cir_link.live=false; Double_cir_link.closed;} // if no TTL returns, then close closed
link-list.
link.sort (Trust_eva()); // Firstly , nodes will be sorted by trust value.
If Trust_eva()],'[ΘΘ∈

 link.sort (Qua_eva ()); //Secondly, nodes will be sorted by service quality.
If Qua_eva()],'[ΘΘ∈

link.sort (connect_max); //Finally, nodes will be sorted by maximum connecting amount.
When WS_Client.request ();
AWSROT.Query ();
Double_cir_link.head_pointer.provide_service(); //Firstly, head-node provides WS
Double_cir_link.head_pointer.connect_onle ++; //adding one to head nodes’ online
connecting amount
link.connect_onle ++； // adding one to link-list’s online connecting amount
If head_pointer.connect_only ≥0.8* head_pointer.connect_max
P↑.Head_pointer=Head_pointer.next;
P↑.Tail_pointer=Head_pointer; //if head nodes’ online connecting amount is 80 percents of the
whole service capacity, then insert it into the tail node.
If link.connect_onle ≥0.8* link.connect_max
Double_cir_link.state=false; // if link-list’ online connecting amount is 80 percents of the whole
service capacity of the link-list, then its state bit become false.
Link_content_warning (federation_ID) or warning.sending to WSRRC; // sending a warning of
full-loading to its sedation fellow or WSRRC. }}

5.2 WS Loading-Balance Algorithm

All of the WS-Providers, AWSORT, APAEAS and WSRRC compose a large virtual
organization. The whole virtual organization will deal with loading-balance from
three steps in the whole process.

226 Q. Meng and Y. Ding

(1) Firstly, WSRRC will distribute the network traffics in the whole virtual
organization. For web service request from the local APAEAS, WSRRC will transmit
the requests to the local AWSROT. Thus WSRRC confine local service traffic in
certain range, so decrease chances of traffic blocks.

(2) Secondly, when AWSROT receive the service request, according to the
trustworthiness value, QOS, service capacity and responding speed, it will select the
best WS-Provider to WS-Client from its resource tree. Thus, AWSROT always
remain the lowest communicating cost for the web service.

 (3) Finally, if the user is roaming out of its local APAEAS, it will send a message
to WSRRC, and then WSRRC will give the several nearer AWSROT. The user will
calculate the communicating cost according the roaming relaying algorithm. The step
aims at connecting the best WS-Providers in the lowest cost. So in different
conditions, coefficients in the roaming relaying algorithm will be adjusted according
to the actual circumstance. For example, if the network is busy, the coefficient of TTL
() should be added, namely its rate in the cost should be the more than others. If the
network is very free, the rates of trustworthy and QOS should be added.

Here, the detailed loading-balance algorithm is shown as the following.

While (WS. Request ())
{If (WS-client. Roaming !==0)) then WS.connect=min(cost1.connect| cost2.connect|……|
costn.connect) //If the user is in the roaming state, it will calculate the lowest cost to connect the
nearest AWSORT according to roaming relaying algorithm.
Else
WS.connect=WSRRC.assign (); // Normal user connects the local AWSROT
If (AWSROT.state==0) then
WS.connect= AWSROT.provide_service () //If the capacity of local AWSROT is enough; it will
accept the service request.
Else
WS.connect=WSRRC.relay_assign ();//if the local AWSROT already has be up to the maximum
connecting amount, it will transmit the request to the fellow AWSROT or send a warning
message to the WSRRC.
AWSROT.assign (); //the best resource is normally assigned in the AWSROT. }

6 Simulations of Trustworthy WS Assigning

In order to verify the WS trustworthiness management middleware, we simulate in a
local area network environment. We design four APAEAS and AWSROT, one
WSRRC, 200 WS-Clients and 50 WS-Providers. They consist of a trusted WS
environment; all the four AWSROT are an AWSROT-federation.

The loading-balance algorithm is simulated only on invariable loading. In the
beginning all the WS-Clients are in roaming state, so received requires amounts of
different AWSROT are different. Along with the rule of lowest connect-cost, WS
assigning algorithm begin to work, finally the four AWSROT get the average and
stable connecting amount, shown in the Fig.4. The Simulation results imply that the
structure of APAEAS and AWSROT is available in implementing loading-balance
and connecting the nearest AWSROT in the lowest cost.

 Small-World Network Inspired Trustworthy WS Evaluation and Management Model 227

Fig. 4. WS assigning process in the case of keeping invariable loading

7 Conclusions

The paper establishes a trustworthiness appreciable and manageable model for WS.
The model provides a trustworthy WS environment for anonymous WS-Clients and
WS-Providers. It can record service’ state, optimize service quality, carry out loading-
balance.

The model has three web service federations: WSRRC, APAEAS and AWSROT.
They are small-worlds of user or resource. These federations provide a trustworthy,
controllable and reliable WS environment. The model has the ability of automatically
assigning services and trustworthiness evaluating.

By increasing AWSROT and APAEAS, some disadvantages of WS are also
eliminated. Stateless WS becomes trustable and stable service, and the process of WS
be supervised, managed. But the model still remains WS original working pattern,
only adding some management procedure, such as registering, trustworthiness feed-
backing and evaluating, resource optimizing. At the other hand, all of WS-Clients and
WS-Providers still remain independent and free. The model also provides a scaleable
and trustworthy service resolution for anonymous service applications of SOA, Grid,
and P2P.

Acknowledgments

This work was supported in part by the Key Project of the National Nature Science
Foundation of China (No. 60534020), the National Nature Science Foundation of
China (No. 60474037), and Program for New Century Excellent Talents in University
from Ministry of Education of China (No. NCET-04-415), the Cultivation Fund of the
Key Scientific and Technical Innovation Project from Ministry of Education of China,
International Science Cooperation Foundation of Shanghai (061307041), and
Specialized Research Fund for the Doctoral Program of Higher Education from
Ministry of Education of China (No. 20060255006).

228 Q. Meng and Y. Ding

References

[1] A. A. Pirzada, A. Datta, C. McDonald. Incorporating trust and reputation in the DSR
protocol for dependable routing. Computer Communications, 2006, 29(15):2806-2821.

[2] M. E. Schweitzer, J. C. Hershey, E. T. Bradlow. Promises and lies: Restoring violated
trust. Organizational Behavior and Human Decision Processes, 2006, 101(1):1-19.

[3] B. Blobel, R. Nordberg, J. M. Davis, P. Pharow. Modeling privilege management and
access control. International Journal of Medical Informatics, 2006, 75(8):597-623.

[4] A. Antoci, M. Galeotti, P.Russu, L. Zarri. Generalized trust and sustainable coexistence
between socially responsible firms and nonprofit organizations. Chaos, Solitons &
Fractals, 2006, 293(3):783-802.

[5] L. Mekouar, Y. Iraqi, R.Boutaba. Peer-to-peer’s most wanted: Malicious peers.
Computer Networks, 2006, 50(4): 545-562.

[6] C. Busco, A. Riccaboni, W. Scapens. Trust for accounting and accounting for trust.
Management Accounting Research, 2006, 17(1):11-41.

[7] C. Selin. Trust and the illusive force of scenarios, Futures, 2006, 38(2):1-14.
[8] P. Ratnasingam. Trust in inter-organizational exchanges: a case study in business to

business electronic commerce. Decision Support Systems, 2005, 39(3):525-544.
[9] J. Riegelsberger, M. Angela Sasse, J. D. McCarthy. The mechanics of trust: A framework

for research and design. International Journal of Human-Computer Studies, 2005,
62(3):381-422.

[10] Y-F Chang, C-Cn Chang, H. Huang. Digital signature with message recovery using self-
certified public keys without trustworthy system authority. Applied Mathematics and
Computation, 2005, 161(4):211-227.

[11] A. R. Sadeghi, C. Stüble. Towards multilaterally secure computing platforms—with open
source and trusted computing. Information Security Technical Report, 2005, 10(2):83-95.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 229 – 240, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards Feasible and Effective Load Sharing in a
Heterogeneous Computational Grid

Kuo-Chan Huang1, Po-Chi Shih2, and Yeh-Ching Chung2

1 Department of Electronic Commercce
Hsing Kuo College of Management

No. 89, Yuying Street, Tainan, Taiwan
kchuang@mail.hku.edu.tw
2 Department of Computer Science

National Tsing Hua University
101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan

shedoh@sslab.cs.nthu.edu.tw, ychung@cs.nthu.edu.tw

Abstract. A grid has to provide strong incentive for participating sites to join
and stay in it. Participating sites are concerned with the performance
improvement brought by the gird for the jobs of their own local user
communities. Feasible and effective load sharing is key to fulfilling such a
concern. This paper explores the load-sharing policies concerning feasibility
and heterogeneity on computational grids. Several job scheduling and processor
allocation policies are proposed and evaluated through a series of simulations
using workloads derived from publicly available trace data. The simulation
results indicate that the proposed job scheduling and processor allocation
policies are feasible and effective in achieving performance improvement on a
heterogeneous computational grid.

Keywords: feasibility, load sharing, simulation, heterogeneous grid.

1 Introduction

This paper deals with scheduling and allocating independent parallel jobs in a
heterogeneous computational grid. Without grid computing local users can only run
jobs on the local site. The owners or administrators of different sites are interested in
the consequences of participating in a computational grid, whether such participation
will result in better service for their local users by improving the job response time.
Therefore, we say a computational grid is feasible if it can bring performance
improvement and the improvement is achieved in the sense that all participating sites
benefit from the collaboration. In this paper that means no participating sites’ average
response time for their jobs get worse after joining the computational grid.

In addition to feasibility, heterogeneity is another important issue in a
computational grid. Many previous works have shown significant performance
improvement for multi-site homogeneous grid environment. However, in the real
world a grid usually consists of heterogeneous sites which differ at least in the
computing speed. Heterogeneity puts a challenge on designing effective load sharing
methods. Methods developed for homogeneous grids have to be improved or even
redesigned to make them effective in a heterogeneous environment. This paper

230 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

addresses the potential benefit of sharing jobs between independent sites in a
heterogeneous computational grid environment. To construct a feasible and effective
computational grid, appropriate load sharing policies are important. The load sharing
policies have to take into account several job scheduling and processor allocation
issues. These issues are discussed in this paper, including job scheduling for feasible
load sharing benefiting all sites, site selection for processor allocation, multi-site
parallel execution. Several job scheduling and processor allocation policies are
proposed and evaluated through a series of simulations using workloads derived from
publicly available trace data. The simulation results indicate that a significant
performance improvement in terms of shorter job response time is achievable.

2 Related Work

Job scheduling for parallel computers has been subject to research for a long time. As
for grid computing, previous works discussed several strategies for a grid scheduler.
One approach is the modification of traditional list scheduling strategies for usage on
grid [1, 2, 3, 4]. Some economic based methods are also being discussed [5, 6, 7, 8].
In this paper we explore non economic scheduling and allocation policies with
support for a heterogeneous grid environment.

England and Weissman in [9] analyzed the costs and benefits of load sharing of
parallel jobs in the computational grid. Experiments were performed for both
homogeneous and heterogeneous grids. However, in their works simulations of a
heterogeneous grid only captured the differences in capacities and workload
characteristics. The computing speeds of nodes on different sites are assumed to be
identical. In this paper we deal with load sharing issues regarding heterogeneous grids
in which nodes on different sites may have different computing speeds.

For load sharing there are several methods possible for selecting which site to
allocate a job. Earlier simulation studies in our previous work [10] and in the
literature [1] showed the best results for a selection policy called best-fit. In this
policy a particular site is chosen on which a job will leave the least number of free
processors if it is allocated to that site. However, these simulation studies are
performed based on a computational grid model in which nodes on different sites all
run at the same speed. In this paper we explore possible site selection policies for a
heterogeneous computational grid. In such a heterogeneous environment nodes on
different sites may run at different speeds.

In [11] the authors addressed the scheduling of parallel jobs in a heterogeneous
multi-site environment. They also evaluated a scheduling strategy that uses multiple
simultaneous requests. However, although dealing with a multi-site environment, the
parallel jobs in their studies were not allowed for multi-site parallel execution. Each
job was allocated to run within a single site.

The support of multi-site parallel execution [12, 13, 14, 15, 16] on a computational
grid has been examined in previous works, concerning the execution of a job in
parallel at different sites. Under the condition of a limited communication overhead,
the results from our previous work [10] and from [1, 3, 4] all showed that multi-site
parallel execution can improve the overall average response time. The overhead for
multi-site parallel execution mainly results from the slower communication between

 Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid 231

different sites compared to the intra-site communication. This overhead has been
modeled by extending the execution time of a job by a certain percentage [2, 3, 10].

In [2] the authors further examined the multi-site scheduling behavior by applying
constraints for the job fragmentation during the multi-site scheduling. Two parameters
were introduced for the scheduling process. The first parameter lower bound
restricted the jobs that can be fragmented during the multi-site scheduling by a
minimal number of necessary requested processors. The second parameter was
implemented as a vector describing the maximal number of job fragments for certain
intervals of processor numbers.

However, the simulation studies in the previous works are performed based on a
homogeneous computational grid model in which nodes on different sites all run at
the same speed. In this paper we explore possible multi-site selection policies for a
heterogeneous computational grid. In [17] the authors proposed job scheduling
algorithms which allow multi-site parallel execution, and are adaptive and scalable in
a heterogeneous computational grid. However, the introduced algorithms require
predicted execution time for the submitted jobs. In this paper, we deal with the site
selection problem for multi-site parallel execution, requiring no knowledge of
predicted job execution time.

3 Computational Grid Model and Experimental Setting

In this section, the computational grid model is introduced on which the evaluations
of the proposed policies in this paper are based. In the model, there are several
independent computing sites with their own local workload and management system.
This paper examines the impact on performance results if the computing sites
participate in a computational grid with appropriate job scheduling and processor
allocation policies. The computational grid integrates the sites and shares their
incoming jobs. Each participating site is a homogeneous parallel computer system.
The nodes on each site run at the same speed and are linked with a fast
interconnection network that does not favor any specific communication pattern [18].
This means a parallel job can be allocated on any subset of nodes in a site. The
parallel computer system uses space-sharing and run the jobs in an exclusive fashion.

The system deals with an on-line scheduling problem without any knowledge of
future job submissions. The jobs under consideration are restricted to batch jobs
because this job type is dominant on most parallel computer systems running
scientific and engineering applications. For the sake of simplicity, in this paper we
assume a global grid scheduler which handles all job scheduling and resource
allocation activities. The local schedulers are only responsible for starting the jobs
after their allocation by the global scheduler. Theoretically a single central scheduler
could be a critical limitation concerning efficiency and reliability. However, practical
distributed implementations are possible, in which site-autonomy is still maintained
but the resulting schedule would be the same as created by a central scheduler [19].

For simplification and efficient load sharing all computing nodes in the
computational grid are assumed to be binary compatible. The grid is heterogeneous in
the sense that nodes on different sites may differ in computing speed and different
sites may have different numbers of nodes. When load sharing activities occur a job

232 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

may have to migrate to a remote site for execution. In this case the input data for that
job have to be transferred to the target site before the job execution while the output
data of the job is transferred back afterwards. This network communication is
neglected in our simulation studies as this latency can usually be hidden in pre- and
post-fetching phases without regards to the actual job execution phase [19].

In this paper we focus on the area of high throughput computing, improving
system’s overall throughput with appropriate load sharing policies. Therefore, in our
studies the requested number of processors for each job is bound by the total number
of processors on the local site from which the job is submitted. The local site which a
job is submitted from will be called the home site of the job henceforward in this
paper. We assume the ability of jobs to run in multi-site mode. That means a job can
run in parallel on a node set distributed over different sites when no single site can
provide enough free processors for it due to a portion of resources are occupied by
some running jobs.

Our simulation studies were based on publicly downloadable workload traces [20].
We used the SDSC’s SP2 workload logs 1 on [20] as the input workload in the
simulations. The workload log on SDSC’s SP2 contains 73496 records collected on a
128-node IBM SP2 machine at San Diego Supercomputer Center (SDSC) from May
1998 to April 2000. After excluding some problematic records based on the
completed field [20] in the log, the simulations in this paper use 56490 job records as
the input workload. The detailed workload characteristics are shown in Table 1.

Table 1. Characteristics of the workload log on SDSC’s SP2

 Number of
jobs

Maximum
execution
time (sec.)

Average
execution
time (sec.)

Maximum
number of
processors

per job

Average
number of
processors

per job
Queue 1 4053 21922 267.13 8 3
Queue 2 6795 64411 6746.27 128 16
Queue 3 26067 118561 5657.81 128 12
Queue 4 19398 64817 5935.92 128 6
Queue 5 177 42262 462.46 50 4

Total 56490

In the SDSC’s SP2 system the jobs in this log are put into five different queues and
all these queues share the same 128 processors on the system. In the following
simulations this workload log will be used to model the workload on a computational
grid consisting of five different sites whose workloads correspond to the jobs
submitted to the five queues respectively. Table 2 shows the configuration of the
computational grid under study. The number of processors on each site is determined
according to the maximum number of required processors of the jobs belonged to the
corresponding queue for that site.

1 The JOBLOG data is Copyright 2000 The Regents of the University of California All Rights

Reserved.

 Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid 233

Table 2. Configuration of the computational grid

 total site 1 site 2 site 3 site 4 site 5

Number of processors 442 8 128 128 128 50

To simulate the speed difference among participating sites we define a speed
vector, speed=(sp1,sp2,sp3,sp4,sp5), to describe the relative computing speeds of all
the five sites in the grid, in which the value 1 represents the computing speed
resulting in the job execution time in the original workload log. We also define a load
vector, load=(ld1,ld2,ld3,ld4,ld5), which is used to derive different loading levels
from the original workload data by multiplying the load value ldi to the execution
times of all jobs at site i.

4 Site Selection Policies for Load Sharing in a Heterogeneous Grid

This section explores the potential of a computational grid in improving the
performance of user jobs. The following describes the scheduling structures of two
system architectures with/without grid computing respectively.

• Independent clusters. This architecture corresponds to the situation where no grid
computing technologies are involved. The computing resources at different sites
are independent and have their own job queues without any load sharing activities
among them. Each site’s users can only submit jobs to their local site and those
jobs would be executed only on that site. This architecture is used as a comparison
basis to see what performance gain grid computing can bring.

• Load-sharing computational grid. Different sites connected with an
interconnection network form a computational grid. In the computational grid,
there is a global job scheduler as well as a globally shared job queue. Jobs
submitted by users at different sites are automatically redirected to the global
queue and the jobs retain the identities of their home sites. In this section, different
sites in the computational grid are viewed as different processor pools and each job
must be allocated to exactly one site. No jobs can simultaneously use processors on
different sites. Support for multi-site parallel execution will be discussed in later
sections.

Two kinds of policies are important regarding load sharing in a computational
grid: job scheduling and site selection. Job scheduling determines the sequence of
starting execution for the jobs waiting in the queue. It is required in both the
independent clusters and computational grid architectures. On the other hand, site
selection policies are necessary in a computational grid, which choose an
appropriate site among a set of candidate sites for allocating a job according to
some specified criteria.

The best-fit site selection policy has been demonstrated to be the best choice on a
homogeneous grid in previous works [1, 10]. In the best-fit policy a particular site is
chosen for a job on which the job will leave the least number of free processors if it is

234 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

allocated to that site. As for job scheduling policy, we compared both the FCFS
(First-Come-First-Serve) policy and the NJF (Narrowest-Job-First) policy. The NJF
policy was shown to outperform other non-FCFS policies, including conservative
backfilling, first-available, widest-first, in our previous work [10]. Here, the word
“narrowest” means requiring the least number of processors. In this paper we use the
average response time of all jobs as the comparison criterion in all simulations, which
is defined as:

rofJobsTotalNumbe

submitTimeendTime

TimesponseAverage JobsAllj
jj∑

∈
−

=
)(

Re

However, in the real world a computational grid is usually heterogeneous, at least,
in the aspect of computing speeds at different sites. The best-fit site selection policy
without considering the speed difference among participating sites may not achieve
good performance in a heterogeneous grid, sometimes resulting in even worse
performance than the original independent-site architecture.

To deal with the site selection issue in a heterogeneous grid, we first propose a
two-phase procedure. At the first phase the grid scheduler determines a set of
candidate sites among all the sites with enough free processors for a specific job
under consideration by filtering out some sites according to a predefined threshold
ratio of computing speed. In the filtering process, a lower bound for computing speed
is first determined through multiplying the predefined threshold ratio by the
computing speed of a single processor on the job’s home site, and then any sites with
single-processor speed slower than the lower bound are filtered out. Therefore,
adjusting the threshold ratio is an effective way in controlling the outcomes of site
selection. When setting the threshold ratio to 1 the grid scheduler will only allocate
jobs to sites with single-processor speed equal to or faster than their home sites. On
the other hand, with the threshold ratio set to zero, all sites with enough free
processors are qualified candidates for a job’s allocation. Raising the threshold ratio
would prevent allocating a job to a site that is much slower than its home site. This
could ensure a job’s execution time would not be increased too much due to being
allocated to a slow site. However, for the same reason a job may consequently need to
wait in the queue for a longer time period. On the other hand, lowering the threshold
ratio would make it more probable for a job to get allocation quickly at the cost of
extended execution time. The combined effects of shortened waiting time and
extended execution time are complicated for analysis. At the second phase the grid
scheduler adopts a site selection policy to choose an appropriate site from the
candidate sites for allocating the job.

Figure 1 compares the performances of two different values, 0 and 1, for the
threshold ratio. The results indicate that when the speed difference among sites is
large, speed=(0.6, 0.7, 2.4, 9.5, 4.3), setting the threshold ratio to 1 can enable the
best-fit policy to make performance improvement in a heterogeneous computational
grid compared to the independent-site architecture.

 Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid 235

Fig. 1. Performance of best-fit policy with large speed difference among participating sites

Another possible policy for the second phase of the site selection process is called the
fastest one. The fastest-one policy chooses the site with the fastest computing speed
among all the sites with enough free processors for a job without consideration of the
difference between the number of required processors and a site’s free capacity. To deal
with the difficulty in determination of an appropriate site selection policy, in this section
we propose an adaptive policy, which dynamically changes between the best-fit and the
fastest-one policies, trying to make a better choice at each site selection activity. The
decision is made based on a calculation of which policy can further accommodate more
jobs for immediate execution. Figure 2 shows that the adaptive policy has potential for
outperforming the best-fit and the fastest-one policies in some cases.

Fig. 2. Performance of the adaptive policy

We also performed a series of 120 simulations representing all kinds of relative
speed sequences for the 5 sites, permutations of speed=(1, 3, 5, 7, 9), in the
computational grids. In the 120 simulations, among the three policies the adaptive
policy is the most stable one. It is never the last one and always quite close to the best
one in performance for all the 120 cases, while the other two policies would lead to
poor performance in some cases, being distant from the best and the second policies.
Therefore, while it is not clear whether the best-fit or the fastest-one policy could
achieve better performance under current grid configuration and workload, it may be
a way for playing safe adopting the proposed adaptive policy.

236 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

5 Feasible Load Sharing in a Computational Grid

In most current grid systems, participating sites provide their resources for free with
the expectation that they can benefit from the load sharing. Therefore, it is important
to ensure that the load sharing is feasible in the sense that all sites benefit from it.
Feasible load sharing is a good incentive for attracting computing sites to join a
computational grid. In this paper, we define the feasibility of load sharing to be such a
property which ensures the average job response time of each participating site is
improved without exception. In this section we propose a feasible load sharing policy
which works as follows. When the grid scheduler chooses the next job from the
waiting queue and finds that there exists no single site with enough free processors for
this job’s immediate execution, instead of simply keeping the job waiting in the queue
the grid scheduler inspects the status of the job’s home site to see if it is possible to
make enough free processors by reclaiming a necessary amount of occupied
processors from some of the running remote jobs. If so, it stops the necessary amount
of these running remote jobs to produce enough free processors and put the stopped
remote jobs back to the front of the waiting queue for being re-scheduled to other sites
for execution. This feasible load sharing policy tries to benefit all sites by giving local
jobs a higher priority than remote jobs.

For performing the feasible load sharing policy, the grid scheduler maintains a
separate waiting queue for each site. Each time it tries to schedule the jobs in one
queue as more as it can until no more jobs can be allocated. At this time the grid
scheduler moves on to the next queue for another site. Multi-queue is an effective
mechanism to ensure that local jobs have higher priority than remote jobs during the
processor reclaiming process.

Table 3 evaluates the effects of the feasible load sharing policy in a heterogeneous
computational grid with speed=(1, 3, 4, 4, 8) and load=(5, 4, 5, 4, 1). The NJF
scheduling policy and the fastest-one site selection policy are used in the simulations
with the computing speed threshold ratio set to one, ensuring jobs won’t be allocated
to the sites slower than their home sites. Table 3 shows that with the ordinary load
sharing policy site 5 got degraded performance after joining the grid, which may
contradict its original expectation. On the other hand, our proposed policy is shown to
be able to achieve a somewhat more feasible and acceptable load sharing result in the
sense that no sites’ performances were sacrificed.

Table 3. Average job response times (sec.) for different load sharing policies

 Entire
grid

Site 1 Site 2 Site 3 Site 4 Site 5

Independent
sites

9260 14216 10964 10199 6448 57

Ordinary load
sharing policy

4135 191 4758 4799 3881 559

Feasible load
sharing policy

4152 193 4750 4798 3939 57

 Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid 237

6 Multi-site Parallel Execution in a Heterogeneous Grid

In the load sharing policies described in the previous sections, different sites in the
computational grid are viewed as independent processor pools. Each job can only be
allocated to exactly one of these sites. However, one drawback of this multi-pool
processor allocation is the very likely internal fragmentation [4] where no pools
individually can provide enough resources for a certain job but the job could get
enough resources to run if it can simultaneously use more than one pool’s resources.

Multi-site parallel execution is traditionally regarded as a mechanism to enable the
execution of such jobs requiring large parallelisms that exceed the capacity of any
single site. This is a major application area in grid computing called distributed
supercomputing [21]. However, multi-site parallel execution could be also beneficial
for another application area in grid computing: high throughput computing [21]. In
our high throughput computing model in this paper, each job’s parallelism is bound
by the total capacity of its home site. That means multi-site parallel execution is not
inherently necessary for these jobs. However, for high throughput computing a
computational grid is used in the space-sharing manner. It is therefore not unusual
that upon a job’s submission its requested number of processors is not available from
any single site due to the occupation of a portion of system resources by some
concurrently running jobs. In such a situation, splitting the job up into multi-site
parallel execution is promising in shortening the response time of the job through
reducing its waiting time. However, in multi-site parallel execution the impact of
bandwidth and latency has to be considered as wide area networks are involved. In
this paper we summarize the overhead caused by communication and data migration
as an increase of the job’s runtime [2, 10]. The magnitude of this overhead greatly
influences the achievable response time reduction for a job which is allowed to
perform multi-site parallel execution.

If a job is performing multi-site parallel execution, the runtime of the job is
extended by the overhead which is specified by a parameter p [2]. Therefore the new
runtime r* is:

() rp1r ×+=*

where r is the runtime for the job running on a single site. As for the site selection
issue in multi-site parallel execution, previous works in [1, 10] suggested the larger-
first policy for a homogeneous grid environment, which repeatedly picks up a site
with the largest number of free processors until all the selected sites together can
fulfill the requirement of the job to be allocated. As a heterogeneous grid being
considered, the speed difference among participating sites should be taken into
account. An intuitive heuristic is called the faster-first policy, which each time picks
up the site with the fastest computing speed instead of the site having the most
amount of free processors. This section develops an adaptive site selection policy
which dynamically changes between the larger-first and the faster-first policies based
on a calculation of which policy can further accommodate more jobs for immediate
single-site execution.

Figure 3 shows that supporting multi-site parallel execution can further improve
the performance of a heterogeneous load sharing computational grid when the multi-

238 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

site overhead p=2. Moreover, our proposed adaptive site selection policy outperforms
the larger-first and the faster-first policies significantly. Actually in all the 120
simulations we performed for different speed configurations the adaptive policy
performs better than the other two policies for each case.

Fig. 3. Performance evaluation of adaptive site selection in multi-site parallel execution

7 Conclusion

Most current grid environments are established through the collaboration among a
group of participating sites which volunteer to provide free computing resources.
Each participating site usually has its own local user community and computing jobs
to take care of. Therefore, feasible load sharing policies that benefit all sites are an
important incentive for attracting computing sites to join and stay in a grid
environment. Moreover, a grid environment is usually heterogeneous in nature in the
real world at least for the different computing speeds at different participating sites.
The heterogeneity presents a challenge for effectively arranging load sharing
activities in a computational grid. This paper explores the feasibility and effectiveness
of load sharing activities in a heterogeneous computational grid. Several issues are
discussed including site selection policies for single-site and multi-site parallel
execution as well as feasible load sharing mechanisms. For each issue a promising
policy is proposed and evaluated in a series of simulations. The quality of scheduling
and allocation policies largely depends on the actual grid configuration and workload.
The improvements presented in this paper were achieved using example
configurations and workloads derived from real traces. The outcome may vary in
other configurations and workloads. However, the results show that the proposed
policies are capable of significantly improving the overall system performance in
terms of average response time for user jobs.

Acknowledgement

The work of this paper is partially supported by National Science Council and
National Center for High-Performance Computing under NSC 94-2218-E-007-057,
NSC 94-2213-E-432-001 and NCHC-KING_010200 respectively.

 Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid 239

References

[1] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour, “Evaluation of Job-
Scheduling Strategies for Grid Computing”, Proceedings of the 7th International
Conference on High Performance Computing, HiPC-2000, pp. 191-202, Bangalore,
India, 2000.

[2] C. Ernemann, V. Hamscher, R. Yahyapour, and A. Streit, “Enhanced Algorithms for
Multi-Site Scheduling”, Proceedings of 3rd International Workshop Grid 2002, in
conjunction with Supercomputing 2002, pp. 219-231, Baltimore, MD, USA, November
2002.

[3] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, R. Yahyapour, “On
Advantages of Grid Computing for Parallel Job Scheduling”, Proceedings of 2nd IEEE
International Symposium on Cluster Computing and the Grid (CC-GRID 2002), pp. 39-
46, Berlin, Germany, 2002.

[4] C. Ernemann, V. Hamscher, A. Streit, R. Yahyapour, “"On Effects of Machine
Configurations on Parallel Job Scheduling in Computational Grids", Proceedings of
International Conference on Architecture of Computing Systems, ARCS 2002, pp. 169-
179, 2002.

[5] R. Buyya, D. Abramson, J. Giddy, H. Stockinger, “Economic Models for Resource
Management and Scheduling in Grid Computing”, Special Issue on Grid Computing
Environments, The Journal of Concurrency and Computation: Practice and
Experience(CCPE), May 2002.

[6] R. Buyya, J. Giddy, D. Abramson, “An Evaluation of Economy-Based Resource Trading
and Scheduling on Computational Power Grids for Parameter Sweep Applications”,
Proceedings of the Second Workshop on Active Middleware Services (AMS2000), In
conjunction with the Ninth IEEE International Symposium on High Performance
Distributed Computing (HPDC 2000), Pittsburgh, USA, August 2000.

[7] Y. Zhu, J. Han, Y. Liu, L. M. Ni, C. Hu, J. Huai, “TruGrid: A Self-sustaining
Trustworthy Grid”, Proceedings of the First International Workshop on Mobility in Peer-
to-Peer Systems (MPPS) (ICDCSW'05), pp. 815-821, June 2005.

[8] C. Ernemann, V. Hamscher, R. Yahyapour, “Economic Scheduling in Grid Computing”,
the 8th International Workshop on Job Scheduling Strategies for Parallel Processing,
Lecture Notes In Computer Science; Vol. 2537, pp. 128-152, 2002.

[9] D. England and J. B. Weissman, “Costs and Benefits of Load Sharing in Computational
Grid”, 10th Workshop on Job Scheduling Strategies for Parallel Processing, Lecture
Notes In Computer Science, Vol. 3277, June 2004.

[10] K. C. Huang and H. Y. Chang, “An Integrated Processor Allocation and Job Scheduling
Approach to Workload Management on Computing Grid”, Proceedings of the 2006
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA'06), pp. 703-709, Las Vegas, USA, June 26-29, 2006.

[11] G. Sabin, R. Kettimuthu, A. Rajan and P. Sadayappan, “Scheduling of Parallel Jobs in a
Heterogeneous Multi-Site Environment”, Proceedings of 9th Workshop on Job
Scheduling Strategies for Parallel Processing, June 2003.

[12] M. Brune, J. Gehring, A. Keller, A. Reinefeld, “Managing Clusters of Geographically
Distributed High-Performance Computers”, Concurrency – Practice and Experience,
11(15): 887-911, 1999.

[13] A. I. D. Bucur and D. H. J. Epema, “The Performance of Processor Co-Allocation in
Multicluster Systems”, Proceedings of the Third IEEE International Symposium on
Cluster Computing and the Grid (CCGrid'03), pp. 302-, May 2003.

240 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

[14] A. I. D. Bucur and D. H. J. Epema, “The Influence of Communication on the
Performance of Co-Allocation”, the 7th International Workshop on Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science; Vol. 2221, pp.
66-86, 2001.

[15] A. I. D. Bucur and D. H. J. Epema, “Local versus Global Schedulers with Processor Co-
Allocation in Multicluster Systems”, the 8th International Workshop on Job Scheduling
Strategies for Parallel Processing, Lecture Notes In Computer Science, pp. 184-204,
2002.

[16] S. Banen, A. I. D. Bucur and D. H. J. Epema, “A Measurement-Based Simulation Study
of Processor Co-Allocation in Multicluster Systems”, the 9th Workshop on Job
Scheduling Strategies for Parallel Processing, Lecture Notes In Computer Science; Vol.
2862, pp. 105-128, 2003.

[17] W. Zhang, A. M. K. Cheng, M. Hu, “Multisite Co-allocation Algorithms for
Computational Grid”, Proceedings of the 20th International Parallel and Distributed
Processing Symposium, pp. 8-, April 2006.

[18] D. Feitelson and L. Rudolph, “Parallel Job Scheduling: Issues and Approaches”,
Proceedings of IPPS’95 Workshop: Job Scheduling Strategies for Parallel Processing,
pp. 1-18, 1995.

[19] C. Ernemann, V. Hamscher, R. Yahyapour, “Benefits of Global Grid Computing for Job
Scheduling,” Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing(GRID’04), pp. 374-379, November 2004.

[20] Parallel Workloads Archive, http://www.cs.huji.ac.il/labs/parallel/workload/
[21] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure,

Morgan Kaufmann Publishers, Inc., 1999.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 241 – 251, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Meeting QoS Requirements of Mobile Computing by
Dual-Level Congestion Control

Yi-Ming Chen and Chih-Lun Su

Department of Information Management, national Central University
300, Jhongda Rd., Jhongli, Taiwan, 32054, R.O.C.
{cym, 90423216}@cc.ncu.edu.tw

Abstract. As the resources in a wireless network are limited and freely shared
by all network users, Call Admission Control (CAC) plays a significant role in
providing the Quality of Service (QoS) in wireless networks. However, when
the network is congested with too many users, traditional CAC that mainly
focuses on the tradeoff between new call blocking probability and handoff call
dropping probability cannot guarantee QoS requirements to users. To address
this issue, this paper proposes a dual level congestion control scheme which
considers not only the call level admission control but also the user’s decision
to enter the network or not during the network traffic burst interval (we call it as
user-level burst control). We adopt the economical terms of externality and
introduce a total user utility function to formally model the user’s perceived
QoS metric. Our simulation shows that the weighted blocking probability (Pb)
of our scheme can decreases 70~80% than traditional CAC systems and
increase the total user utility to 2~3 times.

Keywords: Call admission control, congestion control, utility function, quality
of service, wireless network.

1 Introduction

As 802.11 wireless LANs becomes more and more popular, the demand for mobile
communication services, such as Internet phone, is increasing. Since such
communication services require high quality of transmission, how to provide desired
Quality of Service (QoS) to users becomes an important research issue. Generally, call
admission control (CAC) plays a significant role in providing desired QoS in wireless
networks [1]. Traditional CAC usually limits the number of call connections into the
networks to reduce the network congestion and call blocking. In mobile networks,
there are two classes of call connections: new calls and handoff calls. Both of them
may be blocked or dropped due to the limited resources in a wireless cell. Therefore,
call blocking probability (CBP) and call dropping probability (CDP) are two
important connection level QoS parameters [2]. Many CAC schemes, such as guard
channel scheme and queueing priority scheme, have been proposed to balance the
tradeoffs between new call blocking and handoff call droppings [3][4].

However, above schemes only concentrate on the tradeoff between CBP and CDP,
that is, decreasing the CDP at the cost of increasing the CBP. It’s noticeably that
when the traffic load is heavy, for example in peak hours, no matter how CAC adjusts

242 Y.-M. Chen and C.-L. Su

to allocate the resources, CBP and CDP are still high [5]. The reason for QoS
degradation in such case can be explained by an economical term- externality, which
means that some wireless users bear the costs of QoS degradation stemmed from
other users being admitted freely into the network (we assume wireless resources are
public good and can be freely shared by all network users). As the causes of QoS
degradation is from too many users entering into the networks in a burst mode, a
rational solution is to regulate the users. A problem arises naturally: how to do the
user regulation?

To address the user regulation problem mentioned above, in this paper, we first
define a total user utility to model the total users’ perceived QoS metric, then define a
congestion threshold which represents the balance point where the number of satisfied
users is maximized and channel resources are most efficiently used. With these two
definitions, we propose a scheme, named UBC-CAC, to integrate User-level Burst
Control (UBC) with CAC. UBC-CAC comprises three components: congestion
detection, user traffic shapes and user notification. We have developed a method to
decide whether the network enters the congestion state or not, a leaky-bucket
algorithm to perform user traffic shaping, and a SIP-based protocol to implement the
user notification. Our simulation shows that the weighted blocking probability (Pb) of
our scheme can decreases 70~80% than traditional CAC only systems and increase
the total user utility to 2~3 times.

The remaining of this paper is organized as follows: Section 2 introduces some
congestion control schemes. Section 3 introduces our system model. Section 4
describes the three components of our system. In Section 5, we describe the
simulation which compares the performance between UBC-CAC system and
conventional CAC system under various user behavior modes. Finally, we give short
conclusion and explore future research direction in Section 6.

2 Research Background

In general, there are three types of congestion control schemes: call-level control,
packet-level control, and user-level control.

Packet-level control is also called input rate control, which aims controlling the
input rate of traffic sources to prevent, reduce, or control the level of congestion.
Some well-known packet-level control schemes, such as traffic shaping [6], develops
the algorithms of leaky (token) bucket and random early detection (RED)[7].

Call-level control is defined as a set of actions, performed at call set-up phase, to
determine whether or not the call requesting the resources can be accepted. CAC is
one representation. The major design concern of CAC is to prioritize handoff calls,
because mobile users tend to be much more sensitive to call dropping than to call
blocking. Various handoff priority-based CAC schemes have been proposed [4],
which can be classified into two broad categories of guard channel scheme [8][9] and
queueing priority scheme[10][11].

User-level control aims to control user traffic to prevent, reduce, or control the
congestion caused by the burst of user traffic. A well-known scheme is Pricing-based
scheme[5], which integrates CAC and pricing where the price is adjusted dynamically
based on the current network conditions.

 Meeting QoS Requirements of Mobile Computing by Dual-Level Congestion Control 243

3 UBC-CAC System Model

3.1 Utility Function

In terms of economics, utility describes how users satisfy with their consumptions.
Here, we use utility to describe network users’ satisfaction with the perceived QoS
and utility function to measure how sensitive users are due to the changes of
congestion state in a network. In this paper, we assume the utility function is a
function of CBP and CDP[5].

First of all, we let the average number of admitted users (N) as a function of the
new call arrival rate λn, i.e., N = f(λn) and define the function of the QoS metric Pb as a
weighted sum of new call blocking probability (Pnb) and handoff call dropping
probability (Phb). In other words, Pb = α×Pnb + β×Phb, where α and β are constants that
denote the penalty associated with rejecting new calls and handoff calls, respectively.
The case of β > α means that dropping a handoff call has higher cost than blocking a
new call.

It is noted that both Pnb and Phb are monotonically increasing function of λn,
therefore Pb = g(λn) holds. In addition, the increase of function Pb implies the users
will face higher call blocking probability and lower level of user satisfaction.
Therefore, we can reasonably make the assumption that the utility function of a single
user (Us) is a function of the QoS metric Pb, i.e., Us = h (Pb). Note that Us achieves
maximum value at Pb = 0. It means that if the blocking probability is zero percent, i.e.,
every user could acquire the wireless resource, the user has the highest level of
satisfaction with the QoS.

Definition [total user utility]
Given the average number of admitted users (N) and the utility function of a single
user (Us), a total user utility U can be defined as follows:

U = N × Us = f(λn) × h (Pb) = f(λn) × h [g(λn)] (1)

The above equation shows that the total user utility in wireless networks depends on
the new call arrival rate (λn). Based on the proof in [5], we learn that there exists an
optimal new call arrival rate where the total utility is maximized. We denote this
optimal value as λn

*.

Definition [congestion threshold]
The congestion threshold is defined as λn

*. When the condition of λn = λn
* holds, the

user arrival rate has reached a point where the number of satisfied users is maximized
and the channel resources are most efficiently used. However, when λn > λn

* holds, the
network enters congestion states, where both the total user utility and the QoS
decrease.

3.2 System Model

The system is made up of two parts: User-level Burst Control (UBC), and CAC,
which is shown in Figure 1.

244 Y.-M. Chen and C.-L. Su

User-level
Burst

Control

Call
Admission

Control

New Call Arrival

Handoff Call Arrival

Notify users
Controlled

traffic

Handoff Call
Dropped

New Call Blocked

Admitted

Give Up

Fig. 1. UBC-CAC scheme

In our design, we will take the following steps to alleviate the problem of
congestion and get maximum total user utility.

1. Handoff users do not need to go through UBC because they are a continuation
of previously admitted users. They are controlled by traditional CAC scheme.

2. While the network is not congested, new users just go through UBC and
proceed to CAC.

3. The UBC scheme begins to control the user traffic when the network becomes
congested.

4. The UBC scheme will notify users when the network becomes congesting, so
that users could make informed decisions to wait or leave. We assume the
users do not leave after joining the waiting queue.

4 Design of UBC Module

The UBC module is composed of three modules: congestion detection, user traffic
shaper and SIP-based user notification.

Congestion detection module periodically checks whether the traffic load exceeds
the congestion threshold. User traffic shaper module uses leaky bucket algorithm to
control the user traffic when the network becomes congesting. The function of
notification module is to inform users of important information, such as expected
waiting time.

4.1 Congestion Detection

The core of UBC is to determine whether the network has entered into a congested
state or not. In other words, we have to determine whether the network exceeds the
congestion threshold by estimating the current user traffic.

At any given access point (AP) of an 802.11 WLAN, the user traffic load, i.e., how
many new users arrive in a period, is observable. Therefore, our congestion detection
make use of so-called exponential smoothing technique in RED[7] to compute the
assessed value of user traffic in an AP from the observed real user traffic. This
technique is briefly described as follows:

 Meeting QoS Requirements of Mobile Computing by Dual-Level Congestion Control 245

First of all, we divide the time into many assessed period. We denote λn
(r)(i) as the

real user traffic (new call arrival rate) and λn
(a)(i) as the assess traffic load in the i th

assessed period. We could obtain λn
(r)(i) at the beginning of the i+1 th assessed period

(i.e. the end of i th assessed period) and also estimate λn
(a)(i) at the beginning of the i

th assessed period. By exponential smooth technique, we assess the user traffic of the
next period (i+1 th) by the following equation:

λn
(a)(i+1)＝(1-w)× λn

(a)(i)＋w×λn
(r)(i) (2)

By this assessed user traffic of the next period, we can determine whether the
oncoming user traffic is beyond λn

* (congestion threshold) or not. In Equation (2), w is
a “weight” (0 < w < 1) that should be related to the change curve of λn

(r)(i). If we
rearrange this equation and gather all the terms multiplied by w, we could make the
equation more meaningful and calculation faster, and we get:

λn
(a)(i+1)＝λn

(a)(i) + w×[λn
(r)(i) − λn

(a)(i)] (3)

Now λn
(a)(i+1) is the prediction of the user traffic of the next period, λn

(r)(i)−λn
(a)(i),

and is considered the error of the prediction. The above equation indicates that we
predict the traffic load of next period (new forecast) on the basis of previous
prediction plus a percentage of the difference between that previous prediction and
the actual value of the traffic load at that point (forecast error).

4.2 User Traffic Shaper

User traffic shaper is based on the well known token bucket algorithm. The basic idea
is that each incoming user can pass through the UBC only after obtaining a token.
Tokens ‘leak’ at a constant rate r out of a leaky bucket. The size of bucket imposes an
upper bound on the burst length and determines the number of users that can pass.

It is noted that token leaking rate r is set to the optimal new call arrival rate of
λn

*, for from Section 3.2, we know that maximum total user utility can be achieved at
this point. When the network is congested, there’s no token available for users and
they are queued in the waiting queue, not discarded. We let users make their own
decision.

4.3 User Notification

Since our UBC scheme puts the users in a queue, we have to inform users of the
congestion information and the expected waiting time. We adopt the Session
Initiation Protocol (SIP) [12] to achieve this goal and use it to implement the call set-
up and tear-down.

We use one of SIP response messages- Provisional 182 (Queue), which would
contain the network states and queue information, e.g., "the network is in congested
state; 2 calls queued; expected waiting time is 5 minutes ", to users. Here we adopt a
simple method to calculate the expected waiting time. First, we assume a user a
arriving at time t when the network is detected to be congested. Let the waiting queue
length be Lt, the number of tokens at time t be TKt, and the optimal new call arrival
rate be λn

*, then the expected waiting time, eWTa, is the time that user a must wait to
obtain a token subtracting the time that the users who are in front of user a and can

246 Y.-M. Chen and C.-L. Su

pass through the waiting queue without delay (for they could obtain the token
immediately). Weobtain the following equation:

eWTa＝([(Lt＋1) / λn*]+1)－[TKt/λn*] (4)

where [] is Gauss’ symbol. Since Lt and TKt are known at time t, so eWTa could be
computed easily.

Figure 2 shows an example of SIP messages flows. It is noticeable that PRACK is
used here for reliable delivery of provisional responses, because this information is
important to users.

Perform
User-level Burst Control

INVITE

182 Queued
 Ten in The Queue,

Expected Waiting time
is 60 s

PRACK

MN CNERAP

487 Transaction cancelled

200 OK

CANCEL
200 OK

 SIP Message

RTP Data

ACK

The user
don t want
to wait so

long

Fig. 2. SIP message flows to indicate the user want to leave in long queue

5 User Behavior Modes and Performance Evaluation

In this section, we first describe the various user behavior modes when a user waits in
a waiting queue, then we use simulations to compare our UBC-CAC scheme with
traditional CAC scheme.

5.1 User Behavior Modes

When a user waits in a waiting queue, what will he/she do if the queue length is very
long? In [13], W. Feng et al., think that there are two cases for such situation: (1)
users have no information about the system; (2) users are informed of the queue
length upon arrival. In the first case, users may balk (leave upon arrival) or renege
(leave after joining the waiting line). In the second case, users are hopefully able to
make a better decision with respect to balking. We believe the latter is more user
friendly, so we adopt the scheme that the users are informed of expected waiting time

 Meeting QoS Requirements of Mobile Computing by Dual-Level Congestion Control 247

upon arrivals. There are four possible user behavior modes when they are entering a
congested network:

1. Retry: Give-up or blocked users retry to request the resources after waiting some
time.

2. Leave: Give-up or blocked users just leave the system and not requests the
resources.

3. Leave/Retry: The probabilities of the give-up or blocked user retry or leave is
fixed, e.g., users leave with probability of one third and retry with probability of
two thirds [5].

4. State-dependant Leave/Retry: In [13], the authors propose that the customer
decides to join the queue based simply on the number of customers in front of
them, i.e., if the number of customers in the queue is large, the probability that
the incoming customer will balk should also be large. In this paper, the
probability for the users to leave or retry is based on the expected waiting time.
Thus, if the expected waiting time is large, the probability for them to leave is
also large. The user knows that the network is seriously congested and cannot
obtain the resources at that time even after a long time, so he would like to leave.

A. Conventional CAC systems
In conventional systems where no UBC scheme is used, we don’t need to take into
consideration of the state-dependant leave/retry because users need not to wait in
UBC queue. The following notations are used in our simulation:

1. CSwL: All blocked users just leave the system and not retry to request the
resources.

2. CSwR: All blocked users retry to request the resources after waiting some
time.

3. CswLR: Blocked users leave with probability of one third and retry with
probability two thirds. In other words, one third of the blocked users leave the
system and the rest wait and retry.

B. UBC-CAC system
The user may behave differently in UBC-CAC scheme (refer to Figure 3). We use the
following notations in our simulations:

1. User-level Burst Control System with Leave (UBCSwL): All blocked Users
leave as in CCwL. All give-up users retry to request the resources after waiting
some time, i.e., α=0 and β=1.

2. User-level Burst Control System with Retry (UBCSwR): Both all blocked users
and give-up users retry after waiting some time, i.e., α=β=0.

3. User-level Burst Control System with Leave/Retry (UBCSwLR): Both give-up
users and blocked users leave and retry with probability one third and two thirds,
i.e., α=β=⅓.

4. User-level Burst Control System with State-dependant Leave/Retry
(UBCSwSLR): The probability for users to leave and retry depends on the
expected waiting time. Thus, as the expected waiting time increases, the
probability for users to leave the system also increases.

248 Y.-M. Chen and C.-L. Su

User-level
Burst

Control

Call
Admission

Control

New Call Arrival

Handoff Call Arrival

Controlled
traffic

Handoff Call
Dropped

New Call Blocked

Admitted

Give Up

ß leave

1-ß retrya leave

1-a retry

Fig. 3. User behavior modes inUBC-CAC scheme

5.2 Simulation

We use C language to write a simulation program to analyze the performance of CAC
and UBC-CAC schemes.

A. Simulation parameters
We use guard channel scheme as CAC scheme, and assuming that each wireless cell
is assigned capacity C＝40 channels and two of them are reserved for guard channels.
Each call uses only one channel for service. We assume both new call arrival and
handoff call arrival follow Poisson process with mean rates λn and λh respectively. λn
increases little by little (with values range from 0 to 1 user per second), it means that
the network is more and more congested. And like the models in [14][15], we assume
that λh is proportional to λn, i.e., λh＝1/5 * λn.

For both new calls and handoff calls, the call duration times are exponentially
distributed with mean 1/μ. (240 seconds) and the cell resident times are also
exponentially distributed with mean 1/η (120 seconds). Parameters α and β in Pb are
set to be ⅓ and ⅔, respectively. Assessed period (T) is set to be 50 seconds. We also
assume that user patience time, and waiting time for blocked users and dropped users
to retry are exponential distributed with mean values of 60 , 240, 60 seconds
respectively.

B. Simulations Results
Figure 4 shows the comparisons of Pb between conventional systems (CSwL, CSwR,
and CSwLR). We observe that CSwL has lowest Pb and CSwR is the worst one
among them. It is reasonable, because in CSwL, all blocked users leaves and they
don’t compete with original users for the resources. However, in CSwR, all blocked
users retry to compete with original users, so that more users are blocked and the total
user utility decreases.

Figure 5 compares the achievable total user utility between conventional systems
and UBC-CAC. The total user utility of UBCSwL increases around 3.3 times than
that of CSwL; the total user utility of UBCSwR increases around 4.3 times than that
of CSwR; the total user utility of UBCSwLR and UBCSwSLR increases around 3.8
times more than that of CSwLR.

 Meeting QoS Requirements of Mobile Computing by Dual-Level Congestion Control 249

0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

0 0.12 0.24 0.36 0.48 0.6 0.72 0.84 0.96

new call arrival rate /s

P b

CSwL
CSwR
CSwLR

Fig. 4. Pb for conventional systems

We can conclude that no matter how users behave, the performance (Pb and total
user utility) improves quite much after taking UBC into consideration.

Figure 5 also compares the achievable total user utility between UBCSwL,
UBCSwR, UBCSwLR, and UBCSwSLR. We can easily find that CCSwLR achieves
larger total user utility than UBCSwSLR. Besides, UBCSwR has the largest total user
utility, and UBCSwL has the lowest one. It’s because in UBCSwR all give-up users
and blocked users choose to retry, so that more users can be served. On the contrary,
UBCSwL can only serve the minimum number of users, because all blocked users
leave the system. In UBCSwLR, two thirds of give-up users and blocked users choose
to retry, but in UBCSwSLR the probability for give-up users and blocked users to
retry decreases with the states of network, so that more and more give-up users and
blocked users leave the system. Therefore, UBCSwLR can serve more users than
UBCSwSLR. But remember that UBCSwSLR is more realistic than UBCSwLR.

343.8

1115.6

289.1

1260.3

309.5

1192.2

309.5

1181.1

0

200

400

600

800

1000

1200

1400

CSwL UBCSwL CSwR UBCSwR CSwLR UBCSwLR CSwLR UBCSwSLR

T
ot

al
 U

se
r

U
til

ity

Fig. 5. Comparisons of total utility

Figure 6 shows the comparison of average waiting time. The average waiting time
is the average time from users’ entering of the queue to their leaving. We can easily
find that UBCSwR has largest average waiting time. That is because all give-up users
and blocked users choose to retry. Compared with UBCSwLR and UBCSwSLR, the

250 Y.-M. Chen and C.-L. Su

probability for give-up users and blocked users to leave increases with the network
conditions, so UBCSwSLR has less average waiting time.

Besides, we find that average waiting time of UBCSwL is close to UBCSwR. We
think that the number of give-up users exceeds that of blocked users quite many, so
that all give-up users who choose to retry (UBCSwL) will make average waiting time
increase fast.

0

50

100

150

200

250

300

0 0.12 0.24 0.36 0.48 0.6 0.72 0.84 0.96

new call arrival rate /s

A
vg

. w
ai

ti
ng

 t
im

e UBCSwL

UBCSwR

UBCSwLR

UBCSwSLR

Fig. 6. Average waiting time for UBC systems

5 Conclusions

In this paper we propose a dual-level control scheme which combines user-level burst
control (UBC) with CAC to meet the QoS requirements of wireless networks. The
basic function of our proposed scheme is to regulate the users. With this scheme, the
system will periodically detect the network conditions and control user traffic when
the network is congested with too many users. Besides, our scheme also informs users
of congestion information via SIP messages, so that users can depend on it to make
decisions. UBC-CAC can not only control user traffic but also restrain the demand for
resources when the network is congested.

The simulation results showed that our proposed scheme works well to alleviate
the problem of congestion and guarantee the QoS to users. Pb of UBC-CAC decreases
70~80% than conventional systems and achievable total user utility, which is a
measure of how efficiently the resources are used increases 2~3 times.

In the future, we plan to explore the following issues with regards to this scheme:
(1)Mathematical proving: Since we only verify our proposed scheme via simulation,
it is worth proving it by the concepts of mathematics. For example, our UBC scheme
can be analyzed as queueing models with user’s patience, since it queues users in the
waiting queue; (2)Message overhead evaluation: Since we use SIP to deal with call
set-up and tear-down and inform users of the information, we should also take SIP
message overhead into consideration. The evaluation is needed in the future.

 Meeting QoS Requirements of Mobile Computing by Dual-Level Congestion Control 251

References

1. Hou, J. and Fang, Y., "Mobility-based call admission control schemes for wireless mobile
networks," Wireless Communication and Mobile Computing, (2001)

2. Islam, M.M., Murshed, M. and Dooley, L.S., "New mobility based call admission control
with on-demand borrowing scheme for QOS provisioning," Proceedings of the
International Conference on Information Technology: Computers and Communications
(ITCC 03), (2003) 263 – 267

3. Kulavaratharasah, M.D. and Aghvami, A.H., "Teletraffic Performance Evaluation of
Microcellular Personal Communication Networks (PCN’s) with Prioritized Handoff
Procedures," IEEE Trans. Vehicular Technology, Vol. 48, Jan. (1999)

4. Katzela, I. and Naghshineh, M., "Channel assignment schemes for cellular mobile
telecommunication system: a comprehensive survey," IEEE Personal Communications,
Vol. 3, No. 3, (1996)

5. Hou, J., Yang, J. and Papavassiliou, S., "Integration of Pricing with Call Admission
Control to Meeto QoS Requirements in Cellular Networks," IEEE Trans. On Parallel and
Distributed Systems, Vol. 13, No. 9, (2002)

6. ATM Forum, "ATM Traffic Management Specification Version 4.0," April (1996)
7. Floyd, S. and Jacobson, V., "Random Early Detection Gateways for Congestion

Avoidance," IEEE/ACM Transactions on Networking, August (1993)
8. Kuo, J., "Dynamic QoS Management for Wired and Wireless IP Networks," IMSC's 2001

NSF Report, Access from http://imsc.usc.edu/demos/research/dynQoS.html, (2001)
9. Lee, J.H., Jung, T.H. and Yoon, S.U., et al., "An adaptive resource allocation mechanism

including fast and reliable handoff in IP-based 3G wireless networks," IEEE Personal
Communications, Vol. 7, No. 6, (2000) 42-47

10. Guerin, R. A., "Queueing-blocking system with two arrival streams and guard channels,"
IEEE Trans. Communication, Vol. 36, No. 2, (1988) 153–163

11. Re, E. D., Fantacci, R. and Giambene, G., "Handover queueing strategies with dynamic
and fixed channel allocation techniques in low earth orbit mobile satellite systems," IEEE
Trans. Communication, Vol. 47, No. 1, (1999) 89–102

12. Rosenberg, J., Schulzrinne, H. and Camarillo, G., et al., "SIP: Session Initiation Protocol,"
IETF RFC 3261, June (2002)

13. Feng, W. and Hurley, R., "Performance Comparison for Service Systems With or Without
Anticipated Delay Information by Analysis and Simulation," International Journal of
Computers and their Applications, (2004)

14. Choi, J., Kwon, T.g, Choi, Y. and Naghshineh, M., "Call admission control for multimedia
services in mobile cellular networks: a Markov decision approach," Computers and
Communications, July (2000) 594 – 599

15. Kim, Sooyeon, Kwon, Taekyoung and Choi, Yanghee, "Call admission control for
prioritized adaptive multimedia services in wireless/mobile networks," Vehicular
Technology Conference Proceedings, Vol. 2 , May (2000) 1536 – 1540

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 252 – 262, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Transaction Model for Context-Aware Applications*

Shaxun Chen, Jidong Ge, Xianping Tao, and Jian Lu

State Key Laboratory for Novel Software Technology, Nanjing University
Nanjing City, P.R. China, 210093

csx@ics.nju.edu.cn

Abstract. Pervasive computing is widely researched and a large number of con-
text-aware applications have been built in the recent years. However, correct-
ness of contexts and fault handling of these applications have always been ig-
nored. This paper proposes a transaction model for context-aware applications.
In this model, context-aware applications are organized as a number of logic
units and each unit may have a compensation module, which will be executed
when errors or exceptions occur in context-aware applications in order to mini-
mize the bad infection. This model supports nested scopes and the number of
levels of subtransactions is unlimited. We also present an implementation of
this transaction model, which is specialized for context-aware use.

1 Introduction

Pervasive computing was introduced by Mark Weiser in 1991 [1] and has attracted a
lot of attention from both academic researchers and industrial practitioners in the
recent years. The long-term goal of pervasive computing is to build large-scale smart
environments that provide adequate services for users, and making computation in-
visible to us. Context-aware computing plays a key role to achieve this goal.

Context-aware applications are driven by contexts which are collected from envi-
ronments by sensors or other devices automatically. In this way, it decreases users’
attention of computation and users’ intended input sometimes becomes unnecessary.

However, when wrong contexts are provided or some exceptions occur, the situa-
tion will be disgusting. The system may provide users with wrong services, and even
worse, it may cause waste or damage of users’ belongings, since context-aware appli-
cations have the ability to control electrical appliances and other devices. We take the
following scenario for example.

When Tom leaves his office and drives home at 6:00 pm, the GPS on his car re-
ports his location and the smart environment knows that Tom is on his way home and
predicts he will have his supper at home. The system opens the air conditioner at
home and turns on the coffee maker, so that when Tom gets home, he can enjoy hot
coffee and comfortable temperature. However, Tom suddenly receives a call from a
friend, who invites him for dinner, and he swerves his car towards his friend’s home.

In this case, some compensating work should be done. The air conditioner should be
turned off to save energy and the coffee maker may be turned to heat-preservation state.

* Funded by 973 Program of China (2002CB312002) and 863 Program of China

(2006AA01Z159), NSFC (60233010, 60403014, 60603034).

 A Transaction Model for Context-Aware Applications 253

In this paper, we propose a transaction model for context-aware applications. It
provides a uniform framework for these applications to handle errors, exceptions and
other abnormal cases. In this model, context-aware applications are formalized, and
compensations are fulfilled in a uniform way. In addition, our transaction model sup-
ports nested scopes and the number of levels of subtractions is unlimited, where flexi-
bility and description ability are the concern.

We also present an implementation of this model, in which internal logic of con-
text-aware applications are described with a XML based declarative language. In this
implementation, RDF is supported and RDQL [2] sentences can be used for transition
conditions between functional modules of applications. This property makes the im-
plementation more suitable for context-awareness.

The rest of the paper is organized as follows. Section 2 reviews related works. Sec-
tion 3 discusses why transaction properties are necessary in pervasive computing
contexts and presents some further analyses. Section 4 describes our transaction
model for context-aware applications and section 5 presents an implementation of this
model. In section 6, we discuss the rationality of our model. Finally, section 7 con-
cludes the paper.

2 Related Work

Transaction models were deeply researched in the past two decades. Some classic
models have been proposed, such as Linear Sagas [3], flexible transactions [4], etc.
Linear Sagas is suitable for solving the problems related to long lived transactions and
flexible transactions work in the context of heterogeneous multidatabase environ-
ments. Years later, several transaction models have been proposed to address non-
traditional applications: [5] [6] [7] to name a few. However, most of these models are
developed from a database point of view, where preserving the data consistency of the
shared database by transactional method is the main concern. They are usually good
at theoretical properties but have difficulties when applied in the real word applica-
tions. These models are not suitable for context-awareness because context-aware
applications are far different from traditional ones simply based on databases. We will
discuss it in section 3.

Some researchers have noticed that wrong contexts may lead to unpleasant results
in context-aware applications. Ranganathan tried to resolve semantic contradictious
contexts using fuzzy logic in the first order predicate calculus [8]. Dey gave a novel
solution for ambiguity resolution by user mediation [9]. These attempts try to improve
the quality of contexts. However, errors in contexts can be reduced but cannot be
eliminated. Accordingly, a compensational mechanism is desired by context-aware
applications, yet we find little work focus on this domain.

This paper is part of work of FollowMe project, which is a pluggable infrastructure
for building context-aware applications. [10] gives an overview of FollowMe system.
The first version prototype of FollowMe did not include a transactional mechanism
and in this paper, we propose a transaction model providing the compensation ability
for context-aware applications.

254 S. Chen et al.

3 Motivation and Further Analyses

In this section, we first discuss what leads to anomalies in context-aware service pro-
viding, and then present the motivations why we introduce a transaction model to
solve this problem. Finally, we point out the requirements of a transaction model
specially serving for context-aware applications.

3.1 Cause for Anomalies in Context-Aware Service Providing

In context-aware service providing, we refer to anomalies as providing wrong or in-
appropriate services to users and abnormal termination of the service. These anoma-
lies stem from the facts listed as follows.

a) Inaccurate contexts. When wrong or inaccurate contexts are input to the system,
an application may offer wrong services to users or meet other exceptions. An appli-
cation, for example, is responsible for opening the door when the host comes home
and closing the door when he/she leaves. If the context describes the host’s action in
error, the result will be awful.

b) Deficiencies in policies and algorithms of context-aware applications. Recall the
scenario in section 1. The system uses the route Tom has finished to predict his whole
route, in order to prepare coffee in advance. This kind of prediction, actually all pre-
dictions, are risk bearing. Another example, an application detects users’ gesture to
recognize his activity and then provides appropriate services. However, even best
algorithms cannot recognize peoples’ activities and minds accurately. Prediction is a
kind of policy, and recognizing is a sort of algorithm. Deficiencies in these policies
and algorithms may cause anomalies in service providing. This case is a character of
context-aware computing.

c) Hardware errors and unexpected software runtime errors or exceptions. This is
much the same as other applications. In this case, service providing may terminate
amorally.

3.2 Necessity and Benefits of Applying Transaction Models

Anomalies in context-aware applications may cause users’ displeasure and even more
serious effects, such as waste of energy, loss of users’ assets, etc. In this section, we
will list the methods solving this problem and expound the necessity of the transaction
model according to the three cases mentioned in section 3.1.

a) To address the problem caused by inaccurate contexts, there are mainly two
categories of methods, ex-ante and ex-post. The ex-ante method is to improve the
quality of contexts to prevent the abnormity beforehand, while the ex-post compensat-
ing after error occurs. However, we will show that the ex-ante method has some in-
herent limitation.

Apparently, there is a gap between real world contexts and contexts input to com-
puting systems. This gap is mainly caused by two facts. The first is that sensors,
which collect the contexts, may fall into errors and their accuracy is limited. The
second is that real world contexts are continuous but sensors always send data to the

 A Transaction Model for Context-Aware Applications 255

sink periodically. Computing systems cannot know what exactly happens during the
time interval between two senor signals. It’s conceivable that this gap can be reduced
but cannot be erased, because physical errors of sensors are inevitable, and von Neu-
mann computing model is inherently discrete other than continuous. Therefore, we
can make efforts to improve context quality (ex-ante method) to reduce the gap, but
compensating ability (ex-post method) should also be included since the gap always
exists.

b) For the anomalies caused by imperfect policies and algorithms in context-aware
applications, situation is similar to the case above. Of course, we can develop more
powerful and clever algorithms (ex-ante method), however, only the person himself
knows really what he wants to do and what he needs. Computers are not human be-
ings. Even best rules or artificial intelligent algorithms can only try to get close to
facts or people’s minds, but cannot replace them. When context-aware applications do
recognition or judgments inaccurately and anomalies occur, we have to resort to ex-
post methods.

c) Let’s move on to the last case. Evidently, software and hardware exceptions and
errors are inevitable in any computer systems. We can try to produce more reliable
software and hardware, but can never promise that no errors will occur. To deal with
anomalies of services caused by such matters, ex post facto handling is indispensable.

From the above discussion, we can conclude that ex post facto measurements are
necessary for anomalies handling in context-aware services. Then, why is the transac-
tion model a proper solution for such needs?

Firstly, transaction models are naturally used for error handling and consistency
maintenance. These models, especially ones proposed to address non-traditional ap-
plications, as mentioned in section 2, provide inspiration and show common points
with our problem.

Secondly, a transaction model can provide an infrastructure upon which all con-
text-aware applications can perform ex post facto handling in a uniform way. If many
applications in a smart environment do the compensating work autonomically, the
software structure will become complicated and confused. Moreover, applications in
one smart environment may share contexts each other, therefore, handling anomalies
autonomically will make data dependence among these applications very hard to
maintain. By employing a uniform framework, it is possible to maintain data depend-
ence by the system other than application developers.

Thirdly, a transaction model is able to treat all anomalies caused by three kinds of
factors mentioned in section 3.1. It provides a convenient way and a succinct style for
application development.

Hence, a transaction model is a good choice. Also it is feasible. We define context
as a kind of natural input, that is, input with little artificial processing. This definition
conforms to our experience, because contexts are usually collected by sensors and
input to the system automatically. In this way, context-aware computing follows Mark
Weiser’s idea that people can pay more attention to their task itself instead of compu-
tational devices [1]. Since context is a kind of input, classic computing models can be
applied in the context-aware domain as well.

256 S. Chen et al.

3.3 Requirements of Transaction Model for Context-Awareness

First, let’s consider when the compensations should be fulfilled. We discuss this issue
still according to the three cases mentioned above. In case c), apparently, the compen-
sating work, if any, should be executed as soon as errors or exceptions occur. This is
simply the same as traditional transaction models. In case a) and b), as time elapses,
the system will get more contexts and will be possibly able to detect whether its origi-
nal judgment was right or wrong. In the example mentioned in section 1, when Tom
changes his way and drives towards his friend’s home, the smart environment can
find out the change of his route and trigger the compensating work. On the other
hand, sometimes, users may notice that the environment provides a service in error,
and then abort it by sending a command to the system. This kind of manual abortions
may also require compensations. To sum up, there are three points when compensa-
tions will start to execute: an error or an exception occurs; the context-aware applica-
tion itself notices it has provided an inappropriate service; the user aborts the service.
The second and third cases are different from traditional transaction models. It re-
quires our transaction model for context-aware applications offer an external entrance
to abort the abnormal service and trigger the compensating modules.

Then we pay attention to the differences between operations on databases and op-
erations in context-aware environments. Traditional transaction models are developed
mostly from a database point of view and operations on databases are the changes of
soft states, so that all such operations can be redone and undone. When system roll-
back is performed, all the states recover to that of a certain moment before. However,
many operations in context-aware environment are performed on the objects beyond
software systems and cannot be revoked. For example, cooked beef will not turn back
to raw beef in any case. Therefore, the concept of transaction in pervasive computing
context is different from that in the traditional fields. In context-aware applications,
the abortion of a transaction does not mean all the operations in this transaction
should be revoked and the whole state will be turned back to the state before the exe-
cution of this transaction. Instead, it just means some compensating work should be
done, in order to decrease the waste or damage, mitigate users’ displeasure, and set
the system to a proper state.

According to the above analysis, we conclude that a transaction model for context-
aware applications needs an external entrance to abort a transaction. In addition, the
semantics of abortion in context-aware computing is not performing overall revoking
but doing proper compensations.

4 A Transaction Model: TMfm

In this section, we first formalize the context-aware applications and then build a
transaction model for such applications.

4.1 Formalizing of Context-Aware Applications

We divide context-aware applications into logic units, each of which stands for an
atomic operation, such as turn on the air conditioner, make coffee, show a map on
users’ PDA, etc. We refer such a logic unit as an activity. Therefore, a context-aware

 A Transaction Model for Context-Aware Applications 257

application or a group of applications related closely in a smart environment can be
represented as a set of activities and the data (context) flows and control flows between
these activities. Here “related closely” refers to data sharing or dependency among
applications. The rationality of this formalization will be discussed in section 6.

More formally, let T be a context-aware application (or a group of closely related
applications) and let a1, a2, …, an be activities in T. Each of ai (1≤i≤n) can have a
compensating facility cti, and if ai has cti, we use ti to represent (ai, cti) pair. We may
call ti transactional activities. Each of ti can own a monitoring activity mti. The com-
pensating facility performs compensations for corresponding activity, which is
straightforward to understand, while a monitoring activity is a software module that
serves to validate the service provided by the corresponding transactional activity.
Recall the scenario in section 1, system predicates that Tom is driving home and an
activity prepares coffee for him in advance. A monitoring activity may be activated at
the same time, which monitors whether Tom follows the route to home all along his
way. If not, the monitoring activity throws an exception and the corresponding com-
pensating facility may be triggered.

Pay attention, cti is not an activity, but an accessional facility attached to ai. For
example, T’ has five activities and among them, only a2, a4 have compensating facili-
ties and only a2 has monitoring activity. In this case, activity set A’ of T’ is {a1, t2, a3,
t4, a5, mt2}.

Definition 1. (Activity Set). Let A be activity set of an application. A is the smallest set
satisfying:

1) If ai is an activity in this application and cti does not exist, then ai∈A;
2) If ai and cti both exist, then ti∈A;
3) If mti is in this application, then mti∈A.

Definition 2. (Application). Let T be an application (or a group of closely related
applications). T is a partial order set >< ≺,A , where A is activity set of this applica-

tion (these applications), and ≺ is a partial order relation on A.
In definition 2, ≺ indicates data dependencies between activities and implies exe-

cution order. For example, if t2, a1∈A, and t2 dependents on a1, then ordered pair
<a1, t2>∈≺ .

4.2 Scopes

Definition 3. (Scope). Let s be a scope of an application T, and T= >< ≺,A . s is a

non-empty subset of A.

Definition 4. (Scope Set). Let S be scope set of an application T. S is the smallest set
satisfying the condition: if s is a scope of T, then s∈S.

Stipulative Definition. For convenience, we use >< SA ,,≺ to denote an application

T with defined scope set S.
We have defined the scope and scope set, then we will give five rules that scopes

must follow.

258 S. Chen et al.

Scope Rule 1 (SR1): >=< SAT ,,≺ , if s∈S, ai∈s, aj∈s, then ∃a’∈s, such that <a’,

ai>∈≺ and <a’, aj>∈≺ .
This rule indicates that if s is a scope, and activities ai, aj are both elements of s, then

s must have an activity a’, on which both ai and aj directly or indirectly depend. Of
course, the partial order relation is a reflexive relation, so that a’ may equal to ai or aj.

Scope Rule 2 (SR2): >=< SAT ,,≺ , if s∈S, ai∈s, aj∈s, <ai, a’>∈≺ , <a’, aj>∈≺ ,

then a’∈s.
Intuitively speaking, this rule indicates that if two activities, one of which indi-

rectly depends on another, are both in a scope, then the activities on the dependency
path of these two activities must be also in the same scope.

Scope Rule 3 (SR3): >=< SAT ,,≺ , if s1∈S, s2∈S, then s1∩s2=φ or s1∩s2=s1 or

s1∩s2=s2.
This rule indicates that if s1 and s2 are both scopes and not the subset of one an-

other, then they do not have intersection. However, nested scopes are legal.

Scope Rule 4 (SR4): >=< SAT ,,≺ , if s∈S, ai∈s, aj∈s, ak∈A, <ai, aj>∈≺ , <ai,

ak>∈≺ , ai≠aj, then ak∈s or <aj, ak>∈≺ .
This rule is a little hard to describe intuitively. We will explain it according to an

example later.

Scope Rule 5 (SR5): >=< SAT ,,≺ , if ti∈A, mti∈A, then ∃s∈S, such that ti∈s,

mti∈s.
This rule is tightly bounded to the semantics of mti.

Definition 5. (Legal Scope and Legal Scope Set). If s follows SR1-SR5, then s is a
legal scope. If for any s∈S, s is legal, then S is legal.

Since ≺ is a partial order relation, T can be described by an acyclic directed graph.
Figure 1 shows a fragment of directed graph of T’. s={a3, a5} is not a legal scope,
because it does not follow SR1. s1={t2, a3} is not a legal scope either, for violating
SR4 (t2∈s1, a3∈s1, <t2, a3>∈≺ , <t2, a5>∈≺ , but a5∉s1 and <a3, a5>∉≺). However,
{a3, t4} complies with all of the rules and so dose s2.

Fig. 1. A fragment of directed graph of T’

 A Transaction Model for Context-Aware Applications 259

Now we move on to the semantics of scope. While ti is an atomic transaction of a
context-aware application T, a scope is an upper-tier transaction. A scope could be
view as an activity in the upper layer. In this model, scopes can be nested, so we have
a multi-layer transaction structure. However, a complete context-aware application T
is not necessarily a transaction in our model, which is determined by characters of the
context-aware domain and differs significantly from most traditional transaction mod-
els. This property will be further discussed in section 6.

4.3 TMfm Model

Definition 6. (Compensation Handler). A compensation handler is a trigger, which
invokes compensating facilities in proper order. A compensation handler should be
bounded to a transactional activity ti (referred as CHti) or a scope si (CHsi).

For an activity can be viewed as a trivial scope, we will not distinguish CHti and

CHsi hereinafter.

Compensating Rule 1 (CR1): If CHsi (si∈S) captures an exception thrown from an
activity ak (both normal and transactional) where ak∈si, all elements of the set {ctj|
tj∈si} should be executed in the reverse order of tj (tj∈si).

In figure 1, assuming the original execution sequence of T’ is a1, t2, a3, t4, a5. If t4
throws an exception, and s2 is a scope owning a compensation handler, then according
to CR1, the compensated sequence should be a1, t2, a3, t4, ct4, ct2.
Compensating Rule 2 (CR2): si (si∈S) throws an exception if and only if ak throws an
exception and ak∈si and CHsi do not exist.

Consider si as an upper-tier activity, CR2 defines recursive handling process of
compensating.

Definition 7. (TMfm Model). TMfm model >=< 21,, RRTM , where

>=< SAT ,,≺ , R1={CR1, CR2}, and R2={SR1, SR2, SR3, SR4, SR5}.

Such defined M is our transaction model for context-aware applications. In the next
section, we will give an implementation of this model.

5 An Implementation of TMfm

In this section, we will define an xml-based declarative language to implement the
transaction model and describe the internal logic of context-aware applications.

In our system, one file defines one context-aware application or a group of closely
related applications. <ApplicationGroup> is the root element of a file and the element
<Application> stands for a specific context-aware application. <Scope> element
defines scopes and <Activity> refers to an atomic functional unit in an application.
The element of <Compensation> describes the compensating facility of a transac-
tional activity, while <CompensationHandler> serves to captures exceptions and
triggers compensating facilities in proper order. <Source> and <Destination> are
used to portray control flows of the application. For reasons of space, detailed schema
of this language cannot be provided. A segment of the description file of the “guests
reception” application is shown as follows.

260 S. Chen et al.

<ApplicationGroup>
<Link id = “from_s001_to_s002”/>
……
<Container id = “input_of_show_welinfo”>
……
</Container>
<Application id = “http://moon.nju.edu.cn/followme#010” name =
“guests_reception”>

<Scope id = “s001”>
<Source linkId = “from_s001_to_s002” transitionCondition =

“select ?x where (?x prefix:locateIn prefix:Room311) using prefix for
<http://moon.nju.edu.cn/followme#> GENERATED">

<CompensationHandler>
 <Catch faultName = “unknown_exception”>
 <Compensate excuteAuto = “True”/>
 </Catch>

</CompensationHandler>
<Activity id = “a001” name = “welcome”>

<ProcessUnit id = “show_welcomeinfo” isAuto = “True”>
 <Assign>
 ……
 </Assign>
 <Input containerId = “input_of_show_welinfo”/>
</ProcessUnit>
<Compensation>

<ProcessUnit id = “compen_of_a001” isAuto =
“True”>

 <Input containerId = “errorInfo_001”/>
</ProcessUnit>

</Compensation>
 </Activity>
 ……

The transitions between activities reflect control flows and data dependencies of
the application. The transition condition returns a boolean value, directing the applica-
tion whether goes through that path or not. In our implementation, transition condi-
tions can be expressed using RDQL sentences, which is powerful and convenient for
context description and queries.

We add a special user interface to the system. This UI enables users to abort the ser-
vices by inputting a command to his/her PDA or handset, when users find that the sys-
tem provides wrong services or services he/she does not need. Receiving this command,
the running activity will throw an exception. By this way, all the three cases mentioned
in section 3 (1. software or hardware errors; 2. system finds itself inappropriate services
are provided; 3. user aborts) can be performed uniformly. They all trigger the compen-
sation handler by throw exceptions (Exceptions are thrown by mti in case 2).

In this implementation of the model, a context-aware application is consist of a
definition file and a number of process units, which actually performs atomic opera-
tions such as open the light, cook coffee, etc. When deploying the file and process

 A Transaction Model for Context-Aware Applications 261

units on FollowMe infrastructure, the system will parse and execute the definition file
and invoke proper process units. With this infrastructure, workload on development
and deployment of context-aware applications is reduced. [11] presents the first ver-
sion of this infrastructure and we add transactional properties in this version.

6 Discussion

In section 4, we formalize a context-aware application (or a group of closely related
applications) and divide it into a number of atomic functional units. For simple appli-
cations, this method seems not very valuable, because they may only have one or two
atomic functional units, and the control flows and dependencies between units are
very simple. An application responsible for opening and closing the door automati-
cally is an example of this category. Formalizing such simple applications may be
regard as a waste of time. However, the long-term goal of pervasive computing is to
build smart environments everywhere and provide adequate services to meet users’
needs. In such an environment, most services could not be very simple and they may
have complex internal logic, such as a patients’ guide system in smart hospitals. Even
if some simple applications exist, they are closely tied to other applications. For ex-
ample, an application for opening and closing the door automatically uses people’s
location contexts, which could also be used for many other applications. In addition,
the state of the door itself may used as contexts for other applications, such as safe
guard system and applications controlling the light and temperature conditions in the
room. Therefore, simple applications are not that simple in a smart environment view.
Moreover, generally speaking, models should be built on general cases. Simple appli-
cations with only one or two activities can be regard as the trivial-case of general
applications. However, that’s not the case by contrary.

We have mentioned that in our transaction model, a context-aware application is
not necessarily a transaction, and some components may be “transactions”, such as
transactional activities and scopes. It is far different from traditional transaction mod-
els, such as [3] [4]. They are researched on the premise that all subtransactions com-
pose an upper-tier transaction. This difference is caused by the idiosyncrasy of con-
text-aware computing. In most cases, work having been done needn’t and cannot be
revoked when exceptions occur in the context-aware environment, because the range
that context-aware applications effect is far beyond software systems and soft states.
Even the transactional components of context-aware applications are not classic trans-
actions. They can only recover part of the states and do some compensations when an
exception occurs. There is another difference between traditional models and ours.
For the former, if an exception occurs, the abortion of lower-tier transactions will
definitely spread to the upper-tier transactions. However, in our model, if compensa-
tion handler works, exceptions will not spread to the upper-tier. This difference is
caused by transactional semantics in the context-aware domain. Actually, after com-
pensations are performed, the state of the activity is close to “committed” in the tradi-
tional sense instead of “aborted”.

In section 5, we implement the model by a declarative language. Readers may no-
tice that it shares some common points with workflow definition language. In our
model, context-aware applications consist of logic units and dependencies between

262 S. Chen et al.

these units, which originally is a workflow-like structure. Moreover, as [12] has
pointed out, workflow has a more powerful description ability than transaction mod-
els. So it is possible and rational to describe a transaction model by a workflow-like
declarative language.

7 Conclusion

In this paper, we analyze the necessity of a transaction model in context-aware com-
puting domain, and present such a model called TMfm. In addition, a declarative
language has been proposed to implement our model. With this model, context-aware
applications are able to perform compensations when inaccurate contexts appear or
exceptions occur. Besides, compensating tasks of various applications are fulfilled in
a uniform way, which benefits software architecture, especially for complicated smart
environments.

References

1. Weiser M.: The Computer for the 21st Century. In: Scientific American, September 1991.
(1991)94–100

2. RDQL, http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
3. H. Garcia-Molina, and K. Salem.: Sagas. In: Proc. 1987 SIGMOD International Confer-

ence on Management of Data. (1987)249–259
4. A.K. Elmagarmid, Y. Leu, W. Litwin, and M.E. Rusinkiewicz.: A Multidatabase Transac-

tion Model for Interbase. In: Proc. of the 16th VLDB Conference. (1990)23–34
5. U. Dayal, M. Hsu, and R. Ladin.: A Transaction Model for Long-running Activities. In:

Proc. of the 17th International Conference on Very Large Databases. (1991)113–122
6. H. Waechter and A. Reuter.: The ConTract Model. In: A.K. Elmagarmid, editor, Database

Transaction Models for Advanced Applications, chapter 7. Morgan Kaufmann Publishers,
San Mateo (1992)219–263

7. A. Biliris, S. Dar, N. Gehani, H.V. Jagadish, and K. Ramamritham.: ASSET: A System for
Supporting Extended Transactions. In: Proc. of 1994 SIGMOD International Conference
on Management of Data. (1994)44–54

8. A. Ranganathan, J. Al-Muhtadi, and R. H. Campbell.: Reasoning about Uncertain Con-
texts in Pervasive Computing Environments. In: IEEE Pervasive Computing, 03(2).
(2004)62–70

9. A. K. Dey and J.Mankoff.: Designing Mediation for Contextaware Applications. In:
ACMTransactions on Computer-Human Interaction(TOCHI), 12(1). (2005)53–80

10. Jun Li, Yingyi Bu, Shaxun Chen, Xianping Tao, Jian Lu.: FollowMe: A Pluggable Infra-
structure for Context-Awareness. In: Ubicomp2005. Tokyo, Japan (2005)

11. Shaxun Chen, Yingyi Bu, Jun Li, Xianping Tao, and Jian Lu.: Toward Context-
Awareness: A Workflow Embedded Middleware. In: Proc. of IFIP 2006 International
Conference on Ubiquitous and Intelligent Computing (UIC2006). Volume 4159 of LNCS.
(2006)766–775

12. G. Alonso, D. Agrawal, A.E. Abbadi, M. Kamath, R. Günthör, C. Mohan.: Advanced
Transaction Models in Workflow Contexts. In: Proc. of the 12th International Conference
on Data Engineering. (1996)574–581

A Grid-Based Remote Experiment Environment

in Civil Engineering

Jang Ho Lee1, Taikyeong Jeong2, and Song-Yi Yi3

1 Dept. of Computer Engineering, Hongik University, Korea
janghol@cs.hongik.ac.kr

2 Dept. of Communication Engineering, Myongji University, Korea
ttjeong@mju.ac.kr

3 School of Computer Science and Engineering, Seoul National University, Korea
yis@snu.ac.kr

Abstract. Recently, there is an increasing need for researchers in en-
gineering to share the result of the experiment without having to visit
the experiment facilities. Especially in the civil engineering, researchers
feel the need for participating in a number of experiments conducted at
distant places. In addition, it has been suggested that high-cost facilities
should be used by remote researchers for the high utilization rate. This
paper proposes a remote experiment environment in civil engineering
that are being developed in a project called Korea Construction Engi-
neering Development(KOCED), which connects major civil engineering
experiment facilities using grid technology. This environment enables re-
searchers to participate in a remote experiment, and allows the exper-
iment results shared by remote researchers automatically. Then, based
on the suggested environment, we designed a hybrid test facility that
involves two physical experiment facility sites and one numerical sim-
ulation site that are geographically apart. Then, we implemented its
prototype and ran some tests, which showed a possibility of grid-based
civil engineering experiment.

1 Introduction

The flow of information brings a tremendous change in the area of civil engineer-
ing research as well as the economy, politics and culture of a society. This trend
induces the combination of information technology with construction technology
and provides web services for remote users.

In order to bring the efficient design of grid-based collaboratory research to
a large-scale civil engineering technologies, such as experimentation, simulation,
and design, we produce a grid computing software system and tools for the re-
search facilities across the nation [16]. The purpose of this large-scale grid design
is to share the facilities and maximize the effectiveness of their use, through in-
formation technology innovation. By connecting all the research facilities across
the nation with grid computing infrastructure, we expect to have a balanced de-
velopment of all the regions nation-wide as well as the combination of research
and education [10] [15].

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 263–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

264 J.H. Lee, T. Jeong, and S.-Y. Yi

These computing technologies and the development of extreme technology be-
come an essential part of a nation’s competitive construction strategy. However,
related huge experiment facilities are too expensive for an organization, which
makes the building and application of them difficult.

This paper is organized as follows: In Section 3 we will present an overview of
the KOCEDgrid system architecture including the grid-computing architecture,
the communication networks connecting each research facilities, and the control
network for system initialization under the control of grid software. In Section 4,
we describe an outline of the remote system software and the experimental results
of Hybrid Test model. In Section 5, we briefly discuss related work. Conclusions
are presented in Section 6.

2 Related Works

In recent decade, grid-based telescience project was started in US and some Eu-
ropean countries. Some of the well-known grid-based telescience projects in US
are Network for Earthquake Engineering Simulation(NEES) [20] [12], Biomed-
ical Informatics Research Network(BIRN) [1], and National Virtual Observa-
tory(NVO) [11] while EUROGRID [2] [17] and G-Civil [3] are some of the lead-
ing grid projects in Europe. Among them, NEES and G-Civil are similar to our
KOCED in the sense that they applied grid technology to the research in the
area of civil engineering.

NEES is a network that connects seismological experiment facilities of US
with grid techonology that provides a collaboratory. It is managed by a consor-
tium and consists of 16 interconnected nation-wide next-generation seismological
research facilities that supports teleobservation, teleoperation, sharing of experi-
ment data, numerical simulation and collaboration tools. NEESgrid is a software
system that consists of a NEESpop server for a experimental facilities, Telepres-
ence Mode software, data acquisition software, and data repository software.

G-Civil is a project in UK that supports remote monitoring of experimen-
tal facilities and collaboration tool using grid technology. It provides real-time
monitoring of civil engineerig experiment site through portal on the Internet
and allows teams geographically apart to share data and collaborate. Besides
civil engineering, grid projects in other area are in progress around the world,
which include BIRN in medical and NVO in astronomy. BIRN is a geograph-
ically distributed virtual community of shared resources funded by National
Institute of Health(NIH) in US since 2001. It hosts a collaborative environment
for biomedical scientists and clinical researchers and facilitates the understand-
ing of the diseases and the discovery of treatment methods by collecting and
sharing biological data that are distributed. BIRN consists of four test beds and
a coordinating center that supports networking, distributed storage, software
development, etc. BIRN exploits the grid technology in security, resource man-
agement and data management for the effective sharing of the research results
about the diagnosis and treatment of disease. NVO is a US NSF-funded project
to build a collaboration framework for the national virtual oberservatory that can

A Grid-Based Remote Experiment Environment in Civil Engineering 265

provide the world’s leading astronomical information services and data collec-
tions to astronomers, educators, and students at a distance. NVO takes advan-
tage of grid techonology in creating prototypes for access, publishing and discov-
ery of terabytes of astronomical data generated by new telescope, detector, etc.
Finally, EUROGRID granted by European Commission established a European
GRID network of leading High Performance Computing centers from different
European countries and demonstrated distributed simulation codes from differ-
ent application areas such as biomolecular simulations, weather prediction, cou-
pled CAE simulations, structural analysis and real-time data processing. For this
purpose, EUROGRID supports software infastructure for building grid system,
standardizes major grid software components and provides stable and secure
connection to the grid network.

As the need to build grid system increases worldwide, it became necessary to
standardize the grid service and it resulted in the proposal of the Open Grid
Services Architecture(OGSA) [15] [13]. OGSA describes a grid middleware stan-
dard for sharing and managing of resources and a Web service standard for
application sharing. It is independent of operating systems or system environ-
ment. It supports Web service as an interface to service facilitating the access
to the resources or services, which has an advantage over other standards for
distributed computing. As more grid systems follow the OGSA standard, toolk-
its based on OGSA emerged. One of most well known toolkits among them is
Globus Toolkit(GT) [14] [19]. Globus Toolkit provides services for each service
component described by OGSA, respectively. Through the reconfiguration of
those supported services, a target grid system can be built. The prototype of the
hybrid test system presented in this paper has been built with Globus Toolkit 3
and is being upgraded to Globus Toolkit 4.

3 KOCEDgrid

Based on our previous experiment of grid computing, we performed a grid-based
collaboratory for construction project. The KOCEDgrid system is nation-wide
distributions of computing systems associated with each research facility con-
nected by a wired communication information network and integrated to a grid
system, which makes the facilities become one facility.

This grid system is aimed to integrate the computing facilities and share the
resources such as simulation data and experiments for remote users. We demon-
strate the KOCEDgrid software system so that we can use some of the functions
and will extend the role of the system. We identified the major functions that
the KOCEDgrid system should provide roles e.g., resource management and data
management functions.

Resource management provides authorization to confirm the identity of users
as well as the delegation of rights. It also allows users to locate the required
resources when they need to use the experiment facilities and related data from
remote sites. The resource management enables users to monitor the status of

266 J.H. Lee, T. Jeong, and S.-Y. Yi

the resources for the effective usage and management of resources including ex-
perimental facilities. Consequently, it includes not only facilities for experiments
but also high-end computers with which researches perform large-scale scientific
calculation and simulations. It allows researchers to allocate jobs to high-end
computers regardless of their physical location and to see the results.

Another aspect of the KOCEDgrid system function is data management. Data
generated in experiments and simulations are transferred to the database in a
secure way. Reliable File Transfer(RFT) Service [8] transfers data from local
repository to central respository using GridFTP service [5] based on Grid Se-
curity Infrastructure(GSI) [4] on each repositories. Users are allowed to look up
data effectively in a pre-specified meta data. Access to the data from remote
places is performed in a trusted way using standard secure protocol.

The system model for building a large-scale grid system enables the above-
mentioned main functions as well remote experimentations such as teleobserva-
tion, teleoperation, which discuss in section 4. Each university locates a selected
huge experiment facility. Using this facility, each university can perform research
within the region, as well as remotely perform experiments. The remote access
of facilities is restricted to the grid portal. This grid portal plays the role of con-
necting fragmented universities’ facilities, sharing research data as a web service,
and monitoring the process of research.

Our results have been verified with this implementation of grid computing
system. Through camera and video connected to research facilities, it is possible
to look into and modify the process of research, and prove services for a collabo-
ration. The grid portal also performs the role of connecting users and facilities by
the data acquisition system (DAQ), which receives data from research and sends
them to users, local data servers, or servers. Consequently, this makes possible
a remote control of facilities by means of a controlling system that receives the
order from users and sends it to facilities.

Simulated data from research forms meta-data and is stored in local data
storage facilities, and completed data are managed in a huge database system.
This database provides an efficient searching mechanism for these data, manages
meta-data, and informs storage place when data are managed redundantly. This
construction of the database can be possible by development of application pro-
grams accompanied by existing data management systems, and by file transfer
services through grid middle-ware.

Current effort of KOCEDgrid consists of 6 different research facilities, which
can be described as follows: real-time hybrid testing facility for multi-DOF struc-
tural systems, dynamic geo-centrifuge facility, multi-support excitation facility
for earthquake simulations, wind-tunnel facility for large-scale long structures,
ocean environment simulation facility and large-scale testing facility for new
advanced construction materials.

Fig 1 illustrates a connection of each research facilities of grid-based com-
modataries. It should be noted that we will extend to double size of research
facilities in the second phase of project by 2009.

A Grid-Based Remote Experiment Environment in Civil Engineering 267

Fig. 1. KOCEDgrid interconnecting 6 different research facilities

4 Collaborative Research Environment

4.1 Remote Experiment

We describe main concept of remote experiment in KOCEDgrid which can be
shown as follows: teleobservation, teleoperation, and controlling the experimental
devices.

Teleobservation is one of the main feature of KOCEDgrid software system.
This function should obviously make possible into the grid portal. Users from
a remote site should be able to see the experiment data. Also, the video and
audio from where the experiment is being performed should be accessible from a
distance in real time. In this case, experiment data can be seen in a remote place
with a visualization program based on real-time streaming. A synchronization
mechanism is needed for synchronizing the experiment data and video in real
time as well.

Consequently, teleoperation is another key feature of this collaborative re-
search. This unique feature also provided a control experiment facilities from a
distance, but the capability of control of experiment facilities is different depend-
ing on the research facilities. Moreover, a control layer is independent from the
experiment devices that are separated from the control layer that is dependent
on the experiment devices. In particular, separation of those two layers is made
in order to reduce the cost in extending the KOCEDgrid system to include the
new experiment equipment.

268 J.H. Lee, T. Jeong, and S.-Y. Yi

The experiment device-independent control layer is implemented as control
commands and protocols that are general to experiment devices. In addition, the
experiment device-dependent control layer converts commands from the device-
independent layer to device-specific commands to control the experiment device,
which can be extensible.

Since the experiment facilities are shared by researchers, users can look up
the usage schedule of experiment facilities by others as well as apply for using
the experiment facilities on line.

Although we can control and schedule of users access, some function should
be done by on site, both manually and remotely, such as installation of sensors,
change of video camera location for observation, and displacement of experiment
prototype. In this case, we required some services to perform the above actions,
people who can assist in the experiment, a video communication system that
connects people in the experiment facility and researchers in a remote site, and
a wireless communication system.

4.2 Collaborative Environment

We address the following aspects regarding collaborative research environment
while we develop a grid software infrastructure.

– Integrated Research Environment: With a single sign on to a grid portal that
is a gateway to experiment facility grid and collaborative research environ-
ment, they should be able to use the services and resources in the grid with
their access rights in an integrated research environment. The grid software
system should allow researchers to perform the experiment in an integrated
research environment.

– Chat: Researchers from remote sites should be able to discuss the experi-
ment situation through chat as they observe the ongoing remote experiment.
Therefore, collaborative researchers should be able communicate multi-party
discussion in real-time basis.

– Scheduling of community: It is required to schedule to look up and modify the
schedule of his community among collaborative researchers. This scheduling
function provides to collaborative researchers so that they can form the com-
munity for collaboration. The scheduling is maintained for each collaborative
research community.

– e-Notebook: The grid architecture allows researchers to collect and organize
data for collaborative research. The data includes not only text but also
pictures, CAD, voice, video and application-generated data such as Word
and PowerPoint. E-notebook enables collaborators to organize and look up
the data.

5 Supporting Remote Experiment

Among the overall architecture of collaborative research environment, we focus
on the remote experiment environment using grid architecture in this section.

A Grid-Based Remote Experiment Environment in Civil Engineering 269

The remote experiment model is based on the hybrid experiment where the
experiment includes not only physical model but also mathematical simulation.

5.1 Hybrid Test Model

In hybrid test, the entire test structure consists of independent substructures
that are modelled computationally or physically. These substructures can be lo-
cated at different facilities, tested separately, and integrated via a computational
simulations. A hybrid test consists of parts of two types: one part of a structure
is modelled computationally and run on a simulation computer numerically, and
another part is constructed and instrumented physically. Fig. 2 shows our design
of the hybrid test model.

Fig. 2. A hybrid test model

The control system of the physical experiment node communicates with the
simulation computer sending feedback during the experiment. The physical ex-
perimental results acquired by DAQ are fed to the simulation computer for nu-
merical analysis. The simulation computer, in turn, provides input to an actuator
of the physical substructure by simulating the interactions between the physical
and the virtual model. A hybrid test is performed by repeating each simulation
step which sends a feedback of the simulation to the physical equipment.

5.2 Building a Prototype for Hybrid Test Model

Fig. 3 shows a prototype of a simple hybrid experiment model with seismic
wave input. Our prototype is a modified version of Mini-MOST experiment [6]
of NEES. Mini-MOST experiment is a miniature version of the MOST(Multi-
site Online Simulation Test) that aims to examine the dynamics of a structure
in response to the seismic wave. The Mini-MOST model consists one physical
experiment node and two simulation nodes. These nodes are geographically apart
and conduct physical experiments or perform numerical simulations using tools
such as Matlab.

We modified the Mini-MOST model by decreasing the number of simulation
nodes to one and by increasing the number of physical experiment nodes to two,
which resulted in modifying the part of the Mini-MOST code and building an-
other physical experimental body as in Fig. 4. In Mini-MOST experiment the

270 J.H. Lee, T. Jeong, and S.-Y. Yi

Fig. 3. Prototype for the hybrid test model

physical experiment node 1 in Fig. 4 had been a simulation node that accepts
force and momentum input and generates displacement and rotation. We elimi-
nated the momentum input of the node in making the physical experiment node
1 the same model as the physical experiment node 2. As shown in Fig. 4, soft-
ware consists of three parts: a control part, an experiment part, and a monitoring
part. The detailed explanation for each part are as follows.

Fig. 4. A software architecture of the prototype for hybrid test model

The control part consists of Simulation Coordinator, a control server for each
node, and plugin that provides interface between a node and a control server.
Simulation Coordinator manages the hybrid test during the entire period of ex-
periment by sending control command to control servers for each node. When a
hybrid test starts, Simulation Coordinator notifies the beginning of the experi-
ment and receives commands to be delivered to the control server for a physical

A Grid-Based Remote Experiment Environment in Civil Engineering 271

Fig. 5. An architecture for monitoring in hybrid test model

Fig. 6. Screenshot of remote monitoring client in the hybrid prototype test

experiment node. Based on the commands received, the control server controls
the physical experiment node through plugin which communicates with a control
program running on a DAQ computer. In our experiment, Simulation Coordina-
tor is coded in Matlab and the control server uses NTCP(NEESgrid Teleopera-
tions Control Protocol) [18]. There are two types of plugins: Labview plugin for
a physical experiment node and Matlab plugin for a numerical simulation node.

An experiment part can be either physical experiment part or numerical simu-
lation part. In a physical experiment part, a DAQ program acquires sensor values
and sends them to the streaming server. A numerical simulation part calculates

272 J.H. Lee, T. Jeong, and S.-Y. Yi

the value for the next step when it receives command from the Simulation Coor-
dinator. In the prototype, the control program for a physical experimental node
was coded in Labview while a numerical simulation node was written in Matlab.

As can be seen in Fig. 5 the monitoring part consists of the streaming server
and monitoring clients. The streaming server based on Ring Buffered Network
Bus(RBNB) [9] sends sensor data and video from the nodes to Realtime Data
Viewer(RDV) [7] monitoring clients which show users the result with graphical
user interface as in Fig. 6. The structural response of the force that acts between
Seismic wave and numerical simulation node are measured and shown in the form
of graph. During the experiment, the movement of the physical nodes are visually
represented in the video stream and the resulting change of the numeric data are
shown in the form of two-dimensional graph. Eight windows in the Fig. 6 shows
the video from two physical experimental nodes and sensor data(displacement,
load, resistance) from those two node in the graph form.

6 Conclusions

In this paper, we presented a grid-based remote experiment environment in
KOCED project that connects large civil engineering facilities distributed across
the nation. We discussed the design and implementation of the model that pro-
vides remote experiment to researchers geographically apart and allows the ex-
periment results to be shared among them. Remote researchers are allowed to
observe the experiment in real time. If the characteristics of the experiment
permits, a researcher can conduct an experiment from a distance. After the ex-
periment, the result of the experiment including video and sensor data are shared
among researchers. The functions described above provide basic environment for
collaboration among researchers at a distance. We designed and implemented a
hybrid test prototype connecting two physical experiment sites and one numer-
ical simulation site, which shows a possibility of conducting remote experiment
in grid-based collaborative research environment.

We are modifying the client from a executable file on a local PC to a Web-
based client based on Globus Toolkit 4 so that researchers can access the grid
system with a Web browser without having to preinstall the client system. The
presented prototype system is currently being used by researchers in civil engi-
neering who can give us feedback that can be used for building the final version
of the experimental facility. Furthermore, we plan to expand the current grid
network to include more experimental facilities so that more experiment results
can be shared by researchers. We expect this presented remote experiment en-
vironment to be applied to other engineering area.

References

1. Biomedical informatics research network. http://www.nbirn.net.
2. Eurogrid. http://www.eurogrid.org.
3. G-civil project. http://www.soton.ac.uk/ gcivil/.

A Grid-Based Remote Experiment Environment in Civil Engineering 273

4. Grid security infrastructure. http://www.globus.org/toolkit/docs/4.0/security/
GT4-GSI-Overview.pdf.

5. Gridftp. http://www.globus.org/toolkit/docs/4.0/data/gridftp/.
6. Mini-most. http://cive.seas.wustl.edu/wusceel/minimost/.
7. Real-time data viewer. http://it.nees.org/software/rdv.
8. Reliable file transfer service. http://www.globus.org/toolkit/docs/4.0/data/rft/.
9. Ring buffered network bus. http://outlet.creare.com/rbnb.

10. System Architecture v1.1. http://www.neesgrid.org.
11. Us national virtual observatory. http://www.us-vo.org.
12. I. Foster J. Futrelle D. Marcusiu S. Gulipalli L. Pearlman C. Kesselman, R. Butler

and C. Severance. NEESgrid System Architecture Version 1.1. http://it.nees.org/
documentation/pdf/NEESgrid SystemArch v1.1.pdf

13. J. M. Nick I. Foster, C. Kesselman and S. Tuecke. The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration. http://
www.globus.org/research/papers/ogsa.pdf, 2002.

14. I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputer Application, 11(2):115–129, 1998.

15. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Services for Distributed
System Integration. IEEE Computer, 35(6):37–46, 2002.

16. I. Foster K. Czajkowski, S. Fitzgerald and C. Kesselman. Grid Informaion Ser-
vices for Distributed Resource Sharing. In HPDC-10, pages 344–353, Boston,
Massachusetts, August 2001.

17. M. Niezgodka K. Nowinski, B. Lesyng and P. Bala. Project EUROGRID. In
Proceedings of PIONIER 2001 Conference, pages 187–191, 2001.

18. E. Johnson C. Kesselman L. Pearlman, M. D’Arcy and P. Plaszczak. NEESgrid
Teleoperation Control Protocol(NTCP): NEESgrid-2004-23. http://it.nees.org/
documentation/pdf/TR-2004-23.pdf, September 2004.

19. S. Fitzgerald I. Foster A. Johnson C. Kesselman J. Leigh S. Brunett, K. Czajkowski
and S. Tuecke. Application Experiences with the Globus Toolkit.

20. The NEESgrid System Integration Team. Introduction to NEESgrid: NEESgrid-
2004-13. http://it.nees.org/documentation/pdf/TR 2004 13.pdf, August 2004.

http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf.
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf.
file:{http://it.nees.org/documentation/pdf/NEESgrid_SystemArch_v1.1.pdf}, May 2003.
file:{http://it.nees.org/documentation/pdf/NEESgrid_SystemArch_v1.1.pdf}, May 2003.
http://www.globus.org/research/papers/ogsa.pdf, 2002.
http://www.globus.org/research/papers/ogsa.pdf, 2002.
file:{http://it.nees.org/documentation/pdf/TR-2004-23.pdf}, September 2004.
file:{http://it.nees.org/documentation/pdf/TR-2004-23.pdf}, September 2004.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 274 – 285, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Mobile Ad Hoc Grid Using Trace Based Mobility Model

V. Vetri Selvi, Shakir Sharfraz, and Ranjani Parthasarathi

Dept. of Computer Science and Engineering,
College of Engineering Guindy

Anna University,
Chennai, Tamil Nadu, India

vetri@annauniv.edu, rp@annauniv.edu

Abstract. Ad hoc network is an infra structure less network, which is formed
by mobile devices like laptops, PDAs, cell phones etc. Each device has different
computational capability, power, hardware and software, which forms a hetero-
geneous network. These devices can be integrated to form an infrastructure
known as grid. A grid integrates and coordinates resources and users that are
within the same network with different capabilities. Hence we can visualize a
grid over an ad hoc network that effectively utilizes the heterogeneity in the
mobile devices. The major challenge in forming a grid over an ad hoc network
is the mobility of the nodes. In this paper, we address the challenges due to mo-
bility by considering a trace model for the movement of the nodes. Next, we
demonstrate the feasibility of forming a grid over a mobile ad hoc network by
proposing lightweight algorithms for grid formation, resource discovery, nego-
tiation, job scheduling, and resource sharing. We have analyzed the perform-
ance of mobile ad hoc grid both by using a theoretical model and by simulation.
The results point to a promising approach to form a mobile ad hoc grid.

1 Introduction

A mobile ad hoc network is a collection of wireless mobile nodes that are capable of
communicating with each other without the use of network infrastructure or any
centralized administration. Each node in an ad hoc network acts as a router, and is in
charge of maintaining routes and connectivity in the network. Thus, there is an
element of cooperation among the nodes to perform the routing process or the
network layer function itself. Taking this cooperation one-step further, one can
envisage a scenario where in the devices can coordinate and support each other in
terms of higher layer services, (i.e) we can envision the concept of mobile ad hoc
grid. We can see that such a grid would be desirable in an ad hoc network due to the
heterogeneity of the mobile devices. Since the mobile devices like laptops, PDAs,
mobile phones, etc., have different computation capabilities, power, hardware and
software functions, the nodes with higher computation capabilities and power can
share the resources with devices of lesser capabilities. Thus a mobile ad hoc grid can
facilitate the interconnection of heterogeneous mobile devices to enable the delivery
of a new class of services.

A grid by definition is a system that coordinates resources that are not subject to
centralized control. The fundamental functions in a grid are resource discovery,
negotiation, resource access, job scheduling and authentication. A grid allows its

 Mobile Ad Hoc Grid Using Trace Based Mobility Model 275

resources to be used in a coordinated way to deliver various qualities of service in
terms of response time, throughput, etc [1]. The definition and function of a grid will
also be applicable to the mobile ad hoc grid.

In the Internet scenario, the grid uses architectures like Globus Toolkit 3.0 [2] and
SETI@Home which is now an application running on top of the BONIC platform [3].
However, the APIs for these architectures need high computational power and require
a lot of disk space for their installation. Thus, it may not be possible to use such
architectures on every mobile device [4], since these devices have limitations on
hardware and software capabilities and may not provide an ideal computing
environment for complex and data intensive functions. Hence it is necessary to device
lightweight grid enabling mechanisms that can be adopted for the mobile ad hoc grid.

There are several challenges involved while forming a mobile ad hoc grid. This
paper discusses various such issues and proposes an architecture for the mobile ad hoc
grid. The stability of the grid is one of the major issues to be considered in an ad hoc
scenario due to the movement of the nodes. This has been dealt with by exploiting the
regularity in the movement of nodes. Su et al [5] have shown that exploitable
regularity of user mobility patterns exist in common day-to-day environments.
Capturing this regularity in movement as a movement pattern is done using a Trace
Based Mobility Model (TBMM) [6]. This model collects a number of movement
patterns, and generates a final trace pattern. From the final trace, the probable position
and stability time of a node are obtained. Using this mobility model, trace based
source routing protocol for QoS (TBSR-Q) was proposed for an ad hoc network [6].
The TBSR-Q protocol uses the stability and position information obtained from the
trace file for obtaining a stable route. In our mobile ad hoc grid, we use this trace
based mobility model to obtain the probable position and stability time of a node in
order to build a stable grid, or in other words, to take care of the instability of the
nodes.

This paper is organized as follows. Section 2 discusses the background and related
work. Section 3 deals with the proposed architecture of a mobile ad hoc grid. Section
4 evaluates the mobile ad hoc grid using a theoretical model and by simulation.
Section 5 concludes the paper.

2 Related Work

Grid computing enables the sharing and coordination of resources across a shared
network. Integrating grid computing with ad hoc network is a very recent concept,
and introduces lot of new challenges. The following are some of the solutions that
have been proposed by various researchers.

Ihsan et al [7] have proposed a mobile ad hoc service grid that maps the concepts
of grid on to ad hoc networks. This mobile ad hoc service grid uses the under-lying
connectivity and routing protocols that exist in ad hoc networks. The availability of
the service in a node is broadcast to all one-hop neighbors. Since the grid is formed
within one-hop neighbors, there is a chance for resource discovery to fail when there
is no service provider within one hop. In this grid, each node is responsible for
maintaining the resource look up table, which can be a burden to devices with less
storage capabilities.

276 V.V. Selvi, S. Sharfraz, and R. Parthasarathi

Wang et al [8] have proposed a mobile agent based approach for building
computational grids over mobile ad hoc networks (MANET). Here, the mobile agent
has been used to distribute computations and aggregate resources. The mobile agent
searches for resources and executes the computations on the node that is willing to
accept it and is responsible for negotiation of resource provision for running the
computation job.

Anda et al [9] have proposed a computing grid over a vehicular ad hoc network
(VANET) by leveraging inter-vehicle and vehicle to-roadside wireless
communications. This grid has been used for solving traffic related problems by
exchanging data between vehicles. Forming a grid is not a problem in VANETs,
because the vehicles have ample power and energy and can be equipped with
computing resources.

Roy et al [10] have investigated the use of the grid as a candidate for provisioning
computational services to applications in ubiquitous computing environments. The
competitions among grid service providers bring in an option for the ubiquitous users
to switch their service providers, due to unsatisfactory price and QoS guarantees.

Our approach differs from these in that it provides a mechanism to capture the
mobility patterns of the nodes and use that information to effectively form a grid over
an ad hoc network.

3 Proposed Architecture for Mobile Ad Hoc Grid

One of the major challenges in forming a grid over ad hoc network is the mobility of
the nodes and an infrastructure-less network. Resource identification and sharing
become difficult tasks in a mobile environment. To overcome this, we propose a
model to identify the stability of the nodes which in turn helps to predict the stability
of the grid. The stability of the node is predicted using the TBM model [6].

The TBM model
Mobility models are application dependent. Hence application scenarios are important
in choosing a model. Although typical application domains of ad hoc networks are
military networks, conferences and search/rescue operations, for the kind of grid
based sharing of resources, we consider offices and institutions where people meet
regularly, with a myriad of heterogeneous mobile devices, as the application domain.
In these domains, there exist fair amounts of regularity in the movement of the mobile
nodes. Hence as opposed to the former group of applications where the mobility
models try to model the randomness in the movement, in our application domain, we
are more concerned with capturing the regularity of the movement. Hence we use a
mobility model that records regular movements to efficiently manage mobility.

TBMM identifies regularity in movement of the nodes and captures them as a
movement pattern. Each node is assumed to be location aware, and the network is
assumed to be mapped on to a virtual grid structure, depending upon the transmission
region and the area of the network. A light-weight algorithm [6] is used to arrive at
the trace representing the regular movement of the nodes over a period of time. The
information in the trace consists of a series of stable positions and associated time
duration.

 Mobile Ad Hoc Grid Using Trace Based Mobility Model 277

Architecture of proposed grid
We propose a trace-based approach to form a grid over an ad hoc network using the
above-mentioned trace. Further, the mobile ad hoc grid uses a lightweight algorithm
for grid formation, resource discovery, negotiation, job scheduling, and resource
sharing, in keeping with the limited resource characteristic of the mobile nodes. Load
balancing is a challenge unique to the dynamic nature of ad hoc network, and it is not
considered for the initial study of formation of grid over an ad hoc network. The
architecture of the grid is shown in Fig. 3.1.

Grid
Resource

Table

Resources
Discovery

Initiate to form Grid

Provider Registration
Resource Parameter, Service

Fee, Stability Time, Position

Consumer Registration
Type of Service, Price,
Stability Time, Position

Resource management

Negotiation

Resource
Access

Updating
Resources

Services
Monitoring

Grid
Resources

Stability Time, Position, Queue SizeQoS Routing

Fig. 3.1. Architecture of a mobile ad hoc grid

The grid layer is built on top of a QoS guaranteeing network layer that provides
stable routes. The grid layer consists of a grid resources module, resource discovery
module, and resource management module. The resource discovery module initiates
grid formation, and allows the service providers and consumer nodes to register. Grid
resources module maintains and keeps track of the registered resources. Resource
management module is responsible for negotiation, resource access, updating of re-
sources and service monitoring. All these modules are built on the QoS routing of
network layer, which could in turn make use of the same stability information ob-
tained from the TBMM.

3.1 Grid Formation

A node willing to provide service with higher computational capability and power is
called as a service provider node (SPN) and the node which requests for the service is
called as a consumer node (CN). The SPNs and CNs are the members of the grid. The
nodes that are willing to share their resources specify a cost for their resources. The

278 V.V. Selvi, S. Sharfraz, and R. Parthasarathi

consumer node accepts a service based on the cost, service time, etc. This leads to
some negotiation between the consumer node (CN) and the service provider node
(SPN). Since ad hoc network is an infrastructure-less network, there is no centralized
authority to keep track of the negotiation between a CN and a SPN. In order to form a
grid and to keep track of the negotiation between a CN and a SPN, we have an SPN
that volunteers to act as a grid head node (GHN). The GHN takes care of the
negotiation between the CN and SPN. The GHN of a grid acts as a central point and is
responsible for resource discovery and resource access. Figure 3.2 shows the
messages that are exchanged between the nodes that are willing to form a grid.

Fig. 3.2. Sequence of messages for Grid formation

Resource Discovery
A node that is willing to provide service will initiate the action of forming the grid by
sending a grid_hello_message. The nodes that are willing to be a member of a grid
respond to the grid_hello_message. The format of grid_hello_message is as shown in
figure 3.3a. It consists of node ID, stability time, position and hop count. The node
ID is the identification of the node that sends the message; and stability time and
position which are obtained from its trace file denote the current position and the
associated stability time. When two nodes send a grid_hello_message at the same
time, the grid head elected is the one that has a larger stability time. Hop count
restricts the propagation of the grid_hello_message to a limited number of hops. This
helps to avoid the formation of one large centralized grid, and instead facilitates
multiple decentralized grid structures.

A node, after receiving a grid_hello_message, sends a response message depending
on whether it wants to become a member of the grid or wants to request for a service.
The node joining a grid sends a grid_joining_message. The format of the
grid_joining_message is shown in Figure 3.3b. It consists of SPN ID, GHN ID,
Resource parameter, service fee, Position and Stability. The SPN ID is the ID of the
node that is willing to join the grid and GHN ID is the head ID under which it wants
to become a member. Resource parameter indicates the resource parameter that is

Service

grid_hello_message grid_hello_message

service_request_message

service_ provider_message

acknowledgement_message

grid_joining_message

service_completion_message

SPN GHN/SPN CN

 Mobile Ad Hoc Grid Using Trace Based Mobility Model 279

available with a SPN like the computational capability, power, storage etc. The
service fee indicates at what cost it will service a request. Similarly a node requesting
for service sends a service_request_message whose format is shown in figure 3.3c.
Service_request_message consists of the requesting node ID, GHN ID, ToS, Price,
Position and Stability. The GHN is the grid head ID to which it is requesting service.
ToS is the type of service requested by a CN. The price field indicates at what price it
is willing to accept a service. A node can also become a member of two grids based
on the resources available with it or the services it desires.

Grid Resources
The GHN after receiving responses from the member nodes forms a grid table. The
format of the grid table is shown in Table 3.1

Table 3.1. Grid Table

Node
ID

SPN
/CN

RP/
ToS

Service
Fee

Price Position Stability Job
ID

Busy/
Free

Abbreviations: SPN/CN – Service Provider Node/ Consumer Node, RP/ToS –
Resource Parameters/Type of Service

This table maintains the details about the member nodes. The node ID column lists
the identification of the member nodes. The SPN/CN indicates whether it is a SPN or
CN. The resource parameters specify the resources available with that node like
computational capability, power, storage etc. Type of service indicates what type of
service is needed by a CN. Service fee of a SPN specifies at what cost it will service a
CN. Price of a CN specifies at what price it needs a service. Position is the physical
location of a node and stability is how much time a node is going to be present at that
location. Job ID is a unique ID assigned to the communication of a SPN and a CN.
Busy indicates whether a node is being serviced in the case of a CN or is providing
service in the case of an SPN. Free indicates that an SPN is free to provide service.
The head maintains all the details about its members.

Resource Management
The head node is responsible for the negotiation between a SPN and a CN. When a
node requests for a service it sends the details of what type of service it needs and at
what cost. So the head node looks at the table to find out a SPN that offers the service
at that cost. Re-negotiation also can be done by a GHN and it is in the pipeline. The
job scheduling is done based on the stability time and the location of the SPN. A GHN
first verifies, whether the service time of a CN is greater than the stability time of a
SPN. If many SPNs have greater stability time, then an SPN that is nearer to the CN
requesting for a service is assigned. Then the GHN sends a service_provider_message
to CN. The format of the service_provider_message is given in Figure 3.3d. It consists

280 V.V. Selvi, S. Sharfraz, and R. Parthasarathi

of CN ID, GHN ID, SPN ID, Job ID, cost, position and stability. The CN ID is the ID
of the node requesting service, GHN ID is the ID of the node sending the message and
SPN ID is the ID of the node that has been assigned to provide service. The job ID is a
unique ID assigned by GHN to identify the communication between the CN and SPN.
Position indicates the physical position of the SPN that has been assigned to the CN.

On receiving this message the CN starts communicating with the SPN for its
service. The position of the SPN is available in the message, hence the CN can easily
communicate with the SPN using the routing protocol in the network layer.

After getting the service, the CN sends an acknowledgement about its completion
of the service to the GHN. Service completion field indicates that the service is
completed. The Job ID is sent so that the GHN can understand which service was
completed. The format of the acknowledgement_message is given in figure 3.3e.

Node ID Stability Time Position Hop count

Fig. 3.3a. grid_hello_message

SPN ID GHN ID RP Service Fee Position Stability

Fig. 3.3b. grid_joining_message sent by SPN

CN ID GHN ID ToS Price Position Stability

Fig. 3.3c. service_request_message sent by CN

CN ID GHN ID SPN ID Job ID Cost Position Stability

Fig. 3.3d. service_provider_message sent by GHN

CN ID GHN ID Job ID Service Completion

Fig. 3.3e. acknowledgement_message sent by CN

SPN ID GHN ID Job ID WtoC URP Service Fee

Fig. 3.3f. service_completion_message sent by SPN

CN/SPN ID GHN ID LG

Fig. 3.3g. bye_message

 Mobile Ad Hoc Grid Using Trace Based Mobility Model 281

GHN ID New GHN ID Stability Time Position Hop Count

Fig 3.3h. New GHN message

Abbreviations: GHN ID – Grid Head Node ID, SPN/CN – Service Provider Node/ Consumer
Node, RP/ToS – Resource Parameter/Type of Service WtoC – Willing to Continue, URP –
Updated Resource Parameters, LG – Leaving Grid

Similarly the SPN sends a service_completion_message to the GHN after completing
the service for a CN. The format of the service_completion_message is given in Figure
3.3f. It consists of SPN ID, GHN ID, job ID, WtoC, URP and service fee. The job ID to
identify the job that has been completed and if the SPN is willing to continue (WtoC) in
a grid it sends the willingness as well as the updated resources parameters (URP) to the
GHN. Using this information the GHN will know that the service has been successfully
completed and updates the resource parameters of the SPN in its table.

The GHN has to periodically send a grid_hello_message to its member nodes, so
that the members will know that the GHN is alive, and a new member will also know
about the GHN. Since, it is an ad hoc network there might be situations where the
members have to leave the grid even before the stability time expires. During this case,
the members have to inform the GHN by sending a bye_message that consists of its ID
and leaving grid information. The format of bye_message is shown in Figure 3.3g.

Similarly when a GHN leaves the grid, it has to select a new head from its grid
table, the new head will be a SPN which has the largest stability time (after
ascertaining its willingness to be the new GHN). The GHN informs the members of
the grid about the selection of a new head by sending a new GHN message. This
message consists of old grid head ID (GHN), new grid head ID (New GHN) as well
as the stability time and position of the new grid head. The format is as shown in
Figure 3.3h. The node selected as a new head sends a grid_hello_message to its
members. The previous GHN hands over the table it maintained to the new GHN.
Even when a GHN fails, it is identified by the non-receipt of the grid_hello_message
and any SPN can initiate the formation of the grid by sending the
grid_hello_message. But this will involve grid formation overhead. Similarly,
situations like network splits or networks merge can also be handled. When a network
split occur the members leaving the grid will inform the GHN by sending a
bye_message and the grid will still exists with the available resources. When network
merge happens it will not affect the existing grid, instead new members will join the
grid. But this situation will not happen frequently in a low mobile scenario. The
evaluation of mobile ad hoc grid is presented below.

4 Mobile Ad Hoc Grid Evaluation

The Mobile ad hoc grid is modeled as an M/M/m queuing system [12] in order to
estimate the performance theoretically. The service requests from the CNs form the
arrival process, and the SPNs are the m servers servicing these requests. In keeping
with the M/M/m model, the arrival process (with arrival rate λ) is Poisson and the
service times (with mean – 1/μ sec) are independent and exponentially distributed.
The successive interarrival times and service times are assumed to be statistically
independent of each other.

282 V.V. Selvi, S. Sharfraz, and R. Parthasarathi

In a mobile ad hoc grid, the CN request for a service to the GHN and the GHN is
responsible for assigning a SPN to the requesting CN. Hence, the probability that an
arriving request in a GHN will find all servers busy and will be forced to wait in
queue is an important measure of performance. If a GHN does not have sufficient
number of SPNs to assign for the services requested, then there is a probability of
queuing (or waiting). A service request from a CN can be considered as a customer in
the M/M/m parlance.

The probability of queuing is given in equation (1).

P{Queuing}=p0(m ρ)m/m!(1- ρ) (1)

Where ρ is given by ρ= λ /m μ < 1 and p0= [∑(m ρ)n/n!+(m ρ)m/m!(1- ρ)] –1

where n = 1-(m-1)

A request in a waiting state is serviced when a new SPN registers with the GHN or
a SPN has completed its service and it is willing to continue in the grid. Duration of
time a request has to wait in a queue is known as the waiting time of the customer.

Equation (2) gives, the average waiting time (W), that a service request has to wait
in queue.

W = NQ/λ = ρPQ/ λ(1- ρ) (2)

Delay per customer includes the time taken by a SPN to service the request as well
as the waiting time of a request in the queue of the GHN. Equation (3) gives the
average delay per customer (which includes service time and waiting time).

T = 1/μ+W = 1/μ + ρPQ/(λ(1- ρ)) (3)

The number of customers in the system is the total number of requests received by
a GHN. Equation (4) gives the average number of customers in the system.

N= λ T= (λ /μ) + λPQ/(m μ - λ) (4)

The values obtained for these parameters by varying the number of consumers are
tabulated in table 4.2. We choose the λ value to be 50 and μ to be 20.

Simulation studies have also been carried out to evaluate the mobile ad hoc grid.
The simulation tool used is Glomosim [11]. The parameters used for the simulation
are given in Table 4.1.

Table 4.1. Parameters for the simulation

 Mobile Ad Hoc Grid Using Trace Based Mobility Model 283

Mobile ad hoc grid has been simulated using 4 GHNs and 12 SPNs. The
performance is analyzed by increasing the number of consumer nodes (from 4 to 20 in
steps of 4) that in turn will increase the number of service requests. Here the SPN and
GHN are considered to be static whereas CN and all the other nodes are mobile. To
analyze the performance of grid, the parameters of interest are average number of
customers in the system, probability of queuing, average time a customer has to wait
in queue and average delay per customer.

Fig 4.1a and b show the average time a customer has to wait in queue and
average delay per customer. It can be seen that there is minimal variation between
the theoretical and simulation results. This is due to the fact that during simulation,
a CN sends a service request to the GHN only when it finds a stable position based
on its trace file, which in turn reduces the number of customers in the system. This
factor in turn affects the probability of queuing. We can observe that up to case III
(i.e no of CNs = 12), there is a sufficient number of SPNs available with the GHN
to provide service. Hence the waiting time is low. In case IV and V, number of
SPNs to service the request is not enough which in turn, increases the waiting time
in queue.

Overhead in forming a grid
The overhead in forming a grid is the additional grid-forming messages that are
communicated among the nodes to form the grid and the average routing delay.
Figure 4.2a and b shows the control message overhead and the average routing delay.
Average routing delay considers the delay in routing the control packets at the
network layer. Since we consider the stability of a node to find out the stable routes in
the routing protocol, the routing delay is considerably less than the service time
considered. However, the average routing delay increases as the number of CNs
increases; this is due to the increase in the number of service requests.

0

2

4

6

8

10

12

4 8 12 16 20

No. of Consumer Nodes

A
vg

.T
m

e
a

C
u

st
o

m
er

 h
as

to

 W
ai

t
in

 Q
u

eu
e

(S
ec

) Simulation Result

Theoretical Result

Fig. 4.1a. Average Time a Customer

0

5

10

15

20

25

30

35

4 8 12 16 20

No. of Consumer Nodes

A
vg

. D
el

ay
 P

er
 C

u
st

o
m

er

(S
ec

)

Simulation Result
Theoretical Result

Fig. 4.1b. Average Delay per Customer has to
Wait in Queue

The performance of the mobile ad hoc grid shows the feasibility of forming a grid
in a mobile environment.

284 V.V. Selvi, S. Sharfraz, and R. Parthasarathi

0

200

400

600

800

1000

1200

4 8 12 16 20

No. of Consumer Nodes

N
o

. o
f

C
o

n
tr

o
l

M
es

sa
g

es

Fig. 4.2a. Control Message Overhead

0

0.1

0.2

0.3

0.4

0.5

0.6

4 8 12 16 20

No. of Consumer Nodes

A
vg

. R
o

u
ti

n
g

 D
el

ay
(S

ec
)

Fig. 4.2b. Average Routing Delay

5 Conclusion and Future Work

This paper has proposed an architecture to form a grid over a mobile ad hoc network
by using trace files that capture the regularity in the movement or rather the stability
of the nodes. It has also shown the feasibility of sharing the resources using such a
grid using both a theoretical model and simulation. The overhead present due to
mobile environment is also very less. This paper has opened a number of possibilities
for further studies in this area. Some of the future work that are to be explored are
building trust over the mobile ad hoc grid based on the resource sharing and
mechanisms for the nodes to cooperate to share their resources.

References

1. I.Foster, “What is the Grid? A Three Point Checklist”, GRID Today, July 20, 2002
2. Open Grid Services Architecture http://www.globus.org/ogsa/
3. David P. Anderson, “BONIC: A system for Public-Resource Computing and storage”, 5th

IEEE/ACM International Workshop on Grid Computing, Nov2004.
4. Thomas Phan, Lloyd Huang, Chris Dulan, “Challenge: Integrating Mobile Wireless

Devices into the Computational Grid”, IEEE/ACM International Conference on Mobile
Computing and Networking (MOBICOM) 2002.

5. Jing Su, Alvin Chin, Anna Popivanova, Ashvin Geol, Eyal De Lara, “User Mobility for
Opportunistic Ad-hoc Networking”, Proceedings of Sixth IEEE Workshop on Mobile
Computing Systems and Applications(WMCSA’04)-Volume 00, 41-50, Dec 2004.

6. V.Vetri Selvi and Ranjani Parthasarathi, “Trace Based Mobility Model to Support Quality
of Service in Ad Hoc Networks ”, Trusted Internet Workshop (TIW05) held along with
12th International Conference on High Performance Computing (HiPC2005), 18-21 Dec.
2005.

7. Imran Ihsan, Muhammed Abdul Qadir, Nadeem Iftikhar, “ Mobile Ad- Hoc Service Grid-
MASGRID”, Third World Enformatika Conference, WEC'05, pp 124-127,April 2005.

8. Zhi Wang, Bo Yu, Qi Chen, Chuanshan Gao, “Wireless Grid Computing over Mobile Ad-
Hoc Networks with Mobile Agent”, First International Conference on Semantics,
Knowledge and Grid, Nov 2005.

9. J. Anda, J. LeBrun, D. Ghosal, C-N. Chuah, and H. M. Zhang, "VGrid: Vehicular Ad Hoc
Networking and Computing Grid for Intelligent Traffic Control," IEEE Vehicular
Technology Conference, Spring 2005.

 Mobile Ad Hoc Grid Using Trace Based Mobility Model 285

10. Roy, N. Das, S.K.Basu, K.Kumar M, “Enhancing Availability of Grid Computational
Services to Ubiquitous Computing Applications”, 19th IEEE International Symposium on
Parallel and Distributed Processing, April 2005.

11. http://pcl.cs.ucla.edu/projects/glomosim, 2000.
12. Dimitri Bertsekas, Robert Gallager, “Data Networks”, 2nd Edition, Prentice-Hall India pp

174-176, 1999.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 286 – 297, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Self Managing Middleware for Dynamic Grids

Sachin Wasnik, Terence Harmer, Paul Donachy, Andrew Carson, Peter Wright,
John Hawkins, Christina Cunningham, and Ron Perrott

Belfast e-Science Centre, The Queen's University of Belfast,
Belfast, BT7 1NN, UK

{s.wasnik, t.harmer, p.donachy, a.carson, pwright04,
j.hawkins, christina.cunningham, r.perrott}@qub.ac.uk

Abstract. As grid infrastructures become more dynamic in order to cope with
the uncertainty of demand, they are becoming extremely difficult to manage. At
the Belfast e-Science Centre, we are attempting to address this issue by devel-
oping Self Managing Grid Middleware. This paper gives an overview of the
middleware and focuses on the design, implementation and evaluation of a Re-
source Manager. Also in this paper we will see how our approach, which is
based on federated UDDI registries, has enabled us to implement some of the
desired features of next generation grid software.

Keywords: Grid Computing, UDDI Registries, Grid Resource Manager, SLA.

1 Introduction

Most production Grids [1], irrespective of whether they are being deployed in com-
mercial or academic environments, must cope with variation in demand. A goal for
next generation Grid research and development is to produce a “...fully distributed,
dynamically reconfigurable, scalable and autonomous infrastructure to provide loca-
tion independent, pervasive, reliable, secure and efficient access to a coordinated set
of services encapsulating and virtualizing resources (computing power, store, instru-
ments, data etc) in order to generate knowledge”, according to the CoreGrid European
Network of Excellence [2]. There has been a significant improvement in focus of the
vision of Grid Computing [3] since the term was introduced. A vital improvement still
to be implemented satisfactorily is to make Grid Computing more dynamic so that it
is able to cope with uncertainty of demand. Some recent work including HAND [4]
and Dynamic Deployments [5] has focused on dynamically deploying and scaling
Grids in production as and when needed.

The term “autonomic computing” is representative of a vast and somewhat tangled
hierarchy of natural self governing systems, which consist of many interacting, self
governing components that are often compromised of a large number of interacting,
autonomous self governing components at the next level down. According to the
vision of Autonomic Computing [6], the self-managing systems feature automatic
mechanisms for operator free maintenance of stand alone and distributed resources,
including self-configuration, self optimization, self-healing, self-protection and

 Self Managing Middleware for Dynamic Grids 287

others. This vision overlaps in its’ goals with the pursuits of adaptability and depend-
ability as described above in the recent definition of Grid Computing.

In particular, the adaptability of Grids can be interpreted as self-management on a
different scale (and environment), thus making it worthwhile to exploit the discovered
approaches in both domains. On the other hand, dependability mechanisms share a lot
of scenario problems and approaches with self-management mechanisms (e.g. auto-
matic fault recovery and preventive management actions such as software rejuvena-
tion), thus calling for a convergence of research in these areas.

Trends in automating Service Level Agreement (SLA) management [7], from
SLA creation to the performance monitoring of SLA’s, can help the Resource Man-
ager to sense the exact needs of users. With the help of an SLA Manager, middle-
ware can act as a biological system which can sense and respond to the needs of the
user. This should enable the effective utilization of resources by dynamically deploy-
ing, un-deploying and reconfiguring resources as and when needed. In such an infra-
structure, Resource Managers are not only responsible for managing the resources,
but also for selecting the resources on which the applications are to be deployed on.
Thus the Resource Manager can act as the backbone of the self managing grid
middleware.

Although a centralized Resource Manager can be very useful for a small number
of resources, it may not be able to scale as the number of resources increases. A
centralized Resource Manager acts as single point of failure and is vulnerable to
security attacks. A decentralized Resource Manager can provide fault tolerance for
the middleware by devolving responsibilities to a number of Resource Managers
interacting with each other. A decentralized Resource Manager provides us with the
necessary backbone of the next generation grid middleware but it is also difficult to
maintain. This is where the self managing approach can assist in enabling the devel-
opment of middleware which is self configuring, self healing, self optimizing and
self protect.

The rest of the paper is organized as follows. Section 2 describes the architecture of
the Self Managing Middleware. Section 3 describes the design and implementation of
the federated Registries. Section 4 describes a use case for the middleware followed
by the conclusion in section 5.

2 Self Managed Grid Middleware

According to our view of an infrastructure, infrastructure components are organised
or grouped into domains. The name “domain” attempts to indicate that it is an area
of responsibility and also serves to separate this infrastructural component view
from other users and organizations ideas such as virtual organizations—a virtual
organization might, for example, be built upon a collection of domains as shown in
Figure 1.

A domain is a group of computing resources that it is natural to manage collec-
tively; for example, it could be all of the resources in a small organization or
it could be the resources in a particular computing rack that share a network

288 S. Wasnik et al.

Fig. 1. Different organizations A, B and C forming a virtual organization

connection via a shared network connection or switch. The identification and selec-
tion of domains is performed as part of infrastructure design with the intention of
identifying natural organizational units. A domain is our mechanism for providing a
simple and distributed collection of managed infrastructure components.

The (self) management of grid resources is performed at the domain level. A do-
main provides a mechanism by which a group of related resources (i.e. services or
applications) can be deployed and managed.

A domain may have sub domains. This hierarchical view enables requests to be di-
rected to high-level management components and split between the organization units
that are available within a domain—these high level components may enforce local
management rules or act as brokers by selecting the best available local domains for
deployment.

As shown in figure 2, each domain is managed using the core components of a
Software Manager, a Security Manager, a Software Repository and a Resource Man-
ager. A Resource Manger at the domain level is based on a single Registry but at the
Grid level, Resource Manager is based on Registry Federation. Resource Manager at
the grid level appears as a single logical Resource Manager of all the domains, to
which a software manager can issue a single request against multiple Resource Man-
ager and get a single response that contains results based on all the data contained in
all the registries.

 Self Managing Middleware for Dynamic Grids 289

Fig. 2. Managed nodes being directed by the Managers

2.1 Software Manager

The Software Manager component takes a deployment request and performs the
specified deployment. A deployment request consists of the deployment action
and a configuration definition that enables management of the deployment action.
A deployment action can be the installation of software, the execution of a par-
ticular application, the deployment of a web/grid service, the un-deployment of an
application or web/grid service, the storage of a data source such as a database,
the un-deployment of a data source, the recovery of the data held in a data source,
or the deployment of a security definition, for example the modification of fire-
wall rules.

The Software Manager may require several deployment actions to fulfil a particular
user deployment action; for example, the deployment of a web service may require
the deployment of a specific Java environment, a web service container application,
applications or web services to support the user web service.

A portal provides a user interface where a user can upload a package by supply-
ing its configuration file—a web service provides the same functionality for an
application.

A deployment request may be in one of the following formats:

− A war file
− An RPM
− A resource bundle for Globus container
− A resource bundle for OMII container
− A security configuration schema instance
− A data source bundle
− A meta tar file containing a combination of the above resources

The configuration definition specifies the required environment for the deployment.
The action of the Software Manager is to select a suitable host, deploy software to
that host that is required, deploy a security and the resources deployed.

290 S. Wasnik et al.

An example configuration file for deploying a simple web service might look like
this:

<config>
 <bundle>
 <summary>
 <bundleType>rpm</bundleType>
 <systemPackageInfo>
 <vendor>none</vendor>
 <name>gridftp_transfer</name>
 <version>2.1</version>
 <description>GridFTP</description>
 </systemPackageInfo>
 <validFrom>12/02/07</validFrom>
 <validTo>12/03/08</validTo>
 </summary>
 <firewall/>
 <callback><url/></callback>
…

…
 <dependencies>
 <hardware>
 <cpu>
 <speed>1500</speed>
 </cpu>
 <memory>512</memory>
 <storage>
 <freeSpace>15</freeSpace>
 <raid>5</raid>
 </storage>
 </hardware>
 <software/>
 </dependencies>
 </bundle>
</config>

2.2 Security Manager

The Security Manager is responsible for configuring and maintaining security on
infrastructure components—currently this involves the deployment of digital certifi-
cates to enable user and host authentication, updating certificate revocation lists and
defining firewall rules.

The Security Manager keeps track of the status of the firewall on each of the man-
aged nodes with the help of an agent installed on them. When a service or application
being deployed has a particular security requirement, the Software Manager sends a
request to the infrastructure component of the Security Manager which performs the
necessary security modifications. A security modification that conflicts with the basic
security rules defined for an infrastructure component will cause a deployment re-
quest to be rejected; a modification that conflicts with rules deployed to support other
applications will result in a different infrastructure component being selected as the
deployment target. When a service or application is un-deployed, the security modi-
fications are also un-deployed.

2.3 Software Repository

A Software Repository is maintained to hold different versions of applications and
services that can be specified as software dependencies in the configuration file as
shown above. When a user submits a configuration file for deployment to the soft-
ware manager, the Software Repository provides the software to carry out the de-
ployment action. For example, a deployment of war file needs java and a web service
container. In this case war file will be provided by the user and the software reposi-
tory will provide dependent packages of java and web service container.

 Self Managing Middleware for Dynamic Grids 291

3 Resource Manager

The convergence of grid computing and service oriented computing has enabled the
service registries to take on the role of a Resource Manager [8]. Job scheduling in grid
environments has taken a new form relating to the interaction between the service
provider and the service consumer, which is shown here in Figure 3.

Fig. 3. Interaction diagram showing the interactions between the Service Provider and the
Service Consumer

As the user demand on Grids becomes more agile and dynamic, service discovery
using static information is not enough and a need emerges for storing Quality of Ser-
vice (QoS) information inside service registries as well as a complete abstract map-
ping of compute resources. The compute resources should be mapped in such a way
so as to allow a consistent view and management of the resources and this mapping
may vary across different infrastructures.

3.1 Resource Mapping

The GLUE Schema [9] is an abstract modelling for Grid resources and mapping to
concrete schemas that is being used by most of the production Grids. Glue Schema is
widely used in most of the production grids. It has been integrated in number of Grid
middleware such as EGEE [10], LCG [11], OSG [12], Globus [13] and NorduGrid
[14]. We have represented the GLUE Schema as shown in Figure 4, inside the service
registry. A number of specifications for service registries such as UDDI [15], ebXml
[16] are available and their implementations are being used for web/grid service dis-
covery. For our middleware we chose the Universal Description, Discovery and Inte-
gration (UDDI) registry.

A web/grid service is represented inside the UDDI registry as a Business Service.
A service runs within a compute resource. These compute resources are mapped as
Business Entity inside the UDDI registry in a similar way as if they own the service.

292 S. Wasnik et al.

Fig. 4. GLUE Schema

As described in section 2, a site which consists of compute and storage resource is
considered as domain which is represented as a business entity. This site business
entity can have one or more compute resources and storage resources. The relation-
ship between the machine business entity and the service container business entity is
represented as a parent-child relation by using publisher assertions.

3.2 Architecture

An analysis of the individual and collective state of the compute resources can deter-
mine the performance of a Grid and enable (self) management activities to respond in
an efficient and directed manner; for example, if the Grid is performing poorly then
the Resource Manager should identify the compute resources which are contributing
to the poor performance and enable the activation of a reactive procedure. The
Resource Manager is named as Open Grid Manager (OGM). To achieve the above
objective, the OGM for each domain is composed number of components, namely

1) GridManagerAgents (GMA)
2) GridManagerServer (GMS)
3) Web based User Interface (GMUI)
4) UDDI Registry

 Self Managing Middleware for Dynamic Grids 293

Fig. 5. Architecture of Open Grid Manager (OGM)

The GridManagerServer consists of two services – a Collector Service and a Query
Service. The GridManagerAgents are responsible for deducing a machine’s state and
reporting this to a Collector Service. The Collector Service collects state data from
nodes in a distributed environment and forwards this to the UDDI registry.

Each Managed Node registers itself by sending core information to the Collector
Service with the help of installed GridManagerAgent. The process of registration is
carried out by following steps as shown in the Interaction diagram Figure 6.

1) GridManagerAgent sends the core information to the Collector Service.
2) Collector Service of the GridManagerServer, upon receiving the core information

address, makes a create Business Entity call to the UDDI registry.
3) UDDI registry creates a Business Entity and sends back the business key to the

Collector Service.
4) Collector Service sends the Business Key back to the GridManagerAgent.

The GridManagerAgent uses the same Business key to continuously update the Busi-
ness Entity with dynamic information and Provider information. The process of up-
date follows the same steps. The frequency of update is configured via the GridMan-
agerAgent’s configuration file.

Apart from the resource information, a collector service also stores information
about deployments and un-deployments sent by the Software Manager which is con-
sidered as static data, as it doesn’t change frequently. Whenever a deployment request
is made to the Software Manager, the manager sends the information about the de-
ployment request to the Collector Service. Upon receiving the deployment request
and the IP address of the machine on which it is to be deployed, the Collector Service
creates a business entity with the resource name, which is a child of the Business
Entity representing the machine on which it is deployed.

294 S. Wasnik et al.

Fig. 6. Interaction between the different components of OGM

For example, while deploying packages such as Grid-FTP, the Software Manager
sends information such as the port on which the deployed packages will be running, a
username and their associated credentials. When the Collector Service receives this
information, it is stored inside the UDDI registry as a Business Entity. These Business
Entities have descriptions of transport packages and are children of the Machine En-
tity on which they are installed.

The Query Service is responsible for answering the queries sent by the software
manager. The Software Manager can send queries:

1) To check which machines satisfy certain hardware requirements.
2) To ascertain what packages are already deployed on a given machine. This can

help the software manager to discover which machines satisfy the software de-
pendency requirements of a given package to be installed.

To make the domain fault tolerant, the domain operator can keep a backup of their
domain registries using database mirroring. In case of a failure of the Resource Man-
ager in a particular domain, a Collector Service and a Query Service is installed and
configured to use the stored backup data. Thus the domain manager can roll back to
its state just before the failure.

3.3 Federation of Registry

In large distributed grid environments, a single registry can degrade the performance
of the whole system as number of clients becomes too large. Also, it becomes a single
point of failure, as the whole system depends on the single registry. To make the sys-
tem more scalable, multiple registries should be utilized.

The latest UDDI version 3 [17] specifications promotes a replication model of data
for multiple registries to enable a single view of multiple registries; such a replication
model is not suited to the grid environment.

It is preferable that each domain in the federation would have complete autonomy
of the data related to the domain. Each domain operator should be able to configure
what data to share and with whom it is to be shared. Thus replication between regis-
tries owned by multiple independent operators is more complex but more relevant in a

GMA GMS Registry

Core

Dynamic

Providers

GMUI

1 2

3 4

 Self Managing Middleware for Dynamic Grids 295

Grid environment which is targeted at cooperating yet independent stake holders.
Such a setup requires communication between individual registries to synchronise
registration data.

Replication adds communication traffic between the registries for keeping registra-
tion data in sync. There is a trade-off between the amount of traffic and the timeliness
of the replicated data. If changes to the registration data are propagated to all regis-
tries immediately, all registries will have a more or less consistent and current view of
the service setup, resulting in a large amount of traffic between the registries. If the
registration updates are propagated less frequently and in batches the traffic size de-
creases (as communication set-up costs are averaged over all changes), but registries
will be out of sync for some time. Depending on the application domain, inconsisten-
cies may or may not be tolerable.

Although replication enables scalability, the load is not distributed automatically.
Registration is performed at the domain registry but queries can arrive at any of the
participating registries. Which registry is to be used is decided by the Query Peer.
Load distribution is taken care by the cluster of Query Peers, each of which maintains
a list of possible registries. After initial setup, the list could be maintained by auto-
matically updating it with the information from the registry to use.

Each replicated registry keeps a copy of the complete registration data of the whole
system. The advantage is that every registry can answer a query by just looking at its
database. However a disadvantage of this approach is the large amount of data which
may be kept at every site. In our approach, each registry keeps only a subset of the
registration data and can only answer query relating to that subset. The data distribu-
tion is based on locality.

As the registration data is distributed across registries, multiple registries are in-
volved in answering a query. Orchestrating the devolved registries is performed by
the Query Peer which knows all the registries that have answers to their query.

4 Use Case

As part of its core business, a Financial Company analyses Stock Market data from
each of the world’s main Stock Exchanges. This depends heavily on process and data
intensive computations for Risk Management purposes. Feeds are received from each
of the exchanges which are fed into a high performance financial database. A number
of databases are also maintained containing historical financial data. A number of
financial calculations are performed, such as Implied Volatility calculations, on each
portfolio managed by the company using the data held in each of the databases.

This system works well for the company on a day-to-day basis. However, to allow
them to react more quickly to changes in stock prices as a result of unforeseen major
world events, the company would like the option to bring in additional computation
power and resources as required. This would enable the Financial Company to react
more quickly than their competitors, performing all the additional calculations re-
quired to obtain results in near real time, thus gaining a market advantage for their
clients.

A system such as the one provided by the Self Managing Middleware described in
this paper would clearly benefit this company when they need to react quickly to

296 S. Wasnik et al.

unpredictable events. Once the increased activity within the stock exchanges has been
identified, the company could increase their computational power by quickly deploy-
ing additional services to a 3rd party hardware provider and running some calculations
from there. This would require transport services to be deployed both at the com-
pany’s home location and the 3rd party hardware provider’s location so that the high
performance financial databases could be deployed onto the additional machines.
Three databases are required to perform the calculations. One database is required for
capturing the data from the live feeds, one database for the intra-day data and another
database where historical data is stored. Services which undertake the calculations
could then be deployed and initiated, the various calculations performed and the re-
sults transported back to the Financial Company for dissemination or use by another
application. When the additional capacity was no longer required, the services and
databases deployed to the 3rd party hardware provider would be un-deployed.

The Financial Company would be able to impose certain conditions on where their
data and services were deployed to. Certain financial regulations imposed upon the
Financial Company dictate that the data cannot leave the United Kingdom. The Fi-
nancial Company may also impose certain restrictions such as ‘Don’t deploy services
or data onto machines owned or managed by one of our competitors’. Information
such as this can be included in the configuration file sent with the bundle to be de-
ployed. The Self Managing Middleware enables the Company to have immediate
access to additional computational power when required without having to maintain
this hardware on a day to day basis.

Secure on-demand provisioning of Risk Management capabilities represents a real
and valuable next step for the financial services industry to increase competitiveness
and reduce costs. It is also relevant to service provision and consultancy companies
currently competing in the international market.

5 Conclusion

In this paper we have discussed the use of Self Managing Software and a Resource
Manager to enable the management and control of large-scale grid infrastructures. In
the Belfast e-Science centre we have deployed this software in the field for approxi-
mately a year and it is an integral part of the testing development of grid of our large-
scale commercial projects.

References

1. Foster, I., Gieraltowski, J., Gose, S., et al, : The Grid2003 Production Grid: Principles and
Practice. Proc. 13th IEEE Intl. Symposium on High Performance Distributed Computing
(2004) 236–245.

2. http://www.coregrid.net
3. Foster, I., Kesselman, C., Nick, J., Tuecke, S., : The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration. Open Grid Service Infra-
structure WG, Global Grid Forum (2002).

4. Qi, Li., Foster, I., Gawor, J.,: HAND: Highly Available Dynamic Deployment Infrastruc-
ture for Globus Toolkit 4. Submitted for publication (2006)

 Self Managing Middleware for Dynamic Grids 297

5. Watson, P., Fowler, C., Kubicek, C., et al, : Dynamically Deploying Web Services on a
Grid using Dynasoar. Proc. 13th IEEE Intl. Symposium on Object And Component-
Oriented Real-Time Distributed Computing. ISORC 2006, April (2006)

6. Kephert, J., Chess., D. : The Vision of Autonomic Computing. Computer. Vol. 36 Issue 1.
(2003)

7. Sahai, A., Durante, A., Machiraju, V. : Towards automated SLA management for web ser-
vices. Research Report HPL-2001-310(R.1) Hewlett-Packard laboratories Palo Alto.
(2002)

8. Joseph, J., Ernest, M., Fellenstein, C.: Evolution of Grid Computing architecture and Grid
adoption models. IBM Syst. J. 43, 624-625 (2004)

9. Andreozzi, S., Burke S., et al: GLUE Schema Specification version 1.2 (2005)
10. Enabling Grids for E-sciencE Project http://www.eu-egee.org/
11. LHC Computing Grid Project http://lcg.web.cern.ch/LCG/
12. Open Science Grid http://www.opensciencegrid.org/
13. http://www.globus.org/
14. http://www.nordugrid.org/
15. Bellwood, T., UDDI Version 2.04 API Specification
16. http://www.ebxml.org
17. Bellwood, T., UDDI Version 3.0 Spec Technical Committee Specification July (2002)

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 298 – 309, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Adaptive Workflow Scheduling Strategy
in Service-Based Grids*

JongHyuk Lee1, SungHo Chin1, HwaMin Lee2, TaeMyoung Yoon1,
KwangSik Chung3, and HeonChang Yu1,**

1 Dept. of Computer Science Education, Korea University
{spurt, wingtop, tmyoon, yuhc}@comedu.korea.ac.kr

2 The Korean Intellectual Property Office
hwamin@kipo.go.kr

3 Dept. of Computer Science, Korea National Open University
kchung0825@knou.ac.kr

Abstract. During the past several years, the grid application executed same jobs
on one or more hosts in parallel, but the recent grid application is requested to
execute different jobs linearly. That is, the grid application takes the form of
workflow application. In general, efficient scheduling of workflow applications
is based on heuristic scheduling method. The heuristic considering relation
between hosts would improve execution time in workflow applications. But
because of the heterogeneity and dynamic nature of grid resources, it is hard to
predict the performance of grid application. In addition, it is necessary to deal
with user’s QoS as like performance guarantee. In this paper, we propose a
service model for predicting performance and an adaptive workflow scheduling
strategy, which uses maximum flow algorithms for the relation of services and
user’s QoS. Experimental results show that the performance of our proposed
scheduling strategy is better than common-used greedy strategies.

Keywords: adaptive grid scheduling, workflow, maximum flow.

1 Introduction

In the mid 1990s, Grid computing has emerged as an important new field,
distinguished from conventional distributed computing by its focus on large-scale
resource sharing, innovative applications, and high-performance orientation [1]. Grid
computing system [2] consists of large sets of diverse, geographically distributed
resources that are grouped into virtual computers for executing specific applications.
In common Grid computing, resource components could be processes, processors
within a computer, network interfaces, network connections, entire sites, database, file
system and specific computers. Today, Grid computing offers the strongest low cost
and high throughput solutions [1, 2] and is spotlighted as the key technology of the
next generation Internet. Grid computing is used in fields as diverse as astronomy,
biology, drug discovery, engineering, weather forecasting, and high-energy physics.

* This work was supported by the Korea Research Foundation Grant funded by the Korean

Government(MOEHRD) (KRF-2006-D00173).
** Corresponding author.

 Adaptive Workflow Scheduling Strategy in Service-Based Grids 299

Recently, the Grid and Web Service are converging as WSRF (Web Service-Resource
Framework)[3] that defines a system for creating stateful resources between Web
services in terms of an implied resource pattern. The current methodology in Grid
computing is service oriented architecture.

In service-based Grids, Grid resources are virtualized as services(e.g., database,
data transfer). So the Grid not only provides computational resource and data
resource, but also supports logic application that cooperates with services integration
with the composition of the Grid service. Instead of application executing a single job,
Grid application consists of a collection of several dependency services. Therefore,
many grid applications belong to the category of workflow application. Most of
science and business grid applications take the form of linear workflow structure.
That is, the science grid application is a parameter sweep application processed using
same code for different data, and the business grid application is a transaction
application that queries at databases, processes data, and stores in database. Because
of processing data in parallel with extensive parameter bounds, workflow application
is of benefit to performance. In service-based Grids, it is necessary to consider a
relation of services for execution performance because a linear workflow application
executed parallel jobs via several services on one or more hosts.

It is easy for workflow structure not only to compose services but also to visualize,
verify, schedule, execute, and monitor services. Many kinds of workflow
management systems are developed for grid workflow applications. There are two
steps for producing workflow. The first step is a service composition to use workflow
language and the second step is a scheduling to map sub-task to service. In general, an
efficient scheduling of workflow applications is based on heuristic scheduling
method. The heuristic considering relation between hosts would improve execution
time in workflow applications. But due to the heterogeneity and dynamic nature of
grid resources, it is hard to predict the performance of grid application. In addition, it
is necessary to deal with user’s QoS like performance guarantee.

In this paper, we propose service model for predicting performance and adaptive
workflow scheduling strategy, which uses maximum flow algorithms for considering
the relation of services and user’s QoS.

The rest of the paper is as follows. In section 2, we state a scheduling problem and
propose a service model for predicting performance. Section 3 describes the novel
strategy to execute the workflows adaptively. In section 4, we present an experimental
evaluation of our scheduling by comparing it with existing scheduling strategies.
Section 5 presents related works. In section 6, we conclude the paper and discuss
some future works.

2 Problem Statement

Workflow scheduling system is to translate application task graph into service graph
in computing environment.

2.1 Task Graph

A task graph is an abstract workflow that represents an application as a general model
of directed acyclic graph. It is represented as follows;

300 J. Lee et al.

GT = (VT, ET)
VT : the set of tasks
ET : the set of edges between tasks that represent a partial order among them

The fact that an edge ei,j is a partial order between task vi and vj means that a task vj
is executed after completing a task vi. In case a task vi and vj are a same parent, two
task can be executed parallelly. Representing GT as matrix M of size vⅹv, di,i is a
computation cost of vi, and di,j is a communication cost between vi and vj. In this
paper, we assume that a task graph implies a start task and a end task.

2.2 Service Graph

A service graph is an directed weighted graph of services in grid computing
environments. It is represented as follows.

GS = (VS, ES)
VS : {s1, s2, …, sn} the set of services that can be executed at available node
ES : the set of edges between services

A service graph is a complete connected graph. VS denotes a computation
performance and ES denotes a communication performance between services. A k-th
service node that executes service sj is sj,k. The computation cost of task vi at service
si,k is wi,j,k. If service si,k can’t execute task vi, then wi,j,k = ∞. The communication cost
between service node sm,k for task vi and sn,k for vj is ci,m,k|j,n,k.

2.3 Performance Criteria

Application completion time is consist of computation time and communication time.
We assume that grid application executes task t1 and t2 sequentially. A task graph is
composed with two nodes and one edge between them. That is, GT = ({t1, t2}, ET). For
mapping this task graph to service graph, we have to search service s1 and s2 that can
process task t1 and t2. That is GS = ({s1, s2}, ES). If service s1 completes before
communicating with s2, completion time of this application is defined as follows.

completion time = communication time(A, s1) + computation time(s1) +
communication time(s1, s2) + computation time(s2) + communication time(s2,
A) + computation time(A)

(1)

Grid application A invokes service s1 and the result of service s1 is sent to service
s2. Service s2 processes a task and the result of service s2 is sent to grid application A.
In practice, completion time is determined according to a node that a service is
executed in. Therefore, completion time of a node about some service should be
predicted and be applied for mapping task graph to service graph.

For predicting completion time of grid service, it is necessary to select optimized
service according to performance model described the characteristics of service and to
compose workflow. In addition, we need to consider not only scheduling using
information of physical resource, but also supporting user’s QoS. Hence, in this
paper, the performance model is considered as follows.

 Adaptive Workflow Scheduling Strategy in Service-Based Grids 301

 service static model : considering a static information of resources like CPU,
memory, disk space, and network bandwidth.

 service dynamic model : Owing to influencing service performance by
resource capability directly, considering a dynamic information of resources
like available CPU, available memory, available disk space, available network
bandwidth, and network latency. We also consider the predicted resource
status using service patterns like service reservation, frequency of service use,
and service throughput.

Since Grid is free of participation and withdrawal of a node, it is necessary that
grid service scheduler predicts the performance of a service and applies it
dynamically. In this paper, we use a statistical method to predict the performance of a
service. Regression is a statistical method that supports relationships between
variables and is an appropriate method for predicting an effect about a cause. In
regression, the dependent variable(y) that is an effect and the independent

variable(x) that is a cause denote as x� y . That is, the relation between x and y is

represented as follows;

y = 0β + x1β + ε (2)

where 0β is a constant; 1β is a coefficient of regression; ε is an error rate.

After regression analysis, we can determine a relationship between a dependent
variable and an independent variable. If we applied this regression technique with
performance as a dependent variable and each resource status as an independent
variable, we can predict the performance of a service that participates newly in Grids
using existing regression coefficient. In our work, we use a multiple linear regression
that allows the modeling of multiple independent variables, which are information of
resources defined by service model in Grids.

We consider static and dynamic physical elements ix such as CPU, memory, disk

space, network bandwidth, service reservation, frequency of service use in a service
model. The service throughput (sy), the equation applied these elements to multiple

regression, is as follows.

sy = 0β + ∑
=

n

i
ii x

1

β + ε (3)

where 0β is a constant; iβ is a coefficient of regression; n is a count of elements; ε

is an error rate.
Table 1 is an example data for performance model using multiple linear regression

that is executed in same service. The Independent variables are CPU, CPU available,
memory available, disk available, and network bandwidth. The dependent variable is
throughput. Table 2 is a model summary that multiple linear regression is done. As
shown in Table 2, this model can be explained well because coefficient of
determination(R Square) is 0.971. That is, the strength of the linear association
between independent variables and dependent variable of this model is high. As
shown in Table 3, F-test is 93.634 and significant probability is 0.000. Therefore, the

302 J. Lee et al.

one of regression coefficients in the population is not 0 at least. Table 4 is regression
coefficients about each independent variable. We can predict a throughput of new
entrance node using these coefficients.

Table 1. Example data for performance model

CPU
CPU

available
Memory
available

Disk
available

Network
bandwidth

Throughput

1600 .80 234 3320 25 40
1800 .40 346 4592 35 28
2000 .60 78 9295 29 33
2400 .40 321 2934 90 34
1600 .50 398 2039 34 45

… … … … … …
3000 .30 455 3945 10 36

Table 2. Model summary

R R Square
Adjusted R

Square
Std. Error of
the Estimate

.985(a) .971 .961 3.678

Table 3. ANOVA(Analysis Of Variance between groups)

Sum of
Squares

df Mean Square F Sig.

Regression 6333.602 5 1266.720 93.634 .000
Residual 189.398 14 13.528
Total 6523.000 19

Table 4. Coefficients

Unstandardized
Coefficients

Standardized
Coefficients

 B

Std.
Error

Beta
t

Sig.

(Constant) -41.266 5.793 -7.124 .000
CPU .016 .002 .510 8.863 .000
CPU_available 64.981 5.261 .724 12.350 .000
memory_available .026 .004 .339 5.826 .000
disk_available .000 .000 .037 .704 .493
network_bandwidth .015 .037 .022 .417 .683

 Adaptive Workflow Scheduling Strategy in Service-Based Grids 303

3 Adaptive Scheduling Using Dynamic Maximum Flow Algorithm

It is important to select a computation node and a data node for minimizing overall
job completion time. It is necessary to minimize completion time for processing data
and communication time between computation node and data node. Moreover, it is
essential to optimize use of resource through scheduling algorithm. Our objective is to
minimize overall job completion time and to optimize use of resource. For our
objective, we present an adaptive scheduling using dynamic maximum flow algorithm
that finds a flow of maximum value in flow network G with source s and sink t.

The adaptive workflow scheduling algorithm presented in Algorithm 1 works as
follows. The input of WorkflowScheduling in Algorithms 1 is task graph GT and
service level agreement SLA which involve user’s QoS. GT is mapped to service
graph GS by SLA and resource performance criteria. Then Algorithm 2 is invoked
with GS. MaximumFlow in Algorithm 2 is based on Ford-Fulkerson method[9] which
finds some augmenting path p and increases the flow f on each edge of p by the
residual capacity cf(p). Algorithm 3 based on breadth-first search is to find
augmenting path in residual network of GS. FindAugmentingPath in Algorithm 3
assumes that the input graph GS is represented by adjacency lists in descending order
by sufferage heuristic value. Migration in Algorithm 1 is a function that migrates the
tasks through comparison of flow before rescheduling with flow after rescheduling if
a performance guarantee is violated. After all tasks executed, scheduler updates
service’s makespan(e.g. throughput) for performance criteria.

WorkflowScheduling(GT, SLA)
Gs ← Find available services satisfied SLA about GT

 MaximumFlow(GS)
 while all tasks not executed
 do Fetch task
 if a performance guarantee is violated
 then do update Vs[Gs]
 MaximumFlow(Gs) // rescheduling
 Migration(Gs, Gsprev)
 update service’s makespan

Algorithm 1. Workflow Scheduling

MaximumFlow(GS) // find maximum flow about workflow GS
 for each edge (si, sj) � ES[GS]

 do f[si, sj] ← 0
 f[sj, si] ← 0

while (there exists a path p from start service to end
service in the residual network GS)

 // min{cf(si, sj) : (si, sj) is in p}
 do cf(p) ← FindAugmentingPath(GS, source, sink)
 for each edge (si, sj) in p
 do f[si, sj] ← f[si, sj] + cf(p)
 f[sj, si] ← -f[si, sj]

Algorithm 2. Maximum Flow

304 J. Lee et al.

FindAugmentingPath(GS, source, sink)
for each vertex u � V[GS] – {source}

 do color[u] ← WHITE
color[source] ← GRAY
Enqueue(Q, source)
cf[source] ← -1
while Q ≠ 0

 u = Dequeue(Q)
// Adj[u] is sorted by sufferage value

 for each v � Adj[u]
do if (color[v] == WHITE &&

capacity[u][v] - flow[u][v] > 0)
 then color[v] ← GRAY
 Enqueue(Q, v)
 cf[v] = u
 color[u] ← BLACK
return cf;

Algorithm 3. Find Augmenting Path

For example, assume that Grid application A is composed of task TB, TC, and TD.
The number of service nodes for tasks TB, TC, and TD is 2, 3, and 1 respectively. The
linear workflow and the workflow mapped service are represented in Fig. 1. The edge
capacity of workflow is calculated by performance criteria.

Fig. 1. Linear workflow and workflow mapped service

Fig. 2. Result through performance modeling and maximum flow

 Adaptive Workflow Scheduling Strategy in Service-Based Grids 305

Fig. 2(a) is a result through performance modeling and MaximumFlow in
Algorithm 2. The edge of workflow denotes ‘flow/capacity’. The capacity of 70
between As and SB,1 means that SB,1 can process requested job of As at the throughput
rate of 70. If a performance guarantee is violated, the workflow scheduler reschedules
after updating current capacity of workflow. Fig. 2(b) is the result of rescheduling. As
shown in Table 5, the maximum flow increases. If the maximum flow decreases, it
means that a new service node should be added.

Table 5. Service order and comparison of flow before rescheduling and flow after rescheduling

Service order Flow before rescheduling Flow after rescheduling
ASB1C2Dt 10 10
ASB1C1Dt 20 20
ASB1C3Dt 15 15
ASB2C1Dt 14 14
ASB2C2Dt 10 10
ASB2C3Dt 6 15

4 Experiment

Although experiments and performance evaluations need to be performed in a
practical large-scale grid platform, it is difficult to build a large-scale grid platform
and to experiment repeatedly. Therefore, we simulate our scheduling algorithm using
SimGrid toolkit and experiment performance of real grid application implemented a
service based virtual screening system in practical small-scale grid environments.

Simulation scenario is classified into two categories: adding service and adding
task. In this paper, we compare our scheduling with greedy heuristic scheduling that
allocates more tasks to node with better performance. Performance prediction
scheduling is greedy heuristic scheduling with performance model described in this
paper. Experiment workflow is a generic science workflow that searches, downloads,
processes data, and stores result in Fig. 1.

4.1 Performance Evaluation According to the Number of Nodes for Services

In Grid workflow, the number of nodes for service A requesting workflow is 1, the
number of nodes for service D collecting results is 1, the number of nodes for service
B is 3, and the number of nodes for service C is 5, 10, 15 in each experiments. The
number of tasks is 5,000. Fig. 3 shows the result of evaluation. As shown in Fig. 3,
our scheduling is better than other algorithms by 15% ~ 20%. The difference of
execution time between case that the number of nodes for service C is 10 and case
that the number of nodes for service C is 15 is small. It is because the collection of
service C could process mostly data from the collection of service B in the former.
Therefore, although the number of nodes for service increases in some collection of
service, the efficiency of performance doesn’t increase. Through our scheduling, we
predict a sudden change of efficiency in that the number of nodes for service C is 10.

306 J. Lee et al.

0

50

100

150

200

250

300

5 10 15

Number of nodes for service C

E
x
e
c
u
ti
o
n
 T
im
e
(
 x
 1
,
0
0
0
)

greedy heruistic

performance prediction

adaptive

Fig. 3. Result of performance evaluation according to the number of nodes for service C

4.2 Performance Evaluation According to the Number of Tasks

In Grid workflow, the number of nodes for service A requesting workflow is 1, the
number of nodes for service D collecting results is 1, the number of nodes for service
B is 3, and the number of nodes for service C is 10. The number of tasks is from
1,000 to 11,000 at intervals of 2,000. Fig. 4 shows the result of evaluation. As shown
in Fig. 4, our scheduling is better than other algorithms by 10% ~ 15%.

0

100

200

300

400

500

1 3 5 7 9 11

Number of tasks(x 1,000)

E
x
e
c
u
ti
o
n
 T
im
e
(
x
 1
,
0
0
0
) greedy heruistic

performance prediction
adaptive

Fig. 4. Result of performance evaluation according to the count of tasks

4.3 Performance Evaluation in Real Grid Application

We implemented a service-based virtual screening system which is one of large-scale
scientific applications that require large computing power and data storage capability.
A virtual screening is the process of reducing an unmanageable number of
compounds to a limited number of compounds for the target of interest by means of
computational techniques such as docking [10, 11]. Thus this application suits with
Grid computing technology which supports a large data intensive operation.

 Adaptive Workflow Scheduling Strategy in Service-Based Grids 307

We experimented our virtual screening system in a testbed that consists of 15
computation nodes and 5 data nodes. We performed docking jobs with 30,000 ligand
molecules on a target receptor. Fig. 5 shows the comparison of execution times as the
number of docking jobs increases. We compared three different approaches to execute
docking jobs. The first approach is to execute docking jobs on only single node which
has the best computing performance. The second approach is to execute docking jobs
on selected 5 computation nodes. We selected 5 computation nodes according to high
computing performance. The third approach is to execute docking jobs using our Grid
service-based virtual screening system applied our scheduling. Fig. 5 shows that the
performance of our virtual screening system is better than other approaches. When
30,000 docking jobs were executed, the execution time of first approach was 587,541
seconds, the execution time of second approach was 221,516 seconds, and third
approach was 162,964 seconds.

Fig. 5. Comparison of execution time for three cases

5 Related Works

Grid Scheduling is a superscheduling[4] or metascheduling that is the process of
scheduling resource where that decision involves using multiple administrative
domains. Scheduling is classified into a static scheduling and a dynamic scheduling
according to a point of scheduling time. The static scheduling resolves the order of all
jobs before executing jobs. The dynamic scheduling can modify the order of jobs in
runtime.

In [5], Muthucumaru et al gives an overview of two types of mapping heuristics:
on-line and batch mode heuristic. These heuristics are dynamic mapping heuristics for
a class of independent tasks in heterogeneous distributed computing. In online mode,
mapper allocates tasks to resources as soon as it arrives at the mapper. In batch mode,
mapper collects tasks until calling mapping events and allocates tasks to resources
after calling mapping events. In particular, sufferage heuristic is newly proposed,

308 J. Lee et al.

which is different with min-min, max-min heuristic[6]. Sufferage value is defined as
difference between minimum earliest completion time and second earliest completion
time. In [7], Casanova et al extends sufferage heuristic as Xsufferage. In XSufferage,
the sufferage vaule is computed not with minimum earliest completion time, but with
cluster-level minimum earliest completion time, which is important in Grid
environment. In [8], Eduardo et al proposed the GridWay framework which executes
and schedules efficiently parameter sweep application in Grid environment. This
framework applied adaptive scheduling to reflect the dynamic Grid characteristic,
adaptive execution to migrate running jobs to better resource, and reuse of common
file to reduce file transfer overhead. [5] and [7] are a static scheduling and [8] is a
dynamic scheduling. But [5], [7], and [8] can’t support the form of workflow. In this
paper, we support the dynamic scheduling of dependent task using sufferage value.

6 Conclusion

In this paper, we proposed adaptive scheduling strategy for parallel execution of a
linear workflow considering dynamic resource in service-based Grids. We presented a
performance model using regression technique and an adaptive scheduling strategy
using maximum flow algorithm. Our experiments showed that our scheduling is better
than other algorithms.

In the future, we plan to investigate our scheduling strategy at commercial point of
view as shown in performance evaluation according to the number of nodes for
services. We also plan to work on applying not only linear workflow but also complex
workflow.

References

1. I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid : Enabling Scalable
Virtual Organizations, International Supercomputer Applications, Vol. 15, No. 3 (2001)

2. Ian Foster, and Carl Kesselman, The Grid : Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers (1998)

3. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D. Snelling, S.
Tuecke, From Open Grid Services Infrastructure to WS-Resource Framework: Refactoring
& Evolution,

4. http://www.ibm.com/developerworks/library/ws-resource/ogsi_to_wsrf_1.0.pdf, (2004)
5. J.M. Schopf, Ten Actions when SuperScheduling, Global Grid Forum Document GFD.04,

July (2001)
6. Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra Hensgen, and

Richard F. Freund, Dynamic Matching and Scheduling of a Class of Independent Tasks
onto Heterogeneous Computing Systems, Proceedings of the 8th Workshop on
Heterogeneous Computing Systems (HCW '99), San Juan, Puerto Rico, Apr. (1999)

7. O. Ibarra and C. Kim, Heuristic Algorithms for Scheduling Independent Tasks on
Nonidentical Processors. Journal of the ACM, 24(2):280-289, (1977)

8. Casanova, H., Legrand, A., Zagorodnov, D., and Berman, F., Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments, Proceedings of the 9th
Heterogeneous Computing Workshop (HCW’00), pp. 349-363, (2000)

 Adaptive Workflow Scheduling Strategy in Service-Based Grids 309

9. Eduardo Heudo, Ruben S. Montero, Ignacio M. Lorente, Experiences on Adaptive Grid
Scheduling of Parameter Sweep Applications, Proceedings of the 12th Euromicro
Conference on Parallel Distributed and Network-Based Processing(EUROMICRO-
PDP'04), (2004)

10. Lestor R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton University Press,
(1962)

11. Jordi Mestres and Ronald Knegtel, Similarity versus docking in 3D virtual screening,
Journal of Perspectives in Drug Discovery and Design, Vol. 20, (2000)

12. Shoichet, Bodian, and Kuntz, Molecular docking using shape descriptors, Journal of
Computational Chemistry, Vol. 13, No. 3, pp. 380-397, (1992)

Scalable Thread Visualization for Debugging

Data Races in OpenMP Programs

Young-Joo Kim, Jae-Seon Lim, and Yong-Kee Jun�

Gyeongsang National University
Jinju, 660-701 South Korea

{yjkim,dember99,jun}@gnu.ac.kr

Abstract. It is important to debug unintended data races in OpenMP
programs efficiently, because such programs are often complex and long-
running. Previous tools for detecting the races does not provide any
effective facility for understanding the complexity of threads involved in
the reported races. This paper presents a thread visualization tool to
present a partial order of threads executed in the traced programs with
a scalable graph of abstract threads upon a three-dimensional cone. The
scalable thread visualization is proved to be effective in debugging races
using a set of synthetic programs.

Keywords: OpenMP programs, data race debugging, scalable thread
visualization, three-dimensional visualization.

1 Introduction

OpenMP program model [14] is an industry standard of parallel programming
model which supports Fortran and C language. However, it is still more diffi-
cult to debug OpenMP programs than sequential programs, because unexpected
non-deterministic executions may be incurred from unintended data races [12]
and such programs are often complex and long-running with a huge number of
threads and accesses to shared variables. Thus these problems make users still
difficult to debug races efficiently.

Thread Checker [4,5,16] of Intel Corporation is a unique tool to detect thread-
ing errors including data races in the relaxed sequential program which is a kind
of programs parallelized only with OpenMP directives. During a sequentially
monitored execution, Thread Checker projects the parallel memory traces of
logical threads derived from the annotated sequential memory trace, and de-
tects threading errors including races while every instruction in the program is
executed. But this tool does not provide any effective facility for understanding
the complexity of threads involved in the reported races.

This paper presents a thread visualization tool to represent the partial order
of threads in the traced OpenMP programs with a scalable graph of abstract
� Corresponding author : In Gyeongsang National University, he is also involved in the

Research Institute of Computer and Information Communication (RICIC).

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 310–321, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Scalable Thread Visualization for Debugging Data Races 311

threads upon a three-dimensional cone. We consider OpenMP programs which
may include critical sections and nested parallelism. The visualization on three-
dimensional cone makes it overcome the limitation of visual space on one plane
and use an execution graph [1,11] to represent effectively a partial order over
threads. This tool solves the visual complexity using the abstract visualization
which replaces a set of events with an abstract symbol and provides the thread
information which is traced by RaceStand [9], an on-the-fly race detection tool.
The abstraction concept reduces the space complexity of thread visualization and
helps programmers to understand the complex structure of threads effectively.
We experimented this visualization tool on a Windows-XP computer based on
Pentium-4 using Visual C++ and OpenGL libraries.

Section 2 illustrates data races that occur in OpenMP programs, indicates the
problems of the previous tool for debugging races. Section 3 presents the design
concepts of our scalable thread-visualization tool. Section 4 shows the screen-
shots of the implemented tool using a set of synthetic programs to demonstrate
that scalable thread visualization is effective to debugging races efficiently. The
last section includes conclusions and future work.

2 Background

This section illustrates data races which occur in OpenMP programs and intro-
duces the problem of the previous tools, Thread Checker and RaceStand, that
detect data races.

2.1 OpenMP Program

OpenMP [14] is an industry standard model of shared memory with a set of direc-
tives and libraries that extend standard C/C++ and Fortran 77/90. OpenMP
can easily convert sequential programs into parallel programs using OpenMP
directives, and can provide scalable parallel programs using the orphan direc-
tive to make coarse-grain parallelism. The OpenMP directives include paral-
lelism directives and synchronization directives. The parallelism directives in-
clude “#pragma omp parallel for” for parallel loops and “#pragma omp section”
for parallel sections. We consider the parallel loop as an example of parallelism.
If there is no other loop contained in a loop body, the loop is called an innermost
loop. Otherwise, it is called an outer loop. In a nested loop, an individual loop can
be enclosed by many outer loops. The nesting level of an individual loop is equal
to one plus the number of the enclosing outer loops. The nesting depth of a loop
is the maximum nesting level of loops in the loop. The synchronization directives
include “#pragma omp atomic,” “#pragma omp barrier,” and “#pragma omp
critical” that control an execution order among threads. OpenMP also provides
library functions and environment variables that can control run-time execution
of programs. For example, two logical threads are created by “#pragma omp
parellel” through line 11 and line 13 of Figure 1. Due to “#pragma omp for
private(i, y, z)” of line 12, the created thread takes the specified job in the loop

312 Y.-J. Kim, J.-S. Lim, and Y.-K. Jun

10: · · ·
11: #pragma omp parallel
12: #pragma omp for private (i,y,z)
13: for (i=1 ; i < 3 ; i++) {
14: if (i==1) { y = x + 2;
15: #pragma omp critical(L1)
16: z = x + 2; x = y + z;
17: } else {
18: #pragma omp critical(L1)
19: x = 100; y = x + 1;
20: }}
21: printf("x value = %d ", x);
22: · · ·

r1

r2

w3

w4

r5

Fig. 1. An OpenMP Parallel Program and its POEG

body from line 14 to the brace of line 20, in which, the index variable i is a pri-
vate variable used in each thread, and the integer variable x is a shared variable
shared by the two threads.

Data races may occur in the program of Figure 1 during its program exe-
cutions. First, we assume that the variable x has zero as an initial value. The
statements of line 14, 15, and 16 are executed by the first thread of the two
created threads and the statement of line 18 and 19 are executed by the sec-
ond thread. Unintended races do not exist toward the variable x between line
16 and line 19, because these two blocks are protected as critical sections by
“#pragma omp critical(L1).” However, regarding the read access in the state-
ment of line 14 and the write access to the shared variable x in the statement
of line 19, the random speed of two threads may make the value of variable x
in the statement of line 21 become 100 or 104 nondeterministically. It is be-
cause these two accesses are involved in a race which include at least one write
access without proper inter-thread coordination for the accesses to the shared
variable x.

The right of Figure 1 shows an execution instance of the program in Figure 1
by means of a directed acyclic graph called Partial Order Execution Graph
(POEG) [1]. A vertex of POEG means a fork or join operation for parallel
threads, and an arc started from a vertex represents a thread started from the
vertex. The access r and w drawn with small disks upon the arcs represent a
read and a write access which access a same shared variable. A number attached
to each access indicates an observed order, and an arc segment delimited by the
symbols {�, �} means a critical section protected by the lock variable L1. With
POEG, we can easily understand the partial order or happened-before relation-
ship [10] of accesses occurred in an execution instance of programs. POEG of
Figure 1 makes it easy to understand that r1 and w4 are involved in a race,
because it shows that r1 in thread T 1 and w4 in thread T 2 are concurrent with
each other, and r1 is not protected by any lock variable.

Scalable Thread Visualization for Debugging Data Races 313

[11,12]

[12222,11211]

[1,1]

[12,11]

[121,112]

[122,112]

[1222,12]

[122,111]

[1221,1122]

[12221,11212]

[1222,11212]

[1222,1122]

[1222,1121]

T1 T2

T3 T4

T5 T6

T7 T8

Fig. 2. An Example of RaceStand Traces and Labeling Information in POEG

2.2 Race Detection Tools

The projection technique of Thread Checker [4,5,16] for OpenMP programs col-
lects execution information obtained during the compilation of program and
checks data dependency detected during the sequential run-time of program.
This technique is applied only to the relaxed sequential OpenMP programs [16]
which provides only OpenMP directives for parallelism. Thread Checker detects
races as follows. First, when the programs written in OpenMP directives are
compiled by Intel C/C++ Compiler [3], a part of this tool integrated in the
compiler modifies the programs to trace the information related to OpenMP
directives and shared variables into an exclusive database. Second, when the
complied program is executed sequentially, the tool uses the traced information
in the database to check data dependency of accesses to shared variables when-
ever an OpenMP directive is located. Last, the tool reports the accesses as races
if it satisfies an anti, flow, or output data dependency except an input data
dependency.

Unfortunately, Thread Checker has some problems. First, although r1 and
w4 are involved in a race in the POEG of Figure 1, this tool can not report the
race because it ignores access r1 involved in the race. Second, this tool does not
provide any effective information about the dynamic view of the detected races.
This kind of reporting is difficult for users to understand the detected races and
debug effectively OpenMP programs, because it does not provide any facility for
understanding the complexity of threads involved in the reported races.

RaceStand [9] can verify the existence of races in OpenMP programs using
a set of scalable thread-labeling techniques [2,13] and protocol techniques [2,11]
for detecting races. The labeling techniques generate information called label for
logical concurrency among the created threads during a program execution. A
label is a unique identifier of thread, and is used to detect races because any

314 Y.-J. Kim, J.-S. Lim, and Y.-K. Jun

two labels can be compared to identify the logical concurrency between any two
threads. The protocol techniques detect races by comparing the label of the
current access with that of the previous accesses that are saved in a shared-
data structure called access history whenever an access occurs in a thread. An
access history consists of a set of mutually-concurrent accesses occurred in a
program execution. These protocols guarantee to detect at least one race [12] if
any in their corresponding model of programs. Unfortunately, RaceStand does
not provide any effective information about the dynamic view of the reported
races.

3 Scalable Thread Visualization

For a visual environment which can help users to debug races effectively using
the additional information traced by RaceStand, this section presents two func-
tion modules for thread visualization and two abstraction concepts for scalable
visualization.

3.1 Thread Visualization

Our tool visualizes a partial order of threads executed in the traced programs
through a scalable graph of abstract threads upon a three-dimensional cone to
help programmers to debug races intuitively. This tool requires the levels of
nested parallelism and the thread information generated by RaceStand. The
nesting levels can be traced whenever a join operation occurs in an execution.
The thread information includes the thread labels generated whenever a par-
allel or synchronization directive is executed. The table of Figure 2 shows the
information traced in an execution of OpenMP program captured with POEG
in Figure 2. In the figure, the nesting depth is three since the nesting levels of
T 1 and T 2 are one, the nesting levels of T 3, T 4, T 5, and T 6 are two, and the
nesting levels of T 7 and T 8 are three. Each thread label in the right POEG of
Figure 2 is a English-Hebrew (EH) label [13].

Our tool consists of two function modules: The Cone Visualizer and The
Thread Visualizer. The Cone Visualizer parses the trace of nesting levels and
then draws a three-dimensional cone by calculating the nesting depth and the
number of multi-way loops which are defined as executed serially in a thread
at each nesting level. The number of multi-way loops executed in a thread at a
nesting level i is the number of ‘Ji’s generated by the thread, where J means a
join operation and an integer i means a nesting level less than i. The maximum
value of i is the nesting depth. The table of Figure 2 shows a trace of four nesting
levels, by which the nesting depth is three because the maximum level is three.
In the initial thread or T 6, the number of multi-way loops is one, and the thread
T 2 executed two multi-way loops.

The Thread Visualizer parses the thread information and then draws the
threads on the three-dimensional cone. The thread information consists of seven
elements: source line number, event type, EH-label, loop index, nesting level, lock

Scalable Thread Visualization for Debugging Data Races 315

-

-

-

-

- ---

- - - -

-

-

-

-

-

- -

4:14:1

2:12:1

Level1

Level2

Level3 1

1

2

Level1

Level2

Level3 1

1

2

(A) (B)

Fig. 3. The Abstract Visualization

variables, and for-statement information. The source line number identifies the
source code location at which the threads occurred. The event type expresses a
type of operations occurred in the execution: I-type for the initial thread, F -type
for a fork operation, J-type for a join operation, C-type for a lock operation,
and U -type for an unlock operation. An EH label is a thread label created by
English-Hebrew Labeling scheme [13]. The table of Figure 2 shows an example
trace of thread information.

3.2 Scalable Visualization

This section presents the concepts of space abstraction and thread abstraction
for scalable three-dimensional visualization using the traced information. To il-
lustrate an abstract visualization, we use the visualization information shown in
POEG and the table of Figure 2.

The space of thread visualization is represented with a three-dimensional cone
which is divided vertically as many layers as the nesting depth. Each nesting level
is associated with a combo box which represents the number of loops executed
by the thread in the upper nesting level. Figure 3(A) shows an example of the
space abstraction. The first or third nesting level has only one loop and the
second nesting level has two loops. The combo box for the second level allows to
select one of the two loops as shown in Figure 3(A). the user can set the nesting
depth at will. For example, if the user set the value of the nesting depth to five
in the case of nesting levels (J4, J3, J3, J2, J1), the cone becomes divided into
five layers. In this case, each combo box for the nesting level but the third has
one loop. The combo box for the third nesting level has two loops, because J3
appears twice. The combo box for the fifth nesting level can not be created,
because the information corresponding to the nesting level does not exist.

The threads at the same nesting level are visualized as circles on the same
circumference of the corresponding cone layer with the optional vertical and hor-
izontal abstraction. The vertical abstraction represents a thread which created

316 Y.-J. Kim, J.-S. Lim, and Y.-K. Jun

#pragma omp parallel for shared (s) {

for (i=0;i<2;i++) {

if(i>0) {

#pragma omp parallel for shared (s) {

for (j=0;j<2;j++){

#pragma omp critical(L1) {

if (j<1) { z=s+1; k=s*z; }

Visualization View

Source code View

Rotation Menu

Main Menu

1

2

1

Main Menu

Fig. 4. The Overall Interface for Scalable Thread Visualization

child thread in the lower nesting levels with a special circle symbol. A parent
thread can be represented with a symbol “+” or “-” inside a circle. The symbol
“+” means that the parent thread has child threads which are not shown and
the symbol “-” means that the parent thread has child threads which are drawn
on the cone. A circle symbol which is colored and rounded by a thick line is
an abstract thread which includes a critical section. Figure 3(A) shows an ex-
panded example of the vertical abstraction. Although threads can be visualized
with vertical abstraction, the space complexity for visualization may be still big.
The horizontal abstraction reduces the number of threads visualized on the same
circumference, by representing a set of threads with one abstract thread. Fig-
ure 3(B) shows an example of horizontal abstraction. The second nesting level in
the figure shows horizontal abstraction by the rate of four and the third nesting
level by the rate of two.

The thread abstraction allows us to understand intuitively whether a pair
of threads is concurrent or ordered with each other, because we can see easily
an explicit path between any two threads on the cone. For example, in the
Figure 3(B), the left thread in the first nesting level is concurrent with the right
thread in the third nesting level, because the explicit path from the upside to the
downside does not exist on the visualized cone. Users can check easily whether
a pair of threads at the different nesting levels are concurrent or ordered with
each other through the thread abstraction.

Scalable Thread Visualization for Debugging Data Races 317

#pragma omp parallel for shared firstprivate(label_fork1){

for(i=0;i<2;i++){

if(i>0){

#pragma omp parallel for shared firstprivate(label_fork2){

for(i=0;i<2;i++){ if(j<1) { z=s+1; k=s*z;} else { z=s+5; k=s*2*z; }}}

#progma omp critical(L1){

Fig. 5. No Critical Sections and No Nested Parallelisms

4 Experimentation

We implemented scalable thread visualization and experimented its function-
ality using a set of synthetic programs. This section presents the interface of
implemented tool and the principles in which the tool draws the symbols using
an execution trace of the synthetic programs.

4.1 Visualization Engines

Figure 4 shows the interface of our thread visualization tool which is composed
two views and two menus: Visualization View, Source code View, Main Menu,
and Rotation Menu. In the Main Menu, Visualizer Mode has four modes in which
two modes are currently implemented: Cone Visualizer and Thread Visualizer.
Nesting Level Mode provides the possible values of each nesting level and then
users can select a numeral in each nesting level. The OPTION menu make it
possible to set the maximum value of nesting levels and multi-way loops. The
SYMBOL menu shows the legend of symbols to be used for scalable visualization.
The SOURCE and ROTATION menus allow users to control the activation of
Source code View and Rotation Menu. The QUIT menu quits the interface.
The Rotation Menu located at the lower left part of the interface allows users to
rotate on the three-dimensional space or move up, down, left, and right using one
button labelled Objects or the other four buttons labelled Objects XY, Objects
X, Objects Y, and Object Z. When the visualized cone is rotated, its position and
size are fixed. The Visualization View shown at the top of the figure visualizes

318 Y.-J. Kim, J.-S. Lim, and Y.-K. Jun

#pragma omp parallel for shared (s) {

for (i=0;i<2;i++){

if (i>0){

#pragma omp parallel for shared firstprivate(label_fork2){

for (i=0;i<2;i++){ if (j<1) { z=s+1; k=s*z;} else { z=s+5; k=s*2*z; }}}

#progma omp critical(L1){

Fig. 6. Critical Sections and No Nested Parallelisms

the cone and abstract threads. The Source code View shows the corresponding
program codes.

For visualization, a cone is divided horizontally by the nesting depth acquired
from trace as shown in the figure. A thread is drawn on the cone based on
the calculated height, angle, and symbol’s position and can be abstracted for a
thread set, critical sections, and nested parallel loop which are created during
a program execution. The user understands races intuitively by visualizing a
partial order of threads involved in races selectively. For example, in Figure 4,
left symbol at the first nesting level is concurrent with the right symbol at the
second nesting level, because these is no path between the left symbol and the
right symbol.

4.2 Visualization Cases

The visualization tool has been implemented using Visual C++ and OpenGL
library under Windows XP on Pentium 4 computer. We verified the cone and
thread visualization with four kinds of synthetic programs with respect to the
existence of critical sections and nested parallelisms: (1) no nested parallelisms
and no critical sections, (2) nested parallelisms and no critical sections, (3) no
nested parallelisms and some critical sections, (4) nested parallelisms and critical
sections. Any critical section uses one lock variable. The nesting depth is three,
and each nesting level has 20, 100, 300 threads.

For example, Figure 5 visualizes an execution of synthetic program with no
nested parallelism and no critical section, which creates one hundred threads.

Scalable Thread Visualization for Debugging Data Races 319

#pragma omp parallel for shared firstprivate(label_fork1){

for(i=0;i<2;i++){

if(i>0){

#pragma omp parallel for shared firstprivate(label_fork2){

for(i=0;i<2;i++){ if(j<1) { z=s+1; k=s*z;} else { z=s+5; k=s*2*z; }}}

#progma omp critical(L1){

(A)

#pragma omp parallel for shared firstprivate(label_fork1){

for(i=0;i<2;i++){

if(i>0){

#pragma omp parallel for shared firstprivate(label_fork2){

for(i=0;i<2;i++){ if(j<1) { z=s+1; k=s*z;} else { z=s+5; k=s*2*z; }}}

#progma omp critical(L1){

(B)

Fig. 7. Nested Parallelisms and No Critical Sections

#pragma omp parallel for shared (s) {

for (i=0;i<2;i++){

if (i>0){

#pragma omp parallel for shared firstprivate(label_fork2){

for (i=0;i<2;i++){ if (j<1) { z=s+1; k=s*z;} else { z=s+5; k=s*2*z; }}}

#progma omp critical(L1){

Fig. 8. Critical Sections and Nested Parallelisms

The cone in the figure is not divided, because the execution does not include
nested parallelism. Figure 6 visualizes an execution of synthetic program with
critical sections and no nested parallelisms, which has twenty threads and con-
tains critical sections in every other thread. The figure shows every thread with
critical section has a unique color according to its lock variable. Figure 7 visual-
izes an execution of synthetic program with nested parallelisms and no critical
sections. Each nesting level has twenty threads; the nesting depth is three; a
one-way loop within the second nesting level is two, the second one-way loop of

320 Y.-J. Kim, J.-S. Lim, and Y.-K. Jun

the second nesting level has the third nesting level. Figure 7(A) marks twenty
threads within the first nesting level and one of them has twenty nested threads
to exist in the second nesting level. These threads are marked in the limited
area like the second nesting level of Figure 7(A), because the overlap among
threads occurs in the second nesting level if all threads of the first nesting level
have nested threads. If this overlap phenomenon is occur, we can not understand
duly the visualized results so we provide a horizontal abstraction like Figure 7(B).
Figure 7(B) abstracts the threads at the rate of a quarter about twenty threads
of the second nesting level of Figure 7(A). As the result, only four threads are
visualized in the second level. Figure 8 visualizes threads the synthetic program
with nested parallelism and critical section. It is identical with the explanation
of Figure 7(A) except the mark of critical section.

5 Conclusion

Data race in OpenMP programs must be detected for debugging, because it
may cause unexpected results incurred from unintended non-deterministic exe-
cutions. OpenMP programs are often complex and long-running, because parallel
programs may consist of a large number of threads and accesses to shared vari-
ables. Thread Checker of Intel Corporation is a unique tool to detect threading
errors including data races in the relaxed sequential program which is defined
as parallelized only with OpenMP directives. The tool however does not provide
any effective facility for understanding the complexity of threads involved in the
reported races.

This paper presents a thread visualization tool to represent the partial order
of threads in the traced OpenMP programs with a scalable graph of abstract
threads upon a three-dimensional cone. This tool solves the visual complexity
using the abstract visualization which replaces a set of events with an abstract
symbol and provides the thread information which is traced by RaceStand, an
on-the-fly race detection tool. We have been trying to apply this tool using a set
of published benchmark programs in addition to our synthetic programs specially
developed for experimenting this tool.

References

1. Dinning, A., and E. Schonberg, “An Empirical Comparison of Monitoring Algo-
rithms for Access Anomaly Detection,” 2nd Symp. on Principles and Practice of
Parallel Programming, pp. 1-10, ACM, March 1990.

2. Dinning, A., and E. Schonberg, “Detecting Access Anomalies in Programs with
Critical Sections,” 2nd Workshop on Parallel and Distributed Debugging, pp. 85-
96, ACM, May 1991.

3. Intel Corp., Getting Started with the Intel C++ Compiler 9.0 for Windows., 2200
Mission College Blvd., Santa Clara, CA 95052-8119, USA, 2004.

4. Intel Corp., Getting Started with the Intel Thread Checker, 2200 Mission College
Blvd., Santa Clara, CA 95052-8119, USA, 2004.

Scalable Thread Visualization for Debugging Data Races 321

5. Intel Corp., Intel Thread Checker for Windows 3.0 Release Notes, 2200 Mission
College Blvd., Santa Clara, CA 95052-8119, USA, 2005.

6. Intel Corp., VTune(TM) Performance Analyzer 8.0 Release Notes, 2200 Mission
College Blvd., Santa Clara, CA 95052-8119, USA, 2006.

7. Jun, Y. and K. Koh, “On-the-fly Detection of Access Anomalies in Nested Parallel
Loops,” 3rd ACM/ONR Workshop on Parallel and Distributed Debugging, pp.107-
117, ACM, May 1993.

8. Kim, Y., M. Park, S. Park, and Y. Jun, ”A Practical Tool for Detecting Races in
OpenMP Programs,” Proc. of 8th Int’l Conf. on Parallel Computing Technologies
(PaCT), Krasnoyarsk, Russia, Lecture Notes in Computer Science, 3606: 321-330,
Springer-Verlag, Sept. 2005.

9. Kim, Y., and Y. Jun, “An Optimal Tool for Verifying Races in OpenMP Programs,”
06 Int’l Conference on Hybrid Information Technology, SERC, Cheju Island, Korea,
Nov., 2006

10. Lamport, L., “Time, Clocks, and the Ordering of Events in a Distributed System,”
Comm. of ACM, 21(7): 558-565, ACM, July 1978.

11. Mellor-Crummey, J. M., “On-the-fly Detection of Data Races for Programs with
Nested Fork-Join Parallelism,” Supercomputing, pp. 24-33, ACM/IEEE, Nov. 1991.

12. Netzer, R. H. B., and B. P. Miller, “What Are Race Conditions? Some Issues and
Formalizations,” Letters on Programming Lang. and Systems, 1(1): 74-88, ACM,
March 1992.

13. Nudler, I., and L. Rudolph, “Tools for the Efficient Development of Efficient Paral-
lel Programs,” In 1st Israeli Conference on Computer System Engineering, 1986.

14. OpenMP Architecture Review Board, OpenMP Application Programs Interface,
Version 2.5, May 2005.

15. Park, S., M. Park, and Y. Jun, “A Comparision of Scalable Labeling Schemes for
Detecting Races in OpenMP Programs,” Int’l Workshop on OpenMP Applications
and Tools (Wompat), pp. 66-80, West lafayette, Indiana, July 2001.

16. Petersen, P., and S. Shah, “OpenMP Support in the Intel Thread Checker,” Proc.
of the Int’l Workshop on OpenMP Application and Tools (WOMPAT), Berlin Hei-
delberg, Lecture Notes in Computer Science, 2716: 1-12, Springer-Verlag, 2003.

MPIRace-Check: Detection of Message Races in

MPI Programs�

Mi-Young Park1, Su Jeong Shim1, Yong-Kee Jun2,��, and Hyuk-Ro Park3

1 Chonnam National University, Gwanju
openmp@korea.com, sjsim@chonnam.ac.kr

2 Gyeongsang National University, Jinju
jun@gsnu.ac.kr

3 Chonnam National University, Gwanju
South Korea

hyukro@chonnam.ac.kr

Abstract. Message races, which can cause nondeterministic executions
of a parallel program, should be detected for debugging because non-
determinism makes debugging parallel programs a difficult task. Even
though there are some tools to detect message races in MPI programs,
they do not provide practical information to locate and debug message
races in MPI programs. In this paper, we present an on-the-fly detection
tool, which is MPIRace-Check, for debugging MPI programs written in
C language. MPIRace-Check detects and reports all race conditions in
all processes by checking the concurrency of the communication between
processes. Also it reports the message races with some practical informa-
tion such as the line number of a source code, the processes number, and
the channel information which are involved in the races. By providing
those information, it lets programmers distinguish of unintended races
among the reported races, and lets the programmers know directly where
the races occur in a huge source code. In the experiment we will show
that MPIRace-Check detects the races using some testing programs as
well as the tool is efficient.

Keywords: message-passing programs, debugging, message races,
MPIRace-Check.

1 Introduction

In a distributed parallel program [1,4,9,14], processes communicate with each
other through message-passing and those messages may arrive at a process in a
nondeterministic order by variations in process scheduling and network latencies.

� This work was supported in part by Research Intern Program of the Korea Science
and Engineering Foundation and in part by the 2th BK21.

�� Corresponding author. Also involved in Research Institute of Computer and Infor-
mation Communication (RICIC) as a research professor in Gyeongsang National
University.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 322–333, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

MPIRace-Check: Detection of Message Races in MPI Programs 323

Nondeterministic arrival of messages causes nondeterministic executions of a par-
allel program [7,10,11]. If two or more messages are sent over communication chan-
nels on which a receive listens, and they are simultaneously in transit without
guaranteeing the order of their arrivals, a message race [2,3,5,6,8,12,13] occurs in
the receive event and causes nondeterministic executions of the program.

Message races, which can cause nondeterministic executions of a parallel pro-
gram, should be detected for debugging because nondeterminism, intended or oth-
erwise, makes debugging message-passing parallel programs a difficult task
[7,10,11]. Even though some parallel programs are designed to have message races
in order to improve their performance, detecting message races is critical in de-
bugging parallel programs for two reasons. First, message races complicate debug-
ging because their nondeterministic nature can prohibit equivalent re-execution of
a program from being repeated [7]. Second, message races can prevent a program
from being tested in all the possible executions of a program [7]. Therefore message
races should be detected for debugging message-passing programs.

There are several tools for detecting message races such as MAD [8], MARMOT
[5,6], and MPVisualizer [2,3]. However those tools are not practical for debugging
message-passing programs because they do not provide practical information to
locate and debug message races. Also some of them can not exactly detect race
conditions because they detect message races just by identifying the use of wild
card receives as sources of race conditions. Therefore, due to lack of information
and wrong detection, programmers can be easily overwhelmed by the incorrect in-
formation or be incapable of finding where the races occurred in a huge source code.

In this paper, we present an on-the-fly detection tool, which is MPIRace-Check,
for debugging MPI [14,15] programs written in C language. MPIRace-Check de-
tects and reports all race conditions in all processes during an execution by check-
ing the concurrency of the communications between processes. Also it reports mes-
sage races with some practical information such as the line number of a source
code, the processes number, and the channel information which are involved in
the races. By providing those information, it lets programmers distinguish of un-
intended races among the reported races, and lets the programmers know directly
where the races occur in a huge source code. In the experiment we will show that
MPIRace-Check detects and reports the races using MPI RTED [15] testing pro-
grams as well as this tool is efficient using a kernel benchmark program.

In the following section 2, we describe the notion of message races and ex-
plain the problem of the previous tools. In section 3 we explain the methods
used in developing MPIRace-Check and then we show that the accuracy and
the efficiency of MPIRace-Check using MPI RTED testing programs and a ker-
nel benchmark program in the experiment of section 4. In the last section we
conclude this paper and discuss future work.

2 Background

In this section, we describe our model of parallel programs, and the notion of
message races. Also we introduce the previous tools to detect the races and
explain the problem of the previous tools.

324 M.-Y. Park et al.

2.1 Message Races

An execution of a message-passing program [1,10,11,13] can be represented as
a finite set of events and the happened-before relations [4,9] defined over those
events. If an event a always occurs before another event b in all executions of
the program, it satisfies that a happens before b, denoted a → b. For example,
if there exist two events {a, b} executed in the same process, a → b ∨ b → a
is satisfied. If there exist a send event s and the corresponding receive event r
between a pair of processes, then s → r is satisfied. We denote a message, sent
by a send event s, as msg(s). The binary relation → is defined over its irreflexive
transitive closure; if there are three events {a, b, c} that satisfy a → b ∧ b → c,
it also satisfies a → c. When an event a does not happen before an event b, we
denote the relation between them as a � b.

A message race [2,3,5,6,8,13] occurs in a receive event, if two or more messages
are sent over communication channels on which the receive listens and they are
simultaneously in transit without guaranteeing the order of their arrivals. A
message race is represented as 〈r, M〉: r is the first receive event and M is a set
of racing messages toward r. Any send event s included in M , but not the one
received by r, satisfies s � r or r � s.

Even though some parallel programs are designed to have message races in
order to improve their performance, detecting message races is critical in debug-
ging parallel programs for two reasons. First, message races complicate debug-
ging because their nondeterministic nature can prohibit equivalent re-execution
of a program from being repeated [7]. Second, message races can prevent a pro-
gram from being tested in all the possible executions of a program [7]. Therefore
message races should be detected for debugging message-passing programs.

Figure 1 shows a partial order of events that occurred during an execution of
a message-passing program. In the figure two processes P3 and P4 send two mes-
sages msg(i) and msg(k) to P2. At this time two messages msg(i) and msg(k)
are racing toward the receive event j of P2 because the send event k satisfies
k � j. Also the message msg(m), which is sent by process P5, is also racing
toward j. Therefore the race, which occurs at the receive event j, can be denoted
as 〈j, J〉: the first receive event j, J = {msg(i), msg(k), msg(m)}.

2.2 Related Work

There are several tools for detecting message races such as MAD [8], MARMOT
[5,6], and MPVisualizer [2,3]. MAD offers a variety of debugging features such
as placement of breakpoints on multiple processes, inspection of variables, an
event manipulation feature, and a record&replay mechanism. MARMOT is to
verify the standard conformance of an MPI [14,15] program automatically during
runtime and help to debug the program in case of problems such as deadlocks,
and race conditions. MPVisualizer includes a trace/reply mechanism, a graphical
interface, and the engine of the tool which detects and notifies the occurrence of
race conditions.

In case of MAD and MARMOT, those tools detect message races just by iden-
tifying the use of wild card receives, mpi any source, as sources of race conditions.

MPIRace-Check: Detection of Message Races in MPI Programs 325

P
1

P
2

P
3

P
4

P
5

a

b

c

d

e

f
g

h

i

j

k

l

m

n

Fig. 1. An Example

In this case the detection result is not correct and also programmers will be over-
whelmed by the vast and incorrect information.

Figure 2 shows the cases that there are no race conditions even though receive
events are called with mpi any source. In Figure 2.(a), process P1 sends a mes-
sage to process P2 with a tag (1). Also process P3 sends a message to process
P2 with a tag (2). At this time, two receive events in process P2 are called with
mpi any source, but with different tags. In this example, even though two send
events are concurrent, two messages being sent by processes P1 and P3 will be
always received deterministically because of the different tags.

In Figure 2.(b), the second receive event in process P2 is called with
mpi any source and mpi any tag. In this example, however, two messages will
be received deterministically because the first message being sent by process P1
will be always received at the first receive event in process P2.

In Figure 2.(c), two messages are sent from the same process P1 and they
are received in the process P2. In process P2, two receive events receive the
messages respectively using mpi any source and mpi any tag. In this case, there
are no race conditions if successive messages sent by a process to another process
are ordered in a sequence and if receive events posted by the process are also
ordered in a sequence.

As shown in Figure 2, there are no race conditions even though mpi any source
or mpi any tag are used in the receive events. Therefore, if we detect race con-
ditions just by identifying the use of mpi any source, that will include wrong
detections of race conditions and then mislead programmers.

One the other hand, the method suggested by Nezer [12] can detect more
exactly race conditions. This technique focuses on detecting unaffected races
[12,13] so that it detects the first race in each process. For this, it requires
two executions of a program. In the first execution it checks if a race occurs and

326 M.-Y. Park et al.

P1 P2 P3

Send (2, tag=1)

Recv (Any, tag=1)

Send (2, tag=2)
Recv (Any, tag=2)

P1 P2 P3

Send (2, tag=1)

Recv (1, tag=1)

Send (2, tag=2)
Recv (Any, tag=Any)

(a)

(b)

P1 P2

Send (2, tag=1)

Recv (Any, tag=Any)

Recv (Any, tag=Any)

(c)

Send (2, tag=2)

Fig. 2. No Race Conditions with MPI ANY SOURCE

identifies the location where the race occurs. In the second execution it halts
the execution at the location where the race occurred and then detects racing
messages. Even though this technique can detect race conditions more accurately,
it is not efficient because it requires two executions of a program.

MPIRace-Check: Detection of Message Races in MPI Programs 327

0 TimestampInit()
1 localclock := 0
2 for i from 0 to size do
3 timstamp[i] := 0
4 prevrecv [i] := 0
5 sender [i] := 0
6 end for

(a)
0 CheckConcurrency()
1 if prevrecv [pid] > sender [pid]
2 report this race
3 end if

(b)

0 TimestampInSend()
1 localclock := localclock + 1
2 timestamp[pid] := localclock

(c)
0 TimestampInRecv()
1 call CheckConcurrency()
2 for i from 1 to size do
3 timestamp[i] := max(timestamp[i],
4 sender [i])
5 end for
6 localclock := localclock + 1
7 timestamp[pid] := localclock
8 prevrecv := timestamp

(d)

Fig. 3. Algorithms for Timestamp

3 Race Detection

In this section, we explain the methods used in developing MPIRace-Check.
First we explain several algorithms to maintain vector timestamps during an
execution in order to detect race conditions. Also we show how the algorithms
can be called inside of MPI profiling interface.

3.1 Concurrency Check

Vector timestamps [4,9] have been used to determine the “happened before”
relations between two events during an execution. Each vector timestamp con-
sists of n values, where n is the number of processes involved in an execution. In
this paper, we use vector timestamps to check concurrency between send/receive
events in MPI parallel programs. Figure 3 shows the algorithms for maintaining
vector timestamps during an execution.

In Figure 3.(a), all variables are initialized with zero: localclock, timestamp,
prerecv, and sender. In the algorithm, size is an integer variable and indicates
the number of processes involved in an execution. localclock is an integer variable
for counting the number of events which occurred in each process. This will be
incremented by one whenever a send or a receive event occurs.

The variables timestamp, prerecv, and sender for maintaining the vector
timestamps are an array which consists of n elements, where n is the number
of processes. Whenever a send or a receive event occurs in a process, timestamp
will be updated by the current localclock during an execution. Only one element
of timestamp, corresponding to the process itself, will be updated. sender will
be used for keeping a vector timestamp of a sender which sends a message to
the current receive event. prevrecv will be used for keeping a vector timestamp
of the previous receive event.

328 M.-Y. Park et al.

Figure 3.(c) shows the algorithm, TimestampInSend(), which will be called
in each send event. The variable pid indicates the current process which sends a
message. In each send event, it increments localclock by one and sets the element
of timestamp, corresponding to the current process pid, equal to localclock. This
timestamp will be attached to the outgoing message.

Figure 3.(d) shows the algorithm, TimestampInRecv(), which will be called
in each receive event. In each receive event, first of all, it checks if a race occurs
by calling CheckConcurrency(). In CheckConcurrency(), it checks if the
element of prevrecv, corresponding to the current process pid, is greater than
that of sender. If then, it means that the message, which was received in the
current receive event, can be received in the previous receive event. In this case
it reports that a message race occurs.

After calling CheckConcurrency(), it updates its timestamp using sender,
which was attached to this incoming message, by the operation max(). And it
increments localclock by one and sets the element of timestamp, corresponding to
the current process pid, equal to localclock. For the next receive event, it copies
timestamp into prevrecv because this receive event will become the previous
receive event in the next receive event.

Figure 4 shows the vector timestamps in each event when we applied the
algorithms to Figure 1. In the figure, lc means localclock in each event and each
timestamp in each event is represented with “[]”.

In the send event a in P2, TimestampInSend() will be called and local-
clock will be incremented by one. And localclock will be set into the element of
timestamp corresponding to the current process P2. So localclock becomes 1 and
timestamp becomes [01000]. In the receive event b in P4, TimestampInRecv()
will be called and localclock will be incremented by one. And localclock will be
set into the element of timestamp corresponding to the current process P4. Also
it updates its timestamp using sender by the operation max(). So localclock be-
comes 1 and timestamp becomes [01010]. In this way timestamp will be updated
and maintained in each event during an execution.

Let us show you how to detect race conditions using timestamp in each receive
event. For example, in the receive event j of process P2, TimestampInRecv()
calls CheckConcurrency(). CheckConcurrency() compares prevrecv, which
is the vector timestamp at d of P2, with sender which is the vector timestamp
of the send event i of P3. In this case, prevrecv [pid], which is “2” from [12000]
(pid is P2), is not greater than sender [pid] which is “4” from [14200]. This means
that the message, which was received by the current receive event j of P2, is not
racing toward the previous receive event d of P2.

On the other hand, in the receive event l of process P2, prevrecv is greater
than sender. In case of the receive event l, prevrecv is at j which is [15200], and
sender is at k of P4 which is [01020]. Therefore, prevrecv [pid], which is “5”, is
greater than sender [pid] which is “1” (pid is P2). This means that the message,
which was received by the current receive event l of P2, is racing toward the
previous receive event j of P2. So there is a message race. In this way we can
detect message races.

MPIRace-Check: Detection of Message Races in MPI Programs 329

P1 P2 P3 P4 P5

a

b

c

d

e

f
g

h

i

j

k

l

m

n

timestamp [00000]

[01000]
[12000]

[13000]

[14000]

[15200]

[16220]

[17221]

[10000]

[23000]
[14100]

[14200]

[01010]

[01020]

[00001]

local clock: 0

lc: 1

lc: 2

lc: 3
lc: 4

lc: 5

lc: 6

lc: 7

lc: 2

lc: 1

lc: 2

lc: 2

lc: 1

lc: 1

lc: 1

Fig. 4. An Example of Vector Timestamp

3.2 MPI Profiling Interface

MPI Profiling Interface included in MPI specification allows anyone to inter-
cept every call to the MPI library and perform an additional action. For this,
the MPI specification states that every MPI routine is callable by an alter-
native name; every routine of the form MPI xxx is also callable by the name
of the form PMPI xxx, allowing users to implement and experiment their own
MPI xxx.

For implementing MPIRace-Check, we used MPI profiling interface and we
wrapped all point-to-point functions. In each wrapped function, we used MPI-
PACK in order to attach a vector timestamp to the outgoing message and we
used MPI UNPACK in order to detach a vector timestamp from the incoming
message.

Figure 5 is an example of how we wrapped each function with the algorithms
explained before. Figure 5.(a) shows the wrapped MPI Send function. First it
calls TimestampInSend() in line 2 and packs the user message(buf) and times-
tamp together using MPI PACK in order to attach timestamp to the outgoing
message in line from 4 to 5. After that, it calls PMPI Send.

Figure 5.(b) shows the wrapped MPI Recv function. First it received a mes-
sage by calling PMPI Recv and unpack the message into sender and buf in line
from 4 to 5. After that, it calls TimestampInRecv() in order to update its
timestamp and check if a race occurs.

In this way, we wrapped all point-to-point functions so that users can apply
our tool to their programs without modifying their code.

330 M.-Y. Park et al.

0 MPI Send(buf, count, datatype, dest, tag, comm)
1 {
2 TimestampInSend();
3
4 MPI Pack(timestamp, size, MPI INT, buffer, buffersize, pos, comm);
5 MPI Pack(buf, count, datatype, buffer, buffersize, pos, comm);
6
7 PMPI Send(buffer, pos, MPI PACKED, dest, tag, comm);
8 }

(a)

0 MPI Recv(buf, count, datatype, source, tag, comm, status)
1 {
2 PMPI Recv(buffer, buffersize, MPI PACKED, source, tag, comm, status);
3
4 MPI Unpack(buffer, buffersize, pos, sender, size, MPI INT, comm);
5 MPI Unpack(buffer, buffersize, pos, buf, count, datatype, comm);
6
7 TimestampInRecv();
8 }

(b)

Fig. 5. Examples of Wrapped MPI Functions: MPI Send and MPI Recv

4 Experimentation

We implemented MPIRace-Check as a library using C language and MPI Pro-
filing Interface so that users can apply our tool to their programs without mod-
ifying their source code. Also we used gdb to provide detail information for
debugging race conditions. When a race is detected, gdb will be called within
MPI Profiling Interface. To enable this, users have to use the compiler option
‘-g’ when they compile their programs.

In this experiment we evaluated the accuracy and the efficiency of MPIRce-
Check. For evaluating the accuracy of race detection, we used MPI RTED [15]
testing programs written in C language. MPI RTED was developed to evaluate
MPI debugging tools. So some of them were designed to have message races to
evaluate the ability of detection of race conditions.

Table 1 shows all test programs and the detection results when we applied
our tool to MPI RTED programs. In the table, we can see each name of tested
programs, and MPI functions which are used in the testing programs. In those
programs, MPIRace Check detected all races as shown in the table.

Figure 6 shows an error message of our tool when it detects a race in a
test program. In the first line, it shows the localclocks of the events, and the
process number which are involved in the race: P1 (1) and P2 (1). In the second
line, it shows the channel information, the program name, and its line number:
−2 − 1, ‘c B 1 1 a M1.c’ and 76. In the third line, it shows the source code

MPIRace-Check: Detection of Message Races in MPI Programs 331

Table 1. The Result in MPI RTED

Name MPI Functions Detection

c B 1 1 a M1.c MPI RECV Yes
c B 1 2 a M1.c MPI RECV Yes

c B 1 1 b M1.c MPI SENDRECV Yes
c B 1 2 b M1.c MPI SENDRECV Yes

c B 1 1 c M1.c MPI SENDRECV REPLACE Yes
c B 1 2 c M1.c MPI SENDRECV REPLACE Yes

c B 1 1 d M1.c MPI IRECV Yes
c B 1 2 d M1.c MPI IRECV Yes

c B 1 1 e M1.c MPI RECV Yes
c B 1 2 e M1.c MPI SENDRECV Yes

c B 1 1 f M1.c MPI RECV Yes
c B 1 2 f M1.c MPI SENDRECV REPLACE Yes

c B 1 1 g M1.c MPI RECV Yes
c B 1 2 g M1.c MPI IRECV Yes

Fig. 6. An Example of Error Messages

Table 2. Overhead in MPIRace-Check

The number of Send/Recv Original Run Time (s) Monitored Run Time (s) Slowdown

10000 0.168 0.212 26%
100000 1.673 2.234 34%

1000000 16.399 22.034 34%
10000000 164.471 221.736 35%

which is involved in the race: ‘MPI Recv(&recvbuf 2, . . ., &status)’. Using those
information, programmers can easily notice whether the race was intended or
not, and they can directly modify the bug because they know where it occurs in
their source code.

For estimating the efficiency of our tool, we wrote a simple kernel benchmark
program. This benchmark program consists of MPI Send() and MPI Recv() op-
erations and users can change the number of those operations in the command
line. In this program, only a process with the rank 0 receives any messages with
mpi any source and the other processes send a message to the process with rank
0. To measure the slowdown of MPIRace-Check, we used MPI Wtime() in the
benchmark program.

Table 2 shows the slowdown of MPIRace-Check. For example, when we set
the number of send/recv operations 10000, it took 0.168 seconds without our
tool. However, the monitored execution by our tool took 0.212 seconds so that

332 M.-Y. Park et al.

the slowdown is 26%. As we increase the number of send/recv operations, the
slowdown does not change proportionally. The worst case in the table shows only
35% slowdown when the number of send/recv operations is 10,000,000. Therefore
our tool is efficient as an on-the-fly detection tool.

5 Conclusion

In this paper, we have presented an on-the-fly detection tool, which is MPIRace-
Check, for debugging MPI programs written in C language. MPIRace-Check
detects and reports all race conditions in all processes during an execution by
checking the concurrency of the communications between processes. In our ex-
periment, we showed that MPIRace-Check detects and reports message races
using MPI RTED testing programs as well as our tool is efficient using a kernel
benchmark program.

Also our tool provides useful information for debugging such as the line num-
ber of a source code, the processes number, and the channel information which
are involved in the races. By providing those information, it lets programmers
distinguish of unintended races among the reported races, and lets the program-
mers know directly where the races occurred in a huge source code. Therefore
this tool will be useful to develop and debug MPI C parallel programs. In the
future we will expand MPIRace-Check to cover all collective routines of MPI-1.

References

1. Cypher, R., and E. Leu, “The Semantics of Blocking and Nonblocking Send and
Receive Primitives,” 8th Intl. Parallel Processing Symp., pp. 729-735, IEEE, April
1994.

2. Cláudio, A.P., J.D. Cunha, and M.B. Carmo, “MPVisualizer: A General Tool
to Debug Message Passing Parallel Applications,” 7th High Performace Comput-
ing and Networking Europe, Lecture Notes in Computer Science, 1593:1199-1202,
Springer-Verlag, April 1999.

3. Cláudio, A.P., J.D. Cunha, and M.B. Carmo, “Monitoring and Debugging Message
Passing Applications with MPVisualizer,” 8th Euromicro Workshop on Parallel
and Distributed Processing, pp.376-382, IEEE, Jan. 2000.

4. Fidge, C. J., “Partial Orders for Parallel Debugging,” SIGPLAN/SIGOPS Work-
shop on Parallel and Distributed Debugging, pp. 183-194, ACM, May 1988.

5. Krammer, B., K. Bidmon, M.S. Müller, and M.M. Resch, “MARMOT: An MPI
Analysis and Checking Tool,” In proceedings of PARCO’03, 13:493-500, Elsevier,
Sept. 2003.

6. Krammer, B., M.S. Müller, and M.M. Resch, “MPI Application Development Using
the Analysis Tool MARMOT,” 4th International Conference on Computational
Science, Lecture Notes in Computer Science, 3038:464-471, Springer-Verlag, june
2004.

7. Kranzlmüller, D., and M. Schulz, “Notes on Nondeterminism in Message Pass-
ing Programs,” 9th European PVM/MPI Users’ Group Conf., Lecture Notes in
Computer Science, 2474:357-367, Springer-Verlag, Sept. 2002.

MPIRace-Check: Detection of Message Races in MPI Programs 333

8. Kranzlmüller D., C. Schaubschläger, and J. Volkert, “A Brief Overview of the
MAD Debugging Activities,” 4th International Workshop on Automated Debugging
(AADEBUG 2000), Aug. 2000.

9. Lamport, L., “Time, Clocks, and the Ordering of Events in a Distributed System,”
Communications of the ACM, 21(7):558-565, ACM, July 1978.

10. Lei, Y., and K. Tai, “Efficient Reachability Testing of Asynchronous Message-
Passing Programs,” 8th Int’l Conf. on Engineering of Complex Computer Systems
pp. 35-44, IEEE, Dec. 2002.

11. Mittal, N., and V. K. Garg, “Debugging Distributed Programs using Controlled
Re-execution,” 19th Annual Symp. on Principles of Distributed Computing , pp.
239-248, ACM, Portland, Oregon, 2000.

12. Netzer, R. H. B., T. W. Brennan, and S. K. Damodaran-Kamal, “Debugging Race
Conditions in Message-Passing Programs,” SIGMETRICS Symp. on Parallel and
Distributed Tools, pp. 31-40, ACM, May 1996.

13. Park, M., and Y. Jun, “Detecting Unaffected Race Conditions in Message-Passing
Programs,” 11th European PVM/MPI User’s Group Meeting, Lecture Notes in
Computer Science, 3241:268-276, Springer-Verlag, Sept. 2004.

14. Snir, M., S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Com-
plete Reference, MIT Press, 1996.

15. HPC Group, MPI Run Time Error Detection Test Suites:
http://rted.public.iastate.edu/MPI/, Iowa State University, USA, 2006

The Modified Grid Location Service for Mobile

Ad-Hoc Networks

Hau-Han Wang and Sheng-De Wang

Department of Eletrical Engineering
National Taiwan University, Taipei, Taiwan

sdwang@ntu.edu.tw

Abstract. Position-based routing has been proven to be a scalable and
efficient solution for packet routing in mobile ad hoc networks (MANETs)
by utilizing location information of mobile nodes. The location service
provides geographic locations for all nodes and is therefore critical to
position-based routing. In general, the control overhead in a position-
based routing protocol is mainly dominated by location updates. In this
paper, we propose a location service called Modified Grid Location Ser-
vice (MGLS), which employs a binary grid partitioning scheme to reduce
the control overhead associated with the location management and sup-
ports large scale ad hoc networks. We then use a theoretical model to
analyze both MGLS and GLS. Both theoretical analysis and simulation
results show that MGLS can reduce the location update overhead in
location services.

1 Introduction

Routing protocols in MANETs are commonly categorized into two different
types: topology-based and position-based routing. M. Mauve et al. [1] has pre-
sented such an overview of ad hoc routing protocols. The routing performance
can be significantly improved by utilizing location information of nodes. That is,
if each node is aware of the location of the destination and all its one-hop neigh-
bors in the network, it can geographically forward a packet toward its destina-
tion. Position-based routing algorithms uses such additional location information
to eliminate the limitations of topology-based routing. Commonly, each node de-
termines its own position through the use of GPS (Global Positioning System).
Before sending a packet to the destination, senders always include the location
of destination which is provided by the so-called location service in the header
of outgoing packets. The routing decision at each node is then based on the
destination’s position contained in the packet and the position of the forwarding
node’s neighbors. Position-based routing thus does not require the establishment
or maintenance of routes; furthermore, it scales well even if the network is highly
dynamic.

Location services provide the positions of the destination nodes to senders
all around the geographic region. Existing location services can be classified ac-
cording to the number of nodes that host the service and the range of nodes

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 334–347, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Modified Grid Location Service for Mobile Ad-Hoc Networks 335

that is maintained by one location server. This can be either some specific nodes
or all nodes of the network. Thus there are the four possible combinations as
some-for-some, some-for-all, all-for-some, and all-for-all in the of location ser-
vices. Recent algorithms [2]-[5] present some possible ways of finding destination
and distributing location updates.

The Grid Location Service (GLS[2]), which provides a location service by
mapping from node id to current location. GLS divides the area that contains
the ad hoc network into a hierarchy of squares. Each node maintains its current
location at a small subset of network nodes, called the node’s location servers.
Location Servers for a node are relatively dense near the node and sparse farther
away from the node. The route discovery for a destination is then equivalent to
recursively querying the location servers until the query packet arrives at the
one having the destination’s location. Quorum systems[3][4], which route most
packets through arbitrary participants. This reduces the danger that the special
participants may become a bottleneck. The role of the special participants is
limited to storing location tables and computing routes through the general net-
work. DREAM[5] forces nodes to proactively flood their current location infor-
mation over the entire network, enabling each node to build a complete location
database. However, DREAM does not scale well to large networks due to its use
of global flooding.

Forwarding strategies help nodes make routing decisions based on the des-
tination’s position included in the packet and the position of their neighbors.
The Location Aided Routing (LAR[6]) uses geographic location to determine
the search space for a destination, hence reducing the number of route-discover
y packets of reactive ad hoc routing approaches. Besides, LAR restricts the
search for a route to a so-called request zone which is determined based on the
expected location of the destination node at the time of route discover. How-
ever, LAR uses flooding as a means of route discovery. This is done in a fashion
similar to that of the DREAM approach. [7] had presented a complete com-
parison between these two schemes, because of the similarity of DREAM and
LAR.

The Greedy Perimeter Stateless Routing (GPSR[8]) is such an instance of
greedy packet forwarding, which uses a planer subgraph of the wireless network
graph to route around dead-end. In GPSR, senders first include the approximate
destination positions obtained from a location service into packets. Nodes then
use the positions of routers and packets’ destinations to make packet forwarding
decisions; forward the received packet to a neighbor lying in the direction of the
destination until the destination has been reached.

In geographic forwarding, a node announces its current position and velocity
to its neighbors by broadcasting periodic HELLO packets. Each node maintains
a table of its current neighbors’ identities and geographic positions. Therefore,
nodes may learn about two hop neighbors: nodes that cannot be reached directly,
but can be reached in two hops via the neighbor that sent the HELLO message,
it’s called 2-hop distance vector. 2-hop distance vector helps alleviate holes in
the topology and ensures that each node knows the location of all nodes in its

336 H.-H. Wang and S.-D. Wang

own smallest grid. The header of a packet destined for a particular node contains
the destination’ s identity as well as its geographic position. When node needs
to forward a packet to location D, the node consults its neighbor table and
chooses the neighbor closest to D. It then forwards the packet to that neighbor,
which itself applies the same forwarding algorithm. The packet stops when it
reaches the destination. GLS adopts geographic forwarding as its forwarding
strategy. Actually, both geographic forwarding and GLS belong to the GRID
project[9].

Another survey of position-based routing in ad hoc networks was presented
by I. Stojmenovic[10]. T. Park et al. proposed a hybrid routing protocol[11] con-
structed by combining well-known location-update schemes, which minimizes the
overall routing overhead in terms of location-update thresholds. Some location
services with fixed static hierarchy such as DLM[12], SLURP[13], SLALoM[14]
and HIGH-GRADE[15] are compared systematically in [16].

In this paper, we proposed a distributed location service scheme for position-
ba sed routing in mobile ad hoc networks, called Modified Grid Location Ser-
vice (MGLS) which is an improvement to GLS. Similar to GLS, in our scheme,
the entire network is partitioned into hierarchi cal grids. Each node is ran-
domly assigned an integer as its node ID and is placed at uniformly random
location over the network. These nodes act as end systems and routers at the
same time. In order to maintain the location information in a decentralized
way, each node has several location servers in the network. As nodes move,
this location information is constantly updated. Before sending a packet to a
node, the sender first queries the destination’s location and then uses the ge-
ographic routing protocol to forward the packet to the destination. Since the
cost of location management usually dominates the overall protocol overheads.
MGLS was designed to reduce the amount of location updates with a delicate
grid hierarchy. We also use a theoretical model for studying the location ser-
vice scalability, based on which we analyze our scheme as well as GLS. The
analytical results are then validated by simulation in medium to large size
networks.

2 Overview of MGLS Scheme

MGLS exploits geographic forwarding as its forwarding strategy. First, all nodes
know the same global partitioning of the ad hoc network into a hierarchy of grids,
as we will describe in the following section. Next, since every node in the network
acts as an end system and a location server of other nodes at the same time,
the mechanism of location server selection has to be defined clearly. Nodes will
periodically update their location servers with their current location obtained
by GPS. Finally, if one node A wants to transmit a packet to another node B,
A queries the location servers of node B for B’s current location before using
geographic forwarding. Actually, every node in the network has a predefined
unique ID in integer, as well as our wireless card has an unique MAC address in
a wireless network.

The Modified Grid Location Service for Mobile Ad-Hoc Networks 337

2.1 Grid Hierarchy

The whole network is partitioned into grids as shown in Figure 1. The grids in
the figure are unit grids in the network referred to as level-0 grids with the ratio
1 :

√
2 in width and length. Two level-0 grids adjoined on the larger side make

up a level-1 grid, two level-1 grids adjoined on the larger side make up a level-2
grid, and so on. Obviously, our grid hierarchy has a characteristic of recurrence.
Grids of all levels keep the same ratio of 1 :

√
2, and the area of level-(n+1) is

twice as large as level-n.

Fig. 1. Formatting an ad hoc network

2.2 Location Servers

We believe that using centralized location servers is not a good idea. Due to the
limitation of radio transmission range, the only one location sever may be out
of reach of most mobile nodes. Besides, a single server is too weak to provide
reliability of location service, it is unlikely to scale a large number of mobile
nodes. In order to offer a fault-tolerant scheme, we have to make our location
service distributed. That is, one mobile node has multiple location servers located
in the whole network. So that MGLS can provide distributed lookup service by
replicating the information of nodes’ current locations.

Selecting Location Servers and Updating Location Information. Every
node uses its ID and the predefined grid hierarchy to determine which nodes
are its location servers. In the Figure 2, node B has an ID of 17 and wants to
update its location servers after moving a certain distance. The strategy is that
one node picks one other node with ID “least greater” than its own ID to be
its location server for each level of the grid hierarchy. Note that the ID space is
ordered in a circular fashion. We defined 2 is closer to 17 than 7 is to 17.

Here is an example. Let’s start from the Figure 2(a). B is located in its own
level-0 grid. Then in Figure 2(b), the level-0 grid of node B “grows” to be a
level-1 grid containing another node 63. Since 63 is the “least greater” node in
ID space than B, so 63 is selected as a location sever of B in its level-1 grid. In

338 H.-H. Wang and S.-D. Wang

(a) (b) (c)

Fig. 2. A flow diagram illustrates how does a node B seek its location servers. The
nodes which become B’s location servers are circled.

Figure 2(c), 23 is the least greater node than B again, following a rational line,
23 is B’s location server in its level-2 grid, and so on. The same location server
selection process repeats until the level-i grid of B covers the whole network,
where i is supposed here to be 6 in our example.

Grid Location Service (GLS) divides an a network into a hierarchy grid of
squares, too. The level-isquare is recursively divided into 4 level-(i-1) squares
until level-0 squares are reached, forming a so-called quad-tree. In each level-i
square, node B selects 3 location servers, one in each level-(i-1) square that B
isn’t in. However, in both schemes, the number of location servers that a node
must recruit is equal to the number of neighbors per level in the geographic
hierarchy multiplied by the number of levels in the hierarchy. For GLS, this
means that a node must maintain 3 log4 n location servers in a network. While
MGLS, which splits the network in half at each level, rather than in fourths, by
using rectangles with an aspect ratio of 1 :

√
2. This leads to a network in which

nodes recruit only log2 n location servers, that is, 2/3 the number of location
servers needed in GLS. Figure 3 gives a contrast to GLS.

Fig. 3. The same case of GLS, location server 2, 20, 31 are demanded in addition for
node B

The Modified Grid Location Service for Mobile Ad-Hoc Networks 339

As a node moves, it must update its location servers. Nodes avoid generating
excessive amounts of update packets by bounding their location update rates to
their traveled distance. A node updates its level-1 location servers every time
after moving a particular threshold distance δ since sending the last update. The
node updates its level- 2 servers after each movement of

√
2δ. In general, a node

updates its level-i servers after each movement of
√

2
i−1

δ. As a result, a node
sends out updates at a rate proportional to its speed and that updates are sent
to distant location servers less often than to local servers.

Location Query. In Figure 4, each node is shown with the list of nodes for
which it has up-to-date location information. To perform a location query, node
A sends a request by using geographic forwarding to the least greater node than
B for which A has location information. That node forwards the query in the
same way. In the end, the query will reach a location server of B which will
forward the query to B. Since the query contains the location of A, B thus can
respond to A directly using geographic forwarding.

Fig. 4. An example of location querying operations in MGLS

2.3 Design Tradeoffs

As we have seen, MGLS changed the grid organization from quad- to binary-
partitioning. As a result, the number of location servers kept by each node is
reduced and thus the cost of location maintenance for MGLS may be redueced.
However, MGLS may come with an increased query path length due to the
decrement of the number of location servers, as shown in Figure 4, where a
location query packet was sent from node C (with ID: 76) to 21. It was then
forwarded to node 20, a location server of B in GLS, so that this query packet
could be forwarded directly to the query destination in one hop earlier than the
query packet in MGLS.

340 H.-H. Wang and S.-D. Wang

3 Comparisons Based on a Theoretical Model

In this section, we exploit a developed theoretical model [16] to analyze the
scalibility of MGLS and GLS. The focus of this analytical work is to demonstrate
how design choices affect the protocol costs of the two schemes.

3.1 Metrics

We first define three metrics to be the criteria of evaluating the scalability of
each scheme.

Definition - Location Maintenance Cost: The location maintenance cost
Cm is defined as the number of forwarding operations each node needs to perform
in one second to deal with the location update packets. It can be regarded as
the cost of maintaining up-to-date location information on location servers in
the network.

Definition - Location Query Cost: The location query cost Cq is defined as
the number of packet forwarding operations due to location queries each node
needs to perform in one second. It can be regarded as the cost of acquiring
location information from location servers before sending data packets to other
nodes in the network.

Definition - Storage Cost: The storage requirement cost Cs of a location
service is defined as the number of location records a node needs to store as
a location server. We measure this metric by counting the number of entries
instead of calculating the bytes of location tables.

We separate the location maintenance and query costs for one reason. We believe
that the location query cost is relatively easy to be reduced in a location service
scheme by employing various caching strategies, while the location maintenance
cost is not. Thus, we will focus on the location maintenance cost in the following.

3.2 Model Assumptions

The rest of this section derives the expected values of the first and the third met-
rics as functions of N and v. The node density γ is supposed to be a constant.
We also assume that γ is high enough that geographic forwarding is operational.
(According to GLS, geographic forwarding works fine only if γ ≥ 50 nodes/km2.
Actually, the variable γ approaches 100 nodes/km2 in our experiments.) We
assume that nodes are moving according to a simplified random way-point mo-
bility model. Each node picks a random point in the network and moves to-
ward it with a random velocity v chosen uniformly between [0, vmax]. After the
point is reached, node selects a new random point with zero pause time. Let
Pi, ∀i = 0, · · · , H denote the probability that node B (the querying node) and
A (the node being queried) are co-located in the same level − i grid. Based on
the size of the level − i grids, Pi can be easily estimated as:

The Modified Grid Location Service for Mobile Ad-Hoc Networks 341

Lemma 1: (Grid Coexistence Probability). The probability of the querying node
and the queried node are located in the same level − i grid is

Pi =

{
1

2H−i if MGLS
1

4H−i if GLS
∀i = 0 · · · H

3.3 MGLS

Location Maintenance Cost. As we described in Section 2.1, MGLS uses
binary grid-partitioned algorithm instead of quad grid-partitioned. A node A
selects one location server in each level − i grid (i = 1 · · ·H). Since all location
servers of A have to store the current location positions of A, they are expected
to be updated periodically to ensure freshness of location information and to
reduce the query failure rate. In MGLS, A updates its level − i server after
each movement of (

√
2

i−1 · δ), where δ represents the update threshold which
can probably be a few hundreds of meters. The updating period is set as the
expected time a node moves a distance of (

√
2

i−1 · δ), namely (
√

2
i−1 · δ)/v.

Theorem 1. For MGLS, E(Cm) =
c1 ·

√
2 · R

δ · z
· v log N ; E(Cs) = log N .

Proof : To compute the location maintenance cost Cm, we first consider the
expected distance that an updating packet has to travel in the level − i grid,
denoted as E(du

i), and the average number of hops a updating packet takes from
node A to A′s location server in the level − i grid, denoted as E(nu

i). Since one
node may be randomly located anywhere in a level − i grid, we can view du

i as
the distance between two random points in two level− i grid adjoined on a side.
Therefore,

E(du
i) =

√
2

i
R

∫ √
2

0

∫ 1

0

∫ √
2

0

∫ 1

0

√
(x1 − x2)2 + (y1 − y2)2dx1dy1dx2dy2

= c1 ·
√

2
i
R

where R is a constant representing the shorter side length of a level−0 grid. Since
the size lengths of level − i grid are in the ratio of 1 :

√
2, the term

√
2

i
R thus

corrects the computation of integral in any level− i of grid. And c1 is a constant
factor representing the average random distance between two neighboring grids,
as shown in Fig. 5(a), c1 ≤

√
6.

The expected number of hops in forwarding the packet is the expected distance
divided by z, the average progress of each hop, which can be viewed as a function
of the radio transmission range and the node density. Since we assume both as
constants in our model, so is z. Thus,

E(nu
i) =

E(du
i)

z
=

c1 ·
√

2
i
R

z

342 H.-H. Wang and S.-D. Wang

(a) (b)

Fig. 5. (a) Constant c1- random distance between a pair of nodes in two MGLS unit
squares adjoined on a side. (b) c2- random distance between a pair of nodes in two
GLS unit squares adjoined on a side; c3- random distance between a pair of nodes in
two unit squares adjoined on a corner.

Since updates are sent out at a rate of v/(
√

2
i−1 · δ)(δ represents the update

threshold), we have

E(Cm) =
H∑

i=1

v
√

2
i−1 · δ

· E(nu
i)

=
H∑

i=1

v
√

2
i−1 · δ

· c1 ·
√

2
i
R

z

=
c1 ·

√
2 · R

δ · z ·
H∑

i=1

v

=
c1 ·

√
2 · R

δ · z · vH

=
c1 ·

√
2 · R

δ · z · v log N

where H=log N .
As for the Storage Requirement Cost: Cs, remember that the storage require-

ment is defined as the number of location records a node needs to store as a
location server. The average number of records a node stores is the total number
of records stored in the network divided by the total number of nodes. Since
every node has one location server in each level, we have

E(Cs) =
N · H

N
= log N. �

3.4 GLS

The GLS scheme uses a similar multilevel structure of the grid hierarchy as
MGLS. A node A selects three location servers in each level − i square, one in

The Modified Grid Location Service for Mobile Ad-Hoc Networks 343

each level− (i− 1) squares quadrants that A is not in, as shown in Figure 3. An
important difference between GLS and MGLS is the distinct hierarchies of the
grid structure. The same as MGLS, all the location servers need to be updated
periodically in order to ensure freshness of location information and to reduce
the query failure rate. We now prove the following theorem for GLS.

Theorem 2. For GLS, E(Cm) =
(2c2 + c3) · R

z · δ
· v log

√
N ; E(Cs) = 3

2 log N ;

Proof : We first consider the location maintenance cost Cm. According to the GLS
algorithm, all moving nodes update their location servers after the distance of
(2i−1 · δ); at a period of (2i−1 · δ)/v. Consider the expected distances the three
update packets traveled to update the three locations servers in the level − i
square, denoted E(di). We have

E(du
i) = (2c2 + c3) · 2iR, and

E(nu
i) =

E(du
i)

z
=

(2c2 + c3) · 2iR

z
,

where 2iR is the side length of a level − i square, c2 and c3 are two constant
factors representing the average random distance between two points in two
neighboring squares, as shown in Figure 5(b). Simply, we have c2 ≤

√
5, and

c3 ≤ 2
√

2. Since updates are sent out at a rate of v/(2i−1 · δ), we have

E(Cm) =
v

(2i−1 · δ)
·

H∑

i=1

(2c2 + c3) · 2iR

z

=
(2c2 + c3) · R

δ · z
·

H∑

i=1

v · 2i

2i−1

=
(2c2 + c3) · R

δ · z
· 2vH

=
(2c2 + c3) · R

z · δ
· v log

√
N

where H = (1/2) log
√

N , since GLS use a quad-grid partitioning. Finally, since
every node in GLS has three location servers in each level, the expected value of
the storage cost for GLS is,

E(Cs) =
N · 3H

N
=

3
2

log N . �

3.5 Summary of Theoretical Analyses

The analytical results of MGLS and GLS share the same asymptotic costs, as
their designs exhibit the same philosophy. However, the constant factors in the
cost are different. It is obviously that the storage cost of MGLS is smaller than
that of GLS. As for the location update cost, which is usually the dominating
overhead in location services, MGLS are also smaller than GLS since c1 ·

√
2 is

smaller than 2c2 + c3 in the worst case, where c1 ≤
√

6, c2 ≤
√

5, and c3 ≤ 2
√

2.

344 H.-H. Wang and S.-D. Wang

4 Performance Evaluation Using Simulation

This section presents simulation results for both MGLS and GLS. The GLS im-
plementation we used for simulation is that of [17, NS-2 simulation for Grid]. An
outstanding study of GLS’s simulator was presented by M. Kasemann et al.[18].
Our MGLS simulation was implemented by making some necessary modifications
to the GLS simulator.

Simulation Settings. The simulations use CMU’s wireless extensions for the
NS-2 simulator. The radio transmission range for each node is generally acknowl-
edged 250m . The simulations use 2 Megabits per second radios. Each simulation
runs for 300 seconds, during which time, each node generates on average 4 data
packets to other nodes per second. Nodes move according to the random way-
point model. Each time a random target is chosen, a moving speed is selected
between zero and a maximum moving speed, where the maximum moving speed
of the simulation is 30m/s by default. When the node reaches the destination,
it chooses a new destination and begins moving toward it immediately, with no
pause time.

Protocol Constants. All nodes are initially randomly placed across the en-
tire network area. For all the simulation runs, the initial node density is about
100nodes/km2. One reason for this choice is that we intend the system to be
used over relatively large areas such as a campus or municipality, rather than in
concentrated locations such as a conference hall. Therefore, the size of network
area increases linearly with the number of nodes. For a network of 500 nodes in
MGLS, which is the biggest simulation we have done, the grid hierarchy goes up
to level − 7 in a universe of 2800m× 2000m. For both MGLS and GLS, the side
length of a level−0 grid is set to be 250m (in MGLS, it would be 354m×250m).
The location updating threshold is 150m in both schemes.

Performance Metrics. We considered the performance metrics, includeing
average update cost and the qurery success rate [2][15]. In order to have precise
experimental results, we created three levels of traffic loadings in our simulation:
100%, 50%, 10% of N . We make this by giving three distinct bounds (which can
be set in the CBR scenario files) to the number of connections between mobile
nodes. For the case of high loading in the simulation, the number of maximum
connectio ns between nodes is set to be equal to the total number of nodes. The
number of maximum connections equals half the total number of nodes in the
case of medium loading. In the low loading network, the number of maximum
connections is only one-tenth the number of nodes. Each data point in each
of the three levels of traffic loading networks is an average of five simulation
runs. In the results presented below, each data point is an average of the three
scales traffic loadings. The simulations will demonstrate that MGLS fulfills an
impressive balance between designing choice against N and v.

We are interested in the effects of mobility in nodes. High mobility will result
in a significant protocol overhead. Dealing with mobility needs a tradeoff be-
tween the quality of location maintenance and the bandwidth available for data

The Modified Grid Location Service for Mobile Ad-Hoc Networks 345

packets. Aggressive updating can increase query success rate but will occupy the
bandwidth shared with data packets, while loosely location updates may have
an opposite effect.

Protocol Overhead. Figure 6 shows the average location update cost as a
function of (a) the total number of nodes N and (b) maximum moving speeds
of nodes v. The location update cost of MGLS is smaller than that of GLS as
expected in our analysis.

(a) (b)

Fig. 6. Average location update cost as a function of total number of nodes and the
nodes moving speeds

Protocol Performance. Figure 7 shows the query success rate for both two
schemes, as a function of (a) the total number of nodes N and (b) maximum
moving speeds of nodes v. Most query failures are due to stale location infor-
mation stored on the servers. Both schemes maintain quite satisfactory query
success rate, around 90% or above, where the MGLS has a little bit better query
success rate than GLS. This result may be due to the lower overhead associated
with the MGLS.

(a) (b)

Fig. 7. Query success rate as a function of total number of nodes and the nodes moving
speeds

346 H.-H. Wang and S.-D. Wang

5 Conclusions

In this paper, we presented the design and performance of an efficient location
service for mobile ad hoc networks. We also used a theoretical model to ana-
lyze the behaviors of both MGLS and GLS. With an enhanced grid partitioning
scheme and reasonable tradeoffs, MGLS reduces the protocol overheads in com-
parison with GLS. Mathematical analysis and simulation results confirmed the
performance advantages of our scheme. Future work may be aimed at supporting
energy-efficient or quality-of-service (QoS) for discovering routes, where single-
path routing used in both MGLS and GLS.

References

1. M. Mauve, J. Widmer, and H. Hartenstein. A survey on position-based routing in
mobile ad hoc networks. IEEE Network Magazine, p30-39, November 2001.

2. J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable location
service for geographic ad-hoc routing. In Proceedings of ACM MobiCom, p120-130,
August 2000.

3. Z. J. Haas and B. Liang. Ad Hoc Mobility Management with Uniform Quorum
Systems. IEEE/ACM Trans. Net., vol. 7, no. 2, p228-240, Apr. 1999.

4. I. Stojmenovic et al.. A routing strategy and quorum based location update scheme
for ad hoc wireless networks. SITE, University of Ottawa, Tech. Rep. TR-99-09,
September 1999.

5. S. Basagni, I. Chlamtac, V.R. Syrotiuk, and B.A. Woodward. A distance routing
effect algorithm for mobility (DREAM). In Proceedings of the ACM/IEEE Inter-
national Conference on Mobile Computing and Networking (Mobicom), p76-84,
1998.

6. Y.Ko and N.H.V aidya. Location-aided routing (LAR) in mobile ad hoc networks.
In Proceedings of the ACM/IEEE International Conference on Mobile Computing
and Networking (Mobicom), p66-75, 1998.

7. T. Camp, J. Boleng, B. Williams, L. Wilcox, and W. Navidi. Performance compar-
ison of two location based routing protocols for Ad Hoc networks. In Proceedings
of the IEEE INFOCOM, 2002.

8. B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless
networks. In International Conference on Mobile Computing and Networking (Mo-
biCom 2000).

9. The grid project homepage, http://www.pdos.lcs.mit.edu/grid

10. I. Stojmenovic. Position based routing in ad hoc networks. IEEE Commmunications
Magazine, Vol. 40, No. 7, p128-134, July 2002.

11. Taejoon Park , Kang G. Shin. Optimal tradeoffs for location-based routing in large-
scale ad hoc networks. IEEE/ACM Transactions on Networking (TON), v.13 n.2,
p.398-410, April 2005.

12. Y. Xue, B. Li, and K. Nahrstedt. A scalable location management scheme (DLM) in
mobile ad-hoc networks. In Proceedings of the IEEE Conference on Local Computer
Networks (LCN ’01), 2001.

13. Seung-Chul M. Woo and Suresh Singh. Scalable routing protocol (SLURP) for ad
hoc networks. Wireless Networks, 7(5):513-529, 2001.

The Modified Grid Location Service for Mobile Ad-Hoc Networks 347

14. Christine T. Cheng, H. L. Lemberg, Sumesh J. Philip, E. van den Berg, and T.
Zhang. SLALoM: A scalable location management scheme for large mobile ad-hoc
networks. In Proceedings of IEEE WCNC, March 2002.

15. Yinzhe Yu, Guor-Huar Lu, and Zhi-Li Zhang. Enhancing Location Service Scala-
bility with HIGH-GRADE. Dept. of Comp. Sci. & Eng., U of Minnesota, Technical
Report TR-04-002, 2004.

16. Y Yu, GH Lu, ZL Zhang. Location Service in Ad-Hoc Networks: Modeling and
Analysis. In Proceeding of NSF Workshop on Theoretical and Algorithm Aspect
of Ad Hoc Wireless Networks, Chicago, June 2004.

17. NS-2 simulation for Grid, http://pdos.csail.mit.edu/grid/sim/index.html
18. H. Hartenstein, M. Kasemann, H. Fubler, and M. Mauve. A simulation study of

a location service for position-based routing in mobile ad hoc networks. Technical
report, Department of Science, University of Mannheim, TR-02-007, July 2002.

Authentication and Access Control Using Trust

Collaboration in Pervasive Grid Environments

Rachid Saadi1, Jean Marc Pierson2, and Lionel Brunie1

1 LIRIS lab, INSA de Lyon, France
{rachid.saadi,lionel.brunie}@liris.cnrs.fr

2 IRIT lab, University Paul Sabatier Toulouse, France
jean-marc.pierson@irit.fr

Abstract. Pervasive Grids emerge as a new paradigm for providing no-
madic users with ubiquitous access to digital information and comput-
ing resources. However, pervasive grids arise a number of crucial issues
related to privacy and security, especially authentication and access con-
trol, which constitute the security front-end.

In this paper, we propose a trust based model of authentication and
access control that allows nomadic users to roam from site to site and to
gain access to surrounding/remote resources wrt her status in her home
site and to the local policy of the site where she is standing. This model
is supported by a software architecture called Chameleon.

The Chameleon permits users to access grid resources and to implement
adhoc interactions with the local grid site.

1 Introduction

In the last decade, Grid Computing and Pervasive computing have emerged as
two new visions of computing system. Both systems focus on the user accessibil-
ity, offering her a large access to resources, services, and data. The deployment
of these technologies arises new security challenges to perform a nomadic user
authentication and a distributed access control policy [18].

The Grid [1] provides the ability, using a set of open standards and proto-
cols, to gain access to applications and data, processing power, storage capacity
and a vast array of other computing resources over the Internet or distributed
system. A Grid enables the sharing, selection, and aggregation of distributed
resources across multiple administrative domains or organizations based on the
resources availability, capacity, performance, cost and users’ quality-of-service
requirements.

Pervasive computing [2] is the next generation of computing environments
involving information and communication technology. The main purpose of that
technology is to prompt the personal computer to ”everyday” devices where em-
bedded technology and connectivity, as computing devices, become progressively
smaller and more powerful. Also called ubiquitous computing [3], the challenge of
pervasive computing, which combines current network technologies with wireless

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 348–361, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Authentication and Access Control Using Trust Collaboration 349

computing, Internet capability and artificial intelligence, is to create an environ-
ment where the connectivity of devices is embedded in such a way that the
connectivity is unobtrusive and always available.

Either the pervasive computing or the grid computing aims to extend the ac-
cess scope of the user. Thus, according to our conviction, the pervasive security
architecture cannot be deployed without an existing grid and distributed infras-
tructure. Respectively, the grid cannot evolve without a pervasive architecture
entourage. Thus, organizations operate as a grid and constitute the core of the
environment. The Grid is considered as a meta administrator which controls
accessibility and sharing of the set of included resources or services.

Fig. 1. Pervasive Grid

In order to tackle security issues inside a pervasive grid we aim at defining a
generic security architecture, which we called ”The Chameleon Architecture”.

The Chameleon Architecture is grafted around the grid among organizations
as well as between users and organizations. Our architecture considers each no-
madic user as a Chameleon, which has the capacity to become a local user
anywhere anytime with any device. Unlike existing approaches that enabling
broad user access using certification chain and delegation [4] [16], our proposal
perform a distrust mathematical function to compute the user trustworthiness
before giving her a corresponding access.

This paper is organized as follows. Section 2 presents a Pervasive Grid sce-
nario. Next, in section 3 we introduce our proposal the Chameleon architecture,
and show its implementation in the pervasive grid environment. Then we de-
scribe how a foreign user accesses unknown sites in section 4. Finally, we discuss
benefits and conclude this paper along with future directions.

2 Pervasive Grid Scenario

The challenge is to allow each nomadic user to roam and access inside this
environment easily and transparently, by exceeding certain barriers like the het-
erogeneity of the different access policies. Let’s consider the following use case.
Pr Bob is a member of University A. This Professor goes to a conference in

350 R. Saadi, J.M. Pierson, and L. Brunie

University B and then to a meeting in University C. He communicates with the
different surrounding ”objects” including students, professors and resources e.g.
printer, video projector etc. In fact, Bob owns a professional card or conference
badge that defines his status and includes a picture or a fingerprint to identify
his identity. This card or badge allows Bob an access inside these universities
according to a convention or shared collaboration (the same working group).
These Universities do not know the owner of the card, but trust his card.

If we map this scenario in the pervasive grid environment, universities corre-
spond to sites (grid). A certificate simulates the professional card; the fingerprint
or the picture is seen as an authentication system embedded in the certificate.
In this manner, if Bob has the right to attend a conference, according to his
certificate, he obtains a new temporary certificate (like a badge in a conference).
This certificate allows Bob:

– to access authorized resources inside this new site like all other members,
– to share his resources with surrounding authorized local users e.g. make

presentation only to registered lecturer.

In this paper we use the following terms:

– Site: Represents an organization, domain or host that implements a local
independent security policy and is limited geographically,

– Target site ”T”: Represents the site which user likes to access.
– Home site:: Represents the site where user is member.
– Trusted site of ”T”: Represents a site on which ”T” trusts.
– Trust set of ”T”: Gathers all ”T” trusted sites.
– Environment: Is composed by sites like universities, restaurants, posts of-

fice, airports etc.
– Profile: Each user has a profile, depending on the access policies, it can rep-

resent a role (student, doctor) or an access level (trust, distrust, confidential)
etc.

– Certificate: It represents a digital passport of the users. One user owns
some certificates (like professional cards) that prove her membership to each
site.

3 The Chameleon Architecture

The Chameleon architecture represents the backbone to set a security layer inside
a pervasive grid environment. It provides sites and users the ability to perform
authentication and access control policy.

Our architecture identifies two actors: User and Site.
The user has as main characteristics the mobility and the dynamism; she

roams in the environment and uses surrounding or remote resources or services.
The site dubbed as domain or organization represents the entity providing

to the user some services or resources. These pertain to the organization, which
applies inside an access control policy.

Authentication and Access Control Using Trust Collaboration 351

Fig. 2. Chameleon architecture

According to each site the user could have one of these two facets: Local and
Foreign user. The former is recognized as a member of the organization, whereas
the latter is considered as foreigner. With existing security models, she can’t
have any access to any local organization resources.

Our architecture is divided into two parts:

– Chameleon-on-site: Is implemented on each site.
– Chameleon-on-device: Is implemented on the user device.

3.1 The Architecture Description

Chameleon-on-site. It is implemented on the site performing all the interac-
tion and the inter-connection between sites policy. It is composed of four mod-
ules. (S designates Site)

Description Manager Module (S-DMM) : This module represents the environ-
ment by describing its identity (Site Access Descriptor SAD) and its policy (Site
Interface Descriptor SID). The role of S-DMM is crucial, because it represents
the front-end of the site. Thus, according to its description the user can manage
and adapt her device policy.

Certificate Manager Module (S-CrMM) : Like all distributed system [5] [6] [7],
the Chameleon architecture performs a certification mechanism to enhance the
flexibility of the security policy. Indeed the certification model (X509 [8], SPKI
[9]) allows to prove the user rights without home site interference. S-CrMM

352 R. Saadi, J.M. Pierson, and L. Brunie

manages and maintains a system of certification to identify the credential owner
(Credential Authentication) and to generate certificate if needed (Credential
Provider).

Trust Manager Module (S-TMM) : The trust is a fundamental aspect for an
inter-domain relationship [10]. Indeed, to interconnect the pervasive grid com-
munity the ”trust paradigm” is often used. It offers to each site a dynamic system
to evaluate the surrounding trustworthiness environment even further.

Access control Manager Module (S-AcMM): This module is generic, it doesn’t
modify the local access control policy and must be suitable with many access
security model (RBAC [13], MAC [12], DAC [11]) without modifying the lo-
cal policy behavior. Indeed, this module implements a mapping approach which
grants to an authorized foreign user a local access profile according to her cer-
tificate (Mapping Policy). Furthermore, The S-AcMM can help authorized users
to manage their own devices policy (Resources Access control Generator RAcG)
according to target site characteristics.

Chameleon-on-device. A part of our architecture is installed into the user
device; it is composed of three modules (D designates Device): Context Manager

Module D-CxMM: In the pervasive environment, the context paradigm is critical.
The user device policy must be convenient to context such as: device type, user
practice, environment etc. This module describes the context of the user (User
Context) and undertakes discovering the surrounding environment (Environment
Context).

Credential Manager Module D-CrMM: According to the context manager,
this module takes charge of selecting and adapting a corresponding credential
from the certificate repository (Credential Context Adaptation) according to the
specific connection with a target site or a user.

Access control Manager Module D-AcMM: Once the user is connected and
identified by the environment, if she wants to share her resources, this module
provides the means to control (Resources Access Control Policy), parameterize
and customize (Sharing Resources Requestor) her own device policy.

In order to build a security architecture, which connects the mobile user to
the pervasive grid community, thus providing authentication and access control,
we identify this challenges.

Each user wants to interact with some resources of surrounding sites. The
challenge is how each target site can recognize, evaluate the trustworthiness and
give then an access to this unknown foreign user?

4 How Foreign User Accesses Unknown Site?

Our Architecture allows user to authenticate on a remote site and to assign
access inside the environment without being locally recognized. Our proposal is
based on a ”Trust Model” using a new certification mechanism ”X316” [14].

Authentication and Access Control Using Trust Collaboration 353

4.1 Requirements

Trust Relation: Once Bob is authenticated, the site A attempts to assign him
a profile according to the certificate issuer. So, a trust model must be defined
to enable all organizations (Grid) to communicate and share some information
about their members. We define a trust relation to interconnect the grid com-
munity, offering to each site a means to evaluate its surroundings. Let S denote
a set of sites. Let A and B two sites, A ∈ S, B ∈ S. If A trusts B then we say
that the relation Trust is verified between A and B and we note ”A Trust B”.
This relation is reflexive, symmetric and transitive.

Trust Evaluation: This property is fundamental for the effectiveness of our
proposition. It allows defining ”trust chains” between sites that do not know
each other (see below).

Based on the Trust relation, we introduce the distrust function t0 [17], to
estimate the level of (dis)trust between two sites.

Distrust function. We call distrust function and we note t0, the function de-
fined as:

t0 : S ∗ S → N S: Set of sites
(A, B) → d N: Set of natural numbers

t0(A, B) =
{

−1 if¬(A Trust B)
0 ≤ d ≤ T 0

A otherwise

where d represents the distrust degree and T 0
A denotes the distrust threshold

of the site A.

This function quantifies the degree of distrust that the site A shows wrt the
site B. When t0(A, B) increases, the distrust increases (i.e. the trust decreases).
As consequences :

– t0(A, B) = 0 : Any site has a complete trust in itself.
– t0(A, B) < t0(A, C) : Means that the site A has a higher trust in B than in

C.

The distrust threshold represents the maximum level of distrust beyond which
A does not trust B (i.e. the relation A Trust B is not verified).

A feature of the distrust function is the use of the value -1 to denote the fact
that a site does not trust another site. Indeed, as the distrust degree can range
a priori from 0 to any positive number, there is not a priori superior limit value.
Consequently it is necessary to introduce and use a symbolic value to state that
a site does not trust another one. We could have chosen ∞ or ⊥ but for easiness
of computing reasons, -1 is more convenient.

The distrust function shows properties related to the properties of the Trust
relation.

354 R. Saadi, J.M. Pierson, and L. Brunie

Properties of distrust degree:

– Self trust: ∀A ∈ S, t0(A, A) = 0
– Non-commutativity: ∃A, B ∈ S/t0(A, B) = d1 ∧ t0(B, A) = d2 ∧ d1 �= d2
– Composition: Let A, B, C 3 sites. The composition of the distrust degrees

t0(A, B) and t0(B, C), noted t0(A, B) ⊕ t0(B, C) is defined as:

t0(A, B)
⊕

t0(B, C)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1 if(t0(A, B) ∨ t0(B, C)) = −1

t0(A,B)
+

t0(B,C)
otherwise

Generalization: Trust chains
The composition of distrust degrees is generalized to n sites by composing two
by two the distrust degrees:

t0(A1, ..., An) = t0(A1, A2) ⊕ ... ⊕ t0(An−1, An)
(A1, ..., An) is called a trust chain.

Notation: Distrust propagation function:
Let A and C 2 sites of S; let B1...Bn n sites of S.
Let us note T = (B1, ..., Bn)
We note P 0

T (A, C) and we call distrust propagation degree between A and C
based on T the value:

P 0
T (A, C) = t0(A, B1, ..., Bn, C).

Property: P 0
φ(A, C) = t0(A, C)

Theorem: P 0
φ(A, C) = −1 ⇔ ∃F, G ∈ (A, B1, ..., Bn, C)/t0(F, G) = −1.

Proof : trivial by application of the definition of t0 : The composition of distrust
degrees equals -1 if and only if one at least of the distrust degrees equals -1.
Indeed, this distributed system can be seen as a Trust graph noted Tg(S, E) a
valued and directed graph such that:

– The nodes of the graph represent the sites of S.
– Each Trust relation between two sites is represented by a directed edge e.

The set of edges is consequently identified with the set of relations, E.
– Each edge is valued by the distrust degree between the sites represented by

the source and destination nodes of this edge (use of the t0 function).

A Certification Model: Actually, all distributed systems use a certification
mechanism to enhance the system flexibility and dynamism. Indeed, the user
become more autonomous and can authenticate and proves her rights. In the
Chameleon architecture we define a new format for certificate called X316:

Authentication and Access Control Using Trust Collaboration 355

Morph Access Pass Certificate. This format facilitates creating any sort of cer-
tificates or credentials e.g. Attribute certificate, Role certificate etc. This ”X316”
works as a pass, allowing its owner to roam and gain access in the environment.

This certificate mainly testifies the user profile (status or access level) and
rights in a Home/Trusted site. If the user wants to access a particular target
site, her device selects one of her certificates, which is recognized by this one.

Our contribution has an objective to define a very flexible model of certifica-
tion. It is inspirited by the W3C standards: ”XML Digital signature”(XMLDSig)
[19] and ”XML Encryption” (XMLEnc) [20]. The X316 is designed for nomadic
user. Indeed, unlike all certification system, the same X316 certificate can be
used and authenticate from various devices with different capacity and charac-
teristics, and can be generated dynamically along to user trip. In fact, by defining
specific tags to delimit the dynamic parts, this certificate acquires the capability
to transform and to morph easily its content according to context, situation, and
environment.

Therefore, the X316 fulfills three constraints:

– Format Flexibility.
– Multi authentication.
– Contextual adaptation.

X316 could be obtained by two different ways:

– Each site gives a Home Certificate or H316, to all its members.
– Each site gives a Trust certificate or T316, to a guest, when it trusts her

Home Site.

Fig. 3. X316 Type

As illustrated in the figure 3, the X316 is composed by:

– The header: It identifies the certificate.
– The right: It is a variable part of a certificate, depending on the site policy.

This part contains information about user rights, such as status or access
level in a Home/Trusted Site (certifying site). The use of this profile is orig-
inal. Indeed, unlike other systems of certification that certify an access to
particular resources, this one certifies the profile that represents all autho-
rized access to site resources.

356 R. Saadi, J.M. Pierson, and L. Brunie

– Authentication: This part permits one to identify the owner of the X316.
Authentications are numerous, and related to the variety of devices used
in the pervasive environment (PDA, mobile phone, terminals). Facilitating
certificates authentication could be fulfilled by embedding some identifica-
tions (picture, fingerprint etc.) according to device capabilities and the site
security policy.

A Context Description: All standards e.g X509, PGP use a hash algorithm
to obtain a residual value from the certificate data. This value is signed by the
private key of the certification authority. Consequently if the content of the
certificate is modified, the residual result will be erroneous. In this case, the
users can’t adapt her certificate by masking any information inside.

In our approach, we use a single certificate that mainly contains the user pro-
file, all user access rights and some authentication systems. Yet we define in this
model a specific signature method (X316 signature), using specific tags. In fact,
using dictionary ontology and a learning mechanism, the certificate structure
can morph according to user and environment context (X316 context). Thus,
the certificate owner can freely mask some information. In this manner the user
device extracts a sort of sub-certificate (credential) from the original one, which
only contains the essential information for each specific transaction or context.

Mapping Policy: The main feature of our approach is to append an additional
security component without modifying the local policy behavior. So, each site
defines some local profiles, which can be attributed (externalized) to trusted
foreign users. In the aim to assign to foreign users the adequate profile, a mapping
policy is implemented to correspond each user home profile to an analogous one.
The mapping process can be adapted according to some constraints such as user
profile, user context, home user trustworthiness, etc.

4.2 Chameleon Behavior

Selecting and morphing a certificate. The context manager (D-CxMM) of
Bob device scan the surrounding environment and collects needed information
to inform the user context. Then, according to the target site A, the ”Credential
Manager” selects a valid credential according to ”A” identity (Hospital, uni-
versity, airport etc.) and the user context (device, type of connexion...). Thus,
the ”Credential Authentication” Component uses the generated credential to
identify its owner by selecting one authentication process from the credential
authentication part (challenge response, biometric etc.)

Evaluating the user trustworthiness. The core of the system works as a
trust graph. In fact, when the user Bob comes to a target site, this one explores
the graph (by asking its trusted site) to evaluate and recognize Bob home site
”H”. Once H is recognized, a trust chain is created between the target site ”T”
and the trusted site ”D”. This chain can be evaluated in two directions.

As illustrated in the figure 4, the first path which starts from the target site
”T” to the trusted site ”D” (trusted site of the Bob’s home site) allows D to

Authentication and Access Control Using Trust Collaboration 357

Fig. 4. Trust propagation

return to Bob its evaluation about ”T” ; the second path which is the inverse of
the first one gives to the target site a trust evaluation about the foreign user’s
home site.

– First path evaluation (Target Site Request): Since the trust chain is built, a
trust evaluation is performed while the chain is propagated. Consequently,
when the last trust site ”D” is retrieved, it evaluates and computes the target
site trustworthiness P 0

C,B,A(D, T) .
However, the main challenge of pervasive environment is the fluency of

the interaction between the environment and the user. Indeed, when the
last trusted site computes the final trust propagation value, it returns its
assessment (e.g. P 0

C,B,A(D, T) = 23) of path. The problem is: How the user
can interpret this value ’23’?

To help user, we define a classification based on human living, by using
the Highway Code. These colors have an intuitive signification to the user,
as following:

• Green : Very safe site
• Orange : Safe site (warning)
• Red : Less safe site (not recommended)
• Black : Unsafe site

Thus, before sending the P 0
C,B,A(D, T) to concerned user, the trusted site D

implements a function ”F” to compute the corresponding color ”col” form
the trust value. For confidentiality and no repudiation, the ”col” value is
ciphered, signed with the private key of the site C, and sent back with the
response to ”D”. Consequently, only the user can read ”col” and verify its
authenticity.

Once the user receives the ‘col’ Value, she could recognize the D trust-
worthiness about the target site. Furthermore, as illustrated in the figure
5, by combining the ”col” value and the user home site trust evaluation for
each trusted site (TScol), the user computes a more precise Trust Path Eval-
uation TP(col, TScol). In fact, each site classifies its trusted sites into three

358 R. Saadi, J.M. Pierson, and L. Brunie

Fig. 5. User Trust Path evaluation ”TP”

groups: Red, Orange and Green, and defines for each group a specific pair
of keys(Public and Private). Therefore, each trusted site signs the computed
trust value with the group private key before replying to target site.

Consequently, according to the used key:

• the user is sure that the given access is initiated by a trusted site since
only a trusted site can use one of home site group key.

• the user can identify the corresponding ”TScol” of the trusted site, since
each color corresponds to a group key.

– Second path evaluation (Trusted Site Response): The evaluation of this path
(P 0

B,C,D(A, H)) permits the target site to decide if a ”foreign” user can be
allowed to access target site resources (e.g. to decide if a user having no
account within the system can get log in). Thus, we consider two kinds of
access: Direct access and Transitive access.

• A direct access is provided by a target site to all users registered by
its trusted sites e.g. site A. This direct access is assessed by the trust
value. In fact, as illustrated in the figure 4, the target site endeavors to
recognize this foreign user. A direct access is given if this foreign user is
member of the target site trust set. Otherwise the target site investigates
the closest trusted site about the user’s home site.

• A Transitive access can be provided by a target site (Site T) to a user
who does not belong to its trusted sites (e.g. Site B,C or D) on condition
that it exists a (positive) trust chain between one of the user’s home
sites and ”T”. This transitive access is valued by a computed trust value
between these two sites (as before, in case of the existence of several
possible chains, the target site is responsible for choosing the reference
chain).

Therefore, this model, using the community collaboration, enables the target
site to evaluate the user according to her home site. Moreover the context
(user device, communication protocol...) can be used to increase or decrease
the new user rights.

Attributing an access profile. Once a user is allowed to access the site T, the
latter attributes her an analogous profile using the mapping policy. Consequently,

Authentication and Access Control Using Trust Collaboration 359

this new profile defines all user access rights inside the target site. Indeed, a
mapping policy must be defined in order to give each foreign user an analogous
profile (A-Profile). Each site creates a mapping table that enables matching
between the different profiles of trusted sites and its local ones. For example:
User Bob, having an access profile as level 5 in his home site, wants to access
the site T, which provides Bob a new access level for instance, level 3 (it is T
responsibility to map the original level accordingly with its local policy). Further
works in this mapping policy is not part of the presented work.

5 Implementation and Discussion

A demonstrator has been implemented to illustrate the Chameleon architecture
behavior. This demonstrator allows the user to roam inside three universities,
her home university (using Username and Password), and two other universities
(using M316 and T316).

The user enters her home university U0 and claims an M316. She uses this
M316 and accesses university U1, who trusts U0. When the user is allowed to
access U1, she can claim another T316. Finally, this one provides a user an access
to U2, thanks to the trust that is given by U2 to U1.

Fig. 6. The demonstrator

The generated X316 embeds three authentications: Two remote (Public keys
512 and 1024) and one local (using an Infrared connection with a mobile phone).

The authentication system uses the challenge response mechanism for remote
authentication. Each user is authenticated by signing the challenge with corre-
sponding private key to one of public keys in the X316. However the local authen-
tication is fulfilled in the following process: The user captures a picture with her
mobile phone, then sends it trough infrared connexion. Afterward, she attached a
password to this picture. Finally, the site embeds the hash function generated by
this authentication as an authenticator. In the same way, when the user wants to
authenticate her certificate in the trusted site, she sends, by infrared connection,
the photo and introduces an associated password to authenticate it.

360 R. Saadi, J.M. Pierson, and L. Brunie

The main constraint of our architecture is illustrated mainly by difficulties
arisen while managing relationship among organizations (sites) and applying
the mapping policies. In fact, an organization, having a trust relationship with
other organizations, must validate and value relations manually (semi-manually)
by the administrator. However, each organization has a trust relationship with
only a few other organizations, and it builds this relationship only once. When
the relationship is validated and the Mapping DB created, the system becomes
standalone. The mapping policy is applied in the site set which generally uses a
similar policy e.g., RBAC, MAC, DAC. For example: In a medical community,
it is probable that roles such as ”Doctor”, ”Nurse” or ”Patient” exist in all
organizations, allowing for an easy mapping through the community.

6 Conclusion

The Chameleon architecture allows the user to roam transparently in an en-
vironment simply by using her certificates. The Chameleon using the X316
presents a number of advantages. Indeed, it consists in a decentralized archi-
tecture since each site, knowing only its neighbors, can perform a large but con-
trolled access to user communities. Chameleon reduces the human interaction
where many security management functions can be processed dynamically. In
addition, Chameleon increases the user rights along her trip without modifying
the local site policy.

However the challenge is to perform an efficient and generic HMI providing to
user a very usual interface to express her security requirements. As future works,
we investigate to define a platform that provides integrating specific services to
define any site environment. And for fluency, we will integrate our team works on
context description [15] to X316 giving the user device the capacity to manage
and adapt the certificate dynamically with respect to context without soliciting
any user intervention.

References

1. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 1999.

2. M. Satyanarayanan . Pervasive Computing: Vision and Challenges. IEEE Personal
Communications journal, pages 10-17. Aug 2001.

3. N. Shankar, W. Arbaugh. On Trust for Ubiquitous Computing. Workshop on Se-
curity in Ubiquitous Computing, Sep 2004.

4. L. Seitz, J.M. Pierson and L. Brunie. Semantic Access Control for Medical Ap-
plications in Grid Environments. A International Conference on Parallel and Dis-
tributed Computing, pp374-383, Aug 2003

5. G. Aloisio, M. Cafaro, P. Falabella, K Kesselman and R. Wiiliams, Grid Computing
in the Web Using the Globus Toolkits. Editor HPCN Europe, pp 32-40, 2000.

6. D. Chadwick and A. Otenko. The PERMIS X.509 Role Based Privilege Manage-
ment Infrastructure. In Proceedings of the 7th ACM Symposium on Access Control
Models and Technologies, pages 135140, Jun 2002.

Authentication and Access Control Using Trust Collaboration 361

7. M. Lorch, D. Adams, D. Kafura, and al. The PRIMA System for Privilege Man-
agement, Authorization and Enforcement. In Proceedings of the 4th International
Workshop on Grid Computing, Nov 2003.

8. ITU-T Rec. X.509 (2000). ISO/IEC 9594-8 The Directory: Authentication Frame-
work

9. ITU-T Simple public key infrastructure (SPKI) charter, http://www.ietf.org/
html.charters/OLD/spki-charter.html.

10. A. Abdul-Rahman and S. Hailes. A Distributed Trust Model. In proceedings of the
ACM Workshop on New Security Paradigms, pp48-60, sep 1997.

11. M. H. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in Operating Systems.
Communications of the ACM, 19(8):461-471, 1976.

12. D. E. Bell. A Refinement of the Mathematical Model. Technical Report ESD-TR-
278 vol. 3, The Mitre Corp., Bedford, MA, 1973.

13. R. Sandhu, E. J. Coyne, H. L. Feinstein, and al. Role-Based Access Control Models.
IEEE Computer, 29(2):38-47, 1996.

14. R.Saadi, J. M. Pierson and L. Brunie.X316: Morph Access Pass certificate. Tech-
nical Report, INSA de Lyon France. 2006.

15. T. Chaari, D. Ejigu, F. Laforest , M. Scuturici.Modeling and Using Context in
Adapting Applications to Pervasive Environments, In the Proceedings of the IEEE
International Conference on Pervasive Services (ICPS’06), Pages 111-120, Lyon,
France, Jun 2006

16. J. Basney, W. Nejdl, D. Olmedilla, V. Welch, and M. Winslett. Negotiating trust
on the grid. In 2nd WWW Workshop on Semantics in P2P and Grid Computing.
may 2004.

17. R. Saadi, J. Pierson, L. Brunie. (Dis)trust Certification Model for Large Access in
Pervasive Environment. JPCC International Journal of Pervasive Computing and
Communications. Volume 1, Issue 4. pp 289-299. oct 2005.

18. N. Sklavos and O. Koufopavlou. Mobile Communications World: Security Imple-
mentations Aspects - A State of the Art. CSJM Journal, Institute of Mathematics
and Computer Science, Vol. 11, Number 2 (32), pp. 168-187, 2003.

19. T. Imamura, B. Dillaway and E. Simon. XML-signature syntax and processing.
In W3C Recommendation. Dec 2002. http://www.w3.org/TR/2002/REC-xmlenc-
core-20021210/

20. M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon. XML-encryption syn-
tax and processing. In W3C Recommendation. Feb 2002. http://www.w3.org/
TR/2002/REC-xmldsig-core-20020212/

http://www.ietf.org/html.charters/OLD/spki-charter.html.
http://www.ietf.org/html.charters/OLD/spki-charter.html.
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http:/www.w3.org/TR/2002/REC-xmldsig-core-20020212/

Architecture-Based Autonomic Deployment
of J2EE Systems in Grids

Didier Hoareau1, Takoua Abdellatif2, and Yves Mahéo1

1 Valoria, University of South Brittany, France
{didier.hoareau,yves.maheo}@univ-ubs.fr

2 ENISO, University of Sousse, Tunisia
takoua abdellatif@yahoo.fr

Abstract. The deployment of J2EE systems in Grid environments remains a dif-
ficult task: the architecture of these applications are complex and the target en-
vironment is heterogeneous, open and dynamic. In this paper, we show how the
component-based approach simplifies the design, the deployment and the recon-
figuration of a J2EE system. We propose an extended architecture description lan-
guage that allows specifying the deployment of enterprise systems in enterprise
Grids, driven by resources and location constraints. With respect to these con-
straints we present a deployment process that instantiates propagatively the ap-
plication, taking into account resources and hosts availability. Finally, we present
an autonomic solution for recovery from failures.

1 Introduction

Grid environments have moved from the mere aggregation of computational resources
dedicated to parallel and scientific applications to more general sharing of networked
resources. The kind of Grids we consider in this paper can be seen as a set of hetero-
geneous machines interconnected by links of various capacities. Moreover a number of
factors impacting the dynamism of the system (machine crashes, user disconnections,
system failures etc.) cannot be neglected. Such Grids become attractive to multi-tier In-
ternet service providers who want to improve the quality of service they offer. For this
reason, many recent research works aim at finding the best models and techniques to ex-
ploit the Grids for better performance and high availability (e.g. [1,2]). However, these
works concentrate more on finding models and proving their effectiveness and do not
propose efficient solutions automating the deployment and the recovery from failures of
enterprise middleware and applications. Such features are very important and are still
challenging in the context of interactive applications. Indeed, unlike scientific parallel
applications whose parts can be independently deployed and executed, multi-tier mid-
dleware and applications are composed of interdependent pieces of software that have
to coexist at execution time. Furthermore, the failure of one part of the enterprise system
may involve service discontinuity or performance degradation. Recovering the system
architecture, as initially defined at deployment time, is very important to preserve the
agreed quality of service.

In this paper, we propose a solution for deploying enterprise systems in Grids and
automating the recovery from failure of parts of the system. To achieve this goal, we

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 362–373, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Architecture-Based Autonomic Deployment of J2EE Systems in Grids 363

consider a J2EE system that we call a virtual cluster, similar to a classical J2EE cluster
in that EJB and Web containers are replicated for backup fault-tolerance considerations.
We believe that our solution is applicable to other models and other configurations of
multi-tier Internet applications on wide-area networks, and it can be of interest to re-
searchers in this field to easily experiment their different models on Grids and for ser-
vice providers to easily handle an important number of clients. Our approach consists
in applying an architecture-based deployment [3] and in automating the management
of distributed systems. The idea is to abstract the managed system into an assembly
of explicitly bound components and to use these components as units of configura-
tion, deployment and reconfiguration. We adopted this approach for J2EE systems in
a previous work—in classical cluster environments—by re-engineering an open source
application server [4]. The re-engineering work consists in transforming the server parts
into explicitly connected components. With the same component model, Fractal [5] in
our case, we also represent the underlying resources like the nodes of the Grid. An
ADL (Architecture Description Language) permits the description of the different parts
of the distributed system, their configuration and their relations in terms of bindings
and encapsulation. Finally, a deployment engine allows automating the deployment of
the J2EE system using its description on the cluster targets. Compared to J2EE clusters,
Grids are highly distributed, heterogeneous and dynamic. For this reason, our deploy-
ment system needs to be extended to manage virtual clusters within the Grid constraints.
In this paper, we demonstrate the extension of the Fractal ADL to describe the compo-
nent resources, a resource allocation mechanism and a solution for an automatic recov-
ery from failures.

The layout of this paper is the following. In Section 2, we present more in details the
context of our work and the main underlying assumptions. In Section 3, we describe
our deployment process and its resource allocation service. We detail the current state
of our implementation and some first results in Section 4. Section 5 discusses related
work. Finally, Section 6 concludes the paper and identifies future work.

2 Context and Main Assumptions

2.1 J2EE System Configuration and Deployment

J2EE application servers are complex service-oriented architectures. In a previous work,
we demonstrated that solving the deployment of J2EE applications requires that the in-
ternal software architecture of the J2EE server, in terms of the services that compose
it and their various interaction and containment dependencies, be made explicit and
modifiable at run time [4]. Indeed, the configuration of the system and its deployment
parameters have to be described using the elements of the system’s architecture. This
description can then be used as a basis to implement and automate different deployment
and reconfiguration policies. This is what is generally called architecture-based man-
agement [3]. For this purpose, we created JonasALaCarte, obtained by re-engineering
the JOnAS (Java Open Application Server1) open source application server using the
Fractal component model [5].

1 http://jonas.objectweb.org

364 D. Hoareau, T. Abdellatif, and Y. Mahéo

Thanks to a componentization of the server itself, where all the services are en-
capsulated into Fractal components, the architecture of the server is explicit. Both the
hardware and the software entities are represented by components.

2.2 Deployment in a J2EE Cluster

Building a J2EE cluster consists in replicating the Web and EJB tiers for load balancing
and fault tolerance. A front-end load balancer (generally a HTTP server like Apache)
dispatches the HTTP requests to the containers. A group communication system allows
the consistency between stateful data hosted in the containers to be maintained. In order
to deploy a clustered JonasALaCarte, the administrator has to produce an architecture
descriptor (written with an ADL) together with a deployment descriptor. The first one
defines the architecture of JonasALaCarte as a set of interconnected components and the
second one exhibits the resource requirements of each component. The instantiation of
this description allows the application server components to be configured and deployed
on the target machines in an automated manner. Unlike in current JOnAS clusters, the
unit of replication in JonasALaCarte is the service component and not the whole server.
This selective replication is important since the EJB containers and the Web containers
are generally execution bottlenecks and we need more replicas for these services than
for other ones (Registry service, Transaction service, etc).

Figure 1 presents an example of an architecture for a J2EE clustered application
server. Notice that we abstract the deployment and the configuration of an application
server cluster into the uniform handling of Fractal components. Besides, a cluster con-
figuration is just a particular configuration of the application server where components
are distributed and replicated (represented in greyed boxes) on different JVMs. The
same management tools are used to manage a stand-alone server in a single JVM and
to manage a cluster of servers.

Fig. 1. Component-based view of JonasALaCarte in a cluster environment

2.3 From J2EE Clusters Management to Virtual Clusters Management

We call a virtual cluster a J2EE system having the same configuration as a classical
cluster (a front-end load balancer, a set of replicated containers and a group commu-
nication system for stateful data replication) but deployed in a Grid. By defining the

Architecture-Based Autonomic Deployment of J2EE Systems in Grids 365

number of replicas and the configuration of the services, the virtual cluster can repre-
sent different deployment models in wide-area networks. In this paper, we consider that
our Grid system is composed of different zones; each zone groups a set of machines
geographically close. Moreover, for each zone, some particular machines are well iden-
tified and are made public (on a Web site for example). We call zone managers these
machines because they contribute in the deployment process.

Unlike a J2EE cluster, a Grid environment is highly distributed and are heteroge-
neous in terms of software and hardware configurations. Resource allocation is conse-
quently a complex task. Grid machines are more dynamic either because they belong to
end-users that frequently join and leave the Grid or because they are shared with other
dynamic applications. However, if a machine involved in the execution of a multi-tier
application leaves the system, a service discontinuity or a performance degradation may
be induced leading to disastrous economic consequences. In front of these limitations,
we identify the following requirements:

– Resource allocation should be automated. Each component has to explicitly de-
fine its required resources and the deployment system has to automatically find the
appropriate target machine offering necessary resources for each component.

– Each variation in the Grid machines involved in an application execution has to
be systematically detected and recovered. Indeed, in order to maintain the agreed
quality of service, the configuration of the J2EE system has to be preserved. If the
unavailable component is not replicated, its recovery allows ensuring the service
continuity. In some cases, the service continuity is ensured thanks to the replication
of the leaving component, like for containers. If the replica is a simple backup, this
component needs to be replaced in order to preserve the fault-tolerance degree of
the system and if the replica is involved in the load balancing, it also needs to be
replaced to preserve the same level of performance.

3 Virtual Cluster Deployment System

In order to deploy a J2EE server system in a network such as the one described in Sec-
tion 2.3, we cannot rely on a total knowledge of the different machines: this is hardly
feasible as the size of a zone is important and as they are heterogeneous. Moreover,
some machines—that were disconnected when the deployment was launched—can en-
ter the network. Thus, traditional approaches, consisting in defining a target machine
for each component of the application to be deployed, are not feasible in our context.
We propose an extension to existing ADLs (xAcme2, [6]) that allows the description of
the resource properties that must be satisfied by a machine for hosting a specific com-
ponent. In our approach, it is no more mandatory to give an explicit name or address
of a target machine: the placement of components is mainly driven by constraints on
the resources the target host(s) should satisfy. Then, we use the description of the archi-
tecture and the deployment specification to define a deployment of a J2EE system in a
zone: installation and redeployment of the component are made in an automatic way.

2 http://www-2.cs.cmu.edu/ acme/pub/xAcme

366 D. Hoareau, T. Abdellatif, and Y. Mahéo

In the following we present the general deployment algorithm in two steps. First, we
describe the deployment process that allows the parts of the application to be deployed
in a propagative way. Then, we present the mechanisms we have implemented to handle
failures of the machines and of the different parts of the system.

3.1 Deployment Specification

In order to specify the deployment of a J2EE system, we define two descriptor files
written with FractalADL. The architecture descriptor contains the architecture of the
system in terms of component definitions (their name, their client and server interfaces,
their implementation) and component interactions (the bindings between components).
The other descriptor, named deployment descriptor, contains, for each component, the
description of the resources that the target platform must satisfy and references to com-
ponent instances (defined in the architecture descriptor).

In the deployment descriptor a deployment context is defined for each component.
Such a context lists all the constraints that a hosting machine has to verify. There are two
types of constraints that can be defined in a deployment context: resource constraints
and location constraints. Resource constraints allow hardware and software needs to be
represented. Each of these constraints defines a domain value for a resource type that the
target host(s) should satisfy. With location constraints some control on the placement
of a component can be defined when more than one host applies for its hosting.

Figure 2 shows the deployment descriptor associated with the J2EE system repre-
sented in Figure 1 (Some repeated parts have been omitted). This descriptor contains
the resource constraints associated with every component (e.g. lines 10–17: EJB con-
tainer ejb1 has to be installed on a host that have at least 512 MB of free memory) and
location constraints, that indicate the co-location of some components (e.g. lines 45–47:
transaction service component transac1 must reside on the same host as the configura-
tion manager, for example because they share local resources). We can also control the
location of a component according to the bandwidth of the network: lines 51–53 spec-
ify that the bandwidth between the machines hosting component web1 and the others
machines must be greater than 150 Mb/s).

For both performance scalability and high availability, each tier can be replicated.
However, we should not require that all replicas be started at the same time. What is
usually desired is to activate as soon as possible the Internet application when an EJB
container is deployed and a Transaction Service is available. The other replicas, mainly
used for performance, can be deployed later as soon as necessary resources become
available. For this purpose, we have added a cardinality attribute to the description of a
component’s interface. This attribute takes the form of a couple of values that specify
the minimum and the maximum number of bindings allowed through the interface.

3.2 Deployment Process

As stated in section 2.3, dedicated machines—the zone managers—are defined for each
zone. A given zone manager has two roles: (1) Maintaining a list of the machines in a
zone and (2) orchestrating the deployment process in the zone.

We consider in this section a single manager per zone. The address of this manager is
maintained on an already known site. A machine joining a zone gets the zone manager

Architecture-Based Autonomic Deployment of J2EE Systems in Grids 367

Fig. 2. Deployment descriptor of JonasALaCarte

address and sends a presence notification message. The zone manager adds the newly
connected machine in a list. The case of multiple zone managers, necessary for fault-
tolerance, will be detailed in section 3.3.

The first step of the deployment process consists in sending the ADL files of the J2EE
system to deploy to the zone manager (whose identity has been obtained beforehand
by the administrator, from a given web site for example). As soon as the deployment
descriptor is received by the manager, the deployment tasks are performed as follows:

1. The manager multicasts the deployment and architecture descriptors to all the zone
nodes that are connected. The deployment descriptor contains resource and location
constraints, and the identity of the manager.

2. Having received the deployment and architecture descriptors, each node checks the
compatibility of its local resources with the resources required for each component.
If it satisfies all the resource constraints associated with a component, it sends to
the manager its candidature for the instantiation of this component.

3. The manager receives several candidatures and tries to compute a placement solu-
tion in function of the location constraints and the candidatures. In the case there is
no location constraint associated with a component, the first candidate is chosen.

4. Once a solution has been found (or if a candidate has been chosen in the previ-
ous step), the manager updates the deployment descriptor with the new placement
information and broadcasts it to all the zone nodes.

5. Each node that receives the new deployment descriptor updates its own one and is
thus informed of which component it is authorized to instantiate and of the new
location of the other components.

6. The final step consists in downloading necessary packages from well defined pack-
age repositories. The location of these repositories is defined in the deployment
descriptor (not shown in the example for sake of clarity). For the components that
are instantiated locally, their client interfaces (if any) must be bound to remote com-
ponents. When the remote component possesses a constrained cardinality, a request

368 D. Hoareau, T. Abdellatif, and Y. Mahéo

is sent to the corresponding machine in order to know if a binding is possible. If the
addition of a new binding is accepted at the server side and when a positive answer
is received, the binding is achieved with the remote reference hold in the answer
message. Besides, the number of incoming and outgoing binding is updated.

The above steps define a propagative deployment, that is, necessary components
for running J2EE applications can be instantiated and started without waiting for the
deployment of all the components in the ADL descriptor. As soon as a resource become
available or a machine offering new resources will enter the network, candidatures for
the installation of the “not yet installed” components will be sent to the zone manager,
making the deployment progress.

When a new deployment descriptor is received (step 5) the binding establishment
described at step 6 can also be made if the deployment descriptor contains new infor-
mation on the location of some components that have to be bound with some already
(locally) deployed components.

Let’s consider an example of resource constraint. The constraint alldiff in the deploy-
ment descriptor (lines 48–49) indicates that the three EJBContainer must reside on three
distinct hosts. In order to resolve this constraint, a machine must at least have the infor-
mation of three machines that can hosts each one an EJBContainer. Thus, by collecting
candidatures (step 3), the zone manager may decide on the placement of component
provided there exists a combination of candidatures that solves the location constraints.

We can notice that in this deployment process: (1) the host selection of a component
is made by the zone manager; (2) the instantiation of a component is achieved by the
host selected by the zone manager; (3) the bindings needed by a component are initiated
by the machine hosting it; (4) the activation of a component can be made as soon as its
client interfaces are bound. Note that in our case, the activation of the container com-
ponents (i.e. EJB and Web containers) involves the activation of the J2EE application
running inside.

3.3 Automatic Recovery from Failures

In the environment we target, resources can also become unavailable (e.g. the amount
of free memory demanded may decrease and become not sufficient), some parts of the
J2EE system can be faulty, some machine may fail etc. In this paper, a failure can be
due to a hardware crash of a machine, a disconnection from the network or a software
bottleneck. This last case constitutes a failure of a component.

Failure of a component. The recovery of a component and thus its redeployment con-
sists in sending to the zone manager a message holding the identity of the component
to redeploy. This is done by the machine hosting the faulty component (The failure,
i.e. the non-responsiveness of the component, is detected through a probe associated
with a control interface of the component.). Then, the zone manager updates the de-
ployment descriptor by removing the location of the component and broadcasts the new
descriptor to all the machines connected in the zone, automating the redeployment of
the faulty component. Indeed, for all the machines, a component remains undeployed
(i.e. it has no location), thus, they find themselves back in the propagative deployment.

Architecture-Based Autonomic Deployment of J2EE Systems in Grids 369

The phases of local evaluation of the resource constraints and the announcement of
candidatures will go along.

When a component fails, it is important to consider its state. If the component is
replicated, like the EJB container and the Web container services, the stateful data are
automatically sent to any replica added to the group. This ensured by the group com-
munication systems embedded within these components. Regarding the database, we
consider that a regular copy is done on a data-center allowing to obtain stateful data
when the database fails. This solution is frequently used in Internet applications de-
ployed in wide-area networks, like in the edge-computing models.

When Apache fails, all the incoming requests are lost during the reconfiguration
time. One solution consists in deploying a lightweight component storing the incoming
requests in a list during the time the Apache component is recovering.

Resource violation. When a resource constraint associated with a component is no
longer verified on a specific host (for example the amount of free memory required is
not sufficient), the corresponding component must be redeployed. This redeployment is
performed the same way, except that the state of the component can be saved properly.

Failure of a machine other than a zone manager. In a zone, a machine hosting one or
several components may definitively crash. A crash is detected by the zone manager
which maintains the list of the machine connected in the zone. When the manager de-
tects a crash, as in the case of the failure of a component, it updates its deployment
descriptor by removing the location of the component(s) that was running on the faulty
machine. Then, the deployment descriptor is broadcast to other machines so that the
missing components can eventually be re-instantiated.

Failure of a zone manager. The crash of the zone manager is critical as it is responsi-
ble for choosing a host for each component. In order to deal with the failure of such a
manager, we define several managers within a zone. Every manager has the same role as
defined previously: it maintains the list of the machines that are connected in the zone; it
collects the candidatures for the instantiation of components; and it resolves the location
constraints depending on the received candidatures. To ensure the fault-tolerance of the
zone manager, we consider a number of replicas. At a given time, a leader is in charge
of establishing the deployment process. The address of the zone manager is mentioned
in the deployment descriptor sent to the machines of the zone. Each information re-
ceived by the leader is multicast to the backup managers using a group communication
system offering the FIFO order and reliability. The failure of the leader is detected by
the backup machines and a new leader is elected. The zone manager identity is updated
in the deployment descriptor and like any descriptor change, this piece of information
is sent to the machines of the zone that will then deal with the new leader.

4 Implementation Status and Evaluation

4.1 Implementation Status

The ADL presented in section 3.1 allows the specification of the placement of the com-
ponents according to some conditions on resource and location constraints. We have

370 D. Hoareau, T. Abdellatif, and Y. Mahéo

chosen FractalADL to support the definition of deployment descriptors in an XML for-
mat. The main aspect with resource and location constraints are their manipulation at
run time in order to observe and detect changes in the environment, to react on these
changes and to find a placement solution at a given time according to some machine
candidatures. We use Cream3, a Java library for writing and solving constraint satis-
faction problems or optimization problems, to represent interface cardinality, possible
bindings and resource and location constraints.

Specific probes are used in order to introspect the resources needed by the compo-
nents. We use DRAJE (Distributed Resource-Aware Java Environment) [7], an extensi-
ble Java-based middleware to model hardware resources (processor, memory, network
interface...) or software resources (process, socket, thread...). For every resource con-
straint of the deployment descriptor, a resource in DRAJE is created and a periodic
observation is launched. The value returned by a probe allows a host to check the con-
sistency of a resource constraint according to the local resource state. If all the resource
constraints associated with a component are verified by a machine, it applies for its in-
stantiation. When the value returned by a probe does not respect a resource constraint,
our run-time support is notified in order to redeploy the components that requires this
resource as described in section 3.3. The current implementation of our system does not
support the computation of bandwidths between machines but relies on a predefined file
describing the properties of network links within a zone.

Component instantiation are made by a host when this host has been chosen by the
zone manager. When an updated deployment descriptor is received, the location of the
newly instantiated components is discovered, resulting in binding requests. When a
binding is accepted, a stub component and a skeleton component are dynamically cre-
ated thanks to the ASM library4 and are deployed with FractalRMI. The server inter-
faces of the stub component are of the same type as the one of the local client interface
that has to be bound. When the location of the EJBContainer is known, a new pair
stub/skeleton is created and deployed if the number of outgoing bindings allowed (i.e.
the interface cardinality) has not been reached.

4.2 Evaluation

A complete evaluation of the deployment and redeployment in the kind of environment
we target implies to precisely control the dynamism of the different resources and hosts.
We have indeed to take into account the announcement of machines’ candidatures—
which implies the availability of resources—in order to compute a placement solution.
However the feasibility and the performance of the deployment process and recovery
mechanisms can be measured accurately when all the resources are available. In this
case we can evaluate the time needed by a zone manager to compute a placement solu-
tion for the components of a virtual cluster.

Figure 3 shows the time for a zone manager to compute a placement solution when
the number of received candidatures is sufficient, in function of the number of compo-
nents to instantiate. We have considered a zone composed of a thousand of simulated

3 http://kurt.scitec.kobe-u.ac.jp/˜shuji/cream/
4 http://asm.objectweb.org

Architecture-Based Autonomic Deployment of J2EE Systems in Grids 371

Fig. 3. Time required for a zone manager to decide on the placement of a set of components in
function of the number of candidatures

machines on which the number of components to instantiate varies from one to one
hundred. The experiment corresponds to the deployment of the architecture of Figure 1
according to the constraint “each component must reside on a distinct host” (alldiff con-
straint). Somewhat contrived, this constraint encompasses the complexity of other con-
straints involved in our deployment specification (resource constraints resolution has a
negligible impact on the computation time). The evaluation has been conducted on a
laptop (1,7 GHz Pentium Centrino). This experiment allowed us to verify that the time
to compute—with the Cream library—a placement solution (when all conditions are
met) remains acceptable regarding communication cost between machines. This com-
putation time is likely not to be the prevalent factor in number of Grids configurations.
We are currently conducting the evaluation of the deployment of a virtual cluster and
the automatic management of failures on a Grid. The main difficult aspect remains the
control of hosts and resources availability.

5 Related Work

Our work is related to several different open-source and research domains. We sin-
gle out the following ones: component-based deployment in Grid environments, multi-
tier deployment in wide-area networks, resource allocation for distributed systems and
architecture-based systems.

We share with GridCCM [8], GridKit [9] and Proactive [10] the same approach con-
sisting in abstracting the system to deploy on the grids to an assembly of components.
Proactive work is closer to ours since it considers Fractal component model to rep-
resent hierarchical and parallel systems. However, our work covers both the resource
management issues and the automatization of recovery from failures.

Exploiting the Grid resources to increase multi-tier application performance and
fault-tolerance become recently the aim of many research teams [2,1,11]. However,
focus is more on defining the best configuration and models to increase performance
rather than on the management aspects.

Many works deal with resource allocation in distributed systems [12,13,14,15]. In
our work, we propose a simple solution for resource allocation and we believe that,
thanks to our modular component-model, we can easily adopt different policies and
algorithms for an optimal resource usage. Furthermore, to our knowledge, most of
the works on the Grids like PlanetLab and Globus, focus on parallel applications that

372 D. Hoareau, T. Abdellatif, and Y. Mahéo

are composed of independent tasks. Compared to the proposed solutions, we adopt an
architecture-based approach motivated by the complex architecture of the multi-tier In-
ternet application we address.

The architecture-based management approach [3] is mainly experimented in close
environment like in SmartFrog [16] system or Jade system [17]. In these two systems,
the deployment process considers that target machines are stable and homogeneous,
which is not the case in Grids. Furthermore, handling failures relies on a centralized
management unit, which hardly applies to the highly distributed Grid machines. In our
solution, the machines collaborate in finding appropriate resources and for handling
failures.

6 Conclusion

This paper proposes a solution for the deployment of enterprise systems in Grids and an
automatic recovery management in face of failures. Deployment in such environment is
quite challenging as the platforms we target are highly distributed, heterogeneous and
dynamic. We offer a resource-aware deployment feature for J2EE systems, which is
essential in Grid heterogeneous environments. We also demonstrate that the constraint-
resolution is performed in a reasonable time. The role of the administrator is reduced
to the writing of the deployment descriptor. All the deployment process and the recov-
ery from failures are automated. Furthermore, the administrator does not need to be
expert of the heterogeneous and complex J2EE systems. All the parts of the system
are abstracted into Fractal components and the configuration is therefore unified. In our
work, we aimed at maintaining the structure described in the ADL descriptor by replac-
ing each time a faulty component by another. This allows ensuring the continuity of
Internet services and maintaining their quality of service.

In this paper we adopted a special architecture of the J2EE system, the virtual clus-
ters. We believe that our solution and mechanisms are applicable to other architectures.
It is only necessary to write appropriate deployment descriptors and constraints. We
are currently investigating a more complete evaluation of our approach on a Grid by
taking into account resources and hosts availability. Moreover, some optimization can
be defined when dealing with the placement decision of replicas by considering the
symmetry of such components.

References

1. Rabinovich, M., Spatscheck, O.: Web Caching and Replication. Addison Wesley, Reading,
Massachusetts, USA (2002)

2. Pierre, G., van Steen, M.: Globule: a Collaborative Content Delivery Network. IEEE Com-
munications Magazine 44 (2006)

3. Dashofy, E., van der Hoek, A., Taylor, R.: Towards Architecture-Based Self-Healing Sys-
tems. In: Workshop on Self-Healing Systems, Charleston, South Carolina, USA (2002)

4. Abdellatif, T., Kornaś, J., Stefani, J.B.: J2EE Packaging, Deployment and Reconfiguration
Using a General Component Model. In: Int. Working Conference on Component Deploy-
ment, Grenoble, France (2005)

Architecture-Based Autonomic Deployment of J2EE Systems in Grids 373

5. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An Open Component
Model and its Support in Java. In: Int. Symposium on Component-based Software Engineer-
ing, Edinburgh, Scotland (2004)

6. Dashofy, E., van der Hoek, A., Taylor, R.: An Infrastructure for the Rapid Development of
xml-based Architecture Description Languages. In: Int. Conference on Software Engineer-
ing, Orlando, Florida, USA (2002)

7. Mahéo, Y., Guidec, F., Courtrai, L.: A Java Middleware Platform for Resource-Aware Dis-
tributed Applications. In: Int. Symposium on Parallel and Distributed Computing, Ljubljana,
Slovenia (2003)

8. Denis, A., Pérez, C., Priol, T., Ribes, A.: Padico: A Component-Based Software Infras-
tructure for Grid Computing. In: Int. Parallel and Distributed Processing Symposium, Nice,
France (2003)

9. Cai, W., Coulson, G., Grace, P., Blair, G.A., Mathy, L., Yeung, W.K.: The Gridkit Distributed
Resource Management Framework. In: European Grid Conference, Amsterdam, The Nether-
lands (2005)

10. Baude, F., Caromel, D., Morel, M.: From Distributed Objects to Hierarchical Grid Compo-
nents. In: Int. Symposium on Distributed Objects and Applications, Catania, Italy (2003)

11. Sivasubamanian, S., Alonso, G., Pierre, G., van Steen, M.: GlobeDB: Autonomic Data Repli-
cation for Web Applications. In: Int. World-Wide Web Conference, Chiba, Japan (2005)

12. Aron, M., Druschel, P., Zwaenepoel, W.: Cluster reserves: a mechanism for resource man-
agement in cluster-based network servers. In: Conference on Measurement and Modeling of
Computer Systems, Santa Clara, California, USA (2000)

13. Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar, M., Krishnakumar, S., Pazel,
D., Pershing, J., Rochwerger, B.: Oceano - SLA based management of a computing utility.
In: Int. Symposium on Integrated Network Management, Seattle, Washington, USA (2001)

14. Fu, Y., Chase, J., Chun, B., Schwab, S., Vahdat, A.: SHARP: an architecture for secure
resource peering. In: Symposium on Operating Systems Principles, Bolton Landing, New
York, USA (2003)

15. Chase, J., Irwin, D., Grit, L., Moore, J., Sprenkle, S.: Dynamic Virtual Clusters in a Grid
Site Manager. In: Int. Symposium on High Performance Distributed Computing, Seattle,
Washington, USA (2003)

16. Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft, P.: SmartFrog: Config-
uration and Automatic Ignition of Distributed Applications. In: Plenary Workshop of the HP
OpenView University Association, Geneva, Switzerland (2003)

17. Bouchenak, S., Boyer, F., Hagimont, D., Krakowiak, S., Mos, A., de Palma, N., Quéma, V.,
Stefani, J.B.: Architecture-Based Autonomous Repair Management: An Application to J2EE
Clusters. In: Symposium on Reliable Distributed Systems, Orlando, Florida, USA (2005)

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 374 – 384, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Workload Balancing for Collaboration
Strategy in Hybrid P2P System

1Suhong Min, 2Byong Lee, and 1Dongsub Cho

1 Department of Computer Science and Engineering,
Ewha Womans University, Seoul, Korea

2 Department of Computer Science,
Seoul Women’s University, Seoul, Korea

shmin@ewhain.net, byongl@swu.ac.kr, dscho@ewha.ac.kr

Abstract. The peer-to-peer (P2P) systems have grown significantly over the
last few years due to their high potential of sharing various resources.
Analyzing the workload of P2P system, however, is very challenging as it
involves with the cooperation of many peers. Researches have shown that P2P
systems become very effective when dividing the peers into two layers, SP
(Super-Peer) and OP (Ordinary-Peer). In this configuration, SP based P2P
systems have to deal with a large volume of queries from OPs. Therefore, it is
important for SPs to keep their workload stable to provide quality service to the
OPs. In this study, we present a collaboration strategy for workload balancing
based on SP’s workload characteristics and status. Through the SP’s load
balancing mechanism, the message response time is decreased and the workload
of P2P system becomes more stable.

Keywords: Peer-to-Peer (P2P), Super-Peer, workload balancing, collaboration
strategy.

1 Introduction

For the last few years, there has been a large volume of research on Peer-to-Peer
(P2P) system, resulting in many hybrid P2P models. Many researches have shown
that P2P systems become very effective, especially in query processing, when
dividing the peers into two layers, SP (Super-Peer) and OP (Ordinary-Peer). With this
layer separation, SP deals with all the queries from OPs so that OPs can be waived
from the burden of query processing [1, 2]. Compared with the pure P2P systems, SP
based P2P systems have to deal with a large volume of queries from OPs. In this case,
it is important for SPs to keep their workload stable to provide quality service to the
OPs. Workload analysis, however, is very challenging as it involves many
cooperative peers. Current SP based P2P systems have paid little attention to
balancing the SP’s workload. The existing research only focuses on sharing the
resources or objects among peers to minimize the workload. For example, they can
replicate an object based on the access probability to the neighbor peers or can
migrate the object between peers for load balancing. In this scheme, load balancing is
aimed at reducing the workload of OP. SP then checks the peer’s load information in

 Dynamic Workload Balancing for Collaboration Strategy in Hybrid P2P System 375

their group to determine whether it is overload or not. If it is overloaded, SP helps
them to minimize their workload by means of replication or migration [10].

In this paper, we investigate the problem of SP’s workload balancing and propose
an enhanced mechanism to distribute SP’s workload by its characteristics and status.
Workload balancing is performed only through the peer collaboration based on this
information. We suggest the three approaches: First, we analyze SP’s workload
characteristic categorizing it into a private workload and a public workload. The
private workload is defined as the traffic overhead incurred by the use of application
objects such as word process, on-line game, or Internet usage. The public workload is
defined as the traffic overhead in maintaining P2P system. Second, we evaluate SP’s
workload status by different load levels. Each load level is determined by pre-
specified threshold. Third, we propose the collaboration policy between SPs in
accordance with load characteristics and load status. An overloaded SP can give some
of its work to a neighbor SP or even remove himself from the P2P system by refusing
to be an SP. By considering the private and the public workload separately, workload
balancing becomes more accurate and efficient. Also SP’s message response time is
improved by applying collaboration policy according to each different workload level.

The rest of the paper is organized as follows: Section 2 reviews some related works
briefly. Section 3 states the workload management which evaluates the workload
status based on the predefined definition. It also proposes the collaboration policy;
Section 4 shows the simulation results of the proposed mechanism; finally, the
conclusion and the future work are added in Section 5.

2 Related Works

In this section, we describe existing techniques for load balancing in P2P system.
Load balancing can be achieved by transferring popular objects from heavily loaded
peers to lightly loaded peers via data replication and data migration [10].

A number of replication approaches are discussed in [12]. In [12], data objects are
replicated along the search path that is traversed as part of the search in path
replication. Data objects are replicated a pre-defined number of times to control the
spread of replica. This method, however, does not adapt to the changes of system
environment and variable resource availability. Edith Cohen [11] shows that
replicating objects proportionally to their popularity achieves optimal load balance,
while replicating them proportionally to the square root of their popularity minimizes
the average search latency. Pure P2P systems use the replication strategies to reduce
the search latency and find objects in a short distance between peers.

For the replication strategies, Gopalakrishnan [14] proposes each SP distributes
load by its capacity and queue length. To achieve this, the author assumes that each
SP defines a high-load and low-load threshold. So if a SP is overloaded, it attempts to
create new replicas on its neighboring SP. We consider more detailed factors in
capacity and have several collaboration options not just replication of files. On the
other hand, Rajasekhar [13] replicates the most frequently accessed data files based
on the access probabilities and uses restricted gossip algorithm to propagate the file
location to its neighboring SPs within its scope. In this approach, the author uses two
techniques such as, periodic push-based replication and on demand replication when
they update their replication information.

376 S. Min, B. Lee, and D. Cho

The object migration can occur when a popular object is transferred from its
original peer to a destination peer. Mondal [10], however, indicates that migration
makes data availability decrease as the peers which have accepted the object may
leave the system.

In this paper, we propose a collaboration strategy which can provide the load status
information of SP based on the characteristics of workload. Proposed collaboration
policy is further adapted into the workload balancing through the proposed dynamic
workload analysis.

3 Dynamic Workload Management

In this section, we manage SP’s workload dynamically by its load status for workload
balance. We first discuss the importance of maintaining an appropriate workload of
SP. We then propose a SP workload status evaluation and workload status
classification by SP’s workload character. Finally, in order to provide a stable SP
workload and efficient message handling, we consider the collaboration strategy to
distribute workload between SPs.

3.1 Importance of SP Workload

In a super peer based P2P system, searches are mainly performed by SPs, which
actually forms the “backbone” of the P2P network [8]. SP based P2P systems take
advantage of peer’s heterogeneity by dividing peers into two layers: SP and OP,
thereby scaling better by reducing the number of query paths. This model, both SP
and OP can submit queries, but only SP can relay queries and response. After
receiving a query, a SP first checks to see if it is stored locally or in its OPs. If some
results are found in SP’s group, it sends them to the requested OP.

Comparing with pure P2P models, SP based P2P models such as KaZaA and
Gnutella [3, 4] have higher search efficiency because, instead of all the OPs, only SPs
are involved in search processes. Therefore, SP’s capacity has considerable influence
on message handling of OPs and the performance of the entire network.
Consequently, it is a very important factor for SP to control adequate workload
according to its dynamic workload status. The question is: How does the SP keep its
own workload stable to improve the performance of P2P network? How does the SPs
increase QueryHit rate so that they help OPs by processing the query messages in a
shorter response time?

The problems with SPs providing their stable capacity and fast response time are as
follows: First, SP is probably not the server for client OPs in a traditional client/server
architectures. Most of SPs participating in a P2P system are general computer systems
with general operating systems such as Window XP or Mac OS. Comparing with the
server, users classified as SP have difficulty supplying an accurate stable workload
because they should work as SP in P2P system while they are doing their own private
jobs like word processor, e-mail, and Internet surfing, etc, at the same time.
Therefore, SP’s workload should consider both user’s private workload and public
workload. As a result, we should be able to analyze workload characteristics by each
workload status. Second, we should provide an adequate collaboration policy to
distribute SP’s workload by each load level.

 Dynamic Workload Balancing for Collaboration Strategy in Hybrid P2P System 377

3.2 Workload Value Evaluation

In this section, we evaluate system’s workload characteristics. The conventional load
balancing strategies in P2P systems focus on sharing objects between peers. They
replicate popular peer’s objects based on their access probability to neighbor peers.
Our workload value evaluation is different from the existing schemes in that we
analyze SP’s workload characteristics to perform workload balancing. We assume
that SP’s system environment is not a server and it just operates on user’s operating
system. Thus, a user could work as a SP in the P2P system while doing his own
private jobs at the same time. We assume that SP’s workload is affected by both its
public workload due to P2P system and its private workload.

To evaluate total workload of SP in P2P system, we calculate the private workload
and the public workload using formula (1). We obtained this formula through
experiments on incurred load by each workload characteristic in section 4. First, in
case of public workload by P2P system, SP’s workloads are caused by requested
message processing time from SP’s group peers and cooperating neighbor SPs. In
public workload, CPU load value is not crucially affected by the entire P2P system
performance. The reason is that when a large number of messages for the SP arrive,
some are dropped because the queue length in the network channel is limited. Thus,
they are never received by the CPU and the CPU load is increased just a little bit or
decreased. Hence, we consider public workload as network load by P2P system usage
using formula (2).

On the other hand, private workload is calculated by the number of tasks in the
CPU queue length and network queue length in formula (3).

SPtw = Cpri_w + Cpub_w (1)

Cpub_w = NWP
(2)

Cpri_w = CWP + NWP
(3)

CWP (CPU workload Processing time) is defined as the average time needed to
perform a task in CPU queue length in formula (4). TP is the number of total
processes. NWP (Network Workload Processing time) is defined by public workload
and private workload in formula (5). In case of public workload, NWP is the average
message processing time needed to search peer’s requested files and connection
request to SP to join in formula. In case of private workload, it is defined as the
average task processing time needed to perform user’s Internet tasks. Therefore, we
should classify the net workload into private load and public load. To distinguish
between the two workloads, we set identifier to 0 or 1 using a binary digit. If network
traffic is incurred by the private workload, pi=0, otherwise pi=1.

CWP = ∑
∈

×
xk

tTask
TP

)(
1 (4)

NWP = ∑
∈

∗
xi

i tMc
TM

)(
1

(where, x = {i|pi = 0 or 1, for 0<i ≤n})

(5)

378 S. Min, B. Lee, and D. Cho

3.3 Workload Status Classification

SP estimates its workload status by a number of tasks in the CPU queue length and
Network channel. We classify each workload into two kinds of type such as a stable
and an unstable type by given threshold [7]. Finally, we use a 4-level scheme to
represent the each load type on its CPU and Network of queue length.

First of all, we show a stable type that includes an “underload” and a “normal
level”. Underload, level-1, is a lower bound of threshold and it is possible to process
message without delay at CPU and Network when OPs request query processing to
SPs. In normal status, level-2, is working harder but still able to process messages
normally. Second, we show an unstable type that it classifies the load status into
“potential overload” status and “overload” status. Potential overload status, level-3, is
current normal status but it is expected to increase the workload of system by user’s
private workload or public workload. Hence, user’s system status is possible to be
overloaded status in the near future. In this paper the potential overload status will be
a standard to decide a performance type is either stable or unstable. To measure this
value, we apply EMA (Exponential Moving Average) algorithm. EMA is a time
series which gives more weight to more recent measurements than to other historical
data. Potential Overload status is calculated using the previous queue length value and
current queue length value [5, 6]. Through this process, we can expect the status of
system and we can control the workload of P2P system using proposed collaboration
policy before it becomes overloaded status. Finally, the overload status, level-4, is
defined when the measured workload exceeds the threshold of upper-bound. A SP
stops OP’s message processing and connection requests of new OPs. In this state, the
SP temporarily seems to leave the P2P system.

Table 1. Load level classification by load status

Type Status Level Criteria

Underload Level-1 SPlow ≤ QL
Stable

Normal Level-2 SPlow ≤ QL < SPema

Potential
Overload

Level-3 SPema ≤ QL < SPhigh Unstable
Overload Level-4 SPhigh ≤ QL

3.4 Collaboration Policy

In this section, we propose the collaboration policy to distribute workload of SP. The
aim of collaboration is that we select appropriate SP by considering load status and its
resulting workload characteristics. In this approach, each SP periodically checks its
workload status. When SPs detect a load imbalance we perform the collaboration
policy which is shown in table 2. First, we analyze SP’s workload status of the private
workload and the public workload, and decide on its load level. According to each
load level, we divide it into 4 different cases. Second, we evaluate each workload
status to determine whether SP’s workload is stable or unstable. If workload status is
unstable, we distribute load using the collaboration policy for load balancing. In this

 Dynamic Workload Balancing for Collaboration Strategy in Hybrid P2P System 379

paper, collaboration policy is initiated when SP detects that its workload is level-3
shown in table 2.

In case 1, a SP detects its private workload is level-3 and public workload is stable
type. We define that SP’s workload could be potentially increased by its private
workload such as CWP and NWP. In this case, the SP initiates the collaboration
policy. SP replicates the most frequently accessed objects based on the access
probabilities to SP’s neighbor SPs. To create new replicas, first, the SP should check
the load status of neighbors whether they have good capacity and stable workload
status such as level 1 or level 2. If possible, the SP asks them to create replicas of the
most highly loaded files on SP. If neighbor SPs admit replicas, the SP sends replicas
to them. In this case, the SP can still deal with OP’s query processing but the SP
rejects new OP’s connection request to prevent increase of current workload.

In case 2, a SP detects that its private workload is level-4 and public workload is
stable type. We define SP’s private workload is overloaded. A user is working the
large number of private jobs though the user works as a SP in P2P system. So the SP
can not deal well with message processing for OPs in group. In this case, the SP stops
peer’s message processing and new OP’s connection request. First, the SP should
select neighbor SP to handle queries from own OPs instead of himself or herself. To
select new SP for OPs, the SP checks the load status of own neighbors, and selects a
SP who has the lowest load. Second, as soon as choosing a neighbor, the SP sends
OP’s information such as peer’s name, type, its object lists to selected SP. Lastly, the
SP advertises OPs to be selected new SP and then OPs request query processing to a
new SP instead of original SP. This means the existing SP temporarily secedes from
P2P system.

In case 3, a SP identifies that its public workload is level-3 and private workload is
stable. We define SP’s public workload could be potentially increased by its public
workload such as the increase of group size, the number of message and QueryHit
rate etc. Through the experiment (Fig.2), we found the performance of public
workload is largely affected by QueryHit rate. If SP’s QueryHit rate is low, SP should
broadcast the large number of messages to neighbor SPs to search requested objects
from OPs, which, in result, SP’s message response time is increased. Hence, a SP
requests its neighbor SPs to share popular object’s lists. The SP request neighbor SP’s
object list with the most frequently access rate or query hit rate. In this case, instead
of receiving objects, the SP obtains neighbor object lists which contain object’s
owner, owner’s physical address, object name, size, and type. Through this procedure,
SP will able to respond OP’s queries fast and efficiently through preempting object
lists with high query hit rate although the SP does not include object lists in own
group OPs. Also the SP still admits the connection request from new OP and adds it
to SP’s object list and continually performs query processing of the existing OPs.

In case 4, a SP perceives that its public workload is level-4, overload and private
workload is stable. In this case, it is defined when a SP has a big group size of OPs
that request queries very frequent to the SP. Thus, this case is defined that the ratio of
the number of Ops to the number of SPs, is not appropriate so that more SPs are
needed in the network. First, the SP selects the most eligible OP to encourage new SP
that has good capacity and good load status at the same time. Second, the SP divides

380 S. Min, B. Lee, and D. Cho

Table 2. Collaboration Policy by four different Cases

Case Cpri_w Cpub_w Collaboration Criteria

Case 1 Level-3 stable Replication

Case 2 Level-4 stable Re-selection

Case 3 Stable Level-3 Pre-emption

Case 4 Stable Level-4 Re-distribution

own OP lists with new selected SP. The SP processes remained OP’s queries but
rejects new connection request until its load status is stable. However it is not easy to
meet Case 2 and Case 4. Proposed scheme predicts the potential workload status at
Level-3 and perform SP’S workload balancing before we meet the worst case. In case
both private and public workloads are unstable, we won’t consider it here because
we’ve already seen in Case 2 that the user will potentially stop P2P system.

4 Experimental Evaluations

In this section, we present the simulation model used to evaluate the characteristics of
workload and proposed collaboration policy and discuss the simulation results. The
simulation model is implemented in C++ using CSIM [9]. It consists of a number of
OPs and SPs. Every SP is assigned with different capacity to be sufficiently
heterogeneous when a SP is created. During simulation, OPs join and leave the
network following a Poisson process with an arrival rate of λ and departure rate of
μ. Table 3 summarizes the parameters used for the simulation and their default
values.

Table 3. Default Parameter Settings

Parameters Default Values
SIMTIME 5000
The number of OP 10 ~ 300
The number of SP 10 ~ 50
CPU power factor {1.0,1.5,2.0,2.5,3.0}
The number of query frequency 10
The number of objects 20
The delay per hop 100ms
The range of QueryHit rate 10~100%

In our simulation, we tried to verify that our proposed SP's workload balancing
strategy can improve SP's message response time by evaluating its workload
characteristics. First, we experiment with P2P system performance as SP’s group size
increases. To do this, we assume the performance of system as follows. A user does

 Dynamic Workload Balancing for Collaboration Strategy in Hybrid P2P System 381

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100 150 200 300

T
im

e
(
s
)

Avg msg time

CPU queue

Network queue

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100

Query Hit rate (%)

T
im

e
 (
s
)

Avg msg time

CPU queue

Network queue

Fig. 1. Response Time vs. The number of
Peers

Fig. 2. QueryHit rate vs. Response time

not work its private job and just operates SP on P2P system. OPs send messages at the
same frequency to SPs to connect to a SP and request queries. Then SP’s QueryHit
rate is 100%. At this status, we estimate 1) the average message response time, 2)
message processing time in network queue length, and 3) CPU processing time in
CPU queue length as SP’s group size varies. In Fig. 1, we found that all of them are
not largely affected as the number of message is increased.

Second, we experiment with the public workload performance as SP’s QueryHit
rate changes. We set the group size of SP to 10 and each OP requests queries at the
same frequency. Fig. 2 shows the message response time is largely decreased as
QueryHit rate increases. When QueryHit rate is low, message response time and
message processing time in network queue length varies significantly. But, the CPU
processing time barely changes. The reason is that the large number of message in
network queue is dropped before it arrives at CPU queue length. Therefore, we
consider the network queue length and QueryHit rate as threshold except the CPU
processing time when we evaluate the public workload.

Third, based on private workload, we examine the change of message response
time influenced by CPU queue length and network queue length. Fig. 3 shows the
average message response time as CPU queue length varies. To do this experiment,
we set the group size of SP to 10 to minimize the effect due to the public workload.
User dose not perform private network jobs, instead, just operates off-line tasks. In
Fig. 3, we compare the performance of average message response time as CPU queue
length changes through increasing SP’s private works, the number of tasks. In this
experiment, we show that message response time is highly increased by CPU queue
length. Fig. 4 examines message response time as private network queue length
changes. We don’t operate the private CPU jobs and set the group size of SP to 10. In
Fig. 4, it shows user’s network jobs affected message processing time. Thus, we
found that SP’s private workload changes the performance of message handling
capacity in P2P system.

382 S. Min, B. Lee, and D. Cho

0

5

10

15

20

25

30

0.07 0.11 0.22 0.34 0.46 0.58

CPU queue

T
im

e
 (
s
)

0

5

10

15

20

25

30

0.44 1.16 4.15 6.64 12.41

Network queue

T
im

e
(
s
)

Fig. 3. Response time vs. CPU queue length Fig. 4. Response time vs. Network queue
length

Fourth, based on level of load status, we estimate the range of threshold and
message response time by each four different level. In Fig. 5, we approximately
evaluated the threshold of CWP and NWP values of the private workload and NWP
of public workload at each different level. Fig. 5 shows the different threshold values
for each workload characteristic at four different levels. Fig. 6 shows each private
workload and public workload has similar message response time when they are
included in the same level. Thus, we found that they can handle messages with similar
capacity at same level though each workload characteristic has different threshold.

0

0.5

1

1.5

2

2.5

Level-1 Level-2 Level-3 Level-4

T
h
r
e
s
h
o
ld

v
a
lu
e

CWP

NWP(pi=0)

NWP(pi=1)

0

0.5

1

1.5

2

2.5

3

3.5

Level-1 Level-2 Level-3 Level-4

T
im

e
(
s
)

CWP

NWP (pi=0)

NWP (pi=1)

Fig. 5. Threshold values at each level Fig. 6. Response times at each level

Finally, we experiment if SP can stably keep workload balance and improve
message response time. In Fig. 7, we compare the performance of proposed
collaboration policy with no-load-balancing scheme. This experiment environment is
shown in Table 4.

 Dynamic Workload Balancing for Collaboration Strategy in Hybrid P2P System 383

Table 4. Parameter Settings

Parameters Default Values
SIMTIME 5000
of OP 10 ~ 100
of SP 10
CPU power {1.0,1.5,2.0,2.5,3.0}
of query frequency 10
of objects 30
QueryHit rate 60%
CWP value 15%
NWP value (pi=0) 15%
NWP value (pi=1) 70%

Fig 7 shows the message response time as SP’s group size increases. Comparing
with no load balancing scheme, it is clear that proposed collaboration policy
significantly improve message response time and keep SP’s workload status stable.
We demonstrate the effectiveness of proposed scheme which can show good
performance with considering public workload and private workload at the same time
and adequate collaboration policy for each workload status.

0

5

10

15

20

25

10 20 30 40 50 60 70 80

of peer

T
im

e

(
s
)

no-load balance

load balance

Fig. 7. Response time vs. SP’s group size

5 Conclusion

We presented the collaboration policy for analyzing SP’s workload characteristics and
evaluating each workload status to perform workload balancing. In the Super-Peer
based P2P systems, SPs should handle all queries received from OPs. As a result, the
control of SP’s workload has considerably influenced on the performance of P2P
network. The existing systems performed the workload balancing with replication
strategies to distribute popular objects between peers. They, however, have paid little
attention to the SP’s workload balancing from the view point of the workload status
characteristics. Proposed paper presents a collaboration strategy based on SP’s

384 S. Min, B. Lee, and D. Cho

workload characteristics. We demonstrated the performance of the proposed scheme
using a number of simulations. In our experiments, we show that each workload
characteristics and status can have a big effect on message handling capacity of SP.
Also through the proposed collaboration policy, we can not only improve the
performance of message response time, but also keep the status of SP system stable.
We plan to implement additional collaboration policies features in the future work.

References

1. B. Yang, H. Garcia-Molina, "Designing a super-peer network", IEEE International
Conference on Data Engineering, Bangalore, India, March 2003.

2. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S. Shenker, "Making Gnutella-
like P2P systems scalable", Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications, Karlsruhe,
Germany, August 25-29, 2003.

3. J. Liang, R. Kumar, K Ross, “The KaZaA Overlay: A Measurement Study”, Proceedings
of the Fifth New York Metro Area Networking Workshop, 2005.

4. Gnutella protocol spec. v.0.6 - http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
5. Box, G.E., Jenkins, G.M, “Time Series Analysis Forecasting and Control, Holden day,

1976.
6. V. Kalogeraki, D. Gnuopulos and D. Zeinalipour-Yazti, “A Local Search Mechanism for

Peer-to-Peer Networks”, Proceedings of CIKM’02, McLean VA, USA, 2002.
7. 7 T. knuz, “The influence of Different Workload Descriptors on a Heuristic Load

Balancing Scheme”, IEEE Trans on Software Engineering, vol. 17, No. 7, July 1991.
8. Li Xiao, Z. Zhuang, Y. Liu, “Dynamic Layer Management in Superpeer Architectures”,

IEEE Transactions on parallel and distributed systems, 16(11), Nov. 2005.
9. CSIM Development toolkit for simulation and modeling. http://www.mesquite.com.

10. A. Mondal, K. Goda and M. Kitsuregawa “Effective Load-Balancing via Migration and
Replication in Spatial GRIDs”, Proceedings of the International Conference on Database
and Expert Systems Applications. 2003.

11. E. Cohen, S. Shenker, “Repliaction Strategies in Unstructured Peer-to-Peer Networks”,
SIGCOMM '02: Proceedings of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communications, Vol. 32, No. 4. Oct. 2002.

12. Q. L. et. Al. “Search and Replicaton in Unstructured Peer-to-Peer Networks”, In Proc. of
International conference on Supercomputing, 2002.

13. S. Rajasekhar, B. Rong, K. Y. Lai, I. Khali and Z. Tari, “Load Sharing in Peer-to-Peer
Networks using Dynamic Replication”, Advanced Information Networking and
Applications (AINA), 2006.

14. V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher, “Adaptive Replication in
Peer-to-Peer Systems”, The 24th International Conference on Distributed Computing
Systems (ICDCS’04), Mar. 2003.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 385 – 396, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Performance-Based Workload Distribution on Grid
Environments*

Wen-Chung Shih1, Chao-Tung Yang2,**, Tsui-Ting Chen2, and Shian-Shyong Tseng1,3

1 Department of Computer Science
National Chiao Tung University, Hsinchu, 30010, Taiwan (R.O.C.)

{gis90805, sstseng}@cis.nctu.edu.tw
2 High-Performance Computing Laboratory

Department of Computer Science and Information Engineering
Tunghai University, Taichung, 40704, Taiwan (R.O.C.)

{ctyang, g95280003}@thu.edu.tw
3 Department of Information Science and Applications
Asia University, Taichung, 41354, Taiwan (R.O.C.)

sstseng@asia.edu.tw

Abstract. Imbalanced workload-distribution can significantly degrade performance
of grid computing environments. In the past, the theory of divisible load has been
widely investigated in static heterogeneous systems. However, it has not been
widely applied to grid environments, which are characterized by heterogeneous
resources and dynamic environments. In this paper, we propose a performance-
based approach to workload distribution for master-slave types of applications on
grids. Furthermore, applications with irregular workloads are addressed. We
implemented three kinds of applications and conducted experimentations on our grid
test-beds. Experimental results show that this approach performs more efficiently
than conventional schemes. Consequently, we claim that dynamic workload
distribution can benefit applications on grid environments.

1 Introduction

Grid platforms, which consist of various computational and storage resources, have
become promising alternatives to traditional multiprocessors and computing clusters
[3, 4, 7-9, 14, 25-28, 40]. The goal of grid computing is to share resources through the
internet. Therefore, users can access more computing resources through grid
technologies. On the other hand, inappropriate management of grid environments
might result in using grid resources in an inefficient way. Moreover, the characteristic
of dynamic changing makes it different from conventional parallel and distributed
computing systems, such as multiprocessors and computing clusters. Consequently, it
is challenging to use the grid efficiently.

∗ This work was partially supported by National Science Council of Republic of China under

the number of NSC95-2752-E-009-015-PAE.
∗∗ Corresponding author.

386 W.-C. Shih et al.

In the past, the master-slave paradigm is a common model for task dispatching in
parallel and distributed computing environments [16]. In this model, the master node
holds a pool of tasks to be dispatched to other slave nodes. A well-known application of
this model is Divisible Load Theory (DLT) [1, 17-19, 32, 36], which deals with the case
where the total workload can be partitioned into any number of independent subjobs. In
[23], a data distribution method was proposed for host-client type of applications. Their
method was an analytic technique, and only verified on homogeneous and
heterogeneous cluster computing platforms. In [24], an exact method for divisible load
was proposed, which was not from a dynamic and pragmatic viewpoint as ours.

This paper aims to address the problem of dynamic distribution of workload for
master-slave applications on grids. Since grid environments are dynamically changing
and heterogeneous, the problem is more challenging than the traditional DLT problem.
We propose a performance-based approach, which is implemented in three types of
applications, Matrix Multiplication, Association Rule Mining and Mandelbrot Set
Computation, and is executed a grid test-bed. Experimental results show that effective
workload partitioning can significantly reduce the total completion time.

Our major contributions can be summarized as follows. First, this paper proposes a
new performance function to estimate the performance of grid nodes. Second, we apply
this approach to programs with irregular workload distribution. Consequently,
experimental results show the obvious effectiveness of our approach. Our previous work
[37-39] presents different heuristics to the parallel loop self-scheduling problem. This
paper generalizes their main idea and proposes to solve the dynamic workload
distribution problem. This approach is applied to both the parallel loop self-scheduling
application and the association rule mining application. There have been a lot of
researches of parallel and distributed data mining [12, 13, 29, 47]. However, this paper
focuses on workload distribution, instead of proposing a new data mining algorithm.

The remainder of this paper is organized as follows. In Section 2, background on
parallel loop scheduling and association rule mining is reviewed. In Section 3, we
describe the proposed approach to solve the dynamic workload distribution problem.
Next, the configuration of our grid testbed is specified and experimental results on
three types of applications are also presented in Section 4. Finally, the concluding
remarks are given in the last section.

2 Background Review

In this section, parallel loop scheduling and association rule mining are briefly reviewed.

2.1 Dynamic Loop Scheduling Schemes

Dynamic loop scheduling schemes make a scheduling decision at runtime. Its
disadvantage is more overhead at runtime, while the advantage is load balance. The
schemes we focus in this paper are self-scheduling, which a large class of dynamic
loop scheduling schemes. Several self-scheduling schemes have been reviewed in [15,
21, 22, 30, 33, 41, 42, 46], and they are restated here as follows.

• Pure Self-scheduling (PSS). This is a straightforward dynamic loop scheduling
algorithm [32]. Whenever a processor becomes idle, a loop iteration is assigned to
it. This algorithm achieves good load balance but also induces excessive overhead.

 Performance-Based Workload Distribution on Grid Environments 387

• Chunk Self-scheduling (CSS). Instead of assigning one iteration to an idle
processor at one time, CSS assigns k iterations each time, where k, called the chunk
size, is a constant.

• Guided Self-scheduling (GSS). This scheme can dynamically change the number
of iterations assigned to each processor [35]. More specifically, the next chunk size
is determined by dividing the number of remaining iterations of a parallel loop by
the number of available processors.

• Factoring Self-scheduling (FSS). The Factoring algorithm addresses this problem
[31]. The assignment of loop iterations to working processors proceeds in phases.
During each phase, only a subset of the remaining loop iterations (usually half) is
divided equally among the available processors.

• Trapezoid Self-scheduling (TSS). This approach tries to reduce the need for
synchronization while still maintaining a reasonable load balance [43]. This
algorithm allocates large chunks of iterations to the first few processors and
successively smaller chunks to the last few processors.

In [44], the authors enhanced well-known loop self-scheduling schemes to fit an
extremely heterogeneous PC cluster environment. A two-phased approach was proposed
to partition loop iterations and it achieved good performance in heterogeneous test-beds.
In [20, 45, 46], NGSS was further enhanced by dynamically adjusting the parameter α
according to system heterogeneity. A performance benchmark was used to determine
whether target systems are relatively homogeneous or relatively heterogeneous. In
addition, the types of loop iterations were classified into four classes, and were analyzed
respectively. The scheme enhanced from GSS is called ANGSS in this paper.

2.2 Association Rule Mining

The objective of association rule mining is to discover correlation relationships
among a set of items [29]. The well-known application of association rule mining is
market basket analysis. This technique can extract customer buying behaviors by
discover what items they buy together. The managers of shops can place the
associated items at the neighboring shelf to raise their probability of purchasing. For
example, milk and bread are frequently bought together.

The formulation of association rule mining problem is described as follows [12-13]. Let
I={I1, I2, I3, …, Im} be a set of items, and D a database of transactions. Each transaction in
D is a subset of I. An association rule is a rule of the form A⇒B, where A ⊂ I, B ⊂ I, and
A∩B={}. The well-known algorithm for finding association rules in large transaction
databases is Apriori. It utilizes the Apriori property to reduce the search space.

As the rising of parallel processing, parallel data mining have been well investigated
in the past decade. Especially, much attention has been directed to parallel association
rule mining. A good survey can be found in [47].

3 Approach: Performance-Based Workload Distribution (PWD)

In this section, the system and programming model is introduces first. Then, the
parameters of performance ratio and static-workload ratio are described. Finally, we
present the skeleton algorithm for the performance-based workload distribution.

388 W.-C. Shih et al.

3.1 The System Model

The system in this work is modeled by a master-slave paradigm, which is represented
by a star graph, G = (N, E). In this graph, N means the set of all nodes on the grid, and
E is the set of all edges between the master and the slaves. In this model, there are two
kinds of attributes associated with nodes, constants and variables. The values of the
constant attributes do not vary during the lifetime of the node. For example, CPU
clock speed, memory size, etc. are all constant attributes. On the other hand, the
values of the variable attributes may fluctuate during the lifetime of the node. For
example, CPU loading, available memory size, etc. are all constant attributes. In the
following sections, the two kinds of attributes are utilized to model the heterogeneity
of the dynamic grid.

3.2 Performance Ratio

The concept of performance ratio was previously defined in [37-39] in different forms
and parameters, according to the requirements of applications. In this work, a
different formulation is proposed to model the heterogeneity of the dynamic grid
nodes. The purpose of calculating performance ratio is to estimate the current
capability of processing for each node. With this metric, we can distribute appropriate
workloads to each node, and load balancing can be achieved. The more accurate the
estimation is, the better the load balance is.

To estimate the performance of each slave node, we define a performance function
(PF) for a slave node j as

PFj (V1, V2, …, Vm) (1)

where Vi, 1< i <m, is a variable of the performance function. In more detail, the
variables could include CPU speed, networking bandwidth, memory size, etc. We
propose to utilize a Grid Resource Monitoring Tool [11] to acquire the values of
variable attributes for all slaves, and to acquire the values of constant attributes by
MDS. In this paper, the PF for node j is defined as

∑∑
∈∀∈∀

×+×=

Snode
i

j

node
ii

jj
j

ii

B

B
w

CLCS

CLCS
wPF 2

N

1
 (2)

where

• N is the set of all grid nodes.
• CSi is the CPU clock speed of node i, and it is a constant attribute. The value of

this parameter is acquired by the MDS service.
• CLi is the CPU loading of node i, and it is a variable attribute. The value of this

parameter is acquired by the Ganglia tool, as shown in Figure 1.
• Bi is the bandwidth (Mbps) between node i and the master node.
• w1 is the weight of the first term.
• w2 is the weight of the second term.

 Performance-Based Workload Distribution on Grid Environments 389

Fig. 1. The snapshot of the monitoring tool on the TIGER Grid

3.3 Determination of Static-Workload Ratio (SWR)

Another important factor to be estimated is the proportion of the workload which can
be statically scheduled. For example, Mandelbrot Set Computation is a problem
involving irregular workloads. In each iteration, the workload is different and varies
significantly, as shown in Figure 2. Obviously, a distribution scheme which does not
consider the effect of irregular workload could not estimate PR accurately.

We propose to use a parameter, SWR (Static-Workload Ratio), to alleviate the
effect of irregular workload. In order to take advantage of static scheduling, SWR
percentage of the total workload is dispatched according to Performance Ratio. If the
workload of the target application is regular, SWR can be set to be 100. However, if
the application has irregular workload, such as Mandelbrot Set Computation, it is
reasonable to reserve some amount of workload for load balancing. We propose to
randomly take five sampling iterations, and compute their execution time. Then, the
SWR of the target application i is determined by the following formula.

i

i
i MAX

min
SWR = (3)

where

• mini is the minimum execution time of all sampled iterations for application i.
• MAXi is the maximum execution time of all sampled iterations for application i.

For example, for a regular application with uniform workload distribution, the five

sampled iterations are the same. Therefore, the SWR is 100%, and the whole workload
can be dispatched according to Performance Ratio, with good load balance. However,
for another application, the five sampling execution time might be 7, 7.5, 8, 8.5 and

390 W.-C. Shih et al.

0

50000

100000

150000

200000

1 101 201 301 401 501 601 701

i-th iteration of X

N
o

. o
f

It
er

at
io

n
s

o
f

Y

Fig. 2. The Mandelbrot Set on [-1.8, 0.5] to [-1.2, 1.2] an 800×800 pixel window

10 seconds, respectively. Then the SWR is 7/10, i.e. a percentage of 70. Therefore, 70
percentages of the workload would be scheduled statically according to PR, while 30
percentages of the workload would be scheduled dynamically by GSS.

3.4 Algorithm

Our algorithm is composed of four stages. In stage one, the related information are
acquired. Then, stage two calculates the Static-workload Ratio and Performance
Ratio. Next, SWR percentage of the total workload is statically scheduled according to
the performance ratio among all slave nodes in stage three. Finally, the remainder of
the workload is dynamically scheduled by Guided Self-Scheduling for load balancing.
The algorithm of our approach is described as follows.

Module MASTER

Stage 1: Gathering the following information
− CPU_Loading
− CPU_Clock_Speed
− the sample execution time

Stage 2: Calculate two scheduling parameters
Stage 3: Static Scheduling for SWR% of workload
Stage 4: dynamic Scheduling for the remaining
END MASTER

Module SLAVE

While (a chunk of workload arrives) {
 Receive the chunk of workload
 Compute on this chunk
 Send the result to the Master
}
END SLAVE

 Performance-Based Workload Distribution on Grid Environments 391

4 Experimental Results

To verify our approach, a grid test-bed is built based on the TIGER grid [11], and
three types of application programs are implemented with MPI (Message Passing
Interface) to be executed on this test-bed. This grid test-bed consists of one master
and four domains, totally 33 nodes. The master node is at Tunghai University (THU),
and the 32 slave nodes are located at Tunghai University (THU), Providence
University (PU), Li-Zen High School (LZ), and Hsiuping Institute of Technology
School (HIT). We have built this grid test-bed by the following middleware:

• Globus Toolkit 4.0.1 [2, 10]
• Mpich library 1.2.6 [5, 6]

In this study, we have implemented applications in C language, with message
passing interface (MPI) directives for parallelizing code segments to be processed by
multiple CPUs. For readability of experimental results, the brief description of all
implemented programs is listed in Table 1.

Table 1. Description of all implemented programs

Scheduling
Scheme

Description Reference

static Weighted static scheduling
gss Dynamic scheduling (GSS) [35]
fss Dynamic scheduling (FSS) [31]
tss Dynamic scheduling (TSS) [43]

ngss Fixed α scheduling + GSS [44]
angss Adaptive α scheduling + GSS [46]
pwd Performance-based Workload Distribution

0

50

100

150

200

250

300

350

400

450

512 * 512 1024 * 1024 1536 * 1536 2048 * 2048

Matrix Size

T
im

e
(s

)

static gss fss tss ngss angss pwd

Fig. 3. Execution time for Matrix multiplication with different input sizes

392 W.-C. Shih et al.

4.1 Application 1: Matrix Multiplication

Matrix Multiplication is a fundamental operation in many numerical linear algebra
applications. In this application, the workload is loop iterations. First, we want to
compare the proposed PWD scheme with previous schemes with respect to the
execution time. Figure 3 illustrates the execution time for input matrix size 512×512,
1024×1024, 1536×1536 and 2048×2048 respectively. The results are shown as follows.

• Among these schemes, PWD performs better than other schemes. The reason is
that PWD accurately estimates the PR, and takes the advantage of static
scheduling, thus reducing the runtime overhead.

• The weighted static scheme obviously performs worse than other dynamic
schemes. It is reasonable to say that the static scheme is not suitable for a dynamic
environment, with respect to performance.

• It is interesting that traditional self-scheduling schemes (FSS and TSS) perform
slightly better than NGSS and ANGSS. However, this result is inconsistent with
that of previous research. The reason might be that the parameter α is set too high,
75. If the parameter α is set appropriately, it is possible for NGSS and ANGSS to
perform better, as previous work has shown.

4.2 Application 2: Association Rule Mining

In this application, the workload is the dataset to be mined on. We implemented the
Apriori algorithm, and applied our approach to conduct data distribution. Specifically,
the parallelized version of Apriori we adopt is Count Distribution (CD) [12, 13]. In this
experiment, “cd_eq” means to distribute the workload to slaves equally, and “cd_cpu”
means to distribute the workload to slaves according to the ratio of CPU speed values of
slaves. And, cd_pwd is the proposed scheme. Our datasets are generated by the tool as
in [13]. The parameters of the synthetic datasets are described in Table 2.

Table 2. Description of our dataset

Dataset Number of
Transactions

Average
Transaction Length

Number of Items

D10KT5I10 10,000 5 10
D50KT5I10 50,000 5 10

D100KT5I10 100,000 5 10
D200KT5I10 200,000 5 10

First, execution time on the grid for the three schemes is investigated. As shown in
Figure 4, cd_pwd outperforms cd_eq and cd_cpu. From this experiment, we can see
the significant influence of partition schemes on the total completion time. In grid
environments, network bandwidth is an important criterion to evaluate the
performance of a slave node. Cd_eq and cd_cpu are static data partition schemes.
Therefore, they can not adapt to the practical network status. When communication
cost becomes a major factor, the proposed scheme would be well adaptive to the
dynamic network environment.

 Performance-Based Workload Distribution on Grid Environments 393

Moreover, the reason why cd_cpu got the worst performance can be contributed to
the inappropriate estimation of node performance. In grid computing environments,
CPU speed is not the only factor to determine the node performance. A node with the
fastest CPU is not necessary the node with optimal performance.

0

100

200

300

400

500

600

700

D10KT5I10 D50KT5I10 D100KT5I10 D200KT5I10

Data Set

E
xe

cu
tio

n
Ti

m
e

(S
ec

.)

cd_eq cd_cpu cd_pwd

Fig. 4. Performance of data partition schemes for different datasets

0

10

20

30

40

50

60

64 * 64 128 * 128 192 * 192 256 * 256

Image Size

Ti
m

e
(s

)

gss fss tss ngss angss pwd

Fig. 5. Execution time for Mandelbrot Set Computation with different input sizes

4.3 Application 3: Mandelbrot Set Computation

The Mandelbrot set computation is a problem involving the same computation on
different data points which have different convergence rates [34]. In the following
experiment, we want to compare the execution time of previous schemes with the
proposed approach. Figure 5 illustrates the results for input image size 64×64,
128×128, 192×192 and 256×256 respectively. The execution time of weighted static
scheduling is omitted due to its bad performance. According to the experience in
Matrix Multiplication example, the parameter α is set to 30. The results are discussed
as follows.

394 W.-C. Shih et al.

• Among these schemes, the PWD still performs better than other schemes. The
reason is also that PWD accurately estimates the PR, and takes the advantage of
static scheduling, thus reducing the runtime overhead.

• Traditional self-scheduling schemes (GSS, FSS and TSS) perform worse than
NGSS and ANGSS. The reason is that irregular workload is difficult to schedule. If
the parameter α is set appropriately, it is certain for NGSS and ANGSS to perform
better, as previous work has shown.

5 Conclusions

In this paper, we have investigated the workload distribution problem on dynamic and
heterogeneous grid environments. First, a performance-based approach was proposed
to schedule workloads on grid environments. In this approach, the system
heterogeneity is estimated by performance functions, and the variation of workload is
estimated by Static-Workload Ratio. On our grid platform, the proposed approach can
obtain performance improvement on previous schemes. In our future work, we will
implement more types of application programs to verify our approach.

References

[1] Divisible Load Theory, http://www.ee.sunysb.edu/~tom/MATBE/index.html
[2] Global Grid Forum, http://www.ggf.org/
[3] Introduction to Grid Computing with Globus, http://www.ibm.com/redbooks
[4] KISTI Grid Testbed, http://Gridtest.hpcnet.ne.kr/
[5] MPICH, http://www-unix.mcs.anl.gov/mpi/mpich/
[6] MPICH-G2, http://www.hpclab.niu.edu/mpi/
[7] Network Weather Service, http://nws.cs.ucsb.edu/
[8] Sun ONE Grid Engine, http://wwws.sun.com/software/Gridware/
[9] TeraGrid, http://www.teragrid.org/

[10] The Globus Project, http://www.globus.org/
[11] TIGER Grid Report, http://gamma2.hpc.csie.thu.edu.tw/ganglia/
[12] R. Agrawal and J. C. Shafer, “Parallel Mining of Association Rules,” IEEE Transactions

on Knowledge and Data Engineering, vol. 8, no. 6, pp. 962-969, Dec. 1996.
[13] R. Agrawal and R. Srikant, “Fast algorithms for Mining Association Rules,” Proc. 20th

Very Large Data Bases Conf., pp. 487-499, 1994.
[14] M. A. Baker and G. C. Fox. “Metacomputing: Harnessing Informal Supercomputers.”

High Performance Cluster Computing. Prentice-Hall, May 1999. ISBN 0-13-013784-7.
[15] I. Banicescu, R. L. Carino, J. P. Pabico, and M. Balasubramaniam, “Overhead Analysis of

a Dynamic Load Balancing Library for Cluster Computing,” Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium, 2005.

[16] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert, “Scheduling
strategies for master-slave tasking on heterogeneous processor platforms,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 15, No. 4, pp. 319-330, Apr.
2004.

[17] O. Beaumont, H. Casanova, A. Legrand, Y. Robert and Y. Yang, “Scheduling Divisible
Loads on Star and Tree Networks: Results and Open Problems,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 16, No. 3, pp. 207-218, Mar. 2005.

 Performance-Based Workload Distribution on Grid Environments 395

[18] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi, Scheduling Divisible Loads in
Parallel and Distributed Systems, IEEE Press, 1996.

[19] V. Bharadwaj, D. Ghose and T.G. Robertazzi, “Divisible Load Theory: A New Paradigm
for Load Scheduling in Distributed Systems,” Cluster Computing, vol. 6, no. 1, pp. 7-18,
Jan. 2003.

[20] K. W. Cheng, C. T. Yang, C. L. Lai, and S. C. Chang, “A Parallel Loop Self-Scheduling
on Grid Computing Environments,” Proceedings of the 2004 IEEE International
Symposium on Parallel Architectures, Algorithms and Networks, pp. 409-414, KH, China,
May 2004.

[21] A. T. Chronopoulos, R. Andonie, M. Benche and D.Grosu, “A Class of Loop Self-
Scheduling for Heterogeneous Clusters,” Proceedings of the 2001 IEEE International
Conference on Cluster Computing, pp. 282-291, 2001.

[22] A. T. Chronopoulos, S. Penmatsa, J. Xu and S.Ali, “Distributed Loop-Self-Scheduling
Schemes for Heterogeneous Computer Systems,” Concurrency and Computation:
Practice and Experience, vol. 18, pp. 771-785, 2006.

[23] N. Comino and V. L. Narasimhan, “A Novel Data Distribution Technique for Host-Client
Type Parallel Applications,” IEEE Transactions on Parallel and Distributed Systems,
Vol. 13, No. 2, pp. 97-110, Feb. 2002.

[24] M. Drozdowski and M. Lawenda, “On Optimum Multi-installment Divisible Load
Processing in Heterogeneous Distributed Systems,” Euro-Par 2005 Parallel Processing:
11th International Euro-Par Conference, Lecture Notes in Computer Science, vol. 3648,
pp. 231-240, Springer-Verlag, August 2005.

[25] I. Foster, N. Karonis, “A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems.” Proc. 1998 SC Conference, November, 1998.

[26] I. Foster, C. Kesselman., “Globus: A Metacomputing Infrastructure Toolkit,”
International J. Supercomputer Applications, 11(2):115-128, 1997.

[27] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” International J. Supercomputer Applications, 15(3), 2001.

[28] I. Foster, “The Grid: A New Infrastructure for 21st Century Science.” Physics Today,
55(2):42-47, 2002.

[29] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishers, 2001.

[30] J. Herrera, E. Huedo, R. S. Montero, and I. M. Llorente, “Loosely-coupled loop
scheduling in computational grids,” Proceedings of the 20th IEEE International Parallel
and Distributed Processing Symposium, 2006.

[31] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: a method scheme for
scheduling parallel loops,” Communications of the ACM, Vol. 35, 1992, pp. 90-101.

[32] `C. Kruskal and A. Weiss, “Allocating independent subtaskson parallel processors,” IEEE
Transactions on Software Engineering, vol. 11, pp 1001–1016, 1984.

[33] H. Li, S. Tandri, M. Stumm and K. C. Sevcik, “Locality and Loop Scheduling on NUMA
Multiprocessors,” Proceedings of the 1993 International Conference on Parallel
Processing, vol. II, pp. 140-147, 1993.

[34] B. B. Mandelbrot, Fractal Geometry of Nature, W. H. Freeman: New york, 1988.
[35] C. D. Polychronopoulos and D. Kuck, “Guided Self-Scheduling: a Practical Scheduling

Scheme for Parallel Supercomputers,” IEEE Trans. on Computers, vol. 36, no. 12, pp
1425-1439, 1987.

[36] T.G. Robertazzi, “Ten Reasons to Use Divisible Load Theory,” Computer, vol. 36, no. 5,
pp. 63-68, May 2003.

396 W.-C. Shih et al.

[37] W. C. Shih, C. T. Yang, and S. S. Tseng, “A Performance-Based Parallel Loop Self-
Scheduling on Grid Environments,” Network and Parallel Computing: IFIP International
Conference, NPC 2005, Lecture Notes in Computer Science, vol. 3779, pp. 48-55,
Springer-Verlag, December 2005.

[38] W. C. Shih, C. T. Yang, and S. S. Tseng, “A Hybrid Parallel Loop Scheduling Scheme on
Grid Environments,” Grid and Cooperative Computing: 4th International Conference,
GCC 2005, Lecture Notes in Computer Science, vol. 3795, pp. 370-381, Springer-Verlag,
December 2005.

[39] W. C. Shih, C. T. Yang, and S. S. Tseng, “A Performance-based Approach to Dynamic
Workload Distribution for Master-Slave Applications on Grid Environments,” GPC 2006,
Lecture Notes in Computer Science, vol. 3947, pp. 73-82, Springer-Verlag, 2006.

[40] L. Smarr, C. Catlett, “Metacomputing,” Communications of the ACM, vol. 35, no. 6, pp.
44-52, 1992.

[41] S. Tabirca, T. Tabirca and L. T. Yang, “A convergence study of the discrete FGDLS
algorithm,” IEICE Transactions on Information and Systems, vol. E89-D, no. 2, pp. 673-
678, 2006.

[42] P. Tang and P. C. Yew, “Processor self-scheduling for multiple-nested parallel loops,”
Proceedings of the 1986 International Conference on Parallel Processing, pp. 528-535,
1986.

[43] T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: a practical scheduling scheme for
parallel compilers,” IEEE Transactions on Parallel and Distributed Systems, Vol. 4,
1993, pp. 87-98.

[44] C. T. Yang and S. C. Chang, “A Parallel Loop Self-Scheduling on Extremely
Heterogeneous PC Clusters,” Journal of Information Science and Engineering, vol. 20,
no. 2, pp. 263-273, March 2004.

[45] C. T. Yang, K. W. Cheng, and K. C. Li, “An Efficient Parallel Loop Self-Scheduling on
Grid Environments,” NPC’2004 IFIP International Conference on Network and Parallel
Computing, Lecture Notes in Computer Science, Springer-Verlag Heidelberg, Hai Jin,
Guangrong Gao, Zhiwei Xu (Eds.), Oct. 2004.

[46] C. T. Yang, K. W. Cheng, and K. C. Li, “An Efficient Parallel Loop Self-Scheduling
Scheme for Cluster Environments,” The Journal of Supercomputing, vol. 34, pp. 315-335,
2005.

[47] M. J. Zaki, “Parallel and Distributed Association Mining: A Survey,” IEEE Concurrency,
vol. 7, no. 4, pp. 14-25, 1999.

A Visual Framework for Deploying and Managing
Context-Aware Services

Ichiro Satoh�

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract. A framework for managing pervasive computing is presented. It en-
ables end-users to easily and naturally build visual interfaces for monitoring and
customizing context-aware services. It is built on an exiting a symbolic loca-
tion model to represent the containment relationships between physical entities,
computing devices, and places. It supports a compound document framework for
visualizing and customizing the model. It provides physical entities, places, com-
puting devices, and services in smart spaces with visual components to annotate
and control them and to dynamically assemble visual components into a visual
interface for managing the spaces. It can visualize and configure the spatial struc-
ture of physical entities and places and the status and attributes of computing
devices and services, e.g., the location in which context-aware services are avail-
able. By using the framework, end-users can monitor and customize pervasive
computing environments by viewing and editing documents.

1 Introduction

Pervasive computing tends to consist of many computing devices like grid computing.
However, the former often lacks management systems, unlike the latter. In fact, the fo-
cus of current research on pervasive computing is on the design and implementation
of application-specific context-aware services. As a result, the task of management in
pervasive computing has attracted scant attention so far. This is a serious obstacle in
the growth of pervasive computing. The purpose of pervasive computing is to bridge
the gap between computing systems and the real world. In fact, one of the most typical
and popular applications of pervasive computing is in context-aware services. To sup-
port such services, pervasive computing systems must be able to know the context and
process this in the real world, e.g., people, location, and time. Such information tends
to depend on the offices/houses, businesses and lifestyles of users. Therefore, they must
customize many pervasive computing devices to their individual requirements and ap-
plications. Pervasive computing systems often lack professional administrators unlike
grid computing systems.

This paper presents a user-friendly management framework to solve these problems.
It was inspired by our experiences with practical applications of pervasive computing
in the real world, e.g., home appliance controls and location/user-aware user-assistance

� e-mail: ichiro@nii.ac.jp

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 397–411, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

398 I. Satoh

systems. The framework provides visual interfaces for deploying, customizing, and con-
trolling computing devices and context-aware services. Since pervasive computing en-
vironments are changed dynamically, such a management framework, including visual
interfaces, for these environments, must be able to autonomously adapt itself to the
changes. For example, when devices and services are added to a smart space, a visual
interface for managing the devices or services should be added to the interface for the
space. The framework is constructed as a combination of a location model, called M-
Spaces [11], and an active document framework, called MobiDoc [12,13], developed by
the author. The former is a symbolic-location model to maintain the locations of com-
puting devices and software for defining context-aware services as well as the locations
of physical spaces and entities in the real world. The latter is constructed as a Java-based
compound document framework. It enables one document to be composed of various
visible parts, such as text, image, and video created by different applications, like other
compound document frameworks, e.g., COM/OLE [3], OpenDoc [1], CommonPoint
[10], and Bonobo [7]. The framework presented in this paper provides visual interfaces
for a location model as a management tool for end-users to deploy, customize, and
monitor context-aware services. Since the framework itself is designed independently
of the location model as much as possible, it can be used for other location models for
pervasive computing.

2 Background

The framework presented in this paper has two bases, i.e., symbolic-location model
and compound document framework. The former is useful for providing context-aware
services in smart spaces, because such a model is useful for context-aware services as
discussed in the previous section. The latter enables end-users to build a visual man-
agement interface from components for compound documents and customize context-
aware services through GUI-manipulations. This paper addresses location-aware com-
munication between humans-machines or between machines-machines indoors, e.g., in
buildings and houses, rather than in outdoor settings.

2.1 Symbolic Location Model

The current implementation is constructed with a symbolic-location model, called M-
Spaces [11]. The framework can be used with other existing symbolic location models.
It enables us to monitor contextual information in the models, but we cannot manage
context-aware services, because the models themselves do not support services and
computing devices. The M-spaces model can spatially bind the positions of entities
and spaces with the locations of their virtual counterparts by using location sensing
systems, and when they move in the physical world, it can automatically deploy their
counterparts at proper locations within it. Physical spaces and entities are often orga-
nized in a containment relationship, where each space is often composed of more than
one sub-space. For example, each floor is contained within at most one building, each
room is contained within at most one floor, and a person or object may be contained in
at most one room. Unlike other existing location models, it can maintain the location

A Visual Framework for Deploying and Managing Context-Aware Services 399

and deployment of software to define context-aware services and information about the
computational resources of computing devices that can execute the services, as well as
represent contextual information in the real world like other existing location models.

2.2 Compound Document-Based Management Interface

The framework presented in this paper uses a compound document component frame-
work, called MobiDoc [12,13], as a visual user interface to monitor changes in the real
world and deploy and customize context-aware services. It enables an enriched docu-
ment to be dynamically and nestedly composed of software components corresponding
to various types of content, e.g., text, images and windows. Unlike other existing com-
pound document frameworks, it permits the content of all components and program
codes to access the content that is inseparable within the components so that the com-
ponents can be viewed or modified without the need for any applications. It provides an
editing environment to enable the visual components to be manipulated. It also provides
in-place editing services similar to those provided by OpenDoc and OLE. It offers sev-
eral value-added mechanisms to allow the visual estate of a container to efficiently be
shared among embedded components and to coordinate their use of shared resources,
such as keyboards, mice, and windows.

2.3 Basic Approach

The framework presented in this paper provides more than one visual component for a
virtual counterpart object corresponding to a physical entity, space, computing device,
and service to bridge the gap between the location model and the compound document
framework. Visual components are organized according to the structure of their target
virtual counterpart objects and they enable the spatial relationships between the ob-
jects’s targets to be visualized, e.g., physical entities, objects, and computing devices in
the model (Fig. 1).

The framework supports bidirectional communications between runtime systems for
virtual components and the model and communications between each visual component
and virtual counterpart objects that the component represents. The framework reflects
the structure of virtual counterpart objects in the structure of visual components and
it permits the runtime systems to request the model to change the structure of virtual
counterpart objects. We can customize the locations that the services should be available
at and the users that the services should be provided for, by deploying visual compo-
nents for context-aware services at other visual components corresponding to entities
and places through GUI manipulations. Furthermore, since each virtual component is
a programmable entity, it can directly communicate with its target counterpart object
to visualize and customize the status and attributes of the object’s target, e.g., physi-
cal entity, and place, computing device, and service via the object, through its built-in
protocols or the object’s favorite protocols.

Since compound document technology supports the dynamic composition of compo-
nents, compound document-based management interfaces for pervasive computing en-
vironments can adapt themselves to changes in the physical world. For example, when
computing devices and services are added, their visual components are dynamically

400 I. Satoh

Room 1

Room 2 Room 3

Computer

Floor

User

Visual component (floor)

Visual component (room 1)

 Visual component
(room 2)

Visual component
(user)

Virtual
counterpart

object (floor)

Virtual
counterpart

object (room 1)

Virtual
counterpart

object (room 2)

Virtual
counterpart

object (room 3)

Virtual
counterpart

object (computer)

Virtual
counterpart

object (user)

Service-
provider
software

Visual component
(service)

 Visual component
(room 3)

Sensing

Updating
events

Monitoring/
customization request

Visualization

Service

Location model layer

Visual component layer

Fig. 1. Rooms on floor in physical world and virtual counterpart objects in location model

downloaded from specified servers or devices and then automatically displayed within
the scope of the components corresponding to the spaces that contain them.

2.4 Remarks

We should explain the reason why our framework supports two layers. This is because
the upper layer, i.e., visual interfaces, should be general so that is can be used for other
models and other computing, including grid computing. In fact, it is designed inde-
pendently of the lower layer, i.e., the M-Spaces model and can support non tree-based
models. We should also note that the framework itself can be easily used for other loca-
tions models to monitor them but it does not support the deployment and customization
of context-aware services, because they cannot maintain any services and computing
devices unlike the M-Spaces model.

3 M-Space: Location Model for Smart Spaces

Existing location models can be classified into two: physical world and symbolic world.
The former represents the position of people and objects as geometric information,
which can be measured by GPS and ultra-sonic location sensing systems. The former
is not suitable in indoor settings, because although the geometric locations of two ob-
jects may be neighboring, the objects themselves may be in different rooms. In fact,
most emerging applications in indoor settings require a more symbolic notion. We use
a symbolic location model, called M-Spaces model. This section outlines the model
before explaining the framework.1

1 Detail of the model was presented in our previous paper[11].

A Visual Framework for Deploying and Managing Context-Aware Services 401

3.1 Containment Relationship Model

This model is unique to other existing location models, because it not only consists of
data elements but also programmable entities, called agents, as virtual counterpart ob-
jects of physical entities or places. Agents have the following notions: (1) Each agent
is a virtual counterpart of a physical entity or place, including the coverage area of the
sensor, computing device, or service-provider software. (2) Each agent can be contained
within at most one agent according to containment relationships in the physical world
and cyberspace. It can move between agents as a whole with all its inner agents. Agents
When an agent contains other agents, we call the former a parent and the latter children.
The model permit agents to interact with each others. The model represents facts about
entities or places in terms of the semantic or spatial-containment relationships between
agents that are associated with these entities or places. When physical entities, spaces,
and computing devices move from location to location in the physical world, the model
detects their movements through location-sensing systems and changes the containment
relationships between agents corresponding to moving entities, their sources, and des-
tinations. The below figures of Fig. 1 shows the correlation between spaces and entities
in the physical world and their counterpart agents. Each agent is a virtual counterpart
object of its target in the world model and maintains the target’s attributes.

3.2 Agent

The model cannot only maintains the location of physical entities, such as people and
objects, but also the locations of computing devices and services in a unified manner.

– The virtual counterpart agent (VCA) is a digital representation of a physical
entity, such as a person or object, except for the computing device itself, or physical
surroundings such as a building or room,

– The proxy agent (PA) bridges the model and computing device, and maintains a
subtree of the model or executes services located in a VCA.

– The service agent (SA) is software that defines application-specific services de-
pendent on physical entities or places.

For example, a car carries two people and moves from location to location with its oc-
cupants. The car is mapped into a VCA on the model and this contains two VCAs that
correspond to the two people. The movement of the car is mapped into the VCA migra-
tion corresponding to the car, from the VCA corresponding to the source to the VCA
corresponding to the destination. Also, when a person has a computer for executing ser-
vices, his or her VCA has a PA, which represents the computer and runs SAs to define
the services.

Virtual counterpart agent. A person, physical object, or place can have more than one
VCA, and each VCA can contain other VCAs and PAs according to spatial containment
relationships in the physical world. However, unlike other existing location models, ours
does not distinguish between entities and places in the physical world; some entities can
be viewed as spaces, e.g., cars and desks, in the sense that they can contain other entities
inside them.

402 I. Satoh

VCA

PAS VCA

SASAForwarding

Computer 1 for

managing space model 1

Computer 2 for managing space model 2

SA
migration

VCA

PAL VCA

SA

Communcation

Computer 1 for

executing its program
 Computer 2 for managing space model 2

interaction

Black

box

a)

b)

SA

Fig. 2. Two types of proxy agents

Proxy agent. VCAs can have software to define the context-dependent services inside
them. However, they may not be able to be executed in the software, because none of the
computing devices that maintain these have unlimited computational resources. Instead,
there are two facilities through which services can be provided. The first is to forward
such services to computing devices embedded in or visiting a space and execute them on
the devices. The second is to directly use services provided by computing devices within
a space. We introduced proxy agents to maintain the location of computing devices and
used the devices as service providers.2 Our model also allows PAs to be classified into
two sub-types that handle computing devices according to their functions.

– The first agent, i.e., PAS (PA for Service provider), is a proxy of a computing device
that can execute services (Fig. 2(a)). If such a device is in a place, its proxy is
contained in the VCA corresponding to the space. When a PAS receives software
for defining services, it forwards this to the device to which the software refers.
After the PAS forwards the software, it enables other agents to fetch the software
as if this were in it.

– The second agent, called PAL (PAC for Legacy device), is a proxy of a computing
device that cannot execute SAs (Fig. 2(b)). If such a device is in a space, its proxy
is contained in the VCA corresponding to the space and it communicates with the
device through the device’s favorite protocols.

Service agent. We should reuse existing location-based and personalized services as
much as possible. The model introduces several typical software agents, e.g., Java Beans
and Java Applets as service-provider programs. However, such existing agents may
not be suitable for our model. Each SA is a wrapper for software modules to define
application-specific services and each specifies the attributes of its services, e.g., the
requirements that a device must satisfy to execute these services. The model maintains
the locations of services by using SAs.

2 Proxy agents are unique to other existing location models and are useful for maintaining and
using computing devices.

A Visual Framework for Deploying and Managing Context-Aware Services 403

4 Compound Document Framework for Managing Pervasive
Computing

This section presents a compound document framework for building and operating vi-
sual interfaces for context-aware services. The framework inherits many features of our
compound document framework, MobiDoc, but is extended to manage pervasive com-
puting. The framework provides each agent in the model with more than one visual
component to view and customize the status and attributes of the agent by using the
program code defined in the agent. It organizes these components in a tree structure ac-
cording to their target agents. It consists of two parts: component runtime systems and
visual components. The former can communicate with the model and organize visual
components. The latter maintains its visual content and program code to enable content
inside it be viewed or edited.

4.1 Visual Component

Each visual component is a collection of Java objects wrapped in a component and it
has its own unique identifier and image data displayed as its icon. All the objects that
each component consists of need to implement the java.io.Serializable inter-
face, because they must be marshaled using Java’s serialization mechanism. Each visual
component needs to be defined as a subclass of either the java.awt.Component
or java.awt.Container from which most of Java’s visual or GUI objects are
derived. To reuse existing software, we implemented an adapter to use typical Java
components, e.g., Java Applets and JavaBeans, that are defined as subclasses of the
java.awt.Component or java.awt.Container class within our components.
This is not compatible with all kinds of Applets and JavaBeans, because some of those
existing components manage their threads and input and output devices depreciatively.
Nevertheless, the framework provide adapters for several canonical Applets and Jav-
aBeans to be used as visual components.

4.2 Component Runtime System

Each runtime system governs all the components within it and provides them with APIs
for components in addition to Java’s classes. It assigns one or more threads to each
component and interrupts them before the component migrates, terminates, or is saved.
Each component can request its current runtime system to terminate, save, and migrate
itself and its inner components to the destination that it wants to migrate to. This frame-
work provides each component with a wrapper, called a component tree node. Each
node contains its target component, its attributes, and its containment relationship and
provides interfaces between its component and the runtime system. When a component
is created in a runtime system, it creates a component tree node for the newly created
component. When a component migrates to another location or duplicates itself, the
runtime system migrates its node with the component and makes a replica of the whole
node.

Each VCA, PA, and SA, has more than one visual component and the structure of
VCAs, PAs, and SAs in the model is reflected in the hierarchical structure of visual com-
ponents. Each hierarchy is maintained in the form of a tree structure of component tree

404 I. Satoh

MDContainer

size
position

size
position

component layout manager

program
data

MDContainer

size

position

component layout manager

Box Component

program
data

Visual component
tree node

program
data

MDComponent

Text Component

program
data

C

D

B

Image Component

MDComponent

Visual component
tree node

Visual
component
tree node

Component tree node

Window Component

Video Stream Player

Box Frame

Button

Window

Visual component
tree node

MDComponent

Text Component

program
data

Button

SA
(Video Stream

Server)

Fig. 3. Visual component hierarchy

Room 2 Room 3

Visual component (floor)

Visual component (room 1)

 Visual component

(room 2)

Visual component

(user)

VCA
(floor)

VCA
(room 1)

VCA
(room 2)

VCA
(room 3)

PAS
(computer)

VCA
(user)

 Visual component

(room 3)Sensing

Step 1.

Floor

User migration

VCA
(user)

Agent migration

Visual component

(user)

Component

migration

Reflection

Step 2. Step 3.

Fig. 4. The movement of agents and components when changes in the real world

Fig. 5. Relocation of visual components

nodes of components (Fig. 3). Each node is defined as a subclass of MDContainer
or MDComponent, where the first supports components, which can contain more than
one component inside them while the second supports components, which cannot con-
tain any components. For example, when a component has two other components in-
side it, the nodes that contain these two inner components are attached to the node that
wraps the container component. Component migration is only performed as a trans-
formation of the subtree structure of the hierarchy. The framework does not support
direct-interactions between visual components. Instead, it permit each VCA, PA, or
SA, to have more than one visual component.

A Visual Framework for Deploying and Managing Context-Aware Services 405

VCA (floor)

VCA (room 1)

VCA
(floor)

VCA
(room 1)

VCA
(room 2)

VCA
(room 3)

PAS
(computer)

Step 1.

Service platte repository

Component migration

Step 2.

Step 4.

Sevice-
provider
software

Service platte component

SA (service)

Service platte

window

Drag-and-drop

manipulation

VCA
(user)

SA
(service)

Agent migration

Step 3.

Components

(services)

SA (service-provider software)

is dynamically deployed

at the computer that PAS refers.

Fig. 6. Dynamic service-deployment according to migration of visual component

5 Binding Between Visual Components and Virtual Counterparts

The framework permits each agent to have more than one visual component. When it
detects changes in the attributes of an agent, it sends events to the visual components
that refer the agent.

5.1 Updating the Structure and Attributes of Visual Components

Component runtime systems support WebDAV servers. When the framework detects
changes in the structure of agents in the model (Fig. 4), it transforms the structure
of visual components that refer the agents by sending WebDAV-based commands to
the runtime systems (Fig. 5). When new physical entities and people arrive at spaces,
visual components that refer the counterpart objects for the visiting entities or people
may not be available in these runtime systems. When entities or people leave from
spaces, visual components for the missing entities or people may be unnecessary. To
solve these problems, the framework provides a mechanism for fetching/dispatching
components from/to specified servers, called repository servers. When a component is
fetched from or dispatched to servers, the runtime system marshals the node of the
component, including its state and codes, and the nodes of its descendants, into a bit-
stream by using Java’s object serialization mechanism and then transmits the bit-stream
to/from the servers. Therefore, the attributes and structure of visual components become
persistent, even while they are stored in these servers.

5.2 Updating the Structure and Attributes of Agents

Each component can display its content within the rectangular estate maintained by
its container component. The node of the component, which is defined as a subclass
of the MDContainer or MDComponent class, specifies attributes, e.g., its minimum
size and preferable size, and the maximum size of the visible estate of its component

406 I. Satoh

Serial

line Powerline

X10 powerline

contoller

X10 powerline

contoller

X10

powerline

control

module

powerline

powerline

Slider switch

visual component

for electric fan

Legacy Appliance

(Electric Fan)

Legacy Appliance

(Electric light)

Push switch

visual component

for Electric light

X10

protocol X10

control server

 PAL for

electric light

 PAL for

electric fan

M-Spaces model

Compound

document-

based interface

Fig. 7. X10-based power-outlet controlling system

in the estate is controlled by the node of its container component. These classes can
define their new layout manager as subclasses of the java.awt.LayoutManager
class. When a component is dynamically added to a container, the layout manager of
the container’s MDContainer manage the position and size of the new component. For
example, if a container has an instance of Java’s java.awt.FlowLayout as its
layout manager, components that visit it automatically stand in rows in its estate.

This framework provides an editing environment for manipulating the components
for network processing, as well as for visual components. It offers several value-added
mechanisms for effectively sharing the visual estate of a container among embedded
components and for coordinating their use of shared resources, such as keyboards, mice,
and windows. Each component tree node can dispatch certain events to its components
to notify them when certain actions occur within their surroundings. MDContainer
and MDComponent classes support built-in GUIs for manipulating components. For
example, when we want to place a component on another component, including a docu-
ment, we move the former to the latter through GUI manipulations, e.g., drag-and-drop
or cut-and-paste.

When users change the structure or attributes of visual components, the framework
sends events to the model to update the structure or attributes of corresponding agents
(Fig. 6). When the underlying sensing system detects the arrival of people and physical
objects, the model fetch and load agents corresponding to these people and objects from
such storage and then issue specified events to runtime systems. To duplicate agents
or components, the system marshals them into a bit-stream and then duplicates the
marshaled agent or component, because Java has no deep-copy mechanisms that can
make replicas of all objects embedded in and referred to from these components.3

3 Since the framework treats a component and its clones as independent, it does not support any
consistency control mechanisms between them.

A Visual Framework for Deploying and Managing Context-Aware Services 407

Visual

component

 for room 1

Visual

component

 for room 2

Visual

component

 for room 3

Visual

component

 for house

Visual

component

 for electric litght

Visual

component

 for electric litght

Fig. 8. Screenshot of remote control interface

6 Early Experience

We developed various components for managing VCAs, PASs, PALs, and SAs as well
as basic visual components, e.g., text viewer/editor component , JPEG or GIF viewer
components, and stream-video player components.4 Most java Swing and AWT GUI
Widgets can be used as our components in the framework without modifications, be-
cause they have been derived from the java.awt.Component class. The perfor-
mance of visual components is reasonable as management interfaces.

We describe a remote controller for power-outlets of lights through a commercial
protocol called X10 with this framework. The lights are controlled by switching their
power sources on or off according to the X10-protocol. We provide all lights with their
PALs to switch them on or off. Each PAL communicates with an X10-base server,
which controls an X10-module connected to the power-outlet to switch the outlet on
or off, and it has its own visual component to display the GUI of its target (Fig. 7).
The current implementation of the component sends commands to its PAL through an
HTTP-based protocol. When a new PAL is added to the model, it sends a specified event
to the component runtime system, which downloads a visual component for the PAL.

4 Visual components corresponding to visual components, e.g., documents, image viewers, and
text editors, were presented in our previous papers [12,13].

408 I. Satoh

We developed an improved version of the remote controller for electronic lights in
several rooms of a house and each room had more than one light. The VCA correspond-
ing to the house contained the VCA corresponding to the rooms in the containment rela-
tionship between these physical spaces and entities, We constructed an interface for the
controller with the framework (Fig. 8). The visual component for the VCA correspond-
ing to the house had several visual components displayed for the VCAs corresponding
to the rooms in its area. The visual component for the house drew a map of arrangement
of the rooms in the house. It contained VCAs corresponding to the rooms in spaces cor-
responding to the rooms on the map. A VCA corresponding to a room could contain
PALs and PASs, e.g., PALs for controlling X10 modules connected to power outlets in
the room through the X10 protocol. The interface was used to control home appliances,
including lights.

6.1 Management System for Context-Aware Services

The second application is a management system for context-aware assistant services.
The system was constructed with the framework and actually used at an exhibition in
a public museum. This was in the Museum of Nature and Human Activities at Hyogo,
Japan, which mainly has information and objects that concerned the natural environ-
ment. The exhibition space had RFID-tag readers installed and visitors were provided
with active RFID-tags to track their locations. When they came sufficiently close to
some objects, e.g., zoological specimens and fossils, located at several spots in the ex-
hibition, they could listen to sound content that annotated the objects. The RFID-tag
readers identified all the visitors within their coverage range, i.e., a 2-meters diameter
and selected sound content according to their knowledge and interests. Fig. 9 shows

Drag-and-drop visual component
corresponding to sound content

on areas

Visual components
corresponding to sound contents

When user enter area,
visual component for user

is deployed at visual component
for area

Sound contents are assigned at
areas

Visual container component
corresponding to area

Fig. 9. Screenshot of monitor system windows for location/user-aware audio guiding system

A Visual Framework for Deploying and Managing Context-Aware Services 409

a screenshot of the visual interface for the management system. The interface enables
users to deploy services at areas by using drag-and-drop manipulation. Each day the
exhibition has more than 200 visitors and the system continued to monitor and manage
RFID-tag readers and location-aware services for one week without any experiencing
problems.

The interface consisted of four visual components that monitored four RFID-tag
readers located at spots throughout the exhibition. When a visitor with an RFID-tag en-
tered a spot, the VCA corresponding to him or her is deployed at the VCA correspond-
ing to the spot. We could dynamically add/remove location-aware services to/from
spots. To add a service to a spot, we deployed SA to define the service at the VCA
corresponding to the spot by a drag-and-drop operation of the visual component of
the SA on the visual component of the VCA. Curators who have no knowledge about
pervasive computing systems, can easily and naturally change audio-based assistance
services at the exhibition.

7 Related Work

This paper addresses a user-friendly management system of context-aware services in
indoors settings, e.g., in buildings and houses, rather than in outdoor settings.

7.1 Location Models

Perceptual technologies have made it possible to sense contextual information in the
real world. For example, indoor location systems, such as Radio Frequency IDentifica-
tion (RFID) tag systems, measure and track the locations of physical entities attached
to RFID tags. Existing context-aware services tend to be selected and operated in an
ad-hoc manner. For example, most existing services explicitly and implicitly depend
on the underlying sensing systems. They are not available with other sensing systems
that they have not initially assumed. To solve these problems, some research projects on
context-aware services have attempted to offer general-purpose world models to cancel
the differences between sensing systems. Since location is one of the most typical and
useful kinds of contextual information, location models will be discussed [2]. Existing
location models, unfortunately, lack any user-friendly interfaces to enable end-users to
easily manage and customize them.

7.2 Management Systems for Pervasive Computing

As mentioned in the previous section, there have been a few attempt to construct man-
agement systems or tools that monitor and customize context-aware services in per-
vasive computing environments. The EasyLiving project [4] provides context-aware
spaces, with a particular focus on homes and offices. It uses mounted sensors such as
stereo cameras on a room’s walls and tracks the locations and identities of people in the
room. The system can dynamically aggregate networked-enabled input/output devices,
such as keyboards and mice, even when they belong to different computers in the space.
It provides monitoring tools for visualizing the positions of users in rooms. However,

410 I. Satoh

the project, including its monitoring tools, seemed only to be designed for its target
rooms in an ad-hoc manner. Cambridge University’s Sentient Computing project [5]
provides a platform for location-aware applications using an ultrasonic-based locating
system in a building. It can track the movement of tagged entities, such as individuals
and objects, so that the graphical user interfaces of the users’ applications follow them
while they move around. It provides a visual editor to enable the ranges of location-
aware services to be configured, but cannot deploy services at locations.

There have been several mechanisms for automatically generate graphical user inter-
faces for pervasive computing services and devices [6,9,8]. Most existing approaches
can provide GUIs for individual devices and can support the dynamic generation of
GUIs for devices, which may be added. However, they assume the use of specified pro-
tocols to communicate with their target devices. They do not support the deployment
and configuration of context-aware services.

8 Conclusion

We presented a visual framework for monitoring and managing context-aware services
in smart spaces. It supports a symbolic location model to represent the containment
relationships between physical entities, spaces, computing devices, and software for
defining services as virtual counterpart objects that correspond to them. It enables phys-
ical entities, places, computing devices, and services in smart spaces to have visual
components to annotate and control them and to dynamically and seamlessly assem-
ble multiple visual components into a visual interface for managing the spaces. It can
monitor the spatial structure of physical entities and places and customize the status
and attributes of computing devices, and services, e.g., the location in which context-
aware services are available. It provides document-based interfaces to monitor and cus-
tomize pervasive computing environments as viewing and editing documents by using
a GUI to manipulate the compound document technology. For example, end-users can
add and customize location-aware services at specified locations by deploying the vi-
sual component corresponding to the services at the visual component corresponding
to the location. The framework presented in this paper can be used for the management
of grid computing. Our visual components themselves are independent of the model.
Since they are also programmable entities, they can communicate with computers in
grid computing environments and displays various information of the computers.

References

1. Apple Computer Inc., OpenDoc: White Paper, 1995.
2. M. Beigl, T. Zimmer, C. Decker, A Location Model for Communicating and Processing of

Context, Personal and Ubiquitous Computing, vol. 6 Issue 5-6, pp. 341-357, Springer, 2002.
3. K. Brockschmidt, Inside OLE 2, Microsoft Press, 1995.
4. B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer, EasyLiving: Technologies for Intel-

ligent Environments, Proceedings of International Symposium on Handheld and Ubiquitous
Computing, pp. 12-27, 2000.

A Visual Framework for Deploying and Managing Context-Aware Services 411

5. A. Harter, A. Hopper, P. Steggeles, A. Ward, and P. Webster, The Anatomy of a Context-
Aware Application, Proceedings of Conference on Mobile Computing and Networking (MO-
BICOM’99), pp. 59-68, ACM Press, 1999.

6. K. Gajos and D. S. Weld, SUPPLE: automatically generating user interfaces, Proceedings
of the 9th International Conference on Intelligent User Interface (IUI’04) pp.93-100, ACM
Press, 2004.

7. The GNOME Project, Bonobo, http://developer.gnome.org/ arch/component/ bonobo.html,
2002.

8. T. D. Hodes, R. H. Katz, E. Servan-Schreiber, L. Rowe, Composable ad-hoc mobile services
for universal interaction, Proceedings of International Conference on Mobile Computing and
Networking (MobiCom’97), pp.1-12, 1997.

9. J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosenfeld, and M. Pignol,
Generating remote control interfaces for complex appliances, Proceedings of Symposium on
User Interface Software and Technology (UIST’02), pp.161-170, ACM Press, 2002.

10. M. Potel and S. Cotter Inside Taligent Technology, Addison-Wesley, 1995.
11. I. Satoh, A Location Model for Pervasive Computing Environments, Proceedings of IEEE

3rd International Conference on Pervasive Computing and Communications (PerCom’05),
pp,215-224, IEEE Computer Society, March 2005.

12. I. Satoh, Network Processing of Documents, for Documents, by Documents, Proceedings of
ACM/IFIP/USENIX 6th International Middleware Conference (Middleware’2005), Lecture
Notes in Computer Science (LNCS), vol. 3790, pp.421-430, December 2005.

13. I. Satoh, A Document-centric Component Framework for Document Distributions, Proceed-
ings of 8th International Symposium on Distributed Objects and Applications (DOA’2006),
Lecture Notes in Computer Science (LNCS), vol.4276, pp.1555-1575, Springer, October
2006.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 412 – 423, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards a Peer-To-Peer Platform for High
Performance Computing

Nabil Abdennadher and Régis Boesch

University of Applied Sciences, Geneva, Switzerland
{nabil.abdennadher, regis.boesch}@hesge.ch

Abstract. XtremWeb-CH (XWCH) is a software system that makes it easy for
scientists and industrials to deploy and execute their parallel and distributed
applications on a public-resource computing infrastructure. The objective of
XWCH is to develop a real High Performance Peer-To-Peer platform with a
distributed scheduling and communication system. The main idea is to build a
completely symmetric model where nodes can be providers and consumers at
the same time.

This paper describes the different “components” of an XWCH infrastructure
and the new features proposed by this platform compared to other similar
Global Computing projects. It also describes the porting, the deployment and
the execution of a phylogenetic CPU time consuming application on an
experimental XWCH platform.

Keywords: Grid, Peer-To-Peer, Scheduling algorithm, High Performance
Computing.

1 Introduction

Since the early 90s, computing power consumers are adopting a new approach which
takes advantage of the Internet development. The idea consists of deploying High
Performance applications on Distributed platforms instead of supercomputer centres.
This concept, known as Grid Computing, provides the ability to perform higher
throughput computing by taking advantage of many networked computers. The Grid
platforms use the resources of many separate computers connected by a network
(usually the Internet) to solve large-scale computation problems. These “platforms”,
equipped with appropriate middlewares, involve organizationally-owned resources:
supercomputers, clusters, and PCs owned by universities, research labs, and private
companies.

Simultaneously with Grid Computing, a second alternative emerged. It consists of
executing High Performance applications on anonymous connected computers by
using their available resources. This concept is called Global Computing (GC).
Consumers are typically small academic research groups and/or private companies with
limited computer expertise and manpower. Most providers are individuals who own
PCs and Macintosh, connected to the Internet by cable modems or DSL. Providers are
not computer experts, and participate in a project only if they are interested, or receive
“incentives”. In the context of GC, consumers have no control over providers.

 Towards a Peer-To-Peer Platform for High Performance Computing 413

The majority of GC projects adopted a centralized structure based on a
Master/Slave Architecture: BOINC [1], Entropia [2], United Devices [3], Parabon [4],
XtremWeb [5], etc. A natural extension of the GC consists on distributing the
"decisional degree" of the master in order to avoid any form of centralization. Thus,
architectures such as Clients/Servers and Master/Slaves would be withdrawn. This
concept, known as Peer-To-Peer, was successfully used to share and exchange files
between computers connected to Internet and broadcast micro-news among internet
users. The most known projects are BitTorrent [6], eDonkey [7], Kazaa [8], Gnutella
[9], Freenet [10] and FeedTree [11].

The requirements of GC and P2P computing are different from those of Grid
computing. In fact, most of the features described in the remainder of this paper apply
to GC and P2P computing.

The XtremWeb-CH (www.xtremwebch.net) project aims to build an effective Peer-
To-Peer System for CPU time consuming applications. Initially, XWCH is an
upgraded version of a Global Computing environment called XtremWeb (XW). Major
improvements have been brought in order to obtain a reliable and efficient system.
The software’s architecture was completely re-designed. The communication routines
based initially on Remote Procedure Calls (Java RMI) were replaced by socket
communications.

This document is organized in 5 sections. After the introductory section 1, section 2
presents the different components of the XWCH package. Section 3 details the new
features XWCH introduces, compared to other GC and P2P projects. Section 4 presents
the experiments carried out in order to evaluate XWCH. Finally, section 5 gives some
perspectives of this research.

2 XtremWeb-CH Ingredients

XtremWeb-CH (XWCH) is composed of four modules: coordinator, worker,
warehouse and broker. Several modules can be installed on the same node. A typical
XWCH platform is composed of one coordinator and a set of workers, warehouses and
brokers (Fig. 1).

The coordinator module is the main component of XWCH. It is considered as the
master of the XWCH system; it has the responsibility of managing communication
between the clients (users) and the workers (resource providers).

The worker module is installed on each provider node. It manages execution of
tasks and the transfer of data from/to the worker. Workers are considered as the slaves
of the XWCH system.

When two communicating tasks are executed by two workers that can not reach
each other (firewalls, NAT addresses, etc.), a warehouse node is used as a depository:
the producer worker stores the result of its execution while the consumer worker
fetches for the input data it needs to launch its execution.

A broker module is a “compiler” which transforms the user request (application
submission) into a set of tasks compliant to the “format” recognized by XWCH. Every
family of applications has its own broker. The XWCH broker module can be
compared to the Globus broker which is responsible of transforming a high level RSL
(Request Specification Language) request into a low level RSL request [12].

414 N. Abdennadher and R. Boesch

XtremWeb-CH
Coordinator User Application

Work request

Work Result

Warehouse

Worker

Work Alive

C

XWCH application
Structure

Brokers

B
A

Task’s manager

Worker’s
manager

Scheduler

Comm.
manager

Fig. 1. XWCH architecture

2.1 The Coordinator

It is a three-tier architecture which adds a middle tier between client and workers.
There is no direct submission/result transfer between clients and workers. The
coordinator accepts execution requests coming from clients, assigns the tasks to the
workers according to a scheduling policy and the availability of data, transfers binary
codes to workers (if necessary), supervises task execution on workers, detects worker
crash/disconnection, re-launches tasks on any other available worker, and controls the
transfer traffic on the network to ensure the balancing of bandwidth load. The
coordinator is composed of four services: the workers’ manager, the tasks’ manager,
the scheduler and the communication manager.

2.1.1 The Workers’ Manager
The workers’ manager maintains a list of connected workers. It receives four types of
common requests/signals from the workers: Register Request (RR), Work Request
(WR), Life Signal (LS) and Work Result Signal (WRS). In order to minimize the
response time of these requests/signals, every “type” is received on a dedicated port.
The Register Request allows a worker to subscribe nearby the coordinator. When the
Workers’ Manager receives a Work Request, it searches for the most appropriate task
(see detail in section 3.3) to be assigned to the concerned worker. During the execution
of the task, workers send LS to the coordinator to inform about their status. Life Signals
are considered, by the coordinator, as the “proof” that the workers are still “alive”

 Towards a Peer-To-Peer Platform for High Performance Computing 415

(connected). When a worker finishes its execution, it sends a Work Result Signal to
inform the coordinator about the location of the data it has produced.

2.1.2 The Tasks’ Manager
A parallel and distributed application is composed of a set of communicating tasks
whose structure is described in section 3.1. A task is considered to be “ready” for
execution if its input data are available (given by the user or produced by a previous
task). A task is in “blocked” status if its input data are not yet available. Two lists are
maintained by the Tasks’ Manager: blocked tasks and ready tasks. When receiving a
Work Result Signal, the Tasks’ Manager checks whether the new available data
correspond to input data awaited by one or several blocked tasks; it updates the lists
of blocked and ready tasks accordingly.

2.1.3 The Scheduler
A Work Request transmits, as input parameter, the performance that can be delivered by
the concerned worker. When receiving this request, the coordinator launches a scheduler
module which selects the “most appropriate” ready task to be allocated to that worker.
The concept of “most appropriate” is detailed in section 3.3.

2.1.4 The Communication Manager
XWCH is supposed to be a Public Large Scale Distributed Platform. It is assumed to
be deployed on a “public” network. In this context, the system should insure that the
bandwidth provided by the network is not completely consumed by the traffic
generated by XWCH: common requests, data transfers, etc. The data transmitted
between two XWCH nodes (coordinators, workers, warehouses) are split into fixed
size packets. A sleep time separates the transmission of two successive packets. This
time depends on the load of the network as sensed by the coordinator: the higher the
load the bigger the sleep time.

Similarly, the number of competing Work Requests and Life Signals processed by
the coordinator is fixed by the communication manager according to the workload of
the network as sensed by the coordinator.

2.2 The Workers

The worker module includes three components: the activity monitor, the execution
thread and the communication manager.

The activity monitor controls whether some computations are taking place in the
hosting machine regarding parameters such as CPU idle time and mouse/keyboard
activity. According to this monitoring, it processes the effective performance that can
be provided by the worker and sends it to the coordinator via the Work Request.

The execution thread extracts the assigned task, recreates its environment as
provided by the coordinator (binary code, input data, directories structure, etc.), starts
computation and waits for the task to complete.

The communication manager of the worker is similar to the communication
manager of the coordinator. It “spies” the workload of the network and splits output
files into fixed size packets. A sleep time separates the transmission of two successive
packets. This time depends on the load of the network load: the higher the load the
bigger the sleep time.

416 N. Abdennadher and R. Boesch

Each worker could be in one of the four states: ready to execute a task, receiving
input data of the allocated task, running a task or sending output data to the
warehouse.

When it is in a ready state, a worker sends periodically Work Requests to the
coordinator to inform it about its availability. The worker passes to a receiving state if
a task is assigned to it: the input data needed by the task is downloaded by the
communication manager.

The third state (running) indicates that the worker is executing its allocated task. A
worker passes from running to sending state when the task finishes its execution; the
result file is then uploaded to the warehouse.

2.3 The Warehouses

XWCH supports direct communication between workers executing two
communicating tasks. Direct communication can only take place when the workers
can “see” each other. Otherwise (one of the two workers is protected by a firewall or
by a NAT address), this kind of communication is impossible. In this case, it is
necessary to pass by an intermediary (XWCH coordinator for example). However, to
avoid overloading the coordinator, one possible solution consists of installing
“warehouse” nodes which acts as an intermediary. These nodes are used by workers
to download input data needed to execute their allocated task and/or upload output
data produced by the task. A warehouse node acts as a repository or file server. It
must be reachable by all workers contributing to the execution of a given application.
The protocol is the following:

1. The list of available warehouses is received by a worker when it registers nearby a
coordinator (Register Request)

2. When a worker finishes the execution of a task it uploads its result in a one of the
known warehouses (selected randomly). Thus, the result is stored in the worker and
in the warehouse,

3. The worker sends a work result to the coordinator with the two locations (IP
address and path) of the result produced by the given task,

4. When a worker sends a Work Request to execute a new task, it receives as a reply,
the binary code of the allocated task and the two locations of its input data.

2.4 The Brokers

XWCH optimizes the granularity of the application according to the “state” of the
platform. The broker splits the user application into a set of tasks according to the
state of the platform. The broker module depends on the application itself. In other
words, the broker module “compiles” the user request (application submission) and
generates the optimal number of tasks and the best workload (quantity of data to be
processed) of each task according to the number of the available workers and their
performance. The broker module can be installed in the client node (computer from
which the user launches its application).

During execution, a broker node does not interfere with the XWCH platform. An
API has been developed to allow programmers develop their own brokers specific to
their own applications.

 Towards a Peer-To-Peer Platform for High Performance Computing 417

3 XWCH Characteristics

XWCH supports three new features which, from our knowledge, do not exist in
similar “prototypes”

1. support of communicating tasks,
2. direct communication between workers,
3. granularity and load balancing management.

3.1 Support of Communicating Tasks

In the majority of GC environments, jobs submitted to the system are standalone. In
case of parallel/distributed applications, communicating modules are executed as
separate tasks. It’s the user responsibility to link manually output and input data of
two communicating tasks. Contrary to this approach, XWCH supports the execution of
parallel/distributed applications containing communicating tasks. These application as
often modelled by a data flow graph where nodes are tasks and edges are
communications inter-tasks. The data flow graph is represented by an XML file.

In addition to the four states (detailed in section 2.2) a task can have: ready,
running, sending and receiving, XWCH adds a fifth state: blocked. Tasks of a given
application are initially blocked and cannot be assigned to any worker, since their
input data are not available. Only tasks whose input data are given by the user are in
ready state and can be allocated to workers. When a task is assigned to a worker, it
moves from ready to running state. Input data needed by blocked tasks are
progressively provided by running tasks which finish their processing. XWCH detects
the blocked tasks which can pass to ready state and can, thus, be assigned to a worker.

3.2 Direct Communication Between Workers

Two versions of XWCH were developed. The first, called XWCH-sMs, manages inter-
tasks communications in a centralized way. The second version, called XWCH-p2p,
allows a direct communication between workers without passing by the coordinator
[13]. In the XWCH-sMs (slave-Master-slave) version, workers cannot directly
communicate, they cannot "see" each other. Any communications between tasks take
place through the coordinator. This architecture overloads the coordinator and could
affect the application performances.

In order to cure the gaps of the XWCH-sMs version, it is necessary to have direct
worker-to-worker communications. Every worker receives the binary code of the task
it will execute and the necessary information relating to its input file (IP address, path
and name of the input file). Data transfer between the two concerned workers can thus
take place on the initiative of the receiver. This XWCH-p2p version has two main
advantages: it discharges the coordinator from data routing and avoids the duplication
of communications (whenever it’s possible). In this context, the coordinator keeps
only the responsibility of tasks scheduling. XWCH-p2p tends towards the Peer-To-
Peer concept which one of its principles is to avoid any centralized control.

418 N. Abdennadher and R. Boesch

Direct communication can only take place when the workers can “see” each other.
Otherwise (one of the two workers is protected by a firewall or by a NAT address),
direct communication is impossible. In this case, a warehouse node is used as a
depository (see details in section 2.3).

3.3 Granularity and Scheduling

In parallel computing, the grain’s size (granularity) depends on the application and the
number of processors in the target parallel machine. This number is generally known
and fixed before the execution. In this case, the granularity is fixed during the
development of the application. In our context, the computer is the network, workers
are free to join and/or leave the XWCH platform whenever they want. The exact
number of available workers is known just before the execution and could be varied
later. As a consequence, the best granularity can not be fixed before execution time.
This section describes how XWCH optimizes the granularity of tasks and how these
tasks are scheduled during execution.

The data flow graph which represents an application comprises a set of stages {Si}.
A stage Si is a set of tasks having the same source code. They can be executed in
parallel on different workers. The precedence rules between two stages Si and Si+1
depends on the application. Tasks belonging to the same stage have no precedence
rules. They are fed with different data and are executed according to the Single
Program Multiple Data (SPMD) model. Thus, every stage is responsible of processing
a “quantity” of data noted Qi. The number of tasks belonging to stage Si depends also
on application but could be fixed according to the number of workers. To deploy an
application on XWCH, three steps are required:

3.3.1 Discovery Step
This step consists of searching for a set of available workers W to execute the
application (or one stage of the application). The output of this step is a set of workers
W = {(wj, pj)} where pj is the effective performance of wj. pj can be expressed in
term of CPU performance, main memory size, network bandwidth, etc.

3.3.2 Configuration Step
Assuming that |W| = n, this step dispatches the quantity of data to process by a stage
Si (Q) among the n tasks that will compose the given stage. A task tk, supposed to be
executed by worker wj (with performance pj), is assigned a quantity of data qk
function of pj. qk is called the workload of tk. The more the worker is powerful, the
bigger is qk. At this point, the system behaves as if the n workers are fully monitored
by the coordinator. In other words, granularity of the parallelization and load
balancing are fixed according to the number and performance of available workers.

The output of the configuration step for a given stage S of a given application is a
set of couples {(qk, pj)} where pj is the performance of the worker that will process the
task having the workload qk.

The XML file, describing the application, is automatically generated at the end of
this step.

3.3.3 Execution Step
Configuration step assumes that available workers W are fixed and controlled by the
coordinator. However, during execution, tasks allocation is not totally controlled by

 Towards a Peer-To-Peer Platform for High Performance Computing 419

the coordinator. Indeed, tasks are allocated to workers when the coordinator receives
work requests from workers. At this point, it is worth going into some details:

1. A work request is sent by the workers and received by the coordinator.
2. The arrivals of work requests are unpredictable.
3. A work request, sent by a worker, indicates its current performance p.
4. One or several workers selected during discovery step can disappear during

execution step.

One or several new workers can register and start to send work requests after
discovery step.

During execution, the coordinator manages a set of tasks T = {tk} belonging to
different applications. Every task tk has its workload qk.

Ideally, tasks belonging to a given stage of a given task are executed in parallel on
workers selected during configuration step (or new workers with higher performance).
Since workers are volatiles, a Work Request received by the coordinator is not
necessarily sent by one of the workers selected during the configuration step. For that
reasons, the scheduling policy of XWCH is the following: when receiving a work
request from a worker w having performance p, the task t allocated to w is the one
which workload q is closer to p. Thus, the scheduler of XWCH allocates task t of T to
w if: |q - p | = min (|qk - p|) for all tk belonging to T (I)

The scheduling algorithm is executed when a work request is received by the
coordinator. According to this algorithm, a given task is not executed unless an
appropriate worker sends a work request. This means that a task could stay indefinitely
in a ready state and never assigned to a worker. In order to avoid this situation, a
deadline is affected to each stage of the application: if a task spends in a ready state a
time higher than its deadline, it is automatically allocated to the first free worker. A
small value of the deadline, means that the user prefers allocate tasks to workers as soon
as possible. In this case, tasks could be assigned to a non appropriate worker. A high
value of the deadline means that the user prefers wait and allocate tasks to the best
appropriate worker. In this case, the task could be blocked indefinitely.

4 Experiments

This section presents some performance analysis of XWCH. Our results demonstrate
the performance characteristics of the system and highlight promising areas for
further research.

The objective of these experiments is to validate our approach. They are not carried
out to prove that the system delivers a maximum power for a given application: the
project’s challenge is to extract, at low cost, a reasonable computing power from a
widely distributed platform rather than extracting the maximum power from a local
supercomputer or a dedicated GRID platform.

XWCH was evaluated in the case of a phylogenetic application: PHYLIP (the
PHYLogeny Inference Package) package [14]. The parallelized version of PHYLIP is
used to generate evolutionary tree related to HIV viruses. No optimization was
brought to the parallel version of PHYLIP. However, several improvements could be
carried out in order to adapt the algorithm to the targeted platform.

420 N. Abdennadher and R. Boesch

Executions were carried out on a platform with one coordinator (Linux OS), 250
heterogeneous windows workers ranging from Pentium II to Pentium IV, and 2
warehouses. The workers are geographically located in two different places
(Engineering Schools of Geneva and Yverdon). During execution, the 250 workers
are used by students; they are often switched off or disconnected.

4.1 The Application

Phylogenetic is the science which deals with the relationships that could exist
between living organisms. It reconstructs the pattern of events that have led to “the
distribution and diversity of life”. These relationships are extracted from comparing
Desoxyribo Nucleic Acid (DNA) sequences of species. An evolutionary tree, termed
life tree, is then built to show relationship among species.

A multitude of applications aiming at building evolutionary trees are used by the
scientific community [15] [16] [17] [18]. These applications are known to be CPU
time consuming, their complexity is exponential (NP-difficult problem). Approximate
and heuristic methods do not solve the problem since their complexity remains
polynomial with an order greater than 5: O(nm) with m > 5. Parallelization of these
methods could be useful in order to reduce the response time of these applications.

PHYLIP is a package of programs for inferring phylogenies (evolutionary trees). It
is the most widely-distributed phylogeny package. PHYLIP has been used to build the
largest number of published trees. It has been in distribution since 1980, and has over
15,000 registered users. PHYLIP was ported on XWCH platform.

An evolutionary tree is composed of several branches. Each branch is composed of
sub-branches and/or leaf nodes (sequences). Two sequences belonging to the same
branch are supposed to have the same ancestors. To construct the tree, the application
defines a “distance” between all pairs of sequences. Evolutionary tree is then
gradually built by sticking to the same branch, the pairs of sequences having the
smallest distance between them. Even if the concept is simple, the algorithm is a CPU
time consuming. Moreover, the application constructs not only one tree from the
origin data set, but a set of trees generated from a large number of bootstrapped data
sets (somewhere between 100 and 1000 is usually adequate). This parameter is called
r. The final (or consensus) tree is obtained by retaining groups that occur as often as
possible. If a group occurs in more than a fraction f of all the input trees it will
definitely appear in the consensus tree.

The application, as adapted to XWCH, is composed of 5 programs: Seqboot,
Dnadist, Fitch-Margoliash, Neighbor-Joining and Consensus.

The structure of the obtained parallel/distributed application is shown in Fig. 2.

Seqboot

DnaDist Fitch (or NJ) Consensus

Fig. 2. Data flow graph of the PHYLIP package

 Towards a Peer-To-Peer Platform for High Performance Computing 421

4.2 Evaluation of the Scheduling Algorithm

This paragraph evaluates the performance of the scheduling algorithm proposed in
section 3.3. Two versions of PHYLIP were deployed on XWCH:

1. The first version (Version 1 in Fig.3) is composed of a given number of Fitch
tasks. Each task processes a fixed number of trees.

2. In the second version (Version 2 in Fig.7), the number of tasks and their workload
are processed as explained in section 3.3. This means that that the number of trees
generated by a given Fitch task depends on the performance of the worker.

Execution times consumed by the two versions are shown in Fig. 3.

50 sequences. 100 workers

0

5

10

15

20

25

0 200 400 600 800

Q : number of replications

T
im

e
(i

n
 m

in
)

Version 1

Version 2

Fig. 3. Execution times of PHYLIP

For both versions, XWCH insures that executing codes are transferred from
coordinator to workers only at the start of the execution: if the same task is re-
executed on the same worker, its code is not downloaded again. The difference of
execution times in Fig. 3 is due to the synchronization between the coordinator and
workers: When a worker ends its execution it stores the results locally and on the
warehouse, generates a work request to ask for a new task, and finally generates a
data request to receive input data it needs.

The goal of the scheduling algorithm (described in section 3.3) is to load balance
tasks belonging to the same stage S. Fig. 4 shows the variation of the total number of
tasks during the execution of the application (Phylip).

Fig. 4 shows the total number of executed tasks during the execution of the
PHYLIP application. Since the “Fitchs” are the most consuming time tasks, this study
will focus on the number of these tasks.

Steps I correspond to the execution of the Fitch tasks. These curves show that these
tasks finish, in general, at the same time. Thus, the scheduling algorithm ensures a
good load balancing. However, some Fitch tasks finish their execution lately (step II
in Fig. 4). This is due to one or many of the following factors:

1. The workers collected during the discovery step disappear during the execution,
2. Workers not selected during the discovery step appear during the execution,
3. As it is implemented today, workers’ performance is only represented by the CPU

power (CPU frequency). This model is not realistic; the system should take into
account other criteria such as main memory, processes, applications and services
installed locally on the workers, etc.

422 N. Abdennadher and R. Boesch

(a) Number of workers = 170 (b) Number of workers = 78 (c) Number of workers = 92

(d) Number of workers = 117 (e) Number of workers = 106 (f) Number of workers = 217

Fig. 4. Total number of executing tasks. x : time, y : number of parallel executing tasks

5 Conclusion

This paper presents a new GC environment (XtremWeb-CH), used for the execution of
high performance applications on a highly heterogeneous distributed environment. XWCH
can support direct communications between workers, without passing by the coordinator.
A scheduling policy is proposed in order to minimize synchronization between
coordinator and workers and optimize load balancing of workers. The porting of PHYLIP
on XWCH has demonstrated the feasibility of our solution. Other experiments are in
progress to evaluate XWCH in other High Performance applications cases.

The current version of XWCH allows the decentralization of communications
between workers. The next step consists of designing a distributed scheduler. This
scheduler shall avoid allocating communicating tasks to workers that can not reach each
other and/or not belonging to the same domain (Local Area Network). This approach
offers a strong basis for the development of distributed and dynamic scheduler and
could confirm and reinforce the tendency detailed in the introduction.

References

1. BOINC: A System for Public-Resource Computing and Storage. David P. Anderson. 5th
IEEE/ACM International Workshop on Grid Computing. November 8, 2004, Pittsburgh,
USA.

2. http://www.entropia.com/

I

II II

II

II
II

I I

I
II

I I

 Towards a Peer-To-Peer Platform for High Performance Computing 423

3. http://www.ud.com/home.htm
4. Parabon Computation, Inc: The Frontier Application. Programming Interface, Version

1.5.2. 2004
5. Gilles Fedak et al. XtremWeb : A Generic Global Computing System. CCGRID2001,

workshop on Global Computing on Personal Devices. Brisbane, Australia. May 2001.
6. Incentives Build Robustness in BitTorrent, Bram Cohen, May 2003.

http://www.bittorrent.org/bittorrentecon.pdf
7. http://www.edonkey2000.com/
8. http://www.kazaa.com/us/index.htm
9. KAN G., Peer-to-Peer: harnessing the power of disruptive technologies, Chapter Gnutella,

O’Reilly, Mars 2001.
10. Ian Clarke. A Distributed Decentralised Information Storage and Retrieval System.

Division of Informatics. Univ. of Edinburgh. 1999.
11. http://feedtree.net/
12. http://www.globus.org/
13. N. Abdennadher, R. Boesch, A Large Scale Distributed System for High Performance

needs. HP-ASIA 2005. December 2005, Biejing, China
14. http://www.phylip.com/
15. http://biowulf.nih.gov/apps/puzzle/tree-puzzle-doc.html
16. http://www.tree-puzzle.de/
17. http://www.dkfz.de/tbi/tree-puzzle/
18. Heiko A. Schmidt, Phylogenetic Trees from Large Datasets, 'Ph.D.' in Computer Science,

Düsseldorf, Germany, 2003.

Assessing Contention Effects on MPI_Alltoall
Communications

Luiz Angelo Steffenel1, Maxime Martinasso2, and Denis Trystram2

1 Université Nancy-2, LORIA, AlGorille Team, Nancy, France
Luiz-Angelo.Steffenel@univ-nancy2.fr

2 LIG - Laboratoire d’Informatique de Grenoble, Grenoble, France
{Maxime.Martinasso,Denis.Trystram}@imag.fr

Abstract. One of the most important collective communication pat-
terns used in scientific applications is the complete exchange, also called
All-to-All. Although efficient algorithms have been studied for specific
networks, general solutions like those available in well-known MPI distri-
butions (e.g. the MPI_Alltoall operation) are strongly influenced by the
congestion of network resources. In this paper we present an integrated
approach to model the performance of the All-to-All collective opera-
tion, which consists in identifying a contention signature that character-
izes a given network environment, using it to augment a contention-free
communication model. This approach, assessed by experimental results,
allows an accurate prediction of the performance of the All-to-All oper-
ation over different network architectures with a small overhead.

Keywords: Network Contention, MPI, Collective Communications,
Performance Modeling.

1 Introduction

One of the most important collective communication patterns for scientific ap-
plications is the total exchange [1] (also called All-to-All), in which each process
holds n different data items that should be distributed among the n processes,
including itself. An important example of this communication pattern is the
All-to-All operation, where all messages have the same size m.

Although efficient All-to-All algorithms have been studied for specific net-
works structures like meshes, hypercubes, tori and circuit-switched butterflies,
general solutions like those found in well-known MPI distributions rely on di-
rect point-to-point communications among the processes. Because all commu-
nications are started simultaneously, architecture independent algorithms are
strongly influenced by the saturation of network resources and subsequent loss
of packets - the network contention.

In this paper we present a new approach to model the performance of the All-to-
All collective operation. Our strategy consists in identifying a contention
signature that characterizes a given network environment. Using such contention
signature, we are able to accurately predict the performance of the All-to-All op-
eration, with an arbitrary number of processes and message sizes. To demonstrate

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 424–435, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Assessing Contention Effects on MPI_Alltoall Communications 425

our approach, we present experimental results obtained with different network ar-
chitectures (Fast Ethernet, Gigabit Ethernet and Myrinet). We believe that this
model can be extremely helpful on the development of application performance
prediction frameworks such as PEMPIs [2], but also in the optimization of grid-
aware collective communications (e.g.: LaPIe [3] and MagPIe [4]).

This paper is organized as follows: Section 2 presents a survey of performance
modeling under communication contention. Section 3 presents the network mod-
els used in this paper, and in section 4 we formalize the total exchange problem,
as well as some performance lower bounds. In Section 5 we propose a strategy to
characterize the contention signature of a given network and for instance, to pre-
dict the performance of the All-to-All operation. Section 6 validates our model
against experimental data obtained on different network architectures (Fast Eth-
ernet, Gigabit Ethernet and Myrinet). In Section 7 we provide a study case for
predicting the performance of a grid-aware All-to-All algorithm. Finally, Section
8 presents some conclusions and the future directions of our work.

2 Related Works

In the All-to-All operation, every process holds m × n data items that should
be equally distributed among the n processes, including itself. Because general
implementations of the All-to-All collective communication rely on direct point-
to-point communications among the processes the network can easily become sat-
urated, and by consequence, degrade the communication performance. Indeed,
Chun and Wang [5][6] demonstrated that the overall execution time of intensive
exchange collective communications are strongly dominated by the network con-
tention and congestive packet loss, two aspects that are not easy to quantify. As
a result, a major challenge on modeling the communication performance of the
All-to-All operation is to represent the impact of network contention.

Unfortunately, most communication models like those presented by Christara
et al. [1] and Pjesivac-Grbovic et al. [7] do not take into account the potential
impacts of network contention. Indeed, these works usually represent the All-
to-All operation as parallel executions of the personalized one-to-many pattern
[8], as presented by the linear point-to-point model below, where where α is the
start-up time (the latency between the processes), 1

β is the bandwidth of the
link, m represents the message size in bytes and n corresponds to the number of
processes involved in the operation:

T = (n − 1) × (α + βm) (1)

The development of contention-aware communication models is relatively re-
cent, as shown by Grove [9]. For instance, Adve [10] presented one of the first
models to take into account the effects of resource contention. This model con-
siders that the total execution time of parallel programs is the sum of four
components, namely:

T = tcomputation + tcommunication + tresource−contention + tsynchronization (2)

426 L.A. Steffenel, M. Martinasso, and D. Trystram

While conceptually simple, this model was non-trivial in practice because of
the non-deterministic nature of resource contention, and because of the difficulty
to estimate average synchronization delays.

While the non-deterministic behavior of the network contention is a major
obstacle to modeling communication performance, some authors suggested a few
techniques to adapt the existing models. As consequence, Bruck [11] suggested
the use of a slowdown factor to correct the performance predictions. Similarly,
Clement et al. [12] introduced a technique that suggested a way to account
contention in shared networks such as non-switched Ethernet, consisting in a
contention factor γ that extends the linear communication model T:

T = α + β × m × γ (3)

where γ is equal to the number of processes. A restriction on this model is that
it assumes that all processes communicate simultaneously, which is only true
for a few collective communication patterns. Anyway, in the cases where this
assumption holds, they found that this simple contention model enhanced the
accuracy of their predictions for essentially zero extra effort.

The use of a contention factor was supported by the work of Labarta et
al. [13], that intent to approximate the behavior of the network contention by
considering that if there are m messages ready to be transmitted, and only b
available buses, then the messages are serialized in

⌈
m
b

⌉
communication waves.

Also, König et al. [14] have shown indeed that some All-to-All algorithms that
are optimal with unlimited buffers become less efficient when communications
depend on restricted buffers size.

A similar approach was followed by Jeannot et al. [15], who designed schedul-
ing algorithms for data redistribution through a backbone. In their work, they
suppose that at most k communications can be performed at the same time
without causing network contention (the value of k depending on the character-
istics of the platform). Using the knowledge of the application transfer pattern,
they proposed two algorithms to schedule the messages transfer, performing an
application-level congestion control that in most cases outperforms the TCP
contention control mechanism.

Most recently, some works aimed to design contention-aware performance
models. For instance, LoGPC [16] presents an extension of the LogP model
that tries to determine the impact of network contention through the analysis
of k -ary n-cubes. Unfortunately, the complexity of this analysis makes too hard
the application of such model in practical situations.

Another approach to include contention-specific parameters in the perfor-
mance models was introduced by Chun [6]. In his work, the contention is con-
sidered as a component of the communication latency, and by consequence, the
model uses different latency values depending on the message size. Although
easier to use than LoGPC, this model does not take into account the number of
messages passing in the network nor the link capacity, which are clearly related
to the occurrence of network contention.

Assessing Contention Effects on MPI_Alltoall Communications 427

3 Network Models Definition

In this work we assume that the network is fully connected, which corresponds
to most current parallel machines with distributed memory.

Communication Model: The links between pairs of processes are bidirec-
tional, and each process can transmit data on at most one link and receive data
on at most one link at any given time.

Transmission Model: We use Hockney’s notation [17] to describe our trans-
mission model. Therefore, the time to send a message of size wi,j from a process
pi to another process pj, is α + wi,jβ, where α is the start-up time (the commu-
nication latency between the processes) and 1

β is the bandwidth of the link. As
in this paper we assume that all links have the same latency and bandwidth, and
because we only investigate the regular version of the MPI_Alltoall operation
where all messages have the same size m, ∀i, ∀j, wi,j = m, and therefore the time
to send a message from a process pi to a process pj is α + mβ.

Synchronization Model: We assume an asynchronous communication
model, where transmissions from different processes do not have to start at the
same time. However, all processes start the algorithm simultaneously. This syn-
chronization model corresponds to the execution of the MPI_Alltoall operation,
used as reference in this work.

4 Problem Definition

In the total exchange problem, n different processes hold each one n data items
that should be evenly distributed among the n processes, including itself. Because
each data item has potentially different contents and sizes according to their desti-
nations, all processes engage a total exchange communication pattern. Therefore,
a total exchange operation will be complete only after all processes have sent their
messages to their counterparts, and received their respective messages.

Formally, the total exchange problem can be described using a weighted digraph
dG(V, E) of order n with V = {p0, ..., pn−1}. This digraph is called a message
exchange digraph or MED for short. In a MED, the vertices represent the process
nodes, and the arcs represent the messages to be transmitted. An integer w(e) is
associated with each arc e = (pi, pj), representing the size of the message to be sent
from process pi to process pj. Note that there is not necessarily any relationship
between a MED and the topology of the interconnection network.

The port capacity of a process for transmission is the number of other
processes to which it can transmit simultaneously. Similarly, the port capac-
ity for reception is the number of other processes from which it can receive
simultaneously. We will concentrate on the performance modeling problem with
all port capacities restricted to one for both transmitting and receiving. This
restriction is well-known in the literature as 1-port full-duplex.

428 L.A. Steffenel, M. Martinasso, and D. Trystram

4.1 Notation and Lower Bounds

In this section, we present theoretical bounds on the minimum number of com-
munications and on the bandwidth for the general message exchange problem.
The number of communications determines the number of start-ups, and the
bandwidth depends on the message weights.

Given a MED dG(V ; E), we denote the in-degree of each vertex pi ∈ V by
Δr(pi), and the out-degree by Δs(pi). Let Δr = maxpi∈V {Δr(pi)} and Δs =
maxpi∈V {Δs(pi)}. Therefore, we obtain the following straightforward bound on
the number of start-ups.

Claim 1. The number of start-ups needed to solve a message exchange problem
on a digraph dG(V ; E) without message forwarding is at least max(Δs, Δr).

Given a MED dG(V, E), the bandwidth bounds are determined by two obvious
bottlenecks for each vertex - the time for it to send its messages and the time
for it to receive its messages. Each vertex pi has to send messages with sizes
{wi,j | j = 0 . . . n − 1}. The time for all vertices to send their messages is at
least ts = maxi

∑n−1
j=0 wi,jβ. Similarly, the time for all vertices to receive their

messages is at least tr = maxj

∑n−1
i=0 wi,jβ.

Claim 2. The time to complete a personalized exchange is at least max{ts, tr}.
We can combine the claims about the number of start-ups and the bandwidth
when message forwarding is not allowed.

Claim 3. If message forwarding is not allowed, and either the model is syn-
chronous or both maxima are due to the same process, the time to complete a
personalized exchange is at least max(Δs, Δr) × α + max{ts, tr}.
Because in this paper we do not assume messages forwarding, the fan-in and
fan-out of a process must be (n − 1). Further, as we consider messages to be the
same size and the network to be homogeneous, we can simplify Claim 3 so that
the following bound holds.

Proposition 1. If message forwarding is not allowed, and all messages have size
m, and both bandwidth and latency are identical to any connection between two
different processes pi and pj, the time to complete a total exchange is at least
(n − 1) × α + (n − 1) × βm.

Proof. The proof is trivial, as the time to complete a total exchange is at least
the time a single process needs to send one message to each other process.

5 Contention Signature Approach

To cope with this problem and to model the contention impact on the performance
of the All-to-All operation, we adopt an approach similar to Clement et al. [12],
which considers the contention sufficiently linear to be modeled. Our approach,
however, tries to identify the behavior of the All-to-All operation with regard to

Assessing Contention Effects on MPI_Alltoall Communications 429

the theoretical lower bound (Proposition 1) on the 1-port communication model.
In our hypothesis, the network contention depends mostly on the physical char-
acteristics of the network (network cards, links, switches), and consequently, the
ratio between the theoretical lower bound and the real performance represents a
“contention signature” of the network. Once identified the signature of a network,
it can be used in further experiments to predict the communication performance,
provided that the network infrastructure does not change.

Initially, we consider communication in a contention-free environment. In this
case, a process that sends messages of size m to n − 1 processes needs at least
(n − 1) × α + (n − 1) × mβ time units. Further, by the properties of the 1-port
communication model, the total communication time of the All-to-All operation
must be at least (n − 1) × α + (n − 1) × mβ time units if all processes start
communicating simultaneously, as stated by Proposition 1.

In the case of the All-to-All operation, however, the intensive communica-
tion pattern tends to saturate the network, causing message delays and packet
loss that strongly impact on the communication performance of this collective
communication. In this network congestion situation, traditional models such as
those presented by Christara [1] do not hold anymore, even if the communication
pattern has not changed.

Therefore, our approach to model the performance of the MPI_Alltoall opera-
tion despite network contention consists on determining a contention ratio γ that
express the relationship between the theoretical performance (lower bound) and
the real completion time. For simplicity, we consider that this contention ratio
γ is constant and depends exclusively on the network characteristics. Therefore,
the simplest way to integrate this contention ratio γ in our performance model
would be as follows:

T = (n − 1) × (α + mβ × γ) (4)

5.1 Non-linear Aspects

Although the performance model augmented by use of the contention ratio γ im-
proves the accuracy of the predictions, we observe nonetheless that some network
architectures are still subject to performance variations according to the message
size. To illustrate this problem, we present in Fig. 1, a detailed mapping of the
communication time of the MPI_Alltoall operation in a Gigabit Ethernet net-
work. We observe that the communication time does not increase linearly with the
message size, but instead, present a non-linear behavior that prevents our model
to accurately predict the performance when dealing with small messages.

To cope with this non-linearity, we propose an extension of the contention
ratio model to better represent this phenomenon when messages are sufficiently
large. Hence, we augment the model with a new parameter δ, which depends on
the number of processes but also on a given message size M . As a consequence,
the association of different equations helps to define a more realistic performance
model for the MPI_Alltoall operation, as follows:

T =
{

(n − 1) × (α + mβ × γ) if m < M
(n − 1) × (α + mβ × γ + δ) if m ≥ M

(5)

430 L.A. Steffenel, M. Martinasso, and D. Trystram

 0
 2000

 4000
 6000

 8000
 10000

 12000
 14000

 16000
 18000

 4
 6

 8
 10

 12
 14

 16
 1e−04

 0.001

 0.01

 0.1

 1

Number of nodes
Message size (bytes)

AlltoAll − Giga Ethernet − 256 bytes interval

Completion time (s) Direct Exchange

Fig. 1. Non-linearity of communication cost with small messages

6 Validation

To validate the approach proposed in this paper, this section presents our exper-
iments to model the performance of MPI_Alltoall operation using three network
architectures, Fast Ethernet, Gigabit Ethernet and Myrinet. As previously ex-
plained, our approach consists on comparing the expected and real performance
of the MPI_Alltoall operation using a sample experiment with n′ nodes; the re-
lationship between these two measures allows us to define the γ and δ parameters
that characterize the ”network contention signature”.

To obtain these parameters, we compare the sample data obtained from both
theoretical lower bound and experimental measure, when varying the message
size. Indeed, the lower bound comes from Proposition 1, with parameters α
and β obtained from a simple point-to-point measure. The parameters γ and
δ are obtained through a linear regression with the Generalized Least Squares
method, comparing at least four measurement points in order to better fit the
performance curve.

The different experiments presented in this paper represent the average of
100 measures for each set of parameters (message size, number of processes),
and were conducted over two clusters of the Grid’50001:

The icluster2 cluster, located at INRIA-Rhone-Alpes, composed of 104
dual Itanium2 nodes at 900 MHz, used for the experiments with the Fast Ether-
net network (5 Fast Ethernet switches - 20 nodes per switch - interconnected by
1 Gigabit Ethernet switch) and the Myrinet 2000 network (one 128 ports M3-
E128 Myrinet switch). All machines run Red Hat Enterprise Linux AS release
3, with kernel version 2.4.21.

The GdX (GriD’eXplorer) cluster, operated by INRIA-Futurs. This clus-
ter includes 216 nodes with dual AMD Opteron processors at 2 GHz running
Debian Linux kernel 2.6.8 and a Broadcom Gigabit Ethernet network.

6.1 Fast Ethernet

Taking as basis the measured performance for a 24 machines network, we were
able to approximate the performance of the Fast Ethernet network with a
1 http://www.grid5000.org/

Assessing Contention Effects on MPI_Alltoall Communications 431

contention ratio γ = 1.0195. Indeed, this relatively small difference must be
considered in the light of the retransmission policy: although the communica-
tion latency (and therefore the timeouts) is relatively small (around 60 μs), the
reduced bandwidth of the links minimizes the impact of the retransmission of
a lost packet. More important, we observe that the experimental measure be-
have like an affine equation, showing a start-up cost usually not considered by
the traditional performance model which corresponds to the δ parameter pro-
posed in our model. Therefore, we determined δ = 8.23 ms for messages larger
than M = 2 kB, which means that each simultaneous communication induces
an overload of 8.23 ms to the completion time of the All-to-All operation. Ap-
plying both γ and δ parameters we were able to approximate our predictions
from the performance of the MPI_Alltoall operation with an arbitrary number
of processes, as demonstrate in Fig. 2a. We observe indeed that our error rate
is usually smaller than 10% when there are enough processes to saturate the
network, as presented in Fig. 2b.

Direct Exchange
Prediction

 0 5 10 15 20 25 30 35 40
 200000

 400000
 600000

 800000
 1e+06

 1.2e+06 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Number of nodes

Prediction for the AlltoAll − Fast Ethernet

Completion time (s)

Message size (bytes)

(a)
−60

−50

−40

−30

−20

−10

 0

 10

 20

 30

 0 5 10 15 20 25 30 35 40

(m
ea

su
re

d
/ e

st
im

at
ed

 −
 1

)
*

10
0%

Number of processes

Estimation error MPI_Alltoall − Fast Ethernet

1024 kB messages
512 kB messages
256 kB messages
128 kB messages

(b)

Fig. 2. Performance prediction on a Fast Ethernet network

6.2 Gigabit Ethernet

To compute the contention ratio γ and a start-up cost δ, we use sample data for an
arbitrary number of processes. Indeed, we chose in this example the results for an
execution of the All-to-All operation with 40 processes (one by machine). Using
linear regression on these data we obtain γ = 4.3628 and δ = 4.93 ms (to be used
only for messages larger than M = 8 kB). As a result, the performance predictions
from our model correspond to the curve presented on Fig. 3a. As in the case of the
Fast Ethernet network, the error rate is quite small when the network becomes
saturate, even when we consider different message sizes (Fig. 3b).

6.3 Myrinet

Although the two previous experiments give important proofs on the validity of our
modeling method, they share many similarities on both network architecture and
transport protocol (TCP/IP). To ensure that our method is not bounded to a spe-
cific infrastructure, we chose to validate our performance model also in a Myrinet

432 L.A. Steffenel, M. Martinasso, and D. Trystram

Direct Exchange
Prediction

 5 10 15 20 25 30 35 40 45 50
 200000

 400000
 600000

 800000
 1e+06

 1.2e+06 0

 0.5

 1

 1.5

 2

 2.5

Number of nodes

Performance Prediction AlltoAll − Giga Ethernet

Completion time (s)

Message size (bytes)

(a)
−90

−80

−70

−60

−50

−40

−30

−20

−10

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30 35 40 45 50

(m
ea

su
re

d
/ e

st
im

at
ed

 −
 1

)
*

10
0%

Number of processes

Estimation error MPI_Alltoall − Giga Ethernet

1024 kB messages
512 kB messages
256 kB messages
128 kB messages

(b)

Fig. 3. Performance prediction on a Gigabit Ethernet network

Direct Exchange
Prediction

 0 5 10 15 20 25 30 35 40 45 50

 0
 200000

 400000
 600000

 800000
 1e+06

 1.2e+06 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Number of nodes

Performance Prediction AlltoAll − Myrinet

Completion time (s)

Message size (bytes)

(a)
−60

−50

−40

−30

−20

−10

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35 40 45 50

(m
ea

su
re

d
/ e

st
im

at
ed

 −
 1

)
*

10
0%

Number of processes

Estimation error MPI_Alltoall − Myrinet

1024 kB messages
512 kB messages
256 kB messages
128 kB messages

(b)

Fig. 4. Performance prediction on a Myrinet network

network, using the gm transport protocol. Because of the Myrinet+gm stack dif-
fers considerably from the Ethernet+TCP/IP stack, any systematic behavior in-
troduced into our sampling data by these architectures should be exposed.

Indeed, the Myrinet network differs from Ethernet-based architectures due
to an start-up cost almost inexistent (one of the main characteristics of the
Myrinet+gm stack). Indeed, we were able to fit the performance of a 24-processes
All-to-All operation using only the contention ratio γ = 2, 49754 (as the linear
regression pointed a start-up cost δ smaller than 1 microsecond).

Nevertheless, when applying this factor to an arbitrary number of machines,
as presented in Fig. 4a, we observe that our predictions do not follow the ex-
perimental data as observed before with Fast Ethernet and Gigabit Ethernet.
Actually, a close look at the error rate (Fig. 4b) indicates that network saturation
occurs only when there are more then 40 communicating processes (evidenced by
the constant error rate from that point). These results demonstrate the limita-
tions of our approach: while a contention ratio may provide precise performance
predictions, it depends on the data used to define the network signature. By
using reference data from a partially saturated network we are subjected to in-
accurate approximations (even if they are better than the contention unaware
predictions).

Assessing Contention Effects on MPI_Alltoall Communications 433

7 Applications to Grid-Aware Communications

Actually, most of the complexity of the All-to-All problem in grid environments
resides on the need to exchange different messages through different networks
(local and distant). The traditional implementation of the MPI_Alltoall opera-
tion cannot differentiate these networks, leading to poor performances. However,
if we assume that communications between clusters are slower than intra-clusters
ones, it might be useful to collect data in the local level before sending it through
the backbone, in a single transmission. Indeed, in [18] we propose a grid-aware
solution which performs on two phases. In the first phase only local commu-
nications are performed. During this phase the total exchange is performed on
local nodes on both cluster and extra buffers are prepared for the second (inter-
cluster) phase. During the second phase data are exchanged between the clusters.
Buffers that have been prepared during the first phase are sent directly to the
corresponding nodes in order to complete the total exchange.

More precisely, our algorithm works as follow. Without loss of generality, let
us assume that cluster C1 has less nodes than C2 (n1 ≤ n2). Nodes are numbered
from 0 to n1 + n2 − 1, with nodes from 0 to n1 − 1 being on C1 and nodes from
n1 to n1 + n2 − 1 being on cluster C2. We call Mi,j the message (data) that has
to be send form node i to node j. For instance, the algorithm proceeds in two
phases:

First phase. During the first phase, we perform the local exchange: Process i
sends Mi,j to process j, if i and j are on the same cluster. Then it prepares the
buffers for the remote communications. On C1 data that have to be send to node
j on C2 is first stored to node j mod n1. Data to be sent from node i on C2 to
node j on C1 is stored on node �i/n1� × n1 + j.

Second phase. During the second phase only n2 inter-cluster communications
occurs. This phase is decomposed in �n2/n1	 steps with at most n1 communi-
cations each. Steps are numbered from 1 to �n2/n1	 During step s node i of
C1 exchange data stored in its local buffer with node j = i + n1 × s on C2 (if
j < n1 + n2). More precisely i sends Mk,j to j where k ∈ [0, n1] and j sends
Mk,i to i where k ∈ [n1 × s, n1 × s + n1 − 1].

As our algorithm minimizes the number of inter-cluster communications be-
tween the clusters, we need only 2 × max(n1, n2) messages in both directions
(against 2 × n1 × n2 messages in the traditional algorithm). For instance, the
exchange of data between two clusters with the same number of process will
proceed in one single communication step of the second phase. Our algorithm is
also wide-area optimal since it ensures that a data segment is transferred only
once between two clusters separate by a wide-area link.

7.1 Performance Prediction in a Grid Environment

As shown above, the algorithm we propose to optimize All-to-All communica-
tions in a grid environment rely on the relative performances of both local and

434 L.A. Steffenel, M. Martinasso, and D. Trystram

remote networks. Indeed, we extend the total exchange among nodes in the same
cluster in order to reduce transmissions through the backbone.

This approach has therefore two consequences for performance prediction:
First, it prevents contention in the wide-area links, which are hard to model.
Second, transmission of messages packed together is easy to be predicted in a
wide-area network (large messages are less subjected to network interferences).
For instance, we can design a wide-area performance model by composing local-
area predictions obtained with our performance model and wide-area predictions
that can be easily obtained from traditional methods. Hence, an approximate
model for the communication between two clusters would be similar to:

T = max(TC1 , TC2) + �n2/n1	 × (αw + βw × m × n) (6)

Although not in the scope of this work, preliminary experiments indicate that
this model holds. We expect to develop this subject in a future work.

8 Conclusions and Future Works

In this paper we address the problem of modeling the performance of Total
Exchange communication operations, usually subject to important variations
caused by network contention. Because traditional performance models are un-
able to predict the real completion time of an All-to-All operation, we try to cope
with this problem by identifying the contention signature of a given network. In
our approach, two parameters γ and δ are used to augment a linear performance
model in order to fit the performance of the MPI_Alltoall operation. Because
these parameters characterize the network contention and are independent of
the number of communicating processes, they can be used to accurately predict
the communication performance when communications tend to saturate the net-
work. Indeed, we demonstrate our approach through experiments conducted on
popular network architectures, Fast Ethernet, Gigabit Ethernet and Myrinet.

We intend to pursue this research by validating our model under other network
architectures like Infiniband. Indeed, we expect to extend our models to other
collective communication operations, which are especially affected by contention
when scaling up to a grid level. We are also investigating different strategies to
model collective communications in grid environments.

Acknowledgments

We are grateful to the anonymous referees for many comments and helpful sug-
gestions which helped us improve the focus of the paper.

References

1. Christara, C., Ding, X., Jackson, K.: An efficient transposition algorithm for dis-
tributed memory computers. In: Proceedings of the High Performance Computing
Systems and Applications. (1999) 349–368

Assessing Contention Effects on MPI_Alltoall Communications 435

2. Midorikawa, E.T., Oliveira, H.M., Laine, J.M.: PEMPIs: A new metodology for
modeling and prediction of MPI programs performance. In: Proceedings of the
SBAC-PAD 2004, IEEE Computer Society/Brazilian Computer Society (2004)
254–261

3. Barchet-Steffenel, L.A., Mounie, G.: Scheduling heuristics for efficient broadcast
operations on grid environments. In: Proceedings of the Performance Modeling,
Evaluation and Optimization of Parallel and Distributed Systems Workshop -
PMEO’06 (associated to IPDPS’06), Rhodes Island, Greece, IEEE Computer So-
ciety (2006)

4. Kielmann, T., Bal, H., Gorlatch, S., Verstoep, K., Hofman, R.: Network
performance-aware collective communication for clustered wide area systems. Par-
allel Computing 27 (2001) 1431–1456

5. Chun, A.T.T., Wang, C.L.: Realistic communication model for parallel computing
on cluster. In: Proceedings of the International Workshop on Cluster Computing.
(1999) 92–101

6. Chun, A.T.T.: Performance Studies of High-Speed Communication on Commodity
Cluster. PhD thesis, University of Hong Kong (2001)

7. Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G.E., Gabriel, E., Dongarra,
J.J.: Performance analysis of MPI collective operations. In: Proceedings of the
Wokshop on Performance Modeling, Evaluation and Optimisation for Parallel and
Distributed Systems (PMEO), in IPDPS 2005. (2005)

8. Johnssonn, S.L., Ho, C.T.: Optimum broadcasting and personalized communica-
tion in hypercubes. IEEE Transactions on Computers 38 (1989) 1249–1268

9. Grove, D.: Performance Modelling of Message-Passing Parallel Programs. PhD
thesis, University of Adelaide (2003)

10. Adve, V.: Analysing the Behavior and Performance of Parallel Programs. PhD
thesis, University of Wisconsin, Computer Sciences Department (1993)

11. Bruck, J., Ho, C.T., Kipnis, S., Upfal, E., Weathersby, D.: Efficient algorithms for
all-to-all communications in multiport message-passing systems. IEEE Transac-
tions on Parallel and Distributed Systems 8 (1997) 1143–1156

12. Clement, M., Steed, M., Crandall, P.: Network performance modelling for PM
clusters. In: Proceedings of Supercomputing. (1996)

13. Labarta, J., Girona, S., Pillet, V., Cortes, T., Gregoris, L.: DiP: A parallel pro-
gram development environment. In: Proceedings of the 2nd Euro-Par Conference.
Volume 2. (1996) 665–674

14. König, J.C., Rao, P.S., Trystram, D.: Analysis of gossiping algorithms with re-
stricted buffers. Parallel Algorithms and Applications 13 (1998) 117–133

15. Jeannot, E., Wagner, F.: Two fast and efficient message scheduling algorithms for
data redistribution through a backbone. In: Proceedings of the IPDPS. (2004)

16. Moritz, C.A., Frank, M.I.: LoGPC: Modeling network contention in message-
passing programs. IEEE Transactions on Parallel and Distributed Systems 12
(2001) 404–415

17. Hockney, R.: The communication challenge for MPP: Intel paragon and meiko
cs-2. Parallel Computing 20 (1994) 389–398

18. Jeannot, E., Steffenel, L.A.: Fast and efficient total exchange on two clusters. (Sub-
mitted to EuroPar’07 - 13th International Euro-Par Conference European Confer-
ence on Parallel and Distributed Computing)

An Energy-Efficient Clustering Algorithm for

Large-Scale Wireless Sensor Networks�

Si-Ho Cha1 and Minho Jo2

1 Dept. of Information and Communication Engineering, Sejong University
sihoc@sejong.ac.kr

2 School of Information and Communication, SungKyunKwan University
minhojo@gmail.com

Abstract. Clustering allows hierarchical structures to be built on the
nodes and enables more efficient use of scarce resources, such as fre-
quency spectrum, bandwidth, and energy in wireless sensor networks
(WSNs). This paper proposes an energy efficient clustering algorithm for
self-organizing and self-managing high-density large-scale WSNs, called
SNOWCLUSTER. It introduces region node selection as well as cluster
head election based on the residual battery capacity of nodes to reduce
the costs of managing sensor nodes and of the communication among
them. Each sensor node autonomously selects cluster heads based on a
probability that depends on its residual energy level. The role of clus-
ter heads or region nodes is rotated among nodes to achieve load bal-
ancing and extend the lifetime of every individual sensor node. To do
this, SNOWCLUSTER clusters periodically to select cluster heads that
are richer in residual energy level, compared to the other nodes, accord-
ing to clustering policies from administrators. To prove the performance
improvement of SNOWCLUSTER, the ns-2 simulator was used. The re-
sults show that it can reduce the energy and bandwidth consumption for
clustering and managing WSNs.

1 Introduction

A large-scale wirelss sensor network (WSN) consists of a large number of sensor
nodes, which are tiny, low-cost, low-power radio devices dedicated to performing
certain functions such as collecting various environmental data and sending them
to sink nodes (or base stations). In this WSN, a large number of sensor nodes
are deployed over a large area and long distances and multi-hop communication
is required between nodes and sensor nodes have the physical restrictions in
particular energy and bandwidth restrictions. So managing numerous wireless
sensor nodes directly is very complex and is not efficient [1]. Self-organization
of WSNs, witch involves network decomposition into connected clusters, is a
challenging task because of the limited bandwidth and energy resources available

� This research was funded by Dual Use Technology Program and ADD Korea and
has been conducted by the Research Grant of Kwangwoon University in 2007.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 436–446, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Energy-Efficient Clustering Algorithm for Large-Scale WSNs 437

in these networks. Sensor nodes therefore should be organized and managed
automatically in a energy efficient method.

In [2], we proposed a self-management framework for WSNs called SNOW-
MAN (SeNsOr netWork MANagement), which is based on policy-based man-
agement (PBM) paradigm. SNOWMAN framework includes a policy manager
(PM), one or more policy agent (PAs) and a large number of policy enforcers
(PEs) as shown in Fig. 1. The PM is used by an administrator to input differ-
ent policies. A policy in this context is a set of rules that assigns management
actions to sensor node states. The PA is responsible for interpreting the poli-
cies and sending them to the PE. The enforcement of rules on sensor nodes
is handled by the PE. It is the job of the PA to maintain this global view,
allowing it to react to larger scale changes in the network and install new
policies to reallocate policies (rules). If node states are changed or the cur-
rent state matches any rule, the PE performs the corresponding local decisions
based on local rules rather than sends information to base station repeatedly.
Such policy execution can be done efficiently with limited computing resources
of the sensor node. It is well known that communicating 1 bit over the wire-
less medium at short ranges consumes far more energy than processing that
bit [4].

This paper present an energy-efficient clustering algorithm, SNOWCLUSTER,
which is designed using a clustering algorithm for SNOWMAN [2].
SNOWCLUSTER can reduce the costs of organizing and managing sensor nodes

Tier 0

(sensor nodes)

Tier 1

(cluster heads)

Tier 2

(regions)

cluster

data

policy

(rules)
Administrator (PM)

Internet/

Satellite

base station

(PA)

: PA (Policy Agent)

: PE (Policy Enforcer)

: PM (Policy Manager)

SNOWCLUSTER

Fig. 1. SNOWMAN Framework

438 S.-H. Cha and M. Jo

and of the communication among them. It introduces region node selection as
well as cluster head selection based on the residual battery capacity of nodes.
To prove the performance improvement of SNOWCLUSTER, the ns-2 [3] was
used. SNOWCLUSTER shows better results than low-energy adaptive clustering
hierarchy (LEACH) and low energy adaptive clustering hierarchy with determin-
istic cluster (LEACH-C) in performance evaluation of clustering and managing
WSNs.

In this paper, section 2 investigates related researches. The SNOWCLUSTER

algorithm is discussed in section 3. Section 4 presents the simulation results.
Finally in section 5 we conclude the paper.

2 Related Works

When a sensor network is first activated, nodes near one another may wish to
organize themselves into clusters, so that sensing redundancy can be avoided and
scarce resources, such as radio frequency, may be reused across non-overlapping
clusters [4]. Clustering also allows the health of the network to be monitored and
misbehaving nodes to be identified, as some nodes in a cluster can play watchdog
roles over other nodes [5]. In the clustered environment, the data gathered by the
sensor nodes is communicated to the data processing center through a hierarchy
of cluster heads.

To improve the clustering, several clustering algorithms have been proposed.
Noted two schemes are LEACH and LEACH-C.

LEACH [6] is a self-organizing, adaptive clustering protocol that uses random-
ization to distribute the energy load evenly among the sensors in the network.
In LEACH, the nodes organize themselves into local clusters, with one node
acting as the local cluster-head. LEACH includes randomized rotation of the
high-energy cluster-head position such that it rotates among the various sen-
sors in order to not drain the battery of a single sensor. These features leads a
balanced energy consumption of all nodes and hence to a longer lifetime of the
network. Because LEACH didn’t evaluate their energy storages and the require-
ments of the network, however, in the environment that nodes have different
battery capacity, it is not efficient.

An improved version of LEACH, called LEACH-C [7] does cluster formation
at the beginning of each round using a centralized algorithm by the base station.
Using a central control algorithm to form the clusters may produce better clus-
ters by dispersing the cluster head nodes throughout the network. This is the
basis for LEACH-C, a protocol that uses a centralized clustering algorithm and
the same steady-state protocol as LEACH. Therefore the base station determines
cluster heads based on nodes’ location information and energy level. This feature
leads to organize robust clustering topology. However, frequent communications
between the base station and other sensor nodes increase communication cost
and energy usage.

From this background, The SNOWCLUSTER clustering algorithm is designed
in this research to increase energy efficiency for self-organizing and managing
large-scale WSNs.

An Energy-Efficient Clustering Algorithm for Large-Scale WSNs 439

3 SNOWCLUSTER Algorithm

SNOWMAN [2] constructs an hierarchical cluster-based senor network using
SNOWCLUSTER clustering algorithm as shown in Table 1. Each sensor node
autonomously elects cluster heads based on a probability that depends on its
residual energy level. The SNOWCLUSTER allows neighboring nodes exchange
their current energy level information. This strategy lets neighboring nodes by
themselves determine the cluster heads. The role of cluster heads or region nodes
is rotated among nodes to achieve load balancing and extend the lifetime of
every individual sensor node. To do this, SNOWCLUSTER clusters periodically
to select cluster heads that are richer in residual energy level, compared to the
other nodes, according to clustering policies from administrators.

We assumed that all sensor nodes are stationary, and have knowledge of
their locations. Even though nodes are stationary, the topology may be dynamic

Table 1. SNOWCLUSTER Algorithm

// CLUSTER HEAD SELECTION
1. For All node(x), where x is # of nodes
2. let node(x).role ← cluster head
3. let node(x).cluster id ← node(x).node id
4. do node(x).broadcast(discovery msg)
5. if node(i).hears from(node(j))
6. if node(i).energy level < node(j).energy level
7. do node(i).request join(node(j))
8. if node(j).role �= cluster head
9. do node(j).reject join(node(i))
10. else
11. do node(j).confirm join(node(j))
12. if node(i).receive confirm(node(j))
13. let node(i).role ← cluster member
14. let node(i).cluster id ← node(j).node id

// REGION NODE SELECTION
1. For All node(x), where is # of nodes
2. if node(x).role = cluster head
3. do node(x).broadcast(cluster info msg)
4. if PA.receive(cluster info msg)
5. do PA.assign(region nodes) & PA.broadcast(region decision msg)
6. if node(k).receive(region decision msg)
7. if node(k).role = cluster head
8. if node(k).node id = region decision msg.region id
9. let node(k).role ← region node
10. let node(k).region id ← node(k).node id
11. else if node(k).node id ∈ region decision msg.region list
12. let node(k).region id ← region decision msg.region id
13. do node(k).broadcast(region conf msg)

440 S.-H. Cha and M. Jo

because new nodes can be added to the network or existing nodes can become
unavailable with faults and battery exhaustion.

SNOWCLUSTER takes a couple of steps to accomplish the hierarchical clus-
tering: 1) cluster head selection and 2) region node selection. In order to select
cluster heads, each node periodically broadcasts a discovery message that con-
tains its node ID, its cluster ID, and its remaining energy level.

A node declares itself as a cluster head if it has the biggest residual energy
level of all its neighbor nodes, breaking ties by node ID. Each node can indepen-
dently make this decision based on exchanged discovery messages. Each node
sets its cluster ID (cluster id) to be the node ID (node id) of its cluster head
(cluster head). If a node i hears from another node j with a bigger residual en-
ergy level (energy level) than itself, node i sends a message to node j requesting
to join the cluster of node j. If node j already has resigned as a cluster bead
itself, node j returns a rejection, otherwise node j returns a confirmation. When
node i receives the confirmation, node i resigns as a cluster head and sets its
cluster ID to node j ’s node ID. This After forming clusters, region nodes are
elected from the cluster heads.

When the cluster head selection is completed, the entire network is divided
into a number of clusters. A cluster is defined as a subset of nodes that are
mutually reachable within 2 hops at most. A cluster can be viewed as a circle
around the cluster head with the radius equal to the radio transmission range of
the cluster head. Each cluster is identified by one cluster head, a node that can
reach all nodes in the cluster within 1 hop.

After the cluster heads are selected, the PA should select the region nodes in the
cluster heads. The PA receives cluster information messages (cluster info msgs)
that contain cluster ID, the list of nodes in the cluster, residual energy level, and
location data from all cluster heads. The PA suitably selects region nodes accord-
ing to residual energy level and location data of cluster heads. If a cluster head k
receives region decision messages (region decision msgs) from the PA, the node k
compares its node ID with region ID (region id) from the messages. If the previous
comparison is true, node k declares itself as a region node (region node) and sets
its region ID to its node ID. Otherwise, if node k ’s node ID is included in a special
region list (region list) from the message, node k sets its region ID to a correspond-
ing region ID of the message. The region node selection is completed with region
confirmation messages (region conf msgs) broadcasted from all of cluster heads.

4 Performance Evaluation

This section describes experimental environments and results of a comparison of
the proposed SNOWCLUSTER algorithm and legacy clustering algorithms.

4.1 Simulation Environments

In the experiment, the ns-2 [3] network simulation tool with Red Hat Linux 9.0
was used. The elements for establishing a virtual experimental environment are
as follows:

An Energy-Efficient Clustering Algorithm for Large-Scale WSNs 441

– Sensor network topology formed with each of 50, 100, 150, 200 nodes.
– Sensor field with dimension of 100 x 100
– Transmission speed of 1Mbps
– Wireless transmission delay of 1ps
– Radio speed of 3 x 108m/s
– Omni-directional Antenna
– Lucent WaveLAN DSSS (Direct-Sequence Spread-Spectrum) wireless net-

work interface of 914MHz
– Use of DSDV (Destination Sequenced Distance Vector) for routing protocol

Each experiment was conducted on LEACH, LEACH-C, and SNOWCLUSTER.
In addition, management messages were applied for all cases and the processing
power of sensor nodes was eliminated because it was insignificant compared to
the amount of energy consumed in communications.

For the network topology used in the experiment, distribution of 50, 100, 150,
and 200 nodes on each dimension as shown in Fig. 2 was assumed.

Fig. 2. Network topology (50, 100, 150, and 200 nodes)

4.2 Energy Consumption

Fig. 3 is a graph that shows the generation of 1 to 10 clusters in a network
topology formed with 100 sensor nodes for each clustering algorithm. The graph
also illustrates the results of energy consumption measurement during 10 rounds
based on the number of each cluster generated.

In case of LEACH, until the number of clusters generated is 2, it shows signif-
icantly higher energy consumption compared to the other clustering algorithms,
but after generations of more than 3, the energy consumption was stabilized with
a gradual increase. LEACH-C showed progressive increase in energy consumption

442 S.-H. Cha and M. Jo

Fig. 3. The amount of energy consumed during 10 rounds with the number of clusters

from round 1 to round 10. Similar to LEACH-C, SNOWCLUSTER also showed a
gradual increase in energy consumption, but its consumption rate was slightly
less than that of LEACH-C. However, in both of LEACH-C and SNOWCLUSTER,
due to a unexpected increase in the number of cluster formations the energy
consumption increased. The most efficient number of clustering formation in the
both methods must be 1 from the perspective of energy consumption. It has not
been taken account of the amount of data transmission. The optimized number
of clusters therefore cannot be determined merely based on this data.

Fig. 4 is a graph that depicts energy consumption during a single round of
cluster formation for each clustering method. In the graph, LEACH showed the
highest level of energy consumption, and LEACH-C and SNOWCLUSTER resulted
in a slight difference each other. SNOWCLUSTER showed the least amount of
energy consumption.

The LEACH is simple in principle but because it does not have location
information of the sensor nodes, an inefficient routing is made which in turn
resulted in a relatively high energy consumption. Unlike the LEACH-C requires

Fig. 4. The amount of energy consumed during a single round of cluster organization

An Energy-Efficient Clustering Algorithm for Large-Scale WSNs 443

all of nodes to send their current energy level information to the base sta-
tion which determines the cluster heads, the SNOWCLUSTER allows neighbor-
ing nodes exchange their current energy level information. Thus even though
the SNOWCLUSTER needs an additional time to select the region node, the
SNOWCLUSTER gives less energy consumption than the LEACH-C.

Fig. 5 is a graph that shows experimental results of amount of energy consumed
for an entire sensing data to reach the base station for each clustering algorithm.

As expected, it was found that LEACH has a higher level of energy consump-
tion than the other two clustering algorithms. The SNOWCLUSTER has a lower
rate of energy consumption than LEACH-C. The reason is that while each clus-
ter head directly transmits sensing data to the base station in the LEACH-C,
SNOWCLUSTER allows only region node to communicate with the base station
so that the number of communications is decreased in the entire network.

Fig. 6 is the results showing the amount of energy consumed during trans-
mission of management message from the base station to the sensor node after
organization of three clusters in the network topology of 200 nodes.

Fig. 5. The amount of energy consumed for an entire sensing data to reach the base
station

Fig. 6. The amount of energy consumed during transmission of management message

444 S.-H. Cha and M. Jo

In LEACH, because it does not have the location information of the nodes,
an inefficient routing is made. As a result, significantly greater amount of energy
is consumed in transmitting management messages. SNOWCLUSTER showed a
result of decrease in the amount of energy consumed in the transmission of
message compared to LEACH-C. In SNOWCLUSTER, a region node plays the
role of primary message transmission through addition of region node selection
process, different from LEACH-C. And the SNOWCLUSTER transmits messages
using the remaining two cluster heads, with a decrease of the total number of
saving communications energy.

4.3 The Amount of Data

Fig. 7 displays the amount of sensing data that reaches the base station in a
single round in each network topology with the different numbers of nodes.

Fig. 7. The amount of data reached the base station in single round after cluster
organization

The LEACH shows abnormally low amount of sensing data. This is a re-
sult of accumulated untransmitted data due to frequent occurrences of colli-
sion in an irregular pattern between the nodes in the transmission process. In
SNOWCLUSTER, the amount of sensing data to reach the based station was found
to be less than that of LEACH-C. The SNOWCLUSTER allows sensing data to be
sent to the base station after an additional local data fusion in the region node,
which decreases the amount of data transmitted to the base station.

Fig. 8 displays the amount of sensing data that reached the base station with
the number of cluster generations in the network topology of 200 nodes.

Decrease in the communication rate of sensing data gives diminish in energy
consumed during communication. In LEACH, the transmission volume of data
is very irregular because of the irregular changes in the number of collision
occurrences during cluster organization. Both LEACH-C and SNOWCLUSTER

showed increase in the amount of data with the increased number of clusters.
However in SNOWCLUSTER because sensing data is transmitted to the base

An Energy-Efficient Clustering Algorithm for Large-Scale WSNs 445

Fig. 8. The amount of sensing data reached the base station with the number of clusters

station in a region node for every three clusters, the number of sensing data
received by the base station was significantly reduced compared to LEACH-C.
As a result, the SNOWCLUSTER saves energy through use of region nodes.

4.4 Network Lifetime

Fig. 9 shows results of changes in the network lifetime when 6 clusters are formed
in network topologies within the different numbers of sensor nodes, 50, 100, 150,
and 200. In LEACH, almost the same length of lifetime was made in topologies
of 50 and 100 sensors, and the network lifetime was the longest with 150 nodes.

Fig. 9. Network lifetime

However, the total network lifetime in a network formed by 200 nodes was
shorter than that of 150 nodes. The location of the nodes is not at all taken
into account in the selection method of cluster heads in the LEACH. Because
of the lack of location information, the energy consumed in forming the rout-
ing path between nodes is greater than those of other clustering methods. The
SNOWCLUSTER showed a network lifetime that is 18 ∼ 20% greater than that
of LEACH-C due to additional energy reduction effect through the region node

446 S.-H. Cha and M. Jo

selection process. The network lifetime can be prolonged by applying the
SNOWCLUSTER in the sensor network.

5 Conclusion

This paper presented an energy efficient clustering algorithm for self-organizing
and self-managing WSNs, called SNOWCLUSTER. The SNOWCLUSTER intro-
duces region node selection as well as cluster head selection based on the residual
battery capacity of nodes. The region node selection and cluster head selection
policy is able to save energy by reducing the transmission amount from nodes
to the base station, i.e., only selected cluster heads sent to the base station. The
SNOWCLUSTER is also able to extend the network life time by rotating the role
of cluster heads and region nodes with all other sensor nodes periodically. In
the experiments conducted in this research, the better energy efficiency of the
SNOWCLUSTER than LEACH and LEACH-C in the clustering and managing
WNS was proven. The SNOWCLUSTER therefore is an efficient clustering algo-
rithm to implement a self-management framework for large-scale WSNs. We are
currently at the stage of implementation of the SNOWCLUSTER algorithm on
our WSN testbed using Nano-24 [8] sensor nodes.

References

1. Linnyer B. Ruiz, José M. Nogueira, Antonio A. F. Loureiro, MANNA: A Manage-
ment Architecture for Wireless Sensor Networks, IEEE Communications Magazine,
Volume 41, Issue 2, February 2003.

2. Si-Ho Cha, Jongoh Choi, JooSeok Song, A Self-Management Framework for Wireless
Sensor Networks, APWEB 2006, LNCS 3842, January 2006.

3. The VINT Project, The network simulator - ns-2, http://www.isi.edu/nsnam/ns/.
4. Feng Zhao, Leonidas Guibas, Wireless Sensor Networks: An Information Processing

Approach, Morgan Kaufman Publishers, Elsevier, 2004.
5. Holger Karl, Andreas Willing, Protocols and Architectures for Wireless Sensor Net-

works, John Wiley & Sons, 2005.
6. W. Heinzelman, et al., Energy-Efficient Communication Protocol for Wireless Mi-

crosensor Networks, Proc. IEEE Int. Conf. System Sciences, vol. 8, January 2000.
7. W. Heinzelman, Application-Specific Protocol Architectures for Wireless Networks,

PhD thesis, Massachusetts Inst. of Technology, June 2000.
8. Nano-24: Sensor Network, Octacomm, Inc., http://www.octacomm.net/.

An Algorithm Testbed for the Biometrics Grid�

Anlong Ming and Huadong Ma

Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia,
School of Computer Sci. and Tech., Beijing Univ. of Posts and Telecommunications,

Beijing 100876, China
anthonyming@gmail.com, mhd@bupt.edu.cn

http://bklab.cs.bupt.cn/

Abstract. In this paper, we propose a novel application on grid, the
biometrics grid, to promote the development of both biometrics technol-
ogy and grid computing. The biometrics grid aims to overcome/resolve
some main problems of existing biometric technology using grid comput-
ing. The most important service provided by the biometrics grid is an
algorithm testbed for biometrics researchers on single biometric or multi-
modal biometrics. We give a case of two respective biometrics recognition
processes in voiceprint and face on grid to show that it is feasible in de-
ploying different biometrics applications on a testbed for performance
evaluation.

Keywords: Grid computing, Biometrics, Face, Voiceprint.

1 Introduction

Biometrics usually refers to identifying an individual based on his or her distin-
guishing characteristics. The premise is that a biometrica measurable physical
characteristic or behavioral traitis a more reliable indicator of identity than
legacy systems such as passwords and PINs. Physiological biometrics is based
on data derived from direct measurement of a body part (i.e., fingerprints, face,
retina, iris), while behavioral biometrics is based on measurements and data de-
rived from a human action [1] (i.e., gait and signature). Recent global terrorism
is pushing the need for secure, fast, and non-intrusive identification of people as a
primary goal for homeland security. As commonly accepted, biometrics seems to
be the first candidate to efficiently satisfy these requirements. For example, from
October 2004, the United States have controlled the accesses to/from country
borders by biometric passports [2, 3].

Biometrics technology not only need advanced biometric technology interfaces
but also the ability to deal with security and privacy issues. The integration of
� The work is supported by the National Natural Science Foundation of China

(90612013), the National High Technology Research and Development Program of
China under Grant No.2006AA01Z304, the Specialized Research Fund for the Doc-
toral Program of Higher Education (20050013010) and the NCET Program of MOE,
China.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 447–458, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://bklab.cs.bupt.cn/

448 A. Ming and H. Ma

biometrics with access control mechanisms and information security is another
area of growing interest. The challenge to the research community is to develop
integrated solutions that address the entire problems from sensors and data
acquisition, to biometric data analysis and systems design. Biometrics technology
suffers problems in its way of research and applications:
Multimodal biomsetrics and information fusion. The performance of a bio-
metric system is not reliable. This problem can be alleviated by installing multi-
ple sensors that capture different biometric traits. Such systems, known as mul-
timodal biometric systems, are expected to be more reliable due to the presence
of multiple pieces of evidence. Use of multiple biometric indicators for identify-
ing individuals has been shown to increase the accuracy and population cover-
age, while decreasing vulnerability to spoofing [4].Multimodal biometric systems
are able to meet the stringent performance requirements imposed by various ap-
plications. Moreover, it will be extremely difficult for an intruder to violate the
integrity of a system requiring multiple biometric indicators. However, an inte-
gration scheme is required to fuse the information churned out by the individual
modalities. The key to multimodal biometrics is the fusion of various biometric
modality data at the feature extraction, matching score, or decision levels [5].
Duplicated works and cooperation in diverse fields. Currently, most bio-
metrics technology researches in offered production are either actually intra-
organizational or operated by application domains, such as FaceVACS-SDK
produced by Cognitec. It is wasteful with duplicated efforts in building test
databases as well as difficulty in providing uniform performance standards. For
example, face recognition researchers have spent great efforts in building face
databases(i.e., FERET, PIE, BANCA, CAS-PEAL, AR) while these databases
are not easily accessed by others. Furthermore, from a technical viewpoint,
biometrics spans various technologies, such as fingerprint and face recognition,
mathematics and statistics, performance evaluation, integration and system de-
sign, integrity, and last but not least, privacy and security. Therefore, there is
a need for scientists and practitioners from the diverse fields of computing, sen-
sor technologies, law enforcement and social sciences to exchange ideas research
challenges and results.
Large scale biometric database. The population in a database can signifi-
cantly affect performance [6]. In a system with a large scale database, the or-
dinary recognition processes perform poorly: with the increase of the database
scale, the identification rates of most algorithms may decline rapidly; mean-
while, querying in a large scale database may be quite time-consuming. So how
to deal with a large scale database has been a difficult problem faced by re-
searchers on biometrics technology in recent years. Su Guangda et al presented
a face recognition system framework constructed on the client-server architec-
ture [7]. A distributed and parallel architecture is introduced to this system (see
Fig. 1 (a)). The clients and servers are connected by 1000MB networking switch.
Although this system has gained good performance: querying one face image in
2,560,000 faces costs only 1.094s and the identification rate is above 85% in most
cases, it is limited in accessing and extending due to its C/S framework.

An Algorithm Testbed for the Biometrics Grid 449

A grid [8, 9] is a high-performance hardware and software infrastructure pro-
viding scalable, dependable and secure access to the distributed resources. Grid
systems are the gathering of distributed and heterogeneous resources (CPU, disk,
network, etc.). Unlike distributed computing and cluster computing, the indi-
vidual resources in grid computing maintain administrative autonomy and allow
system heterogeneity; this aspect of grid computing guarantees scalability and
vigor. Therefore, the grids resources must adhere to agreed-upon standards to
remain open and scalable. They are promising infrastructures for executing large
scale applications and to provide computational power to everyone. In order to
promote both biometrics technology and grid computing, we combine biometrics
applications with grid computing to give a novel grid application - the biometrics
grid (BMG).

The remainder of this paper is organized as follows: related work is presented
in Section 2, design issues of system are described in Section 3. The BMG-specific
testbed is discussed in Section 4. Finally, we give a case study in Section 5. We
conclude our work in Section 6.

2 Related Work

Biometric systems have been defined by the U.S. National Institute of Standards
and Technology (NIST) [10, 11] as systems exploiting “automated methods of
recognizing a person based on physiological or behavioral characteristics” (bio-
metric identifiers, also called features). Biometric systems are being used to
verify identities and restrict access to buildings, computer networks, and other
secure sites [12]. A biometric system is essentially a pattern-recognition sys-
tem. Such a system involves three aspects: data acquisition and preprocessing,
data representation, and decision-making. Biometric systems are traditionally
used for three different applications [13]: physical access control for the pro-
tection against unauthorized person to access to places or rooms, logical ac-
cess control for the protection of networks and computers, and time and at-
tendance control. Due to have been designed for only traditional biometrics ap-
plications, biometric systems can’t used to solve the problems mentioned in
Section 1.

However, the proposed BMG is more than a biometrics system. Consider-
ing multimodal biometrics, duplicated works, cooperation in diverse fields, in-
formation fusion and Large scale biometric database, BMG provides an algo-
rithm testbed for the research on single biometric or multimodal biometrics.
The testbed enables researchers mainly focus their energy on algorithm design
and programming.

Also, BMG can conquer disadvantages of C/S framework because in the het-
erogeneous grid environments, we can hide the heterogeneity of computational
resources and networks by providing Globus Toolkit Services and can implement
the distributed parallel computing of a large scale problem by taking full advan-
tage of Internet resources. According to the applied demand, grid MPI parallel
program is offered for specialized applications.

450 A. Ming and H. Ma

3 Design Issues of System

3.1 Concepts

BMG is designed to develop integrated solutions that address the entire problems
from sensors and data acquisition, to biometric data analysis and system design.
BMG aims to

1. Provide a testbed for the research on biometrics algorithms. The testbed
enables researchers mostly or only pay their attention on algorithm design
and programming. BMG would test modules designed by researchers on
uniform databases.

In biometrics algorithms test, such efforts are wasteful, with duplicated
work in building test databases as well as difficulty in providing uniform per-
formance standards. A basic requirement is for tools that allow data man-
agers to make licensed and uniform “person” data available to the BMG
community. These tools include the means to create searchable databases of
persons, provide catalogs of the data that locate a given piece of data on
an archival system or online storage, and make catalogs and data accessi-
ble via the Web. Prior to the advent of the grid, these capabilities did not
exist, so potential users of the model data had to contact the data man-
agers personally and begin the laborious process of retrieving the data they
wanted.

2. Create a virtual collaborative environment linking distributed centers, users,
models, and data to simplify both the resource management task, by making
it easier for resource managers to make resource available to others, and the
resource access task, by making biometrics data as easy to access.

3. Support mature biometric applications with different QoS demands includ-
ing applications with large scale databases or applications of multi-modal
biometrics can be solved by grid computing. However, BMG does not guar-
antee that biometrics applications are meeting with the QoS goals, when
defining QoS more broadly than the bandwidth and capacity.

4. Develop a specialized grid workflow for multimedia computing and data min-
ing in biometrics applications on BMG.

In this paper, we only discuss one of the BMG issues, the algorithm testbed.

3.2 A Framework of the Biometrics Grid

We present a description of the BMG framework in Fig. 1 (b). BMG is divided
into four layers:

Resources. These are the basic resources on which BMG is constructed includ-
ing computational resources and data resources.

Platform. This provides remote, authenticated access to shared BMG resources.
All these components are based on the Globus Toolkit and the WS-Resource

An Algorithm Testbed for the Biometrics Grid 451

(a)

(b)

Fig. 1. a) An example of C/S framework to support large scale database. (b) The BMG
framework schematic showing four layers.

452 A. Ming and H. Ma

Framework (WSRF) which enables the discovery of, introspection on, and inter-
action with stateful resources in the standard and interoperable ways.

BMG-specific services. The testbed is the most important of these biometrics
applications. The testbed enables researchers intend to focus their energy on
algorithm designing and programming. All biometrics applications are wrapped
to Web Services specified by WSRF and deployed into Web Services container.

Portal. Web portal control and render the user interface-interaction. BMG cre-
ates a virtual collaborative environment which provides advantages to urge co-
operations in diverse fields. Generally, portal let you take multiple Web pages,
automatically produce controls to link between them, and let subsets of them
be displayed on a single Web page. All biometric applications are wrapped to
Web Services (each with user-facing ports) are aggregated for the user into a
single client environment. We assume that all data and information presented
to users originates from a Web Service, called a content provider. This con-
tent could come from a simulation, data repository, or stream from an in-
strument. Each Web Service has resource- or service-facing ports that com-
municate with other services [14]. However, we are more concerned with the
user-facing ports, which produce content for users and accept input from client
devices.

3.3 The BMG Workflow for the Algorithm Testbed

The BMG workflow is simply defined as a set of Grid resources and services, a
quality expectation defined by the user(s) and a workflow model acting on them.

The BMG workflow pays more attention to multimedia computation and data
mining in biometrics applications on BMG, the BMG-MPI parallel programming
interfaces are offered for the BMG testbed to run algorithm jobs. Its design
sustains and integrates closely with parallel processing from the bottom, so it
can be applied in different applications.

Further, the BMG workflow has strong self-adaptability to effectively over-
come the dynamic variation during the operating process of a biometrics algo-
rithm, and the BMG workflow engine can also perform dynamic resource dis-
covery and allocation, dynamically collects the status of nodes of BMG by MDS
modules in Globus.

4 A Testbed for Biometric Algorithms

To solve the problems of duplicated works, multimodal biometrics, and informa-
tion fusion, BMG provides the testbed for the research on single biometric or
multimodal biometrics to enable researchers intend to only focus their energy on
algorithm designing and programming. For example, researchers’ works are lim-
ited to design the modules of feature extracting, feature matching, information
fusion, etc. Researchers code these modules according to the testbed interface
description and then submit their works to BMG.

An Algorithm Testbed for the Biometrics Grid 453

Fig. 2. Structure of a general single biometric system

4.1 Single Biometric Test

A biometric system has a general structure [15]. First of all, a sensor acquires a
sample of the user presented to the biometric system (i.e., fingerprint, face, iris
images). As defined in [15], a sample is a biometric measure presented by the
user and captured by the data collection subsystem as an image or signal. The
sample can be transmitted, eventually exploiting compression/decompression
techniques. BMG stores the complete sample data in the storage unit. BMG
uses and stores only a mathematical representation of the information extracted
from the presented sample by the signal processing module that will be used
to construct or compare against enrolment templates: the biometric feature.
If the extracted feature is stored (enrolled) into BMG, a template for future
identification or verification (matching) is added. BMG has a measure of the
similarity between features derived from a presented sample and a stored tem-
plate. The measure produces a typical index called matching score. Hence, a
match/nonmatch decision may be made according to whether this score exceeds
a decision threshold or not. The term transaction refers to an attempt by a
user to validate a claim of identity or nonidentity by consecutively submitting
one or more samples, as allowed by the system decision policy [16]. Lastly, a
transmission process is implemented to transmit the collected data to the sig-
nal processing section. The signal-processing module represents the core of the
system and is generally composed by sub-modules implementing preprocessing
functions (i.e., image filtering and enhancement), the feature extraction, and the
matching between two features.

BMG deploys this general single biometric system on the testbed. Of course,
some definitions should be firstly done such as feature extracting interface, fea-
ture matching interface, pre-filtering interface. All these definitions together are
defined as part of the testbed interface description. For example, a simple fea-
ture extracting interface can be defined as c executable file (e.g. FeatureExt.exe)

454 A. Ming and H. Ma

with a parameter (e.g. a file name of a sample), FeatureExt.exe can be invoked
by command line mode as follows:

FeatureExt.exe a sample file name

When a user of BMG submits featureExt.exe to the BMG Web portal, feature-
Ext.exe itself will be wrapped into a Web Service specified by WSRF. Then
BMG can provide this service as a part of the testbed using BMG components
(e.g. GRAM).

4.2 Multimodal Biometrics Test

Multimodal biometrics fusion that is possible when combining multiple biometric
systems:

1© Fusion at the feature extraction level, where features extracted using multiple
sensors are concatenated.

2© Fusion at the confidence level, where matching scores reported by multiple
matchers are combined [15,16].

3© Fusion at the abstract level, where the accept/reject decisions of multiple
systems are consolidated [17].

Fig. 3. Structure of a general multimodal biometrics system showing the three levels of
fusion; FU: Fusion Module, MM: Matching Module, DM: Decision Module. FU, MM,
DM are programed and submitted by BMG users.

An Algorithm Testbed for the Biometrics Grid 455

Fusion in the context of biometrics can take the following forms: 1© Single bio-
metric multiple classifier fusion, where multiple classifier on a single biometric
indicator are combined [18]. 2© Single biometric multiple matcher fusion, where
scores generated by multiple matching strategies (on the same representation)
are combined [19]. 3© Multiple biometric fusion, where multiple biometrics are
utilized [20, 21, 22]. An important aspect that has to be dealt with is the normal-
ization of the scores obtained from the different domain experts [23]. Normal-
ization typically involves mapping the scores obtained from multiple domains
into a common framework before combining them. This could be viewed as a
two-step process in which the distributions of scores for each domain is first esti-
mated using robust statistical techniques and these distributions are then scaled
or translated into a common domain.

Also, BMG deploys this general multimodal biometric system on the testbed
just like that mentioned in single biometric.

5 A Case Study

5.1 The Environment

In the case, we carry out two respective biometrics recognition processes for
voiceprint and face on grid. The voiceprint recognition approach we used is
described in [24]. The face recognition approaches we used are listed as: the line
based face recognition algorithm [25], the improved line based face recognition
algorithm [26], PCA and PCA+LDA [27]. Our development OS is Linux Fedora
Core 4, and the development toolkit is Globus Tookit 4.0, Web server platform
is Apache Tomcat 5.0, DBMS is MySQL 5.0, the development languages are
HTML, JSP, Servlet, Java Bean, Java class and XML.

In voiceprint recognition, 24 samples from 44 persons are collected. The first
20 samples are put in the training set, and 4 samples left are made as the test
set.

In face recognition, we use a face database established by ourselves to evaluate
the performance of our algorithm. Pictures of 35 persons are taken by a stan-
dard camera (6 pictures per person) under different illumination intensity (weak,
medium and strong). We select 3 views of each person for training, and the other
3 views (in weak, medium, and strong illumination intensity respectively) is used
to test.

5.2 Two Biometrics Recognition Processes

We define 3 simple interfaces, which are executable files of c language in Linux
platform, to run two respective biometrics recognition processes in speech and
face.

– Interface 1 Training.exe, an executable file for biometrics data training, can
be invoked as follows:

Training.exe samples

456 A. Ming and H. Ma

– Interface 2 FeatureExt.exe, an executable file for extracting feature vectors
using training results, can be invoked as follows:

FeatureExt.exe a samples

– Interface 3 FeatureMat.exe, an executable file for matching feature vectors
between two samples, can be invoked as follows:

FeatureMat.exe sample 1 sample 2

We program each recognition method and build 3 × 2 exe files respectively,
then these files would be submitted to grid by GRAM Server and RSL (XML
file) for recognition.

In voiceprint recognition, one is selected among 44 persons and tagged as
imposter, and 43 persons left are seen as client. Every person can enter at his
own status, imposter tries to enter at other 43 persons’ status and repeats 20
times. Then we get 44×43×20 verification results. In our voiceprint recognition
job, the FAR (False Accept Rate) is 0.092%, FRR (False Reject Rate) is 2.27%.

In face recognition, we have tested four face recognition methods on the same,
but individually processed, face database. The performance of different algo-
rithms in face recognition is shown in Fig. 4 (a). Moreover, as illustrated in Fig.
4 (b), the average execution times of the improved line based face recognition
algorithm can be shorten by increasing the number of grid computation nodes.

(a) (b)

Fig. 4. (a) The performance of different algorithms on error rate (Totally 105 pictures
are tested). (b) The relation between the execution times and the numbers of grid
computation nodes (GCNs) of the improved line based face recognition algorithm.

5.3 Analysis

According to results of the case study above, we can conclude that:

– It’s feasible to deploy biometrics applications on BMG.
– The algorithm testbed of BMG can provide uniform interfaces to different

algorithms belonged to different types of biometrics.

An Algorithm Testbed for the Biometrics Grid 457

– The algorithm testbed of BMG can provide uniform interfaces to different
algorithms belonged to a same type of biometrics.

– BMG can meet with some QoS demand (i.e. execution times) by using meth-
ods such as increasing computation nodes.

6 Conclusions

We propose a concept of BMG to simplify both the resource management task,
by making it easier for resource managers to make resource available to oth-
ers, and the resource access task, by making biometrics data as easy to access
as Web pages via a Web browser. BMG would test modules designed by users
based on uniform database, modules would be wrapped to Web Services based
on WSRF and deployed into Web Services container. We give a case study about
two respective biometrics recognition processes in voiceprint and face deployed
to grid. The results show that it is feasible in deploying not only algorithms
belonged to different types of biometrics (i.e., face recognition, voiceprint recog-
nition) but also different algorithms belonged to a same type of biometrics (such
as face recognition) on grid to provide services using grid computing. Also, the
time-consuming algorithms can be shortened by grid computing.

However, there exist great difficulties in building BMG nowadays. For exam-
ple, it is not an easy case to build an uniform biometrics database because there
are fears of an invasion of privacy. The advent of BMG should be under the
legal guidelines of governments. With the development of grid computing, the
technical scheme of BMG will also be improved.

References

1. R. Bolle, S. Pankanti, and A. K. Jain: Guest editorial, IEEE Computer (Special
Issue on Biometrics), vol. 33, No. 2, (2000) 46-49

2. S. Waterman: Biometric borders coming, Times, Washington (2003)
3. General Accounting Office (GAO).: Technology assessment: Using biometrics for

border security, GAO-03-174, Washington, (2002)
4. A.K. Jain, R. Bolle, et al.: Biometrics: Personal Identification in Networked Society,

Kluwer Academic (1999)
5. D. Maltoni, D. Maio, A.K. Jain, and S. Prabhakar: Handbook of Fingerprint Recog-

nition, Springer (2003)
6. PJouathou Phillips, Patrick Grother, et al.: Face recognitiou vendor test 2002: Eval-

uatiou report, Audio- and Video-Based Person Authentication (AVBPA) (2003)
7. Kai Meng, Guangda Su, et al.: A High Performence Face Recognition System Based

on A Huge Face Database, Proceedings of the Fourth International Conference on
Machine Learning and Cybernetics, Guangzhou (2005)

8. Satoshi Matsuoka, et al.: Japanese computational grid research project: NAREGI,
Digital Object Identifier , Vol. 93, Issue 3, (2005) 522–533

9. David Bernholdt, et al.: The Earth System Grid: Supporting the Next Generation
of Climate Modeling Research, Digital Object Identifier, Vol. 93, Issue 3 (2005)
485–495

458 A. Ming and H. Ma

10. M. Gamassi, Massimo Lazzaroni, et al.: Quality Assessment of Biometric Systems:
A Comprehensive Perspective Based on Accuracy and Performance Measurement,
IEEE Transactions on Instrumentation Measurement, Vol. 54, No. 4, (2005)

11. R. Bolle, S. Pankanti, and A. K. Jain: Guest editorial, IEEE Computer (Special
Issue on Biometrics), vol. 33, No. 2, (2000) 46-49

12. J. D. M. Ashbourn: Biometrics: Advanced Identify VerificationThe Complete
Guide, Springer-Verlag, Berlin (2000)

13. R. Norton, The evolving biometric marketplace to 2006, Biometric Technology
Today, vol. 10, No. 9, (2002) 7C8

14. Geoffrey Fox: Grid computing environments, Digital Object Identifier, Vol.5(2)
(2003): 68-72

15. A. J. Mansfield, J. L. Wayman: Best practices in testing and reporting performance
of biometric devices, National Physical Lab., Center for Mathematics and Scientific
Computing (2002)

16. Arun Ross, Anil Jain, Jian-Zhong Qian: Information Fusion in Biometrics, 3rd
International Conference on Audio- and Video-Based Person Authentication
(AVBPA), Sweden (2001) 354-359

17. Y. Zuev and S. Ivanon: The voting as a way to increase the decision reliability,
in Foundations of Information/Decision Fusion with Applications to Engineering
Problems, Washington (1996) 206–210

18. R. Cappelli, D. Maio, and D. Maltoni, Combining fingerprint classifiers, in First
International Workshop on Multiple Classifier Systems, (2000) 351-361

19. A. K. Jain, S. Prabhakar, and S. Chen: Combining multiple matchers for a high
security fingerprint verification system, Pattern Recognition Letters, vol. 20 (1999)
1371 - 1379

20. J. Kittler, M. Hatef, R. P. Duin, and J. G. Matas: On combining classifiers, IEEE
Transactions on PAMI (1998) 226-239

21. E. Bigun, J. Bigun, B. Duc, and S. Fischer: Expert conciliation for multi-modal
person authentication systems using bayesian statistics, in First International Con-
ference on AVBPA, Crans-Montana (1997) 291-300

22. S. Ben-Yacoub, Y. Abdeljaoued, and E. Mayoraz: Fusion of face and speech data for
person identity verification, Research Paper IDIAP-RR 99-03, Switzerland (1999)

23. R. Brunelli and D. Falavigna: Person identification using multiple cues, IEEE
Transactions on PAMI, vol. 12, (1995) 955-966

24. Liu Y: Research on identity verification system based Institute of Automation,
Chinese Academy of Sciences on voiceprint and semanteme[Mnater dissertation],
Beijing, china, (2002)

25. O.de Vel and S.Aeberhard.: Line-based face recognition under varying pose, IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 21 (1999) 1081-1088

26. Anlong Ming, Huadong Ma: An improved Approach to the line-based face recog-
nition.pdf, Proceedings of the 2006 IEEE International Conference on Multimedia
and Exposition (ICME), Toronto, 2006

27. Zhao WY, Chellappa R, Phillips PJ, Rosenfeld A: Face recognition: A literature
survey, ACM Computing Surveys, Vol. 35 (2003) 399-458

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 459 – 471, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Task Migration in a Pervasive Multimodal Multimedia
Computing System for Visually-Impaired Users*

Ali Awde1, Manolo Dulva Hina1,2, Yacine Bellik3, Amar Ramdane-Cherif2,
and Chakib Tadj1

1 LATIS Laboratory, Université du Québec, École de technologie supérieure
1100, rue Notre-Dame Ouest, Montréal, Québec H3C 1K3 Canada

{ali.awde.1@ens,manolo-dulva.hina.1@ens,ctadj@ele}.etsmtl.ca
2 PRISM Laboratory CRNS, Université de Versailles-Saint-Quentin-en-Yvelines

45, avenue des Etats-Unis, 78035 Versailles Cedex, France
rca@prism.uvsq.fr

3 LIMSI-CRNS, Université de Paris-Sud
B.P. 133, 91043 Orsay, France
yacine.bellik@limsi.fr

Abstract. In a pervasive multimodal multimedia computing system, the user
can continue working on a computing task anytime and anywhere using forms
of modality that suit his context. Similarly, the media supporting the chosen
modality are selected based on their availability and user’s context. In this pa-
per, we present the infrastructure supporting the migration of a visually-
impaired user’s task in a pervasive multimodal multimedia computing environ-
ment. Using user’s preferences which quantify user’s satisfaction, we derive the
user’s task feasible configuration. The heart of this work is the machine learn-
ing-derived training to acquire knowledge leading to configuration optimiza-
tion. Data validation is presented through scenario simulations and design
specification. This work is our continuing contribution to advance research on
making informatics more accessible to handicapped users.

1 Introduction

As the consequence of computing being present in many facets of our lives, a comput-
ing system needs to evolve to become adaptive to the environment and user’s needs.
For a pervasive computing [1], its infrastructure must allow users to continue working
on their task when and where they wish to. This requirement should serve all types of
users, including those with disability, such as the visually-impaired ones.

As the user moves from one multimodal multimedia (MM) system to another,
computing resources and user context change. In our work, media refers to a set of
physical interaction devices (and software supporting physical devices) while modal-
ity refers to the logical interaction structure. For a visually-impaired user to continue
working on a task, the system takes account of user’s profile, data and current

* This work has been made possible the funding awarded by the Natural Sciences and Engi-

neering Research Council (NSERC) of Canada, and the scholarship grants from Décanat à la
formation of École de technologie supérieure and of the National Bank of Canada.

460 A. Awde et al.

environment conditions. This means determining the form of modality the user could
work on a computing task. Available resources and their constraints determine the
media supporting the chosen modality to use. A basic requirement of a MM infra-
structure is that it must have sufficient media devices that support various forms of
modality.

This paper is a continuation of our previous work [2] which presented the architec-
tural model of a pervasive MM computing system for users with visual disability. In
that work, we defined the relationships among data format, environment conditions,
user’s preferences and modalities and media selections. In this paper, we visualize a
mobile visually-impaired user and the migration of his data and task as he moves
across computing environments. We set the foundation for feasible configuration to
realize the user’s task. Our objective is to realize a self-adaptive system taking into
account the user’s needs and the changes in his environment. This work is our contri-
bution to improving visually-impaired users’ access to information and computing.

The rest of this paper is structured as follows. Related work is presented in Section
2. The building of a machine learning knowledge for feasible configuration is dis-
cussed in Section 3. The system’s specification and scenario simulations are presented
in Section 4. The paper is concluded in Section 5.

2 Related Work

There are various tools for people with visual disabilities to access electronic informa-
tion, such as screen reader, transcription data for Braille, access to mathematics [3, 4]
and speech synthesis. For instance, for screen data access, JAWS [5] identifies and
interprets what is displayed on the screen. It is then presented to blind users as speech
(through text-to-speech software) or as translated data meant for Braille terminal. This
is integrated into our work as one data conversion tool. HOMERE [6] allows blind
users to use haptic/touch and audio modalities to explore virtual environments.
Although functional, the system’s effectiveness is limited as the modalities for user
interaction are already pre-defined. In contrast, a computing system becomes more
flexible if no pre-defined input-output modalities are set. In fact, the output
presentation of information should be based on the user’s application and interaction
context (user, system, and environment) which could possibly be in constant
evolution. The framework for intelligent multimodal presentation of information [7] is
an example. The system’s user interface also should be adaptive to these context
variations while preserving its usability. Demeure’s work [8] exhibits plasticity in
context adaptation. Indeed, the forms of modality should be chosen only based on
their merits to a user’s interaction context. This is the approach adopted in our work.

Our focus has always been pervasive multimodality for the blind. This work was
initially inspired by [9]. As our work evolves, however, the knowledge representation
that we have derived becomes different as we affirm that our optimization model is
best reflective for our intended user. The methodology is different as this paper uses
machine learning (ML) to acquire knowledge. Such knowledge is stored onto the
knowledge database (KD) accessible from a member of server group so that it can be
made omnipresent, accessible anytime and anywhere via wired or wireless networks.

 Task Migration in a Pervasive MM Computing System for Visually-Impaired Users 461

A major challenge in designing systems for the blind is how to deliver autonomy
onto the user. To this end, several tools and gadgets have emerged in recent years,
among them are the GPS (global positioning system), walking stick that detects user
context [10] and the talking Braille [11]. Our work aims the same goal. Our system is
adaptive to user’s condition and environment. Through pervasive computing
networks, the ML knowledge, and user’s profile and task all become omnipresent; our
system’s user task configuration is generated without any human intervention.

3 Building a ML Knowledge for Configuration Optimization

3.1 Machine Learning Training to Build User Preferences

A task is a computing work the user needs to do. To accomplish the task, the user runs
one or more computing applications. For example, a user wishing to shop for a sec-
ond-hand car may access a web browser, a text editor and a video player.

Given a filename (filename.extension), the first function to be learned, f1, is a map-
ping of a data type to an application (f1: data format Application). A diagram
showing the learning process is shown in Fig. 1. Each mapping is given a score of H
(high), L (low) or I (inappropriate). For example, the mapping (.doc, Text Editor) gets
H, (.doc, Web Browser) has an L, and (.doc, Video Player) gets an I. The knowledge
obtained from this mapping contains a set of data format and application mappings
whose scores are H. The following is a sample set of mappings of f1:

f1 = {(.txt, Text Editor), (.doc, Text Editor), (.rtf, Text Editor), (.html, Web Browser), (.xml, Web
Browser), (.wav, Audio/Video Player), (.mp3, Audio/Video Player), (.mpg, Audio/Video Player), etc.}

An application may have several suppliers. Another function to be learned, f2,
maps an application to the user’s preferred supplier (f2: Application Preferred
supplier, Priority). For simplicity purposes, we assume that the user chooses his 3
preferred suppliers and ranks them by priority. The learned function is saved onto KD
and is called user supplier preference. The following is a sample content of f2:

f2 = {(Text Editor, (MSWord, 1)), (Text Editor, (WordPad, 2)), (Text Editor, (NotePad, 3)), (Web
Browser, (Internet Explorer, 1)), (Web Browser, (Netscape, 2)), (Web Browser, (BrailleSurf, 3)),
(Audio/Video Player, (Windows Media Player, 1)), (Audio/Video Player, (Real One Player, 2)), etc.}

An application has its quality of service (QoS) dimensions that consumes comput-
ing resources. Here, the only important QoS dimensions are those that are valuable to
blind users. A function f3 maps an application and its QoS dimensions that the user
prefers (f3: Application i QoS dimension j, Priority) where 1 ≤ i ≤ app_max
(max. no. of applications) and Application i ∈ user task. Also, 1 ≤ j ≤ qos_max (max.
no. of QoS dimensions) and QoS dimension j ∈ Application i. Priority is of type N1.
Since there are many possible values for each QoS dimension, the user arranges these
values by their priority ranking. A sample f3 is given below:

f3 = {(Text Editor, (40 characters per line, 1)), (Text Editor, (60 characters per line, 2)), (Text Editor,
(80 characters per line, 3)), (Web Browser, (medium page loading, 1)), (Web Browser, (high page
loading, 2)), (Web Browser, (low page loading, 3)), (Audio/Video Player, (medium volume, 1)), etc.}

462 A. Awde et al.

Fig. 1. The training process: (Top) the mapping of data type to an application, (Middle) build-
ing a user’s preferred supplier list, and (Bottom) building a user’s preferred QoS dimensions

3.2 Alternative Configuration Spaces

Given a user task, one or more applications are instantiated. For an application, how-
ever, there are some suppliers and QoS dimensions selections that can be invoked.
Respecting the user’s preferences is the way to instantiate an application, but if it is
not possible, the dynamic reconfiguration mechanism must look upon the various
configuration spaces and determine the one that is feasible to the user’s needs. Fig. 2
shows typical invoked applications for a computing task of a blind user. Note the data
type, the suppliers and the QoS dimensions that are mapped with an application. Also
shown are the modalities and media that are invoked. The modalities abbreviations
are as follows: SPin=Speech input, SPout=Speech output, Tin= Tactile input and Tout =
Tactile output. For media devices, MIC=microphone, KB=keyboard, OKB= overlay
keyboard, SPK=speaker, HST=headset, BRT = Braille terminal, TPR = tactile printer.

Fig. 2. The user task as a collection of applications; instantiation of application is based on
supplier and QoS dimension preferences. Needed modalities and media are also shown.

In the next sections, the following logic symbols appear: ⊗ = Cartesian product
yielding a set composed of tuples, the basic logical connectives ∧ (AND) and ∨ (OR),
and (a, b] denotes that a valid data is higher than a and up to a maximum of b.

 Task Migration in a Pervasive MM Computing System for Visually-Impaired Users 463

A QoS dimension is an application’s parameter that consumes computing re-
sources (battery, CPU, memory, bandwidth). As an application’s QoS dimension
improves, then the application’s quality of presentation (e.g. sound, crispiness of
images, etc.) also improves but at the expense of larger resources’ consumption.
Given a task that is implemented by various applications, the task’s QoS dimension
space is given by:

iD space DimensionQoS
qos_max

1 i =
⊗= (1)

In this work, the QoS dimensions that matter are those that are valuable to the
blind, namely: the character per line (for Text editor and Web browser), the volume
(for Video and Audio player), and page loading latency (for Web browser). Given two
applications s and t, their dimension space is Di(s) ⊗ Di(t).

The supplier’s space, given below, denotes all possible applications’ suppliers com-
binations for user’s task, given that every application i has its own set of suppliers.

app_max

1 i
iSupp spaceSupplier

=
⊗= (2)

3.3 Optimizing Configuration of User’s Applications

A feasible configuration is a set-up that tries to satisfy the user’s preferences given the
user’s context, and the resources’ constraints. When the configuration is feasible, it is
said that the user’s satisfaction is achieved. Let the user’s satisfaction to an outcome
be within the Satisfaction space. It is in the interval of [0, 1] in which 0 means the
outcome is totally unacceptable while a 1 corresponds to a user’s satisfaction. When-
ever possible, the system strives to achieve an outcome that is closer to 1.

Given an application, the user’s satisfaction is enhanced if his preferences are en-
forced. The supplier preferences in instantiating an application are given by:

sss c f xh spreferenceSupplier s •= (3)

where s ∈ Supplier space is an application supplier and the term cs ∈ [0, 1] reflects
how the user cares about supplier s. Given an application, if it has n suppliers which
are arranged in order of user’s preference, then csupplier1 = 1, csupplier2 = 1 – 1/n, csupplier3
= 1 – 1/n – 1/n, and so on. The last supplier therefore has cs close to zero which
means that the user cares not to have it if given a choice. In general, in each applica-
tion, the cs assigned to supplier i, 1≤ i ≤ n, is given by:

∑=
1 - i

1
isupplier (1/n) - 1 c (4)

The term fs: dom(s) [0,1] denotes the expected features present in supplier s. The
supplier features are those that are important to the user, other than the QoS dimen-
sions. For example, in a text editor application, the user might prefer a supplier that
provides spelling and grammar checking, or equation editor or feature to build a table,

464 A. Awde et al.

etc. For example, if the user listed n= 3 preferred features for an application, and the
selected supplier supports them, then fs= 1. If, however, one of these features is miss-
ing (either because the feature is not installed or the supplier does not have such fea-
ture), then the number of missing feature m = 1 and fs = 1 – m/(n + 1) = 1 – ¼ = 0.75.
In general, the user satisfaction with respect to application features is given by:

1 n

m
 - 1 fsupplier +

= (5)

The term hs
Xs expresses the user’s satisfaction with respect to the change of the sup-

plier, and is specified as follows: hs ∈ (0, 1] is the user’s tolerance for a change in the
supplier. If this value is close to 1, then the user is fine with the change while a value
close to 0 means the user is not happy with the change. The optimized value of hs is:

c*2/)c c(max arg h srepss += (6)

where crep is a value obtained from equation (4) for replacement supplier. xs indicates
if change penalty must be considered. xs = 1 if the supplier exchange is due to the
dynamic change of environment, while xs = 0 if the exchange is instigated by the user.

Similarly, a user’s preferences for QoS dimensions of his applications as given by:

cxh spreference QoS qq q •= (7)

where and q ∈ QoS dimension space is a QoS dimension of an application. Note that
equations (3) and (7) are almost identical except for the differences in the subscripts
and the absence of feature in QoS dimensions. The algorithms for finding the opti-
mized QoS and supplier configuration of any application are given in Fig. 3. In each
algorithm, the default configuration is compared with other possible configurations
until the one yielding the maximum value of user’s satisfaction is found and is re-
turned as result of each algorithm. A feasible configuration is achieved if the user’s

Fig. 3. Algorithms for optimized QoS and supplier configuration of an application

 Task Migration in a Pervasive MM Computing System for Visually-Impaired Users 465

task can be realized by appropriate applications that are instantiated using the user’s
preferred suppliers and QoS dimensions. The feasible configuration is given by:

(a) spreference QoS (a) spreferenceupplier S max arg
app_max

1 a

(s) dim QoS q
pp(a))supplier(a s

 task app(a)
•∏=

=

∈
∈

∈
 (8)

The algorithm for finding the feasible configuration of applications within the
user’s task is shown in Fig. 4. It finds the feasible configuration in every application.

As earlier said, [9] has positively influenced our work. Equations (1), (2), and (8)
were taken from such work. Although previously defined in the same reference,
Equations (3) and (7) have since evolved that their final forms in this paper have be-
come ours. The rest of the other equations are all ours.

Fig. 4. The algorithm for optimizing user’s task configuration

3.4 Realizing User Task Through Appropriate Modalities and Media

Having known the user’s task and context, then a feasible modality needs to be found
for the computing to proceed. The modalities available to the user are speech input
(SPin), speech output (SPout), tactile input (Tin) and tactile output (Tout). At any time,
each of these modalities is either active or inactive (on or off). The truth table for all
possible combinations of various modalities for the blind is shown in Fig. 5 (Left). A
value of T (true) means a modality is possible. Hence, successful modality is given by:

)TSP()T SP(Modality outoutinin ∨∧∨= (9)

Therefore, a successful modality can be implemented if there is at least one input
modality and at least one output modality.

Given the user’s task and the applications to realize it, we then determine when a
modality is possible or not which, for a blind user, is a function of the user’s comput-
ing device and the noise level in his workplace. Given that:

Application = {Web Browser, Text Editor, Audio/Video Player}, Modality = {SPin, Tin, SPout, Tout}
Computing Device = {PC, MAC, Laptop, PDA, Cell phone}, Noise Level = {Quiet/Acceptable, Noisy}

then modality is possible under various parameters’ combinations. There exists, how-
ever, a system and environment condition where modality is not possible as given by:

Noisy) Level(Noise)Cellphone) (PDA Device(Computing ailureModality F =∧∨== (10)

466 A. Awde et al.

In this condition, tactile input and output, and speech input are not possible leav-
ing only speech output as the remaining possible modality. As stated in (9), a modal-
ity requires at least one mode for data input and at least one mode for data output.
Such restriction is violated in the preceding condition which renders multimodality
to fail.

Let there be a function f4 that maps a specific modality to its appropriate media de-
vice(s) as given by f4: Modality Media. See Fig. 5 (Right). The presence of the
necessary media is important if a modality is to be implemented. The function f4 for
visually-impaired users would be similar to the one given below:

f4 = {(SPin, Microphone), (SPin, Speech Recognition), (SPout, Speaker), (SPout, Headset), (SPout, Text-
to-Speech), (Tin, Keyboard), (Tin, Overlay Keyboard), (Tout, Braille Terminal), (Tout, Tactile Printer)}

Note that although media technically refers to hardware components, a few software
elements, however, are included in the list as speech input modality would not be
possible without a speech recognition software and the speech output modality cannot
be realized without the presence of a text-to-speech translation software. From f4, we
can obtain the relationship in implementing multimodality:

f4(SPin) = Microphone ∧ Speech Recognition, f4(SPout) = (Speaker ∨ Headset) ∧ Text-to-Speech
f4(Tin) = Keyboard ∨ Overlay Keyboard, f4(Tout) = Braille Terminal ∨ Tactile Printer

Fig. 5. (Left): The truth table to realize an effective implementation of modality, (Right): Media
selections to realize a modality operation

Therefore, the assertion of modality, as expressed in equation (9), with respect to the
presence of media devices becomes:

 Printer))Tactile Terminal (BrailleSpeech)-to-Text Headset) (((Speaker

 yboard))Overlay Ke (Keyboard on) RecognitiSpeech ne((Micropho Modality

∨∨∧∨∧
∨∨∧=

(11)

Therefore, in order to realize a pervasive multimodal multimedia computing, given
the constraints that we have considered, it is imperative that equation (10) should not
exist and equation (11) should be satisfied.

The presence of needed media devices does not automatically mean the success of
a modality. Why? First, an available media device may not be working at all. Some
methods for detecting device failure is available in [12]. Second, it is possible that
even if a media device is present and functional, it still cannot be used due to the
restriction imposed on the environment (e.g. in a library where “silence is required”, a

 Task Migration in a Pervasive MM Computing System for Visually-Impaired Users 467

functional microphone serves no use at all). Hence, a failure in modality as a function
of the media devices failure and environment restriction is given by:

]} Required)Silencetionnt Restric(Environme Failed)(HSTFailed)[(SPFailed){(T

] Required)Silencetionnt Restric(Environme Failed)[(SPFailed)(T ailureModality F

outout

inin

=∧=∨=∧=
∨=∨=∧==

 (12)

4 Design Specification and Scenario Simulations

Having formulated various ML knowledge to optimize the configuration setting of
user’s task, this knowledge is then put to test via sample scenarios. The design speci-
fication comes along as these scenarios are further explained.

4.1 Specification for User’s Task

Consider a student user who wishes to do his homework which compares the works of
two great composers, Beethoven and Mozart. To do so, our user needs access to a web
browser, a text editor and a video player. Our user would work on his homework at
home using his personal computer. The following day, he may continue working on
his task in the school’s library. In this case,

f1 = {(assignment1.doc, Text Editor), (www.classicalmusic.com/Beethoven.html, Web Browser),
(www.classicalmusic.com/Mozart.html, Web Browser), (beethoven1.wav, Audio/Video Player),
(beethoven2.wav, Audio/Video Player), (mozart1.wav, Audio/Video Player), etc.}.

Formally, ∀ x: data format, ∃ y: Application | x y ∈ f1. Consider our user being in
the school library working on his task using a laptop. After logging in, our system
determines the applications that are suitable to the data format of the latest files in his
task folder. This is done with reference to function f1. Using f2, the system determines
the supplier for each application. Since a supplier priority is involved in f2 then the
most-preferred supplier is sought. Fig. 6 shows a sample tabulation of user’s prefer-
ences. Using equation (4), the following are the numerical values for user preferences:
(i) if Priority= 1 (High), then User Satisfaction= 1,(ii) if Priority= 2 (Medium), then
User Satisfaction= 2/3, and (iii) if Priority= 3 (Low), then User Satisfaction= 1/3.

Consider a case wherein the user’s preferred audio/video player supplier – the
Windows Media Player – is absent as it is not available in the user’s laptop. The
method by which the system finds the feasible supplier configuration is shown below:

Case 1: (MSWord, Internet Explorer, Windows Media Player) not possible,
Case 2: (MSWord, Internet Explorer, Real One Player) alternative 1
Case 3: (MSWord, Internet Explorer, JetAudio) alternative 2

then the feasible selection is based on user satisfaction score:

User Satisfaction: Case 2 = (1 + 1 + 2/3)/3 = 8/9 = 0.89, and Case 3 = (1 + 1 + 1/3)/3 = 7/9 = 0.78

Hence, Case 2 is the preferred alternative. Formally, if f2: Application (Supplier,

Priority) where Priority: N1, then the chosen supplier is given by: ∃ x: Application,

∀ y: Supplier, ∃ p1: Priority, ∀ p2: Priority | y ● x (y, p1) ∈ f2 ∧ (p1 < p2).

468 A. Awde et al.

Fig. 6. Tabulation of user’s preferences (Supplier and QoS) and their priority rankings

4.2 Optimizing User’s Task Configuration

Consider a scenario where all suppliers for an application are available. For example,
for a Text Editor application, the amount of user satisfaction with different suppliers
would be like:

cMSWord = 1.0, cWordpad = 2/3 , cNotepad = 1/3

This indicates that the user is most happy with the top-ranked supplier (MSWord) and
least happy with the bottom-ranked supplier (Notepad). In an MSWord set-up, if an
equation editor, for example, is not installed, the user’s satisfaction decreases, as
given by the relationship cMSWord * fMSWord = (1.0)(0.75) = 0.75.

Now, consider a case of a dynamic reconfiguration wherein the default supplier is
to be replaced by another. Not taking fs into account yet (assumption: fs = 1), if the
current supplier is WordPad, then the user’s satisfaction is cWordpad = 2/3 = 0.67. What
would happen if it will be replaced by another text editing supplier through dynamic
reconfiguration (xsupplier = 1.0)? Using the relationship hsupplier = (csupplier + creplacement) /
2* csupplier then the results of possible alternative configurations are as follows:

Replacing WordPad (supplier 2):
Case 1: Replacement by MSWord (supplier 1): (0.67)(1) * [(0.67 + 1)/2*(0.67)]1 = 0.835
Case 2: Replacement by itself (supplier 2): (0.67)(1) * [(0.67 + 0.67)/2*(0.67)]1 = 0.67
Case 3: Replacement by Notepad (supplier 3): (0.67)(1) * [(0.67 + 0.33)/2*(0.67)]1 = 0.50

Hence, if the reconfiguration aims at satisfying the user, then the second-ranked sup-
plier should be replaced by the top-ranked supplier.

In a similar fashion, the QoS dimensions are given the same scores for their prior-
ity ranking. With characters per line as QoS parameter in a text editor application,
then

c40 characters per line = 1.0, c60 characters per line = 0.67, c80 characters per line = 0.33

Indeed, the feasible configuration for a text editor application is given by:

arg maxText Editor = (cf MSWordMSWord)(f lineper characters 40) = 1.0

4.3 Specification for Detecting Suitability of Modality

Petri Net [13] is a formal, graphical, executable technique for the specification and
analysis of a concurrent, discrete-event dynamic system. Petri nets are used in deter-
ministic and in probabilistic variants; they are a good means to model concurrent or

 Task Migration in a Pervasive MM Computing System for Visually-Impaired Users 469

collaborating systems. They also allow for different qualitative or quantitative analy-
sis that can be useful in safety validation. In the specifications in this paper, only a
snapshot of one of the many outcomes is presented due to space constraints. We use
HPSim [14] in simulating Petri Net.

In Fig. 7, a Petri Net specification is shown with user’s task, modalities, computing
device, and the workplace’s noise level as inputs to user’s condition. As shown, many
of these combinations render the modality possible. There is, however, a condition
that makes modality and therefore computing for the blind user fail, and that is when
the user’s computing device is either a PDA or a cellular phone and his workplace is
noisy. This is given in equation (10) and is traceable in the Petri Net diagram.

Fig. 7. Petri Net diagram showing the possibility or failure of modality based on the environ-
ment’s noise level, the computing device and user’s task

4.4 Experimental Results

Using user’s preferences, we have simulated the variations in user’s satisfaction as
these preferences are modified through dynamic configuration. The results are pre-
sented through various graphs in Fig. 8. The first two graphs deal with application
supplier, and the variation of user’s satisfaction as additional parameters are taken
into account, supplier features and alternative replacements being the parameters. The
last one deals with QoS dimensions and their variations.

Graph (a) shows that user’s satisfaction does not only rely on a supplier’s ranking
but also on its features. For example, supplier 2 of no missing feature satisfies the user
better than supplier 1 that has 2 missing features. In addition, the result in graph (b)
illustrates such satisfaction as a function of current supplier and its features and its
alternative supplier replacement. Similarly, the QoS dimension is not only a function
of priority but also of its alternative replacements, as shown in graph (c). In general,

470 A. Awde et al.

0

0,2

0,4

0,6

0,8

1

1 2 3

Suppliers
(by priority)

U
se

r
S

at
is

fa
ct

io
n

No missing feature
One missing feature
Tw o missing features

0

0,2

0,4

0,6

0,8

1

1 2 3

QoS
(by priority)

U
se

r
S

ta
ti

sf
ac

ti
o

n

Replacement 1
Replacement 2
Replacement 3

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9

Suppliers
(by priority)

U
se

r
S

at
is

fa
ct

io
n

Supplier1
Supplier2
Supplier3

Fig. 8. Various graphs showing variations of user’s satisfaction with respect to its preferred
supplier and QoS dimension and their replacements

user is satisfied if the supplier and its desired features and QoS dimensions are pro-
vided. Whenever possible, in a dynamic configuration, the preferred setting result is
one in which the set-up parameters are those among the user’s top preferences.

5 Conclusion

This paper presented the methodology for a successful migration and execution of
user’s task in a pervasive MM computing system. Through ML training, we
illustrated the acquisition of positive examples to form user’s preferred suppliers and
QoS dimensions for selected applications. In a rich computing environment,
alternative configuration spaces are possible which give the user some choices for
configuring the set-ups of some of his applications. We have illustrated that
configuration could be dynamic or user-invoked, and the consequences, with respect
to user’s satisfaction, of these possible configurations. Optimization is achieved if the
system is able to configure set-up based on user’s preferences.

In this work, we have listed various modalities that are available to a blind user.
A modality is possible if there is at least one mode for data input and also at least
one mode for data output. Given sets of applications, modalities, computing
devices, and environment’s noise level, we formulated the conditions where
modality would succeed and fail. Similarly, we illustrated the scenario wherein
even if a specific modality is already deemed possible, still it is conceivable that
modality would fail if there are not sufficient media devices that would support it or
the environment restriction imposes the non-use of the needed media devices. We
validated all these affirmations through various scenario simulations and formal
specifications.

Future works include performance details of user task configurations as simulated
on various types of processors and software platforms. This would include evaluation
of dynamic configuration performance as the system searches alternative application
supplier and QoS dimensions.

 Task Migration in a Pervasive MM Computing System for Visually-Impaired Users 471

References

[1] M. Satyanarayanan, "Pervasive Computing: Vision and Challenges", IEEE Personal
Communications, vol. 8, pp. 10-17, 2001.

[2] A. Awdé, et al, "A Paradigm of a Pervasive Multimodal Multimedia Computing System
for the Visually-Impaired Users", GPC 2006, 1st International Conference on Grid and
Pervasive Computing, Tunghai University, Taichung, Taiwan, 2006.

[3] H. Ferreira, D. Freitas, "Enhancing the Accessibility of Mathematics for Blind People:
The AudioMath Project", ICCHP, 2004, pp. 678-685.

[4] V. Moco, D. Archambault, "Automatic Conversions of Mathematical Braille: A Survey
of Main Difficulties in Different Languages", ICCHP Conference. Paris, France, 2004.

[5] A. Solon, et al, "Mobile multimodal presentation", New York, NY, USA, 2004.
[6] A. Lécuyer, et al, "HOMERE: a Multimodal System for Visually Impaired People to Ex-

plore Virtual Environments", Proc. IEEE Virtual Reality, Washington, USA, 2003.
[7] C. Rousseau, et al, "A Framework for the Intelligent Multimodal Presentation of Infor-

mation", Signal Processing Journal, vol. 86, pp. 3696 - 3713, 2006.
[8] A. Demeure, et al, "Le Modèle d’Evolution en Plasticité des Interfaces: Apport des Gra-

phes Conceptuels", 15ème Conf. francophone sur l'Interaction Homme-Machine (IHM
2003), Caen, France, 2006.

[9] V. Poladian, et al. "Task-based Adaptation for Ubiquitous Computing", IEEE Transac-
tions on Systems, Man and Cybernetics, vol. 36, pp. 328 - 340, 2006.

[10] C. Jacquet, et al, "A Context-Aware Locomotion Assistance Device for the Blind",
ICCHP 2004, 9th Intl. Conf. on Comp. Helping People with Special Needs, Paris, France.

[11] D. A. Ross, et al, "Talking Braille: A Wireless Ubiquitous Computing Network for Ori-
entation and Wayfinding", 7th Intl. ACM SIGACCESS Conf. on Comp., MD, USA 2005.

[12] M. D. Hina, et al, "Design of an Incremental Learning Component of a Ubiquitous Mul-
timodal Multimedia Computing System", WiMob 2006, 2nd IEEE Intl. Conf. on Wireless
and Mobile Computing, Networking and Communications, Montreal, Canada, 2006.

[13] "Petri Net", http://www.winpesim.de/petrinet/
[14] "HPSim", http://www.winpesim.de/

Minimalist Object Oriented Service Discovery

Protocol for Wireless Sensor Networks

D. Villa, F.J. Villanueva, F. Moya, F. Rincón, J. Barba, and J.C. López

Dept. of Technology and Information Systems
University of Castilla-La Mancha

School of Computer Science. 13071 - Ciudad Real. Spain
{David.Villa, FelixJesus.Villanueva, Francisco.Moya, Fernando.Rincon,

Jesus.Barba, JuanCarlos.Lopez}@uclm.es

Abstract. This paper presents a new Service Discovery Protocol (SDP)
suitable for Wireless Sensor Networks (WSN). The restrictions that are
imposed by ultra low-cost sensor and actuators devices (basic compo-
nents of a WSN) are taken into account to reach a minimal footprint
solution.

The WSN communication model we use is based on the picoObject
approach [1] which implements a lightweight middleware for WSN on top
of standard object oriented middlewares using a small set of interfaces.
The proposed SDP uses also this set, so it supposes the minimal overhead
for devices and communication protocols, allowing, at the same time, the
deployment of a valuable set of services.1

1 Introduction

Wireless Sensor Networks (WSNs) are called to be a key component in any per-
vasive environment, supporting the interaction (monitoring and driving) with
the physical world. A WSN is composed of low-cost nodes which contain three
types of elements: a sensor or an actuator, a generic microcontroller and a
network interface. Sensors and actuators are oriented either to monitorize a
physic magnitude (e.g temperature, humidity, smoke, etc.) or to modify the
state of an element which drives such a physical magnitude (e.g a valve). The
microcontroller basically adapts raw data and provides communication facil-
ities for applications. At last, the network interface offers wireless network
connectivity.

Flexibility and quickly deployment (due mainly to their wireless interface) are
the characteristic that make WSNs to become a good solution for multiple appli-
cations such medical [4] or meteorology [5] applications, habitat monitoring [6],
etc. In general, we can envision a pervasive environment plenty of heterogeneous

1 This research is partly supported by FEDER and the Spanish Government (under
grant TIN2005-08719) and by FEDER and the Regional Government of Castilla-La
Mancha (under grants PBC-05-0009-1 and PBI-05-0049).

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 472–483, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Minimalist Object Oriented SDP for WSN 473

WSN nodes offering different services, from the most basic (supported by indi-
vidual nodes or the whole network) to the most complex (ambient intelligent
services resident in the environment).

However, the flexibility in the deployment of WSN (avoiding wiring) has not
found its counterpart when developing software for such a type of networks. We
believe that a real deployment of a WSN has to minimize also the configuration
requirements of the application that take advantage of the services supported
by every WSN node. With the service discovery protocol (SDP) described in
this paper, a WSN node has the capacity to announce its services and offer the
possibility to use them without any previous configuration procedure.

The proposed SDP: a) Allows very low-cost nodes to be deployed in an easy
and incremental way (following a Place & Play philosophy). b) Allows appli-
cations to discover and use the services offered along a WSN (such property is
really desirable in mobile applications). c) Is designed for heterogeneous WSNs
where different nodes have different functionalities and even are implemented in
different technologies.

The SDP described in this paper is based on our previous work called picoOb-
ject [1]. As we report in that reference, this approach allows a very high degree
of interoperability with standard distributed object oriented middlewares, and
provides also the capability to view and to use the WSN nodes as conventional
distributed software objects without any intermediate device. The strong foot-
print limitations determine the design of a picoObject, as well as the design of
our SDP (as we will show in the next sections).

The SDP prototype is based on ICE [17] (Internet Communication Engine), a
high quality distributed object framework developed by ZeroC, Inc. built upon
the experience of CORBA but free of legacy or bureaucracy constraints.

The rest of this paper is organized as follows. Section 2 explains some previous
works on SDPs. In section 3 the picoObject approach is briefly summarized.
Section 4 is devoted to explain our SDP in detail. In section 5 the prototype we
have used to validate our proposal is briefly described. Finally we draw some
conclusions and outline some future work.

2 Related Work

In the last years, several SDPs have been designed with the aim of automatizing
the service discovery and minimizing the configuration procedures required to
integrate a service in any networking environment.

Broadly used currently, some SDPs like UPnP [8], JINI lookup service [16],
Bluetooth SDP [10] or SLP [9] are considered as the de facto standards. The evo-
lution of fields like ambient intelligent, pervasive computing, or ubiquitous com-
puting has made it possible the development of an important amount of services
that use a variety of heterogeneous technologies and that need to interoperate.
This growth of services inherently implies complex configuration procedures for
integration with other networks services. Consequently, serious efforts have to be
made in order to simplify such configuration procedures and to make it possible
to support mobile services and service interoperability.

474 D. Villa et al.

However, the current SDPs are not suitable for WSNs due to the serious
footprint restrictions the WSN nodes impose. Such restrictions have to do with
power supply, memory limitations, processing capacity, etc., parameters that
have not been taken into account in the design of current SDPs. For example, due
to footprint limitations, neither an XML parser (like UPnP requires) nor a Java
Virtual Machine (needed by the JINI lookup service) could be implemented in a
WSN node. Even lightweight protocols oriented to mobile devices like Bluetooth
SDP or PDP [13] do not assume such constraints in their design.

Recent works have proposed SDPs for new technologies like mobile ad-hoc
networks [12] and [11]. In these highly dynamic environments, in which services
are registered in a directory (in a similar way to yellow pages), the directory-
based structures cannot be deployed due to the lack of a fixed infrastructure. This
has been the problem usually addressed, but, once again, the minimal footprint
requeriments of WSN nodes have not been taken into consideration.

On the other hand, current platforms oriented to support WSN (good surveys
can be found in [15] and [14]) are working prototypes in which the nodes will have
to be reduced in cost (therefore probably in resources) for a eventual massive
introduction in the market.

In [7] a resource discovery protocol (called DRD) specially designed for WSN
is described. In DRD each node sends a binary XML description to another node
that has been selected as the cluster head (CH) (this node assumes the represen-
tation of all the nodes under its range) which responds to any possible query (in
SQL) in place of its cluster sensors. The CH is selected between all the nodes de-
pending on their remaining energy. Thus it is necessary to give all the nodes the
capacity of being a CH. This means that all nodes need SQLlite database, libxml2
and a binary XML parser to implement the CH functionality. Our approach, as
we will describe in section 4, provides a way to incrementally add functionality
to the nodes, so ultra low-cost sensor nodes can be easily integrated in a first step
and, then, according to its capacity, acquire new functionality. It is necessary to
clarify that when we are talking about wireless sensor nodes we are thinking on
a minimal footprint device, even more limited than current prototype platforms
like MICA, MicaZ, RockWell WINS, etc.

Finally, in [3] an homogeneous sensor network (all the nodes have the same
functionality) resource discovery protocol is proposed, centering in the optimiza-
tion of the flooding process by taking advantage of historical queries [7]. Our work
supposes that a WSN is formed by heterogeneous nodes implementing different
services that do not need to be considered in an homogeneous way (managed by
a simple table).

In general, we observe that previous works have not faced the design of SDPs
in such a way that: a) they turn out to be suitable for heterogeneous WSN,
taking into account the footprint requeriments of small devices, and, 2) they
support the use of node services by client applications without the need of a
configuration procedure. Therefore, we will focus on these issues.

Minimalist Object Oriented SDP for WSN 475

3 picoObjects

Our SDP has been designed to give support to WSN based on picoObjects,
although it is perfectly applicable (without any change) to more powerful devices
or even to WSN based on other approaches (including, for example, some widely
used devices such as the MICA Motes).

The picoObjects are implemented as message matching automatons. From
a textual description (that includes the object interface description), the pico-
Object compiler can generate these automatons in several programming lan-
guages and for several platforms.

This approach allows the picoObjects to be embedded either into the small-
est microcontroller in the market, into the tiniest embedded Java virtual ma-
chine, or even in a low-end FPGA. For a deep description of the picoObject
approach, please refer to [1]. A picoObject implementation example can be
found in our webpage [18].

4 Abstract Service Discovery Framework

We have defined an ultra lightweight service discovery protocol, called ASDF
(Abstract Service Discovery Framework), which, using the object oriented para-
digm, provides several valuable features such as: a) An easy way for device
announcement. b) Extensibility and scalability. c) Legacy SDP interaction. d)
Seamless integration with standard middlewares. e) Auto-configuration for de-
vices (in order to get a place & play behavior).

The ASDF is designed keeping in mind minimal footprint devices. For exam-
ple, the protocol allows the nodes to announce themselves to the network using
simple, but completely middleware compliant, messages. In spite of this, the
protocol is very scalable and can perfectly be applied to more powerful devices.

4.1 Event Channels

Our protocol uses extensively the middleware standard event service. This makes
it possible to easily decouple all involved elements. The event channel is a di-
rect implementation of the observer [2] design pattern (also known as publish-
subscribe).

The IceStorm (the ZeroC ICE event channel service) is able to employ several
transport protocols at same time (at least TCP, SSL, UDP and multicast UDP)
in a transparent way for objects and even over the same channel. Each publisher
or subscriber can even choose the protocol to use individually.

However, it is not convenient to connect too many nodes to the same event
channel due to scalability reasons. Therefore, several event channels (topics in
ICE parlance) are used. Event channels have minimal resource cost and they
can be interconnected by means of “links” to propagate events to each other.
These links have some parameters that allow to establish limits or priorities to
the event propagation.

476 D. Villa et al.

Event channel federation is another technique to group some nodes (their cor-
responding event channels) together according to different criteria (functionality,
location, class of service...) in the same logic channel, but keeping the ability to
propagate certain events to other channels.

4.2 Place and Play Environment

Node deployment is a key issue for sensor networks. It is very convenient that
nodes can configure themselves in an autonomous way. When an actor (an ac-
tor is a node/device that can expose its functionality by means of an object
interface) is connected o returns from a sleep state, the node sends an announce-
ment message (adv()) to a specific event channel (called ASD.announce). Op-
tionally, these announcements can also be sent periodically. The adv() mem-
ber function is part of the iListener interface. Because of this, all the ap-
plications or actors that are interested in announcing their services, must im-
plement the aforementioned interface. The description of this interface is as
follows:

module ASD {
interface iListener {
idempotent void adv(Object* prx, iProperties* prop);

};
};

The argument prx is a proxy to contact the object that sends the event. The
argument prop is an object that serves to access the node properties (see 4.3).
The next listing exposes the content of an adv() message:

Magic Number: ’I’,’c’,’e’,’P’
Protocol: 1,0 - Encoding: 1,0
Message Type: Request (0)
Compression Status: Uncompressed (0)
Message Size: 54, Request Message Body

Request Identifier: 0
Object Identity Name: publish
Object Identity Content: asdf
Operation Name: adv - Ice::OperationMode: normal (0)
Input Parameters Size: 16
Input Parameters Encoding: 1,0 - Encapsulated parameters (10 bytes)

Sometimes, the adv() message arguments are fully static. In these cases, since
the total message size is about 80 bytes, these arguments can be stored in the
device ROM.

The clients and services interested in the potential announcements that may
occur must subscribe to the event channel ASD.announce. When a subscriber
receives an adv() event, it gets the object proxy of the announced actor and
uses the introspection mechanisms to interrogate the actor. The subscriber can
also list and request the actor properties by means of the argument prop.

Although this announcement procedure has a high abstraction level, it can
be implemented on very simple devices with an identical behaviour respect to a
conventional “object”.

Minimalist Object Oriented SDP for WSN 477

4.3 Properties

As mentioned before, the parameter prop in the adv() message is an object
proxy for a “property server”. The property server allows the clients to access
the actor properties. There are several alternatives:

– The argument prop can be a null proxy when it is not necessary or there is
not a property server for the actor.

– The proxy prop can point to a remote object in a different localization.
This allows to implements corrective property servers for many actors whose
properties are stored out of the actor, even in a big database. A single servant
can dispatch many objects using a “default servant” strategy.

– If the device has enough computing resources, the property server can be
implemented in the own device. In this case, both adv() arguments, prx
and prop, point to the same object.

The property servers implement the iProperties interface:

module ASD {
interface iProperties {
Ice::ByteSeq propget(string key);
void propset(string key, Ice::ByteSeq value);
Ice::StringSeq proplist(void);

};
};

The properties are specified by means of a string key. The property value is a
byte sequence and thereby it can store strings, configuration files, binary drivers,
images, maps, Java applets, etc

In any case, the actor properties are considered optional -not required- infor-
mation. This information is useful for administration, configuration and mon-
itoring tools but it doesn’t affect the system basic functionality. The system
services never depend on property values or their availability.

4.4 Basic Interface for Actors

All actors (sensors or actuators) implement a very simple interface to expose their
state value. The sensor state is the measured value of the physical magnitude.
There are different interfaces that depends on the type of data they manage.
Some of them are shown next:

module iBool {
interface W { void set(bool v); };
interface R { nonmutating bool get(); };

};

module iByte {
interface W { void set(byte v); };
interface R { nonmutating byte get(); };

};
...

478 D. Villa et al.

4.5 Interaction Model for Actors

Depending on the application interacts with actors, there are four basic types
of actor behaviors: Passive) To get the state value of a passive sensor, the
client needs to invoke explicitly the actor’s get() method and then will receive
the reply in a synchronous way. Active) The active actor is able to send a
set() message in a pre-programmed way to another object (usually an event
channel). That message indicates the current state of the actor. Proactive)
It’s also an active sensor but it sends the set() event when a change occurs
in its state. Reactive) A reactive sensor is an active sensor that sends set()
events only if a client invokes its standard ice ping() method. The ice ping()
standard functionality has been extended so when this method is invoked, the
actor, besides the conventional ice ping() behaviour, sends an event to the
pre-defined event channel to publish its state.

Therefore, when we talk about active actors (or active sensors), we refer to
both, reactive and proactive ones. All active objects implement the interface
iActive that is shown below:

module ASD {
interface iActive { idempotent void topic(Object* prx); };

};

The passive actors requires a two-way communication model while the active
ones could use a one-way communication model.

Using the topic() method, an specialized service can instruct the actor about
the remote object (event channel) where the actor must send its events.

4.6 Actor Set-Up

The active sensors need an event channel to send their state updates. When
an actor announces itself, a “channel monitor” service does the following tasks
(figure 1):

1) Using the middleware introspection features, it asserts that the new actor
is actually an active actor (it implements the iActive interface). 2) It creates an
event channel using the object identity as the channel name. If that event channel
already exists (it has been created before) then no further actions are needed
and the process finishes. 3) After creating the corresponding event channel, the
monitor invokes the actor’s topic() member function with the proxy for the
new event channel as the argument.

This process is designed keeping in mind that actors are implemented as
picoObjects: this means that they are not able to create event channels by
themselves and need of the existence of the channel monitor. For a more powerful
device, capable of running a standard middleware, the monitor makes no sense,
since its functionality is performed by the standard middleware procedures.

Since every actor creates its own specialized event channel to send its events,
this approach allows to take under control the message flow, improving at the
same time the system scalability.

Minimalist Object Oriented SDP for WSN 479

Fig. 1. Sequence diagram for Channel Monitor Service

4.7 Multi-requests

In WSNs, it is usual that a service requires to query to a certain set of sensors:
for example, the service may need to compute the temperature average in a big
room with many installed sensors. As a way to simplify this operation, we use
reactive actors (see section 4.5).

Fig. 2. Sequence diagram for multi-requests

If a client is interested in the value of a set of sensors, it can create a new event
channel. All involved sensors event channels are linked to the new one (if it is
known that several nodes share some kind of functional or structural relation the
new event channel may be created by default). The clients that are interested in
the state of this set of sensors may subscribe to the new channel.

The most efficient way to send the ice ping() to a set of actors is that they
hold an additional multicast endpoint. But this is not always possible because

480 D. Villa et al.

it depends on the underlying network technology. For these cases, an alternative
solution is proposed (as shown in figure 2).

To make it possible a multiple request, another new event channel is created.
All the involved sensors are subscribed to it. This task can be done by an external
application, transparently to the nodes. From this moment, when a client sends
an ice ping() message, all the nodes receive it.

With the multi-request procedure and thanks to the ICE Storm channels event
federation mechanism any external application can configurate its particular
vision of the world attending to different aspects like functionality, position,
security, etc.

4.8 Service Lookup

When an application needs to find a object that provides certain service, the
application creates an event channel to be used as “callback” and subscribes
to it. Then, the application invokes the lookup() method over the ASD.search
event channel indicating the property values it wants and the callback event
channel proxy. The lookup() method belongs to the ASD::iSearch interface.
The application is responsible for the event channel dispose.

interface iSearch {
dictionary<string, ByteSeq> PropDict;
void lookup(Object* prx, PropDict query);

};

The actors (subscribed to the ASD.search channel) that match the criterion
send an adv() message to the channel proxy specified by the application in the
lookup()message. If other applications or services are interested in the potential
replies, they can subscribe to the published channel proxy. A sequence diagram
of this procedure is shown in figure 3.

To ensure that actor replies are not sent before others can subscribe to the
callback channel, the actor waits for a fixed time before the announcement event
is sent. Also, other additional random timeout can be implemented to improve
the system scalability.

4.9 Legacy SDP Integration

In large heterogeneous pervasive environments where different networks are de-
ployed (multimedia network, personal body networks, control networks, etc.) it
is not likely than only one SDP covers all the different networks. It is also un-
realistic to assume that all devices implement just the same SDP. Devices and
services from different manufacturers will probably implement several SDPs.
Again, a real deployment will require interoperability of several SDPs, at least,
for a basic interaction.

We are working on the design and implementation of new procedures that
allow a complete interoperability with other SDPs. Looking at the current de
facto standard protocols (UPnP, Bluetooth SDP and JINI are being considered)

Minimalist Object Oriented SDP for WSN 481

Fig. 3. Sequence diagram for service lookup

Table 1. Size of messages employed in ASDF

Name of the ASDF Message Size of Message (in bytes)

Ice::Object::ice ping 46
IceStorm::TopicManager::create 71
IceStorm::Topic::subscribe 97
IceStorm::Topic::link 91
ASD::iListener::adv 96 (+46 if prop. server)
ASD::iActive::topic 88
ASD::iSearch::lookup >92 (depends on query)
iByte::W::set 42

a set of common primitives will be derived so as to make it easy the development
of bridges between the ASDF and other SDPs.

Our target is to provide the ASDF with a basic interoperability to, for exam-
ple, localize and execute services that are offered by a specific WSN node from
an UPnP service and without any modification of such a service. To achieve this,
we are working on matching the UPnP primitives with the events that can be
directly interpreted by the ppicoObjects that are installed in the WSN nodes.

The choice of the primitives to be implemented and the granularity of the
implementation have to be carefully selected and will strongly depend on the
SDPs to be integrated.

5 Experimental Results

The table 1 shows the size of the messages used in the ASDF protocol, assuming
that it has been implemented in ICE. Some of them are standard ICE messages.
In the tests, the object identity was 8 bytes long and it used IPv4 endpoints.

In the current prototypes, we are using a 8-bit micro-controller although it is
underutilized. Its characteristics are:

– Model: Microchip PIC 16LF876A, 10MHz
– Program memory: 8 KiB

482 D. Villa et al.

– RAM: 368 bytes
– I/O: 1 USART, 22 i/o pins, two 8-bit timers and one 16-bit timer.

The table 2 shows the size of several prototype actors. The indicated size
includes the complete implementation that runs in the aforementioned micro-
controller. No other library or software component is needed. The picoObject
execution model is composed by a automaton specification (the bytecode) and
a small interpreter (a virtual machine, VM) implemented in assembly language.
All of them are about two orders of magnitude smaller than any other previous
implementation of small embedded standard middlewares.

Table 2. Footprint for several picoObject nodes (in bytes)

Type of actor bytecode VM total footprint RAM used

TCP passive (without adv()) 350 333 683 36
TCP passive (periodic adv()) 455 411 866 36
TCP reactive (periodic adv()) 527 411 938 64
UDP reactive (periodic adv()) 368 411 779 64

6 Conclusions

In this paper we have presented a SDP (called ASDF) suitable for low-cost
nodes in the WSN field. This SDP allows a place & play behavior, so nodes and
services can be deployed in a easy and flexible way without any configuration
procedure.

Based on a previous work (picoObjects), the proposed SDP provides the
WSN nodes with an advertisement service by means of events. Additionally, it
allows external applications to lookup services offered by the WSN nodes.

The design of the ASDF allows incremental addition of functionality according
to the device capabilities. Moreover, we have implemented an ASDF prototype
using an standard distributed middleware whose common services (event chan-
nels, replication, persistence, location transparency, security, etc.) have allowed
an easy and reliable implementation.

Due to the interfaces shown in this paper, an application does not distinguish
between the advertisement generated by a service resident in a conventional PC
or by a node in a WSN. This fact represents a great advantage for quickl devel-
opment of applications which use WSN services making unnecessary either to
integrate in such applications complex WSN specific protocols or to use different
programming languages.

In a near future, our work is mainly focused on widening the range of plat-
forms supported by the picoObject compiler at same time that we integrate
third party services using different SDPs (UPnP and Bluetooth SDP bridges are
currently under development) making it possible the real deployment of large
heterogeneous pervasive environments under a place & play philosophy.

Minimalist Object Oriented SDP for WSN 483

References

1. D. Villa, F.J. Villanueva, F. Moya, F. Rincón, J. Barba, J.C. López. Embedding
a general purpose middleware for seamless interoperability of networked hardware
and software components Grid and Pervasive Computing, GPC 2006, Taiwan May
2006. Lecture Notes in Computer Science 3947.

2. E. Gamma, R.H., R. Johnson, J. Vlissides, Design Patterns, Elements of Object-
Oriented Software. 1995, Addison-Wesley.

3. F. Stann and J. Heidemann. BARD:Bayesian-assisted resource discovery in sensor
networks in Proceedings of the IEEE Infocom, 2005.

4. Timmons, N.F.; Scanlon, W.G., Analysis of the performance of IEEE 802.15.4 for
medical sensor body area networking, IEEE SECON 2004, October 2004

5. J. Lundquist, D. Cayan, and M. Dettinger., Meteorology and Hydrology in Yosemite
National Park: A Sensor Network Application, Information Processing in Sensor
Networks (IPSN), April 2003

6. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, Wireless
Sensor Networks for Habitat Monitoring, WSNA’02, September 2002

7. S. Tilak, K. Chiu, N.B. Abu-Ghazaleh and T. Fountain, Dynamic Resource Dis-
covery for Wireless Sensor Networks IFIP International Symposium on Network-
Centric Ubiquitous Systems (NCUS 2005)

8. Microsoft, UPnP Device Architecture v1.0 Available at http://www.upnp.org/
download/UPnPDA10 20000613.htm, June 2000.

9. E. Guttman and C. Perkins and J. Veizades and M. Day, Service Location Protocol,
Version 2, RFC 2608, 1999.

10. Bluetooth SIG, Specification of the Bluetooth System v2.0, available at
http://www.bluetooth.org. November, 2004.

11. U.C. Kozat and L. Tassiulas. Service Discovery in mobile ad-hoc networks: an over-
all perspectiva on architectural choices and network layer support issues Journal
on Ad-hoc Networks, 2004.

12. F. Sailhan and V. Issarny. Scalable Service Discovery for MANET Proceedings of
the 3rd IEEE conference on Pervasive Computing and communications, 2005.

13. C. Campo and M. Munoz and J.C. Perea and A. Marin and C. Garcia Rubio, PDP
and GSDL, a new service discovery middleware to support spontaneous interactions
in pervasive systems, Pervasive Computing and Communications Workshop, 2005.

14. M. Kuorilehto, M. Hannikainen and T. Hamalainen, A Survey of Application Dis-
tribution in Wireless Sensor Networks EURASIP journal on Wireless Communi-
cations and Networking 2005:5,pp 774-788.

15. P. Baronti, P. Pillai, V. Chook, S. Chessa, A. Gotta, Y. Fun Hu, Wireless Sen-
sor Networks: a Survey on the State of the Art and the 802.15.4 and ZigBee
Standards Technical Report ISTI-2006-TR-18, Istituto di Scienza e Tecnologie
dell’Informazione del CNR, Pisa, Italy, November 2006, pp.41.

16. Sun Microsystems, Jini Architecture Specification, ed. 1.2, available online at
http://www.sun.com/,

17. ZeroC, Inc., ICE Home Page, available online at http://www.zeroc.com/,
18. ARCO Group, PicoObject Web demostration example, available at

{http://arco.inf-cr.uclm.es/marisa.html.en}

http://www.upnp.org/download/UPnPDA10_20000613.htm
http://www.upnp.org/download/UPnPDA10_20000613.htm
http://www.sun.com/
http://www.zeroc.com/
{http://arco.inf-cr.uclm.es/marisa.html.en}

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 484 – 495, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Novel Data Grid Coherence Protocol Using
Pipeline-Based Aggressive Copy Method

Reen-Cheng Wang, Su-Ling Wu, and Ruay-Shiung Chang

Department of Computer Science and Information Engineering,
National Dong Hwa University, 97401, Hualien, Taiwan, R.O.C.

{rcwang, rschang}@mail.ndhu.edu.tw

Abstract. Grid systems are well-known for its high performance computing or
large data storage with inexpensive devices. They can be categorized into two
major types: computational grid and data grid. Data grid is used for data
intensive applications. In data grids, replication is used to reduce access latency.
It can also improve data availability, load balancing and fault tolerance. If there
are many replicas, they may have coherence problems while being updated. In
this paper, based on the aggressive-copy method, we developed an algorithm
using pipeline concept, such that the data transfer tasks can be done
simultaneously. This novel Pipeline-based Aggressive Copy method can
accelerate the update speed and decrease users’ waiting times. We used Globus
toolkit for our framework. Compared with the existing schemes and from the
preliminary simulation results, our method shows notable improvement in
overall completion time.

Keywords: Data Grid, Data Replication, Data Coherence.

1 Introduction

Grid [1] computing is a form of distributed computing that involves coordinating and
sharing computing, application, data, storage, or network resources across dynamic
and geographically dispersed organizations. Heterogeneous devices are connected
together via networks to become a large-scale computing infrastructure. From users’
perspective, the grid is liked a single computer. Users can have the processing power
or storage capacity they want.

In grid computing, especially data intensive application, data management is a vital
issue in high performance computing [2]. The data grid [3][4][5][6] is proposed to
solve the problems of these applications. The infrastructure is to integrate the data
storage devices and data management service into the grid environment. In the
context of data grid technology, replication is mostly used to reduce access latency
and bandwidth consumption. With replication mechanisms, data can be replicate to
more than one place. This is useful to prevent the single site failure problem if the site
is in charge of critical data storage. Also, if a data is very popular in the system, users
can access the data from each replicated place. This can not only reduce the heavy
load of the original site but also achieve load balance in the network system.

 A Novel Data Grid Coherence Protocol Using PAC Method 485

While replication mechanisms are processed, there will have coherence problems.
Some of the sites may have the newest data while others still hold old ones. This may
cause unpredictable errors in the system. Many mechanisms are proposed to reduce
the side effects of the coherence problem. In this paper, we propose a novel Pipeline-
based Aggressive Copy (PAC) method based on the aggressive copy mechanism to
reduce the effect. It can accelerate the update speed and decrease users’ waiting time.

The rest of this paper is organized as follows. Section 2 presents an overview of the
previous works about coherence problem. Section 3 introduces our method.
Experimental results are shown in section 4. And finally, the paper is concluded in
section 5.

2 Related Works

One of the common data coherence problem is the dirty read. This happens when an
user is updating a replica and another user wants to access the same data from another
replica. Traditionally, the problem can be solved by locking mechanism. In [7], two
kinds of locking method are described: standard locking and optimistic locking.
Standard locking obtains a file write lock before performing the file access and
release the lock after processing. Optimistic locking is used in case of a very low
probability of lock contention on the file. One could alternatively access without
getting a lock and test the modification date of the file after the process. In case the
file was updated, one then gets a lock and retries. The tradeoff between these two
methods is locking and retransmission overhead.

An improvement of locking methods is the master-slave replication model. The
Home-Based Lazy Release Consistency (HLRC) [8] belongs to this model. Every data
has its designated home (master) to manage its state. When an update is propagated,
differences of each modified data are sent to its home at the end of an interval. This will
make the home up-to-date at any time but ignore the other sites (slave). At the time of
data acquisition, acquiring process receives write notices from releasing process and
invalidates pages indicated by them. When an actual access happens on an invalidated
file, faulting process update its stale copy by fetching the fresh copy from the home
location. The method was improved in [9]. The new lock protocol for HLRC updates
data that is expected to be accessed inside a critical section. The operations have three
phases: lock request, lock grant, and data fault handling. The advantage of their
proposed protocol reduces page fault handling time and lock-waiting time. [7] also
addresses a “snapshot” method, which keeps an old version of the file until the access
process is finished, but allow writers to update simultaneously. This is also a master-
slave model that does the mechanism in single machine.

EU Data Grid project [5] has implemented a master-slave replica model named
Reptor described in [10]. [11] improves the model by additional rules. A master copy
can only be modified by end users. In opposition to the master replica, a slave replica
is read-only. A slave replica is forced to renew according to the last contents of the
master replica as a it is altered. The replica catalogue should be in conformity with the
master replicas in order to keep track of the up-to-date file information.

Besides of solving dirty read problems, many researches are focused on data
replication frameworks. Data replication copies a dataset from one site to another. But

486 R.-C. Wang, S.-L. Wu, and R.-S. Chang

replicating a high volume dataset from a single server has significant drawbacks of
single server dependency, unequal network load, poor performance, etc. Thus, the
practice of transferring datasets from multiple servers in parallel is rising. Most of
data replication frameworks can be categorized into the following three types: client-
server, peer-to-peer file sharing, and BitTorrent liked file sharing.

Client-Server mode is the simplest method for data replication. The dataset owner
will become a server, while the demander acts as a client. The transfer is handled by a
protocol, such as FTP or HTTP. The transfer speed is affected by the amount of traffic
on the server and the number of other computers that are replicating the file. If the file
is large and popular, the demands on the server are more, and the download will be
slower. Two protocols, which are named lazy-copy and aggressive-copy, were
introduced in [12]. Replicas are only updated from the server as needed if someone
accesses it in the lazy-copy based protocol. It can save network bandwidth resources
without transferring up-to-date replicas every time when some modifications are
made. However, lazy-copy protocol has to pay the penalties for access delay when
inter-site updating is required. For the aggressive-copy protocol, replicas are always
updated immediately when the original file is modified. In our experiments, we
reference the aggressive-copy protocol as “1 to 1” and “1 to All” methods, which
correspond to linear and star topologies in the network architecture.

In peer-to-peer file sharing framework, the file-transfer load is distributed between
the computers exchanging files. When a site finished its downloading, it then
becomes a dataset provider. With suitable search or pre-arranged mechanism,
multiple sites can replicate data at the same time. Fast Parallel File Replication
(FPFR) [13] is this kind of point-to-multipoint transfer in peer-to-peer file sharing
manner. It starts from creating multiple distribution trees and replicates data to
multiple sites simultaneously by pipelining point-to-point transfer. It can reduce the
total time of replication procedure. We reference the FPFR as “N to N” model in our
experiments.

In BitTorrent [14][15] liked file sharing protocols, files are split up into pieces. The
demanders of a file barter for pieces of it by uploading and downloading them in a tit-
for-tat-like manner to prevent parasitic behavior. Each peer is responsible for
maximizing its own download speed by contacting suitable peers, and peers with high
upload speeds will with high probability also be able to download with high speeds.
When a peer has finished downloading a file, it may become a seed and share the file
for others. But it cannot directly be implemented in the grid environment due to its
limitations such as, data security, requirement of separate software, lack of flexibility
with centralized tracking and the lack of partial usage. For these reasons, we didn’t
compare this type of protocol in our simulation.

Concluding active methods, such as aggressive-copy or FPFR, full consistency for
replica is guaranteed. This can reduce the access delay time while access data in high
performance computing. With sufficient bandwidth, it is better than passive methods,
such as HLRC or lazy-copy, which suffer from long update time during each replica
access. For this reason, in the following section, based on the aggressive copy
mechanism, we propose a novel pipeline-based method to enhance the update speed
in data grid.

 A Novel Data Grid Coherence Protocol Using PAC Method 487

3 The Pipeline-Based Aggressive Copy

3.1 Network Architecture

As shown in Fig. 1, the network architecture is composed of several regions. All
regions are connected with broadband network. Each region has many sites inside.
We assume that replicas are already existed in our system. In each region, there is a
home node which is used to manage the information of other replicas.

Home node
Region BRegion A

Site

Region C Region D

Router

Fig. 1. The network architecture

3.2 Integration with Pipeline Transfer Method

The method adopts the pipeline concept to improve the update speed. We name it
Pipeline-based Aggressive Copy (PAC in brief). Most of the networks today are
running in full-duplex mode, which means each site can download and upload data
simultaneously. If each of them can act as a proxy node for other waiting sites after
being updated, the overall performance will increase. To go into details, when a site is
receiving data, it can send out the previous data which it already received to another
site that does not have this part yet. The inbound and outbound traffic will not conflict
with each other due to the full-duplex communication. With suitable arrangements, all
the sites can be sorted as a chain and the data may transfer one after another. This
pipeline method is shown in Fig. 2(a).

In most cases of data coherent in data grid, only one file is processed in a site. To
apply the pipeline transfer with a single file, we cut the file into several blocks.
Therefore, the transfer can be seen as many small files pipelined. For example, in Fig.
2(a), the file is divided into five blocks. Assume the transfer time of each block is 2
secs. In the first step, the first node transfers block 1 to the second node and it needs 2
secs. Next, the second node received block 2 from node 1 and transfers block 1 to the
third node at the same time, and so on. Therefore, after eight steps, the transmission
will finish. Compared with Fig. 2(b) which doesn’t use pipeline method, the
completion time can be reduced from 10*4=40 secs to (10/5)*8 =16 secs.

488 R.-C. Wang, S.-L. Wu, and R.-S. Chang

(a) (b)

Fig. 2. (a) Pipeline method; (b) Without pipeline method

In a perfect system, assume a file with size M has to be transfer to N nodes, and the
network speed is S. Without pipeline transfer method, the total time Tnp (the lower
index word “np” means with No-Pipeline process here) to finish the process will be:

N
S

M
Tnp *= (1)

And for those with P-level pipeline transfer method, the total time Tp (the lower
index word “p” means with Pipeline process here) to finish the process will be:

()1*
*

−+= PN
PS

M
Tp (2)

Theoretically, the more pieces we cut the better performance it will show. But it is
also true that the more pieces we cut the more overhead it will bring. Processing each
block will take some extra overhead. Assume the environment is homogenous and for
each block processing the overhead is δ. We must modify (1) to (3) and (2) to (4).

N
S

M
Tnp *# ⎟

⎠
⎞

⎜
⎝
⎛ += δ (3)

()1*
*

−+⎟
⎠
⎞

⎜
⎝
⎛ += PN

PS

M
Tp δ (4)

0

10

20

30

40

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Level of pipeline

T
ot

al
 P

ro
ce

ss
 T

im
e

Pipeline

No Pipeline

Fig. 3. Block-time relation chart (big dataset)

 A Novel Data Grid Coherence Protocol Using PAC Method 489

From Fig. 2, assume a scenario with a large dataset M=100MB, S=10Mbps, and
N=4. Ifδ=850ms, we can plot a block-time relation chart as Fig. 3. From the figure,

we can find that the minimum #
pT occurred when P=7. It can also be calculated from

first order differential equation from (4).
If M is quite small, because the δoverhead will become significant than the

pipeline acceleration, the relationship between blocks and time will like Fig. 4. In this
case, we assume M=1MB. In small file replication, the pipeline method can not be
better then the one without pipeline. But the two curve will cross at P=1. Thus, we
can categorize this situation into 1-level pipeline category in our PAC.

0

10

20

30

40

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Level of pipeline

T
ot

al
 P

ro
ce

ss
 T

im
e

Pipeline

No Pipeline

Fig. 4. Block-time relation chart (small dataset)

Furthermore, if the grid is constructed in a heterogonous environment with
different network speed and process overhead at each site. Assume each site i is
attached to a speed Si network and its processing overhead is iδ . The bottleneck site b

which causes the longest propagation delay in the environment is found from (5).

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∈∀⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+∃ Ni

PS

M

PS

M
makeswhichbsite i

i
b

b

δδ
*

max
*

)((5)

The (3) and (4) will be:

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

N

i
i

i
N

N
np S

M

S

M

S

M

S

M
T

1
2

2
1

1

* δδδδ (6)

()

()1*
**

1*

1

2
2

1
1

*

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

∑
=

P
PS

M

PS

M

P
PS

M

PS

M

PS

M

PS

M
T

N

i
b

b
i

i

b
b

N
N

p

δδ

δδδδ
 (7)

This becomes a discrete problem and we are unable to solve P by using differential
equation.

490 R.-C. Wang, S.-L. Wu, and R.-S. Chang

Based on the concept of pipeline which truly shows benefit in the previous
analysis, we proposes our novel data grid coherence algorithm, PAC, in the following.

3.3 Algorithm and Example of PAC

We use the pipeline method to improve the previous aggressive copy coherence
protocol. Assume the home node of each region has the information of other regions
and sites in its region. The pipeline method is used to construct a new three step fast
file transfer structure.

Algorithm PAC:

Predefine: <initialization>
1. define number of blocks to be cut for each file
2. define pre-ordered home node sequence circle
3. define pre-ordered local site sequence

Step 1: <update site>
1. Inform corresponding home node
2. Cut the file into pre-defined pieces
3. Starts to transfer block by block
4. When corresponding home node received first

block, it goes to Step 2.
Step 2: <home node replication>

1. Corresponding home node breaks its incoming path
from pre-ordered home node sequence circle

2. Inform next home node
3. After each block received, pipeline it to next

home node
4. If there is no blocks to be transferred, go to

Step 3
Step 3: <local sites replication>

1. If it is the corresponding home node of updated
site, delete the updated site from pre-ordered
local site sequence

2. Home node begins to transmit blocks to next site
in pre-ordered local site sequence

3. After each block received, pipeline it to next
local site

Until all processes finish

Take Fig. 5 for example. Site D.3 updates a file. The pre-ordered home node

sequence circle is A->C->D->B->A. The pre-ordered local site sequence is sorted by
site ID in ascending order, such as D.1->D.2->D.3->D.4->D.5 The pre-defined
number of blocks is 3 in the grid. In Step 1.1, Home Node D will be informed the
dataset is being modified. In Step 1.2, D.3 will split the file into 3 blocks: block1,
block2, and block3. In Step 1.3, D.3 starts to transfer block1 followed by block2 and
block3 to Home Node D. In Step 1.4, when Home Node D received block1, it goes to
Step2.

In Step 2.1, Home Node D breaks its incoming path from the pre-ordered home
node sequence circle, which makes the circle become a simple sequence D->B->A->C

 A Novel Data Grid Coherence Protocol Using PAC Method 491

without loop. In Step 2.2 and Step 2.3, PAC is performed in Home Node D -> Home
Node B -> Home Node A-> Home Node C. When Home Node D finished replication
process with Home Node B, it goes to Step3. So for the other Home Nodes, except the
last Home Node C. Because there is no next home node for Home Node C, it will goes
to Step 3 immediately after it received block1.

In Step 3.1, Home Node D will delete site D.3 from the pre-ordered local site
sequence. Thus, the local site sequence in region D becomes D.1->D.2->D.4->D.5.
This sequence is used in Step 3.2 and Step 3.3 to do local PAC. Home Node B, Home
Node A, and Home Node C will do their local PAC based on their pre-ordered local
site sequence, too. The whole process will be finished in Step 3.4.

Region C Region D

Region BRegion A
A 2

A 1

B 1
B 2

B 3

B 4

D 3

D 1 D 2

Step 1

Step 2

Step 3update

D 4
D 5

Home
node A Home

node B

Home
node D

Home
node C

C 5

C 4

C 3

C 2

C 1

A 3

A 4

A 5

Fig. 5. The transmission in the entire network

4 Experimental Results and Analysis

We implement our PAC algorithm using Globus Toolkit version 4.0 [16][17] and run
it on our grid environment named Taiwan UniGrid [18]. The experiments were doing
on the scenario with two regions. In region 1, there are five servers which are named
from uniblade01 to uniblade05. The sites are located in National Tsing Hua
University, Taiwan. The region 2 contains six servers which are named from grid1 to
grid6, which are placed in National Dong Hwa University, Taiwan. The uniblade01
and grid1 were assigned to be the home node in each region. Two regions are far
away and connected via Internet.

4.1 Suitable Number of Blocks

According to section 3.2, we know that the pipeline will increase the transfer speed.
We need to cut a file into pieces to perform our PAC algorithm. It is not hard to

calculate the best P value of minimum #
pT from (4) with first order differential. But in

real environments, even in a homogeneous scenario, the exactδis hard to be
measured. And also the condition may be complicated as (7) for heterogeneous

492 R.-C. Wang, S.-L. Wu, and R.-S. Chang

devices and networks. So we do some experiments in region 2 with different updated
file size to observe the block-time relation curve.

From Fig. 3, it is straightforward that block-time relation will be a U-type curve.
Thus, after multiple measurements, we average the data and use quadratic regression
analysis to find out the fitting polynomial curve for each dataset, as shown in Fig. 6.
For different file replication size: 200M, 500M and 1000M, we have the following
polynomial curves equations:

34.12537.19*25.1 2
200 +−= PPT M (8)

75.31780.43*66.2 2
500 +−= PPT M (9)

53.62638.82*10.5 2
1000 +−= PPT M (10)

To find out the best P for minimum T in (8), (9), and (10), we let 0=
dP

dT
.

From (8), 75.7037.195.2200 ≅⇒=−= PP
dP

dT M (11)

From (9), 23.8080.4332.5500 ≅⇒=−= PP
dP

dT M (12)

From (10), 07.8038.822.101000 ≅⇒=−= PP
dP

dT M (13)

Because P must be an integer, to round to the nearest, P=8 in all (11), (12), and
(13). The three polynomial curves show the finish time will reach the minimum value
when the number of blocks is eight in our environment. Thus, in the following
experiments, we cut each file into eight blocks.

0
100
200
300
400
500
600
700

0 1 2 3 4 5 6 7 8 9 10 11

Number of blocks

Fi
ni

sh
 T

im
e

(s
ec

)

1000M file

500M file

200M file

polynomial curve
of 1000M file
polynomial curve
of 500M file
polynomial curve
of 200M file

Fig. 6. The blocks-time relation in region 2

 A Novel Data Grid Coherence Protocol Using PAC Method 493

4.2 Comparing the Transmission Speed

In this section, we compare our PAC method with three different methods: 1 to 1, 1 to
All, and N to N. 1 to 1 means the file is transferred one site after another sequentially
until all relevant sites are updated. It is also the traditional aggressive copy protocol
with linear topology. 1 to All means all sites request the file from one site. It performs
traditional aggressive copy protocol with star topology. N to N means sites will
construct a hierarchical structure, and transfer in FPFR manner.

At the first experiment, we test in region 2 only for a local data grid environment.
Then, we use all the sites in two regions to test a cross regions situation.

Local Data Grid Test. For more accurate results, we test the update time of each file
for 50 times and average the values. In this test, the grid2 is acted as the first updated
server. A pre-defined update sequence is grid1(Home node)-> grid2 -> grid3 -> grid4
-> grid5 -> grid6. The 1 to 1 method transfers the file with same sequence but without
pipelining. The 1 to All method transfers in six steps: grid2 -> grid1(Home Node);
grid2 -> grid3; grid2 -> grid4; grid2 -> grid5; grid2 -> grid6. The N to N method
transfers in three steps: grid2 -> grid1(Home Node); grid2 -> grid3 and grid1 ->
grid4; grid2 -> grid5 and grid1 -> grid6.

Fig. 7 shows the average results of our tests in a local data grid. The 1 to 1 method
is the worst and followed by the 1 to All method. The N to N method improves a lot
but our PAC method does better. In the biggest file we test, our PAC method can
reduce 48% finish time in compare with “1 to 1” method, 35% finish time in compare
with “1 to All” method, and 17% finish time in compare with “N to N” method.

0

100

200

300

400

500

600

700

100M 200M 500M 1000M

Update file size

F
in

is
h

T
im

e
(s

ec
) 1 to 1

1 to All

N to N

PAC

Fig. 7. The finish time in local grid

Cross Region Data Grid Test. Fig. 8 shows the experimental results in cross regions
data grid. Because the number of sites is increased and the two regions are far away,
the update time increases a lot. We also do 50 tests. The methods used are the same.
In the test, because the 1 to All method will transmit file to 5 or 6 cross region sites
(based on the randomly picked up first updated server), it performs worth than 1 to 1
method which only has one cross regions file transfer here. In the biggest file we test,

494 R.-C. Wang, S.-L. Wu, and R.-S. Chang

our PAC method can reduce 52% finish time in compare with “1 to 1” method, 57%
finish time in compare with “1 to All” method, and 44% finish time in compare with
“N to N” method.

0

200

400

600

800

1000

1200

100M 200M 500M 1000M

Update file size

F
in

is
h

T
im

e
(s

ec
) 1 to 1

1 to All

N to N

PAC

Fig. 8. The update time in cross region grid

The PAC is an event driven protocol. When a dataset has to be cohered, the
process will pipeline each subset of data one by one. The datasets those have only a
read pattern of access will remain unchanged after their first synchronization. Their
corresponding home node will take care of their status. From the experimental results
above, the better performance is shown in compared with other protocols no matter in
local or cross regions data grid environments.

5 Conclusions

In data grid systems, data replication is necessary in many kinds of situations. Many
researches have proved that aggressive copy is a good solution to reduce the data
coherence problem in grid computing. In this paper, we contribute another aggressive
copy method based on the pipelined concept, which is named Pipeline-based
Aggressive Copy (PAC). In theoretical analysis, we prove that the PAC can accelerate
the replication process with suitable pipeline level choice. In the worst case, if
replication dataset is small, the PAC will act as 1-level pipeline which is the same as
no pipeline method to reduce the significant overhead in cutting small dataset into
smaller pieces.

In the experiments, we first find out the best pipeline level in our environment by
test and analysis. Then we apply this value in local and cross regions experiments, to
compare our PAC method with other “1 to 1”, “1 to All”, and “N to N” methods.
Comparing with other methods for the total finish time, the results show that our
method is over 17% better in local grid tests and over 44% better in cross region grid
tests. These definitely support our method that the pipeline concept in PAC outweighs
the overhead it brings.

 A Novel Data Grid Coherence Protocol Using PAC Method 495

Acknowledgements

This research is supported in part by ROC NSC under contract numbers NSC95-
2422-H-259-001 and NSC94-2213-E-259-005.

References

1. Foster, I., and Kessekman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, San Francisco, USA (1999)

2. Allcock, B., Bester, J., Bresnahan, J., Chervenak, A., Foster, I., Kesselman, C., Meder, S.,
Nefedova, V., Quesnel, D., and Tuecke, S.: Data Management and Transfer in High
Performance Computational Grid Environments. Parallel Computing Vol. 28(5). (2002)
749-771

3. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke: The Data Grid: Towards
an Architecture for the Distributed Management and Analysis of Large Scientific Datasets.
J. of Network and Computer Applications. Vol. 23(3). (2000) 187-200

4. W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, K.Stockinger: Data Management
in an International Data Grid Project. Proc. The 1st IEEE/ACM Int. Workshop on Grid
Computing (2000) 77-90

5. The EU Data Grid Project: http://www.eu-datagrid.org/.
6. GridPhyN project: http://www.griphyn.org
7. D. Dullmann, W. Hoschek, J. Jaen-Martinez, and B. Segal: Models for replica

Synchronization and Consistency in a Data Grid. Proc. The 10th IEEE Int. High
Performance Distributed Computing Symposium (2001) 67-75

8. Y. Zhou, L. Iftode, and K. Li: Performance Evaluation of Two Home-Based Lazy Release
Consistency Protocols for Shared Virtual Memory Systems. ACM SIGOPS Operating
Systems Review. Vol. 30. (1996) 75-88

9. H. Yun, S. Lee, J. Lee, and S. Maeng: An Efficient Lock Protocol for Home-based Lazy
Release Consistency. Proc. The First IEEE/ACM Int. Cluster Computing and the Grid
Symposium (2001) 527-532

10. L. Guy, P. Kunszt, E. Laure, H. Stockinger and K. Stockinger: Replica Management in
Data Grids. Technical report. Edinburgh, Scotland (2002)

11. Ruay-Shiung Chang, Jin-Sheng Chang: Adaptable Replica Consistency Service in Data
Grid. Proc. The Third Int. Conf. on Information Technology: New Generations (2006)
646-651

12. Y. Sun, and Z. Xu: Grid Replication Coherence Protocol. Proc. The 18th Int. Parallel and
Distributed Processing Symposium (2004) 232

13. R. Izmailov, S. Ganguly, and N. Tu: Fast Parallel File Replication in Data Grid. Future of
Grid Data Environments workshop, GGF - 10, Berlin (2004)

14. Bit Torrent: http://www.bittorent.com/
15. B. Cohen: Incentives Build Robustness in Bittorrent. In Workshop on Economics of Peer-

to-Peer Systems, Berkeley, USA (2003)
16. The Globus Toolkit: http://www-unix.globus.org/toolkit/docs/4.0/
17. I. Foster: Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP Int.

Conf. on Network and Parallel Computing (2005) 2-13
18. Taiwan UniGrid Project Portal Site, 2003, http://unigrid.nchc.org.tw/

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 496 – 506, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Design of Cooperation Management System to
Improve Reliability in Resource Sharing Computing

Environment

Ji Su Park, Kwang Sik Chung∗, and Jin Gon Shon

Dept. of Computer Science, Korea National Open University
169, Dongsung-dong, Jongro-ku, Seoul, Korea

{bluejs77, kchung0825, jgshon}@knou.ac.kr

Abstract. Resource sharing computing is a project that realizes high performance
computing by utilizing the resources of peers that are connected to the Internet.
Resource sharing computing provides a dynamic internet environment where
peers can freely participate, but it raises questions on the reliability of operation
processing. Existing resource sharing computing stores intermediate operation
results in peers’ local disks. Thus, when faults happen on peers’ side, some peers
need to wait for processing to reconnect with possibility of considerable delay. In
case there is no reconnection, the intermediate operation results cannot be used. In
addition, it is difficult to support cooperation due to incompatible modes of
operation processing among heterogeneous systems. This thesis is to propose a
cooperation management system, and define cooperation and cooperation groups
necessary to improve the reliability in the resource sharing computing
environment. Cooperation is a series of tasks that involve sorting tasks, processing
tasks sequentially, and producing results. Cooperation group is a gathering of
peers that can cooperate. Groups are created among different types of systems to
enable cooperation among peers within the same group. Also, middle DB Server
is proposed in a hierarchical structure to shorten delay and increase the reusability
of intermediate operation results. As the intermediate operation results are stored
in the middle DB Server in case there occurs a fault on peers’ side, waiting time
for reconnection is reduced through cooperation, and the reusability of
intermediate operation result is improved. In this paper, we propose a structure
that can store intermediate operation result in middle DB Server to improve
reliability in resource sharing computing environment, and suggest a design for
cooperation group service, discovery service, and task management service of
cooperation management system.

Keywords: Resource Sharing Computing, Cooperation System. Reliability.

1 Introduction

The advancement of the Internet has accelerated information sharing and distribution,
and the existing client-server computing environment has turned into distributed

∗ Kwang Sik Chung is the corresponding author.

 A Design of Cooperation Management System to Improve Reliability 497

multi-server environment. Furthermore, the source of information has extended from
World Wide Web, Database and to personal computers. Due to such changes, users
have begun to look for the other alternatives due to limitations in information search,
the inaccuracy of search results, and various information search formats. As a result,
P2P(Peer-to-Peer) computing where users themselves share computer resource and
service via direct exchange has emerged[1,2].

Napster[3] and Soribada[4] that are examples of P2P systems are services to share
MP3 music files. These services are gaining popularity in that they do not have files
in the center server but just provide location information for personal computers to
share files[1]. As P2P systems gained notice, P2P computing began to require more
than just sharing files and thus distributed systems that utilize P2P technology were
introduced. This is known as resource sharing computing. So far, studies on
distributed systems focused on data processing by servers. However,
SETI@HOME[5], through SETI@HOME project, has used the computing power of
clients in order to gain huge computing power needed to analyze external radio
signals, instead of composing distributed computing systems that required expensive
servers. Similar movements are found in Korea. KOREA@HOME[6] project has
started and some of its projects such as New Drug Candidate, Protein Folding
analysis, Global Disk Management, etc. have been completed or are still under way.
@HOME projects such as SETI@HOME, KOREA@HOME, etc. ensure that servers
request clients to process data and the clients, in return, process data, which is
opposite to how distributed systems process data. Since Internet-based distributed
system allows individual peers to freely participate in operation or give up in the
middle of operation, techniques to improve reliability in existing distributed
computing cannot be directly applied to resource sharing computing [8].

In this paper, we attempt to design a cooperation management system that acts in
the dynamic internet environment, in order to improve reliability in resource sharing
computing environment. Cooperation enables one to carry on implementing halted
operation after receiving the intermediate operation result from peers experiencing
faults. Cooperation management system is composed of cooperation group service
that creates and deletes groups among heterogeneous systems, of discovery service
that analyzes peer information, searches for faulted peers, and explores peers
available for cooperation from cooperation groups, and of task management service
that distributes tasks to peers available for cooperation and requests intermediate
operation results from faulted peers. Cooperation management system transmits or
receives messages by XML for communication between these services.

2 Related Works

2.1 P2P System

P2P systems can be classified by system structures and objects for sharing. System
structures include Hybrid P2P structure that puts a server in the middle for efficient
communication and information flow among peers, Pure P2P structure that is
consisted of only peers without central server, and Hierarchical P2P structure that

498 J.S. Park, K.S. Chung, and J.G. Shon

utilizes the advantages of Hybrid P2P structure and Pure P2P structure by putting a
middle server between servers and peers. In terms of objects for sharing, information
sharing systems equals to data-oriented system that shares files and data, or exchanges
messages, while resource sharing systems equals to distributed systems that borrowed
P2P technology in order to share computer resources such as CPU, memory etc.
Resource sharing system divides a big task - that cannot be processed by a single
system - into small bits for distributed processing, and finally transmits operation
results to a central server for combination. SETI@HOME, KOREA@HOME etc. are
a few examples of @HOME project related to such systems.

SETI@HOME is a project led by Berkeley University, and it analyzes data sent by
Arecibo - world’s largest radio signal astronomical telescope - to find intelligent
extraterrestrial life. SETI@HOME project involves installing Screen Saver on
personal computers, and analyzing data when the computers are not in use.

KOREA@HOME is a project to analyze huge of information such as New Drug
Candidate, Protein Folding analysis, Global Disk Management, etc. KOREA@HOME
system is composed of platform server, agent, and client, and it was developed with
focus on detailed functions. Functions of platform server include resource-volunteers
PC management, implementation and management of task management DB,
Homepage operation and management, etc. Agent has basic functions of P2P,
interacts with platform server, and carries out tasks. Client creates and submits
application tasks, and implements distributed application programs, etc. [15].

2.2 Reliability Problem

Reliability issues remain with both SETI@HOME and KOREA@HOME. Though
solutions have been presented, the reliability issues are still to be tackled. To solve
reliability problems, SETI@HOME uses techniques to register intermediate operation
result every 10 minutes just in case peers fault. It stores intermediate operation result
in peers’ local disks and runs operation continuously once peer fault is solved. But, if
peer fault is not solved, one needs to wait indefinitely until the peer restarts. This
causes operation delay. Since intermediate operation result is stored in local disks, the
result cannot be reused unless the peer restarts.

There are no operation reliability techniques proposed by KOREA@HOME. It
uses a method that reassigns the same operation to a new peer by canceling the
operation in case peer fault happens. Projects such as Avaki, FightAIDS@HOME,
and Distributed.net etc. also have the reliability issues like SETI@HOME and
KOREA@HOME.

3 The Design for Cooperation Management System

3.1 Definition of Cooperation and Cooperation Group

Cooperation is a method that enables several peers to process a task through collaboration,
just like many labors collaborate in production process. Cooperation can be classified by
either synchronous or asynchronous cooperation. Synchronous cooperation means

 A Design of Cooperation Management System to Improve Reliability 499

producing result by dividing a task for simultaneous processing, while asynchronous
cooperation means tasks that involve sorting tasks, data processing tasks sequentially,
and producing results [17].

In this paper, cooperation means asynchronous cooperation. That is, in case a peer
cannot carry on a task allocated by a server due to faults, another peer that can solve
these faults can take over the intermediate operation results and continue the
remaining operation. Cooperation group is a peer set that can cooperate. In the
existing resource sharing computing, peers from heterogeneous systems take part in
operation. However, it is difficult to support cooperation among heterogeneous
systems due to incompatible modes of processing. Thus, the solution is to create
groups among heterogeneous systems so that peers within the same groups can
cooperate.

3.2 Environment and Structure of Cooperation Management System

Cooperation management system has a hierarchical structure that is compose of a
central server, a high-capacity central DB server, a middle server, a middle DB server,
and task nodes of peers. The hierarchical structure of cooperation management system
can reduce the bottleneck by balancing the load that is normally centralized on a
server in a centralized structure of resource sharing computing, and it ensures the
network scalability. However, it is difficult to select a middle server and a middle DB
server in a hierarchical structure.

In this paper, we assume an environment where a central server, a high-capacity
central DB server, a middle server and a middle DB server are already established,
and we do not consider selecting a middle server and a middle DB server. A central
server assigns tasks to a middle server, manages the middle server status (such as fault
information, CPU, memory etc.) and peer status information, and processes the results
received from the middle servers. A middle server observes the peer status, receives
tasks from a central server, and allocates them to peers. It also receives operation
results from peers, and transmits the result value to the central server after processing
them. When a peer fails, the peer’s intermediate operation results are stored not in a
local disk but in the middle DB server, making it unnecessary to wait for the peer to
restart the operation. Peers available for cooperation pick up the intermediate results
from the middle DB server and continue the operation, which shortens the delay time
and ensures the reusability of intermediate operation results. Peers process the tasks
allocated from the middle server and transmit their status information and the
processed results.

Figure 1 shows the relationship between a central server and a middle server,
between a middle server and a peer, cooperation relationship among peers, and the
flow of message transmission and reception in a resource sharing computing
structure. The hierarchical system structure, even if the central server fails, enables
independent operation on intermediate results that are stored in the middle server.
When the middle server stops and fails, another middle server can pick up the task
and continue the operation as long as the intermediate results are stored in a high-
capacity central DB server.

500 J.S. Park, K.S. Chung, and J.G. Shon

Fig. 1. Structure of System

3.3 System Design

3.3.1 Service Structure
Cooperation management system is composed of a cooperation group service, a
discovery service, and a task management service. Figure 2 shows the service
structure of cooperation management system. Application is a program that is applied
to areas such as new drug candidate search, protein variation analysis, etc. in resource
sharing computing, and its core layer represents a protocol for operating a task.

Fig. 2. Service structure of cooperation management system

Cooperation group service is a service that creates and deletes groups that have the
same CPU, OS etc. among heterogeneous systems. Cooperation group service mainly
creates a cooperation group for peers available for cooperation, adds peers to the group,
and deletes faulted peers and groups. Discovery service is a service that searches for
peer information to find failing peers, and discovers peers available for cooperation in a

 A Design of Cooperation Management System to Improve Reliability 501

cooperation group. Discovery service mainly observes the peer status by constantly
examining the peer information received from a cooperation group. And, according to the
peer status, it sends the peer information to a task management service and a cooperation
group service so that they can carry out tasks, respectively. Task management service
mainly allocates tasks to new peers, assigns tasks to peers available for cooperation, and
returns the intermediate operation results produced by faulted peers.

3.3.2 Message Flow in Cooperation Management System
Cooperation management system transmits and receives messages for
communications among services, and the messages are expressed in XML. In this
paper, we refer to the messages as the peer information. Figure 3 shows a message
flow in cooperation management system. A peer, when registering, transmits its
information to a cooperation group service, while the cooperation group transmits the
peer group information to a discovery service. A discovery service grasps the peer
status and transmits the information to a task management service and a cooperation
group service. The peer information includes the information on the peer, the peer
group, and the peer status. A peer, when registering in the cooperation group service,
records its basic information such as CPU, OS, memory capacity, hard disk capacity,
location, IP address, etc. The cooperation group service receives the peer information,
creates a group, and adds the group information to the peer information with the
group name. It also transmits the peer information to the discovery service. The
discovery service receives the peer information and records the peer status
information after analyzing the status of new peers and the exiting peers in the
cooperation group. The peer status information is transmitted to the task management
service and the cooperation group service.

Fig. 3. Message flow in cooperation management system

3.3.3 Cooperation Management Service
The main job of the cooperation group service is to create and delete cooperation
groups.

502 J.S. Park, K.S. Chung, and J.G. Shon

Fig. 4. Flowchart of creating a cooperation group

Figure 4 shows the flow of creating a cooperation group. When registration is
requested from a peer, the cooperation group service receives and analyzes the peer
information. After analyzing the peer information, it checks whether there is any
group that corresponds to the peer’s system, and adds the peer to an existing group or
to a new group. Once the peer is added to either a new group or an existing one, the
cooperation service group transmits the peer information to the discovery service after
adding or modifying the group name information to the peer information.

Figure 5 shows the flow of deleting a cooperation group. When receiving
information from the discovery service about a peer that failed, it searches for the
group the peer belongs to, and deletes the peer. If the deleted peer is the last one in the
group, the service deletes the whole group.

Fig. 5. Flowchart of deleting a cooperation group

Table 1 shows the functions of a cooperation group service.

Table 1. Function of a cooperation group service

Method Function

addPeerInfo() add Peer information
isExistGroup() confirms exist group
genGroup() create group
delGroup() delete group
addPeerGroup() add peer of group

delPeerGroup() delete peer from group

searchGroupPeer() search peer from group
sendGroupMsg() transmit peer group information

 A Design of Cooperation Management System to Improve Reliability 503

3.3.4 Discovery Service
Discovery service receives, from the cooperation group service, the peer information
to which group information is added, analyzes whether the peer is available for a task
or for cooperation, and then transmits the peer information to the task management
service. It continues broadcasting the peer information to see if there is any changes in
the peer status, and when the status changes, it sends the peer information to the task
management service and cooperation group service. It also analyzes the peer
information periodically, and makes sure that the intermediate operation results are
saved. Updated peer information is stored in the middle DB server and high-capacity
DB server so that the latest information is kept.

Figure 6 shows the flow of a discovery service.

Fig. 6. Flowchart of discovery service

Table 2 shows the functions of a discovery service.

Table 2. Function of a discovery service

Method Function

acceptPeerInfo() receive peer information
sendPeerInfo() transmit peer information

queryPeerInfo() request peer information

isPeerState() analyze peer state

broadDiscovery() continue search and request
savePeerInfo() store peer information

3.3.5 Task Management Service
A task management service receives the peer status information from a discovery
service. If the peer status indicates that the peer is available for a task, the discovery

504 J.S. Park, K.S. Chung, and J.G. Shon

service requests the intermediate operation results and if there is any, it allocates the
results to the peer. If there is nothing, it assigns a new task to the peer. If the peer is
unable to carry out a task, it requests the interim result to be stored. But, the results
cannot be stored if there is no connection due to a peer fault. So, it modifies the peer
information, transmits the peer information to a discovery service and continues
analyzing the peer status. Figure 7 shows the flow of a task management service.

Table 3 shows the function of a task management service.

Fig. 7. Flowchart of a task management service

Table 3. Function of a task management service

Method Function

assignWork() allocate task
saveWork() store task
sendPeerStateInfo() transmit peer state information
acceptPeerStateInfo() receive peer state information
workCooperation() task cooperation
isPeerState() analyze peer state

3.4 Comparison with Other System

The most well-known resource sharing computing systems are SETI@HOME in the
U.S. and KOREA@HOME in Korea. As mentioned in 2.2, SETI@HOME and

 A Design of Cooperation Management System to Improve Reliability 505

KOREA@HOME do not ensure operation reliability. Table 4 shows the comparison
with other systems.

Table 4. Other system and comparison

System trait
SETI

@HOME
KOREA
@HOME

FightAIDS
@HOME Proposed system

intermediate operation
results Store a place

Local disk No store Local disk middle DB server

intermediate operation
results reusability

Limitation to
peer self

Restart Limitation to
peer self

Peer in cooperation
group

Support of cooperation No No No Yes

Group service no Yes no Support of
cooperation group

structure server
/client

server
/client

server
/client

Hierarchical

Since SETI@HOME and FightAIDS@HOME store the intermediate operation
results in a local disk, the reuse of the operation results is limited to the peer itself. In
addition, there is no cooperation between peers and message transmission and
reception is conducted only between a server and a peer with no group supporting it.
KOREA@HOME does not use the intermediate results, but restarts a task from the
beginning when defects happen. But, it assigns several tasks within the same group so
that other peers can pick up the task in case one peer fails and is unable to perform the
task. The cooperation management system we proposed has a middle DB server so
that the interim results are stored in the middle DB server. As it searches a peer from
a cooperation group that is available for cooperation, it has higher reusability of the
interim results than other systems, and reduces time spent on waiting for the defected
peer to reconnect. Though its hierarchical structure makes it difficult to selection the
middle server, network bottleneck is less seen compared with a server/client structure,
and its scalability improves the reliability of resource sharing computing.

4 Conclusion

In this paper, we have designed a cooperation management system that supports
cooperation to improve the reliability in resource sharing computing environment.
The system we have designed is composed of a cooperation group service, a
discovery service, and a task management service. For communications between
services, the cooperation management system transmits or receives messages which
we defined as peer information expressed in XML. A cooperation group service is a
service that creates and deletes groups among heterogeneous systems. A discovery
service searches for peer information, discovers faulted peers, and look for peers
available for cooperation from cooperation groups. A task management service
assigns tasks to new peers, allocates tasks to peers available for cooperation, and
returns the intermediate operation results of faulted peers. Due to incompatible modes
of processing, cooperation is hard to attain among heterogeneous systems. In order to

506 J.S. Park, K.S. Chung, and J.G. Shon

solve the issue, one can create a cooperation group and let peers within the same
group cooperate. A hierarchical structure and a middle DB server are suggested for
the cooperation management system so that the interim operation results are stored to
the middle DB server. Therefore, the reusability of intermediate operation results is
improved and the delay time to wait for a peer to reconnect is reduced. It is suggested
that further researches be conducted on how to select a middle server and how to
search peers in a cooperation group.

References

1. Andy Oram, "Peer-To-Peer", O'reilly, March 2001
2. D. Barkai, "An Introduction to Peer-to-Peer Computing", Intel Developer update

magazine, February 2001
3. http://www.napster.com
4. http://www.soribada.com
5. http://setiathome.ssl.berkeley.edu
6. http://www.koreaathome.org
7. http://www.gnutella.com
8. MaengSoon Baik, SungJin Choi, JunWon Yoon, HongSu Kim, ChongSun Hwang and

HyunChang Yoo, “Study on Improvement of Reliability for Distributed Computing in P2P
Architecture”, korea university, December, 2003.

9. JaeGyu Lee, “Force of keyword P2P of network new generation”, Micro software,
October, 2000.

10. HeeKwan Koo, “Design and Implementation of a Cooperation System Based on JXTA
Platform in P2P File sharing Environment”, kwangwoon university, thesis of M.S., 2003

11. GiChul Yoon, “P2P model hierarchical for CPU public sharing”, Proceedings of Korea
Information Science Society Conference, 2001

12. K. Aberer, M. Punceva, M. Hauswirth, R. Schmidt, “Improving Data Access in P2P
Systems" IEEE Internet Computing, 6(1):58-67, January-February, 2002

13. “Peer-to-Peer-Enabled Distributed Computering”, Intel White Paper
14. "JXTA 2001", www.jxta.org
15. A. Paul, "DNS and BIND", O'Reilly, May 2001
16. JangHo Lee, “A Software Architecture for Supporting Dynamic Cooperation Environment

on the Internet”, Journal of Korea Information Science Societ, vol. 2, no. 9, April, 2003
17. InGu Kang, “A Structural Comparison of Cooperative Learning and Collaborative Learn-

ing”, Journal of The Institute for Educational Research, Vol. 18, pp. 183-197, 2003
18. HyunJin Jo, GuSu Kim, Young Ik Eom “Design of Mobile Agent Based Cooperation

Group Management Scheme for Dynamic Scalability”, Proceedings of Korea Information
Science Society Conference, May 2004.

19. Ji Su Park, KwangSik Chung, JinGon Shon, “A Design of Cooperation Management Sys-
tem for Improving Reliability in Resource Sharing on Base Internet, Proceedings of Korea
Information Science Society Conference, Vol. 12, No. 2, pp. 937-940, May 2005

A Peer-to-Peer Indexing Service for Data Grids

Henrik Thostrup Jensen1,2 and Josva Kleist1,3

1 Department of Computer Science, Aalborg University
htj@cs.aau.dk, kleist@cs.aau.dk
2 Danish Center for Grid Computing

3 Nordic Data Grid Facility

Abstract. We present an index system for locating files or other data
objects in a grid environment. The system is constructed using a dis-
tributed hash table, and is scalable, fault-tolerant, and self-organizing.
The index is dynamically updated to reflect the state of the storage
elements, and can hence deal with nomadic data. The system provides
extra services to ease integration with other systems: A registrant service
integrates existing storage elements into the system, and a query proxy
provides an easy way to query the system. A security model, which builds
on the existing grid security model is also provided. An implementation
has been created and its performance measured. The system is shown to
scale as more nodes are added to the system.

1 Introduction

Managing data is one of the fundamental challenges in grid, and is becoming in-
creasingly important as the amount of data in grids grow. As more data is stored,
the number of components increase, making failures and system changes more
common. Failures are usually solved by adding redundancy, e.g., file replication.
Replication however creates a new task: Managing the locations of replicas. A
data indexing system must provide a mapping from an identifier to the locations
of the data.

A replica may be unavailable due to a site crash or deletion, or even be no-
madic, i.e., move. While the problem with unavailable objects is reduced by
replication, nomadic objects are more problematic. In such cases, data is avail-
able, but cannot be used as its location is no longer known. To handle nomadic
data the index system needs to reflect the actual state of the storage system,
not just the state when data was entered into the system.

One event that can cause data movement is change of a hostname. In Nordu-
Grid [1], which has around 50 sites, this event has occurred at least twice. Such
changes are relatively rare, but requires manual intervention to get the systems
updated. Another case is when a storage element is taken offline. If the data
could be migrated to another storage element transparently, much trouble could
be spared.

The previous illustrates the requirement for an indexing system which reflect
the actual state of the storage system. Not only would such a system handle

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 507–518, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

508 H.T. Jensen and J. Kleist

nomadic data, it would also become easier to react on changes in the system,
e.g., create a new replica if the number replicas falls below a certain threshold.

An index service should be fault-tolerant as other parts of a grid are highly
dependant on it. If data cannot be located, a grid can essentially come to a halt.
To support a growing storage infrastructure, an index system should be able to
scale up by adding more resources.

This article presents a data index system based on a distributed hash table.
Together with cooperating storage elements, it provides a dynamically updated
index system. The index system can scale by adding more resources, is resilient
to faults, and self-organizing. Furthermore the system integrates with existing
systems, by adding two services for registering data, and querying. Additionally
a security model for the system is presented.

Related work is presented in Section 2. Hereafter Section 3 provides an
overview of the system, followed by an in-depth architectural description in Sec-
tion 4. A prototype implementation is described in Section 5, which Section 6
presents a performance evaluation of. Future work is listed in Section 7, and
Section 8 concludes.

2 Related Work

Several data indexing systems has been constructed. One is Globus RLS, based
on the Giggle architecture [2]. RLS servers send updates to each other using
Bloom Filters, and provide fault tolerance by replicating these to other servers.
While a group of RLS servers can act as a fault-tolerant index service, it does
not provide a structured way to scale up using more machines. Furthermore an
RLS system is very static, and requires manual intervention when adding more
servers.

P-RLS [3] is a replica location service based on RLS and the Chord DHT
algorithm. The system inherits scalability, load-balancing and fault-tolerance
from the Chord protocol. It is shown that latency is logarithmic bounded as the
size of the network increases. P-RLS does not deal with integration of existing
systems, security, or clashes in identifiers.

Boundary Chord [4] extends Chord with locality awareness, and is used in
ChinaGrid [5] for replica location. Due to its locality awareness, many lookups
can be performed with low latency. As P-RLS, Boundary Chord does not deal
with integration or security.

The EDG Replica system [6] is a distributed index, which maps from global
unique identifiers to data locations. The system is based on RLS, and hence
inherits the properties of that system.

OceanStore[7] is an infrastructure for storing data. The infrastructure is de-
signed to be highly scalable and fault-tolerant. It is assumed that infrastructure
cannot be trusted, and they rely on cryptography and replication to ensure data
integrity. Data is nomadic, and is allowed to flow and be cached freely, to provide
better availability and locality.

A Peer-to-Peer Indexing Service for Data Grids 509

3 System Overview

The purpose of the index system is to map from identifiers to locations. This
is achieved using a distributed hash table (DHT), which provide a distributed,
scalable, self-organizing, fault-tolerant mechanism for storing and querying key-
value mappings. Identifiers are the keys, and locations the values.

Figure 1 illustrates how we envisage the index system: As a layer between
storage and a higher layer which handles collections, metadata, or similar. The
upper layer refers to data identifiers, and the index system is used to locate data,
which is its only purpose. Identifiers are not meant as being the top level entry
to find a file, nor are they considered to have any semantic interpretation.

Storage Element

Index System
Location

Metadata System

Identifier

Fig. 1. The index system acts as a layer between storage and higher level services

Soft-state
registration Query

Storage Element

Index System

Client

Fig. 2. Storage Element register their data, and clients query for the location

Figure 2 illustrates interactions with the index system: Storage elements pop-
ulate the system by registering mappings, and clients query the system to locate
data. The registration is soft-state, so storage elements must periodically register
their data, or the mappings will disappear from the system.

Neither storage elements or clients are considered members of the DHT.
Clients are too volatile and short-lived to make it meaningful for them to enter
the DHT. There is nothing preventing storage elements to act as index nodes,
however we choose to model it as two isolated services.

For integration with existing systems, two services are introduced: Registrants
and query proxies. Registrants register mappings on behalf of storage elements
that cannot register mappings. Query proxies provides clients a single entry
to query the network. This removes the need for clients to support the DHT
protocol.

The group of index nodes is dynamic, however a valid certificate is necessary
in order to join the network. Furthermore only storage elements with a valid
certificate may register identifier-location mappings. This protects the system
from being poisoned. The mappings are considered public, so no authorization
is necessary to query the system.

510 H.T. Jensen and J. Kleist

4 Architecture

This section describes an index architecture that is scalable, self-organizing and
fault tolerant. It meets these goals, by employing a distributed hash table, for the
underlying architecture. The reminder of this section describe the architecture
of the system.

4.1 Distributed Hash Tables

A distributed hash table (DHT) [8,9,10,11,12] provides a scalable and fault-
tolerant lookup mechanism. This is achieved by creating a structured overlay
network in which the nodes and data share the same address space. Data is
replicated to the nodes which has the address closest to the address of the data.
DHTs are self-organizing and resilient to faults. Their consistency guarantees
are quite weak, and they are primarily suited towards mapping flat data.

Lookups in a DHT takes O(log n) steps to perform, n being the number of
nodes in the network. In a worst case scenario, a user may have to perform
several high latency lookups to locate a data object on a machine down the
hall. This problem can be marginalized, by carefully selecting the size of the
routing tables and using parallel lookups. A recent study[13] has shown that a
very dynamic DHT with almost a million nodes can provide good performance.
By using a parallelism degree of three, the average lookup hop count was 3.08,
and the latency around three seconds. We assume that the set of index nodes is
relatively stable, and will also be much smaller; hence better performance should
be expected.

As the set of index nodes is considered stable, it may be questioned if DHTs
is a suitable solution for an index network. We believe that they are, as they
provide a structured address space combined with fault-tolerance and scalability.

Any distributed hash table algorithm can be used as a base for our index
system. As the DHT is populated and queried by hosts which are not members
of the DHT, the implementation must be able to distinguish between these. The
construction and searching of the DHT is performed as it would regularly be
done in the DHT architecture.

The next section describes the registration process, i.e., how the DHT is
populated.

4.2 Mapping Registration

To populate the system, storage elements register identifier-location mappings to
the index nodes. This registration is performed with certain intervals to ensure
that entries do not disappear from the system. Mappings which are not re-
registered after a certain time interval are purged from the system. This ensures
that mappings to dead or moved data will disappear from the system.

When a data object has been uploaded, the storage element will register it to
the index system. This registration will be kept at the index nodes for a certain
amount of time, e.g., four hours. Storage elements keep track of when mappings

A Peer-to-Peer Indexing Service for Data Grids 511

was last registered, and at regular intervals re-registers those which are about to
expire. The process when a storage element start up, is similar to the continuous
re-registration, with the exception that all data objects are registered.

As there are a low number of hosts which each register a high amount of
entries, the registration process has been modified to suit this. All registrations
are performed in batches. Before registration the identifiers are sorted and put
into a work queue. This causes the insertion process to walk the overlay network
in order, keeping the node cache “warm”. From the work queue a number of
concurrent registrations is dispatched, i.e., the queue has multiple consumers.

The purpose of this is twofold. It spreads the load over time, and hence avoid
bringing the system to its knees when performing registration of many mappings
(e.g., at start up). Additionally concurrent registrations prevents slow or crashed
index nodes from slowing the registration process significantly.

4.3 Integration

To ease integration, two additional services are added: Third party registrants
and query proxies. The purpose of these systems is to integrate with the indexing
system on behalf of services or clients which cannot communicate directly with
the indexing system. Registrants register mappings on behalf of storage elements,
and query proxies provides a single point of entry to query the index system.

Figure 3, illustrates how a user registers a location to the registrant after
uploading a file to a storage element. Hereafter the registrant registers the map-
ping to the index system, in the same manner that a storage element would. A
mapping can be registered to several registrants to provide redundancy.

No communication between registrant and service containing the data object
is assumed. Therefore the mapping must manually be removed from the regis-
trants when the object is deleted. The system can hence become inconsistent in
case the registered file disappears, but its registration is not removed.

Instead of having a mechanism to track where mappings are registered, the
registrants report which mappings they register. This is done by creating a hash
of the original object location prefixed with a registrant name space. This hash
is then registered to the indexing system, the location pointing to the registrant.
This makes it possible for a client to see which registrants registers a mapping,
making it possible to find and remove the mapping.

Soft-state
registration

Registrant

Index System

Client

Storage Element
Upload File

Register
Location

Fig. 3. A user registers a location to the registrant, which register a mapping to the
index system

512 H.T. Jensen and J. Kleist

Instead of having a client querying the DHT directly, which requires that it
supports the native DHT protocol, the client can use a query proxy. As illustrated
on Figure 4, the client issues a query to a query proxy, which then queries the
index network, and returns the result to the client. This interface is supplied
through a standard protocol, e.g., a web service.

To speed up queries the query proxy employs a large node cache, and a short
lived cache of lookup results. As a query proxy is essentially stateless, the service
is trivial to replicate - the service merely has to be deployed and started.

Query

Query Proxy

Index System

Client

Query

Result Result

Fig. 4. The client queries the query proxy, which again queries the index network. The
result is relayed back to the client.

4.4 Security Model

Typically DHTs has provided no or little security, as their size and dynamics
makes conventional security models impractical. Furthermore there is often a
relation between the key and data content, e.g, the key being a hash of the data.
This, combined with the large number of nodes, makes it difficult for a single
attacker to disrupt the network, although attacks are possible e.g., the Sybil
attack [14]. The main security requirement for the index system, is that the
system should not be poisoned. Furthermore it should not be possible to remove
mappings from the system.

There are no restrictions on who can query the index system, as identifier-
locations mappings are considered public. The identifier has no meaning as it
is hash of a value, and locations are not considered useful by themselves. If
needed, client authorization could be added by propagating ACLs from the sto-
rage elements to the index nodes. This however would add greatly to the cost of
updating and querying the system.

It is assumed that authorized hosts are well behaving, e.g., they do not reg-
ister mappings they do not have. Identifiers are generated by storage elements
and registrants. They are created by creating a secure hash, e.g., SHA224 [15], of
random and host unique data. This ensures that identifiers do not clash acciden-
tally. By using this scheme, instead of having the users selecting the identifiers,
it is ensured that users cannot cause identifier collision.

The security model used, is the common grid model, where a resource has a
certificate signed by a certificate authority. To protect the system against poi-
soning, only resources with a valid certificate is allowed to register mappings to
the index nodes. A valid certificate in this context would be a storage element or
index node (due to inter-node-replication) certificate. As there is no confidential
data send, data only has to be signed, but not encrypted.

A Peer-to-Peer Indexing Service for Data Grids 513

As it would be expensive performing TLS handshake for each RPC, we suggest
using DTLS[16], which provide secure datagram communication. Alternatively
persistent TLS connections could be used, although this might limit scalability,
due to high number of connections in large systems.

To ensure that a node can only have one network identity, the hash of its
public key is used as its address. This prevents Sybil attacks, as a node cannot
insert itself into the DHT with more than one address.

A potential risk is that a storage elements can register an identifier to a data
object, which has been altered or constructed, in such a way that the user will
be deceived. However as storage elements are already trusted to store data, they
can most likely be trusted to register identifier-location pairs. If needed, a hash
of the data should be saved at a third party.

5 Implementation

We have implemented the architecture described in Section 4. As a special
query/registration scheme and insertion algorithm was needed, an implementa-
tion was created from scratch. The implementation is written in Python, using
the Twisted framework, and is around 1800 lines, excluding tests and bench-
marks. It uses a UDP protocol, which utilizes XML-RPC [17] for serialization.
Currently no security infrastructure has been implemented.

The DHT algorithm used is Kademlia [12]. Kademlia uses an XOR metric,
which means that the address space is non-euclidean. This means that there
is no successor function, even though the address space is one-dimensional and
discrete. No global ordering exists between nodes. Given an address, ordering
between nodes exists, but only relative to the address in question.

Each Kademlia node has a routing table, in which addresses to other nodes
are stored. The routing table contains many addresses for nodes close to itself,
and fewer further away. There is no neighbour set, but the routing table is
constructed such that the 2k − 1 closest nodes will never be evicted, k being the
bucket size of the routing table.

The Kademlia routing algorithm works by continuously looking up the closest
known node compared to an address. Once a node with a matching address or no
closer nodes has been found, the lookup has completed. As the routing algorithm
is the core of both the query and insertion algorithm, it is important that it
is efficient. Therefore the core walking function dispatches several concurrent
lookups. In the the case of hitting slow (e.g., high latency response time) or
unavailable nodes, this dramatically reduces lookup time [13].

6 Performance Measurement

This section presents performance measurements of the implemented system.
Three kinds of tests are performed: Single node, multi node throughput, and
multi node scalability. The single node performance test is done in order to

514 H.T. Jensen and J. Kleist

establish a point of reference for multi node systems. All tests where run 16
times, with their minimum, average and maximum score reported.

A cluster with 36 homogeneous nodes where used in the tests. Each node is
a Pentium 4 2.8 GHz CPU with 2 Gigabytes of RAM. The nodes are connected
with 1 Gbps Ethernet duplex over a single switch.

6.1 Single Node Performance

In this test a single node is set up, and a single client performs queries and
insertions to a node at varying concurrency levels. This is used to establish the
throughput performance of a single node and which degree of concurrency should
be used in the following tests. As index node operations are more heavyweight
than client operations, the client should be able to fully saturate the node. The
test results can be seen on Figure 5.

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 5 10 15 20

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Parallism

Query
Store

Fig. 5. Query and store performance of a single index node

Without any concurrency the node the system performed 880 queries, or 910
inserts per second. Increasing the degree of concurrency raises the number of
queries per second to 1550 and 1860 inserts per second. The higher number of
inserts is due to store being a very simple operation which only has to store the
incoming data, whereas querying needs to check for data existence and possibly
search the routing table.

These number where stable through several runs and to a concurrency degree
of sixteen. At higher concurrency levels, timeouts started to occur, supporting
the claim that server side operations are more expensive than client side opera-
tions. The graph illustrate that a relative low number of concurrent connections,
i.e., around four is enough to keep an index nodes busy, given the latency our
network infrastructure.

6.2 System Performance

A network of nodes should deliver higher performance than a single node, due
to aggregated performance. However a system composed of several nodes, must

A Peer-to-Peer Indexing Service for Data Grids 515

spend messages coordinating the system. These are intra-node replication and
routing table updates. Due to this, linear scale up cannot be expected. Further-
more store operations will produce low numbers as data is replicated to several
nodes. A crucial point about the network is not how it initially performs, but
that it can scale as nodes are added to the system. In turn, this is what will
make the system viable.

Intra-node re-replication and routing table updates was disabled during the
runs in order to have more consistent results. In a production environment the
functionality should of course be enabled. The addresses of the nodes where con-
figured in order to balance the network, again to obtain consistent results. The
replication factor used in the store operation is four, and lookup was performed
with a parallelism degree of one, i.e., sequential lookup. The bucket size of the
routing tables was eighth.

To measure system throughput, the number of nodes in the system is kept
constant, and the number of clients increased until the aggregated system per-
formance stabilizes. The test results are shown on Figure 6.

Store performance is lower than query performance, due to the store operation
consisting of more RPC calls. Whereas the query operation only needs to perform
a walk to find the node closest to a given address, the store operation must first
perform the walk, where after it stores the key-value pair in the k closest nodes
(k is set to four in the tests).

Query performance maxes out around 18.600 operations per second. Store
performance is around 3.700 operations per second. Both of these suggest linear
rise in throughput. It must be remembered that the test system has a low number
of nodes, so there is little overhead.

Scalability is measured the reverse way of throughput: The number of clients
is held constant, and the number of nodes is increased. This shows how the
system perform as more nodes are added. The performance should rise as nodes
added to the system. The results are illustrated on Figure 7.

As with the throughput test, store operations score lower due to being more
expensive. The graph shows that throughput of the system rises as nodes are
added to the system, verifying the scalability of the system. After adding

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 0 5 10 15 20 25

A
gg

re
ga

te
d

op
er

at
io

ns
 p

er
 s

ec
on

d

Clients

Query
Store

Fig. 6. Throughput test for eighth nodes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20

A
gg

re
ga

te
d

op
er

at
io

ns
 p

er
 s

ec
on

d

Nodes

Query
Store

Fig. 7. Scalability test using twelve clients

516 H.T. Jensen and J. Kleist

sufficient nodes, the clients cannot keep the system busy, and performance flat-
tens. The slight decline in performance is probably because clients spending more
time in the routing table logic due to a higher number of nodes.

As it can be seen, query performance rises in steps, which was not expected.
The jumps where consistent throughout several runs. The reason could not be
found, but we believe that it is either due to the addressing scheme in Kademlia,
or a bug in our code.

Tests with random node addresses where also performed. These tests fluctu-
ated highly, with performance dropping as much as 50%, and on average around
25%, compared to the balanced network. Small systems are vulnerable to ad-
dress imbalances as there might be large ranges of the address space in which no
nodes exists. This puts a high load of the nodes around the unpopulated area.
Large systems will be less prone to this.

Average lookup jump count was not measured. In a system with 36 nodes, a
bucket size of 8, and a uniformly network with perfect routing tables, random-
to-random node average hop count would be 1.31, and maximum hop count 2.
By doubling the size of the bucket for nodes furthest away, as done in Kad [13],
the average hop count is lowered to 1.09. In a real world scenario with a random
distribution, and imperfect routing tables, the average hop count would be larger.
If a client is performing the lookup, one hop should be added. However if the
client knows more than one node, which is likely, the number again lowers.
Furthermore the replication factor lowers the lookup count, as the node closest
to the address does not have to be found, only one close enough.

Although the system tested was relatively small, we found the results encour-
aging. The throughput test showed little overhead as the system grow. Aggre-
gated system performance was also shown to rise, as more nodes are added to
the system. This means that the system can be grown as needed, enabling long
term survival of the system.

7 Future Work

Although a security model has been presented in Section 4.4, it has yet not
been implemented. The implementation and a following evaluation of feasibil-
ity, e.g., performance overhead, is required before the system can be used in
production.

The current de- and serialization scheme using XML-RPC uses a lot of CPU
time. For instance the 160 bit node identifiers are encoded as strings, which
is inefficient in both time and space. We believe that by using a specialized
serialization scheme node performance can be further increased.

As a further optimization it might be possible to reduce the number of RPCs
necessary to insert data, by batching them together. This would make the reg-
istration scheme more complex, but dramatically increase the number of regis-
trations that could be performed in an interval, as it is much cheaper to send
one packet containing many mappings, instead of many packets each with one
mapping.

A Peer-to-Peer Indexing Service for Data Grids 517

8 Conclusion

This article has presented an indexing architecture for objects in data grids. The
indexing architecture is constructed using a distributed hash table, and is hence
scalable, self-organizing, and fault-tolerant.

Along with cooperating storage elements, which register identifier-location
mappings, the index is continually updated to reflect the state of the storage
elements. Due to this scheme the system supports nomadic data, i.e., data which
move. To provide a stable set of nodes running the index, clients and storage
elements are not part of the index. To reduce system load, an efficient registration
scheme is used by the storage elements to register mappings.

Registrant and query proxy services are provided for integration with existing
systems. The registrant makes it possible to index data, even though the storage
element on which the data resides cannot communicate with the index system.
The query proxy provides a single point of entry to query the system; hence the
client does not need to support the DHTs protocol in order to use the system.
A security model utilizing DTLS was presented.

A prototype implementation based on the architecture has been constructed.
The implementation is based on the Kademlia DHT algorithm. Performance
measurements of the implementation has shown that aggregated system per-
formance rises, as nodes are added to the system, verifying the scalability of
the system. The system also showed little overhead when scaling to several
nodes.

Given the results, we believe that DHTs are a viable solution for indexing in
data grids, as they can provide a system which is scalable, fault-tolerant, and
self-organization. Furthermore they can provide a dynamically updated system,
which reflect the state of storage elements. Finally the system can scale by adding
more nodes, making it possible for a system to grow as needed, ensuring long
term feasibility.

References

1. Ellert, M., Grønager, M., Konstantinov, A., Kónya, B., Lindemann, J., Livenson,
I., Nielsen, J., Niinimäki, M., Smirnova, O., Wäänänen, A.: Advanced resource con-
nector middleware for lightweight computational grids. Future Generation Com-
puter Systems (2006)

2. Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W., Iamnitchi, A., Kessel-
man, C., Kunszt, P., Ripeanu, M., Schwartzkopf, B., Stockinger, H., Stockinger,
K., Tierney, B.: Giggle: a framework for constructing scalable replica location ser-
vices. In: Supercomputing ’02: Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, Los Alamitos, CA, USA, IEEE Computer Society Press (2002)
1–17

3. Cai, M., Chervenak, A., Frank, M.: A peer-to-peer replica location service based
on a distributed hash table. In: SC ’04: Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, Washington, DC, USA, IEEE Computer Society
(2004) 56

518 H.T. Jensen and J. Kleist

4. Jin, H., Wang, C., Chen, H.: Boundary chord: A novel peer-to-peer algorithm for
replica location mechanism in grid environment. In: ISPAN ’05: Proceedings of the
8th International Symposium on Parallel Architectures,Algorithms and Networks,
Washington, DC, USA, IEEE Computer Society (2005) 262–267

5. Jin, H.: Chinagrid: Making grid computing a reality. In: ICADL. (2004) 13–24
6. Cameron, D., et. al.: Replica management in the european datagrid project. Jour-

nal of Grid Computing 2(4) (December 2004) 341–351
7. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gum-

madi, R., Rhea, S., Weatherspoon, H., Wells, C., Zhao, B.: Oceanstore: an archi-
tecture for global-scale persistent storage. SIGOPS Oper. Syst. Rev. 34(5) (2000)
190–201

8. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM ’01:
Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, New York, NY, USA, ACM Press
(2001) 149–160

9. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware. (November 2001) 329–350

10. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC
Berkeley (April 2001)

11. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions, New York, NY, USA, ACM Press (2001) 161–172

12. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based
on the xor metric. In: IPTPS ’01: Revised Papers from the First International
Workshop on Peer-to-Peer Systems, London, UK, Springer-Verlag (2002) 53–65

13. Stutzbach, D., Rejaie, R.: Improving lookup performance over a widely-deployed
dht. In: Proceedings of IEEE INFOCOM, Barcelona, Spain. (2006)

14. Douceur, J.R.: The sybil attack. In: IPTPS ’01: Revised Papers from the First
International Workshop on Peer-to-Peer Systems, London, UK, Springer-Verlag
(2002) 251–260

15. Housley, R.: A 224-bit one-way hash function: Sha-224 (2004)
16. Rescorla, E.: Datagram transport layer security (2006)
17. Winer, D.: Xml-rpc specification (1999)

A Novel Recovery Approach for Cluster

Federations

Bidyut Gupta, Shahram Rahimi, Raheel Ahmad, and Raja Chirra

Department of Computer Science, Southern Illinois University,
Carbondale IL 62901, USA

{bidyut, rahimi, rahmad, rchirra}@cs.siu.edu

Abstract. In this paper, we have addressed the complex problem of de-
termining a recovery line for cluster federation and have proposed a fast
recovery algorithm to handle failures in cluster federations. The main
feature of the proposed algorithm is that it can be executed simultane-
ously by all clusters in the cluster federation. Besides, the number of
trips to the stable storage necessary for executing the algorithm is much
less compared to the same in some existing works. Also the proposed al-
gorithm does not suffer from any message storm unlike some noted work
in this area.

1 Introduction

Cluster federation is a union of clusters, where each cluster contains a certain
number of processes. A Cluster may be defined as an independent computer
combined into a unified system through software and networking. Clusters are
usually deployed to improve speed over that provided by a single computer,
while typically being much more cost-effective than single computers of com-
parable speed or reliability. Cluster computing environments have provided a
cost-effective solution to many distributed computing problems by investing in-
expensive hardware [1], [2], [9].

With the growing importance of cluster computing, its fault-tolerant aspect
deserves significant attention. It is known that checkpointing and rollback re-
covery are widely used techniques that allows a system to progress inspite of
a failure [4]. It may be noted that a distributed system / cluster federation is
said to be consistent, if there is no message which is recorded in the state of
its receiver but not recorded in the state of its sender [1], [2], [4], [5]. In clus-
ter computing, considering the characteristics of cluster federation architecture,
different checkpointing mechanisms should be used within and between clusters.
For example, a cluster may employ either coordinated checkpointing scheme or
independent (asynchronous) checkpointing scheme for its processes to take their
local checkpoints. We term this checkpointing as the primary level of checkpoint-
ing. Note that in cluster computing failure of a cluster means failure of its one
or more processes. It is also the responsibility of each cluster to determine its
consistent local checkpoint set that consists of one checkpoint from each process

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 519–530, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

520 B. Gupta et al.

present in it. But this consistent local checkpoint set (also known as cluster level
checkpoint of the cluster) may not be consistent with the other clusters con-
sistent local checkpoint sets, because clusters interact through messages which
result in dependencies between the clusters. Therefore, a collection of consistent
local checkpoint sets, one from each cluster in the federation, does not neces-
sarily produce a consistent federation level checkpoint (also known as federation
level recovery line). Consequently, rollback of one failed cluster may force some
other clusters to rollback in order to maintain consistency of operation by the
cluster federation.

Problem Formulation. Very few works have been reported so far for handling
the complex problems of recovery in cluster federation computing [1], [2]. In this
work, we address this complex problem of determining a recovery line for cluster
federations. Our objective is to develop a fast recovery algorithm for cluster
federations to determine a consistent federation level checkpoint with very less
number of trips to the stable storage in its each iteration. As in [1] and [2], we
also assume single cluster failure at a time and the failure model is fail-stop.

2 Relevant Data Structures

Before we state the relevant data structures and their use in our proposed al-
gorithm we need to define the following. A cluster level checkpoint (CLC) of a
cluster is defined as a set of local checkpoints, one from each process belonging to
the cluster, such that these checkpoints are mutually consistent. In other words
a CLC represents a recovery line for the cluster; however this CLC may not be
consistent with CLCs of other clusters. As in [1] and [2], we assume that inside a
cluster processes take these local checkpoints periodically in a coordinated way.
A CLC taken in this way is termed in this paper as regular cluster level check-
points. Besides, in our approach a cluster also takes a cluster level checkpoint in
a coordinated way if it receives an inter cluster application message from another
cluster. We call it a forced cluster level checkpoint. Therefore, a forced CLC may
be considered as a communication-induced one [6]. As in [2], we assume that the
two events of receiving an inter cluster application message and taking a forced
CLC occur together atomically. A consistent federation level checkpoint (i.e. a
federation level recovery line) is a set of the CLCs, one from each cluster, such
that these CLCs are mutually consistent; that is, there is no orphan message in
the system with respect to this set of the CLCs.

Let the cluster federation under consideration consist of N clusters, where each
cluster consists of a number of processes. The jth process of the ith cluster is de-
noted as pi

j and ith cluster as Ci. For cluster Ci consisting of r processes, its mth

cluster level checkpoint is represented as CLCi
m = {cpm

1 , cpm
2 , . . . , cpm

r−1, cp
m
r },

where cpm
j is the mth local checkpoint taken by process pj of cluster Ci. Note that

all these mth local checkpoints are taken following the coordinated checkpointing
approach and so are mutually consistent. That is, CLCi

m represents a recovery
line for cluster Ci. In this context, note that by the statement, a process pi

j in

A Novel Recovery Approach for Cluster Federations 521

Ci stores the corresponding CLCi
m in the stable storage, we mean that process

pi
j stores its local mth checkpoint cpm

j that belongs to CLCi
m. Also in cluster

computing environment, communication between two clusters means communi-
cation between two processes belonging to these two clusters respectively and
failure of a cluster means failure of its one or more processes.

Corresponding to every cluster level checkpoint, for example say CLCi
m, every

process pi
j in cluster Ci maintains the following three vectors at its mth local

checkpoint, which are same for all processes in the cluster at their respective
mth local checkpoints. Since CLCi

m is the set of these mth local checkpoints of
the processes in Ci and these vectors are same for all processes in Ci, hence for
simplicity we will assume that as if cluster Ci maintains these three vectors at
CLCi

m. These three vectors are initialized with 0s at the initial state (starting
state) of a cluster (i.e. at the starting states of the processes in it). These vectors
are stated below.

1. V i
m(sent) = [vi,0

m , vi,1
m , . . . , vi,N−1

m], where
∣
∣
∣V i

m(sent)

∣
∣
∣ = N = Number of clusters

in the cluster federation and vi,j
m represents the number of inter cluster ap-

plication messages sent from cluster Ci to any cluster Cj . Initially vi,j
m = 0,

for 0 ≤ j ≤ N − 1.
2. V i

m(recv) = [ri,0
m , ri,1

m , . . . , ri,N−1
m], where

∣
∣
∣V i

m(recv)

∣
∣
∣ = N = Number of clusters

in the cluster federation and ri,j
m represents the number of inter cluster ap-

plication messages received by cluster Ci from cluster Cj . Initially rm
i,j = 0,

for 0 ≤ j ≤ N − 1.
3. CICi

m = [ci,0
0 , ci,1

1 , . . . , ci,m−1
m−1], and

∣
∣CICi

m

∣
∣ = m = Number of CLCs taken

by Ci, where:

CICi
m(m) =

{
CICi

m(m − 1) + 1 if the CLCi
m(m) is a forced checkpoint

CICi
m(m − 1) if the CLCi

m(m) is a regular checkpoint

For example, at the initial checkpoint CLCi
0, the vector CICi

0 = [ci,0
0] =

[0]. And at the second checkpoint CLCi
1, the corresponding vector CICi

1 =
[ci,0

0 , ci,1
1] = [0, ci,1

1], where ci,1
1 = ci,0

0 + 1 = 1, if the checkpoint CLCi
1 is a

forced cluster level checkpoint; and ci,1
1 = 0 if the checkpoint CLCi

1 is a regular
cluster level checkpoint. In a similar way all other entries in the vector CICi

m

are updated. In this work, note that when we do not need to specify a particular
checkpoint number, we will simply use the notations V i

(sent) , V i(recv), and CICi

to represent the three vectors. Each process in a cluster maintains a Boolean flag.
The use of this flag has been stated in the following section.

Observation 1. At any cluster level checkpoint CLCi
r in cluster Ci , the value

of the last element of the CICi
r vector denotes the total number of forced check-

points taken by cluster Ci till its checkpoint CLCi
r.

Observation 2. At any cluster level checkpoint CLCi
r in cluster Ci , the length

of the CICi
r vector (i.e. the number of elements in it) denotes the total number

of cluster level checkpoints, including both regular and forced ones taken by the
cluster Ci till its checkpoint CLCi

r.

522 B. Gupta et al.

3 Working Principle

In this section we first present how different vectors are updated. We then briefly
outline how the proposed recovery mechanism works, followed by an illustration.
The updating of the vectors will become clear from the following example. Con-
sider the two cluster system as shown in Fig.1. Two application messages, m1
and m2, are sent from Ci to Cj . Initially, the two clusters take their respective
initial cluster level checkpoints CLCi

0 and CLCj
0 . The CIC vectors at the two

clusters are given in Table 1.

Fig. 1. An example to explain the updating of vectors

Table 1. Table of the values of vectors at different checkpoints

Check Checkpoint V(sent) V(recv) CIC

Ci
CLCi

0 [0 0] [0 0] [0]

CLCi
1 [0 2] [0 0] [0 0]

Cj

CLCj
0 [0 0] [0 0] [0 0]

CLCj
1 [0 0] [1 0] [0 1]

CLCj
2 [0 0] [2 0] [0 1 2]

CLCj
3 [0 0] [2 0] [0 1 2 2]

In Table 1 consider CICj at the cluster level checkpoint CLCj
3 . It is [0 1 2

2]. In this vector, total number of elements (= 4) represents the total number of
CLCs (including both regular or forced ones) taken by cluster Cj and the value
of the last element (=2) in the vector represents the total number of forced
CLCs taken. For a clear understanding of our approach, through out this paper
we will use the following interpretations needed to design the proposed recovery
algorithm: (1) by the statement a cluster Ck rolls back to its rth cluster level
checkpoint CLCk

r we mean that all processes in cluster Ck rollback to their
respective local checkpoints which form together the cluster level checkpoint
CLCk

r ; (2) by initiator cluster we mean the cluster that contains the initiator
process. In fact, in our work a failed process inside the initiator cluster actually
initiates the recovery mechanism after this process recovers from the failure;
(3) by the statement a cluster Ck receives a request from the initiator cluster
Ci and sends its vector and its Boolean flag to it, we mean that the process

A Novel Recovery Approach for Cluster Federations 523

(∈ Ck) receiving the request from the initiator process (∈ Ci) sends its vector
and its flag to the initiator; (4) by the statement the initiator cluster sends /
receives a message it means that the initiator process in this cluster actually
sends / receives the message; (5) if any of the processes in a cluster rolls back,
the respective Boolean flags of all processes in that cluster are set at 1; otherwise
these flags are set at 0 each; (6) finally by a computation done or an action taken
by the initiator cluster associated with the recovery scheme it means that it is
actually performed by the initiator process belonging to this cluster. Similarly,
by a computation done or an action taken by any other cluster associated with
the recovery scheme it means that it is performed by a process of this cluster.

Recovery mechanism. Unless otherwise needed, we will simply use the nota-
tions V i

(sent) , V i
(recv) , and CICi to represent the three vectors. A failed process

pi
j inside a cluster Ci initiates the recovery mechanism after it recovers from

the failure. Therefore, cluster Ci acts as the initiator cluster. To start with, this
initiator cluster first rolls back to its latest cluster level checkpoint and then
sends a request message to each cluster Ck, for 0 ≤ k ≤ N −1, k �= i asking it to
send its V k

(sent) vector corresponding to its latest cluster level checkpoint. After
receiving the vector V k

(sent) from all clusters the initiator cluster Ci forms a two
dimensional array V N .

V N =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

V 0,0 V 0,1 . . . V 0,N−1

V 1,0 V 1,1 . . . V 1,N−1

− − . . . −
V k,0 V k,1 . . . V k,N−1

− − . . . −
V N−1,0 V N−1,1 . . . V N−1,N−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0

where the kth row represents V k
(sent) corresponding to cluster Ck, for 0 ≤ k ≤ N−

1. The initiator cluster then computes the column sums to create the following
vector.

V C =
∣
∣v0

c , v1
c , v2

c , . . . , vk
c , . . . , vN−1

c

∣
∣ = 0

where vk
c = column sum of the entries of the kth column of V N and is given by

vk
c = ΣV N (l, k), for l = 1 to N. Therefore, vk

c represents the total number of
inter cluster messages sent to cluster Ck from all other clusters. The initiator
cluster then unicasts vk

c (= V c(k)) to each corresponding cluster Ck, for 0 ≤ k ≤
N − 1, k �= i. After receiving vk

c from the initiator, each cluster Ck adds the
elements of its V k

(recv) vector (actually as mentioned earlier this computation is
performed by the process pk

x (∈ Ck) which has received the unicast information
vk

c). Let the sum be vk
r . Therefore, vk

r represents the total number of inter cluster
messages received by the processes in cluster Ck from all other clusters.

Cluster Ck (i.e. Process pk
x) now computes Dk = vk

r − vk
c . The difference

Dk (if > 0) between vk
r and vk

c gives the exact number of inter cluster orphan
messages received by a cluster Ck from all other clusters. Process pk

x now checks
the last element (let it be X) present in CICk vector at its latest checkpoint;

524 B. Gupta et al.

this element is the number of forced CLCs taken so far by cluster Ck. Process
pk

x rolls back to its latest checkpoint (say, it is the lth checkpoint) where the last
element in its corresponding CICk vector is equal to X − Dk. It also unicasts
a message to all other processes in its cluster to rollback to their respective lth

checkpoints. Observe that all these lth checkpoints of the processes of cluster Ck

form the cluster level checkpoint CLCk
l . Thus, effectively it can be said that the

cluster Ck rolls back to its cluster level checkpoint CLCk
l . Observe that all these

lth checkpoints of the processes of cluster Ck are assumed to have been taken
during the lth execution of the coordinate checkpointing protocol.

We have already mentioned that if any of the processes in a cluster Ck rolls
back (i.e. Dk ¿ 0), the Boolean flags of all processes in Ck are set at 1. The
effect of this rollback is that the corresponding cluster Ck (i.e. actually process
pk

x) sends this flag value (=1) along with its V k(sent) corresponding to the
checkpoint to which it has rolled back. If the cluster does not roll back (i.e. Dk

0), then it will send only a flag value of 0. The algorithm will terminate when
for each cluster Ci, its corresponding flag value is equal to zero. That is, none
of the clusters rolls back. Otherwise, the algorithm starts its next iteration. In
this case, for any cluster that sent a flag of 0, its sent vector used in the previous
iteration is used again in the current iteration.

An Illustration. Fig. 2 gives an illustration of how cluster level checkpoints are
taken in our approach as well as how a federation level recovery line is deter-
mined. Each horizontal line represents a parallel execution on a cluster. Each
cluster Ci (i.e. each process in this cluster) maintains three vectors V i

(sent),V
i
(recv),

and CICi.
Initially all these vectors are initialized with zeros at the initial checkpoints.

Cluster C1 takes a forced cluster level checkpoint CLC1
1 as soon as it receives the

application message m2 and updates CIC1
1 from [0] to [01] (we take the last value

in the vector at prior checkpoint, increment it by 1 and append it to the vector
so that the last element of the new vector gives us the total number of forced
checkpoints taken so far) and V 1

1(recv) from [000] to [001] because it has received
an inter cluster application message from cluster C2. It also updates V 1

1(sent)

from [000] to [100] because it has sent an inter cluster application message m3

to cluster C0 after the checkpoint CLC1
0 was taken.

Consider the cluster level checkpoint CLC1
2 in cluster C1. As this check-

point is a regular CLC taken within the cluster, the CIC1
2 is updated from

[01] to [011], V 1
2(sent) remains same as [100]. V 1

2(recv) also remains same because
it has not received any inter cluster application message after the checkpoint
CLC1

1 . Similarly all checkpoints for all other clusters are taken and their vectors
updated.

Suppose at time t, a failure f occurs in cluster C1. After recovering from the
failure, cluster C1 first rolls back to the checkpoint CLC1

2 . The algorithm is now
initiated by cluster C1. To start with, initiator cluster C1 broadcasts a request
asking the clusters C0 and C2 to send their sent vectors corresponding to their
latest checkpoints. In this example cluster C0 sends the vector [001] and cluster

A Novel Recovery Approach for Cluster Federations 525

Fig. 2. Federation level Consistent checkpoints CLC0
3 , CLC1

2 , CLC2
2

C2 sends [010]. After receiving the vectors the initiator creates a two dimensional
array and performs the column sum and calculates V 3 in the following way:

∣
∣
∣
∣
∣
∣

0 0 1
1 0 0
0 1 0

∣
∣
∣
∣
∣
∣

V 3 = column sum = 1 1 1

Now, cluster C1 unicasts vk
c to each cluster Ck, for k = 0, 2. In this example,

at the respective latest checkpoints of the three clusters we get the following:
D0 equal to 3 for cluster C0, D1 equal to 0 for cluster C1, and D2 equal to 0
for cluster C2. This implies that cluster C0 has received three orphan messages
with respect to its latest checkpoint CLC0

7 ; in fact the orphan messages are m4,
m5, and m6. Observe that cluster C1 and cluster C2 have received no orphan
messages. Now cluster C0 checks the last element (= X) of CIC0

7 . In this example
it is 4. Then it calculates the difference d (=X − D0); in this example d is 1 (=
4-3). C0 will now skip to a latest checkpoint where the last element of CIC0

vector is equal to 1. This checkpoint is CLC0
3 . Now cluster C0 rolls back by

4 checkpoints i.e. to CLC0
3 and sends a flag of 1 along with its V 0

3(sent) to the
initiator cluster. Cluster C2 sends only a flag of 0 because it has not rolled
back.Since the flag of cluster C0 is equal to 1 so the algorithm executes its next
iteration. After this second iteration, we get D0 equal to 0 for the checkpoint
CLC0

3 of cluster C0; D1 equal to 0 for cluster C1 for its checkpoint CLC1
2 and D2

equal to 0 for cluster C2 for its checkpoint CLC2
2 . This implies that there is no

orphan message in the cluster federation with respect to these three checkpoints.

526 B. Gupta et al.

Now both clusters C0 and C2 send a flag of 0. Cluster C1 has its own flag also
set at 0. This is the termination condition of our approach. Hence the federation
level recovery line can be represented as the set CLC0

3 , CLC1
2 , CLC2

2 .

Lemma 1. If Di > 0, then cluster Ci has received Di number of orphan
messages from other clusters.

Proof. vi
r represents the total number of messages cluster Ci has received so far

and these are recorded in Cis latest CLC, and vi
c represents the total number

of messages sent by all other clusters to Ci as recorded in their latest CLCs.
Therefore Di(= vi

r −vi
c) > 0 means that at least some cluster Ck(k �= i) has sent

some message(s) to cluster Ci after taking its latest checkpoint. Since all such
Di messages have been received and recorded in Cis latest CLC, but remain
unrecorded by the sending clusters, therefore Ci has received Di number of
orphan messages from rest of the clusters.

Lemma 2. If Di ≤ 0, then cluster Ci has not received any orphan message.

Proof. Di = 0 means that the number of messages received by cluster Ci is equal
to the number of messages sent to cluster Ci and so the sending events of these
messages are already recorded by the sending clusters in their latest checkpoints.
Hence, the received messages cannot be orphan. Also, Di < 0 means that the
number of the received messages by cluster Ci is less than the number of messages
sent to it. It means that all the messages received by cluster Ci have already
been recorded by the senders. Hence none of such received messages can be an
orphan.

Theorem 1. Let Di > 0 at the rth checkpoint CLCi
r of cluster Ci and the last

element of the CICi
r vector at this checkpoint be X. Let CLCi

m be the latest
checkpoint prior to CLCi

r such that the last element of CICi
m is equal to XDi.

Then none of the checkpoints CLCi
r, CLCi

r − 1, CLCi
r − 2, . . . , CLCi

m+1 can
belong to any federation level recovery line.

Proof. According to Lemma 1, Ci has received exactly Di number of orphan
messages from all other clusters till its latest checkpoint CLCi

r. Given that the
last element of the CICi

r vector at the checkpoint CLCr is X, this implies that
the cluster Ci has taken X forced checkpoints so far according to Observation 1.
But a cluster takes a forced CLC whenever it receives an inter cluster application
message. Thus, in this case cluster Ci has recorded the events of receiving X
inter cluster application messages at the checkpoint CLCi

r. With respect to the
checkpoint CLCi

r it is clear that Di is the number of orphan messages received by
cluster Ci from all other clusters. So out of these X messages, only XDi messages
are such that their sent events are recorded by some other clusters. Thus cluster
Ci has to rollback to a latest checkpoint which has recorded the receiving event
of the (XDi)th inter cluster application message, skipping all the checkpoints
which have recorded the events of receiving the orphan inter cluster application
messages, received after the (XDi)th inter cluster application messages.

A Novel Recovery Approach for Cluster Federations 527

We also have assumed that the CLCi
m is the latest checkpoint prior to CLCi

r

such that the last element of CICi
m is equal to XDi, thus CLCi

m is the latest
checkpoint that has recorded the receiving event of the (XDi)th inter cluster
application message. Thus, the application messages which have caused the cre-
ation of the checkpoints CLCi

r, CLCi
r−1, CLCi

r−2, . . . , CLCi
m+1 are orphan and

hence these checkpoints can not belong to any federation level recovery line.

Theorem 2. If Di ≤ 0 at the latest checkpoint of each cluster Ci, for 0 ≤ i ≤
N − 1 (i.e. flag of each Ci is 0), then the recovery algorithm terminates and
all such latest checkpoints form a consistent federation level checkpoint of the
cluster federation.

Proof. According to Lemma 2, Di ≤ 0 at the latest checkpoint of each cluster
Ci means that none of the clusters in the cluster federation has received any
orphan message till its latest checkpoint. Thus the set of all such checkpoints,
one from each cluster are mutually consistent and hence they form a consistent
federation level checkpoint of the cluster federation.

4 Algorithm Recovery

Input : Given the latest N cluster level checkpoints, one for each cluster Cj , 0 ≤
j ≤ N −1, for an N cluster system and the corresponding vectors V j

(sent), V j
(recv),

CICj at these checkpoints. Output : A federation level recovery line which is also
a maximum consistent state. Assumption: The algorithm will be restarted if any
cluster including the initiator one fails.

The responsibilities of each cluster Ci and the initiator cluster Ck are stated
below.

Initiator cluster Ck:

Step 1: it asks each cluster Ci for 0 ≤ i ≤ N − 1, i �= k, to send its V i
(sent)

at its latest checkpoint CLCi
r ;

Step 2: it receives all V i
(sent) for 0 ≤ i ≤ N − 1;

Step 3: it computes V c = v0
c , v1

c , v2
c , . . . , vk

c , . . . , vN−1
c ;

Step 4: it unicasts vi
c(=V c(i)) to each cluster Ci, for 0 ≤ i ≤ N − 1;

Step 5: it receives either a flag or (flag and V i
(sent)) from each cluster

if flag = 0 for each cluster Ci, for 0 ≤ i ≤ N − 1
cluster Ck asks every cluster Ci for 0 ≤ i ≤ N − 1, i �= k to restart the
application program from its last checkpoint corresponding to which Di ≤ 0
and cluster Ck does the same for itself; the algorithm terminates;
/* a federation level recovery line is determined */
else
control flows to step 3; /* for any cluster which has sent a flag of 0, its sent
vector received in the previous iteration is used again */

528 B. Gupta et al.

Cluster Ci:

Step 1: cluster Ci receives request from cluster Ck ;
if Ck has requested to restart
processes in Ci restart from their respective local checkpoints corresponding
to the CLCi where Di ≤ 0;
else
it sends V i

(sent) at its latest cluster level checkpoint to the initiator cluster
Ck;
Step 2: it receives vi

c from initiator cluster Ck;
Step 3: it computes Di;
Step 4: if Di > 0 /* Ci needs to rollback */
it caluculates (X − Di); /* X is the last element in CICi

r */
it sends a flag of 1 and V i

(sent) corresponding to its checkpoint CLCi
m; (i.e.

CLCi
r is replaced by CLCi

m)
/* Ci rolls back to CLCi

m and CLCi
m is the latest checkpoint prior to CLCi

r

so the last element of CICi
m is equal to X − Di; that is, the checkpoints

CLCi
r, CLCi

r−1, CLCi
r−2, . . . , CLCi

m+1 can not belong to any federation
level recovery line*/
else
it sends a flag of 0 to cluster Ck.

Correctness Proof. Each Cluster Ci repeats its steps 1, 2, 3 and 4 to arrive at
a checkpoint that has not recorded the receipt of any orphan message from the
other clusters (using the observations of Lemmas 1 and 2). In other words, it
identifies the checkpoints that can not belong to the federation level recovery
line and skips them (using the logic of Theorem 1). This decision is made based
on the value of Di.

However, the initiator cluster Ck decides when to terminate the algorithm,
i.e., when the cluster level checkpoints can become mutually consistent. Cluster
Ck checks to see if Di ≤ 0 for each cluster Ci. If so, the algorithm terminates
according to Theorem 2. Note that the condition Di ≤ 0 must always occur
during the execution of the algorithm. It may be observed that in the worst
case, because of some typical communication pattern, the domino effect may
force processes in all clusters to restart from their initial states where for each
cluster Ci we always have Di = 0. Besides, since the algorithm starts with the
latest checkpoints, the number of events (states) rolled back at each cluster is
a minimum. This is true because, in its Step 4 each cluster Ci skips only the
checkpoints that can not belong to a federation level recovery line. Thus, the
algorithm determines a federation level recovery line which is the maximum
consistent state of the federation as well.

Message Complexity. Suppose the termination of the algorithm requires the
construction of the vector V N by the initiator cluster Ck to occur k times (i.e.
k number of iterations). During each such time every cluster in the N-cluster

A Novel Recovery Approach for Cluster Federations 529

system exchanges a couple of messages with initiator cluster Ck. Thus, O(N)
messages are sufficient for each time. Thus, considering k times, the message
complexity of the algorithm is O(kN).

5 Comparison

Comparison with the work in [1]. In the architecture considered in [1] multiple
coordinated checkpointing subsystems are connected with a single independent
checkpointing subsystem, such that the multiple coordinated subsystems can
communicate with each other only via the independent subsystem. The assumed
restricted architecture is the main short coming of this work. Our proposed
approach is independent of any particular architecture.

Comparison with the work in [2]. The main drawback of the algorithm in [2] is
that if we consider a particular message pattern where all the clusters have to roll
back except the failed cluster, then all these clusters have to send alert messages
to every other cluster before the start of the next iteration. This results in a
message storm. But in our approach when a cluster fails, only the initiator cluster
broadcasts just one control message. Thus, our proposed algorithm does not
suffer from any such message storm. Also, in [2] a cluster may have to make much
larger number of trips to the stable storage compared to our approach, in order
to determine which checkpoint(s) need to be skipped. To compare this number of
trips for the two approaches, let us assume the following approximate analysis:
after a failure occurs and the system recovers from it, in both our approach and
in [2] each cluster will skip on an average r checkpoints per iteration. We also
assume that the algorithms will determine the federation level recovery line in k
number of iterations. In [2] the number of trips to the stable storage is (k+kr)
compared to just k in our approach. Table 2 summarizes the comparisons.

Table 2. Comparison with the work in [2]

Criteria Our Algorithm Algorithm [2]

Message Storm No Yes

Simultaneous execution by clusters Yes Yes

Architecture dependent No No

Number of trips to stable storage k k + kr

Message complexity O(kN) O(kN2)

6 Conclusion

In this paper, we have presented a fast and efficient recovery algorithm for cluster
computing environment. The main feature of the recovery algorithm is that

530 B. Gupta et al.

it is executed simultaneously by all participating clusters while determining a
federation level recovery line. It offers fast execution. It is also independent of
the architecture of the cluster federation unlike [1]. Besides, we have shown that
the algorithm in its each iteration does not need to compare all vectors at all
checkpoints of the clusters: it identifies and skips those that can not belong to
the federation level recovery line. It reduces computational overhead to a good
extent and as a result its execution becomes even faster. We have also shown
that our algorithm offers much smaller number of trips to the stable storage
compared to the same in [2]. It does not also suffer from any message storm
unlike in [2].

References

1. J. Cao, Y.Chen, K. Zhang and Y. He: Checkpointing in Hybrid Distributed Systems.
Proc. of the 7th International Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN04), Hong Kong, China, (2004) 136–141

2. S. Monnet, C. Morin, and R. Badrinath: Hybrid Checkpointing for Parallel Appli-
cations in cluster Federations. 4th IEEE/ACM International Symposium on Cluster
Computing and the Grid, Chicago, IL, USA, (2004) 773–782

3. B. Gupta, S. Rahimi, R. A. Rias, and G. Bangalore: A Low-Overhead Non-Blocking
Checkpointing Algorithm for Mobile Computing Environment. Springer Verlag Lec-
ture Notes in Computer Science, vol 3947, 2006, 597–608

4. R. Koo and S. Toueg: Checkpointing and Rollback-Recovery for Distributed Sys-
tems. IEEE trans. Software Engineering, vol. SE-13, no. 1, pp.23-31, Jan 1987

5. Y. Wang: Consistent Global Checkpoints that contain a Given Set of Local Check-
points. IEEE trans. Computers, vol. 46, no. 4, pp. 456-468, April 1997

6. J. Tsai, S.-Y. Kuo, and Y.-M.Wang: Theoretical Analysis for Communication-
Induced Checkpointing Protocols with Rollback Dependency Trackability. IEEE
Trans. Parallel and Distributed Systems, vol. 9,no. 10,pp 963-971, Oct 1998

7. B. Gupta, S.K. Banerjee and B. Liu: Design of new roll-forward recovery approach
for distributed systems. IEEE Proc. Computers and Digital Techniques, vol. 149,
issue 3, pp. 105-112, May 2002

8. D. Manivannan, and M. Singhal: Asynchronous recovery without using vector times-
tamps. Journal of Parallel and Distributed Computing, vol. 62, 1695-1728, 2002

9. Xin Qi , G. Parmer , R. West: An efficient end-host architecture for cluster commu-
nication. Proc. 2004 IEEE Intl. Conf. on Cluster Computing, San Diego, California,
pp.83-92, September 20-23, 2004

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 531 – 542, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SONMAS: A Structured Overlay Network for
Multidimensional Attribute Space

Hsiu-Chin Chen and Chung-Ta King

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

Abstract. In many distributed applications, each participating node can be
characterized by one single set of attributes. The problem is to support complex
queries, such as range and k-nearest-neighbor (KNN) queries, on this set of
multidimensional attributes. Traditional peer-to-peer (P2P) systems either adopt
an unstructured interconnection and use flooding to search for matching nodes,
or implement a distributed hash table (DHT) to serve as a directory for indexing
the attributes. The former suffers from excessive flooding traffic, while the
latter has the overhead of updating and maintaining the directory. This paper
introduces an attribute-based P2P interconnection strategy that uses the
attributes to interconnect the peers instead of hash keys. Under the condition
that each node is characterized by one set of attributes, the attribute-based
networks can support range and KNN queries, guarantee lookup efficiency, and
eliminate the need to maintain a directory.

Keywords: Distributed system, information lookup, interconnection network,
multidimensional attribute space, peer-to-peer overlay network.

1 Introduction

Consider a system in which there are N nodes. Each node is characterized by a set of
attributes. The attributes represent characteristics of the nodes such as interests,
resources, states, readings, etc. The problem is to answer complex queries on these
multidimensional attributes such as range and k-nearest-neighbor (KNN) queries. To
solve the problem in a fully distributed manner, traditional P2P systems either adopt
an unstructured [4][12][13] interconnection and use flooding to search for matching
nodes, or implement a distributed hash table (DHT) [8][10][11] to serve as a
directory for indexing the attributes. Unfortunately, the former suffers from excessive
flooding traffic, while the latter has difficulty of supporting range and KNN queries.

In this paper, we propose an attributed-based approach. Since in our target
applications every node is characterized by exactly one set of multidimensional
attributes, the characterizing attributes can be used to interconnect the nodes. The
attribute-based approach is different from unstructured P2P networks such as Gnutella
in that the nodes are interconnected into a certain structure based on the
multidimensional attributes. This gives theoretical upper bounds for looking up peer
nodes. The attribute-based approach is also different from structured P2P systems
using hash-based DHT. In DHT-based P2P systems, each node will manage a portion

532 H.-C. Chen and C.-T. King

of a distributed hash table, which serves as a directory for information indexing.
Information in the system should be published to the distributed hash table. In
attribute-based approach, the information to be looked up, i.e. the attributes, is the
means by which the peers are interconnected. The advantages are the followings. (1)
There is no need to publish the information to some unrelated peers. (2) It can support
complex queries such range and KNN queries. (3) There will be no overhead for
maintaining a directory and keeping the indices up-to-date.

As an example of the attribute-based approach, we will introduce in this paper one
such system, the Structured Overlay Network for Multidimensional Attribute Space
(SONMAS). SONMAS is capable of handling range and KNN queries for
multidimensional attributes, while still keeping a log(N) routing efficiency. Although
a number of previous works have addressed the issue of complex queries in DHT-
based P2P systems [15] [16], they still require the indexing information be published
to a directory, i.e. the distributed hash table. The most closely related work to
SONMAS is skip graph [3]. A skip graph can be decomposed into levels of sorted
link-lists. There is only one level-0 list and it contains N sorted nodes. There are 2
level-1 lists, and each contains N/2 nodes. All nodes in level-0 list goes to either of
the level-1 list with equal probability. The splitting process continues until the lists
become singletons. The membership is probabilistic and determined by the
membership vectors. Skip graphs have a routing efficiency of O(logN). In skip
graphs, all that matters are the ordering of attributes instead of the exact attribute
values of nodes. Skip quad-tree [5] is realized by adding skip pointers to a quad-tree.
A skip quad-tree is defined for a two-dimensional space. This idea can be generalized
to spaces of different dimensions [1] [5]. The Skip web [2] is an example of a P2P
network based on the idea of skip quad-tree. However, the reliability issues that are
critical for real world P2P scenarios are yet to be addressed. In addition, interest
collision problems are not addressed in the current works.

2 System Design

Assume that each node in the system is characterized by exactly one
multidimensional attribute. The basic idea of SONMAS is to divide the n-dimensional
attribute space into a hierarchy of cubes, upon which an efficient interconnection
among the nodes can be built. The cube structure reflects the proximity of nodes in
the attribute space. To handle attribute collision, we add an extra dimension, node id,
to the attribute space to eliminate any collision.

2.1 Attribute-ID-Hybrid Space

To resolve collision problems in attribute space, we transform the attribute space to an
attribute-ID-hybrid space where collisions are not possible. In the attribute-ID-hybrid
space, a node’s position is determined by appending a unique node ID after its
multidimensional attribute:

< attribute-ID-hybrid key > = <attribute key | multi-D node ID>

The node ID can be obtained, say by a uniform hash function. Each attribute-
ID-hybrid coordinate is an h-digit number of base b. The leading m digits of an

 SONMAS: A Structured Overlay Network for Multidimensional Attribute Space 533

attribute-ID-hybrid coordinate specify a node’s attribute, and the rest s digits specify a
node’s ID, where m + s = h. The value m is a system parameter and should be large
enough to cover the size of the attribute space, and the value s should be large enough
to cover the network size.

Since the length of an attribute-ID-hybrid-key is h, the attribute-ID-hybrid space is
bounded in each dimension. The base b of the hybrid key is related to the degree of a
node and the routing efficiency consequently. As we will see later, the average link
degree of a node is proportional to bd/d ln(b), where d is the space dimension.
Therefore, we may trade off routing efficiency by reducing b to the minimum value,
2, in exchange for a reduction in the number of states to maintain.

2.2 Space Division and Interconnection Rules

SONMAS interconnections are based on the sub-cell hierarchy of the attribute-ID-
hybrid space. The d-dimensional attribute-ID-hybrid space is divided into bd hyper-
cubic cells and every cell is sub-divided into bd sub-cells, where b is the base of the
hybrid keys. The sub-cells are to be further subdivided until h levels of sub-cells are
formed, where h is the length of the hybrid keys. Notice that when different bases are
used in each dimension, the number of sub-cells of a cell will be b1•b2•…bd, where bi
is the base used in the i-th dimension of the hybrid key. For simplicity, in the
following discussions we will assume a common base in every dimension.

In SONMAS, we classify cells or sub-cells by levels. The entire attribute-ID-
hybrid space, called the universe, is a level-0 cell. The level-h cells are the smallest
cells and are called the atom cells. An atom cell occupies unity volume and contains
at most one node. A level-m cell, where m is the length of the attribute part of an
attribute-ID-hybrid coordinate, resolves the attributes to the finest resolution and
contains all nodes of identical attributes.

When the sub-cell hierarchy is established, we only need one rule to govern the
SONMAS interconnection: a node needs to maintain one-way connections to all its
non-empty child cells. When we say a node has a one-way connection to a cell, we
mean the node has a one-way connection to an arbitrary member in that cell. Note that
a node is a member of h+1 cells simultaneously and needs to maintain h sets of
interconnections, one set of interconnections for each level except for level-h. Each
set of interconnections has at most bd links to the bd sub-cells respectively. Note also
that there will be altogether h sets of child cells for a node to maintain connections.
We record these h sets of connections in the h levels of sub-tables of routing table
respectively.

The h levels of sub-tables of a node’s routing table are defined as follows. The
level-i sub-table of a node’s routing table records the contact information of the child
cells of the level-i cell which a node belongs to. Each level-i sub-table of a node’s
routing table records at most bd entries, and these entries correspond to cells that are
siblings to each other. Note that there is usually more than one member in a cell, and
each one of them can serve as an access point to the cell. Different nodes are allowed
to choose different members as their access to the same cell. Note also that the
attribute-ID-hybrid space will be very sparse.

534 H.-C. Chen and C.-T. King

2.3 Basic Operations

This section introduces some basic operations of SONMAS. Due to space limitation,
operations such as handling attribute changes, network maintenance, and system
optimizations will not be discussed here.

Routing

The basic idea of the SONMAS routing algorithm is to forward the messages through
the cell hierarchy by narrowing down the intermediate locations of the messages level
by level. Eventually the correct atom cell is reached and so is the destination node.
The SONMAS routing algorithm is shown in Figure 1. The matching level is defined
as the level of the smallest cell that simultaneously includes both the message holder
and the message destination. In terms of the numerical representation of attribute-ID-
hybrid key, matching level is equivalent to the length of the common prefixes
between the key of message holder and the key of message destination.

Procedure routing
Upon receiving a message, check matching level between current node and message
destination.
m matching level
if (m equals h)

{The current node is the message destination}
else

{Check level-m routing sub-table, and select the level-(m+1) sub-cell that contains the
destination node}
if (Selected entry is null)

{Announce routing failed}
else

{Forward the message to the selected entry}
}

End

Fig. 1. The SONMAS routing algorithm

Join/quit

By connecting to well-known portals, or any existing on-line peers, a node can send
its join request to the network. The join request is addressed to the joining node itself
and will be forwarded in the network according to the routing rule. We define the
level that the join request terminates as the stopping level, the cell as the stopping cell,
and the node as the stopping node. The responsibility of the stopping node is to
process the join request by providing its routing table and sending the join success
message to the new node, and sending the join notification message to all members
within the stopping cell. In addition, the stopping node as well as those that receive
the join notification message need to add the new node in their routing table. The join
process is shown in Figure 2. When a node departs, the quitting node is supposed to
send its quit notification to all nodes by multicasting through the cell hierarchy.

 SONMAS: A Structured Overlay Network for Multidimensional Attribute Space 535

Procedure handling join request
Upon receiving a join request, try to forward this message according to the routing rule.
if (forward fail)

{Announce the current node being the stopping node, and the matching level being the
stopping level.
Provide level-0 through level-(stopping level) of routing table to the new node.
Send join success message to the new node.
if (Stopping cell contains more than one member)

{Notify all members in the stopping cell of the arrival of the new node by multicasting
through the cell hierarchy.}

else
{Notify all members in the level-(stopping level – 1) cell of the arrival of the new node
by multicast through the cell hierarchy.}

Put the new node into the routing table and the new-node-list.
}

End

Fig. 2. The join operations

Query

In SONMAS, a special form of range queries, by-cell-range-searches, can be
supported easily by dividing the query into bd subtasks and rendering the sub-tasks to
the bd child cells of the target cell. Each sub-task is then subdivided and rendered in a
recursive manner. The query results are then collected in a reverse manner. The
algorithm is shown in Figure 3. It has an O(logN) time complexity if the attributes are
randomly distributed.

Procedure handling range queries
Upon receiving a query, check the matching level with the msg.target_ interest.
if (matching_level < msg.rang_ level)

{Forward the message according to the routing rule. }
else

{Check task_level and resolution_level of the query.
current_task_level msg.task_level
current_task_owner msg.task_owner
if (current task_level = msg.resolution_level)

{Report the current node’s attribute-ID-hybrid key to the current_task_owner.}
else

{Divide the task into sub-tasks by: msg.task level msg.task_level + 1
msg.task_owner current node
Send the modified query to all non-empty entries in level-(current_task_level).
Start timer and wait for reports.
if (all sub-tasks results are reported or time is up)

{Report all available results to current_task_owner}
}

}
End

Fig. 3. Handling by-cell-range-searches

536 H.-C. Chen and C.-T. King

In Figure 3, range level is the level of the target cell that specifies the size of the
target range. The range level is an integer between 0 and m, where m is the length of
the attribute key as defined in Section 2.1. Resolution level is the level when tasks can
no longer be subdivided, and the reporting process should begin. The resolution level
is an integer ranging from 0 to h, where h is the length of attribute-ID-hybrid key.

True range queries in which the size and position of the target is not limited by the
cell hierarchy can be implemented by a high-level manipulation of by-cell-range-
searches. The reason is that an arbitrary range can be decomposed into various target
cells of various levels.

3 Evaluation

SONMAS is evaluated by simulations on time efficiency, traffic overhead, system
reliability under dynamic environment, as well as query performance. The simulator
is written in Java and run on JVM version 1.4.2_01-b06. Throughout all the
simulations, uniform end-to-end delay is assumed, and node computation delay is
neglected. TCP is assumed for the transportation layer protocol; however, the three-
way synchronization time is neglected.

The network size simulated ranges from 10 to 5000 nodes. Three version of
SONMAS are evaluated: the full function version equipped with all reliability-related
designs including HSA, routing table exchange, and one level introduction; the
baseline version in which the above functions are excluded; the intro-off version
which contains all reliability-related designs but one level introduction. The metrics
used to evaluate our system include average hop count, packet count, and connectivity
score. Because of the uniform latency assumption, it is sufficient to represent routing
time efficiency with average hop count. The connectivity is measured by querying the
universe from a number of randomly selected peers. The connectivity score is defined
as the average query score of all these queries. The full score of connectivity is 100.

3.1 Time Efficiency and Traffic Overhead

In the following experiments, the network size ranges from 10 to 5000 nodes, in 1 to
6-dimensional attribute space with choices of bases ranging from 2 to 32. The
experiments are conducted as follows. We bring up the network to the size of our
choice at constant rate. After a short period of stabilization time, events are started as
required by each experiment. For the measurement of routing efficiency, a number of
arbitrary packets are sent, and the cumulated path length and packet success rate are
recorded. As with the join overhead, a series of join and quit events are arranged after
stabilization, and the total number of join operation related packets are recorded as
well as cumulated message size in bytes.

The dependence of path length as a function of network size is shown on Figure 4.
Each data point is obtained by averaging the result of 100 random tests. Three sets of
data, each of different choices of base and dimension, all showed straight lines on the
log-scale plot. These results demonstrate that SONMAS has an O(logN) routing
efficiency. The effects of path length are shown on Figure 5. Figure 5(a) shows that
the routing hop count decreases as the dimensionality increase, while Figure 5(b)
shows that the routing hop count decreases as the base increase.

 SONMAS: A Structured Overlay Network for Multidimensional Attribute Space 537

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 100 1000 10000

network size (nodes)

a
v
e
r
a
g
e

p
a
th

le
n
g
t
h
 (
h
o
p
s
)

2d-base 4

3d-base 4

2d-base 2

Fig. 4. Path length as a function of network size

�

���

�

���

�

���

�

���

�

���

� � � 	

��������

��
��
��
��
��
	

��
��
�
	

�

�
��
� �����

������

�

���

�

���

�

���

�

���

�

���

� �� �� �� ��

����

��
��
��
��
�
�	

���
��
	

�

�
��
� 	
���

	
����

(a) (b)

Fig. 5. Effects of overlay structure: (a) path length as a function of dimensionality (base 4), and
(b) path length as a function of base (2-D)

The message overhead of the join operation is shown in Figure 6, where the
number of packets transmitted per join event versus N is plotted on a log scale.
Straight lines are shown on the plot. In other words, the average packet counts for
each join event is of O(logN).

The maintenance traffic overhead is shown in Figure 7 in terms of number of
packets. Two curves are shown on each plot, one corresponding to the baseline
version of SONMAS, and the other corresponding to the full function of SONMAS.
In terms of number of packets, the baseline version shows O(logN) and the full
function version is a little worse than that.

538 H.-C. Chen and C.-T. King

0

5

10

15

20

1 10 100 1000 10000

network size (nodes)

tr
a
ff
ic
 (
m
es
s
a
g
es
/e
v
e
n
t)

base 2

base 4

Fig. 6. Join traffic overhead measured as the message count as a function of network size in
log scale

0

1

2

3

4

5

6

0 1000 2000 3000 4000 5000

network size (nodes)

m
a
in
te
n
a
n
c
e
 t
ra
ff
ic
 (
p
a
c
k
e
ts
/s
e
c
) MOH-basic

MOH-Full

Fig. 7. Maintenance traffic overhead measured as the message count as a function of network
size

3.2 Query Performance

The following experiments demonstrate the performance of by-cell-range-searches.
The network size varies from 100 to 5000. For the query performance, we ran a
number of random queries for each range level of choice ranging from 0 to m, i.e. the
length of the attribute part of the hybrid key. The resultant score and the time
consumed for each query are recorded. On the other hand, to demonstrate the effect of
resolution level, we issue a number of queries initiated from random nodes that
argeted on the universe at various resolution levels. The node count of each query
result is recorded.

 SONMAS: A Structured Overlay Network for Multidimensional Attribute Space 539

As shown in Figure 8, SONMAS demonstrates a time efficiency of O(logN) for
by-cell-range-searches, initiated by arbitrary nodes and centered on arbitrary values
with range sizes of arbitrary levels. Figure 9 shows query latency as a function of
range level for networks of 100 and 1000 nodes. From the plots, we can see the time
consumption decreases linearly as the range level increases, where larger range levels
correspond to smaller ranges. However, the curve stops decreasing and becomes a flat
line as the range level exceeds. On the other hand, the resolution level also shows
expected behavior: the smaller the resolution level is, the fewer the number of nodes
found, as shown in Figure 10.

0

400

800

1200

1600

100 1000 10000

network size (nodes)

la
te
n
c
y
(m
s
)

rl=1

rl=2

rl=3

rl=4

Fig. 8. Query latency as a function of network size with range level from 1 to 4 for
dimension 2 and base 2

0

4

8

12

16

0123456

range level

ti
m
e
 c
o
n
s
u
m
p
ti
o
n
 (
u
n
it
 c
h
a
n
n
e
l
la
te
n
c
y
)

N=1000

N=100

Fig. 9. Latency as a function of range level for dimension 2 and base 2

540 H.-C. Chen and C.-T. King

0

200

400

600

800

1000

1200

-113579111315

resolution level

r
e
s
u
lt
a
n
t
n
o
d
e
 c
o
u
n
t(
n
o
d
e
s
)

Fig. 10. Node count as a function of resolution level with range level = 0 for dimension 2 and
base 2

3.3 Summary

Here, we summarize the major results of the simulations bellow:

• Routing efficiency: The Nbb
log routing efficiency of SONMAS is verified.

• Join overhead: The join operation takes O(logN) messages per event. The traffic
mainly comes from the “join success” packet, in which the routing table of the
stopping node is attached as the payload. Clearly, if a size limit is put onto the
backup lists, the traffic overhead would be reduced to O(logN) bytes per event.

• Maintenance overhead: While each node needs to maintain O(Nbb
log) states, the

maintenance overhead seen by a node is O(log2N) bytes per second. It is not hard
to imagine that if a size limit is put onto the backup lists, the overhead would be
reduced to O(logN) bytes per second.

• Query: The O(Nbb
log) query efficiency of SONMAS is verified. The query

efficiency is also a logarithm function of target cell size.

4 Conclusions

SONMAS is an attribute-based P2P system for supporting complex queries on
multidimensional attribute space. It targets at applications in which peers
characterized by exactly one set of multidimensional attributes are queried to satisfy
given range queries. SONMAS interconnects the peers according to the attributes. To
deal with possible attribute collisions, SONMAS introduces the attribute-ID-hybrid
space to map each node to a unique point in a multidimensional space. Simulation
results of SONMAS show scalable routing efficiency and low traffic overhead.

 SONMAS: A Structured Overlay Network for Multidimensional Attribute Space 541

However, there are some remaining issues need to be addressed. The first issue is
the non-scalable dimensionality. Since the states a node needs to maintain is

Nb db

d log⋅ , the maintenance overhead is not scalable with dimensionality. For this

reason, SONMAS is limited to low-dimensional applications. To accommodate more
dimensions, we can trade off the routing efficiency by reducing the base to the
minimal value 2. The limitation will depend on peers’ computation powers and the
Internet capacity.

Another issue is that, although SONMAS provides interconnections between
proximal nodes in the attribute space, it is not true for nodes sitting near the
boundaries of large cells. Sometimes, a pair of adjacent nodes may fall into two
completely different search trees. This is an intrinsic problem of SONMAS due to its
cell hierarchy. Some ideas can be applied to improve the performance near cell edges.
For example, we can add extra shortcuts between neighbors across the edge of large
cells. We may also perform proximal neighbor selection in attribute space instead of
in physical space, especially for those sitting near the edge of large cells. Further
research is needed to study the effectiveness of these ideas.

Acknowledgments. This work was supported in part by the National Science
Council, R.O.C., under Grant NSC 95-2752-E-007-004-PAE, by the MOEA Research
Project under Grant No. 95-EC-17-A-04-S1-044, by the Advanced Mobile Context
Aware Application & Service Technology Development Project of the Institute for
Information Industry, and by the ICL of ITRI.

References

1. Ittai Abraham, James Aspnes, and Jian Yuan, “Skip B-Trees”, Proc. Ninth International
Conference on Principals of Distributed Systems, (2005) 284-295

2. Lars Arge, David Eppstein, and Michael T. Goodrich, “SkipWebs: Efficient Distributed Data
Structures for MultiDimensional Data Sets”, Proc. of the Twenty-fourth Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC) (2005)

3. James Aspnes and Gauri Shah, “Skip Graphs”, Proc. Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, (2002) 384-393

4. I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A Distributed Anonymous
Information Storage and Retrieval System”, Proc. Workshop on Design Issues in
Anonymity and Unobservability, (2000) 311–320

5. D. Eppstein, M. T. Goodrich, and J. Z. Sun, “The Skip Quadtree: A Simple Dynamic Data
Structure for Multidimensional Data”, Proc. 21st ACM Symp. On Computational
Geometry (SCG) (2005)

6. Prasanna Ganesan, Beverly Yang, and Hector GarciaMolina, “One Torus to Rule Them
All: Multidimensional Queries in P2P Systems”, Proc. of the Seventh International
Workshop on the Web and Databases (WebDB) (2004)

7. Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec Wolman,
“SkipNet: A Scalable Overlay Network with Practical Locality Properties”, Proc. of the
Fourth USENIX Symposium on Internet Technologies and Systems (USITS), (2003)

8. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker, “A
Scalable Content-Addressable Network”, Proc. ACM Symposium on Communications
Architectures and Protocols (SIGCOMM) (2001) 161–172

542 H.-C. Chen and C.-T. King

9. Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz, “Handling Churn in a
DHT”, Proc. 2004 USENIX Technical Conference (2004)

10. A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object Location and
Routing for Large-scale Peer-to-peer Systems”, Lecture Notes in Computer Science (2001)
161-172

11. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications”, Proc. of the International
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (2001) 149-160

12. Napster. http://www.napster.com/
13. Gnutella. http://www.gnutella.com/
14. Chunqiang Tang, Zhichen Xu, Mallik Mahalingam, “pSearch: Information Retrieval in

Structured Overlays”, ACM SIGCOMM Computer Communication Review (2003) 89 – 94
15. A. R. Bharambe, Mukesh Agrawal, and S. Seshan. “Mercury: Supporting Scalable Multi-

Attribute Range Queries,” Proc. ACM Symposium on Communications Architectures and
Protocols (SIGCOMM) (2004)

16. C. Schmidt, M. Parashar. “Flexible Information Discovery in Decentralized Distributed
Systems,” Proc. HPDC (2003)

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 543 – 554, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Formal Specification and Implementation of an
Environment for Automatic Distribution

Saeed Parsa and Omid Bushehrian

Faculty of Computer Engineering, Iran University of Science and Technology
{parsa,bushehrian}@iust.ac.ir

Abstract. It is desirable to replace supercomputers with low cost networks of
computers to run computationally intensive programs. To alleviate the burden
of writing distributed programs, automatic translation of sequential to
distributed programs is highly recommended. In this paper a new architecture to
support automatic translation of sequential to distributed programs is offered. A
formal specification of the structure and behavior of the architecture
components is presented. The applicability of the specified architecture is
demonstrated by presenting its implementation details and evaluating the
performance of the resultant distributed program.

1 Introduction

The aim has been to provide an environment to automatically distribute the execution
load of computationally intensive programs over a dedicated network of computational
nodes. Automatic distribution of sequential programs is of great concern in applying
networks of low cost computers to run computationally intensive code.

There have been thorough investigations on automatic distribution of sequential
code. However, most of the current approaches put some limitations on the program
to be distributed or the distribution policy. Some researches have restricted the
problem to cover only multithreaded programs [5][8]. Some others partition the
sequential code in order to use remote resources across the network but have failed to
achieve a faster distributed program [3][4][6][7]. In the approach presented in [2] only
those objects whose accessible objects form disjoint sets can be converted to remote
objects. We have developed a framework for automatic translation of a legacy
sequential object-oriented program into a corresponding distributed one in order to
achieve maximum concurrency in the execution of the program. A major difficulty
has been to prove the correctness of the translation process. To resolve the difficulty,
we developed a formal abstraction of the translation scheme and formally proved its
correctness [11]. To demonstrate the feasibility and realizability of the specified
translation scheme, a detailed description of its implementation and evaluation is
presented in this paper.

The remaining parts of this paper are organized as follows: An overall description
of the building blocks of our proposed architecture for the final distributed program is
presented in Section 2. In Section 3, a formal specification of the structure and

544 S. Parsa and O. Bushehrian

behavior of the architecture building blocks is presented. Implementation details are
presented in Section 4. An evaluation of the performance of the resulting distributed
program is presented in Section 5.

2 Architecture

The aim has been to translate sequential object oriented programs into corresponding
distributed ones. To achieve this, in the first stage of the translation, the class
dependency graph of the sequential code is extracted. Each edge of the graph is then
labeled with the amount of concurrency achieved by assigning the classes at the two
ends of the edge to different components of the ultimate distributed architecture. The
aim has been to speedup the program execution by replacing ordinary method calls
with remote asynchronous calls. Here, as shown in Figure 1, the objective is to
achieve the maximum concurrency between the caller and the callee by means of
asynchronous calls.

Fig. 1. The amount of concurrency obtained in this asynchronous call is min(T1,T2)

As shown in Figure 1, the caller may continue with its execution in parallel with
the callee as far as the return value and any other values affected by the callee are not
required. In order to locate the very first positions where the results and the return
value of an asynchronous call are required a data dependency analysis algorithm
among method calls has been used [1]. This data dependency checking, obviously,
ensures preservation of the semantics of the sequential code. The proof is presented in
[11]. The labeled class dependency graph is then clustered and the program code is
partitioned into clusters with maximum concurrency in their executions. Each cluster
is assumed to be executed on a different station. As shown in Figure 2, in order to
translate ordinary sequential calls into remote asynchronous inter-cluster calls four
components, Port, Distributor, Connector and Synchronizer are augmented to each
cluster. These components and the resulting architecture are formally described in
section 3. A Port component is created for each cluster to facilitate its incoming
communications with the other clusters. The Distributor component performs
outgoing inter-cluster invocations. The Synchronizer component makes it possible for
a caller to receive the value of the call parameters and the results of remote method

Caller

T1

Dependency Point

R

Callee

T2

 Formal Specification and Implementation of an Environment 545

calls. The Synchronizer keeps a record of each remote method call in a table. The
record is updated with the values of reference parameters and the return value. A wait
statement is inserted at the very first positions where one of the reference parameters
or the return value is required. To locate these positions a data dependency analysis
approach has been used [1]. The Connector component is the middleware aware part
of the suggested architecture. All the inter-cluster communications are carried out
through this component. A formal description of the above mentioned components is
presented in the subsequent sections.

Fig. 2. Proposed distributed architecture

3 Formal Specification

In this section a formal description, which follows the VDM language conventions, of
the structure and behavior of the distributed code is presented. Each unit of the
distribution is a cluster of highly related classes. A formal specification of the cluster
structure and its associated distributing components is presented in section 3.1. The
runtime behavior of the distributing mechanism is described in section 3.2.

3.1 Distributed Program Structure

As described above, each component of the resulting distributed program architecture
contains a cluster of the original sequential source code and four other components,
shown in Figure 2. In this Section a formal description of the structure of the
distributed program, called PartitinedCode, is presented.

 PartitinedCode = set of cluster,
 ∀ Clusteri ∈ PartitinedCode : Clusteri = (CTi , Pi , Di , Gi ,Ri)

Where, CTi addresses a table containing a description of all classes belonging to the
Clusteri. The element Pi, is the cluster port, providing possibility of asynchronous
remote access to the methods of CTi classes from within the classes of CTj where i≠j.
The element Di is the cluster distributor, which provides transparent remote access to

Cluster i

 Class C Class B
Class A

Cluster j

 Class C Class B
Class A

Middleware

Distributori Synchronizeri

Connector Connector

Port i Distributorj SynchronizerjPortj

Cluster i

 Class C Class B
Class A

Cluster j

 Class C Class B
Class A

Middleware

Distributori Synchronizeri

Connector Connector

Port i Distributorj SynchronizerjPortj

546 S. Parsa and O. Bushehrian

the methods of classes in other clusters connected to Clusteri. The element Gi is a map
which relates a method in port Pi to a method in one of the classes of CTi. Ri is
another map which relates one method in Di to a method of a remote port Pk where k
≠ i. Before specifying these elements formally, some auxiliary definitions are
required:

3.1.1 Classes and Methods
As described above, the class table of ith cluster, CTi, is defined as a set of classes:

CTi = set of class
 ∀sk ∈ CTi : sk= (classnamek ,Tk,Fk , Mk)

 where Tk = seq of t , t ∈ types,
 Fk = seq of id, id ∈ identifiers, classnamek ∈ identifiers, len Tk = len Fk

In the above definition, seq of defines a sequence and the function len returns the
length of a sequence. The above definition defines class sk named classnamek, which
has fields Fk with types Tk and methods Mk. Each method of a class sk is defined as
follows:

 ∀ mj ∈ Mk : mj = (methodnamej,Tj ,Aj , rj , Ej) ,
 where Tj = seq of t, t∈ types, Aj = seq of id, id∈ identifiers, methodnamej ∈ identifiers,
 rj ∈ types, Ej=seq of e,e ∈ statements, len Tj=len Aj

The above definition defines method mj of the class sk. mj addresses the method
methodnamej of the class classnamek with formal parameters Aj of the types Tj and
return type rj and the body of the method includes statements Ej.

In a distributed program, there are two sets of call statements, intra-calls and inter-
calls, to define intra-cluster and asynchronous inter-cluster method calls respectively.
In cluster Clusterr:

 ∀ st ∈ intra-calls : st = (sn , mi ,V)
 Where: sn ∈ CTr , mi ∈ Mn and V is a vector of the call statement parameters
 ∀ st ∈ inter-calls : st=(mk , V)
 Where: mk ∈ Dr (defined below)

3.1.2 Port and Distributor
Each cluster Clusteri, is associated with two components, port Pi and distributor Di, to
define methods provided and required by the cluster, respectively. Each cluster, Clusteri,
has a single port, Pi, to communicate with the other clusters. The port is defined as a set
of methods, which can be accessed from the other clusters by the asynchronous inter-
cluster call statements. Each method, mk, within Pi invokes a method, Gi(mk), of a class
defined within the class table CTi of the cluster Clusteri.

 Pi = set of method, ∀ mk ∈ Pi : mk = (methodnamek , Tk ,Ak , rk ,Ek)
Map Gi of Clusteri is defined as follows:

 Gi = map Pi to Mi
*, Mi

*= ∪Mn where, sn∈CTi , sn=(classnamen , Tn ,Fn , Mn)

Types Set of all language types including primitive types and classes
statements Set of all language statements
identifiers Set of all valid language identifiers

 Formal Specification and Implementation of an Environment 547

Gi maps each method mk of the port Pi to a method mt belonging to a class like sn
of Clusteri:

Gi(mk) ∈ Mn , Gi(mk) = (methodnamet ,Tt , At , rt , Et)

The called method, Gi(mk), has the same name as the method mk and belongs to
one of the classes, sn, in the cluster Clusteri. The parameter list, Ak, of the method mk
includes the name of the object “objectRef” which references an instance of the class
classnamen and the parameters of method mt :

 Tk = [classnamen].Tt Ak = [“objectRef”].At rt = rk

In the above definition the concatenation of two sequences are denoted by symbol
'.' . Sequence Tk has one more element, classnamen, than Tt. Each cluster, Clusteri, has
a single distributor Di as well. Di delegates the asynchronous inter-cluster calls of
Clusteri to a remote port Pr. In the following definition, Ri maps each method mk of Di
to a method Ri(mk) of remote port Pr.

Di = set of method , Ri= map Di to ∪Pr for all r ≠ i

∀ mk ∈ Di : mk = (methodnamek ,Tk ,Ak , rk ,Ek) ,
 ∃ Pr : Ri(mk) ∈ Pr, Ri(mk) = (methodnamet, Tt, At, rt, Et), Tk = Tt, Ak = At, rt = rk

Finally the following property can be stated for each distributed program
PartitinedCode:

∀ Clusteri , Clusterj ∈ PartitinedCode,i≠j : CTi ∩ CTj = φ , Pi ∩ Pj = φ

3.2 Runtime Elements

In this section, the behavior of the final distributed program code is described as a set of
runtime configurations. In order to perform a remote method call a new configuration is
created for the called method at runtime by the caller. Each configuration represents the
behavior of the thread created to perform the remote method. The configuration is
removed after the termination of the called method, when the caller receives the return
value. A configuration g is defined as tuple (σg, Sg, P

i
g, m

j
g, Ng , Stateg) where,

σg : Memory space of the configuration g.
Sg : Stack of synchronizers of the configuration g.
Pi

g : the target port of configuration g which belongs to Clusteri
mj

g: j
th method of port Pi

 which is executed by configuration g
Ng : Physical network node of configuration g
Stateg : running state of g, Stateg ∈ {“Suspended”,“Running”,”Terminated”}

In the above definitions each element of configuration g is subscripted by the
configuration name, g. The configuration port Pi

g is the cluster port which provides access,
through one of its methods: mj

g, to the method which should be executed by g. In the
following subsections the elements of the configuration tuple are further described.

3.2.1 Memory Spaces
A new configuration g is created in a workstation Ng whenever an inter-cluster call is
delegated asynchronously, through a local distributor D, to a method mj

g of a remote
port, Pi

g. The memory space element of g retains the parameter’s value of the method

548 S. Parsa and O. Bushehrian

mj
g, before and after its completion. The memory space element also retains the return

value of the method mj
g. The memory space σg of the configuration g consists of a

mapping from variable names to values, written (x v), or from object identifiers to
the existing objects, written (obj (classnamek, Fk, Vk)) indicating that identifier obj
maps to an object of class classnamek. Fk and Vk are two sequences of the field names
and their values of the class sk=(classnamek ,Tk ,Fk , Mk) , sk ∈ CTi. For instance
consider the following memory space:

σ = {(a (A , f1:b,f2:3)),(b (B,f1:c)),(c (C))}

This map shows a memory space containing three identifiers pointing to the objects
of types A,B and C, respectively. The set {a,b,c} is called the domain of this map and
is denoted by dom σ. Here, the object pointed to by the identifier, a, has two attributes
f1 and f2. f1 points to b which is an object identifier in its turn. The attribute f2 holds an
integer value. There are two functions called og and serialized which operate on the
memory spaces. The function og(σ,v) returns a subset of the memory space, σ, as an
object graph containing the object identifier, v, and any object within σ which is
accessible via v:

 og : 2σ × dom σ 2σ ,

Below, is a recursive definition of the function, og:

 og(σ,v) =

The function og, traverses the memory space σ and forms a subset of the memory
containing the node v and all the nodes accessible via v. The function fields(v), in the
above definition of og, returns all the objects, oi ∈ σi, immediately accessible via the
object σ(v). The serialized function returns the value of an object graph w in memory
space of configuration g:

 serialized(g, w) ={(a, σg(a)) | a ∈ dom w } w ∈ 2σ

3.2.2 Stack of Synchronizers
The synchronizer element, Sg, of a configuration g keeps a record of the names of all
reference parameters, return value and a handle identifying the thread created to
execute a remote method, mj

t, invoked via a method, m, within g, in a table. A new
configuration t is created for each remotely invoked method within an existing
configuration, g. The set Dr and the mapping Rr in the following definition are already
defined in section 3.1.2.

 Sg = map (dom σg) to Threadsg

 Threadsg = {t | t is defined as (σt, St, P
i
t, m

j
t, Nt , Statet) }

 Where g is defined as: (σg, Sg, P
r
g, m

s
g, Ng , Stateg)

 ∀ t ∈ Threadsg ∃ m ∈Dr , Rr(m)= mj
t , m

j
t ∈ Pi

t

The synchronizer table is looked up for the names of reference parameters and the
return value at the very first positions where one of the reference parameters or the
return value is required within g. A SYNC statement is inserted at each of these
positions. The SYNC(v) statement looks up the name v in the synchronizer table to find

(v σ(v)) ∪ og(σi,oi), oi ∈ fields(v), σ1=σ-{v}, σi+1= σi - dom og(σi ,oi)

φ , if v ∉ dom σ

 Formal Specification and Implementation of an Environment 549

the handle of the corresponding invoked method. The handle is checked to determine
the termination of the invoked method. A synchronizer table is created and pushed into
the synchronizer stack, Sg, when entering a new method within g, at runtime.

 Sg= seq of Sg

The SYNC method and another method called REG operate on Sg. SYNC(v) is called
whenever a variable, v, affected by a remote method call is required within the caller. To
get the value of v, the configuration t = hd(Sg)(v) is accessed through the synchronizer
stack, Sg. The function hd(Sg) returns the first synchronizer on the top of the stack.

 SYNC(v)
 pre: v ∈ dom σg ∧ t = hd(Sg)(v)
 post: Statet=”Terminated” ∧
 σg = ^σg † (serialized(t, ∪og(^σg, vi)) ∪ (∪og(σt,vi))), where ∀ vi : hd(Sg) (vi) = t

In the above definition of SYNC, ^σg indicates the memory space of the caller
configuration, g, before the invocation of SYNC; † indicates overriding of ^σ with the
memory space of the called method. After the invocation of SYNC, the caller is
suspended until the state, Statet of the target configuration t, becomes “Terminated”.
The SYNC operation uses the memory space of the configuration t, to update the
memory space σg of the caller configuration, g. The updates are accessed via the
serialized function, described in section 3.2.1. The REG(v,t) operation records a
parameter v passed as a reference parameter in a remote call, together with the called
method configuration, t, in the synchronizer table of the caller configuration.

REG(v, t)
pre: v ∈ dom σg

 t ∈ Threadsg
post:
 hd(Sg)= hd(^Sg) † (v t)

4 Implementation Model and Results

In this Section considering the architecture design and structural and operational
specification of the components applied to distribute a sequential code, the implementation
details of these components and the required modifications to the sequential code to
generate the desired distributed code is described.

The parameter passing mechanism in asynchronous remote method calls is explained in
section 4.1. The required modifications to convert ordinary method calls to corresponding
asynchronous remote calls are presented in section 4.2.

4.1 Parameter Passing

There are two approaches for passing reference parameters in asynchronous remote
method calls, namely system-wide object references [9] and copy-restore. In the
system-wide approach a unique identifier is assigned to each object to be accessed
remotely. This identifier includes the network address of the computational node
where the object resides on and an indication of the object. All the method calls on

550 S. Parsa and O. Bushehrian

this object should be carried out on the computational node where the object is
initially created. In contrast, the copy/restore approach makes it possible to run
methods of an object on different computational nodes by copying the object state to
the computational node, and restoring the object state back to the caller after the
completion of the call. Applying the copy/restore approach for transferring call
parameters in an inter-cluster asynchronous call, the callee may reside on any
computational node with minimum load within the distributed environment.
Therefore, in this approach an object may be accessed on different nodes during its
life time and a specific predefined location is not required. As a result, the
copy/restore approach provides a better load balancing of the distributed program
code across the computational nodes.

C6A

 B

C

E

F

c1
c2

 c3 c4

Class A{
Void main(){
 E e=new E();
 C c=new C();
 e.m(); //c2
c.n(e); //c1

 ... }

Class C{
void n(E e){
 e.m(); //c6

….
}

c5

Fig. 3. A sample clustering of the classes

For instance, in Figure 3 the program code is partitioned into two clusters. Here the
clustering algorithm is only applied to determine which method calls deserve to be
converted to remote asynchronous calls in the sense that they yield speedup in overall
program execution. Considering the clustering in Figure 3, the invocations c1, c2, c3
and c4 should be converted into remote asynchronous invocations whereas c5 and c6
should remain intact. The method calls c6 and c2 are applied to a same instance, e, of
class E. Applying a system wide reference approach, e is created as a local object in
cluster 2 and is accessed as remote object in A and C. However, since E and C are in
the same cluster, c6 should apply a local instance of E, rather than the remote object e.
This problem can be resolved by applying the copy/restore approach in expense of
incurred overhead of coping object states when performing remote calls.

4.2 Implementation

In order to translate an ordinary method call a.m(p1,p2,…,pn), in a cluster, Clusteri, into
a corresponding asynchronous remote method call, the call statement is replaced with
Di.m(this, p1, p2,…, pn) where, Di is a static distributor class, specified in section 3.1.2,
assigned to the cluster, Clusteri, and the parameter this refers to the object a. As
specified in section 3.1.2, each Distributor component has a number of methods to
delegate outgoing calls. For each method:

returnType m(T1 p1,T2 p2,…,Tn pn){ … }

Within a cluster, Clusterj, which is invoked from within another cluster, Clusteri, a
delegator method which is also named m is augmented to the distributor component,
Di, of the cluster, Clusteri, as follows:

 Formal Specification and Implementation of an Environment 551

Sample method in Distributor Di Semantics
ResultHandle m(A this,T1 p1,T2 p2,…,Tn pn)
 { Object[] parlist={this,p1,p2,…,pn} ;
 String portname= Ports.lookup(“A”); Map Ri is used to locate the target of call
 ResultHandle h=
 Connector.connect(portname,”m”,parlist);

return h; }

Configuration t is created and call
parameters are transferred to the memory
space of t: σt = ∪ og(σg , vi) , vi ∈ V

Fig. 4. A sample method in Distributor Di and its corresponding operational semantics

In the above code, the name of the class, A, is looked up in the tables, addressed as
CTi in the above formal specification, to find the cluster, Clusteri, to which A belongs.
Then, the remote method call is performed by passing the port name of Clusteri,
method name, m, and the parameters of m to the connect method of the Connector
object. The Connector object then returns a handle, h, which includes a unique
reference to the invoked method activation. This handle is then used by the caller to
receive the values returned by the remote method, m. This is achieved by calling a
method called Add(), of the Synchronizer component. This method inserts the handle
object in an object table, which is an instance of a class called SyncTable. A new
syncTable is created when entering a new scope. The table is pushed into a stack by
calling of the pushSyncTable() method of the Synchronizer component. When exiting
a scope, its syncTable is popped off the stack by calling the popSynchtable() method.
Below, in Figure 5 the definition of the Synchronizer methods and their
corresponding specification elements from section 3 are shown.

Method Specification
void Add(String varname,int seq,Object h){} Operation: REG
void restoreObject(String varname,Restorable v){} Operation: SYNC
Object restoreResult(String varname){} Operation: SYNC
void pushSynchTable(){} Element : Sg
void popSynchTable(){} Element : Sg

Fig. 5. The Synchronizer methods

The method add() implements operation REG specified in section 3.2.2. Two
methods restoreObject() and restoreResult() implement the operation SYNC. The
former method is used to restore the values of all reference parameters transferred via
the remote method call and the latter is used by the caller to receive the return value.

To wait for the value of an object, o, affected by a remote call, m, the retoreObject()
method is invoked. This method looks up the object name “o”, kept in the parameter
varname, in the syncTable to obtain its handle and waits for the callee to return its value.
The returned value is then stored in the object parameter v by calling its restore()
method. To invoke restore(), the class of the object o implements the interface
Restoreable described below:

interface Restorable {void restore(Object remoteObject);}

552 S. Parsa and O. Bushehrian

The method restoreResult() acts the same as restoreObject() except that it returns
the return value of the call statement. Each cluster, Clusteri, includes a port
component, Pi, to receive incoming method calls. For each method m(T1 p1,T2 p2,…,Tn
pn) within Clusteri, which can be invoked remotely, there is a method m(A this,T1
p1,T2 p2,…,Tn pn) within the port component where, A is the name of the class to
which m belongs.

5 Evaluations

Our proposed distributing environment is implemented in Java. JavaSymphony
middleware [10] is accessed via the Connector component to handle remote calls. The
performance of the system is evaluated on a dedicated network of five Pentium
2.4GH PC’s. In this section the performance of the distributing environment using
two benchmarks is reported. In order to prepare each benchmark for distributed
execution, ordinary method calls are replaced with calls to the Distributor class,
described in section 4.1. To determine method calls to be converted to remote
synchronous calls, the amount of concurrency in the execution of the caller and the
callee is considered. A clustering algorithm which is not presented here, determines
the method calls to be converted into remote asynchronous calls. The clustering is
aimed at the highest concurrency in execution of inter-cluster method calls.

5.1 ReadTest Benchmark

ReadTest [1] is a synthetic benchmark which is used to measure how the variations of
completion time of asynchronous method calls affect the total speedup achieved by
distributing a program code across a dedicated network. ReadTest(m,n) is a program
which creates m parallel asynchronous calls each with execution time of n
milliseconds. Figure 6 presents the results of running ReadTest(50,n) with different
values for n on four computational nodes.

0

1

2

3

4

5

0 2000 4000 6000 8000

Task Granularity(miliseconds)

Sp
ee

du
p(
4
no

de
s)

Fig. 6. Effect of remote call execution time on the speedup

This benchmark is a good indicator of the overhead of distributing a program using
our distributing environment. As shown in Figure 6, the performance is relatively
poor when the execution times of the asynchronous calls are relatively small.
Apparently, when the execution time is too small the cost of serializing object states

 Formal Specification and Implementation of an Environment 553

to the remote node and creating, running and synchronizing asynchronous calls,
outweigh the benefit gained from the distribution. As shown in Figure 6, the highest
amount of speedup is achieved when the execution time of each remote call is greater
than 5000 milliseconds.

5.2 Warshall Algorithm

We have applied a copy/restore mechanism to transfer parameters in remote calls because
this mechanism makes it possible to retain an object state within the caller after the
completion of the remote method. Thereby, applying a copy/restore approach it is possible
to invoke different methods of an object on different computational nodes. However, this
mechanism suffers from the overhead of passing the value of call parameters. In this
section it is shown that despite the relatively long parameter passing time, copy/restore
mechanism is beneficial to code distribution. This is demonstrated by applying Warshall
algorithm to compute the connectivity matrix for a 1000×1000 matrix over a network of 1
to 5 dedicated computing nodes within the proposed distributing environment. This
algorithm entails many matrix multiplications and for a given digraph determines whether
or not there exists a path between each pair of the nodes.

Fig. 7. Speedups achieved by distributing the Java code for the Warshall algorithm

The implemented code subdivides the matrix multiplication process among n
methods. For instance for n = 2, 1000 multiplications required for computing the
connectivity matrix is subdivided in to two 500 multiplications each performed on a
separate computational node. In Figure 7, the speed ups achieved for values 2 to 5 for
n is presented. It is observed that there is a relatively little growth in the speedups
when the number of computational nodes is increased from 4 to 5. Apparently, the
communication cost outweighs the benefit gained from the distribution when the
number of computational nodes is increased.

6 Conclusions

In this paper the formal specification and implementation of a set of components to
translate a legacy object oriented sequential program into a corresponding distributed
program is presented. To distribute efficiently, the program is partitioned into clusters in
order to achieve concurrency in the execution of the inter-cluster asynchronous calls. A
major difficulty with remote method calls is to transfer and receive the value of

554 S. Parsa and O. Bushehrian

reference parameters. Formal specification of the structure of distributed program makes
it possible to define the distributing components and their application precisely.
Applicability of the formal specification is shown by presenting implementation details
for the specified structure and behavior of the distributing components. It is shown both
in theory and practice that a copy/ restore approach is beneficial for transferring
reference parameters in a distributed environment.

References

1. Brayan Chan, Tarek S. Abdelrahman, “Run-Time Support for the Automatic Parallelization
of Java Programs” , The Journal of Supercomputing, pp 91–117, 2004

2. Isabelle Attali, Denis Caromel, Romain Guider, “A Step Toward Automatic Distribution
of Java Programs”, 4th International Conference on Formal Methods for Open Object-
Based Distributed Systems (FMOODS 2000), Stanford, California, USA, 2000

3. Roxana E. Diaconescu, Lei Wang, Michael Franz, “Automatic Distribution of Java
ByteCode Based on Dependence Analysis”, Technical Report No. 03-18, School of
Information and Computer Science, University of California, Irvine, 2003

4. Roxana Diaconescu, Lei Wang, Zachary Mouri, Matt Chu, “A Compiler and Runtime
Infrastructure for Automatic Program Distribution”. 19th International Parallel and
Distributed Processing Symposium (IPDPS 2005), IEEE ,2005

5. Mohammad M. Fuad, Michael J. Oudshoorn, “AdJava-Automatic Distribution of Java
Applications”, 25th Australasian Computer Science Conference (ACSC2002), Monash
University, Melbourne, 2002

6. Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba1, and Kozo Itano, “A Bytecode
Translator for Distributed Execution of Legacy Java Software”, LNCS 2072, pp. 236–
255, 2001

7. Eli Tilevich, Yannis Smaragdakis, “J-Orchestra: Automatic Java Application Partitioning”.
16th European Conference on Object Oriented Programming, LNCS 2374, 2002

8. Andre Spiegel, “Pangaea: An Automatic Distribution Front-End for Java”, 4th IEEE
Workshop on High-Level Parallel Programming Models and Supportive Environments
(HIPS '99), San Juan, Puerto Rico, April 1999

9. Andrew S. TanenBaum, Maarten Van Steen, Distributed Systems Principles and
Paradigms, PRENTICE HALL, 2002

10. Thomas Fahringer Alexandru Jugravu, “JavaSymphony: New Directives to Control and
Synchronize Locality, Parallelism, and Load Balancing for Cluster and GRID-Computing”
in Proceedings of Joint ACM Java Grande - ISCOPE 2002 Conference, Seattle,
Washington, Nov. 2002

11. Omid Bushehrian, Saeed Parsa, “Formal Description of a Runtime Infrastructure for
Automatic Distribution of Programs”, The 21th International Symposium on Computer and
Information Sciences, LNCS 4263, pp 793-802, 2006

Dynamic Distribution for
Data Storage in a P2P Network�

Olivier Soyez1, Cyril Randriamaro2, Gil Utard2, and Francis Wlazinski3

1 INRIA-Futurs, LIFL, Université des Sciences et Technologies de Lille, Bâtiment E, 59655
Villeneuve d’ascq, France

Olivier.Soyez@inria.fr
2 UbiStorage, Pôle Jules Verne, rue des Indes Noires, 80440 Boves
{Cyril.Randriamaro, Gil.Utard}@ubistorage.com

3 LaRIA, 5 rue du moulin neuf, 80000 Amiens, France
Francis.Wlazinski@laria.u-picardie.fr

Abstract. This article presents a dynamic data distribution method for data stor-
age in a P2P network. In our system named Us (Ubiquitous storage), peers are
arranged in groups called Metapeers to deal with account failure correlation. To
minimize end user traffic according to the reconstruction process, distribution
must take into account a new measure: the maximum disturbance cost of a peer.
In a previous work, we defined a static distribution scheme which minimizes this
reconstruction cost derivated from affine plan theory. In this paper we extend this
distribution scheme to deal with the dynamic behaviour of peer to peer systems.

1 Introduction

Peer to Peer systems are widely used mechanisms to share resources on Internet. Very
popular systems were designed to share CPU (XtremWeb [1], Entropia) or to publish
files (Napster, Kazaa, Gnutella). In the same time, systems were designed to share disk
space (OceanStore [2,3], Intermemory [4], PAST [5], Farsite [6]). The primary goal of
such systems is to provide a transparent distributed storage service. These systems share
common issues with CPU or files sharing systems: resource discovery, dynamic point to
point network infrastructure, localization mechanisms... But, for sharing disk systems,
data lifetime is the primary concern. P2P CPU or file publishing systems can deal with
node failures: the computation can be restarted anywhere or the published files resub-
mitted to the system. For disk sharing systems, node failure is a critical event: the stored
data are definitively lost. So data redundancy and data recovery mechanisms are crucial.

In this paper, we focus on the category of peer to peer systems devoted to storage.
After a short presentation of the peer to peer storage system named Us (Ubiquitous
storage) [7], we introduce some definitions and we present the problem formulation
based on a new measure cost: the user’s disturbance in a P2P network. We define the
theoretical cost of distribution according to the number of peers, number of blocks,
and fragmentation factor. We present static distributions based on prime number theory.

� Thanks to Grand-Large INRIA-Futurs team for their contributions and thanks to Ubistorage
company (www.ubistorage.com) for their contributions.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 555–566, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

556 O. Soyez et al.

Then we compare it with simulations to the most used distribution: the random dis-
tribution. Next we describe how to apply it in a dynamic environment over Metapeers,
taking into account the failure correlation. Experimental results show the benefit of such
distribution versus the random distribution.

2 Us System

For scalability reasons, data are distributed on thin peers using the well known Rabin
dispersal technique [8]. Contrarily to other systems like OceanStore [2], where data are
distributed on server peers, in Us, data are distributed on end user peers: each Us peer
is both storage space consumer and storage space provider. The main goal of Us is to
provide a virtual storage device to each user which insures data durability.

Us shares common features with the OceanStore project are data disseminated with
data redundancy mechanism. The advantage of such method is scalability. The draw-
back is that we have to face a higher failure rate of peer because the number of peers is a
several order of magnitude greater than the number of peers in OceanStore. Moreovers,
peers are less robust than OceanStore servers.

The main mechanism used to insure data durability is redundancy based on erasure
code. Such code is the mechanism used by OceanStore and Us to maintain data-survival.
To insure data durability Us use usual redundancy mechanism based on erasure code
techniques: peers (physical computers) send data blocks to be stored on other peers.
Each block is split into f fragments including redundancy information. For durability
reasons, each fragment is stored on a different peer.

When a peer fails, all fragments it stored must be rebuilt and redistributed to other
peers. To rebuild each fragment, f − 1 fragments must be grabbed from some other
peers. We take this hypothesis to consider the death of only one peer and then the
reconstruction of its fragments set. Thanks to this hypothesis, we can take into account
the peers availability, i.e. to be able to always receive the needed fragments for the
reconstruction process. For example, if the error correction code ReedSolomon is used,
we consider that it is always possible to receive the s fragments (needed to rebuild
the data block) between the f − 1 fragments. Because it is not reasonable to believe
that the s peers storing the s fragments will be all available at the same time for the
reconstruction.

For a fragment reconstruction, we consider that a peer is responsible to grab the f −1
fragments. Then it regenerates the original bloc and the lost fragment is identified and
regenerated.

2.1 Failure Correlation and Metapeers

Depending on geography, a peer failure may be correlated with other peers failures,
like electrical damage, flooding. Another kinf of failure due to geographical proximity,
would be, if the peers belong to the same physical network and if the network goes
down, so will the peers. The notion of failure correlation, introduced in [9], is an impor-
tant factor for fault tolerance technique. Peers selected for dissemination of fragments
of a data block must avoid correlated failures, otherwise correlated failures may catch
the redundancy mechanism out.

Dynamic Distribution for Data Storage in a P2P Network 557

In Us, peers are arranged in groups called Metapeer according to their correlated
failure. Each peer belongs to exactly one Metapeer. A couple of peers which exhibits
a high probability of correlated failure belong to the same Metapeer. So, a couple of
peers coming from two different Metapeers must exhibit low probability of correlation
failure. When a block of data is disseminated in Us, peers chosen to store fragments are
selected from different Metapeers. Two fragments of the same block cannot be stored
on peers of the same Metapeer. Due to the data redundancy information, all of the peers
of the same Metapeer can be down without data losses. In the current version of Us, the
number of Metapeers is fixed. How the Metapeers are constructed is not the topic of this
paper, interested reader can consult the Weatherspoon et al paper [9] which presents a
framework for online discovery of such Metapeers.

3 Definitions

Let us define some notions and definitions used in this paper. We describe what is a data
distribution and costs induced by the reconstruction process.

3.1 Notations

p is a peer, b is a block: a set of f peers, N the total number of peers, f the fragments
number of a block, f ≤ N , NB the number of blocks, αi the number of fragments
stored by peer i, P the set of peers, B the set of stored blocks, Bp the set of blocks p
stores a fragment of, i.e. the set of the blocks to rebuild for peer p failure. Cmax is the
reconstruction cost.

3.2 Data Distribution

A data distribution maps fragments from blocks over the peers. For durability reasons,
a distribution is restricted by the condition that the f fragments of one block are stored
on f distinct peers. Thus we assume that f ≤ N .

Each block b can be represented by the list of those f peers. The fragments of a peer
p belong to distinct blocks. A data distribution D can be defined by:

D : B �→ P f

∀b ∈ B, p1, p2, ..., pf ∈ P, p1 �= p2 �= ... �= pf ,
b �→ {p1, p2, ..., pf}

For any data distribution, and for any number of stored blocks, we have

NB =
1
f

∗
N∑

i=1

αi (1)

Now let us introduce the notion of communication cost for peers during the
reconstruction process.

558 O. Soyez et al.

3.3 Local Communication Cost of a Peer

The local communication cost Cloc(p,q) is the number of fragments that a peer p sends
to rebuild fragments of a failed peer q:

∀p, q ∈ P, Cloc(p,q) = |Bp

⋂
Bq|

And the total number of fragments needed by the reconstruction is equal to the sum of
all local cost peers, except the dead peer q. So we have :

∀q ∈ P, αq ∗ (f − 1) =
N∑

p=1,p�=q

Cloc(p,q) (2)

3.4 Global Communication Cost of a Peer

For each failed peer q, we determine the most disturbed peer by the reconstruction pro-
cess. Given that two peers can send packets simultaneously, the global communication
cost is defined by the most sending peer, i.e. the global communication cost is the max-
imum of all local communication costs. Let Cglob(q) be the global cost to rebuild peer
q fragments:

∀q ∈ P, Cglob(q) = maxp∈P,p�=qCloc(p,q)

3.5 Maximal Communication Cost

We consider the worst disturbance which may appear in our reconstruction process.
Considering a fragment distribution peers, the maximal communication cost is the max-
imum of the global communication costs, considering that any peer can fail:

Cmax = max
q∈P

Cglob(q) = maxq∈P maxp∈P,p�=qCloc(p,q)

3.6 Problem Formulation

First, we define our objectives, i.e an optimal distribution. Then, we present the defini-
tion and property of an ideal distribution, a kind of optimal one.

Definition 1. Let f be the number of fragments, N be the number of peers, NB be the
number of blocks, an optimal distribution Dopt is a data distribution that minimizes
the maximal communication cost Cmax with the given number of stored blocks NB, so
let D be an another data distribution:

Cmax(Dopt) ≤ Cmax(D)

Let N and f be fixed parameters. Our goal is to provide an optimal distribution for a
given value of NB. By definition, this is equivalent to providing an optimal distribution
for a given value of Cmax.

Dynamic Distribution for Data Storage in a P2P Network 559

4 Distributions

In this section, we present some distributions. First, in 4.1, we present the random dis-
tribution that is usually used in data distribution. This distribution is a reference for our
work. In 4.2 and 4.2, we will see an optimal data distributions coming from mathe-
matical theory: finite affine plane distribution for N = f2 and finite projective plane
distribution for N = f2 − f +1. But these distributions are too restrictive for our prob-
lem. In 4.2, we give a new method of distribution which respects all of the conditions
of our problem : a General Case distribution for any value of N .

4.1 Random Distribution

The random distribution stores the f fragments of each data block on f distinct peers
chosen randomly among all the peers. Due to statistics, this distribution must be effi-
cient for a large number of peers. Indeed the probability to obtain equal lists of f peers
or with a big number of common peers is weak. Nevertheless, this distribution needs a
global knowledge of the full network, which is difficult to implement in a peer to peer
network. The storage system PAST [5] is an example of such a distribution use: each
peer and all resources have an unique identifier, associated with a dynamic routing sys-
tem depending on these identifiers. A file is stored on the peer the identifier is the closest
to the identifier file. The peer volatility implies that a new peer with a closer identifier
can appear after the storage. Then, additional communications must be generated to
find the file. Random data distribution is usually a good non optimal data distribution
to minimize the reconstruction cost such defined. But unfortunately this distribution
does not permit to exploit the physical network topology to avoid failure correlation. To
do so, structured distribution strategies must be applied.

4.2 Asymptotically Optimal Data Distribution

We defined distribution schemes which minimizes the reconstruction cost using a math-
ematical tool : the projective geometry. Distributions are : finite affine plane distribution,
finite projective plane and the General Case.

Finite affine plane distribution. Let take an optimal distribution based on the con-
struction of finite affine planes of order f , when this construction is possible. The order
of an affine plane is the number n, n ≥ 2, such that the total number of points is n2 and
the total number of lines is n(n + 1), all the lines share n points and all points share
n + 1 lines and the intersection of two lines is no more that one.

So, the analogy with our problem is the order n corresponds to the number f of peers
in a block, the points of the finite affine plane of order n are peers, so N = f2, the lines
of the finite affine plane of order n are blocks, so NB = f2 + f and the intersection of
two blocks is no more that one, this imply a Cmax = 1.

We have proved in [10], that this distribution is an optimal one. This distribution
requires N to be equal to f2, it is a high restriction. In addition, for some values of f ,

560 O. Soyez et al.

finding a construction of an affine plane of order f is still an open problem. But this
distribution gives a good network structure.

Finite projective plane distribution. In this case, a distribution can be defined by
the construction of finite projective planes of order (f − 1), when this construction
is possible. The order of the projective plane is n, such that the number of points is
n2 + n + 1 and the number of lines is n2 + n + 1, all the lines share n + 1 points and
all points share n + 1 lines. The intersection of two lines is one.

The analogy with our problem is that the order n may correspond to the number
f − 1 where f is the number of peers in a block and the points of the finite pro-
jective plane of order n may correspond to the peers. It follows that the total num-
ber of peers is N = f2 − f + 1. The lines of the finite projective plane of order
n are blocks. So, we get NB = f2 − f + 1 and the intersection of two blocks
is 1.

Like the distribution based on finite affine plane: this distribution is optimal, but
requires N to be equal to f2 − f + 1. For some values of f , finding a construction of
a projective plane of order f − 1 is still an open problem. But this distribution gives a
good network structure.

General Case distribution (GC distribution). The GC distribution is designed for f
a prime number and any value of N , such that f2 ≤ N . First, we construct Mi matrices
that are used to build the distribution.

For more information about the GC distribution, please refere to this paper [10]. The
GC distribution was proved in [10] to be asymptotically optimal. The main disadvantage
is that this distribution is not flexible with N . When N moves, it is not reasonable
to redistribute always all of the data. This is the reason why we study now dynamic
distributions : distribution that allow N not to be a constant.

5 Data Distribution in a Dynamic P2P System

In this section, we present how the previously defined distributions can be used in a
dynamic P2P storage system. A first idea is to distribute data with the GC distribution
on all peers. However, when a peer fails, the rebuilt fragments must be stored on other
peers. On the one hand, several peers can store the new fragments. Then the structure
is blown. On the other hand, new fragments can be stored on the same new peer to
guaranty that the damaged structure is rebuilt. Then, the sending parallelization is avoid
by the reception.

Satisfying both conditions can be performed by the use of a peer group instead of a
single peer for each structure node. Such groups are called Metapeers, used in our peer
to peer storage system Us. Now we present the Metapeer distribution.

5.1 Metapeer Distribution

In such a distribution, the set of peers is partitioned in groups called Metapeers and the
set of Metapeers is structured by a optimal distribution . Recall that Metapeer stuctura-
tion of peers is well suited to tackle the problem of failure correlation. Due to failure

Dynamic Distribution for Data Storage in a P2P Network 561

correlation, our goal is to have a distribution adapted to the Metapeer structure, and that
allows variable values of N .

Let us define a dynamic Metapeer distribution, we use a particular distribution (like
GC distribution) and replace peers by Metapeer : node i from the distribution is re-
placed by Metapeer i. A fragment stored in node i will be stored in one of the peers of
Metapeer i.

In the next part, we explain how the routing can be made into the Metapeers and we
explain the reconstrution process.

With this structured distribution, we are able to define a mechanism for the manage-
ment of the dynamic behaviour of peer to peer storage systems. For instance, when a
new peer arrives, it first selects the Metapeer it will integrate. To improve data lifetime,
the Metapeer is selected in such a way that the new peer is geographically far from peers
of other Metapeers (w.r.t. some balancing criterions). The new peer also selects peers
of other Metapeers which have good communication bandwidth with it. Then, when a
reconstruction must be achieved, it sends fragments to those peers.

Fragments of a block are distributed over Metapeers of the structure. For each se-
lected Metapeer, a specific function selects the storing peer. In order to balance the stor-
age, this function is modified to tend to select the peer that stores the less. Afterwards,
the selecting function will take into account the network topology.

For the reconstruction process, if a peer fails in a Metapeer, fragments are rebuilt on
peers of the same Metapeer. The chosen peer set should optimise the reception process,
i.e. maximize the number of receiving peers. So, an optimal reception happens when
the Metapeer size is bigger than the number of sent fragments.

5.2 Over Metapeer Distribution

In the Metapeer distribution, node i from the General Case distribution is replaced by
Metapeer i in the dynamic one. A fragment stored in node i will be stored in one of the
peers of Metapeer i. The goal is to define which node must be selected in the Metapeer
to optimise the dynamic distribution. Now we present a new strategy based on the Gen-
eral Case distribution.

Let us consider the following notations : MP is the number of Metapeer, MPSize is
the Metapeer size (i.e. the number of peers inside a Metapeer), MPi is the ith Metapeer,
PMPi is the set of peers of MPi, and pi

j is the jth peer of MPi, with 1 ≤ j ≤ MP and
1 ≤ j ≤ MPSize.

Such matrices are called Metapeer matrices. Each row represents one block storage
in the General Case distribution applied on peers.

In a practical way, a function is used to select the storing peer for each Metapeer
indicated by the Metapeer matrices. This function can be based on the GC distribution
algorithm, when the Metapeer size is sufficient to apply it.

In this case, for each Metapeer matrices row, several blocks can be stored without
increasing the reconstruction cost. For example ,with the first row (MP1, MP4, MP7),
the f fragments of the first block are stored on peers (p1

1, p
4
1, p

7
1). Then, the next block

fragments that are stored on the same row are stored on peers (p1
2, p

4
2, p

7
2), and so on,

up to the last block that is stored on peers (p1
MPSize

, p4
MPSize

, p7
MPSize

).

562 O. Soyez et al.

First we calculate the maximum number of block that can be stored on only one row
of the Metapeer matrices, without increasing the reconstruction cost.

Lemma 1. Let N be the total number of peers grouped in Metapeers, E a set of f
Metapeers and MPSize the size of each Metapeer, the Metapeers have the same size.
Let NB be the theoretical maximum number of blocks NB stored over E, one fragment
per Metapeer with a reconstruction cost of 1. Then NB = MP 2

Size.

Proof: Let p be equal to MPSize and E1, E2, ..Ef the f sets of E , where each set
has p elements. We want to create a family D of maximum cardinality of p-uples
(x1, x2,, xf) that verify xi ∈ Ei and for each distinct couple of p-uples (a1, a2,,
af) and (b1, b2,, bf) of D. The number of indices i such that ai = bi must be at most
equals to 1.

Imagine that we have this family D. Necessarily, if we take two sets in E1, E2, ..Ef ,
all elements couple in these two sets must have only one element in D. So, the maxi-
mum number of elements of D is the maximum couples number: p × p.

Let us note that the maximum number can be obtained if p is a prime number and
p ≥ f .

Our goal is to find a distribution inside each Metapeer which allows a number of blocks
close to that theoretical bound. To do so, we use the same strategy as General Case
distribution applied on the peers inside Metapeers. For each row of the distribution
matrices, matrices are defined like First Matrices in section 4.2.

Let E1, E2, ..Ef be a row of the First Matrices. Let p = MPSize and pEi
z be a peer

such that 0 ≤ i ≤ f − 1. We consider the p matrices MM1, MM2, ..., MMp with
p rows and f columns defined by MMk =

(
ak

ij

)

1≤i≤p;1≤j≤f
where ak

i1 = pE1
k and

ak
ij = p

Ej
z where z = 1 + ([i − 1 + (k − 1) × (j − 2)]modp) ∀1 ≤ i ≤ p and

∀2 ≤ j ≤ f .
Let us remark that: for any couple of integers 1 ≤ z, t ≤ MPSize, the peers p

Ej
z

with j in the interval [1 + p × i; p × (i + 1)] only appear in the (i + 1)th column of
the matrices MM1, ..., MMk. And two different rows of the matrices MM1, ..., MMp

have at most one common element.
As in General Case distribution, the number of blocks is optimal if MPSize is a

prime number. So a Metapeer distribution implementation very close to GC distribu-
tion exists, but the MPSize must respect a fixed condition. So in a dynamic way, it is
not possible to always use this implementation. It is the reason why we use an hybrid
Metapeer distribution. This Metapeer distribution choose the selecting peer function
inside Metapeer depending on the value of the MPSize. If MPSize is not a prime num-
ber, then the selecting peer function is the random function, else it is the GC distribution
algorithm.

5.3 Intrinsic Cost of Metapeer Distribution

In this part we compare the distribution cost for random distribution and GC distribu-
tion with different Metapeer size. For our experimentations, we use a simulator that
computes the Cmax depending on the value N , f , and a given distribution.

Dynamic Distribution for Data Storage in a P2P Network 563

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000

R
ec

on
st

ru
ct

io
n

C
os

t

N

Random distribution
GC distribution with N Metapeers
GC distribution with 25 Metapeers
GC distribution with 55 Metapeers
GC distribution with 115 Metapeers

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
ec

on
st

ru
ct

io
n

C
os

t

N

Random distribution
GC distribution with N Metapeers
GC distribution with 841 Metapeers
GC distribution with 1711 Metapeers

Fig. 1. Reconstruction cost depending on N for f = 5 (top) and f = 29 (bottom), for random
distribution and different Metapeer size

Figure 1 show the impact on the reconstruction cost depending on N . For these
simulations, each peer stores around 100 blocks, i.e. each peer can put and store 100
blocks, because the system is a peer to peer system.

The parameters of figure 1 are f = 5, N = 0 to 2000, NB = 0 to 200000. The
parameters of figure 1 are f = 29, N = 0 to 9000, NB = 0 to 900000.

We always consider that the Metapeer size is the same for all of the Metapeers. Con-
sequently, Figure 1 and 1 show the reconstruction cost for different Metapeer sizes,
depending on N . For example, the first point given by a Metapeer distribution is ob-
tained with a Metapeer size of one, i.e one peer per Metapeer, and consequently with a
value of N equals to the total number of Metapeers.

Figure 1 shows that for small values of the Metapeer size, the random distribution
cost is worth than the Metapeer one. It confirms the advantage to compute the GC
distribution versus a random distribution. Another observation, see Figure 1, is about
the Metapeer sizes: the Metapeer distribution cost is close to the random distribution

564 O. Soyez et al.

cost, when the Metapeer size is bigger than two. So we do not need to choose a great
number of Metapeers. Hence we dont need to have a big structure to manage the failure
correlation.

Figure 1 shows that even if the Metapeer sizes grows, the Metapeer distribution cost
is always very close to the random distribution cost. We can conclude, that the cost to
manage the failure correlation and to have a dynamic distribution is not so high.

5.4 Analysis of Metapeer Distribution in a Dynamic Way

In this part, we observe the evolution of the communication reconstruction cost (Cmax)
during the life of the P2P system. To do so, we simulated distributions on a set of
peers, then peer failures are simulated: each time a peer fails, the fragments it stored
are redistributed over other peers, then a new peer appears in order to maintain the total
number of peers.

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800 900 1000

C
m

ax

Time

Random distribution
GC distribution with 7 Metapeers
GC distribution with 294 Metapeers

Fig. 2. GC distribution with different Metapeer size

Figure 2 shows the evolution of Cmax in function to the arrivals and departures of
peers in time, called churn [11]. The number of failures is 1000, Cmax is measured
every 25 failures. Each peer saves 100 blocks. Distributions are:

– Random distribution: distribution over any distinct peer for the same block, as
explained in section 4.1. The reconstructions are performed using a random choice
between peers that did not failed, and that are not already used for the current block
storage.

– Number of Metapeers = 7: our distribution, presented in section 5.2, with f = 7,
and over MP = 7 Metapeers of size 285 and 286. The number of Metapeers is a
multiple of f to have good results with the GC distribution. The reconstruction is
performed using a random choice between the remaining peers in the
Metapeer of the failed peer.

– Number of Metapeers = 294: same distribution over MP = 294 Metapeers of
size 7 and 8.

Dynamic Distribution for Data Storage in a P2P Network 565

More Metapeers would have generate Metapeer sizes less than one.
Metapeers size other than this two extremes are less efficient.

At the beginning, our distribution cost is slightly lower than the random one. During
the first step, up to 250 failures, GC distribution cost grows faster than the random
one and almost reaches it. Then it definitively grows more slowly, increasing the gap
between the two costs. Hence, our distribution has a better behaviour with failures. As
a future work, simulations will be generated after churn analysis.

6 Conclusion

In peer to peer storage system we have to face a continuous stream of peer failures.
So to insure data durability data are usualy disseminated using a dispersal redundant
scheme and a dynamic data reconstruction process is used to rebuild lost data. There
is a important communication traffic to maintain data integrity. So, it is important to
reduce the impact of this reconstruction process on peer.

In this paper, we analysed the influence of data distribution on the cost of the re-
construction process. A good distribution of data is a distribution which minimizes the
maximum data set sent by each peer to rebuild data lost by a peer failure. We showed
that random distribution of data is usually a good strategy to minimize the reconstruc-
tion cost such defined, but unfortunately this random strategy does not permit to exploit
the physical network topology to reduce communication time. Moreover, a static opti-
mal distribution is too strict and is not well adapted to the dynamic behaviour of peer
to peer systems. So, we propose a distribution which mixes static optimal distribution
with a random one. In this distribution, the set of peers are partitioned in groups called
Metapeers and the set of Metapeers are structured by the static optimal distribution.
The number of Metapeers are selected in such a way we are able to achieve an opti-
mal distribution. Our simulation showed that this distribution is able to achieve better
performance than the random distribution.

References

1. Fedak, G., Germain, C., Nri, V., Cappello, F.: Xtremweb : A generic global computing
system. In: CCGRID2001, workshop on Global Computing on Personal Devices. (2001)

2. Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weath-
erspoon, H., Weimer, W., Wells, C., Zhao, B.: Oceanstore: An architecture for global-scale
persistent storage. In: Proceedings of ACM ASPLOS, ACM (2000)

3. Wells, C.: The oceanstore archive: Goals, structures, and self-repair. Master’s thesis, Uni-
versity of California, Berkeley (2001)

4. Chen, Y., Edler, J., Goldberg, A., Gottlieb, A., Sobti, S., Yianilos, P.: A prototype implemen-
tation of archival intermemory. In: Proceedings of the Fourth ACM International Conference
on Digital Libraries. (1999)

5. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage utility. In:
Procedings of HOTOS. (2001) 75–80

6. Adya, A., Bolosky, W., Castro, M., Chaiken, R., Cermak, G., Douceur, J., Howell, J., Lorch,
J., Theimer, M., Wattenhofer, R.: Farsite: Federated, available, and reliable storage for an
incompletely trusted environment (2002)

566 O. Soyez et al.

7. Soyez, O.: Us : Prototype de stockage pair pair. In: RENPAR 2003, la Colle sur Loup,
France. (2003) 214–218

8. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault toler-
ance. Journal of ACM 38 (1989) 335–348

9. Weatherspoon, H., Moscovitz, T., Kubiatowicz, J.: Introspective failure analysis: Avoiding
correlated failures in peer-to-peer systems. In: Proceedings of International Workshop on
Reliable Peer-to-Peer Distributed Systems. (2002)

10. Randriamaro, C., Soyez, O., Utard, G., Wlazinski, F.: Data distribution in a peer to peer
storage system. In: GP2PC05 2005, UK, Cardiff. (2005)

11. Li, J., Stribling, J., Gil, T., Morris, R., Kaashoek, F.: Comparing the performance of
distributed hash tables under churn (2004)

GRAVY: Towards Virtual File System

for the Grid

Thi-Mai-Huong Nguyen1, Frédéric Magoulès1, and Cédric Révillon2

1 Applied Mathematics and Systems Laboratory, Ecole Centrale Paris
Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex, France
mai-huong.nguyen@ecp.fr, frederic.magoules@hotmail.com

2 United Devices (Europe), 6/8 Rue Jean Jaurès, 92807 Puteaux Cedex, France
cedric.revillon@free.fr

Abstract. Today large-scale applications require access to data stored
in heterogeneous storage systems located at geographically distributed
virtual organizations. In such applications, users are forced to deal with
different administrative policies and structures at each site, and various
data access mechanisms on each storage system. This implies a lot of hu-
man interventions in order to develop dedicated programs and scripts for
data transfer between theses systems. This paper presents GRid-enAbled
Virtual file sYstem (GRAVY) architecture which enables the automation
of data transfers between distributed file systems irrespective of their
heterogeneity. This feature enables high-level schedulers integrated with
GRAVY to control data placements like computational jobs. GRAVY
supports multiple data access protocols and provides an easy-to-use in-
terface for novice Grid users.

Keywords: Virtual File System, Grid-computing, Data Management,
Interoperability, Middleware.

1 Introduction

The Grid is rapidly emerging as the dominant paradigm for wide-area distributed
computing [1]. Its goal is to provide an environment for coordinated resource
sharing and problem solving in dynamic, multi-institutional virtual organiza-
tions [2]. Most of the current Grid deployments have focused on data-intensive
applications where significant processing was done on very large amounts of data
[3]. The data required by such applications is largely distributed in various stor-
age systems. The need to access the remote data with “near-local” performance
is crucial for scheduling and managing of application execution.

One of the Grid’s purposes is to provide users the ability to share and to use
data stored on heterogeneous storage systems as easily as if they were located on
a single computer. Unfortunately, this vision is still far from being achieved due
to the difficulty to deploy, use and maintain such environments. One of the fun-
damental problems is the existence of many different administrative domains,
different storage systems, different data transfer middleware and protocols in
Grid environments. This heterogeneity presents an important barrier for data

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 567–578, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

568 T.-M.-H. Nguyen, F. Magoulès, and C. Révillon

sharing in the Grid. Novice Grid users, principally scientists who need the power
of the Grid to solve problems in their own fields, have difficulties in browsing and
transferring data. They may find it difficult and cumbersome to write scripts or
programs to perform the data transfer between different systems. Data manage-
ment appears to be a big challenge, time consuming activity and requires the
help of experts with significant expertise in data access related issues.

In this paper, we describe a novel architecture GRid-enAbled Virtual file sYs-
tem (GRAVY) which facilitates the collaborative sharing of data in the Grid.
GRAVY has the following features:

– Location transparency: GRAVY allows users to access data, which is geo-
graphically distributed in multiple domains in the Grid without the users
having any idea where the data is located.

– Protocol transparency: GRAVY provides a generic data transfer architec-
ture that shields users from the complexity of the underlying infrastructures
including system’s internal organization and data transfer protocols. As a
result, data in heterogeneous file systems can be accessed in a uniform way.

– Extensibility: GRAVY allows new protocols to be added as the Grid evolves
through a set of wrapper interfaces.

The next section of the paper describes data access problems in Grid environ-
ments in section 2, which lead to the motivation of our work. Then, we present
an overview of related work in section 3. Following this, we describe in section
4 the GRAVY’s design and in section 5 the architectural issues of the prototype
that we have implemented in Java. This prototype allows users to have the view
of a unified location-transparent file system of the Grid and to access to this
system without being familiar with protocol’s technical details. Next, in section
6 we show the experimental results. Finally, section 7 concludes the paper.

2 Data Access Problems in the Grid

Grid Is a Heterogeneous Environment. A frequent obstacle to the cre-
ation of applications that operate effectively in Grid environments is access to
remote data. This problem is challenging because the Grid is a heterogeneous
environment. Data at each site is accessed through different mechanism includ-
ing how the data is organized, which transfer protocols are supported, and how
the authentication is carried out. Users are forced to deal with such aspect when-
ever they want to access data at different storage system and it is difficult to
efficiently share data between these systems.

Grid Job Needs Distributed Data to Run. In order to run grid data-
intensive jobs, the input data need to be transferred to the appropriate location
at the time the computation needs it. This task is commonly referred to as file
stage-ins. The output data is moved back to its home storage systems as the
computation is completed. This task is commonly referred to as file stage-outs.

In the Grid, and on the Internet, files are accessible through a variety of
different protocols supported by storage systems, such as HTTP [4], FTP [5],

GRAVY: Towards Virtual File System for the Grid 569

SCP/SSH [6], and GridFTP [3], each has its own data interaction styles. The
diversity of data interaction styles (e.g., GUI, command-line, APIs) forces users
to switch from one interaction style to another for file staging between het-
erogeneous systems. Hence, it prevents the automation of data transfers. Some
interaction styles, such as GUI and command-line are only intended for manual
use or simple scripts. Others, such as APIs or Web-Services, allow file staging to
be performed in programs. Due to this diversity, users are obliged to manually
transfer files between heterogeneous systems by using different tools supported
or writing scripts and programs to perform file staging. Manual file staging is
not suitable for applications in Grid environments as it supposes users to know
in advance which files will be needed during the computation. Generally, users
don’t have the knowledge of the server that will be chosen for the computations.
The choice of computational server is done by job scheduler. So, it is important
for job scheduler to have a mediating system that is able to control the placement
of data needed for the computation.

3 Related Work

A number of initiatives to address data management in grid environments have
been initiated in recent years. We describe below some of these initiatives.

Based on the basic Globus services [7], the DataGrid [8] is a large and complex
project that defines a layered architecture of service components for transferring
large datasets in heterogeneous environment. This architecture is similar to ours
in the sense that both try to separate the physical location of data from its
logical view, which is called metadata.

GT4 [9] provides a number of components for data management. These com-
ponents fall into two basic categories: data movement, which is composed of
GridFTP tools and Reliable File Transfer (RFT) service, and data replication,
which consists of Replica Location Service (RLS). An important related compo-
nent, OGSA-DAI [10], provides data access and integration capabilities to data
resources, such as databases, within a WebService-based framework.

LegionFS [11] proposes a virtual file system based on NFS protocol. The core
of LegionFS functionality is based on an object based system that employs a
basic object providing access methods similar to UNIX system calls (e.g., read,
write, seek). NFS requests from client will be interpreted to appropriate methods
of this basic object.

Within the EGEE project [12], the data management system (DMS) [13] is
composed of several components. The first is storage elements (SEs) which are
the real element doing the storage of files. In the framework of the DMS, files
are available through two namespaces: logical (Logical File Name - LFN) and
physical (Storage File Name - SFN). The DMS is responsible for mapping an
LFN to one or more SFNs. Other components of DMS are data catalogs that
offer access to file replicas using LFN and data scheduler, which assures the
availability of data at the chosen site for computation.

570 T.-M.-H. Nguyen, F. Magoulès, and C. Révillon

A standardization effort of the Global Grid Forum Grid File System working
group (GFS-WG) [14] is to provide a service oriented architecture for a Grid File
System (GFS) [15] that provides standard interfaces to facilitate the federation
and sharing of virtualised data. It should be noted that GFS is a specification,
not an implementation.

Adapting peer-to-peer data transfer methods, [16] and [17] propose to use Bit-
Torrent as a protocol for large file transfers in the context of desktop Grids. It is
shown that BitTorrent is efficient, scalable when the number of nodes increase,
but suffers from a high overhead when transmitting small files. The papers in-
vestigate the approachs to overcome these limitations.

Comparing with GRAVY, these solutions are designed to work primarily with
their own self-contained middleware, (e.g., LegionFS in Legion middleware, DMS
in gLite, RFT in GT4) or suppose to use a principal protocol for data transfers
in the Grid (e.g., BitTorrent). On the contrary, GRAVY is designed to integrate
into any global scheduling systems and an important feature of GRAVY is that
it supports multiple protocols at both server side and remote side.

4 GRAVY: Solution for Data Access Problems in the
Grid

In order to mask the heterogeneity of storage systems, our approach is to build
a virtual file system GRAVY on top of underlying file systems. This virtual
file system allows data to be transferred on-demand between heterogeneous file
systems in a uniform fashion irrespective of its access protocol. Fig. 1 shows
the conceptual overview of GRAVY. The dashed rectangle is the core services
of GRAVY including virtual layer and core layer which consist of four major
components: virtual interfaces, transfer manager, access manager and wrapper
interfaces. Their role is to provide the user layer with uniform and seamless access
and management of data transfers between remote file systems on physical layer.

The virtual interfaces, which consist of GridFileSystem and GridFile are de-
signed to simplify and unify the way in which users handle data from heteroge-
neous data sources. The user layer is able to remotely interact with the virtual
interfaces through variety of supported access protocols, including HTTP, FTP,
and Web-Services. Local access to virtual interfaces is possible through a set of
APIs that allow applications or job schedulers to control data placement.

The core layer is composed of four components: the FileActionQueue, the
transfer manager, the access manager and the wrapper interfaces. User requests
received from the virtual interface are queued in FileActionQueue, which exam-
ines each request in order to route each correctly to the transfer manager or the
access manager.

We classify the user requests in two categories: transfer requests and access
requests. Transfer requests need to be treated differently from access requests,
since transfer requests generally have long execution time and they can fail for
a variety of reasons at anytime during the execution. They need to be moni-
tored and rescheduled for restart in case of failure. Hence, the transfer manager

GRAVY: Towards Virtual File System for the Grid 571

Applications, job scheduler

User layer

Remote FS Remote FS Remote FS

Physical layer

Transfer manager

(transfer requests, access requests)
FileActionQueue

Core layer

GridFileSystem

Wrapper interfaces

Access manager

G
R

A
V

Y
GridFile

Virtual interfaces

Virtual layer

Access protocol (FTP, HTTP, APIs, Web−Services)

Fig. 1. Conceptual design of GRAVY

is designed to execute transfer requests asynchronously. The transfer manager
performs the movement of files from one remote file system to the other. In case
of transfer failure due to dropped connections, machine reboots or temporary
network outages, the transfer manager will restart the transfers at another time
in order to assure the successful completion of transfers. In contrast, the access
requests (e.g., directory creation, file rename) have a short execution time, so
the access manager is designed to execute access requests synchronously. It per-
forms access operations on the remote file systems and returns immediately to
users the result of execution. The transfer manager and the access manager in-
teract with the remote file systems through wrapper interfaces. These interfaces
are implemented by the file-system-provider in an appropriate protocol that is
specific for each file system.

5 Architectural Issues

5.1 Protocol Resolution

GRAVY supports multiple access protocol in both server side and remote side
(Fig. 2). This is a crucial requirement of a virtual file system used in a hetero-
geneous Grid environment.

Server Side. At the server side, supporting multiple protocols not only allows
users to use their preferred file transfer protocol to interact with GRAVY but

572 T.-M.-H. Nguyen, F. Magoulès, and C. Révillon

Client

Server side

GRAVY

Wrapper interfaces

Local
FTP

GridFTP
SSH/SCP

Local
FTP
HTTP

WebServices

Data flow
Control flow

Remote side

File
Server A

File
Server B

Fig. 2. Multiple access protocol in both server side and remote side

also allows GRAVY to be easily and flexibly deployed according to user needs.
For example, HTTP access allows GRAVY to integrate easily into web portals
of the Grid. Local access via APIs and Web-Services access allow GRAVY to
integrate into applications and job scheduler for data placement control. Besides
local access, GRAVY currently supports three protocols: FTP [5], HTTP [4], and
Web-Services. The implementation of FTP access is based on [18]. The protocol
Web-Services is deployed using WSRF framework implemented in GT4 [9].

Remote Side. At the remote side, supporting a variety of access protocols
allows GRAVY to support a large number of existing file systems. Although
GridFTP has been promoted as the standard protocol for data movement in the
Grid, there is a large number of existing file systems supporting other protocols.

From file-system-provider’s point of view, remote file system is simply a stor-
age system abstracted into directories and files and supported by an access pro-
tocol (e.g., FTP, GridFTP, HTTP) or a file server in other words. In order to
make a file system interoperable with others, he/she needs to develop connec-
tors between protocols supported by this system to all existent protocols in the
Grid. This practice is not suitable for the continually evolutional Grid architec-
ture as it requires adding a new protocol connector if a file system supported
new protocol is integrated to the Grid. In GRAVY, this task is simplified by
the wrapper interfaces that are in charge of creation and management of con-
nection between GRAVY and remote file systems. Wrapper interfaces play the
role of a bridge between GRAVY and remote file systems. They make GRAVY
completely modular, it is easy to add support to GRAVY for a new protocol.

Besides the implementation of wrapper interfaces for local file system, we have
used client-side libraries provided in GT4 [9] to implement wrapper interfaces
for FTP and GridFTP protocol, and JSch[19] for SSH protocol. It is the role of
file-system-provider to implement the wrapper interfaces in order to integrate a
new protocol in GRAVY.

Authentication. Since each protocol has its own authentication mechanism, it
enforces its own access control policy. This results the difficulty to establish the
confidence across different protocols. Our solution is to adopt the Grid Security

GRAVY: Towards Virtual File System for the Grid 573

Infrastructure (GSI) provided by Globus [20] because it avoids a centrally-
managed security system and supports single sign-on for users of the Grid. For
other protocols, authentication is performed through anonymous access.

5.2 Naming Management

In grid environment, management of data across multiple virtual organizations
presents challenging problems for data naming. The Resource Namespace Service
(RNS), a specification of the Grid File System working group of the Global Grid
Forum [21], is proposed to provide a naming mechanism to link existing data
sources. RNS proposes a three-tier naming architecture that consists of human
interface names, logical reference names, and end-point references. Mapping from
a human readable name to an actual data location can be realized in two levels
of indirection. The first level is mapping human interface names directly to end-
point references. The second level is realized by mapping human interface names
to logical reference names (that may not be very readable by humans), which in
turn map to end-point references.

In GRAVY, we applied the first level of indirection for the naming manage-
ment. The GridFileSystem interface is responsible for decoupling logical view
of the data from its physical location. This interface represents the virtual global
file system with hierarchical organization of virtual directories where leaves in
this tree correspond to physical data locations on remote file system. Users can
create their own logical view of grid data where a logical directory may not
necessarily correspond to the physical directory. Different users have a different
logical view if they have different rights on data resources. The GridFileSystem
instance is specified using a configuration file written in XML and is initialized
at the runtime.

5.3 File Access and File Transfer

GridFile - Virtual File Interface. The fundamental requirement for virtual
file systems used in the Grid is that all these file operations in different protocols
must be made completely transparent to users. Accessing local file system for
listing files, changing directories, etc. should be no different to accessing any
remote file system with any access protocol. Transfer operations (e.g., copy,
move) must be as applicable to local files as they are to data hosted on remote
file systems. With these concerns in mind, we design the GridFile as virtual
file object that provides the protocol-independent interface for file access and
file transfer in virtual file system. This uniform interface, which provides a set
of generic file operations should keep user shielded from protocol peculiarities.

Access Manager. The access manager is responsible for carrying out the ac-
cess requests and returns the result to the virtual layer. The access manager
translates these requests into specific protocol supported by the remote file sys-
tem and accomplishes it by interacting with the wrapper interfaces.

574 T.-M.-H. Nguyen, F. Magoulès, and C. Révillon

 0

 2

 4

 6

 8

 10

 12

A
pa

ch
e

G
R

A
V

Y

P
ro

ftp
d

G
R

A
V

Y

G
R

A
V

Y

B
an

dw
id

th
 (

M
B

/s
)

WebServices

FTP

HTTPWebServices

FTP

HTTP

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

G
R

A
V

Y

G
R

A
V

Y

G
lo

bu
s

G
R

A
V

Y

G
lo

bu
s

G
R

A
V

Y

G
R

A
V

Y

G
lo

bu
s

G
R

A
V

Y

G
lo

bu
s

G
R

A
V

Y

B
an

dw
id

th
 (

K
B

/s
)

F
T

P
-F

T
P

F
T

P
-F

T
P

F
T

P
-G

F
T

P

F
T

P
-G

F
T

P

F
T

P
-S

S
H

G
F

T
P

-F
T

P

G
F

T
P

-F
T

P

G
F

T
P

-G
F

T
P

G
F

T
P

-G
F

T
P

G
F

T
P

-S
S

H

S
S

H
-F

T
P

S
S

H
-G

F
T

P

S
S

H
-S

S
H

Fig. 3. Server side results (left), Remote side results (right)

Transfer Manager. The transfer manager takes care of transferring files be-
tween remote file systems. Transfer requests forwarded from FileActionQueue
contain the information required for performing file transfers (e.g., protocol
name, source and destination address, file name). The transfer manager uses
“the first-come, first-served” strategy to execute these requests. It initiates a
third-party transfers between remote file systems that use the same protocol.
In another case, it opens two connections, one from the source and one to the
destination file system for file transfers.

6 Experimental Results

GRAVY’s latest version runs on any platform that supports the Java VM 5.0.
Firstly, we perform a series of data transfers to test the GRAVY’s feature of
supporting multiple protocols. Secondly, in order to evaluate the processing ef-
ficiency and performance of our prototype, we perform a set of concurrent file
transfers and use the modified Andrew benchmark [22] that is the well-known
benchmark to test the performance of a distributed file system. The benchmark
consists of five phases: (i) create directories, (ii) copy files into the directories,
(iii) list file attributes, (iv) scan the files and (v) compile the files.

The experiments are performed on four Pentium 4 3.2 GHz machines with 512
MB of RAM, each running Linux with kernel 2.4.x. They are directly connected
to 100 Mbps network adapter.

6.1 Support for Multiple Protocols

We perform file transfers at both server side and remote side in different protocols.
The experimental set up is shown in Fig. 2. “Server side” means that the transfers
are occurred between client and GRAVY. “Remote side” means that the transfers
are launched by GRAVY to move data between remote file systems. At the server
side, we compare the bandwidth delivered to client by GRAVY to that delivered
by native implementation of each protococol. At the remote side, we observe the
bandwidth obtained for each change of protocol at remote file systems.

GRAVY: Towards Virtual File System for the Grid 575

Server Side. In the first sets of experiments, our goal is to illustrate that the
bandwidth delivered by GRAVY at the server side is very similar to that of the
native server. The client asks GRAVY for transferring a file of 50MB in FTP,
HTTP and Web-Services respectively. Then we repeat the above transfer using
native protocol server (i.e., ProFTP for FTP and Apache for HTTP) to evaluate
the bandwidth delivered by GRAVY. The results in Fig. 3(a) show that the band-
width delivered by GRAVY is just a little lower than the one of the native servers.

Remote Side. We perform file transfers of of 10MBs from file server A to file
server B (Fig. 2) using different protocols. The transfers in GridFTP and FTP
are repeated with globus-url-copy command-line utility supplied with Globus
Toolkit to compare with the bandwidth delivered by GRAVY. The results in
Fig. 3(b) are averaged of 10 file transfers. We observe that the bandwidth varies a
lot across each change of protocol at the remote file system. We get better band-
widths for the transfers using the same protocol. The only exception is the trans-
fers in SSH protocol, the reason is that this protocol doesn’t support third-party
transfers like FTP or GridFTP. We note that the bandwidth of GRAVY for trans-
fers in FTP and GridFTP is very similar to that of the globus-url-copy tool.

6.2 Performance

Many Concurrent File Transfers. In order to test the stability and process-
ing efficiency of GRAVY, we write a client program using GRAVY to launch
several concurrent processes reading a remote file into a buffer and writing the
data out to a local file. The tests were done with files of 10MB. The result as the
transferred KB per second depending on the number of concurrently connecting
clients is shown in Fig. 4. Each value is an average of 5 tests. It shows that
GRAVY has a problem with many concurrent requests. It is predictable that
GRAVY achieves high performance for low numbers of connecting clients. For
increasing number of concurrent clients, its performance decreases smoothly but
it remains relatively stable.

AndrewBenchmarkResults. Weuse themodifiedAndrewbenchmark to com-
pare GRAVY’s performance to the one of Linux 2.4.x local file system and NFS v3.
For the NFS measurements, we run the benchmark on a NFS client accessing a sin-
gle NFS server. For the GRAVY measurements, we implemented a Java program
that performs a pattern of file system accesses equivalent to the one of the An-
drew benchmark because the current prototype implementation of GRAVY only
provides Java interfaces to the file system. We repeat the execution of our Andrew-
like Java program on GRAVY with three different configurations. Concretely, the
directory on which we run the benchmark is mounted to a different remote file sys-
tem for each execution. The remote file system is accessible in GridFTP, FTP and
SSH protocol respectively. Files used during compilation phase are stored locally
for the remote accesses on these remote file systems. The directory that we use
as input to the benchmark contains 15 directories and 96 C sources and headers
files for a total size of 511KBs. Table 1 shows the results of running the Andrew
benchmark on Linux 2.4.x local file system, NFS and GRAVY.

576 T.-M.-H. Nguyen, F. Magoulès, and C. Révillon

 0

 200

 400

 600

 800

 1000

504030201050

B
an

dw
id

th
 (

K
B

/s
)

Concurrent client number

Fig. 4. Processing performance of GRAVY depending on the number of clients con-
currently transferring files

Table 1. The Andrew benchmark results on Linux 2.4.x local file system, NFS and
GRAVY. Each table entry is an average elapsed time in milliseconds of five runs of the
benchmark. The rightmost column shows the average elapsed time of the benchmark
runs on GRAVY with three different configurations.

GRAVY
Phase Local NFS GridFTP FTP SSH Average
Create directories 8.04 361.66 96128.00 4172.20 17277.60 39192.60
Copy files 93.32 3293.31 194150.60 18635.40 100861.80 104549.27
List files 237.48 2856.21 50848.00 4397.00 39008.20 31417.73
Scan files 298.43 3466.46 17142428.80 15837.40 165160.80 117475.67
Compile 3773.75 4552.05 4015.20 3985.60 4038.60 4013.13
Total 4411.03 14529.68 516570.60 47027.60 326347.00 296648.40

As expected, the local file system has the best performance on all five phases be-
cause it performs no network communication. The benchmark results on GRAVY
have a high variance for each configuration. We achieve better performance with
FTP configuration, followed by SSH and GridFTP configuration respectively. In
the compilation phase, all file systems achieve a very similar performance because
the performance of this phase is primarily limited by the speed of the CPU. For the
other phases, GRAVY is slower than NFS due to the time needed for the authen-
tication and the resolution between logical names and physical data locations.

7 Conclusion

In this paper, we have introduced GRAVY, a grid-enabled virtual file system,
which enables the interoperability between heterogeneous file systems in the

GRAVY: Towards Virtual File System for the Grid 577

Grid. We have pointed out the current challenges for the data access in the Grid
and how GRAVY can provide solutions to them. GRAVY integrates underlying
heterogeneous file systems into a unified location-transparent file system of the
Grid. This virtual file system provides to applications and users a uniform global
view and a uniform access through standards APIs and interfaces.

Our approach is validated by a prototype implemented in Java. This prototype
shows that the way users access data is simplified and that data transfers between
heterogeneous file systems can be automated. This feature allows GRAVY to
integrate with high-level scheduler for handling data transfer jobs.

In the future, GRAVY will be enhanced and evolved. We will investigate
Peer-To-Peer approach to decentralize GRAVY network in order to improve
processing efficiency while ensuring the interoperability between file systems.

Acknowledgments. The authors would like to acknowledge United Devices
(Europe) for their support in funding this research as part of the ANVAR project
and Hélène Huard, Lei Yu of Ecole Centrale Paris for the precious discussions
and their highly valuable comments.

References

1. Cappello, F., Djilali, S., Fedak, G., Hérault, T., Magniette, F., Néri, V., Lody-
gensky, O.: Computing on large-scale distributed systems: Xtremweb architecture,
programming models, security, tests and convergence with grid. Future Generation
Computer System 21(3) (2005) 417–437

2. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. The International Journal of High Performance Computing
Applications 15(3) (2001) 200–222

3. Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I., Kesselman, C.,
Meder, S., Nefedova, V., Quesnel, D., Tuecke, S.: Data Management and Transfer in
High Performance Computational Grid Environments. Parallel Computing Journal
28(5) (May 2002) 749–771

4. Fielding, R., Irvine, U., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T.:
RFC-2068: Hypertext Transfer Protocol - HTTP/1.1 (1997) http://www.w3.org/
Protocols/rfc2068/rfc2068.

5. Postel, J., Reynolds, J.: RFC-959: File Transfer Protocol http://www.w3.org/
Protocols/rfc959/.

6. Ylonen, T., Lonvick, C.: RFC-4251: The Secure Shell (SSH) Protocol
http://www.ietf.org/ rfc/rfc4251.txt.

7. Globus Project: http://www.globus.org.

8. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Datasets. Journal of Network and Computer Applications 23 (1999)
187–200

9. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In:
IFIP International Conference on Network and Parallel Computing. Volume 3779
of Lecture Notes in Computer Science., Springer-Verlag (2005) 2–13

http://www.w3.org/Protocols/rfc2068/rfc2068
http://www.w3.org/Protocols/rfc2068/rfc2068
http://www.w3.org/Protocols/rfc959/
http://www.w3.org/Protocols/rfc959/
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4251.txt
http://www.globus.org

578 T.-M.-H. Nguyen, F. Magoulès, and C. Révillon

10. Antonioletti, M., Atkinson, M., Baxter, R., Borley, A., Hong, N.P.C., Collins, B.,
Hardman, N., Hume, A., Knox, A., Jackson, M., Krause, A., Laws, S., Magowan,
J., Paton, N.W., Pearson, D., Sugden, T., Watson, P., Westhead, M.: The Design
and Implementation of Grid Database Services in OGSA-DAI. Concurrency and
Computation: Practice and Experience 17(2-4) (February 2005) 357–376

11. White, B.S., Walker, M., Humphrey, M., Grimshaw, A.: LegionFS: A Secure and
Scalable File System Supporting Cross-Domain High-Performance Applications.
In: Proceedings of the IEEE/ACM Supercomputing Conference (SC2001), Denver,
Colorado, USA (November 2001) 59–59

12. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T.: Enabling Grids
for E-sciencE (EGEE) (2006) http://www.eu-egee.org.

13. Kunszt, P., Badino, P.: EGEE gLite User’s Guide - Overview of gLite Data Manage-
ment. Technical report egee-tech-570643-v1.0, CERN, Geneva, Switzerland (2005)

14. GGF Grid File System working group (gfs-wg): https://forge.gridforum.org/
projects/gfs-wg.

15. GGF Grid File System working group (gfs-wg): The GGF Grid File System archi-
tecture workbook (January 2006) http://www.ggf.org/documents/GFD.61.pdf.

16. Wei, B., Fedak, G., Cappello, F.: Collaborative Data Distribution with BitTor-
rent for Computational Desktop Grids. In: ISPDC ’05: Proceedings of the The
4th International Symposium on Parallel and Distributed Computing (ISPDC’05),
Washington, DC, USA, IEEE Computer Society (2005) 250–257

17. Wei, B., Fedak, G., Cappello, F.: Scheduling Independent Tasks Sharing Large
Data Distributed with BitTorrent. In: Proceedings of Grid Computing, 2005. The
6th IEEE/ACM International Workshop on. (2005)

18. Bhattacharyya, R.: Java FTP server http://www.myjavaserver.com/∼ranab/ftp.
19. JSCH - Java Secure Channel: http://www.jcraft.com/jsch.
20. Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A Security Architecture for Com-

putational Grids. In: Proceedings of the 5th ACM Conference on Computer and
Communications Security, San Francisco, California, USA, ACM Press (Novem-
ber 2-5 1998) 83–92

21. Pereira, M., Tatebe, O., Luan, L., Anderson, T.: Resource Namespace
Service specification (May 2006) http://www.ggf.org/GGF17/materials/272/
Resource Namespace Service Refactored.pdf.

22. Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham,
R., West, M.: Scale and Performance in a Distributed File System. ACM Trans-
actions on Computer Systems 6(1) (February 1998) 51–81

http://www.eu-egee.org
https://forge.gridforum.org/projects/gfs-wg
https://forge.gridforum.org/projects/gfs-wg
http://www.ggf.org/documents/GFD.61.pdf
http://www.myjavaserver.com/~ranab/ftp
http://www.jcraft.com/jsch
http://www.ggf.org/GGF17/materials/272/Resource_Namespace_Service_Refactored.pdf.
http://www.ggf.org/GGF17/materials/272/Resource_Namespace_Service_Refactored.pdf

A Framework for Dynamic Deployment of

Scientific Applications Based on WSRF

Lei Yu and Frédéric Magoulès

Applied Mathematics and Systems Laboratory, Ecole Centrale Paris
Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex, France

lei.yu@ecp.fr, frederic.magoules@hotmail.com

Abstract. One of the challenges of Grid computing is the integration of
legacy scientific applications. The Web Services Architecture (WSA) is
an ideal technology to integrate legacy applications into the grid environ-
ment. Web Services Resource Framework (WSRF) extends Web Services
and makes them stateful. Based on WSRF, we implement a framework
which utilizes WSRF resource to submit applications and to monitor exe-
cution status. We deploy only one Factory Service to create the resources
and one Grid Service as the uniform interface for all the applications in
each computing resource. We can dynamically deploy some legacy ap-
plications in the Grid or remove these applications without stopping
the execution of entire system. Moreover, we present an implementation
of one meta-scheduler which integrates Grid resources in complex Grid
environment.

Keywords: WSRF, Dynamic Deployment, Application Integration,Web
services, Meta-Scheduler.

1 Introduction

A Grid is an Internet-connected computing environment where computing and
data resources are geographically distributed in different administrative domains,
often with separate policies for security and resource use. Because of the role
played by Grid technologies in large scale scientific collaborations, grid archi-
tectures have grown significantly in recent years. Consequently, many scientific
communities are feeling a growing need to integrate their legacy applications
into grid environment [1]. Web services are the next stage of evolution for Grid
Computing. In a few words Web services are services that can be dynamically
discovered and orchestrated, using messaging on the network. The Web Services
Architecture (WSA) is an ideal technology to integrate legacy applications into
the grid environment [2]. Web Services Resource Framework (WSRF) extends
Web Services and makes Web services stateful [3].

The primary goal of our research is to implement a framework for dynamic
deployment of scientific applications where the end-users can:

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 579–589, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

580 L. Yu and F. Magoulès

– Apply any legacy code as WSRF-compliant service when they create Grid
applications.

– Deploy dynamically any scientific application into the Grid environment.
– Utilize a uniform interface to interact with any deployed application.

In our framework, the scientific applications are described as job description
files in XML format [4]. We utilize the WSRF resource [3] to contact a local job
manager through Globus [5] to submit the legacy computational job. The factory
service manages all these job descriptions and creates the resource according
to the client request. The instance service supplies a uniform interface for all
applications. This interface is used to submit and to monitor the applications.
Our framework has four primary components:

– A Factory service that manages all the application descriptions and returns a
list of applications to the client interested. It also has a mechanism to monitor
the creation, deletion, and modification of the application description. Thus
we can dynamically put some applications available or unavailable on the
Grid. According to the selected application by the client, the Factory service
creates a resource and returns an endpoint reference composed of the Grid
service and the recently created resource to the client;

– A Grid service that provides a uniform interface for the Client to invoke
the applications in the computing resource and to monitor the status of
application executions;

– An AdminTool which can interact with Factory service in a secure way. The
AdminTool has a graphic interface and can be used to add, delete and modify
the application descriptions by the local administrator;

– A Grid Scheduler is a meta-scheduler in our framework. The Grid Scheduler
manages and monitors all available computing resources in a VO [6]. Ac-
cording to the request of the client, it interacts with Factory service in each
computing resource to get the applications list, collects the dynamic and
static information of computing resources to make a scheduling decision,
invokes the Factory service in the computing resource to create a WSRF re-
source for the user, submits applications and monitors the execution status.

In each available computing resource, only one Factory service and one Grid
service run persistently. No other instance service is created. So the creation and
the management of application instance are standard and simple.

In this paper, our primary focus is the implementation of Grid service, Factory
service and Grid Scheduler. The rest of this paper is as follows. In Section 2 we
discuss related work. In Section 3 the model architecture and the implementation
are described. In Section 4 the evaluation of the implementation is presented. In
Section 5 we conclude with a brief discussion of the future research.

2 Related Work

There are several research efforts aiming at automating the transformation of
legacy code into a Grid service. Most of these solutions are based on the general

A Framework for Dynamic Deployment of Scientific Applications 581

framework to transform legacy applications into Web services outlined in [2],
and use Java wrapping in order to generate stubs automatically. One example
could be found in [7], where the authors describe a semi-automatic conversion
of legacy C code into Java using JNI (Java Native Interface) [8].

Compared to Java wrapping, some solutions [1],[8],[9] are based on a differ-
ent principle. They offer a front-end Grid service layer that communicates with
the client in order to pass input and output parameters, and contacts a local
job manager to submit the legacy computational job. The Grid service is de-
fined by OGSA [10] which supports, via standard interfaces and conventions,
the creation, termination, management, and invocation of stateful and transient
services as named and managed entities with dynamic and managed lifetime.
To deploy a legacy application as a Grid service there is no need for the source
code. The user only has to describe the legacy parameters in a pre-defined file
(description) and to transfer that file to a Factory service. But, the interface by
which we can interact with the deployed applications is not uniform. Because
the Factory needs a description of the service to create an instance of applica-
tion. The different description providers could define various service port-types
in the descriptions. Therefore the interface of application instance varies accord-
ing to different service port-types. The other problem is the quantity of service
instances. The application is created and deployed as service instance. In this
case, if we deploy a large quantity of needed applications in a computing re-
source, there will be too many service instances to be created. The management
of these instances is truly a delicate job.

The GridLAB [11] project aims to provide application tools and middleware
for Grid environments. It uses the Grid Application Toolkit (GAT) [12] which is
a set of APIs that Grid application programmers can use for uniformly accessing
numerous Grid Services and middleware. However, GAT does not address the
problem of wrapping existing applications as Web Services [1].

3 Model Design and Implementation

The Globus Toolkit (GT) has been developed since the late 1990s to support
the development of service-oriented distributed computing applications and in-
frastructures. The Web services-based GT4 is the latest release of GT, which
provides significant improvements over previous releases in terms of robustness,
performance, usability, documentation, standards compliance, and functionality
[13]. The implementation of the framework is based on GT4, so before discussing
the framework, we will introduce some basic concepts:

The resource approach. Giving Web services the ability to keep state infor-
mation while still keeping them stateless seems to be a complex problem.
Fortunately, GT4 has found a very simple solution: simply keep the Web
service and the state information completely separate. Instead of putting
the state in the Web service (thus making it stateful, which is generally re-
garded as a bad thing) we will keep it in a separate entity called a resource,
which will store all the state information. Each resource will have a unique

582 L. Yu and F. Magoulès

key, so whenever we want a stateful interaction with a Web service we simply
have to instruct the Web service to use a particular resource [3].

GRAM. The GT4 Grid Resource Allocation and Management (GRAM) ser-
vice addresses the issues of running a task on a computer, providing a Web
services interface for initiating, monitoring, and managing the execution of
arbitrary computations on remote computers [13].

MDS. The Globus Toolkits Monitoring and DiscoverySystem (MDS) defines and
implements mechanisms for service and resource discovery and monitoring in
distributed environments [14].

3.1 The Model Architecture

Fig. 1(a) illustrates the architecture of the model. A Grid Resource is a comput-
ing resource on which GT4 has been installed and on which the Factory service
and Grid service have been run persistently. We have one Grid Scheduler run-
ning as meta-scheduler of the VO. The meta-scheduler is the Grid portal for
clients and it manages all the Grid Resources in the VO. It interacts with the
Factory service and Grid service to create resources, submit computational jobs
and monitor the jobs status for clients.

Factory Service Grid Service

WSRF Resource

MDS GRAM ...GT4

Computing Resource

Factory Service Grid Service

WSRF Resource

MDS GRAM ...GT4

Computing Resource

MDS GRAM ...GT4

Grid Scheduler Client

Meta−scheduler

Grid Resource

(a)

Performs operation

AdminTool

Grid Service

Application

Factory Service

Storehouse

GT4GRAM MD4

Creates a resource

Resource

R1 R2 R3

Security

Computing Resource

(b)

Fig. 1. (a) The Architecture of our Model; (b) The Architecture of Grid Resource

MDS can be configured in a hierarchical fashion with upper levels of the
hierarchy aggregating information from the lower-level MDS (Index Services).
The upper levels are identified as upstream resources in the hierarchy, and the
lower levels are identified as downstream resources [15]. Thus from the local
MDS, the Grid Scheduler can gather the dynamic and static information from
each Grid Resource in the VO.

The architecture of Grid Resource is shown in Fig. 1(b). An application store-
house stores the application descriptions which support the Job Description
Schema [16]. An AdminTool interacts with the Factory service to add, delete

A Framework for Dynamic Deployment of Scientific Applications 583

and modify application descriptions. According to the request of Grid Sched-
uler, the Factory service can create a resource and submit a computational job
for the user. The resources use GRAM to really submit a job to the Comput-
ing Resource and subscribe to the Notification of job status [17] to monitor the
job execution [3]. The information of application execution is stored inside the
resource and, more specifically, in resource properties.

But how can the user set the arguments and stage files of the application? In
the Job Description Schema, we have three elements : argument, fileStageIn and
fileStageOut [16]. After a Grid Resource has been selected by the Grid Scheduler,
the user specifies all the input parameter values (include argument, fileStageIn
and fileStageOut) and sends a submission request to the Grid Scheduler. Then
the Grid Scheduler sets these elements in the Job Description and invokes the
operation createResource of Factory service with the Job Description as the pa-
rameter. The Factory service uses the Job Description to initialize the resource.

3.2 Service Implementation

Based on the GT4 and WSRF, we realize our Grid Scheduler, Factory service
and Grid service. The PortType [18] of each Service is illustrated in Table 1.

Fig. 2 illustrates the sequence of an user job submission.

1. The user invokes the openSession operation of the Grid Scheduler to get a
client number.

2. The user invokes the findApplication operation with client number and the
requested application as parameters.

3. The Grid Scheduler searches in all the application lists. If it finds the re-
quested application, a Boolean “true” is returned to the user.

4. The user gets “true”, so it can invoke the scheduler operation in order to
submit the application.

5. The Grid Scheduler invokes createResource of the Factory Service to create
a resource for the user.

6. After having created the resource, the Grid Scheduler submits the job to
Grid Service

7. The user uses getJobStatus to query the job status.
8. If the execution of application is finished, the user invokes closeSession to

destroy the session.

In the Grid Scheduler and Factory Service, a mechanism is integrated to
detect the modification of application descriptions. When the local administra-
tor uses the AdminTool to add, delete and modify the application descriptions,
the operations (addApplication, modifyApplication and deleteApplication) of the
Factory Service are invoked. The Factory Service then updates the application
list and modifies the job description files in the application storehouse. It sets
also a signal to notify the Grid Scheduler the modification of the application
list. The Grid Scheduler monitors the signal status. When it detects the change
of signal status, it updates its application lists within a reasonable delay.

584 L. Yu and F. Magoulès

2: findApplication()

1: openSession()

4: scheduler()

7: getJobStatus()

8: closeSession()

5:createResource()

3:getApplicationList()

6: submit()

: User : SchedulerService : FactoryService

: GridService

Fig. 2. The Sequence diagram for an user job submission

Table 1. The PortType of Services

The PortType of Grid Scheduler

PortType Description

1 openSession open a session for user

2 closeSession close the user session

search the application in the Grid Resource.
3 findApplication If there are more than one available Grid Resource,

we use MDS information to select the best
resource for user

4 scheduler submit the application to Grid Factory
5 getJobStatus return the job execution status

The PortType of Factory Service

PortType Description

1 getApplicationList return a list to client

2 createResource create resource for client

3 addApplication add Job Description

4 modifyApplication modify Job Description

5 deleteApplication delete Job Description

The PortType of Grid Service

PortType Description

1 submit invoke operation submit of resource to submit the job
to GRAM

2 stop stop the job execution

3 getJobStatus get job status from resource

A Framework for Dynamic Deployment of Scientific Applications 585

3.3 MDS and Scheduling

As mentioned, we know that the Globus Monitoring and Discovery System
(MDS) is a collection of Web services to monitor and discover the resources
and services available in a grid. MDS gathers information about resources. This
information includes : static information, such as the number of CPUs, clock
speed, amount of physical memory, virtual memory, and available disk space,
and dynamic information, such as the number of CPUs available, the number of
jobs in the queue waiting to be executed, and current resource utilization [15].
The information can be queried via XPath [19].

In the Grid Scheduler, we implement a simple scheduling algorithm. When the
Grid Scheduler finds that there are more than one available Grid Resource for
the user, it compares the number of available CPUs of each Grid Resource. The
Grid Scheduler selects the resource which has the most available CPUs. If the
number of available CPUs is similar, the Grid Scheduler calculates the value of
Waitingjobs/TotalCPUs for each Grid Resource. Waitingjobs is the number
of jobs waiting in the local job queue, and TotalCPUs is the number of CPUs
on each Grid Resource. The resource which has the smallest value is selected.
The scheduling algorithm more complex will be considered in the future.

3.4 Security

In any networked environment, security is a paramount concern. GSI is the GT4
component that addresses all security requirements and allows privacy, integrity,
and replay protection for grid communication [20]. GT4 provides command-
line tools to generate certificate requests that can be mailed out to the CA for
verification and signing. Once signed, the CA returns the signed document to
identify the entity for which the request was generated. Up to this point, the
certificates for the Client and the Web Service container (host certificate) are
obtained. As for how to associate Client certificate DNs to local user accounts,
Grid map files are to serve, and Globus tools perform the mapping of DNs to
user accounts by using the grid map file. Once the Client is authenticated by
Web Service container, it can send request to these services.

4 Evaluation

The most important aspect for the job submission is the turn-around time.
Turn-around time is the time from a job being accepted by the Grid Scheduler
or Factory Service till the completion (i.e. the job has reached the done state).
The turn-around time is measured in 2 cases:

– An application is added dynamically in a Grid Resource
– The Factory Service and Grid Service are used directly to submit a job

without the Grid Scheduler

586 L. Yu and F. Magoulès

4.1 Dynamic Deployment Experiments

As discussed in Section 3, the application can be added dynamically in the sys-
tem. Thus at first the performance of dynamic deployment is measured. The ex-
perimental setup is as follows. The Factory Service and Grid Service are deployed
and tested at two Condor clusters: a cluster named C1 with three servers, an
other cluster named C2 with two servers. Each server has 2 Pentium 4 3.20GHz
with 1 GB RAM. The Grid Scheduler is installed in a PC powered by Pentium
4 3.00GHz with 512 MB RAM. All the machines are connected by 100 Mb Eth-
ernet. GT 4 is installed in the central manager of Condor pool, and Scheduler
Adapters are configured to support the job submission into the Condor pool.

From a laptop, the user submits 30 jobs to the Grid Scheduler and the in-
terval of submission is 30 seconds. In the user’s opinion, a job is a sequence of
openSession, findApplication, scheduler, getJobStatus and closeSession. At the
beginning, the application which the user needs is deployed on C1. The appli-
cation is a simple C program. It waits 5 minutes and then returns. In order
to execute the application in the standard universe, condor compile must be
used to relink the application with the Condor libraries [21]. After the user has
submitted 8 jobs, the local administrator of C2 runs AdminTool to add the
application in C2. For comparisons, the user submits 30 jobs once again. The
difference with the first time is there is not a dynamic deployment.

Fig. 3(a) shows that the turn-around time of followed jobs dropped down when
the application is added in C2 (after eighth job). Because the Grid Scheduler
detects the modification of applications list in C2 and it can submit the user
job to C2. Thus the ninth job does not wait to be submitted to C1, instead it
is submitted to C2 and is executed immediately. Since the system MDS takes
time to gather resource information, the Grid Scheduler uses the information
a little delayed to schedule the jobs. When the fifteenth job is submitted, the
Grid Scheduler submits continually the job to C2, because the Grid Scheduler
thinks that there are still some free CPUs in C2. This is the reason why the
turn-around time of the fifteenth job is a little longer. After the submission of
the fifteenth job, the turn-around time of followed jobs in the case of dynamic
deployment is much more dropped than in the case of the absence of dynamic
deployment because of the distribution of job on two clusters.

4.2 Grid Resource Experiments

The Grid Resource is the Computing Resource where the Factory Service and
Grid Service, called User Service, are deployed. Globus provides a standard inter-
face for communicating with Condor using a standard message format. Similarly
the User Service is deployed on Globus to provide a uniform interface for the
job submission. Jobs are submitted separately to the User Service and Globus
in order to evaluate the performance of the User Service.

In these experiments, the application used is a simple MPI program (in C). It
calculates parallel the value of Pi using numerical integration in two machines.
In order to execute the application in the MPI universe in Condor, the program
to be submitted for execution under Condor will be compiled using mpicc [22].

A Framework for Dynamic Deployment of Scientific Applications 587

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 0 200 400 600 800 1000 1200

T
ur

n-
ar

ou
nd

 T
im

e
(S

ec
on

d)

Interval (Second)

30 Jobs with dynamic deployment
30 Jobs without dynamic deployment

(a)

 15

 20

 25

 30

 35

 40

 45

 50

 55

 5 10 15 20 25 30 35 40 45 50 55

T
ur

n-
ar

ou
nd

 T
im

e
(S

ec
on

d)

Jobs Number

Jobs with User Service
Jobs with Globus

(b)

Fig. 3. (a) The performance of submission with meta-scheduler; (b) The comparison
of submission among the User Service (Factory Service and Grid Service) and Globus

All the experiments are done on C2. In order to execute parallel applications,
MPICH (version 1.2.4) [23] is installed on each server of C2. From a laptop, a
program submits separately 10, 30 and 50 jobs to local User Service with interval
of submission of 5 seconds. Then the Globus command “globusrun−ws” is used to
submit jobs. The command submits also 10, 30 and 50 jobs with the same interval.

Fig. 3(b) shows the result. It is shown that the average turn-around time of
User Service is a little longer than the time of “globusrun−ws”, except the case
of 30 jobs. The performances of the two infrastructures are very close.

5 Conclusion and Future Work

The framework for dynamic deployment of scientific applications into grid envi-
ronment has been described. The framework addresses dynamic applications
deployment. The local administrator can dynamically put some applications
available or unavailable on the Grid Resource without stopping the execution of
the Globus Toolkit Java Web Services container. A Grid Scheduler has been inte-
grated in the framework, which can realize simple job scheduling, select the best
Grid Resource to submit jobs for the users. The performance of the framework
has been evaluated by some experiments. All the components in the framework
are realized in the standard of Web Service, so the other meta-schedulers or
clients can interact with the components in a standard way.

We plan to complete the Grid Scheduler to realize more complex scheduling
algorithm and to integrate the workflow. The Grid Scheduler is a Web Service.
The interaction between the Grid Scheduler or between a Grid Scheduler and
the other meta-scheduler can be realized in the standard of Web service. So
we would like to create a hierarchy of meta-scheduler to realize a distributed
scheduling.

The rescheduling mechanism in the Grid Scheduler should be implemented in
the future work. The mechanism ensures the execution of jobs, even if requested
applications in some containers are removed dynamically or a container in the
Grid breaks down.

588 L. Yu and F. Magoulès

Acknowledgments. The work of Grid Scheduler was supported partly by
United Devices (Europe). The authors would like to acknowledge Thi-Mai-Huong
Nguyen of Ecole Centrale Paris for the precious discussions and the comments.

References

1. Kandaswamy, G., Fang, L., Huang, Y., Shirasuna, S., Gannon, D.: A generic
framework for building services and scientific workflows for the grid. In: The 2005
ACM/IEEE Conference on SuperComputing. (2005)

2. Kuebler, D., Eibach, W.: Adapting legacy applications as web services. IBM
DeveloperWorks (2002) http://www-128.ibm.com/developerworks/library/
ws-legacy/.

3. Sotomayor, B.: The globus toolkit 4 programmer’s tutorial

4. Silva, V.: Quick start to a gt4 remote execution client (2006) http://
www-128.ibm.com/developerworks/grid/library/gr-wsgram/ .

5. Globus Team: Globus toolkit http://www.globus.org.

6. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scal-
able virtual organizations. International Journal of High Performance Computing
Applications 15(3) (2001) 200–222

7. Huang, Y., Taylor, I., Walker, D., Davies, R.: Wrapping legacy codes for grid-
based applications. In: Parallel and Distributed Processing Symposium, 2003.
Proceedings. International. (22-26 April)

8. Kacsuk, P., Goyeneche, A., Delaitre, T., Kiss, T., Farkas, Z., Boczko, T.: High-
level grid application environment to use legacy codes as ogsa grid services. In:
Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop.
428–435

9. Gannon, D., Ananthakrishnan, R., Krishnan, S., Govindaraju, M., Ramakrishnan,
L., Slominski, A.: Grid web services and application factories. Computing: Making
the Global Infrastructure a Reality. Fox, Berman and Hey, eds.Wiley (2003)

10. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open
grid services architecture for distributed systems integration (2002)

11. Gridlab: Gridlab products and technologies (2005) http://www.gridlab.org/
about.html.

12. Gridlab: Grid(lab) grid application toolkit (2004) http://www.gridlab.org/
WorkPackages/wp-1.

13. Foster, I.: Globus toolkit version 4: Software for service-oriented systems. In: In-
ternational Conference on Network and Parallel Computing (IFIP). Volume 3779.,
LNCS Springer-Verlag (2005) 2–13

14. Schopf, J.M., D’Arcy, M., Miller, N., Pearlman, L., Foster, I., Kesselman, C.: Mon-
itoring and discovery in a web services framework:functionality and performance
of the globus toolkit’s mds4. Technical report, Preprint ANL/MCS-P1248-0405,
Argonne National Laboratory, Argonne, IL (2005)

15. Mausolf, J.: Grid in action: Monitor and discover grid services in an soa/web
services environment (2005) http://www-128.ibm.com/developerworks/grid/
library/gr-gt4mds/index.html.

16. Globus Team: Gt 4.0 ws gram: Job description schema doc,
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram
job description.html.

http://www-128.ibm.com/developerworks/library/ws-legacy/
http://www-128.ibm.com/developerworks/library/ws-legacy/
http://www-128.ibm.com/developerworks/grid/library/gr-wsgram/
http://www-128.ibm.com/developerworks/grid/library/gr-wsgram/
http://www.globus.org
http://www.gridlab.org/about.html
http://www.gridlab.org/about.html
http://www.gridlab.org/WorkPackages/wp-1
http://www.gridlab.org/WorkPackages/wp-1
http://www-128.ibm.com/developerworks/grid/library/gr-gt4mds/index.html
http://www-128.ibm.com/developerworks/grid/library/gr-gt4mds/index.html
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram_job_description.html
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram_job_description.html

A Framework for Dynamic Deployment of Scientific Applications 589

17. Globus Team: Submitting a job in java using ws gram http://www.globus.org/
toolkit/docs/4.0/execution/wsgram/WS GRAM Java Scenarios.html.

18. W3C: Web services description language (wsdl) 1.1 http://www.w3.org/TR/
wsdlTR/wsdl.

19. W3C: Xml path language (xpath) version 1.0 (1999) http://www.w3.org/TR/
xpath.

20. Sundaram, B.: Introducing gt4 security (2005) http://www-128.ibm.com/
developerworks/grid/library/gr-gsi4intro/ .

21. Condor Team: Condor user’s manual http://www.cs.wisc.edu/condor/manual/
v6.8/2 4Road map Running.html.

22. Condor Team: Parallel Applications (Including MPI Applications) http://
www.cs.wisc.edu/condor/manual/v6.8/2 10Parallel Applications.html.

23. Argonne National Laboratory: Getting the MPICH implementation
http://www-unix.mcs.anl.gov/mpi/mpich1/download.html.

http://www.globus.org/toolkit/docs/4.0/execution/wsgram/WS_GRAM_Java_Scenarios.html
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/WS_GRAM_Java_Scenarios.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www-128.ibm.com/developerworks/grid/library/gr-gsi4intro/
http://www-128.ibm.com/developerworks/grid/library/gr-gsi4intro/
http://www.cs.wisc.edu/condor/manual/v6.8/2_4Road_map_Running.html
http://www.cs.wisc.edu/condor/manual/v6.8/2_4Road_map_Running.html
http://www.cs.wisc.edu/condor/manual/v6.8/2_10Parallel_Applications.html
http://www.cs.wisc.edu/condor/manual/v6.8/2_10Parallel_Applications.html
http://www-unix.mcs.anl.gov/mpi/mpich1/download.html

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 590 – 602, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Group-Based Self-organization Grid Architecture

Jaime Lloret1, Miguel Garcia2, Fernando Boronat3, and Jesus Tomas4

Communications Department, Polytechnic University of Valencia
Camino Vera s/n, 46022 Valencia, Spain

{jlloret,fboronat,jtomas}@dcom.upv.es, migarpi@teleco.upv.es

Abstract. Many grid architectures have been developed since the first proto-
grid systems in the early 70’s, but there are not so many based on groups using
an efficient node neighbor selection. This paper proposes a grid architecture
based on groups. The architecture organizes logical connections between nodes
from different groups of nodes allowing sharing resources, data or computing
time between groups. Connections are used to find and share available re-
sources from other groups and they are established based on node’s available
capacity. Suitable nodes have higher roles in the architecture and their function
is to organize connections based on a node selection process. Nodes’ logical
connections topology changes depending on some dynamic parameters. The ar-
chitecture is scalable and fault-tolerant. We describe the protocol, its manage-
ment and real measurements. It could be used as an intergrid protocol.

Keywords: Grid architecture, group-based logical network, neighbor selection,
peer-to-peer network, intergrid protocol.

1 Introduction

Grid computing provides always-online computer services to users. It reduces signifi-
cantly computation time on complex problems. A grid is a system that is concerned
with the integration, virtualization and management of services and resources in a
distributed and heterogeneous environment. It supports collections of users and re-
sources across traditional administrative and organizational domains that are able to
manage and run some processes to carry out an objective [1]. It enables the integrated
and collaborative use of high-end computers, networks, databases and scientific in-
struments, owned and managed by multiple organizations, giving coordinated re-
source-sharing and problem-solving capabilities to its users.

There are many projects around the world working on developing grids for differ-
ent purposes at different scales from the academic research communities, from the
industry and from government-sponsored infrastructure projects. Grid computing was
primarily used to support scientific research into large problems concerning weather,
astronomy, and medicine, but the number of potential applications seems to grow
every year, because of the increasing corporate interest in turning the technology into
business. New applications are based on protocols developed for specific purposes
such as the parallel filesystem [2], data storage systems [3], data replication and re-
trieval systems [4] and data processing systems [5].

The paper is structured as follows. Section 2 examines some Grids architectures,
works related with our proposal such as neighbor selection, hierarchical architectures

 Group-Based Self-organization Grid Architecture 591

and architectures based on groups, and explains our motivation. There is a description
of our architecture proposal in section 3. Analytical model for some types of topolo-
gies of nodes used in our architecture and our analysis is explained in section 4. The
protocol operation, recovery algorithms and designed messages are shown in section
5. Section 6 shows the performance operation when the architecture is running. Fi-
nally, section 7 gives our conclusions and future works.

2 Previous Works and Motivation

In this section we will relate several known grids architectures, we will describe sev-
eral strategies to establish connections between nodes and, finally, we will explain
several works where nodes are divided into groups. It will give the lecturer the state
of the art related with our architecture, because it establishes connections between the
more suitable nodes from different groups.

Condor Project was born to take advantage of the idle time of the computers in the
network. It is a high-throughput distributed batch computing system. Condor is based
on a centralized architecture where users submit their jobs, and it chooses when and
where to run them based upon a policy, monitors their progress, and finally informs
the user upon completion. The NorduGrid project’s primary goal is to meet the re-
quirements of production tasks of LHC (Large Hydron Collider) experiments. The
NorduGrid topology is decentralized, avoiding a single point of failure. It is a light-
weight, non-invasive and dynamic one, while robust and scalable, capable of meeting
most challenging tasks of High Energy Physics. These infrastructures use a software
platform to organize and run the jobs. Although Globus ToolkitTM is one of the most
used, there are others such as Netsolve, Nimrod and AliEn. These production envi-
ronments implement virtual topologies in distributed ways were nodes establish con-
nections, to become neighbors, as needed to coordinate resources and services.

Throughout the years different types of strategies for neighbors’ selection have
been developed. Simon et al., in [6], proposed a genetic-algorithm-based neighbor-
selection strategy for hybrid peer-to-peer networks, which enhances the decision
process performed at the tracker for transfer coordination increasing content availabil-
ity to the clients from their immediate neighbors. There are proposals where nodes’
connections are based on the underlying network, such as Plethora [7] or on their
geographic location such as the one described by K. Liu et al. in [8]. Others systems,
such as the one presented by X. Zhichen in [9], locate nodes in the topology taking
into account that are possibly close to a given node, and then perform RTT measure-
ments to identify the actual closest node.

There are several works in the literature where nodes are divided into groups and
connections are established between nodes from different groups, but all of them are
developed to solve specific issues. To the extent of our knowledge, there is not any
previous interconnection system to structure connections between groups of nodes
like the one that will be presented in this paper. A. Wierzbicki et al. presented Rhu-
barb [10]. It organizes nodes in a virtual network, allowing connections across fire-
walls/NAT, and efficient broadcasting. The system uses a proxy coordinator. When a
node from outside the network wishes to communicate with a node that is inside, it

592 J. Lloret et al.

sends a connection request to the proxy coordinator, who forwards the request to the
node inside the network. Rhubarb uses a three-level hierarchy of groups, may be suf-
ficient to support a million nodes, but when there are several millions of nodes in the
network it could not be enough, so it suffers from scalability problems. On the other
hand, all nodes need to know the IP of the proxy coordinator nodes to establish con-
nections with nodes from other virtual networks. Z. Xiang et al. presented a Peer-to-
Peer Based Multimedia Distribution Service [11]. It proposes a topology-aware over-
lay in which nearby peers self-organize into application groups. End hosts within the
same group have similar network conditions and can easily collaborate with each
other to achieve QoS awareness. When a node in this architecture wants to communi-
cate with a node from other group, the information is routed through several groups
until it arrives to the destination. There are some hierarchical architectures were nodes
are structured hierarchically and parts of the tree are grouped into groups such as the
one presented by Liu Hongjun et al. in [12]. The information has to be routed through
the hierarchy to achieve nodes from other groups, so all layers of the hierarchy could
be overloaded in case of having many data to be transferred. On the other hand, in
case of many groups, the hierarchical structure could become unstructured because
there could be many connections establishments between nodes from different groups
placed on different layers of the hierarchy.

Grids architectures could be deployed different according to the necessities of the
final purpose. Let’s suppose we need to organize the grid into groups in order to proc-
ess parts of an application in parallel, but in certain moments, nodes from a group
need some resources, data or computation time from other groups. All architectures
previously shown don’t solve that problem efficiently, because in the case of central-
ized architectures, such as Condor project, the server will have many logical connec-
tions at the same time to distribute jobs, so it will need many resources. On the other
hand, there is a central point of failure and a bottleneck. In the case of fully distrib-
uted architectures, the control system use to be very difficult to be implemented and it
needs much time to process tasks because of the time needed to reach far nodes. It
decreases the performance of the whole system. To address this problem, we propose
an architecture based on groups where nodes work in their group as in a regular grid,
but they can reach all other groups, if needed, in one hop, diminishing the time to
reach resources, data or computing from other groups enhancing the performance of
the whole system.

3 Architecture Outline

We propose to split the grid network in groups of nodes. Nodes can reach all nodes in
their group to coordinate and sharing resources and services and some of them will
have logical connections (from now we will call just connections) with nodes from
other groups based on some parameters defined later. A node will collaborate with
nodes from its group as a small network and when a node (or the group of nodes)
needs data, resources or computing time from another group, one of them requests it
to the other group. The reply is sent to the requesting node, and in case of data, it can
share it acting as a cache for its group.

 Group-Based Self-organization Grid Architecture 593

Nodes in the proposed architecture could be a regular node or could have one or
several of the following roles (a node could run all them simultaneously, depending
on its functionality in the group): (i) Distribution role node (DN): A DN will have a
connection with one node (becoming adjacent) from each other groups as a hub-and-
spoke. The number of connections to other groups can be limited by several parame-
ters described later. Connections are used to send searches for resources, data or com-
puting time between groups. (ii) Area controller role node (AC): ACs organize DNs
in zones to have an scalable architecture. They are able to reach a GC in its group and
to choose the best DN in their area. (iii) Group controller role node (GC): It could be
one or several in each group, depending on the number of DNs in the group. GCs
have connections with GCs from other groups. A GC has AC functionalities too, so it
has connections with ACs from its group. Both ACs and GCs have DN functional-
ities. GC organizes nodes in its group and adjacencies between DNs from different
groups. From now, we will not consider regular nodes because the proposed architec-
ture works without these leaf nodes, but regular nodes will know how to reach a DN
in its grid (it could be announced as a service in the grid protocol).

Figure 1 show a topology example. The network topology of each group could be
different, but all nodes in the topology run the same application layer protocol.

When a node joins a group it acquires a unique node identifier (nodeID). The first
node in a group will have nodeID=0x01, and it will assign nodeIDs sequentially to new
ones. All nodes in a group have the same groupID. We define δ as the node promotion
parameter. It depends on node’s bandwidth and its nodeID. It is used to know which
node is the best one to have higher role. Nodes with higher bandwidth and older (lower
nodeID) are preferred to promote. Every β DNs, the DN with higher δ in the group will
start AC role and it will create a new area. Every α ACs, the AC with higher δ will
start GC role. α and β values depend on the number of nodes in the group and the
network topology of the group and they will be discussed in the analytical model sec-
tion (next section). We define λ as the node capacity. It determines the best node to
have an adjacency with. It depends on node’s bandwidth, its number of available con-
nections, its maximum number of connections and its % of available load.

We have chosen Short Path First (SPF) algorithm to route information between
GCs and between ACs using a two-level SPF-Based System such as the one described
by some authors of this paper in [13]. It is fast and allows sending fast searches to
find DN adjacencies, but it can be changed by other routing protocol depending on the
networks’ features. GCs route information using groupID parameter and ACs route
information using nodeID parameter. Link cost (C) between nodes is based on node’s
capacity. The more the node’s capacity is, the lower its cost is. Every GC or AC runs
SPF algorithm locally and selects the best path to a destination node based on a met-
ric. The metric is based on the number of hops to a destination and the link cost of
those nodes involved in the path. Experiments given in [14] show that a database
having 104 external updates from other GCs will consume 640 Kbytes of memory.
Table 1 summarizes all parameters described. Expressions proposed in table 1 for δ,
λ, C and Metric are based on proves and simulations used for Multimedia Networks
[15]. We estimate they fit our architecture proposal requirements.

594 J. Lloret et al.

Group D

Group CGroup A

Group B

Area Controller Node Group Controller Node (GC) Distribution Node

Connections between GCs
Connections between ACs and with GCsConnections between DNs and ACs

Connections between DNs from different

Fig. 1. Architecture organization

Table 1. Parameters summary

Description Symbol Expression
Node identifier nodeID -
Group identifier groupID -
Parameter to promote a new AC β -
Parameter to promote a new GC α -
Maximum number of Connections Max_Con -
Available number of Connections Available_Con -
Constants used to adjust the weigh of
some parameters in the expressions

K1, K2, K3, K4 -

Node promotion parameter δ 221))·(log32()·(KnodeIDKBWBW downup −++=δ

Node capacity λ () ()

ConMax

KloadConAvailable
BWBW downup

_

100_·1
256

int 3+−⋅⎥
⎦

⎤
⎢
⎣

⎡
+

+

=λ

Link cost C
λ

4K
C =

Metric for node j Metric (j) ∑
=

=
n

i
iCjMetric

1

)(

4 Analytical Model and Analysis

In this section we are going to describe the architecture analytically in terms of group
of nodes and we will suppose several types of logical topologies for all groups. It
allows us to know how many connections will be in our proposal using each one of
the logical topologies implemented to validate our model.

Given G = (V, λ, E) a network of nodes, where V is a set of DNs (ACs and GCs are
DNs too), λ is a set of capacities (λ(i) is the i-DN capacity and λ(i)≠0 ∀ i-DN) and E
is a set of connections between DNs. Let k be a finite number of disjoint subsets of V.
Vk is the subset k and V= ∪ (Vk). Given a DNki (i-th DN from the k subset), it will not
have any connection with DNs from the same subset (eki-kj=0 ∀ Vk). Every DNvki has
a connection with one DNri from other subset (r≠k). Let’s suppose n=|V| and k the
number of subsets of V, then we obtain equation 1.

 Group-Based Self-organization Grid Architecture 595

∑
=

=
k

i
kVn

1

|| (1)

Every Vk has regular nodes and DNs (GCs and ACs are DNs too). So, nodes of
every group are the sum of all of them. Now we can describe the whole network as a
sum of regular nodes and DNs by expression 2.

∑ ∑∑
= ==

+=+=
k

i

k

i
kDN

k

i
kregularkDNregular nnnnn

1 11

)()(|)(| (2)

Regular nodes will be the interior nodes of the topology and DNs will be edge
nodes. There are several known laws where the number of interior nodes is related to
the edge nodes.

M. Faloutsos et al. show in [16] that many networks could be modelled following
several mathematical models. It also shows that the power law fit the real data in
correlation coefficients of 96% in Internet. Based on power law we can find Zipf’s
law, which states that few nodes have many connections while there are many nodes
with few connections. B. A. Huberman and L. A. Adamic in [17] proposed the Zipf’s
law for Internet and Z. Ge et al. proposed Zipf’s law for Gnutella and Napster net-
works in [18]. The mathematical expression for power law that relates edge nodes
with interior nodes, and adapted to our case, is given in expression 3.

regularR
regular

DN n
nR

n)
1

1(
)1(2

1
1+−

+
=

(3)

Where nDN is the number of edge nodes, nregular is the number of interior nodes and
R varies as a function of the network where it is applied. In the case of Internet it has
been varying along the years having -0.81, -0.82 and -0.74 values.

György Hermann introduced another mathematical model in [19]. It proposes, us-
ing D. J. Watts and H. S. Strogatz networks model [20], where network connections
are established based on efficiency, stability and safety properties. Expression 4 gives
their proposed relationship.

)ln(regularregularDNregular nncnnc ⋅⋅≤≤⋅ (4)

Where nDN is the number of edge nodes, nregular is the number of interior nodes and
c is a constant which value depends on the network model

In [13], the same authors of this paper propose different relationship between regu-
lar nodes and distribution nodes for partially centralized P2P networks. If we are
talking about an hybrid P2P network, the number of edge nodes could be equal to the
number of regular nodes, but in case of a superpeer P2P network, it is needed a distri-
bution node every 96 regular nodes. Expression 5 summarized these values.

nDN=
regularn in case of a hybrid P2P network

96
regularn in case of a superpeer P2P network

(5)

Figure 2 shows the number of nodes in a group as a function of the number of
regular nodes in a group of the proposed architecture. The hybrid P2P network is the
same case of minimum value of the Hermann model (Hermann_min).

596 J. Lloret et al.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000
Regular nodes

n
o
d
es

 i
n
 a

 g
ro

u
p

zipf (R=-0.81) zipf (R=-0.82)

zipf (R=-0.75) Hermann_min

Hermann_max Superpeer

Fig. 2. Number of nodes in a group as a function of the regular nodes

Using Herman maximum value (Hermann_max), we need many nodes in the
group, so there will be many DNs. On the other hand, the one that will need less DNs
in the group will be topologies such as the superpeer P2P network

5 Protocol Operation

First node in the network starts with groupID=0x01 and nodeID=0x01 and has all
roles in its group. Next new nodes in that group enter as DNs and will acquire roles as
a function of their δ. In order to join new groups to the architecture, the GC of the
new group must to send a “GG discovery” message, with its groupID, to GCs from
other groups known in advance or by bootstrapping [21] (a groupID value of 0xFF
indicates the architecture must assign next available groupID value, and if the new
GC has a groupID value that is used, it will be invited to change the groupID indicat-
ing next groupID available). If there is not any reply in a certain period of time, it will
begin the process again. GCs from other groups reply this message with their net-
workID and their λ parameter in the “GC discovery ACK” message. It chooses GCs
with higher λ and sends them a “GC connect” message. Then, they reply with a “GC
welcome” message indicating that it has joined the architecture. After that, it sends
them its neighbor list using “GCDB” message. Its neighbors add this entry to their
topological database and recalculate routes using SPF algorithm. When they finish,
they will send their database to the new GC to build its database. Next database mes-
sages will be updates only. Finally, it will send them “keepalive GC” messages peri-
odically to indicate that it is still alive. If a GC does not receive a “GC keepalive”
message from a neighbor for a holdtime, it will erase this entry from its database.

New joining nodes in a group will be DNs. A DN sends a “D discovery” message
to ACs previously known or by bootstrapping. Only ACs of its group will reply using
“D discovery ACK” messages with their groupID and λ. DN will choose the AC with
higher λ and it will send it a “D connect” message. AC will reply a “Welcome D”
message with assigned nodeID. Then, it will add DN’s entry to its access table (the
owner is the AC of an area and it is formed by all DNs in that area). Finally, DN will
send it “Keepalive D” messages periodically. If the AC does not receive a “Keepalive
D” message from a DN for a holdtime, it will erase this entry from its table. Next, DN
has to establish an adjacency with DNs from other groups, so it will send a “DDB

 Group-Based Self-organization Grid Architecture 597

request” message to the AC in its zone. This message contains sender’s groupID,
sender’s nodeID and its network layer address and the destination groupID (0x00 in
case of “all groups”). Then, AC routes it to the GC in its group. GC will send this
request to all GCs from other groups in its distribution table (GCs’ distribution table
is formed by all GCs the owner can reach). When a GC receives this message from
other group, it will send a “Find DN” message to ACs in its group in order to find the
DN with highest λ in the group. Every request has a unique sequence number to avoid
route loops in the group. ACs will reply with their 2 DNs with highest λ using the
message “Found DN”. GC waits replies for a certain period of time. It chooses 2
highest λ DNs and sends them a “Elected DN” message. The highest one will be the
preferred; the second one will act as a backup. This message contains the nodeID and
the requesting DN’s network layer address. When these DNs receive that message,
they will send a “DD connect” message to connect with the DN from the other group.
Next, they send a “D elected ACK” message to the GC in its group to indicate a con-
nection has established with other group DN. If GC does not receive this message for
a hold time, it will send a new message to the next DN with highest λ. This process
will be repeated until GC receives both confirmations. When the requesting DN from
other group receives these connection messages, it will add DN with highest λ as its
first neighbor and the second one as the backup. Then, it replies these connection
messages to acknowledge the connection using the “DD welcome” message. If the
requesting DN does not receive any connection from other DN for a holdtime, it will
send a requesting message again. Finally, both DN will send “keepalive DD” mes-
sages periodically. If a DN does not receive a “keepalive DD” message from the other
DN for a holdtime, it will erase this entry from its DN’s distribution table (it is formed
by all neighbor DNs from other groups).

When a GC receives a new groupID in a “GC connect” or in a “GCDB” message,
it will send a “New group” message to all ACs in its group with a sequence number to
avoid route loops. Then, ACs will forward this message to all DNs in their zone. Sub-
sequently, DNs will begin the process to request DNs from the new group.

When a GC sees there are β more ACs in its group, it will send a “GC conversion”
message to the AC with highest δ in its AC distribution table (ACs’ distribution table
is formed by all ACs in the group). Highest δ AC will send a “change level” to its
neighbors to inform them it has changed its level and it will begin the process of au-
thenticating with other GCs.

When the oldest GC sees there are β more DNs in its group, it will send an “AC
request” message to all ACs to request a new AC. All ACs will reply an “AC reply”
message with the nodeIDs of the first and the second DNs with highest δ in its group.
GC will process all replies and will choose 2 DNs with highest δ from the whole
group. Then, it will send an “AC conversion” message to the first DN with highest δ.
This message will be routed to the chosen DN. This DN will become an AC and will
send an “AC disconnection” message to its AC. If GC does not receive changes in
ACs’ distribution table for a hold time, it will send a new “AC request” message to
the second DN with highest δ. If this time it fails again, it will begin the process, but
avoiding those DNs. New ACs must authenticate with ACs in their group. It can es-
tablish its first connections with any AC known in advance or by bootstrapping [21].
First, it sends an “AC discovery” message with its groupID. Only ACs with the same
groupID will reply with their λ. New AC will wait for a hold time and will choose

598 J. Lloret et al.

ACs with highest λ. If there is no reply, new AC will send an “AC discovery” mes-
sage again. Then, new AC will send an “AC connect” message to the chosen ACs.
They will reply with a “Welcome AC” message indicating it is connected to the archi-
tecture and they will become its neighbors. New AC will send its neighbor list using
“AC neighbors” message to all of them to update their AC distribution database and
all of them will recalculate new routes using SPF algorithm and the metric aforemen-
tioned. Then, they send their database to the new AC using “ACDB” in order to build
its ACs’ distribution database. Next times it will only receive updates. New AC will
send “AC keepalive” messages to its neighbors periodically. If it is not received from
a neighbor for a holdtime, it will erase this entry from its database.

5.1 Recovery Algorithms

Every GC sends its backup information to the highest δ AC in the group periodically.
When a GC leaves the architecture voluntarily, it will send a “Failed GC” message to
the highest δ AC announcing it. The highest δ AC becomes a GC and acknowledges
with a “Failed GC ACK” message. Then, GC leaves the architecture sending a “GC
disconnect” message to its neighbors. If that GC does not receive the acknowledge-
ment, it will begin the process with the second highest δ AC. Next, new GC sends a
“Change level” message to its neighbors to advertise it has changed its level. It will
try to have the same neighbors as the old one using the backup data. Then, it will
begin its functionalities as a new GC. When a GC fails, it will be detected by its AC
neighbors because the lack of “AC keepalive” messages for a holdtime. First AC
detects this failure, updates its ACs’ database and propagates it through the group
using “ACDB” messages. When the highest δ AC receives this update, it will use the
backup information and it will become GC.

Every AC has a table with all DNs in its area and information related with its AC
neighbor closest to the GC. They will use this table to know their δ and λ. DN with
highest δ will be the AC backup DN and it will receive AC backup data from its AC by
incremental updates using “Backup AC” messages. This information is used in case of
AC failure. AC sends “AC keepalive” messages to the backup DN periodically. When
an AC leaves the architecture, it will send a “Failed AC” message to its closest GC
with information about its backup DN. The GC will reply it with the “Failed O1 ACK”
message, and then, AC will send an “AC disconnect” message to its neighbors and it
will leave the architecture. Next, GC, using the received backup data, chooses the
highest δ DN in the group (as it has been explained before) and sends it an “AC con-
version” message. New AC will send a “DN disconnection” message to its AC, and
then, it will connect with the backup DN to have the backup data and become an AC.
Then, new AC sends a “Keepalive D” message to all DNs in its zone. If the GC does
not receive changes for a hold time, it will send a new request message to the second
DN with highest δ. If the backup DN does not receive this message for a hold time, it
will become the new AC. When an AC fails, backup DN can check it because the lack
of “keepalive D” messages for a holdtime. If it happens, backup DN sends a “Failed
AC” message to the failed AC neighbor. It will be the helper AC to help the failed AC
substitution. Helper AC will forward the “Failed AC” message to its closest GC to
request a new AC. Then, the process will begin as it has been explained before.

When a DN leaves the architecture voluntarily, it will send a “DN disconnect”
message to the AC in its zone and to all its adjacent DNs from other groups. They will

 Group-Based Self-organization Grid Architecture 599

delete this entry from its DN’s distribution database and adjacent DNs will substitute
it with a new DN for that group as explained before. When a DN fails down, AC and
adjacent DNs will check it because they do not receive a “keepalive D” message for a
hold time. Then, AC will delete this entry from its access table and adjacent DNs will
delete this entry from its DNs’ distribution database and they will request a new DN.

5.2 Protocol Messages

We have designed and developed 46 messages for the architecture operation. We have
considered that networkID, nodeID, λ and δ parameters use 32 bits, so we can classify
them in 40 fixed size messages and 6 messages which size depends on the number of
neighbors, the size of the topological database or the backup information. Longer mes-
sages are the ones that contain the topological database and the backup information.
First time, both messages send the whole information, next times only updates are sent.

6 Performance Evaluation

To evaluate the performance of our proposal under real constraints, we have devel-
oped a desktop application using Java programming to run and test the proposed ar-
chitecture and its protocol. It allows the node to run DN, AC and GC roles, as it is
described previously, to work the architecture properly. The application let us choose
the group connected to and we can vary some parameters such as k1, k2, k3, Max_Con,
upstream and downstream bandwidth, keepalive time, timers and so on.

6.1 Testbed

We have used 42 computers (AMD Athlon™ XP 1700+, 1.47 GHz, 480 MB RAM)
with Windows XP Professional Operative System. They were connected to several
Cisco Catalyst 2950T-24 Switches over 100BaseT links. The implemented scenario
has 3 groups interconnected. All these groups have only one GC (which is also an
AC). First group has 12 DNs, second group has 13 DNs and the third group has 17
DNs. In order to take measurements from the scenario, we have connected every
group to a switch and all Switches were connected to a switch as a star topology. GCs
are connected physically to the central switch, although they pertain to their group.
One port of the central switch was configured in a monitor mode (receives the same
frames as all other ports), to be able to capture data using a sniffer application. We
began to take measurements before we started the GC from the first group, 10 seconds
later we started the GC from the second group, 10 seconds later we started the GC
from the third group, 10 seconds later we began to start all DNs from the first group,
10 seconds later, we started all DNSs from the second group and finally, 10 seconds
later, all DNs from the third group.

6.2 Measurement Results

We have used the testbed in 2 cases with different values for keepalive time (20 vs 30
sec.) and timer (4 vs 10 sec.) to evaluate the performance of the system.

Figure 7 a) shows the bandwidth consumed in the testbed for the first case. The
number of Bps (Bytes per sec.) oscillates from 4,000 to 8,000 Bps when the network
has converged. Peaks because of keepalive messages are not so significant in this

600 J. Lloret et al.

case. Figure 7 b) shows the number of messages per sec. in the network when the
architecture is running using values of the first case. There are peaks every 20 sec.
starting from a 70 sec. approximately because discovery messages and keepalive
messages (every 20 sec.), between DNs and the GC, are added. Figure 7 c) shows the
number of broadcasts per sec. in the scenario for first case parameter values. The
highest peak appears around 70 sec. (when DNs from the third group were started).

Figure 8 a) shows the bandwidth consumed in the network when the architecture is
running using values of the second case. The number of Bps oscillates from 2,000 to
8,000 Bps when the network has converged (the number of octets minimum is lower
than the first case). Figure 8 b) shows the number of messages per sec. in the scenario
for first case parameter values. There are fewer messages per sec. than in the first case
and the minimum peaks are lower. Figure 8 c) shows the number of broadcasts per
sec. in the testbed for the second case. When the network has converged, there is an
average between 2 a 4 of broadcasts per sec. (less than in the first case).

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 30 60 90 120 150 180 210 240 270 300
Time (secs)

B
yt

es

Fig. 7 a). 1st prove bandwidth utilization

0

20

40

60

80

100

120

140

160

0 30 60 90 120 150 180 210 240 270 300
Time (secs)

M
es

sa
g

es

Fig. 7 b). 1st prove number of messages

0

2

4

6

8

10

12

14

16

18

20

0 30 60 90 120 150 180 210 240 270 300
Time (secs)

B
ro

a
dc

as
ts

Fig. 7 c). 1st prove number of broadcasts

0

2000

4000

6000

8000

10000

12000

14000

0 30 60 90 120 150 180 210 240 270 300
Time (secs)

B
yt

es

Fig. 8 a). 2nd prove bandwidth utilization

0

20

40

60

80

100

120

140

160

0 30 60 90 120 150 180 210 240 270 300
Time (secs)

M
es

sa
ge

s

Fig. 8 b). 2nd prove number of messages

0

2

4

6

8

10

12

14

16

18

20

0 30 60 90 120 150 180 210 240 270 300
Time (secs)

B
ro

ad
ca

st
s

Fig. 8 c). 2nd prove number of broadcasts

 Group-Based Self-organization Grid Architecture 601

When we increase the keepalive time, peaks values are lower and there are less bits
per second and messages inside the network, but the time to check a node failure
increases. We have observed that when we increase the number of groups in the net-
work, but maintaining the number of nodes constant, the number of broadcast mes-
sages is almost the same. Although the number of nodes in the architecture is in-
creased, there is not any proportion with the number of messages sent. If we cause to
fail a DN with many connections with DNs from other groups, we can observe that
the number of messages increased is not so significant to be seen in the graphs having
a quick look. It is needed many DNs to have higher impact in the graphs.

7 Conclusions

We have presented a Grid architecture based on groups that is able to self-organize
connections between nodes from different groups based on their available capacity. It
is based on three types of roles for nodes of the architecture and their role is based on
a promotion parameter. ACs organize DNs in zones to have a scalable architecture
and help to establish DN connections routing DN information inside the group and
choosing DNs with highest capacity. DNs have connections with DNs from other
groups to share resources, data or computing time between groups. GCs have connec-
tions with GCs from other groups allowing groups interconnection and helping to
organize DN connections. This design allows changing nodes’ connections based on
the available adjacencies and load from other ASs or DNs. Once the connections are
established, to share resources, data or computing time between groups could be done
without using ACs and GCs because they are used only for organization purposes. We
have chosen SPF algorithm to reduce the latency to request new DNs when there are
DN failures or leavings.

We have presented the analytical model and show the number of DNs in the net-
work related with the number of regular nodes for several types of topologies. We
have described the protocol operation and the recovery algorithm when any type of
node leaves the architecture or fails down. The protocol does not consume so much
bandwidth. We have shown that messages with more bandwidth are the backup mes-
sages and the one which sends the topological database, so, they are maintained by
incremental updates. Real measurements demonstrate it is a feasible architecture be-
cause of the bandwidth consumption to manage the system is low and it can be used
as an intergrid protocol or to replicate data from a group to other groups.

As future work, we will do some experimental results to adjust δ and λ parameters.
On the other hand, we will test very short keepalive time and holdtime in order to
reduce convergence times and to have a fast recovery algorithm for critical systems.

References

1. Foster, I., Kesselman, C., and Tuecke, S. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of High Performance Computing Applica-
tions, 15(3):200 - 222, 2001.

2. García-Carballeira, F., Carretero, J., Calderón, A., García, J. D., Sanchez, L. A global and
parallel file system for grids. Future Generation Computer Systems 23 (2007). Pp. 116–122.

602 J. Lloret et al.

3. J.G. Jensen, T. Shah, O. Synge, J. Gordon, G. Johnson, R. Tam, Enabling Grid Access to
Mass Storage: Architecture and Design of the EDG Storage Element. Journal of Grid
Computing 3 (1–2) (2005) 101–112.

4. Ruay-Shiung, C. and Po-Hung, C. Complete and fragmented replica selection and retrieval
in Data Grids, Future Generation Computer Systems. In Press.

5. Ping, L., Kevin, L., Zhongzhi, S. and Qing, H., Distributed data mining in grid computing
environments, Future Generation Computer Systems, Vol. 23, Issue 1. Jan 2007. Pp. 84-91

6. Koo, S. G. M., Kannan, K., Lee, C.S.G., A genetic-algorithm-based neighbor-selection
strategy for hybrid peer-to-peer networks, Proc. of the 13th IEEE International Conference
on Computer Communications and Networks, Chicago, IL, October 2004, pp. 469–474.

7. Ferreira, R. A., Jagannathan, S., Grama, A. Locality in structured peer-to-peer networks,
Journal of Parallel and Distributed Computing, Vol. 66, Issue 2. Feb. 2006. Pp. 257-273.

8. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J. Routing with guaranteed delivery in ad hoc
wireless networks, Wireless Networking 7 (6) (2001). Pp. 609–616.

9. Xu, Z., Tang, C., Zhang, Z. Building topology-aware overlays using global soft-state.
Proc. of the 23rd International Conference on Distributed Computing Systems, 2003. May
2003.

10. Wierzbicki, A., Strzelecki, R., Swierczewski, D. and Znojek, M. Rhubarb: a Tool for De-
veloping Scalable and Secure Peer-to-Peer Applications, in: Second IEEE International
Conference on Peer-to-Peer Computing (P2P2002), Linöping, Sweden, 2002.

11. Xiang, Z., Zhang, Q., Zhu, W., Zhang, Z. and Zhang, Y. Peer-to-Peer Based Multimedia
Distribution Service, IEEE Transactions on Multimedia 6 (2) (2004).

12. Hongjun, L., Luo, L. P. and Zhifeng, Z. A structured hierarchical P2P model based on a
rigorous binary tree code algorithm, Future Generation Computer Systems 23 (2). 2007.
Pp. 201-208.

13. Lloret, J., Boronat, F., Palau, C., Esteve, M.: Two Levels SPF-Based System to Intercon-
nect Partially Decentralized P2P File Sharing Networks, International Conference on
Autonomic and Autonomous Systems International Conference on Networking and Ser-
vices Joint ICAS'05 and ICNS'05, (2005).

14. Moy, J.: RFC 1245 - OSPF Protocol Analysis (1991). Available at http://www.faqs.org/
rfcs/rfc1245.html

15. Lloret, J., Diaz, J. R., Jimenez, J. M., Boronat, F.: An Architecture to Connect Disjoint
Multimedia Networks Based on node’s Capacity, Lecture Notes in Computer Science,
Vol. 4261. Springer-Verlag, Berlin Heidelberg New York (2006). Pp. 890-899.

16. Siganos, G., Faloutsos, M., Faloutsos, P. and Faloutsos, C. Power Laws and the AS-Level
Internet Topology. IEEE/ACM Transactions on Networking, Vol. 11, Issue 4. August
2003.

17. Huberman, B.A. and Adamic, L.A. Growth dynamics of the World-Wide Web, Nature,
vol. 40, (1999). pp. 450-457.

18. Ge, Z., Figueiredo, D. R., Jaiswal, S., Kurose, J., Towsley, D. Modeling Peer-Peer File
Sharing Systems, Proceedings IEEE INFOCOM 2003, San Francisco, March-April 2003.

19. Hermann, G. Mathematical investigations in network properties. - Proceedings of the
IEEE International Conference on Intelligent Engineering Systems. Pp 79-82. September
2005.

20. D. J. Watts and H. S. Strogatz, Nature 393, 440 (1998).
21. Cramer, C., Kutzner, K. and Fuhrmann T. Bootstrapping Locality-Aware P2P Networks.

The IEEE International Conference on Networks, Vol. 1. (2004). Pp. 357-361.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 603 – 613, 2007.
© Springer-Verlag Berlin Heidelberg 2007

UR-Tree: An Efficient Index for Uncertain Data
in Ubiquitous Sensor Networks

Dong-Oh Kim, Dong-Suk Hong, Hong-Koo Kang, and Ki-Joon Han

School of Computer Science & Engineering, Konkuk University,
1, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea

{dokim, dshong, hkkang, kjhan}@db.konkuk.ac.kr

Abstract. With the rapid development of technologies related to Ubiquitous
Sensor Network (USN), sensors are being utilized in various application areas.
In general, a sensor has a low computing capacity and power and keeps sending
data to the central server. In this environment, uncertain data can be stored in
the central server due to delayed transmission or other reasons and make query
processing produce wrong results. Thus, this paper examines how to process
uncertain data in ubiquitous sensor networks and suggests an efficient index,
called UR-tree, for uncertain data. The index reduces the cost of update by
delaying update in uncertainty areas. In addition, it solves the problem of low
accuracy in search resulting from update delay by delaying update only for
specific update areas. Lastly, we analyze the performance of UR-tree and prove
the superiority of its performance by comparing its performance with that of
R-Tree and PTI using various datasets.

Keywords: Ubiquitous Sensor Network (USN), Uncertain Data, Index,
May/Must Query, Uncertainty.

1 Introduction

With the recent development of various sensor technologies including temperature
sensor, RFID (Radio Frequency IDentification) and GPS (Global Positioning System)
and wireless communication technologies such as CDMA, WiFi and WiBro, there are
increasing interest and research in technologies related to Ubiquitous Sensor Network
(USN) such as environment monitoring and car theft detection [1]. In particular,
research is being made actively for efficient query processing in devices with low
computing capacity and power like sensor nodes composing USN [2,4].

In general, data sensed by each sensor node on USN are stored into the central
server (or an external server) for efficient search. For this, data have to be transmitted
from a sensor node to the central server at a high cost. The cost of data update can be
saved by reducing the number of times of data update through delaying update.
Because of random errors caused by inadequacy in measuring methods such as update
delay and systematic errors in data, data sensed by a sensor node may have
uncertainty. In addition, due to the uncertainty of sensed data, query processing may
produce wrong results [1,10].

Thus, this paper examines how to process uncertain data in USN. Moreover, we
propose Uncertainty R-tree (UR-tree), which is an index for uncertain data that can

604 D.-O. Kim et al.

reduce the cost of update in consideration of the uncertainty on sensed data. UR-tree
can index data sensed by each sensor node using uncertainty areas.

An uncertainty area is an area(i.e., rectangle around sensed data) where
uncertainty is likely to exist. Figure 1 shows sensed data and uncertainty areas used in
UR-tree. Figure 1(a) shows data, called N1,…,N5, sensed by humidity and temperature
sensors and query window q. Figure 1(b) shows the uncertainty areas which are
represented by shaded rectangles around the sensed data and query window q.

Fig. 1. Sensed data and uncertainty areas

UR-tree can reduce the cost of update by delaying update in uncertainty areas.
However, if update is delayed in uncertainty areas, the accuracy of search may go
down. That is, there can be case that should not be included in search as in Figure 1(a)
but is included when uncertainty areas are considered as in Figure 1(b). To solve this
problem, UR-tree delays update only for specific domains, preventing the low
accuracy of search.

This paper is organized as follows. Chapter 2 explains how to process uncertain
data based on related researches. Chapter 3 presents the index structure of UR-tree
and relevant algorithms. Chapter 4 analyzes the performance of UR-tree and proves
the superiority of its performance. Lastly, Chapter 5 draws conclusions.

2 Related Works

Research on data processing in consideration of uncertainty began from the area of
data modeling for expressing the location of moving objects. In addition, there have
been researches for improving the efficiency of query processing algorithms on the
location of moving objects and minimizing data transmission to the central server to
reflect frequent location changes [6,10]. Particularly for objects moving within a
limited space like cars running on the road, the uncertainty of the location of moving
objects can be minimized and the cost of update also can be reduced by using road
data [3].

With the development of USN, data are being sensed by various sensors including
those for reporting the location of moving objects. Therefore, research has been made
on data models, query types and query processing methods for uncertain data and on
query processing strategies for each query type in order to deal with the uncertainty of

 UR-Tree: An Efficient Index for Uncertain Data in Ubiquitous Sensor Networks 605

data sensed by various types of sensors. Queries on uncertain data are largely divided
into probabilistic queries and may/must queries [1].

A probabilistic query specifies the range and probability of specific data as query
conditions. For example, “What are the IDs of sensors in which the probability for the
current temperature to be over 30℃ is 50% ?” A may/must query specifies the range
of specific data and a keyword out of may/must. For example, “What are the IDs of
sensors in which the current temperature must (or may) be over 30� ?”In this paper,
we used may/must queries, which are faster than probabilistic queries, for uncertain
data.

In addition, there have been researches on efficient algorithms for the nearest
neighbor query of uncertain data and on efficient indexes, called PTI, for search by
probabilistic threshold query [2]. There were also indexes for efficient search of
uncertain data in which each data value has its probability [4] and probabilistically
constrained regions for efficient processing of polygon-shaped uncertainty areas in
data search [9]. Although these algorithms and indexes improved search performance
for uncertain data, however, they did not consider update performance, which should
be taken into account in ubiquitous sensor networks with limited resources.

In order to improve update performance in the area of moving objects, the
suggested index uses a secondary index for direct access to the IDs of moving objects,
or extends MBR and delays update within the extended MBR [7]. Moreover, using
the fact that data sensed by each sensor node in USN are very changeable but the
variation of the value is very small for a long time, an index was suggested that
updates only when a new value deviates from the range of average deviation [11].
However, these indexes were focused on update performance without considering
uncertainty.

Lastly, there was a research to process sensed data by expressing them as specific
ranges because the cost of update is high if sensed data is directly stored into a cache
for efficient search in USN, and another research was made to minimize update
within uncertainty areas in aggregate queries [8]. Such a research improved update
performance by considering uncertainty elements such as errors in sensed data but
lacked consideration of indexes for improving search performance.

3 UR-Tree

UR-tree is an efficient index for sensor data with uncertainty, which can improve
update performance in consideration of the uncertainty of data. This chapter describes
the index structure of UR-tree and its search, insert and update algorithms.

3.1 Index Structure

USN is composed of sensor nodes. In this paper, we assume that each sensor node N
has a unique ID and sensor R and O in charge of sensing. A sensor node with sensor
IDi is called Ni. Data sensed by sensor R and O of sensor node Ni is (Ni.r, Ni.o), and
the uncertainty areas of sensor R and O are (-Ur, Ur) and (-Uo, Uo), respectively.
Here, the index entry for sensor node Ni is (Ni, (Ni.r -Ur, Ni.o -Uo), (Ni.r +Ur, Ni.o
+Uo)). That is, sensed data is expressed as a two-dimensional point (Ni.r, Ni.o), and

606 D.-O. Kim et al.

the uncertainty area of the corresponding data is expressed as a two-dimensional
rectangle ((Ni.r -Ur, Ni.o -Uo), (Ni.r +Ur, Ni.o +Uo)). At this point, the uncertainty
area of sensed data is called Uncertainty Bounding Box (UBB).

The index structure of UR-tree is similar to R-tree [5], but is distinguished in that it
uses the uncertainty area in search and uses the update area in update to delay update.
In UR-tree, a request for update is composed of ID of a sensor node and newly sensed
data. A secondary index is used for fast access to the leaf node that has the
corresponding ID. Each node in the secondary index has ID and a leaf node pointer.
The secondary index can be implemented with a hash table or B-tree. Figure 2 shows
examples of UR-tree and secondary index.

Figure 2(a) shows relationships between Ui’s, which is UBB of sensor node Ni, and
Mj’s, which is MBR of tree nodes. As shown in Figure 2(a), U1 is UBB of sensor
node N1. M3 which contains U1 and U2 is MBR of a tree node of UR-tree. Figure 2(b)
shows UR-tree and a secondary index for Figure 2(a). UR-tree is in the form of a tree
structure like R-tree. In this case, the maximum number of entries that will fit in one
node is three. The leaf node in UR-tree is composed of UBB of each sensor node. The
secondary index of Figure 2(b) is pointing the leaf node that has the corresponding
sensor node’s ID for fast update, delete, and select operations.

Fig. 2. Examples of UR-tree and secondary index

Figure 3 shows when and how to update data in UR-tree and reason why the
update area is necessary to update data in UR-tree. According to Figure 3(a), if update
is delayed in UBB, query window q1 overlaps with UBB due to the update delay
although UBB should not be retrieved, and query window q2 does not overlap with
UBB although UBB should be retrieved. For this reason, update delay can lower the
accuracy of search.

Accordingly, in order to enhance the accuracy of search, UBB has the update area to
restrict update delay. The update area exists inside UBB and is defined to prevent data
update. In UR-tree, if sensed data does not deviate from the update area, the index is not
updated, and if the sensed data deviates from the update area, UBB is restructured. In
addition, if UBB deviates from the MBR of the index node, the index is restructured. In
Figure 3(b) where an update area is defined, UBB is restructured and, as a result, query

 UR-Tree: An Efficient Index for Uncertain Data in Ubiquitous Sensor Networks 607

Fig. 3. Data update in UR-tree

window q1 does not overlap with UBB and query window q2 overlaps with UBB. The
update area results in tradeoff between update performance affected by update delay in
uncertainty areas and search accuracy affected by frequent updates.

3.2 Search Algorithm

UR-tree supports ID-based search and window-based search. Window-based search can
use the may/must keyword. Figure 4 shows the ID-based search algorithm of UR-tree.

Fig. 4. ID-based search algorithm

In Figure 4, the ID-based search algorithm finds the corresponding node with id
directly using the secondary index. If sinode isn’t NULL, the node that contains ubb,
which is sinode.objpt, is returned. In this way, the use of the secondary index enables
fast access to a node of specific ID, so it improves performance in ID-based search or
update but raises overhead in insert because of the secondary index.

Figure 5 shows the window-based search algorithm of UR-tree. In Figure 5, the
window-based search algorithm checks if the corresponding node is contained in or
overlaps with the window area. In case it is contained in the window area, the objects
of all child nodes of the corresponding node are added to the search results. In case it
overlaps with the window area, if it is not a leaf node Search_Window() is executed
recursively, and if it is a leaf node the algorithm is processed differently according to
keyword. If keyword is “MAY” and its child nodes are overlapped with the window
area, the child nodes are added to the search results. If keyword is “MUST” and its
child nodes are contained in the window area, the child nodes are added to the search
results. Lastly, the search results are returned.

608 D.-O. Kim et al.

Fig. 5. Window-based search algorithm

3.3 Insert Algorithm

In UR-tree, the insert algorithm is executed when a value sensed by the sensor node
of the corresponding ID is inserted for the first time. Figure 6 shows the insert
algorithm of UR-tree. In Figure 6, the insert algorithm checks if the corresponding ID
is in the secondary index or a new one. Then, it creates structure ubb using
MakeUBB() to store the uncertainty area with the ID and the sensed data. In addition,
it finds a node to insert ubb using Findleaf(). Lastly, if the degree of the
corresponding node is the same as the number of child nodes, the algorithm splits the
corresponding node, or inserts ubb into the corresponding node.

Figure 7 is function Findleaf() used in the insert algorithm. In Figure 7, Findleaf()
assigns the child node that contains ubb among the child nodes of node to tnode. If
tnode is NULL, among the child nodes of node, the child node with the smallest MBR

Fig. 6. Insert algorithm

 UR-Tree: An Efficient Index for Uncertain Data in Ubiquitous Sensor Networks 609

Fig. 7. Findleaf() function

containing ubb is assigned to tnode. Finally if tnode is a leaf node, tnode is returned,
or tnode is assigned to node and the loop is executed again.

3.4 Update Algorithm

In UR-tree, the update algorithm does not make the index updated if sensed data does
not deviate from the update area. However, if the sensed data deviates from the
update area, UBB is restructured and, if UBB deviates from the MBR of the index
node, the index is restructured. Figure 8 shows the update algorithm of UR-tree.

Fig. 8. Update algorithm

In Figure 8, the update algorithm finds the node of the corresponding ID using
Search(). Then, if the sensed data is contained in the update area of the corresponding
node, update is finished. If not, uncertainty area ubb is created by MakeUBB() using
the ID and sensed data. Besides, after update, it is checked whether the MBR of the

610 D.-O. Kim et al.

node changes or not, and if the MBR does not change only ubb is updated and if it
does the corresponding node is deleted and inserted again.

4 Performance Evaluation

This chapter compares search time, update time, omission error and commission error
of UR-tree, R-tree and PTI according to the update area, the uncertainty area, and the
window size. A performance evaluation was conducted using a PC with Intel
Pentium4 2.53GHz CPU and 1GB memory. Data used in the performance evaluation
is presented in Table 1.

Table 1. Performance evaluation data

Name
No. of
sensor
nodes

Distribution
function

Range of
starting

data

Average
range of

movement

Min/max
range of

movement
Total data

range
No. of
sensors

DataSet1 500 Gaussian 10, 20 0.2 -0.5, 0.5 10, 20 2

DataSet2 500 Gaussian 15, 20 0.2 -0.5, 0.5 10, 20 2

For the performance evaluation, we constructed an index using data corresponding
to time Ti as uncertain data, assuming that data uncertainty is caused by the delay of
update, and compared it with data corresponding to Ti+1, which was assumed to be
certain real data. If Ri is the number of results retrieved from Ti data, Ri+1 that from
Ti+1 data, and Re the number of results contained in both Ti data and Ti+1 data, the two
factors below are to measure the error of search results.

Omission error = (Ri+1 – Re) / Ri+1 (1)

Commission error = (Ri – Re) / Ri (2)

Omission error is the rate of appearing in the result of actual search but not in the
result of index search. If this rate is low, it means high accuracy. Commission error is
the rate of appearing in the result of index search but not in the result of actual search.
If this rate is low, it means high accuracy.

For example, if the result (IDs) of search using query window q at time T5, namely,
the result of index search is {3,5,8,9,11,15}, and that at T6, namely, the result of
search at each sensor node is {5,8,12}, then R5, R6 and Re are 6, 3 and 2, respectively.
Accordingly, omission error is (3-2)/3 = 0.33 and commission error is (6-2)/6 = 0.67.
Omission error is 0.33, which means that IDs to be included are not searched, and
Commission error is 0.67, which means IDs not to be included are searched. This
shows that the accuracy of search has decreased.

Figure 9 shows search time, update time, omission error, and commission error
measured with changing the update area from 0.1 to 0.5 when the uncertainty area is
0.1, 0.3 and 0.5 in UR-tree.

As in Figure 9(a), the larger the uncertainty area is, the longer search time is. As in
Figure 9(b), the larger the uncertainty area and the update area are, the shorter update
time is. In Figure 9(c), if the uncertainty area is too small, the accuracy of search goes
down because data to be included in the result are not searched. In addition, as in
Figure 9(d), the accuracy of search goes down with the increase of the uncertainty area
regardless of the update area because data not to be included in the result are searched.

 UR-Tree: An Efficient Index for Uncertain Data in Ubiquitous Sensor Networks 611

Fig. 9. Comparison of performance with update area

Figure 10 shows search time, update time, omission error, and commission error
measured with changing the uncertainty area from 0.1 to 0.5 in UR-tree, R-tree, and
PTI. Let UR-tree<p> is UR-tree with the update area of p from now on.

Fig. 10. Comparison of performance with uncertainty area

612 D.-O. Kim et al.

As in Figure 10(a), the search time of UR-tree is shorter than that of R-tree but it is
a little longer than that of PTI. As in Figure 10(b), the update time of UR-tree gets
shorter than that of R-tree and PTI when the uncertainty area and the update area
become large. In Figure 10(c), the omission error of UR-tree gets a bigger than that of
R-tree and PTI when the uncertainty area and the update area become large. Lastly, in
Figure 10(d), the commission error of UR-tree is always similar to that of R-tree and
PTI.

Figure 11 shows search time, omission error, and commission error measured with
changing the window size from 0.1 to 10 in UR-tree, R-tree, and PTI.

Fig. 11. Comparison of performance with window size

As in Figure 11(a), the search time of UR-tree gets shorter than that of R-tree but it
gets a little longer than that of PTI when the window size is large. In Figure 11(b), the
omission error of UR-tree gets a little bigger than that of R-tree and PTI when the
window size is small. In addition, in Figure 11(c), the commission error of UR-tree is
similar to that of R-tree and PTI.

5 Conclusions

If data are stored into the central server in order to improve search performance in
USN, update performance becomes a problem. Thus, this paper examined how to
process uncertain data in USN and proposed UR-tree, an index for uncertain data that
can reduce the update cost of sensed data. UR-tree improved the performance of
index update in consideration of uncertainty of data sensed by various sensors. In
addition, it minimized the decrease in the accuracy of search caused by update delay
by defining an update area.

According to the result of the performance evaluation, the update performance of
UR-tree gets better than that of R-tree and PTI when the uncertainty area and the
update area become large, but the search performance and the accuracy of UR-tree
gets a little worse than that of PTI when the uncertainty area and the update area
become large. And, if the window size is too small, the search performance of UR-
tree is better than that of R-tree, but the accuracy of UR-tree is a little worse than that
of R-tree and PTI.

 UR-Tree: An Efficient Index for Uncertain Data in Ubiquitous Sensor Networks 613

Acknowledgements

This research was supported by the MIC(Ministry of Information and Communication),
Korea, under the ITRC(Information Technology Research Center) support program
supervised by the IITA(Institute of Information Technology Assessment).

References

1. Cheng, R., Prabhakar, S.: Managing Uncertainty in Sensor Databases. SIGMOD Record,
Vol. 32. No. 4. (2003) 41-46.

2. Cheng, R., Xia, Y., Prabhakar, S., Shah, R., Vitter, J.S.: Efficient Indexing Methods for
Probabilistic Threshold Queries over Uncertain Data. Proceedings of the 30th Intl. Conf.
on Very Large Databases(VLDB) (2004) 876-887.

3. Civilis, A., Jensen, C.S., Pakalnis, S.: Techniques for Efficient Road-Network-Based
Tracking of Moving Objects. IEEE Transactions on Knowledge and Data Engineering,
Vol. 17. No. 5. (2005) 698-712.

4. Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., Vaitis, M.: Probabilistic Spatial Queries on
Existentially Uncertain Data. Proceedings of the 9th Intl. Symp. on Spatial and Temporal
Databases(SSTD) (2005) 400-417.

5. Guttman, A.: R-trees: A Dynamic Index Structure for Spatial Searching. Proceedings of
the ACM SIGMOD Intl. Conf. on Management of Data (1984) 47-57.

6. Hosbond, J.H., Saltenis, S., Ørtoft, R.: Indexing Uncertainty of Continuously Moving
Objects. Proceedings of DEXA Workshops (2003) 911-915.

7. Kwon, D.S., Lee, S.J., Lee, S.H.: Indexing the Current Positions of Moving Objects Using
the Lazy Update R-tree. Proceedings of the Intl. Conf. on Mobile Data Management(2002)
113-120.

8. Olston, C., Loo, B.T., Widom, J.: Adaptive Precision Setting for Cached Approximate
Values. Proceedings of the ACM SIGMOD Intl. Conf. on Management of Data (2001)
355-366.

9. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing Multi-
Dimensional Uncertain Data with Arbitrary Probability Density Functions. Proceedings of
the 30th Intl. Conf. on Very Large Databases(VLDB) (2005) 922-933.

10. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing Uncertainty in
Moving Objects Databases. ACM Transactions on Database Systems(TODS), Vol. 29. No.
3. (2004) 463-507.

11. Yuni, X., Sunil, P., Shan, L., Reynold, C., Rahul, S.: Indexing Continuously Changing
Data with Mean-Variance Tree. Proceedings of the ACM Symposium on Applied
Computing (2005) 1125-1132.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 614 – 626, 2007.
© Springer-Verlag Berlin Heidelberg 2007

ZebraX: A Model for Service Composition with Multiple
QoS Constraints*

Xingzhi Feng, Quanyuan Wu, Huaimin Wang, Yi Ren, and Changguo Guo

School of Computer, National University of Defense Technology,
410073 Changsha, China

billytree@gmail.com, {feng_x_z, whm_w}@163.com,
renxiaoyi@21cn.com, cgguo@163.net

Abstract. With the development of theory and technology of Web Service,
Web Service Composition (WSC) has become the core Service-Oriented Com-
puting technology. It is important for business process to select the best compo-
nent services with multi-dimensional QoS assurances to construct a complex
one. But there exist some problems, such as evaluation for QoS properties of a
service is not full-scale and the criteria is not clear, the weight for each QoS
metric doesn’t consider both subjective sensations and objective facts. In this
paper we propose a WSC model to provide multi-dimensional QoS supports in
service selection and replacement. We consider SLA and recovery mechanism
for the service failure during its execution. A utility function is defined as the
evaluation standard, which aggregates all QoS metrics after normalizing their
values. Then we use Subjective-Objective Weight Mode (SOWM) to set the
weight of each QoS metric. Finally we introduce our prototype and evaluations,
test the availability of the decision mode and the results prove it is predominant
compared with other decision modes.

1 Introduction

With the development of theory and technology of Web Service, a single service
often can’t satisfy the functional need in practical application. Web Service Composi-
tion (WSC) has become the core Service-Oriented Computing (SOC) technology.
Dynamic resource aggregation and flexible application integration make service com-
position in a more natural way. Service composition can realize value-added service
by the service reuse. It constructs big granularity service function through the com-
munication and collaboration between many small granularity services. It may be
used to solve more complex problem to realize value-added service by efficiently
collaborating some simple services different in function. Service composition shows a
desirable flexibility in system integration and automatic interaction.

However, the composition flexibility comes at the cost of the increasing system
engineering complexity. A complex composite service may have a great deal of com-
ponent services to select; have the different composition possibility, and various

* This work was supported by the National High-Tech Research and Development Plan of

China under Grant Nos. 2003AA115210, 2003AA115410, 2005AA112030 ; the National
Grand Fundamental Research 973 of China under Grant Nos.2005CB321800; the National
Natural Science Foundation of China under Grant Nos. 60603063, 90412011.

 ZebraX: A Model for Service Composition with Multiple QoS Constraints 615

performance requirements especially in QoS issues such as delay, service time, ser-
vice cost and availability. Service composition thus brings a series of QoS problems.
Component services often need offer different service levels so as to meet the needs
of different customer groups. Many of them have same or similar functionality but
with different nonfunctional properties such as service time and availability. The QoS
problem of Web Service may be defined and offered by different Service Level
Agreements (SLAs) between service providers and users. Currently research work in
the QoS problems of WSC mainly includes: 1) build up the QoS-based service com-
position model; 2) component service selection with QoS assurance; 3) dynamic ad-
aptation and failure recovery mechanism.

In this paper we propose a WSC model called ZebraX to provide multi-
dimensional QoS supports in service selection and replacement. We also consider the
SLA issue and the recovery mechanism for the service failure during its execution. A
utility function is defined as the evaluation standard, which aggregates all QoS met-
rics after normalizing their values. Then we discuss the decision modes and use the
Subjective-Objective Weight Mode (SOWM) to set the weight of each QoS metric.

The rest of this paper is organized as follows. Section 2 reviews some related work.
Section 3 proposes a model for service composition and the utility function definition
with QoS assurance, and discusses the decision modes to set the weight for each QoS
parameter. Section 4 presents the implementation of our prototype. Section 5 shows
the validation of the composition model, evaluation and comparison of the different
decision modes. The paper is concluded in Section 6.

2 Related Work

Web service composition has attracted more attention for supporting enterprise appli-
cation integration. Many industry standards have been in use, such as BPEL4WS (Bu-
siness Process Execution Language for Web Services) [1] and BPML (Business Proc-
ess Modeling Language) [2].

Many projects have studied the problem of Web Service composition. The
SWORD project [3] gives a simple and efficient mechanism for offline Web Service
composition. It uses a rule-based expert system to check whether a composite service
can be realized by existing services and generate the execution plan. SWORD is more
focused on the service interoperability and no QoS issue has been addressed. The
eFlow project [4] provides a dynamic and adaptive service composition mechanism
for e-business process management. In eFlow, each service node contains a search
recipe, which defines the service selection rules to select a specific service for this
node. But the selection rules are based on local criteria and not address the overall
QoS assurance problem of the business process. SELF-SERV [5][6] proposes the
concept of Service Community that used to classify the services which can be substi-
tuted for each other in functionality but has different nonfunctional properties (i.e.
QoS value). The authors propose a quality driven approach to select component ser-
vices during the execution of a composite service in consideration of multiple QoS
metrics such as price, duration, reliability and global constraints. They also describe
two selection approaches, one based on local (task-level) selection of services and the
other based on global allocation of tasks to services using integer programming.

616 X. Feng et al.

METEOR-S [7][8] proposes a framework for semi-automatically marking up Web
Service descriptions with the ontology. They identify four categories of semantics in
the full web process lifecycle as Data Semantics, Functional Semantics, Execution
Semantics and QoS Semantics, and annotate WSDL files with relevant ontologies.
The system selects best component services based on the semantic annotation during
the service selection. METEOR-S [7] and SELF-SERV [5] have studied a similar
approach. Both of them use the integer linear programming method to solve the ser-
vice selection problem, which is too complex for runtime decisions. The SLA frame-
work [9] proposes the differentiated levels of Web Services using automated man-
agement and service level agreements (SLA). The service levels are differentiated
based on many variables such as responsiveness, availability and performance. Al-
though it included several SLA monitoring services to ensure a maximum level of
objectivity, but no end-to-end QoS management capability was implemented.

Tao Yu et al. [10] design the service selection algorithms to meet the multiple QoS
constraints. Their works are not focused on the trustworthiness of QoS criteria of the
service. Although the global quality constraints can be satisfied, service selection may
not be locally optimized. Therefore, good component service often fails to exert its
potential and embody its personality. Our method can raise the efficiency and utility
of Web Services reservation by sorting them. In addition, it can help to improve both
the total QoS of composite service and that of single Web Service based on users’
preference and objective impact. Rainer et al. [11] design and implement a proxy
architecture WSQoSX. They present a heuristic that uses a backtracking algorithm on
the results computed by a relaxed integer program. But they have not well considered
the dynamic runtime failures, and the object function isn’t normalized. Our utility
function is well for evaluation and we also discuss the weight mode problem.

3 QoS-Based Service Composition Model

During the process of Web Service composition, we should consider not only the
functionality and behavior of services but also the nonfunctional properties, especially
the QoS metrics, which normally include response time, service time, availability,
reliability, service cost and loss probability, etc. It is important to the service selection
issue to choose right service candidates with multiple QoS metrics to construct a
complex one and fulfill the business process. While meet the user’s QoS requirements
and optimize the performance of the composite service (i.e. maximize the total utility
of the composite service). Here we propose a composition model with multiple QoS
assurance. We define the utility function which aggregates all QoS metrics of a ser-
vice, and use this function value as the criteria of nonfunctional properties. The utility
function is the sum of each QoS metric value with different weight. We consider
many factors to set the weight of each QoS metric.

3.1 Definition of the Concepts

In this paper we use service class as a collection of the component services with the
common functionality but with different nonfunctional properties, denoted as S. The
service is each component service in the service class, denoted as s. A class interface

 ZebraX: A Model for Service Composition with Multiple QoS Constraints 617

parameter set (Sin, Sout) is defined for each service class. We also assume each service
in the service class can provide a service according to the class interface. The candi-
date is the service level of the service s, denoted as sl. Each candidate associates with
a QoS vector q= [q1,…,qm]. Fig. 1 shows the relation between the service class, ser-
vice and candidate.

Service Class

Service Level sl, q=[q1, ..., qm]
service time,cost,realiablity,availablity

Service Level sl1

Service si(Sin, Sout)

Service Level sln...

Fig. 1. The relation between the service class, service and candidate

The famous Travel Planning Service [12] is used here as an example in Fig. 2. The
full business process has a staged graph structure.

Attraction
search
(AS)

Attraction
selection

(ASL)

Domestic flight
booking (DFB) Credit

card
charging

(CC)International travel
arrangement (ITA)

Event
planning

(EP)
Car

rental (CR)

Accommodation
booking(AB)

Taxi booking
(TB)

Public
transportation
search (PTS)

Bicycle
rental (BR)

stage 1 stage 3 stage 4 stage 5 stage 6 stage 8stage 2 stage 7

Fig. 2. Travel Planning Service Example

3.2 Definition of the Composition Model

Here we introduce our Web Service composition model called ZebraX with the mul-
tiple QoS constraints in the Fig. 3. Our model mainly includes:

1) Process Engine (PE): Maintains the business process plan information in the
Repository. It includes Composition Planner, Composition Matcher, Execution En-
gine (WfMC [13]), Composite Service Manager (CSM) and Service Monitoring
(SM). PE selects the best service candidates to construct a complex one to meet the
service request. CSM manage the composite services after the aggregation. SM
watches business process during its execution. When some component services fail,
notify Failure Diagnosis (FD). At execution time the QoS parameters defined by the
SLA are monitored by SM. SM analyses the data collected in execution process and
compares them to the guaranteed metrics defined in the SLA. In case of deviations
between SLA and measured data Failure Diagnosis (FD) is notified.

2) Repository: It includes service candidates catalog and process plan (service exe-
cution path) information as showed in Table 1 and Table 2. Service class catalog,
rules and QoS metadata also are included. A process plan is defined by a set of ser-
vice classes and the connection relationships among them.

618 X. Feng et al.

QoS
Information

Manager

QoS Analyzer

Se
rv

ic
e

L
oo

ku
p

(U
D

D
I)

Se
rv

ic
e

R
eq

ue
st

...

Negotiation
Manager

Service Monitoring

Failure Diagnosis

Failure Recovery

Composition
Planner

Composition
Matcher

Provider A WSA1 Provider B WSB1 Provider N WSN1

Business/Data Transmission (SOAP Message Bus)

Composition Engine

Execution Engine
(WfMC)

Multi-QoS
Aggregation

Engine

Composite Service
Manager

service
catalog

execution path

Repository

service class
catalog

rules

QoS metadata

Process
Engine

Fig. 3. The Web Service Composition Model with multiple QoS constraints

Table 1. Service Execution Path (Plan)

Exec. Path ID Service classes in path
EP1 SAS, SASL, SDFB, SPTS, SAB, SBR, SEP, SCC
… …

Table 2. Service Candidates Information

ID Service Name endpoint Opera. service level QoS ID service class
1 sl11 q11
2

op1
sl12 q12

3
s1 http://www.

op2 sl13 q13
SAS

4 … …

3) QoS Aggregation Group: QoS Analyzer (QA) handles the user’s QoS require-
ments and gets the each QoS metric information by QoS Information Manager (QIM)
from QoS metadata in Repository. The information in QoS metadata as showed in
Table 3 and Table 4. QIM maintains QoS metric information (such as response time,
service cost and availability and so on) and the QoS information of service candi-
dates. Multiple-QoS Aggregation Engine (MQAE) takes into account each QoS met-
ric and computes the utility of each service candidates. It excludes some service can-
didates by using rules-library R= {R1,R2,…,Rm} as showed in Table 5. In practice we
transform the problem of service selection with multiple QoS constraints into MMKP
(Multi-dimension Multi-choice 0-1 Knapsack Problem)[14] and MCOP (Multi-
Constraint Optimal Path) problem.

4) Failure Diagnosis (FD)/Failure Recovery (FR): When some component services
fail and the process is interrupted, FD checks the problem and FR deals with the

 ZebraX: A Model for Service Composition with Multiple QoS Constraints 619

failure by the path replacement. A failure recovery mechanism is designed to ensure
that the running process is not interrupted and the failed service can be replaced
quickly and efficiently. Bad-performing services can be automatically substituted by
other services with the same functionality sending a message to CSM. Guaranteed
delivery and Store and forward mechanism also are considered. Furthermore we use
Clustering Web services. Clustered service improves the probability of Web service
completion by allowing similar Web services to form a cluster (i.e., service class)
upon their registration. In case of failure, ZebraX can dynamically route requests to an
equivalent backup service from the cluster by adjusting the execution path.

Table 3. QoS Metric Information in QoS metadata

QoS Metric denotation property evaluation for single metric

Service time ST Cost Property
i

n

s
i 1

ST ST
=

=∑

Availability AP Benefit Property
i

n

s
i 1

ln AP ln AP
=

=∑

Loss probability LP Cost Property (()
i

n

s
i 1

ln 1 LP) ln 1 LP
=

− = −∑

… … …

Table 4. QoS Information for SLA in QoS metadata

QoS ID qcost(si) qtime(si) qrel(si) qav(si) …
q11 0.14 175 0.90 0.92 …
q12 0.20 150 0.95 0.98 …
q13 0.10 158 0.92 0.91 …
… … … … … …

Table 5. Rules-library for Multiple-QoS Aggregation Engine

Rules Name description

R1
If two items a and b in the same class Si, QoS metrics satisfy qia ≤
qib and the utility values satisfy ia ib≥F F , i=1,2,…,m. then an op-

timal solution to MMKP with xib =0 exists. Item b can be deleted.

R2 For single QoS metric qv, satisfy:
v

n

iv q
i 1

q
=

≤∑ C .

… …

3.3 Definition of the Utility Function

The computation of the utility function considers each QoS metric of the candidates in
order to reflect the non-functionality of the service candidates deeply and thoroughly.

620 X. Feng et al.

For there exist some differentiations such as metrology unit and metric type between
each QoS metric. In order to rank the Web Services fairly we do some mathematics
operations to normalize the metric values. Subsequently we can get a uniform meas-
urement of service qualities independent of units.

Definition 1 (Utility Function). Suppose there are α QoS metric values to be maxi-
mized and β QoS metric values to be minimized. The utility function for candidate k in
a service class is defined as follows:

min
()()

() ()max

i j

bj bjai ai

i 1 j 1i j

q q kq k q
 (k)= w w

βα

= =

−−
∗ + ∗

∂ ∂∑ ∑F (1)

min min min
, ()

max maxi ai ai ai ai ai ai iif else 1q q q q 0, (q k q) ==∂ − − ≠ − ∂ ,

min min
())

max max maxj bj bj bj bj bj bj jif else 1q q , q q 0, (q q k ==∂ − − ≠ − ∂ .

Where w is the weight for each QoS metric set by user and application requirements

(0 < wi,wj < 1; i ji=1 j 1
w w 1,

α β

=
+ =∑ ∑ mα β+ =). i∂ , j∂ are the difference be-

tween maximum and minimize value in the same column. The concrete QoS metrics
are defined in the matrix QoS= [qi,j]n×m. qai max (qbj max) is the maximum value among
all values on column i (j) in submatrix [qa k,i]n×α ([qb i,j]n×β) and qai min (qbj min)is the
minimum value among all values on column i (j) in submatrix [qa k,i]n×α ([qb i,j]n×β).

Each row in QoS matrix represents a Web Service candidate sli (1≤i≤n, and n repre-
sents the total number of candidates) while each column represents one of the QoS
metrics qv (1≤v≤m, and m represents total number of QoS metrics).

3.4 Weight Computation

We need make mode decision to select component services according to disproport-
ional QoS attributes of the candidates, which can be formalized into multi-attributes
decision problem. The focus is that how to set the weight for each QoS metric. The
weight should embody the attention emphasis of the users; the relative importance
among different QoS metrics; and reliability of each service candidate. In a word, the
weight should consider not only subjective sensations but also objective facts.

Definition 2 (Weak Order). The set of the candidates Sc satisfies weak order, namely
satisfies: 1) connectivity: ∀ si, sj ∈S, then si sj, or sj si, or both;

2) transitivity: ∀ si, sj, sk ∈S, if si sj and sj sk, then si sk ;
3) equivalence: si ≅sk if and only if si sj and sj si .

Theorem 1. Assumed the relation “ ” denotes weak order in Sc, Sc ={ s1, s2,…, sm },
then there exists value function of ordinal number with real number value, denoted as
v, ∀si, sj ∈ S, then

v (si) ≥v (sj) ⇔ si sj

 ZebraX: A Model for Service Composition with Multiple QoS Constraints 621

The proof of the theorem in detail can be found in [15]. The number of QoS met-
rics is not limited in this theorem. The value function v is not exclusive, and the func-
tion that can be acquired by any monotonously non-decreasing transformation about v
is still the value function. The series about this theorem in detail can be found in [16].

There are four modes to set the weights in general: (1) Subjective Weight Mode;
(2) Single Weight Mode; (3) Objective Weight Mode; (4) Subjective-Objective
Weight Mode. And (2) is a special instance in (1). Taking into account both subjec-
tive sensations and objective facts, we use Subjective-Objective Weight Mode to set
the weights [17][18].

Definition 3 (Subjective-Objective Weight Mode). Assumed wj is the weight of the

QoS metric qj,
* '() , ,, , ..., ,
j

n

1 2 n j j
j 1

j=1,2, ...,nw w w w w w 1 w 0
=

∈ = = ≥∑ can be deter-

mined by (2), then ∀ si, sj ∈Sc, si sj if and only if * *

i jB w B w≥ , i,j =1,2,…,m, B is

the normalized decision matrix, B=(bij)m×n , *
jb = max{b1j,b2j ,…,bmj}. []kj n nD d ×= is

the comparison matrix on the QoS metrics and the elements of matrix D satisfy dkj>0,
djk=1/dkj, dkk=1, dkj≈wk/wj, k,j=1,…,n, where dkj denotes the relative weight of metric
qk with respect to metric qj.

*

min ()

min () , ,

n n
2

1 kj k
k 1 j 1

m n
2 2

2 j ij j j j
i 1 j 1 j=1

j

n

f d w w

 f b b w subject to w 1 w 0 j=1,2,...,n

= =

= =

= −

= − = ≥

⎧
⎪
⎨
⎪
⎩

∑∑

∑∑ ∑
 (2)

4 Implementation

The prototype of our Web Service architecture is implemented in Java preliminarily.
We use Apache Tomcat 5.0 as application server. Apache Axis 1.1 is employed as
SOAP engine. We adopt Systinet’s WASP UDDI Standard 3.1 as our UDDI toolkit
and Cloudscape 4.0 database is used as a UDDI registry. Our model provides an envi-
ronment for rapid composition of Web Services. The processes of integrating multiple
component services are: When a service request comes, PE decomposes the user’s
request as fundamental functions at first, which can be fulfilled by a simple Web
Service. QA handles the user’s QoS requirements and gets the each QoS metric in-
formation by QIM from QoS metadata. Then PE constructs the process plan and finds
the service candidates from Service Lookup (e.g. UDDI). By the help of MQAE that
takes into account all QoS metrics and computes the utility of each service candidate,
PE selects the best service candidates to construct a complex one to meet the service
request. SM watches business process during its execution. When some component
services fail and the process is interrupted, FD checks the problem and FR deals with
the failure by the path replacement.

First of all, the Web Service providers have to register their services at the portal
according to pre-defined service classes (e.g. flight booking) (showed in Fig. 4). A
corresponding SLA has to be referenced as well.

622 X. Feng et al.

Fig. 4. List of registered Web Services and Service Classes

Fig. 5 shows an excerpt of a SLA for a DFBService. Within this SLA an availabil-
ity of 99.6% and average response time of 0.5ms are assured and the validity of the
Web Service is defined as well.

Fig. 5. Excerpt of a SLA for DFBService

The Web Service composition is realized in BPEL4WS. We use ActiveBPEL [19]
as the engine for the execution of the BPEL4WS process. Fig. 6 illustrates an excerpt
of the invocation of a Travel Planning Service modeled by BPEL4WS.

SAS

SASL

SDFB SITA

OR

OR

<invoke name=ASService>
<invoke name=ASLService>
<switch name="Travel Destination">
 <case condition="isDomestic=true">
 <invoke name=DFBService .../>
 </case>
 <case condition="isDomestic=false">
 <invoke name=ITAService .../>
 </case>
 <otherwise>
 <throw name="dest-failure" .../>
 </otherwise>
</switch>

(a) (b)

Fig. 6. Excerpt of a Travel Planning Service by the BPEL4WS process

 ZebraX: A Model for Service Composition with Multiple QoS Constraints 623

5 Validation of the Model

5.1 Validation of the Composition Model

We use the composition success ratio as the evaluation standard that is calculated by
SuccessNumber/RequestNumber. A QoS-aware service composition is said to be
successful, if and only if the composite service satisfies the function requirements and
the user's QoS requirements (e.g., delay, execution time, loss probability) [20][21]. To
evaluate the performance of dynamic service composition for failure recovery, we
define the metric recovery success ratio that is calculated by SuccessNumber/ Fail-
ureNumber. Higher recovery success ratio represents higher failure resilience in the
composed service provisioning. For comparison, we also implement two other com-
mon approaches: random and static algorithms. The random algorithm randomly
selects a functionally qualified component service for each service class in the com-
position graph. The static algorithm uses pre-defined component service for each
service class in the composition graph. Both random and static algorithms don’t con-
sider the user's QoS requirements.

workload(requests/time unit)

0 50 100 150 200 250 300

S
uc

ce
ss

 R
at

io

0.0

.1

.2

.3

.4

.5

.6

.7

.8

.9

ZebraX
Random
Static

Percentage of Failure

0 5 10 15 20 25 30 35 40 45 50

R
ec

ov
er

y
S

uc
ce

ss
 R

at
io

0.0

.1

.2

.3

.4

.5

.6

.7

.8

.9

ZebraX
Random

(a) (b)

Fig. 7. (a) Composition success ratio comparison among different approaches; (b) Failure
recovery success ratio comparison among different approaches

Second, we evaluate the efficiency of our failure recovery mechanism. We con-
sider a dynamic service overlay network where a certain percentage of overlay nodes
randomly fail during each time unit. The business processes that include those failed
nodes will be affected to experience failures. We measure how many affected proc-
esses can be recovered by our recovery mechanism. We use the degree-based Internet
topology generator nem (network manipulator) [22], a software that can do several
tasks related to network analysis and modeling for power law topology model. The
graph size we have chosen to study is 4000 nodes and about 12,800 edges (average
degree is 3.2). We randomly select 500 nodes as the service candidate nodes in a
business process. Fig.7 (b) shows the measured recovery success ratio on this power
law overlay network. The request rate is 150 requests per minute. Each recovery suc-

624 X. Feng et al.

cess ratio value is averaged over the whole 1000 minute simulation duration. The
results show that the failure recovery can achieve high failure recovery success ratio
on a moderately changing overlay network by our dynamic recovery mechanism. The
recovery success rate degrades as the percentage of node failures increases. However,
the failure recovery algorithm can still recover more than 50% failures even on a
highly dynamic service overlay network where 50% peers randomly fail. Moreover,
our failure recovery approach can achieve higher recovery success rate when higher
maintenance overhead is allowed.

5.2 Validation of the Decision Model

In this section, we present the experiments in the testbed to evaluate the proposed
Web Service Composition Decision Model of QoS criteria (WSCDMQ). We will
give the experiment scenario and then some tests are done. We choose the Attraction
Selection (ASL) Service SASL of the above Travel Planning Service in Fig. 8 as a
sample to do the simulation experiments. Suppose there are 10 Web Services similar
in functionality to SASL, and service providers have provided QoS information namely
execution cost (qcost(si)), execution time (qtime(si)), reliability (qrel(si)), availability
(qav(si)), and an additional criterion fidelity (qfid(si)) which is given by monitor broker.
Suppose the 10 Web Services all satisfy the threshold points based on the users’ re-
quirements. QoS information of decision criteria is shown in Fig. 9(a).

SAS SASL

SDFB

SITA STB

SPTS

SAB

SBR

SCR

SEP SCC

Fig. 8. Service Selection for SASL in the Service Graph

qcost(si) qtime(si) qav(si) qfid
s1 0.14 175 0.92 (0.99,0.94,0.90,0.95)
s2 0.20 150 0.98 (0.95,0.89,0.93,0.92)
s3 0.10 158 0.91 (0.95,0.85,0.90,0.91)

s10 0.15 145 0.88 (0.92,0.90,0.92,0.90)

s8 0.16 155 0.96 (0.95,0.88,0.95,0.90)
s9 0.18 150 0.92 (0.92,0.92,0.90,0.95)

s6 0.20 175 0.88 (0.99,0.94,0.92,0.90)
s7 0.15 190 0.92 (0.95,0.95,0.92,0.95)

s5 0.18 165 0.98 (0.85,0.90,0.95,0.95)
s4 0.15 152 0.95 (0.88,0.90,0.90,0.88)

qrel(si)
0.90
0.95
0.92
0.85
0.92
0.90
0.94
0.88
0.92
0.92

qcost(si) qtime(si) qav(si) SWM
s1 0.59 0.31 0.38 0.3819
s2 0 0.79 0.92 0.7869
s3 0.95 0.60 0.27 0.5719

s10 0.46 0.90 0 0.6234

s8 0.38 0.68 0.72 0.5713
s9 0.18 0.82 0.38 0.6345

s6 0 0.31 0 0.2608
s7 0.48 0 0.38 0.3127

s5 0.17 0.50 0.95 0.6032
s4 0.44 0.76 0.62 0.5232

qrel(si)
0.45
0.93
0.63
0
0.67
0.46
0.83
0.29
0.63
0.64

OWM
0.4105
0.7400
0.6012
0.4490
0.5872
0.2523
0.4001
0.5217
0.5813
0.5836

SOWM
0.3388
0.7766
0.4908
0.4530
0.5908
0.2558
0.3081
0.5194
0.5952
0.5565

(a) (b)

Fig. 9. (a) Values of 10 Similar Web Services; (b) Utilities for 10 Similar Web Services

In Subjective-objective weight mode (SOWM), we set α=0.3 and β=0.7 to reflect
the relative importance of the subjective weight mode and objective weight mode
respectively, the comparison matrix D= [1, 1/3, 1/4, 1/4; 3, 1, 2, 3; 4, 1/2, 1, 4/5; 4,

 ZebraX: A Model for Service Composition with Multiple QoS Constraints 625

1/3, 5/4, 1]. We can obtain the weights w*= (0.10,0.42,0.27,0.21)', and Web Services
are sorted, i.e., s2 s9 s5 s10 s8 s3 s4 s1 s7 s6. We also use the subjective
weight mode (SWM) and objective weight mode (OWM) as a reference. In subjective
weight mode (SWM), we can obtain the weights w*= (0.08,0.48,0.24,0.2)' according
to matrix D, while in objective weight mode (OWM), weights w* =(0.15, 0.35, 0.31,
0.19)', the result is independent of comparison matrix.

Execution Cost

.140

.145

.150

.155

.160

.165

.170

SWOM
SWM
OWM

 Execution Time

135

136

137

138

139

140

SWOM
SWM
OWM

Reliability

.75

.80

.85

.90

.95

SWOM
SWM
OWM

 Availability

.75

.80

.85

.90

.95

SWOM
SWM
OWM

(a) Execution Cost (b) Execution Time (c) Reliability (d) Availability

Fig. 10. Criteria Comparisons among Web Services Selected Under Different Decision Modes

Based on these testing results above, we can conclude that WSCDMQ model
strike a better balance and is more efficient compared with the other two. Subjective
weight model and objective weight mode are simple to use but with some limitations
in applications, while subjective-objective weight mode is flexible and reasonable for
its applications, as it combines both subjective preference and objective impact.

6 Conclusion and Future Work

In this paper, we study the problem of complex service composition with multiple
QoS constraints. We present a QoS-based service composition model and propose the
utility function as the evaluating standard as a whole considering all QoS parameters
of each component service. Also we discuss the decision modes to set the weights. It
can help to select component services based on users’ preference and objective im-
pact. It lays down a sound theoretical basis for our further research of dynamic Web
service composition. In the end we test the performance of our model and the avail-
ability of the decision mode and the results prove it to be viable.

Issues not covered in this paper that are planned as future enhancements are: (1)
Add heuristic algorithm to find service candidates with multiple QoS constraints; (2)
Consider dynamic adaptation problems during the execution of the business process.

References

1. Curbera, F., Goland, Y., Klein, J., et al.: Business Process Execution Language for Web
Services,Version 1.1. http://www-106.ibm.com/developerworks/webservices/library/ws-
bpel, May 2003.

2. BPMI.org.: Business Process Modeling Language (BPML), Version 1.0,
http://www.bpmi.org/bpml.esp, November 2002.

626 X. Feng et al.

3. Ponnekanti, S.R., Fox, A.: Sword: A developer toolkit for Web service composition. 11th
World Wide Web Conference (Engineering Track), Honolulu, Hawaii, May 2002.

4. Casati, F., Ilnicki, S., Jin, L., et al.: Adaptive and Dynamic Service Composition in eFlow.
Proc. of the 12th International Conference on Advanced Information Systems Engineer-
ing(CAiSE 2000), Stockholm, Sweden, June, 2000, pp.13-31.

5. Zeng, L., Benatallah, B., Dumas, M., et al.: Quality Driven Web Service Composition.
Proc. of 12th International World Wide Web Conference (WWW03), Budapest, Hungary,
May 2003.

6. Zeng, L., Benatallah, B., H.H.Ngu, A., et al.: QoS-Aware Middleware for Web Services
Composition. IEEE Transactions on Software Engineering, vol. 30, no. 5, 2004, pp.311-327.

7. Aggarwal, R., Verma, K., Miller, J., et al.: Constraint driven Web service composition in
METEOR-S. Proc. of IEEE International Conference on Service Computing (SCC'04),
Shanghai, China, Sept. 2004, pp.23-30.

8. Patil, A., Oundhakar, S., Sheth, A., et al.: METEOR-S Web service Annotation Frame-
work. Proc. of 13th international World Wide Web conference(WWW04), New York,
USA, May 2004, pp.533-562.

9. Dan, A., Davis, D., Kearney, R., et al.: Web services on demand: WSLA-driven auto-
mated management. IBM Systems Journal, vol. 43, no. 1, 2004, pp.136-158.

10. Yu, T., Lin, K.-J.: Service Selection Algorithms for Composing Complex Services with
Multiple QoS Constraints. ICSOC2005, pp.130-143.

11. Berbner, R., Spahn, M., Repp, N., et al.: Heuristics for QoS-aware Web Service Composi-
tion. Proc. of IEEE International Conference on Web Services (ICWS'06), pp.72-82.

12. Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self-Serv Environment for Web Services
Composition. IEEE INTERNET COMPUTING, JANUARY-FEBRUARY 2003, pp.40-48.

13. WfMC, http://www.wfmc.org.
14. Khan, S., Li, K.F., Manning, E.G., et al.: Solving the knapsack problem for adaptive mul-

timedia systems. Studia Informatica Universalis, vol. 2, no. 1, Sept. 2002, pp.157-178.
15. Yue, C.: Theory and Methods. the Science Press, China, ISBN 7-03-01081607, Mar. 2003.
16. Hu, J., Guo, C., Wang, H., et al.: Quality Driven Web Services Selection. Proc. of IEEE

International Conference on e-Business Engineering (ICEBE 2005), Beijing, China, Oct.
2005, pp.681-688.

17. Fan, Z.P.: A New Method for Multiple Attribute Decision Making. Journal of System En-
gineering, vol. 12, no. 1, 1994, pp.15-17.

18. Ma, J., Fan, Z., Huang, L.: A Subjective and Objective Integrated Approach to Determine
Attribute Weights. European Journal of Operational Research, 112(2), 1999, pp.397-404.

19. ActiveBPEL project, http://www.active-endpoints.com/active-bpel-engine-overview.htm.
20. Gu, X., Nahrstedt, K.: Dynamic QoS-aware multimedia service configuration in ubiqui-

tous computing environments. Proc. of IEEE 22nd International Conference on Distrib-
uted Computing Systems, Vienna, Austria, July 2002, pp.311-318.

21. Gu, X., Nahrstedt, K.: A scalable QoS-aware service aggregation model for peer-to-peer
computing grids. Proc. of the 11th IEEE International Symposium on High Performance
Distributed Computing (HPDC-11), Edinburgh, Scotland, July 2002, pp.73-82.

22. Magoni, D., Pansiot, J.-J.: Internet Topology Modeler Based on Map Sampling. Proc. of
the Seventh International Symposium on Computers and Communications (ISCC'02).
IEEE Computer Society, Taormina, July 2002, pp.1021-1027.

Middleware Support for Java Applications on

Globus-Based Grids

Yudith Cardinale, Carlos Figueira, Emilio Hernández,
Eduardo Blanco, and Jesús De Oliveira

Universidad Simón Boĺıvar,
Departamento de Computación y Tecnoloǵıa de la Información,

Apartado 89000, Caracas 1080-A, Venezuela
{yudith,figueira,emilio,eduardo}@ldc.usb.ve,

jesus@bsc.co.ve

Abstract. In this paper we describe the execution model supported by
suma/g, a middleware built on top of Globus for execution of Java ap-
plications on the grid. This execution model allows a user to launch Java
applications that will run on a grid from her machine without requir-
ing this machine to be part of the grid (e.g. a gLite User Interface).
Additionally, it allows grid users to regard local file systems, i.e. file sys-
tems accessible from their local workstations, as part of the set of file
systems accessible within the grid. This eliminates the necessity of per-
forming previous uploads of classes and data files, which helps to meet
the grid goal of achieving seamless access to distributed resources. We
describe how to implement the services offered by this execution model
on Globus-based grids. We compare the use of this execution model with
the standard mechanisms for submission of Java jobs in lcg/gLite, a
flavor of Globus Toolkit 2. We present experiments showing that this
execution model can improve performance for running Java applications
on Globus-based grids.

1 Introduction

Distributed platforms for compute-intensive processing and resource sharing,
known as grids [1], provide basic technologies for integrating multi-institutional
sets of computational resources. A grid middleware is deployed for achieving the
integration goal. Globus [2] is the most widely used grid middleware, available
in several versions; it is distributed as toolkits that include basic services and
libraries for resource monitoring and management, security, file management,
job submission, and communication.

Grid users are typically grouped into Virtual Organizations (VO) [3]. Each VO
is granted the access to a subset of the resources available in the grid. We call VO
Working Space (VOWS) the set of computing resources accessible by members of
a particular VO. A VOWS is mainly composed of the computing platforms that
can be used by the VO and the file systems accessible by that VO. For instance, in
lcg [4, 5] and gLite [6], there are Storage Elements which can store the data files

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 627–641, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

628 Y. Cardinale et al.

to be processed. These files were probably uploaded directly by a data provider, or
by users from a User Interface (UI). In this case, the set of file systems in a VOWS
is composed of the file systems directly accessed from UIs and working nodes, plus
the Storage Elements accessible by that VO, typically through gridFTP.

When a user wants to process some data files stored in her local workstations,
she must upload those files into her VOWS (e.g. into a file system accessible
from a UI) before the data can be processed within a grid. In addition, the data
files should be transferred from the UI into the file systems accessible by the
working elements before the execution starts. Storage Elements can always be
used as intermediate data containers in the grid.

Using the grid could be easier for most users if the file systems accessible from
the local workstation were part of the VOWS. For example, the files contained
in their laptops could be part of their VOWS. In this case, file prestaging is
necessary for the execution of applications on the remote node, and the prestage
could be partial (e.g. only a part of a file) or complete (the whole file). Notice that
such a feature is not provided by current Globus implementations, because local
machines are not part of the grid and the users must login to a UI before accessing
other grid components. Moreover, if such a feature is provided, it is desirable that
applications are not aware of the prestage phase. Ideally, applications should only
call standard I/O functions, instead of using location or grid dependent remote
access functions, such as secure RFIO (a GSI enhanced RFIO [7]) or based on
GFAL [8], a library for file access provided in lcg/gLite.

In this article we present an execution model for grids that incorporates local
file systems into a VOWS, eliminating the necessity of explicitly uploading the
data files and programs to a UI or of specifying location dependent file accesses
into the application. This execution model has been implemented in suma/g [9],
a grid middleware specifically targeted at executing Java bytecode on top of
Globus grids. This model includes a mechanism for dynamically loading data files
and Java classes directly from the local machine on demand, in a transparent way,
which means that programs designed for local file system access do not have to be
modified for grid execution. We describe how to implement the services offered
by this execution model on Globus-based grids. We compare our execution model
with a standard Globus-based interface for job execution.

suma/g has been partially implemented on top of the Java CoG Kit [10]. More
recently, similar platforms to suma/g have appeared, such as ProActive [11].
In their current status, suma/g and ProActive differ mainly in two aspects.
First, suma/g is conceived as a middleware to be executed within a Globus
environment, while ProActive defines interoperability interfaces with Globus and
other grids. Secondly, current version of suma/g is more oriented to data service
deployment, that is, it provides a meta-service for service installation [12].

The rest of this paper is organized as follows. Section 2 explains the execution
model of programs in Globus-based grids and section 3 explains the suma/g

execution model. Section 4 describes a scheme for providing suma/g services as
part of a Globus grid. Section 5 shows experiments comparing Java programs
performance under lcg/gLite and suma/g. Section 6 offers our conclusions and
future work.

Middleware Support for Java Applications on Globus-Based Grids 629

2 Execution Model in Globus-Based Grids

The Globus Toolkit offers building blocks (as services) that conform the grid
infrastructure. These services include resource monitoring and management, se-
curity, file management, job submission, and communication. A security infras-
tructure provides for the control of resources usage. Grid computing resources
are typically operated under the control of a scheduler which implements alloca-
tion and prioritization policies while optimizing the execution of all submitted
jobs for efficiency and performance.

Job submission can be done by using the bare services included in the toolkit.
They allow for interactive and off line remote applications execution. A user who
is granted access to a remote resource (often chosen by a scheduler) send her/his
application (i.e., executable files and libraries) to that resource, together with the
input data the application needs. Jobs and the resources required to run them
(e.g., parameters, resource usage, I/O files) can be specified through specialized
languages, such a the Globus Resource Specification Language (RSL). Globus
also supports uploading a program and its input data files; later, the user can
request for execution of the previously uploaded programs, and finally download
the output.

Our case study is a lightweight grid middleware called gLite [6], which is
based on a previous version called lcg (LHC Computing Grid) [4, 5], which in
turn is a grid middleware implemented on top of Globus services. As these two
middlewares share so many features (architecture, execution model, etc.) we will
refer to them as lcg/gLite.

2.1 LCG/gLite Architecture

Components of lcg/gLite are currently implemented with Globus Toolkit ver-
sion 2 (GT2). It also uses CondorG [13] for workload management. The basic
architecture is composed of the following modules, among others.

Security: The lcg/gLite security platform is based on Globus Security Infras-
tructure (GSI) and Virtual Organizations (VO). The GSI enables secure
authentication and communication over an open network. GSI uses pub-
lic key encryption, X.509 certificates, and the SSL communication protocol.
Extensions on these standards have been added for single sign-on and dele-
gation. The user authorization can be done: i) for the specific grid resource,
by matching the user certificate to a local account; or ii) through the VO
Membership Service, which allows for more detailed definition of the user
privileges.

User Interface (UI): The access point to the lcg/gLite grid is the UI. This
is a machine where lcg/gLite users have a personal account and where the
user certificate is installed. Users submit jobs and access other lcg/gLite
services from UI. One or more UIs are available to all VOs.

Computing Element (CE) and Storage Element (SE): A CE receives
jobs for execution on its associated computing nodes (Worker Nodes, WN).

630 Y. Cardinale et al.

It is defined as a grid batch queue. Besides the WN, it is based on Local
Resource Management System (LRMS), such as PBS and a node acting as
a Gatekeeper, which plays the role of front-end to the rest of the grid. Stor-
age Elements provide uniform access to storage resources; a number of data
access protocols and interfaces are supported (e.g., GSI-secure file transfer
protocol, GSIFTP).

Information Service (IS): The Information Service (IS) provides information
about the grid resources and their status. This information is used by other
grid components, such as UIs and CEs. The data published in the IS con-
forms to the GLUE (Grid Laboratory for a Uniform Environment) Schema.
Currently, lcg/gLite uses Globus’ Monitoring and Discovery Service (MDS),
using LDAP as main provider of the Information Service. CEs publish their
resources information using a Grid Resource Information Server (GRIS); a
site’s resources information is compiled at a Grid Index Information Server
(GIIS) or, alternatively, a Berkeley DB Information Service (BDII). Another
component gathers information from several GIIS/BDII, acting as a cache,
storing information about grid resources status.

Job Management: The services of the Workload Management System (WMS)
are responsible for the acceptance of submitted jobs and for sending those
jobs to the appropriate CE (depending on the job requirements and the
available resources). For that purpose, the WMS must retrieve information
from the IS and the File Catalog. The Resource Broker (RB) is the machine
where the WMS services run.

2.2 LCG/gLite Job Submission

We summarize the main steps for executing a job in lcg/gLite.

1. Before using the services, a user must obtain a digital certificate, register
with a VO and obtain an account on an UI. The user logs to the UI machine
and creates a proxy certificate.

2. He/she submits the job from the UI to the Resource Broker node, providing
a job description file (in Job Description Language, JDL) specifying, for
instance, one or more files (Input Sandbox) to be copied from the UI to the
RB node.

3. The WMS looks for the best available CE to execute the job through MDS.
4. The WMS prepares the job for submission creating a wrapper script that

will be passed, together with other parameters, to the selected CE.
5. The CE receives the request and sends the job for execution to the local

LRMS.
6. The LRMS handles the job execution on the available local WN.
7. User files are copied from the RB to the WN where the job is executed.

While the job runs, SE files can be accessed through a number of protocols,
such as secure RFIO.

8. The job can produce new output data that can be uploaded to the grid (SE)
and made available for other grid users to use.

Middleware Support for Java Applications on Globus-Based Grids 631

9. If the job reaches the end without errors, the output (not large data files, but
just small output files specified by the user in the so called Output Sandbox)
is transferred back to the RB node.

10. At this point, the user can retrieve the output of his job from the UI using
the WMS Command Level Interface (CLI) or API.

3 Execution Model in SUMA/G

suma/g
1 (Scientific Ubiquitous Metacomputing Architecture/Globus) [9] is a

grid middleware that transparently executes Java bytecode on remote machines.
suma/g supports both sequential and parallel applications using mpiJava. su-

ma/g security and resource management are based on Globus components [14].
In suma/g, Java classes and files are loaded on demand from the user’s machines,
which means that it is not necessary neither previous installation of the user’s
Java code on the worker node nor packing all classes for submission. Instead,
only the reference to the main class is submitted; all Java class files, as well
as data files, are loaded on demand with prefetching and buffering support in
order to reduce communication overheads [15]. Bytecode and data files servers
may be located on machines belonging to the grid, or in user controlled external
servers. Compared to Globus job execution model, suma/g on demand loading
of classes and data provides a higher level of transparency, because there is no
need for job description scripts, which are commonly used in Globus platforms.

suma/g was originally built on top of commodity software and communi-
cation technologies, including Java and CORBA [16]. It has been gradually
incorporating Globus general services by using the Java CoG Kit [10]. While it
might be possible to implement most of suma/g services directly on the Java
CoG Kit, some suma/g components are still needed since a number of services
already provided by suma/g are not available in the Java CoG Kit. Some of these
services are on-line execution, off-line execution, and classes and data loading on
demand. The suma/g services are accessible through local clients as command
line and graphic interfaces. As an alternative to these standard clients, suma/g

includes a portal that provides a single web interface to the grid resources.
The Java CoG Kit offers a suitable abstraction of Globus services, and allows

for leveraging on Globus technology evolution. Thus, suma/g grids can be con-
nected to deployed Globus based grids. The suma/g architecture is depicted in
Figure 1; the components are described below.

3.1 SUMA/G Components

suma/g components, and their role in the execution of applications, are shown
below.

Proxy: Receives an object from Client Stub, containing application data such
as the name of the main class, scheduling constraints (optional) and data

1 http://suma.ldc.usb.ve

632 Y. Cardinale et al.

Fig. 1. suma/g Architecture

structures to reduce the number of communications (optional); these are
called pre-loaded data. After checking user permissions, the Proxy asks the
Scheduler for a suitable execution platform, then sends the application ob-
ject to the selected one. In case of submitting off-line jobs, the Proxy keeps
results until the user requests them.

Scheduler: Responds to Proxy requests based on the application requirements
and status information obtained from the grid platform. Using the Globus
MDS service, the Scheduler learns about grid resources, obtaining informa-
tion about available execution platforms (including memory size, available
libraries and average load), data sets hosted at specific locations, and so on.
With this information, the Scheduler selects a suitable resource satisfying
the application requirements, while looking for load balance in the grid.

User Control: It is in charge of user registration and authentication. The GSI
is used for user authentication and authorization in suma/g, as well as a
mechanism for including all suma/g components in the grid security space.

Client Stub: It creates the application object, retrieves results and perfor-
mance data, and serves Execution Agent requests (callbacks) to load classes
and data dynamically. It is executed on the user machine or on a suma/g

entry server. In any case, the user must have a valid certificate installed on
that machine.

Middleware Support for Java Applications on Globus-Based Grids 633

Execution Agent: On starting, it registers itself at the Scheduler as a new
available resource. During operation, it receives the application object from
the Proxy and launches execution, loading classes and files dynamically from
the client or from a remote file system through the suma/g class loader
and the suma/g I/O subsystem. Once the application has finished, the
Execution Agent sends the results back to the client. In a parallel platform,
it plays the role of the front-end. Only the front-end of a parallel platform is
registered on suma/g either as an mpiJava enabled platform or as a farm,
for multiple independent job executions.

3.2 SUMA/G I/O Subsystem

suma/g implements a number of mechanisms to handle remote access to data
and classes. All data files and classes requests issued by applications are redi-
rected to the client, which in turn connects to local file systems (i.e., at the client
machine) or remote file systems specified by the user (e.g., at machines in which
the user has an account) to serve the requests. An alternative mechanism that
bypasses the client, directly connecting applications to data repositories (only
for data files), is also being implemented [17]. Figure 2 shows current suma/g

I/O subsystem.
The remote data and classes access mechanisms are:

1. Dynamic class loading. Each application instantiates its own suma/g Class
Loader, which handles the dynamic class loading from the client up to the
Execution Agent at run time.

2. Standard input, output and error redirection. For interactive applications,
the execution environment is modified such that the standard input, output
and error are connected to the client issuing the execution request, thus
behaving as if it were a local execution.

3. java.io redirection. A new package, suma.io redefines the basic classes in
java.io. Thus, through callbacks to the client, the data files can be accessed
by applications.

4. Buffering. Remote file accesses use buffering to improve performance, by
reading or writing blocks, hence reducing the number of callbacks to data
sources. The kind of buffering support provided in suma/g is different from
the buffering support provided by buffer cache components commonly found
in file system implementations. It rather resembles file prestaging, in the
sense that it consists of a single block, which actually could be the whole
file. At execution time a block size is specified (or an indicator for prestaging
the whole remote file) and the data transfer is performed on demand, when
the application executes a read on the file. The data block transferred from
the remote file system starts at the first byte accessed by the application. If
the application tries to access a byte not contained in the transferred data
block, another data block is transferred, overwriting the previous block.

634 Y. Cardinale et al.

Fig. 2. suma/g I/O Subsystem

3.3 SUMA/G Portal

The suma/g Portal supports the suma/g remote file access mechanisms. The
main benefit of the portal is that a single grid user name provides access not
only to the resources allowed for the VO the user belongs to, but also to the file
systems accessible from the local workstation. In this case the local workstation
does not run a suma/g client, but a standard web browser. A modified suma/g

Client Stub runs in the web server side. The access to the local file systems is
made by this suma/g Client Stub, through a file server, such as sshd or apache,
which must be locally installed. Not only the local file systems can be accessed
from the grid side, but also other file systems available in different machines that
are not part of the grid. The user grants the access to his/her accounts, after
the connection from the web browser to the web portal is conceded. Figure 3
depicts the access scheme provided by the suma/g Portal. File access is done
through the portal on demand, relieving the user of uploading data and classes
into the grid.

The suma/g portal is based on GridSphere [18] and uses MyProxy [19] as the
credential manager.

Middleware Support for Java Applications on Globus-Based Grids 635

Fig. 3. suma/g Portal Access Scheme

3.4 SUMA/G Job Submission

The basics of executing Java programs in suma/g are simple. Users can start the
execution of programs either through a shell running on the client machine or
through the suma/g portal. They can invoke either Execute, corresponding to
the on-line execution mode, or Submit, which allows for off-line execution (batch
jobs). At this time a proxy credential is generated (by using GSI) that allows pro-
cesses created on behalf of the user to acquire resources, without additional user
intervention. Once the suma/g CORE receives the request from the client ma-
chine, it authenticates the user (through GSI), transparently finds a platform for
execution (by querying the MDS), and sends a request message to that platform.
An Execution Agent at the designated platform receives an object represent-
ing the application and starts, in an independent JVM, an Execution Agent
Slave, which actually executes the application. The suma/g Class Loader is
started in that new JVM, whose function is to load classes and data during
execution. Supported classes and input files sources, and output destinations,
include: a) the machine (client) where the application execution command is
run and, b) a remote file server on which the user has an account. A pluggable
interface allows for implementing several protocols to manage remote files ac-
cess. Currently, implementations for CORBA and sftp are available; support
for gridFTP and others will also be provided.

636 Y. Cardinale et al.

To execute an application, either on-line or off-line, the user has only to specify
the main class name. In the case of Execute service, the rest of the classes
and data files are loaded at run-time, on demand, without user intervention.
Standard input and output are handled transparently, as if the user were running
the application on the local machine. For the Submit service, suma/g Client
transparently packs all classes together with input files and delivers them to
suma/g CORE; the output is kept in suma/g until the user requests it.

4 SUMA/G Services for Globus Based Grids

In this section we describe how to implement suma/g services for Globus-based
grids. The main benefit offered for Java applications on Globus-based grids con-
cerns the usability: for instance, there is no need for previous ssh login to a UI.
Additionally, the jobs are launched directly, without the need for job description
files or uploading/downloading of files and classes.

A suma/g infrastructure needs adaptation for Globus-based grids on some
basic issues. The first one is the security. GSI provides a suitable security plat-
form for the grid; it is used by both lcg/gLite and suma/g. Another issue
is related to resource control and administration. There must be a common,
global administration and control entity for the aggregated set of resources. In
this sense, integrating suma/g in a Globus-based grid, namely lcg/gLite grid,
implies a number of considerations, including:

• Handling cooperation between suma/g CORE and lcg/gLite components to
service requests

• Adding
– suma/g commands to lcg/gLite User Interface, for execution of Java

applications
– suma/g Execution Agents to lcg/gLite Computing Elements
– suma/g Execution Agent Slaves to lcg/gLite Worker Nodes.

The job flow and components interaction are depicted in figure 4. Next sections
give details on handling the security, resource control and administration, and
a description of the execution of Java applications using a suma/g middleware
integrated in a lcg/gLite grid.

4.1 Security

suma/g uses the Globus Security Infrastructure (through the Java CoG Kit)
for user authentication, authorization, and delegation. suma/g users must have
a valid certificate installed on their machines, instead of having the certificate
installed in the UI. Certificates in both suma/g and the lcg/gLite grid have
to be signed by a common Certification Authority. Before suma/g users can
use lcg/gLite grid resources, they must register with the lcg/gLite Registra-
tion Service, providing the Virtual Organization (VO) they belong to. VOs are
specially important for users authorization. One or more VOs for suma/g users
should be registered with lcg/gLite. As for privacy, all suma/g components
communicate through encrypted channels using SSL.

Middleware Support for Java Applications on Globus-Based Grids 637

Fig. 4. suma/g middleware in a lcg/gLite grid: component interaction during a job
submission

4.2 Resource Control and Administration

A simple implementation consists of delegating suma/g Resource Control
functions on lcg/gLite’s GIIS. Every Computing Element having a suma/g

Execution Agent is registered (labeled as a suma/g service) on its local GRIS,
which is periodically consulted by GIIS to keep a global knowledge of the grid re-
sources status. Hence, all resources status and control are handled by a common
entity, the lcg/gLite grid GIIS.

4.3 Execution of a Java Application

The steps for executing a Java application on a lcg/gLite grid using the added
suma/g service are:

1. The user executes a suma/g command to submit her/his job at the UI. The
command instantiates a suma/g Client Stub.

2. The Client sends the job request, together with a proxy certificate, to the
suma/g CORE.

3. Once suma/g CORE accomplishes user authentication, it consults lcg/
gLite’s GIIS to obtain a list of suitable Computing Elements with
suma/g Execution Agent; it then chooses one Computing Element.

4. suma/g enqueues the job at the selected Computing Element for execution.
5. When ready to execute, the Execution Agent at the Computing Element

launches an Execution Agent Slave on a Worker Node to execute the ap-
plication (or in several worker nodes if it is a parallel program).

6. During execution, applications transparently load classes and files, and write
output to files, from possible different sites, such as a Storage Element, the
UI, a user’s remote directory, etc.

638 Y. Cardinale et al.

7. When application finishes, results and output files are kept in suma/g

CORE; they can be retrieved by the user from the UI using command sumag
GetResults.

5 Experiments

We chose three applications to test the execution models described above. These
applications were executed on both lcg/gLite (using gLite 3.0) and suma/g

grids. The grids were deployed in a laboratory environment, over the same ex-
ecution platform, namely a dedicated cluster of PC’s running Scientific Linux
3.0.6 CERN. These PC’s have the following characteristics: double processor 800
MHz Pentium III, 512 MBytes of memory, connected with 100 Mbps Ethernet.
Applications, execution contexts and results are explained below.

5.1 Applications

MolDyn: is a Java application included in the JavaGrande benchmark suite [20].
It is an N-body code modeling particles interacting under a Lennard-Jones
potential in a cubic spatial volume with periodic boundary conditions. The
number of particles is given by N. In these experiments, we use the “Size B”
version, where N is 8788. The application is composed by five classes, plus a
package of five more classes (1003 total code lines); it does not have I/O.

PIC: is a Particle-in-Cell simulation code [21] in Java 2. It needs three command
line parameters: (tend, dt), and the output file name (about 64 KB). It
consists of four java classes. In these experiments, the parameters are fixed
to 100 (tend) and 0.2 (dt).

TSPmpi: is a Java application that solves the Traveling Salesman Problem us-
ing a parallel genetic algorithm. The goal is to find the shortest path visiting
N cities exactly once, starting and ending in the same city. The implemen-
tation is a master-slave message passing program, where the master sends
the best solution so far to the slaves, which in turn compute a new solu-
tion using a genetic algorithm and send it to the master. The number of
iterations is introduced as a command line parameter (10, for these experi-
ments). The slaves write to file the best solution they have found every while.
The program has 17 classes. In these experiments, the applications reads a
386 KBytes cities specification input file (usa13509.tsp), indicated in the
command line, and writes out 212 KBytes (the itinerary) both to file and
standard output.

5.2 Execution

5.2.1 LCG/gLite
The general steps followed for executing the applications in the lcg/gLite grid
are: 1) Identify all classes and input files used by application; pack them all in a
2 This code was kindly provided by Dr. Vladimir Getov.

Middleware Support for Java Applications on Globus-Based Grids 639

“tar.gz” file. 2) Adapt script3 that guides execution at the CE to each applica-
tion. The script includes the execution command and command line execution
parameters. 3) Create a (simple) Job Description Language (JDL) file, basically
specifying the script file, and input and output files (sandbox). 4) Run com-
mands at the UI to submit the job (providing the JDL file) and get its status
and results.

The commands run at the UI are:

1. Submission: glite-job-submit --vo usb -o job-id file jdl file
2. Status: glite-job-status -i job-id file
3. Get results: glite-job-get-output -i job-id file

We created JDL and script files for every one of the three applications.

5.2.2 SUMA/G
Applications are run through a single (submit) command executed at the UI.
Results are fetched using command “sumag GetResults job id”.

For MolDyn, the main class is called “JGFMolDynBenchSizeB”. The com-
mand is very simple since there are no command line parameters and since it’s
a sequential (default) application:

“sumag Submit JGFMolDynBenchSizeB”

For PIC, the main class is called “es2d”. It needs three command line
parameters:

“sumag Submit es2d 100 0.2 output file”

TSPmpi is a parallel application, so we must specify the number of pro-
cessors (-n 4). The main class is called COGMpi; it needs two command line
parameters:

“sumag Submit COGAMpi usa13509.tsp 10 -n 4”

Input files, standard input, and classes are dynamically loaded from the UI
to the WN; output files, and standard output and error are stored in suma/g

CORE.

5.3 Results

The average wall clock time results are summarized in Table 1. The results shown
consist of elapsed time from job submission until execution completion, including
time spent saving results on temporary storage. Both suma/g and lcg/gLite
store results of off-line executions on a grid component, so the user can get them
later. Table 1 also shows the improvement (speed up) obtained using suma/g

with respect to using lcg/gLite.
Wall clock times in suma/g are shorter than in lcg/gLite (between 10% and

43%), even though the back end platform is the same. lcg/gLite jobs spend

3
lcg/gLite distributions include template scripts for Java, MPI, etc.

640 Y. Cardinale et al.

Table 1. Average wall clock time in lcg/gLite and suma/g grids

Application lcg/gLite suma/g Speed Up
MolDyn 696 sec. 399 sec. 42.67%

PIC 3054 sec. 2741 sec. 10.25%

TSPmpi 2781 sec. 2037 sec. 26.75%

considerable time (about 300 seconds) queuing in several middleware compo-
nents (using transfer protocols such as gridFTP). Additionally, for parallel MPI
programs, a full home directory is copied in every WN, which, for TSPmpi ex-
ecution, accounts for the extra (approx.) 400 seconds. We expect that these
differences will decrease in percent terms as applications take longer; hence, we
conclude that the suma/g execution model does not introduce a significant per-
formance overhead. When running on a multisite grid context, execution time
overhead for remote classes and file loading will be partially hidden by suma/g

buffering and prefetching mechanisms [15].

6 Conclusions

suma/g middleware offers an execution model for Java applications that is po-
tentially very attractive to users, since the grid is used in the same fashion a local
Java Virtual Machine is used. Grid users do not have to log into a User Interface,
nor transfer the files (programs or data) as a previous step for the computation
phase. Moreover, if the data files were accessed directly by the applications from
the file system where they reside, it would not be necessary to rewrite the ap-
plications for doing gridFTP transfers previous to the execution. It meets Java
users expectations, facilitating applications porting to the grid: applications can
be run first on local machines, then executed on the grid without any change
to classes. This enhanced interaction meets the grid goal of achieving seamless
access to complex, distributed resources to users, in a simple way.

We described how to implement these services, offered by the suma/g exe-
cution model, on Globus-based grids. We showed that this execution model can
improve performance, besides enhancing usability for running Java applications.
Our experiments indicated improvements from 10 to 46 % in a local environment.

We are currently working on the integration of suma/g with Globus toolkits
based on Web services.

References

[1] Foster, I., Kesselman, C.: Computational Grids. In: The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publishers, Inc. (1999) 15–51

[2] Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. The
International Journal of Supercomputer Applications and High Performance Com-
puting 11(2) (1997) 115–128

Middleware Support for Java Applications on Globus-Based Grids 641

[3] Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of High Performance Computing
Applications 15(3) (2001)

[4] LCG Team: LCG: Worldwide LHC Computing Grid. http://lcg.web.cern.ch/lcg/
(2006)

[5] Evans, L.R.: The Large Hadron Collider Project. In: European School of High-
Energy Physics, Carry-le-Rouet, France (1996) 275–286 CERN 97-03.

[6] gLite: Lightweight Middleware for Grid Computing (2006) http://glite.web.
cern.ch/glite/.

[7] IN2P3: Remote File Input Output (2006) http://doc.in2p3.fr/doc/public/
products/rfio/rfio.html.

[8] GFAL: Gfal (2003) http://grid-deployment.web.cern.ch/grid-deployment/gis/
GFAL/gfal.3.html.

[9] Cardinale, Y., Hernández, E.: Parallel Checkpointing on a Grid-enabled Java
Platform. Lecture Notes in Computer Science 3470(EGC2005) (2005) 741 – 750

[10] von Laszewski, G., Foster, I., Gawor, J., Smith, W., Tuecke, S.: CoG Kits: A
Bridge between Commodity Distributed Computing and High-Performance Grids.
In: ACM Java Grande 2000 Conference, San Francisco, CA (2000) 97–106

[11] Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., Quilici, R.:
Programming, Deploying, Composing, for the Grid. In: Grid Computing: Software
Environments and Tools. Springer-Verlag (2006)

[12] Blanco, E., Cardinale, Y., Figueira, C., Hernández, E., Rivas, R., Rukoz, M.:
Remote Data Service Installation on a Grid-enabled Java Platform. In: Proceed-
ings of the 17th International Symposium on Computer Architecture and High
Performance Computing, Rio de Janeiro, Brasil (2005)

[13] Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.: Condor-G: A Com-
putation Management Agent for Multi-Institutional Grids. In: Tenth Interna-
tional Symposium on High Performance Distributed Computing (HPDC-10),
IEEE Press (2001)

[14] The Globus Alliance: The Globus Toolkit (2006) http://www.globus.org/.
[15] Cardinale, Y., De Oliveira, J., Figueira, C.: Remote class prefetching: Improving

performance of java applications on grid platforms. In: The Fourth International
Symposium on Parallel and Distributed Processing and Applications (ISPA’2006).
(2006)

[16] Cardinale, Y., Curiel, M., Figueira, C., Garćıa, P., Hernández, E.: Implementation
of a CORBA-based metacomputing system. Lecture Notes in Computer Science
2110 (2001) Workshop on Java in High Performance Computing.

[17] Cardinale, Y., Figueira, C., Hernández, E.: Acceso Seguro a Datos Confidenciales
en Grids. In: Actas de la XXXII Conferencia Latinoamericana de Informática
CLEI 2006 (CD-ROM), Santiago de Chile, Chile (2006)

[18] Project, G.: http://www.gridsphere.org (2006)
[19] J. Novotny, S. Tuecke, V.W.: An online credential repository for the grid:

Myproxy. In: Proceedings of of the 10th IEEE International Symposium on High
Performance Distributed Computing. (2001)

[20] EPCC: The Java Grande Forum Benchmark Suite. http://www.epcc.ed.ac.uk/-
javagrande (2006)

[21] Lu, Q., Getov, V.: Mixed-language high-performance computing for plasma sim-
ulations . Scientific Programming 11(1) (2003) 57–66

http://glite.web.cern.ch/glite/
http://glite.web.cern.ch/glite/
http://doc.in2p3.fr/doc/public/products/rfio/rfio.html
http://doc.in2p3.fr/doc/public/products/rfio/rfio.html
http://grid-deployment.web.cern.ch/grid-deployment/gis/GFAL/gfal.3.html
http://grid-deployment.web.cern.ch/grid-deployment/gis/GFAL/gfal.3.html

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 642 – 654, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Component Assignment for Large Distributed
Embedded Software Development

Zhigang Gao and Zhaohui Wu

College of Computer Science, Zhejiang University,
Hangzhou, Zhejiang, P.R. China, 310027
{gaozhigang, wzh}@zju.edu.cn

Abstract. With the increasingly complexity of ubiquitous computing environ-
ment, large and distributed embedded software are used more and more widely.
After a design model has been completed, assigning components in the design
model while meeting multiple runtime constraints is a critical problem in
model-based large distributed embedded software development. In this paper,
we propose a new method of component assignment. This method uses back-
tracking algorithm to search the assignment space, and a balance distance func-
tion to decide the feasible assignment scheme. Unlike other methods that view
computation, communication, and memory resources as independent resources,
this method analyzes their holistic influence on component assignment with the
goal of keeping the balance between computation resource consumption and
memory resource consumption, and the balance of execution density among dif-
ferent processors. Experimental evaluation shows the component assignment
method has high success ratios, low time overheads, and good scalability.

Keywords: Ubiquitous computing, embedded software, model-based develop-
ment, component assignment, backtracking algorithm.

1 Introduction

Ubiquitous computing, as a new computing paradigm, is increasingly permeating into
the production and daily lives. Ubiquitous computing environment is an environment
that integrates people, environment, and devices into a whole seamlessly and natu-
rally. Embedded devices play an important role in a ubiquitous computing environ-
ment. With the increasingly complexity of ubiquitous computing environment, large
and distributed embedded systems are used more and more widely, which makes the
development of embedded software becomes more and more difficult. In order to
improve reliability, reusability, maintainability, and reduce development costs,
model-based methodology is presented, and has proved to be effective [1, 2] in em-
bedded software development. In model-based development, design models are used
to implement platform-independent functions, and implementation models represent
software implementation on a specific platform. For model-based large distributed
embedded software development, the transformation from a design model to an im-
plement model is usually divided into two steps: first, assign the components of a
design mode to an execution platform; second, generate runtime tasks and assign their
timing and scheduling properties, such as deadlines, priorities. In the process of the

 Component Assignment for Large Distributed Embedded Software Development 643

model transformation, assigning components in the design model while meeting mul-
tiple runtime constraints is a critical problem because component assignment need not
only meet the resource constraints of the platform, but also helps to generate real-time
embedded software in next step of model transformation, which makes it more diffi-
cult to deal with.

Currently, there are many research efforts on task and resource assignment prob-
lem in distributed environments [3, 4, 5, 6]. However, these research efforts either
consider only one kind of resource, or deal with multiple resources one by one. Onishi
et al. [12] proposed a method for component assignment. However, they focus on the
problem of improving system reliability. Wang et al. [7] proposed a method for com-
ponent assignment with multiple resource constraints. Wu et al. [13] proposed an
adaptive method for component assignment with multiple constraints. However, they
view computation, communication, and memory resources as independent resources,
and consider components to be independent entities. In fact, communication resource
together with computation resource influences timing characteristic of components;
both the memory resource of the processor and the computation resource of the proc-
essor are influenced when a component is assigned to a processor; and there exists
precedent relationship among components, which influences the runtime computation
resource overheads of components.

In this paper, we propose a new method of component assignment. This method
analyzes the holistic influence of computation, memory, and communication resource
consumption of components on component assignment, and uses backtracking algo-
rithm to explore the assignment space. It considers the balance between computation
capability and memory capacity, the balance of execution density among different
processors, and the precedent relationship among components.

The rest of this paper is organized as follows. Section 2 presents the design model,
platform model, and deployment graph. Section 3 describes the process of component
assignment. Some experimental evaluation is given in section 4. Finally, the paper
concludes with section 5.

2 Software Model

In this section, we present the design model, platform model, and deployment graph used
in this paper. They are extensions of the software models presented by Wang et al. [7].

2.1 Design Model

The design model used in this paper is Md=(TrS), where TrS is a set of transactions
composed of orderly interconnected components. We first give the definition of a
component, and then give the definition of a transaction.

Definition 1. A component Mc=(IP, OP, AM, MC) is a software entity, where IP is a
set of input ports; OP is a set of output ports; AM is a set of actions (when receiving a
message, a component carries out a specific computation, which is called an action.);
MC is the memory resource consumption of a component. It is defined as the maxi-
mum runtime memory overheads of a component.

644 Z. Gao and Z. Wu

A component sequence that is triggered by an external event in order to complete a
specific function is called a transaction. It is defined as follows.

Definition 2. A transaction is defined as MTr=(CS, Msg, T, D, RC), where CS is a set
of components in this transaction; Msg is a set of messages passing from the output
port of a component to the input port of next component; T and D are the transac-
tion’s period and deadline respectively; RC is the set of resource consumption func-
tions. Resource consumption functions include the computation resource consumption
function CRC and the communication resource consumption function MLEN.

CRC is a function that maps actions into positive rational numbers. In distributed
systems, computation capability of different processors may be different. When an
action ai is executed on different processors, its worst-case execution time (WCET)
EXE(ai) will be different. In order to uniformly measure the action’s execution time
among different processors, we use the method reported in [8], that is, use its WCET
on a reference platform RF as EXE(ai). We use CRC(ai) = EXE(ai)/Ti to denote the
computation resource consumption of an action ai, where Ti is the period of the trans-
action to which ai belongs. When a component is included in multiple transactions, its
computation resource consumption is the sum of the computation resource consump-
tion in all the transactions in which it involves.

MLEN is a function that maps messages in transactions into non-negative rational
numbers. We use the maximum length of a message Msg(i), denoted as
MLEN(Msg(i)), to represent the communication resource consumption of Msg(i).

In this paper, we use EXE(Ci) to denote EXE(ai) when no confusion will be
caused. When multiple transactions cut through the same component, we assume they
trigger the same action in the component. We also assume transactions’ deadlines are
no more than their periods.

In this paper, we assume once a design model is given, the components, the trans-
actions, the transactions’ timing constraints (periods and end-to-end deadlines), and
the resource consumption of the components are all known.

2.2 Platform Model

Definition 3. A platform model Mpt=(PS, N) represents a runtime environment for
embedded software, where PS is a set of processors (with different computation capa-
bility and memory capacity); N is a shared network connecting all the processors. A
processor Pi can provide the computation resource CR(Pi) and the memory resource
MR(Pi).

It should be noted that we assume the computation resource of the reference plat-
form RP is 1. The computation resource of Pi, CR(Pi), is a relative value correspond-
ing to that of RP. We use BW(N) to denote the bandwidth of the network N.

2.3 Deployment Graph

Definition 4. A deployment graph is defined as Mdg=(PS, CSD, TL, CM), where PS is
the set of processors; CSD is the set of components in Md; TL is the set of message
links among processors; CM is the function that maps CSD to PS.

 Component Assignment for Large Distributed Embedded Software Development 645

We assume the communication resource consumption between internal messages
(the messages passing within a processor) is zero, and the messages passing among
tasks have their maximum length.

The problem of component assignment can be stated as following: given the design
model, and the platform model, the problem of component assignment is to find a
deployment graph such that the computation, memory, and communication resource
constraints (in our component assignment method, we use execution density to evalu-
ate computation and communication resource consumption) are all met.

3 Component Assignment

Due to precedent relationship among components, a component of a transaction can
only be in an active state (be ready to run) in a specific time scope in order to meet the
timing constraint of this transaction. We call the maximum time scope of a compo-
nent being in an active state its active period. The active periods of components and
the priorities of messages are needed in the process of component assignment. In this
section, we first propose the assignment method of active periods and priorities of
messages, and then detail the process of component assignment.

3.1 Assignment of Active Periods of Components

Wang et.al [10] present the notions of Earliest Start Time (EST) and Latest Comple-
tion Time (LCT) of components. But there is a difference between design models in
this paper and structure models in their paper: when more than one input events trig-
ger the same output of a component, their paper uses the “and” relationship, that is to
say, in order to trigger the component’s action, all input events must arrive. In design
models of this paper, we use the “or” relationship among these input events, that is to
say, either of the input events can trigger a component’s action. Because of the above
difference, we make a corresponding modification to the calculation method of EST
and LCT.

In the following part of section 3.1, we assume Ci is a component in transaction
Trk, and Trk is triggered at time 0.

The EST of Ci is defined as follows:

(,)

(,) ()
j i k

i k j
C PC C Tr

EST C Tr EXE C
∈

= ∑ (1)

Where PC(Ci,Trk) is the set of precedent components of Cj in transaction Trk.
The LCT of Ci is defined as follows:

(,)

(,) () ()
j i k

i k k j
C SC C Tr

DLCT C Tr Tr EXE C
∈

= − ∑ (2)

Where D(Trk) is the deadline of Trk; SC(Ci,Trk) is the set of subsequent components
of Ci in transaction Trk.

The active period of Ci in transaction Trj is defined as AP(Ci,Trk)=[EST(Ci,Trk),
LCT(Ci,Trk)].

646 Z. Gao and Z. Wu

We can know from the above definitions that the active period of Ci in transaction
Trk is its largest feasible active time scope when Trk is triggered. Of course, not all
components in a transaction can be active in their active periods. When a component
is included in multiple transactions, it will have multiple active periods.

3.2 Priority Assignment of Messages

For priority assignment of messages, we adopt the deadline monotonic method. The
earlier the deadline of a transaction is, the higher the priority of its messages is. If one
message is involved in multiple transactions, we use the highest priority as its priority.
In Fig. 1, two external events, E1 and E2, trigger three transactions, Tr1, Tr2, and Tr3.
Tr1 consists of C1, C2, and C3; Tr2 consists of C1, C2, and C4; Tr3 consists of C5, C6,

and C7. When receiving the message Msg(1), C2 outputs messages Msg(2) and Msg(3).
Assuming D(Tr1)<D(Tr2)<D(Tr3), the order of the priorities of messages is Pr(Msg(1))
= Pr(Msg(2)) > Pr(Msg(3)) > Pr(Msg(4)) =Pr(Msg(5)).

Tr
3

Msg(3)

Msg(1)

Msg(4) Msg(5)

Tr
1

Msg(2)E1 C2 C3

E2 C5 C6

C1

C7

Tr
2

C4

Fig. 1. A design model with three transactions

3.3 Component Assignment Algorithm

If there are m components in a design model and n processors in the corresponding
platform model, there will be nm kinds of deployment graph (of course, some of them
are feasible, and the others are infeasible). We call every deployment graph a com-
ponent assignment scheme. For complex software for large distributed embedded
system, n and m maybe be very large, and it is too time-consuming to search all
component assignment schemes for the optimal one. In this paper, we use backtrack-
ing algorithm to find a feasible scheme for the component assignment problem.

The component assignment algorithm is shown in Algorithm CA.

Algorithm CA(Md, Mpt)
/* CSD represents the set of all components in Md.

bFalg denotes the return value of algorithm CA*/
Sort all components in CSD in ascending order of the

disorder degree DF.
bFalg=BK(CSD);
return bFalg;

 Component Assignment for Large Distributed Embedded Software Development 647

The input of Algorithm CA is a design model Md and a platform model Mpt. The
output of this algorithm is a deploy graph. If all components in CSD are assigned to
processors, the process of the component assignment succeeds. Otherwise, it fails.

The component assignment algorithm consists of two steps: component sort and
backtracking assignment.

First, component sort. The assignment order of components has important influ-
ence on finding a component assignment scheme as fast as possible [11]. When a
component Ci is assigned to a processor Pi, it will consume some computation re-
sources and some memory resources, and Ci’s input and output messages will con-
sume some communication resources. During component assignment, keeping the
balance between computation resource consumption and memory resource consump-
tion is important for making full use of a processor. In a transaction, the input mes-
sage of a component is exact the output message of its direct precedent component.
Therefore, when computing a component’s communication resource consumption, we
need only computation the communication resource consumption of either the input
or output messages of the component. In this paper, we use the computation resource
consumption of a component’s input messages as its communication resource con-
sumption. For the first component of a transaction, its communication resource con-
sumption is believed to be zero. If a component not only has littler communication
resource consumption but also has suitable consumption and memory resource con-
sumption (i.e. helps to keep the balance between computation resource consumption
and memory resource consumption of processors), its assignment has advantageous
influence on the later component assignment.

We use a disorder degree function DF to evaluate a component assignment’s influ-
ence on systems. DF is defined as follows:

()

()

()
()2

1 2

()
()

()
() ()

() ()
() () ()

k i

j
m n

n

k
Msg IN Ci i

i
P PS j j m

Msg MS Tr
Tr TrS

MLEN Msg
CRC C MC C

DF C k k
CR P MR P MAX Msg

∈

∈
∈

∈

= − +
∑

∑ ∑
i i (3)

In equation (3), IN(Ci) is the set of input messages of Ci; MS(Trn) is the set of the
messages in transaction Trn; MAX is the function that calculates the maximum value.
The first item with coefficient k1 denotes the difference between the computation and
memory resource consumption of Ci and the computation and memory resource pro-
vided by processors in PS. The second item with coefficient k2 denotes the ratio of the
communication resource consumption of Cj to the maximum communication resource
consumption. Because we assume transactions’ deadlines are no more than their peri-
ods, there is at most one message of a transaction in the network N at a time. There-
fore, only the maximum message of each transaction is calculated in the denominator
of the second item. Using different k1 and k2 can adjust the weight of the two factors.
For example, for a platform model composed by processors that have a large differ-
ence between computation and memory resources and a high-speed network, we can
use a large k1 and a small k2.

Second, backtracking assignment. In this step, the backtracking algorithm is used
to search the possible assignment of each component one by one in order to find a
feasible component assignment scheme. We use a component assignment table (CAT)

648 Z. Gao and Z. Wu

to store all assignment of a component. One item in a component assignment table is
called an assignment point. An assignment point is a 3-tuple, denoted as (Ci, Pj,
BF(Ci, Pj)), where BF(Ci, Pj) is the balance distance function that is used to evaluate
the effect when Ci is assigned to the processor Pj. The littler a BF is, the better it is.
The BF is defined as follows:

() ()

1 2

()
() ()

(,) ()
() ()

j

j P j Pi i

j
P PSj j

i i i
C CS C CSi i

ED P
CRC C MC C

BF C P γ γ ED P
CR P MR P n

∈

∈ ∈

= − + −
∑

∑ ∑i i (4)

In the right of equation (4), there are two items with the coefficient γ1 and γ2. The
first item is an index that reflects the utilization difference between the computation
resource consumption on Pi and the memory resource consumption on Pi when Ci is
assigned to Pi. The second item denotes the execution density (ED) difference be-
tween all components on Pi and the average execution density on all processors. Like
k1 and k2 in equation (3), γ1 and γ2 are the weight of the two factors, and can be set
according to the platform model. The items in the CAT of each component are sorted
in ascending order of BF.

Root

1 2 3 22 3 1 1 3 2

1 2 3Level 1

Level 2

A B C

D E F G H I

Fig. 2. The process of component assignment

Fig. 2 is an example of component assignment. It shows all assignment schemes
when two components, C1 and C2, are assigned to three processors, P1, P2, and P3. Level
1 denotes the component assignment of the component C1 who has the least DF. Node
A, node B, and node C are corresponding to C1’s assignment points: (C1, P1, BF(C1,
P1)), (C1, P2, BF(C1, P2)), and (C1, P3, BF(C1, P3)) respectively. Similarly, the second
level denotes the component assignment of the component C2 who has the second
least DF. It should be noted that the order of the assignment points of C2 depends on
that of C1. For this reason, the order of the assignment points under node A is D=(C2,
P1, BF(C2, P1)), E=(C2, P2, BF(C2, P2)), and F=(C2, P3, BF(C2, P3)), different from
those under node B: G=(C2, P2, BF(C2, P2)), H=(C2, P3, BF(C2, P3)), and I=(C2, P1,
BF(C2, P1)). In the same level, the node in the leftmost has the least BF, and the node
in the rightmost has the largest BF. The backtracking algorithm searches a feasible

 Component Assignment for Large Distributed Embedded Software Development 649

component assignment scheme in the order of left-order-first. In Fig. 2, if component
assignment fails in D, E, and F, then the algorithm backtracks to the next assignment
point of C1—Node B, and then initializes the CAT of C2 and search a feasible compo-
nent assignment of C2. This process is recursive until a feasible component assign-
ment scheme is found. The backtracking algorithm is shown in Algorithm BK.

Algorithm BK(CSD)
/* t is the path depth of backtracking algorithm. n is

the number of processors. The nodes other than the root
node are corresponding to the assignment points of compo-
nents. The path from the root node to a leaf node denotes
an assignment order of components*/
if (t > n+1) return true;
for (i = The first child node of current node; i <= The

last child node of current node; i++) {
Pj = The processor used in i;
ED(Pj);
if (Constraint(Pj) and Bound(Pj)) {

Initialize next component’s component assignment
table, and sort assignment points of each component
in ascending order of the balance distance BF.
BK(t+1);
}

}
if (t is less than n and no unprocessed child node)
return false;

}

In Algorithm BK, ED(Pi) is the execution density of all components assigned to
processor Pi.

When calculating ED(Pi), we cannot simply add up all the EDs of the components
assigned to Pi for the following reasons: in the same transaction, discontinuous com-
ponents assigned to one processor is impossible to run continuously. Adding up all
the EDs of the components will obtain a pessimistic result.

In section 3.1, we introduce the notion of active period. It is the biggest time span
for a component’s running. In distributed environment, the components of a transac-
tion can be assigned to more than one processor. We call the components that can
execute continuously a component segment (CSE). The execution density of a CSE is
defined as follows:

()

()

()

(,)
(,) (,) ()

i

i
C CS p

i

l i f i p

EXE C

ED p Tr
LCT C Tr EST C Tr CT Msg

∈=
− −

∑
 (5)

In equation (5), p is a CSE; CS(p) is the set of components in p; fC is the first

component in p, lC is the last component in p;. Execution density reflects the influ-

ence of computation resource consumption and communication resource consumption

650 Z. Gao and Z. Wu

on the runtime of components. Using the ED to evaluate the runtime influence of
components is an optimistic method. We can obtain an optimization component as-
signment scheme because one goal of component assignment is to keep the balance of
EDs among processors. Furthermore, it has larger searching space when assigning
components. When a component assignment scheme is proved failed when tasks are
generated, we can search for other feasible component assignment schemes. From the
definition of active period, it is obvious that the ED of a CSE is lager than the ED of
any component in CSE, i.e. it is the run-time worst cast of a CSE. So we use the ED
of a CSE to denote the ED of continuous components in a transaction.

The ED(Pi) is defined as follows:

()
()

() ((,))
j

j i

i j
p CSS Tr

Tr TrS P

ED P MAX ED p Tr
∈∈

= ∑ (6)

In equation (6), p is a CSE in Trj; CSS(Trj) is the set of CSE in Trj; TrS(Pi) is the
set of transaction in Pi.

CT(Msg(p)) is the worst-case transmission time (WCTT) of the input message of
CSE(p). In the right of equation (5), the denominator means the active period of p
should minus the time overheads of Msg(p).

In real-time scheduling, networks are usually regarded as processors, and network
messages are regarded as tasks in order to perform response time analysis of network
messages. If there are m transactions in Md, there are at most m messages in the net-
work N at a time. When Msg(p) and the longest messages of other m-1 transactions are
sent to N simultaneously, Msg(p) will get its WCTT. For a message Msg(p), its WCTT
can be calculated using equation (5) by iterative method.

()
()

() () ()
()

()

()
p

p

p j k
k L Msg

j H Msg j

C C MAX C
t

t
T ∈

∈

= + +∑ i (7)

Where C(p) is the maximum transmission time of Msg(p), denoted as
MLEN(Msg(p))/BW(N); H(Msg(p)) is the set of messages whose priorities are higher
than that of Msg(p); L(Msg(p)) is the set of messages whose priorities are lower than
that of Msg(p). The last item in equation (7) denotes the blocking time suffered by
Msg(p) due to blocking effects coming from being transmitted network messages with
lower priority.

Two functions, Bound and a Constraint, are defined to decide whether prune a
node or not in backtracking algorithm.

The Bound function of a node with assignment point (Ci, Pj, BF(Ci, Pj)) is defined
as follows:

()()

() (
()

() ()) (1)
()

i j k Pj

k
j j i

C CS P C CS j

Bound P P
P

CRC C
MR MC C and

CR∈ ∈

= ≥ <∑ ∑ (8)

In the right of equation (8), CS(Pj) is the set of components in

Pj;
()

() ()
i j

j i
C CS P

PMR MC C
∈

≥ ∑ means if the available memory resource of Pj is no

less than the gross runtime memory consumption of CS(Pj), the memory requirements

 Component Assignment for Large Distributed Embedded Software Development 651

of CS(Pj) could be met.
()

()
1

()
k Pj

k

C CS jP

CRC C

CR∈

<∑ means the total utilization of compu-

tation resource in Pi should be less than 1.
The constraint function of a node is defined as follows:

()= ()j jP PConstraint ED TD≤ (9)

Where TD is the threshold of ED in Pj. It is a value less than 1 and can be set by
user.

If both equation (8) and equation (9) are true for current node, next path will be
searched. If Algorithm BK returns true, a feasible component assignment scheme has
been found and vice versa.

4 Experiments Evaluation

As mentioned in section 1, there are few research efforts on component assignment
problem that combined multiple resource consumption in embedded software devel-
opment domain. We call the method presented in this paper BK+BF. In order to com-
pare, we construct another algorithm named BK+CR, which views computation re-
sources, memory resources, and communication resources as independent resources,
and does not consider the balance of execution density.

In the following, if we do not give extra explanations, the “ratio” or “utilization”
refers to a relative value comparing to the total computation, memory, or communica-
tion resources of all processors and the network.

The design model used in this paper is generated randomly. A component has the
number of input messages: 1-5, the number of output messages: 1-3. The ratio of com-
putation (or memory) resource consumption to all computation (or memory) resources
provided by PS is less than 90 per cent. Because communication resource overheads
have been considered into ED, there is no threshold of communication resource con-
sumption in BK+BF. In BK+CR, the ratio of maximum communication resource con-
sumption to all communication resources provided by PS is less than 90 per cent. The
TD in equation (9) is set to 0.9. The coefficients in (3) and (4) are set to 1.

We first evaluate the computation time under the condition of different utilization
of computation, memory, and communication resource consumption. Of course, in
BK+BF, we ignore the utilization of communication resource consumption. Under a
specific utilization, the design model has 100 components. We use the number of the
visited nodes in backtracking algorithm to represent time overheads. The platform
model has 15 processors, and a network with 1Mb/s. The Fig. 3 shows the results
under different utilization. Note that in horizon axis, utilization denotes the value of
the utilization of computation, memory, and communication resource consumption.
For example, 10% denotes the utilization of computation, memory, and communica-
tion resources is all 10%. The vertical axis denotes the number of the visited nodes in
backtracking algorithm. We can see the number of the visited nodes increases in the
BK+BF and the BK+CR with the increment of utilization. In little utilization, the
visited nodes in BK+CR are less than that in BK+BF because BK+CR do not consider

652 Z. Gao and Z. Wu

utilization of resources

visited nodes

Fig. 3. The visited nodes vs different utilization of resources

number of components (*100)

failure ratio

Fig. 4. The failure ratios with different number of components

the balance between computation resources and communication resources in compo-
nent sort and backtracking assignment, and can easily find a feasible component as-
signment scheme. However, in big utilization, the visited nodes in BK+CR are more
than that in BK+BF due to the same reason.

In the second experiment, we evaluate the failure ratios with different component
number. This test is performed on 20 processors connected with a network with the
speed of 1Mbits/s. The computation resource of processors ranges from 1 to 10, and
memory capacity ranges from 100B (bytes) to 30000B. For a class of design model
with the given components, we randomly generate 50 design models and use the av-
erage value of their failure rations (the computation resource consumption and mem-
ory resource consumption decrease with the increase of the number of components).
For each design model, we use the BK+BF and BK+CR to find a component assign-
ment scheme, and then generate tasks using the algorithm in [9]. If a component as-
signment scheme can be generated a schedulable tasks set (each transaction’s WCRT
is less than its deadline), we believe it is successful. The experimental results are

 Component Assignment for Large Distributed Embedded Software Development 653

shown in Fig. 4. We can see the BK+BF has lower failure ratios than that of BK+CR.
It is because BK+BF not only considers the balance between computation resource
consumption and memory resource consumption, but also the balance of execution
density on processors. However, BK+CR only considers the utilization of computa-
tion, memory, and communication resources, and does not consider the precedent
relationship among components, and the runtime influence of components’ execution,
so leads to higher failure ratios when embedded software is generated from design
models.

We also compare the scalability of the two component assignment methods under
the condition of different processor number and component number. We use the vis-
ited nodes in backtracking algorithm to measure the computation time. The experi-
mental results are shown in Fig. 5. We can see the number of the visited nodes in-
creases in the BK+BF and the BK+CR with the increment of the number of proces-
sors and components. The visited nodes in BK+BF increase smoothly with the incre-
ment of the number of processors and components. The BK+BF visits fewer nodes
than BK+CR because it considers the balance between computation resource con-
sumption and memory resource consumption, and the balance of execution density
among different processors, and is more likely to find better component assignment
schemes with less computation costs. It shows the BK+BF algorithm has a good scal-
ability, and suitable to large distributed systems.

(number of processors,number of components*100)

visited nodes

Fig. 5. The visited nodes vs different number of processors and components

5 Conclusions and Future Work

With the increasingly complexity of ubiquitous computing environment, large and
distributed embedded systems are used more and more widely. This paper proposes a
new method of component assignment for large distributed embedded systems. This
method analyzes the holistic influence of computation, memory, and communication
resource consumption of components during component assignment. This method
uses backtracking algorithm to explore assignment spaces. During component as-

654 Z. Gao and Z. Wu

signment, it considers the balance between computation resource consumption and
memory resource consumption on processors, and the balance of execution density
among different processors in order to find an optimization assignment scheme.

References

1. Wang, S., Shin, K.G.: An Architecture for Embedded Software Integration Using Reus-
able Components. CASES. (2000) 110-118

2. Gao, Z., Wu, Z., Ye, R., Yue, L.: A Model-Based Development Method for SmartOSEK
OS. The 5th International Conference on Computer and Information Technology. (2005)
781-787

3. Tindell, K.W., Burns, A., Wellings, A.J.: Allocating Real-Time Tasks: An NP-Hard Prob-
lem Made Easy. Real-Time Systems Journal. Vol. 4, no. 2. (1992)

4. Gai, P., Lipari, G., Natale, M.D.: Minimizing memory utilization of real-time task sets in
single and multi-processor systems-on-chip. In Proceedings of the 22nd Real-Time Sys-
tems Symposium (RTSS 2001). (2001) 73–83

5. Hou, C.J., Shin, K.G.: Allocation of periodic Task Modules with Precedence and Deadline
Constraints in Distributed Real-Time Systems. IEEE Transactions on Computers. Vol. 46,
no. 12. (1997)

6. Ramamoorthi, R., Rifkin, A., Dimitrov, B., Chandy K.M.: A general resource reservation
framework for scientific computing. In Proceedings of the 1st International Scientific
Computing in Object-Oriented Parallel Environments Conference (ISCOPE), vol. 1343.
(1997) 283–290

7. Wang, S., Merrick, J.R., Shin, K.G.: Component Allocation with Multiple Resource Con-
straints for Large Embedded Real-Time Software Design. IEEE Real-Time and Embedded
Technology and Applications Symposium. (2004) 219-226

8. Wang, S., Shin, K.G.: Early-stage performance modeling and its application for integrated
embedded control software design. In ACM Workshop on Software Performance
(WOSP). (2004) 110-114

9. Gao, Z., Wu, Z., Li, H.: A Task Generation Method for the Development of Embedded
Software. The International Conference on Computational Science 2006 (ICCS 2006).
LNCS, vol. 3994. (2006) 918-921

10. Wang, S., Shin, K.G.: Task construction for model-based design of embedded control soft-
ware. IEEE Transactions on Software Engineering. Vol. 32, no. 4. (2006) 254-264

11. Kumar, V.: Algorithms for constraint satisfaction problems: a survey. A.I. Magazine. Vol.
13, no. 1. (1992) 32–44

12. Onishi, J., Kimura, S., James, R.J.W., Nakagawa, Y.: Solving the Redundancy Allocation
Problem With a Mix of Components Using the Improved Surrogate Constraint Method.
IEEE Transactions on Reliability : Accepted for future publication. (2006)

13. Wu, Q., Wu, Z.: Adaptive component allocation in ScudWare middleware for ubiquitous
computing. The 2005 IFIP International Conference on Embedded and Ubiquitous Com-
puting. Lecture Notes in Computer Science, vol. 3824, (2005) 1155–1164

LDFSA: A Learning-Based Dynamic Framed

Slotted ALOHA for Collision Arbitration
in Active RFID Systems�

Hyuntae Cho, Woonghyun Lee, and Yunju Baek��

Department of Computer Science and Engineering,
Pusan National University, Busan,

Republic of Korea
{marine,yunju}@pnu.edu

Abstract. In recent large scale deployment of active RFID systems has
been introduced by many applications, but a variety of critical issues re-
main unresolved. Especially, the impact of collision is the most essential
problem. In this paper, we propose a Learning-based Dynamic Framed
Slotted ALOHA algorithm (LDFSA) which mitigates collision from the
active RFID tags and complies with international standard, ISO/IEC
18000-7. In addition, this paper includes the performance evaluations
of the proposed LDFSA algorithm with the conventional algorithms.
According to the result, the proposed LDFSA algorithm shows better
performance than other conventional algorithms.

Keywords: LDFSA, slotted ALOHA, active RFID, anti-collision, colli-
sion arbitration.

1 Introduction

Identification of multiple objects is especially challenging if many objects are
distributed in a field. Several technologies are available for identification. Bar
code is the most pervasive technology, but reading them requires a line of sight
between the reader device and the object, manual, and close-ranging scanning.
But a Radio Frequency Identification (RFID) system provides remote, non-line-
of-sight, and automatic reading. The RFID system identifies the unique tags’ ID
or detailed information saved in them attached to objects. There are two types
in the RFID tag: the active type which generates power from internal resources
such as a battery and the passive type which gets energy from the transceiver
by radio frequency [1].

The RFID system conceptually consists of a reader and a number of tags.
The reader in the RFID system broadcasts the request message to tags. Upon
�� Corresponding Author.
� “This work was supported by the Korea Research Foundation Grant funded by

the Korean Government(MOEHRD)” (The Regional Research Universities Pro-
gram/Research Center for Logistics Information Technology).

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 655–665, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

656 H. Cho, W. Lee, and Y. Baek

receiving the message, all tags send the response back to the reader. If only one
tag responds, the reader successfully collects information of the tag. But if there
are two or more responses from tags, their responses will collide on the common
communication channel, and thus cannot be read by the reader. The ability
to identify multiple tags simultaneously is regarded as a critical issue for more
advanced applications such as to check out numerous items at the supermarket. It
might take a lot of time to check out them one by one, which requires an efficient
identification method checking a large number of goods at one time without
any delay. To overcome the collision problem, much research [2,3,4,5] has been
introduced in passive RFID applications. Nevertheless, anti-collision mechanism
in the active RFID field has been absent. Collision arbitration for the active
RFID should be differed from previous solutions because their requirements,
such as computing power, the capacity of memory, power efficiency, and so on,
do not agree with that for the passive type. So, distinct approaches for the active
RFID system should be needed and designed.

In addition, the RFID tags attached to objects at a site can be read in other
sites. For instance, an RFID tag attached to an item in Korea can be read by the
readers in the store of L.A., the U.S.A. In this new system, because each site can
have a unique RFID reader system, RFID tags can not read at their destinations.
In order for these heterogeneous systems to be compatible, conformance with in-
ternational standards is important. ISO/IEC 18000-7[6] was enacted as an inter-
national standard for container identification in port environments. Active RFID
systems should be designed and developed according to this standard. ISO/IEC
18000-7 for the active RFID system describes the dynamic framed slotted ALOHA
technique to reduce tag collision. So, this paper will concentrate on collision arbi-
tration without any deviation from international standard. This paper proposes
a Learning-based Dynamic Framed Slotted ALOHA algorithms (LDFSA) to en-
hance the efficiency of tag identification and compares the performance of the
LDFSA algorithm with those of the conventional Basic Framed Slotted ALOHA
(BFSA) and Dynamic Framed Slotted ALOHA (DFSA) algorithms.

The organization of the paper is as follows. We present traditional approaches
for collision arbitration in the next section. Then, we describe our algorithm,
the learning-based dynamic framed slotted ALOHA. Finally, we conclude this
paper in section 5 after describing the performance evaluation of the LDFSA in
section 4.

2 Related Work for Anti-collision

Slotted ALOHA algorithm[4,5] suggested by ISO/IEC 18000-7, is the collision
arbitration method where each tag transmits its identification to the reader in
a slot of a frame and the reader identifies the tag when it receives information
of the tag without collision. A time slot is a time interval where tags respond
their messages. The reader can identify the tag when only one tag access a time
slot. The current RFID system uses a kind of slotted ALOHA known by framed
slotted ALOHA algorithm. A frame is a time epoch between requests of a reader

LDFSA: A Learning-Based Dynamic Framed Slotted ALOHA 657

and includes a set of slots. A collection round, referred to as a read cycle, is a
tag identifying process that consists of a frame. This section briefly describes
existing framed slotted ALOHA anti-collision algorithms.

2.1 Basic Framed Slotted ALOHA Algorithm

Basic Framed Slotted ALOHA (BFSA)[1] algorithm uses a fixed frame size and
does not change the size during the process of tag identification. In BFSA, the
reader offers information to the tags about the frame size and the random number
which is used to select a slot in the frame. Each tag selects a slot number for
access using the random number and responds to the slot number in the frame.
Since the frame size of BFSA algorithm is fixed, its implementation is simple.
However, it has a limitation that drops efficiency of tag identification.

2.2 Dynamic Framed Slotted ALOHA Algorithm

Dynamic Framed Slotted ALOHA (DFSA) algorithm, which is used in ISO/IEC
18000-7, changes the frame size for efficient tag identification. To determine the
frame size, it uses information such as the number of slots used to identify the
tag and the number of the slots collided. So DFSA algorithm can solve partially
the problem of BFSA that use a fixed frame size and identify the tag efficiently
because the reader regulates the frame size according to the number of tags. But,
the frame size change alone can not reduce sufficiently the tag collision when there
are a number of tags because it can not increase the frame size indefinitely.

3 The Proposed Learning-Based Dynamic Framed
Slotted ALOHA (LDFSA) Algorithm

The prior dynamic framed slotted ALOHA algorithm changes the frame size to
increase the efficiency of the tag identification. However, DFSA do not consider
active RFID properties such as power efficiency, computing power and so on.
Furthermore, because DFSA do not maintain any collision information, tag col-
lision increases in a next collection command round. In this section, we propose
a Learning-based Dynamic Framed Slotted ALOHA algorithm which solves this
problem.

Since the active RFID tag gets energy from internal resources such as batter-
ies, tag’s energy can affect a total RFID system. To enhance the lifetime of the
system, the active RFID tag should sleep as long as possible. Thus, the reader
sends a wake-up signal before getting tags’ information within interrogation zone.
And then, the reader interrogates tags using the collection command which in-
cludes the frame size that can be varied dynamically. Initial round for collecting
tags’ information is composed of a wake-up signal, a collection command broad-
casting, a frame, and a sleep period as shown in Figure 1. Basically, the reader
broadcasts a wake-up signal to all tags within interrogation zone before sending
a collection command. After that, when the reader sends the collection com-
mand, it includes initial frame size from which the number of total tags in the

658 H. Cho, W. Lee, and Y. Baek

Fig. 1. Basic architecture of a Learning-based Dynamic Framed Slotted ALOHA

interrogation zone can be estimated. The estimated number of tags is used for
determining a next frame size. Initial frame size can vary system performance.
We evaluated the performance by varying the number of initial frame size. The
result will be dealt with in section 4. For the detail demonstration of our al-
gorithm, we will mention the algorithm by separating into two parts: a point
of view of the reader, and a point of view of the tag. Followings demonstrate
pseudo codes of the LDFSA for anti-collision.

- RFID reader operation

Object implementation of RFID reader;
sucessList : tags list read by the reader;
frameSize : estimated by the number of tags;

Operation antiCollision()
broadCast(initTagLearning());
broadCast(wakeupCommand);

settingInitialNumberOfSlots(frameSize);
for i in threeEmptyRound do

broadCast(collectionCommand, frameSize);
for i in oneRound do

sucessList = getTagInfo();
od
for i in i == sucessList.len do

uniCast(successList.tagID, sleepCommand);
od
if (this round == empty round)

totalEmpty++;
fi
frameSize = calFrameSize(estimateNumberOfTag());

od

LDFSA: A Learning-Based Dynamic Framed Slotted ALOHA 659

- RFID tag operation

Object implementation of RFID tag;
Operation run()

while(listen(wakupCommand));
for i in Tag.status == wakeup do

while(listen(ReaderCommand));
switch ReaderCommand:

case : SLEEP
correctPrediction(success);
setTagstatus(Sleep);

case : P2P
Reply(data);

case : BROADCAST
correctPrediction(fail);
selectSlot(frameSize);
Reply(data, selectedslot);

od

First, the reader action is separated into five parts: sending a wake-up message,
broadcasting a collection command, estimating the number of tags, determining
the frame size, and transmitting sleep command. The most important things
between them are to estimate the number of tags and to determine the frame
size. They are closely correlated each other. To determine the frame size, we
have to use information such as the number of slots used to identify the tag and
the number of the slots collided. Cha[4] described how to estimate the number
of tags as follows. A system reaches maximum throughput when p is equal to
1/n. we can get optimal collision rate Crate for maximum throughput.

Crate = lim
n→∞

Pcoll

1 − Psucc
= 0.418 (1)

The number of the collided tags, Ctags in a slot is calculated by

Ctags =
1

Crate
= 2.3922 (2)

Let Mcoll be the number of collided slots in a frame after a round. Then the
number of estimated tags is calculated by

NumberofEstimatedTags = 2.3922 × Mcoll (3)

We use above equations to estimate the number of tags. And then we have
to determine the frame size for the next collection round. If we can estimate
the number of unread tags, we can determine the frame size that will maximize
the system efficiency or the tag collision probability. Lee[5] introduced how to

660 H. Cho, W. Lee, and Y. Baek

determine the frame size. When the number of tags is n, the optimal frame size
can be derived as follows.

N =
1

1 − e−
1
n

=
e

1
n

e
1
n − 1

(4)

When n is large, it can be simplified as follow.

N �
1 + 1

n

1 + 1
n − 1

= n + 1, n � 1 (5)

The above equation tells us that when the number of tags and the frame size
are approximately the same, the system efficiency becomes the maximum.

Second, the tag’s behavior includes selecting their slot, responding to the
reader and a learning phase for the next collection command from the reader.
Each tag that receives a collection command from the reader selects a slot num-
ber to access the common communication channel by using the random number
and responds to the slot number in the frame with its ID and other informa-
tion. Tags use learning mechanism to get their slot for accessing communication
channel. The tag stores it’s current slot number to the internal memory such as
EEPROM. After that, if the tag receives a sleep command from the reader, it
determines that its response is successful and increases the probability that use
for the next collection command round by using prediction method. Otherwise
the tag determines that it is collided and decreased the probability that can
reduce collision for the next round.

Figure 2 shows an example of slot selection using learning mechanism. When a
tag selects their slot for responding, the each slot of the tag extracts the random
number. Each slot of the tag has their probability that used for selecting the
number of a slot. Initial probability for all tags is set to the same value. And
then each slot performs modulo operation using its probability and the random
number. Initially, because every slot has the same probability, the slot with
the maximum random value will be chosen. The tag will transmit the response
message by using that slot. After that, if the tag receives a sleep command
from the reader, it determines that its response is successful and increases the
probability that use for the next collection round using learning mechanism.
Otherwise the tag determines that it is collided and decreased the probability
that can reduce collision for the next round.

For example, let the slot size of the tag be five, and initial probability be one
hundred. Each slot generates their random number as Table 1. The second slot
generated a random number as 90 and has highest the result of modulation oper-
ation (90 mod 100 = 90). As according to the grade of results, the second slot is
selected for responding a message to the reader. After that, if the response is suc-
cessful, learning mechanism will provide compensation that increases the proba-
bility. If the response is failed, the selector will decrease probability. The LDFSA
will accumulate data used to select their slot according to progressing the cycle or
round and thus mitigate collision problem in the reader. The LDFSA is in need of
a large of memories for maintaining information which used to select the slot of
the tag. Active RFID tags have sufficient capacity for realistic applications.

LDFSA: A Learning-Based Dynamic Framed Slotted ALOHA 661

Fig. 2. LDFSA compensates according to whether it collids

Table 1. Process of learning operation of LDFSA

Number of slot 1 2 3 4 5
Random number 270 90 65 130 85

Result of modulo 70 90 65 30 85

4 Performance Evaluation of LDFSA

In this section, we compare the performance of the LDFSA algorithm with the
conventional Basic Framed Slotted ALOHA (BFSA) and Dynamic Framed Slot-
ted ALOHA (DFSA). In order to evaluate the performance, we have assumption
that the reader repeats collection rounds until it collects all tags and the num-
ber of iteration for a consequent collection operation performed by the reader
is basically set to one hundred times. Every experiment was repeated ten times
and then averaged.

4.1 Simulation

First of all we describe a result of how the LDFSA affect the active RFID system
according to whether the response is successful or not. Our simulation is sepa-
rated into two models. In Figure 3, what the number of average round is higher

662 H. Cho, W. Lee, and Y. Baek

than others means that the tag consumes much time for data transmission and
thus reduces its lifetime. If the number of total slots that mean time period dur-
ing total collection cycle from the reader is high, the algorithm requires much
time. Figure 3 illustrates that the LDFSA has better performance than other
algorithms in terms of the number of slots or time period needed to collect all
tags. In detail, when the tag has the prediction mechanism and the number of
initial slots is much smaller than the number of tags which are distributed in
active RFID field, the performance is less 4 percent than DFSA. However, in
case a large number of tags are deployed, tag’s longevity is prolonged up to
19.7% that is the mean of all of experiment, and collection time that gets all
tags’ information is diminished down to 14.7%. In figure for average round for
collecting all tags, as according to the number of initial slots is high, the number
of total rounds needed to collect all tags becomes small. As earlier mentioned,
the LDFSA showed the efficient performance that can be applied to a realistic

Fig. 3. The effect of LDFSA

LDFSA: A Learning-Based Dynamic Framed Slotted ALOHA 663

application. In addition, we performed the evaluation to measure how the LDFSA
affect performance according to the number of tags. The number of tags varied
from 10 to 100 and the number of initial slots is 80. As a result shown in Figure
4, the average number of rounds of the LDFSA is more than BFSA. However,
the average number of slots that affect the system is remarkably reduced.

Fig. 4. The efficiency of the LDFSA according to the number of tags : (a) The average
number of rounds (b) the average number of slots

Table 2. Impact of moving tags in LDFSA

Average number of frames Average number of slots

No movement 8.098 108.056

50% movement 8.298 112.145

Realistic applications, such as the port environment that get the containers
in and out of the ports, require tag’s movement like processing items into and
out of a store or a RFID field. Therefore, collision arbitration should consider
this requirement to enhance the efficiency of the realistic application so that we
can mitigate an accumulation of goods. Table 2 shows a result of impact of tags’
movement. For evaluation, environments were set to 50 tags are deployed and
the number of initial slots is also 80. We inspected the impact of tags’ movement
in case a half of total tags replaced new tags in the active RFID field. The
result shows that tags’ movement does not dramatically affect the active RFID
system.

4.2 Experiment and Verification

As earlier mentioned, tags in heterogeneous RFID systems, which have different
RFID system, can not read at their destinations. So, conformance with interna-
tional standard, ISO/IEC 18000-7, is most important. LITeTag [7] was designed

664 H. Cho, W. Lee, and Y. Baek

Fig. 5. Active RFID system which complies ISO/IEC 18000-7

for the active RFID system which strictly complies with the international stan-
dard, ISO/IEC 18000-7. LITeTag use DFSA algorithm, which was defined by
the standard, to arbitrate collision.

Figure 5 shows the active RFID system, LITeTag system, which consists RFID
tags, a reader, and a host. In LITeTag, Atmel’s ATmega128L was chosen as the
processing unit of the hardware platform. It is able to operate at a maximum
frequency of 8MHz, providing reasonable processing power to explore a wide va-
riety of applications and provides sufficient memory resources for a wide range
of experiments. The on-chip memory includes 4KB of RAM, 4KB of EEPROM,
and 128KB of flash memory. 53 general purpose I/O pins and serial ports, such
as RS-232 and SPI, are provided by the CPU. The communication subsystem of
LITeTag is based on either the XEMICS’s XE1203F, named version 1.0, or Chip-
con’s CC1100, referred to as version 2.0. They are connected to the processor
through an SPI interface and data bus. We choose the version 2.0 of LITeTag,
which equips with CC1100 RF, to experiment the proposed LDFSA. And then,
We ported the proposed LDFSA to the LITeTag and evaluated our the algo-
rithm. As a result, the LDFSA did not deviate from international standard and
completely operated on the LITeTag platform.

5 Conclusion and Future Works

In this paper, we proposed the Learning-based Dynamic Framed Slotted ALOHA
algorithm which can reduce collision from active RFID tags. We described the
conventional slot allocation algorithm, which is the method to allocate the frame
size by the number of tags. We also compared the performance of the pro-
posed LDFSA with two conventional framed slotted ALOHA algorithms and
built RFID systems to deploy in realistic application. The proposed LDFSA
algorithm shows better performance than conventional algorithms. If the pro-
posed LDFSA algorithm is used in the active RFID system where the ability
to simultaneously identify muliple tags is crucial for many applications, it will
contributed to improved the performance of the active RFID system. Our fu-
ture work includes advanced research for the secure, energy efficient and more
realistic applications.

LDFSA: A Learning-Based Dynamic Framed Slotted ALOHA 665

References

1. Klaus Finkenzeller: RFID Handbook: fundamentals and applications in contactless
smart cards and identification, Wiley press, 2003

2. Bogdan Carbunar, Murali Krishna Ramanathan, Mehmet Koyuturk, Christoph
Hoffmann, and Ananth Grama: Redundant reader elimination in RFID systems,
Proceeding of Second Annual IEEE Communications Society Conference on Sensor
and Ad Hoc Communications and Networks, 2005

3. Jia Zhai, Gi-Nam Wang: An Anti-collision Algorithm Using Two-Functioned Esti-
mation for RFID Tags, Lecture Notes in Computer Science, vol. 3483, pp. 702-711,
2005

4. Jae-Ryong Cha, Jae-Hyun Kim: Dynamic framed slotted ALOHA algorithms us-
ing fast tag estimation method for RFID system, Proceeding of IEEE Consumer
Communications and Networking Conference, 2006

5. Su-Ryun Lee. Sung-Dong Joo, Chae-Woo Lee: An Enhanced Dynamic Framed Slot-
ted ALOHA Algorithm for RFID Tag Identification, Proceeding of the 2nd Annual
International Conference on Mobile and Ubiquitous Systems: Networks and Services,
2005

6. ISO/IEC 18000-7: Information technology - radio frequency identification for item
management - Part 7: parameters for active air interface communications at 433
MHz, ISO/IEC 2004

7. Hyuntae Cho, Hoon Choi, Woonghyun Lee, Yeonsu Jung, and Yunju Baek: LITeTag:
Design and Implementation of an RFID System for IT-based Port Logistics , Journal
of Communications (JCM), vol. 1, Issue 4 (ISSN 1796-2021), July 2006., pp. 48-57

Implementation of OSD Security Framework and

Credential Cache�,��

Gu Su Kim, Kwang Sun Ko, Ungmo Kim, and Young Ik Eom

School of Info. and Comm. Eng., Sungkyunkwan Univ.,
300 Cheoncheon-dong, Jangan-gu, Suwon, Kyeonggi-do, 440-746, Korea

{gusukim, rilla91, umkim, yieom}@ece.skku.ac.kr

Abstract. The concept of Object-based Storage Devices (OSD), which
is standardized by the ANSI T10 technical committee, is an emerging
storage paradigm that replaces storages of traditional fixed-size block
abstraction with those of variable-size objects that virtualizes the under-
lying physical storage. In this paper, we describe our substantial im-
plementation of the OSD security framework in OASIS, which is an
OSD system developed at ETRI (Electronics and Telecommunications
Research Institute) in Korea. We also describe our credential caching
subsystem, called Lcache, which is implemented in the client side of our
OSD security framework in order to improve the performance of issuing
credentials.

1 Introduction

Recently, data storage has become a vital, fast-growing part of the enterprise
IT environment, as new business initiatives drive companies to accumulate vast
amounts of information. The traditional model for storage, known as Direct
Attached Storage (DAS), involves a hard disk drive and a disk array or a RAID
system attached directly to a server or desktop machine. Because DAS model
disperses data widely among many servers, it is inefficient and poorly-suited for
managing mass storage in network environments. Storage Area Network (SAN)
[1][2] place the storage servers on the client network and enable direct access
to the storage servers. This design aims at improving I/O performance and
system scalability of distributed file system as it removes the file-server from the
critical data path. However, SAN security is essentially weak and the only partial
solutions use methods provided by the physical level in Fiber Channel SANs [3].
Network Attached Storage (NAS) [4] is system-independent shareable storage
that is connected directly to the network and is accessible to heterogeneous
servers and client computers. However, because the storage system of NAS shares

� This research was supported by MIC, Korea under ITRC IITA-2006-(C1090-0603-
0046).

�� This research was supported by the Ubiquitous Computing and Network (UCN)
Project, the MIC 21st Century Frontier R&D Program in Korea.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 666–671, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Implementation of OSD Security Framework and Credential Cache 667

the same network with clients and application servers, heavy data traffic can have
undesirable effects, such as bottlenecks and reduced network performance.

Object-based Storage Devices(OSD) [5] is a new storage paradigm (in partic-
ular for network accessible storage), in which the abstraction of array of blocks
is replaced with the abstraction of collection of objects [6]. OSD paradigm was
first proposed in CMU as an academic research project [7][8], outstandingly ac-
tualized and implemented by IBM Haifa Lab., and it still is an active area of
research in academic and commercial worlds. In this paper, we describe our
implementation of the OSD security framework in OASIS based on the OSD
standard [9] and its credential caching subsystem, called Lcache, implemented
in OASIS security framework. The proposed security framework for the OSD
system is implemented on Linux systems, as a kernel module.

2 OSD Security Framework

In OSD systems, a client accesses data just by specifying object ID and offset, and
the system is responsible for mapping the object ID and the offset to the actual
location on the physical storage. From the security perspective, one major goal of
the system is to work well not only on top of secure network infrastructures, but
also in the environments with no such infrastructure. This requirement has led
OSD designers to introduce a new concept of access control; the main difference
of the OSD systems from existing block storage systems is that every command
in OSD systems is accompanied by a cryptographically secure capability. The
security model presented by the OSD standard [5] introduces the credential-
based access control and is composed of four active entities: client, object store,
security manager, and policy/storage manager.

First of all, a client requests a credential to the security manager, with which it
later accesses the object store. The security manager, when it receives the request
for credential, requests the capability of the client to the policy/storage manager.
The capability, which is produced by the policy/storage manager, says whether
the client’s access are authorized or not. The security manager creates a credential
that includes the capability and the capability key which is a cryptographically
hashed value of the capability by using secure hash algorithms, such as HMAC-
SHA1. The client, when it receives the credential issued by the security manager,
composes a CDB(Command Descriptor Block) that includes storage commands,
credential, and so on, and sends it to the object store. The object store, on re-
ceiving the CDB, checks the validity of the CDB by using secret keys which are
hierarchically structured and shared with the security manager. Finally, the ob-
ject store admits or denies the client’s access as a result of the validity check.

In the OSD model, whenever the clients want to access to object stores, it is
always necessary to get credential from the security manager and the only clients
in possession of credentials can get service by the object stores. This may incur
high network traffic and computation overhead in operational systems, and so,
the OSD security framework needs some mechanisms to reduce the frequency of
the clients’ requests for credentials to the security manager.

668 G.S. Kim et al.

3 OASIS Security Framework and Lcache

In this Section, we describe the architecture of the security framework based on
the OSD standard and Lcache.

3.1 Implementation of OASIS Security Framework

OASIS system, implemented based on the OSD standard, consists of three sub-
jects: clients, metadata servers, and OSD servers. Each subject also has several
sub-blocks as necessary; the number and the constitution of these sub-blocks
depend on the methods of implementation. Figure 1 shows the subjects and
architecture of OASIS system in terms of security.

Fig. 1. The subjects and architecture of OASIS system in terms of security

As can be seen, in the Client, FM component presents the file system of OSD
server to users and MAC requests the credential to the Metadata Server and ver-
ifies the response integrity check value in the return value of the command to the
OSD server. SCSI Objects supports SCSI commands for FM component. In the
Metadata Server, MM component handles the requests from the users or adminis-
trators and SM issues the credential for the command related to a specific object.
MAC component is similar to the client’s MAC component. PM component man-
ages user’s access policy to the OSD server. Lastly, in the OSD server, OM com-
ponent performs the command from the client and AM component verifies the in-
tegrity check value in the command from the client. In our proposed framework,
all subjects operate on Linux systems, connected each other via an IP-based
open network. It uses the Internet Small Computer Systems Interface (iSCSI)
mechanism [10][11] and all the components are implemented as kernel modules.

The proposed security framework, identical to the OSD standard [5], uses
seven hierarchical keys: master keys , root keys, partition keys, and a working key.

Implementation of OSD Security Framework and Credential Cache 669

Each authentication key is used for generating an integrity check value, and each
generation key is used for generating lower-level hierarchical keys. Furthermore,
the OSD server and the metadata server share the hierarchical keys; hierarchical
keys, managed by each individual OSD server, are also managed in the metadata
server. The implementation may be divided into six major sub-functionalities.
These functionalities are as follows: the creation of a request integrity check value,
the validation of request integrity check value, the creation of a capability key, the
creation of response integrity check value, and the validation of response integrity
check value. Detail descriptions of these functionalities can be presented in [12].

3.2 LCache

In OASIS, the credential cache mechanism is adopted for minimizing the cost of
issuing a credential for the same object repeatedly, while there is no credential
cache mechanism in the OSD specification. Our credential cache, called Lcache,
is implemented on the client side by using kernel module programming. Lcache
uses the LRU(Least Recently Used) algorithm because the client’s reference to
the object has the locality property. Figure 2 shows the Lcache structure.

Fig. 2. Lcache structure

The Lcache in the OASIS is implemented with the doubly linked list, com-
posed of cache elements and sorted by most recently used category. Cache header
contains curr count and MAX count. The cur count means the number of ele-
ments that can exist in the credential cache and MAX count means the maxi-
mum number of elements in the credential cache. If the cur count gets greater
than MAX count, the last element at the rear of the list is cached out. When
client tries to retrieve a credential in the credential cache and cache hit happens,
the retrieved credential is located at the front of the list. LRU sequence of the
credentials in the Lcache is maintained through this mechanisem.

Our credential cache is implemented with the slab cache, which is a low level
cache supported by Linux system, in order to improve the memory allocation
speed. The slab cache operates garbage collector for the memory object and
reduces the cost for the memory allocation and revocation.

670 G.S. Kim et al.

The cost that it takes for the client to complete a transaction with the Lcache
support is as follows:

Tc = Pr · Ch · n + (1 − Pr) · (Cm + Cr) · n + Con (1)

In formula (1), Tc is the average cost that it takes for the client to complete
one transaction. In the formula, Pr is the hit ratio of the credential in Lcache,
(1 − Pr) is the miss ratio of the credential in Lache, Ch is the cost that it takes
for the client to handle the Lcache in the case of cache hit, and Cm is the cache
management cost in the case of cache miss. Also, Cr is the cost that it takes for
the client to get the credential from the metadata server, Co is the cost that it
takes for the client to get response from the metadata server per client’s request,
and n is the number of operations executed in one transaction.

In formula (1), the term Pr · Ch · n shows the average cost that it takes for
the client to handle the Lcache in the case of cache hit and the term (1 − Pr) ·
(Cm + Cr) · n shows the average cost that it takes for the client to manage the
Lcache and for the metadata server to issue a credential to the client in the case
of cache miss. The term Co · n is the cost that it takes for the client to receive
response from the metadata server for one transaction. The cost that it takes for
the client to complete one transaction without the credential cache is defined as
T ′

c = Cr · n + Co · n. So, the performance gain with Lcache can be computed as
follows:

G = T ′
c − Tc

= (Cr · n + Co · n) − {Pr · Ch · n + (1 − Pr) · (Cm + Cr) · n + Con}
� Cr · n − (1 − Pr) · Cr · n (because Ch � 0 and Cm � 0) (2)
= Pr · Cr · n

In formula (2), because the values of Ch and Cm, which are the cache manage-
ment cost, are very low in comparison of other parameters, the cache manage-
ment cost can be ignored, and the performance gain that can be obtained by
using the Lcache becomes the additional credential creation cost. So, by using
Lcache, the cost for one transaction can be approximated to the first credential
creation cost.

4 Conclusion

In this paper, the implementation of a security framework, based on the OSD stan-
dard, is presented. For the security framework in the OASIS system, we developed
the MAC component in the client side, the SM and MAC components in the server
side, and the AM component in the OSD server side. These components in the
security framework were implemented on the Linux system using kernel module
programming. These components have six major-functionalities: the creation of
a request integrity check value, the creation of a credential the creation of a capa-
bility key, the validation of request integrity check value, the creation of response
integrity check value, and the validation of response integrity check value.

Implementation of OSD Security Framework and Credential Cache 671

In order to improve the performance of OASIS security framework, further-
more, we developed the credential cache, called Lcache, on the MAC component
in the client side. Lcache is implemented with the Linux slab cache in kernel
module to improve the memory allocation speed. With our Lcache scheme, it is
possible to reduce the total credential creation cost and eventually to improve
the performance of OASIS security framework.

References

1. G. Gibson, et. al., “A Cost-Effective, High-Bandwidth Storage Architecture,” Proc.
of International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 1998.

2. G. Gibson, et. al., “File Server Scaling with Network-Attached Secure Disks,” Proc.
of the ACM International Conference on Measurement and Modelling of Computer
System, Seattle, WA, Jun. 1997.

3. A. Azagury, et. al., “A Two-layered Approach for Securing an Object Store Net-
work,” Proc. of IEEE International Security In Storage Workshop, Dec. 2002.

4. Trend Micro, Inc., Securing Data in Network Attached Storage (NAS) Environ-
ments: ServerProtect for NAS, White paper, Jul. 2001.

5. SNIA - Storage Networking Industry Association, OSD: Object Based Storage
Devices, OSD Technical Work Group.

6. M. Factor, D. Nagle, D. Naor, E. Riedel, and J. Satran, “The OSD Security Proto-
col,” Proc. of the 3rd International IEEE Security in Storage Workshop (SISW05),
Dec. 2005.

7. G. Gibson, et. al., “File Server Scaling with Network-attached Secure Disks,” Proc.
of the ACM International Conference on Measurement and Modelling of Computer
System, Seattle, WA, Jun. 1996.

8. G. Gibson, et. al., Filesystems for Network-attached Secure Disks, Technical Re-
port. CS.97.112, CMU, 1997.

9. American National Standard for Information Technology, SCSI Object-Based Stor-
age Device Commands (OSD), INCITS 400-2004, 2004.

10. J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner, RFC 3720:
Internet Small Computer Systems Interface (iSCSI), Apr. 2004.

11. Linux-iSCSI Project, http://linux-iscsi.sourceforge.net/.
12. Kwangsun Ko, Gu Su Kim, June Kim, JungHyun Han, Ungmo Kim, and Young

Ik Eom, “Design and Implementation of a Security Framework based on the
Object-based Storage Device Standard,” Lecture Notes in Computer Science 3980,
Springer-Verlag, May 2006.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 672 – 677, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SEMU: A Framework of Simulation Environment
for Wireless Sensor Networks with Co-simulation Model

Shih-Hsiang Lo, Jiun-Hung Ding, Sheng-Je Hung, Jin-Wei Tang, Wei-Lun Tsai,
and Yeh-Ching Chung

Department of Computer Science, National Tsing Hua University, Taiwan
{albert, adjunhon, claboy, garnet,

welentsai}@sslab.cs.nthu.edu.tw, ychung@cs.nthu.edu.tw

Abstract. This paper presents a framework of simulation environment (SEMU)
which allows developers to understand the behavior of applications or protocols
for a wireless sensor network (WSN) before deploying real nodes in a physical
environment. For eliminating the gap between simulation and real deployment,
SEMU has supported fast real code emulation by dynamic binary translation
technique. SEMU also models the controlled environment as virtual operating
system (Virtual OS) to coordinate the interactions of large number of nodes. In
addition, we have proposed a co-simulation model to enhance the accuracy of
pure software simulation. Then a further synchronization problem will be ad-
dressed and resolved by the co-simulation model. The evaluation results show
SEMU is really a fast scalable WSN simulator with real code emulation.

Index Terms: Simulator, wireless sensor networks, dynamic binary translation,
hardware and software co-simulation.

1 Introduction

A wireless sensor network (WSN) is a network composed of a large number of sensor
nodes, which are deployed in the environment. Recently, with the rapid development
of WSNs, providing development tools such as simulation environment before de-
ploying real nodes in physical environments is getting more important. A well simula-
tion environment can help developers build their prototype models to know the inter-
actions and the behavior of each node. In addition, most of WSN applications will
deploy a large number of nodes in a simulation environment. However, the simulation
speed depends on the simulation fidelity and scale. Therefore how to build up a fast
scalable WSN simulation environment with the fine-grained information is the main
research problem in this paper.

In this paper, a framework of simulation environment (SEMU) is presented. SEMU
has a first version implementation and an extension model for hardware and software
co-simulation. In order to extract the real behavior of each node, SEMU supports real
applications to run on the virtual nodes. And, the new development trend shows us the
powerful nodes [2], [4], [9] are also applied to WSNs. Consequently, our first imple-
mentation version of SEMU supports the virtual nodes to directly run the real Linux
applications on the Linux platform.

For the extension of SEMU, co-simulation model, this paper has addressed two
problems when SEMU uses pure software simulation models. One problem is that

SEMU: A Framework of Simulation Environment for WSNs with Co-simulation Model 673

software sensing channel models are difficult to be built the same as real sensing
channels, and furthermore they fail to interact with physical environments. The other
problem shows that the pure software simulation needs a considerable amount of
effort to model the behavior of real communication devices and real communication
protocol. By the co-simulation model, SEMU can further satisfy the requirement of
WSN development, and collect more realistic profiling information and physical envi-
ronment conditions during simulation.

This rest of paper is organized as follows. In the next Section, we state the related
work to compare different approaches of real code emulation and co-simulation
model. Section 3 clearly illustrates the overall design of the simulation framework.
Then Section 4 introduces the hardware and software co-simulation model based on
SEMU. In Section 5 provides our evaluation results. Finally, Section 6 concludes this
paper.

2 Related Works

In the literature, several WSN simulators have been proposed to support real applica-
tions targeted on different platforms. These approaches can be divided into two cate-
gories. One is static translation which maps the real code into the simulation platform
before run time. The other is dynamic translation which interprets the real code during
simulation. Besides, related works about co-simulation in WSN simulators are also
described here.

TOSSIM [7] is a notable example to represent the static translation technique.
TOSSIM is a discrete event simulator which can directly run a TinyOS [6] application
through compilation support. This method is an excellent way to reduce the runtime
overhead for code translation with advanced compiler supports. Nevertheless, the
supported languages highly depend on the modified compiler.

There are some simulators using the dynamic translation technique [1], [3], [5].
Atemu [3] is a fine grained sensor node emulator for AVR processor based systems.
Although the low-level emulation of the sensor node hardware can acquire the high-
fidelity results, the run time interpretation overhead makes the emulation speed much
slower than other approaches.

EmStar [5] is an environment for developing wireless embedded systems software
in Linux-based software framework. EmStar provides a pure simulation, a true dis-
tributed deployment, and two hybrid modes. The software stack of Emstar is com-
posed of several components, and each of them presents a Linux process with its own
address space. However, it can not emulate the real binary codes which run on the real
platform.

Embra runs as part of the SimOS simulation system [1]. To achieve high simula-
tion speed, Embra uses dynamic binary translation (DBT) technique to generate code
sequences which simulate the workload.

For co-simulation, SensorSim [10] use a gateway node and a simulated protocol
stack to connect the real nodes. Since the real nodes and simulated nodes are not time
synchronized, real node can not interact with simulated node on the correct time.
EmStar [5] has proposed three kinds of hybrid modes for WSN simulation including

674 S.-H. Lo et al.

data replay, ceiling array and portable array. Our co-simulation model is similar to the
three hybrid modes of EmStar. However our co-simulation model can provide run
time profiling to help SEMU to resolve synchronization problem. Hence our co-
simulation model can improve SEMU for developing WSN applications with more
accurate model.

3 The Framework of SEMU

When we design SEMU, we take following design issues into account: fast real code
emulation for Linux application, a simulation engine for harmony and environment
model. According to these design issues, we have proposed a framework for SEMU
as Fig. 1. It consists of five layers, VM layer, Communication layer, Virtual OS layer,
Module layer, and Native OS layer. The framework has become as a backbone for our
future extensions.

The top layer, Virtual Machine (VM) layer, achieves fast real code emulation on
Linux platforms. In VM layer, a virtual node represents as an emulation of a real
node. A virtual node can consist of several virtual machines. Through communication
links between VM and Communication layer, virtual nodes can interact with the
simulation environment. We use a modified QEMU as our VM layer [10].

Communication layer is partitioned into three parts including Communicator,
Gateway and Connector. Communicator enables VM layer to communicate with Vir-
tual OS layer. Gateway is used for hybrid simulation, as hardware and software co-
simulation. As to Connector, it lets the Distributed GUI and the simulation engine can
be run on different machines and work together.

The Virtual Operating System (Virtual OS) layer stands for the control center to
harmonize the simulation. As general operating system, SEMU provides BootLoader
to initialize the whole system and to boot Virtual OS. The BLR Shell provides a
command interface of BootLoader for simulation users. SIM Kernel is also a service
provider which helps virtual nodes to forward their service requests to Module layer
and Native OS layer. Through OS Shell, run time simulation system can be operated
by users.

In the Module layer, all of the components enhance the functionalities of the simu-
lation framework. In the current work, the Module layer has supplied seven compo-
nents. SIMState maintains all simulation status and references of the simulation ob-
jects in a centralized way. SIMState is configured with initial states by Configer be-
fore starting the SIM Kernel. In order to arrange the chaotic messages, Logger will
analyze log information with classification. For simulating parallel execution of mul-
tiple nodes in a sequential computer, an adequate Scheduler needs to be applied. Time
Manager is to resolve synchronization problems. Node Model supplies device con-
figurations for developers to form a node element. Users can integrate their protocol
algorithms into the Protocol Stack. Environment will provide several models to reflect
real conditions in physical environment.

The bottom layer of SEMU is Native Operating System (Native OS) layer. For sys-
tem emulation, SEMU takes native operating system as the foundation of framework.

SEMU: A Framework of Simulation Environment for WSNs with Co-simulation Model 675

Fig. 1. The architecture of SEMU

4 Co-simulation Model

In this section, we discuss the extension model of SEMU, co-simulation model, and
address the synchronization problem when hardware and software run together.

The co-simulation model supports the real communication and sensing channel by
cooperating with real node devices. The co-simulation model consists of three com-
ponents including Communication Agent, Sensing Agent and Environment Recorder.
Communication Agent helps SEMU make use of real communication device and real
communication protocol to gather more realistic communication latency and to sup-
port more accurate model than pure software simulation. Then Sensing Agent can
provide real sensing channels for collecting raw data from physical environment. By
Environment Recorder, packets and sensing information with timestamp can be re-
corded in the buffer, which is similar to Digital Video Recorder. SEMU can use Envi-
ronment Recorder to track the real time events and make the events re-present.

We propose a WSN co-simulation model to extend the SEMU design. In our co-
simulation model, SIM Kernel serves all virtual nodes to request actions, such as
sending, receiving and sensing. SIM Kernel will choose an agent which can represent
the realistic behavior of the node. When an agent is chosen for the request, it will do
the corresponding action and provide the run time profiling information. After finish-
ing the action, it will notify the SIM Kernel of results including the execution time
and the status for the action. Then SIM Kernel will request Time Manager whether
the action can be completed. If Time Manager grants the request, the SIM Kernel will
return the real data such as the packet or sensing data from environment recorder to
the virtual node. Otherwise, SIM Kernel will block the virtual node until the request is
granted by Time Manager.

From our co-simulation model, we must make sure that virtual nodes and the
agents will cooperate with each other, virtual nodes will take the execution time of the
agents into account, and virtual nodes will access the data according to their virtual

676 S.-H. Lo et al.

time. Hence, in our co-simulation model, it needs to achieve the interaction synchro-
nization, the time synchronization and the data synchronization.

For the interaction synchronization, when a virtual node requests an action to an
agent, the action will be done by the agent and the status and the real execution time
of the agent will be return from the agent. For the time synchronization, we need to
profile the time of executing an action in an agent. The profiling result represents as
number of clock cycles of executing the action in real device. The elapsed clock cy-
cles will be translated into a virtual time according to cycles per instruction (CPI).
Then the generated virtual time can help Time Manager to decide whether the action
is granted or not. Therefore, we ensure that a virtual node and an agent can work in
time synchronization. For the data synchronization, we use an environment recorder
to collect information from physical environment such as sensing data and packets in
wall time. The environment recorder will convert the wall time of the information to
the virtual time. All of the information will be stored in the storage. The frequency of
sensing or receiving depends on the requirement of a WSN application.

5 Evaluation Results

In our experiment, virtual nodes are deployed as grid and will cooperate to broadcast
an event to whole network. The event will be sent by a specific virtual node deployed
on the corner. Then this event will be relayed by a flooding protocol until all of the
virtual nodes receiving it. We want to know how fast SEMU can complete the simula-
tion as the number of virtual nodes increasing. We performed the experiment on a
Celeron 3.0ghz machine with 1.5 GB of RAM running Linux 2.6.11. SEMU can run
fast below 1250 virtual nodes. When the number of nodes is over 1250, the execution
time of simulation increases quickly under the machine with 1.5 GB of physical
RAM. Because if we create more virtual nodes, the simulation will use swap space, in
which the simulation runs slowly. Hence, the scalability of SEMU highly relates to
the resource management of Linux OS.

6 Conclusion

In this paper, we have presented a framework of SEMU to develop a WSN simulator.
The framework allows developers to understand the behaviors of a WSN applications or
protocols before real deployment. Due to the trend of complex software platforms used
in the WSN, such as Linux, the implementation of SEMU supports a real Linux applica-
tion to run directly on the SEMU by fast real code emulation. We also have proposed a
co-simulation model to enhance the accuracy of pure software simulation. The synchro-
nization problem between virtual nodes and real nodes is addressed and resolved by the
co-simulation model. Finally, the evaluation results show that SEMU can support fast
real code emulation. Consequently, the framework of WSN simulation environment,
SEMU, really assists developers in the development of WSN applications.

Acknowledgments. The work of this paper is partially supported by National Science
Council and Ministry of Economic Affairs under NSC 95-2221-E-007-018 and
MOEA 95-EC-17-A-04-S1-044.

SEMU: A Framework of Simulation Environment for WSNs with Co-simulation Model 677

References

1. E. Witchel , and M. Rosenblum, “Embra: fast and flexible machine simulation”, Proceed-
ings of the 1996 ACM SIGMETRICS international conference on Measurement and mod-
eling of computer systems, p.68-79, May 23-26, 1996, Philadelphia, Pennsylvania, United
States.

2. I. Downes, Leili B. Rad*, and H. Aghajan, “Development of a Mote for Wireless Image
Sensor Networks” In Proc. of Cognitive Systems and Interactive Sensors (COGIS), March
2006.

3. J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, and M. Karir, “ATEMU: A fine-
grained sensor network simulator,” in Proceedings of SECON’04, First IEEE Communica-
tions Society Conference on Sensor and Ad Hoc Comunications and Networks, 2004.

4. L. Nachman, R. Kling, R. Adler, J. Huang, and V. Hummel, “The intel mote platform: a
bluetooth-based sensor network for industrial monitoring.” in IPSN 2005, pp. 437–442,
Apr. 2005.

5. L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and D. Estrin, “Emstar: a
software environment for developing and deploying wireless sensor networks,” in Pro-
ceedings of the USENIX Technical Conference, 2004.

6. P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, and D. Culler, “TinyOS: An operating system for wireless sensor
networks” In Ambient Intelligence. Springer-Verlag, 2004.

7. P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and scalable simulation of
entire tinyOS applications”, Proceedings of the 1st international conference on Embedded
networked sensor systems, November 05-07, 2003, Los Angeles, California, USA.

8. QEMU project. http://fabrice.bellard.free.fr/qemu/.
9. Stargate: a platform X project. http://platformx.sourceforge.net/.

10. Sung Park, Andreas Savvides, and Mani B. Srivastava, "SensorSim: a simulation frame-
work for sensor networks", Proceedings of the 3rd ACM international workshop on Mod-
eling, analysis and simulation of wireless and mobile systems, p.104-111, August 20-20,
2000, Boston, Massachusetts, United States.

Combining Software Agents and Grid

Middleware

Richard Olejnik1, Bernard Toursel1, Maria Ganzha2, and Marcin Paprzycki2

1 Laboratoire d’Informatique Fondamentale, de Lille (LIFL UMR CNRS 8022)
Universite des Sciences et Technologies de Lille, USTL - Lille, France

{olejnik, toursel}@lifl.fr
2 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland

{maria.ganzha, marcin.paprzycki}@ibspan.waw.pl

Abstract. Recently, the Desktop-Grid ADaptive Application in Java
(DG-ADAJ) project has been unveiled. Its goal is to provide an en-
vironment which facilitates adaptive control of distributed applications
written in Java for the Grid or the Desktop Grid. However, in its current
state it can be used only in closed environments (e.g. within a single labo-
ratory), as it lacks features that would make it ready for an “open Grid.”
The aim of this paper is to show how the DG-ADAJ can be augmented
by usage of software agents and ontologies to make it more robust.

1 Introduction

The starting point for this research was development of Grid-enabled data min-
ing software suite taking place within the Distributed Data Mining (DisDaMin)
project (for details see [4,5]). In conjunction, the Desktop-Grid Adaptive Appli-
cation in Java (DG-ADAJ) project develops middleware platform for the Grid
that, among others, could be used as a base for deployment of DisDaMin al-
gorithms. It is the DG-ADAJ middleware that is of our particular interest in
this paper. Specifically, we discuss how some of its natural shortcomings can be
overcome by adding software agents as resource brokers and high level managers.

To achieve this goal we, first, present the DG-ADAJ project and discuss its
most important features. We follow with a discussion of its shortcomings within
an “open Grid.” In the next section we describe an agent team based broker sys-
tem and show how the two can be combined to create a robust Grid middleware.

2 DG-ADAJ Platform

Desktop Grid – Adaptive Distributed Application in Java (DG-ADAJ) is a mid-
dleware platform for Grid computing. It aims at facilitating a Single System
Image (SSI) and enabling efficient execution of heterogeneous applications with
irregular and unpredictable execution control. In Figure 1 we present the general
overview of the DG-ADAJ architecture.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 678–685, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Combining Software Agents and Grid Middleware 679

Fig. 1. DG-ADAJ Architecture

DG-ADAJ is an execution environment that is designed and implemented
above the JavaParty and Java/RMI platforms according to a multi-layer struc-
ture, using several APIs (see Figures 1 and 2). One of its important features
are mechanisms based on control components (for more details of the Common
Component Architecture (CCA), see [1]) for controlling granularity of computa-
tions and distribution of applications on the Desktop Grid platform. Note that
use of components allows DG-ADAJ to be an environment for Java applications.

In addition to standard components, Super-Components have been developed
to allow assembling together several components (they become inner compo-
nents of a Super-Component). Super-Components implement framework ser-
vices to manage their inner components. Specifically, connections between inner-
components are achieved the same way as connection between standard compo-
nents, while connections between inner-components and outer-components (com-
ponents outside of the Super-Component) are achieved through a special mech-
anism of delegation between inner and outer ports (see Figure 3). Finally, the
remote component is a special type of Super-Component which is implemented
using the JavaParty notion of Remote class (defined using the JavaParty key-
word remote).

DG-ADAJ runtime optimizes dynamic and static placement of the applica-
tion objects within Java Virtual Machines of the Desktop Grid or the Grid [7].
Furthermore, DG-ADAJ provides special mechanisms, at the middleware level,
which assure dynamic and automatic adaptation to variations of computation
methods and execution platforms. This dynamic, on–line load balancing is based
on object monitoring and relation graph optimization algorithms. Specifically,
application observation mechanism in DG-ADAJ provides knowledge of behavior
of the application during its execution. This knowledge is obtained by observa-
tion of object activity. A DG-ADAJ application comprises two types of objects:
global and local. Global objects are observable, remote access and migratable.
Local objects are traditional Java objects which are linked to a global object.

680 R. Olejnik et al.

Fig. 2. The layered structure of the DG-ADAJ Environment

Observation of a global object corresponds to monitoring its communication
with other objects (global or local). Specifically, three components are used for
the observation mechanism: (1) the object graph, which is built using relations
between application objects, (2) the relation tracer, which stores information
concerning these relations, and (3) the observer, which is responsible for the ob-
servation information update [8]). Observation of relationships between objects
allows also computation of object activity (local and remote) representing their
load. Overall, based on observations of object activity and on their relations,
objects can be selected and moved from or to a computing node.

These mechanisms were experimented with in an earlier, built for cluster
computing, version of DG-ADAJ (see, [6]). In the new version of DG-ADAJ load
balancing takes into account also local load of each node, allowing computing
nodes to be shared between several applications.

3 Agent Brokers Augmenting DG-ADAJ

Let us now assume that a DisDamin application is going to utilize the DJ-ADAJ
environment to run within an “open Grid;” understood as a computational in-
frastructure consisting of nodes spread across the Internet. These nodes have
different owners (including individuals who offer their home PC) that offer ser-
vices and expect to be remunerated for their usage. In this case the Grid is

Combining Software Agents and Grid Middleware 681

UsesPort

ProvidesPort

C2C1

SC

Ports of C1 and C2 are exposed
 through ports of SC

Fig. 3. Super-component

a highly dynamic structure. There are two levels of dynamicity that can be
observed. First, a given node suddenly becomes overloaded — when its owner
starts using it. Second, a given node disappears without a trace when the PC
goes down due to a current spike. Interestingly, while the DG-ADAJ monitors
performance of individual nodes and can deal with the first scenario, currently
it cannot deal naturally with disappearing nodes. Observe that this is not a big
problem in the case of a “closed Grid” e.g. in a laboratory, where all nodes are
under some form of control of a system administrator.

Furthermore, DG-ADAJ does not include methods for resource brokering
(which includes both resource description and matchmaking). While in a labora-
tory it is possible to know in advance, which machines will constitute the Grid,
this is no the case in the “open Grid.” Here, before any computational job is
executed, nodes which will run it have to be found / selected first.

Finally, let us stress that resource brokering should involve an economic model,
where resource providers are paid for rendered services. In return, quality of ser-
vice (QOS) assurances have to be provided in a form of a service level agreement
(SLA) “singed” by service-users and service-providers. These features are cur-
rently out of scope of the DG-ADAJ project.

In response to these “shortcomings” we propose to augment the DG-ADAJ
with software agent “components.” We follow here the proposal described in
[2,3], where more details of the agent-broker system can be found. Let us start
with the use case diagram and a brief discussion of functionalities depicted there.

The main idea of the proposed system is utilization of agent teams consisting
of a number of worker agents and a leader, the LMaster agent. It is the LMas-
ter with whom user agents negotiate terms of task execution, and who decides
whether to accept a new worker agent to the team. The LMaster agent has its
mirror (LMirror agent). Its role is to be able to immediately take over — become
the new LMaster — if the original LMaster goes down. In the case of LMirror’s
disappearance, the LMaster immediately promotes one of worker agents to the
role of LMirror. Note that an agent team may assure an SLA, as in the case when

682 R. Olejnik et al.

Mirror
LMaster
Recreation

LMaster
Recreation

DB Agent

Negotiation

Collaboration

Request
information/
propositions

Proposition
creation/ update

CIC

Gathering
knowledge

Job Joining <<extend>>

<<extend>>

Mirror LMaster

<<extend>><<extend>>

LMasterUser

LMaster MCDM

Definition
conditions

Communication

LAgent

Gathering
Knowledge

LDB Agent

LAgent
MCDM

Fig. 4. Use Case diagram of the proposed system

one machine/worker goes down, the LMaster is able to recognize the situation
and redirect the job to another machine (and complete it almost on time).

For a team to be visible to potential users or team members, it must “post“
its team advertisement for others to see. In our system (following results pre-
sented in [9]) we utilize a yellow page type approach and LMaster agents post
their team advertisements within the Client Information Center (CIC). Such
an advertisement contains information about offered resources (e.g. hardware
capabilities, available software, price etc.) and / or “team metadata” (e.g. terms
of joining, provisioning, specialization etc.). In this way yellow pages may be
used: (1) by user agents looking for resources satisfying requirements of their
task, and (2) by worker agents searching for a team to join. For example, worker
agent representing computational resource with installed DisDamin software,
may want to join a team specializing in solving problems utilizing DisDamin
software.

Let us observe that in the case of a “closed Grid,” this agent structure can be
unchanged, though it also could be simplified. Here, instead of an evolutionary
formation of agent teams (where workers and managers pick teams/agents of
their linking), a team can be predefined by the administrator of the system.
In this case also the LMaster and the LMirror agents can be selected to run on
most stable (though not necessarily most powerful) machines. Overall, regardless
of the scenario, the proposed approach adds a level of fault tolerance to the
system and allows it to utilize Service Level Agreements and economic basis of
functioning.

In the system, user initiates the execution of the job by providing its user agent
with specific requirements such as: resource requirements—specification of re-
sources needed to execute the task, and execution constraints—time, budget etc.

Combining Software Agents and Grid Middleware 683

From there on, the user agent acts autonomously. First, it queries the CIC for
resources matching requirements and obtains a list of query-matching teams.
Then it negotiates with LMasters representing selected teams, taking into ac-
count specified execution constraints to find the best team for the job. In the
case of a closed environment it is possible to enforce that the (only existing/pre-
defined by the administrator) agent team will execute the job.

Similarly, user can request that its agent joins a team, and specify conditions
for joining (e.g. frequency of guaranteed jobs or share of generated revenue). In
this case the user agent queries the CIC and obtains list of teams of interest;
negotiates with them, decides which team to join and starts working for it.
As stated above, in the case of a closed environment, the agent team(s) can
be predefined. Observe that in both cases the economic model is taken into
consideration.

To describe Grid resources we have decided to utilize ontologies. Unfortu-
nately, there is no all-agreed ontology of the Grid and therefore we utilize an
extremely simplified, RDF based, one [2]. What follows is an instance of that
ontology describing worker PC1541, which has 16 Intel processors running at 3.0
GHz, 1 Gbyte of memory per processor, and 5 Gbytes of disk space available as
a “Grid service:”

: LMaster3
: hasContactAID
‘ ‘ monster@e−plant :1099/JADE’ ’ ;
: hasWorker : PC1541 .

: PC2929
: a : Computer ;
: hasCPU
[
a :CPU;
: hasCPUType : I n t e l ;
: hasCPUFrequency ”3 . 0” ;
: hasCPUnumber ”16”;

] ;
: hasUserDiskQuota ”5000”;
: hasMemory ”1024”.

Note that this simplistic ontology can be relatively easily replaced by a more
realistic one as soon as such (all agreed by the Grid community) ontology be-
comes available. However, for the application like the DisDamin this ontology
is quite sufficient as it specifies all the information necessary to perform initial
distribution of data into computing nodes.

4 Combining Agent-Brokers and DG-ADAJ

Since agent-brokers and the DG-ADAJ are implemented in Java (recall that
DG-ADAJ has been designed to facilitate programming of Java applications),
combining them should be relatively easy. This is especially so that we have

684 R. Olejnik et al.

clearly delineated responsibilities. Agent-brokers act as “top level management”
and are responsible for resource brokering, setting the job to be executed and
monitoring its successful completion. Components of DG-ADAJ are responsi-
ble for actually running the job. More specifically, in Figure 5 we depict how
JADE agent platform ([10]) can be incorporated into the DG-ADAJ environ-
ment. Specifically, we propose that both the DG-ADAJ and JADE share the
Java Virtual Machine and the RMI. In this way the RMI becomes the commu-
nication mechanism between the two environments.

Fig. 5. Introducing JADE agents into DG-ADAJ

Taking this into account, we envision the following scenario taking place (in
an open Grid system). User specifies the requirements for the data mining task.
The LAgents communicates with the CIC and obtains list of agent teams that
are capable of executing this job. Then—using contract net protocol—the LA-
gent negotiates conditions of job execution (including the SLA) and picks one of
them. Obviously, we assume that the selected team will run DG-ADAJ and the
required application software. Information about the job is then transferred to
the selected team. This information includes, among others, information where
data sources are located. The LMaster communicates with selected LAgents
in its team (utilizing information about available machines—including informa-
tion about workload obtained from the workload monitoring component of the
DG-ADAJ), and decides which machines will be used to execute the job. Job
information is send to DG-ADAJ components on selected machines and the job
is left with them to execute. Upon completion of the job/task, the DG-ADAJ
communicates with the LAgents involved in the process. These agents confirm
to the LMaster that the process is complete (and send to it the final result-set).
The LMaster, in turn, communicates with the LAgent representing the user
and completes all processes involved in finalizing the task (e.g. payment, results
transfer etc.).

Combining Software Agents and Grid Middleware 685

5 Concluding Remarks

In this paper we have presented the DG-ADAJ project that provides middle-
ware platform for the Desktop Grid and Grid. Our analysis indicated that, due
to its underlying assumptions, the current state of the DG-ADAJ is lacking cer-
tain features to make it robust enough for the “open Grid.” We have proposed
to augment the DG-ADAJ with agent-brokers that will take care of high-level
management functions, and with Grid resource ontology. We have also discussed
how the two can be joined in a unified system. We are currently studying the
specific way in which agent brokers can be implemented into the DG-ADAJ
system and will report our progress in subsequent publications.

References

1. I.Alshabani, R. Olejnik and B. Toursel. Parallel Tools for a Distributed Component
Framework 1st International Conference on Information & Communication Tech-
nologies: from Theory to Applications (ICTTA04). Damascus, Syria, April 2004.

2. M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, M. Paprzycki, Utilizing
agent teams in grid resource management — preliminary considerations, Proceed-
ings of the J. V. Atanasov Conference, IEEE CS Press, Los Alamitos, CA, 2006,
46-51

3. M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, M. Paprzycki, Efficient
Matchmaking in an Agent-based Grid Resource Brokering System, Proceedings of
the International Multiconference on Computer Science and Information Technol-
ogy, PTI Press, 2006, 327-335

4. V. Fiolet and B. Toursel, Distributed Data Mining, In Scalable Computing: Practice
and Experiences, Vol. 6, Number 1, March 2005, pp. 99-109.

5. V. Fiolet and B. Toursel, Progressive Clustering for Database Distribution on a
Grid, In Proc. of ISPDC 2005, IEEE Computer Society, july 2005, pp. 282-289.

6. R. Olejnik, A. Bouchi, B. Toursel. Object observation for a java adaptative dis-
tributed application platform. Intl. Conference on Parallel Computing in Electrical
Engineering PARELEC 2002, pp. 171-176., Warsaw, Poland, September 2002.

7. E. Laskowski, M. Tudruj, R. Olejnik, B. Toursel. Bytecode Scheduling of Java Pro-
grams with Branches for Desktop Grid. to appear in the Future Generation Com-
puter Systems, Springer Verlag.

8. A. Bouchi, R. Olejnik and B.Toursel. A new estimation method for distributed Java
object activity. 16th International Parallel and Distributed Processing Symposium,
Marriott Marina, Fort Lauderdale, Florida, April 2002.

9. Trastour, D., Bartolini, C., Preist, C.: Semantic Web Support for the Business-
to-Business E-Commerce Lifecycle. In: Proceedings of the WWW’02: International
World Wide Web Conference, Hawaii, USA. ACM Press, New York, USA, pp.89-
98, 2002.

10. JADE: Java Agent Development Framework. See http://jade.cselt.it

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 686 – 693, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Web Service-Based Brokering Service for
e-Procurement in Supply Chains

Giner Alor-Hernandez1, Ruben Posada-Gomez1, Juan Miguel Gomez-Berbis2,
and Ma. Antonieta Abud-Figueroa1

1 Division of Research and Postgraduate Studies
Instituto Tecnologico de Orizaba.

Av. Instituto Tecnologico 852, Col Emiliano Zapata. 09340 Orizaba, Veracruz, México
2 Departamento de Informática

Escuela Politécnica Superior, Universidad Calos III de Madrid
{galor, rposada, mabud}@itorizaba.edu.mx,

juanmiguel.gomez@uc3m.es

Abstract. Service-Oriented Architecture (SOA) development paradigm has
emerged to improve the critical issues of creating, modifying and extending so-
lutions for business processes integration incorporating process automation and
automated exchange of information between organizations. Web services tech-
nology follows the SOA’s principles for developing and deploying applications.
Besides, Web services are considered as the platform for SOA, for both intra-
and inter-enterprise communication. However, an SOA does not incorporate in-
formation about occurring events into business processes that are the main fea-
tures of supply chain management. These events and information delivery are
addressed in an Event-Driven Architecture (EDA). Having this into account, we
propose a Web service-based system named BPIMS-WS that offers a brokering
service for the procurement of products in supply chain management scenarios.
As salient contributions, our system provides a hybrid architecture combining
features both SOA and EDA and a set of mechanisms for business processes
pattern management, monitoring based on UML sequence diagrams, Web ser-
vices-based management, event publish/subscription and reliable messaging
service.

Keywords: Event-Driven Architecture, Service-Oriented Architecture, Web
Services

1 Introduction

Service-Oriented Architecture (SOA) is an architectural paradigm for creating and
managing “business services” that can access these functions, assets, and pieces of
information with a common interface regardless of the location or technical makeup
of the function or piece of data [1]. With an SOA infrastructure, we can represent
software functionality as discoverable Web Services on the network. A Web service is
a software component that is accessible by means of messages sent using standard
web protocols, notations and naming conventions, including the XML protocol [2].
The notorious success that the application of the Web service technology has
achieved in B2B e-Commerce has also lead to consider it as a promising technology

 A Web Service-Based Brokering Service for e-Procurement in Supply Chains 687

for designing and building effective business collaboration in supply chains. Deploy-
ing Web services reduces the integration costs and brings in the required infrastruc-
ture for business automation, obtaining a quality of service that could not be achieved
otherwise [3, 4].

However, an SOA infrastructure does not address all the capabilities needed in a
typical supply chain management scenario. It does not have the ability to monitor,
filter, analyze, correlate, and respond in real time to events. These limitations are
addressed with an Event-Driven Architecture (EDA). An EDA combined with SOA,
provides that ability to create a SCM architecture that enables business. An EDA is an
architectural paradigm based on using events that initiate the immediate delivery of a
message that informs to numerous recipients about the event so they can take appro-
priate action. Based on this understanding, in this paper we propose a Web service-
based system that offers a brokering service to facilitate the business processes inte-
gration in supply chains. Our brokering service is part of a complex system named
BPIMS-WS [5,6] (BPIMS-WS stands for Business Processes Integration and Moni-
toring System based on Web Services) which provides a virtual marketplace where
people, agents and trading partners can collaborate by using current Web services
technology in a flexible and automated manner.

2 BPIMS-WS Architecture

The BPIMS-WS architecture has a layered design. Furthermore, BPIMS-WS presents
a component-based and a hybrid architecture borrowing features from SOA and EDA.
In a SOA context, BPIMS-WS acts as a Business Process Management (BPM) plat-
form based on the SOA paradigm facilitating the creation and execution of highly
transparent and modular process-oriented applications and enterprise workflows. In
this sense, BPIMS-WS provides a set of Web services that comprise publication,
search and invocation operations which are explained below:

• Publication comprises Web services which carry out operations intended to
store information in a service registry about: (i) potential businesses partners,
(ii) products, and (iii) services.

• Search and Meta-Information comprise Web services that provide operations
deemed to search the access points where the product technical information can
be found. The Meta-Information operations are intended to retrieve both ser-
vices information and BPIMS-WS meta-information.

• Invocation comprises Web services that invoke the business processes related
for the procurement of a product.

In an EDA context, BPIMS-WS provides a software infrastructure designed to
support a more real-time method of integrating event-driven application processes
which occur throughout existing applications and are largely defined by their meaning
to the business and their granularity. Regardless of the event's granularity, BPIMS-
WS focuses on ensuring that interested parties, usually other applications, are notified
immediately when an event happens. In this context, BPIMS-WS provides a set of
Web services which carry out subscription and notification services. These kinds of
services are explained below:

688 G. Alor-Hernandez et al.

• Subscription comprises a service where multiple interested parties can publish
their events to automatically and immediately incorporate information into busi-
ness processes and decisions.

• Notification introduces asynchronous communications in which information is
sent without the expectation of an immediate response or the requirement to
maintain a live connection between the two systems while waiting for a response.

These operations are performed by our brokering service proposed. Its general ar-
chitecture is shown in Fig. 1. Each component has a defined function explained as
follows:

SOAP Message Analyzer determines the structure and content of the documents ex-
changed in business processes involved in SCM collaborations. Since BPIMS-WS is
based on Web services as information technology, this component determines the in-
formation involved of the incoming SOAP messages by means of XML parsers and
tools. A DOM API is used to generate the tree structure of the SOAP messages, whereas
SAX is used to determine the application logic for every node in the SOAP messages. A
set of Java classes based on JAX-P were developed to build the XML parser.

Service Registry is the mechanism for registering and publishing information
about business processes, products and services among supply chain partners and to
update and adapt to SCM scenarios. In this sense, we used a UDDI node for describ-
ing services, discovering businesses, and integrating business services. In our UDDI
node, commercial enterprises, services and products both are classified and registered.
For the classification of business processes, products and services in the registry, we
used broadly accepted ontologies like NAICS, UNSPSC and RosettaNet. NAICS is a
standard classification system for North American Industry; UNSPSC provides an
open, global multi-sector standard for efficient, accurate classification of products and
services and; RosettaNet defines the technical and business dictionaries.

Subscription Registry is the mechanism for registering interactions in which
systems publish information about an event to the network so that other systems,
which have subscribed and authorized to receive such messages, can receive that
information and act on it accordingly. According to the cause at the time that an event
occurs, knowledge often referred to as event causality, in this work we have consid-
ered both vertical and horizontal causality which means that the event's source and
cause reside both on different and on the same conceptual layers in an architectural
stack, respectively.

Discovery Service is a component used to discover business processes implemen-
tations. This component discovers Web services like authentication, payments, and
shipping at run time from a SCM scenario. These Web services can be obtained from
suitable service providers and can be combined into innovative and attractive product
offerings to customers. When there is more than one service provider of the same
function, it can be used to choose one service based on the client’s requirements.
Inside the discovery service, there is a query formulator which builds queries based
on the domain ontology that will be sent to the registry service. This module retrieves
a set of suitable services selected from the previous step and creates feasi-
ble/compatible sets of services ready for binding. The discovery service uses

 A Web Service-Based Brokering Service for e-Procurement in Supply Chains 689

sophisticated techniques to dynamically discover web services and to formulate que-
ries to UDDI nodes.

Dynamic Binding Service is a component that binds compatible business proc-
esses described as Web services. In this sense, the module acts as an API wrapper that
maps the interface source or target business process to a common interface supported
by BPIMS-WS.

Dynamic Invoker transforms data from one format to another. This component
can be seen as a data transfer object which contains the data flowing between the
requester to the provider applications of Web services. We used Web Services Invo-
cation Framework (WSIF) that is a simple Java API for invoking Web services, no
matter how or where the services are provided.

WSDL Document Analyzer validates WSDL documents that describe business
processes by their interfaces which are provided and used by supply chain partners.
WSDL documents employ XML Schema for the specification of information items
either product technical information or business processes operations. In this context,
this component reports the business processes operations, input and output parame-
ters, and their data types in a XML DOM tree. We used WSDL4J to convert the XML
DOM nodes in Java objects.

WS-RM-based Messaging Service is the communication mechanism for the col-
laboration among the parties involved along the whole chain. BPIMS-WS uses the
Web Services Reliable Messaging (WS-RM) which is a protocol that provides a stan-
dard, interoperable way to guarantee message delivery to applications or Web ser-
vices. In this sense, BPIMS-WS provides a guaranteed delivery and processing that
allows in a reliable way, how to deliver messages between distributed applications in
the presence of software components, systems, or network failures through WS-RM.

Response Formulator receives the responses from the suppliers about a requested
product. This module retrieves useful information from the responses and builds a
XML document with information coming from the service registry and the invoca-
tions’ responses. This XML document is presented in HTML format using the Exten-
sible Stylesheet Language (XSL).

Workflow Engine coordinates Web services by using a BPEL4WS-based business
process language. It consists of building at design time a fully instantiated workflow
description where business partners are dynamically defined at execution time. In
supply chain management, workflows can not be determined since business partners
are not known before hand and because they are continuously changing their client-
provider roles through collaboration. For this reason, we have designed and imple-
mented a repository of generic BPEL4WS workflow definitions which describe in-
creasingly complex forms of recurring situations abstracted from the various stages
from SCM. This repository contains workflow patterns of interactions involved in e-
procurement scenarios. These workflows patterns describe the types of interactions
behind each business process, and the types of messages that are exchanged in each
interaction. The design of this repository is presented in [7].

The BPIMS-WS hybrid architecture has a layered design following four principles:
(1) Integration, (2) Composition, (3) Monitoring and (4) Management which are
described next.

690 G. Alor-Hernandez et al.

Subscription
Registry

Service
Registry

Pattern-based
BPEL4WS
Registry

SOAP Messages
Analyzer

Discovery
Service

Query
Formulator

Discovery
Service

Query
Formulator

Pattern-based
BPEL4WS

Engine

Flow
Generator

Instantiate

Workflow
Composer

Dynamic
Invoker

Dynamic
Binding
Service

WSDL
Document
Analyzer

Response
Formulator

Messaging
Service

SOAP
Messages
Generator

SOAP node
Based on

WS-RM

Messaging
Service

SOAP
Messages
Generator

SOAP node
Based on

WS-RM

Client

Supplier

Request

DOM
Object

DOM Object

Product
Description

subscriptionKey

DOM
Object

WSIF
Objects

BPEL
Objects

SQL
Query

pattern

WSDL Document

WSDL
Document

XML
Document

HTML
Document

SOAP
Message

SOAP
Message

SOAP
Message

Presentation
Layer

Transport
Layer

Service
Layer

Directory
Layer

Fig. 1. General architecture of the Web services-based brokering service

3 Web Services Discovery, Composition, Monitoring and
Management in BPIMS-WS

BPIMS-WS provides basic services for publishing and querying Web services. These
services represent the basic operations in BPIMS-WS. The structure and behavior of
the Web services discovery in BPIMS-WS can be understood with the following ex-
ample. Assume that a client has a production line which can not be stopped. At certain
moment, she detects her stock levels have diminished and therefore she needs to find
what providers are available related to her product. By doing this, the client must
select the type of the product she wants from a range of options offered through an
Internet portal [5]. Then, BPIMS-WS obtains the request and formulates a query to
the service registry. The result to the query is a list of all the suppliers that includes
the requested product in their stocks. Next BPIMS-WS extracts the required informa-
tion and builds a XML document. This document XML is presented in HTML using a
stylesheet. The answer contains information concerning to the provider and product.
By means of basic Web services, a client can know what registered enterprises in the
service registry can offer a certain product.

Orchestration is currently presented as a way to coordinate Web services in order
to define business processes. In BPIMS-WS, a composite Web service is obtained by
the orchestration of several simple Web services. Composite Web services can be
created in both design and execution time. In BPIMS-WS, for the execution of a
composite Web service is firstly necessary to locate a suitable template from the
BPEL4WS repository that describes the intended commercial activities. In this
schema, the templates are completely determined since commercial partners are
known before hand.

 A Web Service-Based Brokering Service for e-Procurement in Supply Chains 691

The need to conduct business in real-time is among the most daunting yet strategic
challenges facing today’s enterprise. BPIMS-WS offers capabilities for business ac-
tivities monitoring. For the monitoring process, it is necessary to listen to the re-
quest/response SOAP messaging of Web service-based business collaboration. The
SOAP messaging identifies the participants and their communications during the
long-running interactions of the participants in the collaboration. For this end,
BPIMS-WS intercepts all SOAP messages to generate a UML sequence diagram from
the information about the participants and the order in which the messages are ex-
changed. For the monitoring of activities, a set of Java classes has been developed to
represent a UML diagram in a SVG (Scalable Vector Graphics) representation that
can be visualized in an SVG enabled Internet browser. The exchange of SOAP mes-
sages during some kinds of business collaboration may be developed very quickly.
Therefore, to avoid reducing the performance of the Web services execution, the
dynamic generation of UML diagrams uses a buffered mechanism to deal with a fast
pacing production of SOAP messages.

As Web services become pervasive and critical to business operations, the task of
managing Web services and implementations of our brokering service architecture is
imperative to the success of business operations involved in SCM. In this sense, we
developed a basic web services manager with capabilities for discovering the avail-
ability, performance, and usage, as well as the control and configuration of Web ser-
vices provided by BPIMS-WS. The underlying technology used to the implementa-
tion is JMX (Java Management eXtension). The JMX architecture consists of three
levels: instrumentation, agent, and distributed services. JMX provides interfaces and
services adequate to monitoring and managing systems requirements. The main com-
ponent for web services management is a JMX Bridge, which acts as a bridge be-
tween the world of resources managed by JMX and Web services. In BPIMS-WS,
Web services interfaces to JMX are available. Rather than provide a JMX specific
Web service interface, BPIMS-WS provides a Web service interface to a manageable
resource. Under our approach, the resources can be implemented on different tech-
nologies because only it is necessary to define a Web service interface for a resource.

4 Related Works and Discussion

Chung-Nin [8] developed a system named eXFlow for business processes integration
on EAI and B2B e-commerce. However, eXFlow provides only support for Web
services discovery, invocation, orchestration and monitoring. Web services manage-
ment is not considered and since eXFlow is based on an SOA architecture, asynchro-
nous messaging is not provided. Lakhal [9] proposes another system named
THROWS, an architecture for highly available distributed execution of Web services
compositions. In THROWS architecture, the execution control is hierarchically dele-
gated among dynamically discovered engines. However, THROWS is in the design
phase so that is being developed. Arpinar [10] provides an architecture for semi-
automatic Web services composition combining both centralized model and peer-to-
peer approaches. This proposal has only support for Web services discovery, invoca-
tion, orchestration and monitoring. Web services management is not considered and
the architecture is being developed. Turner [11] developed a system which acts as an

692 G. Alor-Hernandez et al.

Integration Broker for Heterogeneous Information Sources (IBHIS). IBHIS is already
implemented but process activity monitoring is not included. Radetzki [12] proposes
a system named IRIS (Interoperability and Reusability of Internet Services) for Web
services composition through a set of graphic interfaces. In IRIS, Web services dis-
covery and orchestration are provided by an ontology-based registry approach. How-
ever, IRIS is addressed to the simulation of Web services composition therefore Web
services execution is not included. Howard [13] proposes a framework named
KDSWS (Knowledge-based Dynamic Semantic Web Services) which addresses in an
integrated end-to-end manner, the life-cycle of activities involved in brokering and
managing of Semantic Web Services. However, agent monitoring is not considered
and the architecture is subjected to ongoing work. Srinivasan [14] provides an archi-
tecture for Web services discovery under a goal-oriented approach. Web services
discovery is carried out by means of services chains satisfying certain constraints.
This architecture provides only support for Web services management and monitoring
and is in design phase. Yu [15] proposes a framework for Dynamic Web Service
Invocation. This framework is based on an SOA architecture. Publica-
tion/subscription and notification mechanisms are used in Web services discovery in
UDDI nodes. However, an experimental prototype is provided which does not con-
sider Web services orchestration, monitoring and management. Finally, Aggarwal
[16] developed a system named METEOR-S (Managing End-To-End OpeRations for
Semantic Web services) which is a constraint driven Web Service composition tool.
In METEOR-S architecture, web services management is not considered. Neverthe-
less, METEOR-S has been implemented and working well.

5 Conclusions

In this paper, we have described BPIMS-WS, a hybrid architecture we have developed
so far that provides a comprehensive framework for developing business integration,
collaboration and monitoring in SCM scenarios. Among the applications we envi-
sioned for BPIMS-WS, the orchestration of long-term supply chains involving opera-
tion research methods to minimize costs, reduce delivery times and maximize quality
of service along with artificial intelligence methods to provide semantic matching and
to define business partners profile management is now under consideration.

References

1. Mike P. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and Direc-
tions. In Proc. of the Fourth International Conference on Web Information Systems Engi-
neering (WISE’03).

2. Steve Vinoski. Integration with Web Services. IEEE Internet Computing. November-
December 2003 pp 75-77.

3. Adams, H., Dan Gisolfi, James Snell, Raghu Varadan. “Custom Extended Enterprise Ex-
posed Business Services Application Pattern Scenario,” http://www-
106.ibm.com/developerworks /webservices/library/ws-best5/, Jan. 1, 2003

4. Samtani, G. and D. Sadhwani, “Enterprise Application Integration and Web Services,” in
Web Services Business Strategies and Architectures, P. Fletcher and M. Waterhouse, Eds.
Birmingham, UK: Expert Press, LTD, pp. 39-54, 2002a.

 A Web Service-Based Brokering Service for e-Procurement in Supply Chains 693

5. Giner Alor Hernández, César Sandoval Hernández, José Oscar Olmedo Aguirre. “BPIMS-
WS: Brokering Architecture for Business Processes Integration for B2B E-commerce”. In
Proc. of the International Conference on Electronics, Communications, and Computers.
(CONIELECOMP 2005). IEEE Press. pp 160-165

6. Juan Miguel Gómez, Giner Alor Hernandez, José Oscar Olmedo, Christoph Bussler. “A
B2B conversational Architecture for Semantic Web Services based on BPIM-WS”. In
Proc. of the 10th IEEE International Conference on Engineering of Complex Computer
Systems. (IEEE ICECCS 2005). IEEE Press. pp 252-259.

7. César Sandoval Hernández, Giner Alor Hernández, José Oscar Olmedo Aguirre. “Dinamic
Generation of Organizational BPEL4WS workflows”. In Proc. of I International Confer-
ence on Electrical and Electronics Engineering and X Conference on Electrical Engineer-
ing (ICEEE-CIE 2004). IEEE Press. ISBN: 0-7803-8532-2.

8. Nathan Chung-Nin Chung,Wen-Shih Huang,Tse-Ming Tsai and Seng-cho T.Chou. eX-
Flow:A Web Services-Compliant System to Support B2B Process Integration. In Proc. of
the 37th Hawaii International Conference on System Sciences 2004.

9. Neila Ben Lakhal, Takashi Kobayashi and Haruo Yokota. THROWS: An Architecture for
Highly Available Distributed Execution of Web Services Compositions. In Proc. of the
14th International Workshop on Research Issues on Data Engineering: Web Services for
E-Commerce and E-Government Applications (RIDE’04).

10. I.Budak Arpinar, Boanerges Aleman-Meza, Ruoyan Zhang and Angela Maduko. Ontol-
ogy-Driven Web Services Composition Platform. In Proc. of the IEEE International Con-
ference on E-Commerce Technology.

11. Mark Turner, Fujun Zhu, Ioannis Kotsiopoulos, Michelle Russell, David Budgen, Keith
Bennett, Pearl Brereton, John Keane, Paul Layzell and Michael Rigby. Using Web Service
Technologies to create an Information Broker: An Experience Report. In Proc. of the 26th
International Conference on Software Engineering (ICSE’04).

12. Uwe Radetzki and Armin B.Cremers. IRIS: A Framework for Mediator-Based Composi-
tion of Service-Oriented Software. In Proc. of the IEEE International Conference on Web
Services (ICWS’04).

13. Randy Howard and Larry Kerschberg. A Knowledge-based Framework for Dynamic Se-
mantic Web Services Brokering and Management. In Proc. of the 15th International
Workshop on Database and Expert Systems Applications (DEXA’04).

14. Ananth Srinivasan and David Sundaram. Web Services for Enterprise Collaboration: A
Framework and a Prototype. In Proc. of the 30th EUROMICRO Conference (EUROMI-
CRO’04).

15. JianJun Yu and Gang Zhou. Dynamic Web Service Invocation Based on UDDI. In Proc.
of the IEEE International Conference on E-Commerce Technology for Dynamic E-
Business (CEC-East’04).

16. Rohit Aggarwal, Kunal Verma, John Miller and William Milnor. Constraint Driven Web
Service Composition in METEOR-S. In Proc. of the 2004 IEEE International Conference
on Services Computing (SCC’04).

A Thin Client Approach to Supporting Adaptive

Session Mobility

Dan MacCormac, Mark Deegan, Fred Mtenzi, and Brendan O’Shea

School of Computing, Dublin Institute of Technology,
Kevin St, Dublin 8, Ireland

{dan.maccormac, mark.deegan, fred.mtenzi, brendan.oshea}@comp.dit.ie

Abstract. Recent growth in computing devices from the smartphone to
the desktop computer has led to users interacting with multiple comput-
ing devices throughout the course of the day. Modern computing sessions
are a graphically rich, multi-tasking experience, representing a consider-
able amount of state. There is seldom the ability to automatically move a
session from one device to another; instead users must manually restore
applications to their previous state. Without session mobility, the prob-
lems of unsynchronised information and communication barriers become
apparent. We present a thin client approach to supporting session mobil-
ity across a broad range of devices. We use an adaptive approach, thereby
supporting a fine granularity of devices. Furthermore, our approach en-
ables rich diverse sessions composed of applications specific to a range of
platforms, reducing constraints imposed by mobile devices, and boosting
productivity by allowing access to a wider range of applications from a
single device.

1 Introduction

Growth in the use of both mobile and stationary computing devices, in addition
to increased bandwidth being offered by 3G providers, has led to users inter-
acting with a wider range of devices in day to day life. The task of manually
re-instating a computing session when moving from one device to another can
be frustrating, time consuming, and sometimes impossible depending on the
correlation between the current and previous device. This task is common, for
example in academic, medical and corporate environments, where people may
work at several terminals at different times throughout the day. Consequently
there is a growing demand among users for continuity in interaction when mov-
ing between devices. Providing a method of moving a session from one device to
another which is called session mobility, helps to significantly increase produc-
tivity while eliminating the cumbersome task of attempting to manually restore
session state.

Consider Alice who benefits from session mobility. In the morning, Alice reads
her e-mail on her PDA while travelling to work on the train. When she arrives
at the office, her session is transferred to her desktop computer without inter-
rupting the message she is currently composing. Before lunch, Bob in Alaska

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 694–701, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Thin Client Approach to Supporting Adaptive Session Mobility 695

initiates an instant messaging session with Alice. Rather than being confined to
her desktop computer, she decides to continue the conversation on her smart-
phone as she leaves for lunch. Later that afternoon, Alice is scheduled to give a
brief presentation to her colleagues. As she enters the conference room, her ses-
sion is seamlessly transferred to a public terminal, allowing effortless delivery of
her presentation. On her way home she books tickets for a concert on the same
instance of the web browser she opened that morning. Achieving the level of
mobility outlined in Alice’s scenario becomes possible when we consider merging
appropriate technologies, and adding additional elements such as a knowledge
management component to take advantage of user and domain information. De-
ployment of such a system in a Pervasive computing framework can facilitate
inter-device communication and enable seamless hand-off of sessions from one
device to another.

The remainder of this paper is structured as follows. In section 2 we discuss
related work in the area of session mobility. From the problems outlined above,
we have identified several key requirements of our system, which we outline in
Section 3 as well as presenting the corresponding architecture of the system.
In Section 4 we outline the implementation of the system, and in Section 5 we
evaluate and discuss the performance and relevance of our approach. Finally, in
Section 6 we present our concluding remarks and discuss potential future work.

2 Related Work in the Area

The work outlined in this paper focuses on enabling mobility of legacy applica-
tions across heterogeneous devices. We aim to provide seamless integration of
the interface of the mobility enabled application into the users current environ-
ment, allowing both mobile and stationary applications to work side by side.
Moreover, our approach takes into consideration the diverse range and capabili-
ties of various target platforms, providing adaptive methods of session mobility.
This reduces footprint when moving sessions to mobile devices with constrained
capabilities. We use a thin client approach to providing session mobility. Existing
thin client solutions which display an entire desktop environment confine users
to particular Operating Systems. This prevents users from merging the power of
applications which are specific to a variety of platforms.

The problem of providing web interface mobility has been discussed in [1].
The system supports applications built using a multi-modal approach, and is
capable of choosing the most appropriate mode for the current device. However,
to take full advantage of the capabilities of the system, applications must be
built using a specialised toolkit. Similarly, in [2], the authors present a “multi-
browsing” system which allows the movement of web interfaces across multiple
displays. This work supports the movement of existing web applications, broad-
ening its usage scope. Both of the above approaches focus specifically on mobility
of web applications. As the interaction with mobile devices becomes more com-
plex in response to their growing capabilities, the need to support mobility of a
wider range of applications becomes apparent. ROAM, a system to support the

696 D. MacCormac et al.

movement of Java based applications between heterogeneous devices is presented
in [3]. This work also requires developers to build applications using a specific ap-
proach thereby limiting the applicability of this work. In [4], the authors present
TAPAS (Telecommunication Architecture for Plug And Play Systems), an ap-
proach to supporting user and session mobility. This approach allows for a broad
range of applications and allows access to personalised applications within for-
eign domains. However, as with the previous examples, this work requires appli-
cations to be built using a specialised toolkit. Guyot et al. [5] investigate smart
card performance as a token for session mobility between Windows and Linux.
This work supports mobility of a wide range of applications, and is also capable
of remotely fetching and installing necessary applications which were available
on the previous terminal but not on the present terminal. The approach taken
in this work involves the restoration of a session based on a session state file.
Our approach involves the dynamic movement of an application from one device
to another. Furthermore, this work does not address the use of mobile devices,
which is central to our work.

3 Design Goals and System Architecture

In this section we outline the design goals of our approach and present the system
architecture. A brief discussion on the relationship between the design goals and
the resulting system architecture follows.

3.1 Design Goals

When designing our approach to session mobility we established the following
objectives.

– Enable the mobility of legacy applications
– Avoid modification to existing applications and Operating Systems
– Support heterogeneous client platforms
– Support seamless integration of mobility enabled applications where possible
– Enable sharing of workspaces with multiple users for presentations and col-

laborative work
– Support efficient management of network resources

3.2 System Architecture

We present the system using a multi-layered architecture, as illustrated in Fig.
1. At the lowest level – the Protocol layer – sits the chosen protocols which are
X11 as used by the X Window System and RFB which is used by VNC. VNC is
suitable for displaying sessions on mobile devices with limited resources, while
the X Window system is better suited to traditional computers such as laptops
and desktops. On top of the Protocol layer, we have added an Extension layer
to support the mobility of legacy applications, as well as the multiplexing of ap-
plications for collaborative work. The VNC system inherently supports mobility

A Thin Client Approach to Supporting Adaptive Session Mobility 697

of application interfaces. Supporting application mobility at the X Window level
is possible through the use of an X11 pseudo-server [6] which enables dynamic
movement of X11 clients. On top of the Protocol and Extension layers, is the
Management layer. The Management layer is the nucleus of our approach, con-
trolling the lower layers and enabling efficient management of resources. It is
composed of two core modules – the Service and Database modules. The Ser-
vice module facilitates communication between the higher and lower layers of
the system. The Database modules complement the Service modules by storing
and managing network resource information such as network status, available
terminals and device information. Finally, at the highest level is the Application
layer. This layer provides an interface to the lower layers of the system, enabling
people and devices to interact with the system using a uniform interface. Ap-
plication layer I/O is achieved using TCP clients and a central server. Protocol
messages are encapsulated in an XML based communication language which was
created specifically for this system and other pervasive computing applications
which are under active development such as Location Based Services.

Fig. 1. Layered system architecture showing supported platforms and applications

Extending existing thin client technologies has allowed us to meet our objec-
tive of enabling the mobility of legacy applications in a seamless manner. By
using more than one thin client protocol, we enable adaptive session mobility
and hence support of heterogeneous devices. By combining Database and Service
modules we have added a knowledge management component to our approach,
enabling efficient management of network resources.

4 Implementing an Adaptive Approach to Session
Mobility

The session mobility server was implemented in a Linux environment. Addition-
ally, we created light-weight client applications for several test systems such as
Windows, Linux and BSD. Using these client side applications, requests can be

698 D. MacCormac et al.

sent to the application server to move a session from one device to another,
specifying either an IP address or Zone name as a destination. Zones represents
groups of computing devices which are managed by the Database modules. If a
zone name is specified, the system will choose an appropriate vacant device in
the given zone. This is useful in environments composed of a large number of
public workstations such as University laboratories where users simply want to
use the closest vacant device.

The Application Layer was implemented using a C based TCP server and
and a custom built request parser driven by Expat, an open source XML parser.
At the Management layer, both the Service and Database modules were imple-
mented using shell scripting, as well as employing a variety of open source Linux
tools. In the first prototype of the system the databases are structured using
XML based entries, allowing for an extremely light-weight database architecture.
The Extension layer, which enables session mobility and multiplexing is driven
by three open-source tools; xmove [6], VNC [7], and xtv [8]. X11 mobility is sup-
ported by xmove, a pseudo-server for X11 client movement. The pseudo-server
is an intermediary, which is positioned between the client and server, allowing
interception of X protocol messages. This intercepted information can then be
used as a basis for window movement. It acts in a similar manner to a standard
X server, and as a result legacy applications do not distinguish between a real
or pseudo server. Therefore any application started on the pseudo-server will
be capable of having its output redirected to another X server; real or pseudo.
As we mentioned, VNC inherently provides session mobility. Moving sessions
to light-weight device can be achieved by attaching all applications to a virtual
VNC desktop on the server which is then accessible from any terminal device
using appropriate client software. Multiplexing is achieved via xtv which allows
remote users to view the contents of an X session within a client window. xtv
clients cannot provide any input, instead a view-only session is provided. VNC
can be used to provide a collaborative shared workspaces. All tools run at the ap-
plication level, requiring no change to the underlying windowing system, which
was one of our initial design objectives.

5 Evaluating the Performance of Our Approach

To evaluate the performance of the system, we set up a small testbed consisting of
a Linux server running our session mobility software and several client machines
representing user workstations. We performed a series of tests to establish the
time taken to move a session for one device to another using our approach.
Our test sessions consisted of five common applications, including a text editor,
web browser, and a terminal window, each running on machines with equivalent
specifications. Tests demonstrated that the average time taken to move a session
from one device to another using the X11 pseudo-server approach was just over
4 seconds. In the case of mobile devices, we must also leverage the capabilities
of VNC which increases session mobility cost. Test results showed that VNC
takes an average of 3 seconds to display a session, increasing mobility cost by

A Thin Client Approach to Supporting Adaptive Session Mobility 699

75% in the case of our test session. However, we can eliminate this overhead by
executing both tasks concurrently, hence mobility cost can be attributed to the
last task to complete – most likely X11 movement. We present our results in
comparison to other common approaches to session mobility, as shown in Fig. 2.

The first method, which we have observed students in Computer Science
courses to use, involves storing a virtual machine on a portable flash drive,
and carrying it from one machine to the next. The time taken to suspend and
resume this virtual machine is significant and depends largely on the level of
state change within the virtual machine. Furthermore, allocating larger memory
to the virtual machine and running more applications simultaneously increases
suspend/resume time experienced. The second approach to providing session
mobility which we have compared our implementation to is that of Microsoft’s
Terminal Services. Suspending a Terminal Services session merely involves clos-
ing the client window and thus there is virtually no time associated with sus-
pending the session. Restoring a Terminal Services session takes approx 2 - 3
seconds, which is very close to the time taken by our system. Moreover, the re-
sume time indicated by our approach is identical to the time required for direct
movement of a session from one client to another, since a resume operation is
achieved in the same manner as moving a session. As a result, the difference
between time taken by Terminal Services and our implementation is marginal:
just over 1 second; at least in case of relatively light sessions.

We also considered the overhead added by interposing a pseudo-server between
X client and server. In [6], tcpdump (a tool which captures network packets
and assigns a time-stamp) is used to establish the latency added by xmove as
opposed to using a standard X server. Test results showed that xmove is virtually
unnoticeable when communication between client and server is asynchronous; for

0

6,000

12,000

18,000

24,000

30,000

36,000

42,000

48,000

54,000

60,000

Parallels Desktop VMWare Our Approach Terminal Services

Suspend Resume

Time (ms)

Fig. 2. Comparison of test results

700 D. MacCormac et al.

example in the case of a colour page redraw, a delay time of 4% is added. In a
scenario where communication is synchronous, meaning the client must wait for
acknowledgement from the server between each message, the overhead becomes
noticeable. The tests showed that for communication which involved a series of
synchronous messages sent between client and server, xmove added an overhead
of approx. 2 ms, bringing the roundtrip time from 3 ms to over 5 ms. This
is significant, since it accumulates overtime. However, clients do not regularly
communicate in this fashion; when they do it is often during start-up procedures
or at other times when the user is expecting a delay, rather than time critical
periods.

Finally, we evaluated the overhead added by the Management and Applica-
tion layers of the system. Test results showed that these layers add an average
overhead of 1.8 ms which we feel is negligible. We also observed that the mobility
cost grows in parallel with the number of active applications in a users session.
This is due to the processing performed by the pseudo-server at the Extension
layer, whereas the adjacent layers exhibit similar time patterns despite the num-
ber of applications within the session. In addition to this, all applications do not
move immediately, but rather sequentially. The results are based on the time
elapsed between the initial request and the time at which the final application
moves, meaning other applications may move substantially faster.

Aside from the competitive session movement times demonstrated, our imple-
mentation offers the advantage of a rich heterogeneous environment in compari-
son to the alternative methods outlined. While users can run individual systems
in parallel using VMWare’s tabbed environment, these parallel environments
lack consolidation and the task of switching between tabs quickly becomes cum-
bersome. The approach of running several entire operating systems uses con-
siderable system resources, and furthermore resuming a virtual machine on a
processor architecture which differs from the previous architecture is known to
be problematic.

6 Conclusion and Future Work

There is seldom the ability for users to move their session from one device to
another. Existing implementations of such systems tend to focus on one Operat-
ing System. By merging existing thin client technologies and adding Extension,
Management and Application layers, it becomes possible to move sessions across
a broad range of devices in a seamless manner. This alleviates the need for users
to manually re-instate sessions, which can take several minutes; the aggregate
cost of which is significant when interacting with numerous devices. The ability
to share this mobile session with multiple users provides a useful tool for presen-
tations as well as collaborative work. Manually managing all of these technologies
to provide such services is difficult, time consuming and sometimes impossible.
In the past, such barriers have been a deterrent to the use of these technologies.

There are several areas of this work which have yet to be explored in further
detail. The need for load balancing between multiple servers is a fundamental

A Thin Client Approach to Supporting Adaptive Session Mobility 701

issue; master and slave servers supporting non-residual process migration is one
possible approach. There are also several security enhancements which could
be added to our work, for example mandatory use of SSH tunnelling for all
sessions. Other challenges include preventing dropped sessions due to broken
network connections and adding support for local resource redirection such as
printers and USB devices. In addition to addressing limitations of the current
system, the next phase of research involves the exploration of the use of sensory
identification tokens such as Bluetooth and RFID tagged objects as a trigger for
the movement of sessions. Sensory tokens could also be used to store session state
information, adding a further level of flexibility to system. As we enhance our
work to date, in addition to evaluating other Ubiquitous computing concepts, the
unification of these individual approaches into a single diverse infrastructure will
help to validate our vision of an intelligent pervasive computing environment.

Acknowledgements. Dan MacCormac gratefully acknowledges the contribu-
tion of the Irish Research Council for Science, Engineering and Technology:
funded by the National Development Plan. The authors also wish to thank to
Dr. Kudakwashe Dube for his discussion of this work.

References

1. Bandelloni, R., Paterno, F.: Flexible interface migration. In: IUI ’04: Proceedings of
the 9th international conference on Intelligent user interfaces, New York, NY, USA,
ACM Press (2004) 148–155

2. Johanson, B.: Multibrowsing: Moving web content across multiple displays. In:
UBICOMP 2001. LNCS 2201, Springer Verlag (2001) 346–353

3. Chu, H., Song, H., Wong, C., Kurakake, S., Katagiri, M.: Roam, a seamless appli-
cation framework. Systems and Software 69 (2004) 209–226

4. Shiaa, M.M., Liljeback, L.E.: User and session mobility in a plug-and-play network
architecture. IFIP WG6.7 Workshop and EUNICE Summer School, Trondheim,
Norway, (2002)

5. Guyot, V., Boukhatem, N., Pujolle, G.: Smart card performances to handle ses-
sion mobility. Internet, 2005.The First IEEE and IFIP International Conference in
Central Asia on 1 (2005) 5

6. Solomita, E., Kempf, J., Duchamp, D.: XMOVE: A pseudoserver for X window
movement. The X Resource 11 (1994) 143–170

7. Richardson, T., Stafford-Fraser, Q., Wood, K., Hopper, A.: Virtual network com-
puting. Internet Computing, IEEE 2 (1998) 33 – 38

8. Adbel-Wahab, H.M., Feit., M.A.: Xtv: A framework for sharing x window clients
in remote synchronous collaboration. In: In Proceedings, IEEE Tricomm ’91: Com-
munications for Distributed Applications and Systems. (1991)

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 702 – 709, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Automatic Execution of Tasks in MiPeG

Antonio Coronato, Giuseppe De Pietro, and Luigi Gallo

ICAR-CNR, Via Castellino 111, 80131 Napoli, Italy
{coronato.a, depietro.g, gallo.l}@na.icar.cnr.it

Abstract. Grid computing and pervasive computing have rapidly emerged and
affirmed respectively as the paradigm for high performance computing and the
paradigm for user-friendly computing. The conjunction of such paradigms are
now generating a new one, the Pervasive Grid Computing, which aims at ex-
tending classic grids with characteristics of pervasive computing like spontane-
ous and transparent integration of mobile devices, context-awareness, pro-
activity, and so on. In this paper, we present mechanisms and a software infra-
structure for executing tasks in a pervasive grid. In particular, the proposed so-
lution, which provides an implementation of the Utility Computing model, en-
ables users to submit tasks and to pick up results without concerning on requir-
ing and handling hardware resources.

1 Introduction

During the last decade, new computing models have emerged and rapidly affirmed. In
particular, terms like Grid Computing, Pervasive Computing, and Utility Computing
have become of common use not only in the scientific and academic world, but also
in business fields.

The Grid computing model has demonstrated to be an effective way to deal with
very complex problems. The term “The Grid” is now adopted to denote the virtualiza-
tion of distributed computing and data resources such as processing, network band-
width and storage capacity to create a single system image, granting users and appli-
cations seamless access to vast IT capabilities [1]. As a result, Grids are geographi-
cally distributed environments, equipped with shared heterogeneous services and
resources accessible by users and applications to solve complex computational prob-
lems and to access to big storage spaces.

The goal for Pervasive computing is the development of environments where
highly heterogeneous hardware and software components can seamlessly and sponta-
neously interoperate, in order to provide a variety of services to users independently
of the specific characteristics of the environment and of the client devices [2]. There-
fore, mobile devices should come into the environment in a natural way, as their
owner moves, and transparently. The owner will not have to carry out manual con-
figuration operations for being able to approach the services and the resources, and
the environment has to be able to self-adapt and self-configure in order to host incom-
ing mobile devices.

On the other hand, Utility Computing aims at providing users with computational
power in a transparent manner, similarly to the way in which electrical utilities supply
power to their customers. In this scenario, computing services are seen as “utilities”

 Automatic Execution of Tasks in MiPeG 703

that users pay to access to, just as is in the case of electricity, gas, telecommunications
and water [3].

Current grid applications, although they offer services and resources to their users,
are neither pervasive nor able to implement the Utility Computing vision. As a matter
of fact, whenever a user wants to execute an own application, has to i) ask the grid for
resources; ii) allocate tasks; iii) launch and control executions; iv) get results; and v)
release resources. This practice has several limitations:

1. User-environment interactions are very little transparent;
2. Users have direct control of allocated resources – The user requires (and

sometimes locks) resources of the grid;
3. Resources are handled in an insecure and inefficient way – A malicious user

could require a larger amount of resources with respect the ones really
needed or an inexperienced user could underestimate the resources really
needed.

This work presents a software infrastructure that extends classic grids by enabling
users to directly submit tasks for executions. After having been submitted, tasks are
completely handled by the environment. In particular, they are encapsulated in mobile
agents, which are allocated and executed by the environment. It is worth noting that
such mobile agents can also be allocated and executed on mobile devices, which be-
come active resources for the grid, in a completely transparent way. In addition a
certain degree of dependability has been conferred to the service in handling mobile
tasks.

The rest of the paper is organized as follows. Section 2 discusses some motiva-
tions, related work and contribution. Section 3 describes the proposed solution. Fi-
nally, section 4 concludes the paper.

2 Motivations and Contributions

2.1 Motivations

Mobile and wireless devices have not been considered, for a long time, as useful re-
sources by traditional Grid environments. As a matter of fact, only recently they have
been adopted as interface tools for accessing Grid services and resources. However,
Considering the Metcalfe’s law, which claims that usefulness of a network-based
system proportionally grows with the square of the number of active nodes, and also
considering that mobile devices capabilities have substantially be improved over the
time, it can justifiably be stated that mobile and wireless devices are now of interest
for the Grid community, not only as access devices, but also as active resources [4].

However, integration of mobile devices is not costless [7]. This is mainly due to
the consideration that current Grid middleware infrastructures don’t support mobile
devices for three main reasons: 1) they are still too heavy with respect to mobile and
wearable equipments; 2) they are not network-centric; i.e. they assume fixed TCP/IP
connections and do not deal with wireless networks and other mobile technologies;
and, 3) they typically support only one interaction paradigm, that is SOAP messaging,
whereas the Pervasive model requires a variety of mechanisms [10].

704 A. Coronato, G. De Pietro, and L. Gallo

Over the last years, some valuable efforts have been made in order to make Grid
infrastructures able to support wireless technologies and mobile devices. In particular,
the paradigm of Wireless Grid has been proposed [5-8]. More recently, this paradigm
has evolved in the Pervasive Grid model [9-10], which again aims at making Grid
environments able to integrate mobile devices, but in a pervasive way, that is seam-
lessly and transparently. In addition, services should be context-aware and somehow
pro-active.

This effort has officially been formalized in 2003 when a Global Grid Forum Re-
search Group, called Ubicomp-RG, was established in order to explore the possibili-
ties of synergy between Pervasive and Grid communities.

Other related work is reported in the following.
In [5] mobile devices are considered as active resources for the Grid. In particular,

authors developed a software infrastructure for deploying Grid services on mobile
nodes. This solution relies on a lightweight version of the .NET framework, namely the
.NET Compact Framework, which enables to deploy on mobile devices simple Grid
Services that require limited amount of resources. It is important to note that such a
solution applies only to mobile devices equipped with the Microsoft Pocket PC operat-
ing system and requires several manual operations for installation and configuration.

In [10] authors propose a framework for self-optimizing the execution of tasks in
GAIA [11]. In that scenario, a task is meant as a sequence of high-level actions (say
for an example, “print N copies of this document and then show it as a presentation”).
The user indicates the sequence of actions and then the environment choose the re-
sources (and services) needed. On the contrary, in our scenario a task is just a soft-
ware program.

2.2 Our Contribution

Our contribution consists in a model and a software infrastructure that enable grid
users to distribute and execute tasks on a changing group of mobile and fixed devices.

Such a software infrastructure relies on MiPeG, a Middleware for Pervasive Grids
that provides several facilities for integrating and handling mobile devices and users
in grid applications. MiPeG consists of a set of basic services exposed as Grid Ser-
vices; i.e., they are compliant with the OGSA specifications [12]. It integrates with
the Globus Toolkit [13], which is the de-facto standard platform for Grid applications,
in order to extend its functionalities and to provide mechanisms for augmenting clas-
sic grid environments with pervasive characteristics. It also partly relies on the JADE
framework [14] to implement some mobile agent based components.

The proposed environment distinguishes from classic and wireless grids for the fol-
lowing main characteristics:

a. Transparent integration of mobile devices as active resources – This feature
requires the installation of lightweight software plug-in, which consists in an
agent container, onboard the mobile device. After that, whenever the mobile
device enters the environment, it becomes an active resource for the grid; in
other words, the environment can allocate and execute tasks on it, in a com-
pletely transparent way for its owner.

b. Self-execution of applications – Users submit their own code and some execu-
tion parameters. On the contrary, in classic grids users requires resources and

 Automatic Execution of Tasks in MiPeG 705

then are fully in charge of launching execution, controlling it, picking up results
and releasing resources. Obviously, the possibility of submitting just the code,
not only ease the task for users, but also protect the environment from mali-
cious and inexpert users.

c. Reliable execution of tasks – Tasks are encapsulated in mobile agents that can
be allocated by the environment both on fixed and mobile devices. Thanks to a
cloning mechanism, the environment is able to recover from several kinds of
failures.

3 Utility Framework

3.1 Service Architecture

The UtilityService is an application service able to dynamically distribute and execute
user’s tasks on a grid of either fixed or mobile resources. Users willing of executing
their applications directly submit their code without caring of choosing and allocating
resources of the grid.

In current grids, whenever a user wants to execute an own application, has to i) ask
the grid for resources; ii) allocate tasks; iii) launch and control executions; iv) get
results; and v) release resources.

As already pointed out in the introductory section, this practice has several limita-
tions. To overcome such limitations, the UtilityService extends classic grids by ena-
bling users to directly submit tasks for executions. After having been submitted, tasks
are completely handled by the environment, which gathers the results and sends them
back to the user.

To achieve this objective, user tasks are encapsulated in mobile agents and then al-
located in a distributed platform that controls execution.

As shown in figure 1, the UtilityService consists of the following components:

• Container – This is the run-time software environment that provides the basic
functionalities for executing and coordinating mobile agents;

• Platform – This is the set of hardware nodes equipped with a Container and able
to execute tasks;

• TaskHandler – This is the hardware element that hosts the coordinating compo-
nents. It is also the user entry point to the service;

• Subordinate – This is an hardware node that hosts mobile agents for execution.
It can be either a fixed or a mobile resource;

• Initiator – This is the hardware element used by the user to submit source code
for execution;

• TaskAllocation – This is the Container that handles the mobile agents hosting
user tasks;

• TaskRecovery – This is the Container that stores cloned mobile agents. It is re-
quired to activate clones in case of failure of the cloned agent;

• Worker – This agent encapsulates the user’s task for execution and sends execu-
tion results to the Collector. More Workers can be hosted by the same Subordi-
nate;

706 A. Coronato, G. De Pietro, and L. Gallo

• DeviceManager – This agent interacts with the ContexService to receive the list
and the state of available resources in the grid. In addition to this, it receives
heartbeats from every Subordinate;

• Telltale – This is a software element that monitors some Subordinate’s parame-
ters and communicates them to the DeviceManager;

• WorkerManager – This agent coordinates Workers allocation and migration
within the environment accordingly with a scheduling algorithm;

• Collector – This agent receives the results from every active Worker and col-
lects them in the Results archive;

• Results – This is the archive that stores execution results until they are sent back
to the user.

Worker Manager

Task

Initiator

TaskTaskTask

Initiator

TaskTaskTask
TaskTaskTask

ReResourceService Class LOCALIZATIONN

Device Manager

Collector

Results

<<becomes>>

<<create>>

Main Container

rkerWorkerWorker Worker Clone

<<clone itself>>

Telltale
Worker

heart beat<<activate & execute>> <<activate & execute>>

results

results

Subordinate Subordinate

Task Handler Legend

Resident Agent

Mobile Agent

Data

<<Command>>

Device

Platform

Container

Database

Subscribe

Task Allocation Task Recovery

Telltale
Worker

Fig. 1. Interfaces and Architecture of the UtilityService

Whenever a user wants execute a task, has to contact the Initiator and to submit the
code. After that, the Initiator embeds such a code in a mobile agent, namely a Worker,
into the TaskAllocation container ready to be executed. Before distribution and execu-
tion, the task is forced to clone itself and the clone is inserted in the TaskRecovery
container. This is performed in order to confer a certain degree of dependability to the
service. Next, the task is allocated in one or more Subordinates, which will execute
them and produce results. Allocation is driven by the DeviceManager depending on
the current state of active resources of the grid. From now on, two main possibilities
are in order. The Worker completes its execution by sending results to the Collector
that, in turn, stores them in the Results archive; or, the Worker fails. In the latter case,
failure is detected by the DeviceManager that doesn’t receive heartbeats from the
Telltale anymore. As a consequence, the DeviceManager activates the Worker’s clone
and requires its execution on a new Subordinate.

 Automatic Execution of Tasks in MiPeG 707

The software framework exhibits some autonomic behaviors. In particular, it self-
manage allocation and execution of tasks and self-recover from nodes failures.

3.2 Scheduling Algorithms

We have defined a specific scheduling algorithm, namely DDT (Dynamic Distribu-
tion of Tasks), which aims at minimizing the time of execution for user tasks. The
objective is, in the case of multiple submission of tasks, to distribute such tasks in the
platform taking care of resources state in order to achieve better performance.

Since resource conditions rapidly change in time (especially for mobile resources),
the Telltale periodically executes a benchmark algorithm (identical for all the devices)
and sends the benchmark result (Bi, benchmark value for the resource i) to the De-
viceManager. Then, the DeviceManager calculates the mobile average of the last five
values received for each active resource and orders such devices according to these
values (the slower device is the last in the list). Next, it calculates the relative speed-
up (RSi,i+1) for each device, which is the ratio between the benchmark execution times
of the device i and the next device in the list (RSi,i+1 = Bi+1 /Bi).The relative speed-up
for the slowest device is set to 1.

Relative speed-ups are used by the DeviceManager to choose the device on which
to send a task. The basic idea is: if a device executes the benchmark in a time that is
the half of the time of another device, probably it will execute even the task in the half
of the time.

Accordingly to this idea, Workers are sent on the devices as the beads in an abacus;
that is, Workers are allocated on the device with the highest relative speed-up till the
number of Workers allocated (say N) is equal to the relative speed-up of the device
itself. Next Worker is sent to the second device (which is the fastest of the relative
list), then another group of N Workers is sent to the previous device, in turn, this allo-
cation is repeated until the number of Workers on the second device becomes equal to
its relative speed-up. As the number of Workers gets equal to the relative speed-up,
the next Worker to allocate is sent to the third device.

Figure 2 shows an example of allocation of tasks. In particular, we considered the
case of eleven Workers to allocate in a grid of four devices. Since the relative speed-
up between devices D1 and D2 is 3.20, the algorithm allocates three Workers on the
device D1 per every Worker allocated on the device D2. Differently, being the rela-
tive speed-up between devices D2 and D3 equal to 2.19, only after having allocated
two Workers on the device D2, a new Worker will be allocated on the device D3.

Time
D4

D3

D2

D1

W1 W2 W3Workers W4 W5 W6 W7 W8 W9 W10 W11

NW1 = 3

NW2 = 1

NW1 = 6

NW2 = 2

NW3 = 1

NW1 = 8

Nwk = Number of Workers allocated on the K-th device

Device B(i) RS(i,i+1)

D1 10 3,20

D2 32 2,19

D3 70 8,04

D4 563 1,00

Fig. 2. Example of distribution of tasks

708 A. Coronato, G. De Pietro, and L. Gallo

If there are still Workers that cannot be allocated in the first turn (that is, after hav-
ing allocated Workers on all devices), they will wait until a new device enters the
environment or at least one Worker completes its execution.

Finally, it must be noted that the list of ordered devices is reconstructed (and the
benchmark executed) whenever one of the following events occurs:

• a new device enters in the environment;
• a device leaves the environment;
• a Worker finishes its execution.

This is a preliminary scheduling algorithm that enables to take care of events re-
lated to the high dynamicity of a pervasive environment, in which mobile devices
chaotically enters and exits. However, alternative schemes are in order to be defined
and tested.

4 Conclusions and Future Work

This paper proposes a model and an application service able to dynamically distribute
and execute user-submitted tasks on a grid of mobile and fixed devices in a pervasive
way. Following the Utility Computing paradigm, the computational power is given in
a completely transparent way.

Currently, the proposed approach is applicable whenever the application to execute
consists in a single task that has to be executed many times (even with different input
values) or in many different tasks that don’t need to cooperate each other.

Future works will aim at developing new coordinating models that take care of
possible inter-task cooperation; i.e. multithreaded/multiprocess applications. As well,
the scheduling algorithm should be improved.

In addition, other dependability and security issues are in order.

References

1. I. Foster, C. Kesselman: The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann (1999)

2. D. Saha, A. Murkrjee: Pervasive Computing: A Paradigm for the 21st Century. IEEE
Computer (2003)

3. J. W. Ross, G. Westerman: Preparing for utility computing: The role of IT architecture and
relationship management. IBM System Journal, Vol. 43, NO 1 (2004)

4. L. W. McKnight, J. Howinson, S. Bradner: Wireless Grids. IEEE Internet Computing
(2004)

5. D. C. Chu, M. Humphrey: Mobile OGSI.NET: Grid Computing on Mobile Devices. Inter-
national Workshop on Grid Computing, GRID (2004)

6. B. Clarke, M. Humphrey: Beyond the ‘Device as Portal’: Meeting the Requirements of
Wireless and Mobile Devices in the Legion of Grid Computing System. International Par-
allel and Distributed Processing Symposium, IPDPS (2002)

7. T. Phan, L. Huang, C. Dulan: Challenge: Integrating Mobile Devices Into the Computa-
tional Grid. International Conference on Mobile Computing and Networking, MobiCom
(2002)

 Automatic Execution of Tasks in MiPeG 709

8. N. Daves, A. Friday, O. Storz: Exploring the Grid’s Potential for Ubiquitous Computing.
IEEE Pervasive Computing (2004)

9. V. Hingne, A. Joshi, T. Finin, H. Kargupta, E. Houstis: Towards a Pervasive Grid. Interna-
tional Parallel and Distributed Processing Symposium, IPDPS (2003)

10. G. Coulson, P. Grace, G. Blair, D. Duce, C. Cooper, M. Sagar: A Middleware Approach
for Pervasive Grid Environments. Workshop on Ubiquitous Computing and e-
ResearchNational eScience Centre, Edinburgh, UK (2005)

11. M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, K. Nahrstedt:
Gaia: A Middleware Infrastructure to Enable Active Spaces. IEEE Pervasive Computing
(2002) 74-83

12. H. Kishimoto, J. Treadwell: Defining the Grid: A Roadmap for OGSA Standards.
http://www.gridforum.org/documents/GFD.53.pdf

13. I. Foster: Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP Interna-
tional Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779
(2005) 2-13

14. M. Ciampi, A. Coronato, G. De Pietro: Middleware Services for Pervasive Grids, in the
proc. of the International Symposium on Parallel and Distributed Processing and Applica-
tion, ISPA (2006)

15. F. Bellifemmine, A. Poggi, G. Rimassa: Jade Programmers Guide, http://sharon.cselt.it/
projects/jade/doc/programmersguide.pdf

16. F. Bellifemmine, A. Poggi, G. Rimassa: JADE – FIPA Compliant Agent Framework.
PAAM (1999)

Providing Service-Oriented Abstractions

for the Wireless Sensor Grid

Edgardo Avilés-López and J. Antonio Garćıa-Maćıas

Computer Science Department
CICESE Research Center

Km. 107 Carretera Tijuana-Ensenada
Ensenada, Baja California, Mexico

{avilesl,jagm}@cicese.mx

Abstract. The computing grid no longer encompasses only traditional
computers to perform coordinated tasks, as also low-end devices are now
considered active members of the envisioned pervasive grid. Wireless
sensor networks play an important role in this vision, since they provide
the means for gathering vast amounts of data from physical phenomena.
However, the current integration of wireless sensor networks and the grid
is still primitive; one important aspect in this integration is providing
higher-level abstractions for the development of applications, since ac-
cessing the data from wireless sensor networks currently implies dealing
with very low-level constructs. We propose TinySOA, a service-oriented
architecture that allows programmers to access wireless sensor networks
from their applications by using a simple service-oriented API via the
language of their choice. We show an implementation of TinySOA and
some sample applications developed with it that exemplify how easy grid
applications can integrate sensor networks.

1 Introduction

Initial grid computing developments focused on the computational capabilities
of distributed systems for processing large amounts of data and for conveniently
sharing resources; as such, grid computing has also been referred to as util-
ity computing, computing on tap, or on-demand computing. Recent initiatives
such as the OGSA [1] have expanded this early focus to comprise a more data-
centric approach, as well as distributed services. Increasingly, the data for these
distributed services comes from small devices capable of sensing physical phe-
nomena, performing computing tasks, and communicating their results to other
devices [2]; these intelligent sensing devices form what is known as wireless sensor
networks (WSN).

Integrating the grid with wireless sensor networks (forming what is often
called the wireless sensor grid) is a goal that is getting considerable attention
from researchers and practitioners. Researchers at Harvard and other institu-
tions [3] are working on the development of a robust and scalable data collection
network called Hourglass; the goal of Hourglass is to integrate sensor data into

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 710–715, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Providing Service-Oriented Abstractions for the Wireless Sensor Grid 711

grid applications, using a publish-subscribe model for such purpose. Lim et al.
[4] identify the issues and challenges for the design of sensor grids, and pro-
pose an architecture called the scalable proxy-based architecture for sensor grids
(SPRING). Both Hourglass and SPRING are currently works in progress, as are
other efforts, and setting a standard by consensus within the community will
certainly require continued efforts.

From the many issues and challenges being addressed for integrating wireless
sensor networks and the grid, we consider an important one here: providing pro-
grammers with adequate abstractions and tools for developing applications that
can incorporate access to the resources provided by WSN. A notable example
of work in this direction is TAG [5] where the WSN is abstracted as a database
and data can be obtained by issuing SQL queries. The service-oriented approach
has been explored as an alternative [6], where an external entity is charged with
processing requests for services; however, in the cited paper no details are given
as to how components are conformed, how interactions are made, and what pro-
tocols are used. More recently [7, 8], a reflective service-oriented middleware has
been proposed, but it has not been tested with an actual WSN, as it is only
simulated with Java components.

We believe that the service-oriented approach provides adequate abstractions
for application developers, and that it is a good way to integrate the grid with
WSN. Currently, if an application programmer wants to develop a system for
monitoring certain phenomena using a WSN, she may need to learn a new lan-
guage (e.g., NesC), a new programming paradigm (e.g., component-based pro-
gramming), a new embedded operating system (e.g., TinyOS), and probably
even some details about the underlying hardware platform; this situation is of
course far from optimal, as an application programmer should only concentrate
on application-level issues and ideally use the programming languages and tools
that she is accustomed to. With this in mind we propose TinySOA, an architec-
ture based on the well-known service oriented paradigm.

In the next section we give details regarding the different elements of the
architecture, their roles and interactions; in Sect. 3 we present TinyVisor, a
system that implements the conceptual framework of TinySOA and that acts as
proof of concept for the development of applications with a real WSN. Then, in
Sect. 4 we give some concluding remarks and outline future work.

2 TinySOA: Service-Oriented Architecture for WSN

Providing better abstractions to application programmers has been a long-time
motivation in software engineering. Therefore, we have witnessed advances in
programming methodologies and paradigms ranging from sequential program-
ming, modular programming, object-oriented programming, component-based
programming, and more recently service-oriented programming. This recent ap-
proach arises in response to modern needs and complexities such as distributed
software, application integration, as well as heterogeneity in platforms, proto-
cols and devices, including Internet integration. Given its compliance to modern

712 E. Avilés-López and J.A. Garćıa-Maćıas

software development and the wide positive reception it has gained in academic
and industrial environments, we believe that a service-oriented architecture is
well suited for the integration of wireless sensor networks to the worldwide grid.

The architecture we propose, named TinySOA, can be well understood in
terms of an execution scenario, where all the operations take place in three
well-defined sections:

– Capture. The area where the WSN resides. Using the publish/subscribe
model the WSN communicates its sensor readings and also management in-
formation to “outside” entities via a gateway (typically a sink node), which
also can be used to pass requests to the network.

– Concentration. This area is where most of the processing takes place. All
sensor data, and any other type of information, received from the capture
area is compiled and classified for further use. Access to data and network
control is provided by a server enabled with web services.

– Application. Here can be found the monitoring, visualization, and other ap-
plications created using the services provided by the concentration area.

Two types of services, internal and external, are provided by the architec-
ture. This is achieved with the intervention of four components: node, gateway,
registry and server, as shown in Fig. 1 and described below.

Fig. 1. The main components of the TinySOA architecture

Providing Service-Oriented Abstractions for the Wireless Sensor Grid 713

– Node. This component encapsulates all the functionality of a sensing node,
and resides in all sensing nodes in the network. Nodes provide internal ser-
vices. They have several subcomponents for different purposes, such as ser-
vice discovery, reading sensors data, controlling actuators, and communicat-
ing data and requests via a gateway from and to the network. Also, the
embedded operating system is an important subcomponent that abstracts
low levels details such as communication with the hardware platform, topol-
ogy control, etc.

– Gateway. This component is typically located in a specialized node or in a
computer, and acts as a bridge between a WSN and the outside world (e.g.,
the grid). It is worth noting that there can be several WSNs, as long as
each one of them has their own gateway. Several subcomponents provide the
gateway functionality: a control subcomponent is in charge of initializing all
gateway activities, and also manages all other subcomponents; another one
deals with all the interaction with internal services provided by the nodes;
a message processor handles registration and sensor reading messages, but
also interacts with the registry component. There is also an optional commu-
nication subcomponent, whose purpose is to handle immediate requests that
need urgent attention without going through the task management registry
subcomponent first.

– Registry. All the information about the infrastructure is stored in this com-
ponent. Several subcomponents, in the form of registries, contain informa-
tion about currently available (or past) sensor networks, historical records
of sensor readings and control information, events indicated by the users of
external services, as well as task management scheduling information (e.g.,
changing the sensors sampling rate). All these subcomponents rely on a
database management subcomponent.

– Server. The main functionality here is to act as a provider of web services,
abstracting each available WSN as a separate web service. These provide an
interface to consult the services offered by the network, check the registry,
consult and register events and maintenance tasks. The control subcompo-
nent is in charge of initializing the server, and an optional communication
subcomponent allows to immediately send commands to the network, with-
out going through the task management registry (interacting with its anal-
ogous subcomponent in the gateway).

3 Implementation and Tests

One of the intended purposes of TinySOA is to be used as a basis for the con-
struction of middleware systems that provide appropriate abstractions for the
development of applications using WSN. Therefore, in order to test the feasibil-
ity of using TinySOA for such purposes, we implemented a middleware system
that integrates all the elements in the architecture. Also, we developed several
applications with varying complexity running on top of this middleware system;
this allowed us to verify the advantages in development time and ease of use
that programmers would find using our proposed architecture.

714 E. Avilés-López and J.A. Garćıa-Maćıas

The hardware platform for our prototype includes MicaZ motes with MTS-
310CA sensing boards, and MIB510 programming boards, all manufactured by
Crossbow Technology, Inc.1 This platform uses the TinyOS [9] embedded operat-
ing system. As implemented in our prototype, the Node component is located in
the MicaZ motes, and the Gateway, Registry and Server components are located
in a single computer (although they could be located in different computers or
specialized devices). If more than one WSN is connected to the system, each one
should be associated with a different instance of the Gateway component.

When a node starts working, it discovers what services it can offer (i.e., what
types of sensors it has) and then publishes them, so they can be available for other
entities to use them; of course, also the available sensor networks are registered.
This way, any program can just issue queries to the registry to find out what
networks are available, what services they offer, etc., through a simple service-
oriented that provides functions to obtain information about the network(s),
including network ID, name and description, as well as a listing of nodes, sensing
parameters, times, and actuators; there are also functions to manage events,
readings, and tasks.

Using the API, we constructed several applications that were later integrated
into a system called TinyVisor (we omit the figures showing the screen captures
for lack of space in this article). At startup, the URL of a server can be provided
and then an automatic discovery process locates the web services registry and
related repositories, but also all available WSNs. An interactive dialog shows the
information related to the discovered WSNs including the name, description, and
web service URL; from there it is possible to select the network that is going to
be used for monitoring and visualization. Once the network is selected, the infor-
mation regarding its nodes and the sensed data can be visualized either in data
mode graph mode, or topology mode. This implementation of TinyVisor was
developed using the Java programming language, but any other language could
have been used, provided that it has the capabilities for accessing web services;
in fact, we have developed several other simple applications using languages such
as PHP and C#, for proofs of concepts.

4 Conclusions

The conventional wired grid is continuously being extended to integrate more
and richer computing and data sources; wireless sensor networks play an impor-
tant role in this trend and some have suggested that they will constitute the
“eyes” and “ears” of the computational grid. However, the integration of wire-
less sensor networks and the grid is still largely work in progress; we consider
that an important part in this integration is allowing grid application develop-
ers to access the resources provided by sensor networks without having to delve
into low-level aspects of these networks, as it is currently required. With this in
mind, we propose TinySOA, a service-oriented architecture that allows program-
mers to access wireless sensor networks from their applications by using a simple
1 More information about this company and their products at http://www.xbow.com

http://www.xbow.com

Providing Service-Oriented Abstractions for the Wireless Sensor Grid 715

service-oriented API via the language of their choice. We show an implementa-
tion of TinySOA, called TinyVisor, to exemplify how easy grid applications can
integrate sensor networks.

We are currently designing an in-depth evaluation methodology to further
evaluate the degree to which TinySOA can help application developers; this
includes measuring the acceptance of the architecture, e.g., via the technology
acceptance model [10], and presenting a test population of programmers with
a development and integration problem and giving them the tools provided by
TinySOA to develop some applications with the language of their choice; this
could help elucidate and measure the benefits provided by TinySOA.

Acknowledgements

Financial support for this project was provided by the Mexican Council for
Science and Technology (CONACyT).

References

[1] Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn,
B., Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J., Reich, J.V.: The
open grid services architecture, version 1.5. Open Grid Forum. July 24, 2006

[2] Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on wireless
sensor networks. IEEE Communications Magazine 40(8) (2002) 102–114

[3] Gaynor, M., Welsh, M., Moulton, S., Rowan, A., LaCombe, E., Wynne, J.: Inte-
grating wireless sensor networks with the grid. IEEE Internet Computing (2004)

[4] Lim, H., Teo, Y., Mukherjee, P., Lam, V., Wong, W., See, S.: Sensor grid: Integra-
tion of wireless sensor networks and the grid. Proceedings IEEE Local Computer
Network (LCN) Conference. Sydney, Australia. November 2005

[5] Madden, S., Franklin, M., Hellerstein, J., Hong, W.: Tag: A tiny aggregation
service for ad-hoc sensor networks. Proc. ACM Symposium on Operating Systems
Design and Implementation (OSDI). Boston, MA, USA. December 2002

[6] Golatowski, F., Blumenthal, J., Handy, M., Haase, M.: Service-oriented software
architecture for sensor networks. Intl. Workshop on Mobile Computing (IMC
2003). Rockstock, Germany. June 2003 93–98

[7] Delicato, F., Pires, P., Pirmez, L., da Costa Carmo, L.: A flexible web service
based architecture for sensor networks. IEEE Workshop on Mobile and Wireless
Networks (MWN 2003). Rhode Island, NY, USA. May 2003

[8] Delicato, F., Pires, P., Rust, L., Pirmez, L., de Rezende, J.: Reflective middle-
ware for wireless sensor networks. 20th Annual ACM Symposium on Applied
Computing (ACM SAC’2005). Santa Fe, USA. March 2005 730–735

[9] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for networked sensors. 9th. International Conference on Architec-
tural Support for Programming Languages and Operating SYstems. Cambridge,
MA, USA. November 2000

[10] Venkatesh, V., Davis, F.: A model of the antecedents of perceived ease of use:
Development and test. Journal of Decision Sciences 27(3) (1996) 451–482

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 716 – 723, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Bio-inspired Grid Information
System with Epidemic Tuning

Agostino Forestiero, Carlo Mastroianni, Fausto Pupo, and Giandomenico Spezzano

Institute of High Performance Computing and Networking ICAR-CNR
Via P. Bucci 41C, 87036 Rende (CS), Italy

{forestiero, mastroianni, pupo, spezzano}@icar.cnr.it

Abstract. This paper proposes a bio-inspired approach for the construction of a
Grid information system in which metadata documents that describe Grid
resources are disseminated and logically reorganized on the Grid. A number of
ant-like agents travel the Grid through P2P interconnections and use probability
functions to replicate resource descriptors and collect those related to resources
with similar characteristics in nearby Grid hosts. Resource reorganization
results from the collective activity of a large number of agents, which perform
simple operations at the local level, but together engender an advanced form of
“swarm intelligence” at the global level. An adaptive tuning mechanism based
on the epidemic paradigm is used to regulate the dissemination of resources
according to users’ needs. Simulation analysis shows that the epidemic
mechanism can be used to balance the two main functionalities of the proposed
approach: entropy reduction and resource replication.

1 Introduction

To support the design and execution of complex applications, modern distributed
systems must provide enhanced services such as the retrieval and access to content,
the creation and management of content, and the placement of content at appropriate
locations. In a Grid, these services are offered by a pillar component of Grid
frameworks, the information system. This paper discusses a novel approach for the
construction of a Grid information system which allows for an efficient management
and discovery of resources. The approach, proposed in [5] in its basic version,
exploits the features of (i) epidemic mechanisms tailored to the dissemination of
information in distributed systems [6] and (ii) self organizing systems in which
“swarm intelligence” emerges from the behavior of a large number of agents which
interact with the environment [1, 3].

The proposed ARMAP protocol (Ant-based Replication and MApping Protocol)
disseminates Grid resource descriptors (i.e., metadata documents) in a controlled way,
by spatially sorting (or mapping) such descriptors according to their semantic
classification, so to achieve a logical reorganization of resources. For the sake of
simplicity, in the following an information document describing a Grid resource will
be simply referred to as a resource.

Each ARMAP agent travels the Grid through P2P interconnections among Grid
hosts, and uses simple probability functions to decide whether or not to pick resources
from or drop resources into the current Grid host. Resource reorganization results

 Bio-inspired Grid Information System with Epidemic Tuning 717

from pick and drop operations performed by a large number of agents, and is inspired
by the activity of some species of ants and termites that cluster and map items within
their environment [1]. A self-organization approach based on ants’ pheromone [7]
enables each agent to regulate its activity, i.e. its operation mode, only on the basis of
local information. Indeed, each agent initially works in the copy mode: it can generate
new resource replicas and disseminate them on the Grid. However, when it realizes
from its own past activity that a sufficient number of replicas have been generated, it
switches to the move mode: it only moves resources from one host to another without
generating new replicas. This switch is performed when the level of a pheromone
variable, which depends on agent’s activity, exceeds a given threshold.

The ARMAP protocol can effectively be used to build a Grid information system
in which (i) resources are properly replicated and (ii) the overall entropy is reduced. A
balance between these two features can be achieved by regulating the pheromone
threshold, i.e. by shortening or extending the time interval in which agents operate
under the copy mode. Tuning of the pheromone mechanism can be static or adaptive.
In the first case, the threshold is set before ARMAP protocol is started, whereas, in
the case of adaptive tuning, the threshold can be tuned by a supervisor agent while
ARMAP is running, depending on users’ needs. This introduces a twofold control
mechanism: each agent uses local information to self-regulate its activity, whereas a
supervisor agent dynamically sets a global system parameter, i.e., the pheromone
threshold, and propagates the value of this parameter via an epidemic mechanism.

The remainder of the paper is organized as follows. Section 2 describes the
ARMAP protocol. Section 3 analyzes the performance of the ARMAP protocol, both
with static tuning and adaptive tuning and Section 4 concludes the paper.

2 Ant-Inspired Reorganization of Grid Resources

The aim of the ARMAP protocol [5] is to achieve a logical organization of Grid
resources by spatially sorting them on the Grid according to their semantic
classification. It is assumed that the resources have been previously classified into a
number of classes Nc, according to their semantics and functionalities (see [2]).

The ARMAP protocol has been analyzed in a P2P Grid in which hosts are arranged
in a 2-dimension toroidal space, and each host is connected to at most 8 neighbor
peers. The Grid has a dynamic nature, and hosts can disconnect and rejoin the
network. When connecting to the Grid, a host generates a number of agents given by a
discrete Gamma stochastic function, with average Ngen, and sets the life time of these
agents to PlifeTime, which is the average connection time of the host, calculated on
the basis of the host’s past activity. This mechanism allows for controlling the number
of agents that operate on the Grid: indeed, the number of agents is maintained to a
value which is about Ngen times the number of hosts.

Periodically each ARMAP agent sets off from the current host and performs a
number of hops through the P2P links that interconnect the Grid hosts. Then the agent
uses appropriate pick and drop functions in order to replicate and move resources
from one peer to another. More specifically, at each host an agent must decide
whether or not to pick the resources of a given class, and then carry them in its
successive movements, or to drop resources that it has previously picked from another
host. Pick and drop probability functions are discussed in the following.

718 A. Forestiero et al.

Pick operation. Whenever an ARMAP agent hops to a Grid host, it must decide, for
each resource class, whether or not to pick the resources of that class which are
managed by the current host. In order to achieve replication and mapping
functionalities, a pick random function is defined with the intention that the
probability of picking the resources of a given class decreases as the local region of
the Grid accumulates such resources and vice versa. This assures that as soon as the
equilibrium condition is broken (i.e., resources of different classes are accumulated in
different regions), the reorganization of resources is more and more pushed.

The Ppick random function, defined in formula (1), is the product of two factors,
which take into account, respectively, the relative accumulation of resources of a
given class (with respect to other classes), and their absolute accumulation (with
respect to the initial number of resources of that class). In particular, the fr fraction is
computed as the number of resources of the class of interest, accumulated within the
visibility region, divided by the overall number of resources that are accumulated in
the same region. The visibility region includes the peers that are reachable from the
current peer with a given number of hops, i.e. within the visibility radius. The
visibility radius is set to 1, so that the visibility region is composed of at most 9 hosts
(if all the neighbor peers are active), the current one included. The fa fraction is
computed as the number of resources owned by the hosts located in the visibility
region out of the overall number of resources that are maintained by such hosts,
including the resources deposited by agents. The inverse of fa gives an estimation of
the extent to which such hosts have accumulated resources of the class of interest. k1
and k2 are non-negative constants which are both set to 0.1 [1].

()
()

2

2
a2

2
a

2

r1

1
pick

fk

f

fk

k
P ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
⋅⎟

⎠
⎞

⎜
⎝
⎛

+
= (1)

The pick operation can be performed with two different modes. If the copy mode is
used, the agent, when executing a pick operation, leaves the resources on the current
host, generates a replica of each of them, and carries such replicas until it will drop
them in another host. Conversely, with the move mode, as an agent picks the
resources, it removes them from the current host (except those owned by this host),
thus preventing an excessive proliferation of replicas.

Drop operation. As well as the pick function, the drop function is first used to break
the initial equilibrium and then to strengthen the mapping of resources of different
classes in different Grid regions. Whenever an agent gets to a new Grid host, it must
decide, if it is carrying some resources of a given class, whether or not to drop such
resources in the current host. As opposed to the pick operation, the drop probability
function Pdrop, shown in formula (2), is proportional to the relative accumulation of
resources of the class of interest in the visibility region. In (2) the threshold constant
k3 is set to 0.3 [1].

2

r3

r
drop

fk

f
P ⎟

⎠
⎞

⎜
⎝
⎛

+
= (2)

 Bio-inspired Grid Information System with Epidemic Tuning 719

2.1 System Entropy and Pheromone Mechanism

A spatial entropy function, based on the well known Shannon's formula for the
calculation of information content, is defined to evaluate the effectiveness of the
ARMAP protocol. For each peer p, the local entropy Ep gives an estimation of the
extent to which the resources have already been mapped within the visibility region
centered in p. Ep has been normalized, so that its value is comprised between 0 and 1.
As shown in formula (3), the overall entropy E is defined as the average of the
entropy values Ep computed at all the Grid hosts. In (3), fr(i) is the fraction of
resources of class Ci that are located in the visibility region with respect to the overall
number of resources located in the same region.

Np

pE

E ,
Nclog

)i(fr

1
log)i(fr

E Gridp

2

Nc..1i
2

p

∑∑
=

⋅

= = ε
(3)

In [5] it was shown that the overall spatial entropy can be minimized if each agent
exploits both the ARMAP modes, i.e. copy and move. In the first phase, the agent
copies the resources that it picks from a Grid host, but when it realizes from its own
activeness that the mapping process is at an advanced stage, it begins simply to move
resources from one host to another, without creating new replicas.

In fact, the copy mode cannot be maintained for a long time, since eventually every
host would have a very large number of resources of all classes, thus weakening the
efficacy of resource mapping. The protocol is effective only if agents, after replicating
a number of resources, switch from copy to move. A self-organization approach based
on ants’ pheromone mechanism enables each agent to perform this mode switch only
on the basis of local information. This approach is inspired by the observation that
agents perform more operations when the system entropy is high, but operation
frequency gradually decreases as resources are properly reorganized. In particular, at
given time intervals, i.e. every 2,000 seconds, each agent counts up the number of
times that it has evaluated the pick and drop probability functions, and the number of
times that it has actually performed pick and drop operations. At the end of each time
interval, the agent makes a deposit into its pheromone base, by adding a pheromone
amount equal to the ratio between the number of “unsuccessful” operations and the
total number of operation attempts. An evaporation mechanism is used to give a
higher weigh to recent behavior of the agent. Specifically, at the end of the i-th time
interval, the pheromone level Фi is computed with formula (4).

 E i1ivi ϕ+Φ⋅=Φ − (4)

The evaporation rate Ev is set to 0.9, and ϕi is the fraction of unsuccessful
operations performed in the last time interval. With such settings, the value of Фi is
always comprised between 0 and 10. As soon as the pheromone level exceeds Tf, the
agent realizes that the frequency of pick and drop operations has remarkably reduced,
so it switches its protocol mode from copy to move. The value of Tf can be used to
tune the number of agents that work in copy mode and are therefore able to create
new resource replicas, as discussed in the next section.

720 A. Forestiero et al.

3 Adaptive Tuning and Epidemic Control

The performance of the ARMAP protocol has been evaluated with an event-based
simulator written in Java. Simulation runs have been performed with the following
setting of network and protocol parameters The number of peers Np, or Grid size, is
set to 2500, corresponding to a 50x50 toroidal grid of peers. The average connection
time of a specific peer, Plifetime, is generated according to a Gamma distribution
function, with an average value set to 100,000 seconds. The use of the Gamma
function assures that the Grid contains very dynamic hosts, that frequently disconnect
and rejoin the network, as well as much more stable hosts. Every time a peer
disconnects from the Grid, it loses all the resource descriptors previously deposited by
agents, thus contributing to the removal of obsolete information. The average number
of Grid resources owned and published by a single peer is set to 15. Grid resources
are classified in a number of classes Nc, which is set to 5. The mean number of agents
that travel the Grid is set to Np/2: this is accomplished, as explained in Section 2, by
setting the mean number of agents generated by a peer, Ngen, to 0.5. The average
time Tmov between two successive agent movements (i.e. between two successive
evaluations of pick and drop functions) is set to 60 s. The maximum number of P2P
hops that are performed within a single agent movement, Hmax, is set to 3. The
visibility radius Rv, defined in Section 2 and used for the evaluation of pick and drop
functions, is set to 1. Finally, the pheromone threshold Tf, defined in Section 2.1,
ranges from 3 to 10.

The following performance indices are used. The overall entropy E, defined in
Section 2.1, is used to estimate the effectiveness of the ARMAP protocol in the
reorganization of resources. The Nrpr index is defined as the mean number of replicas
that are generated for each resource. Since new replicas are only generated by
ARMAP agents that work in the copy mode, the number of such agents, Ncopy, is
another interesting performance index.

A first set of simulation runs have been performed to evaluate the performance of
the ARMAP protocol and investigate the effect of static tuning. Static tuning is
obtained by setting the pheromone threshold Tf before the ARMAP protocol is set off,
but it does not allow to change the threshold value dynamically. Figure 1 reports the
number of agents that work in copy mode (also called copy agents in the following)
versus time, for different values of the pheromone threshold Tf. When ARMAP is
initiated, all the agents (about 1250, half the number of peers) are generated in the
copy mode, but subsequently several agents switch to move, as soon as their
pheromone value exceeds the threshold Tf. This corresponds to the sudden drop of
curves that can be observed in Figure 1. This drop does not occur if Tf is equal to 10
because this value can never be reached by the pheromone (see formula (4)); hence
with Tf=10 all agents remain in copy along all their lives. After the first phase of the
ARMAP process, an equilibrium is reached because the number of new agents which
are generated by hosts (such agents always set off in copy mode) and the number of
agents that switch from copy to move get balanced. Moreover, if the pheromone
threshold Tf is increased, the average interval of time in which an agent works in copy
becomes longer, and therefore the average number of copy agents, after the transition
phase, becomes larger.

 Bio-inspired Grid Information System with Epidemic Tuning 721

A proper tuning of the pheromone threshold is a very efficient method to enforce
or reduce the generation of new replicas and the intensity of resource dissemination.
However, a more intense dissemination is not always associated to a better resource
reorganization, i.e. to a more effective spatial separation of resources belonging to
different classes. Figure 2(a) shows that lower values of the overall entropy are
achieved with lower values of the pheromone threshold. Notice that virtually no
entropy decrease is observed if all the agents operate in copy (Tf=10), which confirms
that the mode switch is strictly necessary to perform an effective resource
reorganization. Figure 2(b) shows the mean number of replicas generated per resource
and confirms that resource dissemination is more intense if the pheromone threshold
is increased, because a larger number of copy agents operate on the network. It can be
concluded that copy agents are useful to replicate and disseminate resources but it is
the move agents that perform the resource reorganization and are able to reduce the
overall entropy by creating Grid regions specialized in specific classes of resources.

A balance between the two main functionalities of ARMAP (resource replication
and spatial reorganization) can be performed by adaptively tuning the pheromone
threshold. The value of Tf should be increased if more replicas are needed, while it
should be reduced if a better spatial mapping of resources must be obtained. Adaptive
tuning can be achieved by a few supervisor agents that, according to the needs and
the level of satisfaction of users, communicate to ARMAP agents a new value of the
pheromone threshold, and so enforce or reduce the activity of agents. Information is
transmitted to agents through an epidemic mechanism, which mimics [4] the spread of
a contagious disease in which infected entities contaminate other “healthy” entities.

ARMAP adaptive tuning works as follows. When a supervisor agent decides to
change the pheromone threshold, it initially communicates the new threshold value to
the peer in which such agent resides: infection will then spread from this peer. Each
agent which visits this infected peer will be contaminated and its own pheromone
threshold will be changed. In turn, whenever an infected agent visits a non-infected
peer, the latter will be contaminated and will subsequently infect other agents. So, in a
short time, most agents will be “infected” with the new threshold value.

Figure 3 shows the trend of E and Nrpr in the case of adaptive tuning. In this
figure, dotted curves depict the values obtained, under static tuning, with Tf=5, Tf=7
and Tf=9. Continuous curves report the performances achieved with a threshold
initially set to 7 and then switched by a supervisor peer first to 9 (at time=200,000 s)
and then to 5 (at time=500,000 s). The continuous lines labeled with circles
correspond to an ideal scenario in which a global control mechanism immediately
communicates the new pheromone threshold to all agents. On the other hand, the
continuous lines labeled with stars are achieved by exploiting the above described
epidemic mechanism, which is initiated by the mentioned supervisor agent. It can be
noticed that with both mechanisms, after a threshold change, the trends of E and Nrpr
undergo a transition phase, and then converge to the curves obtained with static
tuning, so confirming the effectiveness and consistency of adaptive tuning. Before
converging, however, the Nrpr curves related to adaptive tuning show an overshoot
(more noticeable in the upward switch than in the downward one), which is a
distinguishing feature of the step response of a second order system. We are currently
investigating the rational of this macroscopic behavior and how it is generated by
microscopic operations.

722 A. Forestiero et al.

Fig. 1. Static tuning. Mean number of agents in copy mode, for different values of the
pheromone threshold Tf

(a)

(b)

Fig. 2. Static tuning. Overall system entropy E (a) and mean number of replicas per resource
Nrpr (b), for different values of the pheromone threshold Tf

(a)

(b)

Fig. 3. Adaptive tuning. Overall system entropy E (a) and mean number of replicas Nrpr (b),
when the pheromone threshold Tf is changed from 7 to 9 (after 200,000 s) and then to 5 (after
500,000 s). Comparison between global (ideal) and epidemic control is shown.

 Bio-inspired Grid Information System with Epidemic Tuning 723

The transition phases experienced with the epidemic control are slightly slower
than those measured with the global control due to the time necessary to propagate the
infection to a significant number of agents. However, the additional delay experienced
when exploiting the epidemic mechanism is definitely tolerable, especially in the
downward switch. Overall, the epidemic mechanism is efficient and requires no extra
message load, since information is carried at no cost by ARMAP agents which travel
the Grid. Conversely, the global control would require an onerous and well
synchronized mechanism to quickly pass information to all agents.

4 Conclusions

This paper proposes an approach for the construction of a Grid information system
which manages and reorganizes Grid resources according to their characteristics. The
ant-inspired ARMAP protocol is executed by a number of ant-like agents that travel
the Grid through P2P interconnections among hosts. Agents disseminate metadata
documents on the Grid, and aggregate information related to similar resources in
neighbor Grid nodes, so contributing to decrease the overall system entropy. Resource
replication and reorganization can be tuned by appropriately setting a pheromone
threshold in order to foster or reduce the activeness of ARMAP agents. This paper
introduces an epidemic mechanism to achieve adaptive tuning, i.e., to progressively
inform agents about any change in the pheromone threshold. Simulation results show
that the ARMAP protocol is able to achieve the mentioned objectives, and is inherently
scalable, as agents’ operations are driven by self-organization and fully decentralized
mechanisms, and no information is required about the global state of the system.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems, Oxford University Press, Santa Fe Institute Studies in the Sciences of Complexity
(1999)

2. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: 22 nd
International Conference on Distributed Computing Systems ICDCS'02, Vienna, Austria
(2002), 23-33

3. Dasgupta, P.: Intelligent Agent Enabled P2P Search Using Ant Algorithms, Proceedings of
the 8th International Conference on Artificial Intelligence, Las Vegas, NV, (2004), 751-757.

4. Eugster, P., Guerraoui, R., Kermarres, A.M., Massoulieacute, L.: Epidemic Information
Dissemination in Distributed System, Computer, IEEE Computer Society, vol. 37, No. 5
(2004), 60-67

5. Forestiero, A., Mastroianni, C., Spezzano, G.: A Multi Agent Approach for the
Construction of a Peer-to-Peer Information System in Grids, Proc. of the 2005 International
Conference on Self-Organization and Adaptation of Multi-agent and Grid Systems SOAS,
Glasgow, Scotland (2005)

6. Petersen, K., Spreitzer, M., Terry, D., Theimer, M., Demers, A.: Flexible Update
Propagation for Weakly Consistent Replication, Proc. of the 16th Symposium on Operating
System Principles, ACM (1997), 288-301

7. Van Dyke Parunak, H., Brueckner, S. A., Matthews, R., Sauter, J.: Pheromone Learning for
Self-Organizing Agents, IEEE Transactions on Systems, Man, and Cybernetics, Part A:
Systems and Humans, vol. 35, no. 3 (2005)

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 724 – 729, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Credibility Assignment in Knowledge Grid
Environment

Saeed Parsa and Fereshteh-Azadi Parand

Faculty of computer engineering,
Iran University of Science and Technology, Narmak, Tehran, Iran

{parsa, parand}@iust.ac.ir

Abstract. Credibility of knowledge grid members who act as a cooperative
decision making community, affects the degree of accuracy of the decisions
made. Apparently, decisions made by a decision maker should be affected by
the degree of the decision maker’s credibility. The problem is how to estimate
decision makers’ credibility within a knowledge grid environment, specially,
those environments in which the number of decision makers is altered
dynamically. In this article, a new approach to estimate the credibility of
decision makers based upon the opinion of the other members of decision
makers’ community within a dynamic knowledge grid environment is proposed.

1 Introduction

Knowledge grid is an intelligent interconnection environment, built on top of
computational grid, to facilitate creation of virtual organizations.

Fusion of information is of basic concern in all kinds of knowledge-based systems
such as decision-making. A major consideration in information fusion is the inclusion
of source credibility information in the fusion process [12].

In this paper, a new approach to estimate the credibility of decision makers in
knowledge grid environment is proposed. Apparently, the credibility of each decision
maker affects the impact of its decision on the consensus decision.

Source credibility is a user generated or sanctioned knowledge base [12].
According to Foster [6], openness, flexibility, and dynamics are major attributes of
grid environments. Therefore, in a grid environment addition and removal of decision
makers should be performed dynamically. In addition, the openness property of the
grid environment should be considered. Since in an open environment there is no
general perspective of decision makers and knowledge resources, the sanction
determination of source credibility is not possible.

Assessment of source credibility could be performed either objectively or
subjectively [8]. In [17], a fuzzy collaborative assessment approach combining the objective
and subjective assessment strategies is suggested. All criteria used for website and knowledge
organization assessment are considered as objective strategies. Subjective assessment
strategies assess the quality of knowledge service through the cooperation between
experts and agents. The overall subjective assesment for a criterion is calculated as a
weighted average of acceptable assesments made by the individual experts. However,
no method is suggested to estimate the weight, assigned to each decision-maker
assesment, reflecting the reliability of the decision-maker (expert, agent).

 Credibility Assignment in Knowledge Grid Environment 725

Since there are few objective criteria for the assessment of decision makers,
applicable in all decision-making problems, it is more suitable and feasible to apply
subjective criteria for assessment of decision-makers. Another problem concerning
knowledge grid environments is the need for transitive property of credibility such
that if ‘A’ is known as a credible decision maker verifying the answer set of another
decision maker, ‘B’, then ‘B’ will be considered as a credible decision maker. In the
other words, propagation of credibility confirmation is a desired property. In order to
determine the source credibility, many approaches such as probability theory [11],
Bayesian theory [2, 3] and possibility theory [5, 7] can be used. Considering the
nature of vagueness in knowledge grid environments, mainly caused by the lack of
knowledge, not randomized functionality of the system, the use of possibility theory
for modeling of these systems seems to be more appropriate than probability theory.

Based upon the above considerations, in Section 2.1 a new user generated approach
for propagation and determination of source credibility is proposed. In this approach,
applying fuzzy markov chain, source credibility is determined subjectively and
changes gradually. The proposed approach has some advantages such as compatibility
with reality, extendibility, and robustness in comparison with the methods which are
based upon the probability theory.

Nomencluture

iDM Decision maker ith

NDP Decision Problem Nth

DM Decision makers set

 kD Decision kth

iAssCrePoss Credibility possibility distribution which is assigned by

 the ith decision-maker to the decision makers community
)(mij subjectcrePoss Credibility possibility which is assigned by the ith

 decision maker to jth decision maker for subject m

)(Ni DPR Fuzzy response of ith decision-maker for DPN

)(
)(kDPR

D
Ni

μ Membership degree of decision k to the decision set

 which is generated by ith decision maker for decision
 problem Nth, DPN.

)),(),((kNjkNi DDPRDDPRSim ∧ Similarity between membership degree of Dk to the

 decision set of ith and jth
 decision makers for DPN

AssCreM Assigned Credibility Matrix

icrePoss Aggregate value of credibility possibility which is

 assigned to the ith decision maker by decision makers-
 community.

2 Credibility Assignment to Decision Makers

Knowledge grid is an infrastructure that enables collaborative decision-making
Decision makers may have different degrees of credibility. In this section, a new
approach to determine the value of the decision maker’s credibility based upon the
other decision makers’ opinion is proposed.

726 S. Parsa and F.-A. Parand

2.1 Formal Definition

Suppose there is a group of N decision makers in knowledge grid environment,
indexed by the set DM = {DM1, DM2, DM,. . ,DMN}. Each of these decision makers
collects information from its accessible knowledge resources and has special
capability of decision-making. With considering its knowledge about the other
decision makers, each of these decision makers such as DMi defines an assigned
credibility possibility distribution for each subject.

iAsscrePoss =∪ ijcrePoss (1)

where ijcrePoss is the degree of credibility possibility, assigned by the ith decision

maker to the jth one and

DMDMcrePosscrePosscrePoss iinii ∈∀≤≤ 1....0 21 ∪∪∪ (2)

The degree of credibility possibility of the jth decision-maker from the point of

view of the ith decision-maker, t
ijcrePoss , for any subject when a new query is

received could be calculated as follows

)3())()((

))),(),,((

)(),(()()
1

mNNiNjK

KNjKNi

m
t
iim

t
ijm

t
ij

SubjectDPDPRDPRD

DDPRDDPRsim

SubjectcrePossSubjectcrePossfSubjectcrePoss

∈∩∈

∧

= −

 (3)

From the above relation it can be deduced that the crePoss value assigned to a
decision maker changes gradually as the knowledge of the others about the decision
maker increases.

The ijcrePoss values for each subject are kept in a matrix called the assigned

credibility possibility matrix, AssCreM, as shown in Figure 1.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

)()(

)(...)()(

)(...)()(

1

22221

1211

mNNmN

mNmm

miNmm

SubjectcrePossSubjectcrePoss

SubjectcrePossSubjectcrePossSubjectcrePoss

SubjectcrePossSubjectcrePossSubjectcrePoss

Fig. 1. Assigned credibility possibility matrix, AssCreM

After the matrix AssCreM is built, each decision maker opinion, crePosij is
influenced by the opinions of the other decision maker N times, where N is the
number of decision makers. Credibility assignment to each decision maker can be
defined with a fuzzy relation implemented as a max-min composition. At each stage,

 Credibility Assignment in Knowledge Grid Environment 727

n+1, the max-min composition influences the opinion of each decision maker,
1+n

ijcrePoss , by the others’ opinions as follows:

{ } (,,...,1max 11
ijij

n
kjik

n
ij crePosscrePossNkcrePosscrePosscrePoss ==∧=+ (4)

 Our goal is to gain a possibility distribution for the credibility of the decision
makers, using a distributed model. In our distributed model, the credibility of
decision maker DMi, icrePoss , is a function of NkcrePosski ,..,1= , the credibility

assigned by DMk to DMi , considering kcrePoss , the credibility of the decision

maker DMk :

NkcrePosscrePossFcrePoss k
N

kii ..1),,(== (5)

In the above relation F indicates the max-min function. To apply the max-min

function, a set of equations , crePossoAssCreMcrePoss N= , is obtained where, the

vector crePoss = NcrePosscrePosscrePoss ,....,, 21 indicates the credibility possibility

distribution for the decision makers community; o is the max-min operator and
AssCreM is a matrix whose components are the degree of credibility of each

decision maker from the point of view of the other decision makers.

Theorem 1: If the decision maker DMi, increases crePossik, then from the point of
view of DMi the DMk’s determination capability in determining the credibility of the
other decision makers will not be reduced.

Proof: Let the credibility value of the kth decision maker from the point of view of the
ith decision maker, ikcrePoss , changes from α to β such that αβ . In this case,

t
kj

t
kj crePosscrePoss ∧≤∧ βα , where j represents any decision maker in the grid

environment. As a result t
kjik crePosscrePoss ∧ will not decrease and the possibility

that t
kjcrePoss∧β be the maximum value of { }t

pjip crePosscrePoss ∧ NP ,....,1= will

increase. Since t
kjcrePoss indicates the credibility degree of DMj in judgment of DMk

at the time t, the role of DMk in determination of the credibility of DMj will not
decrease.

Theorem 2: If crePossAssCreMocrePoss = then crePossAssCreMocrePoss N =

[1].
Considering theorem 2, to work out the value of the credibility vector, crePoss ,

instead of using the relation, crePossAssCreMocrePoss N = , the relation

crePossAssCreMocrePoss = can be used to obtain a distribution, crePoss . Such a

distribution is called stationary distribution.

Example 1: Suppose there are three decision makers DM= {DM1, DM2, DM3}, a max
function, f, and a min function, g. It is desirable to calculate the credibility possibility

728 S. Parsa and F.-A. Parand

of the second decision maker such that the condition of the function F, defined above
in relation (5), is satisfied.

Using theorem 2 and equation 5, the possibility measure of the second decision
maker’s credibility computes as follows:

)),(),,(),,((3232221212 crePosscrePossgcrePosscrePossgcrePosscrePossgfcrePoss =

Where 1crePoss , 2crePoss and 3crePoss represent the aggregate credibility of the

first, second and third decision makers, respectively and 12crePoss , 22crePoss ,

32crePoss is the assigned credibility to the second decision maker by the first, second

and third decision makers respectively .

2.2 Solution of the Equation Set

In order to solve the equation set crePossAssCreMocrePoss = , the fuzzy markov

chain model [11] is used. Since AssCreM is a fuzzy transitive matrix, crePoss
should be an eigen fuzzy set. Also, since crePoss is a possibility distribution, it is
appropriate to obtain the greatest eigen fuzzy set satisfying the equation
set crePossAssCreMocrePoss = .

3 Comparison

In this section, three known criteria for the evaluation of credibility assignment
systems are applied to compare our proposed approach with a typical approach which
is based upon probability concepts.

1. Ease of extendibility: The total value of credibility probability value assigned to
individual decision makers should be one whereas credibility possibility values
assigned to decision makers are independent. Therefore, it is more difficult to
alter the number of decision makers in a probabilistic based environment.

2. Robustness: Within a probabilistic environment, a small change in weights
assigned to decision makers causes a high variation in final credibility values

aassigned to decision makers. Suppose ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

εε
εε

ε
1

1
)(crePoss for

)10(≺ε≤ . If 0=ε then ⎥
⎦

⎤
⎢
⎣

⎡
=Δ

∞→

∗

10

01
)()(oCrePossLimocrePoss t

t
 but if ε is

small but greater than zero then

)(
5/05/0

5/05/0
)(lim)(ocrePosscrePossocrePoss t

t

∗

∞→

∗ ⇒⎥
⎦

⎤
⎢
⎣

⎡
=Δ ε if o→ε .

However, applying a possibility approach a small variation in the assigned
credibilies causes a minor variation in the final credibility values.

 Credibility Assignment in Knowledge Grid Environment 729

{ } { }
{ } { }

)(
1

1

)1(,max,max

,max),1(max
)()()(2

ε
εε

εε
εεεε

εεεε
εεε

crePoss

ocrePosscrePosscrePoss

=⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

⎥
⎦

⎤
⎢
⎣

⎡
−

−
==

)(
10

01

1

1
)(ocrePosscrPoss ∗∗ =⎥

⎦

⎤
⎢
⎣

⎡
→⎥

⎦

⎤
⎢
⎣

⎡
−

−
=∈

εε
εε

3. The order of stationary distribution calculation algorithm in both probabilistic
and possibilistic approaches are n2. Nevertheless, in probabilistic approach, the
operators applied to compute stationary distributions are plus and multiplication
while, in possibilistic approaches fuzzy ‘or’ and ‘and’ operators are applied.
Therefore, calculations in possibilistic appraches are faster and cheaper
compared with probabilistic approache.

4 Conclusion

In knowledge grid environment there is no centralized credibility determination agent
so each decision maker’s credibility can be estimated by collecting the others opinion.
In this paper, it is suggested to measure the opinions by a possibility value rather than
the probability of the credibility when the number of decision makers is variant. In
addition, it is proved that the possibility of credibility can tolerate uncertainty more
than the probability.

References

[1] K.E. Avrachenkov, E. Sanchez, Fuzzy Markov Chains and Decision-Making, Fuzzy
Optimization and decision-making, 1(2) (2002) 143-159.

[2] R.K. Chauhan, Bayesian analysis of reliability and hazard rate function of a mixture
model. Microelectronics Reliability. 37 (6) (1997) 935-941.

[3] H. Chung, Fuzzy reliability estimation using Bayesian approach Computers& Industrial
Engineering. 46 (2004) 467-493.

[4] F. Delmotte, P. Borne,: Modeling of reliability with possibility theory. IEEE -
Transactions on Systems, Man, and Cybernetics. Part A 28 (1) (1998) 78-88.

[5] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: enabling scalable virtual
organizations,Intl. J. Supercomputer Appl. 15 (3) (2001) 6-13.

[6] P. Guo, H. Tanaka, M. Inuiguchi, Self-organizing fuzzy aggregation models to rank the
objects with multiple attributes. IEEE Transactions on Systems, Man, and Cybernetics,
Part A 30 (5) (2000) 573-580.

[7] L. Pipino, Y.W. Lee, R. Y. Wang, Data quality assessment. ACM Communication.
45(4)(2002) 211-218.

[8] A.G. Vassakis, Safety assessment, reliability, and the probability-operation diagram :
IEEE Transactions on Reliability, 45 (1) (1996) 90-94

[9] R. Yager, A framework for multi-source data fusion. Inf. Sci. 163(1-3) (2004) 175-200
[10] H. Zhuge, H.Liu, A fuzzy collaborative assessment approach for Knowledge Grid. Future

Generation Comp. Syst. 20 (1) (2004) 101-111.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 730 – 737, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Image Streaming and Recognition for Vehicle Location
Tracking Using Mobile Devices

Jin-Suk Kang1, Taikyeong T. Jeong2, Sang Hyun Oh3, and Mee Young Sung1

1 Dept. of Computer Science and Engneering, University of Incheon,
177 Dohwa-dong, Nam-gu, Incheon, 402-749, Korea
{jskang01, mysung}@incheon.ac.kr

2 Dept. Of Communications Eng, Myongji University,
San 38-2 Namdong, Chuin-ku, Yoingin City, Kyonggi-do, 449-728, Korea

ttjeong@mju.ac.kr
3 Dept. Of Computer Science Engineering, Yonsei University,

134 Sinchon-Dong, Seodaemun-Gu, Seoul 120-749, Korea
osh@database.yonsei.ac.kr

Abstract. The image of a license plate is scanned by the camera attached to a
mobile PDA device and the numbers on the plate are detected by the image
processing parts in the proposed Mobile system. Then the numbers and the
location of a mobile PDA device are encoded and transmitted along with the
location information to a remote server through a wireless communication
network. Finally, the server decodes the transmitted data as a text format and
transmits it to the destination user. Consequently, this paper contributes a case
study on the embedded system for designing of intelligent interface between a
moving vehicle and a mobile PDA device, using a spatial relative distance
scheme. The experimental results show that detection and tracking of a location
of moving vehicle can be conducted efficiently with a mobile PDA device in
real-time through wireless communication system and Internet.

Keywords: Image recognition, Mobile device, Vehicle Tracking.

1 Introduction

The progress of computer science and information technology, including the Internet,
has rapidly accelerated the spread of the personal computer, and some mobile devices
such as handheld PCs (HPCs), PDA’s (Personal Digital Assistants) have become
widespread aspect of a continuous growth of the Internet Technology business [1].
This allows people to use various services without limits of time and space. Machines
like mobile phones and PDAs with electronic control systems work by using small-
sized OS (Windows CE, Embedded Linux, pSOS, etc) in ROM, not like a hard disc of
normal PC, RAM, etc. are called embedded systems [1, 2].

In this paper, we demonstrate the system for automatically detecting vehicle
registration numbers through a device with a digital camera and PDA in an embedded
system. First, the system retrieves an area of vehicle registration numbers, detects
letters and numbers on the vehicle license plate, and sends it in text format. This is a
break from the subjective method of detecting registration numbers after watching
vehicles, and lends objectivity to detection of vehicle registration numbers through an

Image Streaming and Recognition for Vehicle Location Tracking Using Mobile Devices 731

image processing algorithm [3]. By processing with digitized images of vehicle
registration numbers which it is sometime different to discern with the naked eye, it
detects a vehicle registration number accurately. This can be applied to various areas
such as prevention of car robberies, security, and in pursuing location because through
this, it is possible to refer to information of vehicles and chase locations [4, 5,6].

2 System Platform and Spatial Relative Distance

2.1 Spatial Relative Distance

To provide PDA's movement and locations, an operating server with a location code
DB which includes the corresponding location codes to each destinations should be
equipped. This server provides terminal clients with vehicle's number related to
destination and location code produced from a location code DB through on/off-line.
The terminal client transmits the location code referred to the destination including
the location code, the destination information and the required contents to an
operating server [9]. In addition, global positioning system (GPS) technology is a
method of finding out a location by receiving a broadcasted GPS signal from a
satellite moving around the Earth. This is used most often to find out general
locations. The method of measuring the user's location in real time is to receive the
error revised value from various base stations. The information on clock and the orbit
of satellite from satellite provide the information on location.[8] Then, correlative
distance is calculated after the revised error is calculated. After performing Kalman
filtering, the information is provided through the process of measuring the user's
location (See Figure 1.) [3].

Fig. 1. Base Station Area Location

In Figure 2, the operation server holds member DB, location code DB and
geographical positioning DB. All save related information. Here, the location code
DB related to the destination is saved. The location code data is organized through a
combination of codes set by the service provider, such as information on the longitude
and latitude of destination and number requested by user, etc. In geographical

732 J.-S. Kang et al.

positioning DB, various geographical information and location data in relations to the
destination are saved. If required, location code DB and geographical positioning DB
are not separated, but can be used as in a single combination DB [9, 10].

For the real-time user location measuring method, values with correction for error
are received from multiple base stations. Then, clock and satellite orbit information
etc. are received from an information satellite. Afterwards, the revised errors are
calculated and the correlated distance is estimated. As the next step, Kalman filtering
is carried out and user location is measured to provide information [6, 11, 12].

Fig. 2. A Block Diagram of Location Database Structure

2.2 Minimization of Spatial for Information on Location

Figure 3 shows a method to calculate a real time spatial relative distance using a data
window, and to position a user of a multi-reference station position information
system. When there are three base stations by j, a satellite which provides the
information of location, it is necessary to add value through the processes which all
the satellites provide, then to divide by the number of satellites, and to perform
dispersed processes in a range of time [8].

Fig. 3. Spatial for Information on Location Relative Distance

Figure 4 shows modeling of the Kalman filter. The Kalman filter receives error
compensating values,

1X ,
2X and

3X , from the reference station, and then calculates

the error compensating value Vector X [
321 ,, XXX] presumed with Raw Data

Control
Module

Holds member
Module

Location Code
Grammar Module

Location Code
Management Module

Search Module

Location
information

Contents Module

Holds
member

Location
Code DB

Geographical
Positioning DB

∑

∑

=

==
t

i

t

i

iW

iWiD
tD

1

1
^

)(

)()(
)(

)1(D AD),2(
Nast

DDD

tD

Nast

j

jjj

∑
=

++

= 1

132312

3
)(),1(−tD

Image Streaming and Recognition for Vehicle Location Tracking Using Mobile Devices 733

including clock information and satellite orbit information. Here, δ,,,,,,, ,

^^

321 jidDDXXXX

and R refer to the error compensating value of the user, the error compensating value
of reference station, the error compensating value of reference station, presumed X
Vector, that is [

321 ,, XXX], relative distance. Relative distance in a window, distance

between station and j, error variance, and finally noise from measuring process of
position information receiver respectively are reviewed [3, 6].

Fig. 4. Modeling of Spatial Relative Distance on Kalman filter

3 Extraction and Recognition of License Plate Image

3.1 Image Expression and PDA

A PDA’s memory space is more limited than a general PC’s. Therefore, it often has
problems in processing the spatial data used in a PC. In general, spatial data is large,
and many calculation processes are required to conduct query process among data. In
this respect, sequential record memory structure is needed in order to express spatial
data in a PDA with extremely limited memory space. Since sequential record
structure memorizes data in a certain order, making search query time longer, it may
be more efficient to express spatial data by putting index space on image from the
PDA camera. [7]. In this case, if you process inputted images and store the data in
memory space as a sequential structure, the search time will be longer since a search
for domain query is sequentially conducted. In this respect, we express spatial data
that went through image process as an index structure. Figure 5 shows that data space
is divided into certain size and expressed as an index file in PDA. Here, one record is
composed of the index number (Next), MBR domain of spatial object (MBR) and real
spatial object data (OBJ). In other words, one record has one object, and the object is
stored in the form of a connect list by a record index of the other object in the same
cell. Each cell has a structure as an object in a cell pointing to the first node of
memorized connect list.

734 J.-S. Kang et al.

Fig. 5. Mobile PDA Indexed Sequential File Structure

3.2 Image Recognition Stage

The important part of a still image taken by a PDA camera is the algorithm to detect
the license plate domain. There are two general methods in use: one to detect license
plates using brightness information, and the other to identify characteristics by edge
detection and Hough transformation. The first one, however, is overly sensitive to the
environment, with a lower recognition rate when there are noises around. The second
uses vertical and horizontal components in the license plate domain, with lowered
recognition rate and longer processing time in case of damage or noise in plate edge,
which is not proper for real time processing. In this paper, we improved the quality of
the image through a high-frequency emphasis filter, and extracted the license plate
domain through a partial image match using vertical brightness value distribution
change and license plate model. During this process, data expression of the
transformed image is not memorized in mobile PDA memory space as a sequential
structure, but memorized as an index structure in order to provide a more efficient and
fat search, extracting characteristics of license plate domain.

Fig. 6. A Block Diagram of Preprocess Stage

3.2.1 Matching Image with License Plate Model
More than two objects are needed to image match. Here, we match it with the vertical
domain extracted before, by using characteristics of the license plate, and make it a
binarized license plate model. In this case, we use the following characteristics of the
license plate. First, the ratio of the license plate is 2:1 in width and height

Image Streaming and Recognition for Vehicle Location Tracking Using Mobile Devices 735

respectively. Second, letters on the license plate and inside have the contrast
brightness value relative to each other. Third, the ratio of the upper part and lower
part of license plate is 1:2. Figure 7 shows a relative ratio, which is an original
characteristic of license plate. We extract the vertical outline from vertical domain of
the vehicle in order to shorten license plate domain extraction time through image
match. We then extract by matching license plate model to vehicle candidate domain
resulting from studying brightness value distribution. [5].

Fig. 7. Relative Ratio of License Plate Domain and Edge Value Extraction

The upper left and bottom right coordinates of a minimum adjacent quadrangle of a

connecting factor, are),(21 YX and),(22 YX respectively, and we retrieve)(xf p using

the first edge component which is detected in the vertical direction from the upper and
bottom standard lines, like Figure 7 with its images formed as edge value.

That is, we calculate a distance)(xf p
u

 until the first edge component appears when

searching towards the vertical upper direction from the bottom standard line and the
distance)(xf p

d
 towards the vertical bottom direction from the upper standard line, and

send them to a Gaussian filter expressing sign)(xf p
u

 and)(xf p
d

 added signal

)()()(xfxfxf p
d

p
u

p += to mark them as less sensitive to noise. It is used to detect the

local maximum value among values processed through Gaussian filtering. The
maximum value is used as the base to process image splitting.

⎩
⎨
⎧

=
=

=
255),int(,1

0),int(,0

yxsticpoCharacteri

yxsticpoCharacteri
Fi

∑
=

×=
8

1

)(
a

ax

kFikF

Fig. 8. Improvement of Field Effect Method(FEM)

We apply field effect method (FEM) for efficient recognition, to judge whether
there are letters/numbers in the direction of 8 is shown in Figure 8, and to recognize a
similarity with a standard pattern. Also, we recognize letters by finding the direction

736 J.-S. Kang et al.

of a characteristic point to learn the location point, [12], and to decide direction by
grasping the condition of pixels in Figure 8.

4 Concluding Remarks

This paper discusses an experiment with a gray image of size of 320 × 240 pixels,
taken by a PDA camera of HP iPaq 3630model, which has Windows CE operating
system and 32MB memory. The extracted result’s of numbers and letters is shown in
Figure 9. In particular, we reduce search time by sorting records in a successive index
structure in an embedded system with limit of memory, and try to reduce to the
utmost the rate of error in information on location of a vehicle through chasing
location of spatial relative distance. We prove that it is possible to actualize
processing procedures of pattern recognition for numbers and letters. This is used in
PDA by matching images of stopped image data from a model license plate from an
inputted vehicle through PDA camera. We expect an expression of many embedded
systems, based on the progress of related applications.

Fig. 9. Extracted Result s of Numbers and Letters

The still image of the license plate is captured by the camera equipped in a mobile
PDA device. Then the image processing module in the proposed embedded system
extracts the number information from the image data, using the spatial relative
distance scheme. After this, the number and location information are encoded and
transmitted to a remote sever. At the server, the digitized information is decoded and
converted to a text format. Finally, it is sent to the end user by the server through a
communication network. In order to handle the space data acquired from a mobile
PDA device efficiently, we design an internal storage structure where the location and
number information of a vehicle is stored in the unit of variable length record with the
successive index to reduce the search time of stored data in an embedded system with
the memory limits. In addition, to minimize the error rate of the location information
of a vehicle, we propose a method for tracking the location information based on
spatial relative distance. With the experimental results, we show that it is adequate to

Image Streaming and Recognition for Vehicle Location Tracking Using Mobile Devices 737

trace the location and to recognize the numbers on the license plate of a vehicle with a
small camera attached to a mobile PDA. We have proposed an image processing
method and spatial relative distance scheme for use in the wireless communication
network and Internet.

Acknowledgement

This work was supported by the 2 Stage Brain Korea 21 Project in 2007 and by grant
No. RTI05-03-01 from the Regional Technology Innovation Program of the Ministry
of Commerce, Industry and Energy (MOCIE) Republic of Korea.

References

1. J. Feldman, S. Czukerberg, “Notebook System”, US Patent No. 5553959, 1996.
2. A. John, et. al. Open eBook Publication Structure 1.0.1: Recommended Specification.

Technical report, Open eBook Forum, http://www.openebook.org/, 2001
3. R. C. Gonzalez and R. E. Woods “Digital Image Processing”, Addison Wesley, pp.

447~455.
4. A. Antonacopoulos, D. Karatzas and J. Ortiz Lopez, "Accessing textual information

embedded in internet images," Proc. of SPIE, vol. 4311, pp.198-205, Feb. 2001
5. M. G. He, A. L. Harvey and T. Vinary, “Vehicle number plate location for character

recognition”, ACCV’95 2nd Asian Conference on Computer Vision, pp. 1425~1428,
December 5-8, Singapore,

6. Fuhui Long, Hongjiang Zhang and David Dagan Feng, “ Fundamentals of Content-Based
Image Retrieval”, IEEE Trans. On Image Processing, Vol.10, No.1, Jan. 2001

7. J. Heiner, S. Hudson, and K. Tanaka, “Linking and Messaging from Real Paper in the
Paper PDA”, CHI Letters (Proc. of the ACM Symposium on User Interface Software and
Technology), vol. 1, no. 1, pp. 179-186, November, 1999.

8. J. S. Kang, C. H. Park, J. H. Kim and Y. S. Choi, "Implementation of Embedded System
Vehicle Tracking and License Plates Recognition using Spatial Relative Distance," Proc.
of 26th International Conference on Information Technology Interface, pp. 167-172, June,
2004

9. J. Hansson and C. Norstrom, “Embedded Database for Embedded Real-Time Systems: A
Component-Based Approach”, Technical Report, Linkoping University and Malardalen
University, Sweden, 2002.

10. Mckoi, http://mckoi.com/database/, 2000
11. J. R. Parker, "Algorithms for image processing and computer vision," John Wiley & Sons,

New York, 1997
12. J. Zhou and D. Lopresti, "Extracting Text form WWW Images", Proc. of the 4th

International Conference on Document Analysis and Recognition (ICDAR'97), Ulm,
Germany, August 1997

13. R. C. Gonzalez and R. E. Woods, “Digital Image Processing,” Addison Wesley, pp. 447-455
14. J. Miura, T. Kanda, and Y. Shiral, “An active vision system for real-time traffic sign

recognition,” In Proc. IEEE International Conference on Intelligent Transportation
Systems. Dearborn, MI, USA, 2000.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 738 – 743, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Research on Planning and Deployment Platform for
Wireless Sensor Networks

Yuebin Bai1, Jinghao Li1, Qingmian Han2, Yujun Chen1, and Depei Qian1

1 School of Computer Science and Engineering, Beihang University, Beijing, China
2 School of Telecommunications Engineering，Xidian University, Xi’an, China

yuebinb@163.com

Abstract. With the actual applications of the wireless sensor networks growing,
the challenges of the actual deployment get more and more. To improve de-
ployment efficiency, reduce the deployment cost and evaluate the deployment
risk, a planning and deployment platform for wireless sensor networks has been
built. In this paper, the workflow of the planning and deployment platform for
wireless sensor networks and its implementation framework are emphasized.
The implementation framework, which is based on J-Sim simulator, provides
the implementation details of the platform. An integrated workflow for the plat-
form is illuminated to comprehend the framework clearly.

Keywords: Wireless Sensor Networks, Planning, Network Simulation, Per-
formance Evaluation and Optimization, Software Platform.

1 Introduction

Impeded by the bottleneck of the information collection in the information chain,
researchers are more and more interested in the development of wireless sensor net-
works (WSNs). Currently, WSNs have been widely used in fields like habitat moni-
toring, health-care, smart home, industries, and military [1, 2]. There are various chal-
lenges to deploy the above mentioned WSN applications into an actual environment;
thereby we propose the planning and deployment platform for WSNs.

WSN has a lot of special characteristics. First, it depends on the actual application
itself. Based on different application deployment scenarios, the implementation tech-
nique and deployment environment are usually different. Second, there are hundreds
of sensor nodes in a WSN. Finally, because of the bandwidth, energy and process
capability etc limitations, various errors always occur in the WSN. From above men-
tioned restrictions, manual deployment of WSN is impossible. So, research work on
the methods of WSN planning and a planning and deployment software platform is
very important.

To study how to plan a WSN, the WSN should be seen as a whole. Planning and
deployment for WSNs focuses on the WSNs collective performance, and the WSNs
macroscopically behavior. This study contains several WSNs specific terms, e.g.
connectivity, coverage, protocols, and simulation etc.

 Research on Planning and Deployment Platform for Wireless Sensor Networks 739

There are limited literature on planning and deployment for WSNs, but a lot on
the WSN simulator. In this paper, a planning and deployment platform for wireless
sensor networks is proposed. More specifically, the implementation framework of
the platform is introduced to validate the feasibility of the architecture, The frame-
work is based on the open-source J-Sim [3] simulator. In sum, the goal of the
platform is to build a planning software platform for wireless sensor network, and
it can:

• support WSNs deployment solution
• reduce the deployment cost and improve the efficiency of deployment
• afford the whole network performance evaluation
• test new routing protocols and MAC protocols
• accelerate the WSNs practicality

The paper is organized as the following. Section 2 introduces the workflow. Sec-
tion 3 presents implementation framework of the platform. Section 4 concludes this
paper and presents the future work..

2 The Workflow Analysis of the Platform

In this section, an integrated workflow of the platform is proposed, just like what’s
shown in figure 1. It helps us to understand the platform clearly and to form an im-
plementation framework of the platform.

The main steps of building a workflow can be described as follows:

Step 1: manually or stochastically place some nodes into the virtual environment,
and draw an integrated network topology graph. Initialize some WSN
parameters.

Step 2: Validate coverage and determine whether the WSN satisfies the density
requirement and whether the sensor nodes are enough. If not, then go back
to Step 1 to add some new sensor nodes.

Step 3: Validate connectivity and determine whether the WSN is connective. If
not, then go back to Step 1 to modify some nodes’ positions. Go through
Step1, 2 and d3 until all requirements are satisfied.

Step 4: Choose MAC protocol and routing protocol.
Step 5: Run the simulator.
Step 6: Show the simulation result in terms of visual plots according to the

above mentioned performance metrics. Now, users can perform optimi-
zation based on the performance results. If the MAC protocol or routing
protocol is not suited for the particular WSN application, go back to
Step 4 as the dotted line shows Provided that some key nodes’ positions
are not correct/ideal?,, go back to Step 1 following the dotted line. Once
everything is well planed, we can get an optimal WSN deployment
solution.

740 Y. Bai et al.

Fig. 1. The Workflow of the Platform

3 The Implementation Framework Design

This section describes the conceptual framework design of the platform. It provides a
scalable, highly configurable and practical solution to plan and deploy a real WSN.
One of the key features of this architecture is the ability to simulate the actual envi-
ronment using the J-Sim simulator, thereby ensuring reliable deployment solution.
The framework of the platform, shown in Figure 2, implements an integrated process
to plan and deploy a real WSN. In the following subsections, these components in
details will be given.

3.1 Network Deployment

The network deployment aims to find an optimal placement solution. It contains three
main modules, pre-placement, coverage validation and connectivity validation. The
pre-placement finishes the placement of the sensor nodes. Users can manually place
each node; of course, stochastic placement is needed. Now, quite a lot literature has
studies it; in [4], the author proposes three typical types of stochastic sensor place-
ment. Moreover, it has a drag-and-draw graphics user interface (GUI) to help user to
operate the network topology.

Except this, the network topology structure should also guarantee the requirement
of the coverage and connectivity. Coverage validation helps users to determine
whether the number of the nodes is enough, and whether the nodes density and cover-
age are satisfied. Connectivity validation is to determine the network topology graph
connectivity. There is much literature to refer in [5], it shows that each node asymp-
totically connects with other nodes within a circle area.

3.2 Simulation

To support WSN deployment solution for a real application, it is needed to simulate
the WSN and carry out the quantitative analysis of the WSN. So simulation is the
fundamental component of the architecture.

 Research on Planning and Deployment Platform for Wireless Sensor Networks 741

Fig. 2. The Implementation Framework of the Platform

J-Sim is chosen as the simulator for the platform. J-Sim is an open-source, compo-
nent-based compositional network simulation environment that is developed entirely
in Java. J-Sim was chosen due to its loosely-coupled, component-based programming
model, as well as its completed Sensor Network packets [6, 7]. The target of simula-
tion is to reproduce the actual WSN in the virtual environment. Therefore, J-Sim
divides a WSN into three main types of nodes and two main types of wireless chan-
nels: sensor node, target node, and SINK node; sense channel and communication
channel [6]. Target node is the stimulation generator of the phenomenon. Sensor node
acts as the actual sensor which senses and sends data back to the base station. SINK
node acts as the base station. Sensor nodes capture signals generated by target nodes
through a sensor channel, and send reports to the SINK nodes or to the next hop sen-
sor node by the communication channel.

J-Sim also includes several kinds of WSN models, such as radio models, energy
models, MAC protocol models, and routing protocol models. But just like MAC
802.11 protocol, J-Sim is only a wireless protocol. Not all models are suited for spe-
cial WSN simulation. To improve the accuracy of simulation, the platform should
add some new special WSN models, which is the main work of the platform. The
extensions are shown as follows.

A. Protocol models
Just as figure 2 show, the platform adds new MAC protocols; they are 802.15.4,
TDMA, CSMA, etc. The platform also adds some new special WSN routing proto-
cols according to different network characteristics. They are One-Hop, Multi-Hop,
and Hierarchical (LEACH) [8]. Other well known routing protocols, for example
SPEED [9], may be added later.

B. Radio models
All the previous preparation work does not help the platform support environment
factor (i.e. assume that there are no obstructions in the environment), so the radio
propagation model is needed to ensure the accuracy of simulations. Radio propagation
models attempt to predict the received signal strength at a given distance from the

742 Y. Bai et al.

transmitter. If the strength is more than a threshold, the sensor begins to receive the
packet. In addition, there are three main phenomena that affect wireless communica-
tion which should be taken into account. A standard model used to simulate a clear,
unobstructed line-to-sight path between two nodes is the Friss free-space equation.
More accurate radio model also will be added later.

C. Energy models
The most important factor in a WSN application is the energy, as well as the energy
model in the architecture. J-Sim energy model is too simple, which should be extended.
The energy consumption of a sensor node is divided into three parts: CPU energy con-
sumption, sense energy consumption, and radio energy consumption. Thanks to the
development of the micro-electro-mechanical systems, the sense energy consumption
and the CPU energy consumption is very little. So in the framework, the CPU energy
consumption and the radio energy consumption are mainly considered. A sensor’s CPU
can be in one of the following four states: active, idle, sleep and off. Similarly, a sen-
sor’s radio also has four states: transmit, receive, idle, and sleep. There are two methods
to calculate the energy consumption. The first method is to assign every state a constant
value. When there is transferring into a different state, relevant value will be subtracted
from the sensor remnant energy.. The second method is to calculate energy according to
some equations. For example, in the radio transmit state, energy consumption is in asso-
ciation with the distant between the two nodes. The longer the distant, the more the
energy consumption is. This is much flexible than the first one.

4 Conclusions

The platform is a software environment to plan the deployment of the WSN applica-
tions. Its target is to identify the application specific requirements, simulate the whole
WSN, and then get an optimal deployment solution, including the number of nodes,
the type of the node, the placement method, and protocols etc.

In this paper, the two important aspects of planning and deployment platform for
WSN are emphasized. The platform is based on simulation technology, and contains a
lot of models By extending and modifying the J-Sim, The platform supports many
numerical insights by the combination of various protocols. It offers an integrated
process for planning an actual deployment. According to the framework, a prototype
of the platform has been built. It shows that the platform is reliable and useful. In
future work, performance evaluation and optimization of planning and deployment for
WSN will be reinforced further. More new protocols and models need be investi-
gated, such as route protocols, environment models, obstacle models, and new radio
models etc.

Acknowledgements

This research work is supported by the National Natural Science Foundation of China
(granted Nos. 90612004, 90412011, 60673180 and 90104022), and the Co-Funding
Project of Beijing Municipal Commission of Education under granted
No.SYS100060412. The authors would thank great support.

 Research on Planning and Deployment Platform for Wireless Sensor Networks 743

References

1. Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar.: Next century
challenges: scalable coordination in sensor networks. ACM/IEEE International Conference
on Mobile Computing and Networking archive, ACM Press, Seattle, Washington, United
States, (1999), pp. 263-270.

2. Sameer Tilak, Nael Abu-Ghazaleh, and Wendi heizelman.: A taxonomy of wireless micro-
sensor network models. Mobile Computing and Communications Review, (2002), pp. 28-36.

3. J-Sim Homepage. http://www.j-sim.org. (2005).
4. Ishizuka. M, Aida. M.: Performance study of node placement in sensor networks. Proc.

IEEE ICDCSW’04, (2004), pp. 598-603.
5. P. Gupta and P. R. Kumar.: Critical power for asymptotic connectivity. Proceedings of the

37th IEEE Conference on Decision and Control, (1998), pp. 1106-1110.
6. Ahmed Sobeih, Wei-Peng Chen, Jennifer C.Hou, Lu-Chuan Kung, Ning Li, Hyuk Lim,

Hung-Ying Yyan, and honghai Zhang.: J-Sim: A simulation and emulation environment for
wireless sensor networks. http://www.j-sim.org/v1.3/sensor/JSim.pdf, (2005).

7. Sung Park, Andreas Savvides, and Mani B. Srivastava.: SensorSim: A Simulation Frame-
work for Sensor Networks. Proceeding of the 3rd ACM international workshop on Model-
ing, analysis and simulation of wireless and mobile systems, Boston, MA, (2000).

8. W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan.: An Application-Specific
Protocol Architecture for Wireless Microsensor Networks. IEEE Trans. Wireless Commu-
nications, Oct. (2002), pp 660-670.

9. He T, Stankovic J A, Lu C, Abdelzaher T F.: SPEED: A stateless protocol for real-time
communication in sensor networks. In Proc 23rd Int’l Conf on Distributed Computing Sys-
tems, Providence, Rhode Island. (2003).

Server-Side Parallel Data Reduction and

Analysis

Daniel L. Wang, Charles S. Zender, and Stephen F. Jenks

University of California, Irvine, Irvine, CA 92697
{wangd,zender,sjenks}@uci.edu

Abstract. Geoscience analysis is currently limited by cumbersome ac-
cess and manipulation of large datasets from remote sources. Due to their
data-heavy and compute-light nature, these analysis workloads represent
a class of applications unsuited to a computational grid optimized for
compute-intensive applications. We present the Script Workflow Analy-
sis for MultiProcessing (SWAMP) system, which relocates data-intensive
workflows from scientists’ workstations to the hosting datacenters in or-
der to reduce data transfer and exploit locality. Our colocation of compu-
tation and data leverages the typically reductive characteristics of these
workflows, allowing SWAMP to complete workflows in a fraction of the
time and with much less data transfer. We describe SWAMP’s imple-
mentation and interface, which is designed to leverage scientists’ exist-
ing script-based workflows. Tests with a production geoscience workflow
show drastic improvements not only in overall execution time, but in
computation time as well. SWAMP’s workflow analysis capability al-
lows it to detect dependencies, optimize I/O, and dynamically parallelize
execution. Benchmarks quantify the drastic reduction in transfer time,
computation time, and end-to-end execution time.

1 Introduction

Despite the frenetic pace of technology advancement towards faster, better, and
cheaper hardware, terascale data reduction and analysis remain elusive for most.
Disk technology advances now enable scientists to store such data volumes locally,
but long-haul network bandwidth considerations all but prohibit frequent teras-
cale transfers. Bell et al. have noted that downloading data for computation is
worthwhile only if the analysis involves more than 100,000 CPU cycles per byte of
data, meaning that a 1GB dataset is only worth downloading if analysis requires
100 teracycles, or nearly 14 hours on a 2GHz CPU [1]. A typical case of evaluating
global temperature change in 10 years requires averaging 8GB down to 330KB,
and takes just 11 minutes to compute on a modern workstation, after spending
over half an hour to download the input data over a speedy 30Mbits/s link. In data-
intensive scientific analysis, data volume rather than CPU speed drives through-
put, pointing to a need for a system that colocates computation with data.

Our Script Workflow Analysis for Multi-Processing (SWAMP) system pro-
vides a facility for colocating comput ation with data sources, leveraging shell

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 744–750, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Server-Side Parallel Data Reduction and Analysis 745

script-based analysis methods to specify details through an interface piggy-
backed over the Data Access Protocol (DAP) protocol [2]. Scripts of netCDF Op-
erator (NCO) [3] commands are sent through an interface extended from DAP’s
subsetting facility and processed by a server-side execution engine. Resultant
datasets may be retrieved in the same DAP request or deferred for later retrieval.
The SWAMP execution engine additionally parses scripts for data-dependencies
and exploits parallelism opportunities from the extracted workflow. By meld-
ing a computation service with a data hosting service, SWAMP eliminates data
movement inefficiencies that are not addressed in current frameworks, which
treat high data volume and high computational intensity as separate problems.

2 Background

The Grid computing field continues to grow rapidly in both hardware and soft-
ware infrastructure. Computational grids offer highly parallel and distributed
heterogeneous computing resources bound together by open standards, imple-
mented by middleware such as the Globus Toolkit [4]. These grids are able to
flexibly allocate resources and appropriately schedule generic applications, but
are targeted towards large, compute-limited applications, such as grand chal-
lenges [5,6] where input data locality is not a primary scheduling concern. The
Globus toolkit for grid systems allows users to define input and output files to
be staged to and from compute nodes [7], but, as a generic system, does not
detect when data movement costs exceed computational costs.

The Pegasus framework [8,9,10] leverages grid technology for complex data-
dependent scientific workflows. Scientists use tools to specify workflows as di-
rected acyclic task graphs containing data dependencies. Pegasus implements ad-
vanced resource allocation and locality-aware scheduling, but does not integrate
with data services or apply automatic dependence extraction. Its locality-aware
scheduling makes it worth considering for SWAMP backend processing.

Data grids focus on providing legible accessibility to terascale and petascale
datasets with computational service limited to simple subsetting, if available.
The Open-source Project for a Network Data Access Protocol (OPeNDAP)
server serves a significant fraction of available geoscience data [2], and is the
data service with which SWAMP integrates. The Earth System Grid II (ESG)
project provides data via a later version of OPeNDAP (Hyrax), and is in the
process of exploring the implementation of filtering servers that permit data to
be processed and reduced closer to its point of residence [11]. We are exploring
integration of SWAMP with ESG II data services. Other systems such as [12]
[13] [14] exist to process or serve data in the geosciences data, but SWAMP
differs from these projects in its shell-script interface and its focus on a class of
application workflows that are data-intensive and compute-light.

3 Overview of SWAMP

The goal of the SWAMP system is to bring casual terascale computing to the
average scientist. “Casual” implies that the system’s interface must encourage

746 D.L. Wang, C.S. Zender, and S.F. Jenks

everyday usage, while “terascale” implies that the system’s design must sup-
port terabyte data volumes. SWAMP is designed to support scientists’ everyday
shell scripts and supports high data volumes by shifting computation to data
sources, trading expensive long-haul WAN bandwidth for relatively cheap LAN
bandwidth. Computation efficiency is further enhanced by detecting and exploit-
ing operator parallelization and I/O optimization opportunities in the scripted
workflows. SWAMP differs from existing systems in its focus on a shell-script-
based interface, aiming to derive data dependencies automatically with as little
help from the scientist as possible. SWAMP also differs in its focus on data-
intensive, compute-light workflows, targeting a class of data-heavy workflows
where I/O, rather than CPU considerations dominate the decision to distribute
computation.

3.1 Shell-Script Interface

The netCDF Operators (NCO) [15] are popular in the geoscience community
for their ability to process gridded data at the granularity of files or sets of
files, rather than single variables. This coarse granularity is crucial for practical
analysis of the high volumes of data commonly resulting from satellite/surface
measurements or Earth simulation runs. Because of their efficiency and ease at
this scale, scientists commonly use compositions of these operators to describe
their data analysis in shell scripts. SWAMP is unique in its ability to automati-
cally parallelize shell-script execution through a custom parser that understands
NCO command-line options and parameters. Special tags to flag intermediate
(temporary) and output filenames are the only modifications needed. The result-
ing syntax, a subset of Bourne shell syntax, becomes a domain-specific language
whose primitives are application binaries operating on files in a filesystem instead
of variables in memory.

Fig. 1. SWAMP operation

Server-Side Parallel Data Reduction and Analysis 747

3.2 Parallel Execution Engine

SWAMP scripts are processed on an execution engine implemented as an OPeN-
DAP data handler. This execution engine parses the user script for basic cor-
rectness and dataflow information, and manages execution of the script com-
mands, optionally detecting and exploiting parallelism where available. File-
names are remapped to server-configured paths, and commands involving re-
mote files are split into fetch and execute commands, allowing download to
be overlapped with execution. Figure 1 summarizes parsing and execution in
SWAMP.

Experience has shown that real scientific workflow scripts exhibit significant
script-line-level parallelism. To exploit this, SWAMP builds a dependency tree
at parse time. Initially, the only commands ready to execute are the tree roots,
but as commands finish, dependent commands which have no unfinished parents
become ready as well. After parsing, SWAMP forks off worker processes to begin
parallel script execution. Workers cooperate in a peer model, communicating and
preventing duplicate work by updating execution state in a shared relational
database, currently SQLite. Thus, we can satisfy n-wide execution as long as
n commands are ready to execute. SWAMP’s SQLite database is stored in a
standard Linux tmpfs RAM-based filesystem. Originally, the database was stored
on standard disk, but performance suffered greatly due to I/O contention in
concurrent execution modes.

4 Results

4.1 Test Setup

We tested our system with a script that resamples Community Atmospheric
Model simulation data into time-steps that can be better compared against ob-
served NASA Quick Scatterometer (QuikSCAT) data [16]. In this script, ten
years of data at 20-minute timesteps are masked for their surface wind speed
values at 6:00AM and 6:00PM, the local times from the QuikSCAT satellite
passes. The script contains over 14,000 NCO command-lines for masking, aver-
aging, concatenating, and editing, which produce 228MB of resultant data from
8230MB of input data, and generate 26GB of temporary intermediate files in
the process.

We tested our system on a dual Opteron 270 with 16GB of memory with dual
500GB SATA drives in RAID 1, running CentOS 4.3 Linux. Figure 2 summarizes
the test results. Transfer times listed are estimated assuming 3MBytes/s (3∗220)
bandwidth, based on NPAD pathdiag [17] measurement of 30Mbits/s band-
width between UCI and the National Center for Atmospheric Research(NCAR).
In our example, a scientist can avoid downloading nearly 8GB, obtaining just
228MB of output rather than the entire input dataset and saving 46 minutes
of transfer time. Our baseline case shows the execution time of the original
shell script and the time to download the input data, and takes 99 minutes
overall.

748 D.L. Wang, C.S. Zender, and S.F. Jenks

4.2 Performance Gain

Test results are summarized in Figure 2. Figure 2(b) shows that SWAMP’s over-
head over baseline is slight, with parse and script analysis increasing computa-
tional time by 14% (1 worker case, no opt), but more than compensated when I/O
optimization is enabled. Figure 2(a) shows the domination of transfer time sav-
ings, along with the parallezation benefit that is only through SWAMP’s unique
script dependency extraction. Parallelization easily saturates the test system’s
four CPU cores, bringing overall time from 99 minutes without SWAMP to 16
minutes with SWAMP configured for four workers, giving a 6x performance gain.

(a) Overall I/O-optimized performance (b) Parallelization speedup

Fig. 2. SWAMP performance

4.3 I/O Optimization

In Figure 2(b), we compare the performance of SWAMP with varying numbers
of worker processes and toggling intermediate file optimization. Heavy I/O con-
tention was obvious in early testing, leading to our development of a mechanism
for explicitly storing intermediate files in a tmpfs (ramdisk-backed) filesystem
rather than a disk-backed filesystem. Referring to Figure 2(b), we see that the
performance degradation with a disk-backed filesystem at 8 workers is signifi-
cant (≈24% relative to 4 workers), but eliminated by our I/O optimization. With
this simple optimization, we see SWAMP’s performance closely tracking an ideal
speedup curve.

4.4 Summary

Our system targets scientists with compute capacity or network connectivity less
than what a data center offers, which we believe should include most scientists.
Data centers should benefit as well from reduced external network usage, which is
often more costly than computational capacity. Our tests quantify the significant
savings in bandwidth usage and the corresponding transfer time due to the
relocation of computation off the desktop. Our tests also show the potential
performance increase which is enabled by simple analysis of scripts.

Server-Side Parallel Data Reduction and Analysis 749

5 Conclusion

A server-side data reduction and analysis system saves scientists time and band-
width, enabling them to exploit potentially greater computing resources with
minimal additional effort. We have leveraged existing script-based methods of
analysis and the widely used DAP protocol to provide simple distributed com-
puting to non-computer-scientists. Combining computation with data services
has drastically reduced network transfer, and exploiting script-level parallelism
has yielded linear speedup with CPU count, thus yielding a 6 times performance
improvement in our test. Our tests have also shown the importance of I/O is-
sues in data intensive workflows, quantifying the performance degradation and
offering a possible solution. While performance of the current implementation
already provides a significant speedup, future implementations will further ex-
ploit clustering and parallelism available at the data center, further enhancing
performance. Systems such as ours that colocate computation with data will be
well poised to meet the demands of more comprehensive, more detailed, and
more frequent analyses, and will facilitate data-intensive science.

Acknowledgments

The authors would like to thank Scott Capps, whose research makes use of the
above workflow. This research is supported by the National Science Foundation
under Grants ATM-0231380 and IIS-0431203.

References

1. Bell, G., Gray, J., Szalay, A.: Petascale computational systems. IEEE Computer
39(1) (2006) 110–112

2. Cornillon, P.: OPeNDAP: Accessing data in a distributed, heterogeneous environ-
ment. Data Science Journal 2 (2003) 164–174

3. Zender, C.S.: netCDF Operators (NCO) for analysis of self-describing gridded
geoscience data. Submitted to Environ. Modell. Softw. (2006) Available from
http://dust.ess.uci.edu/ppr/ppr Zen07.pdf.

4. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco, CA (1998)

5. Feigenbaum, E.A.: Some challenges and grand challenges for computational intel-
ligence. J.ACM 50(1) (2003) 32–40

6. Gray, J.: What next?: A dozen information-technology research goals. J.ACM
50(1) (2003) 41–57

7. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Inter-
national Journal of Supercomputer Applications 11(2) (1997) 115–128

8. Maechling, P., Chalupsky, H., Dougherty, M., Deelman, E., Gil, Y., Gullapalli, S.,
Gupta, V., Kesselman, C., Kim, J., Mehta, G., Mendenhall, B., Russ, T., Singh, G.,
Spraragen, M., Staples, G., Vahi, K.: Simplifying construction of complex work-
flows for non-expert users of the southern california earthquake center community
modeling environment. SIGMOD Rec. 34(3) (2005) 24–30

http://dust.ess.uci.edu/ppr/ppr_Zen07.pdf

750 D.L. Wang, C.S. Zender, and S.F. Jenks

9. Singh, G., Deelman, E., Mehta, G., Vahi, K., Su, M.H., Berriman, G.B., Good, J., Ja-
cob, J.C., Katz, D.S., Lazzarini, A., Blackburn, K., Koranda, S.: The pegasus portal:
web based grid computing. In: SAC ’05: Proceedings of the 2005 ACM symposium
on Applied computing, New York, NY, USA, ACM Press (2005) 680–686

10. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus:
A framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming 13(3) (2005) 219–238

11. Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A.,
Cinquini, L., Drach, B., Foster, I., Fox, P., Garcia, J., Kesselman, C., Markel, R.,
Middleton, D., Nefedova, V., Pouchard, L., Shoshani, A., Sim, A., Strand, G.,
Williams, D.: The earth system grid: Supporting the next generation of climate
modeling research. Proceedings of the IEEE 93(3) (2005) 485–495

12. Abramson, D., Kommineni, J., McGregor, J.L., Katzfey, J.: An atmospheric sci-
ences workflow and its implementation with web services. Future Gener. Comput.
Syst. 21(1) (2005) 69–78

13. Woolf, A., Haines, K., Liu, C.: A Web Service Model for Climate Data Access
on the Grid. International Journal of High Performance Computing Applications
17(3) (2003) 281–295

14. Chen, L., Agrawal, G.: Resource allocation in a middleware for streaming data. In:
Proceedings of the 2nd workshop on Middleware for grid computing, New York,
NY, USA, ACM Press (2004) 5–10

15. Zender, C.S.: NCO User’s Guide, version 3.1.4. http://nco.sf.net/nco.pdf (2006)
16. Tsai, W.Y., Spencer, M., Wu, C., Winn, C., Kellogg, K.: SeaWinds on QuikSCAT:

Sensor Description and Mission Overview. In: Proceedings of the IEEE Interna-
tional Geoscience and Remote Sensing Symposium. Volume 3., Honolulu, HI (2000)
1021–1023

17. Mathis, M., Heffner, J., Reddy, R.: Web100: extended tcp instrumentation for
research, education and diagnosis. SIGCOMM Comput. Commun. Rev. 33(3)
(2003) 69–79

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 751 – 756, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Parallel Edge Detection on a Virtual Hexagonal Structure

Xiangjian He, Wenjing Jia, Qiang Wu, and Tom Hintz

Computer Vision and Visualization Research Group
University of Technology, Sydney

Australia
{sean, wejia, wuq, hintz}@it.uts.edu.au

Abstract. This paper presents an edge detection method based on bilateral
filtering taking into account both spatial closeness and intensity similarity of
pixels in order to preserve important visual cues provided by edges and reduce
the sharpness of transitions in intensity values as well. In addition, the edge
detection method proposed in this paper is achieved on sampled images
represented on a newly developed virtual hexagonal structure. Due to the
compact and circular nature of the hexagonal lattice, a better quality edge map
is obtained. We also present a parallel implementation for edge detection on the
virtual hexagonal structure that significantly increases the computation speed.

Keywords: Edge detection, parallel processing, image analysis, Gaussian
filtering, hexagonal image structure.

1 Introduction

In 1986, Canny [1] developed an optimal edge detection scheme using linear filtering
with a Gaussian kernel to suppress noise and reduce the sharpness of transition in
intensity values. In order to recover missing weak edge points and eliminate false
edge points, two edge strength thresholds are set to examine all the candidate edge
points. Those below the lower threshold are marked as non-edge. Those which are
above the lower threshold and can be connected to points whose edge strengths are
above the higher threshold through a chain of edge points are marked as edge points
[2]. However, the performance of Canny edge detection relies on Gaussian filtering.
Gaussian filtering not only removes image noise and suppresses image details but also
weakens the edge information [2]. In this paper, an additional filter called range filter
[3] is combined with the conventional Gaussian filter to get a bilateral filter in order
to reduce the blur effect using the Gaussian filter only. Moreover, the success of
Canny edge detection is often limited when it comes to curved features. In this paper,
a new edge detection algorithm is implemented on a virtual hexagonal structure,
which was only introduced recently in [4]. Hexagonal lattice promises better
efficiency and less aliasing [5].

In the past years, we have seen an ever-growing flood of data, particularly visual
data. This causes an increasing need to process large data sets quickly. In particular,
for real-time image processing, the useful information always feeds into the system
instantly and is required to be processed in real-time too. One solution for high-
performance image processing is through a parallel or distributed implementation. In
this paper, we introduce parallel edge detection on a hexagonal image structure.

752 X. He et al.

2 A Virtual Hexagonal Structure

Hexagonal grids have higher degrees of symmetry than the square grids. This
symmetry results in a considerable saving of both storage and computation time [5,
6]. Sheridan [7] proposed a one-dimensional addressing scheme for a hexagonal
structure, called Spiral Architecture, as shown in Fig. 1 and Fig. 2.

Fig. 1. A cluster of seven hexagonal pixels [9]

In this section, we introduce a software approach to the construction of a hexagonal
structure [4]. To construct hexagonal pixels, each square pixel is first separated into
7×7 small pixels, called sub-pixels. The light intensity for each of these sub-pixels is
set to be the same as that of the pixel from which the sub-pixels are separated. Each
virtual hexagonal pixel is formed by 56 sub-pixels as shown in Fig. 1. The light
intensity of each constructed hexagonal pixel is computed as the average of the
intensities of the 56 sub-pixels forming the hexagonal pixel. Fig. 1 shows a collection
of seven hexagonal pixels constructed with spiral addresses from 0 to 6.

In order to arrange hexagonal pixels also in rows and columns as seen in square
structure, we review the definitions of rows and columns [8] below. Let R and C
represent the number of rows and number of columns needed to move from the
central hexagonal pixel to the hexagonal pixel containing the given sub-pixel taking
into account the moving direction corresponding to the signs of R and C. Here,
pixels on the same column are on the same vertical line. The row with R = 0
consists of the pixels on the horizontal line passing the central pixel and on the
columns with even C values, and the pixels on the horizontal line passing the pixel
with address 3 and on the columns with odd C values. Other rows are formed in the
same way. Fig. 2 shows columns and rows in a hexagonal structure consisting of 49
hexagons.

 Parallel Edge Detection on a Virtual Hexagonal Structure 753

Fig. 2. Columns and rows on a hexagonal structure

3 Edge Detection

In this section, the performance of edge detection will go through three steps: noise
filtering using a bilateral filter, edge detection using Sobel operator and edge refining
using thresholds.

Before the edge map of an image is found, it is common that image noise is
removed (or suppressed) by applying a filter that blurs or smoothes the image. One
commonly used filter is implemented by convolution of the original image function
with a Gaussian kernel as defined in Equation (2) below. In order to achieve a more
desirable level of smoothing in applications, a bilateral filter has recently been
introduced as shown in [2]. In this form of filtering, a range filter is combined with a
domain filter. We explain how a bilateral filter works using mathematical terms as
follows [2]. Let 2:f ℜ → ℜ be the original brightness function of an image which

maps the coordinates of a pixel, (x, y) to a value in light intensity. Let a0 be the
reference pixel. Then, for any given pixel a at location (x, y), the coefficient assigned
to intensity value f(a) at a for the range filter is r(a) computed by the similarity
function s as:

() () ()()
() ()()2

0

2
12

0,

f a f a

r a s f a f a e σ

−
−

= = (1)

Similarly, the coefficient assigned for the domain filter is g(a) computed by the
closeness function c as:

() ()
()2

0
2

22
0,

a a

g a c a a e σ
−

−

= = (2)

Therefore, for the reference pixel 0a , its new intensity value, denoted by 0()h a , is

() () () ()
1

1
0

0

n

i i i
i

h a k f a g a r a
−

−

=

= × ×∑ (3)

754 X. He et al.

where k is the normalization constant and is defined as

() ()
1

0
i i

n

i
a ak g r

−

=
= ×∑ (4)

In order to increase the computation speed, in this paper, σ2 is set to be 1 and the
convolution window is set to be a 49 pixel block (assuming the distance between two
adjacent square pixels is 1) on either square or hexagonal structure. Hence, for
formula (3) and (4) above, n = 49. Furthermore, σ1, the parameter for the range
filtering, is computed as the standard deviation of grey values in input image.

In order to implement edge detection on the virtual hexagonal structure, a modified
Sobel operator, as presented in [2] and shown in Fig. 3, is applied in this paper.

Fig. 3. Modified Sobel operator

After the edge detection step shown in Subsection 3.2, all sub-pixels have been
assigned new intensity values that show the edge sub-pixels and their strengths. An
edge map on the original square structure can hence be obtained by simply computing
the intensity value of every square pixel as the average of the intensities of the sub-
pixels constituting the square pixel. This edge map shows the square edge pixels and
their strengths. We can then follow the remaining steps of Canny’s method to obtain
the final edge map by using one lower threshold and one higher threshold.

For parallel computation, a completed object image was partitioned into 56 parts
dependent on location of sub-pixel in each virtual hexagonal pixel (See Fig. 1). A
parallel algorithm for edge detection can then be implemented using Master-Slave
model and presented as follows.

1) Master node imports the original image from the file and converts it into the
virtual hexagonal structure;

2) Master node partitions the image on the virtual hexagonal structure into 56
sub-images with the similar sub-image size;

3) Seven child processes in the master node deliver every 8 sub-images to a
specific slave node individually;

4) Each slave node processes the assigned 8 sub-images using bi-lateral filtering
as shown in Section 3 to smooth sub-images, and the Sobel operator defined in
Section 3 to compute the edge intensities and strengths of all sub-pixels on the
sub-images;

5) Master node collects the smoothed results with edge intensities and strengths
from slave nodes and makes up the final edge detection results through the
edge refining step shown in Section 3.

 Parallel Edge Detection on a Virtual Hexagonal Structure 755

4 Experimental Results

A 8-bit grey level Lena image of size 256×256 is chosen as our sample image to be
processed (see Fig. 4(a)). Three different edge maps are produced in order to
demonstrate the performance both in accuracy and speed improved by new edge
detection method. The first edge map is obtained after the bilateral filtering but based
on square structure using sequential approach. The second and the third edge maps
are obtained after the bilateral filtering based on the virtual hexagonal structure. The
second edge map is created using sequential approach as shown in [9], and the third
edge map is produced using parallel approach as sown in Section 4. It is found that σ1

is close to 65 for all three cases. The higher threshold used is 0.125 and the lower
threshold is 0.05.

(a) Original Lena image

(b) Edge map after bilateral on square

(c) Edge map after bilateral filtering on hex

(d) Edge map after parallel bilateral filtering on hex

Fig. 4. Edge maps of the filtered images

Fig. 4(c) demonstrates a better performance than Fig. 4(b) for detecting edges in
diagonal directions. This can be seen from the lip edges in Fig. 4(c) that are closer to
real lip boundaries. Fig. 4(d) shows an improved edge map with clearer edges and less

756 X. He et al.

dotted edge points compared with the map in Fig. 4(c). This is mainly because
different (though similar) σ1 values are computed and used for different sub-images
when using parallel algorithm introduced in this paper.

The processing time for edge detection is also decreased from about 10 seconds
using a single PC (Pentium 1.1GHz CPU with 760MB RAM) down to 5 seconds
under parallel (or distributed) processing using 8 PCs with similar specifications.

5 Conclusions

In this paper, a parallel edge detection method is presented. The use of bilateral
filtering combined with the advantages of hexagonal image architecture has achieved
encouraging edge detection performance under the similar experimental conditions.
We take the advantages of higher degree of symmetry and equality of distances to
neighbouring pixels that are special to hexagonal structure for better performance of
image filtering and more accurate computation of gradients including edges and their
strength. Compared with the sequential processing, distributed (and parallel)
processing really improves the edge performance.

References

1. J. F. Canny, "A Computational Approach to Edge Detection", IEEE Trans. On Pattern
Analysis and Machine Intelligence, vol. PAMI-8, pp. 679-698, Nov. 1986.

2. Qiang Wu, Xiangjian He and Tom Hintz, "Bilateral Filtering Based Edge Detection on
Hexagonal Architecture", Proc. 2005 IEEE International Conference on Acoustics, Speech,
and Signal Processing, Philadelphia, PA, USA, Volume II, 2005, pp.713-716.

3. D. Barash, "Fundamental relationship between bilateral filtering, adaptive smoothing, and
the nonlinear diffusion equation", IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, pp. 844-847, 2002.

4. Xiangjian He, Tom Hintz, Qiang Wu, Huaqing Wang and Wenjing Jia "A New Simulation
of Spiral Architecture", International Conference on Image Processing, Computer Vision
and Pattern Recognition, June, 2006, pp. 570-575.

5. R. M. Mersereau, "The Processing of Hexagonally Sampled Two-Dimensional Signals",
Proc. the IEEE, Vol. 67, pp. 930-949, 1979.

6. I. Her, "Geometric Transformations on the Hexagonal Grid", IEEE Trans. on Image
Processing, vol. 4, 1995.

7. P. Sheridan, T. Hintz, and D. Alexander, "Pseudo-invariant Image Transformations on a
Hexagonal Lattice", Image and Vision Computing, vol. 18, pp. 907-917, 2000.

8. Xiangjian He, Huaqing Wang, Namho Hur, Wenjing Jia, Qiang Wu, Jinwoong Kim, and
Tom Hintz, "Uniformly Partitioning Images on Virtual Hexagonal Structure", 9th
International Conference on Control, Automation, Robotics and Vision, ICARCV 2006,
Singapore, December 2006, pp.891-896.

9. Xiangjian He, Wenjing Jia, Namho Hur, Qiang Wu, Jinwoong Kim and Tom Hintz, "Bi-
lateral Edge Detection on a Virtual Hexagonal Structure", Lecture Notes in Computer
Science (ISVC2006), LCNS, Springer, 2006, Vol.4292, pp.1092-1101.

Author Index

Abdellatif, Takoua 362
Abdennadher, Nabil 412
Abud-Figueroa, Ma. Antonieta 686
Ahmad, Raheel 519
Alor-Hernandez, Giner 686
Avilés-López, Edgardo 710
Awde, Ali 459

Baek, Yunju 655
Bai, Yuebin 738
Barba, J. 472
Bellik, Yacine 459
Blanco, Eduardo 627
Boesch, Régis 412
Boronat, Fernando 590
Bosque, José Luis 146
Brunie, Lionel 348
Bushehrian, Omid 543

Cardinale, Yudith 627
Carson, Andrew 286
Casola, Valentina 39
Cha, Si-Ho 436
Chang, Hsi-Ya 158
Chang, Ruay-Shiung 484
Chaudhry, Junaid Ahsenali 193
Chen, Hsi-Min 27, 181
Chen, Hsiu-Chin 531
Chen, Shaxun 252
Chen, Sung-Yi 1
Chen, Tsui-Ting 1, 385
Chen, Yi-Ming 241
Chen, Yujun 738
Chin, SungHo 298
Chirra, Raja 519
Cho, Dongsub 374
Cho, Hyuntae 655
Cho, Jinsung 112
Chou, Chau-Yi 158
Chung, Kwang Sik 298, 496
Chung, Yeh-Ching 78, 100, 229, 672
Chung, Yi-Min 124
Coronato, Antonio 702
Cunningham, Christina 286

d’Auriol, Brian J. 112
De Oliveira, Jesús 627
De Pietro, Giuseppe 702
Deegan, Mark 694
Ding, Jiun-Hung 672
Ding, Yongsheng 218
Donachy, Paul 286

Eom, Young Ik 666

Feng, Xingzhi 614
Figueira, Carlos 627
Forestiero, Agostino 716

Gallo, Luigi 702
Ganzha, Maria 678
Gao, Zhigang 642
Garcia, Miguel 590
Garćıa-Maćıas, J. Antonio 710
Ge, Jidong 252
Genaud, Stéphane 64
Gomez-Berbis, Juan Miguel 686
Guo, Changguo 614
Gupta, Bidyut 519
Guru, Siddeswara Mayura 89

Halgamuge, Saman 89
Han, Ki-Joon 603
Han, Qingmian 738
Harmer, Terence 286
Hawkins, John 286
Hayek, Rabab 13
He, Xiangjian 751
Hernández, Emilio 627
Herrero, Pilar 146
Hina, Manolo Dulva 459
Hintz, Tom 751
Ho, Tsung-Hsuan 100
Hoareau, Didier 362
Hong, Dong-Suk 603
Hsu, Chun-Chen 27, 181
Huang, Kuo-Chan 158, 229
Hung, Sheng-Je 672

Jenks, Stephen F. 744
Jensen, Henrik Thostrup 507

758 Author Index

Jeong, Taikyeong T. 263, 730
Jia, Wenjing 751
Jin, Hai 52
Jo, Minho 436
Jun, Yong-Kee 310, 322

Kang, Hong-Koo 603
Kang, Jin-Suk 730
Kim, Dong-Oh 603
Kim, Gu Su 666
Kim, Ungmo 666
Kim, Young-Joo 310
King, Chung-Ta 531
Kleist, Josva 507
Ko, Kwang Sun 666
Ko, Ren-Song 169
Kruse, Rudolf 89

Lee, Byong 374
Lee, HwaMin 298
Lee, Jang Ho 263
Lee, JongHyuk 298
Lee, Sungyoung 112
Lee, Woonghyun 655
Li, Jinghao 738
Liao, Xiaofei 52
Lim, Jae-Seon 310
Lin, Meng-Ru 100
Lin, Peter 100
Liu, Ke 52
Liu, Pangfeng 124, 181
Liu, Zhizhong 136
Lloret, Jaime 590
Lo, Shih-Hsiang 672
López, J.C. 472
Lu, Jian 252
Lu, Ssu-Hsuan 100
Luna, Jesus 39

Ma, Huadong 447
MacCormac, Dan 694
Magoulès, Frédéric 567, 579
Mahéo, Yves 362
Manso, Oscar 39
Martinasso, Maxime 424
Mastroianni, Carlo 716
Mazzocca, Nicola 39
Medina, Manel 39
Meng, Qinghua 218
Min, Suhong 374

Ming, Anlong 447
Montella, R. 204
Mouaddib, Noureddine 13
Moya, F. 472
Mtenzi, Fred 694
Mutka, Matt W. 169

Nguyen, Thi-Mai-Huong 567

O’Shea, Brendan 694
Oh, Sang Hyun 730
Olejnik, Richard 678

Paprzycki, Marcin 678
Parand, Fereshteh-Azadi 724
Park, Hyuk-Ro 322
Park, Ji Su 496
Park, Mi-Young 322
Park, Seungkyu 193
Parsa, Saeed 543, 724
Parthasarathi, Ranjani 274
Pérez, Maŕıa S. 146
Perrott, Ron 286
Pierson, Jean Marc 348
Posada-Gomez, Ruben 686
Pupo, Fausto 716

Qian, Depei 738

Rahimi, Shahram 519
Rak, Massimiliano 39
Ramdane-Cherif, Amar 459
Randriamaro, Cyril 555
Raschia, Guillaume 13
Rattanapoka, Choopan 64
Ren, Yi 614
Révillon, Cédric 567
Rincón, F. 472

Saadi, Rachid 348
Salvadores, Manuel 146
Satoh, Ichiro 397
Selvi, V. Vetri 274
Sharfraz, Shakir 274
Shen, Cherng-Yeu 158
Shih, Po-Chi 229
Shih, Wen-Chung 385
Shim, Su Jeong 322
Shon, Jin Gon 496
Soyez, Olivier 555

Author Index 759

Spezzano, Giandomenico 716
Steffenel, Luiz Angelo 424
Steinbrecher, Matthias 89
Su, Chih-Lun 241
Sung, Mee Young 730

Tadj, Chakib 459
Tang, Jin-Wei 672
Tao, Xianping 252
Tomas, Jesus 590
Toursel, Bernard 678
Trystram, Denis 424
Tsai, Wei-Lun 672
Tseng, Shian-Shyong 385
Tu, Xuping 52

Utard, Gil 555

Valduriez, Patrick 13
Villa, David 472
Villanueva, F.J. 472

Wang, Chien-Min 27, 124, 181
Wang, Daniel L. 744
Wang, Hau-Han 334

Wang, Huaimin 136, 614
Wang, Reen-Cheng 484
Wang, Sheng-De 334
Wang, Shuen-Tai 158
Wasnik, Sachin 286
Wlazinski, Francis 555
Wright, Peter 286
Wu, Chun-Hsien 78
Wu, Jan-Jan 27, 124, 181
Wu, Qiang 751
Wu, Quanyuan 614
Wu, Su-Ling 484
Wu, Xiaoling 112
Wu, Zhaohui 642

Yang Chao-Tung 1, 385
Yi, Song-Yi 263
Yoon, TaeMyoung 298
Yu, HeonChang 298
Yu, Lei 579

Zender, Charles S. 744
Zhang, Chao 52
Zhou, Bin 136

	Title
	Preface
	Organization
	Table of Contents
	A Grid Resource Broker with Network Bandwidth-Aware Job Scheduling for Computational Grids
	Introduction
	Related Work
	Design and Implementation of Resource Broker
	Design of Network Bandwidth-Award Job Scheduling
	Mechanism of Performance Evaluation
	The Algorithm

	Experimental Environment and Results
	Conclusions
	References

	Design of PeerSum: A Summary Service for P2P Applications
	Introduction
	PeerSum Summary Model
	Model Architecture
	Summarization Process: Scalability Issues
	Summary Representation

	Summary Management in PeerSum
	Summary Construction
	Summary Maintenance
	Peer Dynamicity

	Query Processing
	Query Extension
	Query Evaluation

	Performance Evaluation
	Cost Model
	Discussion

	Conclusion

	A High-Performance Virtual Storage System for Taiwan UniGrid
	Introduction
	System Framework and Deployment
	Main Features
	Multi-source Data Transfer
	Date Sharing
	Single Sign-On
	The Data Management Client

	Operation Scenario of Taiwan UniGrid
	Conclusion
	References

	Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal
	Introduction
	State of the Art
	Grid Validation
	Evaluation of Grid PKIs

	The Problem of Grid Security Interoperability
	The Architectural Model of an Interoperability System
	POIS: Policy and OCSP Based Interoperability System
	Extended Path Validation: POIS and the End-Entity
	Extended Path Validation: POIS and the Grid Services Container

	Conclusions and Future Work
	References

	TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services
	Introduction
	Related Works
	Design of TCMM
	Overview of TCMM
	Tree Management
	Mesh Management

	Performance Evaluation
	Simulation Setup
	Control Overhead
	Starting Delay
	Dynamic Resistance

	Conclusions
	References

	Fault Management in P2P-MPI
	Introduction
	P2P-MPI Overview
	Replication and Failure Probability
	Fault Detection: Background
	Fault Detection in P2P-MPI
	Assumptions and Requirements
	Design Issues
	P2P-MPI Implementation

	Experiments
	Conclusion

	Heterogeneous Wireless Sensor Network Deployment and Topology Control Based on Irregular Sensor Model
	Introduction
	Related Work
	Preliminaries
	Irregular Sensor Model
	Some Definitions of Heterogeneous Wireless Sensor Network

	Heterogeneous Sensor Deployment
	Initialization Step
	Neighbor-Info Collection Step
	Candidates Generation Step
	Scoring Step
	Sensor Addition Step

	Experiments
	Conclusions
	References

	Multiple Cluster Merging and Multihop Transmission in Wireless Sensor Networks
	Introduction
	Uniform Cluster-Head Distribution
	Cluster Merging

	2-Level LEACHM
	Master Cluster-Head Determination

	Simulation Results and Analysis
	Sensitivity Analysis of LEACHM

	Conclusion

	CFR: A Peer-to-Peer Collaborative File Repository System
	Introduction
	Related Work
	System Overview
	The Overlay Management of CFR
	The Base Overlay
	The Region Overlay

	The File Management of CFR
	Insert Files and Create Duplicates in CFR
	Retrieve and Remove Files in CFR
	Dealing with Storage Node Dynamics

	Simulation Results
	Expected Number of Hops to Collect All Links
	Evaluation of File Management of CFR

	Experimental Results
	Conclusions and Future Work
	References

	Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy
	Introduction
	Technical Preliminaries
	Fuzzy Logic Systems
	Coverage

	Proposed Deployment Approach: EFOA
	Assumptions and Model
	Energy-Efficient Fuzzy Optimization Algorithm

	Proposed Network Maintenance Strategy
	Performance Evaluations
	Conclusions and Future Work
	References

	Server Placement in the Presence of Competition
	Introduction
	Problem Formulation
	Finding Extra Server Locations
	NP-Completeness
	Experiment Results
	Experiment Setting
	Effect of
	Effect of the Number of Original Servers
	Effect of k

	Conclusion

	A Scalable Mechanism for Semantic Service Discovery in Multi-ontology Environment
	Introduction
	Related Works
	Architecture of SSD_OC
	Semantic Service Matching in SSD_OC
	Related Definitions
	Semantic Service Matching in SSD_OC
	Put Them Together-A Service Discovery Example

	Experiments
	Conclusions and Future Works
	References

	A Collaborative-Aware Task Balancing Delivery Model for Clusters
	Introduction
	Related Work
	CAMT: Reinterpreting the Key Awareness Concepts
	Load Balancing Algorithm in CAMT
	State Measurement Rule
	Information Exchange Rule
	Initiation Rule
	Load Balancing Operation

	The CAMT Architecture
	The Load Agent
	The Global State Agent
	The Initiation Agent
	The Load Balancer Agent

	Experimental Results
	Conclusions
	References

	An Improved Model for Predicting HPL Performance
	Introduction
	HPL Algorithm and Performance Score Model
	HPL Algorithm
	Performance Score Model

	Comparative Analysis of Different Models on Various Clusters
	NCHC Formosa PC Cluster
	NCHC Triton Cluster
	Dawning 4000A

	Prediction of R_max on SIRAYA
	Conclusion
	References

	An Ad Hoc Approach to Achieve Collaborative Computing with Pervasive Devices
	Introduction
	Adaptive Software Framework: FRAME
	Reassembly
	Performance Evaluation
	Related Work
	Conclusion and Future Work

	Optimizing Server Placement for QoS Requirements in Hierarchical Grid Environments
	Introduction
	The System Model
	The Minimum Server Placement Problem
	The Optimal Service Quality Problem
	Experimental Results
	Conclusions

	AHSEN – Autonomic Healing-Based Self Management Engine for Network Management in Hybrid Networks
	Introduction
	Related Work
	Proposed Architecture
	Software Architecture

	Implementation Details
	Concluding Remarks
	References

	Development of a GT4-Based Resource Broker Service: An Application to On-Demand Weather and Marine Forecasting
	Introduction
	The Resource Broker Architecture and Design
	The Native Latent Semantic Indexing Based Matchmaking Algorithm
	The Condor ClassAd Based Matchmaking Algorithm
	An Application to on Demand Weather and Marine Forecasting
	Conclusions and Future Works
	References

	Small-World Network Inspired Trustworthy Web Service Evaluation and Management Model
	Introduction
	Small-World Network and WS Trustworthiness
	Trustworthiness in the Human Small-World Network
	WS Trustworthiness

	WS Trustworthiness Evaluating and Managing Model
	WS Trustworthy Management Model
	APAEAS and AWSORT

	Web Service Federation Organization Protocols, Data Structures and Instructions
	AWSROT Protocol
	APAEAS Protocol
	Instruction System

	WS Evaluating and Managing Algorithm
	WS Assigning Algorithm
	WS Loading-Balance Algorithm

	Simulations of Trustworthy WS Assigning
	Conclusions
	References

	Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid
	Introduction
	Related Work
	Computational Grid Model and Experimental Setting
	Site Selection Policies for Load Sharing in a Heterogeneous Grid
	Feasible Load Sharing in a Computational Grid
	Multi-site Parallel Execution in a Heterogeneous Grid
	Conclusion
	References

	Meeting QoS Requirements of Mobile Computing by Dual-Level Congestion Control
	Introduction
	Research Background
	UBC-CAC System Model
	Utility Function
	System Model

	Design of UBC Module
	Congestion Detection
	User Traffic Shaper
	User Notification

	User Behavior Modes and Performance Evaluation
	User Behavior Modes
	Simulation

	Conclusions
	References

	A Transaction Model for Context-Aware Applications
	Introduction
	Related Work
	Motivation and Further Analyses
	Cause for Anomalies in Context-Aware Service Providing
	Necessity and Benefits of Applying Transaction Models
	Requirements of Transaction Model for Context-Awareness

	A Transaction Model: TMfm
	Formalizing of Context-Aware Applications
	Scopes
	TMfm Model

	An Implementation of TMfm
	Discussion
	Conclusion
	References

	A Grid-Based Remote Experiment Environment in Civil Engineering
	Introduction
	Related Works
	KOCEDgrid
	Collaborative Research Environment
	Remote Experiment
	Collaborative Environment

	Supporting Remote Experiment
	Hybrid Test Model
	Building a Prototype for Hybrid Test Model

	Conclusions

	Mobile Ad Hoc Grid Using Trace Based Mobility Model
	Introduction
	Related Work
	Proposed Architecture for Mobile Ad Hoc Grid
	Grid Formation

	Mobile Ad Hoc Grid Evaluation
	Conclusion and Future Work
	References

	Self Managing Middleware for Dynamic Grids
	Introduction
	Self Managed Grid Middleware
	Software Manager
	Security Manager
	Software Repository

	Resource Manager
	Resource Mapping
	Architecture
	Federation of Registry

	Use Case
	Conclusion
	References

	Adaptive Workflow Scheduling Strategy in Service-Based Grids
	Introduction
	Problem Statement
	Task Graph
	Service Graph
	Performance Criteria

	Adaptive Scheduling Using Dynamic Maximum Flow Algorithm
	Experiment
	Performance Evaluation According to the Number of Nodes for Services
	Performance Evaluation According to the Number of Tasks
	Performance Evaluation in Real Grid Application

	Related Works
	Conclusion
	References

	Scalable Thread Visualization for Debugging Data Races in OpenMP Programs
	Introduction
	Background
	OpenMP Program
	Race Detection Tools

	Scalable Thread Visualization
	Thread Visualization
	Scalable Visualization

	Experimentation
	Visualization Engines
	Visualization Cases

	Conclusion

	MPIRace-Check: Detection of Message Races in MPI Programs
	Introduction
	Background
	Message Races
	Related Work

	Race Detection
	Concurrency Check
	MPI Profiling Interface

	Experimentation
	Conclusion

	The Modified Grid Location Service for Mobile Ad-Hoc Networks
	Introduction
	Overview of MGLS Scheme
	Grid Hierarchy
	Location Servers
	Design Tradeoffs

	Comparisons Based on a Theoretical Model
	Metrics
	Model Assumptions
	MGLS
	GLS
	Summary of Theoretical Analyses

	Performance Evaluation Using Simulation
	Conclusions

	Authentication and Access Control Using Trust Collaboration in Pervasive Grid Environments
	Introduction
	Pervasive Grid Scenario
	The Chameleon Architecture
	The Architecture Description

	How Foreign User Accesses Unknown Site?
	Requirements
	Chameleon Behavior

	Implementation and Discussion
	Conclusion

	Architecture-Based Autonomic Deployment of J2EE Systems in Grids
	Introduction
	Context and Main Assumptions
	J2EE System Configuration and Deployment
	Deployment in a J2EE Cluster
	From J2EE Clusters Management to Virtual Clusters Management

	Virtual Cluster Deployment System
	Deployment Specification
	Deployment Process
	Automatic Recovery from Failures

	Implementation Status and Evaluation
	Implementation Status
	Evaluation

	Related Work
	Conclusion

	Dynamic Workload Balancing for Collaboration Strategy in Hybrid P2P System
	Introduction
	Related Works
	Dynamic Workload Management
	Importance of SP Workload
	Workload Value Evaluation
	Workload Status Classification
	Collaboration Policy

	Experimental Evaluations
	Conclusion
	References

	Performance-Based Workload Distribution on GridEnvironments
	Introduction
	Background Review
	Dynamic Loop Scheduling Schemes
	Association Rule Mining

	Approach: Performance-Based Workload Distribution (PWD)
	The System Model
	Performance Ratio
	Determination of Static-Workload Ratio (SWR)
	Algorithm

	Experimental Results
	Application 1: Matrix Multiplication
	Application 2: Association Rule Mining
	Application 3: Mandelbrot Set Computation

	Conclusions
	References

	A Visual Framework for Deploying and Managing Context-Aware Services
	Introduction
	Background
	Symbolic Location Model
	Compound Document-Based Management Interface
	Basic Approach
	Remarks

	M-Space: Location Model for Smart Spaces
	Containment Relationship Model
	Agent

	Compound Document Framework for Managing Pervasive Computing
	Visual Component
	Component Runtime System

	Binding Between Visual Components and Virtual Counterparts
	Updating the Structure and Attributes of Visual Components
	Updating the Structure and Attributes of Agents

	Early Experience
	Management System for Context-Aware Services

	Related Work
	Location Models
	Management Systems for Pervasive Computing

	Conclusion

	Towards a Peer-To-Peer Platform for High Performance Computing
	Introduction
	$XtremWeb-CH$ Ingredients
	The Coordinator
	The Workers
	The Warehouses
	The Brokers

	$XWCH$ Characteristics
	Support of Communicating Tasks
	Direct Communication Between Workers
	Granularity and Scheduling

	Experiments
	The Application
	Evaluation of the Scheduling Algorithm

	Conclusion
	References

	Assessing Contention Effects on MPI_Alltoall Communications
	Introduction
	Related Works
	Network Models Definition
	Problem Definition
	Notation and Lower Bounds

	Contention Signature Approach
	Non-linear Aspects

	Validation
	Fast Ethernet
	Gigabit Ethernet
	Myrinet

	Applications to Grid-Aware Communications
	Performance Prediction in a Grid Environment

	Conclusions and Future Works

	An Energy-Efficient Clustering Algorithm for Large-Scale Wireless Sensor Networks
	Introduction
	Related Works
	SNOWCLUSTER Algorithm
	Performance Evaluation
	Simulation Environments
	Energy Consumption
	The Amount of Data
	Network Lifetime

	Conclusion

	An Algorithm Testbed for the Biometrics Grid
	Introduction
	Related Work
	Design Issues of System
	Concepts
	A Framework of the Biometrics Grid
	The BMG Workflow for the Algorithm Testbed

	A Testbed for Biometric Algorithms
	Single Biometric Test
	Multimodal Biometrics Test

	A Case Study
	The Environment
	Two Biometrics Recognition Processes
	Analysis

	Conclusions

	Task Migration in a Pervasive Multimodal Multimedia Computing System for Visually-Impaired Users
	Introduction
	Related Work
	Building a ML Knowledge for Configuration Optimization
	Machine Learning Training to Build User Preferences
	Alternative Configuration Spaces
	Optimizing Configuration of User’s Applications
	Realizing User Task Through Appropriate Modalities and Media

	Design Specification and Scenario Simulations
	Specification for User’s Task
	Optimizing User’s Task Configuration
	Specification for Detecting Suitability of Modality
	Experimental Results

	Conclusion
	References

	Minimalist Object Oriented Service DiscoveryProtocol for Wireless Sensor Networks
	Introduction
	Related Work
	picoObjects
	Abstract Service Discovery Framework
	Event Channels
	Place and Play Environment
	Properties
	Basic Interface for Actors
	Interaction Model for Actors
	Actor Set-Up
	Multi-requests
	Service Lookup
	Legacy SDP Integration

	Experimental Results
	Conclusions

	A Novel Data Grid Coherence Protocol Using Pipeline-Based Aggressive Copy Method
	Introduction
	Related Works
	The Pipeline-Based Aggressive Copy
	Network Architecture
	Integration with Pipeline Transfer Method
	Algorithm and Example of PAC

	Experimental Results and Analysis
	Suitable Number of Blocks
	Comparing the Transmission Speed

	Conclusions
	References

	A Design of Cooperation Management System to Improve Reliability in Resource Sharing Computing Environment
	Introduction
	Related Works
	P2P System
	Reliability Problem

	The Design for Cooperation Management System
	Definition of Cooperation and Cooperation Group
	Environment and Structure of Cooperation Management System
	System Design
	Comparison with Other System

	Conclusion
	References

	A Peer-to-Peer Indexing Service for Data Grids
	Introduction
	Related Work
	System Overview
	Architecture
	Distributed Hash Tables
	Mapping Registration
	Integration
	Security Model

	Implementation
	Performance Measurement
	Single Node Performance
	System Performance

	Future Work
	Conclusion

	A Novel Recovery Approach for Cluster Federations
	Introduction
	Relevant Data Structures
	Working Principle
	Algorithm Recovery
	Comparison
	Conclusion

	SONMAS: A Structured Overlay Network for Multidimensional Attribute Space
	Introduction
	System Design
	Attribute-ID-Hybrid Space
	Space Division and Interconnection Rules
	Basic Operations

	Evaluation
	Time Efficiency and Traffic Overhead
	Query Performance
	Summary

	Conclusions
	References

	Formal Specification and Implementation of an Environment for Automatic Distribution
	Introduction
	Architecture
	Formal Specification
	Distributed Program Structure
	Runtime Elements

	Implementation Model and Results
	Parameter Passing
	Implementation

	Evaluations
	ReadTest Benchmark
	Warshall Algorithm

	Conclusions
	References

	Dynamic Distribution for Data Storage in a P2P Network
	Introduction
	Us System
	Failure Correlation and Metapeers

	Definitions
	Notations
	Data Distribution
	Local Communication Cost of a Peer
	Global Communication Cost of a Peer
	Maximal Communication Cost
	Problem Formulation

	Distributions
	Random Distribution
	Asymptotically Optimal Data Distribution

	Data Distribution in a Dynamic P2P System
	Metapeer Distribution
	Over Metapeer Distribution
	Intrinsic Cost of Metapeer Distribution
	Analysis of Metapeer Distribution in a Dynamic Way

	Conclusion

	GRAVY: Towards Virtual File System for the Grid
	Introduction
	Data Access Problems in the Grid
	Related Work
	GRAVY: Solution for Data Access Problems in the Grid
	Architectural Issues
	Protocol Resolution
	Naming Management
	File Access and File Transfer

	Experimental Results
	Support for Multiple Protocols
	Performance

	Conclusion

	A Framework for Dynamic Deployment of Scientific Applications Based on WSRF
	Introduction
	Related Work
	Model Design and Implementation
	The Model Architecture
	Service Implementation
	MDS and Scheduling
	Security

	Evaluation
	Dynamic Deployment Experiments
	Grid Resource Experiments

	Conclusion and Future Work

	Group-Based Self-organization Grid Architecture
	Introduction
	Previous Works and Motivation
	Architecture Outline
	Analytical Model and Analysis
	Protocol Operation
	Recovery Algorithms
	Protocol Messages

	Performance Evaluation
	Testbed
	Measurement Results

	Conclusions
	References

	UR-Tree: An Efficient Index for Uncertain Data in Ubiquitous Sensor Networks
	Introduction
	Related Works
	UR-Tree
	Index Structure
	Search Algorithm
	Insert Algorithm
	Update Algorithm

	Performance Evaluation
	Conclusions
	References

	ZebraX: A Model for Service Composition with Multiple QoS Constraints
	Introduction
	Related Work
	QoS-Based Service Composition Model
	Definition of the Concepts
	Definition of the Composition Model
	Definition of the Utility Function
	Weight Computation

	Implementation
	Validation of the Model
	Validation of the Composition Model
	Validation of the Decision Model

	Conclusion and Future Work
	References

	Middleware Support for Java Applications on Globus-Based Grids
	Introduction
	Execution Model in Globus-Based Grids
	LCG/gLite Architecture
	LCG/gLite Job Submission

	Execution Model in SUMA/G
	SUMA/G Components
	SUMA/G I/O Subsystem
	SUMA/G Portal
	SUMA/G Job Submission

	SUMA/G Services for Globus Based Grids
	Security
	Resource Control and Administration
	Execution of a Java Application

	Experiments
	Applications
	Execution
	Results

	Conclusions

	Component Assignment for Large Distributed Embedded Software Development
	Introduction
	Software Model
	Design Model
	Platform Model
	Deployment Graph

	Component Assignment
	Assignment of Active Periods of Components
	Priority Assignment of Messages
	Component Assignment Algorithm

	Experiments Evaluation
	Conclusions and Future Work
	References

	LDFSA: A Learning-Based Dynamic Framed Slotted ALOHA for Collision Arbitration in Active RFID Systems
	Introduction
	Related Work for Anti-collision
	Basic Framed Slotted ALOHA Algorithm
	Dynamic Framed Slotted ALOHA Algorithm

	The Proposed Learning-Based Dynamic Framed Slotted ALOHA (LDFSA) Algorithm
	Performance Evaluation of LDFSA
	Simulation
	Experiment and Verification

	Conclusion and Future Works

	Implementation of OSD Security Framework and Credential Cache
	Introduction
	OSD Security Framework
	OASIS Security Framework and Lcache
	Implementation of OASIS Security Framework
	LCache

	Conclusion

	SEMU: A Framework of Simulation Environment for Wireless Sensor Networks with Co-simulation Model
	Introduction
	Related Works
	The Framework of SEMU
	Co-simulation Model
	Evaluation Results
	Conclusion
	References

	Combining Software Agents and Grid Middleware
	Introduction
	$DG-ADAJ$ Platform
	Agent Brokers Augmenting $DG-ADAJ$
	Combining Agent-Brokers and DG-ADAJ
	Concluding Remarks

	A Web Service-Based Brokering Service for e-Procurement in Supply Chains
	Introduction
	BPIMS-WS Architecture
	Web Services Discovery, Composition, Monitoring and Management in BPIMS-WS
	Related Works and Discussion
	Conclusions
	References

	A Thin Client Approach to Supporting AdaptiveSession Mobility
	Introduction
	Related Work in the Area
	Design Goals and System Architecture
	Design Goals
	System Architecture

	Implementing an Adaptive Approach to Session Mobility
	Evaluating the Performance of Our Approach
	Conclusion and Future Work

	Automatic Execution of Tasks in MiPeG
	Introduction
	Motivations and Contributions
	Motivations
	Our Contribution

	Utility Framework
	Service Architecture
	Scheduling Algorithms

	Conclusions and Future Work
	References

	Providing Service-Oriented Abstractions for the Wireless Sensor Grid
	Introduction
	TinySOA: Service-Oriented Architecture for WSN
	Implementation and Tests
	Conclusions

	Bio-inspired Grid Information System with Epidemic Tuning
	Introduction
	Ant-Inspired Reorganization of Grid Resources
	System Entropy and Pheromone Mechanism

	Adaptive Tuning and Epidemic Control
	Conclusions
	References

	Credibility Assignment in Knowledge Grid Environment
	Introduction
	Credibility Assignment to Decision Makers
	Formal Definition
	Solution of the Equation Set

	Comparison
	Conclusion
	References

	Image Streaming and Recognition for Vehicle Location Tracking Using Mobile Devices
	Introduction
	System Platform and Spatial Relative Distance
	Spatial Relative Distance
	Minimization of Spatial for Information on Location

	Extraction and Recognition of License Plate Image
	Image Expression and PDA
	Image Recognition Stage

	Concluding Remarks
	References

	Research on Planning and Deployment Platform for Wireless Sensor Networks
	Introduction
	The Workflow Analysis of the Platform
	The Implementation Framework Design
	Network Deployment
	Simulation

	Conclusions
	References

	Server-Side Parallel Data Reduction and Analysis
	Introduction
	Background
	Overview of SWAMP
	Shell-Script Interface
	Parallel Execution Engine

	Results
	Test Setup
	Performance Gain
	I/O Optimization
	Summary

	Conclusion

	Parallel Edge Detection on a Virtual Hexagonal Structure
	Introduction
	A Virtual Hexagonal Structure
	Edge Detection
	Experimental Results
	Conclusions
	References

	Author Index

