Christophe Cérin
Kuan-Ching Li (Eds.)

Advances in
Grid and
Pervasive Computing

Second International Conference, GPC 2007
Paris, France, May 2007
Proceedings

LNCS 4459

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4459

Christophe Cérin Kuan-Ching Li (Eds.)

Advances in
Grid and
Pervasive Computing

Second International Conference, GPC 2007
Paris, France, May 2-4, 2007
Proceedings

@ Springer

Volume Editors

Christophe Cérin

Université de Paris Nord

LIPN, CNRS UMR 7030

99 avenue J.B. Clément, 93430 Villetaneuse, P.O. Box , France
E-mail: cerin@lipn.univ-paris13.fr

Kuan-Ching Li

Providence University

Department of Computer Science and Information and Engineering
200 Chung-Chi Road Shalu, Taichung 43301, Taiwan

E-mail: kuancli@pu.edu.tw

Library of Congress Control Number: 2007926259

CR Subject Classification (1998): F.1, F2, D.1,D.2, D.4, C.2,C4, H4, K.6
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-72359-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72359-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12060115 06/3180 543210

Preface

GPC 2007 provided a high-profile, leading-edge forum for researchers and devel-
opers from industry and academia to report on the latest scientific and technical
advances, discuss and debate the major issues, and showcase the latest systems
in merging grid computing and the pervasive computing field.

This year, a total of 217 high-quality papers were submitted by researchers
and practitioners from about 20 countries. All the submissions were rigorously
reviewed by the Program Committee members. To ensure fairness and the quality
of the papers, we put a number of measures in place. For example, each paper
was assigned at least one reviewer from Australia, one reviewer from America,
and one reviewer from Europe. Based on the originality, significance, correctness,
relevance, and clarity of presentation, 56 submissions were selected as regular
papers and 12 were selected as short papers. The acceptation rate is 32%. Also,
the authors of accepted papers were required to submit a read-me file along with
the camera-ready version of their paper explaining how the reviewers comments
were taken into account in the final version of their paper.

The publication Co-chairs, Lucian Finta (Paris XIII, France) and Jemal
H. Abawajy (Deakin University, Australia), painstakingly went through each
read-me file and reviewers’ comments to ensure that the comments were indeed
incorporated into the final version of the papers. Only those papers that included
reviewers’ comments were finally accepted for inclusion in the proceedings. Un-
doubtedly, Lucian and Jemal had to work long hours to meet the tight deadline,
which is greatly appreciated.

The overall outcome of the revision process is a selection of papers that
showcase the very best of grid and pervasive computing technology today. After
the conference, the proceedings editors selected and recommended some high-
quality papers from the GPC 2007 conference to be published in special issues
of international journals. Special thanks go to Jemal H. Abawajy for liasing with
the chief editors of the journals.

The GPC 2007 program included presentations by accepted paper authors,
keynote speeches, and a special round table on “Pervasive Grid.” The special
round table was organized by Lionel Brunie, Manish Parashar, and Jean-Marc
Pierson. We thank them for this initiative.

We allocated a slot of 30 minutes for each paper presentation so that the
participants had plenty of time for questions and answers. We were also delighted
to be able to welcome three well-known international researchers, Thierry Priol
(France) representing the European CoreGrid initiative, Minyi Guo, Professor
at the School of Computer Science and Engineering, University of Aizu (Japan),
and Laurence T. Yang representing St. Francis Xavier University (Canada), who
delivered the keynote speeches.

VI Preface

We would like to take this opportunity to thank everyone involved with the
organization of GPC 2007. First, we would like to thank all the authors for their
submissions to the conference as well as for travelling some distance to partici-
pate in the conference. Second, we would like to thank the Program Committee
members and external reviewers for their superb job in selecting a set of excel-
lent papers that reflect the current research and development states of grid and
pervasive computing.

Third, we would like to thank Franck Cappello (INRIA, France), Jean-Luc
Gaudiot (University of California at Irvine), and Hai Jin (Huazhong University
of Science and Technology, Wuhan) for their valuable comments during the year.
Our appreciation also extends to Alfred Hofmann and Anna Kramer, both from
Springer, for their helpful comments in strengthening the conferences. We will
continue to improve further, in particular with the selection of the Program
Committees and other scientific issues. We are also grateful to Christine Nora
and Cyril Drocourt from IEEE France for the secure Web payment and for
managing the finances. Jean-Christophe Dubacq (Paris XIII) was busy with the
review system, the Web server, registration, and many other important issues
regarding the technical program. Catherine Girard from the INRIA Office of the
Collogium did a superb job once again with the organization and the INRIA
sponsorship. It is always a pleasure to work with Catherine Girard and her high
level of professionalism is highly appreciated.

GPC2007 was sponsored by Hewlett Packard through the strong support of
Franck Baetke, Philippe Devins, and Jean-Luc Assor, by INRIA and the Univer-
sity of Paris XIII through the ‘Conseil Scientifique’, and also through Laboratoire
de Recherche en Informatique de Paris Nord (LIPN - UMR CNRS 7030).

Last but not least, we express our gratitude to Francois and Ludivine from
Dakini Conseil for their help in organizing accommodation for conference atten-
dees, finding a venue for the conference and also for its banquet. We would also
like to thank Severine Bonnard from MGEN for allowing us to rent the beautiful
MGEN building with all the services that a speaker dreams to find on a site (e.g.,
comfortable rooms, a restaurant for the gourmets, etc.) in the center of Paris.

Remember also that on August 8, 1900, the German mathematician David
Hilbert during the International Congress of Mathematicians in Paris presented
a list of 23 unsolved problems that he saw as being the greatest challenges
for twentieth-century mathematics. One of them, the 10th problem, is about
Diophantine equations. It has been relevant for many years and the basis of the
work of many people including Church, Herbrand, Kleene, Godel, and Turing.
The 10th problem is about how to find a method (what we now call an algorithm)
for deciding whether a Diophantine equation has an (integral) solution. We hope
readers will be inspired by these proceedings. We hope that attendees will be
inspired by the spirit of Paris and by the great history of our discipline to achieve
new advance in the field of Grid and Pervasive computing.

March 2007 Christophe Cérin
Kuan-Ching Li

Steering Committee

Sajal K. Das
Jean-Luc Gaudiot
Hai Jin

Chung-Ta King
Kuan-Ching Li
Satoshi Sekiguchi
Cho-Li Wang
Chao-Tung Yang
Albert Y. Zomaya
Michel Cosnard

General Co-chairs

Franck Cappello
Kai Hwang

Program Co-chairs

Christophe Cérin
Kuan-Ching Li

Program Committee

Ali Pinar

Alvaro L.G.A. Coutinho
Andrew Wendelborn
Celso L. Mendes
Chao-Tung Yang
Chien-Min Wang
Ching-Hsien Hsu
Cho-Li Wang
Christina Pinotti
Christophe Cérin
Cynthia A. Phillips
Damon Shing-Min Liu
Dan Grigoras

Dan Meng

Organization

(The University of Texas at Arlington, USA)

(University of California - Irvine, USA)

(Huazhong University of Science and
Technology, PR China)

(National Tsing Hua University, Taiwan)

(Providence University, Taiwan)

(AIST, Japan)

(The University of Hong Kong, PR China)

(Tunghai University, Taiwan)

(The University of Sydney, Australia)

(INRIA, France)

(INRIA Futurs, France)
(University of Southern California, USA)

(University of Paris XIII, France)
(Providence University, Taiwan)

apinar@lbl.gov
alvaro@nacad.ufrj.br
andrew@cs.adelaide.edu.au
cmendes@cs.uiuc.edu
ctyang@thu.edu.tw
cmwang@iis.sinica.edu.tw
chh@chu.edu.tw
clwang@cs.hku.hk
pinotti@unipg.it
christophe.cerin@lipn.univ-paris13.fr
caphill@sandia.gov
damon@computer.org
d.grigoras@cs.ucc.ie
md@ncic.ac.cn

VIII Organization

Daniel Katz

Daniel Olmedilla
David De Roure
Deok-Gyu Lee
Dominico Laforenza
Dr. Jong Hyuk Park
Francis Lau

Franck Cappello
Frederic Loulergue
Guangwen Yang
Hamid R. Arabnia
Hao-Hua Chu
Hui-Huang Hsu
Hung-Chang Hsiao
Jairo Panetta
Jan-Jan Wu

Jean-Christophe Dubacq

Jean-Louis Pazat
Jean-Louis Roch
Jean-Luc Gaudiot
Jean-Marc Pierson
Jemal Abawajy
Jenq Kuen Lee
Jerry Hsi-Ya Chang
Jiannong Cao
Jianzhong Li
Jingling Xue

Jose Moreira

Ken Barker
Kuan-Ching Li
Kuo-Chan Huang
Laurence T.Yang
Lionel Li

Liria Matsumoto Sato
Lucian Finta

Luiz DeRose
Marcin Paprzycki
Mark Baker

Matt Mutka
Michel Hobbs
Michel Koskas
Ming-Lu Li

Minyi Guo
Mitsuhisa Sato
Mohamed Jemni

d.katzQieee.org
olmedilla@13s.de
dder@soton.ac.uk
hbrhedbr@sch.ac.kr
domenico.laforenza@isti.cnr.it
parkjonghyuk@gmail.com
femlau@cs.hku.hk

fciQ@lri.fr

frederic.loulergue@univ-orleans.fr

ygw@tsinghua.edu.cn
hra@cs.uga.edu
haochu@ntu.edu.tw
h-hsu@mail.tku.edu.tw
hchsiao@csie.ncku.edu.tw
panetta@cptec.inpe.br
wuj@iis.sinica.edu.tw
jedubacq@lipn.univ-paris13.fr
pazat@Qirisa.fr
jean-louis.roch@imag.fr
gaudiot@uci.edu
pierson@irit.fr
Jemal@deakin.edu.au
klee@pllab.cs.nthu.edu.tw
¢00jhc00@nchc.org.tw
csjcao@comp.polyu.edu.hk
lijzh@hope.hit.edu.cn
jxue@cse.unsw.edu.au
jmoreira@us.ibm.com
barker@cpsc.ucalgary.ca
kuancli@gmail.com
kchuang@mail.hku.edu.tw
lyang@stfx.ca

ni@cs.ust.hk
liria.sato@poli.usp.br
If@lipn.univ-paris13.fr
ldr@cray.com
marcin.paprzycki@swps.edu.pl
mark.baker@computer.org
mutka@cse.msu.edu
mick@deakin.edu.au
michel.koskas@u-picardie.fr
li-ml@cs.sjtu.edu.cn
minyiQu-aizu.ac.jp
msato@cs.tsukuba.ac.jp
Mohamed.jemni@fst.rnu.tn

Mohamed Ould-Khaoua

Nabil Abdennadher
Nong Xiao

Noria Foukia
Omer F Rana
Pangfeng Liu
Pedro Medeiros
Philippe Navaux
Ronald Perrott
Rosa Badia
Ruay-Shiung Chang
Rudolf Eigenmann
Sanjay Ranka
Siang Wun Song
Song Wu

Stephen Jenks
Sbastien Tixeuil
Tien-Hsiung Weng
Ting-Wei Hou
Tomas Margale
Toni Cortes
Victor Malyshkin
Wang-Chien Lee
Weijia Jia

Wenbin Jiang
Weng Fai Wong
Wenguang Chen
Wolfgang Gentzsch
Won W. Ro
Xiangjian He
Xiaowu Chen
Yeh-Ching Chung
Yong-Kee Jun
Yunhao Liu

Organization

Organization

mohamed@dcs.gla.ac.uk
nabil.abdennadher@hesge.ch
xiao-n@vip.sina.com
nfoukia@infoscience.otago.ac.nz
o.f.rana@cs.cardiff.ac.uk
pangfeng@csie.ntu.edu.tw
pm@di.fct.unl.pt
navaux@inf.ufrgs.br
r.perrott@qub.ac.uk
rosab@ac.upc.es
rschang@mail.ndhu.edu.tw
eigenman@ecn.purdue.edu
ranka@cise.ufl.edu
song@ime.usp.br
wusong@hust.edu.cn
sjenks@uci.edu
tixeuil@lri.fr
thweng@pu.edu.tw
hou@nc.es.ncku.edu.tw
tomas.margalef@uab.es
toni@ac.upc.edu
malysh@ssd.sscc.ru
wlee@cse.psu.edu
itjiaQcityu.edu.hk
wenbinjiang@hust.edu.cn
wongwf@comp.nus.edu.sg
cwg@tsinghua.edu.cn
wgentzsch@menc.org
wroQ@csun.edu
sean@it.uts.edu.au
chen@buaa.edu.cn
ychung@cs.nthu.edu.tw
jun@gnu.ac.kr
liu@cse.ust.hk

IX

Jemal Abawajy (Deakin University, Australia)
Lucian Finta (University of Paris XIII, France)
Philippe d’Anfray (Renater, France)
Ching-Hsien Hsu

(Chung Hua University, Taiwan)
Christine Nora (IEEE France Section)

Publication Co-chair
Publication Co-chair
Publicity Co-chair
Publicity Co-chair

Finance Chair

X Organization
Registration Co-chair
Registration Co-chair

Local Arrangements Co-chair
Local Arrangements Co-chair

External Reviewers

Adel Essafi
Ahmed Elleuch
Ala Rezmerita
Alexandre Tabbal
Andrei Hutanu
Ayon Basumallik
Bin Chen
Bing-Rong Lin
Brett Estrade
Camille Coti
Cao Linchun
Chia-Yen Shih
Chuang-wen You
Chunming Hu
Congxing Cai
Connor Gray
Dan Meng
Daniel Wang
Derrick Kondo
Edson Midorikawa,
Fabrizio Silvestri
Fathi Essalmi
Feng Liu
Francoise Andre
Gilles Fedak
Gisele Craveiro
Gongwei zhang
Guangwen Yang
Hailong Sun
Hansang Bae

Jean-Christophe Dubacq
(University of Paris XIII, France)

Sébastien Tixeuil

(University of Paris Sud, Orsay, France)

Sophie Toulouse

Catherine Girard (INRIA Futurs, France)

(University of Paris XIII, France)

Hao Ren
Heithem Abbes
Hsi-Min Chen
Hsi-Ya Chang
Hsiao-Hsi Wang
Huajing Li

Jairo Panetta
Jan-Jan Wu
Jiannong Cao
Jingling Xue
Joanne Ren

Jose Moreira
Joshua Abadie
Julian Winter
Ken C.K. Tsang
Krzysztof Rzadca
Laukik Chitnis
Leonardo Ferreira
Lin Chen

Manas Somaiya
Marcia Cera
Mark C. M. Tsang
Marta Mattoso
Matt Mutka
Mohamed Ould-Khaoua
Monica Py

Oleg Lodygensky
Olivier Delannoy
Pan Linfeng
Partha Sarathi

Paul Malecot

Pierre Lemarinier
Qiang Wang

Rafael Bohrer vila
Rahim Lakhoo
Rodrigo Rosa Righi
Ruay-Shiung Chang
Sebastien Varrette
Sevin Fide

Seyong Lee
Shantenu Ja
Srinivas Vadlamani
Tao Chen
Tien-Hsiung Weng
Troy Johnson
Vincent Roca
Vlady Ravelomanana
Weng-Fai Wong
Wolfgang Gentzsch
Xuanhua Shi
Yaakoub El Khamra
Yang Yanqin

Yong Wang

Yosr Slama

Yosra Hlaoui

Yu Yong

Zhang Da Qiang
Zhihang Yu

Zhou Lei

Table of Contents

A Grid Resource Broker with Network Bandwidth-Aware Job
Scheduling for Computational Grids
Chao-Tung Yang, Sung-Yi Chen, and Tsui-Ting Chen

Design of PeerSum: A Summary Service for P2P Applications
Rabab Hayek, Guillaume Raschia, Patrick Valduriez, and
Noureddine Mouaddib

A High-Performance Virtual Storage System for Taiwan UniGrid.
Chien-Min Wang, Hsi-Min Chen, Chun-Chen Hsu, and Jan-Jan Wu

Interoperable Grid PKIs Among Untrusted Domains: An Architectural

Proposal
Valentina Casola, Jesus Luna, Oscar Manso, Nicola Mazzocca,
Manel Medina, and Massimiliano Rak

TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services
Hai Jin, Xuping Tu, Chao Zhang, Ke Liu, and Xiaofei Liao

Fault Management in P2P-MPT......
Stéphane Genaud and Choopan Rattanapoka

Heterogeneous Wireless Sensor Network Deployment and Topology
Control Based on Irregular Sensor Model
Chun-Hsien Wu and Yeh-Ching Chung

Multiple Cluster Merging and Multihop Transmission in Wireless
Sensor Networkso
Siddeswara Mayura Guru, Matthias Steinbrecher,
Saman Halgamuge, and Rudolf Kruse

CFR: A Peer-to-Peer Collaborative File Repository System............
Meng-Ru Lin, Ssu-Hsuan Lu, Tsung-Hsuan Ho, Peter Lin, and
Yeh-Ching Chung

Optimal Deployment of Mobile Sensor Networks and Its Maintenance
Strategy . ..o
Xiaoling Wu, Jinsung Cho, Brian J. d’Auriol, and Sungyoung Lee

Server Placement in the Presence of Competition
Pangfeng Liu, Yi-Min Chung, Jan-Jan Wu, and Chien-Min Wang

A Scalable Mechanism for Semantic Service Discovery in Multi-ontology
Environment
Zhizhong Liu, Huaimin Wang, and Bin Zhou

13

27

39

52

64

78

89

XII Table of Contents

A Collaborative-Aware Task Balancing Delivery Model for Clusters 146
José Luis Bosque, Pilar Herrero, Manuel Salvadores, and
Maria S. Pérez

An Improved Model for Predicting HPL Performance................. 158
Chau-Yi Chou, Hsi-Ya Chang, Shuen-Tai Wang,
Kuo-Chan Huang, and Cherng-Yeu Shen

An Ad Hoc Approach to Achieve Collaborative Computing with
Pervasive Devices 169
Ren-Song Ko and Matt W. Mutka

Optimizing Server Placement for QoS Requirements in Hierarchical

Grid Environments 181
Chien-Min Wang, Chun-Chen Hsu, Pangfeng Liu,
Hsi-Min Chen, and Jan-Jan Wu

AHSEN — Autonomic Healing-Based Self Management Engine for
Network Management in Hybrid Networks 193
Junaid Ahsenali Chaudhry and Seungkyu Park

Development of a GT4-Based Resource Broker Service: An Application
to On-Demand Weather and Marine Forecasting 204
R. Montella

Small-World Network Inspired Trustworthy Web Service Evaluation
and Management Model 218
Qinghua Meng and Yongsheng Ding

Towards Feasible and Effective Load Sharing in a Heterogeneous
Computational Grid........ 229
Kuo-Chan Huang, Po-Chi Shih, and Yeh-Ching Chung

Meeting QoS Requirements of Mobile Computing by Dual-Level
Congestion Control. 241
Yi-Ming Chen and Chih-Lun Su

A Transaction Model for Context-Aware Applications 252
Shaxun Chen, Jidong Ge, Xianping Tao, and Jian Lu

A Grid-Based Remote Experiment Environment in Civil Engineering ... 263
Jang Ho Lee, Taikyeong Jeong, and Song-Yi Yi

Mobile Ad Hoc Grid Using Trace Based Mobility Model 274
V. Vetri Selvi, Shakir Sharfraz, and Ranjani Parthasarathi

Self Managing Middleware for Dynamic Grids 286
Sachin Wasnik, Terence Harmer, Paul Donachy, Andrew Carson,
Peter Wright, John Hawkins, Christina Cunningham, and
Ron Perrott

Table of Contents

Adaptive Workflow Scheduling Strategy in Service-Based Grids
JongHyuk Lee, SungHo Chin, HwaMin Lee, TaeMyoung Yoon,
KwangSik Chung, and HeonChang Yu

Scalable Thread Visualization for Debugging Data Races in OpenMP
Programs
Young-Joo Kim, Jae-Seon Lim, and Yong-Kee Jun

MPIRace-Check: Detection of Message Races in MPI Programs
Mi-Young Park, Su Jeong Shim, Yong-Kee Jun, and Hyuk-Ro Park

The Modified Grid Location Service for Mobile Ad-Hoc Networks
Hau-Han Wang and Sheng-De Wang

Authentication and Access Control Using Trust Collaboration in
Pervasive Grid Environments i
Rachid Saadi, Jean Marc Pierson, and Lionel Brunie

Architecture-Based Autonomic Deployment of J2EE Systems in Grids . .
Didier Hoareau, Takoua Abdellatif, and Yves Mahéo

Dynamic Workload Balancing for Collaboration Strategy in Hybrid
P2P Systemo
Suhong Min, Byong Lee, and Dongsub Cho

Performance-Based Workload Distribution on Grid Environments
Wen-Chung Shih, Chao-Tung Yang, Tsui-Ting Chen, and
Shian-Shyong Tseng

A Visual Framework for Deploying and Managing Context-Aware
SEIVICES . . o vttt et e

Ichiro Satoh

Towards a Peer-To-Peer Platform for High Performance Computing
Nabil Abdennadher and Régis Boesch

Assessing Contention Effects on MPI Alltoall Communications.
Luiz Angelo Steffenel, Mazime Martinasso, and Denis Trystram

An Energy-Efficient Clustering Algorithm for Large-Scale Wireless
Sensor Networks
Si-Ho Cha and Minho Jo

An Algorithm Testbed for the Biometrics Grid.......................

Anlong Ming and Huadong Ma

Task Migration in a Pervasive Multimodal Multimedia Computing

System for Visually-Impaired Users

Ali Awde, Manolo Dulva Hina, Yacine Bellik,
Amar Ramdane-Cherif, and Chakib Tadj

XIII

298

310

322

334

348

362

374

385

397

412

XIV Table of Contents

Minimalist Object Oriented Service Discovery Protocol for Wireless
Sensor Networks
D. Villa, F.J. Villanueva, F. Moya, F. Rincon, J. Barba, and
J.C. Lépez

A Novel Data Grid Coherence Protocol Using Pipeline-Based
Aggressive Copy Method i
Reen-Cheng Wang, Su-Ling Wu, and Ruay-Shiung Chang

A Design of Cooperation Management System to Improve Reliability
in Resource Sharing Computing Environment.............

Ji Su Park, Kwang Sik Chung, and Jin Gon Shon

A Peer-to-Peer Indexing Service for Data Grids
Henrik Thostrup Jensen and Josva Kleist

A Novel Recovery Approach for Cluster Federations
Bidyut Gupta, Shahram Rahimi, Raheel Ahmad, and Raja Chirra

SONMAS: A Structured Overlay Network for Multidimensional
Attribute Space.
Hsiu-Chin Chen and Chung-Ta King

Formal Specification and Implementation of an Environment for
Automatic Distribution
Saeed Parsa and Omid Bushehrian

Dynamic Distribution for Data Storage in a P2P Network.............
Olivier Soyez, Cyril Randriamaro, Gil Utard, and Francis Wlazinski

GRAVY: Towards Virtual File System for the Grid...................
Thi-Mai-Huong Nguyen, Frédéric Magoulés, and Cédric Révillon

A Framework for Dynamic Deployment of Scientific Applications Based
on WS RE .
Lei Yu and Frédéric Magoules

Group-Based Self-organization Grid Architecture.....................
Jaime Lloret, Miguel Garcia, Fernando Boronat, and Jesus Tomas

UR-Tree: An Efficient Index for Uncertain Data in Ubiquitous Sensor
Networks . ..o
Dong-Oh Kim, Dong-Suk Hong, Hong-Koo Kang, and Ki-Joon Han

ZebraX: A Model for Service Composition with Multiple QoS

ConStTalntS . ..o\ttt
Xingzhi Feng, Quanyuan Wu, Huaimin Wang, Yi Ren, and
Changguo Guo

Table of Contents

Middleware Support for Java Applications on Globus-Based Grids
Yudith Cardinale, Carlos Figueira, Emilio Herndndez,
Eduardo Blanco, and Jestus De Oliveira

Component Assignment for Large Distributed Embedded Software
Development
Zhigang Gao and Zhaohui Wu

LDFSA: A Learning-Based Dynamic Framed Slotted ALOHA for
Collision Arbitration in Active RFID Systems
Hyuntae Cho, Woonghyun Lee, and Yunju Baek

Implementation of OSD Security Framework and Credential Cache
Gu Su Kim, Kwang Sun Ko, Ungmo Kim, and Young Ik Fom

SEMU: A Framework of Simulation Environment for Wireless Sensor
Networks with Co-simulation Model
Shih-Hsiang Lo, Jiun-Hung Ding, Sheng-Je Hung, Jin-Wei Tang,

Wei-Lun Tsai, and Yeh-Ching Chung

Combining Software Agents and Grid Middleware
Richard Olejnik, Bernard Toursel, Maria Ganzha, and
Marcin Paprzycki

A Web Service-Based Brokering Service for e-Procurement in Supply
CRhAains . .ot
Giner Alor-Hernandez, Ruben Posada-Gomez,
Juan Miguel Gomez-Berbis, and Ma. Antonieta Abud-Figueroa

A Thin Client Approach to Supporting Adaptive Session Mobility
Dan MacCormac, Mark Deegan, Fred Mtenzi, and Brendan O’Shea

Automatic Execution of Tasks in MiPeG
Antonio Coronato, Giuseppe De Pietro, and Luigi Gallo

Providing Service-Oriented Abstractions for the Wireless Sensor Grid. . .
Edgardo Awilés-Lépez and J. Antonio Garcia-Macias

Bio-inspired Grid Information System with Epidemic Tuning
Agostino Forestiero, Carlo Mastroianni, Fausto Pupo, and
Giandomenico Spezzano

Credibility Assignment in Knowledge Grid Environment
Saeed Parsa and Fereshteh-Azadi Parand

Image Streaming and Recognition for Vehicle Location Tracking Using
Mobile Devices
Jin-Suk Kang, Taikyeong T. Jeong, Sang Hyun Oh, and
Mee Young Sung

XVI Table of Contents

Research on Planning and Deployment Platform for Wireless Sensor
Networks . ..o 738
Yuebin Bai, Jinghao Li, Qingmian Han, Yujun Chen, and Depei Qian

Server-Side Parallel Data Reduction and Analysis 744
Daniel L. Wang, Charles S. Zender, and Stephen F. Jenks

Parallel Edge Detection on a Virtual Hexagonal Structure............. 751
Xiangjian He, Wenging Jia, Qiang Wu, and Tom Hintz

Author Index 757

A Grid Resource Broker with Network Bandwidth-
Aware Job Scheduling for Computational Grids*

Chao-Tung Yang®*, Sung-Yi Chen, and Tsui-Ting Chen

High-Performance Computing Laboratory
Department of Computer Science and Information Engineering
Tunghai University, Taichung, 40704, Taiwan, ROC
{ctyang, 9942805, g95280003}@thu.edu.tw

Abstract. This work presents a workflow-based computational resource broker
whose main functions are matching available resources with user requests and
considering network information statuses during matchmaking. The resource
broker provides an interface for accessing available and appropriate resources
via user credentials. We use the Ganglia and NWS tools to monitor resource
status and network-related information, respectively. We also report on using
the Globus Toolkit to construct a grid platform called the TIGER project that
integrates the distributed resources of five universities in Taichung, Taiwan,
where the resource broker was developed. The proposed broker provides se-
cure, updated information about available resources and serves as a link to the
diverse systems available in the Grid.

1 Introduction

Grid computing can be defined as coordinated re source sharing and problem solving
in dynamic, multi institutional collaborations [1, 2, 3, 4, 5, 6]. Grid computing in-
volves sharing heterogeneous resources, based on different platforms, hard-
ware/software, computer architecture, and computer languages, which located in
different places belonging to different administrative domains over a network using
open standards. The subject of this paper is the resource management for a grid
system that is primarily intended to support computationally expensive tasks like
simulations and optimizations on a grid [7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20].
Applications are represented as workflows that can be decomposed into single grid
jobs. These jobs require resources from the grid that are described as accurately as
necessary. The main task of the resource management is resource brokering to opti-
mize a global schedule for all requesting grid jobs and all requested resources. Conse-
quently, a global optimizing resource broker with network bandwidth-aware is pro-
posed. It’s embedding in the application and resource management system, and on
important implementation decisions. The performance of the optimization method is
demonstrated by an example.

* This work was partially supported by National Science Council of Republic of China under
the number of NSC95-2221-E-029-004 and NSC95-2218-E-007-025.
** Corresponding Author.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 1— 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 C.-T. Yang, S.-Y. Chen, and T.-T. Chen

In the grid environment, applications make use of shared grid resources to improve
performance. The target function usually depends on many parameters, e.g., the
scheduling strategies, the configurations of machines and links, the workloads in a
grid, the degree of data replication, etc. In this paper, we examine how those parame-
ters may affect performance. We choose an application’s overall response time as an
object function and focus on dynamically scheduling independent tasks. We define
the job, scheduler, and performance model of a grid site and conduct experiments on
TIGER grid platform [9]. We use the Ganglia [15] and NWS [16] tools to monitor
resource status and network-related information, respectively. Understanding influ-
ence of each parameter is not only crucial for an application to achieve good perform-
ance, but would also help to develop effective schedule heuristics and design high
quality grids.

The paper presents the design and the development of a Grid Network-Aware Re-
source Broker. It enhances the features of a Grid Resource Broker with the capabili-
ties provided by a network information service form NWS tool [15]. Here, we will
take a deeper look at what constitutes the scheduling discipline and its components.
Scheduling is generally not well understood because scheduling products often inte-
grate multiple functions into one package called a scheduler. So we are going to de-
construct scheduling into its constituent parts. The innovative contribution of the
presented integration is the possibility to design and implement new map-
ping/scheduling mechanisms to take into account both network and computational
resources.

The main contributions of this paper are listed in the following:

e The system design and implementation of computational grid resource broker is
presented.

e A workflow model is presented to solve the dependency problem of jobs.

e A network bandwidth-award job scheduling algorithm is proposed for communica-
tion-intensive jobs.

e A model of monitoring and information service for grid resources is provided.

e A user friendly Grid Portal is conducted for general users to submit their jobs and
monitor the detail status of resources.

2 Related Work

Among the research works focused on Grid Resource Broker (GRB) topics, in 2002
the authors in [17] described the Grid Resource Broker (GRB) portal, an advanced
Web gateway for computational Grids in use at the University of Lecce. The portal
allows trusted users seamless access to computational resources and Grid services,
providing a friendly computing environment that takes advantage of the underlying
Globus Toolkit middleware, enhancing its basic services and capabilities.

In [18, 20], the authors describe a resource management system which is the cen-
tral component of a distributed network computing system. There have been many
projects focused on network computing that have designed and implemented resource
management systems with a variety of architectures and services. In this paper, an
abstract model and a comprehensive taxonomy for describing resource management

A GRB with Network Bandwidth-Aware Job Scheduling for Computational Grids 3

architectures is developed. The paper presents taxonomy for Grid RMSs. Require-
ments for RMSs are described and an abstract functional model has been developed.
The requirements and model have been used to develop a taxonomy focused on types
of Grid system, machine organization, resource model characterization, and schedul-
ing characterization. Representative Grid systems are surveyed and placed into their
various categories.

In [19], the authors present the design and implementation of an OGSI-compliant
Grid resource broker compatible with both GT2 and GT3. It focuses on resource dis-
covery and management, and dynamic policy management for job scheduling and
resource selection. The presented resource broker is designed in an extensible and
modular way using standard protocols and schemas to become compatible with new
middleware versions. The author also gave experimental results to demonstrate the
resource broker behavior.

3 Design and Implementation of Resource Broker

In the previous work [14], we implemented a computational grid resource broker
which is used to discover and evaluate grid resources, and make informed job submis-
sion decisions by matching requirements of a job with an appropriate grid resource to
meet user and deadline requirements. The system architecture of resource broker and
the relation of each component are shown in Figure 1. Each rectangular represents a
unique component of our system. Furthermore, this paper had implemented the bold-
face parts. Users could easily make use of our resource broker through a common
Grid portal [6, 9, 10, 11, 12, 13, 14].

The primary task of Resource Broker is to compare requests of users and resource
information provided by Information Service. After the most appropriate job assign-
ment scheme is selected, machines of the Grid are assigned and the Scheduler is

Grid User

« Lookup Results * LoginLogout | 5oy p Status
+ Submit Jobs

Job Monitor ’-—D‘?:;’ayy Portal Display: M;’QS:;‘QQ |

Submit Jobs Query information

* Resource Status

« Network Status

« Historical Information
« Data Visualization

¥

« Job Description

« Job Status Work flow
« Used Resources System Maker

Submit Jobs

é Global Jobs
Jobs DB Quagg

Information DB
Store/Query Information
« Resource Status

* Dispatch Jobs « Network Status
« Ask Resource status

Query Inf. Information
Service

Fig. 1. System architecture

4 C.-T. Yang, S.-Y. Chen, and T.-T. Chen

responsible to submit the job and execute the applications. The results are collected
and returned to Resource Broker. Then, Resource Broker records results of execution
in the database of Message Center through the Agent of Information Service. The user
can catch the results from grid portal.

These Grids may span several domain administrations via internet. As a result of
this, it may be difficult to monitor, control and manage those machines and resources.
This paper aims at providing a multi-platform Grid monitoring service which can
monitor resources such as CPU speed and utilization, memory usage, disk usage, and
network bandwidth in a real-time manner. Monitoring data is extracted form Ganglia
and NWS tools then stored and transmitted in XML form and then used for display-
ing. All the information is displayed using real-time graphs.

Most general resource brokers cannot handle jobs with dependencies, which
means, for example, that Job B may have to be executed after Job A because Job B
needs output from Job A as input data, as shown in Figure 2. The workflow-based
resource broker presented in this paper copes with this in two phases: Client-side
phase and Server-side phase.

Client-side phase is a GUI Java applet, called Workflow Maker, which is provided in
the Grid Portal for users to create workflows in workflow description language (WDL),
which allows job with dependency and sets the following attributes for each job:

Job name

Broker sorting algorithm

Job type, parallel MPI or general sequential
Job dependencies

Working directory

Program name

Argument

Number of processors

The Workflow Maker converts this workflow abstract into an actual XML file; and
then delivers it to the Resource Broker by uploading this XML file. The Resource
Broker parses the XML file, checking all job information and dependency relation-
ships, and then adds the job to the Global Job Queue.

The Global Job Queue is responsible for holding all pending subjobs delivered to
the Resource Broker. When the Job Scheduler retrieves a subjob from the Global Job
Queue, it checks all node statuses, and sets busy nodes to “occupied” to prevent over-
loading, allocates available nodes to satisfy subjob requirements, and sets these nodes
to “occupied”. The Job Scheduler then gets the next subjob and repeats the procedure.
If the Job Scheduler does not find sufficient nodes to meet job requirements, it pauses
until sufficient nodes are available. When a subjob finishes, the scheduler frees the
respective resources by changing their statuses to “available”.

Figure 3 shows an example of Workflow System operation. When the job series
A~F containing dependencies is submitted, the client-side Java applet applies a topo-
logical sort. Suppose Jobs A and E are independent of each other. The Workflow
System simply adds them to the Job Queue for execution in parallel. When Job A
finishes, it resolves its dependencies with Jobs B and C, and the Workflow System
adds them to the Job Queue, removing Job A. When Jobs B and C finish, the Work-
flow System then adds Job D to the Job Queue for execution.

A GRB with Network Bandwidth-Aware Job Scheduling for Computational Grids 5

Input Output: l’
“Input.
Output”
Output: Input— '

Fig. 2. A simple job dependency

Job B

Wi
93

oS-

'Topological
Sort

Global
Qutleue

T
Global
FIFO) QuTaue

.o

e“e
-
o
=

¢Z

(ot 8 »{ione) (don c)-»(lon)

. '. (b) Jobs A and E are executed (c) Job A finishes, eliminating

(a) Topological sort in parallel dependencies with Jobs B and C
. :’\; Global
gLOFbua; Job B FIFO Qu‘eue E‘)>

(d) The Workﬂow System adds Jobs B and C (e) Jobs B and C finish and Job D is
to the Job Queue and removes Job A added to the Job Queue for execution

o
o

o
@

Fig. 3. The detail steps of workflow operations

4 Design of Network Bandwidth-Award Job Scheduling

4.1 Mechanism of Performance Evaluation

Our grid environment is based on several clusters and the cluster nodes can directly
accept the job which is submitted from the resource broker. We use TP to represent
the total computing power of those machines in a single site which the resource bro-
ker can be allocated. The TP can be divided into three main parts (CPU, memory, and
intra networking). User needs to input the number of CPU (X) which they want to use
for job execution. Then, the information service of resource broker will check how
many CPUs are available in each site (cluster) and the node’s hardware information
(CPU speed, CPU utilization, memory size, and network speed). Afterward the re-
source broker will calculate TP of each site and choose the enough processors based
upon the value in this grid computing platform.

We use the statistics to analyze the execution results of HPL (High Performance
Linpack) apphcatlon Pval and Mval; mean the performance value of each machine
based on the i” site and /" node’s CPU and memory, respectively. First, we fix the
memory size and change the number of CPU to conduct the HPL performance test.
Then, we fix the CPU number and changed the HPL problem size to conduct the
performance test to find out the incidence of different memory size which was been

6 C.-T. Yang, S.-Y. Chen, and T.-T. Chen

used. Finally, we give a performance value for each type of CPU and memory size in
our environment based on those performance tests. Then, Pu;; is processor utility rate
of each node over past one minute based on the j” node of the i site.

There are two kinds of performance effect ratio in our formula: apr and oyg. We
use apg to represent performance effect ratio of processor, and O<opg <1. The opg
value is based on correlation coefficient value between CPU and HPL value. The (1-
opg) value represents the performance effect ratio of memory size and HPL value. The
square bracket of our formula means the inner effect of the machine. So, the apz value
. Cov(CPU,HPL)
is worked out by Cov(CPU,HPL) + Cov(memory, HPL)
test in one of the cluster and change the switch from gigabit to 10/100 to find out the
effect of different network speed on performance test. There are two ayg ratios, one is
for gigabit, and another is for 10/100. The oy value of gigabit is worked out by

Cov(gigabit, HPL)

. Then, we make the HPL performance

Covtaigabit. HPLy + Cov(10/ 100, HPL)* and so does the ayg value of 10/100.

4.2 The Algorithm

In this subsection, all the parameters used in our resource broker are listed and ex-
plained in the following:

e S;: The number of sites (domains) in Grid environment, i = 1~n.

o Srp: The site which resource broker is in.

e P(S;): The number of available processors in site i, where N; < P;, and total avail-
able processors for a job execution are summed as y = 2771 P(S))-

e X: The number of processors used for executing a job.

e Pval;: Processor performance value of each node based on the j” node of the i"
site, i = 1~n, j = 1~m.

e Mval;: Memory performance value of each node based on the 7" node of the "
site, i = 1~n, j = 1~m.

e Puy: Processor utility rate of each node over past one minute based on the i

node of the i" site, i = 1~n, j = 1~m.

apg: Performance effect ratio of processor, 0<app<I.

1-apg: Performance effect ratio of memory.

oyg: Intra networking effect ratio in the site i, O<ayp<1.

f: Internal networking effect ratio in the grid.

E;: The graph constructed between sites i and j, the edge corresponding to the

current available bandwidth forecasted by NWS tool.

e ATP(S;): The average total computing power of the site i, and

i Pval; x(1—Pu,) Zn:Mvalij

ATP(S)=| = P(S) X Oy +j:IPTX(1_aPE) Xy

A GRB with Network Bandwidth-Aware Job Scheduling for Computational Grids

7

We summarize the Network Bandwidth-Aware (NB-aware) job scheduling algo-

rithm in Figure 4 and then illustrate an example below the algorithm.

//RB_Network Bandwidth-Aware Job Scheduler
{
/[Calculate the number of total available processors in all sites of the grid.
Y :Zf’:l P(S,) for VS[e G, G is the grid.

if (X=Y) then break;
/I R is a set including the sites which will be allocated.
R=0;
Count = 0,
' P(R)=7 P(S,) for VS, € R
/I n(R) is the amount of the elements in the set R
while (P(R) < X)
{
Count = Count + 1;
Find a set R which P(R) = Y and n(R) = Count, such that
BxY E;+(1-p)x D ATP(S,) is maximum for S e R;
}
Allocate processors ranked in top X speed of the R.
}

Fig. 4. The job scheduling algorithm in resource broker

Here is an example of this algorithm as shown in Figure 5. Suppose the Grid is
constructed by five domains, and then resource broker is in Domain A. “A(8)” means
there are eight working nodes (processors) in site A. The number “40” represents
current communication bandwidth (Mbps) between sites A and B. At first, resource
broker will query information service to get the current status of whole working

nodes, there are three cases:

e Case I: If the incoming current job needs 8 processors, resource broker will

check the possible site in this contains more than 8 processors. If the number of
available site is more than two, the resource broker will calculate the TP of each
site and then allocate processors into the best site. In this example, resource bro-
ker could allocate directly into site A or site C based on TP value for running
job.

Case 2: If the incoming current job needs 12 processors, there does not exist in
any single site that resource broker could immediately allocate processors. In
this kind of situation, resource broker will sort all combination of the two sites in
which the sum of total processors is more than 12 by the value
of IBXZ E;+(- ﬁ)xz ATP(S,) - The resource broker will select the best com-

bination to allocate processors ranking in top 12 speeds. In this example, re-
source broker will sort five kinds of combination of the two sites: (A, B), (A, O),
(A, E), (C, B) and (C, E) then select the best one.

8 C.-T. Yang, S.-Y. Chen, and T.-T. Chen

A8
Q00

y 40
c® B 4)

Fig. 5. An example of grid testbed

5 Experimental Environment and Results

A metropolitan-scale Grid computing platform named TIGER Grid (standing for
Taichung Integrating Grid Environment and Resource) was used in this experiment.
The TIGER grid interconnects 12 computing clusters which are scattered among seven
educational institutes. The specifications, HPL performance value, and site ranking of
TIGER testbed, are listed in Table 1. Their networking bandwidth information is
listed in Table 2. The site topologies of THU and TIGER are shown in Figure 6,
respectively.

Table 1. The specifications, HPL performance, and site ranking of TIGER testbed

Site Number of | Total Speed | Total Memory HPL Site
Node/CPU (MHz) (MB) (G Flops) Ranking

alpha 4/8 16,000 4,096 12.5683 10
beta 4/8 22,400 4,096 20.1322 11
gamma 4/4 11,200 4,096 5.8089 5
delta 4/4 12,000 4,096 10.6146 7
eta 2/4 12,800 2,048 11.2116 8
mu 2/4 8,000 4,096 11.8500 9
ncue 416 32,000 16,384 28.1887 12
ntcu 4/5 3,250 1,024 1.0285 2
hit 4/4 11,200 2,048 7.0615 6
dali 4/4 7,200 512 2.8229 3
1z 4/4 2,700 768 0.8562 1
If 11 3,000 1,024 3.0389 4

In this experiment, a sequence of 100 jobs is randomly generated with “Template
Job” and “np”, which is used to simulate 100 running jobs submission and the number
of processors used for each job. Dispatched by Network Bandwidth-Aware Job

A GRB with Network Bandwidth-Aware Job Scheduling for Computational Grids 9

Table 2. The network information of each site

alpha beta gamma delta eta mu ncue ntcu hit dali Iz If

alpha 578 47 423 47 44 47 6 48 57 8 23 9
beta 738 40 48 46 724 6 44 40 g8 22 9
gamma 609 38 39 37 4 36 20 6 19 8
delta 763 49 22 3 20 37 4 14 8
eta 788 47 4 42 37 7T 2 8
mu 793 6 49 42 23 8 9
ncue 82 5 4 11 19 3
ntcu 87 5 8 14 5
hit 52 9 25 3
dali 82 7 9
1z 83 9
If N/A

Scheduler, related information is logged, including queuing time, total execution time
and resource utilization. Figure 7 shows the distribution of “Template Job”. The
X-axis represents the content of jobs, and the Y-axis represents the number of jobs.

NCUE LF

NTCU Lz

HIT DALI

Fig. 6. The site topology of THU and TIGER, respectively

To show that RB_Network-Aware Job Scheduler has better performance, in this
experiment, the same job sequence is submitted to another two scheduling schemes,
Network-only and Speed-only, for execution and comparison.

e Network-only: considers network information only. If single cluster is enough to
process the workload, then the fast cluster system in the intranet is chosen. If
two cluster systems are needed, then the top-2 fast cluster systems in the intranet
are chosen.

10 C.-T. Yang, S.-Y. Chen, and T.-T. Chen

e Speed-only: considers CPU clock information only. If single cluster is enough to
process the workload, then the cluster system with largest CPU clock summation
in the intranet is chosen. If two cluster systems are needed, then the two cluster
systems with the top-2 largest CPU clock summation in the intranet are chosen.

Experimental results are shown in Figures 8 and 9. The total execution time of one
job is the average of queuing time and execution time. As shown in Figure 8§,
RB_Network-Aware Job Scheduler is better than the other two. Finally, Figure 9
shows the statistics of resource usage. We can see that RB_Network-Aware Job
Scheduler can increase the utilization of powerful clustering systems, and decrease

total completion time.

Distribution of Template Jobs
25
20 N
o 15
3 _
“ 10
T 1 I
. lallla.n pllnan.ln
=
s 5 B 2 o F N =T oo = 2 & 8§ ¢ 8
s 8gg8 -0 ege2 8885533
rzeezgEfied Bz, o058
o o T oo ows oo oo o O 15 E g E g B
Errifecgegieee e £EEE
Type name
Fig. 7. The distribution of template jobs
Avg. Total Time
1200000
1000000 T
[T
aoooan —
& [T
£ P o Avg. Turn Arround Tirme
E oA, Waiting Tirne
" 400000 —
200000 —
1]
Metwork and HFL Speed Only Metwiark Only
Scheduling policy

Fig. 8. The comparison of three policies for the average total time of jobs

A GRB with Network Bandwidth-Aware Job Scheduling for Computational Grids 11

Resource Utilization
@ Metwork and HPL W Speed Only O Metwark Only
G600
a00 i
400
z
& 300
200
100
] e .. B 0. i . A=
[3] o 1] [= © = = = i) =
= = = = E = =] = [
= 2 % z ® z £ =
[}
Site

Fig. 9. The comparison of three policies for resource utilization

6 Conclusions

This paper is presented to help the user make better use of the grid resources avail-
able. This paper will look at the use of information services in a grid and discuss the
monitoring use of the Ganglia toolkit to enhance the information services already
present in the Globus environment. Our grid resource brokerage system discover and
evaluate grid resources, and make informed job submission decisions by matching a
job’s requirements with an appropriate grid resource to meet budget and deadline
requirements.

The paper presents the design and the development of a Grid Network-Aware Re-
source Broker. It enhances the features of a Grid Resource Broker with the capabili-
ties that considers network bandwidth for job scheduling. Our grid resource broker
provided a network information service by extract data form NWS tool. The innova-
tive contribution of the presented integration is the possibility to design and imple-
ment new mapping/scheduling mechanisms to take into account both network and
computational resources.

References

1. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid Information Services for
Distributed Resource Sharing,” Proceedings of the Tenth IEEE International Symposium
on High-Performance Distributed Computing, IEEE press, 2001.

2. I Foster and C. Kesselman, “The Grid 2: Blueprint for a New Computing Infrastructure,”
Morgan Kaufimann, 2™ edition, 2003.

3. L. Foster, “The Grid: A New Infrastructure for 21st Century Science,” Physics Today,
2002, vol. 55, no. 2, pp. 42-47.

4. 1. Foster and N. Karonis, “A Grid-Enabled MPI: Message Passing in Heterogeneous Dis-
tributed Computing Systems,” Proceedings of 1998 Supercomputing Conference, 1998.

12

10.

11.

12.

13.

14.

15.
16.
17.

18.

19.

20.

C.-T. Yang, S.-Y. Chen, and T.-T. Chen

. L. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” Interna-

tional Journal of Supercomputer Applications, 1997, vol. 11, no. 2, pp. 115-128.

L. Ferreira, V. Berstis, J. Armstrong, M. Kendzierski, A. Neukoetter, MasanobuTakagi, R.
Bing-Wo, A. Amir, R. Murakawa, O. Hernandez, J. Magowan, and N. Bieberstein, “Intro-
duction to Grid Computing with Globus,” http://www.ibm.com/redbooks, 2003.

H. Le, P. Coddington, and A.L. Wendelborn, “A Data-Aware Resource Broker for Data
Grids,” IFIP International Conference on Network and Parallel Computing (NPC’2004),
LNCS, vol. 3222, Springer-Verlag, Oct. 2004.

C.T. Yang, P.C. Shih, and K.C. Li, “A High-Performance Computational Resource Broker
for Grid Computing Environments,” Proceedings of the International Conference on
AINA’05, vol. 2, pp. 333-336, Taipei, Taiwan, March 2005.

C.T. Yang, K.C. Li, W.C. Chiang, and P.C. Shih, “Design and Implementation of TIGER
Grid: an Integrated Metropolitan-Scale Grid Environment,” Proceedings of the 6" IEEE
International Conference on PDCAT 05, pp. 518-520, Dec. 2005.

J. Nabrzyski, J.M. Schopf, and J. Weglarz, Grid Rrsource Management, Kluwer Academic
Publishers, 2005.

S.M. Park and J.H. Kim, “Chameleon: A Resource Scheduler in a Data Grid Environ-
ment,” Proceedings of the 3 IEEE/ACM International Symposium on Cluster Computing
and the Grid, pp. 258-265, May 2003.

C.T. Yang, C.L. Lai, P.C. Shih, and K.C. Li, “A Resource Broker for Computing Nodes
Selection in Grid Environments,” Grid and Cooperative Computing - GCC 2004: 3" In-
ternational Conference,, Lecture Notes in Computer Science, Springer-Verlag, vol. 3251,
pp. 931-934, Oct. 2004.

C.T. Yang, P.C Shih, S.Y. Chen, and W.C. Shih, “An Efficient Network Information Mod-
eling using NWS for Grid Computing Environments,” Grid and Cooperative Computing -
GCC 2005: 4™ International Conference, Lecture Notes in Computer Science, vol. 37953,
pp- 287-299, Springer-Verlag, Nov. 2005.

C.T. Yang, C.F. Lin, and S.Y. Chen, “A Workflow-based Computational Resource Broker
with Information Monitoring in Grids,” Proceedings of the 5" International Conference on
Grid and Cooperative Computing (GCC 2006), IEEE CS Press, pp. 199-206, China, Oct.
2006

Ganglia, http://ganglia.sourceforge.net/

Network Weather Service, http://nws.cs.ucsb.edu/ewiki/

Giovanni Aloisio and Massimo Cafaro, “Web-based access to the Grid using the Grid Re-
source Broker portal,” Concurrency Computation: Practice and Experience, (14):1145-
1160, 2002.

Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran, “A taxonomy and sur-
vey of grid resource management systems for distributed computing,” Software Practice
and Experience, (32):135-164, 2002.

Ivan Rodero, Julita Corbaldn, Rosa M. Badia, and Jesds Labarta, “eNANOS Grid Re-
source Broker”, LNCS, vol. 3470, pp. 111-121, Springer, 2005.

Srikumar Venugopal, Rajkumar Buyya, and Lyle Winton, “A Grid service broker for
scheduling e-Science applications on global data Grids,” Concurrency Computation: Prac-
tice and Experience, (18):685-699, 2006.

Design of PeerSum: A Summary Service for P2P
Applications

Rabab Hayek', Guillaume Raschia', Patrick Valduriez?, and Noureddine Mouaddib'

Atlas team, INRIA and LINA, University of Nantes, France
'FirstName.LastName@univ-nantes. fr, 2patrick.valduriez@inria.fr

Abstract. Sharing huge databases in distributed systems is inherently difficult.
As the amount of stored data increases, data localization techniques become
no longer sufficient. A more efficient approach is to rely on compact database
summaries rather than raw database records, whose access is costly in large dis-
tributed systems. In this paper, we propose PeerSum, a new service for managing
summaries over shared data in large P2P and Grid applications. Our summaries
are synthetic, multidimensional views with two main virtues. First, they can be
directly queried and used to approximately answer a query without exploring the
original data. Second, as semantic indexes, they support locating relevant nodes
based on data content. Our main contribution is to define a summary model for
P2P systems, and the algorithms for summary management. Our performance
evaluation shows that the cost of query routing is minimized, while incurring a
low cost of summary maintenance.

1 Introduction

Research on distributed systems is focusing on supporting advanced applications which
must deal with semantically rich data (e.g. XML documents, relational tables, etc.),
using a high-level SQL-like query language. As a potential example of applications,
consider the cooperation of scientists who are willing to share their private data for
the duration of a given experiment. Such cooperation may be efficiently supported by
improving the data localization and data description techniques.

Initially developed for moderate-sized scientific applications, Grid technology is now
evolving to provide database sharing services, in large virtual organizations. In [9]], a
service-based architecture for database access (OGSA-DALI) has been defined over the
Grid. OGSA-DALI extends the distributed database architecture to provide distri-
bution transparency using Web services. However, it relies on some centralized schema
and directory management, which is not an adequate solution for supporting highly
dynamic organizations, with a large number of autonomous members.

Peer-to-Peer (P2P) techniques that focus on scaling up, dynamicity, autonomy and
decentralized control can be very useful to Grid data management. The complemen-
tary nature of the strengths and weaknesses of the two technologies suggests that the
interests of the two communities are likely to grow closer over time [[6]. For instance,
P-Grid [1]] and Organic Grid [3]] develop self-organizing and scalable services on top of
P2P systems.

C. Cérin and K -C. Li (Eds.): GPC 2007, LNCS 4459, pp. 13426]2007.
(© Springer-Verlag Berlin Heidelberg 2007

14 R. Hayek et al.

In unstructured P2P systems, query routing relies on flooding mechanisms which
suffer from high query execution cost and poor recall. To improve performance, several
techniques have been proposed to locate data relevant to a user query. These techniques
can be grouped in three classes: data indexing, mediation and content-based cluster-
ing. Data indexing maintains the location (e.g. [18]], [13]) or the direction (e.g. [4]) to
nodes storing relevant data. However, efficient data indexes must be small, distributed
and refer to data based on their content, without compromising peer autonomy or man-
dating a specific network structure. Mediation consists in exploiting structural informa-
tion on data schemas to guide query propagation. For instance, in Piazza [19], a query
is propagated along pre-existing pairwise mappings between peer schemas. However,
many limitations prevent these techniques from scaling up. Content-based clustering
consists in organizing the network such that “similar” peers, e.g. peers answering simi-
lar queries, are grouped together ([12], [5]]). Similarity between peers may be computed
using techniques of the two preceding classes (e.g. similarity between indexes [11]]).

With the ever increasing amount of information stored into databases, data localiza-
tion techniques are no longer sufficient to support P2P data sharing. Today’s Decision-
Support and collaborative applications are typically exploratory. Thus, a user may prefer
a fast, approximate answer to a long, exact answer. In other words, reasoning on com-
pact data descriptions rather than raw database records, whose access is costly in large
P2P systems, may be much more efficient. For instance, a doctor asking queries like
“young and fat patients diagnosed with disease X’ may prefer descriptions of result
tuples to rapidly make a decision based on similar situations, treated by other doctors.

In this paper, we propose PeerSum, a new service for managing summaries over
shared data in P2P systems. Our summaries are synthetic, multidimensional views with
two main virtues. First, they provide an intelligible representation of the underlying data
such that an approximate query can be processed entirely in their domain; that is, inputs
and outputs are summaries. Second, as indexing structures, they support locating rele-
vant nodes based on their data descriptions. PeerSum is done in the context of APPA, a
network-independent P2P data management system [2]].

This paper makes the following contributions. First, we define a summary model
which deals with the distributed and autonomous nature of P2P systems. Second, we
propose efficient algorithms for summary management. We validated our algorithmic
solutions through simulation, using the BRITE topology generator and SimJava. The
performance results show that the cost of query routing is minimized, while incurring a
low cost of summary maintenance.

The rest of this paper is organized as follows. Section 2 describes PeerSum’s sum-
mary model. Section 3 describes PeerSum’s summary management with its algorithms.
Section 4 discusses query processing with PeerSum. Section 5 gives a performance
evaluation with a cost model and a simulation model. Section 6 compares our solution
with related work. Section 7 concludes.

2 PeerSum Summary Model

In this section, we first present our summary model architecture and the principle of
summary construction in P2P systems. Second, we discuss the scalability issues of
the summarization process that is integrated to a peer DataBase Management System

Design of PeerSum: A Summary Service for P2P Applications 15

(DBMS), to allow generating summaries of a relational database. Then, we formally
define the notion of data summary in a P2P network.

2.1 Model Architecture

Our ultimate goal is to build a complete summary that describes the content of all shared
data sources. However, such a summary is ideal in the context of P2P networks, because
of their autonomous and dynamic nature. It is difficult to build and to keep this sum-
mary consistent relative to the current data instances it describes. In our approach, we

Summary 2 :] Complete summary
coverage

v

Global summaries

v

Local summaries

QOO OO
9088000 e

Fig. 1. Summary Model Architecture

v

adopt an incremental mechanism for summary construction, and define the notion of
“summary coverage” as follows.

Definition 1. Summary coverage. The coverage of a summary S in a network of size
N is the fraction of the peers that own data described by the summary S.

The coverage of a summary quantifies its convergence to the complete summary which
is obviously characterized by a coverage = 1.

The architecture of our summary model is presented in Figure[Il Each peer generates
the Local Summary (LS) of its database, which is characterized by the lowest-coverage
level. Then, it cooperates with other peers through exchanging and merging summaries,
in order to build a Global Summary (GS). The last one is characterized by a continuous
evolution in term of coverage. In fact, the cooperation between two sets of peers, each
having constructed a global summary, will result in a higher-coverage one. That is, in a
large P2P system, one could see the global summary as an intermediate node in a global
hierarchy where the virtual root is the ideal complete summary.

In this work, we propose fully distributed algorithms for global summary construc-
tion and maintenance. However, we will first give a brief description of the summariza-
tion process that generates summaries of relational databases with interesting features,
making it scalable in a distributed environment.

16 R. Hayek et al.

2.2 Summarization Process: Scalability Issues

A summarization process is integrated to each peer’s DBMS to allow constructing the
local summary level of Figure [[l Our approach is based on SAINTETIQ [[14], an on-
line linguistic approach for summarizing databases. The system is organized into two
separate web services. The translation service corresponds to the pre-processing step
that prepares data for summarization while the summarization service produces a set of
summaries arranged in a hierarchy. A unique feature of the summary system is its use of
Background Knowledge (BK), a priori built on each attribute. It supports the translation
of descriptions of database tuples into a user-defined vocabulary. Descriptors used for
summary content representation are defined as linguistic variables [21]] on the attribute
domain. For example, Figure 2] shows a user-defined vocabulary on the attribute age.
A detailed description of the SAINTETIQ process is available in [14] and [16]]. Con-
cerning our work, we are interested in the scalability of the summarization process in a
distributed environment.

young adult old
| X X
0 T T T T T

0 20 40 60 80 100 age(years)

Fig. 2. Fuzzy Linguistic Partition on age

Memory consumption and time complexity are the two main factors that need to
be taken care off in order to guaranty the capacity of the summary system to handle
massive datasets. First, the process time complexity is in O(n), where n is the number
of tuples to incorporate into a hierarchy of summaries. Besides, an important feature
is that in the summary algorithm raw data have to be parsed only once and it is per-
formed with a low time cost. Second, the system requires low memory consumption
for performing the summary construction algorithm as well as for storing the produced
summaries. Moreover, a cache manager is in charge of summary caching in memory
and it can be bounded to a given memory requirement. On the other hand, the paral-
lelization of the summary system is a key feature to ensure a smooth scalability. The im-
plementation of the system is based on the Message-Oriented Programming paradigm.
Each sub-system is autonomous and collaborates with the others through disconnected
asynchronous method invocations. It is among the least demanding approaches in terms
of availability and centralization. The autonomy of summary components allows for a
distributed computing of the process.

2.3 Summary Representation

A summary z is a pair (I, R.) where I, is the intentional content of the summary
and R, is its extent, that is the group of database tuples described by I,. The intent I,
provides a short description of z in terms of linguistic labels defined in the Background
Knowledge (BK) and used in the pre-processing step.

Design of PeerSum: A Summary Service for P2P Applications 17

For our purpose, we consider a summary as an indexing structure over distributed
data in a P2P system. Thus, we added a third dimension to the definition of a summary
z: a peer-extent P,, which provides the set of peers having data described by z.

Definition 2. Peer-extent. Let z be a node in a given hierarchy of summaries S, and
P the set of all peers who participated to the construction of S. The peer-extent P,
of the summary z is the subset of peers owning, at least, one record of its extent R:
P, ={pe P|R,NR,#0} ,where R, is the view over the database of node p, used
to build summaries.

Due to the above definition, we extend the notion of data-oriented summary in a given
database, to a source-oriented summary in a given P2P network. In other words, our
summary can be used as a database index (e.g. referring to relevant tuples), as well as a
semantic index in a distributed database system (e.g. referring to relevant nodes).

A summary is an edge in the tree structure finally produced by the summarization
service. The summary hierarchy S will be characterized by its Coverage in the P2P
system; that is, the fraction of nodes (data sources) covered by S (see Definitionl).
Relative to the hierarchy S, we call Partner Peer a peer whose data is described by at
least a summary node of S.

Definition 3. Partner peers. The set of Partner peers Ps of a summary hierarchy S is
the union of peer-extents of all the summary nodes: Ps = {U,ecsP.} .

By now and for convenient purpose only, we designate by “summary” a hierarchy of
summaries maintained in a P2P system, unless otherwise specified.

3 Summary Management in PeerSum

We present PeerSum, a summary management service for P2P systems. First, we study
the integration of PeerSum in an existing P2P architecture. Here we work in the context
of APPA (Atlas Peer to Peer Architecture) [2]]. Then, we propose algorithms for Peer-
Sum’s summary management. APPA has a network-independent architecture so it can
be implemented over different types of P2P networks. APPA provides three layers of
services: P2P network, basic services and advanced services. PeerSum is integrated at
the advanced layer and defined based on the underlying services. Due to space limita-
tions, we will only mention the services required for PeerSum definition. According to
Section 2.1l PeerSum must address the following requirements:

— Peers construct individually their local summaries,
— Peers cooperate for exchanging and merging summaries into a global summary,
— Peers share a common storage in which the global summary is maintained.

The first point is addressed by integrating the summarization process, previously de-
fined, to each peer’s DBMS. Second, the peer linking and peer communication services
of the APPA’s P2P network layer allow peers to communicate and exchange messages
(through service calls), while cooperating for a global summary construction. However,
two problems arise from the heterogeneous nature of peers in a P2P system. First, peers

18 R. Hayek et al.

may have different processing and storage capabilities. Therefore, a main function of
PeerSum is to ensure a distributed operation for summary merging. A partner peer that
requires merging two summaries, calls the service which then delegates the right peers
to perform merging calculations, using load balancing and distributed computing tech-
niques. This function can be implemented since the summarization process, at each
peer, can be distributed and parallelized, as discussed in Section 2.2l

Second, peers exchange summaries that are produced using local Background Know-
ledges (BKs). Thus, they may be represented in different vocabularies, making diffi-
cult their shared exploitation. In this work, we assume that the participants to a col-
laborative database application agree on a Common Background Knowledge (CBK)
that will be used locally by each summarization process. An example of such a CBK
is the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) [10],
which is a comprehensive clinical terminology covering diseases, clinical findings, and
procedures.

On the other hand, several works have addressed the problem of semantic hetero-
geneity in advanced P2P applications (e.g. [19], [2]]). Since our summaries are data
structures that respect the original data schemas [16]], we can assume that the techniques
they proposed for a decentralized schema management can be also used to overcome
the heterogeneity of summary representations, in the context of different BKs.

Finally, the P2P data management (P2PDM) service of the basic layer and the Key-
based Storage and Retrieval (KSR) service of the P2P network layer, work together to
provide a common storage in which a global summary is maintained. This common
storage increases the probability that “P2P data” (e.g. metadata, indexes, summaries)
produced and used by advanced services are available even if peers that have produced
them are disconnected. P2PDM and KSR manage data based on keys. A key is a data
identifier which determines which peer should store the data in the system, e.g. through
hashing over all peers in DHT networks or using super-peers for storage and retrieval
in super-peer networks. All data operations on the common storage are key-based, i.e.
they require a key as parameter.

In the following, we will describe our algorithms for summary construction and
maintenance. First, we work in a static context where all the participants remain con-
nected. Then, we address the dynamicity of peers and propose appropriate solutions.

3.1 Summary Construction

Starting up with a local summary level (see Figure[I)), we present the algorithm for peer
cooperation that allows constructing a global summary G'.S. We assume that each global
summary is associated with a Cooperation List (CL) that provides information about its
partner peers. An element of the cooperation list is composed of two fields. A partner
peer identifier PeerID, and a 2-bit freshness value v that provides information about the
freshness of the descriptions as well as the availability of the corresponding database.

— value O (initial value): the descriptions are fresh relative to the original data,

— value 1: the descriptions need to be refreshed,

— value 2: the original data are not available. This value will be used while addressing
peer volatility in Section[3.3l

Design of PeerSum: A Summary Service for P2P Applications 19

Both the global summary and its cooperation list are considered as “summary data” and
are maintained in the common storage, using the P2PDM and KSR services.

Cooperation Request. The algorithm starts at an initiator peer P;,;; who sends a co-
operation request message to its neighbors, to participate to a global summary construc-
tion. This message contains P;,;;’s identifier and a given value of TTL (Time-To-Live).
One may think that a large value of TTL allows to obtain directly a high-coverage sum-
mary. However, due to the autonomous nature of P2P systems, P;,,;; may keep waiting
for a very long time without having constructed that global summary. Therefore, we
choose to limit the value to TTL and adopt an incremental construction mechanism, as
discussed in Section 211

Cooperation Response. A peer p who receives the message, performs the following
steps. First, if the request has already been received, it discards the message. Else, it
saves the address of the sender as its parent. Then, its decrements TTL by one. If the
value of TTL remains positive, it sends the message to its neighbors (except the parent)
with the new TTL value. After propagating the message, p must wait to receive the
responses of its neighbors. However, since some of the neighbors may leave the system
and never response, the waiting time must be limited. We compute p’s waiting time
using a cost function based on TTL, and network dependent parameters.

A cooperation response of a peer p has the following structure: Coop Resp =(CS,
PeerIDs, GSKeys). C'S is the current summary obtained at p, PeerIDs is the list of
identifiers of peers that have responded to p, and G.S Keys is the list of keys of global
summaries. If p is a partner peer, that is, p has already participated to an existing global
summary, its C'oop Resp will include the key of the global summary it knows, as
well as the peer identifiers contained in the corresponding CL, i.e. Coop Resp =(0,
extractPeerIDs(CL), {GSKey}). In that case, p locates at the boundary of two knowl-
edge scopes of two different summaries. Hence, it allows merging them into a higher-
coverage one (i.e. incremental construction). Otherwise, its response will include its
local summary and its identifier, i.e. Coop Resp =(p.LS, {p.ID}, 0).

Summary Data Storage. In the waiting phase, when a child’s Coop Resp arrives, a
parent peer p merges it with its own response by making the union of PeerlDs and
G S Keys lists, and merging the current summaries. Once the time expires, p sends the
result to its parent. But, if p is the initiator peer P;,,;;, it will store the new summary data,
i.e. the new global summary GS and its cooperation list CL, using the KSR service:
GSKey := KSR insert(CS, CL). CL contains each peer identifier obtained in the final
Peerl Ds list, associated with a freshness value v equal to zero. At the end, P;,,;; sends
the new key (GSKey) to all participant peers, which become GS’s partner peers.

3.2 Summary Maintenance

A crucial issue for any indexing structure is to maintain the index, relative to the current
data instances, without incurring high costs. For a local summary, it has been demon-
strated that the summarization process guarantees an incremental maintenance, using a
push mode for exchanging data with the DBMS, while performing with a low complex-
ity. In this section, we propose a strategy for maintaining a global summary based on

20 R. Hayek et al.

both push and pull techniques, in order to minimize the number of messages exchanged
in the system. The appropriate algorithm is divided into two phases: Data modification
and summary reconciliation.

Push: Data Modification. Let G'S be a global summary and Pgg the set of partner
peers. Each partner is responsible for refreshing its own element in the G'S’s coopera-
tion list. A partner peer p observes the modification rate issued on its local summary L.S.
When LS is considered as enough modified, p sets its freshness value v to 1, through a
push message. This value indicates that the local summary version being merged while
building G'S does not correspond any more to the current instance of the database.

An important feature is that the frequency of push messages depends on modifica-
tions issued on local summaries, rather than on the underlying databases. It has been
demonstrated in [16] that, after a given process time, a summary becomes very stable.
As more tuples are processed, the need to adapt the hierarchy decreases. A summary
modification can be determined by observing the appearance/disappearance of descrip-
tors in summary intentions.

Pull: Service-Initiated Reconciliation. The summary service, in its turn, observes
the fraction of old descriptions (i.e. number of ones) in the cooperation list. Whenever
this fraction exceeds a threshold value, the global summary G'.S must be refreshed. In
that case, the service pulls all the partner peers to merge their current local summaries
into the new version of GG'S, which will be then under reconstruction. The algorithm is
described as follows.

A reconciliation message that contains a new summary NewGS (initially empty),
is propagated from a partner to another. When a partner p receives this message, it
first merges NewGS with its local summary. Then, it sends the message to another
partner (chosen from the cooperation list CL). If p is the last visited peer, it updates the
GS’s summary data, using the KSR service. All the freshness values in CL are reset to
zero. This strategy guarantees a high availability of the summary data, since only one
KSR Update operation is performed by the last partner.

3.3 Peer Dynamicity

In large P2P systems, a peer connects mainly to download some data and may leave
the system without any constraint. Therefore, the shared data can be submitted to a low
modification rate, while the rate of node arrival/departure is very important. We propose
now solutions for that peer dynamicity.

Peer Arrival. When a new peer p joins the system, it contacts some existing peers to
determine the set of its neighbors. If one of those neighbors is a partner peer, p becomes
a new partner: a new element is added to the cooperation list with a freshness value
v equal to one. Recall that the value 1 indicates the need of pulling the peer to get
new data descriptions. Furthermore, if p is a neighbor of two partners of two different
summaries, it allows merging them in a higher-coverage one (Section[3.1)).

Peer Departure. When a partner peer p decides to leave the system, it first sets its
freshness value v to two in the cooperation list, through a push message. This value

Design of PeerSum: A Summary Service for P2P Applications 21

reminds the participation of the disconnected peer p to the corresponding global sum-
mary, but also indicates the unavailability of the original data. There are two alternatives
to deal with such a freshness value. First, we can keep the data descriptions and use it,
when a query is approximately answered using the global summary. A second alter-
native consists in considering the data descriptions as expired, since the original data
are not accessible. Thus, a partner departure will accelerate the summary reconcilia-
tion initiating. In the rest of this paper, we adopt the second alternative and consider
only a /-bit freshness value v: a value 0 to indicate the freshness of data descriptions,
and a value 1 to indicate either their expiration or their unavailability. However, if p
failed, it could not notify its partners by its departure. In that case, its data descriptions
will remain in the global summary until we execute a new summary reconciliation. The
reconciliation algorithm does not require the participation of a disconnected peer. The
global summary GS is reconstructed, and descriptions of unavailable data will be then
omitted.

4 Query Processing

Now we discuss how a query @, posed at a peer p, is processed. Our approach consists
in querying at first the available summary . This allows an efficient peer localization
since we exploit data descriptions rather than structural information on data schemas, in
order to propagate the query. Besides, when an exact answer is not required, summaries
can directly provide approximate answers without accessing original database records.
Query processing proceeds in two phases: 1) query extension and 2) query evaluation.

4.1 Query Extension

First, the query () must be extended to a flexible query Q* in order to be handled by a
summary querying process. For instance, consider the following selection query :

Select BMI From Patient Where age < 30 And disease = “Malaria”

This phase consists in replacing the original value of each selection predicate by the
corresponding descriptors defined in the Background Knowledge (BK). According to
the fuzzy partition of Figure[2] the above query is transformed to Q*:

Select BMI From Patient Where age In {young, adult} And disease = “Malaria”

Let QS (resp.QQ.S™) be the Query Scope of query @ (resp.Q*), that is; the set of peers
that should be visited to answer the query. Obviously, the query extension phase may
induce false positives in query results. To illustrate, a patient having 35 years old will
be returned as an answer to the query Q*, while the selection predicate on the attribute
age of the original query @ is not satisfied. However, false negatives can not occur
which is expressed by the following inclusion: QS C Q.S™.

In the rest of this paper, we suppose that a user query is directly formulated using
descriptors defined in the BK (i.e.) = Q™). As we discussed in the introduction of this

! Body Mass Index (BMI) is the patient’s body weight divided by the square of the height.

22 R. Hayek et al.

work, a doctor that participates to a given medical collaboration, may ask query) like
“the BM I of young and adult patients diagnosed with malaria”. Thus, we eliminate
eventual false positives that result from query extension.

4.2 Query Evaluation

This phase deals with matching a set of summaries organized in a hierarchy .S, against
the query Q. The query is transformed into a logical proposition P used to qualify the
link between a summary node and the query. P is under a conjunctive form in which
all descriptors appears as literals. In consequence, each set of descriptors yields on cor-
responding clause. For instance, the above query @ is transformed to P = (young OU
adult) ET (malaria). A valuation function has been defined to valuate the proposition
P in the context of a summary node z. Then, a selection algorithm performs a fast ex-
ploration of the hierarchy and returns the set Z¢ of most precise summaries that satisfy
the query. For more details see [20]. Once Z determined, the query evaluation process
is able to achieve two distinct tasks depending on the user/application requirements:
1) Peer localization to return the original result records and 2) Summary answering to
return approximate answers.

Peer Localization. Since the extended definition of a summary node z provides a peer-
extent, i.e. the set of peers P, having data described by its intent (see Definition), we
can define the set P of relevant peers for the query) as follows: Py = {U.ez, P. }.
The query @ is directly propagated to these relevant peers. Thus, a distinctive feature
of our approach is that the number of hops the queries makes to find the matching nodes
is “ideally” reduced to one, and consequently, excessive delays are avoided. However,
the efficiency of this query routing depends on the completeness and the freshness of
summaries, since stale answers may occur in query results. We define a False Positive
as the case in which a peer p belongs to P and there is actually no data in the p source
that satisfies Q) (i.e. p ¢ QS). A False Negative is the reverse case in which a p does not
belong to P, whereas there exists at least one tuple in the p data source that satisfies

Q (G.e.peQS).

Summary Answering. Another distinctive feature is that a query can be processed
entirely in the summary domain. An approximate answer can be provided from sum-
mary descriptions, without having to access original, distributed database records. The
selected summaries Z are aggregated according to their interpretation of proposition
P: summaries that have the same required characteristics on all predicates (i.e. age
and disease) form a class. The aggregation in a given class is a union of descriptors:
for each attribute of the selection list (i.e. BMI), the querying process supplies a set of
descriptors which characterize summaries that respond to the query through the same
interpretation [20]. For example, for the class {young, malaria}, we can obtain an out-
put set BMI = {underweight, normal}.

5 Performance Evaluation

In this section, we devise a simple model of the summary management cost in PeerSum.
Then, we evaluate and analyze our model with a simulation.

Design of PeerSum: A Summary Service for P2P Applications 23

5.1 Cost Model

A critical issue in summary management is to trade off the summary updating cost
against the benefits obtained for queries.

Summary Update Cost. Here, our first undertaking is to optimize the update cost
while taking into account query accuracy. In the next section, we discuss query accuracy
which is measured in terms of the percentage of false positives and false negatives in
query results. The cost of updating summaries is divided into: usage of peer resources,
i.e. time cost and storage cost, and the traffic overhead generated in the network.

Time cost: A unique feature of SAINTETIQ is that the changes in the database are re-
flected through an incremental maintenance of the summary hierarchy. The time com-
plexity of the summarization process is in O(n) where n is the number of tuples to
be incorporated in that hierarchy [[16]. For a global summary, we are concerned with
the complexity of merging summaries. Recently, a new MERGING method has been
proposed, based on the SAINTETIQ engine. This method consists in incorporating the
leaves of a given summary hierarchy S7 into an another So, using the same algorithm
described by the SAINTETIQ summarization service. It has been proved that the com-
plexity C'pr12 of the MERGING(S1, S2) process is constant w.r.t the number of tuples.

Storage cost: We denote by k the average size of a summary node. In the average-
case assumption, there are 3.¢ | B' = (B%+1 —1)/(B — 1) nodes in a B-arity tree
with d, the average depth of the hierarchy. Thus the average space requirement is given
by: C, = k.(B%*! —1)/(B — 1). Based on real test, k = 512 bytes gives a rough
estimation of the space required for each summary node. An important issue is that the
size of the hierarchy is quite related to its stabilization (i.e. B and d). As more tuples
are processed, the need to adapt the hierarchy decreases and incorporating a new tuple
may consist only in sorting a tree. Hence, the structure of the hierarchy remains stable
and no additional space is required.

According to the above discussion, the usage of peer resources is optimized by the
summarization process itself. Thus, we restrict now our focus to the traffic overhead
generated in the P2P network.

Network traffic: Recall that there are two types of exchanged messages: push and
reconciliation. Let local summaries have an average lifetime of L seconds in a given
global summary. Once L expired, the node sends a (push) message to update its fresh-
ness value v in the cooperation list C'L. The reconciliation algorithm is then initiated
whenever the following condition is satisfied:) _~, v/|CL| > a where a is a thresh-
old that represents the ratio of old descriptions tolerated in the global summary. During
reconciliation, only one message is propagated among all partner peers until the new
global summary version is inserted in the common storage. Let F;... be the reconcilia-
tion frequency. The update cost is: C;, = 1/ L+ F)... messages per node per second. In
this expression, 1/L represents the number of push messages which depends either on
the modification rate issued on local summaries or the connection/disconnection rate of
peers in the system. Higher is the rate, lower is the lifetime L, and thus a large number
of push messages are entailed in the system. F... represents the number of reconcilia-
tion messages which depends on the value of .. This threshold is our system parameter

24 R. Hayek et al.

that provides a trade-off between the cost of summary updating and query accuracy. If
« is large, the update cost is low since a low frequency of reconciliation is required,
but query results may be less accurate due both to false positives stemming from the
descriptions of non existent data, and to false negatives due to the loss of relevant data
descriptions whereas they are available in the system. If « is small, the update cost is
high but there are few query results that refers to data no longer in the system, and
nearly all available results are returned by the query.

Query Cost. We have seen that the use of summaries as data indexes may improve
query processing. When a query () is posed at a peer p, first it is matched against the
global summary to determine the set of peers Py whose descriptions are considered as
answers. Then, @ is directly propagated to those peers. As a consequence, the number of
messages exchanged in the system is intended to be significantly reduced. Furthermore,
the cooperation list associated with a global summary provides information about the
relevance of each database description. Thus, it gives more flexibility in tuning the
trade-off recall p / precision 7 of the query answers. Let V' be the set of peers visited
while processing a query. Then p = |QS NV|/|QS]| and 7 = |QS N V|/|V|, where
QS is the set of all peers that really match the query (i.e. Query Scope).

The trade-off can be tuned by confronting the set Pg with the cooperation list C'L.
The set of all partner peers Py in C'L can be divided into two subsets: P,y = {p €
Py | p.ov = 1}, the set of peers whose descriptions are considered old, and Pfrcsp, =
{p € Py | p.v = 0} the set of peers whose descriptions are considered fresh according
to their current data instances. Thus, if a query () is propagated only to the set V' =
Pg N Pfyresh, then precision is maximum since all visited peers are certainly matching
peers (no false positives), but recall depends on the fraction of false negatives in query
results that could be returned by the set of excluded peers PQ\PfTES . On the contrary,
if the query () is propagated to the extended set V' = PgUP,;4, recall value is maximum
since all matching peers are visited (no false negatives), but precision depends on the
fraction of false positives in query results that are returned by the set of peers Py;4.

The above two situations are bounds of a range of strategies available to propagate
the query. In our experiments, we assume V' = P, the initial peer set. Thus, the cost is
computed as Cg = 2 - | Pg| number of messages.

5.2 Discussion

We evaluated the performance of PeerSum through simulation, using the SimJava pack-
age (7] and the BRITE [8]] universal topology generator. We calibrated our simulator
using real data gathered in [17].

In a first set of experiments we quantified the trade-off between query accuracy and
the cost of updating a global summary. Interesting results showed that the fraction of
stale answers in query results is limited to 3% for a network size lower than 2000
peers. For the update cost, we observed that the total number of messages increases
with the number of peers, but not surprisingly, the number of messages per node remains
almost the same. In the expression of the update cost C',,, the number of push messages
for a given peer is independent of network size. On the other hand, the number of
reconciliation messages decreases slowly with the number of peers, for a given value

Design of PeerSum: A Summary Service for P2P Applications 25

of the threshold «.. More interestingly, when the threshold value decreases (from 0.8 to
0.3) we noticed a small cost increasing of 1.2 on average. However, a small value of the
threshold « allows to significantly reduce the fraction of stale answers in query results.
We concluded therefore that tuning our system parameter, i.e. the threshold «, do not
incur additional traffic overhead in the system, while improving query accuracy.

In the second set of experiments, we compare our algorithm for query processing
against non-index/flooding algorithms which are very used in real life, due to their
simplicity and the lack of complex state information at each peer. Here, we limit the
flooding by a value 3 of TTL (Time-To-Live). Our algorithm SI showed the best results
that can be expected from any query processing algorithm, when no stale answers occur
in query results (the ideal case). However, to give a real performance evaluation, we
decided to study our algorithm in the worst case where the stale answers occur in query
results. Even in that, SI showed a reduction of the number of messages, in comparison
with flooding algorithms, that becomes more important with a large size of network.
For instance, the query cost is reduced by a factor of 3 for a network of 2000 peers.

6 Conclusion

In this paper, we proposed PeerSum, a new service for managing data summaries in P2P
and Grid systems. PeerSum supports scaling up in terms of two dimensions: number of
participants and amount of data. As we discussed, our summaries are compact data
descriptions that can approximately answer a query without retrieving original records
from distributed databases. This is very interesting for Grid applications which tend to
be more data intensive. On the other hand, as indexing structures, they support locating
relevant data based on their content. Such semantic indexes are extremely efficient in
large distributed systems, where accessing data becomes difficult and costly. Besides,
we have addressed peer dynamicity which is critical in both P2P and Grid applications.

This paper made two main contributions. First, we defined a summary model for P2P
systems, based on the SAINTETIQ process. SAINTETIQ generates database summaries
with low complexity, and can be distributed and parallelized which makes it scalable
in a distributed environment. Second, we proposed efficient algorithms for summary
management in PeerSum. Our analysis and simulation results showed that the use of
summaries as data indexes reduces the cost of query routing by an important factor com-
pared to flooding approaches, without incurring high costs in terms of update messages
exchanged in the network. Furthermore, our system guarantees a good query accuracy
which is measured in terms of the fraction of stale answers in query results. Moreover,
tuning our system parameter, i.e. the freshness threshold «, improves query accuracy
while inducing a small increasing of summary update cost.

References

1. K. Aberer et al. P-grid: a self-organizing structured P2P system. SIGMOD Rec., 32(3), 2003.

2. R. Akbarinia, V. Martins, E. Pacitti, and P. Valduriez. Replication and query processing
in the APPA data management system. In Workshop on Distributed Data and Structures
(WDAS’2004), 2004.

26

~

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

R. Hayek et al.

A. Chakravarti, G. Baumgartner, and M. Lauria. The organic grid: self-organizing computa-
tion on a peer-to-peer network. IEEE Transactions on Systems, Man, and Cybernetics, Part
A, 35(3):373-384, 2005.

A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In Proc. of the
28 tn Conference on Distributed Computing Systems, July 2002.

A. Crespo and H. Garcia-Molina. Semantic overlay networks for P2P systems. Technical
report, Computer Science Department, Stanford University, 2002.

I. Foster and A. Iamnitchi. On death, taxes, and the convergence of peer-to-peer and grid
computing. In IPTPS, pages 118-128, 2003.

F. Howell and R. McNab. Simjava: a discrete event simulation package for java with the
applications in computer systems modeling. In Int. Conf on Web-based Modelling and Sim-
ulation, San Diego CA, Society for Computer Simulation, 1998.

http://www.cs.bu.edu/brite/.

http://www.ogsadai.org.uk. Open grid services architecture data access and integration.
http://www.snomed.org/snomedct.

G. Koloniari, Y. Petrakis, and E. Pitoura. Content—based overlay networks of xml peers based
on multi-level bloom filters. In Proc VLDB, september 2003.

A. Oser, F. Naumann, W. Siberski, W. Nejdl, and U. Thaden. Semantic overlay clusters
within super-peer networks. In Proc of the International Workshop on Databases, Informa-
tion Systems and Peer-to-Peer Computing in Conjunction with the VLDB 2003, 2003.

T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall, 1999.
G. Raschia and N. Mouaddib. A fuzzy set-based approach to database summarization. Fuzzy
sets and systems 129(2), pages 137-162, 2002.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content—
addressable network. In Proc SIGCOMM, 2001.

R. Saint-Paul, G. Raschia, and N. Mouaddib. General purpose database summarization. In
Proc VLDB, pages 733-744, 2005.

S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-to-peer file sharing
systems. In Proc of Multimedia Computing and Networking (MMCN), 2002.

L. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A scalabale
peer-to-peer lookup service for internet applications. In Proc ACM SIGCOMM, 2001.

L. Tartinov et al. The piazza peer data management project. In SIGMOD Record, 32(3), 2003.
A. Voglozin, G. Raschia, L. Ughetto, and N. Mouaddib. Querying the SAINTETIQ
summaries-a first attempt. In Int Conf. On Flexible Query Answering Systems (FQAS), 2004.
L. Zadeh. Concept of a linguistic variable and its application to approximate reasoning.
Information and Systems, 1:119-249, 1975.

A High-Performance Virtual Storage System for
Taiwan UniGrid

Chien-Min Wangl, Hsi-Min Chenz, Chun-Chen Hsu3, and Jan-Jan Wu'

! Institute of Information Science, Academia Sinica, Taipei, Taiwan
? Department of Computer Science and Information Engineering,
National Central University, Taoyuan, Taiwan
* Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan
{cmwang, seeme, tk, wujl}@iis.sinica.edu.tw

Abstract. In Taiwan, a community of educational and research organizations
interested in Grid computing technologies founded a Grid computing platform,
called Taiwan UniGrid. Taiwan UniGrid consists of three primary portions:
Computational Grid, Data Grid, and Web Portal. In this paper, we present the
development of a virtual data storage system for Taiwan UniGrid. In addition to
developing basic data storage functions, we identify three main requirements of
the current development: high-performance data transfer, data sharing and sin-
gle sing-on. For these requirements, we come up with three corresponding fea-
tures in our data storage system: Self-Adaptation for high-performance data
transfer, forming user groups and specifying admission control for data sharing,
and adopting GSI authentication to enable single sing-on. Besides, we also de-
velop a Java-based graphic user interface of the storage system that allows Grid
users to manage data transparently as using local file systems.

Keywords: Data Grid, data storage system, data transfer, web service, and sin-
gle sign-on.

1 Introduction

With the rapid growth of computing power and storage capacity of computers, many
researchers and scientists have been concentrated on the development of various Grid
systems to efficiently utilize distributed computing and storage resources in recent
years. In Taiwan, a community of educational and research organizations interested in
Grid computing technologies founded a Grid computing platform, called Taiwan
UniGrid [1]. These organizations contribute their resources of computer clusters for
sharing and collaboration. The objective of Taiwan UniGrid is to provide educational
and research organizations with a powerful computing platform where they can study
Grid-related issues, practice parallel programming on Grid environments and execute
computing/data-intensive applications.

As similar to other Grid systems, Taiwan UniGrid consists of three primary por-
tions: Computational Grid, Data Grid and Web Portal. Computational Grid is respon-
sible for managing scattered and heterogeneous computing resources and scheduling

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 27 — 2007.
© Springer-Verlag Berlin Heidelberg 2007

28 C.-M. Wang et al.

the jobs submitted by users. Data Grid is a virtual storage infrastructure that integrates
distributed, independently managed data resources and allows users to save and re-
trieve their data without understanding the configuration of underlying storage re-
sources. Web Portal, developed by National Tsing Hua University, is a uniform user
interface by which Grid users can design workflow, submit jobs, manage data, moni-
tor job and resource status, etc. In this paper, we will present the development of the
data management system for Taiwan UniGrid.

As the distribution of storage resources and the growth of data size, the needs for
efficient Grid data management are continuously increasing. In these years, many
research and scientific organizations have engaged in building data management and
storage tools for Grids, such as SDSC SRB (Storage Resource Broker) [2], SciDAC
Data Grid Middleware [3], GriPhyN Virtual Data System [4], etc. SRB is a general
Data Grid middleware that integrates distributed and heterogeneous storage resources
and provides virtualized access interface. It has been a production data management
tool and adopted by several Grid projects. Thus, among these tools, we decide to build
our virtual storage system for Taiwan UniGrid based on SRB, while developing addi-
tional features that are not well supported by SRB.

Before implementing the virtual storage system, we elicited requirements from the
user and manager needs. Herein, in additional to the basic Data Grid functions pro-
vided by SRB, we identify three main requirements of the current development listed
as follows.

¢ High-performance data transfer: Since the size of data generated by scientific
instruments and Grid applications has grown into the range of Terabytes, large data
transfer over the Internet usually leads to a long latency and becomes a bottleneck
for job executions. Thus, the need for high-performance data transfer is an impor-
tant issue in Taiwan UniGrid.

e Data sharing: Two important concepts of Grids are sharing and collaboration.
Grid users, such as scientists and researchers, are accustomed to retrieve data col-
lected by remote scientific instruments, analyze these retrieved data via various
analysis tools, and share the analyzed results for further processing. Therefore, how
to facilitate Grid users to contribute or get shared data with ease is a crucial re-
quirement in the development of a data management system.

¢ Single sign-on: In essence, physical resources within a Grid system are distributed
in different organizations and managed independently. Each organization has its
own security policy. Without single sign-on mechanisms, Grid users have to keep a
list of accounts for each machine by themselves. This becomes an obstacle for us-
ers to use Grid systems. Hence, we have to take the problem of single sign-on into
account when we integrate our system with Computational Grid and UniGrid
Portal.

Consequently, in our system, we come up with three features with respect to the
corresponding requirements. For high-performance data transfer, we propose a multi-
source data transfer algorithm, called Self Adaptation [5], which can speed up the data
transfer rate in data replication, downloading, moving, and copying. For data sharing,
our system allows Grid users to share their data in a manner of forming user groups
and specifying admission control on each data object. For the issue of single sign-on,
we choose GSI (Grid Security Infrastructure) [6] as our user certification mechanism

A High-Performance Virtual Storage System for Taiwan UniGrid 29

by which Grid users only have to login once and utilize Grid resources through cer-
tificates, so that they have no need to keep all accounts for each machine. Besides
these features, we also develop a Java-based graphic user interface of the storage
system that allows Grid users to manipulate data transparently as using local file
systems.

The remainder of the paper is organized as follows. In Section 2, we explain the
system framework and deployment. Section 3 presents main features, including multi-
source data transfer, data sharing, single sign-on, and the data management client. An
operational scenario of Taiwan UniGrid is demonstrated in Section 4. Finally, we
present some concluding remarks in the last section.

UniGrid Applications

UniGrid Data Management Library

Client

Server

Extended SRB APls

Data Management

Sell-Adaptation Patch Services
Storage Resource Broker | AutoReplication |
e ——

-
...... Agcount [
B

Physical Storage Resources

Fig. 1. The framework of the virtual storage system for Taiwan UniGrid

2 System Framework and Deployment

Figure 1 shows the framework of our virtual storage system. In the server side, the left
bottom of the framework is a set of physical storage resources, including hard disks,
tapes and databases, contributed by the members of Taiwan UniGrid. We adopt SRB
as a data management middleware to integrate these scattered storage resources. SRB
provides a list of data and storage management functions. Although SRB has fur-
nished an efficient data transfer approach by using multiple TCP connections, we
propose an alternative, called Self Adaptation, to get a higher data transfer rate in
comparison with the original one. We will explain the detail of Self Adaptation in
section 3. Therefore, we add the alternative (Self Adaptation Patch) into the original
functions of SRB. A set of extended SRB APIs are built on top of SRB and the Self
Adaptation Patch. The extended SRB APIs consist of primary APIs provided by SRB
and the APIs for high-performance data transfer, such as MSDTReplicate () and
MSDTCopy ().

The right of the server side of the framework is a number of Web services used for
data management. Web service technologies are playing an increasingly important
role in the new generation of Grids. Such technologies encapsulate heterogeneous

30 C.-M. Wang et al.

software components, legacy systems and resources as services and simply describe
their interfaces in a standard description language, i.e. WSDL [7]. Service providers
can advertise their services in a registry, i.e. the UDDI [8] server, for clients to
browse. If clients want to use the services advertised in a registry, the SOAP [9] tech-
nology helps them access the services through standard transport protocols, such as
HTTP and SMTP. Therefore, we adopt Web services technologies in our system to
integrate other software developed by third parties. There are two services imple-
mented in the current system: the AutoReplication service, developed by Chung Hua
University, and the Account Management service. The AutoReplication service help
Grid users set various replication policies on data objects. The Account Management
service is developed by wrapping up the functions of user authentication in UniGrid
Portal for single sign-on.

In the client side, the bottom is the data management library for UniGrid which in-
teracts with the corresponding server-side extended SRB APIs and data management
services. We implemented two versions of the library. One is Java-based and another
is C-based. The data management library provides a uniform interface of data and
storage management by which programmers can build various Grid applications to
access the underling storage resources.

<
O MCAT Server —— Conneclion
@ SRB Server ——— Synchronization

Fig. 2. The deployment of the virtual storage system for Taiwan UniGrid

Figure 2 presents the deployment of our virtual storage system. Since there is a
huge amount of storage resources distributed in Taiwan UniGrid, using a single in-
formation server to maintain the metadata regarding users, data and storages may
cause the problems of server overloading and single point of failure. To avoid these
problems, we divided all storage resources in Taiwan UniGrid into five zones, i.e.
Taipei_UniGrid, Hsinchu_UniGrid, Taichung_UniGrid, Tainan_UniGrid and
Hualien_UniGrid. Each zone has a MCAT (SRB Metadata Catalog) server installed

A High-Performance Virtual Storage System for Taiwan UniGrid 31

for maintaining the metadata of the users, data, and storage resources. To enable the
flexibility of sharing, the administrators of a MCAT server can specify their won
sharing policies, for instance, some resources can be shared with users registered in
other zones, but some are utilized in private. In addition, each MCAT server periodi-
cally synchronizes its metadata with each other to keep the metadata consistency
among zones. By synchronization, Grid users registered in one zone can access stor-
age resources located in other zones and retrieve sharing data timely.

The members of Taiwan UniGrid contribute their storage resources by setting up
SRB servers. Each SRB server consists of one or more physical storage resources and
is registered to a MCAT server. Gird users can manipulate data objects in a specified
storage resource of a SRB server, for example uploading data objects, creating repli-
cas and modifying metadata of the data objects. Then the SRB server will automati-
cally ask the MCAT server, which registers the SRB server, to update the metadata of
the operated data object and synchronize with other MCAT servers. Thus, a Grid user
who logins to one of close SRB servers can utilize storage resources in any zone of
Taiwan UniGrid.

3 Main Features

In this section, we present the main features of our system, including multi-source
data transfer, data sharing, single sign-on, for the requirements listed in Section 1. In
addition, we also develop a friendly graphic user interface of the virtual storage sys-
tem that helps Grid users manage their data as using local file systems.

Replica
Source
Replica
Source

N
/
/ Rephm N /

<
N\ Source /

(a) (b)

Fig. 3. (a) The replica selection approach. (b) The multi-source data transfer approach.

3.1 Multi-source Data Transfer

To achieve high-performance data transfer, data replication has been a widely used
technique that facilitates a Grid user to select a best replica site closest to the specific
destination and transfer the selected replica to it. Instead of transferring data from the
source site, selecting the best replica can reduce the data transfer time on the Internet.
A number of approaches have been proposed for selecting the best replica based on
various criteria [10, 11]. However, as shown in Figure 3(a), since such an approach

32 C.-M. Wang et al.

only allows users to specify one replica for transfer in each selection, they have two
major shortcomings:

e When several replicas have almost the same network performance, choosing a
slightly better replica and discarding all others does not fully utilize network re-
sources.

e Selecting only one replica may degrade transfer reliability because, if the connec-
tion to the selected replica fails, it has to execute the selection algorithm again and
reconnect to other replicas.

Some multi-source data transfer mechanisms have been presented recently to solve
the above problems [12, 13], whereby a transferred data object can be assembled in
parallel from multiple distributed replica sources as shown in Figure 3(b). To improve
the data transfer rate, we propose an efficient data transfer algorithm, called Self-
Adaptation. It not only enables the data transfer from multiple replica sites as other
multi-source data transfer algorithms, but is also more adaptive to the network band-
width fluctuations. Self-Adaptation assigns proper segments of transferred data to each
replica site based on the overhead and bandwidth measured from the previous data
transfer, so that it can achieve higher aggregate bandwidth. More information of Self-
Adaptation and performance comparisons with other approaches can be found in [5].

Multi-source data transfer is the major contribution to the development of the data
storage system. In the client-side library of the current system, we implement three
alternative functions of data transfer based on Self-Adaptation to enable high-
performance data transfer.

e MSDTDownload (): Grid users or programs can download data objects to their
local file systems and the downloaded objects are reassembled in parallel from the
source and replica sites.

e MSDTReplicate (): Grid users or programs, for example the AutoReplication
service, can make new data replicas to the specified destination resources and the
new replicas are reassembled in parallel from the source and replica sites.

e MSDTCopy (): Grid users or programs can make copies of data objects to the
specified directories of the virtual storage system and the copies are reassembled in
parallel from the source and replica sites of the original data objects.

3.2 Date Sharing

According to the literature survey, we found that Grid users usually need a platform
where they can work collaboratively. Although most Data Grid middleware provides
the sharing of storage resources, data sharing for collaborative work is not well sup-
ported. Therefore, in our system, we develop a collaborative platform through the
combinations of forming user groups and specifying access permissions on each data
object.

In our system, a group of users who need to work together can ask the administra-
tors to form a user group. For instance, a user group can be built according to some
research topics in which a group of users are interested. Each Grid user can take part
in many user groups simultaneously as long as he/she gets the grants from the admin-
istrators. Once an administrator creates a user group, the system will create a group

A High-Performance Virtual Storage System for Taiwan UniGrid 33

workspace, i.e. a group home directory, for sharing and collaboration. Each group
workspace can assign one or more owners to manage the admission of the workspace.

In general, Grid users have their own personal workspace, i.e. a user home direc-
tory, where they can manage their private data objects. Data objects can be files, di-
rectories, replicas or links. Grid users can share their private data objects with others
via specifying access permissions on data objects. Figure 4 shows a screenshot of
admission control for data sharing, by which Grid users can specify read or write
permission for each data object to other users or groups. It also supports the owner
change of a specific data object. On the other hand, Grid users can share their data by
uploading or copying private data objects directly to the group workspaces.

==-ITZIWln|.|niGI'Il‘"..."......"......"......."......."......."......"....EKE)IE

File Zone Replica Help

5 [[a[e]e]z][c]e]r]e]e]s

c:\‘vlc\ Hsinchu_UNIGRID ‘v|/Ta|pELUN\GRID/"DmElumgrmtEQtHSAS

Name size Tyge Wodified Name size Tyne |Rens| Modified

[, 0 Directory 200671718 F2F 3. 1| bashre 124 File 1 20069918 F4F .. [

VALUEADD 0 Directory 20047674 _£2F 00 | |[md IOz File 120077209 T I..

e 0 Directory 200478 L4 sion | (|01 Paris Hiton 4658428 File 220061927 £F

ESuNEIo0e 0 Directory 20067811 T2 5 101-juanes-am.. 5,343,047 File 120071524 TF

FOUND.O01 0 Directory 200611123 FF ... |=|[200.m03 10,39 e e
Book 0 Directory 200571024 FF ovonecwerers.. 107 (Y Permission 2072000 2 e &
ysinto 0 Directory 2005410124 TF [T File Name: aipei_UNIGRID/home/unigridie st SAS/mealadmin jar
WINDOWS 0 Directory 20061718 FF 3...| |[TTree/ar g

Documents and 0 Dirertory 2006728 F4F 6.47 | || newmp3 g User [Group [Owner |

Program Files 0 Directory 20067278 T4 B:54 pache-torncat 61 Group Name I Read irite
acer 0 Direetory 2006278 F4F 7:26 | ||t out (]

FOUND.002 0 Directory 200771726 £ 1 hello_out FCU vl
FOUND.0D3 0 Directary 200771727 T4 4 hellompi_outt 78liNCHU 2 7]
FOUND.004 0 Directory 200771128 FF 1 Mt R] Wl
System Volume | 0 Directory 200606721 FF 1 [iob_status.rep

FOUND.00S 0 Directory 200771729 b4F 4:..| || mandelbrot2 5]

IDE 0 Directory 2006/6r21 F4F 3 moatAdmin jar i

Recycled 0 Directory 200675122 FF 3 mm_mpi 8

downioad 0 Directory 200678724 £ 4. | |[100dY 0]

lib 0 Directory 2006782 F4 11 noody_damo HE]

Server bt 146File 20061215 FF [DECER]

hootfonthin 213930 File 20041874 +4F S:00 | ||PRRI2008ra0]

ntidr 257,200 File 20047804 L 500 | ||Summanout Group: []Read []Write
NTDETECT COM 47,564 File 20047814 L5 500 ag:s::gg;

oot ini 211File 20060621 FF 1 . :

CONFIG 575 UFile 2006/28 T 655 || Group: [JRead [write
User: unigridtest Host: iisurid0 .is.sinica.eduw Pro

Fig. 4. A screenshot of the data management client and admission control for data sharing

3.3 Single Sign-On

Since software components and resources within a Grid system are distributed in
different organizations and managed independently, using one account for a Grid user
to utilize all these software components and resources becomes a crucial issue. GSI
(Grid Security Infrastructure) [6] is a promising solution to the issue in Grids. GSI
uses X.509 certificates to securely authenticate users across the network. Moreover,
SRB supports two main methods of authentication, GSI and an SRB secure password
system known as Encryptl. GSI in SRB makes use of the same certificates and Public
Key Infrastructure (PKI) [14] as do Globus Toolkit [15] such as GridFTP [16]. Since
we adopt Globus Toolkit as the middleware for managing computing resources, in
order to enable the single sign-on for utilizing Computational Grid and Data Grid, we
choose GSI as the main user authentication mechanism in our system.

To use Taiwan UniGrid, Grid users have to register in UniGrid Portal first. The us-
ers will receive certificates issued from UniGrid CA after approved by system admin-
istrators. Meanwhile, the users’ profiles are also registered to Computational Grid and

34 C.-M. Wang et al.

Data Grid, i.e. Globus and SRB. Once users want to use Taiwan UniGrid, they can
login to UniGrid Portal through their certificates and the system will automatically
generate corresponding secure proxy certificates which are good for a few hours to
submit jobs and manage data in distributed resources.

Zone A ———r————1 Zone B
Resourcel Resource2 || Resource3 Resource‘i.

SRB_Serverl

e
Grid_Userl

Fig. 5. The cross-zone problem

However, the current implementation of SRB does not well support the resource
utilization cross difference zones by GSI authentication. As shown in Figure 5, for
example, Grid_Userl and SRB_Serverl are registered in Zone A, as well as
SRB_Server2 is registered in Zone B. If we adopt the Java-based client-side APISs,
named Jargon, provided by SRB, Grid_Userl connecting to SRB_Server2 by GSI
authentication will be failed to access the resources (Resouce3 and Resource4) in
Zone B. We call this incident as the cross-zone problem. At present, SRB only sup-
ports the access to cross-zone resources through secure password authentication, En-
cryptl. Since we deployed our system in five zones and developed Self-Adaptation
approach to reassemble data objects in parallel from multiple replica sources, which
may be located in different zones, it causes the cross-zone problem. We will address
this problem from two perspectives, users and programs, in the following paragraphs.

From the perspective of users, we intent to make Grid users login once by certifi-
cates and launch the data management client to manipulate their data without con-
cerning with the cross-zone problem. Thus, we propose an authentication process, as
depicted in Figure 6(a), to enable single sing-on for UniGrid Portal and the data man-
agement client.

After a Grid user logins to Web Portal successfully, the portal asks the Account
Management service to create a session and returns necessary information, including
a generated session key and a profile for SRB to connect. The Grid user can launch
the data management client to access data in storage resources after login to Web
Portal. While launching the data management client, Web Portal passes the session
key and SRB-related information to the client and then the client uses the session key
to obtain the user’s password through SSL from the Account Management service.

A High-Performance Virtual Storage System for Taiwan UniGrid 35

Finally, the client uses the password and SRB-related information to connect to a
SRB server in Encryptl. Once connecting successfully, the Account Management
service removes the session. This prevents malicious users from using the cached
session keys to retrieve passwords from the Account Management service.

UniGrid Account
LniGirid M o submit jab

Portal Sc;\-'icc limited procey L U
ry

. crea o
nl £
" -
Je T . . certificate i i
launeh SR cfient ’) Resource Computing
SET e Broker Nodes
. SRB-relasgd infer
Data
Account et SRE info.
Management —r
SRI Service " Limited prony cers

M ment
I
Server

full proxy certificate
SRB-reluted mio

»{ SRB Server

Client
SRRkt nfo
(a) (b)

Fig. 6. (a) The proposed authentication process enabling single sing-on for UniGrid Portal and
the data management client. (b) The proposed authentication process enabling single sing-on
for computing nodes.

From the perspective of programs, Resource Broker delegates submitted jobs to
computing nodes with limited proxy certificates, not full proxy certificate, for authen-
tication. However, in the current implementation of SRB, the limited proxy certifi-
cates will be failed in accessing storage resources located in different zones. Only full
proxy certificates are allowed to access the cross-zone resources in SRB. Hence, we
propose an authentication process for computing nodes, as shown in Figure 6(b), to
deal with this problem. After Resource Broker submits jobs to computing nodes with
limited proxy certificates, the computing nodes use the limited proxy certificates to
get full proxy certificates from the Account Management service. Finally, the nodes
can connect to SRB servers located in different zones with full proxy certificates and
access programs and data in the storage resources.

Table 1. The supported operations for data objects in the virtual storage system

Data object Operations

File download, upload, delete,

copy, paste, rename
. create, download, upload,

Directory
delete, copy, paste, rename
. create, download, delete,
Link
copy, paste, rename
Replica create, delete

3.4 The Data Management Client

We develop two kinds of clients of the virtual storage system. One is Java-based
standalone version not integrated with UniGrid Portal and Computational Gird. It is

36 C.-M. Wang et al.

suitable for users who just want to store their data without the need of computation
support. Another one is Java Web Start version which is embedded in UniGrid Portal.
Grid users can launch the client directly from UniGrid Portal after they login.

Figure 4 shows a screenshot of the data management client. The left of the client is
the file and directory list of local storage drives and the right is the file and directory
list of SRB storage drives. Once Grid users login to our system, the system directs
them to their default home directories automatically, and then they can access data or
traverse the whole storage system. As shown in Table 1, for various data objects, we
provide difference operations on them in the current implementation.

Unlike other FTP systems, our system allows users to specify storage resources, for
instance closest resources, to store uploaded data. An uploaded data object can further
be made several copies, i.e. replicas, disturbed in different resources for reliability and
efficiency of data transfer. In addition to creating replicas by users, we also integrate
the AutoReplication service in the client. Users can set replica policies on data objects
via the client. The AutoReplication service will automatically create replicas accord-
ing to the specified policies. Furthermore, through the data management client, users
can also specify access permissions on data objects, as shown in Figure 4, for sharing
and collaboration.

UniGrid submit joh Resource submitjob |- Computing
y Portal Broker Nodes
*— liisclidat verify -‘idnnlil_\ check
i create sessiol
management f g
JK\‘\ i set/get user info,
. Data Account
“A Management » Management | .. spB info.
Client verify user identity Seryice
Storage
data operations System data operations

Fig. 7. The major components of Taiwan UniGrid and their interactions

4 Operation Scenario of Taiwan UniGrid

In this section, we will demonstrate an operation scenario of using Taiwan UniGrid.
Figure 7 shows the major components of Taiwan UniGrid and their interactions. The
high-level operation scenario is explained as follows.

e A Grid user logins to UniGrid Portal by entering his/her account and password and
UniGrid Portal employs Account Management service to verify user’s identity.

e If login successfully, UniGrid Portal directs the user to his/her working web page,
as shown in Figure 8.

e He/she launches the data management client (Figure 4) and uploads programs and
data needed for the jobs, which will be submitted later, to the data storage system.

A High-Performance Virtual Storage System for Taiwan UniGrid 37

e The user makes an execution plan for a job or designs a workflow of jobs on the
working web page.

e Once the user has submitted a job, the portal asks Resource Broker to select com-
puting resources based on the requirement of the submitted job.

e Resource Broker assigns the submitted job to the selected computing nodes. The
selected computing nodes then retrieve programs and data from the storage system.

e The selected computing nodes start computing.

e Once all computing nodes finish their work, the computed results are merged and
stored back to the storage system.

e For reliability, the newly stored data can be replicated to other storage resources by
the user or the AutoReplocator service.

' Taiwan UniGrid Project Portal Site - Mozilla Firefox
Fle Edit Vv Hiry Bookmaks Tnols Help

- :
UmGrld A

Oltome | Clinformation | [Member DFumms‘Ta Monitorin

All Workflows

Taiwan UniGrid Project Portal (<)Copyright 2006

Fig. 8. The Taiwan UniGrid Portal

5 Conclusion

In this paper, we present the development of a high-performance virtual storage system
for Taiwan UniGrid. We employ SRB (Storage Resource Broker) as a basis to imple-
ment the functions of the storage system. Besides, we identify three main requirements
in the current implementation: high-performance data transfer, data sharing, and single
sign-on. To meet these requirements, we propose the corresponding features: Self-
Adaptation for high-performance data transfer, forming user groups and specifying
admission control for data sharing, and adopting GSI authentication to enable single
sing-on. We also develop a Java-based user interface of the storage system allowing
Grid users to manage their data transparently without concerning the low-level de-
ployment of storage resources. In the future, we will continue developing new features
in our system to make it more useful. On the other hand, we will execute more data-
intensive applications on our system to examine its reliability and scalability.

38

C.-M. Wang et al.

Acknowledgement

This work was supported in part by the National Center for High-performance Com-
puting under the national project, “Taiwan Knowledge Innovation National Grid”,
and in part by National Science Council under Contract No. NSC95-2221-E-001-002.

References

1.

Taiwan UniGrid, http://www.unigrid.org.tw.

2. Chaitanya Baru, R. Moore, A. Rajasekar and M. Wan: The SDSC storage resource broker.

10.

11.

12.

13.

14.

15.

16.

CASCON '98: Proceedings of the 1998 conference of the Centre for Advanced Studies on
Collaborative research, Canada (1998) also available at http://www.sdsc.edu/srb.

B. Allcock, A. Chervenak, I. Foster, C. Kesselman, and M. Livny: Data Grid tools: ena-
bling science on big distributed data,” Journal of Physics: Conference Series 16 (2005)
also available at http://www-fp.mcs.anl.gov/dsl/scidac/datagrid

Y. Zhao, M. Wilde, L. Foster, J. Voeckler, J. Dobson, E. Glibert, T. Jordan, and E. Quigg,:
Virtual Data Grid Middleware Services for Data-Intensive Science. Concurrency and
Computation: Practice & Experience, Vol. 18, Issue 6 (2004) also available at
http://vds.uchicago.edu/twiki/bin/view/VDSWeb/WebMain

Chien-Min Wang, C.C. Hsu, HM. Chen, J.J. Wu: Efficient multi-source data transfer in
data grids,” 6th IEEE International Symposium on Cluster Computing and the Grid, Sin-
gapore (2006)

I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke: A security architecture for computa-
tional grids. In ACM Conference on Computers and Security, pages 83-91, ACM Press
(1998)

WSDL: Web Services Description Language 1.1. Available at http://www.w3.org/TR/wsdl
UDDI: Universal Description, Discovery and Integration (2001) Available at
http://www.uddi.org

SOAP: Simple Object Access Protocol 1.1. Global Grid Forum, available at
http://www.w3.org/TR/soap

Kavitha Ranganathan and 1. Foster: Design and evaluation of dynamic replication strate-
gies for a high performance data grid. In International Conference on Computing in High
Energy and Nuclear Physics (2001)

S. Vazhkudai, S. Tuecke, and I. Foster: Replica selection in the globus data grid. In 1st In-
ternational Symposium on Cluster Computing and the Grid, pages (2001) 106-113

Jun Feng and M. Humphrey, “Eliminating Replica Selection - Using Multiple Replicas to
Accelerate Data Transfer on Grids,” In 10th International Conference on Parallel and Dis-
tributed Systems (2004). 359-366

C.T. Yang, S.Y. Wang, C.H. Lin, M.H. Lee, and T.Y Wu, “Cyber-Transformer: A Toolkit
for Files Transfer with Replica Management in Data Grid Environments,” In the 2nd
Workshop on Grid Technologies and Applications (WoGTA’05), Taiwan (2005)

Carlisle Adams and Steve Lloyd: Understanding Public-Key Infrastructure: Concepts,
Standards, and Deployment Considerations. New Riders Publishing (1999)

Ian Foster and C. Kesselman: Globus: A Metacomputing Infrastructure Toolkit. The Inter-
national Journal of Supercomputer Applications and High Performance Computing, vol.
11, No. 2, (1997) 115-128

B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, 1. Foster, C. Kesselman, S. Meder,
V. Nefedova, D. Quesnel, and S. Tuecke: Data Management and Transfer in High-
Performance Computational Grid Environments. Parallel Computing (2001)

Interoperable Grid PKIs Among Untrusted Domains: An
Architectural Proposal

Valentina Casolal, Jesus Lunaz, Oscar Mansoz, Nicola Mazzoccal, Manel Medinaz,
and Massimiliano Rak®

! University of Naples, Italy
Phone: +39-0817683907; Fax: +39-0817683916
{casolav,n.mazzoccal@unina.it
% Universitat Politécnica de Catalunya, Spain
Phone: +34-93 4016984, Fax: +34-9337947
{jluna, omanso, medina}@ac.upc.edu
? Second University of Naples, Italy
massimiliano.rak@unina2.it

Abstract. In the last years several Grid Virtual Organizations -VOs- have been
proliferating, each one usually installing its own Certification Authority and
thus giving birth to a large set of different and possibly untrusted security
domains. Nevertheless, despite the fact that the adoption of Grid Certification
Authorities (CAs) has partially solved the problem of identification and authen-
tication between the involved parties, and that Public Key Infrastructure (PKI)
technologies are mature enough, we cannot make the same assumptions when
untrusted domains are involved. In this paper we propose an architecture to face
the problem of secure interoperability among untrusted Grid-domains. Our ap-
proach is based on building a dynamic federation of CAs, formed thorough the
quantitative and automatic evaluation of their Certificate Policies. In this paper
we describe the proposed architecture and its integration into Globus Toolkit 4.

1 Introduction

Grid Resource owners can control access to their resources by means of well-
established Authentication and Authorization processes for End-Entities. Nevertheless,
despite the fact that the adoption of Certification Authorities (CAs) has partially solved
the problem of identification and authentication between the involved parties, and that
Public Key Infrastructure (PKI) technologies are mature enough, we cannot make the
same assumptions when untrusted domains are involved. Let us take for example two
different Grid-CAs which do not have a direct interoperability agreement (i.e. explicit
cross-certifying procedure), but their researchers need to work together.

Furthermore, in the last years a lot of Grid Virtual Organizations (VOs) have been
proliferating, each one usually installing its own Certification Authority and thus
giving birth to a large set of different and possibly untrusted security domains. This
represents one of the biggest interoperability problems that could arise among all Grid
users and therefore one of the major security challenges to be faced before building a
wide distributed infrastructure allowing the cooperation of existing Grid installations.
In other words, this problem is related to the definition of a distributed infrastructure

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 39-{51] 2007.
© Springer-Verlag Berlin Heidelberg 2007

40 V. Casola et al.

able to guarantee a secure degree of interoperability among all the involved Grid-
Certification Authorities.

In practice there are two commonly accepted approaches that provide interopera-
bility between different security domains based on PKI technology:

1. Involved CAs explicitly build a trusted domain, defining a new CA hierarchy
through cross certification techniques. In this case each CA explicitly trusts the
others and therefore is able to accept their certificates.

2. Involved CAs do not build an explicit trusted domain, but interoperate through a
“federation”: any CA belonging to the federation implicitly trusts the others thanks
to the definition of a well-established policy-based framework.

Even if the explicit trusted domain (first approach) is an attractive solution, it is not
always possible to implement in Grid environments, because of the required agree-
ments between the involved organizations, administrative overheads and technical
problems that arise with current software (this is the case of the Globus Toolkit [1]).

For the computational Grid, the second of the aforementioned options (building a
Federation of CAs) has been the most suitable solution for real-world projects so far.
At this aim, the Policy Management Authorities (PMAs) have established a minimum
set of requirements and best practices for Grid PKIs willing to join its federation.
These minimum requirements comprise the PMA’s Authentication Profile. It is impor-
tant to note that the PMA itself does not provide identity assertions, but instead asserts
that, within the scope of its charter, the certificates issued by their member-CAs meet
or exceed its Authentication Profile. In summary, Grid's Policy Management Authori-
ties represent "Federations of Grid PKIs" whose CA members accomplish minimum
levels of security.

In the case of the existing Grid PMAs (TAGPMA [2], EUGridPMA [3], APGridPMA
[4] and IGTF [5]) compliance with their respective authentication profile is given through
a well-defined, but mostly manual, process involving a careful analysis of the applicant
PKT’s Certificate Policy (CP) [6], performed just once, when a new CA wishes to be part
of an existing PMA. This is known as the PMA’s accreditation process.

It is also interesting to note that even though all the Grid CA members of a PMA
must fulfill with the established authentication profile, not all of them accomplish these
minimum requirement on the same level. Despite the importance of such information
for building comprehensive Grid PKI’s trust relationships and for Authentica-
tion/Authorization purposes, to date there is no automatic way to quantitatively com-
pute a CA’s compliance level according to a particular PMA’s Authentication Profile.

With independence of the interoperability mechanism chosen (explicit trust or CA-
federation), any client (commonly called End-Entity) invoking a Grid Service’s op-
eration from the server, activates an authentication process to attest his identity. This
process requires validating the end-entity’s digital certificate according to the path
validation procedure described in [7].

When involved CAs interoperate thanks to explicit trust agreements, only basic
path validation is required: cryptographic verifications and status’ checks over the
involved certificates. State of the art Grid software, like the Globus Toolkit, provides
static mechanisms for the basic path validation, i.e. the administrators manually de-
clares the accepted CAs, and locally update respective CRLs.

However, if the involved CAs are part of a Grid-federation, then extended path
validation is needed: basic validation path enhanced with a policy mapping process

Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal 41

that compares the involved CAs’ Certificate Policies to assert that they fulfil with a
particular Accreditation Profile and therefore can interoperate among them.

In previous woerk towards achieving extended path validation, our research groups
proposed a Grid-Validation Infrastructure based on the use of the Online Certificate
Status Protocol (OCSP) [8], just as presented in [9] and [10]. On the trust-research
topic, in previous works we have proposed a formal methodology to compare and
evaluate Certificate Policies from different CAs as published in [11], [12] and [13].
This paper is the result of gathering both the experiences to propose an architecture
for enabling extended path validation in Grid environments, using both the validation
infrastructure and the evaluation methodology.

The remainder of the paper is structured as follows: next section outlines the state
of the art on Grid validation and PKI’s security evaluation. Section 3 details the
problem of Grid security interoperability and its relationship with the need of imple-
menting a Trusted Third Party (TTP), which we managed by using the extended path
validation concept. Section 4 outlines the basis of our approach, by showing our pro-
posal for an architectural model for Grid interoperability. Section 5 introduces
“POIS”, a real implementation of the proposed validation architecture for the Globus
Toolkit 4, which enables interoperability between untrusted domains. Section 6 sum-
marizes the conclusions and future work.

2 State of the Art

Next will be briefly reviewed two Grid security topics, milestones of the proposal
introduced later in this paper: the Grid validation and the PKI’s security evaluation.

2.1 Grid Validation

In a PKI, all entities (users and resources) are identified by a globally unique name
known as Distinguished Name (DN). In order for entities to prove their identity, they
possess a set of Grid credentials consisting of a X.509 version 3 digital certificates [7]
and a private key. The certificate is digitally signed by a Certification Authority that
guarantees for the binding of the entity’s DN to its private key.

The authentication mechanism, by means of digital certificates, involves the pres-
entation of the certificate and proving possession of the corresponding private key.
So, with the certificate being public, the only critical point is the preservation of the
private key; to limit the danger of an entity’s private key being stolen, two strategies
are commonly adopted: i) the key is protected with encryption or by storing it on a
hardware token (e.g. a smart card); ii) the private key has limited lifetime after which
it is no longer valid. The Globus Toolkit’s security implementation known as the Grid
Security Infrastructure (GSI) [14] follows the second strategy using Proxy Certificates
[15]: short-term credentials that are created by a user, which can then be used in place
of traditional long-term credentials to authenticate him. The proxy certificate has its
own private key and certificate, and is signed using the user’s long-term credential. A
typical session with the GSI would involve the Grid user (End-Entity) using its
passphrase and the GSI’s command grid-proxy-init to create a proxy certificate from
its long-term credential. The user could then use a GSI-enabled application to invoke

42 V. Casola et al.

a service’s operation from a Globus Toolkit’s Grid Services Container [16]. If Message
Level Security is being used for authentication [17], then the user’s application would
use the GSI library and the corresponding proxy certificate to authenticate to the
remote host by means of a digitally signed message containing the service invocation.

From the Grid resource point of view, to fully perform the authentication process, a
certificate validation service interface should be defined that can be used within the
Open Grid Services Architecture (OGSA) [18] implementation to:

1. Parse a certificate and return desired attribute values, as the validity period, the
Distinguish Name -to map it to a resource’s local user- and so on.

2. Perform path validation [7] on a certificate chain according to the local policy and
with local PKI facilities, such as certificate revocation lists (CRLs) or through an
Online Certificate Status Protocol [8].

3. Return attribute information for generic KeyInfo values, thus allowing the use of
different certificate formats or single keys, or to pull attribute information from di-
rectory services instead of certificates.

A certificate path validation process (step 2 above) must comprise at least the fol-
lowing four phases:

1. Cryptographic verifications over the certificate path (i.e. verifying the digital signa-
ture of each certificate).

2. Verifying each certificate validity period.

. Verify that the first certificate in the chain is a Trust Anchor.

4. Verify the certificate’s status to ensure that is has not been revoked or suspended.

(98]

For the rest of this paper the process just described will be referenced as basic path
validation. Modern Grid installations like the Globus Toolkit [1] provide static
mechanisms to perform the last two phases of the basic path validation process
described above:

— The first certificate in the chain is considered a Trust Anchor if it has been stored
into the Grid node’s /etc/grid-security/certificates/ directory.

— The certificate’s status is retrieved from a locally stored Certificate Revocation List
(CRL).

Both processes have an inherent static nature and because of this diverse security
problems may arise into the Grid.

2.2 Evaluation of Grid PKIs

Next is described important related work on PKI’s evaluation; in particular are sum-
marized three techniques quite suitable for evaluating Grid PKIs policies, the core
functionality of the validation infrastructure proposed later.

The first of these techniques is the Reference Evaluation Model (REM) presented
in [11], and defined as a triplet (Formalization, Technique, ReferenceLevels) where a
formalized certificate policy is evaluated with a novel evaluation technique. The pro-
posed technique is based on the definition of a policy metric space and a distance
criteria to numerically evaluate the CA’s security level thus obtaining the so called
Global Security Level.

Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal 43

In second place and closely related with REM is the work presented in [19] where
the authors propose on-demand evaluation of Grid CA’s policies and practices to
achieve interoperability. A prototype for a trust evaluation system is presented in that
paper, which is able to evaluate a CA based on its published policies and observed
practices with respect to a set of rules based on the requirements from an Authentica-
tion Profile. In particular, its evaluation methodology encodes some features from the
CP into a CA report file (involving key-value pairs coded in a Scheme-like language)
so afterwards they can be evaluated relative to rulesets, assurance levels allow rulesets
to be defined for each level specified by the GGF. A customized ruleset can be de-
fined either based on a minimum requirements document from a PMA, or even on a
set of rules created by the VO or the CA to override and extend the default ruleset. In
this way the authors introduce the “ruleset inclusion principle” as the base for evaluat-
ing chained rulesets.

Finally in [20] is proposed an extension to the Grid Security Infrastructure that
provides for dynamic establishment of trust between parties. This approach, called
Trust Negotiation, seeks to implement authorization and authentication by establish-
ing trust relationships in a bilateral and iterative way. This task is performed with the
disclosure of certificates and by requests for certificates; those requests may be in the
form of disclosures of access control policies that spell out exactly which certificates
are incrementally required to gain access to a particular resource (an approach that
differs from traditional identity-based access control systems that involves a trusted
third party).

3 The Problem of Grid Security Interoperability

As Grid computing became more popular, VOs proliferated at the same rate, and this
finally resulted in the breed of several Certification Authorities (as a common prac-
tice, each organization installing a Grid environment also defines its own Certification
Authority). Soon this represented a big interoperability problem between the users
and resources belonging to different institutions: the computing resources were in
different domains, but the need of cooperation through a Grid environment required to
share them all. A clear need arose for methodologies, techniques and tools able to
build interoperable systems. According to [21] the interoperability problem in Grid
environments can be subdivided into three levels:

e Protocol Level, i.e. the capability of Grid systems to communicate with known and
accepted standard protocols.

e Policy level, i.e. the capability of each party of the Grid to be able to specify its
security policy expressed in a way mutually comprehensible.

e Identity level, i.e. the capability of identifying users from one domain to another.

State of the art Grid solutions focus mainly on the first level, accepting the use of
SOAP/HTTP protocols as the common platform for system interoperability. The
proposal presented in this paper focuses on the Identity Level, adopting a policy-
based approach to implement an extended path validation mechanism as introduced
next.

44 V. Casola et al.

The main idea behind the extended path validation mechanism is to define an ap-
proach that enables any Grid relying-party to validate in real-time a digital certificate
issued by any other CA, even though they do not belong to the same trusted domain
(i.e. Institution or project). To perform an extended validation path we need:

e A methodology to automatically perform the policy mapping (i.e. comparison of
the Certificate Policies and their evaluation), to build a dynamic virtual CA
federation;

e A mechanism to validate on-line and near-real time the certificate status.

As mentioned in section 1, most Grid PKIs working together are not completely
unknown, but they have been previously accredited by a Policy Management Author-
ity (PMA), which defines a minimum set of security requirements — in the form of an
Authentication Profile as in [22]- that must be accomplished for interoperability rea-
sons. Even though all Grid CAs from a PMA must pass the accreditation process, not
all of them accomplish the respective Authentication Profile on the same level. There-
fore it is very important to measure the degree of compliance of a Grid-PKI’s Certifi-
cate Policy with respect to a PMA’s Authentication Profile; with this information it is
possible to build comprehensive trust relationships between those Grid PKIs.

At this aim we propose in this paper an architecture for building a Grid validation
system, which guarantees secure interoperability among untrusted domains by both
retrieving near real-time the status of any certificate issued by a CA, and evaluating
the security level associated with this Authority.

4 The Architectural Model of an Interoperability System

As pointed in the previous sections, the goal of the proposed architecture is to enable
extended path validation in untrusted Grid domains. Our approach is to build a dy-
namic federation of CAs by evaluating their certificate policies. In order to have
grants about the CAs minimum security requirements (and that each CA respects its
published Certificate Policy), we refer to a Trusted Third Party: the PMA.

At a coarse grain, the proposed Interoperability System (IS), see figure 1, acts as an
intermediary between the certificate verifiers (relying parties) and the issuing CAs by
managing (retrieving, elaborating and updating) the information needed to perform
the extended path validation: the list of accredited CAs, the list of revocation sources
and the Certificate Policies.

The IS may be collocated with the Trusted Third Party and must perform two main
tasks:

1. Online validation of the certificates’ status.
2. Evaluation of the issuing CA’s security level.

For the first task we will use a Grid Validation System able to retrieve the status of
a digital certificate through the OCSP protocol in a CA federation; further details of
this system are available in [9] and [10]. About the second task, for evaluating a CA’s
security level we have adopted the Reference Evaluation Methodology, briefly sum-
marized in 2.2 and which details are available in [11].

Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal 45

7 !
Trusted Third
Party AN lI‘rP Accreditation
|\ Process
|~
Retrieve \
Grid-Chs list : CAs

|

Retrieve
Revocation Info and
Certificate Policy

Interoperability
System

i |

S |

Y
Relying Parties
(Grid Client, Service's
Cantainer, etc.)

Fig. 1. Functional blocks of the proposed Interoperability System (IS)

REM’s approach is based on the formalization of a Grid-CA’s Certificate Policy to i)
determine if this Authority is compliant with a PMA’s Authentication Profile and ii)
to quantitatively evaluate the Global Security Level of this CA. In figure 2 we show
the results of the REM application to some of the Certification Authorities members
of the EUGridPMA [3], in order to obtain their GSL; we have compared the EUGrid-
PMA’s minimum Authentication Profile [22] against Certificate Policies from IRIS
Grid CA [23], US Department of Energy Grids CA [24], CERN CA [25] and INFN
CA [26]. Further details about this results and the methodology are available in [27].

EUGridPMA: Grid-PKls CP's Evaluation

25

2 pkIRISGridCA INEN CA
i ¥,
2 bogca CERNCA [F
g 15 IGTF-AP
3 N
N\
3 10
[Z]
3
o
[}

5

S \ 7

Certification Authority

Fig. 2. GSLs obtained for a set of EUGridPMA's Certification Authorities

The GSL represents the CA security level that will be embedded as a Proxy Cer-
tificate extension using OGRO’s prevalidation mechanism (please refer to [10] for
more details about this feature), thus providing a final decision about a certificate
validation and the Grid-PKIs interoperability issues.

46 V. Casola et al.

5 POIS: Policy and OCSP Based Interoperability System

In this section we propose a validation system built over the basic blocks presented
previously: POIS - Policy and OCSP based Interoperability System (figure 3). POIS is
comprised of three basic elements: the OCSP Responder’s database (tentatively Cer-
tiVeR [28]), the Policy Evaluator and the OCSP Responder itself. At a coarse view
POIS offers the following features:

. Manage (retrieve, update) the list of CAs accredited by PMA.

. Manage (retrieve, update) the accredited CAs’ Certificate Policies.
. Manage (retrieve, update) the accredited CAs’ CRLs.

. Communicate validation information to relying parties over OCSP.
. Perform Extended Path Validation:

DW=

— Perform Basic Path Validation.
— Evaluate and/or Compare Certificate Policies through precomputed GSLs.

In order to manage the list of accredited CAs and their policies (features 1 and 2)
POIS, modern techniques assume an off-line communication with both PMA and CAs
(the administrator manually downloads the list of accredited CAs and their Certificate
Policies). The CRLs (feature 3) from each accredited CA are managed using Cer-
tiVeR’s CRL Updater module (described in [28]), so they can be used later for the
Extended Path Validation algorithm. POIS implements in its Policy Evaluator subsys-
tem the REM technique explained in section 2.2, which allows offline evaluation of a
member CA’s Certificate Policy (after retrieving it) to obtain its respective Global
Security Level. Afterwards into the OCSP Responder’s database, the GSL data is
linked to the existing Certification Authority information (i.e. its revocation data from
the CRL).

— Dynamic Interoperability =
Between Institutions —~

POIS
Policy and OCSP based
Interoperability System

Policy CertiVeR's
S Evaluator OCSP
~ Responder
~
~— Corver's
~ o8

End-Entity

Service
Invocation

Fig. 3. POIS’ Architecture

Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal 47

POIS is able to perform the Extended Path Validation thanks to the OGRO mid-
dleware [29], which builds over GT4’s basic path validation algorithm the following
two enhancements: i) certificates’ statuses are extracted from the OCSP prevalidation
data and ii) embedded GSL (from the End-Entity’s CA) is compared against the GSL
value required by the Relying Party.

Figure 3 shows a typical POIS’ uses case, where interoperability is achieved be-
tween a Grid Client belonging to Institution A and a Grid Services Container from
Institution B. Sections 5.1 and 5.2 will explain in greater detail this process from the
point of view of both entities, the Grid Client and the Grid Services Container.

M POIS |
‘ End Entity ‘ Grid Client with OGRO | | ‘ DCSP Responder ‘ | Poiicy Evaluator | | ‘ CA ‘
I - -init | T
| gric-proxy-ini _________4___'
I |
L Passphrase request Eﬂhre ™ —sEmEer— —I— —

Passphrase

|
KN
|
|
|
|
|
| CCP evaIL_latlon with REM

Stores L‘SL |

T
«Basic Path Validation

OCSP Reguest with GSL

| T
| |
| |
| |
| |
| | |
| | |
| |
| |
| |
| |

|

|

1

Embeds GSL

gt

OCSP Response with GSL

3
|
"
CPrevalidation
—

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| —

[CGenerate Proxy Certificate
| T

|

Store Proxy Certificate |

Fig. 4. End-Entity performing Extended Path Validation with POIS

5.1 Extended Path Validation: POIS and the End-Entity

When an End-Entity uses POIS to dynamically build Grid interoperability, the phases
depicted in figure 4 take place. It is easy to note the addition of the GSL concept in
the following steps:

— In an offline manner the CA submits its Certificate Policy (CP) to the POIS, and
then the Policy Evaluator subsystem feeds it to its REM implementation to obtain a
GSL. As mentioned in the previous section, this GSL is stored into OCSP Re-
sponder’s DB along with the CA data already there. A further enhancement may
provide a SOAP-based implementation for online CP’s submission and evaluation
(see section 6 for a discussion about our future works).

— The End-Entity builds an OCSP Request with a specific extension field (fully
compliant with [7]), that our OCSP Responder will understand as a requirement to
include its corresponding GSL, let us call it GSLg,, along with the OCSP

48 V. Casola et al.

Response. Note that each CA from the End-Entity’s certificate chain may be asso-
ciated with a different GSL.

— Finally, when the End-Entity receives the OCSP Response (with GSLj; embedded

also as an extension field), the prevalidation mechanism is executed to create a
proxy certificate with this data embedded.

Our belief is that thanks to OGRO’s prevalidation mechanism not only is the relying
party able to improve validation process’ performance, but also the Proxy Certificate is
self-contained in the sense that includes all the data required by relying parties to perform
the extended validation process without further contacting any authority. Performance
measures related to the underlying Grid-OCSP process can be found in [28].

5.2 Extended Path Validation: POIS and the Grid Services Container

Once the proxy certificate has been created with prevalidation data including GSL
value(s) according to 5.1, it is possible for the Grid Server to perform the interopera-
bility evaluation that will enable it to take a final validation decision on the End-
Entity invoking the Service’s operation.

Grid Services Container

with OGRO |m| ‘Qﬁﬂﬂﬁmﬂ.ﬂ}
[

Grid Client

|
Invoke Servica's operation |

> Basic Path Validaton
D Extract Frevalidation Data

1
|
|
| Messaga Level Security |
|
|
|

S
[optionat ! 0CSP Request with GSL
!

| | I
| OCSP Responsa with GSL

|
> Who is the end-entity? (extratis DN)
|

T

|

I

|

|

|

|

|

|

|

|

| |
| |
Map 10 a local user (GridmapPDP) |
|

|

|

I

|

|

|

I

|

|

|

|

|

|
[
| Service's operation
|
|
|

Fig. 5. Modified Server for Extended Path Validation with POIS

Figure 5 extends the validation process with the following enhancements:

1. If OGRO'’s prevalidation mechanism was used, then the End-Entity’s GSLg; is

extracted from this data, Otherwise, this GSL value is requested directly from the
OCSP Server.

Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal 49

2. The interoperability test is performed by comparing GSLg; with the minimum
required-GSL defined by the relying-party in OGRO’s Grid Validation Policy, let
us call it GSLgyp . If GSLgg =2 GSLgy, then both Grid-CAs may interoperate.

Notice that with POIS it is possible to dynamically test for an interoperability con-
dition on the server-side, but the End-Entity could be also able to request a minimum
expected GSL from a Grid-node. This mutual-interoperability will be a future en-
hancement in POIS just as explained in the section 6.

6 Conclusions and Future Work

The research collaboration undertaken between the “Universita di Napoli, Federico
I, the “Seconda Universita di Napoli” and the “Universitat Politecnica de Cata-
lunya” in the field of digital certificate path validation for the computational Grid has
resulted in POIS, a promising alternative towards a practical solution to the dilemma
of providing an interoperable and flexible trust environment between relying parties
belonging to different and not cross-certified Grid-Certification Authorities. The pro-
posal presented in this paper relies on a Grid-OCSP Validation System to convey the
Global Security Level of any Certification Authority, which quantitatively represents
the assurance level of its published Certificate Policy. Using this data any Grid-
relying party may dynamically decide to interoperate or not with any other, without
the need to perform cumbersome administrative processes.

For future extensions to the POIS implementation, we are working of the following
topics:

— GSL for hierarchical PKI: even though most Grid-PKIs are only comprised of one
Certification Authority (the Root CA itself), the entrance of Grid technology into
new fields (i.e. enterprise applications) is likely to employ hierarchical PKIs in
more than one case. GSL computation and OGRO’s interoperability-checks should
be extended to support these complex scenarios.

— Mutual interoperability: in this paper we have set up a scenario where the relying
party is the Grid Server itself, which in turn defines its interoperability condition.
But is it feasible to think that an end-entity can also define its own constraints? We
believe that it is convenient from a security point of view to implement this func-
tionality in the near future. This enhancement will allow us to differentiate among
policies linked to institutions (i.e. Certificate Policies) and policies from individu-
als (i.e. Use Policies).

— Extending the Certificate Policy to a Validation Policy: it is very likely that all the
entities participating in the computational Grid will require defining their own
Validation Policies, containing their minimum interoperability requirements in a
per-provision basis. These Validation Policies will be an instance of the Certificate
Policy used in our proposal, so it is feasible to expect that POIS could be scaled
easily to provide this requirement.

Finally with the development of the authentication and validation protocols around
OGSA, it is possible that POIS would need to implement protocol connectors for
specific functions: a SOAP-based protocol for CP conveying from CA to Policy

50

V. Casola et al.

Evaluator, OCSP for Certificate status, etc. This may also enhance POIS performance
and network bandwidth usage.

References

(1]

[2]

(3]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

“Globus Toolkit Version 4: Software for Service-Oriented Systems”. I. Foster. IFIP In-
ternational Conference on Network and Parallel Computing, Springer-Verlag LNCS
3779, pp 2-13, 2005.

“The Americas Grid Policy Management Authority”. Octuber, 2006. http://
www.tagpma.org/

“European Policy Management Authority for Grid Authentication”. Octuber, 2006.
http://www.eugridpma.org/

“Asia-Pacific Grid Policy Management Authority”. Octuber, 2006. http://
www.apgridpma.org/

] “International Grid Trust Federation”. Octuber, 2006. http://www.gridpma.org/
] ”RFC 2527: Internet X.509 Public Key Infrastructure, Certificate Policy and Certification

Practices Framework”. Chokhani S. and Ford W. Internet Engineering Task Force. 1999.
http://www.ietf.org/rfc/rfc2527 .txt

“RFC 3280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revoca-
tion List (CRL) Profile”. Housley R., et. al. Internet Engineering Task Force. 2002.
http://www ietf.org/rfc/rfc3280.txt

“RFC 2560: X.509 Internet Public Key Infrastructure, Online Certificate Status Proto-
col”. Myers M, et. al. Internet Engineering Task Force. 1999. http://www.ietf.org/
rfc/rfc2560.txt

“Using OGRO and CertiVeR to improve OCSP validation for Grids”. Luna J., Manso O.,
Manel M. In 1st Grid and Pervasive Conference (GPC2006). Proceedings by Springer in
Lecture Notes in Computer Science series. May 2006. http://hpc.csie.thu.edu.tw/gpc2006/
“OCSP for Grids: Comparing Prevalidation versus Caching”. Luna, Jests. Manso, Oscar.
Manel, Medina. In 7th IEEE/ACM International Conference on Grid Computing, Barce-
lona, September 2006. http://www.grid2006.org/

“An innovative Policy-based Cross Certification methodology for Public Key Infrastruc-
tures”. Casola V., Mazzeo A., Mazzocca N., Rak M. 2nd EuroPKI Workshop. Springer-
Verlag LNCS 3545, pp 100-117, Editors: David Chadwick, Gansen Zhao. 2005.
http://sec.cs.kent.ac.uk/europki2005/

“A Reference Model for Security Level Evaluation: Policy and Fuzzy Techniques”.
Casola V., Preziosi R., Rak M., Troiano L. JUCS - Journal of Universal Computer Sci-
ence. Editors: Ajith Abraham, L.C. January, 2005.

“A SLA evaluation methodology in Service Oriented Architectures”. Casola V., Mazzeo
A., Mazzocca N., Rak M” in Proceedings of Quality of Protection Workshop 05, 15 Sep-
tember, 2005, Milan, in Advances in Information Security book series, Springer-Verlag
“Globus Toolkit Version 4 Grid Security Infrastructure: A Standards Perspective”.
Welch, V. The Globus Security Team. 2005. http://www.globus.org/toolkit/docs/4.0/
security/GT4-GSI-Overview.pdf

“Internet X.509 Public Key Infrastructure proxy certificate profile”. Tuecke S., et. al.
Internet Engineering Task Force. 2004. http://www.ietf.org/rfc/rfc3820.txt

“The WS-Resource Framework”. 2006. http://www.globus.org/wsrf/

“GT 4.0: Security: Message & Transport Level Security”. 2006. http://www.globus.org/
toolkit/docs/4.0/security/message/

[18]

[19]

[20]

[21]
[22]
(23]
[24]
[25]
[26]

[27]

(28]

[29]

Interoperable Grid PKIs Among Untrusted Domains: An Architectural Proposal 51

“The Physiology of the Grid: An Open Grid Services Architecture for Distributed Sys-
tems Integration”. Foster, 1., Kesselman, C., Nick, J. and Tuecke, S. Globus Project,
2002, http://www.globus.org/research/papers/ogsa.pdf

“On-demand Trust Evaluation”. O’Callaghan, David. Coghlan, Brian. Accepted for the
7th IEEE/ACM International Conference on Grid Computing, Barcelona, September
2006. http://www.grid2006.org/

“Negotiating Trust on the Grid”. Basney J., et. al.In 2nd Workshop on semantics in P2P
and Grid Computing at the 13th International World Wide Web Conference. May, 2004.
www.ncsa.uiuc.edu/~jbasney/sempgrid.pdf

“The Security Architecture for Open Grid Services”. Nagaratnam N., et. al. 2002.
http://www.cs.virginia.edu/~humphrey/ogsa-sec-wg/OGS A-SecArch-v1-07192002.pdf
“Classic AP Profile Version 4.03”. Approved by the EUGridPMA. Edited by David
Groep. 2005. http://www.eugridpma.org/igtf/IGTF-AP-classic-20050905-4-03.pdf
“pkIRIS Grid Certification Authority: Certificate Policy”. August 2006.
http://www.irisgrid.es/pki/policy/

“US Department of Energy Grids: Certificate Policy”. August 2006. http://
www.doegrids.org/Docs/CP-CPS.pdf

“CERN Certification Authority: Certificate Policy”. August 2006. http://service-grid-
ca.web.cern.ch/service-grid-ca/cp_cps/cp_cps.html

“INFN Certification Authority: Certificate Policy”. August 2006. http://security.fi.infn.it/
CA/CPS/

“Static evaluation of Certificate Policies for GRID PKIs interoperability”. Casola, V. et.
al. Accepted in Second International Conference on Availability, Reliability and Security
(ARES 2007). April 2007. http://www.ares-conference.eu

“CertiVeR: Certificate Revocation and Validation Service”. November 2006.
http://www.certiver.com/

“OGRO - The Open GRid Ocsp client API”. November 2006. http://globus-
grid.certiver.com/info/ogro

TCMM: Hybrid Overlay Strategy for P2P Live
Streaming Services*

Hai Jin, Xuping Tu, Chao Zhang, Ke Liu, and Xiaofei Liao

Services Computing Technology and System Lab
Cluster and Grid Computing Lab
Huazhong University of Science and Technology, Wuhan, 430074 China
hjin@hust.edu.cn

Abstract. This paper proposes an application level multicast approach called
Tree-Control-Mesh-Media (TCMM) to distribute live media streams to a large
number of users efficiently. In TCMM, transmissions of media data are con-
trolled by two independent relay protocols in a collaborative manner. One pro-
tocol here is used to help a peer to identify its neighbor peers using the location
information while the other one is used to deliver of media stream among the
peers. The two protocols organize all peers into two graphs with different to-
pologies that the communications can benefit a lot from the hybrid control to-
pology. We have studied the performance of TCMM approach using different
simulation cases. The experimental results have shown that the broadcasting
performance of TCMM can achieve that of a well constructed mesh network
while it can adapt more dynamic and irregular network environment. We also
see that the penalty of introducing two protocols is rarely low which implies the
high scalability of TCMM.

1 Introduction

Recent research works reveal the brilliant future to provide media streaming services
based on the P2P substrates. Many papers discuss the important roles that peer nodes
have played in distributing streaming media. Till now, many P2P media streaming
systems have been developed. They can be divided into three catalogues: tree-based
(or hierarchical-based) system [20], DHT-based system [22] and mesh-based system
[6]. In tree-based system, all peer nodes are organized as a spanning tree over the
existing IP network, and the streaming data are distributed along that tree. As the
parent nodes should provide streams to child nodes, the total bandwidth of a parent
node having n child nodes would be bwx(n+1), where the bw is the minimum band-
width needed by a peer. One disadvantage of the distribution topology is that a parent
node will require more in bandwidth to feed its child nodes. Also, this kind of systems
which only have one root node will become unstable when peers join and leave
frequently [19].

* This paper is supported by National Science Foundation of China under grant 60433040, and
CNGI projects under grant CNGI-04-12-2A and CNGI-04-12-1D.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 52 — 2007.
© Springer-Verlag Berlin Heidelberg 2007

TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 53

The second distribution system is DHT-based. In this kind of systems, peers are
organized as a circle. Due to the ring-alike topology, one peer node just has to bypass
the stream to its neighbor peer. However, it also suffers for the instability and usually
lacks methods to optimize the communication. The systems belong to the third cata-
log are mesh-based. In these structures, every peer node provides data to and gets data
from several other nodes. Although this kind of structures have no stability problem,
it is also very difficult to do traffic optimization [14][26].

In this paper, we propose a hybrid communication scheme, Tree-Control-Mesh-
Media (TCMM). We organize all peers into two graphs, one is the spanning tree and
the other one is a pure mesh. In the spanning tree, only control messages can be
transmitted, therefore all the peers can quickly find its neighbor peers and establish
data links using the control messages. Then all the media data can be transmitted in a
constructed mesh network as traditional mesh-based systems. Extensive simulations
demonstrate that this kind of hybrid structure gives a better solution for the locality
optimization and stability. Usually, in a non mesh-based system, it is critical to avoid
high quantity of messages transmitted from the parent node to each child node. How-
ever, in TCMM, nodes can receive control data from different peers simultaneously,
which can reduce the risk of suffering from a high transmission rate.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents TCMM scheme. Performance evaluation of the TCMM is pre-
sented in section 4. Finally, we conclude our work in section 5.

2 Related Works

Based on different network topology, application level multicast used in P2P media
streaming systems can be divided into three categories: DHT-based, tree-based, and
mesh-based.

The systems belonging to the first kind rely on those existing DHT network to op-
timize the paths according to certain metrics such as latency and bandwidth. For ex-
ample, paper [18] is based on content addressable network (CAN) [17], and Bayeux
[27] is based on Tapestry [4]. CoopNet [22] supports both live and on demand stream-
ing. It employs multi-description coding (MDC) to construct multiple distribution
trees (one tree for one strip). SplitStream [15] is based on Scribe [3] which is based on
Pastry [2].

In tree-based systems (Yoid [9], ALMI [16], Nearcast [25], NICE [20], ZIGZAG
[21], Anysee [11], and Chunkyspread [23]), peers are organized into a hierarchal
structure. They just get streams from a single parent. The advantages of these systems
include low overhead and can get optimal nearby nodes as data provider. However
some peers usually have not enough bandwidth to support their children and it is
difficult to resist the churn. Hence it limits the deployment of tree-based systems.

The mesh-based systems are named for the reason that each peer has multiple data
senders and receivers, e.g., Narada [6], ScatterCast [S], PROMISE [13], DagStream
[10], RandPeer [12]. They overcome the difficulties in tree but lead to redundant
traffic of underlying physical networks.

CoolStreaming [24] is one of the most famous mesh-based application level multi-
cast systems. By using DONet protocol, each node first exchanges data available

54 H. Jin et al.

information with all the partners periodically, and then retrieves the data from one or
more partners. Actually, the data transferring mesh in our proposed approach is simi-
lar to CoolStreaming to inherit the efficiency of data exchanging.

BULLET [7] is the most similar structure to TCMM. It uses RanSub [8] to build an
overlay tree, one peer, if not fed enough, can receive data from multiple ancestors in
the tree. But the tree participating the data transferring is different from TCMM. Since
in TCMM, the tree is to organize the peers in a locality-aware overlay. The mesh
overlay is used to exchange media data.

Different from these systems, TCMM is proposed for the streaming system that
each receiver should have multiple senders. Here the tree topology is just used to
identify nearby senders.

3 Design of TCMM

The main focus of this paper is the design and implementation of TCMM which is
based on our previous work Nearcast [25]. First we will give a brief introduction of
TCMM, and then details of the TCMM approach will be introduced.

3.1 Overview of TCMM

All peers in TCMM are involved to distribute media data. They are organized into
two overlays — one is used as control tree and the other is used as media mesh. The
control tree structure is used to make all nodes in the tree close to each other physi-
cally, it means there must be few routers between each pair node, or the Round Trip
Time (RTT) should be small. Also, the messages transmitted over the tree should be
lightweighted messages such as ping/pong messages. Because the out-degree of each
node in the tree graph can be very large while the tree height (logh) is relatively low.
Further, when no media data transmitted, the tree can be loosely maintained, that is,
even if some peers have left, other peers still can postpone to update the tree informa-
tion without breaking transmitting media data in a long period.

The second overlay in TCMM is a data mesh which is similar to CoolStreaming. It
is used to transmit media data. Each peer first registers to the network to get a Global
Unique Identity (GUID). On the other hand, at the beginning, it is at the tree root, the
scheduling algorithm then guides it to route to a peer which has a relatively similar
GUID. In the routing path, this peer can collect information about the visited peers to
build its own candidate partner list. After that, it selects a group of nodes to connect to
for more partner information. Finally, it can start the media data exchanging. Fig.1
gives an overview of the two-layer structure of TCMM.

3.2 Tree Management

The tree management is based on Nearcast protocol [25]. In this protocol, leaf peers
in the overlay multicast tree are self-organized to form the H layer hierarchical
structures.

TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 55

Nane leaf node

Leaf node

Source node

Control flow

Data flow

Level

Fig. 1. Overview of TCMM, the dashed line stands for a data link, those of which construct a
mesh, while thick line stands for control link for constructing a loosely maintained tree

Based on the network position coordinates of leaf peers, the intra-subtree structure
is designed to be sensitive to the locality information. This strategy leads to that
nearby leaf peers in the physical network are nearby with each other in the overlay.
These two techniques help the overlay multicast tree to become a good represent of
the underlying physical network, therefore the link stress and the total (or average)
end-to-end delay can be effectively reduced.

The TCMM tree is constructed based on GUID, which consists of the peers’ loca-
tion information. It encodes the following information into 16-bytes of string: net-
work type (firewall or NAT or else), ISP (internet service provider), city, postcode,
public IP, and private IP, see Fig.2. Here we introduce briefly only the basic operation
of the tree maintenance: Join Process and Leave Process. For more details of how to
maintain the tree, readers can refer to Nearcast [25].

Pest | Public Private

Structure Type 15P City P P Feseryved
- -
P - - - / \
7 - — - \
Sequence |0 | L |2 |34 s a7 & (o mfir]ji2fia]id]Is

Fig. 2. The elements of GUID

Once an existing host Y receives the “Join” message from X, it uses the admission
algorithm to compare the joiner’s GUID with its own GUID, so as its children’s
GUIDs. Also, it tests the network bandwidth constraints to determine whether Y is the
nearest host to X. If so, X should be admitted to be a child of Y. Otherwise, it is redi-
rected to the nearest child of Y. This process will repeat until X finds its nearest
parent. If a child receives the “Leave” message from a leaving peer, it should immedi-
ately response by sending a “Join” message to its original grandparent. The parent
receives “Join” message, it will treat it as a new join process. Since in TCMM, the
control tree only helps to find close peers without transmitting media data. It is
unnecessary to absolutely maintain the tree structure.

56 H. Jin et al.

3.3 Mesh Management

In TCMM, each peer maintains an active partners set and an inactive partners set.
The active partners set is used to exchange media data while the inactive partners set
is used to select active candidates. A peer also maintains a local window, which stores
media data received from others and will be shared with others.

In this section, we mainly focus on partner management and window management
techniques. As we know, in real internet environment, peers usually have different
bandwidth as well as other network resources. Also, there always exist many partners
which receive much more media data than they contribute. Based on this observation,
we can classify active partners into two kinds, provider partner and receiver partner.
Suppose node A has a partner B, whose sequence number of its window’s first packet
is bigger than that of A (usually close to the media source), Here, B is the provider
partner of A, and A is the receiver partner of B. It is clear that each peer must maintain
a minimum number of provider partners in order to maintain continuity. The classifi-
cation of partners is illustrated in Fig.3. Fig.4 depicts the operations and algorithms
applied between a peer and its partners, including a) how to produce inactive partners,
b) how to select one from an inactive partners list to be an active partner, and c) how
to schedule when more than one active partner possess the data to a peer.

Partner

Active Partner)
Inactive

Partner

Receive% Provider

Fig. 3. Classification of partner

Active —> Inactive

/—h\

Inactive
Active<---Inactive Partner

Window Ma
Exchange

Active
Partner

Ping/Pong

®

Fig. 4. Partner maintenance (origin node A), Ping/Pong with inactive partners and window map
exchange with active partners

3.3.1 Inactive Partner Generation

There are three ways for a peer to get inactive partners to build up its inactive peer
list: a) when a peer joins the overlay, it will receive a partner list as a piggyback mes-
sage of “OK Response” message from its father node; b) send requests to its active
partners when the peer’s count of provider partner is less than a predefined minimum
value. When a peer receives a “Partner Request” message, it responds by sending an

TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 57

active partner list to the requester. It is because a partner’s active partners would
proverbially to be active partners. On receiving the partners reply, if they do not exist
in the inactive partners list, the peer will add them to the list to be candidates of active
partners; ¢) a peer will periodically collect children and father information in the con-
trol tree to build local partners list. Because the tree is maintained by “Alive” mes-
sage, the peers in the tree are very probable online and can perform data transmission
well. Thus, each peer will periodically send ping message to those inactive partners to
check whether they are still online. Suppose the number of members in inactive list is
N, ... ping interval is I, . , packet size of Ping/Pong is S, . the Ping/Pong overhead

isl 0[/mniw=]\,[/xm‘f[veXIinm‘Iiwx inactive. -

3.3.2 Active Partner Generation

All active partners are inactive partners before they change their state, therefore, a
peer will prepare to select some inactive partners to become active partner candidates
when the number of local provider partner is less than a given threshold. Several fac-
tors are considered, including: a) the difference of GUID is lower; b) the RTT be-
tween is lower; c) more data that it needs is in the window. After choosing several
candidates, the peers send “Identity Request” message to them. On the other hand,
once the peer receives an “Identity Request” message, it will check whether this part-
ner can be accepted. If it is ok, then “Identity Agree Response” will be sent. Otherwise
a reject message will appear as a response. After that they begin to exchange window
map at a given interval. At the same time, another task will compare their window
maps independently and periodically. Also, a “Data Request” request will be sent for
the missing data. As the window sliding and the window map changing, the data pro-
ducing and consuming process continue until the end of the live streaming program. If
being rejected, a peer will try the second peer in the candidate list and if accepted, the
remote peer will become its active partner and be added into the active partner set.

3.3.3 Active Partner Schedule

Before discussing partner selection algorithm, some concepts about windows should
be introduced. Each peer maintains a sliding window to store data availability infor-
mation, including the sequence number of the first segment it is sliding to and the
segment states in bytes. In these bytes, each bit stands for a segment’s state, 1 is for
available, O for unavailable. Because each peer’s local window is limited, it has to
discard the old data and fill new data.

A peer will periodically check its window to request the missing segment by send-
ing a “Data Request” message to it. If multiple partners have the unavailable segment,
it will schedule which partner acts as the provider. Here, we give a principal to the
scheduler scheme, 1) MAX_REQ, which limits the maximum segment one “Data
Request” message can convey. 2) Every segment of data will have a transmitting
pending time 7T),cuqing, if @ partner’s last transaction has not been completed and does
not encounter a timeout error during the transaction time, it should be added to current
task this time. 3) If two video segments are available simultaneously, the one with
bigger sequence number should have higher priority. This means, we always request
the video segment with higher sequence number than that with lower sequence num-
ber. The third principal can strengthen the “enlarge ability” of the system. Having the
three principals in mind, we implement our own algorithm in Fig.5.

58 H. Jin et al.

Input:

Band[k]: bandwidth from partner k;

wm[k]: window map of partner k;

task([k]: assigned task of k ;

pending[k]: not completed task of k;
num_partners: number of partners of the node;

local_window[i]: segment i of local window map is
available or not;
Scheduling:
for segment i1 =size(local_window) do
i i-1;

if local window[i]=1 then
continue;//if segment i is available, schedule next
end if
for j to num partners do
nn +wm[j,i];//get potential suppliers for i;
end for j;
if n =1then
k arg,{ wm[r,i]l=1};// only one potential supplier;
if task[k]+pending[k]>MAX_REQ then
continue;
end if
supplier[i] k; task([k] task[k]+1;
continue;
end if;
for j =2 ton
if task[k]+pending[k]> MAX_REQ or
task[k]+pending[k]>band[k] then
continue;
end if
supplier[i] js task([k] task[k]+1;
end for j;
end for i;
Output: supplier([i]: supplier for unavailable segment i

Fig. 5. Scheduling algorithm at a TCMM node

4 Performance Evaluation

4.1 Simulation Setup

To evaluate performance of TCMM, we first propose a GUID-based delay and band-
width simulation method instead of using traditional physical topology generation
tools to generate physical topology, such as GT-ITM [1]. Because the communication
between each pair of nodes is affected by delay and bandwidth, thus, if we try to
simulate the two characteristics in internet, we need not generate the physical topol-
ogy. In our simulation platform, we just generate a peer sets.

We suppose that the delay and bandwidth between two peers can be determined by
their GUIDs. In the sending queue, a packet can be sent when the previous sending

TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 59

operation has been finished. The communication delay between two logical neighbors
is calculated according to formula 1. From formula 1, we can see that the delay will
affect the bandwidth. Also, using GUID-based methods, we generate 5 physical peer
sets each with 2000 nodes. The logical topologies are generated with a number of
peers (nodes) ranging from 100 to 1,024. Suppose N is the number of the total peers,
N/10 cities and N/S postcodes are generated and randomly assign all the nodes to
them. The expected number of inactive partner is 20, and the minimum number of
each peer’s provider partners is 3, the maximum number of active partner numbers is
15. We start the broadcaster and let 2 randomly selected peers join the system every
second. The lifetime of each peer is set to 600 seconds. We collect the log to analyze
the performance of our TCMM system.

Delay(i,j)=ISP;®ISP;x W gp+City; ® City;x W iy, +postcode; ®postcodeix W posicode 1)
Pl,eIP ljxwlpl+IP2i@IP2jlep2+IP3i@IP3jXW1p3+IP41®IP4J‘XWIP4

TotalDelay(i,j)= Delay(i,j)(1+L/2048) 2)

In formula 1, ® means exclusive OR operation. If ISP, is equal to ISP;, then ISP®
ISP; is 0, otherwise 1. W;sp means the weight of ISP to the delay. It means that only
nodes from different ISP can affect the delay in ISP item, so does other factors in this
formula. Let the first byte of internet address of peer i is IP1;, IP1;2IP1; compares the
first byte of two addresses. Then /P2, IP3 and /P4 compare the second, third, fourth
byte of the two peers’ IP address, respectively. We set the weight of each factor as
W[SPZSOO, WC,-,y:ZOO, W[m,c,,de=100, W]P]:100, W]P2:100, W1P3:100, W1P4:50. Because
we send a message after its previous message has been sent, suppose we get a delay
50ms through formula 1, and formula 2 adds the effect of messages length to the
delay, if the sending queue consists of 3 messages with the size 50, 10240, 10240
bytes, we get the total delay 50ms, 100ms, 100ms according to formula 2, then the
completion sending time of the 3 messages are 50ms, 150ms and 250ms, respectively.

There are already some metrics to evaluate a peer to peer live streaming system,
such as link stress method [6], and data path quality method [20]. Because in TCMM,
there is no physical topology to evaluate the link stress, on the other hand, TCMM
does not transmit media data through a multicast tree, thus avoids evaluating the data
path quality either, therefore, in this paper, we use other metrics, such as starting
delay, dynamic resistance, and overhead to evaluate the performance of TCMM. Each
experiment result is got by averaging 5 tests cases.

4.2 Control Overhead

This index is categorized by tree overhead and mesh overhead. Tree overhead is de-
fined as the ratio of the bytes that a peer received to maintain the tree structure over
the total bytes a peer received. Mesh overhead is defined as the ratio of the bytes that
a peer received to exchange window map over the total bytes the peer received. The
tree overhead mainly includes alive messages cost happened in a peer periodically
sends this message to its children and receives them from its parents. Fig.6 presents
the average tree overhead of TCMM. The data are collected when sending an “Alive”
message every 5 seconds. This figure implies that the tree overhead is nearly inde-
pendent of the community size. That is because the alive messages are only sent to

60 H. Jin et al.

children by father, and children have no responsibility to answer them. So, when a
peer can accept more children, its own overhead increases, but its children’s overhead
will decrease. This will cause the average overhead changes a little. Fig.6 also depicts
that the tree maintain overhead is less than 0.5% of the total traffic.

Every peer also exchanges ping/pong messages with its inactive partners to declare
its aliveness and exchanges their window map messages with active partners as well.
Fig.7 shows that when the Ping/Pong interval is 9 seconds and window map exchange
interval is 2 seconds, the total mesh overhead is less than 2% when number of mini-
mum providers less than or equal to 6. Considering the mesh overhead increases with
more partners, we believe that minimum provider partner equal to 4 is a good practi-
cal choice. So it is adopted in the following experiments, and this result also meets the
point got from [24]. However, an important fact here is that number 4 is just for pro-
vider partner not for the total active partner.

{23100 nodes
(555 400 nodes
700 nodes

(11024 nodes | |

0020 || 100 nodes
400 nodes
[EZ23700 nodes
%
11024 nodes i 7

0015 -

control overhead
°
8
°

bm overhead

0005 |

RS

0,000 LA

L LI MENENZN
3 9 10 11 12 13 14 15

number of children(alive interval = 5 seconds; min providers(max partners = 15)

Fig. 6. Overhead of tree maintaining Fig. 7. Overhead of mesh maintaining

4.3 Starting Delay

This index is defined as the time period from a peer joins the multicast system to a
peer starts to play back the media. This index describes how fast the system can pro-
vide service to a newcomer. Fig.8 presents the comparison of starting delay between
TCMM and mesh-based scheme, this figure is for 1024 nodes. Actually the starting
delay is almost independent of the system size.

We have ever thought that TCMM will have less starting delay than pure mesh-
based structure, because peers in pure mesh-based overlay need much time to opti-
mize their service providers, and this will increase the starting delay. However, data
in Fig.8 proves it wrong. This data leads to a conclusion that although the TCMM
provides a quick way to identify those nearby nodes, it has a little longer starting
delay to build the control tree before starting to get media data, which causes about
additional 4s-10s delay than pure mesh-based structure.

4.4 Dynamic Resistance

Because P2P environment is a dynamic environment, many peers’ frequently joining
and leaving will cause the source of each peer to become dynamic, therefore, a peer
should have the ability to change at least part of its service providers at any time. We
let the overlay with 1024 peers runs stably for 5 minutes, then we let a randomly

TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 61

produced 2 new peers join the overlay and another randomly selected 2 peers leave
the overlay each second within 200 seconds.

In Fig.9, the y axis is sampling times of the window size of peers, x axis is the win-
dow size. We observe that the TCMM’s window is fuller than the pure mesh-based
method in most times. We set the dynamical peers ranging from 10 to 50, TCMM
scheme produces a better average window size as shown in Fig.10. There are two
reasons for this phenomenon. 1) Although the peers frequently join and leave, the
peers in TCMM always fetch and transmit new segments before old segments. Defi-
nitely, this will accelerate the distribution of new segments (since most of peers are
lacking new segments not old segments) and speeds up the data distribution dramati-
cally. Also, this strategy strengthens the collaboration among peers. 2) The peers in

TCMM can get provider partners efficiently from the control tree and reduce the ef-
fects of dynamics of peers.

T T T T T T 2200 ‘ i i ‘ ‘
140] T
—=— Pure-Mesh fu 2000 |- — = — Pure-Mesh -
1201 | —y—TCMM f 1 1go0 [v TCMM . ™
. L
100 J ™, | g oF LY
. \v\ E 1400 | [T v
2z e : 'Kl 2 1200 T i
D . = |
& w0 /Z Wy] E 1000 .0 g L
Ay D g0 i |
i VY 7 .
40 - /V i | f
\ 600 |- . T
iy I
2 -7 IS 1 a0 s 00
, s =\ wol FARAY
0 10 20 30 40 50 60 0 X VT
Starting Delay 0 20 © 6 80 100 120

window size

Fig. 8. Comparison of startup delay Fig. 9. Comparison of continuity

100

T
= Pure-Mesh| o
*— TCMM

average window size

L
0 10
number of peers joining/leaving each second

Fig. 10. Comparison of resistance to dynamics

5 Conclusions

In this paper, we have presented TCMM approach, which can support large scale live
streaming service. TCMM just integrates two overlays, a tree based on GUID to over-
come the mismatch problem between logical overlay and underlying physical net-
works, and a mesh to resist peer dynamics, instead of excluding any of them. The
simulation results show that this approach not only benefits the overlay efficiently,

62

H. Jin et al.

decreases the time used to find close nodes, which is very important in reducing the
redundancy of the P2P traffic, but also it strengthens the stability in a rigorous dy-
namic environment just by introducing additional slight starting delay.

References

(1]
(2]

(3]

(4]

[5]
[6]
[7]

[8]

(9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]

[17]

(18]

GT-ITM. http://www.cc.gatech.edu/projects/gtitm/.

A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and Routing
for Large Scale Peer-to-Peer Systems”, In Proc. of IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), Nov. 2001.

A. Rowstron, A. M. Kermarrec, M. Castro, and P. Druschel, “Scribe: The Design of a
Large Scale Event Notification Infrastructure”, In Proc. of 3rd International Workshop on
Networked Group Communication, Nov. 2001.

B. Y. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: an Infrastructure for Fault-
Tolerant Wide-Area Location and Routing”, Technical Report, UCB/CSD-01-1141, Uni-
versity of California, Berkeley, CA. USA, Apr. 2001.

Y. Chawathe, “Scattercast: An Architecture for Internet Broadcast Distribution as an In-
frastructure Service”, Ph.D. Thesis, University of California, Berkeley, Dec. 2000.

Y. H. Chu, S. G. Rao, and H. Zhang, “A Case for End System Multicast”, In Proc. of
ACM SIGMETRICS 2000.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High Bandwidth Data Dis-
semination Using an Overlay Mesh”, In Proceedings of SOSP 2003.

D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat, “Using Random Subsets
to Build Scalable Network Services”, In Proc. of the USENIX Symposium on Internet
Technologies and Systems, March 2003.

P. Francis, “Yoid: Extending the Multicast Internet Architecture”, White paper,
http://www.aciri.org/yoid/, 1999.

J. Liang and K. Nahrstedt, “DagStream: Locality Aware and Failure Resilient Peer-to-
Peer Streaming”, In Proc. of SPIE MMCN 2006.

X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “AnySee: Peer-to-Peer Live Streaming
Service”, In Proc. of IEEE INFOCOM 2006.

J. Liang and K. Nahrstedt, “Randpeer: Membership Management for QoS Sensitive Peer
to Peer Applications”, In Proceedings of IEEE INFOCOM 2006.

M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE: Peer to Peer Me-
dia Streaming Using CollectCast”, In Proc. of ACM Multimedia 2003.

M. Ripeanu, A. Tamnitchi, and I. Foster, “Mapping the Gnutella Network”, IEEE Internet
Computing, 2002.

M. Castro, P. Druschel, A M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Split-
Stream: High-bandwidth Multicast in a Cooperative Environment”, In Proc. of SOSP
2003.

D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI: An Application Level Mul-
ticast Infrastructure”, In Proc. of 3rd Usenix Symposium on Internet Technologies & Sys-
tems, March 2001.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable Content
Addressable Network”, In Proc. of ACM SIGCOM 2001.

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-Level Multicast Using
Content Addressable Networks”, In Proc. of 3rd International Workshop on Networked
Group Communication, Nov. 2001.

[19]
[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]

TCMM: Hybrid Overlay Strategy for P2P Live Streaming Services 63

S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of Peer-to-Peer File Shar-
ing Systems”, In Proc. of MMCN 2002.

S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Application Layer Multi-
cast”, In Proc. of ACM SIGCOMM, 2002.

D. A. Tran, K. A. Hua, and T. T. Do, “ZIGZAG: An Efficient Peer-to-Peer Scheme for
Media Streaming”, In Proceedings of IEEE INFOCOM 2003.

V. N. Padamanabhan, H. J. Wang, P. A. Chou, and K. Scripanijkuichai, “Distributing
Streaming Media Content Using Cooperative Networking”, In Proc. of ACM NOSSDAV
2002.

V. Venkataraman, P. Francis, and J. Calandrino, “Chunkyspread: Multi-tree Unstructured
Peer-to-Peer Multicast”, In Proc. of IEEE IPTPS 2006.

X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A Data-driven Over-
lay Network for Peer-to-Peer Live Media Streaming”, In Proc. of INFOCOM 2005.

X. Tu, H. Jin, X. Liao, and J. Cao, “Nearcast: A Locality-Aware Application Level Mul-
ticast for Peer-to-Peer Live Streaming Service”, To appear in ACM Transactions on Inter-
net Technology, 2007.

Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang, “Location-aware Topology Matching in
Unstructured P2P Systems”, In Proc. of INFOCOM 2004.

S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and J. Kubiatowicz, “Bayeux: An Ar-
chitecture for Scalable and Fault Tolerant Wide-area Data Dissemination”, In Proc. of
NOSSDAYV 2001.

Fault Management in P2P-MPI

Stéphane Genaud and Choopan Rattanapoka

ICPS-LSIIT - UMR 7005
Université Louis Pasteur, Strasbourg
{genaud,rattanapoka}@icps.u-strasbg.fr

Abstract. We present in this paper the recent developments done in
P2P-MPI, a grid middleware, concerning the fault management, which
covers fault-tolerance for applications and fault detection. P2P-MPI pro-
vides a transparent fault tolerance facility based on replication of com-
putations. Applications are monitored by a distributed set of external
modules called failure detectors. The contribution of this paper is the
analysis of the advantages and drawbacks of such detectors for a real
implementation, and its integration in P2P-MPI. We pay especially at-
tention to the reliability of the failure detection service and to the failure
detection speed. We propose a variant of the binary round-robin protocol,
which is more reliable than the application execution in any case. Exper-
iments on applications of up to 256 processes, carried out on Grid’5000
show that the real detection times closely match the predictions.

Keywords: Grid computing, middleware, Parallelism, Fault-tolerance.

1 Introduction

Many research works have been carried out these last years on the concept of grid.
Though the definition of grid is not unique, there are some common key concepts
shared by the various projects aiming at building grids. A grid is a distributed
system potentially spreading over multiple administrative domains which provide
its users with a transparent access to resources. The big picture may represent a
user requesting some complex computation involving remotely stored data from
its basic terminal. The grid middleware would then transparently query available
and appropriate computers (that the user is granted access to), fetch data and
eventually transfer results to the user.

Existing grids however, fall into different categories depending on needs and
resources managed. At one end of the spectrum are what is often called “in-
stitutional grids”, which gather well identified users and share resources that
are generally costly but not necessarily numerous. At the other end of the spec-
trum are grids with numerous, low-cost resources with few or no central system
administration. Users are often the administrators of their own resource that
they accept to share. Numerous projects have recently emerged in that category
[11, Bl 2] which have in common to target desktop computers or small clusters.
P2P-MPI is a grid middleware that falls into the last category. It has been de-
signed as a peer-to-peer system: each participant in the grid has an equal status

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 64{77] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Fault Management in P2P-MPI 65

and may alternatively share its CPU or requests other CPU to take part to a
computation. The proposed programming model is close to MPI. We give a brief
overview of the system in Section[2land a longer presentation can be found in [7].
P2P-MPI is particularly suited to federate networks of workstations or unused
PCs on local networks.

In this context, a crucial point is fault management, which covers both failure
detection and fault tolerance for applications. We describe in the paper several
pitfalls arising when targeting such environments and what solutions have been
put forward in P2P-MPI. The main issues to be addressed are (i) scalability
since the fault detection system should work up to hundreds of processors, which
implies to keep the number of messages exchanged small while having the time
needed to detect a fault acceptable, and (ii) accuracy means the failure detection
should detect all failures and failures detected should be real failures (no false
positive).

This paper is organized as follows. Section 2l is a short overview of P2P-MPI
which outline the principle of robustness of an application execution, through
replication of its processes. Section [B] gives an expression of fault-tolerance as
the failure probability of the application depending on the replication degree
and on the failure events rate. To be effective, the failure detection must be far
more reliable than the application execution. We first review in Section M the
existing techniques to design a reliable fault detection service (FD hereafter).
Then, Section [] examines strengths and weaknesses of candidate solutions con-
sidering P2P-MPI requirements. We underline the trade off between reliability
and detection speed and we propose a variant of an existing protocol to improve
reliability. P2P-MPI implementation integrates the two best protocols, and we
report in we report in Section [@l experimental results concerning detection speed
for 256 processes.

2 P2P-MPI Overview

P2P-MPI overall objective is to provide a grid programming environment for
parallel applications. P2P-MPI has two facets: it is a middleware and as such,
it has the duty of offering appropriate system-level services to the user, such as
finding requested resources, transferring files, launching remote jobs, etc. The
other facet is the parallel programming API it provides to programmers.

API. Most of the other comparable projects cited in introduction (apart from
P3 [11]) enable the computation of jobs made of independent tasks only, and the
proposed programming model is a client-server (or RPC) model. The advantage
of this model lies in its suitability to distributed computing environments but
lacks expressivity for parallel constructs. P2P-MPI offers a more general pro-
gramming model based on message passing, of which the client-server can be
seen as a particular case.

Contained in the P2P-MPI distribution is a communication library which ex-
poses an MPI-like API. Actually, our implementation of the MPI specification

66 S. Genaud and C. Rattanapoka

is in Java and we follow the MPJ recommendation [3]. Though Java is used for
the sake of portability of codes, the primitives are quite close to the original
C/C++ /fortran specification [§].

Middleware. A user can simply make its computer join a P2P-MPI grid (it
becomes a peer of a peer group) by typing mpiboot which runs a local gatekeeper
process. The gatekeeper can play two roles: (i) it advertises the local computer
as available to the peer group, and decides to accept or decline job requests from
other peers as they arrive, and (ii) when the user issues a job request, it has the
charge of finding the requested number of peers and to organize the job launch.

Launching a MPT job requires to assign an identifier to each task (implemented
by a process) and then synchronize all processes at the MPI Init barrier. By
comparison, scheduling jobs made of independent tasks gives more flexibility
since no coordination is needed and a task can be assigned to a resource as soon
as the resource becomes available.

When a user (the submitter) issues a job request involving several processes,
its local gatekeeper initiates a discovery to find the requested number of re-
sources during a limited period of time. P2P-MPI uses the JXTA library [1]
to handle all usual peer-to-peer operations such as discovery. Resources can be
found because they advertised their presence together with their technical char-
acteristics when they joined the peer group. Once enough resources have been
selected, the gatekeeper first checks that advertised hosts are still available (by
pinging them) and builds a table listing the numbers assigned to each partici-
pant process (called the communicator in MPT). Then, the gatekeeper instructs
a specific service to send the program to execute along with the input data or
URL to fetch data from, to each selected host. Each selected host acknowledges
the transfer and starts running the received program. (If some hosts fail before
sending the acknowledgement, a timeout expires on the submitter side and the
job is canceled). The program starts by entering the MPI Init barrier, waiting
for the communicator. As soon as a process has received the communicator it
continues executing its application process.

Before dwelling into details of the application startup process and the way it is
monitored by the fault-detection service (described in section [H), let us motivate
the need for a failure detector by introducing the capability of P2P-MPI to
handle application execution robustly.

Robustness. Contrarily to parallel computers, MPI applications in our desktop
grid context must face frequent failures. A major feature of P2P-MPI is its ability
to manage replicated processes to increase the application robustness. In its run
request, the user can simply specify a replication degree r which means that each
MPI process will have r copies running simultaneously on different processors.
In case of failures, the application can continue as long as at least one copy
of each process survives. The communication library transparently handles all
extra-communications needed so that the source code of the application does
not need any modification.

Fault Management in P2P-MPI 67
3 Replication and Failure Probability

In this section, we quantify the failure probability of an application and how
much replication improves an application’s robustness.

Assume failures are independent events, occurring equiprobably at each host:
we note f the probability that a host fails during a chosen time unit. Thus, the
probability that a p process MPI application without replication crashes is

P,pp(p) = probability that 1, or 2,..., or n processes crash
=1 — (probability that no process crashes)
—1-(- gy

Now, when an application has its processes replicated with a replication degree
r, a crash of the application occurs if and only if at least one MPI process has
all its r copies failed. The probability that all of the r copies of an MPI process
fail is f". Thus, like in the expression above, the probability that a p process
MPI application with replication degree r crashes is

Papp(pn“) =1-(Q1—f")"

Figure [l shows the failure probability curve depending on the replication
degree chosen (r = 1 means no replication) where f has been arbitrary set to
5%. Remark that doubling the replication degree increases far more than twice

Application failure probability

=1 ——
i J——
09 3 %0

0.7
0.6

05 /
04 |
0.2 J

0.1

Failure Probability

0 50 100 150 200 250

Number of processes

Fig. 1. Failure probability depending on replication degree r (f=0.05)

the robustness. For example, a 128 processes MPI application with a replication
degree of only 2 reduces the failure probability from 99% to 27%.

But, for the replication to work properly, each process must reach in a definite
period, a global knowledge of other processes states to prevent incoherence. For
instance, running processes should stop sending messages to a failed process. This
problem becomes challenging when large scale systems are in the scope. When
an application starts, it registers with a local service called the fault-detection
service. In each host, this service is responsible to notify the local application

68 S. Genaud and C. Rattanapoka

process of failures happening on co-allocated processes. Thus, the design of the
failure detectors is of primary importance for fault-tolerance. For this discussion
we first need to review state of the art proposals concerning fault detection since
some of these concepts are the basis for our work.

4 Fault Detection: Background

Failure detection services have received much attention in the literature and
since they are considered as first class services of distributed systems [4], many
protocols for failure detection have been proposed and implemented. Two classic
approaches are the push and pull models discussed in [6], which rely on a cen-
tralized node which regularly triggers push or pull actions. Though they have
proved to be efficient on local area networks, they do not scale well and hence are
not adapted to large distributed systems such as those targeted for P2P-MPIL.

A much more scalable protocol is called gossiping after the gossip-style fault
detection service presented in [I0]. It is a distributed algorithm whose informative
messages are evenly dispatched amongst the links of the system. In the following,
we present this algorithm approach and its main variants.

A gossip failure detector is a set of distributed modules, with one module
residing at each host to monitor. Each module maintains a local table with one
entry per detector known to it. This entry includes a counter called heartbeat. In
a running state, each module repeatedly chooses some other modules and sends
them a gossip message consisting in its table with its heartbeat incremented.
When a module receives one or more gossip messages from other modules, it
merges its local table with all received tables and adopts for each host the max-
imum heartbeat found. If a heartbeat for a host A which is maintained by a
failure detector at host B has not increased after a certain timeout, host B sus-
pects that host A has crashed. In general, it follows a consensus phase about
host A failure in order to keep the system’s coherence.

Gossiping protocols are usually governed by three key parameters: the gos-
sip time, cleanup time, and the consensus time. Gossip time, noted Tyossip, is
the time interval between two consecutive gossip messages. Cleanup time, or
Teleanup, 1S the time interval after which a host is suspected to have failed. Fi-
nally, consensus time noted Tionsensus, 1S the time interval after which consensus
is reached about a failed node.

Notice that a major difficulty in gossiping implementations lies in the setting
of Teicanup: it is easy to compute a lower bound, referred to as Tgfjgnup, which
is the time required for information to reach all other hosts, but this can serve
as Tijeanup only in synchronous systems. In asynchronous systems, the cleanup
time is usually set to some multiple of the gossip time, and must neither be too
long to avoid long detection times, nor too short to avoid frequent false failure
detections.

Starting from this basis, several proposals have been made to improve or
adapt this gossip-style failure detector to other contexts [9]. We briefly review
advantages and disadvantages of the original and modified gossip based protocols

Fault Management in P2P-MPI 69

and what is to be adapted to meet P2P-MPI requirements. Notably, we pay

attention to the detection time (Tgle?nup) and reliability of each protocol.

Random. In the gossip protocol originally proposed [10], each module randomly
chooses at each step, the hosts it sends its table to. In practice, random gossip
evens the communication load amongst the network links but has the disad-
vantage of being non-deterministic. It is possible that a node receives no gossip
message for a period long enough to cause a false failure detection, i.e. a node
is considered failed whereas it is still alive. To minimize this risk, the system
implementor can increase T cqnup at the cost of a longer detection time.

Round-Robin (RR). This method aims to make gossip messages traffic more
uniform by employing a deterministic approach. In this protocol, gossiping takes
place in definite round every Tj,ssip Seconds. In any one round, each node will
receive and send a single gossip message. The destination node d of a message
is determined from the source node s and the current round number r.

d=(s+r) modn, 0<s<n,1<r<n (1)

where n is the number of nodes. After » = n — 1 rounds, all nodes have commu-
nicated with each other, which ends a cycle and r (generally implemented as a
circular counter) is reset to 1. For a 6 nodes system, the set of communications
taking place is represented in the table in Figure

s—d
0 —-1,1—-2,2—-3,3—-4,4—-5,5—0
0—2,1—3,2—-4,3—-5,4—0,5—1
0—-3,1—-4,2—-5,3—-0,4—-1,5—2
0—-4,1-5,2—-0,3—1,4—-2,5—3
0—-5,1-0,2—-1,3—-2,4—3,5—14

QU W N~ 3

Fig. 2. Communication pattern in the round-robin protocol (n = 6)

This protocol guarantees that all nodes will receive a given node’s updated
heartbeat within a bounded time. The information about a state’s node is trans-
mitted to one other node in the first round, then to two other nodes in the second
round (one node gets the information directly from the initial node, the other
from the node previously informed), etc. At a given round r, there are 142+ - -+r
nodes informed. Hence, knowing n we can deduce the minimum cleanup time,
depending on an integer number of rounds r such that:

1
7 X Tgossip Where = [p] , p(p;) =n

min _
cleanup —

For instance in Figure[2], three rounds are required to inform the six nodes of the
initial state of node 0 (boxed). We have underlined the nodes when they receive
the information.

70 S. Genaud and C. Rattanapoka

Binary Round-Robin (BRR). The binary round-robin protocol attempts to min-
imize bandwidth used for gossiping by eliminating all redundant gossiping mes-
sages. The inherent redundancy of the round-robin protocol is avoided by skip-
ping the unnecessary steps. The algorithm determines sources and destination
nodes from the following relation:

d=(s+2""") modn, 1<r<[loga(n)] (2)
The cycle length is [logz(n)] rounds, and we have T2 = [loga(n)] X Tyossip-

— + st Round

—. ,,,,,,,,,,,,,,, 2nd Round
/ o \
=

Fig. 3. Communication pattern in the binary round-robin protocol (n = 4)

From our experience (also observed in experiments of Section [f), in a asyn-
chronous system, provided that we are able to make the distributed FD start
nearly a the same time, i.e. within a time slot shorter (logical time) than a cycle,
and that the time needed to send a heartbeat is less than Tyossip, & good choice
for Teieanup is the smallest multiple of CT;J‘WP, ie. 2 x [loga(n)] X Tgossip- This
allows not to consider a fault, the frequent situation where the last messages
sent within a cycle ¢ on source nodes arrive at cycle c+ 1 on their corresponding
receiver nodes.

Note however that the elimination of redundant gossip alleviates network load
and accelerate heartbeat status dissemination at the cost of an increased risk
of false detections. Figure Bl shows a 4 nodes system. From equation 2 we have
that node 2 gets incoming messages from node 1 (in the 1st round) and from
node 0 (2nd round) only. Therefore, if node 0 and 1 fail, node 2 will not receive
any more gossip messages. After Tyeqnqp units of time, node 2 will suspect node
3 to have failed even if it is not true. This point is thus to be considered in the
protocol choice.

5 Fault Detection in P2P-MPI

From the previous description of state of the art proposals for failure detection,
we retain BRR for its low bandwidth usage and quick detection time despite
it relative fragility. With this protocol often comes a consensus phase, which
follows a failure detection, to keep the coherence of the system (all nodes make
the same decision about other nodes states). Consensus if often based on a voting
procedure [9]: in that case all nodes transmit, in addition to their heartbeat table,

Fault Management in P2P-MPI 71

an extra (n x n) matrix M. The value M, ; indicates what is the state of node
1 according to node j. Thus, a FD suspecting a node to have failed can decide
the node is really failed if a majority of other nodes agree. However, the cost of
transmitting such matrices would induce an unacceptable overhead in our case.
For a 256 nodes system, each matrix represents at least a 64 Kib message (and
256 Kib for 512 nodes), transmitted every Tgossip. We replace the consensus by
a lighter procedure, called ping procedure in which a node suspecting another
node to have failed, directly ping this node to confirm the failure. If the node is
alive, it answers to the ping by returning its current heartbeat.

This is an illustration of problems we came across when studying the behavior
of P2P-MPI FD. We now describe the requirements we have set for the middle-
ware, and which algorithms have been implemented to fulfill these requirements.

5.1 Assumptions and Requirements

In our context, we call a (non-byzantine) fault the lack of response during a given
delay from a process enrolled for an application execution. A fault can have three
origins: (i) the process itself crashes (e.g. the program aborts on a DivideByZero
error), (ii) the host executing the process crashes (e.g. the computer is shut off),
or (iii) the fault-detection monitoring the process crashes and hence no more
notifications of aliveness are reported to other processes.

P2P-MPT is intended for grids and should be able to scale up to hundreds of
nodes. Hence, we demand its fault detection service to be: a) scalable, i.e. the
network traffic that it generates does not induce bottlenecks, b) efficient, i.e.
the detection time is acceptable relatively to the application execution time, c)
deterministic in the fault detection time, i.e. a fault is detected in a guaranteed
delay, d) reliable, i.e. its failure probability is several orders of magnitudes less
than the failure probability of the monitored application, since its failure would
results in false failure detections.

We make several assumptions that we consider realistic accordingly to the
above requirements and given current real systems. First, we assume an asyn-
chronous system, with no global clock but we assume the local clock drifts remain
constant. We also assume non-lossy channels: our implementation uses TCP to
transport fault detection service traffic because TCP insures message delivery.
TCP also has the advantage of being less often blocked than UDP between ad-
ministrative domains. We also require a few available ports (3 for services plus
1 for each application) for TCP communications, i.e. not blocked by firewalls
for any participating peer. Indeed, for sake of performances, we do not have
relay mechanisms. During the startup phase, if we detect that the communica-
tion could not be establish back and forth between the submitter and all other
peers, the application’s launch stops. Last, we assume that the time required to
transmit a message between any two hosts is generally less than T,ssip. Yet, we
tolerate unusually long transmission times (due to network hangup for instance)
thanks to a parameter Tpqz hangup Set by the user (actually Tycanup i increased
by Trmaz hangup in the implementation).

72 S. Genaud and C. Rattanapoka

5.2 Design Issues

Until the present work, P2P-MPT’s fault detection service was based on the
random gossip algorithm. In practice however, we were not fully satisfied with
it because of its non-deterministic detection time.

As stated above, the BRR protocol is optimal with respect to bandwidth usage
and fault detection delay. The low bandwidth usage is due to the small number
of nodes (we call them sources) in charge of informing a given node by sending
to it gossiping messages: in a system of n nodes, each node has at most loga(n)
sources. Hence, BRR is the most fragile system with respect to the simultaneous
failures of all sources for a node, and the probability that this situation happens
is not always negligible: In the example of the 4 nodes system with BRR, the
probability of failure can be counted as follows. Let f be the failure probability of
each individual node in a time unit T’ (7' < Teeanup), and let P(7) the probability
that ¢ nodes simultaneously fail during 7. In the case 2 nodes fail, if both of
them are source nodes then there will be a node that can not get any gossip
messages. Here, there are 4 such cases, which are the failures of {2,3},{0,3},{0,1}
or {1,2}. In the case 3 nodes fail, there is no chance FD can resist. There are (3)
ways of choosing 3 failed nodes among 4, namely {1,2,3},{0,2,3},{0,1,3},{0,1,2}.
And there is only 1 case 4 nodes fail. Finally, the FD failure has probability
Poeiay = P(4) + P(3) + P(2) = f*+ () 5L~) + 47201 - f)2.

In this case, using the numerical values of section 3] (i.e. f=0.05), the compar-
ison between the failure probability of the application (p=2,r=2) and the failure
probability of the BRR for n=4, leads to Py,,(2,2) = 0.005 and Py,.,.(4y = 0.0095
which means the application is more resistant than the fault detection system
itself. Even if the FD failure probability decreases quickly with the number of
nodes, the user may wish to increase FD robustness by not eliminating all re-
dundancy in the gossip protocol.

5.3 P2P-MPI Implementation

Users have various needs, depending on the number of nodes they intend to use
and on the network characteristics. In a reliable environment, BRR is a good
choice for its optimal detection speed. For more reliability, we may wish some
redundancy and we allow users to choose a variant of BRR described below.
The chosen protocol appears in the configuration file and may change for each
application (at startup, all FDs are instructed with which protocol they should
monitor a given application).

The choice of an appropriate protocol is important but not sufficient to get an
effective implementation. We also have to correctly initialize the heartbeating
system so that the delayed starts of processes are not considered failures. Also,
the application must occasionally make a decision against the FD prediction
about a failure to detect firewalls.

Double Binary Round-Robin (DBRR). We introduce the double binary
round-robin protocol which detects failures in a delay asymptotically equal to
BRR (O(logz(n)) and acceptably fast in practice, while re-inforcing robustness

Fault Management in P2P-MPI 73

of BRR. The idea is simply to avoid to have one-way connections only between
nodes. Thus, in the first half of a cycle, we use the BRR routing in a clock-wise
direction while in the second half, we establish a connection back by apply-
ing BRR in a counterclock-wise direction. The destination node for each gossip
message is determined by the following relation:

_ f(s+2Y) modn if 1 <r < [loga2(n)]
d= {(s —or=llog2tm) =1y yod nif [loga(n)] < 7 < 2[logz(n)] (3)

The cycle length is 2[loga(n)] and hence we have T2 = 2[loga(n)] X Tyossip-
With the same assumptions as for BRR, we set Teieanup = 3[10g2(n)] X Tgossip
for DBRR.

To compare BRR and DBRR reliability, we can count following the principles
of Section but this quickly becomes difficult for a large number of nodes.
Instead, we simulate a large number of scenarios, in which each node may fail
with a probability f. Then, we verify if the graph representing the BRR or
DBRR routing is connected: simultaneous nodes failures may cut all edges from
sources nodes to a destination node, which implies a FD failure. In Figure d we
repeat the simulation for 5.8 x 10 trials with f=0.05. Notice that in the DBRR
protocol, we could not not find any FD failure when the number of nodes is more
than 16, which means the number of our trials is not sufficient to estimate the
DBRR failure probability for such n.

BRR protocol —+—
DBRR protocol ~--x---

0.001 |]
1e-04 - 4
1605 | | E
1006 | 4

1007 |} 4

Failure probability of fault detection system

1e08 | X

1e-09

R . .
4816 32 64 128 256
Number of processes

Fig. 4. Failure probabilities of the FD system using BRR and DBRR (f = 0.05)

Automatic Adjustment of Initial Heartbeat. In the startup phase of an
application execution (contained in MPI Init), the submitter process first queries
advertised resources for their availability and their will to accept the job. The
submitter construct a table numbering available resources called the communica-
torEL which is sent in turn to participating peers. The remote peers acknowledge
this numbering by returning T'CP sockets where the submitter can contact their
file transfer service. It follows the transfer of executable code and input data.

! The submitter always has number 0.

74 S. Genaud and C. Rattanapoka

Once a remote node has completed the download, it starts the application which
registers with its local FD instance.

This causes the FDs to start asynchronously and because the time of trans-
ferring files may well exceed Tjeanup, the FD should (i) not declared nodes that
have not yet started their FD as failed, and (ii) should start with a heartbeat
value similar to all others at the end of the MPI Init barrier. The idea is thus
to estimate on each node, how many heartbeats have been missed since the
beginning of the startup phase, to set the local initial heartbeat accordingly.
This is achieved by making the submitter send to each node, together with the
communicator, the time spent sending information to previous nodes. Figure
illustrates the situation. We note ts;, 1 < i < n the date when the submitter

Rank 0 Rank 1 Rank 2 Rank n — 1
15, LA |

Send the MPT
communicator
il mecessary
mformation

Tht

l Register with MPD
l Register with FD
[] FD monitors process

Fig. 5. Application startup

sends the communicator to peer i, and tr; the date when peer i receives the
communicator. Each peer also stores the date T; at which it registers with its
local FD. The submitter sends At; = ts; — ts; to any peer i (1 <1 < n) which
can then computes its initial heartbeat h; as:

h; = |—(Tz —tr; + Ati)/Tgossip]a 1<i<n (4>

while the submitter adjusts its initial heartbeat to ho = [(Ty — t51)/Tyossip |-

Note that we implement a flat tree broadcast to send the communicator in-
stead of any hierarchical broadcast scheme (e.g. binary tree, binomial tree) be-
cause we could not guarantee in that case, that intermediate nodes always stay
alive and pass the communicator information to others. If any would fail after
receiving the communicator and before it passes that information to others, then
the rest of that tree will not get any information about the communicator and
the execution could not continue.

Application-Failure Detector Interaction. At first sight, the application
could completely rely on its FD to decide whether a communication with a
given node is possible or not. For instance, in our first implementation of send
or related function calls (eg. Send, Beast) the sender continuously tried to send
a message to the destination (ignoring socket timeouts) until it either succeeded
or received a notification that the destination node is down from its FD. This

Fault Management in P2P-MPI 75

allows to control the detection of network communication interruptions through
the FD configuration.

However, there exist firewall configurations that authorize connections from
some addresses only, which makes possible that a host receive gossip messages
(via other nodes) about the aliveness of a particular destination while the desti-
nation is blocked for direct communication. In that case, the send function will
loop forever and the application can not terminate. Our new send implementa-
tion simply installs a timeout to tackle this problem, which we set to 2 X T¢jcanup-
Reaching this timeout on a send stops the local application process, and soon
the rest of the nodes will detect the process death.

6 Experiments

The objective of the experiments is to evaluate the failure detection speed with
both BRR and DBRR monitoring a P2P-MPI application running on a real grid
testbed. We use the Grid’5000 platform, a federation of dedicated computers
hosted across nine campus sites in France, and organized in a virtual private
network over Renater, the national education and research network. Each site
has currently about 100 to 700 processors arranged in one to several clusters
at each site. In our experiment, we distribute the processes of our parallel test
application across three sites (Nancy, Rennes and Nice).

The experiment consists in running a parallel application without replication
and after 20 seconds, we kill all processes on a random node. We then log at
what time each node is notified of the failure and compute the time interval
between failure and detection. Figure [@ plots the average of these intervals on
all nodes and for both protocols, with Tjossip set to 0.5 second. Also plotted
for comparison is Tjeqnup as specified previously, termed “theoretical” detection
time on the graph.

The detection speed observed is very similar to the theoretical predictions
whatever the number of processes involved, up to 256. The difference with the

Total time (s)
©

BRR - observed —+—
DBRR - observed ---x---
BRR - theoretical ------

DBRR - theoretical

2
4816 32 64 128 256
Number of processes

Fig. 6. Time to detect a fault for BRR and DBRR

76 S. Genaud and C. Rattanapoka

predictions (about 0.5 s) comes from the ping procedure which adds an overhead,
and from the rounding to an integer number of heartbeats in Equation @l This
difference is about the same as the Tj,ssip value used and hence we see that the
ping procedure does not induce a bottleneck.

It is also important to notice that no false detection has been observed
throughout our tests, hence the ping procedure has been triggered only for real
failures. There are two reasons for a false detection: either all sources of in-
formation for a node fail, or T¢jeanup is too short with respect to the system
characteristics (communication delays, local clocks drifts, etc). Here, given the
briefness of execution, the former reason is out of the scope. Given the absence
of false failures we can conclude that we have chosen a correct detection time
Telcanup, and our initial assumptions are correct, i.e. the initial hearbeat adjust-
ment is effective and message delays are less than Tyossip-

This experiment shows the scalability of the system on Grid’5000, despite
the presence of wide area network links between hosts. Further tests should
experiment smaller values of Tyossip for a quicker detection time. We also plan
to test the system at the scale of a thousand processes.

7 Conclusion

We have described in this paper the fault-detection service underlying P2P-MPI.
The first part is an overview of the principles of P2P-MPI among which is repli-
cation, used as a means to increase robustness of applications executions, and
external monitoring of application execution by a specific fault-detection mod-
ule. In the second part, we first describe the background of our work, based on
recent advances in the research field of fault detectors. We compare the main
protocols recently proposed regarding their robustness, their speed and their de-
terministic behavior, and we analyze which is best suited for our middleware.
We introduce an original protocol that increases the number of sources in the
gossip procedure, and thus improves the fault-tolerance of the failure detection
service, while the detection time remains low. Last, we present the experiments
conducted on Grid’5000. The results show that the fault detection speeds ob-
served in experiments for applications of up to 256 processes, are really close to
the theoretical figures, and demonstrate the system scalability.

Acknowledgments. Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, an initiative from the French Ministry
of Research through the ACI GRID incentive action, INRIA, CNRS and RE-
NATER and other contributing partners (see https://www.grid5000.1r)

References

[1] JXTA. http://www.jxta.org.

[2] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg. Our-grid: An approach
to easily assemble grids with equitable resource sharing. In 9thWorkshop on Job
Scheduling Strategies for Parallel Processing, June 2003.

http://www.jxta.org

3]
[4]
[5]

[6]

[7]

8]

[9]

[10]

[11]

Fault Management in P2P-MPI 7

B. Carpenter, V. Getov, G. Judd, T. Skjellum, and G. Fox. Mpj: Mpi-like message
passing for java. Concurrency: Practice and Ezperience, 12(11), Sept. 2000.

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225-267, 1996.

G. Fedak, C. Germain, V. Néri, and F. Cappello. XtremWeb: A generic global
computing system. In CCGRID, pages 582-587. IEEE Computer Society, 2001.
P. Felber, X. Defago, R. Guerraoui, and P. Oser. Failure detectors as first class
objects. In Proceeding of the 9th IEEE Intl. Symposium on Distributed Objects
and Applications (DOA’99), pages 132-141, Sept. 1999.

S. Genaud and C. Rattanapoka. A peer-to-peer framework for robust execution
of message passing parallel programs. In EuroPVM/MPI 2005, volume 3666 of
LNCS, pages 276-284. Springer-Verlag, September 2005.

MPI Forum. MPI: A message passing interface standard. Technical report, Uni-
versity of Tennessee, Knoxville, TN, USA, June 1995.

S. Ranganathan, A. D. George, R. W. Todd, and M. C. Chidester. Gossip-style
failure detection and distributed consensus for scalable heterogeneous clusters.
Cluster Computing, 4(3):197-209, 2001.

R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service.
In IFIP International Conference on Distributed Systems Platforms and Open
Distributed Middleware, pages 55-70, England, 1998.

K. Shudo, Y. Tanaka, and S. Sekiguchi. P3: P2P-based middleware enabling
transfer and aggregation of computational resource. In 5th Intl. Workshop on
Global and Peer-to-Peer Computing. IEEE, May 2005.

Heterogeneous Wireless Sensor Network Deployment
and Topology Control Based on Irregular Sensor Model

Chun-Hsien Wu and Yeh-Ching Chung

Department of Computer Science, National Tsing Hua University,
Hsinchu 30013, Taiwan, R.O.C.
{chwu, ychung}@cs.nthu.edu.tw

Abstract. Heterogeneous wireless sensor network (heterogeneous WSN) con-
sists of sensor nodes with different ability, such as different computing power
and sensing range. Compared with homogeneous WSN, deployment and topol-
ogy control are more complex in heterogeneous WSN. In this paper, a deploy-
ment and topology control method is presented for heterogeneous sensor nodes
with different communication and sensing range. It is based on the irregular
sensor model used to approximate the behavior of sensor nodes. Besides, a cost
model is proposed to evaluate the deployment cost of heterogeneous WSN. Ac-
cording to experiment results, the proposed method can achieve higher cover-
age rate and lower deployment cost for the same deployable sensor nodes.

Keywords: Wireless sensor network, heterogeneous sensor deployment, topol-
ogy control, sensor coverage, irregular sensor model.

1 Introduction

Wireless sensor network (WSN) is a key element of the pervasive/ubiquitous comput-
ing. With the advancement of manufacturing and wireless technologies, many feasible
applications are proposed such as industrial sensor networks [4], volcano-monitoring
networks [10], and habitat monitoring [11], etc. The heterogeneous WSN consists of
sensor nodes with different abilities, such as various sensor types and communica-
tion/sensing range, thus provides more flexibility in deployment. For example, we can
construct a WSN in which nodes are equipped with different kinds of sensors to pro-
vide various sensing services. Besides, if there are two types of senor nodes: the high-
end ones have higher process throughput and longer communication/sensing range;
the low-end ones are much cheaper and with limited computation and communica-
tion/sensing abilities. A mixed deployment of these nodes can achieve a balance of
performance and cost of WSN. For example, some low-end sensor nodes can be used
to replace high-end ones without degrading the network lifetime of WSN. Many
research works have been proposed to address the deployment problem of heteroge-
neous WSN [3] [5].

To achieve a satisfying performance, the deployment of heterogeneous WSN is
more complicated than homogeneous WSN. Deployment simulation is essential be-
fore actual installation of sensor nodes, since different deployment configurations can

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 78 2007.
© Springer-Verlag Berlin Heidelberg 2007

Heterogeneous WSN Deployment and Topology Control 79

be tested without considering the cost of real node deployment. However, to reflect
the behavior of WSN correctly is a major challenge of sensor nodes deployment simu-
lation. In many research works, disk model is commonly used [6] [7] [8]. However,
a fixed communication or sensing range is not practical to a realistic senor node.
Moreover, node deployment in heterogeneous WSN has to consider the topology
control between different types of sensor nodes. For example, to maintain a symmet-
ric communication, the distance between high-end and low-end sensor nodes cannot
be larger than the maximum communication range of the low-end one. Besides, if the
sensor nodes have different detection range, the sensor coverage area of low-end node
cannot be fully covered by the high-end node.

In this paper, a heterogeneous sensor deployment and topology control method is
presented. It aims to deal with the deployment problem of heterogeneous sensor nodes
with different communication and sensing range. In addition, an irregular sensor
model is proposed to approximate the behavior of sensor nodes. According to experi-
ment results, the proposed method can achieve higher coverage rate under the same
deployable sensor nodes. Besides, the deployment cost is much lower with different
configurations of sensor nodes.

The rest of the paper is organized as follows. In Section 2, previous works related
to heterogeneous sensor deployment and irregular sensor model are addressed. In
Section 3, the irregular sensor model and some definitions of heterogeneous WSN
used in this paper are given. In Section 4, we present the details of heterogeneous
sensor node deployment. Section 5 evaluates the performance of the proposed method
under various scenarios. Finally, we conclude the paper in Section 6.

2 Related Work

The benefit of heterogeneous wireless sensor networks has been studied in many
research works. Lee et al. [5] analyze heterogeneous deployments both mathemati-
cally and through simulations in different deployment environments and network
operation models considering both coverage degree and coverage area. Experiment
results show that using an optimal mixture of many inexpensive low-capability
devices and some expensive high-capability devices can significantly extend the dura-
tion of a network’s sensing performance. In [3], Hu et al. investigate some fundamen-
tal questions for hybrid deployment of sensor network, and propose a cost model and
integer linear programming problem formulation for minimizing energy usage and
maximizing lifetime in a hybrid sensor network. Their studies show that network
lifetime can be increased dramatically with the addition of extra micro-servers, and
the locations of micro-servers can affect the lifetime of network significantly. In addi-
tion, the cost-effectiveness analysis shows that hybrid sensor network is financially
cost efficient for a large case.

In many research works [6] [7] [8], unit disk graph (UDG) is a commonly used
sensor model to reflect the correct behavior of sensor node. It assumes the effective
communication and sensing region of sensor node is a circle with fixed radius. How-
ever, a constant communication and sensing range is not practical for a realistic senor
node. In [2], He et al., propose a model with an upper and lower bound on signal
propagation. If the distance between a pair of nodes is larger than the upper bound,
they are out of communication range. If within the lower bound, they are guaranteed
to be within communication range. The parameter DOI (degree of irregularity) is used

80 C.-H. Wu and Y.-C. Chung

to denote the irregularity of the radio pattern. It is the maximum radio range variation
per unit degree change in the direction of radio propagation. When the DOI is set to
zero, there is no range variation, resulting in a UDG model. Zhou et al. [12] extended
the previous DOI model as radio irregularity model (RIM) based on the empirical data
obtained from the MICA2 and MICAZ platforms.

3 Preliminaries

3.1 Irregular Sensor Model

In this paper, an irregular sensor model is proposed based on the radio propagation
model inspired from Radio Irregularity Model (RIM) [12] and degree of irregularity
(DOI) [2]. The irregular sensor model assumes that the sensor node use the same
radio propagation model for communication and sensing. For each sensor node, a
radio propagation range is pre-defined and denoted as R, and the effective radio
propagation range (R.gciv.) is decided by the normal (Gaussian) distribution with a
mean of R, and a standard derivation of DOI, where DOI represents for the degree of
irregularity of R gecrive-

Figure 1 illustrates the radio propagation range under different DOI. According to
the “68-95-99.7 rule”, about 99.7% of the values are within three standard derivations
away from the mean (Ryy) [9]. Thus we define the R,pcive is ranged from Ry, —
3*DOI (R,i) to Ry + 3*DOI (R,,,,), and the relationship between Ry, Ry, and R4,
is illustrated in Figure 2.

After the effective radio propagation range is calculated, we can use it to derive the
radio strength model based on the simple transmission formula for a radio circuit
made up of an isotropic transmitting and a receiving antenna in free space [1]:

P,/ P,=AA | d*F. (1)

where P, is the power fed into the transmitting antenna at its input terminals, P, is the
power available at the output terminals of the receiving antenna, A, (or A,) is the effec-
tive area of the receiving (or transmitting) antenna, d is the distance between anten-
nas, and 4 is the wavelength. Suppose that P, A,, A,, and 4 are constants, then the
received radio power (P,) is proportional to 1/d*. Thus, we define the radio strength
of senor node n at point p as follows:

R(1, p) = (Rogeciive | d(n, p))° . 2)

where d(n, p) is the Euclidean distance between node n and point p. If R(n, p) = 1,
then there exists radio connection between node »n and point p.

DOI=0 DOI=0.5 DOI=1 DOI=2

Fig. 1. The radio propagation range under different DOI

Heterogeneous WSN Deployment and Topology Control 81

0.25 Normal (Gaussian) Distribution

Rger (Mean) = 30
DOI (Standard Deviation) = 2.0

0.2

z
@
5
Zo.15
2
;_5
T 0.1
S Rimax = Rger F\3*DOI = 36
o
0.05 def ~ 3*DOI = 24
\l Raef
0

22 23.6 252 26.8 284 30 31.6 33.2 348 364 38

Fig. 2. The relationship between R, R,yin, and Ryqx

According to the definition of R, We have the following observations:

1. If d(n, p) < Rin, R(n, p) must be larger than 1.

2. If d(n, p) > R,ux» R(n, p) must be less than 1.

3. If d(n, p) > Refpeciive» the radio connection between two nodes cannot be guaranteed.
Here we define “out of range” as R(n, p) = min_strength, where min_strength is the
minimum threshold of radio strength that guarantees radio connection between
node n and point p, thus the maximum connectable distance between node n and
point p is R, /sqrt(min_strength).

4. Similarly, we define “too closed” as R(n, p) = max_strength, where max_strength
is the maximum acceptable radio strength for node n, thus the minimal distance be-
tween node n and point p is R,,;,/sqrt(max_strength).

The relationship between R(n, p) and d(n, p) is illustrated in Figure 3. In the Section 4,
the proposed irregular sensor model will be used to select a proper sensor node loca-
tion and calculate coverage rate.

3.2 Some Definitions of Heterogeneous Wireless Sensor Network

In this paper, we define a heterogeneous WSN that consists of three types of nodes:
sink node, high-end senor node (Ny), and low-end senor node (N;). Each node has
the same communication model and two types of sensor nodes have the same sensing
model. The difference between Ny and N, is that the pre-defined communication and
sensing range are different. The default communication and sensing range of Ny are
defined as Rcy and Rgy, respectively. Similarly, R, and Rg; are denoted as the de-
fault communication and sensing range of N;, where Rcy > R¢y, and Rgy > Ry;.

To evaluate the results of sensor node deployment, we define a deployment cost
model as:

deployment_cost = (Num(Ny)* Ny_cost + Num(N})) / total_coverage_rate . 3)

82 C.-H. Wu and Y.-C. Chung

n,p)

. Radio Strength R(

10 @
0.0

32 36 40 44 48

0 4 8 12 16 20 24 2
/ / Distance d(n,p)

/

Fig. 3. The relationship between R(n, p) and d(n, p)

Ny_cost = (Rey + Roi’) | (Rew + Rs.) .)

where deployment_cost is calculated as the total cost of deployed sensor nodes di-
vided by the fotal_coverage_rate produced by these sensor nodes, and Ny_cost is the
difference of sensor node cost between Ny and N;. The sensor node cost is deter-
mined by two factors: communication distance and coverage area of sensor, repre-
sented by R, and R,” respectively. The calculation of rotal_coverage_rate is based on
the irregular senor model described in Section 3.1. At first, the deployment area is
filled with grid points. For a senor node N, its coverage_rate at grid point p is based
on Equation (2) in Section 3.1:

coverage_rate = (effective_range | d(N, p))2 . (&)

where effective_range is a random value with normal distribution between min(Ry)
and max(Ry). After all sensor nodes are processed, each grid point will keep the high-
est coverage rate but not exceed one. The total_coverage_rate is equal to the sum of
coverage_rate divided by the number of grid points.

4 Heterogeneous Sensor Deployment

In this section, a heterogeneous sensor deployment method is proposed. Given a
deployment area and the upper bound of deployable high-end and low-end sensor
nodes, the objective is to construct a communication-connected sensor network, in
which high-end and low-end sensor nodes are deployed uniformly to achieve high
coverage rate. In the initialization step, a deployment area is initialized base on the
configuration file. In the neighbor-info collection step, starting from the sink node,
the information of adjacent sensor nodes within the communication range is collected.

Heterogeneous WSN Deployment and Topology Control 83

It can be used to decide the deployment ratio of high-end and low-end sensor nodes.
In the candidate generation step, candidate positions are generated according to topol-
ogy control policies, and a scoring mechanism based on the irregular sensor model is
applied to each candidate. At least, a new sensor node with the most coverage gains
is deployed while maintaining the communication connectivity. The number of de-
ployable sensor nodes is limited by the pre-defined quota of sink/sensor node. If the
quota is reached, then a deployed sensor node with available quota will be selected.
The deployment process will be repeated until the upper bound of deployable sensor
nodes is reached or no suitable place available to add a sensor node. In the following,
we will describe each deployment step in details.

4.1 Initialization Step

In this step, a sensing area is generated from a given configuration file. This file
includes the size of deployment area, the location of pre-deployed sink node and sen-
sor nodes, the upper bound of deployable high-end and low-end sensor nodes, and
default value of parameters defined in Section 3. These parameters include the de-
fault communication and sensing distance of high-end/low-end sensor node (Rcy, Rsy,
Rcr, and Ryp), the degree of irregular (DOI), and the threshold of radio strength
(max_strength and min_strength). Then the maximum/minimum value of the effec-
tive radio propagation range (R,g.cqv.) is calculated for each type of node according to
the given DOI. For example, if the default Ry = 30 and DOI = 2.0, then the maxi-
mum effective communication distance max(R¢cy) = Rcy + 3*DOI = 36 and the mini-
mum effective communication distance min(Rcy) = Rcy - 3*DOI = 24. Thus, the
effective communication distance of high-end sensor node fits a normal distribution
ranged from 24 to 36.

4.2 Neighbor-Info Collection Step

At first, a center node for deployment is selected. The selection of eligible center
node is starting from sink node, and then expanding to all deployed sensor nodes.
The criterion of eligible node is based on the available quota for node deployment,
which is limited by the degree of node defined in the configuration file. The number
of deployed high-end and low-end sensor nodes within minimum effective communi-
cation distance is denoted as Neighbor(Ny) and Neighbor(V;). They will be used to
decide the deploy ratio of high-end and low-end sensor nodes. Suppose the number
of deployable high-end and low-end nodes is denoted as Remain(Ny) and Re-
main(Vy), respectively. Then the limit numbers of deployable high-end and low-end
senor node are represented as Equation (6) and (7):

Deploy(Ny) = limit degree of center node * Remain(Ny) / (Remain(Ny)
- (6)
+ Remain(¥,)) .

Deploy(N,) = limit degree of center node — Deploy(Ny) . @)

If Deploy(Ny) = Neighbor(Ny), then Deploy(Ny) = 0, means that the number of high-
end sensor nodes is sufficient. At last, if Deploy(Ny) + Deploy(N;) > 0, then the
following deployment step will be processed, otherwise, the deployment process for
current center node will be terminated and restarted on the next eligible node.

84 C.-H. Wu and Y.-C. Chung

4.3 Candidates Generation Step

In this step, the candidate positions for each type of the sensor node will be generated
separately. In heterogeneous sensor node deployment, the symmetric connection
must be maintained. It means that the distance between two sensor nodes cannot
larger than the maximum communication distance of the low-end one. Besides, the
overlap of sensor coverage area between two senor nodes has to be considered to
prevent the sensor coverage area of low-end node to be fully covered by the high-end
node, which means no coverage gains. In the following, we will discuss the require-

ment to produce coverage gains while maintaining symmetric connection under dif-
ferent conditions:

— Case I: Rcy > Ry and Rep > Ryp.

In this case, the communication distance is larger than sensing range. Figure 4(a)
illustrates the condition when a low-end node N, is added to a high-end sensor node
Npy. For Ny, if d(Ny, Np) < Rcp, then the symmetric connection is established, and we
said that these two nodes are communication-connected. If d(Ny, N;) = (Rsy - Rsyp),
then the sensor coverage area of N, is fully covered by Ny, which means no coverage
gains. By combining these observations, if two nodes are communication-connected
and have coverage gains, then the distance between two nodes is:

(Rt - Rgr) < d(Nu, Np) <Ry . (®

Thus, if we want to produce coverage gains while maintaining symmetric connection
when deploying a new sensor node, the following condition must be satisfied:

Rep- (Rsy-Rg) >0 9

— CaseII: Rcy =Rgyand Re, =Ry,

From Figure 4(b), the requirement of communication-connected deployment with
coverage gains can be derived from Equation (9) by replacing R¢; with Ry, :

2 Rg; > Rsyor2 Rep > Rey . (10)

--0

Rsn

—t-——

A

5
e
A

=

=
¥

Rgy.
Rer, / A\ Rsr,

(@) Rey > Rsyand Rep > Ry, (b) Rey = Rgyand Rep = Rgp (¢) Rey < Ry and Rep < Ry

Fig. 4. Sensor node connection and coverage under different conditions

Heterogeneous WSN Deployment and Topology Control 85

— Case III: RCH < RSH and RCL < RSL

From Figure 4(c), we can find that the requirement of communication-connected
deployment with coverage gains is identical to Case I.

Based on above results, candidate position is generated by the following topology
control policies:

1. If a Ny is selected for node deployment, then the candidate positions of high-
end/low-end senor nodes must be within the minimum effective communication
distance of high-end/low-end senor node. That is, d(Ny, candidate position of high-
end node) = min(Rcy), and d(Ny, candidate position of low-end node) =
min(Rcy).

2. If a N, is selected for node deployment, then the candidate positions of two types
of sensor nodes must be within the minimum effective communication distance of
low-end senor node. That is, d(Ny, candidate position of high-end/low-end node)
= min(R¢y).

3. If d(Ny, candidate position of low-end node) = (Rgy - Rg;), then this candidate
position is discard because the sensor coverage area will be fully covered by Ny.

4. The minimum distance between candidate position and deployed nodes is defined
as R, /sqrt(max_strength), where R,,;,, = min(Rcg) or min(R¢;) is the minimum ef-
fective communication distance of sensor node. It can prevent the deployed sensor
nodes are too closed.

4.4 Scoring Step

After candidate positions are generated for different types of sensor nodes, a scoring
mechanism to each position is defined as follows: fotal_score = connection_score +
coverage_score. The connection_score is the distance between candidate position and
center node. The coverage_score of candidate position is defined as the coverage
gains when a sensor node is deployed at the candidate position. The calculation of
coverage gains is described as follows: At first, a square around center node with edge
length = 2*max(Ry) is filled with grid points. Based on Equation (5) in Section 3.2,
the total coverage rate produced by deployed sensor nodes is denoted as
base_coverage_rate. Next, the total coverage rate with the contribution of candidate
position is denoted as target_coverage_rate. Thus the coverage_score of candidate
position = farget_coverage_rate - base_coverage_rate.

4.5 Sensor Addition Step

After all candidate positions are scored, the candidate with the highest score is
selected to deploy a new sensor, which has the most coverage gains while maintaining
the communication connectivity to center node. If the deploy quota of current center
node is reached, the next deployed sensor node with available quota will be selected.
The deployment process will be repeated until the upper bound of deployable sensor
nodes is reached or no suitable place available to add a sensor node.

86 C.-H. Wu and Y.-C. Chung

5 Experiments

In this section, we evaluate the performance of the proposed sensor deployment
method by comparing sensor coverage rate and deployment cost with several sensor
node configurations. A simulation tool written in C++ language is running on an
IBM eServer 326 (AMD Opteron 250 * 2 and 1GB memory). The deployment area is
a 2-D square with 500 x 500 units. A sink node is deployed at (200, 200). The total
number of deployable sensor nodes is ranged from 60 to 360. Other parameters are
defined as follows: DOI = 2.0, max_strength = 1.2 and min_strength = 0.8.

Coverage rate vs. Deployment cost vs.
Num(Np)/Num(Ny) Num(N_)/Num(Ny)
1 1.5 ¢ m(5/1)
0.9 B (5%/1)
B(1*/1)
0.8
207
g i<}
o 0.6 ©
g =
§ 05 @
(&)
S o4
0.3
024
0.1 -
60 120 180 240 300 360 60 120 180 240 300 360
Total deployed nodes Total deployed nodes
Fig. 5. Coverage rate of Test Case I Fig. 6. Deployment cost of Test Case I

Test Case I is the coverage rate and deployment cost under different deployment
ratio, where Num(N;):Num(Ny) = 5:1 or 1:1. Besides, the ratio of communica-
tion/sensing range between Ny and Ny (Ry : R;) is 1.5:1, and the ratio of communica-
tion and sensing range for Ny / N (R¢ : Rg) is 1.5:1. We also compare the results with
sensor deployment without topology control (case 2* and 5*). The deployment with-
out topology control is based on the same deployment method, but it omits the topol-
ogy control policies described in Section 4.3. The experiment results are illustrated in
Figure 5 and Figure 6. In Figure 6, we compare the deployment cost of different
cases (5, 5*, and 1*) with case 1 (denoted as 5/1, 5*/1, and 1*/1). With the help of
topology control, the proposed method has higher coverage rate in comparison of the
deployment method without topology control. It can be found lower deployment ratio
can achieve higher coverage rate with the help of more high-end nodes. In addition,
the reduction of deployment cost is significant for the deployment method with topol-
ogy control. When deployment ratio is 5:1, it has higher coverage rate and lower
deployment cost than the deployment method without topology control under the
same deployment ratio.

Heterogeneous WSN Deployment and Topology Control 87

Test Case II is the coverage rate and deployment cost under different ratio of the
communication/sensing range between Ny and Ny (Ry : R;), where Rcy @ Rsy = Rey :
Rg; = 1.5:1, and deployment ratio of Ny and N, is fixed to 5:1. Other configurations
are identical to the Test Case I. Figure 7 and Figure 8§ are experiment results. If Ry
/R, = 1, it can be regarded as homogeneous deployment since both Ny and N, have
the same communication and sensing range. With the help of high-end sensor nodes,
the heterogeneous deployment can get higher coverage rate, but the homogeneous
deployment has lower deployment cost. The deployment method without topology
control still has higher deployment cost under the same ratio of Ry and R;.

Coverage rate vs. Ry/R, Deployment cost vs. Ry/R,
1
0.9
0.8
207 | .
o 8
% 0.6 ©
© 05]
3 (&)
004 -
0.3 .‘O sehe- 27
——1
02 % --O--1*
0.1
60 120 180 240 300 360 60 120 180 240 300 360
Total deployed nodes Total deployed nodes
Fig. 7. Coverage rate of Test Case II Fig. 8. Deployment cost of Test Case II

6 Conclusions

In this paper, we propose a heterogeneous WSN deployment method based on irregu-
lar sensor model. It aims to deal with the deployment problem of heterogeneous sen-
sor nodes with different communication and sensing range. In addition, an irregular
sensor model is proposed to approximate the behavior of sensor nodes. The deploy-
ment process is starting from sink node, and new nodes are deployed to the region
centered with it. In neighbor-info collection step, the information of adjacent sensor
nodes is used to decide the deployment ratio of different types of sensor nodes. In the
scoring step, a scoring mechanism based on the irregular sensor model is applied to
candidate positions. At least, a new sensor node is placed to the position with the
most coverage gains while maintaining the communication connectivity to center
node. Above process is running repeatedly until all eligible sensor nodes are
processed.

88 C.-H. Wu and Y.-C. Chung

According to experiment results, the proposed method can achieve higher coverage
rate under the same deployable sensor nodes. Besides, the deployment cost is much
lower with different configurations of sensor nodes. In the future work, a sensor node
model considering environmental factors and individual behavior is needed. Besides,
considering the interactions between different types of sensors is important. At least,
the proposed method will be extended as the topology control protocol for heteroge-
neous WSN.

Acknowledgments. The work of this paper was partially supported by National Sci-
ence Council and Ministry of Economic Affairs of the Republic of China under con-
tract NSC 95-2221-E-007-018 and MOEA 95-EC-17-A-04-S1-044.

References

1. Friis, H.T.: A Note on a Simple Transmission Formula. In Proceedings of the IRE, Vol.
34, No. 5, (1946) 254- 256

2. He, T., Huang, C., Blum, B. M., Stankovic, J. A., and Abdelzaher, T.: Range-free localiza-
tion schemes for large scale sensor networks. In Proceedings of the 9th Annual interna-
tional Conference on Mobile Computing and Networking (MobiCom). (2003) 81-95

3. Hu, W., Chou, C.T., Jha, S., and Bulusu, N.: Deploying Long-Lived and Cost-effective
Hybrid Sensor Networks. Elsevier Ad-Hoc Networks, Vol. 4, Issue 6. (2006) 749-767

4. Krishnamurthy, L., Adler, R., Buonadonna, P., Chhabra, J., Flanigan, M., Kushalnagar, N.,
Nachman, L., and Yarvis, M.: Design and deployment of industrial sensor networks: ex-
periences from a semiconductor plant and the North Sea. In Proceedings of the 3rd inter-
national conference on Embedded networked sensor systems (SenSys). (2005) 64-75

5. Lee, J.J., Krishnamachari, B., Kuo, C.C.J.: Impact of Heterogeneous Deployment on Life-
time Sensing Coverage in Sensor Networks (IEEE SECON). (2004)

6. Li, L., Halpern, J. Y., Bahl, P., Wang, Y.-M., and Wattenhofer, R.: Analysis of cone-based
distributed topology control algorithms for wireless multi-hop networks. In Proceedings
of ACM Symposium on Principle of Distributed Computing (PODC). (2001)

7. Li, X.-Y., Wan, P.-J., Wang, Y., and Frieder, O.: Sparse power efficient topology for wire-
less networks. In Proceedings of IEEE Hawaii International Conference on System Sci-
ences (HICSS). (2002)

8. Ramanathan, R. and Rosales-Hain, R.: Topology control of multihop wireless networks
using transmit power adjustment. In Proceedings of the 20th Annual Joint Conference of
the IEEE Computer and Communications Societies INFOCOM). (2000)

9. Wikipedia contributors, ‘“Normal distribution,” Wikipedia, The Free Encyclopedia.
(http://en.wikipedia.org/w/index.php?title=Normal_distribution&oldid=93201679)

10. Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., and Lees,
J.: Deploying a Wireless Sensor Network on an Active Volcano. IEEE Internet Comput-
ing 10(2) (2006) 18-25

11. Xu, N.: A Survey of Sensor Network Applications. University of Southern California.
(http://enl.usc.edu/~ningxu/papers/survey.pdf)

12. Zhou, G., He, T., Krishnamurthy, S., and Stankovic, J.: A. Models and solutions for radio
irregularity in wireless sensor networks. ACM Trans. Sen. Netw. 2(2) (2006) 221-262

Multiple Cluster Merging and Multihop
Transmission in Wireless Sensor Networks

Siddeswara Mayura Guru', Matthias Steinbrecher?, Saman Halgamuge!,
and Rudolf Kruse?

! Dynamic Systems and Control Group, Department of Mechanical and
Manufacturing Engineering
University of Melbourne, Parkville Vic 3010, Australia
s.guru@pgrad.unimelb.edu.au, saman@unimelb.edu.au
2 Department of Computer Engineering, University of Magdeburg,
Magdeburg, Germany D-39106.
msteinbr@iws.cs.uni-magdeburg.de, kruseQiws.cs.uni-magdeburg.de

Abstract. Wireless sensor networks consist of sensor nodes that are de-
ployed in a large area and collect information from a sensor field. Since
the nodes have very limited energy resources, the energy consuming op-
erations such as data collection, transmission and reception must be kept
to a minimum. Low Energy Adaptive Clustering Hierarchy (LEACH) is
a cluster based communication protocol where cluster-heads (CH) are
used to collect data from the cluster nodes and transmit it to the remote
base station. In this paper we propose two extensions to LEACH. Firstly,
nodes are evenly distributed during the cluster formation process, this
is accomplished by merging multiple overlapping clusters. Secondly, in-
stead of each CH directly transmitting data to remote base station, it
will do so via a CH closer to the base station. This reduces transmission
energy of cluster heads. The combination of above extensions increases
the data gathering at base station to 60% for the same amount of sensor
nodes energy used in LEACH.

1 Introduction

Wireless sensor networks have become popular because of the advancement in
the area of low power electronics, radio frequency communication and due to the
desire to monitor the environment remotely with minimum human intervention.
A large number of sensors can be deployed to form a self-organising network to
sense the environment and gather information. A sensor can be data driven or
event driven in nature and a network may be static or dynamic [IJ.

Sensor networks can be used in various applications ranging from military
to domestic. Sensors can be deployed in an inhospitable condition for moni-
toring purposes, in a forest for monitoring the animal movement or as early
fire detection systems. Sensor networks are used to improve the learning skill
in kindergarten [2], environment and habitat monitoring and also to measure
tension in a mechanical bolt [3].

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 8999] 2007.
© Springer-Verlag Berlin Heidelberg 2007

90 S.M. Guru et al.

Low Energy Adaptive Clustering Hierarchy (LEACH), which was first pre-
sented in [], is an application specific communication protocol based on cluster-
ing of sensor nodes. The main idea behind LEACH is that sensor nodes located
close to each other will have a high correlation in their measured data so that
it is not necessary for each node to communicate with the base station. Nodes
form clusters by grouping neighbouring nodes. Each cluster has a cluster-head
whose tasks are to collect data from other cluster members, aggregate and send
aggregated data to base station.

In LEACH, cluster-head will consume more energy than its member nodes.
Therefore, the CHs are rotated after a fixed amount of time called rounds. Each
round consists of two phases: the setup phase where the clusters are formed,
and the steady-state phase where the actual sensing and communication takes
place. The cluster-head election process takes place in a setup phase to determine
K cluster-heads in a network but, it does not guarantee K cluster-heads. Fur-
thermore, cluster-heads are selected randomly based on the probability given in
Equation[Il where N is the number of sensor nodes in a network, k is the number
of CHs required and r is the number of rounds passed. The Equation [l increases
the chance that cluster-heads are not distributed uniformly in a network. Due
to above reasons there will be uneven cluster sizes and uneven distribution of
cluster-heads in a network . All this leads to rapid energy dissipation. In this
paper, the concept of merging of cluster-heads, which are in close proximity, is
introduced. In LEACH, each cluster-head transmit the aggregated data to the
base station. The base station is generally located far away from the network.
This increases the energy dissipation in CHs. Instead of each CH directly trans-
mitting to base station, a CH closest to the base station transmits aggregated
data from all the CHs. Thus, reducing the energy dissipation of other cluster-
heads. The combination of these two extensions improves the life span of the
network. The first extension is named LEACHM (LEACH-Merging) and due
to 2-hop communication to base station, the combination of first and second
extension is called 2-Level LEACHM.

! 1
; 1)

k i _
R(t) _) N—k(rmod%) - Ci (t) =
0 G

There are few algorithms proposed and showed improvements to the LEACH pro-
tocol. PEGASIS (Power-Efficient Gathering in Sensor Information Systems) [5]
is a chain based data gathering protocol, where only one node transmits to the
base station. In this protocol the distance each node transmits is less than the
distance a node transmits in LEACH. However, this is a greedy based algorithm
with assumption that all nodes have global knowledge of the network. In [6],
the same authors proposed two new protocols: chain-based binary scheme with
CDMA (Code Division Multiple Access) nodes and a chain-based 3-level scheme
with non-CDMA nodes other than PEGASIS to reduce energy x delay to gather
data in sensor networks. Each protocol shows improvement over LEACH based
on the percentage of nodes dying for different network sizes. However, none of
the above protocols are cluster based and they may not give a consistent result

Multiple Cluster Merging and Multihop Transmission 91

for a randomly distributed varying population of the sensor network. This is
due to greedy approach used to find the nearest neighbour to form a chain. The
assumption that all the nodes have a global knowledge about the network is
difficult to realise because of node capacity and density of a network. There are
few centralised approaches to form clusters [7] based on []]. The authors in [9]
have successfully developed a centralised protocol superior to LEACH. However,
we are not considering the centralised approach in our work. We want nodes to
decide among themselves to form clusters and identify CHs.

The rest of the paper is organised as follows. Section] describes the moti-
vation for the uniform cluster-head distribution and proposes a cluster merging
technique as an extension to the setup phase. In section 3], 2-level LEACHM is
proposed to transmit data by a single CH (master-cluster-head) to the base sta-
tion. In section Ml we are providing experimental results comparing the LEACH
protocol with LEACH-M and 2-level LEACHM. Finally, we conclude the paper
in section

2 Uniform Cluster-Head Distribution

Efficient communication protocols for sensor networks are important to keep the
communication energy usage as low as possible to increase the system lifetime.
Therefore, it is important to consider every aspect of the total energy usage.
Since the cluster-head consumes more energy, it is reasonable to try to decrease
the energy spent in these nodes. From the energy model that is used in LEACH
[10], the energy dissipated in a cluster-head node during a single frame is:

Ecr = Erpcv(b,m) + Eaga(b,m) + Eps(d} ps), (2)

where b is the number of data bits sent by each cluster member, m is the average
number of nodes per cluster (]Z), Ergcv is the energy used for reception of data
from cluster members, Fagqg is the energy used for data aggregation, Fpg is
the energy used for delivering results to base station and d;,ps is the distance
to base station. The behaviour of these three components against the change of
distance to the base station is shown in Figure [Il

In cases where the base station is in the range of 7bm to 160m away from the
network from (Figure[Il), it can be concluded that most of the energy is dissipated
while receiving data from the cluster members. The transmission energy increases
as the base station is moved further away from the sensor field.

In order to optimise the consumption of reception energy Erpcov, its depen-
dencies on the system parameters must be known. Reception energy is computed

based on Equation [Bl

N

Erecv = bFejec . (3)

where b, N and F.j.. (radio amplifier energy) would have constant value. The k
is the only value varies frequently because the number of cluster-members varies
in each round. Thus, k& has more influence on Equation Bl

92 S.M. Guru et al.

oW

—4— Reception
~#- Aggregation
—e~— Transmission

Energy [uJ]

3
8

80 90 100 110 120 130 140 150 160 170
Distance to base station [m]

Fig. 1. Energy dissipated at cluster-head node during one LEACH round versus dis-
tance to base station

The assumption in [I0] that a node can be a cluster-head at least once in its
lifetime is valid only for an exact number of k cluster-head nodes. Since it is
also possible that there are less than k cluster-head nodes in certain rounds, this
leads to many nodes may have died before completing the first round of being a
cluster-head. Thus, it is necessary to maintain balanced cluster sizes such that
all nodes become cluster-head at least once in their lifetime.

2.1 Cluster Merging

A first approach in extending the cluster-head’s lifetime was proposed in [I1].
Even though these improvements guarantee the most powerful nodes to be elected
as cluster-heads, the network may suffer from a malformed cluster in the initial
stage. Since all nodes start at the same level of energy Fgiq,t, no preference can
be achieved because the term is very close to unity in the initial few rounds.

En current (4)

En max

In order to increase the probability of the survival of the first round of a node
being a cluster-head, it is necessary to avoid large clusters.Clusters being too
large are resulted due to the following reasons:

1. Less than k£ nodes elected themselves to be cluster-heads thus resulting in
large clusters covering the entire network.

2. The number of elected cluster-head nodes is at least k, but the cluster-heads
are distributed in an uneven way as shown in Figure @] (for example, the
cluster-heads 3 and 4 are too close).

To avoid reason (2) the status of being a cluster-head is not declared until
the end of the setup phase. In addition, another negotiation stage is introduced
right after the cluster-head election. The nodes that have elected themselves to
be cluster-heads in the initial election phase are now called cluster-head aspirants
(CHA) because their status may change in the negotiation phase.

Multiple Cluster Merging and Multihop Transmission 93

A

Fig. 2. Even if there are exactly k clusters Fig.3. Three cluster-head aspirants and
(k = 5), there is no guarantee that the clus- their AOIs

ter sizes are balanced. (The framed nodes

indicate the cluster-heads).

In the new negotiation phase, a small I-AM-HERE message is broadcasted by
each cluster-head aspirant to the others. Since a node can only be set to receive
or transmit mode at a given time, this broadcast has to be accomplished within
a TDMA frame, which has as many slots as number of nodes in the network.
Each node is assigned a slot by means of its node ID. The TDMA frame length
scales linearly by the network size. Each node transmit little amount of data
(Table [), which is not a burden. The I-AM-HERFE message only contains the
information depicted in Table [l This message does not need to broadcast at
maximum transmitting power. It is sufficient to reach all cluster-head aspirants
in a special circumference with radius r. This area is called the area of interest
(AOI) of the cluster-head aspirant and specifies its territory ideally not shared
with another CHA, even though some overlap may be tolerated.

Table 1. Layout of I-AM-HERFE message

Sender ID
Sender’s energy level

As stated above it may occur that in case of cluster-head aspirants being
located too close, these areas may overlap. In this case both clusters should be
merged into one cluster. We illustrate this in Figure[3l Each cluster-head aspirant
CHA,; (having E; energy) determines the energy E™** of the most powerful
cluster-head aspirant in its AOI The future state of the cluster-head aspirant
CHA; is defined by the following policy: If E/"** > E; then C'HA; abandons

94 S.M. Guru et al.

Table 2. Energy values for CHA nodes, Example 1

CHA Energy left

A 5
B 1
C 3

the cluster-head role and becomes a non-cluster-head node. Otherwise, C'H A;
remains in its role and advances to become a proper cluster-head node. In case
of a tie, a CHA chooses its cluster-head state randomly.

This decision is done independently by all potential cluster-head nodes. We
assume the nodes A, B and C' from Figure [B] have the energy levels as shown in
Table 2l After the broadcast, the knowledge of each node is as follows:

— A with the energy of 5 units, knows about B in its AOI with the energy of
1 unit.

— B with the energy of 1 unit, knows about A and C having energy levels of
5 and 3 units, respectively.

— (' with the energy of 3 units, knows about B in its AOI with the energy of
1 unit.

The following decisions are made:

— Node A changes its status from CHA to cluster-head, since the only other
cluster-head aspirant known (B) has less than 5 units left.

— Node B becomes a non-cluster-head node since all other cluster-head aspi-
rants known to it (A and C) have more energy left.

— Node C' changes its status from CHA to cluster-head, since the only other
cluster-head aspirant known (B) has less than 3 units left.

Thus, the number of cluster-head nodes located in AOI of each other can be
reduced. If n cluster-head aspirants know each other then exactly one node will
remain as a cluster-head, thus avoiding the overlap.

The proposed method will distribute nodes evenly among clusters. However,
there should be enough cluster-heads to cover all nodes in a sensor field. This
problem can be solved by increasing the value of ‘k’ in Equation [Il This also
reduces the disadvantage of having less CH nodes.

3 2-Level LEACHM

The steady phase happens once the set-up phase finished in the LEACH proto-
col. In steady phase, data is transmitted to the base-station. If the base-station is
located far away from the sensor field, it is more likely that the transmission dis-
tance from all the cluster-heads to base station is greater than de,ossover [L0]. The
derossover (d = transmission distance) is the critical distance between transmit-
ter and receiver. The critical value is 86.2 m based on the channel propagation

Multiple Cluster Merging and Multihop Transmission 95

40000

« 35000
[11]
E 30000
§ 25000 ——2-Level LEACHM
E 20000 LEACHM
% 15000 LEACH
©
2 10000
2
& 5000
0

13 5 7 911131517 19212325
Rounds

Fig. 4. The number of data packets reached to the base station located at (50,175)
against the number of rounds

model used in [I0]. If transmission distance is greater than derossover the en-
ergy dissipation is proportional to d* else it is d?. Therefore, it is important for
transmission to be proportional to d?. However, when base station is located
remotely, which is the case for majority of applications, nodes will dissipate en-
ergy proportional to d*. To improve the lifetime of a network, number of nodes
dissipating energy proportional to d* should be minimum.

To minimise the transmission distance of cluster-heads, only master-cluster-
head transmits data to remote base station. Here, the assumption is that each
sensor knows the distance and direction of the base-station. It is a logical as-
sumption where all sensors are static once they are deployed and the base station
is also static. Once, the sensors are deployed, the base-station will broadcast a
beacon to the sensor field thus, all sensors know the distance of the base station
from them.

3.1 Master Cluster-Head Determination

After cluster-heads are elected, each of them will broadcast a message (MSG-
MCH) using non-persistent carrier sense multiple Access (CSMA) protocol. The
message consists of node’s ID and its distance from the base-station (Table [3]).
This message will be broadcasted to reach all cluster-heads. Once each cluster-
head receives all other cluster-heads information, they decide by themselves the
master-cluster-head. The cluster-head closest to the base-station is determined as
master-cluster-head. After CHs get a frame of data from its members they will
transmit an aggregated data to the master-cluster-head using carrier sense mul-
tiple access (CSMA) approach. The master-cluster-head waits for data from all

Table 3. the format of the MSG-MCH message broadcast by each cluster-head

Node ID
BS distance from node

96 S.M. Guru et al.

Energy Consumption Vs Data Received

(2

[11]

5 27000

T

@ 24000 ——LEACH

g 21000 LEACHM

& 12888 —— 2-Level LEACHM
s 12000

S 9000

Q 6000

3000 e

0 20 40 60 80 100 120 140 160 180 200

Energy Consumed

Fig. 5. The graph shows the energy consumption for number of data received. 2-Level
LEACHM received more data spending lesser energy than LEACH and LEACHM. The
BS is located at (50,175), outside the network.

cluster-heads before it transmits an aggregated data to the base-station. There-
fore, except master-cluster-head all other CHs transmit short distance to save
transmission energy. The main motivation is to reduce the energy dissipation of
cluster-heads to the magnitude of d? instead of d* barring, master-cluster-head.

4 Simulation Results and Analysis

The simulation tool is developed in C++ to evaluate the LEACH protocol and
new proposal presented in this paper. The simulation setup, electronics param-
eters and energy model used in the simulation is similar to [I0]. The basic
characteristics of the network setup is given in Table [In LEACH-M, dur-
ing the cluster-head election process, nodes selected using Equation [are called
potential-cluster-heads. Potential-cluster-heads decide among themselves as dis-
cussed in section 2l to become a cluster-head or non-cluster-head. The advantage
of negotiation phase of potential-cluster-heads is that the cluster-heads will be
distributed evenly in a network, which, LEACH fails. In the simulation, the
overhead energy involved for the negotiation phase is also considered. Since the
size of data broadcast is small (4 bytes) the energy spent to transmit 4 bytes of
data with maximum power to reduce hidden terminal problem is 16.44u.J. This
energy is spent once in every round. The proposed improvement to the LEACH
protocol can be seen from the results in Figuredl The 2-Level LEACHM gathers

Table 4. Network setup for simulation

No. of nodes 100
Area of the sensor field 100m x 100m
Base station location (50,175)
Data size 500 bytes

Initial energy of each node 2J

Multiple Cluster Merging and Multihop Transmission 97
%
A
5> o *
£% 10
= Y1 Ae ——LEACH " A
%15 Jn VA\ —u—LEACHM/ 2-level § / \ #X il
5 10 !1& /\ \ LEACHM 5° A VL A vl
s s 4
Humvnw T
0 R RV S At
12345678 9101112 12 % a5 678 8 101
No. of clusters No.of cluster-heads

Fig. 6. The percentage of times number Fig.7. Cluster-head distribution in
of clusters formed in one run of simula- LEACH and LEACHM

tion. LEACHM formed majority of times

clusters between 3 and 5. Thus making it

energy efficient then LEACH.

60% more data packets than LEACH and about 40% more than LEACHM. The
improvement is mainly due to the even distribution of cluster-heads in a network
and d? power dissipation for most CHs except master-cluster-head, which dissi-
pate d* most of the times. Figure [l shows the simulation results for the energy
dissipation to number of data packet received. The 2-Level LEACHM transmits
60% more data packets than LEACH and 35% more data packets than LEACHM
for the same amount of energy consumed.

Finally, we compare the cluster formation in LEACH and LEACHM in Fig-
ure [@ (the comparison is only between LEACH and LEACHM because 2-Level
LEACHM has similar cluster formation as LEACHM). The results in Figure 4.4
of [10] shows that the LEACH is most energy-efficient when clusters are between
3 and 5. In Figure[Gl LEACHM form clusters 60% of times between 3 and 5 when
compare to 30% in LEACH. This proves that the clusters are more uniform and
efficient in LEACHM. This is the main reason for LEACHM to perform better
than LEACH. Figure [0 shows that LEACHM has more occurrences of clusters
between 3 and 5 than LEACH. Overall results prove that LEACHM and 2-Level
LEACHM perform better than LEACH.

4.1 Sensitivity Analysis of LEACHM

In this section we analyse the sensitivity of Area of Interest (AOI) in LEACHM.
From Equation 4.22 of [I0] the expected distance between nodes to a cluster-head
is given by:
1 M?

Eld? opyl = 5
(Bl = 5 (5)
In the above equation the distance between the cluster-head and nodes varies
with the number of cluster-heads (k). From Figure 4.4 in [I0], the energy is least
dissipated when number of clusters are between 3 and 5. Therefore, we vary
the number of clusters from 3 to 5 to find how LEACHM works. We conduct

98 S.M. Guru et al.

sensor range sensitivity

30000

® 27000
m 24000
2 21000 i
@ 18000 —— Radius-18m
% 15000 Radius-20m
s 12000 7 Radius-23m
9000
£ 6000
Q 3000 { -~
0

1.3 5 7 911131517 19 21 23 25

Rounds

Fig. 8. Sensitivity of LEACHM for number of clusters

this experiments by simulating LEACHM with area of interest (AOI) of 18m
for 5 clusters, 20m for 4 clusters and 23m for 3 clusters. All the AOIs can be
calculated by substituting number of clusters to k in Equation Bl The result
given in Figure [§ shows that network with clusterheads of 20m radius transmit
more data to the base station.

5 Conclusion

The main focus of this paper was to improve the performance of LEACH. Based
on the performance criteria considered the improvement is about 60%. The im-
provement was possible due to the even distribution of clusters in the setup
phase and in the steady phase, instead of every cluster-heads transmitting data
to base station, only master-cluster-head transmits aggregated data of all CHs.
This reduces the transmission energy and further improves the performance of
the protocol.

Acknowledgment

Authors would like to thank Australian Research Council for partly funding this
project.

References

1. Tilak, S., Abu-Ghazaleh, N., Heinzelman, W.: A taxonomy of wireless micor-sensor
network models. ACM SIGMOBILE Mobile Computing and Communications Re-
view 6 (2002) 28-36

2. Park, S., Locher, 1., Savvides, A., Srivastava, M., Chen, A., Muntz, R., Yuen, S.:
Design of a wearable sensor badge for smart kindergarten. In: Wearable Comput-
ers, 2002. (ISWC 2002). Proceedings. Sixth International Symposium on. (2002)
231-238

10.

11.

Multiple Cluster Merging and Multihop Transmission 99

. Guru, S.M., Fernando, S., Halgamuge, S., Chan, K.: Intelligent fastening with

a-bolt technology and sensor networks. Assembly Automation, The International
Journal of assembly technology and management 24 (2004) 386-393

. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-

nication protocol for wireless microsensor networks. In: System Sciences, 2000.
Proceedings of the 33rd Annual Hawaii International Conference on. (2000)
3005-3014

. Lindsey, S., Raghavendra, C., Sivalingam, K.: Data gathering algorithms in sensor

networks using energy metrics. Parallel and Distributed Systems, IEEE Transac-
tions on 13 (2002) 924-935

. Lindsey, S., Raghavendra, C.: Pegasis: Power-efficient gathering in sensor infor-

mation systems. In: Aerospace Conference Proceedings, 2002. IEEE. Volume 3.
(2002) 3-1125-3-1130 vol.3

. Guru, S.M., Hsu, A., Halgamuge, S., Fernando, S.: An extended growing self-

organising map for selection of clusters in sensor networks. International Journal
of Distributed Sensor Networks 1 (2005) 227-243

. Hsu, A., Tang, S., Halgamuge, S.: An unsupervised hierarchical dynamic self-

organising approach to class discovery and marker gene identification in microarray
data. Bioinformatics 19 (2003) 2131-2140

. Muruganathan, S., Ma, D., Bhasin, R., Fapojuwo, A.: A centralized energy-efficient

routing protocol for wireless sensor networks. Communications Magazine, IEEE
43 (2005) S8-13

Heinzelman, W.: Application-Specific Protocol Architectures for Wireless Net-
works. PhD thesis, Massachusetts Institute of Technology (2000)

Handy, M., Haase, M., Timmermann, D.: Low energy adaptive clustering hierarchy
with deterministic cluster-head selection. In: Mobile and Wireless Communications
Network, 2002. 4th International Workshop on. (2002) 368-372

CFR: A Peer-to-Peer Collaborative File Repository
System

Meng-Ru Lin, Ssu-Hsuan Lu, Tsung-Hsuan Ho, Peter Lin, and Yeh-Ching Chung*

Department of Computer Science, National Tsing Hua University
Hsin-Chu, Taiwan300, ROC
{mrlin, shlu, anson}@sslab.cs.nthu.edu.tw, peter@dr-lin.com,
ychung@cs.nthu.edu. tw

Abstract. Due to the high availability of the Internet, many large cross-
organization collaboration projects, such as SourceForge, grid systems etc.,
have emerged. One of the fundamental requirements of these collaboration
efforts is a storage system to store and exchange data. This storage system must
be highly scalable and can efficiently aggregate the storage resources
contributed by the participating organizations to deliver good performance for
users. In this paper, we propose a storage system, Collaborative File Repository
(CFR), for large scale collaboration projects. CFR uses peer-to-peer techniques
to achieve scalability, efficiency, and ease of management. In CFR, storage
nodes contributed by the participating organizations are partitioned according to
geographical regions. Files stored in CFR are automatically replicated to all
regions. Furthermore, popular files are duplicated to other storage nodes of the
same region. By doing so, data transfers between users and storage nodes are
confined within their regions and transfer efficiency is enhanced. Experiments
show that our replication can achieve high efficiency with a small number of
duplicates.

Keywords: peer-to-peer, storage system, Coupon Collection Problem, CFR.

1 Introduction

The exploding growth of the Internet has enabled organizations across the globe to
share resources and collaborate in large scale projects such as SourceForge [21],
SEEK][20], and grid systems [1] [5] [11] [25], etc. One of the most fundamental
needs of these types of projects is a platform to store and exchange data. A storage
system is needed for keeping and distributing the large amounts of source codes,
programs, and documentations. To construct such a storage system, machines
contributed by volunteering organizations are used to store and mirror the generated
data. How to build a scalable and efficient storage system to aggregate the resources
contributed by the participating organizations has been an active research issue.

The peer-to-peer computing has received much attention in the past few years.
Pioneering applications such as Napster [16] and KaZaA [9] offered platforms for
users to easily exchange files without a centralized storage. The second generation of

* Corresponding author.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 100— 2007.
© Springer-Verlag Berlin Heidelberg 2007

CFR: A Peer-to-Peer Collaborative File Repository System 101

peer-to-peer storage systems [2] [10] [15] [18], mostly built on top of structured
routing schemes [19][22], further provide mechanisms to guarantee on object
location, and adopt more sophisticated replication and caching schemes.

The benefits of peer-to-peer techniques include scalability, fault tolerance,
resource sharing, and load balancing among the participating machines. These
appealing properties closely match the requirements of storage systems used in large
scale collaboration projects mentioned above.

In this paper, we propose a scalable, loosely coupled, and efficient storage system,
Cooperative File Repository (CFR), for large scale collaboration projects. The CFR
consists of two modules, overlay management and file management modules. The
overlay management module maintains connectivity between the participating nodes
using a two-layer overlay network. The file management module provides an
interface for users to access CFR and manages the files stored in CFR. Replicas are
automatically created for all files stored in CFR. Caching is employed to further
enhance performance. CFR achieves scalability by incorporating peer-to-peer
techniques to aggregate the contributed storage nodes. Efficiency is achieved by
exploiting the geographic locality of the storage nodes. Using the region overlay,
CFR can replicate files to storage nodes in all geographic areas.

To evaluate the performance of CFR, both simulation analysis and experimental
test are conducted. Simulation results verify that our proposed caching scheme can
effectively reduce the average download time compared to the one without caching
scheme. For the experimental test, we implement CFR on Taiwan UniGrid [25].
Different region configurations are implemented and the top 10 download files from
the SourceForge site are used as the test data set. The experimental result shows that
the downloading time of the 4-region configuration is almost 3 times faster than that
of the 1-region configuration, that is, the region concept of CFR can enhance the
performance of file downloading.

The remainder of this paper is organized as follows. In Section 2, we discuss
various systems that are related to our system. In Section 3 we briefly describe the
system overview of our CFR. In Sections 4 and 5, we introduce the overlay
management and file management of CFR, respectively. The simulation results are
presented in Section 6. In Section 7, we perform the experimental test on Taiwan
UniGrid.

2 Related Work

Many peer-to-peer data storage systems have been proposed in the past, and there are
quite a few papers on comparisons of various peer-to-peer file sharing/storage
applications published [6] [7]. CFS [2] is a Unix-style read only file system layered
on top of the Chord [22] [23] protocol. A DHash layer lies between the file system
and Chord to handle block management. OceanStore [10] is a persistent wide-area
transactional storage, layered on top of its own probabilistic routing protocol.
OceanStore applies erasure coding to files, splitting them into multiple blocks, to
achieve robustness. PAST [18] is a large scale persistent storage system layered on
the Pastry [19] protocol. PAST can be layered on other routing protocols with some
loss of locality and fault resilience properties. All of the storage systems mentioned

102 M.-R. Lin et al.

above create replicas to the files or blocks stored in the system and employ caching.
IVY [15] is a log-based file system that supports concurrent write operations. IVY,
like CFS, uses Dhash to store the logs. Kelips [4] is a file system layered on its own
routing scheme with O(1) lookup time. The fast lookup, however, comes at the cost
of larger memory usage and background communication overhead.

CFR shares many similarities with PAST. Like PAST, CFR stores and replicates
whole files, and is not bounded to a specific routing scheme. Unlike PAST, we do not
rely on the underlying routing protocol to take locality into consideration. Our system
partitions the participating nodes into groups, like Kelips, but uses different partition
scheme. Kelips uses hashing to determine the group of a node while ours is based on
geographic locality.

Many past works have proposed different ideas of using hierarchical multiple ring
topologies in overlay networks. HIERAS [26] and [14] are both routing schemes that
adopt this topology. In [14], the participating peers are organized into multiple layers
of rings with separate identifier spaces to reflect administrative domains and
connectivity constraints. Boundary Chord [8] is a replica location mechanism used in
grid environments. Boundary Chord adopts a two-layer multiple ring topology to
group nodes according to logical domains. In comparison with these systems, CFR
adopts a two-layer hierarchy of multiple rings.

3 System Overview

Figure 1 shows the system architecture of CFR and the functions offered by the
system components. The CFR system consists of two modules: Overlay Management
Module (OMM) and File Management Module (FMM).

CFR System Architecture

File Management Module (FMM’

User Interface Component (UIC’

(put) del 1 get)

File Duplication Component (FDC’

[getPermsI getTransI putRepli caIputTransi emI removeRepIicaj

Overlay Management Module (OMM’

Region Overlay Management Component (ROMC’

[getRegionTableEntry]

Base Overlay Management Component (BOMC’

[cheighborI ccheighborI IocateStorageNodeI stabilization]

Fig. 1. The system architecture of CFR

OMM is responsible for maintaining connectivity between the participating storage
nodes using a two-layer overlay network. The two-layer overlay network consists of
two overlays, the base overlay and the region overlay. These two overlays are

CFR: A Peer-to-Peer Collaborative File Repository System 103

maintained by the Base Overlay Management Component (BOMC) and Region
Overlay Management Component (ROMC), respectively. ROMC maintains the
required routing information in a data structure called the region table.

FMM is used for providing functions that are related to files in CFR. FMM
consists of two components: the User Interface Component (UIC) and the File
Duplication Component (FDC). UIC provides an interface for users to access the files
which are stored in CFR. Duplications of files in CFR are automatically created in
order to enhance performance and increase availability. The File Duplication
Component (FDC) is responsible for creating the duplications.

4 The Overlay Management of CFR

In this section, we will describe the overlay management of CFR. It can be divided
into the base overlay and the region overlay.

4.1 The Base Overlay

The purpose of the base overlay is to route messages between any two storage nodes
in the system. The base overlay is constructed and maintained by BOMC. In the base
overlay, each participating storage node has a node ID that is obtained by hashing the
IP address of the node using a consistent hash function, such as SHA-1 [3] or MD5
[17]. Using this method, participating storage nodes are organized as a ring, the base
ring, according to their IDs.

4.2 The Region Overlay

4.2.1 Regions

The basic concept of region is inspired by mirroring scheme on the internet such as
SourceForge. User usually can choose a server to download file according to their
own geographic locality to achieve efficient downloading. Therefore, the geographic
locality can be interpreted as network locality in two end hosts connected to the
Internet. In [24], it is shown that topology of the Internet today obeys the Power Law
and consists of several dense autonomous system clusters.

We adopt a model to capture the scenario that we mentioned above. We assume
that the connection between two participants (storage nodes or users) of CFR is
efficient if they are in the same geographic area. In our model, all storage nodes and
users, both end hosts in the Internet, are partitioned into disjoint sets called regions.
We assume that the partition reflects geographic locality.

4.2.2 Construct and Maintain the Region Overlay

Constructing the region overlay can allow the participating storage nodes to contact
other storage nodes that are in different regions quickly. This ability aids the file
duplication procedures to select target storage nodes to replicate desired files. Details
of the file duplication procedures are described in Section 5.

104 M.-R. Lin et al.

) The Region Overlay Before Storage Node 1 Joins
@ Region Ring @

~
~

. \\ - @ @

H . Region Ring o Region Ring

The Base Overlay After Storage Node 1(Joins

() Storage Node Local Link — — Contact Link (O storage Node Local Link — — Contact Link

(a) (b)

Fig. 2. (a). An example of region overlay with 3 regions. (b). An example of the join process.

We now describe the construction and maintenance procedures of ROMC. First we
will introduce some terms and variables that will be used. R denotes the total number
of regions in the system. Nodes that belong to the same region are called locals of
each other. Nodes that belong to different regions are called contacts of each other. A
link is an ID-to-address mapping, used to convert node ID to actual network address.
Links that point to locals are called local links. Links that point to contacts are called
contact links. Links that are required to form the region overlay which are stored in
the region table of the participating nodes.

To form the region overlay, each node stores and maintains R links in their region
tables. The local links in the region table of each node connect nodes from the same
region into a ring, called the region ring. The region overlay is essentially made up of
R interconnected region rings. Figure 2(a) shows a system with 3 regions. Storage
node 9 stores and maintains 3 links in its region table. A local link points to the
clockwise neighbor in its region ring, node 13. Two contact links point to the closest
contacts from the remaining two regions in the base ring, nodes 11 and 22,
respectively.

A node constructs its region table when it first joins the system, and maintains its
region table throughout its lifetime in the system.

Figure 2(b) shows an example of the join process. In Figure 2(b), storage node 10
joins the system. As shown on top of Figure 2(b) all storage nodes between storage
node 9 and storage node 67 have a link to storage node 22 before storage node 10
joins. The region table of storage node 9 contains links to storage nodes 11, 13, and
22. After storage node 10 joins, all nodes between storage node 9 and storage 67 are
affected. As shown on the bottom of Figure 2(b), the region table of storage node 10
contains links to storage nodes 11, 13, and 22. These links are obtained from storage
node 9. All the links that point to storage node 22 are modified to point to storage
node 9.

CFR: A Peer-to-Peer Collaborative File Repository System 105

5 The File Management of CFR

In this section, we give detailed descriptions of file management procedures in CFR.
Files that are stored in CFR can be classified into two types: permanent file, and
transient file. Permanent file will stay in the system until a remove operation is
performed on it. Each transient file has a lifetime to determine how long it can stay in
the system, and will be removed from the system when the system time exceeds its
lifetime. A permanent file is associated with a data structure called permanent table,
which contains all the necessary file management information about a permanent file.
Likewise, a transient file is associated with a transient table which contains the
necessary information about a transient file. The storage space of each storage node is
divided into to two areas: local and cache areas. Permanent files are stored in the
local areas of storage nodes, and transient files are stored in the cache areas.

Table 1. An example of a permanent table Table 2. An example of a transient table

filename App.tgz filename App.tgz
fileID 8 fileID 8
permNodes | 8 | 11 | 22 lifetime 50000
caches 24 | 50 path /opt/cfr/cache
hort 359
long 50
path /opt/cfr/local

Table 1 shows a permanent table. The filename and the fileID field record the
name of the file and the hash value of the filename. Each file will be replicated, and
the permNodes field records the storage nodes in different regions that store the
replicas when the caches field records the storage nodes in the same region that store
the replicas. The long and short fields record the long term and short term access rates
of that file, respectively. The path field stores the physical location of the file. Table 2
shows a transient table. The filename, fileID, and path fields are the same as the fields
in the permanent table. The lifetime field stores the lifetime of that transient file.

5.1 Insert Files and Create Duplicates in CFR

The put function provides by UIC allows users to insert files into CFR. In CFR, a file
will first be put to the node, n;, whose id is closest to fileID. After the first stage of
insertion is completed, node n; will replicate files to nodes in other regions according
to its contact link information.

Transient files are created for reducing the load of the storage nodes hosting
popular files as proposed in [12]. In order to cope with this phenomenon, we record
the long term download rate, in the scale of days, of each file in the long field of its
permanent tables. The transient file will be created when one of the download rates of
that file exceeds its threshold.

106 M.-R. Lin et al.

Figure 3(a) shows an example of file insertion and duplication process. The file
App.tgz, which is the same file in Table 1, is inserted into a system with 3 regions.
Since the fileID of App.tz is 8, its home is storage node 9. Storage node 9 uses its
region table to create two replicas on storage nodes 11 and 22 according to the
described creation procedure.

Region A . ' l Region
:" ﬁ /@ ',:

O Storage Node Local Link ~ — — Contact Link D File

() (b)

Fig. 3. (a). An example of file insertion and duplication. (b). An example of file retrieval.

5.2 Retrieve and Remove Files in CFR

The get function provided by UIC allows users to retrieve files from CFR. To retrieve
a file f; from CFR, a user u; first finds the home of f;, n,. After ny, is found, u; invokes
the getPerms function on n, to find the list of storage nodes that stores f; as a
permanent file, and selects the storage node that belongs to the same region as herself.
Let this storage node be n,. u; invokes the getTrans function on 7, to obtain the list of
caches of f. u; then chooses a storage node from all the caches and n, with equal
probability. This will evenly distribute the requests among all the storage nodes that
stores f; or transient file of f; in the same region.

The remove operation is similar to the get operation. A user first invokes the del
function on the home of a file, n,,. n;, then finds all the storage nodes that store replicas
and transient file of that file from the permanent tables, and issues requests to remove
the files from their storage space. Figure 3(b) shows an example of the file retrieval
process.

5.3 Dealing with Storage Node Dynamics

To ensure users can always locate their desired files, dynamic storage nodes must be
considered. The addition of new storage nodes and the departure of existing storage
nodes will cause files to migrate to different homes. If no corresponding actions are
taken, future requests will be routed to their new homes and dropped because the new
homes are unaware of their existence. However, migration of all files from one
storage node to another will be very costly especially when the total size of files is
large. We use redirection to deal with these problems. A storage node can store only
the permanent table of a file and records a link to the storage node that store the actual

CFR: A Peer-to-Peer Collaborative File Repository System 107

file. This link is called a reference. References are created by storing links instead of
local paths in the path field of permanent tables.

A joining or leaving storage node will affect its clockwise neighbor in the base
ring. It will also affect the nodes between itself and the closest counter-clockwise
storage node in its region. In the case of join and voluntary departure, the affected
nodes will be notified. The affected nodes will first create references to deal with the
change of topology, and schedule physical file migration to be done in the future.

6 Simulation Results

To evaluate CFR, we implemented a simulator and performed several experiments to
further understand its behavior. All simulations were run on an IBM eServer,
equipped with two Intel(R) Xeon(TM) 2.40GHz CPUs and 1GB of memory. The OS
running on the eServer is Debian. The kernel version is 2.6.

6.1 Expected Number of Hops to Collect All Links

The objective of this experiment is to compare the average number of hops[13] to
obtain a complete set of R links to the derived expected number of hops. We would
also like to verify that the minimal average value appears when the population of
storage nodes in all regions is equal. We only show the results with two and three
regions. When the number of regions is larger than three, it is difficult to present the
results using graphs. However, all results show similar characteristics.

—
o}
I

08 Expected Value
1 [1 | = 1000 Nodes

CJ 10000 Nodes
083 100000 Nodes

N W h N X O
I
T

Fig. 4. Average number of hops and the expected number of hops to obtain all links in a system
consisting of two regions and different number of storage nodes

Figure 4 shows the average number of hops in a system with two regions, with
different node proportions and storage node populations. The x-axis is the proportion
of the first region. We can see that all results are close to the expected value[13]. Note
that the larger storage node population, the closer the average is to the derived value.
This is because the distribution of nodes over the identifier space is more uniform as
the number of nodes increase. Also note that the lowest expected value and average
values occur at the point where the proportions of the nodes are equal (0.5), which
concurs with our derived result.

108 M.-R. Lin et al.

6.2 Evaluation of File Management of CFR

The objective of next experiments is to evaluate the proposed replication strategy and
to compare the proposed strategy to PAST. The reason PAST is chosen is because it
shares most similarity with CFR. We use the download statistics from the “top 100
downloaded projects in 7 days” web page available from the SourceForge website.

Using this data, we simulated our replication strategy and compare it with the
replication strategy of PAST. The system consists of five hundred nodes. The average
download time of around 45000 downloads with varying number of replicas created
for each file inserted in both CFR and PAST, are shown in Figure 5(a). As shown in
the figure, download time decreases as the number of replicas created for both
systems. We can see that CFR achieves lower average download time than PAST
using the same number of replicas.

50000

40000
\'\ 30000 -

o \l TTTTOm

.. = = pAST 20000 B No Transients

----------------- 10000

o Mlwa v vy

Count

OIS
6 7 8 9 10 FE LSS S S

number of replicas Download Time

() (b)

Fig. 5. (a) The average download time of CFR versus PAST with different number of replicas.
(b). Comparisons the transfer time between with transient files and without transient files.

Next we evaluate the effect of creating transients on performance. In this
experiment, the setup is identical to the previous experiment. The result of the
experiment shows that the average download time is reduced to about one half when
transients are created. Figure 5(b) shows the comparisons the transfer time between
with transient files and without transient files.

As shown in Figure 5(b), the use of transient files effectively reduces transfer time.
With transient files, it has greatly reduced download time.

7 Experimental Results

To evaluate the real performance of CFR, we have implemented the CFR system on
Taiwan UniGrid [25]. The Taiwan UniGrid is a Grid platform for researchers in
Taiwan to do Grid related research. Currently, the platform contains about 30 sites.
We execute the CFR program on 12 sites in 4 cities of Taiwan as shown in Figure
6(a). Each site has 3 storage nodes. We select the top 10 download files, as shown in
Table 3, from the sourceforge.net [21] as our test data. To measure the performance of
CFR, we have 4 region configurations, 1, 2, 3, and 4, for these 12 sites. For the

CFR: A Peer-to-Peer Collaborative File Repository System 109

1-region configuration, all sites form a region. For the 2-region configuration, sites in
{Taipei, Hsinchu} and {Tainan, Kaoshiung} form a region, respectively. For the 3-
region configuration, sites in {Taipei}, {Hsinchu}, and {Tainan, Kaoshiung} form a
region, respectively. For the 4-region configuration, sites in each city form a region.
For each region configuration, a download program is executed in each site to
randomly decide whether a client needs to download a particular program or not.

Table 3. Top 10 downloads from sourcesforge.net

Filename Size (bytes)
7-Zip_Portable_4.42_R2.paf.exe 1193218
72443 .exe 862846
aresregular195_installer.exe 1253674
audacity-win-1.2.6.exe 2228534
Azureus_2.5.0.0_Win32.setup.exe 8799656
DCPlusPlus-0.698.exe 3836577
eMule0.47c-Installer.exe 3534076
eMulePlus-1.2a.Binary.zip 3047952
gimp-2.3.12-i1586-setup.zip 14267302
Shareaza_2.2.3.0.exe 4366779

CHU 450
[400
THU NCHC
3 350
S 300 f
E
o 250 [
£ L
Taingh g 00
NUTN = 150
o E
o 8 100 |
CIU HKU
Kaohsiung 501
E{ 0 L L L
N&UK 1 2 3 4
| Region Number
(a) (b)

Fig. 6. (a) Testbed map of CFR in TANET of Taiwan. (b) The average downloading time
against region number.

Figure 6(b) shows the average downloading time against the region number. From
Figure 6(b), we observe that the overall downloading time goes down while the
number of regions increases. Since the region partitioning exploits the geographical
relationships of sites, the experimental result also shows that the downloading time of
the 4-region configuration is almost 3 times faster than that of the 1-region
configuration.

110 M.-R. Lin et al.

8 Conclusions and Future Work

In this paper, we have proposed a scalable, loosely coupled, and efficient storage
system, Cooperative File Repository (CFR), for large scale collaboration projects. The
main concept of CFR is to use peer-to-peer techniques to achieve scalability, use a
two-layer hierarchy managing participating organizations to eliminate centralized
administration authority, and use the geographic locality of the storage nodes and
caching mechanism to achieve the efficiency. The simulation and experimental results
confirm that CFR can achieve those goals mentioned above.

From the simulation results, we observe that the CFR can produce the best
performance when all regions have the same number of storage nodes. In real
situation, the number of storage nodes of regions may not be equal. How to
dynamically combine small regions to one larger region or split one larger region to
small regions such that each region has approximate the same number of storages
node to keep CFR remain efficient is an important issue for the future study.

Acknowledgement

The work of this paper is partially supported by National Science Council, National
Center for High-Performance Computing of the Republic of China under contract
NSC 95-2752-E-007-004-PAE, NSC 94-2218-E-007-057, and NCHC-KING_010200.

References

1. China Grid, http://www.chinagrid.net

2. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and 1. Stoica, “Wide-area Cooperative
Storage with CFS,” in the Proceedings of 1 8" ACM Symposium on Operating Systems
Principles, Oct. 2001, pp. 202-215.

3. FIPS 180-1, Secure Hash Standard, U.S. Department of Commerce/NIST, National
Technical Information Service, Springfield, VA, Apr. 1995.

4. 1. Gupta, K. Birman, P. Linga, A. Derms, and R. van Renessie, “Kelips: Building and
Efficient and Stable P2P DHT through Increased Memory and Background Overhead,” in
the Proceedings of the 2"¢ International Workshop on Peer-to-Peer Systems (IPTPS *03).

5. grid.org, http://www.grid.org/home.htm

6. R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, “A Survey of Peer-to-
Peer Storage Techniques for Distributed File Systems,” in the Proceedings of
International Conference on Information Technology: Coding and Computing, Apr. 4-6,
2005, vol: 2, pp. 205-213.

7. H. C. Hsiao and C. T. King, “Modeling and Evaluating Peer-to-Peer Storage
Architecture,” in the Proceedings of International Parallel and Distributed Processing
Symposium, Apr. 14-19, 2002, pp. 24-29.

8. H. Jin, C. H., and H. Chen,” Boundary Chord: A Novel Peer-to-Peer Algorithm for
Replica Location Mechanism in Grid Environment,” in the Proceedings of the 8"
International Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN
2005), Dec. 2005, Las Vegas.

9. Kazaa. http://www.kazaa.com

10.

11.
12.

13.

14.

15.

16.
17.
18.

19.

20.
21.
22.

23.

24.

25.
26.

CFR: A Peer-to-Peer Collaborative File Repository System 111

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S.
Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: An
Architecture for Global-Scale Persistent Storage,” in the Proceedings of 9™ International
Conference on Architectural Support for Programming Languages and Operating
Systems, Nov. 2000.

LCG, http://lcg.web.cern.ch/LCG/

N. Leibowitz, M. Ripeanu, and A. Wierzbicki, “Deconstructing the Kazaa Network,” in
the Proceedings of 3rd IEEE Workshop on Internet Applications, Jun. 2003.

M. R. Lin, “CFR: A Peer-to-Peer Collaborative File Repository System,” National Tsing
Hua University, Dept. of Computer Science, Master Thesis, Taiwan, 2006.

A. Mislove, and P. Druschel, “Providing Administrative Control and Autonomy in
Structured Peer-to-Peer Overlays,” in the Proceedings of International Workshop on Peer-
to-peer Systems, Feb. 2004.

A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A Read/Write Peer-to-Peer
File System,” in the Proceedings of International 5th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Dec. 2002.

Napster, http://www.napster.com

R. Rivest, "Message Digest Algorithm MD5", RFC 1321, Apr. 1992.

A. Rowstron and P. Druschel, “Storage Management and Caching In PAST, a Large-
Scale, Persistent Peer-to-Peer Storage Utility,” in the Proceedings of 1 8™ Symposium On
Operating Systems Principles (SOSP ’01), Oct. 2001.

A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and Routing
for Large-Scale Peer-to-Peer Systems,” in the Proceedings of 18" IFIP/ACM International
Conference on Distributed Systems Platforms, Nov. 2001, pp.329-350.

SEEK, http://seek.ecoinformatics.com

SourceForge.net, http://sourceforge.net

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, “Chord: A Scalable
Peertopeer Lookup Service for Internet Applications,” in the Proceedings of conference on
Applications, technologies, architectures, and protocols for computer communications
SIGCOMM '01, 2001, Volume 31, Issue 4, pp. 149-160.

I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek, H.
Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for Internet applications,” in
the IEEE/ACM Transactions on Networking, Feb. 2003, Volume 11, Issue 1, pp. 17-32.

G. Sagie and A. Wool, “A clustering approach for exploring the Internet structure,” in the
Proceedings of conference on 23rd IEEE Convention of Electrical & Electronics
Engineers, Sep. 2004.

Taiwan UniGrid, http://www.unigrid.org.tw/

Z. Xu, R. Min, and Y. Hu, “HIERAS: A DHT Based Hierarchical P2P Routing
Algorithm,” in the Proceedings of International Conference on Parallel Processing, Oct.
2003.

Optimal Deployment of Mobile Sensor Networks and Its
Maintenance Strategy

Xiaoling Wu, Jinsung Cho, Brian J. d'Auriol, and Sungyoung Lee”

Department of Computer Engineering, Kyung Hee University, Korea
{xiaoling, brian, sylee}@oslab.khu.ac.kr
chojs@khu.ac.kr

Abstract. Sensor network deployment and its maintenance are very challenging
due to hostile and unpredictable nature of environments. The field coverage of a
wireless sensor network (WSN) can be enhanced and consequently network
lifetime can be prolonged by optimizing the sensor deployment with a finite
number of sensors. In this paper, we propose an energy-efficient fuzzy optimi-
zation algorithm (EFOA) for movement assisted self-deployment of sensor
networks based on three descriptors — energy, concentration and distance to
neighbors. The movement of each sensor node is assumed relatively limited to
further reduce energy consumption. The existing next-step move direction for-
mulas are improved to be more realistic. We also propose a network mainte-
nance strategy in the post-deployment phase based on the sensor node impor-
tance level ranking. Simulation results show that our approach not only
achieves fast and stable deployment but also greatly improves the network cov-
erage and energy efficiency as well as prolongs the lifetime.

Keywords: Sensor networks, fuzzy logic, deployment, mobility, coverage.

1 Introduction

Sensor networks which are composed of tiny and resource constrained computing
devices, have been widely deployed for monitoring and controlling applications in
physical environments [1]. Due to the unfamiliar nature of such environments, de-
ployment and maintenance of sensor networks has become a challenging problem and
has received considerable attention recently.

Some of the work [2], [3], [4] assume that the environment is sufficiently known
and under control. However, when the environment is unknown or inhospitable such
as remote inaccessible areas, disaster fields and toxic urban regions, sensor deploy-
ment cannot be performed manually. To scatter sensors by aircraft is one of the possi-
ble solutions. However, using this scheme, the actual landing position cannot be
predicted due to the existence of wind and obstacles such as trees and buildings. Con-
sequently, the coverage may not be able to satisfy the application requirements. Some
researchers suggest simply deploying large amount of static sensors to increase cover-
age; however it often ends up harming the performance of the network [5].Moreover,
in many cases, such as during in-building toxic-leaks detection [6], chemical sensors

* Corresponding author.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 112 2007.
© Springer-Verlag Berlin Heidelberg 2007

Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy 113

must be placed inside a building from the entrance of the building. In such cases, it is
necessary to take advantage of mobile sensors, which can move to the appropriate
places to provide the required coverage.

To address this issue, a class of work has recently appeared where mobility of sen-
sors is utilized to achieve desired deployment [7], [8], [9], [10], [11], [12]. Typically
in such works, the sensors detect lack of desired deployment objectives such as cov-
erage holes, estimate new locations, and move to the resulting locations. For example,
in [9], the authors present the virtual force algorithm (VFA) as a new approach for
sensor deployment to improve the sensor field coverage after an initial random
placement of sensor nodes. The cluster head (CH) executes the VFA algorithm to find
new locations for sensors to enhance the overall coverage. However none of the
above work can well handle the random movement and unpredictable oscillation in
deployment. In [13], fuzzy logic theory is applied to handle the uncertainty in sensor
network deployment problem. Their approach achieve fast and relatively stable de-
ployment and increase the field coverage as well as communication quality. However,
their fuzzy inference system has only two antecedents, number of neighbors of each
sensor and average Euclidean distance between sensor node and its neighbors, with-
out energy consumption considered at all, which is one of the most critical issues in
sensor networks.

In this paper, our contribution relies on the two propose strategies. The first is an
energy-efficient fuzzy optimization algorithm (EFOA) for movement assisted self-
deployment of sensor networks. It outperforms [13] in three aspects. The first is that
we take the energy level of sensor node as one of the antecedents in fuzzy rules; the
second is that the mobility of sensor nodes is set to be relatively limited, i.e., the
movement distance is bounded by communication range, so that energy consumption
can be further reduced; the last is represented by the more realistic next-step moving
direction equations we derived. The second strategy we propose for network mainte-
nance in the post-deployment phase is based on the derived sensor node importance
level ranking.

The rest of the paper is organized as follows. Section 2 briefly introduces the
overview of fuzzy logic system and preliminaries. In section 3 the Energy-efficient
Fuzzy Optimization Algorithm (EFOA) is explained in detail for mobile nodes de-
ployment design. In section 4 network maintenance strategy is proposed based on
sensor node importance ranking. Simulation and performance evaluations of this
work are presented in Section 5. We conclude with a summary and discuss future
work in Section 6.

2 Technical Preliminaries

2.1 Fuzzy Logic Systems

The model of fuzzy logic system consists of a fuzzifier, fuzzy rules, fuzzy inference
engine, and a defuzzifier. We have used the most commonly used fuzzy inference
technique called Mamdani Method [14] due to its simplicity.

114 X. Wu et al.

The process is performed in four steps:

1) Fuzzification of the input variables energy, concentration and average distance to
neighbors - taking the crisp inputs from each of these and determining the degree
to which these inputs belong to each of the appropriate fuzzy sets.

2) Rule evaluation - taking and applying the fuzzified inputs to the antecedents of the
fuzzy rules. It is then applied to the consequent membership function.

3) Aggregation of the rule outputs - the process of unification of the outputs of all
rules.

4) Defuzzification - the input for the defuzzification process is the aggregate output
fuzzy set moving distance and the output is a single crisp number.

Information flows through the fuzzy inference diagram as shown in Figure 1.

—

1.If a then

nd
2.1f and | then

.
:
5

Fig. 1. Fuzzy inference diagram

2.2 Coverage

Generally, coverage can be considered as the measure of quality of service of a sensor
network. In this paper, coverage [10] is defined as the ratio of the union of areas cov-
ered by each node and the area of the entire Region of Interest (ROI), as shown in Eq.
(1), and binary sensing model [10] is adopted. Here, the covered area of each node is
defined as the circular area within its sensing radius. Perfect detection of all interest-
ing events in the covered area is assumed.

C ="t (M

where

A; is the area covered by the i node;
N is the total number of nodes;
A stands for the area of the ROI.

In order to prevent recalculating the overlapped area, the coverage here is calcu-
lated using Monte Carlo method by creating a uniform grid in the ROI [11]. All the

Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy 115

grid points being located in the sensing area are labeled 1 otherwise 0, depending on
whether the Euclidean distance between each grid point and the sensor node is longer
or shorter than sensing radius. Then the coverage can be approximated by the ratio of
the summation of ones to the total number of the grid points.

If a node is located well inside the ROI, its complete coverage area will lie within
the ROL. In this case, the full area of that circle is included in the covered region. If a
node is located near the boundary of the ROI, then only the part of the ROI covered
by that node is included in the computation.

3 Proposed Deployment Approach: EFOA

3.1 Assumptions and Model

Let G(V, E) be the graph defined on V with edges uv €E iff uv < R. Here uv is the
Euclidean distance between nodes u# and v, R is the communication range. A sensor
can detect any event within its sensing range r. Two sensors within R can communi-
cate with each other. Neighbors of a sensor are nodes within its communication range.
Detection and communication is modeled as a circle on the 2-D sensor field.

According to the radio energy dissipation model, in order to achieve an acceptable
Signal-to-Noise Ratio (SNR) in transmitting an / bit message over a distance d, the
energy expended by the radio is given by [15]:

IE, +le,d> ifd<d
o e)
IE,, +lg,d* if d>d,

elec

where E,. is the energy dissipated per bit to run the transmitter or the receiver circuit,

€, and €

up are amplifier constants, and d is the distance between the sender and the

receiver. By equating the two expressions at d=dy, we have d = /e €y - Here we

set electronics energy as E,,.=50nJ/bit, whereas the amplifier constant, is taken as
Ep =10pJ/bit/m’, E,p= 0.0013pJ/bit/m’, the same as in [15].

To receive [bit message, the radio expends:
E,()=IE,, 3)

For simplicity, assume an area over which n nodes are uniformly distributed and
the sink is located in the center of the field, so the distance of any node to the sink or

its cluster head is < d,,.

3.2 Energy-Efficient Fuzzy Optimization Algorithm

Expert knowledge is represented based on the following three descriptors:

e Node Energy - energy level available in each node, denoted by the fuzzy variable
energy,

116 X. Wu et al.

e Node Concentration - number of neighbors in the vicinity, denoted by the fuzzy
variable concentration,

e Average distance to neighbors - average Euclidean distance between sensor node
and its neighbors, denoted by the fuzzy variable d,,.

The linguistic variables used to represent the node energy and node concentration,
are divided into three levels: low, medium and high, respectively, and there are three
levels to represent the average distance to neighbors: close, moderate and far, respec-
tively. The outcome to represent the moving distance d,, was divided into 5 levels:
very close, close, moderate, far and very far. The fuzzy rule base includes rules like
the following: IF the energy is high and the concentration is high and the distance to

neighbor is close THEN the moving distance of sensor node i is very far.

Thus we used 3° = 27 rules for the fuzzy rule base. We used triangle membership
functions to represent the fuzzy sets medium and moderate and trapezoid member-
ship functions to represent low, high, close and far fuzzy sets. The developed mem-
bership functions and their corresponding linguistic states are represented in Table

1 and Figures 2 through 5 respectively.

Table 1. Fuzzy rule base (d,=average distance to neighbors, d,,=moving distance)

No. energy concentration d, d,

1 low low close close

2 low low moderate vclose

3 low low far vclose

4 low med close moderate
5 low med moderate close

6 low med far vclose

7 low high close moderate
8 low high moderate close

9 low high far close

10 med low close moderate
11 med low moderate close

12 med low far close

13 med med close far

14 med med moderate moderate
15 med med far close

16 med high close far

17 med high moderate moderate
18 med high far moderate
19 high low close far

20 high low moderate moderate
21 high low far moderate
22 high med close vfar

23 high med moderate far

24 high med far moderate
25 high high close vfar

26 high high moderate far

27 high high far far

Legend: vclose=very close, vfar=very far, med=medium.

Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy

low

energy

concentration

1) /\\ / 1 low r/n/sij / high
o //
5 08 / N / % 0.8 / N\ /
2 \\ / g / \, /
qE) 0.6 >< E 0.6 / \&
€ / IS
5 0.4 / / \\\ 5 0.4 / //
e |/ /N g /)

/ o
8% / / g% /
/ y /
0 0
0 20 40 60 80 100 0 2 4 6 10

117

Fig. 2. Fuzzy set for fuzzy variable energy Fig. 3. Fuzzy set for fuzzy variable concentration

1 close moderate ' far 1 \close clojse modjerate fér var
/N / A A [
/ [\ [\ |
e SN/ e /\ /\ /
S 08 / N\ / % 0.8 [“
3 / N/ g [
£ 06 / £ 06 [\ [
£ £ / \
S 0.4 5 0.4 \ |
¢ / / \\\ g \ / ‘ /
{= = \/
o 0.2 / o 0.2 |
3 / / \ 8 A \
0 0 \
0 0.5 1 15 2 0 0.5 1 1.5 2
dn dm

Fig. 4. Fuzzy set for fuzzy variable dn Fig. 5. Fuzzy set for fuzzy variable d,,

For the defuzzification, the Centroid is calculated and estimated over a sample of
points on the aggregate output membership function, using the following formula:

Cenz(z,uA(x)*x)/z,uA(x)

where, i (x) is the membership function of x in A. The membership function maps
each element of X to a membership value between 0 and 1.

The control surface is central in fuzzy logic systems and describes the dynamics of
the controller and is generally a time-varying nonlinear surface. From Fig. 6 and Fig. 7
obtained by computation in Matlab Fuzzy Logic Toolbox, we can see that although the
concentration for a certain sensor is high, the moving distance can be smaller than some
sensor with higher energy or sensor with fewer neighbors but more crowded. With the
assistance of control surface, the next-step moving distance can be determined.

The next-step move direction is decided by virtual force. Assume sensor i has k
neighbors, k=k;+k,, in which k; neighbors are within threshold distance d;, to sensor
i, while k, neighbors are farther than d,, distance to sensor i. The coordinate of sensor
i is denoted as C; = (X, Y;), and that of neighbor sensor j is C; = (X, ¥;). The next-step
move direction of sensor i is represented as Eq. (5) and (6), which are the improved
version of moving direction equation in [13]. It is improved in the sense that threshold
distance is set here so that attraction and repulsion forces can be represented in the
equations. Thus after getting moving distance d,, and direction (angle a), sensor i
clearly knows its next-step moving position.

“

118 X. Wu et al.

_ 1 T A
F=——| > (C,—=C)+).(C;-C))
‘Ci—Cj‘ j=1 j=1
_Y(@@)
tan(ar) = X (6)

The threshold distance d, here is set to a proper value J3r which is proved as fol-
lows: We attempt to make distance between 2 sensor nodes moderate, i.e., not very
close and not very far. This kind of stable structure is illustrated in Figure 8. Non-
overlapped sensor coverage style is shown in Figure 8(a), however, an obvious draw-
back here is that a coverage hole exists which is not covered by any sensor. Note that
an alternative way is to allow overlap, as shown in Figure 8(b) and it ensures that all
grid points are covered. Therefore, we adopt the second strategy.

concentration 00

energy

Fig. 6. Control surface (concentration, energy Fig.7. Control surface (d,, concentration
VS dm) VS dm)

e

(a) (b)

Fig. 8. Non-overlapped and overlapped sensor coverage cases

Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy 119

In Fig. 8(b), it is obvious that AS;S,S; is equilateral triangle. Because the sensing
radius is r, through some steps of simple geometry calculations, we can easily derive
the distance between two sensor nodes in the latter case S5, =S5,83=

S,85=2x3r 12=~/3r .

4 Proposed Network Maintenance Strategy

After the first stage deployment, the network maintenance is also necessary to be
considered due to the uncertain environment. Thus, it is actually the post-deployment
stage after the fuzzy optimization deployment stage and a certain period of network
operation. The characteristic of the network in this situation is heterogeneous. The
proposed network maintenance strategy is based on the sensor node importance level
ranking. First, we take the importance level calculation of the node n as an example.
Assume the total number of nodes in the network is N. Let the probability that node i
can sense grid point j be denoted by Si(P;), and then the probability C(P;) that grid
point j is sensed by the whole network is derived as:

cp)=1-TTa-s,P)

(N
N
=1-(1-S,(P)x[]1-S,(P)
If delete node n, then the probability C(P;) becomes
N
C(P)=1-T]a-S,P)) @®)

i#n

For point j, the detection probability loss due to the deletion of node n becomes

AC,(P) =S, (P)x[]A-5.(P)) ©)

i#n

Considering the importance difference of each node in the network, the detection
ability loss of the whole network after deleting node n is:

AC, =Y AC,(P)xV(P)) (10)
J

in which V(Pj) is the temporal gradient of sensing value at grid point j. The higher

the gradient value the more often the interesting events occurrence. We assume that
sensor measurement physically has a range (0~xy,,); if the sensing vale v>xy, then
let v=xpax.

120 X. Wu et al.

According to importance level indicator ACn , the importance level ranking of

each node in the network can be sorted. Consequently we can either deploy several
new sensor nodes close to the most important nodes or remove redundant nodes from
“quiet” spot to the vicinity of those “busy” nodes as a backup.

5 Performance Evaluations

The proposed EFOA algorithm is evaluated first. For the convenience of comparison,
we set the initial parameters the same as in [13]: various number of sensors deployed
in a field of 10x10 square kilometers area are investigated; the r and R used in the
experiment are /km and 2km (2km and 4km) respectively. So d, should be ranged as
0~2 (0~4), not 0~10 as set by [13]. We assume each sensor is equipped with an omni-
antenna to carry out the task of detection and communication. Evaluation of our
EFOA algorithm follows three criteria: field coverage, energy consumption and con-
vergence. Results are averaged over 100 Monte Carlo simulations.

Figure 9 shows that the coverage of the initial random deployment, fuzzy optimiza-
tion algorithm (FOA) proposed in [13] and our proposed algorithm EFOA when
r=Ikm and R=2km. The FOA and EFOA algorithm have similar results that both of
them can improve the network coverage by 20% ~ 30% in average.

Figure 10 gives the results when r=2km and R=4km, the coverage comparison be-
tween random deployment, FOA and EFOA. In the case when 20 sensors are de-
ployed, initially the coverage after random deployment is around 86%. After FOA
and EFOA algorithm are executed, the coverage reaches 97%. The coverage is dra-
matically improved in the low density network. The above two figures indicate that
instead of deploying large amount of sensors, the desired field coverage could also be
achieved with fewer sensors.

—&— Random| = //E: 4
== 098l - o— |
= 1 [~ _—
g /9’
0.96 —&— Random|
4 / —* FOA
g
2 094 ° EFOA
©
]
2
3 092 /
0.9 /
0.88
0.4 0.860%
20 25 30 35 40 45 50 55 60 20 25 30 35 40 45 50 55 60
of Nodes # of Nodes

Fig. 9. Coverage vs. # of Nodes (R=2, r=1) Fig. 10. Coverage vs. # of Nodes (R=4, r=2)

Figure 11 shows the total number of nodes that remain alive over time where each
node begins with 2J of energy and when R=4km and r=2km. The number of nodes in
EFOA remains the same for a long time and they die out quickly almost at the same
time while the first node dies early in FOA. The reason is that after some operation

Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy 121

time, the network display heterogeneous characteristics, however, FOA doesn’t con-
sider the residual energy of nodes, so the energy difference among sensors becomes
significant as time goes on. Network lifetime is the time span from the deployment to
the instant when the network is considered nonfunctional. When a network should be
considered nonfunctional, it is generally the instant when the first sensor dies or a
percentage of sensors die and the loss of coverage occurs. Thus the lifetime is pro-
longed in EFOA compared with FOA.

— 4
N - —— FOA —+ FOAR=2r=1
35 ~ EFOA | | 35 —&— EFOA,R=2=1 ||
FOA,R=4,r=2
N
\ EFOA,R=4,=2
30 \ 4 s~ - i
\ -
\ \ o
g% \ \ g 25 —
Kl \ <
g \ g -
i \ \ g 2 -
5
s N \ =
= 15 \ b 1.5
N \
\
10 > \ o
AN \ — &
5 ~ \ 05
—\
0

L L L L L L L L L L L L L L
0 100 200 300 400 500 600 700 800 20 25 30 35 40 45 50 55 60
Time(s) # of nodes

Fig. 11. # of nodes alive over time where Fig. 12. Standard deviation of distance trav-
each node begins with 2J energy. (R=4, r=2) eled verses number of nodes

Figure 12 shows EFOA has lower standard deviation of distance compared with
FOA in both cases when R=4km, r=2km and R=2km, r=1km with various number of
nodes. When the standard deviation of distance traveled is small, the variation in
energy remaining at each node is not significant and thus a longer system lifetime
with desired coverage can be achieved.

The network maintenance strategy is simulated thereafter as Figure 13 shows. The pa-
rameter X, is set to be 50, sampling period is 5s.Total number of nodes in the network is
30, and two of the most importance nodes are the nodes labeled as 18 and 19 which have

10
8

° °

> >

2 3

(o) (o)

o o

g s

T =

g g ¢

E E
2

0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Node label Node label
(a) Before maintenance strategy (a) After maintenance strategy

Fig. 13. Importance level verses node serial number

122 X. Wu et al.

the highest importance level. After adding four new nodes close to node 18 and 19, the
importance level distribution become nearly uniform compared with the case before
executing network maintenance strategy. Thus the working load of the “busy” nodes can
be shared by the backup nodes and the lifetime can be further prolonged.

6 Conclusions and Future Work

In this paper, an energy-efficient fuzzy optimization algorithm (EFOA) for self- de-
ployment of mobile sensor networks was proposed. It was based on three descriptors
— energy level of nodes, concentration and average distance to neighbors. The move-
ment of each sensor node was assumed to be relatively limited for further reducing
energy consumption. The existing next-step move direction formulas were also im-
proved to be more realistic. Our approach has a great advantage to deal with the ran-
domness in sensor deployment as well as minimize energy consumption. We also
proposed a network maintenance strategy in the post-deployment phase based on the
sensor node importance level ranking. Simulation results showed that our approach
not only achieved fast and stable deployment but also greatly improved the network
coverage and energy efficiency as well as extended the lifetime.

In the future work, the integration of environmental factors and realistic sensing
model will be investigated.

Acknowledgments. This research was supported by the MIC (Ministry of Informa-
tion and Communication), Korea, under the ITRC (Information Technology Research
Center) support program supervised by the IITA (Institute of Information Technology
Advancement) (IITA-2006-C1090-0602-0002).

References

1. Xiaoling Wu, Hoon Heo, et al.: Individual Contour Extraction for Robust Wide Area Tar-
get Tracking in Visual Sensor Networks. Proc of 9th ISORC (2006)

2. S. Meguerdichian, F. Koushanfar, G. Qu and M. Potkonjak: Exposure in Wireless Ad-Hoc
Sensor Networks. Mobicom (2001)

3. S. Dhillon, K. Chakrabarty and S. Iyengar: Sensor placement for grid coverage under im-
precise detections. Proc. International Conference on Information Fusion (2002)

4. T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan and K. k. Saluja: Sensor Deployment
Strategy for Target Detection. WSNA, (2003)

5. Sameer Tilak, Nael B. AbuGhazaleh, and Wendi Heinzelman: Infrastructure Tradeoffs for
Sensor Networks. WSNA (2002)

6. A. Howard, M. J. Mataric and G. S. Sukhatme: An Incremental Self-Deployment Algo-
rithm for Mobile Sensor Networks. Autonomous Robots, Special Issue on Intelligent Em-
bedded Systems, September (2002)

7. J. Wu and S. Wang: Smart: A scan-based movement-assisted deployment method in wire-
less sensor networks. Proc. IEEE INFOCOM Conference, Miami, March (2005)

8. G. Wang, G. Cao, and T. La Porta: Movement-assisted sensor deployment. Proc. IEEE
INFOCOM Conference, Hong Kong (2004)

10.

11.

12.

13.

14.

15.

Optimal Deployment of Mobile Sensor Networks and Its Maintenance Strategy 123

Y. Zou and K. Chakrabarty: Sensor deployment and target localization based on virtual
forces. Proc. IEEE INFOCOM Conference, Vol. 2 (2003) 1293-1303

Nojeong Heo and Pramod K. Varshney: Energy-Efficient Deployment of Intelligent Mo-
bile Sensor Networks. IEEE Transactions on Systems, Man, and Cybernetics—Part A:
Systems And Humans, Vol. 35, No. 1 (2005) 78 - 92

Xiaoling Wu, Shu Lei, Yang Jie, Xu Hui, Jinsung Cho and Sungyoung Lee: Swarm Based
Sensor Deployment Optimization in Ad hoc Sensor Networks. Proc. of ICESS’ 05
(LNCS), Xi’an, China, (2005) 533-541

Xiaoling Wu, Yu Niu, Lei Shu, Jinsung Cho, Young-Koo Lee, and Sungyoung Lee: Relay
Shift Based Self-Deployment for Mobility Limited Sensor Networks. UIC-06 (LNCS),
‘Wuhan, China (2006)

Haining Shu, Qilian Liang: Fuzzy Optimization for Distributed Sensor Deployment. IEEE
Communications Society / Proc. of WCNC, New Orleans, USA (2005) 1903-1907
Indranil Gupta, Denis Riordan and Srinivas Sampalli: Cluster-head election using fuzzy
logic for wireless sensor networks. Proc of the 3rd Annual Communication Networks and
Services Research Conference (2005)

Wendi B. Heinzelman, Anantha P. Chandrakasan, and Hari Balakrishnan: An Application-
Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions on
Wireless Communications, Vol. 1, No. 4 (2002) 660 — 670

Server Placement in the Presence of
Competition

Pangfeng Liu!, Yi-Min Chung', Jan-Jan Wu?, and Chien-Min Wang?

! Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan, R.O.C.
2 Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C.

Abstract. This paper addresses the optimization problems of placing
servers in the presence of competition. We place a set of extra servers
on a graph to compete with the set of original servers. Our objective
is to find the placement that maximizes the benefit, which is defined
as the profits from the requests made to the extra servers despite the
competition, minus the cost of constructing those extra servers.

We propose an O(|V |*k) time dynamic programming algorithm to find
the optimal placement of k extra servers that maximizes the benefit in a
tree with |V| nodes. We also propose an O(|V|*) time dynamic program-
ming algorithm for finding the optimal placement of extra servers that
maximizes the benefit, without any constraint on the number of extra
servers. For general connected graphs, we prove that the optimization
problems are NP-complete. As a result, we present a greedy heuristic
for the problems. Experiment results indicate that the greedy heuristic
achieves good results, even when compared with the upper bounds found
by a linear programming algorithm. The greedy heuristic yields perfor-
mances within 15% of the upper bound in the worst case, and within 2%
of the same theoretical upper bound on average.

1 Introduction

This paper considers a strategy for setting up servers to compete with existing
ones. For example, we assume that there are originally a number of McDonald’s
restaurants in a city, but no Kentucky Fried Chicken (KFC) restaurants. Now,
if we decide to set up a number of KFC restaurants in the same city, where
should we place them? We need to determine the locations for KFC so that
they can compete with McDonald’s and maximize their profits. Due to heavy
competition among business of similar nature, it is important to choose locations
of new servers in the area where the competitors have deployed their servers.
We define the servers we would like to set up as extra servers, and the existing
(competitor) servers as original servers. Thus, in the above example, KFC restau-
rants are the extra servers and McDonald’s restaurants are the original servers.
We use a graph to model the locations of the servers and users. A node in the
graph represents a geographic location, and an edge represents a path between
two locations. Building servers in these locations enables users at a node to

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 124-[T35] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Server Placement in the Presence of Competition 125

request services from the servers. Each edge has a communication cost. The
distance between two nodes is the length of the shortest path that connects them.

For efficiency, We assume that requests from users always go to the nearest
server. However, when the shortest distances from a user to the original and ex-
tra servers are the same, the user will go to the original server. That is, a user will
NORMALLY go to the nearest restaurant, either McDonald’s or KFC; however, if
the distances to the two restaurants are the same, the user will go to McDonald’s.

After extra servers have been established, users who previously went to Mc-
Donald’s may now go to KFC. We define the benefit of an extra server placement
to be the profit derived from user requests made to the server, minus the cost of
constructing the server. The cost may vary, depending on the location of the ex-
tra server. This paper considers two placement problems related to extra servers,
in the presence of competition from original servers.

1. Given the city configuration and a number k, locate k extra servers such
that they will earn the most profit;

2. Given the city configuration, locate extra servers such that they earn the
most profit, without any constraint on the number of extra servers.

We solve these two problems for a tree graph in O(|V|*k) and O(|V|?) time,
respectively. For a general graph, we show that the two problems are intractable
(NP-complete) and propose a heuristic to solve them. We also run experiments
and compare our results for the heuristic with theoretical upper bounds.

Similar server placement problems, such as replica placement problems
[ABI6IT0], p-Medians [5], and facility location problems [§], have been studied
in the literature. For example, Kariv and Hakimi [5] formulate the p-median
problem as locating p points such that the sum of each node’s weight multiplied
by its shortest distance to the p points is minimized. However, the p-median
problem they considered does not take the building costs into account, and it
minimizes the costs, instead of maximizing the profits. The facility location prob-
lem is similar to the p-median problem, with the additional consideration of the
facility’s costs.

Our extra server model differs from the model in [5] because it introduces
the concept of competition. Extra servers must compete with original servers for
user requests, in order to maximize their profits. The number of extra servers
established is controlled by the building costs, which differ from location to
location. Our dynamic programming model uses a similar technique to that
in [4]. The presence of competition demands innovative proof techniques.

Tamir [9] described a dynamic programming model that solves p-median prob-
lems on a tree topology with building and access costs. The algorithm assumes
that the cost for a client to request services is an increasing function of the dis-
tance between the client and the server. If the benefit function in our model is a
decreasing function of the distance between the client and the server, our place-
ment problem can be solved by transforming it into a p-median problem, and
solving it by the dynamic programming described in [9]. However, the method
proposed in this paper can deal with any arbitrary benefit functions, and still
obtain the optimal solution for a tree topology.

126 P. Liu et al.

The remainder of this paper is organized as follows. Section [2 formally de-
scribes our server placement models. In Section Bl we introduce the dynamic
programming for finding the optimal extra server placement in a tree. Section [
contains the proof that the problems are NP-complete for general graphs and
presents a heuristic algorithm to solve them. Section [reports the experiment
results, and Section [6] contains our conclusions.

2 Problem Formulation

We consider a connected graph G = (V, E), where V is the set of nodes and E
is the set of edges. Each edge (u,v) € E has a positive integer distance denoted
by d(u,v). For any two nodes u,v € V, d(u,v) also denotes the distance of the
shortest path between them. For ease of representation, we also let d(v,S) =
mingegs d(v,u) be the length of the shortest path from v to any node in X,
where X C V.

We consider servers that provide service to nodes in the graph. Every node v
must go to the nearest server u for service. If a server is located at node v, then
v will be serviced by that server. To simplify the concept of “the nearest server”,
we assuem that for every node v, its distances to all other nodes are different,
ie., d(v,u) # d(v,w) for u # w. As a result the nearest server for every node is
uniquely defined.

By serving a client v, a server node u earns a benefit of b(v, u). Note that the
function b can be arbitrary. For example, unlike [9], we do not assume that, for
the same client node v, the function value must be monotonic with respect to
the distance between v and the server node .

We assume that there are a number of original servers O C V in G. In addition
to the original server set O, and we would like to add a number of extra servers
to G to obtain the maximum benefit. Let ¢(v) be the cost of building a server
at node v € V, and X be the set of new servers we would like to add into the
system. A node v € V goes to either O or X for service - v goes to X for service
when d(v, X) < d(v,O); otherwise (d(v, X) > d(v, 0)), v goes to O for service.
Let Vx denote the set of nodes that go to A for service, and Vo =V — Vy be
the set of nodes that go to O for service.

We define the nearest servers NS(v) of v as the server v uses. Consequently
NS(w) € Oifv e Vo, and NS(v) € X if v € Vy. We can now define the benefit
function of adding the servers X as follows.

B(X)= > bw,NS() - Y c). (1)
vEVx veEX

We now define the problem as follows.

k-Extra-Server Problem. Given an integer k, 1 < k < |V — X|, we want to
find the optimal placement of k extra servers such that the benefit function is
maximized (Equation (2)).

B(X) (2)

max
XC(V-X),|X|=k

Server Placement in the Presence of Competition 127

Ezxtra-Server Problem. We want to place extra servers to maximize the benefit
function, without any constraint on the number of the extra servers. We call this
optimization problem the extra-server problem.

3 Finding Extra Server Locations

We present algorithms that utilize global information to solve server placement
problems. The use of global information facilitates the optimality of the algo-
rithm and the assumption of global information is reasonable since we are dealing
with a city or grid configuration and the location of servers are static and can
be known completely in advance.

We focus on the case where the graph G = (V, E) is a tree. Let T be the tree
and 7 be the root of T. For each node v € V, let T, be the subtree of T rooted
at v. If v is an internal node, then we use child(v) = {1)1,1)2, <oy Vlchild(v)|} tO

denote the children of v. Following the notations in [4], let 7" be the subtree

of T' that consists of v and the subtrees rooted at the first ¢ children of v, i.e.,
S = YU T,

Definition 1 (Benefit function, B). For nodes v u €V, an integer k, and

an integer i between 0 and |child(v)|, we define B, to be the mazimum beneﬁt

derived by placing k extra servers in Té), under the condition that u = NS(v).
Consequently u is either an original server or an extra server.

We now consider the benefit function BU " by placing X in T) We define X to
be the set of k extra servers that maxmuze the following benefit function. Recall
that O is the set of original servers.

By} = max{ > b(w, NS(w)) = Y e(s)}, u g O,

weT NS(w)eXUu sEX
Bk:i = m)f(iX{ Z b(w, NS(w)) — Z ¢(s)}, ueO.
weT{ NS (w)ex sEX

The definition indicates that the benefit includes those nodes that will either
go to the extra servers X or u (when u ¢ Q) for service, minus the construction
cost of the extra server set X.

For the case where u is not in O, by definition u is v’s nearest server, so u
has an extra server. However, u can be a node outside of Tu(l)7 — in which case it
will not be in & because & is a subset of T,Ei). We still need to add the benefit
from Ty) to u, since we assume that an extra server is placed in u.

Lemma 1. For every node v € V and every child v; of v, if u € Ty, is the
nearest server to v, then u is also the nearest server to v;.

Proof. We prove this lemma by contradictions and assume that the nearest server
for v; is u/, not u. Since v’ is the nearest server to v;, the distance d(v;, u’) must

128 P. Liu et al.

be strictly smaller than d(v;,u). The length of the shortest path between v and
v is d(v,u’) < d(v,v;) + d(vi, u') < d(v,v;) + d(vi, w) = d(v, u), which suggests
that v is closer to v than u; however, this contradicts the assumption that u is
the nearest server of v.

For ease of discussion of the following lemma, we define a node set V, , ;. This
set contains those nodes in 73, that could be the nearest server for v;, under the
condition that u is the nearest server for v, but not for v;, i.e., NS(v) = u and
NS (v;) # u. Intuitively, the set V,, ,,; stands for those nodes in T),, that are far
enough from v so that it will not be the nearest server for v (when compared
with u), but close enough to v; so that it is the nearest server of v;.

Definition 2 (Vy ui). Let u be the nearest server of v and i be an integer
between 1 and |child(v)|. Vi, is the subset of those u' in T,, such that u' is
the nearest server to v;, but it is not the nearest server to v. That is, Vi =
{v|v € T,,,d(vi,v) < d(vi,u), d(v,u)d(v,u')}

Lemma 2. For every node v € V and every child v; of v, if u ¢ T,, is the
nearest server of v, then either u is the nearest server of v; or there exists a
node u' € V,,,.; that is the nearest server of v;.

Proof. If u is the nearest server of v;, the lemma follows. Otherwise, we conclude
that the nearest server of v; must be within 7,,, since the path from v; to nodes
not in 7, must pass through v, which already has u as its nearest server. The
lemma then follows by the definition of V,, ;.

Theorem 1. For every node v € V and an integer i between 0 and |child(v)|, if
u 1s the nearest server of v, then for every node w in T,,, we can find the nearest
server for w in T,, U {u}.

Proof. The only way a shortest path from a node w in 7}, to any node outside
T,, is to go through the edge (v;,v). However, any such shortest path must end
at node u since u is the nearest server for v; otherwise we will be able to find a
closer server for v other than u — a contradiction to the fact that N.S(v) = u.

Terminal Conditions. We first derive two terminal conditions for the recursion
of B, the benefit function.

k = 0. When £ is 0, we do not place any extra servers in T,Ei). If uw is an original
server in O, every node in Tv(l) will go to O for service, so the benefit is 0. If
u is not in O, we consider two cases. First if u is not in Ty), every node in

Tv(i) will either go to an original server or to u for service; thus, the benefit
can be determined by Equation (8.

B = Z b(w, u) (3)

weTE d(w,u)<d(w,0)

Server Placement in the Presence of Competition 129

In the second case, u is not an original server but w is in Tu(l)7 which means
that there is at least one extra server in Téi). This contradicts the assumption
that & is 0. For the purpose of dynamic programming, we define the benefit
to be —

k=1u¢ (9 ue T . When £ is 1, u is in TU(), so it is not an original server,
but it is definitely the only extra server in T, 15), Every node in T, 15) will either
go to O or u for service; thus, the benefit can be calculated in the same way
as B’ — ¢(u). Note that, since u is now in the X’ that maximizes the benefit

of TSV, ¢(u) should be deducted from the benefit.

Recursion. Next, we derive the recursion function for B)";".

0, ifk=0anduecO
B, ifk=0,u¢ O, and u g TS
o B, kmLugomduen?
! B, ifue T
maX{B” B}, if u ¢ TU
—o0, otherwise,
where
"o , vs
b= or%ljasxk{Bk gi=1 +Bj,|child(vi)|}7 (5)
and
nmo__ U v
BT = oma, {B’“ sim1 T B } (6)

The first three cases were discussed as the terminal conditions in Section [3]
so we only need to consider the rest.

uc Ty,

If u € T,,, u will also be the nearest server to v; by Lemma [Il since u is the

nearest server of v. Then, by Theorem [every node in T,, goes to either

Ty, or u for service. In addition, u is the nearest server to v. By Theorem [I]

all nodes in TU(FI) obtain service from u or T,J(Fl).

Assume that there are j extra servers in 715, then there will be k— j extra
servers in TU(FI)7 where 0 < j < k. To obtain the best X that maximizes
the benefit, we need to consider all possible values of j, as formulated in
Equation (). The recursion follows.

u¢ Ty,

If w is not in T),, we need to consider two sub-cases.

Case 1: If u is the nearest server of v;, the value of BZZ“ is defined as
in Equation (&), because we can isolate two subtrees, as we did in the
previous case where u € T,.

Case 2: If the nearest server of v; is mot u, by Lemma 2] we can find the
nearest server u' for v; in T,,. We formulate the benefit as B” in Equa-
tion ().

Consider these two sub-cases, if u ¢ T;,,, B, is formulated as max { B”, B"'}.

130 P. Liu et al.

Now, in order to finish the recursion the only missing element is the new cost
function E}}".

Definition 3 (E,’}"). For nodes v,u € V, an integer k, and the i-th child of
node v (denoted by v;), we define E:lu to be the maximum benefit derived by
placing k extra servers in the subtree T, where u ¢ T, is the nearest server of

v, but u is not the nearest server of v;. Instead, the nearest server of v; is a u’
in Ty,. The benefit is similarly defined in Equation (7):

Ep = max{ > b(w, NS(w)) = Y c(s)}- (7)

weT,, ,NS(w)eX s€EX

From the above discussion, the maximum benefit £, is derived by Equation ().
That is, we need to enumerate all the possible v’ and use the one that maximizes
Bzif:hud(w)r The set V,,,,,; is exactly the possible set to select v’ from, since v;

will go to u for service, but not to w. This is exactly the definition of V,, ;.

’
E’Y = max {BY". .
ki u,e‘%w k,|child(v;)| (8)

The Final Solution. Finally, the maximum benefit of locating k extra servers in
the tree T' can be calculated by Equation (@I):

Ii’lea%{ {Bl::rchild(rﬂ } (9>

The possible candidates for u are subject to the following constraints: If u is
an original server d(r,u) must be d(r, O), i.e., u is the nearest original server to
the root. If u is not an original server, the distance d(r,u) must be smaller than
d(r, O) to ensure that u is the nearest extra server to the root.

Theorem 2. Given a tree T = (V, E) and a set O CV as the original servers,
the k-extra-server problem for T can be solved in O(|V|3k) time, where 0 < k <
|V — O| is an integer.

Proof. The problem can be solved by Equations ([B) to (@). The time of the
dynamic programming is derived by calculating all the entries of B, and E}}".
Consider each pair of v and i, so that there are totally >, .y [child(v)| = [V| -1
pairs. Thus, the number of entries of B)"!" is (k+1)-|V[-(|[V[-1) = O(|V|*k), and
it takes O(|V\) time to calculate each entry; hence, the time required to calculate
all the entries of B)’}" is bounded by O(|V|*k). Similarly, there are O(|V[*k)
entries of E,", and it takes O(|V[) time to calculate each entry; therefore, the
time required to calculate all the entries of £, is O(|V[3k). The total time
required is therefore O(|V|*k).

Using similar techniques we derive the following theorem. The proof is removed
due to space limitation.

Server Placement in the Presence of Competition 131

Theorem 3. Given a tree graph T = (V, E) and O C 'V are the original servers
of T, the extra-server problem for T can be solved in O(|V|?) time.

Proof. The proof is similar to that of Theorem Bl There are O(|V|?) entries
of B"" and O(|V'|?) entries of E;"", and the calculation of each entry requires
at most O(|V|) computing time. Hence, the problem can be solved in O(|V|?)
time.

4 NP-Completeness

The NP-complete proof is derived from the dominating set problem [2], and is
removed due to space limitation. A subset V' C V is a dominating set if for all
u € V — V', there is a v € V' such that the edge (u,v) is in E. The decision
problem of the dominating set can be formulated as follows: Given a graph G =
(V, E) and a positive integer K < |V, is there a dominating set of size K or less?

k-EXTRA-SERVER. We now consider the k-extra-server problem and define the
corresponding decision problem as follows: In a k-extra-server problem instance,
is there a placement of k extra servers such that the benefit is at least B?

EXTRA-SERVER. Similarly, we define the decision problem of EXTRA-
SERVER as follows: In a extra-server problem instance, is there a placement
of extra servers such that the benefit is at least B?

Theorem 4. The k-EXTRA-SERVER problem is NP-complete.
Theorem 5. The EXTRA-SERVER problem is NP-complete.

Since the k-extra-server problem and the extra-server problem are both NP-
complete, we propose a greedy heuristic (denoted as Greedy) for these prob-
lems. Here, we only describe Greedy for the k-extra server problem because the
method for the extra-server problem is very similar.

The greedy method works in rounds. In each round, we locate an extra server
that maximizes its benefit. We add the benefit produced by the selected extra
server to the total benefit, which was set to 0 initially, and then mark the se-
lected server as an original server. We repeat the process until k extra servers
are selected.

5 Experiment Results

We conduct simulations to compare performance of Greedy with the linear pro-
gramming optimal solutions acquired using GLPK (GNU Linear Programming
Kit) [7] for the k-extra-server problem. GLPK is a set of routines designed to
solve large-scale linear programming (LP), mixed integer programming (MIP),
and other related problems. It is written in ANSI C and organized in the form

132 P. Liu et al.

of a library [7]. Let the 0-1 variable X, and u € V' denote whether there is an
extra server on u, and let the 0-1 variable Z,,, u € V, v € V denote whether
v is a client of u. The integer programming for the k-extra-server problem is
formulated as follows:

maximize Z Z Zuwb(v, u) Z Xuc(u), (10)

ue(V-X)vev ueV
subject to
X, €{0,1}, foreachueV, (11a)
Zuw €{0,1}, foreachueV,veV, (11b)
X, =0, for each u € O, (11c)
> Xu=k, (11d)
ugVv
Z Ly = 1, for each v € V, (11e)
ugV
Xy — Zyw >0, for eachu € (V — 0), eachv e V, (11f)

Zuw = 0, for each u € V, each v € V, and d(v,u) > d(v,0). (11g)

Consider the 0-1 variables X, and Z,, in constraints ({Ta) and (IID) respec-
tively. We replace them with constraints (IZal) and (I2h) respectively, so that
we have a linear programming formulation.

0< X, <1, for each u € V, (12a)
0< Z,, <1, foreachueV,veV. (12b)

The optimal benefit gained from linear programming only serves as a upper
bound, since it allows a fraction number of an extra server to be placed on a node.
However, in our experiments, we find that, in most cases, linear programming
produces integer solutions, i.e., X,, and Z,, are in the range {0, 1}.

5.1 Experiment Setting

In our experiments, we use GT-ITM [I] to generate random graphs according
to Waxman model [I1]. Each of the graphs is connected, and nodes are added
randomly in a s X s square. The probability of an edge between v and v is given by

plu,v) = ae~ /7L,

where 0 < o, 8 < 1, d is the Euclidean distance between u and v, and L = v/2s
is the largest possible distance between any two nodes. In our experiments, we
set s to 20, a to 0.2 and 3 to 1.

For each v, we set a value r(v) to be a random integer between 20 and 40,
and set the building cost ¢(v) to be r(v) plus a random integer between 1 and
10. The benefit function b(v,) is defined as r(v) divided by the distance from
v to u. Finally, we place original servers randomly in the graph. We simulate up
to 150 nodes since this is a reasonable size for city or grid configuration.

Server Placement in the Presence of Competition 133

5.2 Effect of o

We evaluate the performance of Greedy compared with the upper bounds found
by linear programming under different values of a.. In these experiments, for each
a we set |V| from 50 to 150, and for each |V| we set |O| from 0 to 0.1]V|. As a
result, we have 1066 graphs to simulate, and for each graph we set k from 1 to
0.1]V]. Figure [l shows that when a increases the average degree of each node
also increases. Figure [I] shows that Greedy performs very well; on average, its
performance differs from the theoretical upper bounds by only 1% and in the
worst case the difference is no more than 15% of the upper bound.

Figure[also shows that as « increases, the average difference between Greedy
and the upper bound derived by linear programming also increases. Since the aver-
age degree of each node increases as « increases, there is a higher probability that
the extra servers will affect each other. However, to maximize the benefit, Greedy
only considers the current configuration when it selects the next location to place
an extra server; thus, it can not predict the “long range” effects and the interac-
tion among the extra servers. Hence, as « increases, the average difference (as a
percentage) between Greedy and the upper bound also increases.

Via=02a=03a=04a=05 a Avg. difference Max. difference

50 3.56 5.37 7.11 8.78 0.2 0.43% 9.54%
0.3 0.49% 14.35%

150 1045 15.59 20.87 26.12
Average 8.11 12.01 16.03 20.03 04 0.52% 13.20%
' ’ ' ' 0.5 0.58% 11.95%

Fig.1. The average degree of a node under different values of a and the average
difference (as a percentage) between Greedy and the upper bound under different
values of «

5.3 Effect of the Number of Original Servers

We now consider the effect of the number of original servers on the average dif-
ference as a percentage of the upper bounds. In these experiments we set |V to
100, |O| from 1 to 50, and & to 10.

Figure @] (a) shows the error-bar between Greedy and the upper bounds
derived by the linear programming. The upper markers are the average upper
bounds and the lower markers are the average benefits of Greedy. In the figure,
the average benefits produced by Greedy are so close to the upper bounds that
they coincide. Furthermore, the figure suggests that as |O| increases the benefit
will decrease. This is reasonable since a large number of competitors only have
a negative impacts on the extra servers.

5.4 Effect of k

Next, we consider the effects of k on the average difference as a percentage be-
tween Greedy and the theoretical upper bound. In these experiments we set

134 P. Liu et al.

900 T T T T T T T T T 800 T T T T T T T T

FIEITEIEzg
B % Iz
= Bip,

34
iz
ix,
700 = = 3
= 600 - Ty
H
i

Average benefit
"
Average benefit

400 |

tes 300 |

o 5 10 15 20 25 &% o 40 45 50 0 5 10 15 20 25 &% o 40 45 50
Number of original servers K
(a) The benefits of Greedy and the average upper (b) The average benefits of Greedy and the upper
bounds under different numbers of original servers. bounds under different values of k.

2 T T T T T T T T T

Average difference percentage [%]

) 5 10 5 20 25 % 3 40 45 50

«
(c) The average percentage difference for Greedy under
different values of k.

Fig. 2. Average benefits under different number of original and extra servers ((a) and
(b)), and derivation percentage from the theoretical bounds (c)

|V| to 100 and |O| to 10, so we generate 100 graphs in total. For each graph we
set k from 1 to 50, which gives us 5000 simulation results.

Figure[2 (b) shows the error-bars in our simulations. We observe that the ben-
efit of Greedy is extremely close to the theoretical upper bounds. The figure
also shows that, initially, as k& increases, the benefit increases because we can
make more profit. As the number of extra servers increases substantially, the
benefit decreases due to the cost of constructing the extra servers.

Figure Pl(c) shows that as k increases the average difference between Greedy
and the theoretical upper bound also increases. This is because Greedy places
an extra server to maximize the benefit at each step because it can not consider
the overall situation; thus, the difference accumulates at each step — more servers
means a larger difference between Greedy and the upper bound.

In summary, we conclude that the Greedy algorithm performs extremely well.
Considering all the simulation parameter setting, the greedy algorithm yields av-
erage benefits that are within 2% of the average theoretical upper bounds. It is
also extremely efficient and easy to implement.

6 Conclusion

We have formulated two optimization problems, the k-extra-server problem and
the extra-server problem. We consider the profit and construction costs at each
location, and place extra servers to maximize the benefit in the presence of

Server Placement in the Presence of Competition 135

competition from original servers. For trees, we formulate dynamic programming
algorithms to solve the k-extra-server problem and the extra-server problem in
O(|V|?k) time and O(|V'|?) time, respectively. For general graphs, we prove that
the problems are NP-complete and propose a greedy heuristic to solve them. The
experiment results demonstrate that the greedy heuristic yields performances
within 15% of the theoretical upper bound in the worst case, and within 2% of
the same theoretical upper bound on average.

In the future we will investigate the possibility of designing efficient and effec-
tive algorithms for graphs other than trees. For example, our greedy algorithms
perform well on general graphs, so we should be able to show that the greedy
algorithm performance is guaranteed to be within a constant factor of the opti-
mum. We would also like to generalize dynamic programming to other graphs,
such as planar graphs.

References

1. K. Calvert and E. Zegura. Gt-itm: Georgia tech internetwork topology models.
http://www-static.cc.gatech.edu/projects/gtitm/.

2. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

3. X. Jia, D. Li, X. Hu, W. Wu, and D. Du. Placement of web-server proxies with
consideration of read and update operations on the internet. The Computer
Journal, 46(4):378-390, 2003.

4. K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of replicas in
trees with read, write, and storage costs. [IFEE Transactions on Parallel and
Distributed Systems, 12(6):628-637, June 2001.

5. O. Kariv and S. L. Hakimi. An algorithmic approach to network location
problems. ii: The p-medians. STAM J. Appl. Math., 37(3):539-560, 1979.

6. B.-J. Ko and D. Rubenstein. A greedy approach to replicated content placement
using graph coloring. In SPIE ITCom Conference on Scalability and Traffic
Control in IP Networks II, Boston, MA, July 2002.

7. A. Makhorin. http://www.gnu.org/software/glpk/glpk.html.

8. D. B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility
location problems (extended abstract). In Proc. 29th ACM STOC., pages 265-274,
1997.

9. A. Tamir. An o(pn?) algorithm for the p-median and related problems on tree
graphs. Operations Research Letters, 19(2):59-64, 1996.

10. O. Unger and I. Cidon. Optimal content location in multicast based overlay
networks with content updates. World Wide Web, 7(3):315-336, 2004.

11. B. M. Waxman. Routing of multipoint connections. pages 347-352, 1991.

A Scalable Mechanism for Semantic Service Discovery in
Multi-ontology Environment

Zhizhong Liu, Huaimin Wang, and Bin Zhou

College of Computer Science, National University of Defense Technology, Changsha China
liuzane@gmail.com, whm_w@l63.net, Bin.zZhou.cn@gmail.com

Abstract. Semantic service discovery improves the performance of service
matching, due to using ontology and logical reasoning. However, in open distributed
computing environment available mechanisms for semantic service discovery face
new challenges: increasing scale of systems, multiple coexistent ontologies and so
on. Aiming to these problems, a semantic service discovery mechanism based on
ontology community, SSD_OC, is proposed in this paper. Multiple coexistent
ontologies are supported by SSD_OC and bridging axioms between different
ontologies enable users to match services across ontologies. Experiment results
show that SSD_OC is scalable and outperform other systems in term of F-Measure.

1 Introduction

Semantic service discovery (SSD), the infrastructure of semantic web service, matches
services on the basis of their capability by using ontology and logical reasoning'").
Semantics is both a blessing and a curse. It can improve the precision and recall of
service matching. On the negative side, logic reasoning results in greater responding
time of service discovery and worse scalability. In addition, most available SSDs
assume that all services refer to identical ontology. In practice, there are mostly
multiple coexistent ontologies, especially in open distributed computing environment
where providers provide services with similar functions, but refer to different
ontologies. For example, Google, Amazon.Com etc. provided some services with
similar functions according to their own class hierarchy. Ideal SSD should support
multiple coexistent ontologies and enable service discovery across ontologies. But
most available service discovery mechanisms can’t cover those requirements.

The aim of this paper is to study a novel SSD mechanism which supports multiple
coexistent ontologies and SSD across ontologies. In addition, it must be scalable. For these
aims, a SSD mechanism based on ontology community, SSD_OC, is proposed. SSD_OC
partitions advertised services into different ontology communities according to their
referred ontologies. It also establishes relations among communities as bridging axioms,
and implements service discovery across ontologies through ontology translation based on
these axioms. Within community, SSD builds upon previous works done by Paolucci on
semantic matching of web service capabilities '*' and importing semantics into UDDI ©.

This paper is organized as follows. Section 2 reviews related works. Then in section
3, the architecture of SSD_OC is described. The corresponding algorithms of service
matching are presented in section 4. To evaluate our approach, a set of experiments are
conducted in section 5. Finally, we conclude this article.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 136-[145]2007.
© Springer-Verlag Berlin Heidelberg 2007

A Scalable Mechanism for Semantic Service Discovery in Multi-ontology Environment 137

2 Related Works

Ontology interoperability is the essential precondition for SSD across ontologies.
Ontology mapping is one of mature approaches® to achieve that interoperability. It
establishes relations between ontology entities by calculating semantic similarity
between them. There are many methods for ontology mapping, such as GLUE,
FCA-Merge, IF-MAP, QOM, Anchor-PROMPT/PROMPT, OLA and so on. Dejiang
Dou"' claimed ontology translation can be thought of in terms of inference. Therefore
they represented mapping rules as first order axioms, and implemented OntoEngine, an
ontology translation engine basing on first order reasoning.

LARKS'” is the first system implementing semantic service matching. LARKS
identified a set of filters that progressively restrict the number of candidate services.
LARKS identified four degrees of match: Exact, Plug-in, Subsumes, Fail. To enable
UDDI support semantic discovery, Paolucci added a DAML-S/UDDI engine on
UDDI™. Further, they proposed a matching algorithm on the basis of DAML
ontology'. Klusch'”' complemented logic based reasoning with approximate matching
based on syntactic IR, and proposed OWLS-MX, which applies this approach to match
services and requests specified in OWL-S. Furthermore, they provided a collection of
OWL-S service, OWLS-TC' to test matching algorithms.

Meteor-S provided a federate of registry to enable service partition®. It supported
multiple ontologies and described the data partitioning criteria as Extended Registries
Ontology (XTRO) in MWSDI. And, they developed a Web service discovery algorithm for
a multi-ontology environment'”. The matching process is based on a service template
related to WSDL-S. Based on Paolucci’s works, Akkiraju!'” added ontology selection
process during service discovery. But how to implement that is not mentioned. WSMO
matched service across ontologies by OO-Mediator''). It provided a conceptual model for
the semantic-based location of services. Jyotishman Pathak!'” described a framework for
ontology-based flexible discovery of Semantic Web services. The proposed approach relied
on user-supplied, context-specific mappings from user ontology to relevant domain
ontologies. YIN Nan'"' proposed a general framework of ontology-based service discovery
sub-system, where context-based domain matching algorithms located service domains;
ontology-based service matching algorithms matched services in specific domain. Most
approaches mentioned above supported multiple ontologies. But they considered domains
separately, that’s to say, they didn’t not support service discovery across ontologies.

3 Architecture of SSD_OC

To support multiple coexistent ontologies, we design the architecture of SSD_OC as
figure 1. The architecture consists of three components: Ontology Community,
Ontology Bridging and Translation, Request Parser and Community Selection.
Ontology community (OC) includes services referring to the identical consistent
ontology set. OC takes charge of service registration and management, and service
matchmaking within OC. OC adapts Paolucci’s UDDI + DAML-S framework!' for

! http://projects.semwebcentral.org/projects/owls-tc/

138 Z. Liu, H. Wang, and B. Zhou

OWL-S. It is composed of UDDI Register, UDDI/OWL-S Translator, OWL-S Matching
Engine, OWL Ontology and Communication Module. UDDI/OWL-S Translator maps
OWL-S description into UDDI specification (e.g. tModel). The OWL-S Matching
Engine performs the capability matching on basis of OWL-Lite ontology. The process of
service advertisement and discovery is similar to that in Paolucci’s study.

~Ontology Community

T =
Makking
' g rc
Conummiulion W
Elaoduke

Ontalogy Comemunily:

Clnksbopy

Mlappmg
Aimeralur

Cumminicaion
Modnbe

and Commmity fa—e.
Sekictinn

Fig. 1. Architecture for SSD_OC

Ontology Bridging and Translate module consists of an Ontology Mapping Generator,
a set of Bridging Axioms and an Ontology Translation Engine. The Generator establishes
the relations, namely Bridging Axioms, between entities. In this paper, how to establish
these mappings is not the focus. And we assume that bridging axioms are available.
Translator Engine translates the request for one community to another using Bridge
Axioms, which enables service discovery across communities. Our work is inspired by
the Bridge Axiom proposed by Dejiang Dou®. The aim of his work was to translate
dataset or queries for one ontology to another. And they implemented it in OntoEngine.

Request Parser and Community Selection parses user requests, and forwards the
request to corresponding communities after community selection. SSD_OC provides a
central register which manages the metadata of ontology community to support
community selection. The metadata includes the URL of community register; the
ontologies which some ontology community refers to. Therefore this register can
answer following questions: 1) where is the register of some community? 2) which
community refers to some ontologies? 3) which ontology is referred by a community?

4 Semantic Service Matching in SSD_OC

4.1 Related Definitions

From different viewpoints, ontology can be defined in different ways. In this paper,
ontology is defined formally as follows:

A Scalable Mechanism for Semantic Service Discovery in Multi-ontology Environment 139

Definition 1 Ontology. Ontology can be described as a 4-tuple O :=(C,R,H.,A),
where C represents the set of concepts in ontology; R. € CxC is the set of relations
over concepts; H . < R, is asubset of R, represents hierarchical relation set between

concepts; and axioms A characterize the relations.
In this paper, we focus on two special relations, i.e. equal semantically and
subsume semantically. Given two concepts ¢, £ in an ontology, if they are equivalent

concept, « is equal semantically to S, denoted as “or = 8 ; if they have relation H.,
B subsume semantically ¢ , denoted as “a ~< £ “. Within an ontology, the relations
between them are following:

() Ia=pp~<ya~<y;
2 Ifao-<ppB=y.a~<y;
B Ifa<pB~<y,a~<y;
@ a=ppB=y,a=y.

An ontology snapshot about book is shown as figure 2. In Sell_Book (shown as
Fig.2 (a)), the ontology defines concepts: “Book” “Price”, “Amount” as well as “Date”,
“Title”, “Author”; and the relations between them: “hasPrice”, “hasTitle”, “by” and so
on. However, Lib_Book defines concepts “Item” ,”RetDate” as well as “Date”, “Title”,
“Author”, and the relations between them: “Return”, “hasName”, “hasAuthor”,
“Available” etc. (shown as Fig.2 (b)).

Fig. 2. An Example of Ontology

As shown in the above figure, there are multiple ontologies for the same concepts.
Ontology mapping establishes relations between different ontology entities by
calculating the semantic similarity between them. It can be defined formally as follows:

Definition 2 Ontology Mapping. Given source ontology O, and target ontology O,,
the mappings between them are described as:

Mapping : O, — O,

Mapping(e,) = e, if Sim(e,,e,) >t

s

where e_,e are entities of source and target ontologies respectively; Sim(x, y) is the
function calculating semantic similarity between x, y; t is the threshold. In this paper,

140 Z. Liu, H. Wang, and B. Zhou

we assume mappings were stored as Bridging Axioms in first logic knowledge base.
Fig.2 describes some mappings, including type equation and relation equation.

Definition 3 Ontology Translation. Ontology translation applies above bridging
axioms to translate user requests from one ontology to another. Given source ontology
O, , target ontology O,, and bridging axioms KB , ontology translation can be

.,

represented by “~—"":
(KB;at)) ~— 3,
where ¢, is a expression referring to O, and S, referring to O, .

Definition 4 Service Template. Service Template (ST) depicts service advertisement
or service request. It specifies IOPEs of service using a specific domain ontology.
Formally, Service Template is describes as:

ST =(Ng. Dy 1,0, Py Egp Ontg,)

where N, is the name of service; Dy, is the textual description of service; I, denotes
the Inputs set of service; O, denotes the Outputs set of service; F; is the Preconditions
set of service; E,, is the Effects set of service; in addition, Ont,, describes the referred
ontologies.

Many semantic service description languages, for instance OWL-S, WSDL-S, can
be mapped to ST easily. Therefore, our work doesn’t limit to specific language.

Definition 5 Ontology Community. Section 3 gave the definition of ontology
community informally. Here the formal definition of ontology community is presented
as OC:=(S,0nt,.), where S is the set of Service Templates, Ont,.is the set of

referred ontologies, and VST € S,ST.Ont, = OC.Ont,,,..

The matching algorithm within OC builds upon which proposed by Paolucci!®,
which matches all outputs of request against those of advertisements; and all inputs of
request against those of advertisements. Given candidate service Template
CS =(Ngg,Deg, 15,05, Prg, Epg,Ontp) and request service template

CcS» CS>~CS>~CS>—CS >

SR=(Ng, D, Ip,Op, P, Eqp ,Ont,) , the match degree between CS and SR is

SR> SR>" SR>~ SR>~ SR>
computed as following Table 1.

Table 1. Match Degree between CS and SR

I, = I, (Exact) Iy, < I (Subsume) | Others(Fail)
Og < O (Plug-in) Subsume Subsume
O = Oy, (Exact) Exact Subsume Fail
O < Oy, (Subsume) Plug_in Plug_in
Others(fail) Fail

A Scalable Mechanism for Semantic Service Discovery in Multi-ontology Environment 141

Where “< “ is a partial order relation between two sets; “=“is the equal relation
between two sets. Given two sets A, B, A< B if and only if, for every elements e, in

A, there exists one elements e, in B such that e, ~<e¢,; and A= B if and only if,
for every elements e, in A, there exists one elements e, in B such that e, ~=¢, .

In this paper, only candidate services with match degree “Exact” or “Subsume” are
considered as matched services. Racer'' is adapted the semantic equality and
subsumption.

Definition 6 Service Request Translation. While SR,CS refer to different
ontologies, SSD_OC implements ontology translation for SR . Based on ontology
bridging axioms, service request translation translates request ST from one ontology to
another by first logic reasoning. Given service template
SR=(Ng,Dg,l 3,0, P, Eq,,Onty,) and bridging axioms KB between

Ont,, Ont,

< » SErvice request translation can be denoted as:

(KB;SR) ~— SR,
Where: SR =(Ng,., Dgys g Ogys Poges Egqr» Ontg,.) and

(KB;SR) ~— SR & (KB;1y,) ~— I A (KB;Og,) ~— Ogy A
(KB; Pyy) ~—> Py A(KB;Eg) ~— Eg.

4.2 Semantic Service Matching in SSD_OC
Semantic service matching in SSD_OC consists of three steps (shown as algorithm 1):

SelectCommunity, MatchinOC and Ontology Translation. MatchinOC which based
on Paolocci’s study matches Service Template ST in OC.

Algorithm 1. Match(ServiceTemplate SR) : MatchedServiceList L,
1: OC <« SelectCommunity(SR)

2:Foreach Strict Match Community S_Com do

3: L, < L, +MatchinOC(OC,SR)

4:Endfor
3: For Relaxed Match Community R_Com do
4: T_ST ¢ OntoTranslate(SR)

5. L, < L, +MatchinOC(ROC,T _SR)
6:end for
Treturn L,

SelectCommunity returns communities supporting ontologies referred by SR.
According to the relations between Ont,,Ont,. , those communities are classified into

two classes: S_Com whose ontologies subsume SR’s ontologies, and R_Com whose
ontologies overlap with SR’s ontologies. The details are shown as algorithm 2.

142 Z. Liu, H. Wang, and B. Zhou

Algorithm 2. SelectCommunity(ServiceTemplate Sg): Communities Leom
1: Foreach Community C in Meta-Data Register do
2: If S;.Onty C.Ont, then

3: LCom.S_Match.Append(C)
4: elseif S,.Ontg, NC.Oni. # ¢ then

5: LCom.R_Match.Append(C)
6: endif

7:endfor

8:Return LCom

OntoTranslate translates service template of request from an ontology to
another by using the bridging axioms between them. It implements ontology
translation for each factor of service template. OntEngine'' developed by Dou
Dejiang fufills the reasoning based on first order logical. Figure 4 demonstrates the
OntoTranslate and the OutputTrans. First logical reasoning is based on
Modus-Ponens.

Algorithm 3. OntologyTranslate(ServiceTemplate SR, OntologyCommunit S_OC,
OntologyCommity T_OC): ServiceTempalte T_SR
1: if OutputTrans(ST.Outputs, S_OC, T_OC) is NULL then return NULL
2: T_ST.Outputs < OutputTrans(ST.Outputs, S_OC, T_OC)
3: if OutputTrans(ST.Inputs, S_OC, T_OC) is NULL then return NULL
4:T_ST.Inputs <~ OutputTrans(ST.Inputs, S_OC, T_OC)
5: Return T_ST
Algorithm 4. OutputTrans(Ouputs ST_Outputs, OntologyCommunit S_OC,
OntologyCommity T_OC): Outputs T_ST_Outputs
1: KB is the bridging Axioms between S_OC and T_OC
2: for each elements Output in ST_Outputs
3 T_Output <~ Modus-Ponens(Output,KB)
4: if T_Output is NULL then return NULL
5
6
7

T_ST_Outputs.Append(T_Output)
:end for
:return T_ST_OutPuts

4.3 Put Them Together-A Service Discovery Example

Table 2 shows a whole example of service discovery in SSD_OC. In this example, the
service discovery request described by Service Template requires services that have
capability of finding books with specific author and topic. And advertised services are
published in three ontology communities: Sell_Book, Lib_Book and Sell_Good. With
respect to referred ontologies, Sell_Book and Lib_Book are related. And
Trans_Request is the translated request.

A Scalable Mechanism for Semantic Service Discovery in Multi-ontology Environment 143

Table 2. The Requests and Advertised Services

Degree
ocC Name Inputs Outputs of Match
#_Author
Request Sell_Book # Topic #_Book
Trans_Requ Lib_ Book #_Author # Ttem
est # Topic
QueryBook | #_Author |, p o T
Service #_Topic
Sell_Book
BrowseBook | ., # Book Fail
Advertised Service - -
Service Lib_Book Query .Item # Person # Item Subsume
Service
Service

In this example, SellGoodService is in a community irrelative to service request,
therefore the matching algorithm does not take it as candidate services.
QueryBookService is discovered firstly in Sell_Book for it has same inputs and outputs
as request, and QueryltemService semantically matched with the translated request
Trans_Request, for its inputs subsume that of request and its outputs equal to that of
request. And BrowseBookService’s inputs are not matched, so it is not matched
service.

S Experiments

The performance of service discovery is usually evaluated by Responding Time of
service discovery, scalability of system, recall and precision of service matching or
their harmonic mean F-measure (F-Measure=2*Recall*Precision/(Recall+
Precision)). To evaluate our mechanism, we conduct experiments in Java 1.4.2, using
OWL-S 1.0, and the tableaux OWL-DL reasoner Racer developed at Concordia
University. The service sample is a subset of OWLS-TC v2.1 provided by DFKI,
includes 3 communities (Education, Communication and Economy) and 220 services
in these community. And 20 requests are proposed to those services. Further, we
compare the results with that of JAXR Register” and augment UDDI Register with
DAML-S'.

Fig.3 shows the preliminary statistical results of those requests. Analysis of these
results provide, in particular, evidence in favor of the following conclusions:

1) SSD_OC and augment UDDI is outperformed by JAXR in term of responding time
for they match service using logical reasoning (cf. Fig. 3 (a)). For SSD_OC spare
time in ontology translation, it is outperformed by augment UDDI, when the system
scale is small. However, with the increasing of system scale, SSD_OC should
outperform augment UDDI.

2 http://www.sun.com/xml/jaxr

144 Z. Liu, H. Wang, and B. Zhou

2) Both augment UDDI and SSD_OC increase responding time with the increasing
scale of system, while JAXR holds the line. Further, because SSD_OC limits the
communities where semantic matching occurs, the increasing rate of SSD_OC is
lower than that of augment UDDI, that’s to say, the scalability of SSD_OC is better
than that of augment UDDI. And the scalability of system will be improved by the
number increasing of community (cf. Fig. 3 (a)).

Scalability
1200
100
—e— JARX o —
- Augment UDDI pam— I Precision -
1000 1 | —w— Our Approach) =3 Recall
o g0 | HE F-Measure
o
@ o ey — =¥V
3 . et A
£ 800 g S
5 o
£ 60
2 600
g
40

g a0 ©
4]
o«

200 20

o~ o o o S o
0 T T T T T T T T T T 0- an
0 20 40 60 8 100 120 140 160 180 200 220 JARX Augment UDDI Our Appoach
Number of service
(a) b)

Fig. 3. The Responding time, Precision, Recall and F-Measure of Different Mechanisms

3) With logical reasoning, SSD_OC and augment UDDI have higher recall, precision
and F-measure than JAXR. SSD_OC has higher Recall and F-measure for its
capability of service discovery across communities. However, due to loss of
information during ontology translation, SSD_OC is outperformed by augment
UDDI in term of precision (cf. Fig. 3 (b)).

6 Conclusions and Future Works

Aiming to support semantic service discovery in multi-ontology environment and
improve the scalability of SSD system, we proposed a mechanism based on ontology
community, SSD_OC. It uses the divide-and-conquer approach with respect to the
ontology used by services, to provide scalable data integration. Within community,
traditional semantic matchmaking is employed. And to enable service matching across
ontologies, the mechanism implements ontology translation by using bridging axioms.
The mechanism improves scalability of system and efficiency of service discovery due
to limiting service matchmaking in a relative small scope. Further service matching
across communities improves the recall of service matching. In addition, the coexistent
ontologies enable users describe their requirements with respect to their context, that’s
to say, users have more flexibility.

In the next step, we will improve the algorithms for service matchmaking, and mend
the service template with some personal information (e.g. across ontology or not, the
accepted degree of service match, etc.). Then service matching will be taken according

A Scalable Mechanism for Semantic Service Discovery in Multi-ontology Environment 145

to those preferences. Furthermore, we will take the QoS of service into account to
ranking and selecting services with similar functionality. And the loss of information
during ontology translation will be considered in our future work.

Acknowledgement. Research reported in this paper has been partially financed by
National Basic Research Program of China under Grant, No.2005CB321800, National
Natural Science Foundation of China under Grant, No.90412011

References

10.

11.

12.

13.

14.

. Sheila A, T.C.S., Honglei Zeng. , Semantic web service. IEEE Intelligent systems, 2001.

16(3): p. 46-53.

Massimo Paolucci, T.K., Terry R. Payne, Katia Sycara. Semantic Matching of Web Services
Capabilities. in Proceeding of Ist Int. Semantic Web Conference (ISWC). 2002. Sardinia,
Italy: Springer.

Massimo Paolucci, T.K., Terry R. Payne, and Katia Sycara. Importing the Semantic Web in
UDDI. in In Web Services, E-Business and Semantic Web Workshop. 2002.

Sure., M.E.a.Y. Ontology mapping - an integrated approach. in In Proceedings of the First
European Semantic Web Symposium. 2004. Heraklion, Greece: Lecture Notes in Computer
Science.

Dou, D., Ontology Translation by Ontology merging and Automated Reasoning. 2004, Yale.
K. Sycara, S.W., M. Klusch, J. Lu, LARKS: Dynamic Matchmaking Among Heterogeneous
Software Agents in Cyberspace. Autonomous Agents and Multi-Agent Systems, 2002.
Vol.5: p. 173-203.

. Matthias Klusch, B.F., Mahboob Khalid Katia Sycara. OWLS-MX: Hybrid OWL-S Service

Matchmaking. in AAAI 2005 symposium on agents agent and semantic web. 2005.
Kaarthik Sivashanmugam, K.V., Amit Sheth Discovery of Web Services in a Federated
Registry Environment. in In the proceeding of ICWS'04. 2004. San Diago: IEEE Computer
Society.

Oundhakar, S., Semantic Web Service Discovery in a Multi-ontology Environment. 2004,
Georgia University.

Akkiraju R, G.R.D.P., et al. . A method for semantically enhancing the service discovery
capabilities of uddi. in in the proceeding the Workshop on Information Integration on the
Web. 2003. Acapulco,Mexico.

U. Keller, R.L., H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services. in
the 2nd European Semantic Web Conference (ESWC 2005). 2005. Crete Greece.
Jyotishman Pathak, N.K. A Framework for Semantic Web Service Discovery. in In
Proceedings of the 7th annual ACM international workshop on Web information and data
management. 2005. Bremen Germany: ACM Press.

Yin Nan, S.D.R., Yu Ge,Kou Yue ,Nie Tiezheng, CAO yu, A ontology-based service
matching strategy in Grid Enviroment Wuhan Univeristy journal of Natural science 2004.
9(5): p. 781-786.

M-oller, V.H.R., Racer: A Core Inference Engine for the Semantic Web. 2004.

A Collaborative-Aware Task Balancing Delivery Model
for Clusters

José Luis Bosquel, Pilar Herreroz, Manuel Salvadoresz, and Maria S. Pérez’

! Dpto. de Electrénica y Computadores. Universidad de Cantabria.
AV. de los Castros S/N, 39.005 Santander, Spain
joseluis.bosque@unican.es
2 Facultad de Informdtica. Universidad Politécnica de Madrid
Campus de Montegancedo S/N. 28.660 Boadilla del Monte. Madrid. Spain
{pherrero, mperez}@fi.upm.es

Abstract. In this paper, we present a new extension and reinterpretation of one
of the most successful models of awareness in Computer Supported
Cooperative Work (CSCW), called the Spatial Model of Interaction (SMI),
which manages awareness of interaction through a set of key concepts, to
provide task delivery in collaborative distributed systems. This model also
applies some theoretical principles and theories of multi-agents systems to
create a collaborative and cooperative environment that can be able to provide
an autonomous, efficient and independent management of the amount of
resources available in a cluster. This model has been implemented in a cluster
based on a multi-agent architecture. Some results are presented with the aim of
emphasizing the performance speedup of the system using the Collaborative
Awareness Model for Task-Balancing-Delivery (CAMT).

1 Introduction

Clusters of workstations provide a good price/performance ratio, which makes these
systems appropriate alternatives to supercomputers and dedicated mainframes. With
the aim of providing better capabilities on clusters, it is essential to use a resource
manager, which will take the suitable, and complex, decision about the allocation of
processes to the resources in the system.

Even though load balancing has received a considerable amount of interest, it is
still not definitely solved [11]. Nevertheless, this problem is central for minimizing
the applications' response time and optimizing the exploitation of resources. Clusters
require from load distributions that take into consideration each node's computational
features [5]. The resources utilization can be improved by assigning each processor a
workload proportional to its processing capabilities.

Multi-agent systems offer promising features to resource managers. The reactivity,
proactivity and autonomy, as essential properties of agents, can help in the complex
task of managing resources in dynamic and changing environments. Additionally, the
cooperation among agents, which interchange information and resources status,
allows load balancing mechanisms to be performed and efficiently deployed on
clusters. In this sense, these mechanisms have common goals with current
collaborative systems, and several synergies between both disciplines can be arisen.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 146 _ 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Collaborative-Aware Task Balancing Delivery Model for Clusters 147

In this paper, we present a new extension and reinterpretation of the Spatial Model
of Interaction (SMI), an abstract awareness model designed to manage awareness of
interaction, in cooperative applications. Thus, this paper presents a new
reinterpretation of this model, and its key concepts, called CAMT (Collaborative
Awareness Model for Task-Balancing-Delivery), in the context of an asynchronous
collaboration in clusters. This reinterpretation has been designed, form the beginning
to be a parametrical, generic, open, scalable, free of bottleneck and extensible be
adapted easily to new ideas and purposes. CAMT takes advantage of the aggregated
power of all the cluster nodes.

The CAMT model manages not just resources and information but also interaction
and awareness. It allows: i) controlling the user interaction (through the aura concept);
ii) guiding the awareness towards specific users and resources; iii) scaling interaction
through the awareness concept. This model has also been designed to apply successful
agent-based theories, techniques and principles to deal with resources sharing as well
as resources assignment inside the cluster environment.

This paper is organized as follows: section 2 discusses the related work in the area;
section 3 provides an overview of the Spatial Model of Interaction (SMI) and presents
CAMT as an extension of the SMI; section 4 describes the load balancing algorithm
in CAMT; section 5 provides readers with more specific details about the architecture
of the model; section 6 describes the empirical evaluation and then section 7
concludes this paper with a summary of the research carried out and points out some
future research lines.

2 Related Work

A taxonomy of load balancing methods has been defined in [3], taking into account
different aspects. Three important criteria for this classification are: time in which
workload distribution is performed (static [5] or dynamic [11]); Control, which can be
centralized or distributed [6]; and finally the system state view that is can be global
[6] or local [4]. Other solution is presented in[15], which defines a generic and
scalable architecture for the efficient use of resources in a cluster based on CORBA.
However, CORBA has as main disadvantage its complexity, which has made difficult
to extend its use. DASH (Dynamic Agent System for Heterogeneous) [14] is an
agent-based architecture for load balancing in heterogeneous clusters. The most
noticeable characteristic of this proposal is the definition of a collaborative awareness
model, used for providing global information that helps establish a suitable load
balance. Unlike this work, our proposal (CAMT) extends and reinterprets one of the
most successful models of awareness, the Spatial Model of Interaction (SMI), which
manages awareness of interaction through a set of key concepts. Most of the agent-
based load balancing systems use mobile agents, which makes easier the migration of
tasks [7]. Nevertheless, the study published in [13] concludes that the task migration
only obtains moderate benefits for long duration tasks.

3 CAMT: Reinterpreting the Key Awareness Concepts

The Spatial Model of Interaction was defined for application to any Computer
Supported Cooperative Work (CSCW) system where a spatial metric can be identified

148 J.L. Bosque et al.

[2]. The model itself defines some key concepts: Aura is the sub-space which
effectively bounds the presence of an object within a given medium and which acts as
an enabler of potential interaction [8]. Focus, which delimits the observing object's
interest; Nimbus, that represents the observed object's projection; and Awareness,
which quantifies the degree, nature or quality of interaction between two objects. For
a simple discrete model of focus and nimbus, there are three possible classifications
of awareness values when two objects are negotiating [9].

Let’s consider a system containing a set of nodes {n;} and a task T that requires a
set of processes to be solved in the system. Each of these processes need some
specifics requirements, being r; the set of requirements associated to the process p;,
and therefore each of the processes will be identified by the tuple (p;, r;). The CAMT
model intends to increase the collaboration capabilities of the system to start by a
simple, abstract and preliminary interpretation of the SMI key concepts in the context
of an asynchronous collaboration. Thus the CAMT model proposes an awareness
infrastructure based on these concepts capable of managing the load management of
clusters. This model reinterprets the SMI key concepts as follow:

Focus: It is interpreted as the subset of the space on which the user has focused his
attention with the aim of interacting with. The focus will be delimited by the Aura of
the node in the system.

Nimbus: It is defined as a tuple (Nimbus=(NimbusState, NimbusSpace)) containing
information about: (a) the load of the system in a given time (NimbusState); (b) the
subset of the space in which a given node projects its presence (NimbusSpace). As for
the NimbusState, this concept will depend on the processor characteristics as well as
on the load of the system in a given time. In this way, the NimbusState could have
three possible values: Null, Medium or Maximum, as we will see in section 4. The
NimbusSpace will determine those machines that could be taking into account in the
tasks assignment process and it is delimited by the Aura of the node in the system.

Awareness of Interaction (Awarelnt): This concept will quantify the degree, nature or
quality of asynchronous interaction between distributed resources. Following the
awareness classification introduced by Greenhalgh in [9], this awareness could be
Full, Peripheral or Null.

Awarelnt(nl.,nj) =Full if nje Focus({ni D A nje Nimbus(nj)
Peripheral aware of interaction if
n . € Focus ({ni}) Ay ¢ Nimbus (nj)

Awarelnt(n;,n j) = Peripheral if or

nj ¢ Focus ({ni}) Ao n; € Nimbus (n;)
The CAMT model is more than a reinterpretation of the SMI, it extends the SMI to
introduce some new concepts such us:

Interactive Pool: This function returns the set of nodes {n;} interacting with the n;
node in a given moment. Given a System and a task T to be executed in the node n;:

if Awarelni(n;,n;) = Full then n ; € InteractivePool(n;)

A Collaborative-Aware Task Balancing Delivery Model for Clusters 149

Task Resolution: This function determines if there is a service in the node n;, being
NimbusState(n;)/=Null, such that could be useful to execute the task T (or at least one
of its processes).

n; = Z {s;} Task Re solution: Node xTask — Task

n, x T —= {(p;,s)}

i

Where “s” is the “score” to execute p; in n; node, being its value within the range [0,
o): 0 if the node n; fulfils the all the minimum requirements to execute the process p;;
the higher is the surplus over these requirements.

This concept would also complement the Nimbus concept, because the
NimbusSpace will determine those machines that could be taking into account in the
tasks assignment process because they are not overload yet. This only means that they
could receive more working load, but the task T or at least one of its processes p; will
be executed in n; if, an only if, there is a service s; in the node n; that could be useful
to execute any of these p; processes

Collaborative Organization: This function will take into account the set of nodes
determined by the InteractivePool function and will return those nodes of the System
in which it is more suitable to execute the task T (or at least one of its processes p;).
This selection will be made by means of the TaskResolution function.

4 Load Balancing Algorithm in CAMT

In this section we will introduce the load balancing algorithm as it has been
introduced in the CAMT awareness model. The main characteristics of this algorithm
are that it is dynamic, distributed and global, and it takes into account the system
heterogeneity. The load balancing process can be performed by means of different
stages or phases [12], which are explained in this section.

4.1 State Measurement Rule

This rule will be in charge of getting information about the computational capabilities
of the node in the system. This information, quantified by a load index, provides
aware of the NimbusState of the node. Several authors have proposed different load
index and they have studied their effects on the system performance [10]. In this
paper the concept of CPU assignment is used to determine the load index. The CPU
assignment is defined as the CPU percentage that can be assigned to a new task to be
executed in a node. The calculation of this assignment is based on two dynamic
parameters: the number of tasks N, in the CPU queue and the percentage of
occupation of the CPU, U, and it would be calculated as:

1

1
FU2—)=>A,, =——
A N) PN +1

If(U < %) = Ay =1-Usage

150 J.L. Bosque et al.

As the system is heterogeneous, a normalization with the computational power of the
more powerful node of the cluster, Py, is needed in order to compare load index of
different nodes:

P-A

1=i CPU

P,

MAX

The NimbusState of the node will be determined by the load index and it will depend
on the node capacity at a given time. This state determines if the node could execute
more (local or remotes) tasks. Its possible values would be:

e Maximum: The load index is low and therefore this infrautilized node will
execute all the local tasks, accepting all new remote execution requests.

e Medium: The node will execute all the local tasks, but they will not accept
requests to execute tasks from other nodes in the system.

e Null: The load index has a high value and therefore the node is overload. In
this situation, it will reject any request of new remote execution.

4.2 Information Exchange Rule

The knowledge of the global state of the system will be determined by a policy on the
information exchange. This policy should keep the information coherence without
overloading the network with an excessive number of unnecessary messages. An
optimum information exchange rule for the CAMT model should be based on events
[1]. This rule only collects information when a change in the Nimbus of the nodes is
made. If later, the node that has modified its nimbus will be in charge of notifying this
modification to all of the nodes in the system (global algorithm), avoiding thus
synchronization points. Each of the nodes has information about the rest of the nodes
of the cluster. This information is stored in a list containing the node’s NimbusState
and its NimbusSpace.

4.3 Initiation Rule

As the model implements a non user interruption algorithm, the selection of the node
must be made just before sending the task execution. Once the execution of the
process starts in a specific node it would have to finish in the same node. The decision
of starting a new load balancing operation is completely local. If an overloaded node
receives a new task T to be executed, and it can not execute it (NimbusState =Null),
the load balancing operation will be automatically thrown. Then the initialization rule
which the node has to evaluate is the following:

o [If (NimbusState = Maximum) or (NimbusState = Medium), the task is accepted
to be executed locally.
e [f (NimbusState = Null), a new load balancing operation is started.

4.4 Load Balancing Operation

Now the node has made the decision of starting a load balancing operation, which will
be divided in another three different rules: localization, distribution and selection.

A Collaborative-Aware Task Balancing Delivery Model for Clusters 151

Localization Rule: Given a task T to be executed in the node n;, the localization rule
has to determine which nodes are involved in the CollaborativeOrganization of the
node n;. In order to make it possible, firstly, the CAMT model will need to determine
the awareness of interaction of this node with those nodes inside its focus. To
optimize the implementation, the previous awareness values are dynamically updated
based on the information exchange rule. Those nodes whose awareness of interaction
with n; was Full will be part of the Interactive Pool of n; to solve the task T, and from
that pre-selection the TaskResolution method will determine those nodes that are
suitable to solve efficiently the task in the environment.

Selection and Distribution Rule: This algorithm joins selection and distribution
rules because the proposed algorithm takes into account the NimbusState of each of
the nodes as well as the TaskResolution to solve any of the T’s processes. The goal of
this algorithm is to find the more equilibrate assignment of processes to
computational nodes based on a set of heuristics. This spread is made in an iterative
way. The sequence of steps that implements the assignment heuristic is:

1. The nodes belonging to the CollaborativeOrganization will be arranged by the
number of processes (associated to the T task) that could execute.

2. The first node of the arranged list is selected.

3. The process having the maximum score is assigned to the selected node and
both process assigned and node are removed from the list.

4. The following process of the ordered list is selected and the steps 2 and 3 of
this algorithm are repeated again.

5. This loop continues until the process had finalized with all the nodes of the
CollaborativeOrganization.

6. This algorithm doesn’t guarantee that all the processes could be assigned in a
first round. So, if any of the processes is out of the assignment, a new task
with all the pending processes is created, and the whole process starts again.

5 The CAMT Architecture

The load balancing multi-agent architecture, is composed of four agents replicated for
each of the nodes of the cluster (see figure 1): a) the Load Agent (LA), which in
charge of the state measurement rule; b) the Global State Agent (GSA), in charge of
the information rule; c) the Initiation Agent (IA), which decide if the task is executed
locally or if a new load balancing operation needs to be carried out; d) the Load
Balancer Agent (LBA) which implements the load balancing operation, strictly
speaking, including the localization, selection and distribution rules.

5.1 The Load Agent

The Load Agent calculates, periodically, the load index of the local node and
evaluates the changes on its NimbusState. When it detects a change on the state, this
modification is notified to the local GSA and IA. The load index is evaluated,
following the expressions introduced in section 4.1. The first step of the LA is to
obtain the node computational power, P;. Then this information is communicated to

152 J.L. Bosque et al.

BA GSA GSA BA
1A LBA LBA 1A
Amble Node Amble Node
BA: Benchmark Agent IA: Initiation Agent
GSA: Global State Agent LBA: Load balancing Agent

Fig. 1. CAMT Architecture

the rest of the nodes through the MPI_Reduce function, which is in charge of
calculating the maximum of the computational power of all the nodes, Pyax. Next,
the agent starts an infinite loop until the application is ended. In this loop the first step
is, to get dynamic node load information: the number of running task and the CPU
usage. Then the new state of the node is calculated and the agent determines if a node
state change has occurred. If the later, the agent communicates it to the local GSA and
IA. Finally, the agent sleep a time span, defined as a parameter by the user.

5.2 The Global State Agent

The main functionality of this agent is to manage the flux information exchanged
among the nodes of the system and provide LBA with this information as soon as it
requires it. Firstly, the agent gets information about its focus, its NimbusSpace and its
NimbusState. Once this information is communicated to the rest of the nodes, it
determines the current InteractivePool. Next, the agent enters in an infinite loop in
which it is waiting for receiving messages from other agents, which could be:

e LOCAL_STATE_CHANGE: This message comes from the Load Agent local
and it has to be notified to all the GSAs of all of the cluster nodes.

e REMOTE_STATE_CHANGE: In this case, only the local state list should be
modified to update the new state of the remote node.

e INTERACTIVE_POOL_REQUEST: The local LBA requests the
InteractivePool to the GSA.

e STATE_LIST_REQUEST: the local LBA requests the state list that the GSA
agent keeps updated with the state of all the nodes composing the cluster.

5.3 The Initiation Agent

When a user intends to execute a task in a node of the cluster, this request is sent to
the IA of that node. Then, this agent evaluates the initialisation rule to determine if it
can be executed locally or if a new load balancing operation has be carried out. Its

A Collaborative-Aware Task Balancing Delivery Model for Clusters 153

main structure contains an infinite loop and, for each of these iterations, the pending
tasks in the execution queue are checked. There are two types of messages:

LOCAL_STATE_CHANGE: It receives a message from the local LA to
notify a change on the local state.

EXECUTE_TASK_REQUEST: It requests execution of a new task. For each
process of the task, the NimbusState is checked to corroborate if its value is
equal to Full or Medium. If later, the process is executed locally. This loop
will finish when all the processes had been executed or when NimbusState of
the local node changed its value. In that moment a message would be sent to
the local LBA to start a new load balancing operation.

5.4 The Load Balancer Agent

This agent contains an infinite loop that is waiting to receive messages from other
agents. Its functionality depends on the messages received:

BALANCER_EXECUTION: This message comes from the local IA and it
indicates that a new load balancing operation needs to start. For the
localization rule, the LBA will follow the following sequence of steps:
1. Request the InteractivePool and the states list to the local GSA
2. Determine the TaskResolution, analyzing which nodes of the
InteractivePool have their NimbusState different to Null.
3. Request the scores, to the nodes included in the TaskResolution
4. Determine the CollaborativeOrganization by analyzing those nodes that,
belonging to the TaskResolution, can execute at least one of the processes
of the task.
As for the selection and distribution rule, the algorithm presented in section
4.4 has been implemented. Once all the processes had been assigned, they
would be sent to the designated nodes. If the process is accepted by the node,
the assignment of the process would have finalized otherwise the process
would be pending of assignment and it would add to the new task.
REMOTE_EXECUTION: This message comes from the remote LBA, asking
for the remote execution of a process. Once the LBA has checked its own
state, it replies to the remote LBA with an acceptance or rejection message. If
the process is accepted, the LBA would execute the process locally. The
rejection could be due to a change on its NimbusState (to Null).
SCORE_REQUEST: This message is a request to the LBA to send the scores
of a specific task. The LBA evaluates the scores for each of the processes
belonging to that task.

6 Experimental Results

These tests were performed over a 32 node PC cluster connected through a Myrinet
Network. The CAMT model has been developed using GNU tools and LAM/MPI
7.1.1 Library. In order to generate a set of CPU-bound task the NAS Parallel
Benchmark NPB 2.3 has been used. Besides the multi-agent architecture presented in
previous sections of this paper, an additional agent, named Task_Executor_Agent, has

154 J.L. Bosque et al.

been implemented to simulate the throwing of tasks to any node of the cluster. In all
the experiments presented the focus and the nimbus of each of the nodes include the
rest of the nodes, and therefore the algorithm has been processed as global. All the
tasks have been launched with a 3 seconds interval.

First Experiment: This experiment intends to get a measure of the overhead
introduced by the CAMT model in the execution of a set of tasks while the size of the
cluster increases. With this purpose, the algorithm has been executed in different
clusters configurations: 4, 8, 16 and 32 nodes. In all these cases, 50 tasks with 10
processes per task were run. The experimental results obtained from the execution of
this experiment are presented in the table 1 and in the figure 2.

Table 1. Speedup, maximal overhead, average overhead, number of load balancing operations
and number of attempts to assign a process with respect to the cluster size

Cluster Speedup Max. Overhead Average Overhead Balancing N.

Size per Process /process Operations attempts
4 2.85 594 17.12 41 30816
8 7,24 2.33 0.41 48 1338
16 15,87 1.59 0.28 44 0
32 31,65 1.92 0.29 48 1

These results show that cluster size has a benefit impact on the algorithm
performance when the number of tasks remains constant. From figure 2 we can point
out that when there are many more processes in the system that the cluster can
manage, all the nodes are overloaded and the overhead as well as the number of
attempts to assign a new process increases dramatically. On the other hand when the
cluster size is increased up to 32 nodes, the overhead remains almost constant.
Therefore this algorithm has very good scalability features.

Overhead per process with cluster size = 4 nodes Overhead per process with cluster size = 32 nodes

:

T T T T 1
0 100 200 300 400 500
Processes Processes

Fig. 2. Overhead per process with 4 and 32 nodes in the cluster

Second Experiment: This second test has only been achieved for the biggest cluster,
32 nodes. In all these cases, 50 tasks have been thrown. The objective was to get a
measure of how the number of processes of the T task affects the algorithm
performance. The experimental results obtained from the execution of this experiment
are presented in the table 2 and in the figure 3.

A Collaborative-Aware Task Balancing Delivery Model for Clusters 155

Table 2. Speedup, maximal overhead, average overhead, number of load balancing operations
and number of attempts to assign a process with respect to the number of processes per task

Processes/task N processes Speedup Max Average Balancing N.
overhead Overhead operations attempts
10 259 31.76 1.73 0.24 45 0
20 458 31.69 2,89 0.30 47 3
30 854 30.98 12.47 2.81 45 1401
40 1028 28.48 41.93 5.62 43 10299
Overhead per process with 10 process/task Overhead per process with 40 processes/task
2
” 1,5 4 ‘ * m
- © x4
g LY : 7] * "..
0,54 . . e . LN
0 50 100 150 200 250 300 0 100 200 300 400 500 600 700 800 900 1000 1100
Processes Processes

Fig. 3. Overhead per process with 10 and 40 processes per task

It can be to highlight that increasing the number of processes of the task, even over
the number of the nodes, we get the situation in which all the processes can not be
assigned in the first round of the selection rule. Additionally, increasing the total
number of processes that the system has to manage causes an increment in the global
load of the system that could lead to a TaskResolution empty. These two factors
provoke an increase on the overhead introduced by the algorithm. Moreover, the
number of tries to assign each of the processes needs to be taken into account. This
can be seen in figure 3 when the number of processes is around 600 and the overhead
value is dramatically increased. On the other hand when the number of processes is
not so high the overhead remains almost constant for all of the processes and tasks. In
table 2 we can see that in these cases the number of attempts to assign the processes is
drastically increased too.

Third Experiment: The last test has been carried out on a cluster of 32 nodes. The
size of the task is between 1 and 16 processes. The aim of this experiment is to
measure the impact that the number of consecutive tasks executed over the overhead
of the system. In order to make this evaluation, this experiment has been
accomplished with a number of tasks between 25 and 100. The experimental results
obtained from the execution of his first experiment are presented in the table 3 and in
the figure 4.

156 J.L. Bosque et al.

Table 3. Speedup, maximal overhead, average overhead, number of load balancing operations
and number of attempts to assign a process with respect to the number of consecutive tasks.

N N. Speedup Max. Average Balancing N.
Tasks Processes overhead/ overhead/ Operations attempts
Process process
25 227 29.11 242 0.38 23 0
50 443 30,24 2.54 0.35 47 0
75 708 31.85 2.63 0.28 72 2

100 919 32.03 3.1 0.32 96 7

The conditions given in the third experiment implies a higher global load of the
system, and it could drive to a situation in which all the nodes of the system would be
overload and the TaskResolution was empty. In this case the number of tries to make
the tasks assignment should increase and therefore the overhead of the system.
However in this experiment the overhead remains almost constant with the number of
tasks. Therefore we can conclude that the number of processes per task has a more
strong impact on the algorithm performance that the number of task. This is a
consequence of that this algorithm assigns only one process per round to each of the
nodes. Then if the number of processes in a task is much larger than the number of
cluster nodes the algorithm needs several rounds, increasing the overhead per process.

Overhead per Process

3 V3 .
.
%2,5 .
2 .
8152 .
L] Y1p . . ‘.00’ M
5 1 >

0 200 400 600 800 1000
Processes

Fig. 4. Overhead per process with 100 consecutive tasks

7 Conclusions

This paper presents an awareness model for balancing the load in collaborative cluster
environments, CAMT (Collaborative Awareness Model for Task-Balancing-
Delivery), in a collaborative multi-agent system. CAMT is a new reinterpretation of
the SMI model in the context of an asynchronous collaboration in clusters. The
CAMT model allows managing not just resources and information but also interaction
and awareness; guiding the awareness towards specific users and resources; and
scaling interaction through the awareness concept. This model has also been designed
to apply successful agent-based theories, techniques and principles to deal with
resources sharing as well as resources assignment inside the cluster environment.
CAMT manages the interaction in the environment allowing the autonomous,
efficient and independent task allocation in the environment.

A Collaborative-Aware Task Balancing Delivery Model for Clusters 157

This model has been evaluated in a real cluster infrastructure. Different scenarios
were designed for this purpose. The most important conclusions that could be
extracted from the experimental results presented in this paper are: Firstly, the
introduction of the load balancing algorithm based on the CAMT model on a cluster
achieves very important improvements with respect to the response time and speedup.
These results are reflected on the speedup figures and therefore on the scalability
degree of the algorithm. Secondly, we have to point out that the overhead incurred by
the algorithm to assign a process to a node is mainly determined by the number of
processes per tasks. Finally, the algorithm performs a number of load balancing
operations close to the maximum achievable value.

Acknowledgments. This work has been partially funded by the Government of the
Community of Madrid (grant S-0505/DP1/0235).

References

1. M. Beltran, J. L. Bosque, A. Guzman. Resource Disseminatioin policies on Grids.
Lectures Notes in Computer Science. Springer-Verlag 135 — 144. October 25-29, 2004

2. Benford S.D. and Fahlén L.E. A Spatial Model of Interaction in Large Virtual
Environments. Proceedings of the Third European Conference on Computer Supported
Cooperative Work. Milano. Italy. Kluwer Academic Publishers, 109-124, 1993.

3. T. L. Casavant and J. G. Kuhl. “A taxonomy of scheduling in general-purpose distributed
computing systems”, Readings and Distributed Computing Systems, pp. 31-51, 1994.

4. Corradi, L. Leonardi, and F. Zambonelli. “Diffusive load-balancing policies for dynamic
applications”, IEEE Concurrency 7(1), pp. 22-31, 1999.

5. Bajaj, R. and Agrawal, D. P. Improving Scheduling of Tasks in a Heterogeneous
Environment. IEEE Trans. Parallel Distrib. Syst. Vol 15, N. 2, 2004. 107-118.

6. S. K. Das, D. J. Harvey, and R. Biswas. Parallel processing of adaptive meshes with load
balancing. IEEE Trans. on Parallel and Distributed Systems, (12):1269-1280, 2001.

7. S. Desic and D. Huljenic. Agents based load balancing with component distribution
capability. Proc. of the 2nd Int. Symposium on Cluster Computing and the Grid 2002.

8. Fahlén, L. E. and Brown, C.G., The Use of a 3D Aura Metaphor for Compter Based
Conferencing and Teleworking. Proc. of the 4th Multi-G Workshop, 69-74, 1992.

9. Greenhalgh, C., Large Scale Collaborative Virtual Environments, Doctoral Thesis.
University of Nottingham. October 1997.

10. T. Kunz, “The influence of different workload descriptions on a heuristic load balancing
scheme,” IEEE Trans. on Software Engineering, vol. 17, no. 7, pp. 725-730, July 1991.

11. L. Xiao, S. Chen, and X. Zhang. Dynamic cluster resource allocations for jobs with known
and unknown memory demands. IEEE Trans. on Parallel and Distributed Systems,
13(3):223-240, March 2002.

12. C. Xu and F. Lau, Load balancing in parallel computers: theory and practice. Kluwer
Academic Publishers, 1997.

13. W. Leland and T. Ott. “Load-balancing heuristics and process behavior”, ACM
SIGMETRICS, pp. 54-69, 1986.

14. Rajagopalan and S. Hariri, An Agent Based Dynamic Load Balancing System, Proc. of the
International Workshop on Autonomous Decentralized Systems, 2000, pp. 164-171.

15. S. Vanhastel, et al. Design of a generic platform for efficient and scalable cluster
computing based on middleware technology. Proc. of the CCGRID 2001, 40-47.

An Improved Model for Predicting HPL Performance

Chau-Yi Chou, Hsi-Ya Chang, Shuen-Tai Wang, Kuo-Chan Huang*,
and Cherng-Yeu Shen

National Center for High-Performance Computing
* Department of Electronic Commerce, Hsing Kuo University, Taiwan

Abstract. In this paper, we propose an improved model for predicting HPL
(High performance Linpack) performance. In order to accurately predict the
maximal LINPACK performance we first divide the performance model into two
parts: computational cost and message passing overhead. In the message passing
overhead, we adopt Xu and Hwang’s broadcast model instead of the
point-to-point message passing model. HPL performance prediction is a
multi-variables problem. In this proposed model we improved the existing model
by introducing a weighting function to account for many effects such that the
proposed model could more accurately predict the maximal LINPACK
performance R, . This improvement in prediction accuracy has been verified on
a variety of architectures, including IA64 and IA32 CPUs in a Myrinet-based
environment, as well as in Quadrics, Gigabits Ethernet and other network
environments. Our improved model can help cluster users in estimating the
maximal HPL performance of their systems.

1 Introduction

The continuous improvement in commodity hardware and software has made cluster
systems the most popular alternative [1-5] for high performance computing for both
academic institutions and industries.

In 1998, Pfister [5] estimated over 100,000 cluster systems were in use worldwide.
In November 2006, more than 70% of machines on the 26" Top500 List were labeled as
clusters [6]. Most of these clusters used HPL (High performance Linpack) to
benchmark their system performance, in accordance with the requirement of the
Top500 List.

HPL utilizes LU factorization with row partial pivoting to solve a dense linear
system while using a two-dimensional block-cyclic data distribution for load balance
and scalability. A number of analysis models [7, 8] have been developed for HPL
performance prediction for different architectures. However, these models did not
consider the effect of hardware overhead, such as cache misses, pipeline startups,
memory load or store and floating point arithmetic. Most models adhere to
Hockney’s message passing model [9] in dealing with the message interchange
overhead.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 158 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Improved Model for Predicting HPL Performance 159

In this paper we propose an improved HPL performance prediction model where
we use a weighting function to account for the hardware overhead on the
computation side. On the communication side we adopt Xu and Hwang’s broad-
cast model [10]. This improved model comes up with a closer prediction of the
actual performance than the other models in the literature, after a series of
experiments on the Myrinet-based, Gigabits Ethernet based, IA64- and IA32-based
architectures.

2 HPL Algorithm and Performance Score Model

We first introduce the HPL algorithm in Section 2.1 and then the existing HPL
performance prediction model from [7] in Sections 2.2.1-2.2.5. The improved model is
discussed in Section 2.2.6. Here we list the definitions of the pertinent variables in
Table 1.

Table 1. Definition of the variables

Variable Definition

B Block size

NxN Dimension of linear system

PxQ Two dimensional map of computational processors
o Latency of Hockney’s mode (point to point), constant
p The reciprocal of throughput of Hockney’s model (point to point), constant
o Latency of Xu and Hwang’s model (MPI broadcast), function of (PQ)

, The reciprocal of throughput of Xu and Hwang’s model (MPI broadcast),

B function of (PQ)
83 Floating-point operation rate of matrix-matrix operations
g Floating-point operation rate of matrix-vector operations

the approximate floating-point operations per second when the processor is
performing matrix-matrix operations

V= The real computational performance of HPL, not including message passing
wXy. overhead. w is the weighting function in our proposed performance model

2.1 HPL Algorithm

The HPL algorithm is designed to solve a linear system by LU factorization with row
partial pivoting. The data are first logically partitioned into BxB blocks, and then
distributed onto a two-dimensional PxQ grid, according to the block-cyclic scheme to
ensure load balance as well as scalability. The block size B is for the data distribution as
well as for the computational granularity. The best B value is a function of the
computation-to-communication performance ratio in a system. A smaller B performs

160 C.-Y. Chou et al.

better load balance from a data distribution point of view; but when it becomes too
small, it may limit the computational performance because no data reuse occurs at the
higher level of the memory hierarchy from a computational point of view. The
recommended B value is between 32 and 256.

At a given iteration of the main loop, each panel factorization occurs in one column
of processes because of the Cartesian property of the distribution scheme. Once the
panel factorization has been computed, this panel of columns is broadcast to the other
process columns. The update of the trailing sub-matrix by the last panel in the
look-ahead pipe is made in two phases. First, the pivots must be applied to form the
current row panel U. U should then be solved by the upper triangle of the column panel.
Finally U needs to be broadcast to each process row so that the local rank-B update can
take place.

2.2 Performance Score Model

2.2.1 Assumption and Definition

Let the communication time to transfer L length of double precision messages be 7, =
o+BL, whereaandPare latency and the reciprocal of maximum bandwidth, respectively.
Both aandfare constants. Also, g,, g, and g, are defined as the times needed for
performing one floating point of the vector-vector, matrix-vector and matrix-matrix
operations, respectively. With the definitions behind us, we may proceed to solve an
NxN linear system.

2.2.2 Panel Factorization and Broadcast
Let us consider an IxJ panel distributed over a P-process column. The execution time
for panel factorization and broadcast can be approximated by:

Tacl L, J) = (IIP - J13) J* g3 + J In(P)(a+ 2BJ) +a+ BI T / P (1)

2.2.3 Trailing Sub-matrix Update

Let’s consider the update phase of an Ix/ trailing sub-matrix distributed on a PxQ
process grid. From a computational point of view, one has to (triangular) solve [/
right-hand sides and to perform a local rank-J update of this trailing sub-matrix. Thus,
the execution time for the update operation can be approximated by:

Topdarel, 1) = g3 L J1Q + 2 ' J IPIQ) +0(In(P)+P-1)+ 3B1 J /Q.)

2.2.4 Backward Substitution

The number of floating point operations performed during the backward substitution is
given by N*/P/Q. Then, the execution time of the backward substitution can be
approximated by:

Thaets(N. B)= g, N*I(PQ) + N (o B + 2P). 3)

An Improved Model for Predicting HPL Performance 161

2.2.5 The Original HPL Performance Model
The total execution time 7 is given by:

N
T= 2 [Tpfact (N_k’ B)+Tupdate (N_k -B, B)]+Tbacks (N’B)
k=0, B, 2B,---
2
:g3{2Ns{ul_1JBN2+(2_1_1st}+g2{N}
3PQ 2P 20 PQ PO Q 3 PQ
+0{{N[(B ”)l"g))” +1}+Bln(P)+log(P)+ P} @
+,B{(3P+QJN2 +[1+21n(P)—3+2JBN+[2ln(P)—3JBZ}
2P0 2P 20 0

The algorithm totally perform 2N *13+3N°/20f floating point operations, Then, the
performance score, hereinafter called R,y _oyigina, becomes:

ON3/3+2N2%/2
T

B JEVE I (0 NS N U PSS P S W Y BS Pd
g3{3PQN +[2P+2Q PQJBN +(PQ 0 3]3}”2{1@} 5)

=<2N3+3N22>/ +a{N[—(B+l)log(P)+P+1}+Bln(P)+ln(P)+P}

R

est _original =

3 B

+ﬁ{[3p+ Q]NZ +[i+ 21n(P)—%+ 2]BN +[21n(P)—%jBZ}

2P0 2P

For a very large N, we need only to consider the dominant term in g5 a, and B. Then,
Eq.(5) becomes:

1
est-orighal = g5 3al(B+1)in(P)+P] 3p(3P+Q)
PQ 2BN? #NPQO

R

(6)

2.2.6 Our HPL Performance Model
Wang and co-workers [8] defined a new variationy; as the approximate floating point
operations per second when the processor is performing matrix-matrix operations.

Then,)3 = L
83
Now, we propose a weighting function w to include overheads such as cache misses,
pipeline startups, and memory load or store. This weighting function w will be taken as
the ratio of the time for matrix multiplication to the total HPL execution time on a

162 C.-Y. Chou et al.

single processor; and 0 < w < 1. Next, we define a new variable y= wxy, to represent
the approximate floating point operations per second for the total HPL solution.

The parameters representing the communication overhead, a and B in Eq.(5) and
Eq.(6), are based on Hockey’s model; that is, they are constants. However, in our
proposed model, we will adopt Xu and Hwang’s model to account for the
communication overhead. The communication time to transfer L length of double

precision messages is then T.= o + ﬂ’ L, where & and ﬂ, are latency and the

reciprocal of maximum bandwidth, respectively. Now, both o and ﬂ' are functions

of the total number of processors (PQ). Therefore, the performance score of our
modified HPL performance model, hereinafter call R, oqified » bECOMES:

For small size cluster, Rest_mod ified =
2
1{2N3+(1+1_l]BNz+(2_1_1]B3}+g2 N2
7 |3P0 2P 20 PQ PO 0 3 PO 7
3 2
<2N+3N>/ +a’{N[—(B+1)logép)+P+1}+Blog(P)+log(P)+P}

3 2
J(3P+0), .2 1 _3 _3 B2
+ﬁ{(2 JN +(2 +210g(P) 2 +2JBN+(210g(P) QJ }

For large cluster,

/
Rest_modified == 3¢ [(B+1)log(P)+P] 3 B(3P+Q) ®
PQy 2N?B 4NPQ

The denominator of Eq. (8) consists of three terms. The first term dominates the
performance of the system if communication overhead is not considered, with the best
score being PQy. The second and the third terms account for the communication

overhead resulting from discrete computing, while o and ﬂ' depend on the latency
and bandwidth of the network for MPI collective message, respectively. In general,
when the size of a cluster system increases, so do the influences of o and ﬂ’ .

3 Comparative Analysis of Different Models on Various Clusters

We now proceed to analyze the HPL performance on three different cluster systems,
i.e., the Formosa Cluster [11], the Triton Cluster [12], and Dawning 4000A [13]. The
Formosa cluster is equipped with IA32 CPUs and in a Gigabit Ethernet environment.
The Triton Cluster uses the IA64 CPUs with Quadrics interconnection network [14].
The Dawning 4000A is a cluster of IA64 CPUs with Myrinet [15] network
environment. Details of the systems are described in Sections 3.1, 3.2, and 3.3.

An Improved Model for Predicting HPL Performance 163

3.1 NCHC Formosa PC Cluster

This PC Cluster was built by the National Center for High-Performance Computing
(NCHC) in September 2003. Our team had diligently optimized the system, specifically
the network drive, the MTU, two network interface cards with two different private
subnets, and with unused services turned off. It was the 135" on the 22" Top500 List in
November 2003, and it was then the fastest computer system in Taiwan [11].

The system utilizes IBM X335 servers with Intel Xeon 2.8GHz dual processors.
There are 300 CPUs connected together by a Gigabit Ethernet network. We adopted
Debain 3.0 (kernel 2.6.0) operating system (OS), Intel compile 8.0 compiler,
LAM/MPI 7.0.6 [16], and GOTO BLAS [17].

To compare Eq.(7) with Eq.(5), we need to first decide the parameters in these two
equations. We apply the DGEMM function in HPL; that is, matrix multiplication of
double precision random numbers of HPL, to compute the floating-point operations per
second of matrix multiplication, shown in figure 1. From figure 1, we obtainy; = 4.6
GFLOPS. Similarly, 1/g, = 633 MFLOPS.

Next, we determine the value of the weighting function, w, by adding a timing merit
of matrix multiplication in HPL software and enabling the option:
-DHPL_DETAILED_TIMING. The outputis shown as figure 2, and then w = 516.42 /
586.77 = 0.88.

In our previous research [18], we obtain o= S5l8us, = 0011us,

o’ =81.3154In(PQ)—63.81,and B =0.0193In(PQ)—0.0085 . Both &’
and [" are ings.
Table 2 lists the performance scores in GFLOPS of the measured R,,,, value and the

Rest-origina USINg Eq. (5), and Resmodifiea Using Eq. (7) on 4, 6, and 8 processors. It
demonstrates that Re.odifiea 1S indeed closer t0 R,qc than R originar-

5000

MFLOPS

0 2000 4000 6000 8000
Matrix Size

Fig. 1. MFLOPS vs. Matrix size on the Formosa Cluster

164 C.-Y. Chou et al.

T/V N NB P Q Time Gflops
WOOL2L88 15840 88 1 1 586.77 4.516e+00
—=VVV--VVV-=-VVV-=-VVV--VVV--VVV--VVV--VVV--VVV—

Max aggregated wall time HPL DGEMM. . :[516.42
Max aggregated wall time rfact. . . : 17.06

+ Max aggregated wall time pfact . . : 17.06

+ Max aggregated wall time mxswp . . : 0.27

Max aggregated wall time update . . : 569.30

+ Max aggregated wall time laswp . . : 9.71

Max aggregated wall time up tr sv . : 0.41

Fig. 2. The output of HPL

Table 2. Comparison of two Performance Scores in GFLOPS on 4-, 6-, and 8- CPUs on the
Formosa Cluster

NO- Of PI'OCS E E mec E Rest—oriﬁinal E Rest—moditwd
4 _Score. 16.06. 1700 . 1579
R error; - . 6% . 2%
6 __Score; 2347 2698 23.47
SR I error | el 15% 0%
g Score 3151 3596 | 3102

error - 14% 2%

Note: R, is the maximal LINPACK performance achieved.

We reported a measured R,,,, = 0.9975 TFLOPS to the Top500 List in October 2003.
R, as defined in the Top500 List, represents the maximal LINPACK performance
achieved where B = 88, N = 188000, P =12, and Q = 25.

Table 3 lists the performance scores in TFLOPS of the measured R,,,, value and the
Regt-origina USing Eq. (6), and R, podiiea Using Eq. (8). It demonstrates that R, oaifiea OF
1.05 is indeed closer to R,,,, of 0.9975.

Table 3. Comparison of two Performance Scores in TFLOPS on 300 CPUs on the Formosa
Cluster

Rmax Rest-original Rest-mod_iﬁed
Score 0.9975 1.35 1.05
error -- 35 % 5%

Note: R, is the maximal LINPACK performance achieved.

3.2 NCHC Triton Cluster

This Cluster was built by NCHC in March 2005 and is currently the fastest computer
system in Taiwan [12]. The system contains 384 Intel Itanium 2 1.5GHz processors
(192 HP Integrity rx2600 servers) connected together by a Quadrics interconnection
network, with a RedHat AS3.0 operating system and Intel compile 8.1, HP MLIB
v.19B, and HP MPI v2.01 software.

An Improved Model for Predicting HPL Performance 165

As in Section 3.1, we must first determine the parameters in Egs. (6) and (8). With a
sequential static analysis and curve fitting, we obtaina= 2.48s, o = 20.55us, P=
0.0040us and 3" = 0.010665s.

Rux = 2.03 was measured and reported to the Top500 List with the following
parameters B = 72, N =25500, P = 12, and Q = 32.
By the DGEMM function in HPL, we plot figure 3 and obtainy; of 5.88 GFLOPS.

7000
6000 |
2 5000
S 4000
= 3000
= 2000
1000

0

0 4000 8000 12000
Matrix Size

Fig. 3. MFLOPS vs. Matrix size multiplication on the Triton Cluster

Following the similar procedure in Section 3.1 gives the weighting factor w of 0.93.

Table 4 lists the performance scores of the measured R,,,, value and the scores using
Eq. (6) and Eq. (8) for the Triton Cluster. It is clear that R,.,0qies yields a score of 2.07,
a much better prediction than R,y.,igina Of 2.25 using the original model.

Table 4. Comparison of two Performance Scores in TFLOPS on Triton Cluster

Rmax Rest-original Rest-moiiﬁed
Score 2.03 2.25 2.07
error - 11 % 2 %

3.3 Dawning 4000A

This cluster system was ranked 10" in the 23" Top500 List in November 2003. It
contains 2560 AMD Opterons running at 2.2 GHz connected together by a Myrinet
network. Parameters used on Egs. (6) and (8) are: R, = 8.061 TFLOPS and N =
728400 from the Top500 List. P =40 and Q = 64 are assumed.

We choose an B of 240 from reference [19], assuming identical behavior to the AMD
Opterons running at 1.6 GHz found in the literature (AMD 2.2 GHz Opteron were used
in the Dawning 4000A) andy,= 4.4 x 0.918 = 4.0392 GFLOPS [17].

166 C.-Y. Chou et al.

The message passing overhead is assumed to be similar to the Gunawan and Cai’s
results [20] with a Linux platform with 64bit 66 MHz PCI; then o = 14.08s, o =
259.79us, B= 0.009us and 3" = 0.11ys.

Assuming that the behavior of HPL on the Dawning 4000 was similar to that of
reference [19], we then calculate the weighting function w to be 0.9. The prediction
results R.y.origingt AN Regp.moaifiea ar€ listed in Table 6. Again, our improved model gives
an error of 4 % versus 27 % if we use the original model.

Table 6. Comparison of two Performance Scores in TFLOPS on the Dawning 4000A

Rmax Rest—ori,eirwl Rest—mudiﬁ'ed
Score 8.061 10.28 8.417
error - 27 % 4 %

4 Prediction of R, on SIRAYA

The maximal LINPACK performance achieved R,,,, in the Top500 List depends on
network communication overhead, BLAS, motherboard, PCI system, size and
bandwidth of main memory, compiler, MPI-middleware. In Sections 3.1-3.3, our
improved model of Eq. (8) has resulted in a better correlation with R, in all three
clusters: the Formosa, the Triton, and the Dawning 4000A clusters. It should be noted
on the first two clusters we use the actually measured parameters, and in the cases of the
last, only “estimated” parameters are used. We believe once the parameters for the last
become available, the prediction results should be even more accurate.

The authors of HPL suggest that the problem size N should be about 80% of the total
amount of memory in reference[7]; that is N = 0.8 X Ny.x, Where Ny = SQRT(TM/8) is
the allowable maximum problem size, TM is total memory size, reserving 20% of the
total memory for system kernel overhead. In our experience, the problem sizes of the
IA32-based cluster, Formosa, is quite near Ny, and may be larger than the suggested
values. On the other hand, the problem sizes for the two IA64-based platforms--both
Triton and Dawning--are smaller than the suggested, where N = 0.58 X N, for the
Triton and N = 0.46 x Ny, for the Dawning 4000A, because the IA64 based clusters
need to save large memory for system kernel overhead [6].

SIRAYA is a high-performance Beowulf cluster located within the Southern
Business Unit of NCHC. The cluster was designed and constructed by the 'HPC Cluster
Group' at NCHC for computational science applications.

The computing nodes in SIRAYA are 80 IBM eSeries €326 in 1U cases mounted in
three racks. Each IBM eSeries €326 has two AMD Opteron 275 DualCore processors
running at 2.2 GHz with 1 MB of L2 cache, 4 GB of DDR400 registered ECC SDRAM.
This means SIRAYA has 320 cores. All computers are connected together in a star
topology to six stackable Nortel BayStack 5510-48T 10/100/1000 Mbps switches.

Based on above elaboration, we use the following parameters to predict the maximal
performance score on SIRAYA. N = 0.5 X Ny = 10°, B = 240, w = 0.9, = 4.0392

An Improved Model for Predicting HPL Performance 167

GFLOPS from section 3.4, o = 405.24us, and ,B' = 0.10283us from section 3.1.

Then, Resmodifiea Of 835.6 GFLOPS using Eq. (8) is very close to R, of 848.2
GFLOPS.

Next phase, we will upgrade the system to 8 GB RAM for each node and fat-tree
high performance network. Moreover, the system will be increased sixteen nodes.
Then, the parameters become N = 1.5 x 10°. Therefore, we predict the maximal
performance score on SIRAYA will be 1.37 TFLOPS after upgrade at the second
phase.

5 Conclusion

Building on Wang’s HPL performance model, we propose an improved HPL
performance prediction models. Four existing clusters are used for comparing the
prediction results. One of them is IA32 system and the other three are IA64 systems.
The intercommunication media used in these four clusters are Myrinet, Quadrics, and
Gigabit Ethernet network. In all cases, our improved model shows consistently better
predictions than those using the existing model.

Our improved HPL performance prediction model would be a great help for those
who wish to better understand their systems. It helps reduce the time for trial-and-error
runs; it provides a user in scientific computing with useful information in predicting the
performance and scalability of his own program as well.

References

1. Sterling, T., Becker, D., Savarese, D., et al.. BEOWULF: A Parallel Workstation for
Scientific Computation. Proc. Of the 1995 International Conf. On Parallel Processing
(1995)

2. Sterling, T., Savarese,D., Becker, D., et al.: Communication Overhead for Space Science
Applications on the Beowulf Paralle] Workstation. Proc. of 4™ IEEE Symposium on High
Performance Distributed Computing (1995)

3. Reschke, C., Sterling T. and Ridge, D.: A Design Study of Alternative Network Topologies
for the Beowulf Parallel Workstation. Proceedings of the 5™ IEEE Symposium on High
Performance and Distributed Computing (1996)

4. Ridge, D., Becker, D. and Merkey, P.: Beowulf: Harnessing the Power of Parallelism in a

Pile-of-PCs. Proceedings of IEEE Aerospace (1997)

Pfister, G. F.: In Search of Clusters. Prentice-Hall, Inc. (1998)

Top 500 List, http://www.top500.org

HPL Web site, http://www.netlib.org/benchmark/hpl/

Wang, P., Turner, G., Lauer, D., Allen, M., Simms, S., Hart, D., Papakhian, M. and Stewart,

C.: LINPACK Performance on a Geographically Distributed Linux Cluster. 18th

International Parallel and Distributed Processing Symposium (IPDPS'04), Santa Fe, New

Mexico (2004)

9. Hockney, R. W.: The Communication Challenge for MPP: Intel Paragon and Meiko CS-2.
Parallel Computing 20 (1994) 389-398
10. Xu, Z. and Hwang, K.: Modeling Communication Overhead: MPI and MPL Performance
on the IBM SP2. IEEE Parallel & Distributed Technology 4(1) (1996) 9-23

® =N

168

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

C.-Y. Chou et al.

NCHC Formosa PC Cluster Home Page, http://formosa.nchc.org.tw

NCHC Triton Cluster Home Page, http://www/english/pcCluster.php

Zhang, W., Chen, M. and Fan, J. : HPL Performance Prevision to Intending System
Improvement. Second International Symposium on Parallel and Distributed Processing and
Applications (2004)

Boden, N. J., et al.: Myrinet: A Giga-bit-per-second Local-area Network. IEEE micro
(1995)

Burns, G.., Daoud, R. and Vaigl, J.: LAM:An Open Cluster Environment for MPL
Proceedings of Supercomputing Symposium'94 (1994) 379-386

Petrini, F., et al. : Performance Evaluation of the Quadrics Interconnection Network. Cluster
Computing (2003)

GOTO library, http://www.cs.utexas.edu/users/kgoto

Chou, Chau-Yi, Chang, His-Ya, Wang, Shuen-Tai, Tcheng, Shou-Cheng: Modeling
Message-Passing overhead on NCHC Formosa PC Cluster. GPC 2006, LNCS 3947 (2006)
299 - 307

Zhang, W., Fan, J. and Chen, M. : Efficient Determination of Block Size NB for Parallel
Linpack Test. The 16th IASTED International Conference on Parallel and Distributed
Computing and Systems (2004)

Gunawan, T. and Cai, W.: Performance Analysis of a Myrinet-Based Cluster. Cluster
Computing 6 (2003) 229-313

An Ad Hoc Approach to Achieve Collaborative
Computing with Pervasive Devices

Ren-Song Ko! and Matt W. Mutka?

! National Chung Cheng University, Department of Computer Science and
Information Engineering,
Chia-Yi 621, Taiwan
korenson@cs.ccu.edu.tw
2 Michigan State University, Department of Computer Science and Engineering,
East Lansing MI 48824-1226, USA
mutka@cse.msu.edu

Abstract. Limited computing resources may often cause poor perfor-
mance and quality. To overcome these limitations, we introduce the idea
of ad hoc systems, which may break the resource limitation and give mo-
bile devices more potential usage. That is, several resource-limited de-
vices may be combined as an ad hoc system to complete a complex com-
puting task. We illustrate how the adaptive software framework, FRAME,
may realize ad hoc systems by automatically distribute software to ap-
propriate devices via the assembly process. We discuss the problem that
ad hoc systems may be unstable under mobile computing environments
since the participating devices may leave the ad hoc systems at their
will. We also propose the reassembly process for this instability problem;
i.e., assembly process will be re-invoked upon environmental changes. To
further reduce the performance impact of reassembly, two approaches,
partial reassembly and caching, are described. Our experimental results
show that the caching improves performance by a factor of 7 ~ 40.

1 Introduction

As technology improves, small devices and task-specific hardware begin to emerge.
These devices usually have limited resources or specialized interfaces to address
the desired goal of mobility and friendly usage. Thus, it will be a challenge to
execute complex applications on these devices with reasonable performance and
quality. However, the ubiquitous existence of computers may bring many possi-
ble solutions for this challenge. For instance, it is possible for computers to move
and interact with their environment to seek the available resources to accomplish
resource-intensive tasks more efficiently.

That is, instead of running software on a single device, one may look for avail-
able devices nearby and connect them together to form a temporarily organized
system for short-term usage. Once the software is launched, the appropriate
part of the code will be automatically distributed to each participating device.
After that, these devices will execute the assigned code to accomplish the task
collaboratively. Such a system without prior planning is called ad hoc [5].

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 169 2007.
© Springer-Verlag Berlin Heidelberg 2007

170 R.-S. Ko and M.W. Mutka

Image the scenario that a person may watch a movie with his mobile phone.
Because of limited computing capability, the video and audio quality may be
unacceptable, and the viewing experience may not be pleasant. On the other
hand, he may look for available intelligent devices nearby. For example, he may
find an ATM machine for its larger screen and a MP3 player for its stereo
sound quality. Thus, he may connect them together to form an ad hoc system as
shown in Fig. [l After the video playback software is launched, the appropriate
part of the code will be distributed to each device, such as the code for audio
processing to the MP3 player and the code for video processing to the ATM.
As a consequence, instead of watching the movie on the mobile phone, he may
enjoy the movie on the ad hoc system with larger image on the screen of the
ATM and better sound on the MP3 player.

b

Fig. 1. A video playback application running on an ad hoc system

Such ad hoc systems may be realized by an adaptive Java software frame-
work, FRAME [0}, [7]. FRAME may automatically distribute software components to
each participating devices and provide the functionalities of a middleware to
allow these components to execute cooperatively. However, mobile computing
environments are not likely static and, hence, ad hoc systems may be unstable.
For example, some participating devices may leave the ad hoc system during the
execution of the application. Therefore, the code on these leaving devices have
to migrate to other devices in the system for proper execution of the application.
In this paper, we shall illustrate the approach to improve FRAME for this chal-
lenge. We also discuss the issue of the performance impact on the application
execution, and introduce two possible performance improvement.

We shall briefly describe the architecture of FRAME in the next section. Section[3]
illustrates an approach for solving instability problem of ad hoc systems, discusses
the performance issue, and describes how we improve it. We applied the improved
FRAME to a robot application and measured the performance impact. The results

An Ad Hoc Approach to Achieve Collaborative Computing 171

are illustrated in Sect.[d Finally, the last two sections will give a summary, survey
of related work, and then discuss potential future investigations.

2 Adaptive Software Framework: FRAME

The central themes of FRAME are component, constraint, and assembly. The ar-
chitecture of FRAME [0l [7] may be summarized as follows.

Component: An application is composed of components. Each component pro-
vides services to cooperate with other components. The services define the
dependency of the components and form a software hierarchy tree, i.e., a par-
ent component requires services from its child components and vice versa.

Implementation: A component may have more than one implementation.
Each implementation provides the same functionality of the component but
with different performance, quality, and resource requirements. Only one
implementation of each component is needed to execute a program. For ex-
ample, the audio component of the video playback application may have two
implementations. Each is able to process the audio of the movie but with
different sound quality and computation resources. The implementation with
better sound quality may require more computation resources than the mo-
bile phone has. Of course, such an implementation should not be executed
on the mobile phone. The question for which implementation is feasible on
the given device will be answered with help from constraints. Finally, the
software hierarchy information, such as what components the application
has and what implementations of the component has, will be registered to a
database server called the component registry.

Constraint: Each implementation may have a set of constraints embedded. A
constraint is a predicate and used to specify whether the given computing
environment has resources that the implementation requires. It may also
specify the execution performance and quality of the implementation. The
constraints of the implementation are used by the assembly process to de-
termine whether the implementation is feasible on the given device.

Assembly: A process called assembly will resolve, on the fly by querying the
component registry, what components and their implementations an appli-
cation has. For each component, the assembly process will load each imple-
mentation and check its constraints on a given device. If all constraints are
satisfied, the implementation is feasible on the device. Hence, the compo-
nent with the feasible implementation will be distributed to the device. As
shown in Fig. 2 there may be an implementation for audio component with
better sound quality and all its constraints are satisfied on the MP3 player
but not the mobile phone and the ATM. Thus the audio component will be
distributed to the MP3 player.

Execution: After all the components are distributed, the application begin to
execute.

172 R.-S. Ko and M.W. Mutka

constraints fail traints f.
constraints safisfied ™ cogﬁ_rams a

-
- —_—
S — ——

constrajnts satisfied

audio component other component video component

Fig. 2. Components will be distributed to appropriate devices based on their constraints

Table 1. if-else statement structure

if (constraints of component 1 with implementation 1)
{ // select component 1 with implementation 1

if (constraints of component 2 with implementation 1)
{ // select component 2 with implementation 1

// check each implementation of component 3, 4,...

}
else if (constraints of component 2 with implementation 2)
{ // select component 2 with implementation 2

// check each implementation of component 3, 4,...

// more else if blocks for other implementations of component 2

}
else if (constraints of component 1 with implementation 2)
{ // select component 1 with implementation 2

// similar as the code in the if block of
// component 1 with implementation 1

. // more else if blocks for other implementations of component 1

The traditional approach to distribute components to appropriate devices
based on constraints is to use condition statements such as if-else statements. For
example, suppose there is an application that may have components 1,2,..., N,
where component i has M; implementations. Thus, there may be nested if-else

An Ad Hoc Approach to Achieve Collaborative Computing 173

statements similar to Table [l First, it checks if the constraints of component
1 with implementation 1 are true. If yes, it will has code in its if block to
check appropriate implementation of component 2, then 3, and so on. If not, it
will jump to else if block to check the component 1 with implementation 2.
The code in its else if block of implementation 2 are same as implementation
1. Thus, if constraints of implementation 2 are true, it will check appropriate
implementation of component 2, then 3, and so on. The process will find an
appropriate implementation for component 1 first, then 2, 3, and so on.

The condition statements approach is primitive from the software engineering
perspective. As the number of components and their implementations increase,
the code tends toward so called “spaghetti code” that has a complex and tangled
control structure and the software will become more difficult to maintain or
modify.

The most important limitation of the condition statements approach is that
condition statements are hard-coded. Thus, the availability of all implementa-
tions need to be known during the development stage. It is not flexible enough to
integrate newly developed implementations without rewriting and recompiling
the code, and, of course, the down-time.

To avoid the above limitations, the assembly process uses the following two-
step approach:

1. Components distribution: In this step, the assembly process will dis-
tribute components to participating devices. Note that there will be n¢ differ-
ent component distributions with n participating devices and ¢ components.
By using the information stored in the component registry, the assembly
process may be able to identify all the component implementation of an
application. Since the assembly process queries this information during run-
time, the above limitations of the condition statements approach are avoided
as long as newly developed implementations register their information to the
component registry. When all components of a distribution are distributed,
all the constraints will be collected and the assembly process will proceed to
next step for solving these constraints.

2. Constraints solving: For each component, the assembly process will find
out if all the constraints are satisfied. If all the constraints of the distribution
are satisfied, the distribution is feasible and the application may execute on
this distribution. FRAME uses a backtracking algorithm [§] for solving con-
straint satisfaction problems. If one of the constraints within this distribu-
tion is not satisfied, the assembly process will return to the first step for next
distribution.

3 Reassembly

A straightforward idea for solving the instability problem of ad hoc systems
is to monitor the computing environment changes. If some of constraints fail
due to environmental changes, the application execution will be temporarily

174 R.-S. Ko and M.W. Mutka

suspended, the component assembly process will be re-invoked, and then the ap-
plication execution will resume with appropriate implementations of the compo-
nents. However, one challenge for this reassembly approach is performance, since
the assembly process involves I/O activities, such as communication between de-
vices, and intense computation, such as constraints solving to find the feasible
distribution. In our experiments, the assembly process of the robot application is
about 650 times slower than the similar application hard coded by if-else condi-
tion statements. It will be not feasible to simply re-invoke the assembly process
for the reassembly, especially on a small temporal scale of environment change.
Therefore, we propose two schemes, partial reassembly and caching, to improve
the performance.

First, we observe that not all components need to be changed for the reassem-
bly process and it is unnecessary to examine the constraints of these components.
Thus, developers may only specify the subset of the components to be examined
to reduce the run-time monitoring performance impact and the constraints solv-
ing time. For the video playback application example, the person may always
carry the mobile phone and MP3 player, but not the ATM. As the person walks
around, the connections between the ATM and other devices may drop, and
then the ATM will leave the ad hoc system. Therefore, as shown in Fig. B it is
only necessary to monitor the ATM and perform the video component migration
when the ATM leaves.

ad hoc system

monitored subsystem

video component migration

Fig. 3. Example of partial reassembly

The other performance improvement is to use cache, which may be done in two
different levels. The first level is to cache the component distribution results, i.e.,
the first step of the assembly process. The purpose of the first step is to find possi-
ble distributions and collect all the constraints of each distribution for constraints
solving. If no component implementation is added or removed, the constraints
of each distribution will remain the same and the first step may be avoided.

The second level is to cache the computing environment, a more aggressive
scheme based on the assumption that the computing environments will repeat.

An Ad Hoc Approach to Achieve Collaborative Computing 175

A computing environment will be used as a key, and its assembly results are
cached in a hash table with the key as shown in Fig. @ That is, a computing
environment may contain information that an application requires for execution,
such as number of participating devices, network bandwidth, hardware, etc. Thus
the information may be converted to a key for caching via a hash function. If
the computing environment repeats, its assembly results may be obtained from
the cache with the key.

cache

. . A component distribution
A computing environment

Fig. 4. Flow of reassembly cache

4 Performance Evaluation

We use a robot, XR4000 [I2], to evaluate the performance of the component
reassembly process. We compare the performance of different implementation
selection schemes, including component reassembly with and without caching,
and also evaluate the performance of the similar application using hard coded if-
else condition statements. The performance is measured versus different number
of the component implementations registered in the component registry.

To highlight the relationship between the performance and these different im-
plementation selection schemes, we simplify the software hierarchy so the mea-
sured application has only one component with multiple implementations to be
assembled. As a consequence, what the reassembly process actually does is to
select an appropriate implementation of the component. Note that performance
is application dependent, and, therefore, the performance comparison may not
be same for different applications.

Figure Bl shows that the time required for the constraints solving step, which
is about 50% ~ 60% of the total time for assembly or non-cached reassembly. If
the application hierarchy does not change and no new implementation is added,
the first level caching may be used. The non-cached reassembly may be approxi-
mately reduced to the constraint solving step, which is a 40% ~ 50% time saving.

Figure [6l compares the time required to search for the appropriate implemen-
tation of the component by the different schemes, i.e., non-cached reassembly,
cached reassembly, and hard coded if-else statement. The if-else scheme requires
about 0.003 ~ 0.018 ms that depends on the number of implementations. The

176 R.-S. Ko and M.W. Mutka

Reassembly Performance

14 T T T
Total -+
Constraint solving
12 +_,"
7
10 =
R
G
2 4ot
é 8 +
o ot
E & -‘-+ .
B +.‘,.+“ e
e
",.+ Ry <
. o A
A A
0 ! ! ! ! ! ! ! !
2 4 6 8 10 12 14 16 18 20

Number of implementations

Fig. 5. Constraints solving performance of reassembly

Performance Comparison

0 ‘ ‘ T T T T T
Cached —@—
If-else ---&---
Non-cached -4
1 Loicol + P e T -+
N + +4..+,...+...+....+...+....+..._.|_..._'_ -+
Lot
2 10°
g
) 0000900000 06000000090
£
= 10!
10 B &0 --4)---(%--0---0"0--0--&
P e
-
107 L .) ‘ ‘ ‘ | |
2 4 6 8 10 12 14 16 18 %

Number of implementations

Fig. 6. Performance comparison for different component selection scheme

non-cached reassembly requires about 2.1 ~ 12.1 ms that also depends on the
number of implementations, and it is about 650 times slower than the if-else
scheme.

The result also shows that the cached reassembly requires about 0.29 ms and
improves the reassembly speed by a factor of 7 ~ 40, and may be only about 15
times slower than if-else scheme. Unlike if-else and non-cached schemes, the cache

An Ad Hoc Approach to Achieve Collaborative Computing 177

access time is constant and independent on the number of implementations.
Thus, the performance improvement becomes more significant while the number
of implementations increases. Also, the constant assembly time of cache makes
the execution time of the application more predictable, which is an important
issue for real-time applications.

Reassembly will load and unload the implementations of component whenever
necessary, which will free some unnecessary memory, a scarce resource in embed-
ded systems. Depending on how the application is developed, reassembly may
save the memory usage. For example, the robot application using hard coded
if-else statements has all implementations preloaded for better performance.
However, this is a trade-off with memory usage. Fig. [shows that preloaded
components require about 50% more memory than the reassembly scheme.

Memory Usage

Memory size (MB)

6
4
2
Reassembly —%—
0) ‘ L L |) Pre]oad -‘--)(...‘
2 4 6 8 10 12 14 16 8 %

Number of implementations

Fig. 7. Memory usage comparison for ASAP and component-preloaded

5 Related Work

The original idea of ad hoc systems is introduced in [5]. Lai, et al. [9] use infrared
communication, which allows users to easily connect several devices as an ad hoc
system via infrared communication. They also propose an approach to improve
the performance of the assembly process by grouping the participating devices
into “virtual subsystems” based on the hardware characteristics of the devices.
With properly specifying the constraints, a component will only be distributed
to the devices of the specified virtual subsystem and the time for the assembly
process will be reduced.

There are several other related projects that may deliver applications on
resource-limited devices and perform adaptation when necessary. The Spectra

178 R.-S. Ko and M.W. Mutka

project [2] monitors both application resource usage and the availability of re-
sources in the environment, and dynamically determines how and where to exe-
cute application components. In making this determination, Spectra can gener-
ate a distributed execution plan to balance the competing goals of performance,
energy conservation, and application quality.

Puppeteer [I] is a system for adapting component-based applications in mo-
bile environments, which takes advantage of the exported interfaces of these
applications and the structured nature of the documents they manipulate to per-
form adaptation without modifying the applications. The system is structured
in a modular fashion, allowing easy addition of new applications and adaptation
policies.

Gu, et al. [3] propose an adaptive offloading system that includes two key
parts, a distributed offloading platform [I1] and an offloading inference [4]. The
system will dynamically partition the application and offload part of the ap-
plication execution data to a powerful nearby surrogate. This allows delivery of
the application in a pervasive computing environment without significant fidelity
degradation.

Compositional adaptation exchanges algorithmic or structural system com-
ponents with others that improve a program’s fit to its current environment.
With this approach, an application can add new behaviors after deployment.
Compositional adaptation also enables dynamic recomposition of the software
during execution. McKinley, et al. [I0] gives a review of current technologies
about compositional adaptation.

6 Conclusion and Future Work

Limited computing resources may often cause poor performance and quality.
To overcome these limitations, we introduce the idea of ad hoc systems, which
may break the resource limitation and give mobile devices more potential usage.
That is, several resource-limited devices may be combined as an ad hoc system to
complete a complex computing task. We also illustrate how the adaptive software
framework, FRAME, may realize ad hoc systems. FRAME provides the functionalities
of a middleware to allow software components to execute cooperatively. Most
importantly, with constraints embedded in the component implementations, the
assembly process of FRAME is able to automatically distribute these components
to appropriate devices.

However, mobile computing environments are dynamic and ad hoc systems
may be unstable since the participating devices may leave the ad hoc systems at
their will. Thus, the code on some devices may need to migrate to another de-
vices. We propose the reassembly process for this instability problem; i.e., if some
constraints fail due to environmental changes, the application execution will be
temporarily suspended, the component assembly process will be re-invoked, and
then the application execution will resume with appropriate implementations
of the components. Furthermore, the reassembly performance is an important
issue for seemlessly execution of applications. To further reduce the performance

An Ad Hoc Approach to Achieve Collaborative Computing 179

impact of the reassembly process, two approaches, partial reassembly and caching,
are proposed. Our experimental results show that the caching improves the re-
assembly speed by a factor of 7 ~ 40 and the time for reassembly is constant
and hence predictable.

There is room for performance improvement. For instance, the constraints
solving performance depends on the number of distributions and the number
of constraints in each distribution. To improve the backtracking algorithm, if
more information may be extracted from the relationship between constraints,
some redundancy may be found between the constraints. Thus, truth checking
for some constraints may be avoided. Moreover, more performance evaluation
and measurement will be conducted in the future, including power consumption
of large-scale ad hoc systems.

One important aspect of ubiquitous computing is the existence of disappear-
ing hardware [I3] that are mobile, have small form factor and usually limited
computation resources. Since the constraints solving may require a lot of com-
putation, these disappearing hardware may not have enough resources. One so-
lution is to use a dedicated server for the off-site assembly process. Therefore,
the participating devices may send the environment information to the server
for assembly, and retrieve assembly results and the appropriate implementations
of the components.

References

[1] E. de Lara, D. S. Wallach, and W. Zwaenepoel. Puppeteer: Component-based
Adaptation for Mobile Computing. In Proceedings of the 8rd USENIX Symposium
on Internet Technologies and Systems, San Francisco, California, Mar. 2001.

[2] J. Flinn, S. Park, and M. Satyanarayanan. Balancing Performance, Energy, and
Quality in Pervasive Computing. In Proceedings of the 22nd International Con-
ference on Distributed Computing Systems, Vienna, Austria, July 2002.

[3] X. Gu, A. Messer, 1. Greenberg, D. Milojicic, and K. Nahrstedt. Adaptive of-
floading for pervasive computing. IEEE Pervasive Computing, 3(3):66-73, July-
September 2004.

[4] X.Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic. Adaptive Offload-
ing Inference for Delivering Applications in Pervasive Computing Environments.
In Proceedings of IEEE International Conference on Pervasive Computing and
Communications, pages 107-114, 2003.

[5] R.-S. Ko. ASAP for Developing Adaptive Software within Dynamic Heterogeneous
Environments. PhD thesis, Michigan State University, May 2003.

[6] R.-S. Ko and M. W. Mutka. Adaptive Soft Real-Time Java within Heterogeneous
Environments. In Proceedings of Tenth International Workshop on Parallel and
Distributed Real-Time Systems, Fort Lauderdale, Florida, Apr. 2002.

[7] R.-S. Ko and M. W. Mutka. FRAME for Achieving Performance Portability within
Heterogeneous Environments. In Proceedings of the 9th IEEE Conference on En-
gineering Computer Based Systems (ECBS), Lund University, Lund, SWEDEN,
Apr. 2002.

[8] V. Kumar. Algorithms for Constraints Satisfaction problems: A Survey. The Al
Magazine, by the AAAI 13(1):32-44, 1992.

180

[9]

[10]

[11]

[12]

[13]

R.-S. Ko and M.W. Mutka

C.-C. Lai, R.-S. Ko, and C.-K. Yen. Ad Hoc System : a Software Architecture
for Ubiquitous Environment. In Proceedings of the 12th ASIA-PACIFIC Software
Engineering Conference, Taipei, Taiwan, Dec. 2005.

P. K. Mckinley, S. M. Sadjadi, E. P. Kasten, and B. H. Cheng. Composing Adap-
tive Software. IEEE Computer, 37(7), July 2004.

A. Messer, I. Greenberg, P. Bernadat, D. S. Milojicic, D. Chen, T. J. Giuli, and
X. Gu. Towards a Distributed Platform for Resource-Constrained Devices. In
Proceedings of the IEEE 22nd International Conference on Distributed Computing
Systems, pages 43-51, Vienna, Austria, 2002.

Nomadic Technologies, Inc., Mountain = View, CA. Nomad
XRDEV Software Manual, Mar. 1999. Information available at
http://nomadic.sourceforge.net/production/manuals/zrdev-1.0.pdf. gz.

M. Weiser. The Computer for the 21st Century. Scientific American, 265(3):66-75,
Sept. 1991. Reprinted in IEEE Pervasive Computing, Jan-Mar 2002, pp. 19-25.

Optimizing Server Placement for QoS
Requirements in Hierarchical Grid Environments

Chien-Min Wang!, Chun-Chen Hsu?, Pangfeng Liu?,
Hsi-Min Chen?, and Jan-Jan Wu'

! Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C.
{cmwang,wuj}@iis.sinica.edu.tw
2 Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan, R.O.C.
{d95006, pangfeng}@csie.ntu.edu.tw
3 Department of Computer Science and Information Engineering, National Central
University, Taoyuan, Taiwan, R.O.C.
seeme@selab.csie.ncu.edu.tw

Abstract. This paper focuses on two problems related to QoS-aware
I/O server placement in hierarchical Grid environments. Given a hi-
erarchical network with requests from clients, the network latencies of
links, constraints on servers’ capabilities and the service quality require-
ment, the solution to the minimum server placement problem attempts
to place the minimum number of servers that meet both the constrains
on servers’ capabilities and the service quality requirement. As our model
considers both the different capabilities of servers and the network la-
tencies, it is more general than similar works in the literatures. Instead
of using a heuristic approach, we propose an optimal algorithm based
on dynamic programming to solve the problem. We also consider the
optimal service quality problem, which tries to place a given number of
servers appropriately so that the maximum expected response time is
minimized. We prove that an optimal server placement can be achieved
by combining the dynamic programming algorithm with a binary search
on the service quality requirement. The simulation results clearly show
the improvement in the number of servers and the maximum expected
response time.

1 Introduction

Grid technologies enable scientific applications to utilize a wide variety of dis-
tributed computing and data resources [I]. A Data Grid is a distributed storage
infrastructure that integrates distributed, independently managed data resources.
It addresses the problems of storage and data management, data transfers and
data access optimization, while maintaining high reliability and availability of
the data. In recent years, a number of Data Grid projects [23] have emerged in
various disciplines.

One of the research issues in Data Grid is the efficiency of data access. One
way of efficient data access is to distribute multiple copies of a file across different

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 181-{I392] 2007.
© Springer-Verlag Berlin Heidelberg 2007

182 C.-M. Wang et al.

server sites in the grid system. Researches [ABI6I7I8I9] have shown that file repli-
cation can improve the performance of the applications.

The existing works focus on how to distribute the file replicas in Data Grid in
order to optimize different criteria such as I/O operation costs [5], mean access
latencies [§] and bandwidth consumption [9]. However, few works use the quality
of services as an performance metric of Data Grid. We believe the service quality
is also an important performance metric in Data Grid due to the dynamic nature
in the grid environment. In [TO/TT], quality of service is considered. Those works,
however, fail to take the heterogeneity of servers’ capabilities into consideration.
That is, in those works, servers are assumed to be able to serve all I/O requests
it received. This assumption omits one of the characteristics in grid computing
infrastructure: the heterogeneity of its nature. In an early work by Wang [12],
they considered the servers’ capabilities when minimizing the number of servers.

In this paper, we focus on two QoS-aware I/O server placement problems in
hierarchical Grid environments which consider the service quality requirement,
the capabilities of servers and the network latencies. As our model consider both
the different capabilities of servers and the network latencies, it is more general
than similar works in the literatures. The minimum server placement problem
asks how to place the minimum number of servers to meet both the constrains on
servers’ capabilities and the service quality requirement. We propose an optimal
algorithm based on dynamic programming to solve this problem. We also con-
sider the optimal service quality problem, which tries to place a given number of
servers appropriately so that the maximum expected response time is minimized.
We prove that such a server placement can be achieved by combining the dy-
namic programming algorithm with a binary search on the maximum expected
response time of servers. The experimental results clearly show the improvement
in the number of servers and the maximum expected response time.

2 The System Model

In this paper we use a hierarchical Grid model, one of the most common archi-
tectures in current use [FOITOTTIT2ITE]. Consider Fig. [l as an example. Given a
tree T = (V, E), V is the set of sites and E € V x V represents network links
between sites. A distance d,,,, associated with each edge (u,v) € E represents
the latency of the network link between sites u and v. We may further extend
the definition of d,, as the latency of a shortest path between any two sites u
and v.

Leaf nodes represent client sites that send out I/O requests. The root node is
assumed to be the I/O server that stores the master copies of all files. Without
loss of generality, we assume that the root node is the site 0. Intermediate nodes
can be either routers for network communications or I/O servers that store file
replicas. We assume that, initially, only one copy (i.e., the master copy) of a file
exists at the root site, as in [QUTOITTIT2IT3]. Let T; be the sub-tree rooted at node i.

Associated with each client site i, there is a parameter r; that represents the
arrival rate of read requests for client site i. A data request travels upward from

Optimizing Server Placement for QoS Requirements 183

Fig. 1. The hierarchical Grid model

a client site and passes through routers until it reaches an I/O server on the
path. Upon receiving the request, the I/O server sends the requested file back to
the client site if it owns a copy of the requested file. Otherwise, it forwards the
request to its parent server. This process continues up the hierarchy recursively
until a node that has the requested file is encountered or the root node is reached.
The network latency of a I/O request from a client site to a server site can be
computed as the sum of the network latencies of all intermediate links between
both sites. The root server might update the contents of a file. For each update,
corresponding update requests are sent to the other I/O servers to maintain file
consistency. Let u be the arrival rate of update requests from the root server.

For each server site j, [L;- and)\; are represented as the service rate and the
arrival rate of I/O requests of server site j respectively.)\; can be computed as:
)\; = Zz‘ecj r; + u, where C; is the set of clients served by server site j. We
assume each server in the grid system is a M/M/1 queueing system. Thus, the
expected waiting time at server j will be 1/(p); — \}) = 1/(p) —u — Ziecj ;).
To simplify the notations, we will use p; = pj —u and \; = Zz‘ecj r; as the
service rate and the arrival rate of server site j throughout this paper.

p; and A; will be used to decide the expected response times of requests it
served. Suppose the I/0 requests from site i are served by server j. The expected
response time of a request from site ¢ can be defined as the sum of the network
latencies in the path and the server j’s expected waiting time, i.e., d;; + /\

Given the service quality requirement ¢, a server site j must satisfy the follow—
ing conditions: (1) the arrival rate of all requests it served is less than its service
rate, i.e., \; < p; and (2) the expected response times of all requests it served
are less than or equal to ¢, i.e., maw;cc,{dij + Hji)\j} <'t, where Cj is the set
of clients served by server site j. Let the expected response time of serverj be
the maximum expected response time of requests it served.

3 The Minimum Server Placement Problem

In this section, we formally define the minimum server placement problem and
introduce our optimal algorithm to this problem. Our first problem is to place
the minimum number of I/O servers that will satisfy capability constrains of
servers as well as the service quality requirement from clients.

184 C.-M. Wang et al.

Definition 1. Given the network topology, network latencies, request arrival
rates, 1/0 service rates and the service quality requirement, the minimum server
placement problem tries to place the minimum number of servers such that the
expected response time of any request is less than or equal to the service quality
requirement.

Before introducing the optimal algorithm, we first give definitions on three basic
functions as follows:

Definition 2. Let A(i,m,d,t) be the minimum arrival rate of requests that reach
node i among all the server placements that meet the following three conditions.

1. At most m servers are placed in T; — {i}

2. The expected response time of any request served by these servers must be
less than or equal to t.

3. If requests that reach node i exist, the mazximum latency of these requests to
node i must be less than or equal to d.

Definition 3. Let w(i,m,d,t) be the minimum arrival rate of leakage requests
that pass through node i among all the server placements that meet the following
three conditions.

1. At most m servers are placed in T;.

2. The expected response time of any request served by these servers must be
less than or equal to t.

3. If leakage requests that pass through node i exist, the mazimum latency of
these leakage requests to node i must be less than or equal to d.

Definition 4. 2(i,m,d,t) is an optimal server placement that meets all the
requirements for w(i,m,d,t).

Leakage requests that pass through node ¢ are those requests generated by leaf
nodes in the sub-tree rooted at node i, but not served by servers in that sub-tree.
Such requests must be served by a server above node 7 in the hierarchy. Hence, it is
desirable to minimize the arrival rate of these leakage requests. Depending on the
server placement, the arrival rate of leakage requests may changes. w(i,m,d,t)
represents the minimum arrival rate of leakage requests among all possible server
placements that satisfy the above three conditions while (2(i,m, d, t) represents
an optimal server placement. If no server placement satisfy the above three con-
ditions, w(i, m, d, t) simply returns null. Let n be the number of nodes in the grid
system. By definition, we can derive the following lemmas.

Lemma 1. w(i,mq,d,t) < w(i,me,d,t) for any node i, mqy > mo > 0,d > 0
andt > 0.

Lemma 2. w(i,m,d,t1) < w(i,m,d,ts) for any node i, m > 0,d > 0 and
t1 >t > 0.

Lemma 3. w(i,m,dy,t) < w(i,m,da,t) for any node i, m > 0,dy > da > 0 and
t>0.

Optimizing Server Placement for QoS Requirements 185

Lemma 4. Ifw(i,m,dy,t) = 0 for some dy, then w(i,m,d,t) =0 for any d > 0.

Based on the above lemmas, theorems for computing the minimum arrival rate of
leakage requests can be derived. We show that it can be computed in a recursive
manner.

Theorem 1. If node i is a leaf node, then w(i,m,d,t) = \; and 2(i,m,d,t) is
an empty set for 0 <m <n,d>0 andt > 0.

Proof. Since a leaf node cannot be a server, all requests generated by a client
site will travel up the tree toward the leaf node’s parent. In addition, the latency
to node ¢ must be 0. By definition, w(i,m,d,t) = X\; and 2(i,m, d, t) is an empty
set for 0 <m <n,d>0andt>0.

Theorem 2. For an intermediate node i with two child nodes, j and k, we can
derive:

A, m,d,t) = mino<r<m{w(j,r,d — dji, t) + w(k,m —r,d — dg;, t) }

w(i,m,d,t) =0 if there exists 0 < d' <t such that
Ai,m—1,d,6)+ 1/t —d') < p.

w(i,m,d,t) = \(i,m,d,t), otherwise.

Proof. For node i, there are two possibilities for an optimal placement of at
most m servers:

Case 1: A server is placed on node 7. At most m — 1 servers can be placed on 7}
and T}. Suppose that, in an optimal server placement, there are p servers on 7}
and ¢ servers on T}, as shown in Fig. [J(a). Obviously, we have 0 < p,q <m —1

wti,m d,) =9-7

"
®; 2
l Sitej l l Sitek l l Si\ej(,l l Site] l Sile/zl
(@) (D
© (i, md 1)
i Ns (i Py 4 o D) t
(. p. d—d ji, 1) 2 i i
[s | [siet | Mz (i D .1,,)/7”" © ot o d=d; 10 1)
-Sitcj,(,,
()
NG py. d 1) im(i:quv d—d ;. 0)
| | Site j,
wti,m d,) =9-7 [T :
- Holi py s d,/ G ar d=d ;. 1)
-
o, p. d=d ji. 1) ke m—1=p, d—dy;, 1) e '
[Sitej] [Sitek] @GPy > d=d; ;. 1)
©) (e)

Fig. 2. (a), (b) and (c) illustrate the concept of Theorem 21 (d) and (e) illustrate the
basic concept of Theorem

186 C.-M. Wang et al.

and p 4+ g < m — 1. Without loss of generality, we may assume the arrival rates
of leakage requests from node j and node k are wy and wy and the maximum
latencies of their leakage requests are d; and do, respectively. The maximum
latency of requests that reach node 7 is assumed to be d’.

Next, we show that another optimal server placement can be generated by
substituting the placement of p servers on T} with £2(j, p,d’ — d;;,t) as shown in
Fig. 2Ib). If wy # 0, then d’ > dy + d;;. We can derive

w1 Z W(j,p, dlat) Z w(japa d, - djiat)

After the substitution, the arrival rate of requests that reach node 7 can be
reduced while the maximum latency of requests remains unchanged. Thus, it is
also an optimal server placement. On the other hand, if w; = 0, we can derive

0= w1 = W(j,p, d17t) = W(j7p7 d/ - djl7t)

In this case, it is also an optimal server placement. Therefore, another optimal
server placement can be generated by substituting the placement of p servers on
T; with 2(j,p,d" — dj;,t). Similarly, we can show that another optimal server
placement can be generated by replacing the placement of ¢ servers on T} with
Q(k,m —1—p,d — di;,t) as shown in Fig. Pl(c).

wa > w(k,q,do,t) > w(k,q,d —dgi, t) > wlk,m —1—p,d — dgi,t) if wy #0
0=wy =w(k,qds,t) =wk,q,d —dpi,t) =wlk,m—1—p,d —dg;,t) if wg =0
By assumption, the maximum expected response time of leakage requests that

reach node ¢ is less than or equal to ¢. In other words, d’' 4+ 1/(u; — w1 —ws) < t.
Accordingly, we an derive

i > wi+we+1/(t—d)
> w(j,p,d —dji,t) +wlk,m —1—p,d —dp,t) +1/(t —d)
> Aim—1L,d o)+ 1/(t - d)

Therefore, there exists 0 < d’ < ¢ such that A\(i,m — 1,d',t) +1/(t —d') < p,.
In this case, Fig. Bl(c) is an optimal server placement and w(i, m,d,t) = 0. This
completes the proof of Case 1.

Case 2: No server is placed on node 7. Consequently, at most m servers are placed
on T; and Tj,. Obviously, we have 0 < p,q < m and p + ¢ < m. Suppose that,
in an optimal server placement, there are p servers on 7} and g servers on Tj.
Without loss of generality, we may assume the arrival rates of leakage requests
from node j and node k are w; and ws and their maximum latencies are d; and
ds, respectively. The maximum latency of requests that reach node i is assumed
to be d. Similar to the proof of Case 1, the optimal arrival rate of leakage requests
can be computed as

w(i,m,d,t) = wy +ws
w(japa dlat) +w(kaQ7d2at)

w(japa d - djia t) +w(ka q, d - dkia t)
w(j,p,d—dji, t) +w(k,m —1—p,d — dp, t)
A(i,m,d,t)

VIV IVIV N

Optimizing Server Placement for QoS Requirements 187

Since it is an optimal server placement, all the equalities must hold. Therefore,
this theorem holds for Case 2. Since an optimal server placement must be one
of the two cases, this completes the proof of this theorem.

Theorem 3. For an intermediate node i with k child nodes jg,...,jk—1, the
minimum arrival rate of leakage requests that pass through node i can be com-
puted iteratively as follows:

)\o(i,m,d, t) = w(jo,m,d — dj0i7t)

Ag(i,m, d,t) = ming<,<m{Ag-1(i,7,d,t) + w(jg,m —r,d — dj i, 1)},
1<q¢<k-1,

w(i,m,d,t) =0 if there exists 0 < d' <t such that
Mec1(t,m—=1,d)+ 1/(t = d') <

w(i,m,d,t) = Ag—1(i,m, d, t), otherwise

Proof. Fig.[A(d) and[Z(e) illustrate the basic concept of this theorem. To find an
optimal server placement, we can view an intermediate node with k child nodes
in Fig. 2l(d) as the sub-tree in Fig. [X(e). Then, the minimum arrival rate of
leakage requests can be computed recursively along the sub-tree. As the detailed
proof of this theorem is similar to that of Theorem [3] it is omitted here.

Theorem 4. The minimum number of 1/O servers that meet their constraints
can be obtained by finding the minimum m such that w(0,m,0,t) = 0.

Corollary 1. Let m’ be the minimum number of servers found by the dynamic
programming algorithm. m’' grows nondecreasingly when the service quality re-
quirement t decreases.

Based on Theorems[Il to[Bl we can compute the minimum arrival rates of leakage
requests that start from leaf nodes and work toward the root node. After the
minimum arrival rate of leakage requests that reach the root node has been
computed, the minimum number of I/O servers that meet their constraints can
be computed according to Theorem Fl The proposed algorithm is presented in
Fig.

In the first line of the algorithm, we sort all nodes according to their distances
to the root node in decreasing order. This ensures that child nodes will be com-
puted before their parents so that Theorems [l toBlcan be correctly applied. The
execution time of this step is O(n log n). The loop in line 2 iterates over every
node in the system. Note that there are at most n values on the maximum latency
to some node i. Thus, for each leaf node, it takes O(n?) execution time in line 4.
For an intermediate node that has k child nodes, it takes O(n?) execution time
in line 9, and iterates k — 1 times in line 8. This results in O(kn?®) execution time
for lines 8 to 10. Lines 11 to 16 also take O(n?) execution time. Consequently, the
complexity of lines 3 to 16 is O(kn?) and the complexity of the whole algorithm
is O(n*), where n is the number of nodes in the Grid system. The complexity
can be further reduced to O(p?n?), where p is the minimum number of servers,
by computing w(i,m,d,t) incrementally from m = 0 to m = p.

188 C.-M. Wang et al.

Algorithm Minimum Leakage
Input: 1. the arrival rate \; for all leaf nodes.

2. the service rate p; for all intermediate nodes.

3. the network latency dj;

4. the service quality requirement t.

Output: the minimum arrival rate w(i, m,d, t) for 0 < i,m < n.

Procedure: . L . .
1. sort all nodes according to their distance to the root node in decreasing order.

2. for each node 7 do

3 if node i is a leaf node then

4 compute w(i,m,d,t) = X; for0 < m <n

5. else

6. let the child nodes of node i be nodes jo, ..., Jr—1

7. compute Ao (i, m,d,t) = w(jo, m,d — djji,t),0 <m < n

8 for g from 1 to k — 1 do

9. Aq(i,m, d, t) = ming<,r<miAg—1(i, 7 d,t) + w(jg,m — 7, d —djyi, 1)}, 0 <m < n
10. endfor

11. for m from 0 to n do

12. if exists d’, 0 < d’ < t, such that \,_1(i,m — 1,d",t) + 1/(t — d') < u;
13. w(i,m,d,t) =0

14. else

15. w(i,m,d,t) = Ag—1(i,m,d, t)

16. endfor

17. endif

18. endfor

Fig. 3. An optimal algorithm for the minimum server placement problem.

4 The Optimal Service Quality Problem

In this section, we try to place a given number of servers appropriately so that
the maximum expected response time of servers is minimized. We call this the
optimal service quality problem.

Definition 5. Given the network topology, request arrival rates, service rates
and network latencies of links, the optimal service quality problem aims at placing
a given number of I/0 servers so that the mazimum expected response time of
the Grid system is minimized.

Let m be the number of servers to be placed. We aim to place m servers such
that the maximum expected response time is minimized. To achieve this goal, we
can perform a binary search on the service quality requirement ¢. Given a service
quality requirement ¢, we can use the dynamic programming algorithm described
in Section[lto find an optimal server placement such that the maximum expected
response time of servers is less or eqaul to t. Let the minimum number of servers
be m/. If m’ > m, according to Corollary [[I we cannot find a placement of
m servers whose maximum expected response time is less than or equal to t.
Therefore, when m’ > m, we need to increase t to find a server placement with
m servers and, when m’ < m, we may decrease ¢ to find if a better server
placement exists.

Before applying a binary search, we have to determine an upper bound and
a lower bound. It is rather easy to get an upper bound and a lower bound on

Optimizing Server Placement for QoS Requirements 189

the maximum expected response time. We can use 1/(tmaz — Amin) as a proper
lower bound, where fi,,q, is the maximum server capability of servers and A,
is the minimum requests of clients. A upper bound can be computed by the
following steps. First, we set t to a sufficient large value and find a server place-
ment. According to Corollary [l the number of used servers must be smaller
than or equal to m. Then we can use the maximum expected response time of
servers as a proper upper bound. Next, we can combine a binary search of the
maximum expected response time and the dynamic programming algorithm for
the minimum server placement problem to find the optimal value of the maxi-
mum expected response time. Because the lower bound and the upper bound of
the binary search are both functions of the input parameters, the algorithm is
strongly polynomial.

5 Experimental Results

In this section we conduct several experiments to evaluate the proposed algo-
rithms. Test cases are generated based on the proposed Grid model. The height
of each case is at most 8. Each node has at most 4 children. The number of
nodes in each test case is between 1250 and 1500. The request arrival rates for
the leaf nodes and the service rates for intermediate nodes are generated from a
uniform distribution. There are four testing groups. Each group has a different
range of network latencies: 0.00005~0.00015, 0.0005~0.0015, 0.005~0.015, and
0.05~0.15. We will refer them as group 1, 2, 3 and 4, respectively. There are
1000 test cases in each group. Table [l shows the summary of these parameters.

Table 1. Parameters of experiments

Parameter Description
Height of tree <8
Number of child nodes <4
Number of nodes in each case & 1300
Range of arrival rates 1~4
Range of service rates 50~350

Range of network latencies 0.00005~0.00015, 0.0005~0.0015,
0.005~0.015 and 0.05~0.15

First, the experiments for the minimum server placement problem are con-
ducted. We use a greedy heuristic algorithm as a performance comparison with
our dynamic programming algorithm since, to the best of our knowledge, there
are no similar studies on QoS server placement problems that both consider
the server’s capacity and the network latency. The Greedy algorithm works as
follows: in each iteration, it first selects all candidate servers that can satisfy
the service quality requirement ¢, i.e., the expected response time of requests it
served will less than ¢. Then it selects a site who has the maximum arrival rate
of I/0O requests. The process is repeated until all requests are served.

As the experiments with the four testing groups show similar results , we will
present only the result with group 4. The performance metric is the difference in

190 C.-M. Wang et al.

the number of servers used by Greedy and DP, i.e., the extra number of servers
used by Greedy. The experimental results for the minimum server placement
problem is shown in Fig. [l The vertical axis shows the number of test cases,
while the horizontal axis shows the difference in the number of servers used by
these two algorithms.

N
H
H

Number of test cases
A
5
2

Number of test

o1 o 1 2 3 a 5 G 7 © o 2 a 6 8 10 1z 1a ie
Improvement on the number of servers Improvement on the number of servers
(@) ©

Number of test cases
Number of test cases

o o 5 5 20 s

o 2 a o 5 io g 10
Improvement on the number of servers Improvement on the number of servers
) ()

Fig. 4. Performance comparison for the minimum server problem. (a), (b), (¢) and (d)
are experimental results when ¢ is set to 1, 0.75, 0.6 and 0.45 respectively.

In Fig. [it is clear that the difference in the number of servers used becomes
significant as t decreases, i.e., as the service quality requirement becomes crucial.
In Fig. @(a), Greedy generates optimal solutions in 23.9% of the test cases and,
in 84.4% of the test cases, the differences are between 0 and 2. However, in
Fig. [@l(d), Greedy generates no optimal solution and over 80% of test cases, the
differences are between 10 and 28 when ¢ is set to 0.45. Although Greedy is rather
fast and easy to implement, the results show that it cannot generate acceptable
solutions when the service quality requirement becomes crucial.

coo
°

coo

°
°
°
oo
© R

rage Response Time

Average Response Time
o o
o
o
N

Average Response Time
AN
i

Average Response Time

S0t w0 750 20 0.4 = 50 THo

&3 e
Number of IO Servers Number of IO Servers
(b) ()

Fig. 5. Performance comparison for the optimal service quality problem. (a), (b), (¢c)
and (d) are experimental results for group 1, 2, 3, and 4 respectively.

We next conduct the following experiments for the optimal service quality
problem. We compare three algorithms: (1) the DP algorithm combined a binary
search as described in Section [(2) the Greedy algorithm combined a binary

Optimizing Server Placement for QoS Requirements 191

search and (3) a waiting-time based(WTB) server placement algorithm described
in [I2]. Note that there is no guarantee of performance for the Greedy algorithm
combined a binary search since the Greedy algorithm does not have the property
of Corollary [l A binary search is only used to adjust ¢ such that Greedy can
generate a placement with m servers. The WTB algotithm is similar to the
algorithm described in Section H] except it only tries to minimize the maximum
waiting time of servers.

In the experiments, for each group of test cases, we use 4 different values of
server numbers m: 60, 80, 100 and 120. The performance metric is the average of
maximum expected response times of test cases. For each test case, there will be
a maximum expected response time among those m servers. We use the average
of maximum expected response times in 1000 test cases as our performance
metric. The experimental results are shown in Fig. Bl The vertical axis shows
the average expected response time, while the horizontal axis shows the number
of servers m.

In Fig. [l it is clear that the difference in performance between DP and WTB
becomes larger as the network latency increases. When the network latency is
small with respect to the server’s waiting time, the difference of the average
expected response time is less significant. However, as the network latency in-
creases, the difference becomes larger because the expected response time is
dominated by the network latency and WTB does not take network latencies
into consideration. This result explains the advantage of DP algorithm: it takes
both the server’s waiting time and the network latency into consideration. Thus,
DP can always get the best performance no matter the expected response time
is dominated by either server’s waiting time as the result shown in Fig. Bl(a) or
the network latency as the result shown in Fig. Bl(d).

In Fig. Blc) and El(d), Greedy has a good performance when the number of
I/0 servers increases and the network latency dominates the expected response
time. This is mainly due to the power of the binary search. However, as the
expected waiting time dominates the expected response time, Greedy performs
worse than WTB as shown in Fig.[Bl(a). Therefore, Greedy does not perform well
in all kind of situations like DP does.

6 Conclusions

In this paper, we focus on two QoS I/O server placement problems in Data
Grid environments. We consider the minimum server placement problem which
asks how to place the minimum number of servers that meet both the con-
strains on servers’ capabilities and the service quality requirement. Instead of
using a heuristic approach, we propose an optimal algorithm based on dynamic
programming as a solution to this problem.

The optimal service quality problem is also considered, which tries to place a
given number of servers appropriately so that the maximum expected response
time of servers can be minimized. By combining the dynamic programming al-
gorithm with a binary search on the service quality requirement, we can find

192 C.-M. Wang et al.

an optimal server placement. Several experiments are also conducted, whose re-
sults clearly show the improvement on the number of servers and the maximum
expected response time compared with other algorithms.

Acknowledgments

The authors acknowledge the National Center for High-performance Computing
in providing resources under the national project, “Taiwan Knowledge Innova-
tion National Grid”. This research is supported in part by the National Science
Council, Taiwan, under Grant NSC NSC95-2221-E-001-002.

References

1. Johnston, W.E.: Computational and data Grids in large-scale science and engi-
neering. Future Generation Computer Systems. 18(8) (2002) 1085-1100

2. Grid Physics Network (GriphyN). (http://www.griphyn.org)

3. TeraGrid. (http://www.teragrid.org)

4. Wang, C.M., Hsu, C.C., Chen, H.M., Wu, J.J.: Efficient multi-source data transfer
in data grids. In: CCGRID ’06. (2006) 421-424

5. Lamehamedi, H., Shentu, Z., Szymanski, B.K., Deelman, E.: Simulation of Dy-
namic Data Replication Strategies in Data Grids. In: IPDPS 2003. (2003) 100

6. Deris, M.M., Abawajy, J.H., Suzuri, H.M.: An efficient replicated data access
approach for large-scale distributed systems. In: CCGRID. (2004) 588-594

7. Hoschek, W., Jaén-Martinez, F.J., Samar, A., Stockinger, H., Stockinger, K.: Data
Management in an International Data Grid Project. In: GRID 2000. (2000) 77-90

8. Krishnan, P., Raz, D., Shavitt, Y.: The cache location problem. IEEE/ACM
Transactions on Networking 8(5) (2000) 568-582

9. Ranganathan, K., Foster, I.T.: Identifying Dynamic Replication Strategies for a
High-Performance Data Grid. In: GRID 2001. (2001) 75-86

10. Tang, M.X., Xu, M.J.: QoS-aware replica placement for content distribution. IEEE
Trans. Parallel Distrib. Syst. 16(10) (2005) 921-932

11. Wang, H., Liu, P., Wu, J.J.: A QoS-aware heuristic algorithm for replica placement.
In: International Conference on Grid Computing. (2006) 96-103

12. Wang, C.M., Hsu, C.C., Liu, P., Chen, H.M., Wu, J.J.: Optimizing server placement
in hierarchical grid environments. In: GPC. (2006) 1-11

13. Abawajy, J.H.: Placement of File Replicas in Data Grid Environments. In: Inter-
national Conference on Computational Science. (2004) 66-73

AHSEN - Autonomic Healing-Based Self Management
Engine for Network Management in Hybrid Networks

Junaid Ahsenali Chaudhry and Seungkyu Park

Graduate School of Information and Communication, Ajou University,
Woncheon-dong, Paldal-gu, Suwon, 443-749, Korea
{junaid, sparky}@ajou.ac.kr

Abstract. In this paper, we present a novel self-healing engine for autonomic
network management. A light weight Self Management Frame (SMF) performs
monitoring and optimization functions autonomously and the other self
management functions, driven by context, are invoked on demand from the
server. The policies are maintained to calculate the trust factor for network
entities and those trust factors will be used at the later stages of our project to
enforce resource utilization policies. The plug-ins, residing at the server, are
used to perform the on-demand management functions not performed by SMF
at client side. A Simple Network Management Protocol (SNMP) based
monitoring agent is applied that also triggers the local management entities and
passes the exceptions to the server which determines the appropriate plug-in.
Considering the amount of resources being put into current day management
functions and contemporary autonomic management architectures our findings
show improvement in certain areas that can go a long way to improve the
network performance and resilience.

1 Introduction

As the complexity and size of networks increase so does the costs of network
management [1]. The preemptive measures have done little to cut down on network
management cost. Hybrid networks cater with high levels of QoS, scalability, and
dynamic service delivery requirements. The amplified utilization of hybrid networks
i.e. ubiquitous-Zone based (u-Zone) networks has raised the importance of human
resources, down-time, and user training costs. The u-Zone networks [3] are the fusion
of the cluster of hybrid Mobile Ad-hoc NETworks (MANETSs) and high speed mesh
network backbones. They provide robust wireless connectivity to heterogeneous
wireless devices and take less setup time. The clusters of hybrid networks feature
heterogeneity, mobility, dynamic topologies, limited physical security, and limited
survivability [2] and the mesh networks provide the high speed feedback to the
connected clusters. The applications of MANETS vary in a great range from disaster
and emergency response, to entertainment and internet connectivity to mobile users.
Ubiquitous networks are metropolitan area networks which cover great distances and
provide service to heterogeneous users. In this situation, the network availability is
critical for applications running on these networks. This distributed utilization and
network coverage requires some effective management framework that could bring

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 193 £203] 2007.
© Springer-Verlag Berlin Heidelberg 2007

194 J.A. Chaudhry and S. Park

robustness and resilience to the functionality of these networks. A sample u-Zone
network scenario is shown in figure 1. There are various clusters of devices that are
attached with their gateways and are physically parted but connected with a high
speed backbone. The devices can have variable mobility levels and hence can roam
among various clusters.

| Cluster 3
ek
bty

Clustern

/

//
/
©

-

o }“q*

Fig. 1. A Ubiquitous-Zone Based Network

Several network management solutions have been proposed in [3], [4], [5], [6], [7]
for wireless sensor networks. The schemes proposed in [4], [5], [6] are confined
strictly to their domains i.e. either mesh network or MANETSs. The self management
architecture proposed in [8] might not be appropriate for thin clients. The following
questions rise while considering the self management architecture proposed in [8] for
MANETS.

1. If self healing is one of the FCAPS functions' (Fault, Configuration, Accounting,
Performance, Security) then what is the physical location of self healing
functions?

2. How does the control, information etc flow from one function to another?

3. If self healing is a fault removing function, then what does the Fault Management
function do?

4. Are these sub-functions functionally independent? If so, then there is evidence of
significant redundancy and if not then how can self healing be thought of, as an
independent entity? In other words, what is the true functionality definition of self
healing?

There has not been a considerable amount of work published on self management
of u-Zone networks. In [3] the authors present unique management architecture for u-
Zone networks. The questions posted above motivates us to propose a flexible self
healing architecture [9] that can not only define the individual functionality of the
participating management functions but can also be lightweight for different nodes. In

' FCAPS is the ISO Telecommunications Management Network model and framework for
network management.

AHSEN - Autonomic Healing-Based Self Management Engine 195

this paper, we propose flexible autonomic self management architecture for u-Zone
networks. We propose that the Context Awareness and Self Optimization should be
‘always-on’ management functions and the rest should be ‘on-demand’ functions e.g.
Self Configuration, Fault Management etc. This way we split the information flow
between nodes and servers into two categories 1) service flow: containing service
information and its contents 2) Management plug-in flow: the plug-in(s) delivered to
remote user on request. We implement our scheme and compare it with the
contemporary architectures.

The proposed scheme follows in section 2. The implementation details are
furnished in section 3. In section 4 we compare our scheme with some of the
contemporary solutions proposed. This paper ends with a conclusion and discussion
of future work.

2 Related Work

A considerable amount of research has been done in the area of network management
and thus it is a mature research area. With the advent of Autonomic Computing (AC),
network management has acquired a new dimension. Since then there has not been a
lot of work done for ubiquitous autonomic network management. Although network
management has existed for some time, not much literature has been published on the
subject of autonomic self management in hybrid networks especially on ubiquitous
zone based networks. In this section we compare our research with the related work.
The Robust Self-configuring Embedded Systems (RoSES) project [13] aims to target
the management faults using self configuration. It uses graceful degradation as means
to achieve dependable systems.

In [14] the authors propose that there are certain faults that can not be removed
through configuration of the system, which means that RoSES does not fulfill the
definition of self management proposed in [18]. The AMUN is an autonomic middleware
that deals with intra-cluster communication issues better than RoSES with higher support
for multi-application environments. Both architectures rely mainly on regressive
configuration and do not address the issues such as higher traffic load leading to
management framework failure, link level management, and framework synchronization.

The AMUSE [15] is an autonomic management architecture proposed in the
domain of e-health. The peer-to-peer communication starts once the node enters into a
self-managed cluster. But publish-subscribe services can create serious issues like
service consistency, synchronization and coordination as discussed in [16]. An
Agent-based Middleware for Context-aware Ubiquitous Services proposed in [16]
gives a more distinct hierarchy for the management framework to define the
boundaries and performance optics but the payload attached with agents may not
work for weaker nodes this can be a big drawback in a heterogeneous environment.

The HYWINMARC [3] is novel autonomic network management architecture that
targets ubiquitous zone based networks. It aims at managing the hybrid clusters
supported by a high speed mesh backbone. The HYWINMARC uses cluster heads to
manage the clusters at local level but does not explain the criteria of their selection.
Moreover the Mobile Code Execution Environment (MCEE) and use of intelligent
agents can give similar results as discussed above in the case of [16] and [17]. To
enforce management at local level, the participating nodes should have some

196 J.A. Chaudhry and S. Park

management liberty. However HY WINMARC fails to answer the questions raised in
the previous section. We compare the architectures discussed in this section in a table
to observe their efficacy.

In table 1 we compare AHSEN with other architectures. The comparison reveals
that the entity profiling, functional classification of self management entities at
implementation level, and assurance of the functional compliance is not provided in
the schemes proposed. In very dynamic hybrid networks these functionalities go a
long way in improving the effectiveness of the self management system implemented.

Table 1. The comparison table

RoSES AMUN AMUSE HYWINMARC | AHSEN
Fault . State variable Traffic Wotificationto | - Detected
Detection staleness monitoring evernt bus through SNMP
interrupt
messages
Fault Feconfigure Event Policy-based Agent search Two stepped:
Respornse software, based | dispatcher and execution | the target
ot data & netifies to the management
control flow Autonomic service 1s
graphs Manager decided either
locally or
globally
Recavery Feaconfigure Configuration- | Policy-based Agent initiate Fault-based
and reboot based recovery policy upgrade | recovery
Assurance Future worl Transport layer | - Future work Trust-based
level assurance (components
assigned trust
factors)
System Seif- Systermn knows | Node-based Component- Partial Device
Knowledge the potential local based profiling
point of knowledge creates high
failures management level of self
knowledge
Management | 314 Mo Initiated by Independent Interdependent,
Functions Self Managed hierarchical,
Classification Cell (3MCY, can be applied
policy-based coneurrently
Mabife Code | 170 nfa, JXTA No Agent-based Endto End
Managsrment based p2p but no terminal | TTL for
reconfiguration tracking of managerment
service agent’s TTL functions and
services
Sarvice Mo Tes, managed | Group-based Tes, managed | Yes, managed
Repository by service service by service by service
provider delivery provider provider
MO””O””Q Constant Constant Optional, fault- | Optional, fault- | Constant
and Profiling monitoring but | monitoring but | based based, no
no profiling ne profiling profiling

3 Proposed Architecture

3.1 Software Architecture

In hybrid wireless networks, there are many different kinds of devices attached with
the network. They vary from each other in the bases of their power, performance etc.

AHSEN - Autonomic Healing-Based Self Management Engine 197

One of the characteristics not present in the related literature is the separate
classification of the client and the gateway architectures. Figure 2 shows the client
and gateway self-management software architectures.

[Senice Pool | [NPIGREGIN)
=g || =
- SM ™ PM 331 &
Service Pool | PligrinPool] 1 ,. 2%
[} =
Normal Functionality Model (NFIM) é Self Management Framework (SMF) | =
| Self Management Framework (SMF) | = Gateway Software
JVM JVM
Real Time Operating System (RTOS) Real Time Operating System (RTOS)
SM: Service Manager, TM: Trust Manager, PM: Policy Manager
Client Side Gateway Side
(a) (b)

Fig. 2. The AHSEN architectures for client (a) and gateway (b)

The Normal Functionality Model (NFM) is a device dependent ontology that is
downloaded on the device at network configuration level. It provides a mobile user
with an initial default profile at gateway level and device level functionality control at
user level. It contains the normal range of functional parameters of the device,
services environment and network which allows the prompt anomaly detection.

There are two kinds of Self Management Frameworks (SMFs) one for clients and
one for gateways. The SMF at client end constantly fraps the user activities and sends
them to the SMF at the gateway. The SMF at the gateway directs the trap requests to
the context manager who updates the related profile of the user. The changes in
service pool, Trust Manager (TM), and Policy Manger (PM) are reported to the
context manager. The context manager consists of the Lightweight Directory Access
Protocol (LDAP) directory that saves sessions after regular intervals in the gateway
directory. LDAP directory servers store their information hierarchically. The
hierarchy provides a method for logically grouping (and sub grouping) certain items
together. It provides scalability, security and resolves many data integrity issues.

The Policy Manager (PM) and Service Manager (SM) follow the same registry
based approach to enlist their resources. The presence of NFM provides the decision
based reporting unlike ever-present SNMP. The Trust Manager uses the reputation-
based trust management scheme in public key certificates [10]. The trust is typically
decided on trustee’s reputation. The trust based access relies on “dynamic values”,
assigned to each client, to mitigate risks involved in interacting and collaborating with
unknown and potentially malicious users.

3.2 Operational Details

In this section we describe the operational details of the architecture proposed in this
paper through simple scenarios.

198 J.A. Chaudhry and S. Park

Scenario 1: Initial Mobile Node Configuration

When a mobile user enters into the area under the influence of a gateway, it sends a
Jjoin request to the gateway. The join message contains node specification, connection
type, previous session reference etc. After the join request is processed by the
gateway, the SMF and NFM is downloaded to the client and the node starts its normal
functionality. The NFM is an optional item for u-person because we can not restrict
the human user to a static policy file. The returning node presents its previous session
ID which helps the gateway to offer the appropriate services to the user and updated
NFM.

Scenario 2: Anomaly Detection and Reporting

We use the role based functionality model by enforcing the NFM at the joining node.
The processes registered with the local operating system are automatically trusted.
The network operations seek permission from NFM. The NFM contains the security
certificate generating algorithms, network connection monitoring entities (in/out
bound), trust based peer level access policies and some device related anomaly
solutions i.e. related plug-ins.

Scenario 3: Normal State Restoration

The SMF at gateway predicts the relevant plug-in needed at the requesting node and
notifies the plug-in manager along with the certificates to communicate with the
faulty node. The plug-in manager talks with node and provides the plug-ins
mentioned by the SMF. Once a plug-in finishes its operation, the node context is
provided to the SMF at the gateway which analyzes the context and specifies another
plug-in (if needed). This feed back loop continues until the normal status of the node
is restored.

3.3 Self Management Framework

Although there is not much published work on self management in hybrid networks,
Shafique et. al. [3] proposes an autonomic self management framework for hybrid
networks. Our approach is different from their work in basic understanding of the
functionality of self management functions. We argue that the self management
functions do not stem from one main set rather they are categorized in such a way that
they form on-demand functions and some functions are always-on/pervasive functions
[11]. Figure 3 gives a clearer description.

As shown in figure 3, we place self awareness and self optimization in the always-
on category and the others as on-demand functions. This approach is very useful in
hybrid environments where there are clients of various battery and computing powers.
The NFM regulates the usage of self management functions according to computing
ability of the client. This gives the client local self management. The management
services come in the form of plug-ins registered in the plug-in manager present on the
gateway. A SOAP request carries Simple Object Access Protocol-Remote Procedure
Call (SOAP-RPC) and the latest node context to the SMF located on the gateway
which decides the anomaly type and suggests the appropriate plug-in. The SOAP-
RPC requests are considered when the SMF at gateways polls for the nodes. The
frequency of the poll depends upon the network availability and traffic flux.

AHSEN - Autonomic Healing-Based Self Management Engine 199
Self Management
Functions
On-demand I

Functions

Self-
Configuration

Pervasive
Functions

Context
Awareness

Fault
Management

Self
Optimization

Self-
Growing

Backup &
Recovery

Self Security

Fig. 3. The proposed Classification of Self Management Functions

The Self Management Framework (SMF) consists of a Traffic Manager that redirects
the traffic to all parts of SMF. As proposed in [18] the faults can be single root-cause
based or multiple root-causes based. We consider this scenario and classify a Root
Cause Analyzer (RCA) that checks the root cause of failure through the algorithms
proposed in [19]. After identifying the root causes, the Root Cause Fragmentation
Manager (RCF manager) looks up for the candidate plug-ins as solution. The RCF
manager also delegates the candidate plug-ins as possible replacement of the most
appropriate. The scheduler schedules the service delivery mechanism as proposed in
[20]. The processed fault signatures are stored in signature repository for future
utilization. The plug-in manager is a directory service for maintaining the latest plug-in
context. This directory service is not present at the client level.

In [3] the authors classify self management into individual functions and react to
the anomaly detected through SNMP messages. The clear demarcation of self-*
functions is absent in modern day systems as there is no taxonomy done for various
fault types. This is one of the main reasons why we prefer component integration over
conventional high granularity modules for self management [12]. A detailed
architecture of the Self Management Framework (SMF) is shown in figure 4.

The Root Cause Analyzer plays the central part in problem detection phase of self
healing. The State Transition Analysis based approaches [21] might not be
appropriate as Hidden Markov Models (HMMs) take long training time along with
their ‘exhaustive’ system resources utilization. The profile based Root Cause
Detection might not be appropriate mainly because the domain of errors expected is
very wide [22], [23], [24]. We use the meta-data obtained from NFM to trigger Finite
State Automata (FSA) series present at root cause analyzer. In future we plan to

200 J.A. Chaudhry and S. Park

Lookup Lookup
Traffic Manager

Plug-in Manger

Signature
Repository

A

invokes

Root Cause

RCF Manager” Scheduler
Analyzer

T Root Cause Fragmentation Manager

Fig. 4. Architecture of Self Management Framework (SMF)

modify State Transition Analysis Tool [21] according to on fault analysis domains
[25]. After analyzing the root cause results from the RCA, the RCF manager,
Signature Repository and Scheduler searches for the already developed solutions, for
a particular fault if not, it arranges a time slot based scheduler as proposed in [26] for
plug-ins. The traffic manager directs the traffic towards different parts of AHSEN.

4 Implementation Details

In order to verify our scheme, we have implemented the design using Java Enterprise
Edition (Java EE) technologies. We used the template mechanism, nested classes and
parameter based system call and inheritance in our software prototype. We define the
properties of types of entities involved into various classes i.e. the mobile nodes differ
from each other on many bases power, mobility rates, speed, energy levels, and
hierarchical position in the cluster. We categorize the cluster headers into a separate
class derived from the base class mobnd. Due to their unique functionality, the
backbone servers are defined into a different class. The devices can be connected to
the wireless gateway through Wireless LAN interface and sensor nodes are connected
through miscellaneous interfaces i.e. blue tooth, 802.1.5 etc. The link type is also
defined into a separate class names Inktyp. The SMF is defined as a separate base
class with various entities i.e. RCF Manager, root cause analyzer, etc as independent
classes. A log service is used to keep track of instances and fault flow. The Java
Naming and Directory Interface (JNDI) provides unified interface to multiple naming
and directory services. We use JNDI as a directory service in our architecture.

The scenario mentioned above was developed for a past project but we consider
that it can provide good evaluation apparatus for testing the healing engine proposed
in this paper. The current prototype can handle very limited number of clusters and
mobile nodes. We plan to improve the system in future work. We defined two clusters
with 8 mobile nodes. Each cluster contains two cluster headers and 6 child nodes. At
first, we run our system without faulty nodes. After that in order to test the
performance of our system, we introduce a malicious node in each cluster. The

AHSEN - Autonomic Healing-Based Self Management Engine 201

activities of that malicious node result into identifiable fault signatures that are
detected and removed by the SMF present at the gateway. As shown in figure 5 and
figure 6, the Transactions Per Second (TPS) decreases with increase in time as the
malicious node is introduced. We observe that a considerable decrease in transactions
is because every time a request times out, the SMF reacts and provides the healing
policies to cover the interruption in service delivery.

Before Error Node was Introduced

160000 4

S 140000 — =
g . m—
% 120000 —
w
$ 100000 ‘/ —e—Client 1
°=' J— & —=— Cluster 1
H :
T // Client 2
2 60000 Cluster 2
£ w”
£ 40000
&
& o000

T e e e

Time (microseconis)

Fig. 5. Simulation Results of the scenario before the error node was introduced

After Error Node was Introduced
60000

£ so000 x -
3 i '\
L— A A e 'ﬁ\,‘/ \ I
K W ¥ Vo | |Gl
@
2 o000 —a— Cluster 1
g Client 2
H
% 20000 ;“*,*Jv)‘\; Cluster 2
= !
& 10000 4=
" M

(1R A TTTTTTITTIITIITITAIITITITTA

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35
Time {microseconds)

Fig. 6. Simulation Results of the scenario after the error node was introduced

5 Concluding Remarks

In this paper we present a trust based autonomic network management framework
using self healing techniques. We re-categorize the self management functions and
dissolve the mapping created between errors and self management functions in [3].
We offer the healing solutions in the form of atomic plug-ins that can either work
independently and atomically or they can be meshed into a composed file. The
individual self management at the node level is done by NFM which sends the
exceptions to the SMF at gateway. The SMF at gateway is the entity that decides the
plug-in selection for an anomaly detected at the client level. The entity profiling
enables the trust calculation against every node which allows a user to use certain

202 J.A. Chaudhry and S. Park

privileged services. Some scenarios are described for better understanding. We share
our implementation experience and compare our work with cotemporary work.

In the scheme proposed in this research article we have put an effort to contour the
trust in device profiles but we have not studied effect on the trust of a migrating node.
Although, in our previous research, we studied the context migration from one cluster
to another we will try to study the relationship between the two research approaches.
Moreover we plan to study the signature independent anomaly identification at NFM
level. We also plan to implement the post-healing test strategy.

References

1. Firetide: Instant Mesh Networks: http://www firetide.com.

2. Doufexi A., Tameh E., Nix A., Armour S., Molina, A.: Hotspot wireless LANs to
enhance the performance of 3G and beyond cellular networks. IEEE Communications
Magazine, July 2003, pp. 58- 65.

3. Chaudhry S.A., Akbar A.H., Kim K., Hong S., Yoon W.: HYWINMARC: An Autonomic
Management Architecture for Hybrid Wireless Networks. EUC Workshops 2006: 193-
202.

4. Burke J. R.: Network Management. Concepts and Practice: A Hands-on Approach.
Pearson Education, Inc., 2004.

5. Minseok O.: Network management agent allocation scheme in mesh networks. IEEE
Communications Letters, Dec. 2003, pp.601 — 603.

6. Kishi, Y. Tabata, K. Kitahara, T. Imagawa, Y. Idoue, A. Nomoto, S.: Implementation of
the integrated network and link control functions for multi-hop mesh networks. IEEE
Radio and Wireless Conference, September 2004, pp. 43- 46.

7. Shi Y., Gao D., Pan J., Shen P.: A mobile agent- and policy-based network management
architecture. Proceedings of the Fifth International Conference on Computational
Intelligence and Multimedia Applications (ICCIMA’03), September 2003, pp. 177-181.

8. IBM white paper, Autonomic Computing: Enabling Self-Managing Solutions, SOA and
Autonomic Computing December 2005.

9. Chaudhry J. A., Park S.: Some Enabling Technologies for Ubiquitous Systems, Journal of
Computer Science, 2006, pp. 627-633.

10. Garfinkel S.: PGP: Pretty Good Privacy. O’Reily & Associates Inc., 1995.

11. Chaudhry J. A., and Park S.: Using Artificial Immune Systems for Self Healing in Hybrid
Networks", To appear in Encyclopedia of Multimedia Technology and Networking, Idea
Group Inc., 2006.

12. Ma J., Zhao Q., Chaudhary V., Cheng J., Yang L. T., Huang H., and Jin Q.: Ubisafe
Computing: Vision and Challenges (I). Springer LNCS Vol.4158, Proc. of ATC-06, 2006,
pp- 386-397.

13. Shelton, C. & Koopman, P.: Improving System Dependability with Alternative
Functionality. Proceedings of the 2004 International Conference on Dependable Systems
and Networks (DSN'04), June 2004, pp. 295.

14. Morikawa, H.: The design and implementation of context-aware services. International
Symposium on Applications and the Internet Workshops (SAINT-W'04), 2004, pp. 293 — 298.

15. Strowes S., Badr N., Dulay N., Heeps S., Lupu E., Sloman M., Sventek J.: An Event
Service Supporting Autonomic Management of Ubiquitous Systems for e-Health. 26th
IEEE International Conference on Distributed Computing Systems Workshops 2006.
(ICDCS-w'06), pp. 22-22.

16.

17.

18.

19.

20.

21.

22.

23.

24.

AHSEN - Autonomic Healing-Based Self Management Engine 203

Chaudhry J. A., Park S.: A Novel Autonomic Rapid Application Composition Scheme for
Ubiquitous Systems. The 3rd International Conference on Autonomic and Trusted
Computing (ATC-06), September 2006, pp. 48-56.

Trumler W., Petzold J., Bagci J., Ungerer T.. AMUN - Autonomic Middleware for
Ubiquitious eNvironments Applied to the Smart Doorplate Project. International
Conference on Autonomic Computing (ICAC-04), May 2004, pp. 274-275.

Gao, J., Kar, G., Kermani, P.,; Approaches to building self healing systems using
dependency analysis. IEEE/IFIP Network Operations and Management Symposium 2004
(NOMS'04), April 2004, pp. 119-132.

Chaudhry J. A., Park S.: On Seamless Service Delivery", The 2nd International
Conference on Natural Computation (ICNC'06) and the 3rd International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD'06) , September 2006, pp. 253-261.
Ilgun, K., Kemmerer R.A., Porras P.A.,: State transition analysis: a rule-based intrusion
detection approach, IEEE Transactions on Software Engineering, March 1989, pp.181-199.
Lunt T. F.: Real-time intrusion detection. Thirty-Fourth IEEE Computer Society
International Conference: Intellectual Leverage, Digest of Papers (COMPCON Spring
'89.), March 1989, pp. 348-353.

Lunt T.F., Jagannathan R.: A prototype real-time intrusion-detection expert system.
Proceedings of IEEE Symposium on Security and Privacy 1988, Apr 1988, pp. 59-66.
Lunt T.F., Tamaru A., Gilham F., Jagannathan R., Neumann P.G., Jalali C.: IDES: a
progress report [Intrusion-Detection Expert System]. Proceedings of the Sixth Annual
Computer Security Applications Conference 1990, Dec 1990, pp.273-285.

Radosavac, S., Seamon, K., Baras, J.S.: Short Paper: bufSTAT - a tool for early detection
and classification of buffer overflow attacks. First International Conference on Security
and Privacy for Emerging Areas in Communications Networks 2005 (SecureComm 2005),
Sept. 2005, pp. 231- 233.

Development of a GT4-Based Resource Broker Service:
An Application to On-Demand Weather and Marine
Forecasting

R. Montella

Dept. of Applied Science, University of Naples “Parthenope” — Italy

Abstract. The discovery and selection of needed resources, taking into account
optimization criteria, local policies, computing and storage availability,
resource reservations, and grid dynamics, is a technological challenge in the
emerging technology of grid computing.

The Condor Project’s ClassAd language is commonly adopted as a “lingua
franca” for describing grid resources, but Condor itself does not make extensive
use of Web Services. In contrast, the strongly service-oriented Globus Toolkit is
implemented using the web services resource framework, and offers basic
services for job submission, data replica and location, reliable file transfers and
resource indexing, but does not provide a resource broker and matchmaking
service.

In this paper we describe the development of a Resource Broker Service
based on the Web Services technology offered by the Globus Toolkit version 4
(GT4). We implement a fully configurable and customizable matchmaking
algorithm within a framework that allows users to direct complex queries to the
GT4 index service and thus discover any published resource. The matchmaking
algorithm supports both the native simple query form and the Condor ClassAd
notation. We achieve this flexibility via a matchmaking API java class
framework implemented on the extensible GT4 index service, which maps
queries over ClassAds in a customizable fashion.

We show an example of the proposed grid application, namely an on demand
weather and marine forecasting system. This system implements a Job Flow
Scheduler and a Job Flow Description Language in order to access and exploit
shared and distributed observations, model software, and 2D/3D graphical
rendering resources. The system combines GT4 components and our Job Flow
Scheduler and Resource Broker services to provide a fully grid-aware system.

1 Introduction

Our proposed grid infrastructure is based on the Globus Toolkit [1] version 4.x (GT4)
middleware, developed within the Globus Alliance, a consortium of institutions from
academia, government, and industry. We choose GT4 because it exposes its features,
including service persistence, state and stateless behavior, event notification, data
element management and index services, via the web services resource framework
(WSREF).

The brokering service that we have developed is responsible for interpreting
requests and enforcing virtual organization policies on resource access, hiding many

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 204 _ 2007.
© Springer-Verlag Berlin Heidelberg 2007

Development of a GT4-Based Resource Broker Service 205

details involved in locating suitable resources. Resources register themselves to the
resource broker, by performing an availability advertisement inside the virtual
organization index [4]. These entities are classified as resource producers using many
advertisement techniques, languages and interfaces. Resource are often discovered
and collected by means of a performance monitor system and are mapped in a
standard and well known description language [5] such as the Condor [8] ClassAd
[9]. Ideally, the entire resource broking process can be divided into two parts. First, a
matchmaking algorithm finds a set of matching resources using specific criteria such
as “all submission services available on computing elements with at least 16 nodes
using the PBS local scheduler and where the MMS [3] weather forecast model is
installed.” Then, an optimization algorithm is used to select the best available
resource among the elements [6]. Usually, the broker returns a match by pointing the
consumer directly to the selected resource, after which the consumer contacts the
resource producer. Alternatively, the client may still use the resource broker as an
intermediary. When the resource broker selects a resource, the resource is tagged as
claimed in order to prevent the selection of the same resource by another query with
the same request. The resource will be unclaimed automatically when the resource
broker catalogue is refreshed reflecting the resource state change [10].

In this scenario, the resource broker service is a key element of grid-aware
applications development. Thus, users can totally ignore where their data are
processed and stored, because the application workflow reacts to the dynamic nature
of the grid, adapting automatically to the resource request and allocation according to
grid health and status.

The allocation and scheduling of applications on a set of heterogeneous,
dynamically changing resources is a complex problem without an efficient solution
for every grid computing system. Actually, the application scenario and the involved
resources influence the implemented scheduler and resource broker system while both
the implicit complexity and the dynamic nature of the grid do not permit an efficient
and effective static resource allocation.

Our demo applications are based on the use of software for the numerical
simulation in environmental science, and are built and developed using a grid
computing based virtual laboratory [11]. Weather and marine forecasts models need
high performance parallel computing platforms, to ensure an effective solution and
grid computing is a key technology, allowing the use of inhomogeneous and
geographically-spread computational resources, shared across virtual organization.
The resource broker service is the critical component to transform the grid computing
environment in a naturally used operational reality. The buildup of grid-aware
environmental science applications is a “grand challenge” for both computer and
environmental scientists, hence on-demand weather forecast is used by domain
experts, common people, amateur and enthusiasts sailing racers.

In this paper we describe the implementation of a GT4-based Resource Broker
Service and the application of this component to a grid-aware dynamic application,
developed using our grid based virtual laboratory tools. The resource broker
architecture and design is described in the section 2, while in sections 3 and 4 we give
a short description of the native matchmaking algorithm and of the interface to the
Condor ClassAd querying features. In section 5, we show how all these components
work together in an on-demand weather and marine forecasting application. The final
section contains concluding remarks and information about plans for future work.

206 R. Montella

2 The Resource Broker Architecture and Design

Our resource brokering system, leveraging on a 2-phase commit approach, enables
users to query a specified virtual organization index service for a specific resource,
and then mediates between the resource consumer and the resource producer(s) that
manage the resources of interest. Resources are represented by web services that
provide access to grid features such as job submission, implemented by the Grid
Resource Allocation Manager (GRAM) service and the file transfer feature,
implemented by the Reliable File Transfer (RFT) service [2].

The sequence begins when the Resource Broker service is loaded into the GT4
Web Services container to create an instance of a Resource Home component. The
Resource Home invokes the Resource initialization, triggering the creation of the
matchmaking environment and collecting the grid-distributed published resources
using the index service. The collector is a software component living inside the
matchmaker environment managing the lifetime of the local resource index. The
collector processes query results in order to evaluate and aggregate properties, map
one or more properties to new ones, and store the result(s) in a local data structure
ready to be interrogated by the requesting resource consumer.

The collector is a key component of the resource broker. Thus, we provide a fully
documented API to extend and customize its behavior. In the implementation, a
generic collector performs a query to the GT4 Monitor Discovery Service (MDS) [7]
to identify all returned elements where the local name is “Entry.” Element properties
are parsed and stored in a format suitable for the resource brokering algorithm. The
end point reference of each entry is retrieved to obtain the host name from which the
resource is available. This step is needed because the collected properties are stored in
a hostname-oriented form, more convenient for the matchmaking instead of the
resource-oriented form published by the index service. In this way, each grid element
is characterized by a collection of typed name/value properties.

Each entry has an aggregator content used to access the aggregator data. In the case
of the ManagedJobFactorySystem, the aggregator data contains a reference to a
GLUECE Useful Resource Property data type, where information about the grid
element is stored by the MDS data provider interfaced to a monitor system such as
Ganglia [13]. The collector navigates through the hierarchically organized properties
performing aggregation in the case of clusters where master/nodes relationships are
solved. A property builder helper component is used to perform this task, analyzing
the stored data and producing numeric properties concerning hosts, clusters and
nodes. In the collecting process new properties may be added to provide a better
representation of resources available on grid elements.

A configurable property mapping component is used by the collector to perform
some properties processing such as lookup: the value of a resource is extracted from a
lookup table using another resource value as key; ranging: the resource value is
evaluated using a step function defined using intervals; addition: a resource value is
retrieved using and external component and added to the resource set; averaging: the
value of a resource is calculated using the mean value of other resources.

The use of the property mapping component is needed in order to aggregate or better
define resources from the semantic point of view: in the resource broker native
representation, the available memory on a host is “MainMemory.RAMAvailable.Host,”

Development of a GT4-Based Resource Broker Service 207

while usually the ClassAd uses the simple “Memory” notation, hence a copy operation
between two properties is needed. A less trivial use of the property mapping tool is done
by evaluating the Status property: there is no Status property definition in the GLUECE
Useful Resource Property, while ProcessorLoad information are available. The property
mapping algorithm averages the ProcessorLoad values storing this value in the
LoadAvg property, then the LoadAvg property is range evaluated to assign the value to
the Status property (Idle, Working) [14].

A principal resource broker service activity is to wait for index service values
changing notification in order to perform an index service entity query and to collect
data about the grid health represented by the availability of each VO resource. The
resource brokering initialization phase ends when the collector’s data structure is
filled by the local resource index and the Resource component registers itself to the
virtual organization main Index Services as a notification sink, and waits for index
resource property data renewal events. In our resource broker, many users have to
interact with the same stateful service querying resources that are tracked in order to
be in coherence with the grid health status. Due to these requirements, we create the
service using the singleton design pattern with the stateless web service side is
interfaced with the stateful one via resource properties [12]. Due to the dynamic
nature of grid resources, the resource property is not persistent and it is automatically
renewed each time the index service notifies to the resource broker service that its
entity status is changed. In this way the resource lifetime is automatically controlled
by the effective update availability and not scheduled in a time dependent fashion
[15]. Registered entity status changes are transferred upstream to the Index Service
and then propagated to the Resource notification sink. Due to our application
behavior, this approach could be inefficient because many events may be triggered
with high frequency, degrading performance. We choose a threshold time interval
value to trigger the data structure update.

From the resource consumer point of the view, the sequence starts when the user
runs the resource broker client using one of the query notations that our system
accepts.

Native notation: each selection criteria expression is separated by a space with the
meaning of the logical and. Properties reflects the GLUECE Useful Resource
Properties nomenclature with the dot symbol as property and sub property separator.
The criteria are the same of the majority of query languages, plus special ones such as
“max” and “min” to maximize or minimize a property and “dontcare” to ignore a pre-
set condition.

Globus.Services.GRAM!="" Processor.InstructionSet.Host=="x86"

Cluster.WorkingNodes>=16 MainMemory.RAMAvailable.Average>=512
ComputingElement.PBS.WaitingJobs=min

This query looks for a PC cluster with at least 16 working nodes and 512
megabytes of available RAM using the PBS as local queue manager and where the
GRAM Globus web service is up and running. Computing elements with the
minimum number of waiting jobs are preferred.

ClassAd notation: the selection constraints are expressed as requirements using the
well-known Condor classified advertisement notation for non structured data
definition queries. In this notation, the query is enclosed in a brackets envelope and

208 R. Montella

each couple of property name/value is separated by a semicolon. Special mandatory
fields are Rank and Requirements. The Requirements field contains the constraints
criteria expressed using the standard C language notation.

[Type="Job”; ImageSize=512; Rank=1/other.ComputingElement_PBS_WaitingJobs;

Requirements= other.Type=="Machine” && other.NumNodes>=16 && other.Arch=="x86" &&
other.Globus_Services_GRAM!=""]

The shown classad performs the same query previously shown with the native
notation. The NumNodes property is equivalent to the Cluster.WorkingNodes. The
underscore substitutes the dot for the property/sub property access notation to avoid
ambiguity with the dot meaning in ClassAd language. The ranking is mathematically
computed using a simple expression involving the number of PBS waiting jobs [16].

The implementation of the matchmaking algorithm differs in relation to the chosen
strategy, but can be formerly divided in two phases: the search and the selection.

In the search phase, some constraints are strictly satisfied, such as the number of
nodes equal to or greater than a particular value, and the available memory being not
less than a specified amount. If none suitable resource is available, the fail result is
notified to the client applying the right strategy in order to prevent deadlock and
starvation issues. After this step, resources satisfying the specified constraints are
passed to the second phase, where the best matching resource is found using an
optimization algorithm based on a ranking schema. The selected resource is tagged as
claimed to prevent another resource broker query selecting the same resource causing
a potential overload. At the end of the query process the resource broker client
receives the End Point Reference (EPR) of the best matching resource and is ready to
use it. The resource remains claimed until a new threshold filtered update is
performed and the resource status reflects their actual behavior.

3 The Native Latent Semantic Indexing Based Matchmaking
Algorithm

We implemented a matchmaking algorithm from scratch; it is based on an effective
and efficient application of Latent Semantic Indexing (LSI) [17].

In the case of search engines, a singular-value decomposition (SVD) of the terms by
document association matrix is computed producing a reduced dimensionality matrix
to approximate the original as the model of “semantic” space for the collection. This
simplification reflects the most important associative patterns in the data, while
ignoring some smaller variations that may be due to idiosyncrasies in the word usage
of individual documents [18]. The underlying “latent” semantic structure of the
information is carried out by the LSI algorithm. In common LSI document search
engine applications, this approach overcomes some of the problems of keyword
matching based on the higher level semantic structure rather than just the surface level
word choice [19].

In order to apply LSI to resource matchmaking, we have to map some concepts
from the document classification and indexing to the grid resource discovery and
selection field. As documents, in the web identified by URLs, are characterized by
some keywords, resources, identified by EPRs in the grid, have name properties typed
as string, integer, double and boolean values. A document may or may not contain a

Development of a GT4-Based Resource Broker Service 209

particular word, so the matrix of occurrence document/words is large and sparse; in
the same way each grid resource is not characterized by a value for each defined
property, because not all properties are relevant to a specific grid resource description.
Documents and grid resources share the same unstructured characterization, but while
words and aggregated relations between words could have a special meaning because
of the intrinsic semantic of the aggregation itself, grid resource properties are self
descriptive, self contained and loosely coupled in the aggregation pattern. Under this
condition, we have no need to apply the dimension reduction in grid resource
properties indexing, while the application of the SVD is mandatory if dealing with
documents. The grid resource description property values can be numeric,
alphanumeric and boolean, but alphanumeric values have not hidden semantic mean
build by aggregation, while a query can be performed specifying the exact value of
one or more properties. Due to the deterministic behavior needed by the resource
matchmaking process, a criteria based selection process is done before grid resources
are threaded by our LSI based matchmaker algorithm. This kind of selection is
performed in order to extract from all available resources the set of close matching
requirements.

c Properties Space Adimensional Values
- - =
™ £
e | B A C | B
£ F g A
3 : 2 :
5 2 F
z D E
3] . 8
5 <]
g X < D :
< E
& S -
X

ComputingElement.PBS.FreeCPUs ComputingElement.PBS.FreeCPUs

Fig. 1. The A ... F grid elements properties and the X query property. On the left in the
dimensional space, on the right in the adimensional space.

Our LSI approach to matchmaking is based on the assumption that all boolean and
alphanumeric query criteria are strictly satisfied in the selection phase, so the set of
available grid resources comprises all suitable resources, from which we must extract
the best one characterized by only numerical property values. After selection, the grid
resources have a specific position in a hyperspace with a number of dimensions equal
to those of the query: for example, after the ComputingElement.PBS.FreeCPUs>=25
Processor.ClockSpeed. Min==1500 Globus.Service. GRAM!="" query, the hyperspace
is reduced to a Cartesian plane with the ComputingElement.PBS.FreeCPUs on the x
axis and the Processor.ClockSpeed.Min on the y axis (Figure 2, left side). We assume,
if the user asks for 25 CPUs or more, the best resource is the machine with 25 CPUs,
while more CPUs are acceptable but something of better as in the case of
ComputingElement.PBS.FreeCPUs=max. The best fitting resource could be
considered to be the one that minimize the distance between the position of the
requested resource and the offered one. This kind of ranking approach could be correct
if all property values are in the same unit. If Processor.ClockSpeed.Min is expressed as
GHz or MHz, and ComputingElement.PBS.FreeCPUs as an integer pure number the

210 R. Montella

computed distance is biased, because of the anisotropic space. An adimensionalization
process is needed in order to map all offered and asked grid resources in an isotropic
unitless n-dimensional space, with the goal of making distances comparable.

The goal of our adimensionalization process is to re-normalize property values so
that they have a mean of zero and standard deviation equal to one. In order to achieve
this result, we calculate the mean and standard deviation for each involved property.
Then, using a lookup data structure, both the asked and offered grid resource,
identified by their characteristics, are adimensionalized and projected in a isotropic
space in which distance units on each axis are the same. Finally, a ranking table,
ordered in ascending order of distance, is computed using the Euclidean distance; then
the resource in the first position represents the best one fitting the querying criteria
(Figure 2, right side).

4 The Condor ClassAd Based Matchmaking Algorithm

The world wide Condor open source ClassAds framework [20] is robust, scalable,
flexible and evolvable as demonstrated by the production-quality distributed high
throughput computing system developed at the University of Wisconsin-Madison.
Classified Advertisements are stated as the “lingua franca” of Condor and are used
for describing jobs, workstations, and other resources. In order to implement a GT4
resource oriented matchmaker algorithm using ClassAds framework, a mapping
between Index Service entries and ClassAds component is needed. The component
have to be flexible, full configurable, customizable and extensible in order to manage
any kind of entries. In the GT4 Index Service each entry represents a resource of a
specified type characterized by property values for which the ClassAd mapping
process is trivial or straightforward. Resource properties, such as the GLUECE, are
complex and data rich and the mapping process could be more tricky because some
aggregation, synthesis and evaluation work is needed (as in the case of clusters
computing elements).

Once the ClassAd representation of unclaimed GT4 grid element resources is
available thanks to the developed mapping component, our matchmaker algorithm
compares each ClassAd with the ClassAd form of the submitted query. The grid
element vector is filled and each element each is characterized by the self and other
Rank property (formerly the ClassAd Rank attribute computed from the query point
of view, self, and the resource one, other). The Rank ClassAd parameter is used to
perform a sort criteria in order to choose the best fitting resource represented by the
one that maximize both self.Rank and other.Rank properties. Thanks to the native
matchmaker algorithm, we have all tools needed to perform the best fitting resource
selection, using a native query in the form “self.Rank=max other.Rank=max”, that
selects the grid element that maximize both properties.

S An Application to on Demand Weather and Marine Forecasting

In our grid computing based virtual laboratory we grid enabled several atmospheric,
marine and air/water quality models such as MM5 (Mesoscale Model 5) [3], POM
(Princeton Ocean Model) [21], the STAEM (Spatio-temporal distribution Emission

Development of a GT4-Based Resource Broker Service 211

Model) [22], the PNAM (Parallel Naples Airsheld Model) [23], WRF (Weather and
Research Forecasting model), sea-wave propagation models WW3 (WaveWatch III)
and the CAMx (Comprehensive Air quality Model with eXtension) air quality model
[26]. We made this models grid enabled using the black-box approach implementing a
modular coupling system with the goal to perform several experiments and
environmental science simulations without the need of a deep knowledge about grid
computing. We are still working about the grid enabling of other environmental
models developing other virtual laboratory components in order to deliver a
comfortable environment for earth observation grid aware application deployment.

pregrid
To be started

regrid2
To be started

regrid]
To be started

regrid3
To be started

regridd
To be started

interpf1
To be started

interpf2
To be started

mpp
To be started

mm52grads | mmS2grads2 mm52grads3 mmS2gradsd4
To be started To be started To be started To be started

/ | l \

‘make WindMaps1 make WindMaps2 make WindMaps3 make WindMaps4
To be started To be started To be started To be started

interpf3
To be started

interpf4
To be started

Fig. 3. The application workflow as represented by the JFDL file

We developed an on-demand weather and marine forecast, which is a full grid-
aware application running in an effective ad efficient fashion on our department grid
as test-bed for our resource broking service. The application environment in which the
application runs is based on our virtual laboratory runtime grid software integrating
our Job Flow Scheduler and the ResourceBroker Service. Using this tool, we develop
the application using the Job Flow Description Language (JFDL), based on XML,
with the needed extension for resource broking interfacing and late binding reference
management [24].

The user need only specify the starting date and the number of hours for the
simulation or the forecast. Then, all needed resources are requested from the resource
broker and allocated at runtime. In the job elements of the JFDL application file,
queries are coded to select resources using both the native and the ClassAd notation,
while some design optimizations are made using the dynamic reference management
syntax of the JFDL to run application components minimizing the data transfer time.

From the data point of view, the grid-aware application computes weather forecast
and wind driven sea wave propagation on four nested domains ranging from the
Mediterranean Europe (81 Km cell size) to the Bay of Naples (3 Km cell size),
produces both thematic maps and GRIB data files ready for other processes and uses
via standard, commercial or free software. This application is a smart and simplified
version of the one we run operationally for regional weather and marine forecasts
used by different local institutions.

212 R. Montella

The application workflow (Figure 3) begins with the starting event produced by the
on-demand request coming, for example, from a multi access, mobile device enabled
web portal. Then, the weather forecast model is initialized and the output data is
rendered by a presentation software and concurrently consumed by the sea wave
propagation model. Then each application branch proceeds on a separate thread.

The workflow could be represented as an acyclic direct graph into a JFDL file
where each job to be submitted is described by an inner coded RSL [25] file while the
launching scripts are stored in a separate repository (Figure 4). Our JFES component
permits the grid application implementation using a single XML self describing file,
while the RB service makes the application grid-aware.

JFDL XML Schema

‘ rsls ‘globaIProperties ‘ jobs

o] [|

Fig. 4. The JFDL developed schema

In the element jfdl:globalProperties the developer can specify the values read in
each job definition and substituted at runtime. The jfdl:rsls element contains a
collection of jfdl:rs] named elements used to describe jobs with the Globus GRAM
RSL file. In this files the use of environment variables place holding for scratch
directory path and provided utility macros.

The file describing the grid aware application can be divided into two parts: inside
the element <jfdl:jobs> each job belonging to the application is described specifying
its symbolic name, the computing node where it will be submitted, and the name of
the RSL file specifying all needed resources.

The statically assigned grid element unique identifying name, specified in the job
element host attribute, could be omitted, in which case a resource broker
jfdL:resourceBroker element would have to be used. In this element could be specified
the classAlgorithm attribute to select the matchmaker implementation class
identifying the matchmaking algorithm using the native one if this parameter is
omitted as shown in the following example:

<jfdl:resourceBroker
classAlgorithm="it.uniparthenope.dsa.grid.ClassAdMatchmakingAlgorithm”>
[Type="Job”; ImageSize=512;
Rank=1/other.ComputingElement.PBS.WaitingJobs;
Requirements= other.Type=="Machine” &&
other.Software_MM5_Regrid==true &&
other.Disk>=64 && other.NumNodes==0]

</jfdl:resourceBroker>

Development of a GT4-Based Resource Broker Service 213

Where the application is looking for a non cluster machine, such as a workstation
or a dedicated server, on which the Regrid component is installed. Moreover, the job
needs at least 64 MB of available space on disk, and the best fitting resource is the
one that minimizes the number of waiting jobs in the PBS queue manager (implicitly
the PBS local queue manager is needed as requirement).

In each job definition the user can specify local properties using the jfdl:propeties
element. Properties are runtime accessible using the conventional name
$propertyname; global properties referred to a particular job are referred by
$jobname.propertyname. This is really useful if a sort of optimization is needed using
an integrated grid-enabled/aware approach. In our application we want to assign grid
elements dynamically but some components have data strictly related as the case of
Regrid/Interpf pairs or mm52grads/makeWindMaps pairs, so it is better to execute
Regrid and Interpf, as well mm52grads and makeWindMaps, on the same computing
element to achieve best performances avoiding heavy data transfers.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Fig. 5. Simulated Time versus Computing Time under several configurations. On the left
absolute times, on the right relative times.

In order to evaluate the grid-aware application performance, we repeated the
experiment 10 times and then averaged total computing time for 24, 48, 72, 96, 120,
and 144 simulated hours.

We evaluated three different grid behavior configuration scenarios:

No grid technology use: The application runs as a common Bash shell script on the
master node (Pentium IV at 2.8 GHz Hyper Threading equipped with 4 GByte of
RAM and 2 160 GB hard disk and running Fedora Core 3 Linux) of the computing
element named dgbeodi.uniparthenope.it formed by a cluster of 25 workstation
powered by a hyper heading PentiumIV at 2.8 GHz, each with 1GByte of RAM and
80 GB hard disk, running Fedora Core 3 Linux. The local network is a copper gigabit
using a high performance switch. This workstations are used also for student learning
activities running concurrently Windows XP Professional operating system hosted by
virtual environment. In this case no kind of explicit parallelism is performed and there
is no need to use an external network for data transfer.

Grid-enabled mode: Globus+JFS, the application is developed using JFDL and runs
under our virtual laboratory tools. Computational loads are distributed statically over
available grid elements, with a design optimization performed regarding computing
power and data file transfer needs. In this approach the Job Flow Scheduler

214 R. Montella

component is used, but the Resource Broker Service is switched off. The application
takes advantage of the explicit parallelism carried out by parallel execution of
regrid/intepf and mm52grads/makeWindMaps software modules pairs. As in the
previous case of not us of grid technology, MM5 and WW3 models run on the same
25 CPUs computing element dgbeodi.uniparthenope.it.

Grid-aware mode: Globus+JFS/RB, the application is developed using JFDL and
runs under our tools as in the previous case, but resources are assigned dynamically
using our resource broker service performing queries each time it is needed. To
achieve better performance and to avoid unnecessary data file transfers, Regrid and
Interpf jobs and mm52grads/makeWindMaps are submitted to the same computing
element using the Job Flow Scheduler late binding capabilities: the resource broker is
invoked to choose the computing element for the Regrid job and then the same CE is
used for the Interpf job. The query for parallel computing intensive load characterized
jobs MM5 and WW3 is performed, but dgbeodi.uniparthenope.it is always used
because the constraints.

From the performance analysis line graph (Figure 5, left side), we see that as
simulated time increases from 24 to 144 hours, the grid-enabled application (filled line)
performs well when compared to the no-grid (dotted line) technology use. This is
because of the parallel execution of loosely coupled jobs and the optimized data high
performance transfer. When resource broking capabilities are activated (outlined
graph), the grid-aware system still performs better than the no-grid application version,
but is slower than the grid-enabled version without resource brokering because of the
latency introduced by the Web Services interactions, the adopted matchmaking
technique related issues and the deadlock/starvation avoiding subsystem interactions.
In the other graph (Figure 5, right side) are drown computing time differences between
the no grid setup and the grid-enabled (filled line) and the grid-aware one (outlined
graph). The dotted line represents the difference in computing time between the two
approaches. The time consumed by the resource broker in all tests is quite constant
because our grid was used in a exclusive manner (without other users). On the other
hand, in production conditions (not exclusive grid use), the overall computing load of
the department grid is better distributed using the grid-aware behavior, allowing for
efficient and effective resource allocation optimization.

Nk s Kmmz\ e
\\x X(\ B R
\\ ‘msws o

-

SN ‘\\\{\\‘\ B

TIE TR MAE MSE 146E

0

Fig. 6. Demo grid aware application results

Development of a GT4-Based Resource Broker Service 215

6 Conclusions and Future Works

We have described some results in the field of grid computing research, with
particular regard to the challenging issue of resource discovery and selection with
matchmaking algorithms.

We developed a resource broker service, fully integrated with Globus Toolkit
version 4, that is both modular and easy to expand. The plug-in architecture for both
collector and matchmaking algorithm implementations we developed makes this tool
an excellent environment for resource handling algorithms experiments and
productions in the Globus Toolkit grid approach world. Our next goal develop an
accurate testing suite, based on both real and simulated grid environment, in order to
evaluate and compare native and ClassAd algorithm performances and effectiveness.
In this scenario is our interest in developing a matchmaking algorithm based on the
minimization of cost functions evaluated using resource characterization benchmarks
in order to implement dynamic performance contracts. A better self registering
approach to grid available application have to be followed to make the real use of our
tools in a straightforward fashion.

In order to achieve a better, and more standard, application workflow environment,
a Job Flow Scheduler refactoring is planned with the aim to be BPEL [27] compliant
leveraging on open source workflow engines [28].

Our virtual laboratory for earth observation and computational environmental
sciences based on the grid computing technology is enriched by the features provided
by the Resource Broker Service, making possible the design and the implementation
of truly grid-aware applications. The integration between the Job Flow Scheduler
service and the Resource Broker service is a powerful tool that can be used both for
research and application-oriented uses for running any kind of complex grid
application (Figure 6).

Acknowledgments. I would like to thank Ian Foster for his suggestions and support
in the revision of this paper.

References

1. I Foster, “Globus Toolkit Version 4: Software for Service-Oriented Systems,” 1. Foster,
Journal of Computational Science and Technology, 21(4):523-530, 2006.

2. W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, I. Foster.
“The Globus Striped GridFTP Framework and Server,” .SC05, November 2005

3. The PSU/NCAR mesoscale model (MMS5), Pennsylvania State University / National
Center for Atmospheric Research, www.mmm.ucar.edu/mm5/mm5-home.html

4. 1. Foster, C. Kesselman, The Grid 2: Blueprint for a new Computing Infrastructure.
Morgan Kaufman, 2003

5. C. Liu, . Foster. A Constraint Language Approach to Matchmaking. Proceedings of the
14th International Workshop on Research Issues on Data Engineering (RIDE 2004),
Boston, 2004

6. I Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Intl. J. High Performance Computing Applications, 15(3):200-222, 2001.

216

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

R. Montella

J. M. Schopf, M. D'Arcy, N. Miller, L. Pearlman, I. Foster, and C. Kesselman. Monitoring
and Discovery in a Web Services Framework: Functionality and Performance of the
Globus Toolkit's MDS4. Argonne National Laboratory Tech Report ANL/MCS-P1248-
0405, April 2005.

. D. Thain, T. Tannenbaum, M. Livny. Distributed Computing in Practice: The Condor

Experience. Concurrency and Computation: Practice and Experience, Vol. 17, No. 2-4,
pages 323-356, February-April, 2005.

. R. Raman. Matchmaking Frameworks for Distributed Resource Management. Ph.D.

Dissertation, October 2000

R.Raman, M. Livny, M. Solomon. Matchmaking: Distributed Resource Management for
High Throughput Computing. Proceedings of the Seventh IEEE International Symposium
on High Performance Distributed Computing, July 28-31, 1998, Chicago, IL

I. Ascione, G. Giunta, R. Montella, P. Mariani, A. Riccio. A Grid Computing Based
Virtual Laboratory for Environmental Simulations. Proceedings of 12" International Euro-
Par 2006, Dresden, Germany, August/September 2006. LNCS 4128, Springer 2006

B. Sotomayor, L. Childers. Globus Toolkit 4: Programming Java Services. Morgan
Kaufman, 2005

M. L. Massie, B. N. Chunm D. E. Culler. The Ganglia Distributed Monitoring System:
Design, Implementation, and Experience. Parallel Computing, Elsevier 2004

S. Andreozzi, S. Burke, L. Field, S. Fisher, B. K’onya, M. Mambelli, J. M. Schopf, M.
Viljoen, and A. Wilson. Glue schema specification version 1.3 draft 1, INFN, 2006

R. Raman, M. Livny, M. Solomon. Policy Driven Heterogeneous Resource Co-Allocation
with Gangmatching. Proceedings of the Twelfth IEEE International Symposium on High-
Performance Distributed Computing, June, 2003, Seattle, WA.

S. Andreozzi, G. Garzoglio, S. Reddy, M Mambelli, A. Roy, S. Wang, T. Wenaus. GLUE
Schema v1.2 Mapping to Old ClassAd Format, INFN, July 2006

S.Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas and R. A. Harshman. Indexing
by latent semantic analysis. Journal of the Society for Information Science, 41(6), 391-
407, 1990

P. Drineas, A Frieze, R. Kannan, S. Vempala, V. Vinay.Clustering Large Graphs via the
Singular Value Decomposition.Machine Learning, 56, 9-33, 2004

S. T. Dumais. Using LSI for Information Retrieval, Information Filtering, and Other
Things". Cognitive Technology Workshop, April 4-5, 1997.

Condor High Throughput Computing. Classified Advertisements. Univeristy of
Wisconsin, http://www.cs.wisc.edu/condor/classad

G. Giunta, P. Mariani, R. Montella, A. Riccio. pPOM: A nested, scalable, parallel and
Fortran 90 implementation of the Princeton Ocean Model. Envirnonmental Modelling &
Software 22 (2007) pp 117-122.

G. Barone, P. D’Ambra, D. di Serafino, G. Giunta, R. Montella, A. Murli, A. Riccio, An
Operational Mesoscale Air Quality Model for the Campania Region — Proc. 3th
GLOREAM Workshop, Annali Istituto Universitario Navale (special issue), 179-189,
giugno 2000

G. Barone, P. D’Ambra, D. di Serafino, G. Giunta, A. Murli, A. Riccio, Parallel software
for air quality simulation in Naples area, J. Eviron. Manag. and Health, 2000(10), pp.
209-215

G. Giunta, R. Montella, A. Riccio. Globus GT4 based Job Flow Scheduler and Resource
Broker development for a grid computing based environmental simulations laboratory.
Technical Report 2006/07 Dept. of Applied Sciences, University of Naples "Parthenope”

25.

26.

27.

28.

Development of a GT4-Based Resource Broker Service 217

Resource Specification Language (RSL), Globus Alliance, www-unix.globus.org/
developer/rsl-schema.html

G. Giunta, R. Montella, P. Mariani, A. Riccio. Modeling and computational issues for
air/water quality problems. A grid computing approach. 11 Nuovo Cimento, vol 28C, N.2,
March-April 2005

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, S. Weerawarana, IBM, Business Process Execution
Language for Web Services Version 1.1, http://www.oasis-open.org, 2003

Active BPEL Engine Site. http://www.activebpel.org

Small-World Network Inspired Trustworthy Web Service
Evaluation and Management Model

Qinghua Meng' and Yongsheng Ding'

! College of Information Sciences and Technology
Donghua University, Shanghai 201620, P.R. China
2 Department of Computer Sciences and Technology
Weitang University, Weifang, Shandong 261401, P.R. China
ysding@dhu.edu.cn

Abstract. The trustworthiness between anonymous web service client and
provider influences service stability and collaboration. Trustworthiness includes
some aspects such as service’s security, controllability and survivability. So, a
definition of trustworthiness for web service is given in the paper, and then a
web service trustworthiness evaluation and management model is brought forth
inspired by human small-world network. The model consists of three web
service federations: WSRRC, APAEAS and AWSORT. WSRRC is a Web
Service Resource Register Center, which is established by UDDI protocol.
APAEAS is an Area Proxy Authentication Evaluating Autonomy
System, which collects some authentication information of web service clients,
accepts clients’ special requirement and feedbacks service’s trustworthiness
values to AWSORT. AWSORT is an Area WS Resource Organizing Tree,
which organizes and manages web service resources; records web service
trustworthiness values, keeps web service state, assigning web service. The
model establishes a trustworthy environment for anonymous web service clients
and providers. Furthermore, some detailed evaluating parameters about service
trustworthiness and quality is discussed and some service management
algorithms are proposed in the paper. The simulation results show that model is
feasible for semantic grid integration and establishment for virtual organization.

Keywords: web service federation, trustworthy web service, small-world
network, loading-balance, quality of service.

1 Introduction

Web service (WS) are quickly maturing as a technology that allows for the integration
of applications belonging to different administrative domains, enabling much faster
and more efficient business-to-business arrangements [1]. For the integration to be
effective, the provider and the consumer of a service must negotiate some parameters,
such as quality of service, security auditing and communication speed [2-4]. However,
security auditing can be very challenging when the parties do not blindly trust each
other, which is expected to be the common case for large WS deployments [5, 6].

By now some WS-security specifications and trust auditing framework are
available [7, 8]. Microsoft and IBM propose a set of WS security specifications
includes a message security layer, a policy security layer, a federated security layer

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 218 2007.
© Springer-Verlag Berlin Heidelberg 2007

Small-World Network Inspired Trustworthy WS Evaluation and Management Model 219

[9-11]. However, the specifications demand all of the provider and customer be
authenticated by a trustworthy verification center [11]. Especially for anonymous WS
providers, the WS customer needs to pre-evaluate their trustworthiness, and then it
will choose a provider which trustworthiness is the highest.

Thus, we propose a trustworthiness evaluation and management model inspired by
human small-world network. The model establishes an integrated loosed-trustworthy
WS environment for the anonymous users and resources. Whether web clients and
services are authenticated or not, the model will ensure some initial effective
trustworthiness. Furthermore, it can optimize WS and manage effectively service traffic.

This paper is organized as follows: Section 2 introduces characters of
trustworthiness in human small word and gives the definition of trustworthiness.
Section 3 puts forward WS trustworthiness evaluating and managing model. Section 4
presents web service federation organization protocols, data structures and
instructions. Section 5 presents WS trustworthiness evaluating & managing algorithm.
Section 6 discusses the simulation of WS loading-balance in the web service
federation. Section 7 concludes the paper by discussing the research trends of the
trustworthiness model.

2 Small-World Network and WS Trustworthiness

2.1 Trustworthiness in the Human Small-World Network

M. Stanley proposed the assumption of ‘six degrees’ in human society as early as
1967. Watts and Strogatz built the small-world networks theory according to the
assumption in 1998. The small world model widely exists in the human society and
bio-network. It describes ubiquitous resource searching characteristics such as self-
like, self-organizing and self-adjusting. WS network presents some characteristics like
small world, and users would like to obtain service in the nearer ‘small world’ from
internet. So, we expect to establish a service evaluation framework to organize and
manage WS based on small world model.

Small world is a relation network centralized on a person in the human society, in
which he decides how to choose friends and what resource to select for use. From
another point of view, the small world is a trustworthiness evaluating and dynamically
selecting network, which structure and nodes’ trustworthiness values will change with
the environment and time. People add or delete the partial node to the small world
according to their needs. They constantly do some trustworthiness-evaluating work about
surrounding ‘node’, and at the same time they change their trustworthiness value and
adjust their behaviors. Thus, it is clear that the small world network is a trustworthiness
and benefit driven network. People choose these required resources or services and give
up those disabled nodes in order to get the largest benefits in minimum costs.

2.2 WS Trustworthiness

Along with SOA (service-oriented-architecture) is more and more popular, it is
necessary that the SOA applications should provide trustworthy services. Trustworthy
network should have three essential properties: security, controllability and
survivability [8]. From the view of trustworthiness, we attempt to give the definition
of the trustworthiness of WS. WS trustworthiness also should include three

220 Q. Meng and Y. Ding

properties: security, controllable and survivable. The following is the detailed
definition. Namely

Tys =I'(Seu, Ctrl,Sur)

Define 1: Security

WS security includes a series of attributes: service entity being security, service
context being security, WS structure being security. That is service entity must be
legal and authenticated; WS content must be effective and security, no error and no
virus. As WS is stateless, WS structure security is that WS can keep its service state
and its state is stable in a certain period. Namely

I'(Seu) =¥, (En, Con, Stru)

Define 2: Controllability

WS controllability is that WS role can be managed, its behavior can be controlled,
and its services quality can be ensured. WS client or provider should have right role in
the SOA system, and these roles should be managed in the security policy. WS
behavior being controlled means that WS’ access policy should have been integrated
managed. WS quality being controlled means that WS should satisfy different
business needs. Therefore, WS can provide different quality and security grade
service for different requirement. Namely

I'(Ctrl) = Q(Role, Act, Qua)

Define 3: Survivability

WS survivability is that WS have the ability of withstanding intrusions or attacks.
That is that WS can still provide service in case of being damaged. WS survivability
includes fault-toleration, intrusion-toleration, and self-recovery.

I'(Sur) = ®(Fault _ tol, Intru _ tol, Rcov)

WS Trustworthiness should include all of the three factors. So, the trustworthiness
value should be expressed as following:

Tys =I'(Seu,Ctrl,Sur) = *I'(Seu)+ £ *I'(Ctrl) + y *T'(Sur)
=a*%¥,(En,Con,Stru) + S*Q(Role, Act,Qua) + y* ®(Fault _tol, Intru _ tol,Rcov)
Here, @, 3, are the weights of the three factors. No matter what the detailed
parameters are changed, its value should be in a scope. Namely

Tyws €[0.1]

3 WS Trustworthiness Evaluating and Managing Model

3.1 WS Trustworthy Management Model

Fig 1(a) describes normal WS structure. WS provider publishes its services into
WSRRC (WS Resources Register Center). Web client submits service querying to

Small-World Network Inspired Trustworthy WS Evaluation and Management Model 221

SRARE

(a)

N - ,
~APAEAS 7
N 7

Fig. 1. WS Trustworthiness Evaluation & Management model

WSRRC, and after getting resource identification, then bind each other to deal with
corresponding transaction.

Inspired by human small-world network, we put forward a WS trustworthiness
evaluation and management model (fig.1 (a)). We add two modules: APAEAS (area
proxy authentication evaluating autonomy system) and AWSORT (area WS resource
organizing tree). APAEAS consists of a great many of authenticated or anonymous
WS-clients, and it will supervise and evaluate their trustworthiness. AWSORT is in
charge of recording WS quality, keeping its service state, and implementing loading-
balance. Thus, the two web service federations establish a trustworthy environment
for WS-clients and WS-providers, a normal WS-Provider become a trusted WS entity
(Trusted-WSE), shown in fig.1 (b).

APAEAS and AWSORT don’t change working patterns of WS-clients and WS-
providers. Furthermore they make simple and stateless service to become Trusted-WS.
Thus, APAEAS AWSORT and Trusted—WSE form a trusted WS federation (T-WSF).

3.2 APAEAS and AWSORT

3.2.1 APAEAS

APAEAS is a small-world web service federation for evaluating WS-client’s
trustworthiness and submitting service requirement instead of WS-client. Its functions
include:

@ Tt collects security information of users, such as authentication information,
security grade and their personnel service demands. According to the information,
APAEAS will communicate with AWSORT to satisfy users’ needs.

@ As to high-security grade WS, APAEES must authenticate users, and verify
whether the user is able to require a high-security grade services. Since only
authenticated user have the qualification to apply security transaction. If the
requirement is permitted, APAEES will record these events, and make logs about
users’ working states and results.

® On the other hand, APAEES can automatically distribute these requirements
to different area AWSORT to prevent DOS (deny of service).

222 Q. Meng and Y. Ding

3.2.2 AWSROT
AWSROT is a self-organizing federation of WS resources. It organizes many WS
providers as a large service pool. Its functions include:

(O AWSROT keeps WS service states, registers relevant parameters, and
records service trustworthiness values from APAEAS.

2 AWSROT can be established according to trustworthiness values, service
quality of WS and maximum service capacity. When WS trustworthiness values and
service quality change, the position of the corresponding node should be adjusted in
order to provide the most effective service in minimum costs.

3 AWSROT can automatically design a the best WS-provider to a WS-client
with a set of service optimization policy.

@ AWSROT can implement WS loading-balance. When a WS-client roams in
different APAEAS, AWSROT will design a local optimized WS-provider instead of
previous WS-provider.

After the WS normal structure is changed by adding the two models, WSRRC
not only takes charge of registering and querying services, but also assign different
tasks to corresponding AWSROT. Therefore, WSRRC, APAEAS and AWSROT
together provide a trustworthy WS environment.

4 Web Service Federation Organization Protocols, Data
Structures and Instructions

4.1 AWSROT Protocol

Fig. 2. is the structure of AWSROT. AWSROT is the core of trustworthy web service
environment. Its functions include states keeping, service recommending, loading
balance, trustworthiness evaluating. Its organization structures are a hybrid structure.
It consists of a four-rank B-tree and some circulating double-linked-list.

The four-rank B-tree is used to locate and organizes different category service, and
the double circulating linked-list is used to organize the same category service.
Because for users, querying services is hoped to get a quick answer, B-tree can high-
effectively search for a resource; get a service is hoped the service provider is the best,
the circulating linked-list always place the best service in the header point.
Furthermore, the double circulating linked-list can dynamically adjust the location of
service provider by its trustworthiness value, QOS, capacity and responding speed. So,
the hybrid structure can high-effectively and quickly provide an optimized service.

4.2 APAEAS Protocol

APAEAS has a layered structure, shown in fig.3. It is a small world for WS-Clients. It
will register in WSRRC; some little APAEAS will form a large APAEAS. So, the
whole ARAEAS has a tree structure in logic. Each APAEAS is a management unit to
anonymous or authenticated users. Its main functions are collecting users’
information, accepting users’ service request, feed-backing trustworthiness value to
AWSROT and satisfying users’ special demand.

Small-World Network Inspired Trustworthy WS Evaluation and Management Model 223

Security . Living| Transmitting
grade Service , Service AreaID | Service Se\r\rice 1] state Bit TTL
Service | Service | Service | Service 0011 | ______ | Service 1100 | Service 1101 | Service 1110 |Scrvicc 1111

------ | Service 110000 | Service 110001 | Service 110010 | Service 11001]|

Head Link_ List Services Capacity Online Transl‘r‘xitting
""" Services Bit
E__ _, —> —>
- = = <
Head | p Service i Trust | Service | Service Online | Transmitting | Living TTL Tail
Pointe | URL | Service Value | Qualit amount Bit State

Fig. 2. The Structure AWSROT

Service history
Personal
information
Special demanding
Trust values

Service history
Personal
information
Special demanding
Trust values

Service history
Personal
information
Special demanding
Trust values

Fig. 3. The Structure of APAEAS

APAEAS keeps a great number of users’ information. The information has been
stored in database, and each user has a recorder in the database. The recorder includes
some information of WS-Clients, such as service access history, security grade,
personal information, particular service demands etc. So, actually an APAEAS is a
user authenticating server.

Table 1 is the record format of customer; in which APAEAS record recent used
resources. Service histories keep such items as service’s using frequency, service 1D,
trust values and service’s quality etc. According to the information, APAEAS can

224 Q. Meng and Y. Ding

Table 1. User Recorder’s Format in the APAEAS

] m [ral
S| S99 | dE|ZFE ol ® 30 om0
o o S O o ®n @ a [¢) a I} — %
a |2 | ac = = & T 2 = g g i 2i 210
o — o = £ = S = Q - 2] e o) @ 177)
= o = a & = G 5 =1 = a
[¢] < o a = < =1

<] <] <] = <
4) SN 2 3) 3 a
4 = | = g&i 8 = e e i &

v S o < 5 s

learn about WS-Client’s needs and provide appropriate services to satisfy its demand.
APAEAS also collect user’s authentication parameters in order to monitor web
service process.

4.3 Instruction System

The WSRRC, APAEAS and AWSROT together cooperate to make up a loosed
trustworthiness evaluating and managing framework. The model divide a whole large
work into some small procedures, and each finish a part work. So, all of WSRRC,
APAEAS and AWSROT is an integrated loosed security system for web service.
Although WSRRC, APAEAS and AWSROT have own attributes and instructions,
most of them are the same. So, we give a summary to the all attributes and instructions.

All attributes of these protocols include: *.state, *TTL(), *.living(), *.warning,
*.security_grade, *.IP_address, *.fellow, *.SID, *.URL, *.service_type, *.federation_ID,
*QOS, * header, * tail, * trustworthiness_value, *.service_capacity,
*.online_connectting_amount, *.Connecting _online etc. Here, * denotes a certain object,
such as APAEAS, AWSROT, a node in the B-tree, a WS-Client, a service resource etc.
The attributes describe some characters of the object in the framework. The information
are collected and recorded to determine the object how to respond a special event.

The instructions of the model include: *.invite(), *.register(), *.authenticate(),
*TTL(), *roaming(), *.request(), *.respond(), *.Query(), *.cost(), *.connect(),
*.close(), * trustworthiness_evaluating(), *.QOS_evaluating(), * sort(),
* adjust_position(), *.provide_service(), *.assign(); *.relay_assign() etc. As the same
way, * denotes a certain object, such as APAEAS, AWSROT, a node in the B-tree, a
WS-Client, a service resource etc. The whole function of these instructions cooperate
each other to drive the model to provide the best service in the lowest cost. Here, the
interpretation of how to use the each instruction is omitted.

5 WS Evaluating and Managing Algorithm

5.1 WS Assigning Algorithm

In order to provide high-quality and low-cost WS, we design two-layer assigning
structure. Firstly, by querying APAEAS or WSRRC, user can get the nearest
AWSROT; secondly, AWSROT will recommend proper WS-Provider according to
trustworthiness, QOS, responding speed and Maximum connecting capacity.

Small-World Network Inspired Trustworthy WS Evaluation and Management Model 225

WSRRC divides the whole service area into some parts, each part has an
AWSROT, and all WS-Providers in a part will register itself into the local AWSROT.
So, in WSRRC, all the registered resources are organized according to geography
feature. Every AWSROT is a small word of resource. When a WS-Client queries a
WS-Provider, it will be relocated to the local AWSROT. Thus, communication
between the client and the provider is confined to a small word. Therefore, it will
reduce the main traffic of bone network.

In the AWSROT, all resources will be organized by services category and sorted
by trustworthiness, QOS, maximum connecting capacity and responding speed etc.
So, according to these parameters, AWSROT will recommend the most popular WS-
Provider to WS-Client. In order to fairly evaluate a service, we introduce an
evaluating concept: believed zone.

Believed zone is an evaluating range, when two or more values of an item are in a

range of [m,m+£], we consider that they have the same value. So, believed zone is
a range of probability. We evaluate trustworthiness and QOS using the method of
believed zone. But for maximum connecting capacity and online connecting amount,
we use precise values to evaluate them.

WS assigning algorithm is shown as the following:

While (Double_cir_link.live and Double_cir_link.state) {
if (Double_cir_link.ttl())
{Double_cir_link.live=false; Double_cir_link.closed;} // if no TTL returns, then close closed
link-list.
link.sort (Trust_eva()); // Firstly , nodes will be sorted by trust value.
If Trust_eva()e [©', O]

link.sort (Qua_eva ()); //Secondly, nodes will be sorted by service quality.
If Qua_eva()e [©', O]
link.sort (connect_max); //Finally, nodes will be sorted by maximum connecting amount.
When WS_Client.request ();
AWSROT.Query ();
Double_cir_link.head_pointer.provide_service(), //Firstly, head-node provides WS
Double_cir_link.head_pointer.connect_onle ++; //adding one to head nodes’ online
connecting amount
link.connect_onle ++; // adding one to link-list’s online connecting amount
If head_pointer.connect_only >0.8%* head_pointer.connect_max
P1.Head_pointer=Head_pointer.next;
P1.Tail_pointer=Head_pointer; //if head nodes’ online connecting amount is 80 percents of the
whole service capacity, then insert it into the tail node.
If link.connect_onle >0.8* link.connect_max
Double_cir_link.state=false; // if link-list’ online connecting amount is 80 percents of the whole
service capacity of the link-list, then its state bit become false.
Link_content_warning (federation_ID) or warning.sending to WSRRC; // sending a warning of
full-loading to its sedation fellow or WSRRC. }}

5.2 WS Loading-Balance Algorithm

All of the WS-Providers, AWSORT, APAEAS and WSRRC compose a large virtual
organization. The whole virtual organization will deal with loading-balance from
three steps in the whole process.

226 Q. Meng and Y. Ding

(1) Firstly, WSRRC will distribute the network traffics in the whole virtual
organization. For web service request from the local APAEAS, WSRRC will transmit
the requests to the local AWSROT. Thus WSRRC confine local service traffic in
certain range, so decrease chances of traffic blocks.

(2) Secondly, when AWSROT receive the service request, according to the
trustworthiness value, QOS, service capacity and responding speed, it will select the
best WS-Provider to WS-Client from its resource tree. Thus, AWSROT always
remain the lowest communicating cost for the web service.

(3) Finally, if the user is roaming out of its local APAEAS, it will send a message
to WSRRC, and then WSRRC will give the several nearer AWSROT. The user will
calculate the communicating cost according the roaming relaying algorithm. The step
aims at connecting the best WS-Providers in the lowest cost. So in different
conditions, coefficients in the roaming relaying algorithm will be adjusted according
to the actual circumstance. For example, if the network is busy, the coefficient of TTL
() should be added, namely its rate in the cost should be the more than others. If the
network is very free, the rates of trustworthy and QOS should be added.

Here, the detailed loading-balance algorithm is shown as the following.

While (WS. Request ())

{If (WS-client. Roaming !==0)) then WS.connect=min(cost;.connect| cost,.connectl...... |
cost,.connect) //If the user is in the roaming state, it will calculate the lowest cost to connect the
nearest AWSORT according to roaming relaying algorithm.

Else

WS.connect=WSRRC.assign (); // Normal user connects the local AWSROT

If (AWSROT.state==0) then

WS.connect= AWSROT .provide_service () //If the capacity of local AWSROT is enough; it will
accept the service request.

Else

WS.connect=WSRRC.relay_assign ();//if the local AWSROT already has be up to the maximum
connecting amount, it will transmit the request to the fellow AWSROT or send a warning
message to the WSRRC.

AWSROT.assign (); //the best resource is normally assigned in the AWSROT. }

6 Simulations of Trustworthy WS Assigning

In order to verify the WS trustworthiness management middleware, we simulate in a
local area network environment. We design four APAEAS and AWSROT, one
WSRRC, 200 WS-Clients and 50 WS-Providers. They consist of a trusted WS
environment; all the four AWSROT are an AWSROT-federation.

The loading-balance algorithm is simulated only on invariable loading. In the
beginning all the WS-Clients are in roaming state, so received requires amounts of
different AWSROT are different. Along with the rule of lowest connect-cost, WS
assigning algorithm begin to work, finally the four AWSROT get the average and
stable connecting amount, shown in the Fig.4. The Simulation results imply that the
structure of APAEAS and AWSROT is available in implementing loading-balance
and connecting the nearest AWSROT in the lowest cost.

Small-World Network Inspired Trustworthy WS Evaluation and Management Model 227

80| B

7O -

ZZ | /\ /\ " ’\\//\\\ - et o
AV e f

30 -

20

Fig. 4. WS assigning process in the case of keeping invariable loading

7 Conclusions

The paper establishes a trustworthiness appreciable and manageable model for WS.
The model provides a trustworthy WS environment for anonymous WS-Clients and
WS-Providers. It can record service’ state, optimize service quality, carry out loading-
balance.

The model has three web service federations: WSRRC, APAEAS and AWSROT.
They are small-worlds of user or resource. These federations provide a trustworthy,
controllable and reliable WS environment. The model has the ability of automatically
assigning services and trustworthiness evaluating.

By increasing AWSROT and APAEAS, some disadvantages of WS are also
eliminated. Stateless WS becomes trustable and stable service, and the process of WS
be supervised, managed. But the model still remains WS original working pattern,
only adding some management procedure, such as registering, trustworthiness feed-
backing and evaluating, resource optimizing. At the other hand, all of WS-Clients and
WS-Providers still remain independent and free. The model also provides a scaleable
and trustworthy service resolution for anonymous service applications of SOA, Grid,
and P2P.

Acknowledgments

This work was supported in part by the Key Project of the National Nature Science
Foundation of China (No. 60534020), the National Nature Science Foundation of
China (No. 60474037), and Program for New Century Excellent Talents in University
from Ministry of Education of China (No. NCET-04-415), the Cultivation Fund of the
Key Scientific and Technical Innovation Project from Ministry of Education of China,
International Science Cooperation Foundation of Shanghai (061307041), and
Specialized Research Fund for the Doctoral Program of Higher Education from
Ministry of Education of China (No. 20060255006).

228

Q. Meng and Y. Ding

References

(1]
[2]
(3]

(4]

[5]

[10]

[11]

A. A. Pirzada, A. Datta, C. McDonald. Incorporating trust and reputation in the DSR
protocol for dependable routing. Computer Communications, 2006, 29(15):2806-2821.
M. E. Schweitzer, J. C. Hershey, E. T. Bradlow. Promises and lies: Restoring violated
trust. Organizational Behavior and Human Decision Processes, 2006, 101(1):1-19.

B. Blobel, R. Nordberg, J. M. Davis, P. Pharow. Modeling privilege management and
access control. International Journal of Medical Informatics, 2006, 75(8):597-623.

A. Antoci, M. Galeotti, P.Russu, L. Zarri. Generalized trust and sustainable coexistence
between socially responsible firms and nonprofit organizations. Chaos, Solitons &
Fractals, 2006, 293(3):783-802.

L. Mekouar, Y. Iraqi, R.Boutaba. Peer-to-peer’s most wanted: Malicious peers.
Computer Networks, 2006, 50(4): 545-562.

C. Busco, A. Riccaboni, W. Scapens. Trust for accounting and accounting for trust.
Management Accounting Research, 2006, 17(1):11-41.

C. Selin. Trust and the illusive force of scenarios, Futures, 2006, 38(2):1-14.

P. Ratnasingam. Trust in inter-organizational exchanges: a case study in business to
business electronic commerce. Decision Support Systems, 2005, 39(3):525-544.

J. Riegelsberger, M. Angela Sasse, J. D. McCarthy. The mechanics of trust: A framework
for research and design. International Journal of Human-Computer Studies, 2005,
62(3):381-422.

Y-F Chang, C-Cn Chang, H. Huang. Digital signature with message recovery using self-
certified public keys without trustworthy system authority. Applied Mathematics and
Computation, 2005, 161(4):211-227.

A. R. Sadeghi, C. Stiible. Towards multilaterally secure computing platforms—with open
source and trusted computing. Information Security Technical Report, 2005, 10(2):83-95.

Towards Feasible and Effective Load Sharing in a
Heterogeneous Computational Grid

Kuo-Chan Huang', Po-Chi Shih?, and Yeh-Ching Chung®

! Department of Electronic Commercce
Hsing Kuo College of Management

No. 89, Yuying Street, Tainan, Taiwan
kchuang@mail.hku.edu.tw
? Department of Computer Science

National Tsing Hua University
101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan
shedoh@sslab.cs.nthu.edu.tw, ychung@cs.nthu.edu.tw

Abstract. A grid has to provide strong incentive for participating sites to join
and stay in it. Participating sites are concerned with the performance
improvement brought by the gird for the jobs of their own local user
communities. Feasible and effective load sharing is key to fulfilling such a
concern. This paper explores the load-sharing policies concerning feasibility
and heterogeneity on computational grids. Several job scheduling and processor
allocation policies are proposed and evaluated through a series of simulations
using workloads derived from publicly available trace data. The simulation
results indicate that the proposed job scheduling and processor allocation
policies are feasible and effective in achieving performance improvement on a
heterogeneous computational grid.

Keywords: feasibility, load sharing, simulation, heterogeneous grid.

1 Introduction

This paper deals with scheduling and allocating independent parallel jobs in a
heterogeneous computational grid. Without grid computing local users can only run
jobs on the local site. The owners or administrators of different sites are interested in
the consequences of participating in a computational grid, whether such participation
will result in better service for their local users by improving the job response time.
Therefore, we say a computational grid is feasible if it can bring performance
improvement and the improvement is achieved in the sense that all participating sites
benefit from the collaboration. In this paper that means no participating sites’ average
response time for their jobs get worse after joining the computational grid.

In addition to feasibility, heterogeneity is another important issue in a
computational grid. Many previous works have shown significant performance
improvement for multi-site homogeneous grid environment. However, in the real
world a grid usually consists of heterogeneous sites which differ at least in the
computing speed. Heterogeneity puts a challenge on designing effective load sharing
methods. Methods developed for homogeneous grids have to be improved or even
redesigned to make them effective in a heterogeneous environment. This paper

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 229 2007.
© Springer-Verlag Berlin Heidelberg 2007

230 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

addresses the potential benefit of sharing jobs between independent sites in a
heterogeneous computational grid environment. To construct a feasible and effective
computational grid, appropriate load sharing policies are important. The load sharing
policies have to take into account several job scheduling and processor allocation
issues. These issues are discussed in this paper, including job scheduling for feasible
load sharing benefiting all sites, site selection for processor allocation, multi-site
parallel execution. Several job scheduling and processor allocation policies are
proposed and evaluated through a series of simulations using workloads derived from
publicly available trace data. The simulation results indicate that a significant
performance improvement in terms of shorter job response time is achievable.

2 Related Work

Job scheduling for parallel computers has been subject to research for a long time. As
for grid computing, previous works discussed several strategies for a grid scheduler.
One approach is the modification of traditional list scheduling strategies for usage on
grid [1, 2, 3, 4]. Some economic based methods are also being discussed [5, 6, 7, 8].
In this paper we explore non economic scheduling and allocation policies with
support for a heterogeneous grid environment.

England and Weissman in [9] analyzed the costs and benefits of load sharing of
parallel jobs in the computational grid. Experiments were performed for both
homogeneous and heterogeneous grids. However, in their works simulations of a
heterogeneous grid only captured the differences in capacities and workload
characteristics. The computing speeds of nodes on different sites are assumed to be
identical. In this paper we deal with load sharing issues regarding heterogeneous grids
in which nodes on different sites may have different computing speeds.

For load sharing there are several methods possible for selecting which site to
allocate a job. Earlier simulation studies in our previous work [10] and in the
literature [1] showed the best results for a selection policy called best-fit. In this
policy a particular site is chosen on which a job will leave the least number of free
processors if it is allocated to that site. However, these simulation studies are
performed based on a computational grid model in which nodes on different sites all
run at the same speed. In this paper we explore possible site selection policies for a
heterogeneous computational grid. In such a heterogeneous environment nodes on
different sites may run at different speeds.

In [11] the authors addressed the scheduling of parallel jobs in a heterogeneous
multi-site environment. They also evaluated a scheduling strategy that uses multiple
simultaneous requests. However, although dealing with a multi-site environment, the
parallel jobs in their studies were not allowed for multi-site parallel execution. Each
job was allocated to run within a single site.

The support of multi-site parallel execution [12, 13, 14, 15, 16] on a computational
grid has been examined in previous works, concerning the execution of a job in
parallel at different sites. Under the condition of a limited communication overhead,
the results from our previous work [10] and from [1, 3, 4] all showed that multi-site
parallel execution can improve the overall average response time. The overhead for
multi-site parallel execution mainly results from the slower communication between

Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid 231

different sites compared to the intra-site communication. This overhead has been
modeled by extending the execution time of a job by a certain percentage [2, 3, 10].

In [2] the authors further examined the multi-site scheduling behavior by applying
constraints for the job fragmentation during the multi-site scheduling. Two parameters
were introduced for the scheduling process. The first parameter lower bound
restricted the jobs that can be fragmented during the multi-site scheduling by a
minimal number of necessary requested processors. The second parameter was
implemented as a vector describing the maximal number of job fragments for certain
intervals of processor numbers.

However, the simulation studies in the previous works are performed based on a
homogeneous computational grid model in which nodes on different sites all run at
the same speed. In this paper we explore possible multi-site selection policies for a
heterogeneous computational grid. In [17] the authors proposed job scheduling
algorithms which allow multi-site parallel execution, and are adaptive and scalable in
a heterogeneous computational grid. However, the introduced algorithms require
predicted execution time for the submitted jobs. In this paper, we deal with the site
selection problem for multi-site parallel execution, requiring no knowledge of
predicted job execution time.

3 Computational Grid Model and Experimental Setting

In this section, the computational grid model is introduced on which the evaluations
of the proposed policies in this paper are based. In the model, there are several
independent computing sites with their own local workload and management system.
This paper examines the impact on performance results if the computing sites
participate in a computational grid with appropriate job scheduling and processor
allocation policies. The computational grid integrates the sites and shares their
incoming jobs. Each participating site is a homogeneous parallel computer system.
The nodes on each site run at the same speed and are linked with a fast
interconnection network that does not favor any specific communication pattern [18].
This means a parallel job can be allocated on any subset of nodes in a site. The
parallel computer system uses space-sharing and run the jobs in an exclusive fashion.
The system deals with an on-line scheduling problem without any knowledge of
future job submissions. The jobs under consideration are restricted to batch jobs
because this job type is dominant on most parallel computer systems running
scientific and engineering applications. For the sake of simplicity, in this paper we
assume a global grid scheduler which handles all job scheduling and resource
allocation activities. The local schedulers are only responsible for starting the jobs
after their allocation by the global scheduler. Theoretically a single central scheduler
could be a critical limitation concerning efficiency and reliability. However, practical
distributed implementations are possible, in which site-autonomy is still maintained
but the resulting schedule would be the same as created by a central scheduler [19].
For simplification and efficient load sharing all computing nodes in the
computational grid are assumed to be binary compatible. The grid is heterogeneous in
the sense that nodes on different sites may differ in computing speed and different
sites may have different numbers of nodes. When load sharing activities occur a job

232 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

may have to migrate to a remote site for execution. In this case the input data for that
job have to be transferred to the target site before the job execution while the output
data of the job is transferred back afterwards. This network communication is
neglected in our simulation studies as this latency can usually be hidden in pre- and
post-fetching phases without regards to the actual job execution phase [19].

In this paper we focus on the area of high throughput computing, improving
system’s overall throughput with appropriate load sharing policies. Therefore, in our
studies the requested number of processors for each job is bound by the total number
of processors on the local site from which the job is submitted. The local site which a
job is submitted from will be called the home site of the job henceforward in this
paper. We assume the ability of jobs to run in multi-site mode. That means a job can
run in parallel on a node set distributed over different sites when no single site can
provide enough free processors for it due to a portion of resources are occupied by
some running jobs.

Our simulation studies were based on publicly downloadable workload traces [20].
We used the SDSC’s SP2 workload logs' on [20] as the input workload in the
simulations. The workload log on SDSC’s SP2 contains 73496 records collected on a
128-node IBM SP2 machine at San Diego Supercomputer Center (SDSC) from May
1998 to April 2000. After excluding some problematic records based on the
completed field [20] in the log, the simulations in this paper use 56490 job records as
the input workload. The detailed workload characteristics are shown in Table 1.

Table 1. Characteristics of the workload log on SDSC’s SP2

Number of | Maximum Average Maximum Average
jobs execution execution number of | number of
time (sec.) time (sec.) processors processors
per job per job
Queue 1 4053 21922 267.13 8 3
Queue 2 6795 64411 6746.27 128 16
Queue 3 26067 118561 5657.81 128 12
Queue 4 19398 64817 5935.92 128 6
Queue 5 177 42262 462.46 50 4
Total 56490

In the SDSC’s SP2 system the jobs in this log are put into five different queues and
all these queues share the same 128 processors on the system. In the following
simulations this workload log will be used to model the workload on a computational
grid consisting of five different sites whose workloads correspond to the jobs
submitted to the five queues respectively. Table 2 shows the configuration of the
computational grid under study. The number of processors on each site is determined
according to the maximum number of required processors of the jobs belonged to the
corresponding queue for that site.

! The JOBLOG data is Copyright 2000 The Regents of the University of California All Rights
Reserved.

Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid 233

Table 2. Configuration of the computational grid

total site 1 site 2 site 3 site 4 site 5
Number of processors 442 8 128 128 128 50

To simulate the speed difference among participating sites we define a speed
vector, speed=(spl,sp2,sp3,sp4,spd), to describe the relative computing speeds of all
the five sites in the grid, in which the value 1 represents the computing speed
resulting in the job execution time in the original workload log. We also define a load
vector, load=(ld1,1d2,1d3,1d4,1d5), which is used to derive different loading levels
from the original workload data by multiplying the load value 1di to the execution
times of all jobs at site i.

4 Site Selection Policies for Load Sharing in a Heterogeneous Grid

This section explores the potential of a computational grid in improving the
performance of user jobs. The following describes the scheduling structures of two
system architectures with/without grid computing respectively.

e Independent clusters. This architecture corresponds to the situation where no grid
computing technologies are involved. The computing resources at different sites
are independent and have their own job queues without any load sharing activities
among them. Each site’s users can only submit jobs to their local site and those
jobs would be executed only on that site. This architecture is used as a comparison
basis to see what performance gain grid computing can bring.

e Load-sharing computational grid. Different sites connected with an
interconnection network form a computational grid. In the computational grid,
there is a global job scheduler as well as a globally shared job queue. Jobs
submitted by users at different sites are automatically redirected to the global
queue and the jobs retain the identities of their home sites. In this section, different
sites in the computational grid are viewed as different processor pools and each job
must be allocated to exactly one site. No jobs can simultaneously use processors on
different sites. Support for multi-site parallel execution will be discussed in later
sections.

Two kinds of policies are important regarding load sharing in a computational
grid: job scheduling and site selection. Job scheduling determines the sequence of
starting execution for the jobs waiting in the queue. It is required in both the
independent clusters and computational grid architectures. On the other hand, site
selection policies are necessary in a computational grid, which choose an
appropriate site among a set of candidate sites for allocating a job according to
some specified criteria.

The best-fit site selection policy has been demonstrated to be the best choice on a
homogeneous grid in previous works [1, 10]. In the best-fit policy a particular site is
chosen for a job on which the job will leave the least number of free processors if it is

234 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

allocated to that site. As for job scheduling policy, we compared both the FCFS
(First-Come-First-Serve) policy and the NJF (Narrowest-Job-First) policy. The NJF
policy was shown to outperform other non-FCFS policies, including conservative
backfilling, first-available, widest-first, in our previous work [10]. Here, the word
“narrowest” means requiring the least number of processors. In this paper we use the
average response time of all jobs as the comparison criterion in all simulations, which
is defined as:

Z (endTime ; — submitTime)

jeAllJobs

TotalNumberofJobs

AverageRe sponselime=

However, in the real world a computational grid is usually heterogeneous, at least,
in the aspect of computing speeds at different sites. The best-fit site selection policy
without considering the speed difference among participating sites may not achieve
good performance in a heterogeneous grid, sometimes resulting in even worse
performance than the original independent-site architecture.

To deal with the site selection issue in a heterogeneous grid, we first propose a
two-phase procedure. At the first phase the grid scheduler determines a set of
candidate sites among all the sites with enough free processors for a specific job
under consideration by filtering out some sites according to a predefined threshold
ratio of computing speed. In the filtering process, a lower bound for computing speed
is first determined through multiplying the predefined threshold ratio by the
computing speed of a single processor on the job’s home site, and then any sites with
single-processor speed slower than the lower bound are filtered out. Therefore,
adjusting the threshold ratio is an effective way in controlling the outcomes of site
selection. When setting the threshold ratio to 1 the grid scheduler will only allocate
jobs to sites with single-processor speed equal to or faster than their home sites. On
the other hand, with the threshold ratio set to zero, all sites with enough free
processors are qualified candidates for a job’s allocation. Raising the threshold ratio
would prevent allocating a job to a site that is much slower than its home site. This
could ensure a job’s execution time would not be increased too much due to being
allocated to a slow site. However, for the same reason a job may consequently need to
wait in the queue for a longer time period. On the other hand, lowering the threshold
ratio would make it more probable for a job to get allocation quickly at the cost of
extended execution time. The combined effects of shortened waiting time and
extended execution time are complicated for analysis. At the second phase the grid
scheduler adopts a site selection policy to choose an appropriate site from the
candidate sites for allocating the job.

Figure 1 compares the performances of two different values, 0 and 1, for the
threshold ratio. The results indicate that when the speed difference among sites is
large, speed=(0.6, 0.7, 2.4, 9.5, 4.3), setting the threshold ratio to 1 can enable the
best-fit policy to make performance improvement in a heterogeneous computational
grid compared to the independent-site architecture.

Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid 235

speed=(0.6,0.7. 2.4, 0.5 4.3)

2 20000

g [Independent Sites

8 5 15000

v 3

Et —

0 LLLULL @ Computational Grid

S 5000 Considering All Sites (threshold

@ ratio=0)

a5 0 & Computational Grid Ignoring

FCFS NJF Slower Sites (threshold

ratio=1)

Scheduling Policy

Fig. 1. Performance of best-fit policy with large speed difference among participating sites

Another possible policy for the second phase of the site selection process is called the
fastest one. The fastest-one policy chooses the site with the fastest computing speed
among all the sites with enough free processors for a job without consideration of the
difference between the number of required processors and a site’s free capacity. To deal
with the difficulty in determination of an appropriate site selection policy, in this section
we propose an adaptive policy, which dynamically changes between the best-fit and the
fastest-one policies, trying to make a better choice at each site selection activity. The
decision is made based on a calculation of which policy can further accommodate more
jobs for immediate execution. Figure 2 shows that the adaptive policy has potential for
outperforming the best-fit and the fastest-one policies in some cases.

speed=(06,07,24 95 43) Threshold Ratio=0 for Considering All Sites

2 20000 18347 23

85 15000 & bestit policy

€ 2 10000 m fastest-one policy
@ . .

o E 3827.86 3804.93 @ adaptive policy

8= 5000

[i}]

z 0

FCFS
Scheduling Policy

Fig. 2. Performance of the adaptive policy

We also performed a series of 120 simulations representing all kinds of relative
speed sequences for the 5 sites, permutations of speed=(1, 3, 5, 7, 9), in the
computational grids. In the 120 simulations, among the three policies the adaptive
policy is the most stable one. It is never the last one and always quite close to the best
one in performance for all the 120 cases, while the other two policies would lead to
poor performance in some cases, being distant from the best and the second policies.
Therefore, while it is not clear whether the best-fit or the fastest-one policy could
achieve better performance under current grid configuration and workload, it may be
a way for playing safe adopting the proposed adaptive policy.

236 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

5 Feasible Load Sharing in a Computational Grid

In most current grid systems, participating sites provide their resources for free with
the expectation that they can benefit from the load sharing. Therefore, it is important
to ensure that the load sharing is feasible in the sense that all sites benefit from it.
Feasible load sharing is a good incentive for attracting computing sites to join a
computational grid. In this paper, we define the feasibility of load sharing to be such a
property which ensures the average job response time of each participating site is
improved without exception. In this section we propose a feasible load sharing policy
which works as follows. When the grid scheduler chooses the next job from the
waiting queue and finds that there exists no single site with enough free processors for
this job’s immediate execution, instead of simply keeping the job waiting in the queue
the grid scheduler inspects the status of the job’s home site to see if it is possible to
make enough free processors by reclaiming a necessary amount of occupied
processors from some of the running remote jobs. If so, it stops the necessary amount
of these running remote jobs to produce enough free processors and put the stopped
remote jobs back to the front of the waiting queue for being re-scheduled to other sites
for execution. This feasible load sharing policy tries to benefit all sites by giving local
jobs a higher priority than remote jobs.

For performing the feasible load sharing policy, the grid scheduler maintains a
separate waiting queue for each site. Each time it tries to schedule the jobs in one
queue as more as it can until no more jobs can be allocated. At this time the grid
scheduler moves on to the next queue for another site. Multi-queue is an effective
mechanism to ensure that local jobs have higher priority than remote jobs during the
processor reclaiming process.

Table 3 evaluates the effects of the feasible load sharing policy in a heterogeneous
computational grid with speed=(1, 3, 4, 4, 8) and load=(5, 4, 5, 4, 1). The NJF
scheduling policy and the fastest-one site selection policy are used in the simulations
with the computing speed threshold ratio set to one, ensuring jobs won’t be allocated
to the sites slower than their home sites. Table 3 shows that with the ordinary load
sharing policy site 5 got degraded performance after joining the grid, which may
contradict its original expectation. On the other hand, our proposed policy is shown to
be able to achieve a somewhat more feasible and acceptable load sharing result in the
sense that no sites’ performances were sacrificed.

Table 3. Average job response times (sec.) for different load sharing policies

Entire Site 1 Site 2 Site 3 Site 4 Site 5
grid
Independent 9260 14216 10964 10199 6448 57
sites

Ordinary load 4135 191 4758 4799 3881 559
sharing policy

Feasible load 4152 193 4750 4798 3939 57
sharing policy

Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid 237

6 Multi-site Parallel Execution in a Heterogeneous Grid

In the load sharing policies described in the previous sections, different sites in the
computational grid are viewed as independent processor pools. Each job can only be
allocated to exactly one of these sites. However, one drawback of this multi-pool
processor allocation is the very likely internal fragmentation [4] where no pools
individually can provide enough resources for a certain job but the job could get
enough resources to run if it can simultaneously use more than one pool’s resources.

Multi-site parallel execution is traditionally regarded as a mechanism to enable the
execution of such jobs requiring large parallelisms that exceed the capacity of any
single site. This is a major application area in grid computing called distributed
supercomputing [21]. However, multi-site parallel execution could be also beneficial
for another application area in grid computing: high throughput computing [21]. In
our high throughput computing model in this paper, each job’s parallelism is bound
by the total capacity of its home site. That means multi-site parallel execution is not
inherently necessary for these jobs. However, for high throughput computing a
computational grid is used in the space-sharing manner. It is therefore not unusual
that upon a job’s submission its requested number of processors is not available from
any single site due to the occupation of a portion of system resources by some
concurrently running jobs. In such a situation, splitting the job up into multi-site
parallel execution is promising in shortening the response time of the job through
reducing its waiting time. However, in multi-site parallel execution the impact of
bandwidth and latency has to be considered as wide area networks are involved. In
this paper we summarize the overhead caused by communication and data migration
as an increase of the job’s runtime [2, 10]. The magnitude of this overhead greatly
influences the achievable response time reduction for a job which is allowed to
perform multi-site parallel execution.

If a job is performing multi-site parallel execution, the runtime of the job is
extended by the overhead which is specified by a parameter p [2]. Therefore the new
runtime r* is:

F=+p)xr

where r is the runtime for the job running on a single site. As for the site selection
issue in multi-site parallel execution, previous works in [1, 10] suggested the larger-
first policy for a homogeneous grid environment, which repeatedly picks up a site
with the largest number of free processors until all the selected sites together can
fulfill the requirement of the job to be allocated. As a heterogeneous grid being
considered, the speed difference among participating sites should be taken into
account. An intuitive heuristic is called the faster-first policy, which each time picks
up the site with the fastest computing speed instead of the site having the most
amount of free processors. This section develops an adaptive site selection policy
which dynamically changes between the larger-first and the faster-first policies based
on a calculation of which policy can further accommodate more jobs for immediate
single-site execution.

Figure 3 shows that supporting multi-site parallel execution can further improve
the performance of a heterogeneous load sharing computational grid when the multi-

238 K.-C. Huang, P.-C. Shih, and Y.-C. Chung

site overhead p=2. Moreover, our proposed adaptive site selection policy outperforms
the larger-first and the faster-first policies significantly. Actually in all the 120
simulations we performed for different speed configurations the adaptive policy
performs better than the other two policies for each case.

speed=(1, 3,5, 7, 9) multi-site overhead=2

i1}
wn
S 3600 O without multi-site parallel
& g 3400 execution
@
x < 3200 & larger-first policy
2 £ 3000
% = & faster-first policy
z 2800
FCFS @ adaptive policy
Scheduling Policy

Fig. 3. Performance evaluation of adaptive site selection in multi-site parallel execution

7 Conclusion

Most current grid environments are established through the collaboration among a
group of participating sites which volunteer to provide free computing resources.
Each participating site usually has its own local user community and computing jobs
to take care of. Therefore, feasible load sharing policies that benefit all sites are an
important incentive for attracting computing sites to join and stay in a grid
environment. Moreover, a grid environment is usually heterogeneous in nature in the
real world at least for the different computing speeds at different participating sites.
The heterogeneity presents a challenge for effectively arranging load sharing
activities in a computational grid. This paper explores the feasibility and effectiveness
of load sharing activities in a heterogeneous computational grid. Several issues are
discussed including site selection policies for single-site and multi-site parallel
execution as well as feasible load sharing mechanisms. For each issue a promising
policy is proposed and evaluated in a series of simulations. The quality of scheduling
and allocation policies largely depends on the actual grid configuration and workload.
The improvements presented in this paper were achieved using example
configurations and workloads derived from real traces. The outcome may vary in
other configurations and workloads. However, the results show that the proposed
policies are capable of significantly improving the overall system performance in
terms of average response time for user jobs.

Acknowledgement

The work of this paper is partially supported by National Science Council and
National Center for High-Performance Computing under NSC 94-2218-E-007-057,
NSC 94-2213-E-432-001 and NCHC-KING_010200 respectively.

Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid 239

References

(1]

(2]

(3]

(4]

[5]

(6]

[7]

[8]

9]

[10]

[11]

[12]

[13]

V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour, “Evaluation of Job-
Scheduling Strategies for Grid Computing”, Proceedings of the 7th International
Conference on High Performance Computing, HiPC-2000, pp. 191-202, Bangalore,
India, 2000.

C. Ernemann, V. Hamscher, R. Yahyapour, and A. Streit, “Enhanced Algorithms for
Multi-Site Scheduling”, Proceedings of 3rd International Workshop Grid 2002, in
conjunction with Supercomputing 2002, pp. 219-231, Baltimore, MD, USA, November
2002.

C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, R. Yahyapour, “On
Advantages of Grid Computing for Parallel Job Scheduling”, Proceedings of 2nd IEEE
International Symposium on Cluster Computing and the Grid (CC-GRID 2002), pp. 39-
46, Berlin, Germany, 2002.

C. Ernemann, V. Hamscher, A. Streit, R. Yahyapour, “"On Effects of Machine
Configurations on Parallel Job Scheduling in Computational Grids", Proceedings of
International Conference on Architecture of Computing Systems, ARCS 2002, pp. 169-
179, 2002.

R. Buyya, D. Abramson, J. Giddy, H. Stockinger, “Economic Models for Resource
Management and Scheduling in Grid Computing”, Special Issue on Grid Computing
Environments, The Journal of Concurrency and Computation: Practice and
Experience(CCPE), May 2002.

R. Buyya, J. Giddy, D. Abramson, “An Evaluation of Economy-Based Resource Trading
and Scheduling on Computational Power Grids for Parameter Sweep Applications”,
Proceedings of the Second Workshop on Active Middleware Services (AMS2000), In
conjunction with the Ninth IEEE International Symposium on High Performance
Distributed Computing (HPDC 2000), Pittsburgh, USA, August 2000.

Y. Zhu, J. Han, Y. Liu, L. M. Ni, C. Hu, J. Huai, “TruGrid: A Self-sustaining
Trustworthy Grid”, Proceedings of the First International Workshop on Mobility in Peer-
to-Peer Systems (MPPS) (ICDCSW'05), pp. 815-821, June 2005.

C. Ernemann, V. Hamscher, R. Yahyapour, “Economic Scheduling in Grid Computing”,
the 8th International Workshop on Job Scheduling Strategies for Parallel Processing,
Lecture Notes In Computer Science; Vol. 2537, pp. 128-152, 2002.

D. England and J. B. Weissman, “Costs and Benefits of Load Sharing in Computational
Grid”, 10th Workshop on Job Scheduling Strategies for Parallel Processing, Lecture
Notes In Computer Science, Vol. 3277, June 2004.

K. C. Huang and H. Y. Chang, “An Integrated Processor Allocation and Job Scheduling
Approach to Workload Management on Computing Grid”, Proceedings of the 2006
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA'06), pp. 703-709, Las Vegas, USA, June 26-29, 2006.

G. Sabin, R. Kettimuthu, A. Rajan and P. Sadayappan, “Scheduling of Parallel Jobs in a
Heterogeneous Multi-Site Environment”, Proceedings of 9th Workshop on Job
Scheduling Strategies for Parallel Processing, June 2003.

M. Brune, J. Gehring, A. Keller, A. Reinefeld, “Managing Clusters of Geographically
Distributed High-Performance Computers”, Concurrency — Practice and Experience,
11(15): 887-911, 1999.

A. 1. D. Bucur and D. H. J. Epema, “The Performance of Processor Co-Allocation in
Multicluster Systems”, Proceedings of the Third IEEE International Symposium on
Cluster Computing and the Grid (CCGrid'03), pp. 302-, May 2003.

240

[14]

[15]

[16]

[17]

[18]

[19]

[20]
(21]

K.-C. Huang, P.-C. Shih, and Y.-C. Chung

A. I. D. Bucur and D. H. J. Epema, “The Influence of Communication on the
Performance of Co-Allocation”, the 7th International Workshop on Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science; Vol. 2221, pp.
66-86, 2001.

A. 1. D. Bucur and D. H. J. Epema, “Local versus Global Schedulers with Processor Co-
Allocation in Multicluster Systems”, the 8th International Workshop on Job Scheduling
Strategies for Parallel Processing, Lecture Notes In Computer Science, pp. 184-204,
2002.

S. Banen, A. I. D. Bucur and D. H. J. Epema, “A Measurement-Based Simulation Study
of Processor Co-Allocation in Multicluster Systems”, the 9th Workshop on Job
Scheduling Strategies for Parallel Processing, Lecture Notes In Computer Science; Vol.
2862, pp. 105-128, 2003.

W. Zhang, A. M. K. Cheng, M. Hu, “Multisite Co-allocation Algorithms for
Computational Grid”, Proceedings of the 20th International Parallel and Distributed
Processing Symposium, pp. 8-, April 2006.

D. Feitelson and L. Rudolph, “Parallel Job Scheduling: Issues and Approaches”,
Proceedings of IPPS’95 Workshop: Job Scheduling Strategies for Parallel Processing,
pp. 1-18, 1995.

C. Ernemann, V. Hamscher, R. Yahyapour, “Benefits of Global Grid Computing for Job
Scheduling,” Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing(GRID’04), pp. 374-379, November 2004.

Parallel Workloads Archive, http://www.cs.huji.ac.il/labs/parallel/workload/

I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers, Inc., 1999.

Meeting QoS Requirements of Mobile Computing by
Dual-Level Congestion Control

Yi-Ming Chen and Chih-Lun Su

Department of Information Management, national Central University
300, Jhongda Rd., Jhongli, Taiwan, 32054, R.O.C.
{cym, 90423216}@cc.ncu.edu.tw

Abstract. As the resources in a wireless network are limited and freely shared
by all network users, Call Admission Control (CAC) plays a significant role in
providing the Quality of Service (QoS) in wireless networks. However, when
the network is congested with too many users, traditional CAC that mainly
focuses on the tradeoff between new call blocking probability and handoff call
dropping probability cannot guarantee QoS requirements to users. To address
this issue, this paper proposes a dual level congestion control scheme which
considers not only the call level admission control but also the user’s decision
to enter the network or not during the network traffic burst interval (we call it as
user-level burst control). We adopt the economical terms of externality and
introduce a total user utility function to formally model the user’s perceived
QoS metric. Our simulation shows that the weighted blocking probability (Pb)
of our scheme can decreases 70~80% than traditional CAC systems and
increase the total user utility to 2~3 times.

Keywords: Call admission control, congestion control, utility function, quality
of service, wireless network.

1 Introduction

As 802.11 wireless LANs becomes more and more popular, the demand for mobile
communication services, such as Internet phone, is increasing. Since such
communication services require high quality of transmission, how to provide desired
Quality of Service (QoS) to users becomes an important research issue. Generally, call
admission control (CAC) plays a significant role in providing desired QoS in wireless
networks [1]. Traditional CAC usually limits the number of call connections into the
networks to reduce the network congestion and call blocking. In mobile networks,
there are two classes of call connections: new calls and handoff calls. Both of them
may be blocked or dropped due to the limited resources in a wireless cell. Therefore,
call blocking probability (CBP) and call dropping probability (CDP) are two
important connection level QoS parameters [2]. Many CAC schemes, such as guard
channel scheme and queueing priority scheme, have been proposed to balance the
tradeoffs between new call blocking and handoff call droppings [3][4].

However, above schemes only concentrate on the tradeoff between CBP and CDP,
that is, decreasing the CDP at the cost of increasing the CBP. It’s noticeably that
when the traffic load is heavy, for example in peak hours, no matter how CAC adjusts

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 241 -151] 2007.
© Springer-Verlag Berlin Heidelberg 2007

242 Y.-M. Chen and C.-L. Su

to allocate the resources, CBP and CDP are still high [5]. The reason for QoS
degradation in such case can be explained by an economical term- externality, which
means that some wireless users bear the costs of QoS degradation stemmed from
other users being admitted freely into the network (we assume wireless resources are
public good and can be freely shared by all network users). As the causes of QoS
degradation is from too many users entering into the networks in a burst mode, a
rational solution is to regulate the users. A problem arises naturally: how to do the
user regulation?

To address the user regulation problem mentioned above, in this paper, we first
define a fotal user utility to model the total users’ perceived QoS metric, then define a
congestion threshold which represents the balance point where the number of satisfied
users is maximized and channel resources are most efficiently used. With these two
definitions, we propose a scheme, named UBC-CAC, to integrate User-level Burst
Control (UBC) with CAC. UBC-CAC comprises three components: congestion
detection, user traffic shapes and user notification. We have developed a method to
decide whether the network enters the congestion state or not, a leaky-bucket
algorithm to perform user traffic shaping, and a SIP-based protocol to implement the
user notification. Our simulation shows that the weighted blocking probability (P,) of
our scheme can decreases 70~80% than traditional CAC only systems and increase
the total user utility to 2~3 times.

The remaining of this paper is organized as follows: Section 2 introduces some
congestion control schemes. Section 3 introduces our system model. Section 4
describes the three components of our system. In Section 5, we describe the
simulation which compares the performance between UBC-CAC system and
conventional CAC system under various user behavior modes. Finally, we give short
conclusion and explore future research direction in Section 6.

2 Research Background

In general, there are three types of congestion control schemes: call-level control,
packet-level control, and user-level control.

Packet-level control is also called input rate control, which aims controlling the
input rate of traffic sources to prevent, reduce, or control the level of congestion.
Some well-known packet-level control schemes, such as traffic shaping [6], develops
the algorithms of leaky (token) bucket and random early detection (RED)[7].

Call-level control is defined as a set of actions, performed at call set-up phase, to
determine whether or not the call requesting the resources can be accepted. CAC is
one representation. The major design concern of CAC is to prioritize handoff calls,
because mobile users tend to be much more sensitive to call dropping than to call
blocking. Various handoff priority-based CAC schemes have been proposed [4],
which can be classified into two broad categories of guard channel scheme [8][9] and
queueing priority scheme[10][11].

User-level control aims to control user traffic to prevent, reduce, or control the
congestion caused by the burst of user traffic. A well-known scheme is Pricing-based
scheme[5], which integrates CAC and pricing where the price is adjusted dynamically
based on the current network conditions.

Meeting QoS Requirements of Mobile Computing by Dual-Level Congestion Control 243

3 UBC-CAC System Model

3.1 Utility Function

In terms of economics, utility describes how users satisfy with their consumptions.
Here, we use utility to describe network users’ satisfaction with the perceived QoS
and utility function to measure how sensitive users are due to the changes of
congestion state in a network. In this paper, we assume the utility function is a
function of CBP and CDP[5].

First of all, we let the average number of admitted users (N) as a function of the
new call arrival rate 4,, i.e., N = f(4,) and define the function of the QoS metric P, as a
weighted sum of new call blocking probability (P,,) and handoff call dropping
probability (Py,). In other words, P, = axP,,+ fxP;,, where o and f are constants that
denote the penalty associated with rejecting new calls and handoff calls, respectively.
The case of f > a means that dropping a handoff call has higher cost than blocking a
new call.

It is noted that both P,, and P,, are monotonically increasing function of 4,
therefore P, = g(1,) holds. In addition, the increase of function P, implies the users
will face higher call blocking probability and lower level of user satisfaction.
Therefore, we can reasonably make the assumption that the utility function of a single
user (U,) is a function of the QoS metric P, i.e., U;= h (P,). Note that U, achieves
maximum value at P, = 0. It means that if the blocking probability is zero percent, i.e.,
every user could acquire the wireless resource, the user has the highest level of
satisfaction with the QoS.

Definition [total user utility]
Given the average number of admitted users (V) and the utility function of a single
user (Uy), a total user utility U can be defined as follows:

U=NxUs=f4,) x h (Py) =f{4,) x h [g(4,)] (D

The above equation shows that the total user utility in wireless networks depends on
the new call arrival rate (4,). Based on the proof in [5], we learn that there exists an
optimal new call arrival rate where the total utility is maximized. We denote this
optimal value as 4, .

Definition [congestion threshold]

The congestion threshold is defined as 4,". When the condition of 4,= 4, holds, the
user arrival rate has reached a point where the number of satisfied users is maximized
and the channel resources are most efficiently used. However, when 4, > i,,* holds, the
network enters congestion states, where both the total user utility and the QoS
decrease.

3.2 System Model

The system is made up of two parts: User-level Burst Control (UBC), and CAC,
which is shown in Figure 1.

244 Y.-M. Chen and C.-L. Su

Handoft Call
Dropped

Handoff Call Arrival

Call
Admission
Control

New Call Arrival Admitted

User-level
Burst

(Controlled

(roomcncccee Control traffic

Notify users

Give Up
New Call Blocked

Fig. 1. UBC-CAC scheme

In our design, we will take the following steps to alleviate the problem of
congestion and get maximum total user utility.

1. Handoff users do not need to go through UBC because they are a continuation
of previously admitted users. They are controlled by traditional CAC scheme.

2. While the network is not congested, new users just go through UBC and
proceed to CAC.

3. The UBC scheme begins to control the user traffic when the network becomes
congested.

4. The UBC scheme will notify users when the network becomes congesting, so
that users could make informed decisions to wait or leave. We assume the
users do not leave after joining the waiting queue.

4 Design of UBC Module

The UBC module is composed of three modules: congestion detection, user traffic
shaper and SIP-based user notification.

Congestion detection module periodically checks whether the traffic load exceeds
the congestion threshold. User traffic shaper module uses leaky bucket algorithm to
control the user traffic when the network becomes congesting. The function of
notification module is to inform users of important information, such as expected
waiting time.

4.1 Congestion Detection

The core of UBC is to determine whether the network has entered into a congested
state or not. In other words, we have to determine whether the network exceeds the
congestion threshold by estimating the current user traffic.

At any given access point (AP) of an 802.11 WLAN, the user traffic load, i.e., how
many new users arrive in a period, is observable. Therefore, our congestion detection
make use of so-called exponential smoothing technique in RED[7] to compute the
assessed value of user traffic in an AP from the observed real user traffic. This
technique is briefly described as follows:

Meeting QoS Requirements of Mobile Computing by Dual-Level Congestion Control 245

First of all, we divide the time into many assessed period. We denote 1,”’(i) as the
real user traffic (new call arrival rate) and 1,/(i) as the assess traffic load in the i th
assessed period. We could obtain A,"(i) at the beginning of the i+ th assessed period
(i.e. the end of i th assessed period) and also estimate 1,(i) at the beginning of the i
th assessed period. By exponential smooth technique, we assess the user traffic of the
next period (i+1 th) by the following equation:

j.n(ﬂ)(l.'f'l) — (I-W)X j.,,(”)(l.) + Wxﬂ,n(")(i) (2)

By this assessed user traffic of the next period, we can determine whether the
oncoming user traffic is beyond /1, (congestion threshold) or not. In Equation (2), wis
a “weight” (0 < w < 1) that should be related to the change curve of /1,,(’)(i). If we
rearrange this equation and gather all the terms multiplied by w, we could make the
equation more meaningful and calculation faster, and we get:

i+ 1)= 2,[(0) + wx[4, (i) = 2, ()] A3)

Now 4,/“(i+1) is the prediction of the user traffic of the next period, A,”(i)—A,"“(i),
and is considered the error of the prediction. The above equation indicates that we
predict the traffic load of next period (new forecast) on the basis of previous
prediction plus a percentage of the difference between that previous prediction and
the actual value of the traffic load at that point (forecast error).

4.2 User Traffic Shaper

User traffic shaper is based on the well known token bucket algorithm. The basic idea
is that each incoming user can pass through the UBC only after obtaining a token.
Tokens ‘leak’ at a constant rate r out of a leaky bucket. The size of bucket imposes an
upper bound on the burst length and determines the number of users that can pass.

It is noted that token leaking rate r is set to the optimal new call arrival rate of
i,,*, for from Section 3.2, we know that maximum total user utility can be achieved at
this point. When the network is congested, there’s no token available for users and
they are queued in the waiting queue, not discarded. We let users make their own
decision.

4.3 User Notification

Since our UBC scheme puts the users in a queue, we have to inform users of the
congestion information and the expected waiting time. We adopt the Session
Initiation Protocol (SIP) [12] to achieve this goal and use it to implement the call set-
up and tear-down.

We use one of SIP response messages- Provisional 182 (Queue), which would
contain the network states and queue information, e.g., "the network is in congested
state; 2 calls queued; expected waiting time is 5 minutes ", to users. Here we adopt a
simple method to calculate the expected waiting time. First, we assume a user a
arriving at time ¢ when the network is detected to be congested. Let the waiting queue
length be L,, the number of tokens at time ¢ be TK,, and the optimal new call arrival
rate be /ln*, then the expected waiting time, eWT,, is the time that user @ must wait to
obtain a token subtracting the time that the users who are in front of user a and can

246 Y.-M. Chen and C.-L. Su

pass through the waiting queue without delay (for they could obtain the token
immediately). Weobtain the following equation:

W= ([V7 e 141) [t] 4)

where [] is Gauss’ symbol. Since L, and 7K, are known at time t, so eWT, could be
computed easily.

Figure 2 shows an example of SIP messages flows. It is noticeable that PRACK is
used here for reliable delivery of provisional responses, because this information is
important to users.

MN AP ER CN

A
Perform
User-level Burst Control

182 Queued
“Ten in The Queue,

Expected Waiting time
is60s”

PRACK———»
200 OK:

Theuser — 7

don’ twant
to wait so
long

CANCEL-
200 OK:

[+——487 Transaction cancelled——

ACK-

———» SIP Message

Pl RTP Data

Fig. 2. SIP message flows to indicate the user want to leave in long queue

5 User Behavior Modes and Performance Evaluation

In this section, we first describe the various user behavior modes when a user waits in
a waiting queue, then we use simulations to compare our UBC-CAC scheme with
traditional CAC scheme.

5.1 User Behavior Modes

When a user waits in a waiting queue, what will he/she do if the queue length is very
long? In [13], W. Feng et al., think that there are two cases for such situation: (1)
users have no information about the system; (2) users are informed of the queue
length upon arrival. In the first case, users may balk (leave upon arrival) or renege
(leave after joining the waiting line). In the second case, users are hopefully able to
make a better decision with respect to balking. We believe the latter is more user
friendly, so we adopt the scheme that the users are informed of expected waiting time

Meeting QoS Requirements of Mobile Computing by Dual-Level Congestion Control 247

upon arrivals. There are four possible user behavior modes when they are entering a
congested network:

1.

2.

Retry: Give-up or blocked users retry to request the resources after waiting some
time.

Leave: Give-up or blocked users just leave the system and not requests the
resources.

Leave/Retry: The probabilities of the give-up or blocked user retry or leave is
fixed, e.g., users leave with probability of one third and retry with probability of
two thirds [5].

State-dependant Leave/Retry: In [13], the authors propose that the customer
decides to join the queue based simply on the number of customers in front of
them, i.e., if the number of customers in the queue is large, the probability that
the incoming customer will balk should also be large. In this paper, the
probability for the users to leave or retry is based on the expected waiting time.
Thus, if the expected waiting time is large, the probability for them to leave is
also large. The user knows that the network is seriously congested and cannot
obtain the resources at that time even after a long time, so he would like to leave.

A. Conventional CAC systems

In conventional systems where no UBC scheme is used, we don’t need to take into
consideration of the state-dependant leave/retry because users need not to wait in
UBC queue. The following notations are used in our simulation:

1.

2.

3.

CSwL: All blocked users just leave the system and not retry to request the
resources.

CSwR: All blocked users retry to request the resources after waiting some
time.

CswLR: Blocked users leave with probability of one third and retry with
probability two thirds. In other words, one third of the blocked users leave the
system and the rest wait and retry.

B. UBC-CAC system
The user may behave differently in UBC-CAC scheme (refer to Figure 3). We use the
following notations in our simulations:

1.

User-level Burst Control System with Leave (UBCSwL): All blocked Users
leave as in CCwL. All give-up users retry to request the resources after waiting
some time, i.e., =0 and p=1.

User-level Burst Control System with Retry (UBCSwR): Both all blocked users
and give-up users retry after waiting some time, i.e., 0=p=0.

User-level Burst Control System with Leave/Retry (UBCSwLR): Both give-up
users and blocked users leave and retry with probability one third and two thirds,
i.e., a=P=Vs.

User-level Burst Control System with State-dependant Leave/Retry
(UBCSwSLR): The probability for users to leave and retry depends on the
expected waiting time. Thus, as the expected waiting time increases, the
probability for users to leave the system also increases.

248 Y.-M. Chen and C.-L. Su

Handoff Call
Dropped

Handoff Call Arrival

A 4

New Call Arrival Call Admitted
—_—

Us;r-letvel Admission
> urs
R Control [Controlled Control

traffic

Give Up ~—

——

1-a retry

New Call Blocked

V a leave

1-f3 retry

v f leave

Fig. 3. User behavior modes inUBC-CAC scheme

5.2 Simulation

We use C language to write a simulation program to analyze the performance of CAC
and UBC-CAC schemes.

A. Simulation parameters

We use guard channel scheme as CAC scheme, and assuming that each wireless cell
is assigned capacity C= 40 channels and two of them are reserved for guard channels.
Each call uses only one channel for service. We assume both new call arrival and
handoff call arrival follow Poisson process with mean rates 4, and 4, respectively. 4,
increases little by little (with values range from O to 1 user per second), it means that
the network is more and more congested. And like the models in [14][15], we assume
that /4, is proportional to 4,, i.e., 4,= 1/5 * A,.

For both new calls and handoff calls, the call duration times are exponentially
distributed with mean 1/u# (240 seconds) and the cell resident times are also
exponentially distributed with mean 1/7 (120 seconds). Parameters « and f in P, are
set to be %5 and %, respectively. Assessed period (7) is set to be 50 seconds. We also
assume that user patience time, and waiting time for blocked users and dropped users
to retry are exponential distributed with mean values of 60 , 240, 60 seconds
respectively.

B. Simulations Results

Figure 4 shows the comparisons of P, between conventional systems (CSwL, CSwR,
and CSwLR). We observe that CSwL has lowest P, and CSwR is the worst one
among them. It is reasonable, because in CSwL, all blocked users leaves and they
don’t compete with original users for the resources. However, in CSwR, all blocked
users retry to compete with original users, so that more users are blocked and the total
user utility decreases.

Figure 5 compares the achievable total user utility between conventional systems
and UBC-CAC. The total user utility of UBCSwL increases around 3.3 times than
that of CSwL; the total user utility of UBCSwR increases around 4.3 times than that
of CSwR; the total user utility of UBCSwLR and UBCSwSLR increases around 3.8
times more than that of CSwWLR.

Meeting QoS Requirements of Mobile Computing by Dual-Level Congestion Control 249

0.45
04 — —e— CSwL M
035 || —=—CSwR

03 || ——CSwiR S anll T e

nos | [o
i
0.0(5) r ‘ |

0 012 024 036 048 0.6 0.72 0.84 0.96

new call arrival rate /s

Fig. 4. P, for conventional systems

We can conclude that no matter how users behave, the performance (P, and total
user utility) improves quite much after taking UBC into consideration.

Figure 5 also compares the achievable total user utility between UBCSwL,
UBCSwR, UBCSwLR, and UBCSwSLR. We can easily find that CCSwWLR achieves
larger total user utility than UBCSwSLR. Besides, UBCSwR has the largest total user
utility, and UBCSwL has the lowest one. It’s because in UBCSwR all give-up users
and blocked users choose to retry, so that more users can be served. On the contrary,
UBCSwL can only serve the minimum number of users, because all blocked users
leave the system. In UBCSwWLR, two thirds of give-up users and blocked users choose
to retry, but in UBCSwSLR the probability for give-up users and blocked users to
retry decreases with the states of network, so that more and more give-up users and
blocked users leave the system. Therefore, UBCSwWLR can serve more users than
UBCSwSLR. But remember that UBCSwSLR is more realistic than UBCSwLR.

1400 12603

00 s - 11922 181
£ 1000 |
2 800
g
2 600 F
<
S a0 p 388 289.1 3095 3095

200

0

CSwL UBCSwL CSwR UBCSwR CSwLR UBCSwWLR CSwLR UBCSwSLR

Fig. 5. Comparisons of total utility

Figure 6 shows the comparison of average waiting time. The average waiting time
is the average time from users’ entering of the queue to their leaving. We can easily
find that UBCSwR has largest average waiting time. That is because all give-up users
and blocked users choose to retry. Compared with UBCSwLR and UBCSwSLR, the

250 Y.-M. Chen and C.-L. Su

probability for give-up users and blocked users to leave increases with the network
conditions, so UBCSwSLR has less average waiting time.

Besides, we find that average waiting time of UBCSwL is close to UBCSwR. We
think that the number of give-up users exceeds that of blocked users quite many, so
that all give-up users who choose to retry (UBCSwL) will make average waiting time
increase fast.

300
E 250 —e— UBCSwL
S 500 —=— UBCSwWR
o0
= —A— UBCSwWLR
-‘é 150
g —e— UBCSwSLR
« 100
Z

50

0

0 0.12 024 036 048 0.6 0.72 0.84 0.96
new call arrival rate /s

Fig. 6. Average waiting time for UBC systems

5 Conclusions

In this paper we propose a dual-level control scheme which combines user-level burst
control (UBC) with CAC to meet the QoS requirements of wireless networks. The
basic function of our proposed scheme is to regulate the users. With this scheme, the
system will periodically detect the network conditions and control user traffic when
the network is congested with too many users. Besides, our scheme also informs users
of congestion information via SIP messages, so that users can depend on it to make
decisions. UBC-CAC can not only control user traffic but also restrain the demand for
resources when the network is congested.

The simulation results showed that our proposed scheme works well to alleviate
the problem of congestion and guarantee the QoS to users. P, of UBC-CAC decreases
70~80% than conventional systems and achievable total user utility, which is a
measure of how efficiently the resources are used increases 2~3 times.

In the future, we plan to explore the following issues with regards to this scheme:
(1)Mathematical proving: Since we only verify our proposed scheme via simulation,
it is worth proving it by the concepts of mathematics. For example, our UBC scheme
can be analyzed as queueing models with user’s patience, since it queues users in the
waiting queue; (2)Message overhead evaluation: Since we use SIP to deal with call
set-up and tear-down and inform users of the information, we should also take SIP
message overhead into consideration. The evaluation is needed in the future.

Meeting QoS Requirements of Mobile Computing by Dual-Level Congestion Control 251

References

10.

11.

12.

13.

14.

15.

. Hou, J. and Fang, Y., "Mobility-based call admission control schemes for wireless mobile

networks," Wireless Communication and Mobile Computing, (2001)

Islam, M.M., Murshed, M. and Dooley, L.S., "New mobility based call admission control
with on-demand borrowing scheme for QOS provisioning," Proceedings of the
International Conference on Information Technology: Computers and Communications
(ITCC 03), (2003) 263 — 267

Kulavaratharasah, M.D. and Aghvami, A.H., "Teletraffic Performance Evaluation of
Microcellular Personal Communication Networks (PCN’s) with Prioritized Handoff
Procedures," IEEE Trans. Vehicular Technology, Vol. 48, Jan. (1999)

Katzela, I. and Naghshineh, M., "Channel assignment schemes for cellular mobile
telecommunication system: a comprehensive survey," IEEE Personal Communications,
Vol. 3, No. 3, (1996)

Hou, J., Yang, J. and Papavassiliou, S., "Integration of Pricing with Call Admission
Control to Meeto QoS Requirements in Cellular Networks," IEEE Trans. On Parallel and
Distributed Systems, Vol. 13, No. 9, (2002)

ATM Forum, "ATM Traffic Management Specification Version 4.0," April (1996)

Floyd, S. and Jacobson, V., "Random Early Detection Gateways for Congestion
Avoidance," IEEE/ACM Transactions on Networking, August (1993)

Kuo, J., "Dynamic QoS Management for Wired and Wireless IP Networks," IMSC's 2001
NSF Report, Access from http://imsc.usc.edu/demos/research/dynQoS.html, (2001)

Lee, J.H., Jung, T.H. and Yoon, S.U., et al., "An adaptive resource allocation mechanism
including fast and reliable handoff in IP-based 3G wireless networks," IEEE Personal
Communications, Vol. 7, No. 6, (2000) 42-47

Guerin, R. A., "Queueing-blocking system with two arrival streams and guard channels,"
IEEE Trans. Communication, Vol. 36, No. 2, (1988) 153—-163

Re, E. D., Fantacci, R. and Giambene, G., "Handover queueing strategies with dynamic
and fixed channel allocation techniques in low earth orbit mobile satellite systems," IEEE
Trans. Communication, Vol. 47, No. 1, (1999) 89-102

Rosenberg, J., Schulzrinne, H. and Camarillo, G., et al., "SIP: Session Initiation Protocol,"
IETF RFC 3261, June (2002)

Feng, W. and Hurley, R., "Performance Comparison for Service Systems With or Without
Anticipated Delay Information by Analysis and Simulation," International Journal of
Computers and their Applications, (2004)

Choi, J., Kwon, T.g, Choi, Y. and Naghshineh, M., "Call admission control for multimedia
services in mobile cellular networks: a Markov decision approach," Computers and
Communications, July (2000) 594 — 599

Kim, Sooyeon, Kwon, Taekyoung and Choi, Yanghee, "Call admission control for
prioritized adaptive multimedia services in wireless/mobile networks," Vehicular
Technology Conference Proceedings, Vol. 2 , May (2000) 1536 — 1540

A Transaction Model for Context-Aware Applications*

Shaxun Chen, Jidong Ge, Xianping Tao, and Jian Lu

State Key Laboratory for Novel Software Technology, Nanjing University
Nanjing City, P.R. China, 210093
csx@ics.nju.edu.cn

Abstract. Pervasive computing is widely researched and a large number of con-
text-aware applications have been built in the recent years. However, correct-
ness of contexts and fault handling of these applications have always been ig-
nored. This paper proposes a transaction model for context-aware applications.
In this model, context-aware applications are organized as a number of logic
units and each unit may have a compensation module, which will be executed
when errors or exceptions occur in context-aware applications in order to mini-
mize the bad infection. This model supports nested scopes and the number of
levels of subtransactions is unlimited. We also present an implementation of
this transaction model, which is specialized for context-aware use.

1 Introduction

Pervasive computing was introduced by Mark Weiser in 1991 [1] and has attracted a
lot of attention from both academic researchers and industrial practitioners in the
recent years. The long-term goal of pervasive computing is to build large-scale smart
environments that provide adequate services for users, and making computation in-
visible to us. Context-aware computing plays a key role to achieve this goal.

Context-aware applications are driven by contexts which are collected from envi-
ronments by sensors or other devices automatically. In this way, it decreases users’
attention of computation and users’ intended input sometimes becomes unnecessary.

However, when wrong contexts are provided or some exceptions occur, the situa-
tion will be disgusting. The system may provide users with wrong services, and even
worse, it may cause waste or damage of users’ belongings, since context-aware appli-
cations have the ability to control electrical appliances and other devices. We take the
following scenario for example.

When Tom leaves his office and drives home at 6:00 pm, the GPS on his car re-
ports his location and the smart environment knows that Tom is on his way home and
predicts he will have his supper at home. The system opens the air conditioner at
home and turns on the coffee maker, so that when Tom gets home, he can enjoy hot
coffee and comfortable temperature. However, Tom suddenly receives a call from a
friend, who invites him for dinner, and he swerves his car towards his friend’s home.

In this case, some compensating work should be done. The air conditioner should be
turned off to save energy and the coffee maker may be turned to heat-preservation state.

* Funded by 973 Program of China (2002CB312002) and 863 Program of China
(2006AA01Z159), NSFC (60233010, 60403014, 60603034).

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 252 262] 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Transaction Model for Context-Aware Applications 253

In this paper, we propose a transaction model for context-aware applications. It
provides a uniform framework for these applications to handle errors, exceptions and
other abnormal cases. In this model, context-aware applications are formalized, and
compensations are fulfilled in a uniform way. In addition, our transaction model sup-
ports nested scopes and the number of levels of subtractions is unlimited, where flexi-
bility and description ability are the concern.

We also present an implementation of this model, in which internal logic of con-
text-aware applications are described with a XML based declarative language. In this
implementation, RDF is supported and RDQL [2] sentences can be used for transition
conditions between functional modules of applications. This property makes the im-
plementation more suitable for context-awareness.

The rest of the paper is organized as follows. Section 2 reviews related works. Sec-
tion 3 discusses why transaction properties are necessary in pervasive computing
contexts and presents some further analyses. Section 4 describes our transaction
model for context-aware applications and section 5 presents an implementation of this
model. In section 6, we discuss the rationality of our model. Finally, section 7 con-
cludes the paper.

2 Related Work

Transaction models were deeply researched in the past two decades. Some classic
models have been proposed, such as Linear Sagas [3], flexible transactions [4], etc.
Linear Sagas is suitable for solving the problems related to long lived transactions and
flexible transactions work in the context of heterogeneous multidatabase environ-
ments. Years later, several transaction models have been proposed to address non-
traditional applications: [5] [6] [7] to name a few. However, most of these models are
developed from a database point of view, where preserving the data consistency of the
shared database by transactional method is the main concern. They are usually good
at theoretical properties but have difficulties when applied in the real word applica-
tions. These models are not suitable for context-awareness because context-aware
applications are far different from traditional ones simply based on databases. We will
discuss it in section 3.

Some researchers have noticed that wrong contexts may lead to unpleasant results
in context-aware applications. Ranganathan tried to resolve semantic contradictious
contexts using fuzzy logic in the first order predicate calculus [8]. Dey gave a novel
solution for ambiguity resolution by user mediation [9]. These attempts try to improve
the quality of contexts. However, errors in contexts can be reduced but cannot be
eliminated. Accordingly, a compensational mechanism is desired by context-aware
applications, yet we find little work focus on this domain.

This paper is part of work of FollowMe project, which is a pluggable infrastructure
for building context-aware applications. [10] gives an overview of FollowMe system.
The first version prototype of FollowMe did not include a transactional mechanism
and in this paper, we propose a transaction model providing the compensation ability
for context-aware applications.

254 S. Chen et al.

3 Motivation and Further Analyses

In this section, we first discuss what leads to anomalies in context-aware service pro-
viding, and then present the motivations why we introduce a transaction model to
solve this problem. Finally, we point out the requirements of a transaction model
specially serving for context-aware applications.

3.1 Cause for Anomalies in Context-Aware Service Providing

In context-aware service providing, we refer to anomalies as providing wrong or in-
appropriate services to users and abnormal termination of the service. These anoma-
lies stem from the facts listed as follows.

a) Inaccurate contexts. When wrong or inaccurate contexts are input to the system,
an application may offer wrong services to users or meet other exceptions. An appli-
cation, for example, is responsible for opening the door when the host comes home
and closing the door when he/she leaves. If the context describes the host’s action in
error, the result will be awful.

b) Deficiencies in policies and algorithms of context-aware applications. Recall the
scenario in section 1. The system uses the route Tom has finished to predict his whole
route, in order to prepare coffee in advance. This kind of prediction, actually all pre-
dictions, are risk bearing. Another example, an application detects users’ gesture to
recognize his activity and then provides appropriate services. However, even best
algorithms cannot recognize peoples’ activities and minds accurately. Prediction is a
kind of policy, and recognizing is a sort of algorithm. Deficiencies in these policies
and algorithms may cause anomalies in service providing. This case is a character of
context-aware computing.

c) Hardware errors and unexpected software runtime errors or exceptions. This is
much the same as other applications. In this case, service providing may terminate
amorally.

3.2 Necessity and Benefits of Applying Transaction Models

Anomalies in context-aware applications may cause users’ displeasure and even more
serious effects, such as waste of energy, loss of users’ assets, etc. In this section, we
will list the methods solving this problem and expound the necessity of the transaction
model according to the three cases mentioned in section 3.1.

a) To address the problem caused by inaccurate contexts, there are mainly two
categories of methods, ex-ante and ex-post. The ex-ante method is to improve the
quality of contexts to prevent the abnormity beforehand, while the ex-post compensat-
ing after error occurs. However, we will show that the ex-ante method has some in-
herent limitation.

Apparently, there is a gap between real world contexts and contexts input to com-
puting systems. This gap is mainly caused by two facts. The first is that sensors,
which collect the contexts, may fall into errors and their accuracy is limited. The
second is that real world contexts are continuous but sensors always send data to the

A Transaction Model for Context-Aware Applications 255

sink periodically. Computing systems cannot know what exactly happens during the
time interval between two senor signals. It’s conceivable that this gap can be reduced
but cannot be erased, because physical errors of sensors are inevitable, and von Neu-
mann computing model is inherently discrete other than continuous. Therefore, we
can make efforts to improve context quality (ex-ante method) to reduce the gap, but
compensating ability (ex-post method) should also be included since the gap always
exists.

b) For the anomalies caused by imperfect policies and algorithms in context-aware
applications, situation is similar to the case above. Of course, we can develop more
powerful and clever algorithms (ex-ante method), however, only the person himself
knows really what he wants to do and what he needs. Computers are not human be-
ings. Even best rules or artificial intelligent algorithms can only try to get close to
facts or people’s minds, but cannot replace them. When context-aware applications do
recognition or judgments inaccurately and anomalies occur, we have to resort to ex-
post methods.

c) Let’s move on to the last case. Evidently, software and hardware exceptions and
errors are inevitable in any computer systems. We can try to produce more reliable
software and hardware, but can never promise that no errors will occur. To deal with
anomalies of services caused by such matters, ex post facto handling is indispensable.

From the above discussion, we can conclude that ex post facto measurements are
necessary for anomalies handling in context-aware services. Then, why is the transac-
tion model a proper solution for such needs?

Firstly, transaction models are naturally used for error handling and consistency
maintenance. These models, especially ones proposed to address non-traditional ap-
plications, as mentioned in section 2, provide inspiration and show common points
with our problem.

Secondly, a transaction model can provide an infrastructure upon which all con-
text-aware applications can perform ex post facto handling in a uniform way. If many
applications in a smart environment do the compensating work autonomically, the
software structure will become complicated and confused. Moreover, applications in
one smart environment may share contexts each other, therefore, handling anomalies
autonomically will make data dependence among these applications very hard to
maintain. By employing a uniform framework, it is possible to maintain data depend-
ence by the system other than application developers.

Thirdly, a transaction model is able to treat all anomalies caused by three kinds of
factors mentioned in section 3.1. It provides a convenient way and a succinct style for
application development.

Hence, a transaction model is a good choice. Also it is feasible. We define context
as a kind of natural input, that is, input with little artificial processing. This definition
conforms to our experience, because contexts are usually collected by sensors and
input to the system automatically. In this way, context-aware computing follows Mark
Weiser’s idea that people can pay more attention to their task itself instead of compu-
tational devices [1]. Since context is a kind of input, classic computing models can be
applied in the context-aware domain as well.

256 S. Chen et al.

3.3 Requirements of Transaction Model for Context-Awareness

First, let’s consider when the compensations should be fulfilled. We discuss this issue
still according to the three cases mentioned above. In case c), apparently, the compen-
sating work, if any, should be executed as soon as errors or exceptions occur. This is
simply the same as traditional transaction models. In case a) and b), as time elapses,
the system will get more contexts and will be possibly able to detect whether its origi-
nal judgment was right or wrong. In the example mentioned in section 1, when Tom
changes his way and drives towards his friend’s home, the smart environment can
find out the change of his route and trigger the compensating work. On the other
hand, sometimes, users may notice that the environment provides a service in error,
and then abort it by sending a command to the system. This kind of manual abortions
may also require compensations. To sum up, there are three points when compensa-
tions will start to execute: an error or an exception occurs; the context-aware applica-
tion itself notices it has provided an inappropriate service; the user aborts the service.
The second and third cases are different from traditional transaction models. It re-
quires our transaction model for context-aware applications offer an external entrance
to abort the abnormal service and trigger the compensating modules.

Then we pay attention to the differences between operations on databases and op-
erations in context-aware environments. Traditional transaction models are developed
mostly from a database point of view and operations on databases are the changes of
soft states, so that all such operations can be redone and undone. When system roll-
back is performed, all the states recover to that of a certain moment before. However,
many operations in context-aware environment are performed on the objects beyond
software systems and cannot be revoked. For example, cooked beef will not turn back
to raw beef in any case. Therefore, the concept of transaction in pervasive computing
context is different from that in the traditional fields. In context-aware applications,
the abortion of a transaction does not mean all the operations in this transaction
should be revoked and the whole state will be turned back to the state before the exe-
cution of this transaction. Instead, it just means some compensating work should be
done, in order to decrease the waste or damage, mitigate users’ displeasure, and set
the system to a proper state.

According to the above analysis, we conclude that a transaction model for context-
aware applications needs an external entrance to abort a transaction. In addition, the
semantics of abortion in context-aware computing is not performing overall revoking
but doing proper compensations.

4 A Transaction Model: TMfm

In this section, we first formalize the context-aware applications and then build a
transaction model for such applications.

4.1 Formalizing of Context-Aware Applications

We divide context-aware applications into logic units, each of which stands for an
atomic operation, such as turn on the air conditioner, make coffee, show a map on
users’ PDA, etc. We refer such a logic unit as an activity. Therefore, a context-aware

A Transaction Model for Context-Aware Applications 257

application or a group of applications related closely in a smart environment can be
represented as a set of activities and the data (context) flows and control flows between
these activities. Here ‘“related closely” refers to data sharing or dependency among
applications. The rationality of this formalization will be discussed in section 6.

More formally, let T be a context-aware application (or a group of closely related
applications) and let a;, ay, ..., a, be activities in 7. Each of a; (1<i<n) can have a
compensating facility ct;, and if a; has ct;, we use ¢; to represent (a;, ct;) pair. We may
call #; transactional activities. Each of #; can own a monitoring activity mt;. The com-
pensating facility performs compensations for corresponding activity, which is
straightforward to understand, while a monitoring activity is a software module that
serves to validate the service provided by the corresponding transactional activity.
Recall the scenario in section 1, system predicates that Tom is driving home and an
activity prepares coffee for him in advance. A monitoring activity may be activated at
the same time, which monitors whether Tom follows the route to home all along his
way. If not, the monitoring activity throws an exception and the corresponding com-
pensating facility may be triggered.

Pay attention, ct; is not an activity, but an accessional facility attached to a;. For
example, 7~ has five activities and among them, only a,, a, have compensating facili-
ties and only a, has monitoring activity. In this case, activity set A’ of T" is {ay, 15, a3,
14, as, mtz}.

Definition 1. (Activity Set). Let A be activity set of an application. A is the smallest set
satisfying:

1) Ifa;is an activity in this application and ct; does not exist, then a,€ A;

2) If a;and ct; both exist, then r,€A;

3) If mt; is in this application, then mz,e A.
Definition 2. (Application). Let T be an application (or a group of closely related
applications). T is a partial order set < A, <>, where A is activity set of this applica-

tion (these applications), and < is a partial order relation on A.

In definition 2, < indicates data dependencies between activities and implies exe-
cution order. For example, if f,, a;€A, and t, dependents on a;, then ordered pair
<aj, ty>e <.

4.2 Scopes

Definition 3. (Scope). Let s be a scope of an application T, and T=< A, <> . sis a
non-empty subset of A.

Definition 4. (Scope Set). Let S be scope set of an application T. S is the smallest set
satisfying the condition: if s is a scope of T, then se S.

Stipulative Definition. For convenience, we use < A, <, S > to denote an application

T with defined scope set S.
We have defined the scope and scope set, then we will give five rules that scopes
must follow.

258 S. Chen et al.

Scope Rule 1 (SR1): T =< A,<,§ >, if s€S, aes, ajes, then Ja’e s, such that <a’,

a>e < and <a’, ap>e <.

This rule indicates that if s is a scope, and activities a;, a; are both elements of s, then
s must have an activity a’, on which both ¢; and q; directly or indirectly depend. Of
course, the partial order relation is a reflexive relation, so that ¢’ may equal to g, or a;.

Scope Rule 2 (SR2): T =< A, =<, S >,if s€S, aes, aes, <a;, a’>e <, <a’, ape <,
then a’es.

Intuitively speaking, this rule indicates that if two activities, one of which indi-
rectly depends on another, are both in a scope, then the activities on the dependency
path of these two activities must be also in the same scope.

Scope Rule 3 (SR3): T =< A, =<, S >, if 5,€8, 5,68, then 5,Ms,=0 or s;Ms,=s; or
S1MSI=S85.

This rule indicates that if s5; and s, are both scopes and not the subset of one an-
other, then they do not have intersection. However, nested scopes are legal.

Scope Rule 4 (SR4): T =< A, <, S >, if s€S, a€s, aEs, ;€A, <a;, ape <, <a;,
a>€ <, aaj, then i€ s or <a;, ai>€ <.

This rule is a little hard to describe intuitively. We will explain it according to an
example later.

Scope Rule 5 (SR5): T =< A,<,S >, if t,€A, mt,€A, then Jse S, such that tes,

mtes.
This rule is tightly bounded to the semantics of mt;.

Definition 5. (Legal Scope and Legal Scope Set). If s follows SR1-SRS5, then s is a
legal scope. If for any se S, s is legal, then S is legal.

Since < is a partial order relation, 7 can be described by an acyclic directed graph.
Figure 1 shows a fragment of directed graph of 7. s={a;, as} is not a legal scope,
because it does not follow SR1. s,={t;, a3} is not a legal scope either, for violating
SR4 (1,€ 5, ases;, <ty, az>€ <, <h, as>€ <, but as¢ s; and <a3, as>¢ <). However,
{as, t4} complies with all of the rules and so dose s,.

@

Fig. 1. A fragment of directed graph of 7”

A Transaction Model for Context-Aware Applications 259

Now we move on to the semantics of scope. While #; is an atomic transaction of a
context-aware application 7, a scope is an upper-tier transaction. A scope could be
view as an activity in the upper layer. In this model, scopes can be nested, so we have
a multi-layer transaction structure. However, a complete context-aware application T
is not necessarily a transaction in our model, which is determined by characters of the
context-aware domain and differs significantly from most traditional transaction mod-
els. This property will be further discussed in section 6.

4.3 TMfm Model

Definition 6. (Compensation Handler). A compensation handler is a trigger, which
invokes compensating facilities in proper order. A compensation handler should be
bounded to a transactional activity #; (referred as CHt;) or a scope s; (CHs;).

For an activity can be viewed as a trivial scope, we will not distinguish CHt; and
CHs; hereinafter.

Compensating Rule 1 (CR1): If CHs; (s;€S) captures an exception thrown from an
activity a; (both normal and transactional) where a,es;, all elements of the set {ctl
ti€ 5;} should be executed in the reverse order of #; (€ s,).

In figure 1, assuming the original execution sequence of T° is ay, t,, as, t4, as. If 1,
throws an exception, and s, is a scope owning a compensation handler, then according
to CR1, the compensated sequence should be a;, 15, as, ty, cty, cto.

Compensating Rule 2 (CR2): s; (s;€ S) throws an exception if and only if g, throws an
exception and a,€ s; and CHs; do not exist.

Consider s; as an upper-tier activity, CR2 defines recursive handling process of
compensating.

Definition 7. (TMfm Model). TMfm model M =<T,R,,R, > , where
T =< A,<,S >, R,=(CRI1, CR2}, and R,={SR1, SR2, SR3, SR4, SR5}.

Such defined M is our transaction model for context-aware applications. In the next
section, we will give an implementation of this model.

S An Implementation of TMfm

In this section, we will define an xml-based declarative language to implement the
transaction model and describe the internal logic of context-aware applications.

In our system, one file defines one context-aware application or a group of closely
related applications. <ApplicationGroup> is the root element of a file and the element
<Application> stands for a specific context-aware application. <Scope> element
defines scopes and <Activity> refers to an atomic functional unit in an application.
The element of <Compensation> describes the compensating facility of a transac-
tional activity, while <CompensationHandler> serves to captures exceptions and
triggers compensating facilities in proper order. <Source> and <Destination> are
used to portray control flows of the application. For reasons of space, detailed schema
of this language cannot be provided. A segment of the description file of the “guests
reception” application is shown as follows.

260 S. Chen et al.

<ApplicationGroup>
<Link id = “from_s001_to_s002"/>

</Container>
<Application id = “http://moon.nju.edu.cn/followme#010” name
“guests_reception”>
<Scope id = “s001”>
<Source linkld = “from_s001_to_s002” transitionCondition
“select ?x where (?x prefix:locateln prefix:Room311) using prefix for
< hitp://moon.nju.edu.cn/followme#> GENERATED ">
<CompensationHandler>
<Catch faultName = “unknown_exception”>
<Compensate excuteAuto = “True”/>
</Catch>
</CompensationHandler>
<Activity id = “a001” name = “welcome”>
<ProcessUnit id = “show_welcomeinfo” isAuto = “True”>
<Assign>

</Assign>
<Input containerld = “input_of_show_welinfo”/>
</ProcessUnit>
<Compensation>
<ProcessUnit id = “compen_of_a001” isAuto =
“True”>
<Input containerld = “errorlnfo_001"/>
</ProcessUnit>
</Compensation>
</Activity>

The transitions between activities reflect control flows and data dependencies of
the application. The transition condition returns a boolean value, directing the applica-
tion whether goes through that path or not. In our implementation, transition condi-
tions can be expressed using RDQL sentences, which is powerful and convenient for
context description and queries.

We add a special user interface to the system. This UI enables users to abort the ser-
vices by inputting a command to his/her PDA or handset, when users find that the sys-
tem provides wrong services or services he/she does not need. Receiving this command,
the running activity will throw an exception. By this way, all the three cases mentioned
in section 3 (1. software or hardware errors; 2. system finds itself inappropriate services
are provided; 3. user aborts) can be performed uniformly. They all trigger the compen-
sation handler by throw exceptions (Exceptions are thrown by mt; in case 2).

In this implementation of the model, a context-aware application is consist of a
definition file and a number of process units, which actually performs atomic opera-
tions such as open the light, cook coffee, etc. When deploying the file and process

A Transaction Model for Context-Aware Applications 261

units on FollowMe infrastructure, the system will parse and execute the definition file
and invoke proper process units. With this infrastructure, workload on development
and deployment of context-aware applications is reduced. [11] presents the first ver-
sion of this infrastructure and we add transactional properties in this version.

6 Discussion

In section 4, we formalize a context-aware application (or a group of closely related
applications) and divide it into a number of atomic functional units. For simple appli-
cations, this method seems not very valuable, because they may only have one or two
atomic functional units, and the control flows and dependencies between units are
very simple. An application responsible for opening and closing the door automati-
cally is an example of this category. Formalizing such simple applications may be
regard as a waste of time. However, the long-term goal of pervasive computing is to
build smart environments everywhere and provide adequate services to meet users’
needs. In such an environment, most services could not be very simple and they may
have complex internal logic, such as a patients’ guide system in smart hospitals. Even
if some simple applications exist, they are closely tied to other applications. For ex-
ample, an application for opening and closing the door automatically uses people’s
location contexts, which could also be used for many other applications. In addition,
the state of the door itself may used as contexts for other applications, such as safe
guard system and applications controlling the light and temperature conditions in the
room. Therefore, simple applications are not that simple in a smart environment view.
Moreover, generally speaking, models should be built on general cases. Simple appli-
cations with only one or two activities can be regard as the trivial-case of general
applications. However, that’s not the case by contrary.

We have mentioned that in our transaction model, a context-aware application is
not necessarily a transaction, and some components may be “transactions”, such as
transactional activities and scopes. It is far different from traditional transaction mod-
els, such as [3] [4]. They are researched on the premise that all subtransactions com-
pose an upper-tier transaction. This difference is caused by the idiosyncrasy of con-
text-aware computing. In most cases, work having been done needn’t and cannot be
revoked when exceptions occur in the context-aware environment, because the range
that context-aware applications effect is far beyond software systems and soft states.
Even the transactional components of context-aware applications are not classic trans-
actions. They can only recover part of the states and do some compensations when an
exception occurs. There is another difference between traditional models and ours.
For the former, if an exception occurs, the abortion of lower-tier transactions will
definitely spread to the upper-tier transactions. However, in our model, if compensa-
tion handler works, exceptions will not spread to the upper-tier. This difference is
caused by transactional semantics in the context-aware domain. Actually, after com-
pensations are performed, the state of the activity is close to “committed” in the tradi-
tional sense instead of “aborted”.

In section 5, we implement the model by a declarative language. Readers may no-
tice that it shares some common points with workflow definition language. In our
model, context-aware applications consist of logic units and dependencies between

262 S. Chen et al.

these units, which originally is a workflow-like structure. Moreover, as [12] has
pointed out, workflow has a more powerful description ability than transaction mod-
els. So it is possible and rational to describe a transaction model by a workflow-like
declarative language.

7 Conclusion

In this paper, we analyze the necessity of a transaction model in context-aware com-
puting domain, and present such a model called TMfm. In addition, a declarative
language has been proposed to implement our model. With this model, context-aware
applications are able to perform compensations when inaccurate contexts appear or
exceptions occur. Besides, compensating tasks of various applications are fulfilled in
a uniform way, which benefits software architecture, especially for complicated smart
environments.

References

1. Weiser M.: The Computer for the 21st Century. In: Scientific American, September 1991.
(1991)94-100

2. RDQL, http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

3. H. Garcia-Molina, and K. Salem.: Sagas. In: Proc. 1987 SIGMOD International Confer-
ence on Management of Data. (1987)249-259

4. AK. Elmagarmid, Y. Leu, W. Litwin, and M.E. Rusinkiewicz.: A Multidatabase Transac-
tion Model for Interbase. In: Proc. of the 16™ VLDB Conference. (1990)23-34

5. U. Dayal, M. Hsu, and R. Ladin.: A Transaction Model for Long-running Activities. In:
Proc. of the 17" International Conference on Very Large Databases. (1991)113-122

6. H. Waechter and A. Reuter.: The ConTract Model. In: A.K. Elmagarmid, editor, Database
Transaction Models for Advanced Applications, chapter 7. Morgan Kaufmann Publishers,
San Mateo (1992)219-263

7. A. Biliris, S. Dar, N. Gehani, H.V. Jagadish, and K. Ramamritham.: ASSET: A System for
Supporting Extended Transactions. In: Proc. of 1994 SIGMOD International Conference
on Management of Data. (1994)44-54

8. A. Ranganathan, J. Al-Muhtadi, and R. H. Campbell.: Reasoning about Uncertain Con-
texts in Pervasive Computing Environments. In: IEEE Pervasive Computing, 03(2).
(2004)62-70

9. A. K. Dey and J.Mankoff.: Designing Mediation for Contextaware Applications. In:
ACMTransactions on Computer-Human Interaction(TOCHI), 12(1). (2005)53-80

10. Jun Li, Yingyi Bu, Shaxun Chen, Xianping Tao, Jian Lu.: FollowMe: A Pluggable Infra-
structure for Context-Awareness. In: Ubicomp2005. Tokyo, Japan (2005)

11. Shaxun Chen, Yingyi Bu, Jun Li, Xianping Tao, and Jian Lu.:. Toward Context-
Awareness: A Workflow Embedded Middleware. In: Proc. of IFIP 2006 International
Conference on Ubiquitous and Intelligent Computing (UIC2006). Volume 4159 of LNCS.
(2006)766-775

12. G. Alonso, D. Agrawal, A.E. Abbadi, M. Kamath, R. Giinth6ér, C. Mohan.: Advanced
Transaction Models in Workflow Contexts. In: Proc. of the 12" International Conference
on Data Engineering. (1996)574-581

A Grid-Based Remote Experiment Environment
in Civil Engineering

Jang Ho Lee!, Taikyeong Jeong?, and Song-Yi Yi®

! Dept. of Computer Engineering, Hongik University, Korea
janghol@cs.hongik.ac.kr
2 Dept. of Communication Engineering, Myongji University, Korea
ttjeongl@mju.ac.kr
3 School of Computer Science and Engineering, Seoul National University, Korea
yis@snu.ac.kr

Abstract. Recently, there is an increasing need for researchers in en-
gineering to share the result of the experiment without having to visit
the experiment facilities. Especially in the civil engineering, researchers
feel the need for participating in a number of experiments conducted at
distant places. In addition, it has been suggested that high-cost facilities
should be used by remote researchers for the high utilization rate. This
paper proposes a remote experiment environment in civil engineering
that are being developed in a project called Korea Construction Engi-
neering Development(KOCED), which connects major civil engineering
experiment facilities using grid technology. This environment enables re-
searchers to participate in a remote experiment, and allows the exper-
iment results shared by remote researchers automatically. Then, based
on the suggested environment, we designed a hybrid test facility that
involves two physical experiment facility sites and one numerical sim-
ulation site that are geographically apart. Then, we implemented its
prototype and ran some tests, which showed a possibility of grid-based
civil engineering experiment.

1 Introduction

The flow of information brings a tremendous change in the area of civil engineer-
ing research as well as the economy, politics and culture of a society. This trend
induces the combination of information technology with construction technology
and provides web services for remote users.

In order to bring the efficient design of grid-based collaboratory research to
a large-scale civil engineering technologies, such as experimentation, simulation,
and design, we produce a grid computing software system and tools for the re-
search facilities across the nation [I6]. The purpose of this large-scale grid design
is to share the facilities and maximize the effectiveness of their use, through in-
formation technology innovation. By connecting all the research facilities across
the nation with grid computing infrastructure, we expect to have a balanced de-
velopment of all the regions nation-wide as well as the combination of research

and education [T0] [15].

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 263 2007.
© Springer-Verlag Berlin Heidelberg 2007

264 J.H. Lee, T. Jeong, and S.-Y. Yi

These computing technologies and the development of extreme technology be-
come an essential part of a nation’s competitive construction strategy. However,
related huge experiment facilities are too expensive for an organization, which
makes the building and application of them difficult.

This paper is organized as follows: In Section Bl we will present an overview of
the KOCEDgrid system architecture including the grid-computing architecture,
the communication networks connecting each research facilities, and the control
network for system initialization under the control of grid software. In Section [,
we describe an outline of the remote system software and the experimental results
of Hybrid Test model. In Section Bl we briefly discuss related work. Conclusions
are presented in Section

2 Related Works

In recent decade, grid-based telescience project was started in US and some Eu-
ropean countries. Some of the well-known grid-based telescience projects in US
are Network for Earthquake Engineering Simulation(NEES) [20] [12], Biomed-
ical Informatics Research Network(BIRN) [1], and National Virtual Observa-
tory(NVO) [II] while EUROGRID [2] [I7] and G-Civil [3] are some of the lead-
ing grid projects in Europe. Among them, NEES and G-Civil are similar to our
KOCED in the sense that they applied grid technology to the research in the
area of civil engineering.

NEES is a network that connects seismological experiment facilities of US
with grid techonology that provides a collaboratory. It is managed by a consor-
tium and consists of 16 interconnected nation-wide next-generation seismological
research facilities that supports teleobservation, teleoperation, sharing of experi-
ment data, numerical simulation and collaboration tools. NEESgrid is a software
system that consists of a NEESpop server for a experimental facilities, Telepres-
ence Mode software, data acquisition software, and data repository software.

G-Civil is a project in UK that supports remote monitoring of experimen-
tal facilities and collaboration tool using grid technology. It provides real-time
monitoring of civil engineerig experiment site through portal on the Internet
and allows teams geographically apart to share data and collaborate. Besides
civil engineering, grid projects in other area are in progress around the world,
which include BIRN in medical and NVO in astronomy. BIRN is a geograph-
ically distributed virtual community of shared resources funded by National
Institute of Health(NTH) in US since 2001. It hosts a collaborative environment
for biomedical scientists and clinical researchers and facilitates the understand-
ing of the diseases and the discovery of treatment methods by collecting and
sharing biological data that are distributed. BIRN consists of four test beds and
a coordinating center that supports networking, distributed storage, software
development, etc. BIRN exploits the grid technology in security, resource man-
agement and data management for the effective sharing of the research results
about the diagnosis and treatment of disease. NVO is a US NSF-funded project
to build a collaboration framework for the national virtual oberservatory that can

A Grid-Based Remote Experiment Environment in Civil Engineering 265

provide the world’s leading astronomical information services and data collec-
tions to astronomers, educators, and students at a distance. NVO takes advan-
tage of grid techonology in creating prototypes for access, publishing and discov-
ery of terabytes of astronomical data generated by new telescope, detector, etc.
Finally, EUROGRID granted by European Commission established a European
GRID network of leading High Performance Computing centers from different
European countries and demonstrated distributed simulation codes from differ-
ent application areas such as biomolecular simulations, weather prediction, cou-
pled CAE simulations, structural analysis and real-time data processing. For this
purpose, EUROGRID supports software infastructure for building grid system,
standardizes major grid software components and provides stable and secure
connection to the grid network.

As the need to build grid system increases worldwide, it became necessary to
standardize the grid service and it resulted in the proposal of the Open Grid
Services Architecture(OGSA) [15] [13]. OGSA describes a grid middleware stan-
dard for sharing and managing of resources and a Web service standard for
application sharing. It is independent of operating systems or system environ-
ment. It supports Web service as an interface to service facilitating the access
to the resources or services, which has an advantage over other standards for
distributed computing. As more grid systems follow the OGSA standard, toolk-
its based on OGSA emerged. One of most well known toolkits among them is
Globus Toolkit(GT) [14] [I9]. Globus Toolkit provides services for each service
component described by OGSA, respectively. Through the reconfiguration of
those supported services, a target grid system can be built. The prototype of the
hybrid test system presented in this paper has been built with Globus Toolkit 3
and is being upgraded to Globus Toolkit 4.

3 KOCEDgrid

Based on our previous experiment of grid computing, we performed a grid-based
collaboratory for construction project. The KOCEDgrid system is nation-wide
distributions of computing systems associated with each research facility con-
nected by a wired communication information network and integrated to a grid
system, which makes the facilities become one facility.

This grid system is aimed to integrate the computing facilities and share the
resources such as simulation data and experiments for remote users. We demon-
strate the KOCEDgrid software system so that we can use some of the functions
and will extend the role of the system. We identified the major functions that
the KOCEDgrid system should provide roles e.g., resource management and data
management functions.

Resource management provides authorization to confirm the identity of users
as well as the delegation of rights. It also allows users to locate the required
resources when they need to use the experiment facilities and related data from
remote sites. The resource management enables users to monitor the status of

266 J.H. Lee, T. Jeong, and S.-Y. Yi

the resources for the effective usage and management of resources including ex-
perimental facilities. Consequently, it includes not only facilities for experiments
but also high-end computers with which researches perform large-scale scientific
calculation and simulations. It allows researchers to allocate jobs to high-end
computers regardless of their physical location and to see the results.

Another aspect of the KOCEDgrid system function is data management. Data
generated in experiments and simulations are transferred to the database in a
secure way. Reliable File Transfer(RFT) Service [§] transfers data from local
repository to central respository using GridF'TP service [5] based on Grid Se-
curity Infrastructure(GSI) [4] on each repositories. Users are allowed to look up
data effectively in a pre-specified meta data. Access to the data from remote
places is performed in a trusted way using standard secure protocol.

The system model for building a large-scale grid system enables the above-
mentioned main functions as well remote experimentations such as teleobserva-
tion, teleoperation, which discuss in section 4. Each university locates a selected
huge experiment facility. Using this facility, each university can perform research
within the region, as well as remotely perform experiments. The remote access
of facilities is restricted to the grid portal. This grid portal plays the role of con-
necting fragmented universities’ facilities, sharing research data as a web service,
and monitoring the process of research.

Our results have been verified with this implementation of grid computing
system. Through camera and video connected to research facilities, it is possible
to look into and modify the process of research, and prove services for a collabo-
ration. The grid portal also performs the role of connecting users and facilities by
the data acquisition system (DAQ), which receives data from research and sends
them to users, local data servers, or servers. Consequently, this makes possible
a remote control of facilities by means of a controlling system that receives the
order from users and sends it to facilities.

Simulated data from research forms meta-data and is stored in local data
storage facilities, and completed data are managed in a huge database system.
This database provides an efficient searching mechanism for these data, manages
meta-data, and informs storage place when data are managed redundantly. This
construction of the database can be possible by development of application pro-
grams accompanied by existing data management systems, and by file transfer
services through grid middle-ware.

Current effort of KOCEDgrid consists of 6 different research facilities, which
can be described as follows: real-time hybrid testing facility for multi-DOF struc-
tural systems, dynamic geo-centrifuge facility, multi-support excitation facility
for earthquake simulations, wind-tunnel facility for large-scale long structures,
ocean environment simulation facility and large-scale testing facility for new
advanced construction materials.

Fig [illustrates a connection of each research facilities of grid-based com-
modataries. It should be noted that we will extend to double size of research
facilities in the second phase of project by 2009.

A Grid-Based Remote Experiment Environment in Civil Engineering 267

Multi-Support
Excitation Facility for
Earthquake

Real Time Hybrid Testing i
Facility for Multi-DOF == ——=-Simulations

Structural Systems]

= ——
<l s
a2y '
Wind Tunnel Facility for

Large Scale Long
Structures

» d
vﬂul i
N2 /\\ KOCED

N llaborator
Large Scale Testing Collaboratory

Facility for New
Advanced Construction

Extra Large
nfigurable Structural

Materials Testing Facility
. / Repositor %% z Public/
% . overnment
& g i: 4
Multi-Purpose Larl;rf*/,I = il g sty
Scale Field Application Hiesaaraih
Test Facility 5 P

University Institute . S

¢ Eeaman B

: (} ! Yas ¢

Internationall, NEES

Link S ey Japan

Fig. 1. KOCEDgrid interconnecting 6 different research facilities

4 Collaborative Research Environment

4.1 Remote Experiment

We describe main concept of remote experiment in KOCEDgrid which can be
shown as follows: teleobservation, teleoperation, and controlling the experimental
devices.

Teleobservation is one of the main feature of KOCEDgrid software system.
This function should obviously make possible into the grid portal. Users from
a remote site should be able to see the experiment data. Also, the video and
audio from where the experiment is being performed should be accessible from a
distance in real time. In this case, experiment data can be seen in a remote place
with a visualization program based on real-time streaming. A synchronization
mechanism is needed for synchronizing the experiment data and video in real
time as well.

Consequently, teleoperation is another key feature of this collaborative re-
search. This unique feature also provided a control experiment facilities from a
distance, but the capability of control of experiment facilities is different depend-
ing on the research facilities. Moreover, a control layer is independent from the
experiment devices that are separated from the control layer that is dependent
on the experiment devices. In particular, separation of those two layers is made
in order to reduce the cost in extending the KOCEDgrid system to include the
new experiment equipment.

268 J.H. Lee, T. Jeong, and S.-Y. Yi

The experiment device-independent control layer is implemented as control
commands and protocols that are general to experiment devices. In addition, the
experiment device-dependent control layer converts commands from the device-
independent layer to device-specific commands to control the experiment device,
which can be extensible.

Since the experiment facilities are shared by researchers, users can look up
the usage schedule of experiment facilities by others as well as apply for using
the experiment facilities on line.

Although we can control and schedule of users access, some function should
be done by on site, both manually and remotely, such as installation of sensors,
change of video camera location for observation, and displacement of experiment
prototype. In this case, we required some services to perform the above actions,
people who can assist in the experiment, a video communication system that
connects people in the experiment facility and researchers in a remote site, and
a wireless communication system.

4.2 Collaborative Environment

We address the following aspects regarding collaborative research environment
while we develop a grid software infrastructure.

— Integrated Research Environment: With a single sign on to a grid portal that
is a gateway to experiment facility grid and collaborative research environ-
ment, they should be able to use the services and resources in the grid with
their access rights in an integrated research environment. The grid software
system should allow researchers to perform the experiment in an integrated
research environment.

— Chat: Researchers from remote sites should be able to discuss the experi-
ment situation through chat as they observe the ongoing remote experiment.
Therefore, collaborative researchers should be able communicate multi-party
discussion in real-time basis.

— Scheduling of community: It is required to schedule to look up and modify the
schedule of his community among collaborative researchers. This scheduling
function provides to collaborative researchers so that they can form the com-
munity for collaboration. The scheduling is maintained for each collaborative
research community.

— e-Notebook: The grid architecture allows researchers to collect and organize
data for collaborative research. The data includes not only text but also
pictures, CAD, voice, video and application-generated data such as Word
and PowerPoint. E-notebook enables collaborators to organize and look up
the data.

5 Supporting Remote Experiment

Among the overall architecture of collaborative research environment, we focus
on the remote experiment environment using grid architecture in this section.

A Grid-Based Remote Experiment Environment in Civil Engineering 269

The remote experiment model is based on the hybrid experiment where the
experiment includes not only physical model but also mathematical simulation.

5.1 Hybrid Test Model

In hybrid test, the entire test structure consists of independent substructures
that are modelled computationally or physically. These substructures can be lo-
cated at different facilities, tested separately, and integrated via a computational
simulations. A hybrid test consists of parts of two types: one part of a structure
is modelled computationally and run on a simulation computer numerically, and
another part is constructed and instrumented physically. Fig. 2l shows our design
of the hybrid test model.

Input(load or displacement)

Contral @—{Acmmo 5‘5‘;,;:‘;:"‘]—{ Semsor]—uﬂg]

f Control (volts} .
input ool ol Structure Experiment
hysical
physica volts
quantity
Simulation
Output Computer
(load or displacement) Input
Numerical Analysis Feedback (load or displacement)

Fig. 2. A hybrid test model

The control system of the physical experiment node communicates with the
simulation computer sending feedback during the experiment. The physical ex-
perimental results acquired by DAQ are fed to the simulation computer for nu-
merical analysis. The simulation computer, in turn, provides input to an actuator
of the physical substructure by simulating the interactions between the physical
and the virtual model. A hybrid test is performed by repeating each simulation
step which sends a feedback of the simulation to the physical equipment.

5.2 Building a Prototype for Hybrid Test Model

Fig. Bl shows a prototype of a simple hybrid experiment model with seismic
wave input. Our prototype is a modified version of Mini-MOST experiment [6]
of NEES. Mini-MOST experiment is a miniature version of the MOST(Multi-
site Online Simulation Test) that aims to examine the dynamics of a structure
in response to the seismic wave. The Mini-MOST model consists one physical
experiment node and two simulation nodes. These nodes are geographically apart
and conduct physical experiments or perform numerical simulations using tools
such as Matlab.

We modified the Mini-MOST model by decreasing the number of simulation
nodes to one and by increasing the number of physical experiment nodes to two,
which resulted in modifying the part of the Mini-MOST code and building an-
other physical experimental body as in Fig. @l In Mini-MOST experiment the

270 J.H. Lee, T. Jeong, and S.-Y. Yi

Computational Node
Fl

F2
F1

A4 [

— —

Experimental Node 1 Experimental Node 2

Fig. 3. Prototype for the hybrid test model

physical experiment node 1 in Fig. @l had been a simulation node that accepts
force and momentum input and generates displacement and rotation. We elimi-
nated the momentum input of the node in making the physical experiment node
1 the same model as the physical experiment node 2. As shown in Fig. @ soft-
ware consists of three parts: a control part, an experiment part, and a monitoring
part. The detailed explanation for each part are as follows.

Labview Plugin
Control Server

Labview Plugin
Control Server

Labview Plugin

Control Server

=
Physical Experimental Node 1

Simulation
Coordinator

Monitoring

Streaming Server| Client

Physical Experimental Node 2

Fig. 4. A software architecture of the prototype for hybrid test model

The control part consists of Simulation Coordinator, a control server for each
node, and plugin that provides interface between a node and a control server.
Simulation Coordinator manages the hybrid test during the entire period of ex-
periment by sending control command to control servers for each node. When a
hybrid test starts, Simulation Coordinator notifies the beginning of the experi-
ment and receives commands to be delivered to the control server for a physical

A Grid-Based Remote Experiment Environment in Civil Engineering 271

Experimental Node 1

Streaming Monitoring
Server Client
DAQ Server
Program| Daemon\\\
t» | Dagtorbnb
- A
S l
Videotorbnb —
1| Rens
Server RDV
Experimental Node 2 T
DAQ —| Server | | " |Paatrbnd
Program| Daemon|
E Y 3
Videotorbnb

Fig. 5. An architecture for monitoring in hybrid test model

Times: 20060626 20:16:30.747 KST Time Scale: 5.0m
stote: stopped Playback Rate: 10

Fig. 6. Screenshot of remote monitoring client in the hybrid prototype test

experiment node. Based on the commands received, the control server controls
the physical experiment node through plugin which communicates with a control
program running on a DAQ computer. In our experiment, Simulation Coordina-
tor is coded in Matlab and the control server uses NTCP(NEESgrid Teleopera-
tions Control Protocol) [I8]. There are two types of plugins: Labview plugin for
a physical experiment node and Matlab plugin for a numerical simulation node.

An experiment part can be either physical experiment part or numerical simu-
lation part. In a physical experiment part, a DAQ program acquires sensor values
and sends them to the streaming server. A numerical simulation part calculates

272 J.H. Lee, T. Jeong, and S.-Y. Yi

the value for the next step when it receives command from the Simulation Coor-
dinator. In the prototype, the control program for a physical experimental node
was coded in Labview while a numerical simulation node was written in Matlab.

As can be seen in Fig. Bl the monitoring part consists of the streaming server
and monitoring clients. The streaming server based on Ring Buffered Network
Bus(RBNB) [9] sends sensor data and video from the nodes to Realtime Data
Viewer(RDV) [7] monitoring clients which show users the result with graphical
user interface as in Fig. [0l The structural response of the force that acts between
Seismic wave and numerical simulation node are measured and shown in the form
of graph. During the experiment, the movement of the physical nodes are visually
represented in the video stream and the resulting change of the numeric data are
shown in the form of two-dimensional graph. Eight windows in the Fig. [6l shows
the video from two physical experimental nodes and sensor data(displacement,
load, resistance) from those two node in the graph form.

6 Conclusions

In this paper, we presented a grid-based remote experiment environment in
KOCED project that connects large civil engineering facilities distributed across
the nation. We discussed the design and implementation of the model that pro-
vides remote experiment to researchers geographically apart and allows the ex-
periment results to be shared among them. Remote researchers are allowed to
observe the experiment in real time. If the characteristics of the experiment
permits, a researcher can conduct an experiment from a distance. After the ex-
periment, the result of the experiment including video and sensor data are shared
among researchers. The functions described above provide basic environment for
collaboration among researchers at a distance. We designed and implemented a
hybrid test prototype connecting two physical experiment sites and one numer-
ical simulation site, which shows a possibility of conducting remote experiment
in grid-based collaborative research environment.

We are modifying the client from a executable file on a local PC to a Web-
based client based on Globus Toolkit 4 so that researchers can access the grid
system with a Web browser without having to preinstall the client system. The
presented prototype system is currently being used by researchers in civil engi-
neering who can give us feedback that can be used for building the final version
of the experimental facility. Furthermore, we plan to expand the current grid
network to include more experimental facilities so that more experiment results
can be shared by researchers. We expect this presented remote experiment en-
vironment to be applied to other engineering area.

References

1. Biomedical informatics research network. http://www.nbirn.net.
2. Eurogrid. http://www.eurogrid.org.
3. G-civil project. http://www.soton.ac.uk/ gcivil/.

=

® N o ot

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

A Grid-Based Remote Experiment Environment in Civil Engineering 273

Grid security infrastructure. http://www.globus.org/toolkit/docs/4.0/security/
GT4-GSI-Overview.pdf.

Gridftp. http://www.globus.org/toolkit/docs/4.0/data/gridftp/.

Mini-most. http://cive.seas.wustl.edu/wusceel /minimost /.

Real-time data viewer. http://it.nees.org/software/rdv.

Reliable file transfer service. http://www.globus.org/toolkit/docs/4.0/data/rft/.
Ring buffered network bus. http://outlet.creare.com/rbnb.

System Architecture v1.1. http://www.neesgrid.org.

Us national virtual observatory. http://www.us-vo.org.

I. Foster J. Futrelle D. Marcusiu S. Gulipalli L. Pearlman C. Kesselman, R. Butler
and C. Severance. NEESgrid System Architecture Version 1.1. http://it.nees.org/
documentation/pdf/NEESgrid SystemArch v1.1.pdf

J. M. Nick I. Foster, C. Kesselman and S. Tuecke. The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration. http://
www.globus.org/research /papers/ogsa.pdf, 2002.

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputer Application, 11(2):115-129, 1998.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Services for Distributed
System Integration. IEEE Computer, 35(6):37-46, 2002.

I. Foster K. Czajkowski, S. Fitzgerald and C. Kesselman. Grid Informaion Ser-
vices for Distributed Resource Sharing. In HPDC-10, pages 344-353, Boston,
Massachusetts, August 2001.

M. Niezgodka K. Nowinski, B. Lesyng and P. Bala. Project EUROGRID. In
Proceedings of PIONIER 2001 Conference, pages 187-191, 2001.

E. Johnson C. Kesselman L. Pearlman, M. D’Arcy and P. Plaszczak. NEESgrid
Teleoperation Control Protocol(NTCP): NEESgrid-2004-23. http://it.nees.org/
documentation/pdf/TR-2004-23.pdf, September 2004.

S. Fitzgerald I. Foster A. Johnson C. Kesselman J. Leigh S. Brunett, K. Czajkowski
and S. Tuecke. Application Experiences with the Globus Toolkit.

The NEESgrid System Integration Team. Introduction to NEESgrid: NEESgrid-
2004-13. http://it.nees.org/documentation/pdf/TR 2004 13.pdf, August 2004.

http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf.
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf.
file:{http://it.nees.org/documentation/pdf/NEESgrid_SystemArch_v1.1.pdf}, May 2003.
file:{http://it.nees.org/documentation/pdf/NEESgrid_SystemArch_v1.1.pdf}, May 2003.
http://www.globus.org/research/papers/ogsa.pdf, 2002.
http://www.globus.org/research/papers/ogsa.pdf, 2002.
file:{http://it.nees.org/documentation/pdf/TR-2004-23.pdf}, September 2004.
file:{http://it.nees.org/documentation/pdf/TR-2004-23.pdf}, September 2004.

Mobile Ad Hoc Grid Using Trace Based Mobility Model

V. Vetri Selvi, Shakir Sharfraz, and Ranjani Parthasarathi

Dept. of Computer Science and Engineering,
College of Engineering Guindy
Anna University,
Chennai, Tamil Nadu, India
vetri@annauniv.edu, rp@annauniv.edu

Abstract. Ad hoc network is an infra structure less network, which is formed
by mobile devices like laptops, PDAs, cell phones etc. Each device has different
computational capability, power, hardware and software, which forms a hetero-
geneous network. These devices can be integrated to form an infrastructure
known as grid. A grid integrates and coordinates resources and users that are
within the same network with different capabilities. Hence we can visualize a
grid over an ad hoc network that effectively utilizes the heterogeneity in the
mobile devices. The major challenge in forming a grid over an ad hoc network
is the mobility of the nodes. In this paper, we address the challenges due to mo-
bility by considering a trace model for the movement of the nodes. Next, we
demonstrate the feasibility of forming a grid over a mobile ad hoc network by
proposing lightweight algorithms for grid formation, resource discovery, nego-
tiation, job scheduling, and resource sharing. We have analyzed the perform-
ance of mobile ad hoc grid both by using a theoretical model and by simulation.
The results point to a promising approach to form a mobile ad hoc grid.

1 Introduction

A mobile ad hoc network is a collection of wireless mobile nodes that are capable of
communicating with each other without the use of network infrastructure or any
centralized administration. Each node in an ad hoc network acts as a router, and is in
charge of maintaining routes and connectivity in the network. Thus, there is an
element of cooperation among the nodes to perform the routing process or the
network layer function itself. Taking this cooperation one-step further, one can
envisage a scenario where in the devices can coordinate and support each other in
terms of higher layer services, (i.) we can envision the concept of mobile ad hoc
grid. We can see that such a grid would be desirable in an ad hoc network due to the
heterogeneity of the mobile devices. Since the mobile devices like laptops, PDAs,
mobile phones, etc., have different computation capabilities, power, hardware and
software functions, the nodes with higher computation capabilities and power can
share the resources with devices of lesser capabilities. Thus a mobile ad hoc grid can
facilitate the interconnection of heterogeneous mobile devices to enable the delivery
of a new class of services.

A grid by definition is a system that coordinates resources that are not subject to
centralized control. The fundamental functions in a grid are resource discovery,
negotiation, resource access, job scheduling and authentication. A grid allows its

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 274 _ 2007.
© Springer-Verlag Berlin Heidelberg 2007

Mobile Ad Hoc Grid Using Trace Based Mobility Model 275

resources to be used in a coordinated way to deliver various qualities of service in
terms of response time, throughput, etc [1]. The definition and function of a grid will
also be applicable to the mobile ad hoc grid.

In the Internet scenario, the grid uses architectures like Globus Toolkit 3.0 [2] and
SETI@Home which is now an application running on top of the BONIC platform [3].
However, the APIs for these architectures need high computational power and require
a lot of disk space for their installation. Thus, it may not be possible to use such
architectures on every mobile device [4], since these devices have limitations on
hardware and software capabilities and may not provide an ideal computing
environment for complex and data intensive functions. Hence it is necessary to device
lightweight grid enabling mechanisms that can be adopted for the mobile ad hoc grid.

There are several challenges involved while forming a mobile ad hoc grid. This
paper discusses various such issues and proposes an architecture for the mobile ad hoc
grid. The stability of the grid is one of the major issues to be considered in an ad hoc
scenario due to the movement of the nodes. This has been dealt with by exploiting the
regularity in the movement of nodes. Su et al [5] have shown that exploitable
regularity of user mobility patterns exist in common day-to-day environments.
Capturing this regularity in movement as a movement pattern is done using a Trace
Based Mobility Model (TBMM) [6]. This model collects a number of movement
patterns, and generates a final trace pattern. From the final trace, the probable position
and stability time of a node are obtained. Using this mobility model, trace based
source routing protocol for QoS (TBSR-Q) was proposed for an ad hoc network [6].
The TBSR-Q protocol uses the stability and position information obtained from the
trace file for obtaining a stable route. In our mobile ad hoc grid, we use this trace
based mobility model to obtain the probable position and stability time of a node in
order to build a stable grid, or in other words, to take care of the instability of the
nodes.

This paper is organized as follows. Section 2 discusses the background and related
work. Section 3 deals with the proposed architecture of a mobile ad hoc grid. Section
4 evaluates the mobile ad hoc grid using a theoretical model and by simulation.
Section 5 concludes the paper.

2 Related Work

Grid computing enables the sharing and coordination of resources across a shared
network. Integrating grid computing with ad hoc network is a very recent concept,
and introduces lot of new challenges. The following are some of the solutions that
have been proposed by various researchers.

Ihsan et al [7] have proposed a mobile ad hoc service grid that maps the concepts
of grid on to ad hoc networks. This mobile ad hoc service grid uses the under-lying
connectivity and routing protocols that exist in ad hoc networks. The availability of
the service in a node is broadcast to all one-hop neighbors. Since the grid is formed
within one-hop neighbors, there is a chance for resource discovery to fail when there
is no service provider within one hop. In this grid, each node is responsible for
maintaining the resource look up table, which can be a burden to devices with less
storage capabilities.

276 V.V. Selvi, S. Sharfraz, and R. Parthasarathi

Wang et al [8] have proposed a mobile agent based approach for building
computational grids over mobile ad hoc networks (MANET). Here, the mobile agent
has been used to distribute computations and aggregate resources. The mobile agent
searches for resources and executes the computations on the node that is willing to
accept it and is responsible for negotiation of resource provision for running the
computation job.

Anda et al [9] have proposed a computing grid over a vehicular ad hoc network
(VANET) by leveraging inter-vehicle and vehicle to-roadside wireless
communications. This grid has been used for solving traffic related problems by
exchanging data between vehicles. Forming a grid is not a problem in VANETS,
because the vehicles have ample power and energy and can be equipped with
computing resources.

Roy et al [10] have investigated the use of the grid as a candidate for provisioning
computational services to applications in ubiquitous computing environments. The
competitions among grid service providers bring in an option for the ubiquitous users
to switch their service providers, due to unsatisfactory price and QoS guarantees.

Our approach differs from these in that it provides a mechanism to capture the
mobility patterns of the nodes and use that information to effectively form a grid over
an ad hoc network.

3 Proposed Architecture for Mobile Ad Hoc Grid

One of the major challenges in forming a grid over ad hoc network is the mobility of
the nodes and an infrastructure-less network. Resource identification and sharing
become difficult tasks in a mobile environment. To overcome this, we propose a
model to identify the stability of the nodes which in turn helps to predict the stability
of the grid. The stability of the node is predicted using the TBM model [6].

The TBM model
Mobility models are application dependent. Hence application scenarios are important
in choosing a model. Although typical application domains of ad hoc networks are
military networks, conferences and search/rescue operations, for the kind of grid
based sharing of resources, we consider offices and institutions where people meet
regularly, with a myriad of heterogeneous mobile devices, as the application domain.
In these domains, there exist fair amounts of regularity in the movement of the mobile
nodes. Hence as opposed to the former group of applications where the mobility
models try to model the randomness in the movement, in our application domain, we
are more concerned with capturing the regularity of the movement. Hence we use a
mobility model that records regular movements to efficiently manage mobility.
TBMM identifies regularity in movement of the nodes and captures them as a
movement pattern. Each node is assumed to be location aware, and the network is
assumed to be mapped on to a virtual grid structure, depending upon the transmission
region and the area of the network. A light-weight algorithm [6] is used to arrive at
the trace representing the regular movement of the nodes over a period of time. The
information in the trace consists of a series of stable positions and associated time
duration.

Mobile Ad Hoc Grid Using Trace Based Mobility Model 277

Architecture of proposed grid

We propose a trace-based approach to form a grid over an ad hoc network using the
above-mentioned trace. Further, the mobile ad hoc grid uses a lightweight algorithm
for grid formation, resource discovery, negotiation, job scheduling, and resource
sharing, in keeping with the limited resource characteristic of the mobile nodes. Load
balancing is a challenge unique to the dynamic nature of ad hoc network, and it is not
considered for the initial study of formation of grid over an ad hoc network. The
architecture of the grid is shown in Fig. 3.1.

Grid <P Resource management
Resources
Resources . .
Grid Discovery Initiate to form Grid Negotiation
Resource ' : :
Table Provider Registration Resource
<> Resource Parameter, Service Access

Fee, Stability Time, Position

Updating
€@Pr | Resources

Consumer Registration

Type of Service, Price, Services
Stability Time, Position Monitoring

' ! {

QoS Routing |

Stability Time, Position, Queue Size |

Fig. 3.1. Architecture of a mobile ad hoc grid

The grid layer is built on top of a QoS guaranteeing network layer that provides
stable routes. The grid layer consists of a grid resources module, resource discovery
module, and resource management module. The resource discovery module initiates
grid formation, and allows the service providers and consumer nodes to register. Grid
resources module maintains and keeps track of the registered resources. Resource
management module is responsible for negotiation, resource access, updating of re-
sources and service monitoring. All these modules are built on the QoS routing of
network layer, which could in turn make use of the same stability information ob-
tained from the TBMM.

3.1 Grid Formation

A node willing to provide service with higher computational capability and power is
called as a service provider node (SPN) and the node which requests for the service is
called as a consumer node (CN). The SPNs and CNs are the members of the grid. The
nodes that are willing to share their resources specify a cost for their resources. The

278 V.V. Selvi, S. Sharfraz, and R. Parthasarathi

consumer node accepts a service based on the cost, service time, etc. This leads to
some negotiation between the consumer node (CN) and the service provider node
(SPN). Since ad hoc network is an infrastructure-less network, there is no centralized
authority to keep track of the negotiation between a CN and a SPN. In order to form a
grid and to keep track of the negotiation between a CN and a SPN, we have an SPN
that volunteers to act as a grid head node (GHN). The GHN takes care of the
negotiation between the CN and SPN. The GHN of a grid acts as a central point and is
responsible for resource discovery and resource access. Figure 3.2 shows the
messages that are exchanged between the nodes that are willing to form a grid.

CN GHN/SPN SPN

grid_hello_message rid_hello_message

grid_joining_message
service_request_message /

service_ provider_message

\
I

< } Service
-

service_completion_message
acknowledgement_message

Fig. 3.2. Sequence of messages for Grid formation

Resource Discovery

A node that is willing to provide service will initiate the action of forming the grid by
sending a grid_hello_message. The nodes that are willing to be a member of a grid
respond to the grid_hello_message. The format of grid_hello_message is as shown in
figure 3.3a. It consists of node ID, stability time, position and hop count. The node
ID is the identification of the node that sends the message; and stability time and
position which are obtained from its trace file denote the current position and the
associated stability time. When two nodes send a grid_hello_message at the same
time, the grid head elected is the one that has a larger stability time. Hop count
restricts the propagation of the grid_hello_message to a limited number of hops. This
helps to avoid the formation of one large centralized grid, and instead facilitates
multiple decentralized grid structures.

A node, after receiving a grid_hello_message, sends a response message depending
on whether it wants to become a member of the grid or wants to request for a service.
The node joining a grid sends a grid_joining_message. The format of the
grid_joining_message is shown in Figure 3.3b. It consists of SPN ID, GHN ID,
Resource parameter, service fee, Position and Stability. The SPN ID is the ID of the
node that is willing to join the grid and GHN ID is the head ID under which it wants
to become a member. Resource parameter indicates the resource parameter that is

Mobile Ad Hoc Grid Using Trace Based Mobility Model 279

available with a SPN like the computational capability, power, storage etc. The
service fee indicates at what cost it will service a request. Similarly a node requesting
for service sends a service_request_message whose format is shown in figure 3.3c.
Service_request_message consists of the requesting node ID, GHN ID, ToS, Price,
Position and Stability. The GHN is the grid head ID to which it is requesting service.
ToS is the type of service requested by a CN. The price field indicates at what price it
is willing to accept a service. A node can also become a member of two grids based
on the resources available with it or the services it desires.

Grid Resources

The GHN after receiving responses from the member nodes forms a grid table. The
format of the grid table is shown in Table 3.1

Table 3.1. Grid Table

Node | SPN | RP/ | Service | Price | Position Stability | Job | Busy/
ID /CN | ToS | Fee ID Free

Abbreviations: SPN/CN - Service Provider Node/ Consumer Node, RP/ToS -
Resource Parameters/Type of Service

This table maintains the details about the member nodes. The node ID column lists
the identification of the member nodes. The SPN/CN indicates whether it is a SPN or
CN. The resource parameters specify the resources available with that node like
computational capability, power, storage etc. Type of service indicates what type of
service is needed by a CN. Service fee of a SPN specifies at what cost it will service a
CN. Price of a CN specifies at what price it needs a service. Position is the physical
location of a node and stability is how much time a node is going to be present at that
location. Job ID is a unique ID assigned to the communication of a SPN and a CN.
Busy indicates whether a node is being serviced in the case of a CN or is providing
service in the case of an SPN. Free indicates that an SPN is free to provide service.
The head maintains all the details about its members.

Resource Management

The head node is responsible for the negotiation between a SPN and a CN. When a
node requests for a service it sends the details of what type of service it needs and at
what cost. So the head node looks at the table to find out a SPN that offers the service
at that cost. Re-negotiation also can be done by a GHN and it is in the pipeline. The
job scheduling is done based on the stability time and the location of the SPN. A GHN
first verifies, whether the service time of a CN is greater than the stability time of a
SPN. If many SPNs have greater stability time, then an SPN that is nearer to the CN
requesting for a service is assigned. Then the GHN sends a service_provider_message
to CN. The format of the service_provider_message is given in Figure 3.3d. It consists

280 V.V. Selvi, S. Sharfraz, and R. Parthasarathi

of CN ID, GHN ID, SPN ID, Job ID, cost, position and stability. The CN ID is the ID
of the node requesting service, GHN ID is the ID of the node sending the message and
SPN ID is the ID of the node that has been assigned to provide service. The job ID is a
unique ID assigned by GHN to identify the communication between the CN and SPN.
Position indicates the physical position of the SPN that has been assigned to the CN.

On receiving this message the CN starts communicating with the SPN for its
service. The position of the SPN is available in the message, hence the CN can easily
communicate with the SPN using the routing protocol in the network layer.

After getting the service, the CN sends an acknowledgement about its completion
of the service to the GHN. Service completion field indicates that the service is
completed. The Job ID is sent so that the GHN can understand which service was
completed. The format of the acknowledgement_message is given in figure 3.3e.

| Node ID | Stability Time | Position | Hop count |

Fig. 3.3a. grid_hello_message

SPNID | GHNID | RP | Service Fee | Position | Stability

Fig. 3.3b. grid_joining_message sent by SPN

‘ CN ID ‘ GHN ID ‘ ToS ‘ Price ‘ Position ‘ Stability ‘

Fig. 3.3c. service_request_message sent by CN

‘ CNID ‘ GHN ID ‘ SPN ID ‘ Job ID ‘ Cost ‘ Position ‘ Stability ‘

Fig. 3.3d. service_provider_message sent by GHN

CNID GHN ID Job ID Service Completion

Fig. 3.3e. acknowledgement_message sent by CN

‘ SPN ID ‘ GHN ID ‘ JobID ‘ WtoC ‘ URP ‘ Service Fee ‘

Fig. 3.3f. service_completion_message sent by SPN

CN/SPN ID GHN ID LG

Fig. 3.3g. bye_message

Mobile Ad Hoc Grid Using Trace Based Mobility Model 281

| GHNID | New GHN ID | Stability Time | Position | Hop Count |

Fig 3.3h. New GHN message

Abbreviations: GHN ID — Grid Head Node ID, SPN/CN - Service Provider Node/ Consumer
Node, RP/ToS — Resource Parameter/Type of Service WtoC — Willing to Continue, URP —
Updated Resource Parameters, LG — Leaving Grid

Similarly the SPN sends a service_completion_message to the GHN after completing
the service for a CN. The format of the service_completion_message is given in Figure
3.3f. It consists of SPN ID, GHN ID, job ID, WtoC, URP and service fee. The job ID to
identify the job that has been completed and if the SPN is willing to continue (WtoC) in
a grid it sends the willingness as well as the updated resources parameters (URP) to the
GHN. Using this information the GHN will know that the service has been successfully
completed and updates the resource parameters of the SPN in its table.

The GHN has to periodically send a grid_hello_message to its member nodes, so
that the members will know that the GHN is alive, and a new member will also know
about the GHN. Since, it is an ad hoc network there might be situations where the
members have to leave the grid even before the stability time expires. During this case,
the members have to inform the GHN by sending a bye_message that consists of its ID
and leaving grid information. The format of bye_message is shown in Figure 3.3g.

Similarly when a GHN leaves the grid, it has to select a new head from its grid
table, the new head will be a SPN which has the largest stability time (after
ascertaining its willingness to be the new GHN). The GHN informs the members of
the grid about the selection of a new head by sending a new GHN message. This
message consists of old grid head ID (GHN), new grid head ID (New GHN) as well
as the stability time and position of the new grid head. The format is as shown in
Figure 3.3h. The node selected as a new head sends a grid_hello_message to its
members. The previous GHN hands over the table it maintained to the new GHN.
Even when a GHN fails, it is identified by the non-receipt of the grid_hello_message
and any SPN can initiate the formation of the grid by sending the
grid_hello_message. But this will involve grid formation overhead. Similarly,
situations like network splits or networks merge can also be handled. When a network
split occur the members leaving the grid will inform the GHN by sending a
bye_message and the grid will still exists with the available resources. When network
merge happens it will not affect the existing grid, instead new members will join the
grid. But this situation will not happen frequently in a low mobile scenario. The
evaluation of mobile ad hoc grid is presented below.

4 Mobile Ad Hoc Grid Evaluation

The Mobile ad hoc grid is modeled as an M/M/m queuing system [12] in order to
estimate the performance theoretically. The service requests from the CNs form the
arrival process, and the SPNs are the m servers servicing these requests. In keeping
with the M/M/m model, the arrival process (with arrival rate A) is Poisson and the
service times (with mean — 1/p sec) are independent and exponentially distributed.
The successive interarrival times and service times are assumed to be statistically
independent of each other.

282 V.V. Selvi, S. Sharfraz, and R. Parthasarathi

In a mobile ad hoc grid, the CN request for a service to the GHN and the GHN is
responsible for assigning a SPN to the requesting CN. Hence, the probability that an
arriving request in a GHN will find all servers busy and will be forced to wait in
queue is an important measure of performance. If a GHN does not have sufficient
number of SPNs to assign for the services requested, then there is a probability of
queuing (or waiting). A service request from a CN can be considered as a customer in
the M/M/m parlance.

The probability of queuing is given in equation (1).

P{Queuing}=po(m p)"/m!(1- p) (H

Where p is given by p= A /m p < 1 and pg= [Y.(m p)"/n'!+(m p)™/m!(1- p)]~
where n = 1-(m-1)

A request in a waiting state is serviced when a new SPN registers with the GHN or
a SPN has completed its service and it is willing to continue in the grid. Duration of
time a request has to wait in a queue is known as the waiting time of the customer.

Equation (2) gives, the average waiting time (W), that a service request has to wait
in queue.

W = Ng/A = pPo/ A(1- p) 2)
Delay per customer includes the time taken by a SPN to service the request as well

as the waiting time of a request in the queue of the GHN. Equation (3) gives the
average delay per customer (which includes service time and waiting time).

T = /p+W = 1/ + pPo/(A(1- p)) 3)

The number of customers in the system is the total number of requests received by
a GHN. Equation (4) gives the average number of customers in the system.

N=AT= (A /p) + \Po/(m p -) (4)

The values obtained for these parameters by varying the number of consumers are
tabulated in table 4.2. We choose the A value to be 50 and p to be 20.

Simulation studies have also been carried out to evaluate the mobile ad hoc grid.
The simulation tool used is Glomosim [11]. The parameters used for the simulation
are given in Table 4.1.

Table 4.1. Parameters for the simulation

Number of Nodes | 50

Simulation Time 1000 Seconds

Terrain (1000,1000) meters

Dimension

Mobility Mobility Trace, Mobility-Trace-
File

Radio-Tx-Power 8 dBm (with a reach of 250 meters)

MAC-Protocol 802.11

Routing-Protocols { TBSR-Q

Mobile Ad Hoc Grid Using Trace Based Mobility Model 283

Mobile ad hoc grid has been simulated using 4 GHNs and 12 SPNs. The
performance is analyzed by increasing the number of consumer nodes (from 4 to 20 in
steps of 4) that in turn will increase the number of service requests. Here the SPN and
GHN are considered to be static whereas CN and all the other nodes are mobile. To
analyze the performance of grid, the parameters of interest are average number of
customers in the system, probability of queuing, average time a customer has to wait
in queue and average delay per customer.

Fig 4.1a and b show the average time a customer has to wait in queue and
average delay per customer. It can be seen that there is minimal variation between
the theoretical and simulation results. This is due to the fact that during simulation,
a CN sends a service request to the GHN only when it finds a stable position based
on its trace file, which in turn reduces the number of customers in the system. This
factor in turn affects the probability of queuing. We can observe that up to case III
(i.e no of CNs = 12), there is a sufficient number of SPNs available with the GHN
to provide service. Hence the waiting time is low. In case IV and V, number of
SPNs to service the request is not enough which in turn, increases the waiting time
in queue.

Overhead in forming a grid

The overhead in forming a grid is the additional grid-forming messages that are
communicated among the nodes to form the grid and the average routing delay.
Figure 4.2a and b shows the control message overhead and the average routing delay.
Average routing delay considers the delay in routing the control packets at the
network layer. Since we consider the stability of a node to find out the stable routes in
the routing protocol, the routing delay is considerably less than the service time
considered. However, the average routing delay increases as the number of CNs
increases; this is due to the increase in the number of service requests.

12 1 —@—Simulation Result 35 —<&—Simulation Result
10 { —H— Theoretical Result 30 |~ —Theoretical Result

25 1

= N
-]

o

Avg.Tme a Customer has|
to Wait in Queue (Sec)

Avg. Delay Per Customer
(Sec)

4 8 12 16 20

4 8 12 16 20

No. of Consumer Nodes No. of Consumer Nodes

Fig. 4.1a. Average Time a Customer Fig. 4.1b. Average Delay per Customer has to

Wait in Queue

The performance of the mobile ad hoc grid shows the feasibility of forming a grid
in a mobile environment.

284

5

V.V. Selvi, S. Sharfraz, and R. Parthasarathi
1200 > 0.6
- &
g ° 1000 8 0.5
£ g 80 o _ 04
O § 600 §§ 03
S8 400 2 o2
g = 200 o O0d1
10 f e = 0O
4 8 12 16 20 4 8 12 16 20
No. of Consumer Nodes No. of Consumer Nodes
Fig. 4.2a. Control Message Overhead Fig. 4.2b. Average Routing Delay
Conclusion and Future Work

This paper has proposed an architecture to form a grid over a mobile ad hoc network
by using trace files that capture the regularity in the movement or rather the stability
of the nodes. It has also shown the feasibility of sharing the resources using such a
grid using both a theoretical model and simulation. The overhead present due to
mobile environment is also very less. This paper has opened a number of possibilities
for further studies in this area. Some of the future work that are to be explored are
building trust over the mobile ad hoc grid based on the resource sharing and
mechanisms for the nodes to cooperate to share their resources.

References

I.Foster, “What is the Grid? A Three Point Checklist”, GRID Today, July 20, 2002

. Open Grid Services Architecture http://www.globus.org/ogsa/

David P. Anderson, “BONIC: A system for Public-Resource Computing and storage”, 5
IEEE/ACM International Workshop on Grid Computing, Nov2004.

Thomas Phan, Lloyd Huang, Chris Dulan, “Challenge: Integrating Mobile Wireless
Devices into the Computational Grid”, IEEE/ACM International Conference on Mobile
Computing and Networking (MOBICOM) 2002.

Jing Su, Alvin Chin, Anna Popivanova, Ashvin Geol, Eyal De Lara, “User Mobility for
Opportunistic Ad-hoc Networking”, Proceedings of Sixth IEEE Workshop on Mobile
Computing Systems and Applications(WMCSA’04)-Volume 00, 41-50, Dec 2004.

V.Vetri Selvi and Ranjani Parthasarathi, “Trace Based Mobility Model to Support Quality
of Service in Ad Hoc Networks ”, Trusted Internet Workshop (TIWO05) held along with
12" International Conference on High Performance Computing (HiPC2005), 18-21 Dec.
2005.

. Imran Thsan, Muhammed Abdul Qadir, Nadeem Iftikhar, “ Mobile Ad- Hoc Service Grid-

MASGRID”, Third World Enformatika Conference, WEC'05, pp 124-127,April 2005.

Zhi Wang, Bo Yu, Qi Chen, Chuanshan Gao, “Wireless Grid Computing over Mobile Ad-
Hoc Networks with Mobile Agent”, First International Conference on Semantics,
Knowledge and Grid, Nov 2005.

J. Anda, J. LeBrun, D. Ghosal, C-N. Chuah, and H. M. Zhang, "VGrid: Vehicular Ad Hoc
Networking and Computing Grid for Intelligent Traffic Control,” IEEE Vehicular
Technology Conference, Spring 2005.

10.

11.
12.

Mobile Ad Hoc Grid Using Trace Based Mobility Model 285

Roy, N. Das, S.K.Basu, K.Kumar M, “Enhancing Availability of Grid Computational
Services to Ubiquitous Computing Applications”, 19" IEEE International Symposium on
Parallel and Distributed Processing, April 2005.

http://pcl.cs.ucla.edu/projects/glomosim, 2000.

Dimitri Bertsekas, Robert Gallager, “Data Networks”, 2" Edition, Prentice-Hall India j9y)
174-176, 1999.

Self Managing Middleware for Dynamic Grids

Sachin Wasnik, Terence Harmer, Paul Donachy, Andrew Carson, Peter Wright,
John Hawkins, Christina Cunningham, and Ron Perrott

Belfast e-Science Centre, The Queen's University of Belfast,
Belfast, BT7 INN, UK
{s.wasnik, t.harmer, p.donachy, a.carson, pwrightO04,
j.hawkins, christina.cunningham, r.perrott}@qub.ac.uk

Abstract. As grid infrastructures become more dynamic in order to cope with
the uncertainty of demand, they are becoming extremely difficult to manage. At
the Belfast e-Science Centre, we are attempting to address this issue by devel-
oping Self Managing Grid Middleware. This paper gives an overview of the
middleware and focuses on the design, implementation and evaluation of a Re-
source Manager. Also in this paper we will see how our approach, which is
based on federated UDDI registries, has enabled us to implement some of the
desired features of next generation grid software.

Keywords: Grid Computing, UDDI Registries, Grid Resource Manager, SLA.

1 Introduction

Most production Grids [1], irrespective of whether they are being deployed in com-
mercial or academic environments, must cope with variation in demand. A goal for
next generation Grid research and development is to produce a “...fully distributed,
dynamically reconfigurable, scalable and autonomous infrastructure to provide loca-
tion independent, pervasive, reliable, secure and efficient access to a coordinated set
of services encapsulating and virtualizing resources (computing power, store, instru-
ments, data etc) in order to generate knowledge”, according to the CoreGrid European
Network of Excellence [2]. There has been a significant improvement in focus of the
vision of Grid Computing [3] since the term was introduced. A vital improvement still
to be implemented satisfactorily is to make Grid Computing more dynamic so that it
is able to cope with uncertainty of demand. Some recent work including HAND [4]
and Dynamic Deployments [5] has focused on dynamically deploying and scaling
Grids in production as and when needed.

The term “autonomic computing” is representative of a vast and somewhat tangled
hierarchy of natural self governing systems, which consist of many interacting, self
governing components that are often compromised of a large number of interacting,
autonomous self governing components at the next level down. According to the
vision of Autonomic Computing [6], the self-managing systems feature automatic
mechanisms for operator free maintenance of stand alone and distributed resources,
including self-configuration, self optimization, self-healing, self-protection and

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 286 2007.
© Springer-Verlag Berlin Heidelberg 2007

Self Managing Middleware for Dynamic Grids 287

others. This vision overlaps in its’ goals with the pursuits of adaptability and depend-
ability as described above in the recent definition of Grid Computing.

In particular, the adaptability of Grids can be interpreted as self-management on a
different scale (and environment), thus making it worthwhile to exploit the discovered
approaches in both domains. On the other hand, dependability mechanisms share a lot
of scenario problems and approaches with self-management mechanisms (e.g. auto-
matic fault recovery and preventive management actions such as software rejuvena-
tion), thus calling for a convergence of research in these areas.

Trends in automating Service Level Agreement (SLA) management [7], from
SLA creation to the performance monitoring of SLA’s, can help the Resource Man-
ager to sense the exact needs of users. With the help of an SLA Manager, middle-
ware can act as a biological system which can sense and respond to the needs of the
user. This should enable the effective utilization of resources by dynamically deploy-
ing, un-deploying and reconfiguring resources as and when needed. In such an infra-
structure, Resource Managers are not only responsible for managing the resources,
but also for selecting the resources on which the applications are to be deployed on.
Thus the Resource Manager can act as the backbone of the self managing grid
middleware.

Although a centralized Resource Manager can be very useful for a small number
of resources, it may not be able to scale as the number of resources increases. A
centralized Resource Manager acts as single point of failure and is vulnerable to
security attacks. A decentralized Resource Manager can provide fault tolerance for
the middleware by devolving responsibilities to a number of Resource Managers
interacting with each other. A decentralized Resource Manager provides us with the
necessary backbone of the next generation grid middleware but it is also difficult to
maintain. This is where the self managing approach can assist in enabling the devel-
opment of middleware which is self configuring, self healing, self optimizing and
self protect.

The rest of the paper is organized as follows. Section 2 describes the architecture of
the Self Managing Middleware. Section 3 describes the design and implementation of
the federated Registries. Section 4 describes a use case for the middleware followed
by the conclusion in section 5.

2 Self Managed Grid Middleware

According to our view of an infrastructure, infrastructure components are organised
or grouped into domains. The name “domain” attempts to indicate that it is an area
of responsibility and also serves to separate this infrastructural component view
from other users and organizations ideas such as virtual organizations—a virtual
organization might, for example, be built upon a collection of domains as shown in
Figure 1.

A domain is a group of computing resources that it is natural to manage collec-
tively; for example, it could be all of the resources in a small organization or
it could be the resources in a particular computing rack that share a network

288 S. Wasnik et al.

Domain A

Domain B

Domain C

Fig. 1. Different organizations A, B and C forming a virtual organization

connection via a shared network connection or switch. The identification and selec-
tion of domains is performed as part of infrastructure design with the intention of
identifying natural organizational units. A domain is our mechanism for providing a
simple and distributed collection of managed infrastructure components.

The (self) management of grid resources is performed at the domain level. A do-
main provides a mechanism by which a group of related resources (i.e. services or
applications) can be deployed and managed.

A domain may have sub domains. This hierarchical view enables requests to be di-
rected to high-level management components and split between the organization units
that are available within a domain—these high level components may enforce local
management rules or act as brokers by selecting the best available local domains for
deployment.

As shown in figure 2, each domain is managed using the core components of a
Software Manager, a Security Manager, a Software Repository and a Resource Man-
ager. A Resource Manger at the domain level is based on a single Registry but at the
Grid level, Resource Manager is based on Registry Federation. Resource Manager at
the grid level appears as a single logical Resource Manager of all the domains, to
which a software manager can issue a single request against multiple Resource Man-
ager and get a single response that contains results based on all the data contained in
all the registries.

Self Managing Middleware for Dynamic Grids 289

Software Y Managed
Repository I Nodes
Security 111 Managed
" FEnE] Manager Nodes
Software T
Manager
Resource T/ Managed
Manager L Nodes

Fig. 2. Managed nodes being directed by the Managers

2.1 Software Manager

The Software Manager component takes a deployment request and performs the
specified deployment. A deployment request consists of the deployment action
and a configuration definition that enables management of the deployment action.
A deployment action can be the installation of software, the execution of a par-
ticular application, the deployment of a web/grid service, the un-deployment of an
application or web/grid service, the storage of a data source such as a database,
the un-deployment of a data source, the recovery of the data held in a data source,
or the deployment of a security definition, for example the modification of fire-
wall rules.

The Software Manager may require several deployment actions to fulfil a particular
user deployment action; for example, the deployment of a web service may require
the deployment of a specific Java environment, a web service container application,
applications or web services to support the user web service.

A portal provides a user interface where a user can upload a package by supply-
ing its configuration file—a web service provides the same functionality for an
application.

A deployment request may be in one of the following formats:

— A war file

— AnRPM

— A resource bundle for Globus container

— A resource bundle for OMII container

— A security configuration schema instance

— A data source bundle

— A meta tar file containing a combination of the above resources

The configuration definition specifies the required environment for the deployment.
The action of the Software Manager is to select a suitable host, deploy software to
that host that is required, deploy a security and the resources deployed.

290 S. Wasnik et al.

An example configuration file for deploying a simple web service might look like
this:

<config> e
<bundle> <dependencies>
<summary> <hardware>
<bundleType>rpm</bundleType> <cpu>
<systemPackagelnfo> <speed>1500</speed>
<vendor>none</vendor> </cpu>
<name>gridftp_transfer</name> <memory>512</memory>
<version>2.1</version> <storage>
<description>GridFTP</description> <freeSpace>15</freeSpace>
</systemPackagelnfo> <raid>5</raid>
<validFrom>12/02/07</validFrom> </storage>
<validTo>12/03/08</validTo> </hardware>
</summary> <software/>
<firewall/> </dependencies>
<callback><url/></callback> </bundle>

</config>

2.2 Security Manager

The Security Manager is responsible for configuring and maintaining security on
infrastructure components—currently this involves the deployment of digital certifi-
cates to enable user and host authentication, updating certificate revocation lists and
defining firewall rules.

The Security Manager keeps track of the status of the firewall on each of the man-
aged nodes with the help of an agent installed on them. When a service or application
being deployed has a particular security requirement, the Software Manager sends a
request to the infrastructure component of the Security Manager which performs the
necessary security modifications. A security modification that conflicts with the basic
security rules defined for an infrastructure component will cause a deployment re-
quest to be rejected; a modification that conflicts with rules deployed to support other
applications will result in a different infrastructure component being selected as the
deployment target. When a service or application is un-deployed, the security modi-
fications are also un-deployed.

2.3 Software Repository

A Software Repository is maintained to hold different versions of applications and
services that can be specified as software dependencies in the configuration file as
shown above. When a user submits a configuration file for deployment to the soft-
ware manager, the Software Repository provides the software to carry out the de-
ployment action. For example, a deployment of war file needs java and a web service
container. In this case war file will be provided by the user and the software reposi-
tory will provide dependent packages of java and web service container.

Self Managing Middleware for Dynamic Grids 291

3 Resource Manager

The convergence of grid computing and service oriented computing has enabled the
service registries to take on the role of a Resource Manager [8]. Job scheduling in grid
environments has taken a new form relating to the interaction between the service
provider and the service consumer, which is shown here in Figure 3.

) Submit Register
Find _ Register Job getlob

Provider
_ Return
Bind . . Result .

Fig. 3. Interaction diagram showing the interactions between the Service Provider and the
Service Consumer

Consumer

As the user demand on Grids becomes more agile and dynamic, service discovery
using static information is not enough and a need emerges for storing Quality of Ser-
vice (QoS) information inside service registries as well as a complete abstract map-
ping of compute resources. The compute resources should be mapped in such a way
so as to allow a consistent view and management of the resources and this mapping
may vary across different infrastructures.

3.1 Resource Mapping

The GLUE Schema [9] is an abstract modelling for Grid resources and mapping to
concrete schemas that is being used by most of the production Grids. Glue Schema is
widely used in most of the production grids. It has been integrated in number of Grid
middleware such as EGEE [10], LCG [11], OSG [12], Globus [13] and NorduGrid
[14]. We have represented the GLUE Schema as shown in Figure 4, inside the service
registry. A number of specifications for service registries such as UDDI [15], ebXml
[16] are available and their implementations are being used for web/grid service dis-
covery. For our middleware we chose the Universal Description, Discovery and Inte-
gration (UDDI) registry.

A web/grid service is represented inside the UDDI registry as a Business Service.
A service runs within a compute resource. These compute resources are mapped as
Business Entity inside the UDDI registry in a similar way as if they own the service.

292 S. Wasnik et al.

Core)

Site

+UniguelD:string
+hame:string
+Descrigtion: sting
+UserSupportContact: sting
+SystdminCortact sting
+SecurityC ontact: string
+Location:sting
+Latituce real3z
+Longitude real32

e Lt
+sponsorstingl*]
+Other nfo: stng[*]

Service ConputingElement StorageElement

+Umiquel D string
+Ham e string
+TypeisericeT me_t
+version:string
+Endpoint:uri
+StatusiserviceStatus_t
+Statusinfo:string

S DL

+Sem artics uri

+StarTimedateTime _xs_t
+Cner string[*]

ServiceData

+Hey:string
+value:sting

Created with Poseidon for LML Community Edition. Mot for Cammercial Lse

Fig. 4. GLUE Schema

As described in section 2, a site which consists of compute and storage resource is
considered as domain which is represented as a business entity. This site business
entity can have one or more compute resources and storage resources. The relation-
ship between the machine business entity and the service container business entity is
represented as a parent-child relation by using publisher assertions.

3.2 Architecture

An analysis of the individual and collective state of the compute resources can deter-
mine the performance of a Grid and enable (self) management activities to respond in
an efficient and directed manner; for example, if the Grid is performing poorly then
the Resource Manager should identify the compute resources which are contributing
to the poor performance and enable the activation of a reactive procedure. The
Resource Manager is named as Open Grid Manager (OGM). To achieve the above
objective, the OGM for each domain is composed number of components, namely

1) GridManagerAgents (GMA)

2) GridManagerServer (GMS)

3) Web based User Interface (GMUI)
4) UDDI Registry

Self Managing Middleware for Dynamic Grids 293

OGM Registry Management Information
Dynamic-

Provider-

Co
CPU & Speed
MAC & IP address
CPU Platform Type
08 & Version
Total RAM Memary
Total Disk Memory

System Uptime
Free RAM Memory
Free Disk Memory

File provider
Script provider
Java provider

(Service Registry Integration)

Collector

3

I
s

(OGM Messaging Schema — Management Interface j
rid Resource rid Resource

Grid Resource

OGMAgent

Fig. 5. Architecture of Open Grid Manager (OGM)

The GridManagerServer consists of two services — a Collector Service and a Query
Service. The GridManagerAgents are responsible for deducing a machine’s state and
reporting this to a Collector Service. The Collector Service collects state data from
nodes in a distributed environment and forwards this to the UDDI registry.

Each Managed Node registers itself by sending core information to the Collector
Service with the help of installed GridManagerAgent. The process of registration is
carried out by following steps as shown in the Interaction diagram Figure 6.

1) GridManagerAgent sends the core information to the Collector Service.

2) Collector Service of the GridManagerServer, upon receiving the core information
address, makes a create Business Entity call to the UDDI registry.

3) UDDI registry creates a Business Entity and sends back the business key to the
Collector Service.

4) Collector Service sends the Business Key back to the GridManagerAgent.

The GridManagerAgent uses the same Business key to continuously update the Busi-
ness Entity with dynamic information and Provider information. The process of up-
date follows the same steps. The frequency of update is configured via the GridMan-
agerAgent’s configuration file.

Apart from the resource information, a collector service also stores information
about deployments and un-deployments sent by the Software Manager which is con-
sidered as static data, as it doesn’t change frequently. Whenever a deployment request
is made to the Software Manager, the manager sends the information about the de-
ployment request to the Collector Service. Upon receiving the deployment request
and the IP address of the machine on which it is to be deployed, the Collector Service
creates a business entity with the resource name, which is a child of the Business
Entity representing the machine on which it is deployed.

294 S. Wasnik et al.

i Core i
| 1 2 l
i Donam v | GMA [~ GMS [| Registry i
! ynamic > < < '
| 3 4 T l |
i Providers GMUI i

Fig. 6. Interaction between the different components of OGM

For example, while deploying packages such as Grid-FTP, the Software Manager
sends information such as the port on which the deployed packages will be running, a
username and their associated credentials. When the Collector Service receives this
information, it is stored inside the UDDI registry as a Business Entity. These Business
Entities have descriptions of transport packages and are children of the Machine En-
tity on which they are installed.

The Query Service is responsible for answering the queries sent by the software
manager. The Software Manager can send queries:

1) To check which machines satisfy certain hardware requirements.

2) To ascertain what packages are already deployed on a given machine. This can
help the software manager to discover which machines satisfy the software de-
pendency requirements of a given package to be installed.

To make the domain fault tolerant, the domain operator can keep a backup of their
domain registries using database mirroring. In case of a failure of the Resource Man-
ager in a particular domain, a Collector Service and a Query Service is installed and
configured to use the stored backup data. Thus the domain manager can roll back to
its state just before the failure.

3.3 Federation of Registry

In large distributed grid environments, a single registry can degrade the performance
of the whole system as number of clients becomes too large. Also, it becomes a single
point of failure, as the whole system depends on the single registry. To make the sys-
tem more scalable, multiple registries should be utilized.

The latest UDDI version 3 [17] specifications promotes a replication model of data
for multiple registries to enable a single view of multiple registries; such a replication
model is not suited to the grid environment.

It is preferable that each domain in the federation would have complete autonomy
of the data related to the domain. Each domain operator should be able to configure
what data to share and with whom it is to be shared. Thus replication between regis-
tries owned by multiple independent operators is more complex but more relevant in a

Self Managing Middleware for Dynamic Grids 295

Grid environment which is targeted at cooperating yet independent stake holders.
Such a setup requires communication between individual registries to synchronise
registration data.

Replication adds communication traffic between the registries for keeping registra-
tion data in sync. There is a trade-off between the amount of traffic and the timeliness
of the replicated data. If changes to the registration data are propagated to all regis-
tries immediately, all registries will have a more or less consistent and current view of
the service setup, resulting in a large amount of traffic between the registries. If the
registration updates are propagated less frequently and in batches the traffic size de-
creases (as communication set-up costs are averaged over all changes), but registries
will be out of sync for some time. Depending on the application domain, inconsisten-
cies may or may not be tolerable.

Although replication enables scalability, the load is not distributed automatically.
Registration is performed at the domain registry but queries can arrive at any of the
participating registries. Which registry is to be used is decided by the Query Peer.
Load distribution is taken care by the cluster of Query Peers, each of which maintains
a list of possible registries. After initial setup, the list could be maintained by auto-
matically updating it with the information from the registry to use.

Each replicated registry keeps a copy of the complete registration data of the whole
system. The advantage is that every registry can answer a query by just looking at its
database. However a disadvantage of this approach is the large amount of data which
may be kept at every site. In our approach, each registry keeps only a subset of the
registration data and can only answer query relating to that subset. The data distribu-
tion is based on locality.

As the registration data is distributed across registries, multiple registries are in-
volved in answering a query. Orchestrating the devolved registries is performed by
the Query Peer which knows all the registries that have answers to their query.

4 Use Case

As part of its core business, a Financial Company analyses Stock Market data from
each of the world’s main Stock Exchanges. This depends heavily on process and data
intensive computations for Risk Management purposes. Feeds are received from each
of the exchanges which are fed into a high performance financial database. A number
of databases are also maintained containing historical financial data. A number of
financial calculations are performed, such as Implied Volatility calculations, on each
portfolio managed by the company using the data held in each of the databases.

This system works well for the company on a day-to-day basis. However, to allow
them to react more quickly to changes in stock prices as a result of unforeseen major
world events, the company would like the option to bring in additional computation
power and resources as required. This would enable the Financial Company to react
more quickly than their competitors, performing all the additional calculations re-
quired to obtain results in near real time, thus gaining a market advantage for their
clients.

A system such as the one provided by the Self Managing Middleware described in
this paper would clearly benefit this company when they need to react quickly to

296 S. Wasnik et al.

unpredictable events. Once the increased activity within the stock exchanges has been
identified, the company could increase their computational power by quickly deploy-
ing additional services to a 3" party hardware provider and running some calculations
from there. This would require transport services to be deployed both at the com-
pany’s home location and the 3" party hardware provider’s location so that the high
performance financial databases could be deployed onto the additional machines.
Three databases are required to perform the calculations. One database is required for
capturing the data from the live feeds, one database for the intra-day data and another
database where historical data is stored. Services which undertake the calculations
could then be deployed and initiated, the various calculations performed and the re-
sults transported back to the Financial Company for dissemination or use by another
application. When the additional capacity was no longer required, the services and
databases deployed to the 3" party hardware provider would be un-deployed.

The Financial Company would be able to impose certain conditions on where their
data and services were deployed to. Certain financial regulations imposed upon the
Financial Company dictate that the data cannot leave the United Kingdom. The Fi-
nancial Company may also impose certain restrictions such as ‘Don’t deploy services
or data onto machines owned or managed by one of our competitors’. Information
such as this can be included in the configuration file sent with the bundle to be de-
ployed. The Self Managing Middleware enables the Company to have immediate
access to additional computational power when required without having to maintain
this hardware on a day to day basis.

Secure on-demand provisioning of Risk Management capabilities represents a real
and valuable next step for the financial services industry to increase competitiveness
and reduce costs. It is also relevant to service provision and consultancy companies
currently competing in the international market.

5 Conclusion

In this paper we have discussed the use of Self Managing Software and a Resource
Manager to enable the management and control of large-scale grid infrastructures. In
the Belfast e-Science centre we have deployed this software in the field for approxi-
mately a year and it is an integral part of the testing development of grid of our large-
scale commercial projects.

References

1. Foster, L., Gieraltowski, J., Gose, S., et al, : The Grid2003 Production Grid: Principles and
Practice. Proc. 13" IEEE Intl. Symposium on High Performance Distributed Computing
(2004) 236-245.

2. http://www.coregrid.net

3. Foster, I., Kesselman, C., Nick, J., Tuecke, S., : The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. Open Grid Service Infra-
structure WG, Global Grid Forum (2002).

4. Qi, Li., Foster, 1., Gawor, J.,: HAND: Highly Available Dynamic Deployment Infrastruc-
ture for Globus Toolkit 4. Submitted for publication (2006)

Self Managing Middleware for Dynamic Grids 297

Watson, P., Fowler, C., Kubicek, C., et al, : Dynamically Deploying Web Services on a
Grid using Dynasoar. Proc. 13™ IEEE Intl. Symposium on Object And Component-
Oriented Real-Time Distributed Computing. ISORC 2006, April (2006)

Kephert, J., Chess., D. : The Vision of Autonomic Computing. Computer. Vol. 36 Issue 1.
(2003)

Sahai, A., Durante, A., Machiraju, V. : Towards automated SLA management for web ser-
vices. Research Report HPL-2001-310(R.1) Hewlett-Packard laboratories Palo Alto.
(2002)

Joseph, J., Ernest, M., Fellenstein, C.: Evolution of Grid Computing architecture and Grid
adoption models. IBM Syst. J. 43, 624-625 (2004)

. Andreozzi, S., Burke S., et al: GLUE Schema Specification version 1.2 (2005)
10.
11.
12.
13.
14.
15.
16.
17.

Enabling Grids for E-sciencE Project http://www.eu-egee.org/

LHC Computing Grid Project http://lcg.web.cern.ch/LCG/

Open Science Grid http://www.opensciencegrid.org/

http://www.globus.org/

http://www.nordugrid.org/

Bellwood, T., UDDI Version 2.04 API Specification

http://www.ebxml.org

Bellwood, T., UDDI Version 3.0 Spec Technical Committee Specification July (2002)

Adaptive Workflow Scheduling Strategy
in Service-Based Grids*

JongHyuk Lee', SungHo Chin', HwaMin Lee”, TaeMyoung Yoon',
KwangSik Chung’, and HeonChang Yu'**

" Dept. of Computer Science Education, Korea University
{spurt, wingtop, tmyoon, yuhc}@comedu.korea.ac.kr
% The Korean Intellectual Property Office
hwamin@kipo.go.kr
3 Dept. of Computer Science, Korea National Open University
kchung0825@knou.ac.kr

Abstract. During the past several years, the grid application executed same jobs
on one or more hosts in parallel, but the recent grid application is requested to
execute different jobs linearly. That is, the grid application takes the form of
workflow application. In general, efficient scheduling of workflow applications
is based on heuristic scheduling method. The heuristic considering relation
between hosts would improve execution time in workflow applications. But
because of the heterogeneity and dynamic nature of grid resources, it is hard to
predict the performance of grid application. In addition, it is necessary to deal
with user’s QoS as like performance guarantee. In this paper, we propose a
service model for predicting performance and an adaptive workflow scheduling
strategy, which uses maximum flow algorithms for the relation of services and
user’s QoS. Experimental results show that the performance of our proposed
scheduling strategy is better than common-used greedy strategies.

Keywords: adaptive grid scheduling, workflow, maximum flow.

1 Introduction

In the mid 1990s, Grid computing has emerged as an important new field,
distinguished from conventional distributed computing by its focus on large-scale
resource sharing, innovative applications, and high-performance orientation [1]. Grid
computing system [2] consists of large sets of diverse, geographically distributed
resources that are grouped into virtual computers for executing specific applications.
In common Grid computing, resource components could be processes, processors
within a computer, network interfaces, network connections, entire sites, database, file
system and specific computers. Today, Grid computing offers the strongest low cost
and high throughput solutions [1, 2] and is spotlighted as the key technology of the
next generation Internet. Grid computing is used in fields as diverse as astronomy,
biology, drug discovery, engineering, weather forecasting, and high-energy physics.

* This work was supported by the Korea Research Foundation Grant funded by the Korean
~ Government(MOEHRD) (KRF-2006-D00173).
™ Corresponding author.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 298 2007.
© Springer-Verlag Berlin Heidelberg 2007

Adaptive Workflow Scheduling Strategy in Service-Based Grids 299

Recently, the Grid and Web Service are converging as WSRF (Web Service-Resource
Framework)[3] that defines a system for creating stateful resources between Web
services in terms of an implied resource pattern. The current methodology in Grid
computing is service oriented architecture.

In service-based Grids, Grid resources are virtualized as services(e.g., database,
data transfer). So the Grid not only provides computational resource and data
resource, but also supports logic application that cooperates with services integration
with the composition of the Grid service. Instead of application executing a single job,
Grid application consists of a collection of several dependency services. Therefore,
many grid applications belong to the category of workflow application. Most of
science and business grid applications take the form of linear workflow structure.
That is, the science grid application is a parameter sweep application processed using
same code for different data, and the business grid application is a transaction
application that queries at databases, processes data, and stores in database. Because
of processing data in parallel with extensive parameter bounds, workflow application
is of benefit to performance. In service-based Grids, it is necessary to consider a
relation of services for execution performance because a linear workflow application
executed parallel jobs via several services on one or more hosts.

It is easy for workflow structure not only to compose services but also to visualize,
verify, schedule, execute, and monitor services. Many kinds of workflow
management systems are developed for grid workflow applications. There are two
steps for producing workflow. The first step is a service composition to use workflow
language and the second step is a scheduling to map sub-task to service. In general, an
efficient scheduling of workflow applications is based on heuristic scheduling
method. The heuristic considering relation between hosts would improve execution
time in workflow applications. But due to the heterogeneity and dynamic nature of
grid resources, it is hard to predict the performance of grid application. In addition, it
is necessary to deal with user’s QoS like performance guarantee.

In this paper, we propose service model for predicting performance and adaptive
workflow scheduling strategy, which uses maximum flow algorithms for considering
the relation of services and user’s QoS.

The rest of the paper is as follows. In section 2, we state a scheduling problem and
propose a service model for predicting performance. Section 3 describes the novel
strategy to execute the workflows adaptively. In section 4, we present an experimental
evaluation of our scheduling by comparing it with existing scheduling strategies.
Section 5 presents related works. In section 6, we conclude the paper and discuss
some future works.

2 Problem Statement

Workflow scheduling system is to translate application task graph into service graph
in computing environment.

2.1 Task Graph

A task graph is an abstract workflow that represents an application as a general model
of directed acyclic graph. It is represented as follows;

300 J. Lee et al.

G' = (VT’ ET)
V" : the set of tasks
E" : the set of edges between tasks that represent a partial order among them

The fact that an edge e;; is a partial order between task v; and v; means that a task v;
is executed after completing a task v;. In case a task v; and v; are a same parent, two
task can be executed parallelly. Representing G' as matrix M of size v xv, d;; is a
computation cost of v;, and d;; is a communication cost between v; and v;. In this
paper, we assume that a task graph implies a start task and a end task.

2.2 Service Graph

A service graph is an directed weighted graph of services in grid computing
environments. It is represented as follows.

GS = (VS, E)

VS {s1, 85 ..., 5,} the set of services that can be executed at available node

E® : the set of edges between services

A service graph is a complete connected graph. V° denotes a computation
performance and E° denotes a communication performance between services. A k-th
service node that executes service s; is ;. The computation cost of task v; at service
sik 18 wijr. If service s;, can’t execute task v;, then w;;;, = ©°. The communication cost
between service node s, for task v; and s, for v; is ¢; , jj n k-

2.3 Performance Criteria

Application completion time is consist of computation time and communication time.
We assume that grid application executes task #; and #, sequentially. A task graph is
composed with two nodes and one edge between them. That is, G" = ({t}, &}, E"). For
mapping this task graph to service graph, we have to search service s; and s, that can
process task #; and f,. That is G = s, s}, ES). If service s; completes before
communicating with s,, completion time of this application is defined as follows.

completion time = communication time(A, s;) + computation time(s;) +
communication time(s;, ;) + computation time(s,) + communication time(s,, (D)
A) + computation time(A)

Grid application A invokes service s; and the result of service s; is sent to service
s,. Service s, processes a task and the result of service s, is sent to grid application A.
In practice, completion time is determined according to a node that a service is
executed in. Therefore, completion time of a node about some service should be
predicted and be applied for mapping task graph to service graph.

For predicting completion time of grid service, it is necessary to select optimized
service according to performance model described the characteristics of service and to
compose workflow. In addition, we need to consider not only scheduling using
information of physical resource, but also supporting user’s QoS. Hence, in this
paper, the performance model is considered as follows.

Adaptive Workflow Scheduling Strategy in Service-Based Grids 301

= service static model : considering a static information of resources like CPU,
memory, disk space, and network bandwidth.

= service dynamic model : Owing to influencing service performance by
resource capability directly, considering a dynamic information of resources
like available CPU, available memory, available disk space, available network
bandwidth, and network latency. We also consider the predicted resource
status using service patterns like service reservation, frequency of service use,
and service throughput.

Since Grid is free of participation and withdrawal of a node, it is necessary that
grid service scheduler predicts the performance of a service and applies it
dynamically. In this paper, we use a statistical method to predict the performance of a
service. Regression is a statistical method that supports relationships between
variables and is an appropriate method for predicting an effect about a cause. In
regression, the dependent variable(y) that is an effect and the independent

variable(x) that is a cause denote as X — y . That is, the relation between x and y is
represented as follows;

y=p8+pBx+¢€ 2)

where ﬁo is a constant; ﬁl is a coefficient of regression; £ is an error rate.

After regression analysis, we can determine a relationship between a dependent
variable and an independent variable. If we applied this regression technique with
performance as a dependent variable and each resource status as an independent
variable, we can predict the performance of a service that participates newly in Grids
using existing regression coefficient. In our work, we use a multiple linear regression
that allows the modeling of multiple independent variables, which are information of
resources defined by service model in Grids.

We consider static and dynamic physical elements x; such as CPU, memory, disk

space, network bandwidth, service reservation, frequency of service use in a service
model. The service throughput (y), the equation applied these elements to multiple

regression, is as follows.

n

Vo=By+ D Bx, +€ 3)

i=1

where ﬂo is a constant; ,B[is a coefficient of regression; n is a count of elements; &

is an error rate.

Table 1 is an example data for performance model using multiple linear regression
that is executed in same service. The Independent variables are CPU, CPU available,
memory available, disk available, and network bandwidth. The dependent variable is
throughput. Table 2 is a model summary that multiple linear regression is done. As
shown in Table 2, this model can be explained well because coefficient of
determination(R Square) is 0.971. That is, the strength of the linear association
between independent variables and dependent variable of this model is high. As
shown in Table 3, F-test is 93.634 and significant probability is 0.000. Therefore, the

302 J. Lee et al.

one of regression coefficients in the population is not O at least. Table 4 is regression
coefficients about each independent variable. We can predict a throughput of new
entrance node using these coefficients.

Table 1. Example data for performance model

CPU Memory Disk Network
cPU available _available | available | bandwidth | oroushput
1600 .80 234 3320 25 40
1800 40 346 4592 35 28
2000 .60 78 9295 29 33
2400 40 321 2934 90 34
1600 .50 398 2039 34 45
3000 .30 455 3945 10 36
Table 2. Model summary
Adjusted R Std. Error of
R R Square Square the Estimate
.985(a) 971 961 3.678
Table 3. ANOV A(Analysis Of Variance between groups)
Sum of .
Squares df Mean Square F Sig.
Regression | 6333.602 5 1266.720 93.634 .000
Residual 189.398 14 13.528
Total 6523.000 19
Table 4. Coefficients
Unstandardized Standardized
Coefficients Coefficients
t Sig.
B Std. Beta '€
Error
(Constant) -41.266 5.793 -7.124 .000
CPU .016 .002 510 8.863 .000
CPU_available 64.981 5.261 724 12.350 .000
memory_available .026 .004 .339 5.826 .000
disk_available .000 .000 .037 704 493
network_bandwidth 015 .037 022 A17 .683

Adaptive Workflow Scheduling Strategy in Service-Based Grids 303

3 Adaptive Scheduling Using Dynamic Maximum Flow Algorithm

It is important to select a computation node and a data node for minimizing overall
job completion time. It is necessary to minimize completion time for processing data
and communication time between computation node and data node. Moreover, it is
essential to optimize use of resource through scheduling algorithm. Our objective is to
minimize overall job completion time and to optimize use of resource. For our
objective, we present an adaptive scheduling using dynamic maximum flow algorithm
that finds a flow of maximum value in flow network G with source s and sink 7.

The adaptive workflow scheduling algorithm presented in Algorithm 1 works as
follows. The input of WorkflowScheduling in Algorithms 1 is task graph G' and
service level agreement SLA which involve user’s QoS. G' is mapped to service
graph G® by SLA and resource performance criteria. Then Algorithm 2 is invoked
with G%. MaximumFlow in Algorithm 2 is based on Ford-Fulkerson method[9] which
finds some augmenting path p and increases the flow f on each edge of p by the
residual capacity cfp). Algorithm 3 based on breadth-first search is to find
augmenting path in residual network of G°. FindAugmentingPath in Algorithm 3
assumes that the input graph G is represented by adjacency lists in descending order
by sufferage heuristic value. Migration in Algorithm 1 is a function that migrates the
tasks through comparison of flow before rescheduling with flow after rescheduling if
a performance guarantee is violated. After all tasks executed, scheduler updates
service’s makespan(e.g. throughput) for performance criteria.

WorkflowScheduling (GT, SLA)

GS <« Find available services satisfied SLA about GT
MaximumFlow (GS)
while all tasks not executed
do Fetch task
if a performance guarantee is violated
then do update VS[GS]
MaximumFlow (G*) // rescheduling
Migration(G®, GS;rey)
update service'’s makespan

Algorithm 1. Workflow Scheduling

MaximumFlow (GS) // find maximum flow about workflow GS
for each edge (s;, sj) j ES[GS]
do f[s;, sj] 0
f[Sj, Si] 0
while (there exists a path p from start service to end
service in the residual network GS)

// min{ce(s;, s5) : (si, s5) is in p}
do c¢(p) FindAugmentingPath (GS, source, sink)
for each edge (s;, sj) in p
do fls;, sjl fls;, s3] + ce(p)
f[Sj, Si] —f[Si, Sj]

Algorithm 2. Maximum Flow

304 J. Lee et al.

FindAugmentingPath (GS, source, sink)
for each vertex u j VI[GS] - {source}
do color([ul] WHITE
color[sourcel] GRAY
Enqueue (Q, source)
c¢[source] -1
while Q # 0
u = Dequeue (Q)
// Adj[u] is sorted by sufferage value
for each v j Adj[ul]

do if (color([v] == WHITE &&
capacity([ul] [v] - flow([u][v] > 0)
then color|[v] GRAY
Enqueue (Q, V)
ceglvl = u
color[u] BLACK

return Cg;

Algorithm 3. Find Augmenting Path

For example, assume that Grid application A is composed of task Tg, T¢, and Tp.
The number of service nodes for tasks Tp, T¢, and Tp is 2, 3, and 1 respectively. The
linear workflow and the workflow mapped service are represented in Fig. 1. The edge
capacity of workflow is calculated by performance criteria.

A
SB,1 Sc,1
—_—
Ts Te To service
mapping As Sc,z S|],t
A — T —> T — T
SB;Z SC,3
Fig. 1. Linear workflow and workflow mapped service
S el
4134
5 SD,(

133

Fig. 2. Result through performance modeling and maximum flow

45070 e

30130 153

Adaptive Workflow Scheduling Strategy in Service-Based Grids 305

Fig. 2(a) is a result through performance modeling and MaximumFlow in
Algorithm 2. The edge of workflow denotes ‘flow/capacity’. The capacity of 70
between A, and Sg; means that Sg; can process requested job of A at the throughput
rate of 70. If a performance guarantee is violated, the workflow scheduler reschedules
after updating current capacity of workflow. Fig. 2(b) is the result of rescheduling. As
shown in Table 5, the maximum flow increases. If the maximum flow decreases, it
means that a new service node should be added.

Table 5. Service order and comparison of flow before rescheduling and flow after rescheduling

Service order Flow before rescheduling Flow after rescheduling

AsBCaD, 10 10
AsB,C\D, 20 20
AsB,C3D, 15 15
AsB,CD, 14 14
AsB,C,D, 10 10
AsB,C3D, 6 15

4 Experiment

Although experiments and performance evaluations need to be performed in a
practical large-scale grid platform, it is difficult to build a large-scale grid platform
and to experiment repeatedly. Therefore, we simulate our scheduling algorithm using
SimGrid toolkit and experiment performance of real grid application implemented a
service based virtual screening system in practical small-scale grid environments.

Simulation scenario is classified into two categories: adding service and adding
task. In this paper, we compare our scheduling with greedy heuristic scheduling that
allocates more tasks to node with better performance. Performance prediction
scheduling is greedy heuristic scheduling with performance model described in this
paper. Experiment workflow is a generic science workflow that searches, downloads,
processes data, and stores result in Fig. 1.

4.1 Performance Evaluation According to the Number of Nodes for Services

In Grid workflow, the number of nodes for service A requesting workflow is 1, the
number of nodes for service D collecting results is 1, the number of nodes for service
B is 3, and the number of nodes for service C is 5, 10, 15 in each experiments. The
number of tasks is 5,000. Fig. 3 shows the result of evaluation. As shown in Fig. 3,
our scheduling is better than other algorithms by 15% ~ 20%. The difference of
execution time between case that the number of nodes for service C is 10 and case
that the number of nodes for service C is 15 is small. It is because the collection of
service C could process mostly data from the collection of service B in the former.
Therefore, although the number of nodes for service increases in some collection of
service, the efficiency of performance doesn’t increase. Through our scheduling, we
predict a sudden change of efficiency in that the number of nodes for service C is 10.

306 J. Lee et al.

g 300
(@]
— 250 \
Z 200 b = ==
g [N
150
= —e— greedy heruistic
G 100 —a— performance prediction
‘g 50 —— adaptive
(0]
@m0
5 10 15
Number of nodes for service C

Fig. 3. Result of performance evaluation according to the number of nodes for service C

4.2 Performance Evaluation According to the Number of Tasks

In Grid workflow, the number of nodes for service A requesting workflow is 1, the
number of nodes for service D collecting results is 1, the number of nodes for service
B is 3, and the number of nodes for service C is 10. The number of tasks is from
1,000 to 11,000 at intervals of 2,000. Fig. 4 shows the result of evaluation. As shown
in Fig. 4, our scheduling is better than other algorithms by 10% ~ 15%.

500

—e— greedy heruistic

(=)

8 400 [—=— performance prediction A
- —— adaptive //
x 300

]

: =

— 200

c

© 100

3>

8]

& o0

i

1 3 5 7 9 11
Number of tasks(x 1,000)

Fig. 4. Result of performance evaluation according to the count of tasks

4.3 Performance Evaluation in Real Grid Application

We implemented a service-based virtual screening system which is one of large-scale
scientific applications that require large computing power and data storage capability.
A virtual screening is the process of reducing an unmanageable number of
compounds to a limited number of compounds for the target of interest by means of
computational techniques such as docking [10, 11]. Thus this application suits with
Grid computing technology which supports a large data intensive operation.

Adaptive Workflow Scheduling Strategy in Service-Based Grids 307

We experimented our virtual screening system in a testbed that consists of 15
computation nodes and 5 data nodes. We performed docking jobs with 30,000 ligand
molecules on a target receptor. Fig. 5 shows the comparison of execution times as the
number of docking jobs increases. We compared three different approaches to execute
docking jobs. The first approach is to execute docking jobs on only single node which
has the best computing performance. The second approach is to execute docking jobs
on selected 5 computation nodes. We selected 5 computation nodes according to high
computing performance. The third approach is to execute docking jobs using our Grid
service-based virtual screening system applied our scheduling. Fig. 5 shows that the
performance of our virtual screening system is better than other approaches. When
30,000 docking jobs were executed, the execution time of first approach was 587,541
seconds, the execution time of second approach was 221,516 seconds, and third
approach was 162,964 seconds.

00000

£00000 -
500000 »

400000 > —e¢— cingle Mode
i - =& -5 Modes

300000 = —a— Qur System
200000

Execution Time(Sec)
»

100000

il

LR

B b 8
5 %
e gh

))
RSN IR
RN N N AR V)

Murnber of Jobs

)

Fig. 5. Comparison of execution time for three cases

5 Related Works

Grid Scheduling is a superscheduling[4] or metascheduling that is the process of
scheduling resource where that decision involves using multiple administrative
domains. Scheduling is classified into a static scheduling and a dynamic scheduling
according to a point of scheduling time. The static scheduling resolves the order of all
jobs before executing jobs. The dynamic scheduling can modify the order of jobs in
runtime.

In [5], Muthucumaru et al gives an overview of two types of mapping heuristics:
on-line and batch mode heuristic. These heuristics are dynamic mapping heuristics for
a class of independent tasks in heterogeneous distributed computing. In online mode,
mapper allocates tasks to resources as soon as it arrives at the mapper. In batch mode,
mapper collects tasks until calling mapping events and allocates tasks to resources
after calling mapping events. In particular, sufferage heuristic is newly proposed,

308 J. Lee et al.

which is different with min-min, max-min heuristic[6]. Sufferage value is defined as
difference between minimum earliest completion time and second earliest completion
time. In [7], Casanova et al extends sufferage heuristic as Xsufferage. In XSufferage,
the sufferage vaule is computed not with minimum earliest completion time, but with
cluster-level minimum earliest completion time, which is important in Grid
environment. In [8], Eduardo et al proposed the GridWay framework which executes
and schedules efficiently parameter sweep application in Grid environment. This
framework applied adaptive scheduling to reflect the dynamic Grid characteristic,
adaptive execution to migrate running jobs to better resource, and reuse of common
file to reduce file transfer overhead. [S] and [7] are a static scheduling and [8] is a
dynamic scheduling. But [5], [7], and [8] can’t support the form of workflow. In this
paper, we support the dynamic scheduling of dependent task using sufferage value.

6 Conclusion

In this paper, we proposed adaptive scheduling strategy for parallel execution of a
linear workflow considering dynamic resource in service-based Grids. We presented a
performance model using regression technique and an adaptive scheduling strategy
using maximum flow algorithm. Our experiments showed that our scheduling is better
than other algorithms.

In the future, we plan to investigate our scheduling strategy at commercial point of
view as shown in performance evaluation according to the number of nodes for
services. We also plan to work on applying not only linear workflow but also complex
workflow.

References

1. L Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid : Enabling Scalable
Virtual Organizations, International Supercomputer Applications, Vol. 15, No. 3 (2001)

2. lan Foster, and Carl Kesselman, The Grid : Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers (1998)

3. K. Czajkowski, D. Ferguson, 1. Foster, J. Frey, S. Graham, T. Maguire, D. Snelling, S.
Tuecke, From Open Grid Services Infrastructure to WS-Resource Framework: Refactoring
& Evolution,

4. http://www.ibm.com/developerworks/library/ws-resource/ogsi_to_wsrf_1.0.pdf, (2004)

5. J.M. Schopf, Ten Actions when SuperScheduling, Global Grid Forum Document GFD.04,
July (2001)

6. Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra Hensgen, and
Richard F. Freund, Dynamic Matching and Scheduling of a Class of Independent Tasks
onto Heterogeneous Computing Systems, Proceedings of the 8th Workshop on
Heterogeneous Computing Systems (HCW '99), San Juan, Puerto Rico, Apr. (1999)

7. O. Ibarra and C. Kim, Heuristic Algorithms for Scheduling Independent Tasks on
Nonidentical Processors. Journal of the ACM, 24(2):280-289, (1977)

8. Casanova, H., Legrand, A., Zagorodnov, D., and Berman, F., Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments, Proceedings of the O9th
Heterogeneous Computing Workshop (HCW’00), pp. 349-363, (2000)

10.

11.

12.

Adaptive Workflow Scheduling Strategy in Service-Based Grids 309

Eduardo Heudo, Ruben S. Montero, Ignacio M. Lorente, Experiences on Adaptive Grid
Scheduling of Parameter Sweep Applications, Proceedings of the 12th Euromicro
Conference on Parallel Distributed and Network-Based Processing(EUROMICRO-
PDP'04), (2004)

Lestor R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton University Press,
(1962)

Jordi Mestres and Ronald Knegtel, Similarity versus docking in 3D virtual screening,
Journal of Perspectives in Drug Discovery and Design, Vol. 20, (2000)

Shoichet, Bodian, and Kuntz, Molecular docking using shape descriptors, Journal of
Computational Chemistry, Vol. 13, No. 3, pp. 380-397, (1992)

Scalable Thread Visualization for Debugging
Data Races in OpenMP Programs

Young-Joo Kim, Jae-Seon Lim, and Yong-Kee Jun*

Gyeongsang National University
Jinju, 660-701 South Korea
{yjkim, dember99, jun}@gnu.ac.kr

Abstract. It is important to debug unintended data races in OpenMP
programs efficiently, because such programs are often complex and long-
running. Previous tools for detecting the races does not provide any
effective facility for understanding the complexity of threads involved in
the reported races. This paper presents a thread visualization tool to
present a partial order of threads executed in the traced programs with
a scalable graph of abstract threads upon a three-dimensional cone. The
scalable thread visualization is proved to be effective in debugging races
using a set of synthetic programs.

Keywords: OpenMP programs, data race debugging, scalable thread
visualization, three-dimensional visualization.

1 Introduction

OpenMP program model [I4] is an industry standard of parallel programming
model which supports Fortran and C language. However, it is still more diffi-
cult to debug OpenMP programs than sequential programs, because unexpected
non-deterministic executions may be incurred from unintended data races [12]
and such programs are often complex and long-running with a huge number of
threads and accesses to shared variables. Thus these problems make users still
difficult to debug races efficiently.

Thread Checker [45/T6] of Intel Corporation is a unique tool to detect thread-
ing errors including data races in the relaxed sequential program which is a kind
of programs parallelized only with OpenMP directives. During a sequentially
monitored execution, Thread Checker projects the parallel memory traces of
logical threads derived from the annotated sequential memory trace, and de-
tects threading errors including races while every instruction in the program is
executed. But this tool does not provide any effective facility for understanding
the complexity of threads involved in the reported races.

This paper presents a thread visualization tool to represent the partial order
of threads in the traced OpenMP programs with a scalable graph of abstract

* Corresponding author: In Gyeongsang National University, he is also involved in the
Research Institute of Computer and Information Communication (RICIC).

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 3104321} 2007.
© Springer-Verlag Berlin Heidelberg 2007

Scalable Thread Visualization for Debugging Data Races 311

threads upon a three-dimensional cone. We consider OpenMP programs which
may include critical sections and nested parallelism. The visualization on three-
dimensional cone makes it overcome the limitation of visual space on one plane
and use an execution graph [IITI] to represent effectively a partial order over
threads. This tool solves the visual complexity using the abstract visualization
which replaces a set of events with an abstract symbol and provides the thread
information which is traced by RaceStand [9], an on-the-fly race detection tool.
The abstraction concept reduces the space complexity of thread visualization and
helps programmers to understand the complex structure of threads effectively.
We experimented this visualization tool on a Windows-XP computer based on
Pentium-4 using Visual C++ and OpenGL libraries.

Section 2 illustrates data races that occur in OpenMP programs, indicates the
problems of the previous tool for debugging races. Section 3 presents the design
concepts of our scalable thread-visualization tool. Section 4 shows the screen-
shots of the implemented tool using a set of synthetic programs to demonstrate
that scalable thread visualization is effective to debugging races efficiently. The
last section includes conclusions and future work.

2 Background

This section illustrates data races which occur in OpenMP programs and intro-
duces the problem of the previous tools, Thread Checker and RaceStand, that
detect data races.

2.1 OpenMP Program

OpenMP [14] is an industry standard model of shared memory with a set of direc-
tives and libraries that extend standard C/C++ and Fortran 77/90. OpenMP
can easily convert sequential programs into parallel programs using OpenMP
directives, and can provide scalable parallel programs using the orphan direc-
tive to make coarse-grain parallelism. The OpenMP directives include paral-
lelism directives and synchronization directives. The parallelism directives in-
clude “#pragma omp parallel for” for parallel loops and “#pragma omp section”
for parallel sections. We consider the parallel loop as an example of parallelism.
If there is no other loop contained in a loop body, the loop is called an innermost
loop. Otherwise, it is called an outer loop. In a nested loop, an individual loop can
be enclosed by many outer loops. The nesting level of an individual loop is equal
to one plus the number of the enclosing outer loops. The nesting depth of a loop
is the maximum nesting level of loops in the loop. The synchronization directives
include “#pragma omp atomic,” “#pragma omp barrier,” and “#pragma omp
critical” that control an execution order among threads. OpenMP also provides
library functions and environment variables that can control run-time execution
of programs. For example, two logical threads are created by “#pragma omp
parellel” through line 11 and line 13 of Figure [l Due to “#pragma omp for
private(i, y, z)” of line 12, the created thread takes the specified job in the loop

312 Y.-J. Kim, J.-S. Lim, and Y.-K. Jun

10:

11: #pragma omp parallel

12: #pragma omp for private (i,y,z) 1 2
13: for (i=1 ; ¢ < 3 ; i++) {

14: if (==1) {y = + 2; L
15: #pragma omp critical(Ll) Ll

16: z=x+ 2, x=9+2;

17: } else {

18: #pragma omp critical(Ll)

19: r =100; y =x + 1;

20: 1} g)

21: printf("x value = %d ", x); T

22:

Fig. 1. An OpenMP Parallel Program and its POEG

body from line 14 to the brace of line 20, in which, the index variable ¢ is a pri-
vate variable used in each thread, and the integer variable z is a shared variable
shared by the two threads.

Data races may occur in the program of Figure [Il during its program exe-
cutions. First, we assume that the variable x has zero as an initial value. The
statements of line 14, 15, and 16 are executed by the first thread of the two
created threads and the statement of line 18 and 19 are executed by the sec-
ond thread. Unintended races do not exist toward the variable x between line
16 and line 19, because these two blocks are protected as critical sections by
“#pragma omp critical(L1).” However, regarding the read access in the state-
ment of line 14 and the write access to the shared variable x in the statement
of line 19, the random speed of two threads may make the value of variable x
in the statement of line 21 become 100 or 104 nondeterministically. It is be-
cause these two accesses are involved in a race which include at least one write
access without proper inter-thread coordination for the accesses to the shared
variable x.

The right of Figure [[l shows an execution instance of the program in Figure [I]
by means of a directed acyclic graph called Partial Order Execution Graph
(POEG) [II. A vertex of POEG means a fork or join operation for parallel
threads, and an arc started from a vertex represents a thread started from the
vertex. The access » and w drawn with small disks upon the arcs represent a
read and a write access which access a same shared variable. A number attached
to each access indicates an observed order, and an arc segment delimited by the
symbols {M, U} means a critical section protected by the lock variable L1. With
POEG, we can easily understand the partial order or happened-before relation-
ship [I0] of accesses occurred in an execution instance of programs. POEG of
Figure [Il makes it easy to understand that rl and w4 are involved in a race,
because it shows that 1 in thread 7'1 and w4 in thread T2 are concurrent with
each other, and r1 is not protected by any lock variable.

Scalable Thread Visualization for Debugging Data Races 313

[11,12] [12,11]

nsting levels J2; J3, J2, J1
0: L, [11], .0, , , ., [121,112]
11:F,[1 1,1 2],1,1, 1,(0,2,1)
11:F,[1 2,1 1],2,1, 1,(0,2,1)
22:F,[121,112],1,2, 1,(0,2,1) TS
24:J122112], ,2,,,,, [1221,1122]
28:C,[122,112],, ,L1, ,,,
39:3[12221122], 2, ,,,,
41:U12221122], , L1, ,,
45:J0122212], 1, ,,,,

[122,111]

[122,112]
T6
thread

information

[1222,1121]

[1222,11212]
[1222,1122]

[1222,12]

Fig.2. An Example of RaceStand Traces and Labeling Information in POEG

2.2 Race Detection Tools

The projection technique of Thread Checker [I5IT6] for OpenMP programs col-
lects execution information obtained during the compilation of program and
checks data dependency detected during the sequential run-time of program.
This technique is applied only to the relaxed sequential OpenMP programs [10]
which provides only OpenMP directives for parallelism. Thread Checker detects
races as follows. First, when the programs written in OpenMP directives are
compiled by Intel C/C++ Compiler [3], a part of this tool integrated in the
compiler modifies the programs to trace the information related to OpenMP
directives and shared variables into an exclusive database. Second, when the
complied program is executed sequentially, the tool uses the traced information
in the database to check data dependency of accesses to shared variables when-
ever an OpenMP directive is located. Last, the tool reports the accesses as races
if it satisfies an anti, flow, or output data dependency except an input data
dependency.

Unfortunately, Thread Checker has some problems. First, although r1 and
w4 are involved in a race in the POEG of Figure[Il this tool can not report the
race because it ignores access r1 involved in the race. Second, this tool does not
provide any effective information about the dynamic view of the detected races.
This kind of reporting is difficult for users to understand the detected races and
debug effectively OpenMP programs, because it does not provide any facility for
understanding the complexity of threads involved in the reported races.

RaceStand [9] can verify the existence of races in OpenMP programs using
a set of scalable thread-labeling techniques [2/T3] and protocol techniques [2/TT]
for detecting races. The labeling techniques generate information called label for
logical concurrency among the created threads during a program execution. A
label is a unique identifier of thread, and is used to detect races because any

314 Y.-J. Kim, J.-S. Lim, and Y.-K. Jun

two labels can be compared to identify the logical concurrency between any two
threads. The protocol techniques detect races by comparing the label of the
current access with that of the previous accesses that are saved in a shared-
data structure called access history whenever an access occurs in a thread. An
access history consists of a set of mutually-concurrent accesses occurred in a
program execution. These protocols guarantee to detect at least one race [12] if
any in their corresponding model of programs. Unfortunately, RaceStand does
not provide any effective information about the dynamic view of the reported
races.

3 Scalable Thread Visualization

For a visual environment which can help users to debug races effectively using
the additional information traced by RaceStand, this section presents two func-
tion modules for thread visualization and two abstraction concepts for scalable
visualization.

3.1 Thread Visualization

Our tool visualizes a partial order of threads executed in the traced programs
through a scalable graph of abstract threads upon a three-dimensional cone to
help programmers to debug races intuitively. This tool requires the levels of
nested parallelism and the thread information generated by RaceStand. The
nesting levels can be traced whenever a join operation occurs in an execution.
The thread information includes the thread labels generated whenever a par-
allel or synchronization directive is executed. The table of Figure [2] shows the
information traced in an execution of OpenMP program captured with POEG
in Figure 2l In the figure, the nesting depth is three since the nesting levels of
T1 and T2 are one, the nesting levels of T'3, T4, T'5, and T6 are two, and the
nesting levels of T'7 and T'8 are three. Each thread label in the right POEG of
Figure Pl is a English-Hebrew (EH) label [13].

Our tool consists of two function modules: The Cone Visualizer and The
Thread Visualizer. The Cone Visualizer parses the trace of nesting levels and
then draws a three-dimensional cone by calculating the nesting depth and the
number of multi-way loops which are defined as executed serially in a thread
at each nesting level. The number of multi-way loops executed in a thread at a
nesting level ¢ is the number of ‘J;’s generated by the thread, where J means a
join operation and an integer ¢ means a nesting level less than 7. The maximum
value of 7 is the nesting depth. The table of Figure[2 shows a trace of four nesting
levels, by which the nesting depth is three because the maximum level is three.
In the initial thread or 76, the number of multi-way loops is one, and the thread
T2 executed two multi-way loops.

The Thread Visualizer parses the thread information and then draws the
threads on the three-dimensional cone. The thread information consists of seven
elements: source line number, event type, EH-label, loop index, nesting level, lock

Scalable Thread Visualization for Debugging Data Races 315

Fig. 3. The Abstract Visualization

variables, and for-statement information. The source line number identifies the
source code location at which the threads occurred. The event type expresses a
type of operations occurred in the execution: I-type for the initial thread, F-type
for a fork operation, J-type for a join operation, C-type for a lock operation,
and U-type for an unlock operation. An EH label is a thread label created by
English-Hebrew Labeling scheme [I3]. The table of Figure 2l shows an example
trace of thread information.

3.2 Scalable Visualization

This section presents the concepts of space abstraction and thread abstraction
for scalable three-dimensional visualization using the traced information. To il-
lustrate an abstract visualization, we use the visualization information shown in
POEG and the table of Figure 2l

The space of thread visualization is represented with a three-dimensional cone
which is divided vertically as many layers as the nesting depth. Each nesting level
is associated with a combo box which represents the number of loops executed
by the thread in the upper nesting level. Figure B(A) shows an example of the
space abstraction. The first or third nesting level has only one loop and the
second nesting level has two loops. The combo box for the second level allows to
select one of the two loops as shown in FigureB(A). the user can set the nesting
depth at will. For example, if the user set the value of the nesting depth to five
in the case of nesting levels (J4, J3, J3, J2, J1), the cone becomes divided into
five layers. In this case, each combo box for the nesting level but the third has
one loop. The combo box for the third nesting level has two loops, because J3
appears twice. The combo box for the fifth nesting level can not be created,
because the information corresponding to the nesting level does not exist.

The threads at the same nesting level are visualized as circles on the same
circumference of the corresponding cone layer with the optional vertical and hor-
izontal abstraction. The vertical abstraction represents a thread which created

316 Y.-J. Kim, J.-S. Lim, and Y.-K. Jun

-
EEETT " Wisualizer Mode %

..
: *visualiy ¢~ Cone Yisualizer

. Py . | e ocone vied @ Thread Visualizer
Visualization View D) CThreed Vo~ arcess Visualizer

H ot " : "
i) |G heeee ¢ Race Visualizer

: “Nestings " Mesting Level Mode
t | tevel 1 12 Lavel 1: [1 =
2| Level 2 |7 Lavel 2 _l—z ﬁl
Leveld F Level 3 ll—ﬂ

¥ PO E opTIoN —i

= C 3¥MBOL
: hdax Level @ [10 |2
v o | CISDURCETE ’ 3
4 i ¢ RoTaTon ax hultiveay |1D F
Hlror b osvmeoL |
: +: Gralable Thread
- : Man-scalahle Thread
¢t O:Non-access Thread
: : -t A : Read-first Thread
PP PP 5. iR Three]
: #fpragma omp parallel for shared (s) { S Eile Vs € = Gl el
: PP : SOURCE =
for (i=0;i<2;i++) { : T_r
i if(i>0) { Hide
#pragma omp parallel for shared (s) { ' ROTATION =
: for (j=0;j<2;j++){ Show |
: g Hide
#pragma omp critical(L1) { H ml
if0shlzzstlikestz.) . Disable Movement
E q L~ | iRotation Menu ain Menu
E Ohiects Obiects XY Ohiects ¥ Obiects ¥ 0h\PM<7E

Fig. 4. The Overall Interface for Scalable Thread Visualization

child thread in the lower nesting levels with a special circle symbol. A parent
thread can be represented with a symbol “4” or “-” inside a circle. The symbol
“+” means that the parent thread has child threads which are not shown and
the symbol “-” means that the parent thread has child threads which are drawn
on the cone. A circle symbol which is colored and rounded by a thick line is
an abstract thread which includes a critical section. Figure B(A) shows an ex-
panded example of the vertical abstraction. Although threads can be visualized
with vertical abstraction, the space complexity for visualization may be still big.
The horizontal abstraction reduces the number of threads visualized on the same
circumference, by representing a set of threads with one abstract thread. Fig-
ureB(B) shows an example of horizontal abstraction. The second nesting level in
the figure shows horizontal abstraction by the rate of four and the third nesting
level by the rate of two.

The thread abstraction allows us to understand intuitively whether a pair
of threads is concurrent or ordered with each other, because we can see easily
an explicit path between any two threads on the cone. For example, in the
Figure[B(B), the left thread in the first nesting level is concurrent with the right
thread in the third nesting level, because the explicit path from the upside to the
downside does not exist on the visualized cone. Users can check easily whether
a pair of threads at the different nesting levels are concurrent or ordered with
each other through the thread abstraction.

Scalable Thread Visualization for Debugging Data Races 317

=GLUI Example § o [=F

= Visualizer Mode
£ Cane Visualizer
& Thread Visualizer
 Access Visualizer
 Race Visualizer

* hesting Level Made
Level 1: 1 el

Level 2:[0 El
Level 3 :[0 E]

= Thread Abstract Made
Level 1
100

©_OFTION p

+
¢ SYMBOL =+
©_SOURCE +
+
+

©_ROTATION i
©_Qum f

#pragma omp parallel for shared firstprivate(label_fork1){
for(i=0;i<2;i++){
if(i>0){
#pragma omp parallel for shared firstprivate(label_fork2){
for(i=0;i<2;i++){ if(j<1) { z=s+1; k=s*z;} else { z=s+5; k=s*2*z; }}}
#progma omp critical(L1){

@ N N
Ohierts Obierts XY Ohiects ¥ Ohieets ¥ {Ghiects 7

Fig.5. No Critical Sections and No Nested Parallelisms

4 Experimentation

We implemented scalable thread visualization and experimented its function-
ality using a set of synthetic programs. This section presents the interface of
implemented tool and the principles in which the tool draws the symbols using
an execution trace of the synthetic programs.

4.1 Visualization Engines

Figure @ shows the interface of our thread visualization tool which is composed
two views and two menus: Visualization View, Source code View, Main Menu,
and Rotation Menu. In the Main Menu, Visualizer Mode has four modes in which
two modes are currently implemented: Cone Visualizer and Thread Visualizer.
Nesting Level Mode provides the possible values of each nesting level and then
users can select a numeral in each nesting level. The OPTION menu make it
possible to set the maximum value of nesting levels and multi-way loops. The
SYMBOL menu shows the legend of symbols to be used for scalable visualization.
The SOURCE and ROTATION menus allow users to control the activation of
Source code View and Rotation Menu. The QUIT menu quits the interface.
The Rotation Menu located at the lower left part of the interface allows users to
rotate on the three-dimensional space or move up, down, left, and right using one
button labelled Objects or the other four buttons labelled Objects XY, Objects
X, Objects Y, and Object Z. When the visualized cone is rotated, its position and
size are fixed. The Visualization View shown at the top of the figure visualizes

318 Y.-J. Kim, J.-S. Lim, and Y.-K. Jun

=6LUI Example 5 =l0lx

* isualizer Motle

 Cone Visualizer
¢ Thread Visualizer
© Access Visualizer
 Race Visualizer
* Nesting Level Mode —
L] LG MR
Level1: [1 El
Level 2:[0 El
¢ Level 3:[0 F
* Thread Abstract Mode
Level 1
[20
©_OPTION [
L ©_SYMBOL b
b
L]
.

©_SOURCE P
£ ROTATION F
C_Gum i

+ 1

[}
* g

#pragma omp parallel for shared (s) {
for (1=0;i<2;i++){
if (i>0){
#pragma omp parallel for shared firstprivate(label_fork2){
for (i=0;i<2;i++){ if (j<1) { z=s+1; k=s*z;} else { z=s+5; k=s*2%*z; }}}

#progma omp critical(L1){

@ A4 S
[ihierfs? Ohiects XY Obircts ¥ Ohiects ¥ Obiects 7

Fig. 6. Critical Sections and No Nested Parallelisms

the cone and abstract threads. The Source code View shows the corresponding
program codes.

For visualization, a cone is divided horizontally by the nesting depth acquired
from trace as shown in the figure. A thread is drawn on the cone based on
the calculated height, angle, and symbol’s position and can be abstracted for a
thread set, critical sections, and nested parallel loop which are created during
a program execution. The user understands races intuitively by visualizing a
partial order of threads involved in races selectively. For example, in Figure [
left symbol at the first nesting level is concurrent with the right symbol at the
second nesting level, because these is no path between the left symbol and the
right symbol.

4.2 Visualization Cases

The visualization tool has been implemented using Visual C++ and OpenGL
library under Windows XP on Pentium 4 computer. We verified the cone and
thread visualization with four kinds of synthetic programs with respect to the
existence of critical sections and nested parallelisms: (1) no nested parallelisms
and no critical sections, (2) nested parallelisms and no critical sections, (3) no
nested parallelisms and some critical sections, (4) nested parallelisms and critical
sections. Any critical section uses one lock variable. The nesting depth is three,
and each nesting level has 20, 100, 300 threads.

For example, Figure [visualizes an execution of synthetic program with no
nested parallelism and no critical section, which creates one hundred threads.

Scalable Thread Visualization for Debugging Data Races 319

EEN

(A)

Fig. 7. Nested Parallelisms and No Critical Sections

Fig. 8. Critical Sections and Nested Parallelisms

The cone in the figure is not divided, because the execution does not include
nested parallelism. Figure [6] visualizes an execution of synthetic program with
critical sections and no nested parallelisms, which has twenty threads and con-
tains critical sections in every other thread. The figure shows every thread with
critical section has a unique color according to its lock variable. Figure [] visual-
izes an execution of synthetic program with nested parallelisms and no critical
sections. Each nesting level has twenty threads; the nesting depth is three; a
one-way loop within the second nesting level is two, the second one-way loop of

320 Y.-J. Kim, J.-S. Lim, and Y.-K. Jun

the second nesting level has the third nesting level. Figure [[{ A) marks twenty
threads within the first nesting level and one of them has twenty nested threads
to exist in the second nesting level. These threads are marked in the limited
area like the second nesting level of Figure [[(A), because the overlap among
threads occurs in the second nesting level if all threads of the first nesting level
have nested threads. If this overlap phenomenon is occur, we can not understand
duly the visualized results so we provide a horizontal abstraction like Figure[7(B).
Figure [B) abstracts the threads at the rate of a quarter about twenty threads
of the second nesting level of Figure [[A). As the result, only four threads are
visualized in the second level. Figure [§] visualizes threads the synthetic program
with nested parallelism and critical section. It is identical with the explanation
of Figure [T{A) except the mark of critical section.

5 Conclusion

Data race in OpenMP programs must be detected for debugging, because it
may cause unexpected results incurred from unintended non-deterministic exe-
cutions. OpenMP programs are often complex and long-running, because parallel
programs may consist of a large number of threads and accesses to shared vari-
ables. Thread Checker of Intel Corporation is a unique tool to detect threading
errors including data races in the relaxed sequential program which is defined
as parallelized only with OpenMP directives. The tool however does not provide
any effective facility for understanding the complexity of threads involved in the
reported races.

This paper presents a thread visualization tool to represent the partial order
of threads in the traced OpenMP programs with a scalable graph of abstract
threads upon a three-dimensional cone. This tool solves the visual complexity
using the abstract visualization which replaces a set of events with an abstract
symbol and provides the thread information which is traced by RaceStand, an
on-the-fly race detection tool. We have been trying to apply this tool using a set
of published benchmark programs in addition to our synthetic programs specially
developed for experimenting this tool.

References

1. Dinning, A., and E. Schonberg, “An Empirical Comparison of Monitoring Algo-
rithms for Access Anomaly Detection,” 2nd Symp. on Principles and Practice of
Parallel Programming, pp. 1-10, ACM, March 1990.

2. Dinning, A., and E. Schonberg, “Detecting Access Anomalies in Programs with
Critical Sections,” 2nd Workshop on Parallel and Distributed Debugging, pp. 85-
96, ACM, May 1991.

3. Intel Corp., Getting Started with the Intel C++ Compiler 9.0 for Windows., 2200
Mission College Blvd., Santa Clara, CA 95052-8119, USA, 2004.

4. Intel Corp., Getting Started with the Intel Thread Checker, 2200 Mission College
Blvd., Santa Clara, CA 95052-8119, USA, 2004.

10.

11.

12.

13.

14.

15.

16.

Scalable Thread Visualization for Debugging Data Races 321

. Intel Corp., Intel Thread Checker for Windows 3.0 Release Notes, 2200 Mission

College Blvd., Santa Clara, CA 95052-8119, USA, 2005.

. Intel Corp., VTune(TM) Performance Analyzer 8.0 Release Notes, 2200 Mission

College Blvd., Santa Clara, CA 95052-8119, USA, 2006.

. Jun, Y. and K. Koh, “On-the-fly Detection of Access Anomalies in Nested Parallel

Loops,” 8rd ACM/ONR Workshop on Parallel and Distributed Debugging, pp.107-
117, ACM, May 1993.

. Kim, Y., M. Park, S. Park, and Y. Jun, ”A Practical Tool for Detecting Races in

OpenMP Programs,” Proc. of 8th Int’l Conf. on Parallel Computing Technologies
(PaCT), Krasnoyarsk, Russia, Lecture Notes in Computer Science, 3606: 321-330,
Springer-Verlag, Sept. 2005.

. Kim, Y., and Y. Jun, “An Optimal Tool for Verifying Races in OpenMP Programs,”

06 Int’l Conference on Hybrid Information Technology, SERC, Cheju Island, Korea,
Nov., 2006

Lamport, L., “Time, Clocks, and the Ordering of Events in a Distributed System,”
Comm. of ACM, 21(7): 558-565, ACM, July 1978.

Mellor-Crummey, J. M., “On-the-fly Detection of Data Races for Programs with
Nested Fork-Join Parallelism,” Supercomputing, pp. 24-33, ACM/IEEE, Nov. 1991.
Netzer, R. H. B., and B. P. Miller, “What Are Race Conditions? Some Issues and
Formalizations,” Letters on Programming Lang. and Systems, 1(1): 74-88, ACM,
March 1992.

Nudler, I., and L. Rudolph, “Tools for the Efficient Development of Efficient Paral-
lel Programs,” In 1st Israeli Conference on Computer System Engineering, 1986.
OpenMP Architecture Review Board, OpenMP Application Programs Interface,
Version 2.5, May 2005.

Park, S., M. Park, and Y. Jun, “A Comparision of Scalable Labeling Schemes for
Detecting Races in OpenMP Programs,” Int’l Workshop on OpenMP Applications
and Tools (Wompat), pp. 66-80, West lafayette, Indiana, July 2001.

Petersen, P., and S. Shah, “OpenMP Support in the Intel Thread Checker,” Proc.
of the Int’l Workshop on OpenMP Application and Tools (WOMPAT), Berlin Hei-
delberg, Lecture Notes in Computer Science, 2716: 1-12, Springer-Verlag, 2003.

MPIRace-Check: Detection of Message Races in
MPI Programs*

Mi-Young Park!, Su Jeong Shim?!, Yong-Kee Jun?** and Hyuk-Ro Park®

! Chonnam National University, Gwanju
openmp@korea.com, sjsim@chonnam.ac.kr
2 Gyeongsang National University, Jinju
jun@gsnu.ac.kr
3 Chonnam National University, Gwanju
South Korea
hyukro@chonnam.ac.kr

Abstract. Message races, which can cause nondeterministic executions
of a parallel program, should be detected for debugging because non-
determinism makes debugging parallel programs a difficult task. Even
though there are some tools to detect message races in MPI programs,
they do not provide practical information to locate and debug message
races in MPI programs. In this paper, we present an on-the-fly detection
tool, which is MPIRace-Check, for debugging MPI programs written in
C language. MPIRace-Check detects and reports all race conditions in
all processes by checking the concurrency of the communication between
processes. Also it reports the message races with some practical informa-
tion such as the line number of a source code, the processes number, and
the channel information which are involved in the races. By providing
those information, it lets programmers distinguish of unintended races
among the reported races, and lets the programmers know directly where
the races occur in a huge source code. In the experiment we will show
that MPIRace-Check detects the races using some testing programs as
well as the tool is efficient.

Keywords: message-passing programs, debugging, message races,
MPIRace-Check.

1 Introduction

In a distributed parallel program [T4J9IT4], processes communicate with each
other through message-passing and those messages may arrive at a process in a
nondeterministic order by variations in process scheduling and network latencies.

* This work was supported in part by Research Intern Program of the Korea Science
and Engineering Foundation and in part by the 2th BK21.

** Corresponding author. Also involved in Research Institute of Computer and Infor-
mation Communication (RICIC) as a research professor in Gyeongsang National
University.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 322 2007.
© Springer-Verlag Berlin Heidelberg 2007

MPIRace-Check: Detection of Message Races in MPI Programs 323

Nondeterministic arrival of messages causes nondeterministic executions of a par-
allel program [7YTOITT]. If two or more messages are sent over communication chan-
nels on which a receive listens, and they are simultaneously in transit without
guaranteeing the order of their arrivals, a message race [2IBIBI6IRIT2IT3] occurs in
the receive event and causes nondeterministic executions of the program.

Message races, which can cause nondeterministic executions of a parallel pro-
gram, should be detected for debugging because nondeterminism, intended or oth-
erwise, makes debugging message-passing parallel programs a difficult task
[ZITOUTT]). Even though some parallel programs are designed to have message races
in order to improve their performance, detecting message races is critical in de-
bugging parallel programs for two reasons. First, message races complicate debug-
ging because their nondeterministic nature can prohibit equivalent re-execution of
a program from being repeated [7]. Second, message races can prevent a program
from being tested in all the possible executions of a program [7]. Therefore message
races should be detected for debugging message-passing programs.

There are several tools for detecting message races such as MAD [§], MARMOT
[BU6], and MPVisualizer [2I3]. However those tools are not practical for debugging
message-passing programs because they do not provide practical information to
locate and debug message races. Also some of them can not exactly detect race
conditions because they detect message races just by identifying the use of wild
card receives as sources of race conditions. Therefore, due to lack of information
and wrong detection, programmers can be easily overwhelmed by the incorrect in-
formation or be incapable of finding where the races occurred in a huge source code.

In this paper, we present an on-the-fly detection tool, which is MPIRace-Check,
for debugging MPT [I415] programs written in C language. MPTRace-Check de-
tects and reports all race conditions in all processes during an execution by check-
ing the concurrency of the communications between processes. Also it reports mes-
sage races with some practical information such as the line number of a source
code, the processes number, and the channel information which are involved in
the races. By providing those information, it lets programmers distinguish of un-
intended races among the reported races, and lets the programmers know directly
where the races occur in a huge source code. In the experiment we will show that
MPIRace-Check detects and reports the races using MPI RTED [T5] testing pro-
grams as well as this tool is efficient using a kernel benchmark program.

In the following section 2, we describe the notion of message races and ex-
plain the problem of the previous tools. In section 3 we explain the methods
used in developing MPIRace-Check and then we show that the accuracy and
the efficiency of MPIRace-Check using MPI RTED testing programs and a ker-
nel benchmark program in the experiment of section 4. In the last section we
conclude this paper and discuss future work.

2 Background

In this section, we describe our model of parallel programs, and the notion of
message races. Also we introduce the previous tools to detect the races and
explain the problem of the previous tools.

324 M.-Y. Park et al.

2.1 Message Races

An execution of a message-passing program [IITOTTIT3] can be represented as
a finite set of events and the happened-before relations [4[9] defined over those
events. If an event a always occurs before another event b in all executions of
the program, it satisfies that a happens before b, denoted a — b. For example,
if there exist two events {a, b} executed in the same process, a — b V b — a
is satisfied. If there exist a send event s and the corresponding receive event r
between a pair of processes, then s — r is satisfied. We denote a message, sent
by a send event s, as msg(s). The binary relation — is defined over its irreflexive
transitive closure; if there are three events {a, b, ¢} that satisfy a — b A b — ¢,
it also satisfies @ — ¢. When an event a does not happen before an event b, we
denote the relation between them as a - b.

A message race [2I3BIGIRITS] occurs in a receive event, if two or more messages
are sent over communication channels on which the receive listens and they are
simultaneously in transit without guaranteeing the order of their arrivals. A
message race is represented as (r, M): r is the first receive event and M is a set
of racing messages toward r. Any send event s included in M, but not the one
received by r, satisfies s - r or r = s.

Even though some parallel programs are designed to have message races in
order to improve their performance, detecting message races is critical in debug-
ging parallel programs for two reasons. First, message races complicate debug-
ging because their nondeterministic nature can prohibit equivalent re-execution
of a program from being repeated [7]. Second, message races can prevent a pro-
gram from being tested in all the possible executions of a program [7]. Therefore
message races should be detected for debugging message-passing programs.

Figure [I] shows a partial order of events that occurred during an execution of
a message-passing program. In the figure two processes P3 and P, send two mes-
sages msg(i) and msg(k) to Ps. At this time two messages msg(i) and msg(k)
are racing toward the receive event j of P, because the send event k satisfies
k - j. Also the message msg(m), which is sent by process Ps, is also racing
toward j. Therefore the race, which occurs at the receive event j, can be denoted
as (j, J): the first receive event j, J = {msg(i), msg(k), msg(m)}.

2.2 Related Work

There are several tools for detecting message races such as MAD [§], MARMOT
[Bl6], and MPVisualizer [2I3]. MAD offers a variety of debugging features such
as placement of breakpoints on multiple processes, inspection of variables, an
event manipulation feature, and a record&replay mechanism. MARMOT is to
verify the standard conformance of an MPI [T4/T5] program automatically during
runtime and help to debug the program in case of problems such as deadlocks,
and race conditions. MPVisualizer includes a trace/reply mechanism, a graphical
interface, and the engine of the tool which detects and notifies the occurrence of
race conditions.

In case of MAD and MARMOT, those tools detect message races just by iden-
tifying the use of wild card receives, mpi any source, as sources of race conditions.

MPIRace-Check: Detection of Message Races in MPI Programs 325

P, p, P, P, P

———
’/ m
//

\J \J \J \J \J

Fig. 1. An Example

In this case the detection result is not correct and also programmers will be over-
whelmed by the vast and incorrect information.

Figure Plshows the cases that there are no race conditions even though receive
events are called with mpi any source. In Figure 2l (a), process P; sends a mes-
sage to process P with a tag (1). Also process Ps sends a message to process
P, with a tag (2). At this time, two receive events in process Py are called with
mpi any source, but with different tags. In this example, even though two send
events are concurrent, two messages being sent by processes P; and P will be
always received deterministically because of the different tags.

In Figure 2 (b), the second receive event in process P, is called with
mpi any source and mpi any tag. In this example, however, two messages will
be received deterministically because the first message being sent by process Py
will be always received at the first receive event in process Ps.

In Figure 2 (c), two messages are sent from the same process P; and they
are received in the process P». In process P», two receive events receive the
messages respectively using mpi any source and mpi any tag. In this case, there
are no race conditions if successive messages sent by a process to another process
are ordered in a sequence and if receive events posted by the process are also
ordered in a sequence.

As shown in Figure[], there are no race conditions even though mpi any source
or mpi any tag are used in the receive events. Therefore, if we detect race con-
ditions just by identifying the use of mpi any source, that will include wrong
detections of race conditions and then mislead programmers.

One the other hand, the method suggested by Nezer [12] can detect more
exactly race conditions. This technique focuses on detecting unaffected races
[12/T3] so that it detects the first race in each process. For this, it requires
two executions of a program. In the first execution it checks if a race occurs and

326 M.-Y. Park et al.

Send (2, tag=1) \

Recv (Any, tag=1)

/ Send (2, tag=2)
Recv (Any, tag=2)
\J \J \J

(a)

Pl P2 P3
Send (2, tag=1) \
Recv (1, tag=1)
/ Send (2, tag=2)
Recv (Any, tag=Any)

Send (2, tag=1) \
Send (2, tag=2) \

(c)

Recv (Any, tag=Any)

Recv (Any, tag=Any)

Fig. 2. No Race Conditions with MPI ANY SOURCE

identifies the location where the race occurs. In the second execution it halts
the execution at the location where the race occurred and then detects racing
messages. Even though this technique can detect race conditions more accurately,
it is not efficient because it requires two executions of a program.

MPIRace-Check: Detection of Message Races in MPI Programs 327

0 TimestampInSend()

0 TimestamplInit() 1 localclock := localclock + 1
1 localclock := 0 2 timestamp|pid] := localclock
2 for ¢ from 0 to size do (c)
3 timstampli] := 0 0 TimestampInRecv()
4 prevrecv[i] == 0 1 call CheckConcurrency|()
5 sender[i] := 0 2 for i from 1 to size do
6 end for 3 timestampl[i] := max(timestampli],
(a) 4 senderl[i])
0 CheckConcurrency() 5 end for
1 if prevrecv[pid] > sender[pid) 6 localclock := localclock + 1
2 report this race 7 timestamp[pid] := localclock
3 end if 8 prevrecv := timestamp
(b) (d)

Fig. 3. Algorithms for Timestamp

3 Race Detection

In this section, we explain the methods used in developing MPIRace-Check.
First we explain several algorithms to maintain vector timestamps during an
execution in order to detect race conditions. Also we show how the algorithms
can be called inside of MPI profiling interface.

3.1 Concurrency Check

Vector timestamps [4[9] have been used to determine the “happened before”
relations between two events during an execution. Each vector timestamp con-
sists of n values, where n is the number of processes involved in an execution. In
this paper, we use vector timestamps to check concurrency between send/receive
events in MPI parallel programs. Figure Bl shows the algorithms for maintaining
vector timestamps during an execution.

In Figure Bl(a), all variables are initialized with zero: localclock, timestamp,
prerecv, and sender. In the algorithm, size is an integer variable and indicates
the number of processes involved in an execution. localclock is an integer variable
for counting the number of events which occurred in each process. This will be
incremented by one whenever a send or a receive event occurs.

The variables timestamp, prerecv, and sender for maintaining the vector
timestamps are an array which consists of n elements, where n is the number
of processes. Whenever a send or a receive event occurs in a process, timestamp
will be updated by the current localclock during an execution. Only one element
of timestamp, corresponding to the process itself, will be updated. sender will
be used for keeping a vector timestamp of a sender which sends a message to
the current receive event. prevrecv will be used for keeping a vector timestamp
of the previous receive event.

328 M.-Y. Park et al.

FigureBl(c) shows the algorithm, TimestampInSend(), which will be called
in each send event. The variable pid indicates the current process which sends a
message. In each send event, it increments localclock by one and sets the element
of timestamp, corresponding to the current process pid, equal to localclock. This
timestamp will be attached to the outgoing message.

Figure[Bl(d) shows the algorithm, TimestampInRecv(), which will be called
in each receive event. In each receive event, first of all, it checks if a race occurs
by calling CheckConcurrency(). In CheckConcurrency(), it checks if the
element of prevrecv, corresponding to the current process pid, is greater than
that of sender. If then, it means that the message, which was received in the
current receive event, can be received in the previous receive event. In this case
it reports that a message race occurs.

After calling CheckConcurrency(), it updates its timestamp using sender,
which was attached to this incoming message, by the operation max(). And it
increments localclock by one and sets the element of timestamp, corresponding to
the current process pid, equal to localclock. For the next receive event, it copies
timestamp into prevrecv because this receive event will become the previous
receive event in the next receive event.

Figure @ shows the vector timestamps in each event when we applied the
algorithms to Figure [l In the figure, lc means localclock in each event and each
timestamp in each event is represented with “[]”.

In the send event a in P», TimestampInSend() will be called and local-
clock will be incremented by one. And localclock will be set into the element of
timestamp corresponding to the current process Ps. So localclock becomes 1 and
timestamp becomes [01000]. In the receive event b in Py, TimestampInRecv()
will be called and localclock will be incremented by one. And localclock will be
set into the element of timestamp corresponding to the current process Py. Also
it updates its timestamp using sender by the operation max(). So localclock be-
comes 1 and timestamp becomes [01010]. In this way timestamp will be updated
and maintained in each event during an execution.

Let us show you how to detect race conditions using timestamp in each receive
event. For example, in the receive event j of process P», TimestampInRecv()
calls CheckConcurrency(). CheckConcurrency() compares prevrecv, which
is the vector timestamp at d of P5, with sender which is the vector timestamp
of the send event i of Ps. In this case, prevrecv[pid], which is “2” from [12000]
(pid is Py), is not greater than sender[pid]| which is “4” from [14200]. This means
that the message, which was received by the current receive event j of Ps, is not
racing toward the previous receive event d of Ps.

On the other hand, in the receive event [of process P, prevrecv is greater
than sender. In case of the receive event [, prevrecv is at j which is [15200], and
sender is at k of Py which is [01020]. Therefore, prevrecv[pid], which is “5”, is
greater than sender[pid] which is “1” (pid is P»). This means that the message,
which was received by the current receive event [of Ps, is racing toward the
previous receive event j of P5. So there is a message race. In this way we can
detect message races.

MPIRace-Check: Detection of Message Races in MPI Programs 329

local clock: O
timestamp [00000]

P, P, P P, P,
Ie: 1 o
00T« 01000] o f—ou____|
[12000] \ Ie: 1
dic:2 5[01010]
Ic: 2 / ¢ [13000]
C: ;
(230001 f [llcé!(é)too] § K le: 1
. h[14100]

Ic: 2
; [14200] k[01020]

153 j / le: 2 m
[15200] J // [00001]
lc: 6 / / le: 1

\J \J \J \J

Fig. 4. An Example of Vector Timestamp

[117221] n
c:7

3.2 MPI Profiling Interface

MPI Profiling Interface included in MPI specification allows anyone to inter-
cept every call to the MPI library and perform an additional action. For this,
the MPI specification states that every MPI routine is callable by an alter-
native name; every routine of the form MPI xxx is also callable by the name
of the form PMPI xxx, allowing users to implement and experiment their own
MPT xxx.

For implementing MPIRace-Check, we used MPI profiling interface and we
wrapped all point-to-point functions. In each wrapped function, we used MPI-
PACK in order to attach a vector timestamp to the outgoing message and we
used MPI UNPACK in order to detach a vector timestamp from the incoming
message.

Figure bl is an example of how we wrapped each function with the algorithms
explained before. Figure Bl (a) shows the wrapped MPI Send function. First it
calls TimestampInSend() in line 2 and packs the user message(buf) and times-
tamp together using MPI PACK in order to attach timestamp to the outgoing
message in line from 4 to 5. After that, it calls PMPI Send.

Figure Bl (b) shows the wrapped MPI Recv function. First it received a mes-
sage by calling PMPI Recv and unpack the message into sender and buf in line
from 4 to 5. After that, it calls TimestampInRecv() in order to update its
timestamp and check if a race occurs.

In this way, we wrapped all point-to-point functions so that users can apply
our tool to their programs without modifying their code.

330 M.-Y. Park et al.

0 MPI Send(buf, count, datatype, dest, tag, comm)
1
2 TimestampInSend();
3
4 MPI Pack(timestamp, size, MPI INT, buffer, buffersize, pos, comm);
5 MPI Pack(buf, count, datatype, buffer, buffersize, pos, comm);
6
7 PMPI Send(buffer, pos, MPI PACKED, dest, tag, comm);
8 }
(a)
0 MPI Recv(buf, count, datatype, source, tag, comm, status)
1
2 PMPI Recv(buffer, buffersize, MPI PACKED, source, tag, comm, status);
3
4 MPI Unpack(buffer, buffersize, pos, sender, size, MPI INT, comm);
5 MPI Unpack(buffer, buffersize, pos, buf, count, datatype, comm);
6
7 TimestampInRecv();
8 }

(b)

Fig. 5. Examples of Wrapped MPI Functions: MPI Send and MPI Recv

4 Experimentation

We implemented MPIRace-Check as a library using C language and MPI Pro-
filing Interface so that users can apply our tool to their programs without mod-
ifying their source code. Also we used ¢gdb to provide detail information for
debugging race conditions. When a race is detected, gdb will be called within
MPI Profiling Interface. To enable this, users have to use the compiler option
‘g’ when they compile their programs.

In this experiment we evaluated the accuracy and the efficiency of MPIRce-
Check. For evaluating the accuracy of race detection, we used MPI RTED [15]
testing programs written in C language. MPI RTED was developed to evaluate
MPI debugging tools. So some of them were designed to have message races to
evaluate the ability of detection of race conditions.

Table [l shows all test programs and the detection results when we applied
our tool to MPI RTED programs. In the table, we can see each name of tested
programs, and MPI functions which are used in the testing programs. In those
programs, MPIRace Check detected all races as shown in the table.

Figure [0l shows an error message of our tool when it detects a race in a
test program. In the first line, it shows the localclocks of the events, and the
process number which are involved in the race: P; (1) and P> (1). In the second
line, it shows the channel information, the program name, and its line number:
—2—1, ‘¢ B11aMl.c’ and 76. In the third line, it shows the source code

MPIRace-Check: Detection of Message Races in MPI Programs 331

Table 1. The Result in MPI RTED

Name MPI Functions Detection
cB11aMl.c MPI RECV Yes
¢cB12aMl.cMPI RECV Yes
cB11b Ml.c MPI SENDRECV Yes
¢B12b Ml.c MPI SENDRECV Yes

cB11cMlc MPI SENDRECV REPLACE Yes
¢ B 12cMl.c MPI SENDRECV REPLACE Yes

c¢B11dMl.c MPI IRECV Yes
¢cB12dMl.c MPI IRECV Yes
cB11eMl.c MPI RECV Yes
¢ B12e Ml.c MPI SENDRECV Yes
cB11fMl.c MPI RECV Yes
¢cB12fMlc MPI SENDRECV REPLACE Yes
cB11gMl.c MPI RECV Yes
c¢B12gMl.c MPI IRECV Yes

WARHING (RaceCondition):
The mezsage which was sent at 'l' from 'P_2' iz racing toward '1' receiwve ewvent in 'F_1'
{the current chamnel is -2-1) at c B 1l 1 a Hl.c:76

= MPI Recv(srecvbuf_2, 1, MPI_INT, MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, sstatus);

Fig. 6. An Example of Error Messages

Table 2. Overhead in MPIRace-Check

The number of Send/Recv Original Run Time (s) Monitored Run Time (s) Slowdown

10000 0.168 0212 26%
100000 1.673 2234 34%
1000000 16.399 22.034 34%
10000000 164.471 221.736 35%

which is involved in the race: ‘MPI Recv(&recvbuf 2, .. ., &status)’. Using those
information, programmers can easily notice whether the race was intended or
not, and they can directly modify the bug because they know where it occurs in
their source code.

For estimating the efficiency of our tool, we wrote a simple kernel benchmark
program. This benchmark program consists of MPI Send() and MPI Recv() op-
erations and users can change the number of those operations in the command
line. In this program, only a process with the rank 0 receives any messages with
mpi any source and the other processes send a message to the process with rank
0. To measure the slowdown of MPIRace-Check, we used MPI Wtime() in the
benchmark program.

Table 2] shows the slowdown of MPIRace-Check. For example, when we set
the number of send/recv operations 10000, it took 0.168 seconds without our
tool. However, the monitored execution by our tool took 0.212 seconds so that

332 M.-Y. Park et al.

the slowdown is 26%. As we increase the number of send/recv operations, the
slowdown does not change proportionally. The worst case in the table shows only
35% slowdown when the number of send /recv operations is 10,000,000. Therefore
our tool is efficient as an on-the-fly detection tool.

5 Conclusion

In this paper, we have presented an on-the-fly detection tool, which is MPIRace-
Check, for debugging MPI programs written in C language. MPIRace-Check
detects and reports all race conditions in all processes during an execution by
checking the concurrency of the communications between processes. In our ex-
periment, we showed that MPIRace-Check detects and reports message races
using MPI RTED testing programs as well as our tool is efficient using a kernel
benchmark program.

Also our tool provides useful information for debugging such as the line num-
ber of a source code, the processes number, and the channel information which
are involved in the races. By providing those information, it lets programmers
distinguish of unintended races among the reported races, and lets the program-
mers know directly where the races occurred in a huge source code. Therefore
this tool will be useful to develop and debug MPI C parallel programs. In the
future we will expand MPIRace-Check to cover all collective routines of MPI-1.

References

1. Cypher, R., and E. Leu, “The Semantics of Blocking and Nonblocking Send and
Receive Primitives,” 8th Intl. Parallel Processing Symp., pp. 729-735, IEEE, April
1994.

2. Clgudio, A.P., J.D. Cunha, and M.B. Carmo, “MPVisualizer: A General Tool
to Debug Message Passing Parallel Applications,” 7th High Performace Comput-
ing and Networking Furope, Lecture Notes in Computer Science, 1593:1199-1202,
Springer-Verlag, April 1999.

3. Clgudio, A.P., J.D. Cunha, and M.B. Carmo, “Monitoring and Debugging Message
Passing Applications with MPVisualizer,” 8th FEuromicro Workshop on Parallel
and Distributed Processing, pp.376-382, IEEE, Jan. 2000.

4. Fidge, C. J., “Partial Orders for Parallel Debugging,” SIGPLAN/SIGOPS Work-
shop on Parallel and Distributed Debugging, pp. 183-194, ACM, May 1988.

5. Krammer, B., K. Bidmon, M.S. Miiller, and M.M. Resch, “MARMOT: An MPI
Analysis and Checking Tool,” In proceedings of PARCO’03, 13:493-500, Elsevier,
Sept. 2003.

6. Krammer, B., M.S. Miiller, and M.M. Resch, “MPI Application Development Using
the Analysis Tool MARMOT,” 4th International Conference on Computational
Science, Lecture Notes in Computer Science, 3038:464-471, Springer-Verlag, june
2004.

7. Kranzlmiiller, D., and M. Schulz, “Notes on Nondeterminism in Message Pass-
ing Programs,” 9th European PVM/MPI Users’ Group Conf., Lecture Notes in
Computer Science, 2474:357-367, Springer-Verlag, Sept. 2002.

10.

11.

12.

13.

14.

15.

MPIRace-Check: Detection of Message Races in MPI Programs 333

Kranzlmiiller D., C. Schaubschlager, and J. Volkert, “A Brief Overview of the
MAD Debugging Activities,” 4th International Workshop on Automated Debugging
(AADEBUG 2000), Aug. 2000.

Lamport, L., “Time, Clocks, and the Ordering of Events in a Distributed System,”
Communications of the ACM, 21(7):558-565, ACM, July 1978.

Lei, Y., and K. Tai, “Efficient Reachability Testing of Asynchronous Message-
Passing Programs,” 8th Int’l Conf. on Engineering of Complex Computer Systems
pp. 35-44, IEEE, Dec. 2002.

Mittal, N., and V. K. Garg, “Debugging Distributed Programs using Controlled
Re-execution,” 19th Annual Symp. on Principles of Distributed Computing, pp.
239-248, ACM, Portland, Oregon, 2000.

Netzer, R. H. B., T. W. Brennan, and S. K. Damodaran-Kamal, “Debugging Race
Conditions in Message-Passing Programs,” SIGMETRICS Symp. on Parallel and
Distributed Tools, pp. 31-40, ACM, May 1996.

Park, M., and Y. Jun, “Detecting Unaffected Race Conditions in Message-Passing
Programs,” 11th European PVM/MPI User’s Group Meeting, Lecture Notes in
Computer Science, 3241:268-276, Springer-Verlag, Sept. 2004.

Snir, M., S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Com-
plete Reference, MIT Press, 1996.

HPC Group, MPI Run Time Error Detection Test Suites:
http://rted.public.iastate.edu/MPI/, Towa State University, USA, 2006

The Modified Grid Location Service for Mobile
Ad-Hoc Networks

Hau-Han Wang and Sheng-De Wang

Department of Eletrical Engineering
National Taiwan University, Taipei, Taiwan
sdwang@ntu.edu.tw

Abstract. Position-based routing has been proven to be a scalable and
efficient solution for packet routing in mobile ad hoc networks (MANETS)
by utilizing location information of mobile nodes. The location service
provides geographic locations for all nodes and is therefore critical to
position-based routing. In general, the control overhead in a position-
based routing protocol is mainly dominated by location updates. In this
paper, we propose a location service called Modified Grid Location Ser-
vice (MGLS), which employs a binary grid partitioning scheme to reduce
the control overhead associated with the location management and sup-
ports large scale ad hoc networks. We then use a theoretical model to
analyze both MGLS and GLS. Both theoretical analysis and simulation
results show that MGLS can reduce the location update overhead in
location services.

1 Introduction

Routing protocols in MANETSs are commonly categorized into two different
types: topology-based and position-based routing. M. Mauve et al. [1] has pre-
sented such an overview of ad hoc routing protocols. The routing performance
can be significantly improved by utilizing location information of nodes. That is,
if each node is aware of the location of the destination and all its one-hop neigh-
bors in the network, it can geographically forward a packet toward its destina-
tion. Position-based routing algorithms uses such additional location information
to eliminate the limitations of topology-based routing. Commonly, each node de-
termines its own position through the use of GPS (Global Positioning System).
Before sending a packet to the destination, senders always include the location
of destination which is provided by the so-called location service in the header
of outgoing packets. The routing decision at each node is then based on the
destination’s position contained in the packet and the position of the forwarding
node’s neighbors. Position-based routing thus does not require the establishment
or maintenance of routes; furthermore, it scales well even if the network is highly
dynamic.

Location services provide the positions of the destination nodes to senders
all around the geographic region. Existing location services can be classified ac-
cording to the number of nodes that host the service and the range of nodes

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 3344347} 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Modified Grid Location Service for Mobile Ad-Hoc Networks 335

that is maintained by one location server. This can be either some specific nodes
or all nodes of the network. Thus there are the four possible combinations as
some-for-some, some-for-all, all-for-some, and all-for-all in the of location ser-
vices. Recent algorithms [2]-[5] present some possible ways of finding destination
and distributing location updates.

The Grid Location Service (GLS[2]), which provides a location service by
mapping from node id to current location. GLS divides the area that contains
the ad hoc network into a hierarchy of squares. Each node maintains its current
location at a small subset of network nodes, called the node’s location servers.
Location Servers for a node are relatively dense near the node and sparse farther
away from the node. The route discovery for a destination is then equivalent to
recursively querying the location servers until the query packet arrives at the
one having the destination’s location. Quorum systems[3][4], which route most
packets through arbitrary participants. This reduces the danger that the special
participants may become a bottleneck. The role of the special participants is
limited to storing location tables and computing routes through the general net-
work. DREAM][5] forces nodes to proactively flood their current location infor-
mation over the entire network, enabling each node to build a complete location
database. However, DREAM does not scale well to large networks due to its use
of global flooding.

Forwarding strategies help nodes make routing decisions based on the des-
tination’s position included in the packet and the position of their neighbors.
The Location Aided Routing (LARI[6]) uses geographic location to determine
the search space for a destination, hence reducing the number of route-discover
y packets of reactive ad hoc routing approaches. Besides, LAR restricts the
search for a route to a so-called request zone which is determined based on the
expected location of the destination node at the time of route discover. How-
ever, LAR uses flooding as a means of route discovery. This is done in a fashion
similar to that of the DREAM approach. [7] had presented a complete com-
parison between these two schemes, because of the similarity of DREAM and
LAR.

The Greedy Perimeter Stateless Routing (GPSRJ[8]) is such an instance of
greedy packet forwarding, which uses a planer subgraph of the wireless network
graph to route around dead-end. In GPSR, senders first include the approximate
destination positions obtained from a location service into packets. Nodes then
use the positions of routers and packets’ destinations to make packet forwarding
decisions; forward the received packet to a neighbor lying in the direction of the
destination until the destination has been reached.

In geographic forwarding, a node announces its current position and velocity
to its neighbors by broadcasting periodic HELLO packets. Each node maintains
a table of its current neighbors’ identities and geographic positions. Therefore,
nodes may learn about two hop neighbors: nodes that cannot be reached directly,
but can be reached in two hops via the neighbor that sent the HELLO message,
it’s called 2-hop distance vector. 2-hop distance vector helps alleviate holes in
the topology and ensures that each node knows the location of all nodes in its

336 H.-H. Wang and S.-D. Wang

own smallest grid. The header of a packet destined for a particular node contains
the destination’ s identity as well as its geographic position. When node needs
to forward a packet to location D, the node consults its neighbor table and
chooses the neighbor closest to D. It then forwards the packet to that neighbor,
which itself applies the same forwarding algorithm. The packet stops when it
reaches the destination. GLS adopts geographic forwarding as its forwarding
strategy. Actually, both geographic forwarding and GLS belong to the GRID
project[9].

Another survey of position-based routing in ad hoc networks was presented
by I. Stojmenovic[10]. T. Park et al. proposed a hybrid routing protocol[11] con-
structed by combining well-known location-update schemes, which minimizes the
overall routing overhead in terms of location-update thresholds. Some location
services with fixed static hierarchy such as DLM[12], SLURP[13], SLALoM][14]
and HIGH-GRADE[15] are compared systematically in [16].

In this paper, we proposed a distributed location service scheme for position-
ba sed routing in mobile ad hoc networks, called Modified Grid Location Ser-
vice (MGLS) which is an improvement to GLS. Similar to GLS, in our scheme,
the entire network is partitioned into hierarchi cal grids. Each node is ran-
domly assigned an integer as its node ID and is placed at uniformly random
location over the network. These nodes act as end systems and routers at the
same time. In order to maintain the location information in a decentralized
way, each node has several location servers in the network. As nodes move,
this location information is constantly updated. Before sending a packet to a
node, the sender first queries the destination’s location and then uses the ge-
ographic routing protocol to forward the packet to the destination. Since the
cost of location management usually dominates the overall protocol overheads.
MGLS was designed to reduce the amount of location updates with a delicate
grid hierarchy. We also use a theoretical model for studying the location ser-
vice scalability, based on which we analyze our scheme as well as GLS. The
analytical results are then validated by simulation in medium to large size
networks.

2 Overview of MGLS Scheme

MGLS exploits geographic forwarding as its forwarding strategy. First, all nodes
know the same global partitioning of the ad hoc network into a hierarchy of grids,
as we will describe in the following section. Next, since every node in the network
acts as an end system and a location server of other nodes at the same time,
the mechanism of location server selection has to be defined clearly. Nodes will
periodically update their location servers with their current location obtained
by GPS. Finally, if one node A wants to transmit a packet to another node B,
A queries the location servers of node B for B’s current location before using
geographic forwarding. Actually, every node in the network has a predefined
unique ID in integer, as well as our wireless card has an unique MAC address in
a wireless network.

The Modified Grid Location Service for Mobile Ad-Hoc Networks 337

2.1 Grid Hierarchy

The whole network is partitioned into grids as shown in Figure [[l The grids in
the figure are unit grids in the network referred to as level-0 grids with the ratio
1: /2 in width and length. Two level-0 grids adjoined on the larger side make
up a level-1 grid, two level-1 grids adjoined on the larger side make up a level-2
grid, and so on. Obviously, our grid hierarchy has a characteristic of recurrence.
Grids of all levels keep the same ratio of 1 : /2, and the area of level-(n+1) is
twice as large as level-n.

5 38 39
@ 37 50 45
51 11
91 | 62 ?
9
L 35
41
26
2 63 4 72
44 3
5 4 |2 | B17 s 10
83 20
98
32 - é1 6|21
g |3 43 12 76 84

Fig. 1. Formatting an ad hoc network

2.2 Location Servers

We believe that using centralized location servers is not a good idea. Due to the
limitation of radio transmission range, the only one location sever may be out
of reach of most mobile nodes. Besides, a single server is too weak to provide
reliability of location service, it is unlikely to scale a large number of mobile
nodes. In order to offer a fault-tolerant scheme, we have to make our location
service distributed. That is, one mobile node has multiple location servers located
in the whole network. So that MGLS can provide distributed lookup service by
replicating the information of nodes’ current locations.

Selecting Location Servers and Updating Location Information. Every
node uses its ID and the predefined grid hierarchy to determine which nodes
are its location servers. In the Figure 2l node B has an ID of 17 and wants to
update its location servers after moving a certain distance. The strategy is that
one node picks one other node with ID “least greater” than its own ID to be
its location server for each level of the grid hierarchy. Note that the ID space is
ordered in a circular fashion. We defined 2 is closer to 17 than 7 is to 17.

Here is an example. Let’s start from the Figure Pl(a). B is located in its own
level-0 grid. Then in Figure 2(b), the level-0 grid of node B “grows” to be a
level-1 grid containing another node 63. Since 63 is the “least greater” node in
ID space than B, so 63 is selected as a location sever of B in its level-1 grid. In

338 H.-H. Wang and S.-D. Wang

il o level-1 2
26 23 63 a 72 26 2 ® a 72 2 ® 72

4 : level-0 4 : 4 3
- w |, 2|87 10 2 |B:17 10 2 |B:17 10

32 s 6|21 32 L] 6|21 32 é 6|21

Fig. 2. A flow diagram illustrates how does a node B seek its location servers. The
nodes which become B’s location servers are circled.

Figure Pl(c), 23 is the least greater node than B again, following a rational line,
23 is B’s location server in its level-2 grid, and so on. The same location server
selection process repeats until the level-i grid of B covers the whole network,
where 7 is supposed here to be 6 in our example.

Grid Location Service (GLS) divides an a network into a hierarchy grid of
squares, too. The level-isquare is recursively divided into 4 level-(i-1) squares
until level-0 squares are reached, forming a so-called quad-tree. In each level-
square, node B selects 3 location servers, one in each level-(i-1) square that B
isn’t in. However, in both schemes, the number of location servers that a node
must recruit is equal to the number of neighbors per level in the geographic
hierarchy multiplied by the number of levels in the hierarchy. For GLS, this
means that a node must maintain 3log, n location servers in a network. While
MGLS, which splits the network in half at each level, rather than in fourths, by
using rectangles with an aspect ratio of 1 : v/2. This leads to a network in which
nodes recruit only log, n location servers, that is, 2/3 the number of location
servers needed in GLS. Figure [gives a contrast to GLS.

‘ 38 X9
90
70|
@ | 50 45
- 51 n
91| 62
1 ©
35
® 2 ® 72
® a
44
7 | 14 MET) 10
28
98 8 7y
55 6
32 6|21
Bl
81 12 N e

Fig. 3. The same case of GLS, location server 2, 20, 31 are demanded in addition for
node B

The Modified Grid Location Service for Mobile Ad-Hoc Networks 339

As a node moves, it must update its location servers. Nodes avoid generating
excessive amounts of update packets by bounding their location update rates to
their traveled distance. A node updates its level-1 location servers every time
after moving a particular threshold distance ¢ since sending the last update. The
node updates its level- 2 servers after each movement of V/26. In general, a node

-1
updates its level-i servers after each movement of /' 2776, As a result, a node
sends out updates at a rate proportional to its speed and that updates are sent
to distant location servers less often than to local servers.

Location Query. In Figure [each node is shown with the list of nodes for
which it has up-to-date location information. To perform a location query, node
A sends a request by using geographic forwarding to the least greater node than
B for which A has location information. That node forwards the query in the
same way. In the end, the query will reach a location server of B which will
forward the query to B. Since the query contains the location of A, B thus can
respond to A directly using geographic forwarding.

70.72.76.81 1.5,6.10,12,14 10.35,37.45.50
828487 14.37.82.70 51,82

K 20,81
A: 90 38 39
1,5.16.37.62 16.17.18.21 [19.35.30.45,51 30,4143
62,8081 2326,2631 |[51.82
3235
70 @) 0 45
1627080 |15.1837.30 |121637.62 35,38,45,50 10,35,3045
41434550 |70.00.01 50.51.85.61
51.55.61.81 62,63.70.72
91 62 5 51 e 11
62.01.08 19,20,21,23,26 (1,2,5,8,10,12
28,31,32,51,8214,16.(17.82
84,8700,
1 35 |s1.e8

14,17.18.20 2,17.2383 2,17.2326,21 [28,31,32,35 +21.28.41
21,23,26,67 32,43,55,61,82| 37,30 3,45,50,51,55

51‘62.63.7702
14233132 |2.12,20,87.08 |1,23,638187 |2,12,14.16.23 6102021 |6.72.78.84
143,55,81.63 a8 83 20.41.72

Y, 14| [2) Ba7|<ets ™ 28 10

31,81.88 31,32,81,87,90 [12.43.45,50.51 [12.43.55 1.2,5.21.78, Rl 8,10,12,
o 61 87.00.91.68 “'--...__l 16,19

32 98 55 4] 6| 2 17|

212,14,23.26 [12,14,17.23.26 [2,5.6,10.43,55 8212841 |20.21.284172
28,32,81.98 i:.az.g%a?sﬂ 61,62,81,87.98 72 76.81.82

8] 12 C:76 84

31,32,43,55
81.63.70.72

Fig. 4. An example of location querying operations in MGLS

2.3 Design Tradeoffs

As we have seen, MGLS changed the grid organization from quad- to binary-
partitioning. As a result, the number of location servers kept by each node is
reduced and thus the cost of location maintenance for MGLS may be redueced.
However, MGLS may come with an increased query path length due to the
decrement of the number of location servers, as shown in Figure d where a
location query packet was sent from node C (with ID: 76) to 21. It was then
forwarded to node 20, a location server of B in GLS, so that this query packet
could be forwarded directly to the query destination in one hop earlier than the
query packet in MGLS.

340 H.-H. Wang and S.-D. Wang
3 Comparisons Based on a Theoretical Model

In this section, we exploit a developed theoretical model [16] to analyze the
scalibility of MGLS and GLS. The focus of this analytical work is to demonstrate
how design choices affect the protocol costs of the two schemes.

3.1 Metrics

We first define three metrics to be the criteria of evaluating the scalability of
each scheme.

Definition - Location Maintenance Cost: The location maintenance cost
C'y, is defined as the number of forwarding operations each node needs to perform
in one second to deal with the location update packets. It can be regarded as
the cost of maintaining up-to-date location information on location servers in
the network.

Definition - Location Query Cost: The location query cost C, is defined as
the number of packet forwarding operations due to location queries each node
needs to perform in one second. It can be regarded as the cost of acquiring
location information from location servers before sending data packets to other
nodes in the network.

Definition - Storage Cost: The storage requirement cost Cs of a location
service is defined as the number of location records a node needs to store as
a location server. We measure this metric by counting the number of entries
instead of calculating the bytes of location tables.

We separate the location maintenance and query costs for one reason. We believe
that the location query cost is relatively easy to be reduced in a location service
scheme by employing various caching strategies, while the location maintenance
cost is not. Thus, we will focus on the location maintenance cost in the following.

3.2 Model Assumptions

The rest of this section derives the expected values of the first and the third met-
rics as functions of N and v. The node density - is supposed to be a constant.
We also assume that v is high enough that geographic forwarding is operational.
(According to GLS, geographic forwarding works fine only if v > 50 nodes/km?.
Actually, the variable v approaches 100 nodes/km? in our experiments.) We
assume that nodes are moving according to a simplified random way-point mo-
bility model. Each node picks a random point in the network and moves to-
ward it with a random velocity v chosen uniformly between [0, vVp,q]. After the
point is reached, node selects a new random point with zero pause time. Let
P;,¥i =0,---, H denote the probability that node B (the querying node) and
A (the node being queried) are co-located in the same level — i grid. Based on
the size of the level — i grids, P; can be easily estimated as:

The Modified Grid Location Service for Mobile Ad-Hoc Networks 341

Lemma 1: (Grid Coezistence Probability). The probability of the querying node
and the queried node are located in the same level — i grid is
L, if MGLS
P = 21’1*‘1' Vi=0-.--H
qu—i if GLS

3.3 MGLS

Location Maintenance Cost. As we described in Section I MGLS uses
binary grid-partitioned algorithm instead of quad grid-partitioned. A node A
selects one location server in each level — i grid (i = 1--- H). Since all location
servers of A have to store the current location positions of A, they are expected
to be updated periodically to ensure freshness of location information and to
reduce the query failure rate. In MGLS, A updates its level — i server after

each movement of (v/ 9! -4), where 6 represents the update threshold which
can probably be a few hundreds of meters. The updating period is set as the

expected time a node moves a distance of (\/21_1 - 8), namely (\/21_1 -6)/v.

Theorem 1. For MGLS, E(Cy,) = “ 6\/22' R vlog N; E(Cs) =log N.
Proof: To compute the location maintenance cost C,,, we first consider the
expected distance that an updating packet has to travel in the level — i grid,
denoted as E(dY), and the average number of hops a updating packet takes from
node A to A’s location server in the level — i grid, denoted as E(nY). Since one
node may be randomly located anywhere in a level — 7 grid, we can view dj* as
the distance between two random points in two level — i grid adjoined on a side.
Therefore,

; V2 ol V2 sl
Ba@)=VER [[[T [Ve - a - dnidgdoady,
0 0 0 0
:(21'\/27‘R

where R is a constant representing the shorter side length of a level —0 grid. Since

the size lengths of level — i grid are in the ratio of 1 : v/2, the term V2'R thus
corrects the computation of integral in any level —i of grid. And ¢; is a constant
factor representing the average random distance between two neighboring grids,
as shown in Fig. Bla), ¢; < V6.

The expected number of hops in forwarding the packet is the expected distance
divided by z, the average progress of each hop, which can be viewed as a function
of the radio transmission range and the node density. Since we assume both as
constants in our model, so is z. Thus,

B(nt) E(d) _ V2R

v z z

342 H.-H. Wang and S.-D. Wang

Fig. 5. (a) Constant ci- random distance between a pair of nodes in two MGLS unit
squares adjoined on a side. (b) c2- random distance between a pair of nodes in two
GLS unit squares adjoined on a side; c¢3- random distance between a pair of nodes in
two unit squares adjoined on a corner.

i—1
Since updates are sent out at a rate of v/(\/Ql -6)(6 represents the update
threshold), we have

H
v

E(Cp) = i .

;\/2)

_EH: v . cl-\/QiR
SR z

H
Cl'\/2~R
TSz .ZU
i=1

:Cl.\/Q.R”UH
6z

:Cl.\/2.R-vlogN
6z

where H=log N.

As for the Storage Requirement Cost: Cy, remember that the storage require-
ment is defined as the number of location records a node needs to store as a
location server. The average number of records a node stores is the total number
of records stored in the network divided by the total number of nodes. Since
every node has one location server in each level, we have

N-H

E(Cy)=" " =logN. n

3.4 GLS

The GLS scheme uses a similar multilevel structure of the grid hierarchy as
MGLS. A node A selects three location servers in each level — i square, one in

The Modified Grid Location Service for Mobile Ad-Hoc Networks 343

each level — (i — 1) squares quadrants that A is not in, as shown in Figure B An
important difference between GLS and MGLS is the distinct hierarchies of the
grid structure. The same as MGLS, all the location servers need to be updated
periodically in order to ensure freshness of location information and to reduce
the query failure rate. We now prove the following theorem for GLS.
Theorem 2. For GLS, E(C),) = (2c2 —: c;,) I -vlog VN; E(Cy) = 3 log N;
Proof : We first consider the location maintenance cost Cy,,. According to the GLS
algorithm, all moving nodes update their location servers after the distance of
(271.6); at a period of (2071 - §)/v. Consider the expected distances the three
update packets traveled to update the three locations servers in the level — i
square, denoted E(d;). We have

E(d¥) = (2c2 + ¢3) - 2'R, and
E(dY 2cy +¢3) - 2'R
By = P Z Beato) 2 i
z z

where 2°R is the side length of a level — i square, ¢ and c3 are two constant
factors representing the average random distance between two points in two
neighboring squares, as shown in Figure B(b). Simply, we have c; < /5, and
c3 < 2v/2. Since updates are sent out at a rate of v/(2'~! - §), we have

H .
B v (2c2 4+ ¢3) - 2'R
PO = gy 2

_ (2c2+c3) R zH:v-Qi
N 6z P 2i-1
_ (202+03) - R - 9wH

-z
_ (202+C§)’R wlog VN

Z.

where H = (1/2)log /N, since GLS use a quad-grid partitioning. Finally, since
every node in GLS has three location servers in each level, the expected value of
the storage cost for GLS is,

N-3H 3
E(Cs) = N T log N. |

3.5 Summary of Theoretical Analyses

The analytical results of MGLS and GLS share the same asymptotic costs, as
their designs exhibit the same philosophy. However, the constant factors in the
cost are different. It is obviously that the storage cost of MGLS is smaller than
that of GLS. As for the location update cost, which is usually the dominating
overhead in location services, MGLS are also smaller than GLS since ¢; - V2 is
smaller than 2c¢, 4 ¢35 in the worst case, where ¢; < \/6, ca < /5, and ¢35 < 2¢/2.

344 H.-H. Wang and S.-D. Wang

4 Performance Evaluation Using Simulation

This section presents simulation results for both MGLS and GLS. The GLS im-
plementation we used for simulation is that of [17, NS-2 simulation for Grid]. An
outstanding study of GLS’s simulator was presented by M. Kasemann et al.[18].
Our MGLS simulation was implemented by making some necessary modifications
to the GLS simulator.

Simulation Settings. The simulations use CMU’s wireless extensions for the
NS-2 simulator. The radio transmission range for each node is generally acknowl-
edged 250m . The simulations use 2 Megabits per second radios. Each simulation
runs for 300 seconds, during which time, each node generates on average 4 data
packets to other nodes per second. Nodes move according to the random way-
point model. Each time a random target is chosen, a moving speed is selected
between zero and a maximum moving speed, where the maximum moving speed
of the simulation is 30m/s by default. When the node reaches the destination,
it chooses a new destination and begins moving toward it immediately, with no
pause time.

Protocol Constants. All nodes are initially randomly placed across the en-
tire network area. For all the simulation runs, the initial node density is about
100nodes/km?. One reason for this choice is that we intend the system to be
used over relatively large areas such as a campus or municipality, rather than in
concentrated locations such as a conference hall. Therefore, the size of network
area increases linearly with the number of nodes. For a network of 500 nodes in
MGLS, which is the biggest simulation we have done, the grid hierarchy goes up
to level — 7 in a universe of 2800m x 2000m. For both MGLS and GLS, the side
length of a level — 0 grid is set to be 250m (in MGLS, it would be 354m x 250m,).
The location updating threshold is 150m in both schemes.

Performance Metrics. We considered the performance metrics, includeing
average update cost and the qurery success rate [2][15]. In order to have precise
experimental results, we created three levels of traffic loadings in our simulation:
100%, 50%, 10% of N. We make this by giving three distinct bounds (which can
be set in the CBR scenario files) to the number of connections between mobile
nodes. For the case of high loading in the simulation, the number of maximum
connectio ns between nodes is set to be equal to the total number of nodes. The
number of maximum connections equals half the total number of nodes in the
case of medium loading. In the low loading network, the number of maximum
connections is only one-tenth the number of nodes. Each data point in each
of the three levels of traffic loading networks is an average of five simulation
runs. In the results presented below, each data point is an average of the three
scales traffic loadings. The simulations will demonstrate that MGLS fulfills an
impressive balance between designing choice against N and v.

We are interested in the effects of mobility in nodes. High mobility will result
in a significant protocol overhead. Dealing with mobility needs a tradeoff be-
tween the quality of location maintenance and the bandwidth available for data

The Modified Grid Location Service for Mobile Ad-Hoc Networks 345

packets. Aggressive updating can increase query success rate but will occupy the
bandwidth shared with data packets, while loosely location updates may have
an opposite effect.

Protocol Overhead. Figure [0l shows the average location update cost as a
function of (a) the total number of nodes N and (b) maximum moving speeds
of nodes v. The location update cost of MGLS is smaller than that of GLS as
expected in our analysis.

in
n
a

b]
s —a— MGLS s
3228 == GLS g 2.5
. -
2 =2 g 200
] o
B T 178
- 2
T 15 -
2 T 150
g bt
3128 € 1.25
£ =
2 1 2 1m
2 3
So7s 2o
& 2
S o5 A i 0.50 /A———/—‘
% =3
> g

0.25 g
2 p 028 —&— MGLS
2 z —a— GLS
€ 0 0.00

100 200 300 400 500 0 1s 20 25 30
Nurmber of nodes Max speed (m/s)
(a) (b)

Fig. 6. Average location update cost as a function of total number of nodes and the
nodes moving speeds

Protocol Performance. Figure [shows the query success rate for both two
schemes, as a function of (a) the total number of nodes N and (b) maximum
moving speeds of nodes v. Most query failures are due to stale location infor-
mation stored on the servers. Both schemes maintain quite satisfactory query
success rate, around 90% or above, where the MGLS has a little bit better query
success rate than GLS. This result may be due to the lower overhead associated
with the MGLS.

0,95 0,95
0.3 0.9

o

=]

& s

Query success rate
o
H
@
Query success rate
o o

o
@
o

o

0.55 —d— MGLS . —a— MGLS
—a— GLS —— GLS
100 200 300 400 so0 10 15 20
Nurmber of nodes Max speed (m/s)

(a) (b)

=
@
o

2 0

Fig. 7. Query success rate as a function of total number of nodes and the nodes moving
speeds

346 H.-H. Wang and S.-D. Wang
5 Conclusions

In this paper, we presented the design and performance of an efficient location
service for mobile ad hoc networks. We also used a theoretical model to ana-
lyze the behaviors of both MGLS and GLS. With an enhanced grid partitioning
scheme and reasonable tradeoffs, MGLS reduces the protocol overheads in com-
parison with GLS. Mathematical analysis and simulation results confirmed the
performance advantages of our scheme. Future work may be aimed at supporting
energy-efficient or quality-of-service (QoS) for discovering routes, where single-
path routing used in both MGLS and GLS.

References

1. M. Mauve, J. Widmer, and H. Hartenstein. A survey on position-based routing in
mobile ad hoc networks. IEEE Network Magazine, p30-39, November 2001.

2. J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable location
service for geographic ad-hoc routing. In Proceedings of ACM MobiCom, p120-130,
August 2000.

3. Z. J. Haas and B. Liang. Ad Hoc Mobility Management with Uniform Quorum
Systems. IEEE/ACM Trans. Net., vol. 7, no. 2, p228-240, Apr. 1999.

4. 1. Stojmenovic et al.. A routing strategy and quorum based location update scheme
for ad hoc wireless networks. SITE, University of Ottawa, Tech. Rep. TR-~99-09,
September 1999.

5. S. Basagni, I. Chlamtac, V.R. Syrotiuk, and B.A. Woodward. A distance routing
effect algorithm for mobility (DREAM). In Proceedings of the ACM/IEEE Inter-
national Conference on Mobile Computing and Networking (Mobicom), p76-84,
1998.

6. Y.Ko and N.H.V aidya. Location-aided routing (LAR) in mobile ad hoc networks.
In Proceedings of the ACM/IEEE International Conference on Mobile Computing
and Networking (Mobicom), p66-75, 1998.

7. T. Camp, J. Boleng, B. Williams, L. Wilcox, and W. Navidi. Performance compar-
ison of two location based routing protocols for Ad Hoc networks. In Proceedings
of the IEEE INFOCOM, 2002.

8. B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless
networks. In International Conference on Mobile Computing and Networking (Mo-
biCom 2000).

9. The grid project homepage, http://www.pdos.lcs.mit.edu/grid

10. I. Stojmenovic. Position based routing in ad hoc networks. IEEE Commmunications
Magazine, Vol. 40, No. 7, p128-134, July 2002.

11. Taejoon Park , Kang G. Shin. Optimal tradeoffs for location-based routing in large-
scale ad hoc networks. IEEE/ACM Transactions on Networking (TON), v.13 n.2,
p.398-410, April 2005.

12. Y. Xue, B. Li, and K. Nahrstedt. A scalable location management scheme (DLM) in
mobile ad-hoc networks. In Proceedings of the IEEE Conference on Local Computer
Networks (LCN ’01), 2001.

13. Seung-Chul M. Woo and Suresh Singh. Scalable routing protocol (SLURP) for ad
hoc networks. Wireless Networks, 7(5):513-529, 2001.

14.

15.

16.

17.
18.

The Modified Grid Location Service for Mobile Ad-Hoc Networks 347

Christine T. Cheng, H. L. Lemberg, Sumesh J. Philip, E. van den Berg, and T.
Zhang. SLALoM: A scalable location management scheme for large mobile ad-hoc
networks. In Proceedings of IEEE WCNC, March 2002.

Yinzhe Yu, Guor-Huar Lu, and Zhi-Li Zhang. Enhancing Location Service Scala-
bility with HIGH-GRADE. Dept. of Comp. Sci. & Eng., U of Minnesota, Technical
Report TR-04-002, 2004.

Y Yu, GH Lu, ZL Zhang. Location Service in Ad-Hoc Networks: Modeling and
Analysis. In Proceeding of NSF Workshop on Theoretical and Algorithm Aspect
of Ad Hoc Wireless Networks, Chicago, June 2004.

NS-2 simulation for Grid, http://pdos.csail.mit.edu/grid/sim/index.html

H. Hartenstein, M. Kasemann, H. Fubler, and M. Mauve. A simulation study of
a location service for position-based routing in mobile ad hoc networks. Technical
report, Department of Science, University of Mannheim, TR-02-007, July 2002.

Authentication and Access Control Using Trust
Collaboration in Pervasive Grid Environments

Rachid Saadi', Jean Marc Pierson?, and Lionel Brunie!
L LIRIS lab, INSA de Lyon, France
{rachid. saadi,lionel. brunie}@liris .cnrs.fr
2 IRIT lab, University Paul Sabatier Toulouse, France
jean-marc.pierson@irit.fr

Abstract. Pervasive Grids emerge as a new paradigm for providing no-
madic users with ubiquitous access to digital information and comput-
ing resources. However, pervasive grids arise a number of crucial issues
related to privacy and security, especially authentication and access con-
trol, which constitute the security front-end.

In this paper, we propose a trust based model of authentication and
access control that allows nomadic users to roam from site to site and to
gain access to surrounding/remote resources wrt her status in her home
site and to the local policy of the site where she is standing. This model
is supported by a software architecture called Chameleon.

The Chameleon permits users to access grid resources and to implement
adhoc interactions with the local grid site.

1 Introduction

In the last decade, Grid Computing and Pervasive computing have emerged as
two new visions of computing system. Both systems focus on the user accessibil-
ity, offering her a large access to resources, services, and data. The deployment
of these technologies arises new security challenges to perform a nomadic user
authentication and a distributed access control policy [18].

The Grid [I] provides the ability, using a set of open standards and proto-
cols, to gain access to applications and data, processing power, storage capacity
and a vast array of other computing resources over the Internet or distributed
system. A Grid enables the sharing, selection, and aggregation of distributed
resources across multiple administrative domains or organizations based on the
resources availability, capacity, performance, cost and users’ quality-of-service
requirements.

Pervasive computing [2] is the next generation of computing environments
involving information and communication technology. The main purpose of that
technology is to prompt the personal computer to ”everyday” devices where em-
bedded technology and connectivity, as computing devices, become progressively
smaller and more powerful. Also called ubiquitous computing [3], the challenge of
pervasive computing, which combines current network technologies with wireless

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 348 2007.
© Springer-Verlag Berlin Heidelberg 2007

Authentication and Access Control Using Trust Collaboration 349

computing, Internet capability and artificial intelligence, is to create an environ-
ment where the connectivity of devices is embedded in such a way that the
connectivity is unobtrusive and always available.

Either the pervasive computing or the grid computing aims to extend the ac-
cess scope of the user. Thus, according to our conviction, the pervasive security
architecture cannot be deployed without an existing grid and distributed infras-
tructure. Respectively, the grid cannot evolve without a pervasive architecture
entourage. Thus, organizations operate as a grid and constitute the core of the
environment. The Grid is considered as a meta administrator which controls
accessibility and sharing of the set of included resources or services.

,
%,
'
M’

- e
= ervasive

& e Environment H

H S Chameleon «®2

§ Architecture o,

\ = 3\
/. e= ;
£ i
H &
%4’%

Fig. 1. Pervasive Grid

In order to tackle security issues inside a pervasive grid we aim at defining a
generic security architecture, which we called " The Chameleon Architecture”.

The Chameleon Architecture is grafted around the grid among organizations
as well as between users and organizations. Our architecture considers each no-
madic user as a Chameleon, which has the capacity to become a local user
anywhere anytime with any device. Unlike existing approaches that enabling
broad user access using certification chain and delegation [4] [16], our proposal
perform a distrust mathematical function to compute the user trustworthiness
before giving her a corresponding access.

This paper is organized as follows. Section 2 presents a Pervasive Grid sce-
nario. Next, in section 3 we introduce our proposal the Chameleon architecture,
and show its implementation in the pervasive grid environment. Then we de-
scribe how a foreign user accesses unknown sites in section 4. Finally, we discuss
benefits and conclude this paper along with future directions.

2 Pervasive Grid Scenario

The challenge is to allow each nomadic user to roam and access inside this
environment easily and transparently, by exceeding certain barriers like the het-
erogeneity of the different access policies. Let’s consider the following use case.
Pr Bob is a member of University A. This Professor goes to a conference in

350 R. Saadi, J.M. Pierson, and L. Brunie

University B and then to a meeting in University C. He communicates with the
different surrounding ”objects” including students, professors and resources e.g.
printer, video projector etc. In fact, Bob owns a professional card or conference
badge that defines his status and includes a picture or a fingerprint to identify
his identity. This card or badge allows Bob an access inside these universities
according to a convention or shared collaboration (the same working group).
These Universities do not know the owner of the card, but trust his card.

If we map this scenario in the pervasive grid environment, universities corre-
spond to sites (grid). A certificate simulates the professional card; the fingerprint
or the picture is seen as an authentication system embedded in the certificate.
In this manner, if Bob has the right to attend a conference, according to his
certificate, he obtains a new temporary certificate (like a badge in a conference).
This certificate allows Bob:

— to access authorized resources inside this new site like all other members,
— to share his resources with surrounding authorized local users e.g. make
presentation only to registered lecturer.

In this paper we use the following terms:

— Site: Represents an organization, domain or host that implements a local
independent security policy and is limited geographically,

— Target site ”'T”: Represents the site which user likes to access.

— Home site:: Represents the site where user is member.

— Trusted site of ”T”: Represents a site on which ”T” trusts.

— Trust set of ”T”: Gathers all ”T” trusted sites.

— Environment: Is composed by sites like universities, restaurants, posts of-
fice, airports etc.

— Profile: Each user has a profile, depending on the access policies, it can rep-
resent a role (student, doctor) or an access level (trust, distrust, confidential)
ete.

— Certificate: It represents a digital passport of the users. One user owns
some certificates (like professional cards) that prove her membership to each
site.

3 The Chameleon Architecture

The Chameleon architecture represents the backbone to set a security layer inside
a pervasive grid environment. It provides sites and users the ability to perform
authentication and access control policy.

Our architecture identifies two actors: User and Site.

The user has as main characteristics the mobility and the dynamism; she
roams in the environment and uses surrounding or remote resources or services.

The site dubbed as domain or organization represents the entity providing
to the user some services or resources. These pertain to the organization, which
applies inside an access control policy.

Authentication and Access Control Using Trust Collaboration 351

\

- ~
Access Control Manager(AcMM)

Access Control

trustea
sites

Trust Manager(TMM)
o Aec E: S—

I

b) Send.user
5) Evalunte user's home site urity neade

_Doscription Manager(omMm) _ . Credential Mifnager (CMM)
S

. _/

4)Send and authenticate fredential) ?jl

pol

1) Environment t] discovery

a) Connect to the
interface description

Context Manager(CxMM)

User Context]

3) Select
and

adapt

Fig. 2. Chameleon architecture

According to each site the user could have one of these two facets: Local and
Foreign user. The former is recognized as a member of the organization, whereas
the latter is considered as foreigner. With existing security models, she can’t
have any access to any local organization resources.

Our architecture is divided into two parts:

— Chameleon-on-site: Is implemented on each site.
— Chameleon-on-device: Is implemented on the user device.

3.1 The Architecture Description

Chameleon-on-site. It is implemented on the site performing all the interac-
tion and the inter-connection between sites policy. It is composed of four mod-
ules. (S designates Site)

Description Manager Module (S-DMM) : This module represents the environ-
ment by describing its identity (Site Access Descriptor SAD) and its policy (Site
Interface Descriptor SID). The role of S-DMM is crucial, because it represents
the front-end of the site. Thus, according to its description the user can manage
and adapt her device policy.

Certificate Manager Module (S-CrMM) : Like all distributed system [5] [6] [7],
the Chameleon architecture performs a certification mechanism to enhance the
flexibility of the security policy. Indeed the certification model (X509 [8], SPKI
[9]) allows to prove the user rights without home site interference. S-CrMM

352 R. Saadi, J.M. Pierson, and L. Brunie

manages and maintains a system of certification to identify the credential owner
(Credential Authentication) and to generate certificate if needed (Credential
Provider).

Trust Manager Module (S-TMM) : The trust is a fundamental aspect for an
inter-domain relationship [10]. Indeed, to interconnect the pervasive grid com-
munity the ”trust paradigm” is often used. It offers to each site a dynamic system
to evaluate the surrounding trustworthiness environment even further.

Access control Manager Module (S-AcMM): This module is generic, it doesn’t
modify the local access control policy and must be suitable with many access
security model (RBAC [13], MAC [12], DAC [1I]) without modifying the lo-
cal policy behavior. Indeed, this module implements a mapping approach which
grants to an authorized foreign user a local access profile according to her cer-
tificate (Mapping Policy). Furthermore, The S-AcMM can help authorized users
to manage their own devices policy (Resources Access control Generator RAcG)
according to target site characteristics.

Chameleon-on-device. A part of our architecture is installed into the user
device; it is composed of three modules (D designates Device): Context Manager

Module D-CxMDM: In the pervasive environment, the context paradigm is critical.
The user device policy must be convenient to context such as: device type, user
practice, environment etc. This module describes the context of the user (User
Context) and undertakes discovering the surrounding environment (Environment
Context).

Credential Manager Module D-CrMM: According to the context manager,
this module takes charge of selecting and adapting a corresponding credential
from the certificate repository (Credential Context Adaptation) according to the
specific connection with a target site or a user.

Access control Manager Module D-AcMM: Once the user is connected and
identified by the environment, if she wants to share her resources, this module
provides the means to control (Resources Access Control Policy), parameterize
and customize (Sharing Resources Requestor) her own device policy.

In order to build a security architecture, which connects the mobile user to
the pervasive grid community, thus providing authentication and access control,
we identify this challenges.

Each user wants to interact with some resources of surrounding sites. The
challenge is how each target site can recognize, evaluate the trustworthiness and
give then an access to this unknown foreign user?

4 How Foreign User Accesses Unknown Site?

Our Architecture allows user to authenticate on a remote site and to assign
access inside the environment without being locally recognized. Our proposal is
based on a ”Trust Model” using a new certification mechanism ”X316” [I4].

Authentication and Access Control Using Trust Collaboration 353

4.1 Requirements

Trust Relation: Once Bob is authenticated, the site A attempts to assign him
a profile according to the certificate issuer. So, a trust model must be defined
to enable all organizations (Grid) to communicate and share some information
about their members. We define a trust relation to interconnect the grid com-
munity, offering to each site a means to evaluate its surroundings. Let S denote
a set of sites. Let A and B two sites, A € S, B € S. If A trusts B then we say
that the relation Trust is verified between A and B and we note "A Trust B”.
This relation is reflexive, symmetric and transitive.

Trust Evaluation: This property is fundamental for the effectiveness of our
proposition. It allows defining ”trust chains” between sites that do not know
each other (see below).

Based on the Trust relation, we introduce the distrust function t° [17], to
estimate the level of (dis)trust between two sites.

Distrust function. We call distrust function and we note t°, the function de-
fined as:

t0:5%S - N S:Set of sites
(A,B) —d N: Set of natural numbers

-1 if=(A Trust B)
0 _
t°(4,B) = {O <d<T§ otherwise

where d represents the distrust degree and T denotes the distrust threshold
of the site A.

This function quantifies the degree of distrust that the site A shows wrt the
site B. When t°(A, B) increases, the distrust increases (i.e. the trust decreases).
As consequences :

— t9(A, B) = 0 : Any site has a complete trust in itself.
— t9(A, B) < t°(A, C) : Means that the site A has a higher trust in B than in
C.

The distrust threshold represents the maximum level of distrust beyond which
A does not trust B (i.e. the relation A Trust B is not verified).

A feature of the distrust function is the use of the value -1 to denote the fact
that a site does not trust another site. Indeed, as the distrust degree can range
a priori from 0 to any positive number, there is not a priori superior limit value.
Consequently it is necessary to introduce and use a symbolic value to state that
a site does not trust another one. We could have chosen oo or L but for easiness
of computing reasons, -1 is more convenient.

The distrust function shows properties related to the properties of the Trust
relation.

354 R. Saadi, J.M. Pierson, and L. Brunie

Properties of distrust degree:

— Self trust: VA € S,t°(A, A) =0

— Non-commutativity: 3A, B € S/t°(A,B) = dy ANtY(B, A) =ds Ndy # da

— Composition: Let A, B, C 3 sites. The composition of the distrust degrees
t(A, B) and t°(B, C), noted t°(A, B) ® t°(B, C) is defined as:

-1 if(t°(A,B) vt (B,C)) = —1

t°(A, B)
o =< t%A,B)
t°(B,C) + otherwise

t%(B,)

Generalization: Trust chains
The composition of distrust degrees is generalized to n sites by composing two
by two the distrust degrees:

tO(AL ceny ATL) = tO(Al,AQ) D...PD tO(An_l, An)
(44, ..., A,) is called a trust chain.

Notation: Distrust propagation function:

Let A and C 2 sites of S; let By...B,, n sites of S.

Let us note T = (By, ..., By)

We note P2(A,C) and we call distrust propagation degree between A and C
based on T the value:

PY(A,C) =t°(A, By, ..., Bn, C).
Property: PJ(A,C) =1°(A,C)
Theorem: Pg(A, C)=-1«3F,G € (A, By,...,B,,C)/t°(F,G) = —1.

Proof : trivial by application of the definition of t° : The composition of distrust
degrees equals -1 if and only if one at least of the distrust degrees equals -1.
Indeed, this distributed system can be seen as a Trust graph noted T, (S, E) a
valued and directed graph such that:

— The nodes of the graph represent the sites of S.

— Each Trust relation between two sites is represented by a directed edge e.
The set of edges is consequently identified with the set of relations, E.

— Each edge is valued by the distrust degree between the sites represented by
the source and destination nodes of this edge (use of the ¢V function).

A Certification Model: Actually, all distributed systems use a certification
mechanism to enhance the system flexibility and dynamism. Indeed, the user
become more autonomous and can authenticate and proves her rights. In the
Chameleon architecture we define a new format for certificate called X316:

Authentication and Access Control Using Trust Collaboration 355

Morph Access Pass Certificate. This format facilitates creating any sort of cer-
tificates or credentials e.g. Attribute certificate, Role certificate etc. This " X316”
works as a pass, allowing its owner to roam and gain access in the environment.

This certificate mainly testifies the user profile (status or access level) and
rights in a Home/Trusted site. If the user wants to access a particular target
site, her device selects one of her certificates, which is recognized by this one.

Our contribution has an objective to define a very flexible model of certifica-
tion. It is inspirited by the W3C standards: ” XML Digital signature” (XMLDSig)
[19] and " XML Encryption” (XMLEnc) [20]. The X316 is designed for nomadic
user. Indeed, unlike all certification system, the same X316 certificate can be
used and authenticate from various devices with different capacity and charac-
teristics, and can be generated dynamically along to user trip. In fact, by defining
specific tags to delimit the dynamic parts, this certificate acquires the capability
to transform and to morph easily its content according to context, situation, and
environment.

Therefore, the X316 fulfills three constraints:

— Format Flexibility.
— Multi authentication.
— Contextual adaptation.

X316 could be obtained by two different ways:

— FEach site gives a Home Certificate or H316, to all its members.
— Each site gives a Trust certificate or T316, to a guest, when it trusts her
Home Site.

Header:
Type= H-316
Site = « B »

Path= site B

Right :
Profile = Level 3 7 Right :
=g A-Profile = Student

Authetication :
RSA Key 1024 o - Authetication :
RSA Key 512 = RSA Key 1024

Fig. 3. X316 Type

As illustrated in the figure Bl the X316 is composed by:

— The header: It identifies the certificate.

— The right: It is a variable part of a certificate, depending on the site policy.
This part contains information about user rights, such as status or access
level in a Home/Trusted Site (certifying site). The use of this profile is orig-
inal. Indeed, unlike other systems of certification that certify an access to
particular resources, this one certifies the profile that represents all autho-
rized access to site resources.

356 R. Saadi, J.M. Pierson, and L. Brunie

— Authentication: This part permits one to identify the owner of the X316.
Authentications are numerous, and related to the variety of devices used
in the pervasive environment (PDA, mobile phone, terminals). Facilitating
certificates authentication could be fulfilled by embedding some identifica-
tions (picture, fingerprint etc.) according to device capabilities and the site
security policy.

A Context Description: All standards e.g X509, PGP use a hash algorithm
to obtain a residual value from the certificate data. This value is signed by the
private key of the certification authority. Consequently if the content of the
certificate is modified, the residual result will be erroneous. In this case, the
users can’t adapt her certificate by masking any information inside.

In our approach, we use a single certificate that mainly contains the user pro-
file, all user access rights and some authentication systems. Yet we define in this
model a specific signature method (X316 signature), using specific tags. In fact,
using dictionary ontology and a learning mechanism, the certificate structure
can morph according to user and environment context (X316 context). Thus,
the certificate owner can freely mask some information. In this manner the user
device extracts a sort of sub-certificate (credential) from the original one, which
only contains the essential information for each specific transaction or context.

Mapping Policy: The main feature of our approach is to append an additional
security component without modifying the local policy behavior. So, each site
defines some local profiles, which can be attributed (externalized) to trusted
foreign users. In the aim to assign to foreign users the adequate profile, a mapping
policy is implemented to correspond each user home profile to an analogous one.
The mapping process can be adapted according to some constraints such as user
profile, user context, home user trustworthiness, etc.

4.2 Chameleon Behavior

Selecting and morphing a certificate. The context manager (D-CxMM) of
Bob device scan the surrounding environment and collects needed information
to inform the user context. Then, according to the target site A, the ” Credential
Manager” selects a valid credential according to ”A” identity (Hospital, uni-
versity, airport etc.) and the user context (device, type of connexion...). Thus,
the ”Credential Authentication” Component uses the generated credential to
identify its owner by selecting one authentication process from the credential
authentication part (challenge response, biometric etc.)

Evaluating the user trustworthiness. The core of the system works as a
trust graph. In fact, when the user Bob comes to a target site, this one explores
the graph (by asking its trusted site) to evaluate and recognize Bob home site
"H”. Once H is recognized, a trust chain is created between the target site ”T”
and the trusted site ”D”. This chain can be evaluated in two directions.

As illustrated in the figure @ the first path which starts from the target site
"T” to the trusted site ”D” (trusted site of the Bob’s home site) allows D to

Authentication and Access Control Using Trust Collaboration 357

4 Target Site Request
- - -m— Trusted Site Response
o User's Target Site
D User's HomesSite
Trusted Sites

Trust Set

Fig. 4. Trust propagation

return to Bob its evaluation about ”T” ; the second path which is the inverse of
the first one gives to the target site a trust evaluation about the foreign user’s
home site.

— First path evaluation (Target Site Request): Since the trust chain is built, a
trust evaluation is performed while the chain is propagated. Consequently,
when the last trust site ”D” is retrieved, it evaluates and computes the target
site trustworthiness P2 p 4 (D, T) .

However, the main challenge of pervasive environment is the fluency of
the interaction between the environment and the user. Indeed, when the
last trusted site computes the final trust propagation value, it returns its
assessment (e.g. P&B’A(D, T) = 23) of path. The problem is: How the user
can interpret this value 23’7

To help user, we define a classification based on human living, by using
the Highway Code. These colors have an intuitive signification to the user,
as following:

Green : Very safe site

Orange : Safe site (warning)

Red : Less safe site (not recommended)
Black : Unsafe site

Thus, before sending the P& p.A(D,T) to concerned user, the trusted site D
implements a function ”F” to compute the corresponding color ”col” form
the trust value. For confidentiality and no repudiation, the ”col” value is
ciphered, signed with the private key of the site C, and sent back with the
response to "D”. Consequently, only the user can read ”"col” and verify its
authenticity.

Once the user receives the ‘col’ Value, she could recognize the D trust-
worthiness about the target site. Furthermore, as illustrated in the figure
Bl by combining the ”col” value and the user home site trust evaluation for
each trusted site (T'Scol), the user computes a more precise Trust Path Eval-
uation TP(col, T'Scol). In fact, each site classifies its trusted sites into three

358 R. Saadi, J.M. Pierson, and L. Brunie

Col

J/

TScol

©)
&)

(N J

0©|0e
0©|19®
00|00
0000

Fig. 5. User Trust Path evaluation ”TP”

groups: Red, Orange and Green, and defines for each group a specific pair

of keys(Public and Private). Therefore, each trusted site signs the computed

trust value with the group private key before replying to target site.
Consequently, according to the used key:

e the user is sure that the given access is initiated by a trusted site since
only a trusted site can use one of home site group key.

e the user can identify the corresponding ”T'Scol” of the trusted site, since
each color corresponds to a group key.

— Second path evaluation (Trusted Site Response): The evaluation of this path
(PB.c.p(A, H)) permits the target site to decide if a ”foreign” user can be
allowed to access target site resources (e.g. to decide if a user having no
account within the system can get log in). Thus, we consider two kinds of
access: Direct access and Transitive access.

e A direct access is provided by a target site to all users registered by
its trusted sites e.g. site A. This direct access is assessed by the trust
value. In fact, as illustrated in the figure [l the target site endeavors to
recognize this foreign user. A direct access is given if this foreign user is
member of the target site trust set. Otherwise the target site investigates
the closest trusted site about the user’s home site.

e A Transitive access can be provided by a target site (Site T) to a user
who does not belong to its trusted sites (e.g. Site B,C or D) on condition
that it exists a (positive) trust chain between one of the user’s home
sites and ”'T”. This transitive access is valued by a computed trust value
between these two sites (as before, in case of the existence of several
possible chains, the target site is responsible for choosing the reference
chain).

Therefore, this model, using the community collaboration, enables the target
site to evaluate the user according to her home site. Moreover the context
(user device, communication protocol...) can be used to increase or decrease
the new user rights.

Attributing an access profile. Once a user is allowed to access the site T, the
latter attributes her an analogous profile using the mapping policy. Consequently,

Authentication and Access Control Using Trust Collaboration 359
this new profile defines all user access rights inside the target site. Indeed, a
mapping policy must be defined in order to give each foreign user an analogous
profile (A-Profile). Each site creates a mapping table that enables matching
between the different profiles of trusted sites and its local ones. For example:
User Bob, having an access profile as level 5 in his home site, wants to access
the site T, which provides Bob a new access level for instance, level 3 (it is T
responsibility to map the original level accordingly with its local policy). Further
works in this mapping policy is not part of the presented work.

5 Implementation and Discussion

A demonstrator has been implemented to illustrate the Chameleon architecture
behavior. This demonstrator allows the user to roam inside three universities,
her home university (using Username and Password), and two other universities
(using M316 and T316).

The user enters her home university U0 and claims an M316. She uses this
M316 and accesses university Ul, who trusts U0. When the user is allowed to
access U1, she can claim another T316. Finally, this one provides a user an access
to U2, thanks to the trust that is given by U2 to Ul.

Domainet i Authentifcatiors
Bienuenue dnsvole session: Rachii Saari Entéte KEVH1P SicloneHjsyCOESHSHA
APC Appertenince IDCerticat 1 KEY2EPUBRSA(512)
CBARSAS12
KEYJEPUBRSA(1024)
 Pasnase Tipe APCA
Pl g ’7"7““5 Nompére [Domainet
LI | User 3l Rachia
Ll C6RSA1024 Valiité 122004
P [| passpase
@mai - @ | Selecion |
asraritgyznel] Tragabilté init: cryptage DES
Niveau daccés en " 1: Domained Crytage réussi
3 it hachiage SHA
7 Mot de passe Hachage réussi
Cobemphwa [] Authentifcationréussite
Load phato Load photolR
Deconikin
Retour
Login

Fig. 6. The demonstrator

The generated X316 embeds three authentications: Two remote (Public keys
512 and 1024) and one local (using an Infrared connection with a mobile phone).

The authentication system uses the challenge response mechanism for remote
authentication. Each user is authenticated by signing the challenge with corre-
sponding private key to one of public keys in the X316. However the local authen-
tication is fulfilled in the following process: The user captures a picture with her
mobile phone, then sends it trough infrared connexion. Afterward, she attached a
password to this picture. Finally, the site embeds the hash function generated by
this authentication as an authenticator. In the same way, when the user wants to
authenticate her certificate in the trusted site, she sends, by infrared connection,
the photo and introduces an associated password to authenticate it.

360 R. Saadi, J.M. Pierson, and L. Brunie

The main constraint of our architecture is illustrated mainly by difficulties
arisen while managing relationship among organizations (sites) and applying
the mapping policies. In fact, an organization, having a trust relationship with
other organizations, must validate and value relations manually (semi-manually)
by the administrator. However, each organization has a trust relationship with
only a few other organizations, and it builds this relationship only once. When
the relationship is validated and the Mapping DB created, the system becomes
standalone. The mapping policy is applied in the site set which generally uses a
similar policy e.g., RBAC, MAC, DAC. For example: In a medical community,
it is probable that roles such as ”Doctor”, ”Nurse” or ”Patient” exist in all
organizations, allowing for an easy mapping through the community.

6 Conclusion

The Chameleon architecture allows the user to roam transparently in an en-
vironment simply by using her certificates. The Chameleon using the X316
presents a number of advantages. Indeed, it consists in a decentralized archi-
tecture since each site, knowing only its neighbors, can perform a large but con-
trolled access to user communities. Chameleon reduces the human interaction
where many security management functions can be processed dynamically. In
addition, Chameleon increases the user rights along her trip without modifying
the local site policy.

However the challenge is to perform an efficient and generic HMI providing to
user a very usual interface to express her security requirements. As future works,
we investigate to define a platform that provides integrating specific services to
define any site environment. And for fluency, we will integrate our team works on
context description [T5] to X316 giving the user device the capacity to manage
and adapt the certificate dynamically with respect to context without soliciting
any user intervention.

References

1. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 1999.

2. M. Satyanarayanan . Pervasive Computing: Vision and Challenges. IEEE Personal
Communications journal, pages 10-17. Aug 2001.

3. N. Shankar, W. Arbaugh. On Trust for Ubiquitous Computing. Workshop on Se-
curity in Ubiquitous Computing, Sep 2004.

4. L. Seitz, J.M. Pierson and L. Brunie. Semantic Access Control for Medical Ap-
plications in Grid Environments. A International Conference on Parallel and Dis-
tributed Computing, pp374-383, Aug 2003

5. G. Aloisio, M. Cafaro, P. Falabella, K Kesselman and R. Wiiliams, Grid Computing
in the Web Using the Globus Toolkits. Editor HPCN Europe, pp 32-40, 2000.

6. D. Chadwick and A. Otenko. The PERMIS X.509 Role Based Privilege Manage-
ment Infrastructure. In Proceedings of the 7th ACM Symposium on Access Control
Models and Technologies, pages 135140, Jun 2002.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Authentication and Access Control Using Trust Collaboration 361

M. Lorch, D. Adams, D. Kafura, and al. The PRIMA System for Privilege Man-
agement, Authorization and Enforcement. In Proceedings of the 4th International
Workshop on Grid Computing, Nov 2003.

. ITU-T Rec. X.509 (2000). ISO/IEC 9594-8 The Directory: Authentication Frame-

work

. ITU-T Simple public key infrastructure (SPKI) charter, http://www.ietf.org/

html.charters/OLD /spki-charter.html.

A. Abdul-Rahman and S. Hailes. A Distributed Trust Model. In proceedings of the
ACM Workshop on New Security Paradigms, pp48-60, sep 1997.

M. H. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in Operating Systems.
Communications of the ACM, 19(8):461-471, 1976.

D. E. Bell. A Refinement of the Mathematical Model. Technical Report ESD-TR-
278 vol. 3, The Mitre Corp., Bedford, MA, 1973.

R. Sandhu, E. J. Coyne, H. L. Feinstein, and al. Role-Based Access Control Models.
IEEE Computer, 29(2):38-47, 1996.

R.Saadi, J. M. Pierson and L. Brunie.X316: Morph Access Pass certificate. Tech-
nical Report, INSA de Lyon France. 2006.

T. Chaari, D. Ejigu, F. Laforest , M. Scuturici.Modeling and Using Context in
Adapting Applications to Pervasive Environments, In the Proceedings of the IEEE
International Conference on Pervasive Services (ICPS’06), Pages 111-120, Lyon,
France, Jun 2006

J. Basney, W. Nejdl, D. Olmedilla, V. Welch, and M. Winslett. Negotiating trust
on the grid. In 2nd WWW Workshop on Semantics in P2P and Grid Computing.
may 2004.

R. Saadi, J. Pierson, L. Brunie. (Dis)trust Certification Model for Large Access in
Pervasive Environment. JPCC International Journal of Pervasive Computing and
Communications. Volume 1, Issue 4. pp 289-299. oct 2005.

N. Sklavos and O. Koufopavlou. Mobile Communications World: Security Imple-
mentations Aspects - A State of the Art. CSJM Journal, Institute of Mathematics
and Computer Science, Vol. 11, Number 2 (32), pp. 168-187, 2003.

T. Imamura, B. Dillaway and E. Simon. XML-signature syntax and processing.
In W3C Recommendation. Dec 2002. http://www.w3.org/TR/2002/REC-xmlenc-
core-20021210/

M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon. XML-encryption syn-
tax and processing. In W3C Recommendation. Feb 2002. http://www.w3.org/
TR /2002/REC-xmldsig-core-20020212/

http://www.ietf.org/html.charters/OLD/spki-charter.html.
http://www.ietf.org/html.charters/OLD/spki-charter.html.
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http:/www.w3.org/TR/2002/REC-xmldsig-core-20020212/

Architecture-Based Autonomic Deployment
of J2EE Systems in Grids

Didier Hoareau', Takoua Abdellatif2, and Yves Mahéo!

! Valoria, University of South Brittany, France
{didier.hoareau, yves.maheo}@univ-ubs. fr
2 ENISO, University of Sousse, Tunisia
takoua abdellatif@yahoo. fr

Abstract. The deployment of J2EE systems in Grid environments remains a dif-
ficult task: the architecture of these applications are complex and the target en-
vironment is heterogeneous, open and dynamic. In this paper, we show how the
component-based approach simplifies the design, the deployment and the recon-
figuration of a J2EE system. We propose an extended architecture description lan-
guage that allows specifying the deployment of enterprise systems in enterprise
Grids, driven by resources and location constraints. With respect to these con-
straints we present a deployment process that instantiates propagatively the ap-
plication, taking into account resources and hosts availability. Finally, we present
an autonomic solution for recovery from failures.

1 Introduction

Grid environments have moved from the mere aggregation of computational resources
dedicated to parallel and scientific applications to more general sharing of networked
resources. The kind of Grids we consider in this paper can be seen as a set of hetero-
geneous machines interconnected by links of various capacities. Moreover a number of
factors impacting the dynamism of the system (machine crashes, user disconnections,
system failures etc.) cannot be neglected. Such Grids become attractive to multi-tier In-
ternet service providers who want to improve the quality of service they offer. For this
reason, many recent research works aim at finding the best models and techniques to ex-
ploit the Grids for better performance and high availability (e.g. [1I2]]). However, these
works concentrate more on finding models and proving their effectiveness and do not
propose efficient solutions automating the deployment and the recovery from failures of
enterprise middleware and applications. Such features are very important and are still
challenging in the context of interactive applications. Indeed, unlike scientific parallel
applications whose parts can be independently deployed and executed, multi-tier mid-
dleware and applications are composed of interdependent pieces of software that have
to coexist at execution time. Furthermore, the failure of one part of the enterprise system
may involve service discontinuity or performance degradation. Recovering the system
architecture, as initially defined at deployment time, is very important to preserve the
agreed quality of service.

In this paper, we propose a solution for deploying enterprise systems in Grids and
automating the recovery from failure of parts of the system. To achieve this goal, we

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 3624373, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Architecture-Based Autonomic Deployment of J2EE Systems in Grids 363

consider a J2EE system that we call a virtual cluster, similar to a classical J2EE cluster
in that EJB and Web containers are replicated for backup fault-tolerance considerations.
We believe that our solution is applicable to other models and other configurations of
multi-tier Internet applications on wide-area networks, and it can be of interest to re-
searchers in this field to easily experiment their different models on Grids and for ser-
vice providers to easily handle an important number of clients. Our approach consists
in applying an architecture-based deployment [3]] and in automating the management
of distributed systems. The idea is to abstract the managed system into an assembly
of explicitly bound components and to use these components as units of configura-
tion, deployment and reconfiguration. We adopted this approach for J2EE systems in
a previous work—in classical cluster environments—by re-engineering an open source
application server [4]]. The re-engineering work consists in transforming the server parts
into explicitly connected components. With the same component model, Fractal [3] in
our case, we also represent the underlying resources like the nodes of the Grid. An
ADL (Architecture Description Language) permits the description of the different parts
of the distributed system, their configuration and their relations in terms of bindings
and encapsulation. Finally, a deployment engine allows automating the deployment of
the J2EE system using its description on the cluster targets. Compared to J2EE clusters,
Grids are highly distributed, heterogeneous and dynamic. For this reason, our deploy-
ment system needs to be extended to manage virtual clusters within the Grid constraints.
In this paper, we demonstrate the extension of the Fractal ADL to describe the compo-
nent resources, a resource allocation mechanism and a solution for an automatic recov-
ery from failures.

The layout of this paper is the following. In Section2l we present more in details the
context of our work and the main underlying assumptions. In Section 3l we describe
our deployment process and its resource allocation service. We detail the current state
of our implementation and some first results in Section [l Section [l discusses related
work. Finally, Section [@] concludes the paper and identifies future work.

2 Context and Main Assumptions

2.1 J2EE System Configuration and Deployment

J2EE application servers are complex service-oriented architectures. In a previous work,
we demonstrated that solving the deployment of J2EE applications requires that the in-
ternal software architecture of the J2EE server, in terms of the services that compose
it and their various interaction and containment dependencies, be made explicit and
modifiable at run time [4]]. Indeed, the configuration of the system and its deployment
parameters have to be described using the elements of the system’s architecture. This
description can then be used as a basis to implement and automate different deployment
and reconfiguration policies. This is what is generally called architecture-based man-
agement [3]). For this purpose, we created JonasALaCarte, obtained by re-engineering
the JOnAS (Java Open Application Servelﬂ) open source application server using the
Fractal component model [3]].

! http://jonas.objectweb.org

364 D. Hoareau, T. Abdellatif, and Y. Mahéo

Thanks to a componentization of the server itself, where all the services are en-
capsulated into Fractal components, the architecture of the server is explicit. Both the
hardware and the software entities are represented by components.

2.2 Deployment in a J2EE Cluster

Building a J2EE cluster consists in replicating the Web and EJB tiers for load balancing
and fault tolerance. A front-end load balancer (generally a HTTP server like Apache)
dispatches the HTTP requests to the containers. A group communication system allows
the consistency between stateful data hosted in the containers to be maintained. In order
to deploy a clustered JonasALaCarte, the administrator has to produce an architecture
descriptor (written with an ADL) together with a deployment descriptor. The first one
defines the architecture of JonasALaCarte as a set of interconnected components and the
second one exhibits the resource requirements of each component. The instantiation of
this description allows the application server components to be configured and deployed
on the target machines in an automated manner. Unlike in current JOnAS clusters, the
unit of replication in JonasALaCarte is the service component and not the whole server.
This selective replication is important since the EJB containers and the Web containers
are generally execution bottlenecks and we need more replicas for these services than
for other ones (Registry service, Transaction service, etc).

Figure [I] presents an example of an architecture for a J2EE clustered application
server. Notice that we abstract the deployment and the configuration of an application
server cluster into the uniform handling of Fractal components. Besides, a cluster con-
figuration is just a particular configuration of the application server where components
are distributed and replicated (represented in greyed boxes) on different JVMs. The
same management tools are used to manage a stand-alone server in a single JVM and
to manage a cluster of servers.

T T
Configuration
T »| Manager T
Web :' T T -
Container| N\ EJB . Trggsrsiit";"
" |Container|
T T
EJB g
Apache "|Container[™ H Database
T T
TT EJB - . TT .
Web |/, s Container| "™+ | Transaction
Container| Security Service
Middleware Service

Fig. 1. Component-based view of JonasALaCarte in a cluster environment

2.3 From J2EE Clusters Management to Virtual Clusters Management

We call a virtual cluster a J2EE system having the same configuration as a classical
cluster (a front-end load balancer, a set of replicated containers and a group commu-
nication system for stateful data replication) but deployed in a Grid. By defining the

Architecture-Based Autonomic Deployment of J2EE Systems in Grids 365

number of replicas and the configuration of the services, the virtual cluster can repre-
sent different deployment models in wide-area networks. In this paper, we consider that
our Grid system is composed of different zones; each zone groups a set of machines
geographically close. Moreover, for each zone, some particular machines are well iden-
tified and are made public (on a Web site for example). We call zone managers these
machines because they contribute in the deployment process.

Unlike a J2EE cluster, a Grid environment is highly distributed and are heteroge-
neous in terms of software and hardware configurations. Resource allocation is conse-
quently a complex task. Grid machines are more dynamic either because they belong to
end-users that frequently join and leave the Grid or because they are shared with other
dynamic applications. However, if a machine involved in the execution of a multi-tier
application leaves the system, a service discontinuity or a performance degradation may
be induced leading to disastrous economic consequences. In front of these limitations,
we identify the following requirements:

— Resource allocation should be automated. Each component has to explicitly de-
fine its required resources and the deployment system has to automatically find the
appropriate target machine offering necessary resources for each component.

— Each variation in the Grid machines involved in an application execution has to
be systematically detected and recovered. Indeed, in order to maintain the agreed
quality of service, the configuration of the J2EE system has to be preserved. If the
unavailable component is not replicated, its recovery allows ensuring the service
continuity. In some cases, the service continuity is ensured thanks to the replication
of the leaving component, like for containers. If the replica is a simple backup, this
component needs to be replaced in order to preserve the fault-tolerance degree of
the system and if the replica is involved in the load balancing, it also needs to be
replaced to preserve the same level of performance.

3 Virtual Cluster Deployment System

In order to deploy a J2EE server system in a network such as the one described in Sec-
tion we cannot rely on a total knowledge of the different machines: this is hardly
feasible as the size of a zone is important and as they are heterogeneous. Moreover,
some machines—that were disconnected when the deployment was launched—can en-
ter the network. Thus, traditional approaches, consisting in defining a target machine
for each component of the application to be deployed, are not feasible in our context.
We propose an extension to existing ADLs (xAcmet, [6]) that allows the description of
the resource properties that must be satisfied by a machine for hosting a specific com-
ponent. In our approach, it is no more mandatory to give an explicit name or address
of a target machine: the placement of components is mainly driven by constraints on
the resources the target host(s) should satisfy. Then, we use the description of the archi-
tecture and the deployment specification to define a deployment of a J2EE system in a
zone: installation and redeployment of the component are made in an automatic way.

2 http://www-2.cs.cmu.edu/ acme/pub/xAcme

366 D. Hoareau, T. Abdellatif, and Y. Mahéo

In the following we present the general deployment algorithm in two steps. First, we
describe the deployment process that allows the parts of the application to be deployed
in a propagative way. Then, we present the mechanisms we have implemented to handle
failures of the machines and of the different parts of the system.

3.1 Deployment Specification

In order to specify the deployment of a J2EE system, we define two descriptor files
written with Fractal ADL. The architecture descriptor contains the architecture of the
system in terms of component definitions (their name, their client and server interfaces,
their implementation) and component interactions (the bindings between components).
The other descriptor, named deployment descriptor, contains, for each component, the
description of the resources that the target platform must satisfy and references to com-
ponent instances (defined in the architecture descriptor).

In the deployment descriptor a deployment context is defined for each component.
Such a context lists all the constraints that a hosting machine has to verify. There are two
types of constraints that can be defined in a deployment context: resource constraints
and location constraints. Resource constraints allow hardware and software needs to be
represented. Each of these constraints defines a domain value for a resource type that the
target host(s) should satisfy. With location constraints some control on the placement
of a component can be defined when more than one host applies for its hosting.

Figure [2] shows the deployment descriptor associated with the J2EE system repre-
sented in Figure [Tl (Some repeated parts have been omitted). This descriptor contains
the resource constraints associated with every component (e.g. lines 10—17: EJB con-
tainer ejb1 has to be installed on a host that have at least 512 MB of free memory) and
location constraints, that indicate the co-location of some components (e.g. lines 45-47:
transaction service component transacl must reside on the same host as the configura-
tion manager, for example because they share local resources). We can also control the
location of a component according to the bandwidth of the network: lines 51-53 spec-
ify that the bandwidth between the machines hosting component web1 and the others
machines must be greater than 150 Mb/s).

For both performance scalability and high availability, each tier can be replicated.
However, we should not require that all replicas be started at the same time. What is
usually desired is to activate as soon as possible the Internet application when an EJB
container is deployed and a Transaction Service is available. The other replicas, mainly
used for performance, can be deployed later as soon as necessary resources become
available. For this purpose, we have added a cardinality attribute to the description of a
component’s interface. This attribute takes the form of a couple of values that specify
the minimum and the maximum number of bindings allowed through the interface.

3.2 Deployment Process

As stated in section[2.3] dedicated machines—the zone managers—are defined for each
zone. A given zone manager has two roles: (1) Maintaining a list of the machines in a
zone and (2) orchestrating the deployment process in the zone.

We consider in this section a single manager per zone. The address of this manager is
maintained on an already known site. A machine joining a zone gets the zone manager

Architecture-Based Autonomic Deployment of J2EE Systems in Grids

36

7

1|<component name="apache">| 19|<component name="gjb2"> 34|<component name="transac1">
2| <location-constraint> 20| ...</component> 35| <location-constraint> <target name="t1" />
3 <target varname="a" /> —rahan 36| </location-constraint>
4| </location-constraint> 21 <c<omp0nent name="¢jb3"> ‘ 37|</component>
5|</component> 22|...</component> ‘ " " ‘
6[<component name="gjb1"> 23 [<component name="web1"> 38| <component name="transac2"> ...</component>
) . 24 <resource-constraint> 39|<component name="configurationManager" >
7| <location-constraint> —nEqon : . e
o qn 25 <memory free="512! 40| <location-constraint> <target name="c" />
8 <target name="e1" /> 2% unit="MB" 41| <flocati traint>
9| </location-constraint> 27 operator="min" /> < oca |on—t<;ons rain
10} <resource-constraint> 28 </resour‘():e—constraint> COMPONEn
11 <cpu speed="1" : " 43 |<!I-- Global loc. constraints for JonasALaCarte -->
P " 29 <location-constraint> : :
12 unit="GHz e 44| <location-constraint>
13 operator="min" /> 30 SEaroeliname v 45| <operator name="equal">
—nEqom 31| </location-constraint> P qual™
14 <memory free="512 32| </component> 46 <arg varnames="t1,c" />
15 unit="MB" 47| </operator>
16 operator="min" /> 33|<component name="web2"> 48| <operator name="alldiff">
17| </resource-constraint> 34|...</component> 49 <arg varnames="e1,e2,e3" />
18
</component> 35\<component name="database“/>\ 30 </qperator> gy 4
51| <binding from="w1" to="*">
36[<component name="security"/> | 52 <bandwidth="150" unit="Mb/s" />
53] </binding>
54| </location-constraint>

Fig. 2. Deployment descriptor of JonasALaCarte

address and sends a presence notification message. The zone manager adds the newly
connected machine in a list. The case of multiple zone managers, necessary for fault-
tolerance, will be detailed in section

The first step of the deployment process consists in sending the ADL files of the J2EE

system to deploy to the zone manager (whose identity has been obtained beforehand
by the administrator, from a given web site for example). As soon as the deployment
descriptor is received by the manager, the deployment tasks are performed as follows:

1.

The manager multicasts the deployment and architecture descriptors to all the zone
nodes that are connected. The deployment descriptor contains resource and location
constraints, and the identity of the manager.

Having received the deployment and architecture descriptors, each node checks the
compatibility of its local resources with the resources required for each component.
If it satisfies all the resource constraints associated with a component, it sends to
the manager its candidature for the instantiation of this component.

The manager receives several candidatures and tries to compute a placement solu-
tion in function of the location constraints and the candidatures. In the case there is
no location constraint associated with a component, the first candidate is chosen.
Once a solution has been found (or if a candidate has been chosen in the previ-
ous step), the manager updates the deployment descriptor with the new placement
information and broadcasts it to all the zone nodes.

Each node that receives the new deployment descriptor updates its own one and is
thus informed of which component it is authorized to instantiate and of the new
location of the other components.

The final step consists in downloading necessary packages from well defined pack-
age repositories. The location of these repositories is defined in the deployment
descriptor (not shown in the example for sake of clarity). For the components that
are instantiated locally, their client interfaces (if any) must be bound to remote com-
ponents. When the remote component possesses a constrained cardinality, a request

368 D. Hoareau, T. Abdellatif, and Y. Mahéo

is sent to the corresponding machine in order to know if a binding is possible. If the
addition of a new binding is accepted at the server side and when a positive answer
is received, the binding is achieved with the remote reference hold in the answer
message. Besides, the number of incoming and outgoing binding is updated.

The above steps define a propagative deployment, that is, necessary components
for running J2EE applications can be instantiated and started without waiting for the
deployment of all the components in the ADL descriptor. As soon as a resource become
available or a machine offering new resources will enter the network, candidatures for
the installation of the “not yet installed” components will be sent to the zone manager,
making the deployment progress.

When a new deployment descriptor is received (step 5) the binding establishment
described at step 6 can also be made if the deployment descriptor contains new infor-
mation on the location of some components that have to be bound with some already
(locally) deployed components.

Let’s consider an example of resource constraint. The constraint alldiff in the deploy-
ment descriptor (lines 48—49) indicates that the three EJBContainer must reside on three
distinct hosts. In order to resolve this constraint, a machine must at least have the infor-
mation of three machines that can hosts each one an EJBContainer. Thus, by collecting
candidatures (step 3), the zone manager may decide on the placement of component
provided there exists a combination of candidatures that solves the location constraints.

We can notice that in this deployment process: (1) the host selection of a component
is made by the zone manager; (2) the instantiation of a component is achieved by the
host selected by the zone manager; (3) the bindings needed by a component are initiated
by the machine hosting it; (4) the activation of a component can be made as soon as its
client interfaces are bound. Note that in our case, the activation of the container com-
ponents (i.e. EJB and Web containers) involves the activation of the J2EE application
running inside.

3.3 Automatic Recovery from Failures

In the environment we target, resources can also become unavailable (e.g. the amount
of free memory demanded may decrease and become not sufficient), some parts of the
J2EE system can be faulty, some machine may fail etc. In this paper, a failure can be
due to a hardware crash of a machine, a disconnection from the network or a software
bottleneck. This last case constitutes a failure of a component.

Failure of a component. The recovery of a component and thus its redeployment con-
sists in sending to the zone manager a message holding the identity of the component
to redeploy. This is done by the machine hosting the faulty component (The failure,
i.e. the non-responsiveness of the component, is detected through a probe associated
with a control interface of the component.). Then, the zone manager updates the de-
ployment descriptor by removing the location of the component and broadcasts the new
descriptor to all the machines connected in the zone, automating the redeployment of
the faulty component. Indeed, for all the machines, a component remains undeployed
(i.e. it has no location), thus, they find themselves back in the propagative deployment.

Architecture-Based Autonomic Deployment of J2EE Systems in Grids 369

The phases of local evaluation of the resource constraints and the announcement of
candidatures will go along.

When a component fails, it is important to consider its state. If the component is
replicated, like the EJB container and the Web container services, the stateful data are
automatically sent to any replica added to the group. This ensured by the group com-
munication systems embedded within these components. Regarding the database, we
consider that a regular copy is done on a data-center allowing to obtain stateful data
when the database fails. This solution is frequently used in Internet applications de-
ployed in wide-area networks, like in the edge-computing models.

When Apache fails, all the incoming requests are lost during the reconfiguration
time. One solution consists in deploying a lightweight component storing the incoming
requests in a list during the time the Apache component is recovering.

Resource violation. When a resource constraint associated with a component is no
longer verified on a specific host (for example the amount of free memory required is
not sufficient), the corresponding component must be redeployed. This redeployment is
performed the same way, except that the state of the component can be saved properly.

Failure of a machine other than a zone manager. In a zone, a machine hosting one or
several components may definitively crash. A crash is detected by the zone manager
which maintains the list of the machine connected in the zone. When the manager de-
tects a crash, as in the case of the failure of a component, it updates its deployment
descriptor by removing the location of the component(s) that was running on the faulty
machine. Then, the deployment descriptor is broadcast to other machines so that the
missing components can eventually be re-instantiated.

Failure of a zone manager. The crash of the zone manager is critical as it is responsi-
ble for choosing a host for each component. In order to deal with the failure of such a
manager, we define several managers within a zone. Every manager has the same role as
defined previously: it maintains the list of the machines that are connected in the zone; it
collects the candidatures for the instantiation of components; and it resolves the location
constraints depending on the received candidatures. To ensure the fault-tolerance of the
zone manager, we consider a number of replicas. At a given time, a leader is in charge
of establishing the deployment process. The address of the zone manager is mentioned
in the deployment descriptor sent to the machines of the zone. Each information re-
ceived by the leader is multicast to the backup managers using a group communication
system offering the FIFO order and reliability. The failure of the leader is detected by
the backup machines and a new leader is elected. The zone manager identity is updated
in the deployment descriptor and like any descriptor change, this piece of information
is sent to the machines of the zone that will then deal with the new leader.

4 Implementation Status and Evaluation

4.1 Implementation Status

The ADL presented in section[3.I]allows the specification of the placement of the com-
ponents according to some conditions on resource and location constraints. We have

370 D. Hoareau, T. Abdellatif, and Y. Mahéo

chosen FractalADL to support the definition of deployment descriptors in an XML for-
mat. The main aspect with resource and location constraints are their manipulation at
run time in order to observe and detect changes in the environment, to react on these
changes and to find a placement solution at a given time according to some machine
candidatures. We use Creanf, a Java library for writing and solving constraint satis-
faction problems or optimization problems, to represent interface cardinality, possible
bindings and resource and location constraints.

Specific probes are used in order to introspect the resources needed by the compo-
nents. We use DRAJE (Distributed Resource-Aware Java Environment) [[7], an extensi-
ble Java-based middleware to model hardware resources (processor, memory, network
interface...) or software resources (process, socket, thread...). For every resource con-
straint of the deployment descriptor, a resource in DRAJE is created and a periodic
observation is launched. The value returned by a probe allows a host to check the con-
sistency of a resource constraint according to the local resource state. If all the resource
constraints associated with a component are verified by a machine, it applies for its in-
stantiation. When the value returned by a probe does not respect a resource constraint,
our run-time support is notified in order to redeploy the components that requires this
resource as described in section[3.3] The current implementation of our system does not
support the computation of bandwidths between machines but relies on a predefined file
describing the properties of network links within a zone.

Component instantiation are made by a host when this host has been chosen by the
zone manager. When an updated deployment descriptor is received, the location of the
newly instantiated components is discovered, resulting in binding requests. When a
binding is accepted, a stub component and a skeleton component are dynamically cre-
ated thanks to the ASM libraryl] and are deployed with FractalRMI. The server inter-
faces of the stub component are of the same type as the one of the local client interface
that has to be bound. When the location of the EJBContainer is known, a new pair
stub/skeleton is created and deployed if the number of outgoing bindings allowed (i.e.
the interface cardinality) has not been reached.

4.2 Evaluation

A complete evaluation of the deployment and redeployment in the kind of environment
we target implies to precisely control the dynamism of the different resources and hosts.
We have indeed to take into account the announcement of machines’ candidatures—
which implies the availability of resources—in order to compute a placement solution.
However the feasibility and the performance of the deployment process and recovery
mechanisms can be measured accurately when all the resources are available. In this
case we can evaluate the time needed by a zone manager to compute a placement solu-
tion for the components of a virtual cluster.

Figure 3] shows the time for a zone manager to compute a placement solution when
the number of received candidatures is sufficient, in function of the number of compo-
nents to instantiate. We have considered a zone composed of a thousand of simulated

3 http://kurt.scitec.kobe-u.ac.jp/“shuji/cream/
* http://asm.objectweb.org

Architecture-Based Autonomic Deployment of J2EE Systems in Grids 371

30

20

Time in ms

0 10 20 30 40 50 60 70 80 90 100

Number of components to instantiate

Fig. 3. Time required for a zone manager to decide on the placement of a set of components in
function of the number of candidatures

machines on which the number of components to instantiate varies from one to one
hundred. The experiment corresponds to the deployment of the architecture of Figure[l]
according to the constraint “each component must reside on a distinct host” (alldiff con-
straint). Somewhat contrived, this constraint encompasses the complexity of other con-
straints involved in our deployment specification (resource constraints resolution has a
negligible impact on the computation time). The evaluation has been conducted on a
laptop (1,7 GHz Pentium Centrino). This experiment allowed us to verify that the time
to compute—with the Cream library—a placement solution (when all conditions are
met) remains acceptable regarding communication cost between machines. This com-
putation time is likely not to be the prevalent factor in number of Grids configurations.
We are currently conducting the evaluation of the deployment of a virtual cluster and
the automatic management of failures on a Grid. The main difficult aspect remains the
control of hosts and resources availability.

5 Related Work

Our work is related to several different open-source and research domains. We sin-
gle out the following ones: component-based deployment in Grid environments, multi-
tier deployment in wide-area networks, resource allocation for distributed systems and
architecture-based systems.

We share with GridCCM [[8]], GridKit [9] and Proactive the same approach con-
sisting in abstracting the system to deploy on the grids to an assembly of components.
Proactive work is closer to ours since it considers Fractal component model to rep-
resent hierarchical and parallel systems. However, our work covers both the resource
management issues and the automatization of recovery from failures.

Exploiting the Grid resources to increase multi-tier application performance and
fault-tolerance become recently the aim of many research teams [2/T/1T]]. However,
focus is more on defining the best configuration and models to increase performance
rather than on the management aspects.

Many works deal with resource allocation in distributed systems [12[13I14/13]. In
our work, we propose a simple solution for resource allocation and we believe that,
thanks to our modular component-model, we can easily adopt different policies and
algorithms for an optimal resource usage. Furthermore, to our knowledge, most of
the works on the Grids like PlanetLab and Globus, focus on parallel applications that

372 D. Hoareau, T. Abdellatif, and Y. Mahéo

are composed of independent tasks. Compared to the proposed solutions, we adopt an
architecture-based approach motivated by the complex architecture of the multi-tier In-
ternet application we address.

The architecture-based management approach is mainly experimented in close
environment like in SmartFrog [16] system or Jade system [17]]. In these two systems,
the deployment process considers that target machines are stable and homogeneous,
which is not the case in Grids. Furthermore, handling failures relies on a centralized
management unit, which hardly applies to the highly distributed Grid machines. In our
solution, the machines collaborate in finding appropriate resources and for handling
failures.

6 Conclusion

This paper proposes a solution for the deployment of enterprise systems in Grids and an
automatic recovery management in face of failures. Deployment in such environment is
quite challenging as the platforms we target are highly distributed, heterogeneous and
dynamic. We offer a resource-aware deployment feature for J2EE systems, which is
essential in Grid heterogeneous environments. We also demonstrate that the constraint-
resolution is performed in a reasonable time. The role of the administrator is reduced
to the writing of the deployment descriptor. All the deployment process and the recov-
ery from failures are automated. Furthermore, the administrator does not need to be
expert of the heterogeneous and complex J2EE systems. All the parts of the system
are abstracted into Fractal components and the configuration is therefore unified. In our
work, we aimed at maintaining the structure described in the ADL descriptor by replac-
ing each time a faulty component by another. This allows ensuring the continuity of
Internet services and maintaining their quality of service.

In this paper we adopted a special architecture of the J2EE system, the virtual clus-
ters. We believe that our solution and mechanisms are applicable to other architectures.
It is only necessary to write appropriate deployment descriptors and constraints. We
are currently investigating a more complete evaluation of our approach on a Grid by
taking into account resources and hosts availability. Moreover, some optimization can
be defined when dealing with the placement decision of replicas by considering the
symmetry of such components.

References

1. Rabinovich, M., Spatscheck, O.: Web Caching and Replication. Addison Wesley, Reading,
Massachusetts, USA (2002)

2. Pierre, G., van Steen, M.: Globule: a Collaborative Content Delivery Network. IEEE Com-
munications Magazine 44 (2006)

3. Dashofy, E., van der Hoek, A., Taylor, R.: Towards Architecture-Based Self-Healing Sys-
tems. In: Workshop on Self-Healing Systems, Charleston, South Carolina, USA (2002)

4. Abdellatif, T., Kornas, J., Stefani, J.B.: J2EE Packaging, Deployment and Reconfiguration
Using a General Component Model. In: Int. Working Conference on Component Deploy-
ment, Grenoble, France (2005)

10.

11.

12.

13.

14.

15.

16.

17.

Architecture-Based Autonomic Deployment of J2EE Systems in Grids 373

. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An Open Component

Model and its Support in Java. In: Int. Symposium on Component-based Software Engineer-
ing, Edinburgh, Scotland (2004)

. Dashofy, E., van der Hoek, A., Taylor, R.: An Infrastructure for the Rapid Development of

xml-based Architecture Description Languages. In: Int. Conference on Software Engineer-
ing, Orlando, Florida, USA (2002)

. Mahéo, Y., Guidec, F., Courtrai, L.: A Java Middleware Platform for Resource-Aware Dis-

tributed Applications. In: Int. Symposium on Parallel and Distributed Computing, Ljubljana,
Slovenia (2003)

. Denis, A., Pérez, C., Priol, T., Ribes, A.: Padico: A Component-Based Software Infras-

tructure for Grid Computing. In: Int. Parallel and Distributed Processing Symposium, Nice,
France (2003)

. Cai, W., Coulson, G., Grace, P., Blair, G.A., Mathy, L., Yeung, W.K.: The Gridkit Distributed

Resource Management Framework. In: European Grid Conference, Amsterdam, The Nether-
lands (2005)

Baude, F., Caromel, D., Morel, M.: From Distributed Objects to Hierarchical Grid Compo-
nents. In: Int. Symposium on Distributed Objects and Applications, Catania, Italy (2003)
Sivasubamanian, S., Alonso, G., Pierre, G., van Steen, M.: GlobeDB: Autonomic Data Repli-
cation for Web Applications. In: Int. World-Wide Web Conference, Chiba, Japan (2005)
Aron, M., Druschel, P., Zwaenepoel, W.: Cluster reserves: a mechanism for resource man-
agement in cluster-based network servers. In: Conference on Measurement and Modeling of
Computer Systems, Santa Clara, California, USA (2000)

Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar, M., Krishnakumar, S., Pazel,
D., Pershing, J., Rochwerger, B.: Oceano - SLA based management of a computing utility.
In: Int. Symposium on Integrated Network Management, Seattle, Washington, USA (2001)
Fu, Y., Chase, J., Chun, B., Schwab, S., Vahdat, A.: SHARP: an architecture for secure
resource peering. In: Symposium on Operating Systems Principles, Bolton Landing, New
York, USA (2003)

Chase, J., Irwin, D., Grit, L., Moore, J., Sprenkle, S.: Dynamic Virtual Clusters in a Grid
Site Manager. In: Int. Symposium on High Performance Distributed Computing, Seattle,
Washington, USA (2003)

Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft, P.: SmartFrog: Config-
uration and Automatic Ignition of Distributed Applications. In: Plenary Workshop of the HP
OpenView University Association, Geneva, Switzerland (2003)

Bouchenak, S., Boyer, F., Hagimont, D., Krakowiak, S., Mos, A., de Palma, N., Quéma, V.,
Stefani, J.B.: Architecture-Based Autonomous Repair Management: An Application to J2EE
Clusters. In: Symposium on Reliable Distributed Systems, Orlando, Florida, USA (2005)

Dynamic Workload Balancing for Collaboration
Strategy in Hybrid P2P System

'Suhong Min, *Byong Lee, and 'Dongsub Cho

! Department of Computer Science and Engineering,
Ewha Womans University, Seoul, Korea
% Department of Computer Science,
Seoul Women’s University, Seoul, Korea
shmin@ewhain.net, byongl@swu.ac.kr, dscho@ewha.ac.kr

Abstract. The peer-to-peer (P2P) systems have grown significantly over the
last few years due to their high potential of sharing various resources.
Analyzing the workload of P2P system, however, is very challenging as it
involves with the cooperation of many peers. Researches have shown that P2P
systems become very effective when dividing the peers into two layers, SP
(Super-Peer) and OP (Ordinary-Peer). In this configuration, SP based P2P
systems have to deal with a large volume of queries from OPs. Therefore, it is
important for SPs to keep their workload stable to provide quality service to the
OPs. In this study, we present a collaboration strategy for workload balancing
based on SP’s workload characteristics and status. Through the SP’s load
balancing mechanism, the message response time is decreased and the workload
of P2P system becomes more stable.

Keywords: Peer-to-Peer (P2P), Super-Peer, workload balancing, collaboration
strategy.

1 Introduction

For the last few years, there has been a large volume of research on Peer-to-Peer
(P2P) system, resulting in many hybrid P2P models. Many researches have shown
that P2P systems become very effective, especially in query processing, when
dividing the peers into two layers, SP (Super-Peer) and OP (Ordinary-Peer). With this
layer separation, SP deals with all the queries from OPs so that OPs can be waived
from the burden of query processing [1, 2]. Compared with the pure P2P systems, SP
based P2P systems have to deal with a large volume of queries from OPs. In this case,
it is important for SPs to keep their workload stable to provide quality service to the
OPs. Workload analysis, however, is very challenging as it involves many
cooperative peers. Current SP based P2P systems have paid little attention to
balancing the SP’s workload. The existing research only focuses on sharing the
resources or objects among peers to minimize the workload. For example, they can
replicate an object based on the access probability to the neighbor peers or can
migrate the object between peers for load balancing. In this scheme, load balancing is
aimed at reducing the workload of OP. SP then checks the peer’s load information in

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 374 — 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Workload Balancing for Collaboration Strategy in Hybrid P2P System 375

their group to determine whether it is overload or not. If it is overloaded, SP helps
them to minimize their workload by means of replication or migration [10].

In this paper, we investigate the problem of SP’s workload balancing and propose
an enhanced mechanism to distribute SP’s workload by its characteristics and status.
Workload balancing is performed only through the peer collaboration based on this
information. We suggest the three approaches: First, we analyze SP’s workload
characteristic categorizing it into a private workload and a public workload. The
private workload is defined as the traffic overhead incurred by the use of application
objects such as word process, on-line game, or Internet usage. The public workload is
defined as the traffic overhead in maintaining P2P system. Second, we evaluate SP’s
workload status by different load levels. Each load level is determined by pre-
specified threshold. Third, we propose the collaboration policy between SPs in
accordance with load characteristics and load status. An overloaded SP can give some
of its work to a neighbor SP or even remove himself from the P2P system by refusing
to be an SP. By considering the private and the public workload separately, workload
balancing becomes more accurate and efficient. Also SP’s message response time is
improved by applying collaboration policy according to each different workload level.

The rest of the paper is organized as follows: Section 2 reviews some related works
briefly. Section 3 states the workload management which evaluates the workload
status based on the predefined definition. It also proposes the collaboration policy;
Section 4 shows the simulation results of the proposed mechanism; finally, the
conclusion and the future work are added in Section 5.

2 Related Works

In this section, we describe existing techniques for load balancing in P2P system.
Load balancing can be achieved by transferring popular objects from heavily loaded
peers to lightly loaded peers via data replication and data migration [10].

A number of replication approaches are discussed in [12]. In [12], data objects are
replicated along the search path that is traversed as part of the search in path
replication. Data objects are replicated a pre-defined number of times to control the
spread of replica. This method, however, does not adapt to the changes of system
environment and variable resource availability. Edith Cohen [11] shows that
replicating objects proportionally to their popularity achieves optimal load balance,
while replicating them proportionally to the square root of their popularity minimizes
the average search latency. Pure P2P systems use the replication strategies to reduce
the search latency and find objects in a short distance between peers.

For the replication strategies, Gopalakrishnan [14] proposes each SP distributes
load by its capacity and queue length. To achieve this, the author assumes that each
SP defines a high-load and low-load threshold. So if a SP is overloaded, it attempts to
create new replicas on its neighboring SP. We consider more detailed factors in
capacity and have several collaboration options not just replication of files. On the
other hand, Rajasekhar [13] replicates the most frequently accessed data files based
on the access probabilities and uses restricted gossip algorithm to propagate the file
location to its neighboring SPs within its scope. In this approach, the author uses two
techniques such as, periodic push-based replication and on demand replication when
they update their replication information.

376 S. Min, B. Lee, and D. Cho

The object migration can occur when a popular object is transferred from its
original peer to a destination peer. Mondal [10], however, indicates that migration
makes data availability decrease as the peers which have accepted the object may
leave the system.

In this paper, we propose a collaboration strategy which can provide the load status
information of SP based on the characteristics of workload. Proposed collaboration
policy is further adapted into the workload balancing through the proposed dynamic
workload analysis.

3 Dynamic Workload Management

In this section, we manage SP’s workload dynamically by its load status for workload
balance. We first discuss the importance of maintaining an appropriate workload of
SP. We then propose a SP workload status evaluation and workload status
classification by SP’s workload character. Finally, in order to provide a stable SP
workload and efficient message handling, we consider the collaboration strategy to
distribute workload between SPs.

3.1 Importance of SP Workload

In a super peer based P2P system, searches are mainly performed by SPs, which
actually forms the “backbone” of the P2P network [8]. SP based P2P systems take
advantage of peer’s heterogeneity by dividing peers into two layers: SP and OP,
thereby scaling better by reducing the number of query paths. This model, both SP
and OP can submit queries, but only SP can relay queries and response. After
receiving a query, a SP first checks to see if it is stored locally or in its OPs. If some
results are found in SP’s group, it sends them to the requested OP.

Comparing with pure P2P models, SP based P2P models such as KaZaA and
Gnutella [3, 4] have higher search efficiency because, instead of all the OPs, only SPs
are involved in search processes. Therefore, SP’s capacity has considerable influence
on message handling of OPs and the performance of the entire network.
Consequently, it is a very important factor for SP to control adequate workload
according to its dynamic workload status. The question is: How does the SP keep its
own workload stable to improve the performance of P2P network? How does the SPs
increase QueryHit rate so that they help OPs by processing the query messages in a
shorter response time?

The problems with SPs providing their stable capacity and fast response time are as
follows: First, SP is probably not the server for client OPs in a traditional client/server
architectures. Most of SPs participating in a P2P system are general computer systems
with general operating systems such as Window XP or Mac OS. Comparing with the
server, users classified as SP have difficulty supplying an accurate stable workload
because they should work as SP in P2P system while they are doing their own private
jobs like word processor, e-mail, and Internet surfing, etc, at the same time.
Therefore, SP’s workload should consider both user’s private workload and public
workload. As a result, we should be able to analyze workload characteristics by each
workload status. Second, we should provide an adequate collaboration policy to
distribute SP’s workload by each load level.

Dynamic Workload Balancing for Collaboration Strategy in Hybrid P2P System 377

3.2 Workload Value Evaluation

In this section, we evaluate system’s workload characteristics. The conventional load
balancing strategies in P2P systems focus on sharing objects between peers. They
replicate popular peer’s objects based on their access probability to neighbor peers.
Our workload value evaluation is different from the existing schemes in that we
analyze SP’s workload characteristics to perform workload balancing. We assume
that SP’s system environment is not a server and it just operates on user’s operating
system. Thus, a user could work as a SP in the P2P system while doing his own
private jobs at the same time. We assume that SP’s workload is affected by both its
public workload due to P2P system and its private workload.

To evaluate total workload of SP in P2P system, we calculate the private workload
and the public workload using formula (1). We obtained this formula through
experiments on incurred load by each workload characteristic in section 4. First, in
case of public workload by P2P system, SP’s workloads are caused by requested
message processing time from SP’s group peers and cooperating neighbor SPs. In
public workload, CPU load value is not crucially affected by the entire P2P system
performance. The reason is that when a large number of messages for the SP arrive,
some are dropped because the queue length in the network channel is limited. Thus,
they are never received by the CPU and the CPU load is increased just a little bit or
decreased. Hence, we consider public workload as network load by P2P system usage
using formula (2).

On the other hand, private workload is calculated by the number of tasks in the
CPU queue length and network queue length in formula (3).

SP w = Cpri_w + Cpub_w (1)

Cpub_w = NWP (2)

Cpriw= CWP + NWP 3)

CWP (CPU workload Processing time) is defined as the average time needed to
perform a task in CPU queue length in formula (4). TP is the number of total
processes. NWP (Network Workload Processing time) is defined by public workload
and private workload in formula (5). In case of public workload, NWP is the average
message processing time needed to search peer’s requested files and connection
request to SP to join in formula. In case of private workload, it is defined as the
average task processing time needed to perform user’s Internet tasks. Therefore, we
should classify the net workload into private load and public load. To distinguish
between the two workloads, we set identifier to 0 or 1 using a binary digit. If network
traffic is incurred by the private workload, pi=0, otherwise pi=1.

CWP = LZ(Task X1))
ke x
NWP = ﬁz(MCi 1))

iex

(where, x = {ilpi = 0 or 1, for 0<i <n})

378 S. Min, B. Lee, and D. Cho

3.3 Workload Status Classification

SP estimates its workload status by a number of tasks in the CPU queue length and
Network channel. We classify each workload into two kinds of type such as a stable
and an unstable type by given threshold [7]. Finally, we use a 4-level scheme to
represent the each load type on its CPU and Network of queue length.

First of all, we show a stable type that includes an “underload” and a “normal
level”. Underload, level-1, is a lower bound of threshold and it is possible to process
message without delay at CPU and Network when OPs request query processing to
SPs. In normal status, level-2, is working harder but still able to process messages
normally. Second, we show an unstable type that it classifies the load status into
“potential overload” status and “overload” status. Potential overload status, level-3, is
current normal status but it is expected to increase the workload of system by user’s
private workload or public workload. Hence, user’s system status is possible to be
overloaded status in the near future. In this paper the potential overload status will be
a standard to decide a performance type is either stable or unstable. To measure this
value, we apply EMA (Exponential Moving Average) algorithm. EMA is a time
series which gives more weight to more recent measurements than to other historical
data. Potential Overload status is calculated using the previous queue length value and
current queue length value [5, 6]. Through this process, we can expect the status of
system and we can control the workload of P2P system using proposed collaboration
policy before it becomes overloaded status. Finally, the overload status, level-4, is
defined when the measured workload exceeds the threshold of upper-bound. A SP
stops OP’s message processing and connection requests of new OPs. In this state, the
SP temporarily seems to leave the P2P system.

Table 1. Load level classification by load status

Type Status Level Criteria
Underload Level-1 SPi,w < QL
Stable
Normal Level-2 SPiow < QL <SP,
Potential
Unstable Overload Level-3 SPema < QL < SPyig
Overload Level-4 SPhigh < QL

3.4 Collaboration Policy

In this section, we propose the collaboration policy to distribute workload of SP. The
aim of collaboration is that we select appropriate SP by considering load status and its
resulting workload characteristics. In this approach, each SP periodically checks its
workload status. When SPs detect a load imbalance we perform the collaboration
policy which is shown in table 2. First, we analyze SP’s workload status of the private
workload and the public workload, and decide on its load level. According to each
load level, we divide it into 4 different cases. Second, we evaluate each workload
status to determine whether SP’s workload is stable or unstable. If workload status is
unstable, we distribute load using the collaboration policy for load balancing. In this

Dynamic Workload Balancing for Collaboration Strategy in Hybrid P2P System 379

paper, collaboration policy is initiated when SP detects that its workload is level-3
shown in table 2.

In case 1, a SP detects its private workload is level-3 and public workload is stable
type. We define that SP’s workload could be potentially increased by its private
workload such as CWP and NWP. In this case, the SP initiates the collaboration
policy. SP replicates the most frequently accessed objects based on the access
probabilities to SP’s neighbor SPs. To create new replicas, first, the SP should check
the load status of neighbors whether they have good capacity and stable workload
status such as level 1 or level 2. If possible, the SP asks them to create replicas of the
most highly loaded files on SP. If neighbor SPs admit replicas, the SP sends replicas
to them. In this case, the SP can still deal with OP’s query processing but the SP
rejects new OP’s connection request to prevent increase of current workload.

In case 2, a SP detects that its private workload is level-4 and public workload is
stable type. We define SP’s private workload is overloaded. A user is working the
large number of private jobs though the user works as a SP in P2P system. So the SP
can not deal well with message processing for OPs in group. In this case, the SP stops
peer’s message processing and new OP’s connection request. First, the SP should
select neighbor SP to handle queries from own OPs instead of himself or herself. To
select new SP for OPs, the SP checks the load status of own neighbors, and selects a
SP who has the lowest load. Second, as soon as choosing a neighbor, the SP sends
OP’s information such as peer’s name, type, its object lists to selected SP. Lastly, the
SP advertises OPs to be selected new SP and then OPs request query processing to a
new SP instead of original SP. This means the existing SP temporarily secedes from
P2P system.

In case 3, a SP identifies that its public workload is level-3 and private workload is
stable. We define SP’s public workload could be potentially increased by its public
workload such as the increase of group size, the number of message and QueryHit
rate etc. Through the experiment (Fig.2), we found the performance of public
workload is largely affected by QueryHit rate. If SP’s QueryHit rate is low, SP should
broadcast the large number of messages to neighbor SPs to search requested objects
from OPs, which, in result, SP’s message response time is increased. Hence, a SP
requests its neighbor SPs to share popular object’s lists. The SP request neighbor SP’s
object list with the most frequently access rate or query hit rate. In this case, instead
of receiving objects, the SP obtains neighbor object lists which contain object’s
owner, owner’s physical address, object name, size, and type. Through this procedure,
SP will able to respond OP’s queries fast and efficiently through preempting object
lists with high query hit rate although the SP does not include object lists in own
group OPs. Also the SP still admits the connection request from new OP and adds it
to SP’s object list and continually performs query processing of the existing OPs.

In case 4, a SP perceives that its public workload is level-4, overload and private
workload is stable. In this case, it is defined when a SP has a big group size of OPs
that request queries very frequent to the SP. Thus, this case is defined that the ratio of
the number of Ops to the number of SPs, is not appropriate so that more SPs are
needed in the network. First, the SP selects the most eligible OP to encourage new SP
that has good capacity and good load status at the same time. Second, the SP divides

380 S. Min, B. Lee, and D. Cho

Table 2. Collaboration Policy by four different Cases

Case Cpri_w Cpub_w Collaboration Criteria
Case 1 Level-3 stable Replication
Case 2 Level-4 stable Re-selection
Case 3 Stable Level-3 Pre-emption
Case 4 Stable Level-4 Re-distribution

own OP lists with new selected SP. The SP processes remained OP’s queries but
rejects new connection request until its load status is stable. However it is not easy to
meet Case 2 and Case 4. Proposed scheme predicts the potential workload status at
Level-3 and perform SP’S workload balancing before we meet the worst case. In case
both private and public workloads are unstable, we won’t consider it here because
we’ve already seen in Case 2 that the user will potentially stop P2P system.

4 Experimental Evaluations

In this section, we present the simulation model used to evaluate the characteristics of
workload and proposed collaboration policy and discuss the simulation results. The
simulation model is implemented in C++ using CSIM [9]. It consists of a number of
OPs and SPs. Every SP is assigned with different capacity to be sufficiently
heterogeneous when a SP is created. During simulation, OPs join and leave the
network following a Poisson process with an arrival rate of 1 and departure rate of
. Table 3 summarizes the parameters used for the simulation and their default
values.

Table 3. Default Parameter Settings

Parameters Default Values
SIMTIME 5000

The number of OP 10 ~ 300

The number of SP 10 ~ 50

CPU power factor {1.0,1.5,2.0,2.5,3.0}
The number of query frequency 10

The number of objects 20

The delay per hop 100ms

The range of QueryHit rate 10~100%

In our simulation, we tried to verify that our proposed SP's workload balancing
strategy can improve SP's message response time by evaluating its workload
characteristics. First, we experiment with P2P system performance as SP’s group size
increases. To do this, we assume the performance of system as follows. A user does

Dynamic Workload Balancing for Collaboration Strategy in Hybrid P2P System 381

0 Avg msg time A0+
3 BCPU queue -
O Network queue M - 3 r

=3

05 51
0

10 20 30 4 5 680 0 8 9 100 150 200 300 Query Hi rate (%)

Fig. 1. Response Time vs. The number of Fig. 2. QueryHit rate vs. Response time
Peers

not work its private job and just operates SP on P2P system. OPs send messages at the
same frequency to SPs to connect to a SP and request queries. Then SP’s QueryHit
rate is 100%. At this status, we estimate 1) the average message response time, 2)
message processing time in network queue length, and 3) CPU processing time in
CPU queue length as SP’s group size varies. In Fig. 1, we found that all of them are
not largely affected as the number of message is increased.

Second, we experiment with the public workload performance as SP’s QueryHit
rate changes. We set the group size of SP to 10 and each OP requests queries at the
same frequency. Fig. 2 shows the message response time is largely decreased as
QueryHit rate increases. When QueryHit rate is low, message response time and
message processing time in network queue length varies significantly. But, the CPU
processing time barely changes. The reason is that the large number of message in
network queue is dropped before it arrives at CPU queue length. Therefore, we
consider the network queue length and QueryHit rate as threshold except the CPU
processing time when we evaluate the public workload.

Third, based on private workload, we examine the change of message response
time influenced by CPU queue length and network queue length. Fig. 3 shows the
average message response time as CPU queue length varies. To do this experiment,
we set the group size of SP to 10 to minimize the effect due to the public workload.
User dose not perform private network jobs, instead, just operates off-line tasks. In
Fig. 3, we compare the performance of average message response time as CPU queue
length changes through increasing SP’s private works, the number of tasks. In this
experiment, we show that message response time is highly increased by CPU queue
length. Fig. 4 examines message response time as private network queue length
changes. We don’t operate the private CPU jobs and set the group size of SP to 10. In
Fig. 4, it shows user’s network jobs affected message processing time. Thus, we
found that SP’s private workload changes the performance of message handling
capacity in P2P system.

382

S. Min, B. Lee, and D. Cho

007 on 02 034
CPU queue

046 058

044 116 415 6 64 1241
Network queue

Fig. 3. Response time vs. CPU queue length

Fig. 4. Response time vs. Network queue
length

Fourth, based on level of load status, we estimate the range of threshold and
message response time by each four different level. In Fig. 5, we approximately
evaluated the threshold of CWP and NWP values of the private workload and NWP
of public workload at each different level. Fig. 5 shows the different threshold values
for each workload characteristic at four different levels. Fig. 6 shows each private
workload and public workload has similar message response time when they are
included in the same level. Thus, we found that they can handle messages with similar
capacity at same level though each workload characteristic has different threshold.

25

——CWP
2 | —B—= NWP(pi 0
NWP(pi 1)

o

Th eshod vaue

05 4

Level 1 Level 2

Level 3

Level 4

35

Tmels)

Level 1 Level 2 Level 3 Level 4

Fig. 5. Threshold values at each level

Fig. 6. Response times at each level

Finally, we experiment if SP can stably keep workload balance and improve
message response time. In Fig. 7, we compare the performance of proposed
collaboration policy with no-load-balancing scheme. This experiment environment is

shown in Table 4.

Dynamic Workload Balancing for Collaboration Strategy in Hybrid P2P System 383

Table 4. Parameter Settings

Parameters Default Values
SIMTIME 5000

of OP 10 ~ 100

of SP 10

CPU power {1.0,1.5,2.0,2.5,3.0}
of query frequency 10

of objects 30

QueryHit rate 60%

CWP value 15%

NWP value (pi=0) 15%

NWP value (pi=1) 70%

Fig 7 shows the message response time as SP’s group size increases. Comparing
with no load balancing scheme, it is clear that proposed collaboration policy
significantly improve message response time and keep SP’s workload status stable.
We demonstrate the effectiveness of proposed scheme which can show good
performance with considering public workload and private workload at the same time
and adequate collaboration policy for each workload status.

20 I |—® —no load balance
—8—load balance , »

of peer

Fig. 7. Response time vs. SP’s group size

5 Conclusion

We presented the collaboration policy for analyzing SP’s workload characteristics and
evaluating each workload status to perform workload balancing. In the Super-Peer
based P2P systems, SPs should handle all queries received from OPs. As a result, the
control of SP’s workload has considerably influenced on the performance of P2P
network. The existing systems performed the workload balancing with replication
strategies to distribute popular objects between peers. They, however, have paid little
attention to the SP’s workload balancing from the view point of the workload status
characteristics. Proposed paper presents a collaboration strategy based on SP’s

384 S. Min, B. Lee, and D. Cho

workload characteristics. We demonstrated the performance of the proposed scheme
using a number of simulations. In our experiments, we show that each workload
characteristics and status can have a big effect on message handling capacity of SP.
Also through the proposed collaboration policy, we can not only improve the
performance of message response time, but also keep the status of SP system stable.
We plan to implement additional collaboration policies features in the future work.

References

1. B. Yang, H. Garcia-Molina, "Designing a super-peer network", IEEE International
Conference on Data Engineering, Bangalore, India, March 2003.

2. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S. Shenker, "Making Gnutella-
like P2P systems scalable”, Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications, Karlsruhe,
Germany, August 25-29, 2003.

3. J. Liang, R. Kumar, K Ross, “The KaZaA Overlay: A Measurement Study”, Proceedings
of the Fifth New York Metro Area Networking Workshop, 2005.

4. Gnutella protocol spec. v.0.6 - http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html

5. Box, G.E., Jenkins, G.M, “Time Series Analysis Forecasting and Control, Holden day,
1976.

6. V. Kalogeraki, D. Gnuopulos and D. Zeinalipour-Yazti, “A Local Search Mechanism for
Peer-to-Peer Networks”, Proceedings of CIKM’02, McLean VA, USA, 2002.

7. 7 T. knuz, “The influence of Different Workload Descriptors on a Heuristic Load
Balancing Scheme”, IEEE Trans on Software Engineering, vol. 17, No. 7, July 1991.

8. Li Xiao, Z. Zhuang, Y. Liu, “Dynamic Layer Management in Superpeer Architectures”,
IEEE Transactions on parallel and distributed systems, 16(11), Nov. 2005.

9. CSIM Development toolkit for simulation and modeling. http://www.mesquite.com.

10. A. Mondal, K. Goda and M. Kitsuregawa “Effective Load-Balancing via Migration and
Replication in Spatial GRIDs”, Proceedings of the International Conference on Database
and Expert Systems Applications. 2003.

11. E. Cohen, S. Shenker, “Repliaction Strategies in Unstructured Peer-to-Peer Networks”,
SIGCOMM '02: Proceedings of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communications, Vol. 32, No. 4. Oct. 2002.

12. Q. L. et. Al. “Search and Replicaton in Unstructured Peer-to-Peer Networks”, In Proc. of
International conference on Supercomputing, 2002.

13. S. Rajasekhar, B. Rong, K. Y. Lai, I. Khali and Z. Tari, “Load Sharing in Peer-to-Peer
Networks using Dynamic Replication”, Advanced Information Networking and
Applications (AINA), 2006.

14. V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher, “Adaptive Replication in
Peer-to-Peer Systems”, The 24th International Conference on Distributed Computing
Systems (ICDCS’04), Mar. 2003.

Performance-Based Workload Distribution on Grid
Environments®

Wen-Chung Shih', Chao-Tung Yang”™", Tsui-Ting Chen’, and Shian-Shyong Tseng'"

! Department of Computer Science
National Chiao Tung University, Hsinchu, 30010, Taiwan (R.O.C.)
{gis90805, sstsengl}@cis.nctu.edu.tw
% High-Performance Computing Laboratory
Department of Computer Science and Information Engineering
Tunghai University, Taichung, 40704, Taiwan (R.O.C.)
{ctyang, g95280003}@thu.edu.tw
3 Department of Information Science and Applications
Asia University, Taichung, 41354, Taiwan (R.O.C.)
sstseng@asia.edu.tw

Abstract. Imbalanced workload-distribution can significantly degrade performance
of grid computing environments. In the past, the theory of divisible load has been
widely investigated in static heterogeneous systems. However, it has not been
widely applied to grid environments, which are characterized by heterogeneous
resources and dynamic environments. In this paper, we propose a performance-
based approach to workload distribution for master-slave types of applications on
grids. Furthermore, applications with irregular workloads are addressed. We
implemented three kinds of applications and conducted experimentations on our grid
test-beds. Experimental results show that this approach performs more efficiently
than conventional schemes. Consequently, we claim that dynamic workload
distribution can benefit applications on grid environments.

1 Introduction

Grid platforms, which consist of various computational and storage resources, have
become promising alternatives to traditional multiprocessors and computing clusters
[3,4,7-9, 14, 25-28, 40]. The goal of grid computing is to share resources through the
internet. Therefore, users can access more computing resources through grid
technologies. On the other hand, inappropriate management of grid environments
might result in using grid resources in an inefficient way. Moreover, the characteristic
of dynamic changing makes it different from conventional parallel and distributed
computing systems, such as multiprocessors and computing clusters. Consequently, it
is challenging to use the grid efficiently.

* This work was partially supported by National Science Council of Republic of China under
the number of NSC95-2752-E-009-015-PAE.
** Corresponding author.

C. Cérin and K.-C. Li (Eds.): GPC 2007, LNCS 4459, pp. 3851396 2007.
© Springer-Verlag Berlin Heidelberg 2007

386 W.-C. Shih et al.

In the past, the master-slave paradigm is a common model for task dispatching in
parallel and distributed computing environments [16]. In this model, the master node
holds a pool of tasks to be dispatched to other slave nodes. A well-known application of
this model is Divisible Load Theory (DLT) [1, 17-19, 32, 36], which deals with the case
where the total workload can be partitioned into any number of independent subjobs. In
[23], a data distribution method was proposed for host-client type of applications. Their
method was an analytic technique, and only verified on homogeneous and
heterogeneous cluster computing platforms. In [24], an exact method for divisible load
was proposed, which was not from a dynamic and pragmatic viewpoint as ours.

This paper aims to address the problem of dynamic distribution of workload for
master-slave applications on grids. Since grid environments are dynamically changing
and heterogeneous, the problem is more challenging than the traditional DLT problem.
We propose a performance-based approach, which is implemented in three types of
applications, Matrix Multiplication, Association Rule Mining and Mandelbrot Set
Computation, and is executed a grid test-bed. Experimental results show that effective
workload partitioning can significantly reduce the total completion time.

Our major contributions can be summarized as follows. First, this paper proposes a
new performance function to estimate the performance of grid nodes. Second, we apply
this approach to programs with irregular workload distribution. Consequently,
experimental results show the obvious effectiveness of our approach. Our previous work
[37-39] presents different heuristics to the parallel loop self-scheduling problem. This
paper generalizes their main idea and proposes to solve the dynamic workload
distribution problem. This approach is applied to both the parallel loop self-scheduling
application and the association rule mining application. There have been a lot of
researches of parallel and distributed data mining [12, 13, 29, 47]. However, this paper
focuses on workload distribution, instead of proposing a new data mining algorithm.

The remainder of this paper is organized as follows. In Section 2, background on
parallel loop scheduling and association rule mining is reviewed. In Section 3, we
describe the proposed approach to solve the dynamic workload distribution problem.
Next, the configuration of our grid testbed is specified and experimental results on
three types of applications are also presented in Section 4. Finally, the concluding
remarks are given in the last section.

2 Background Review
In this section, parallel loop scheduling and association rule mining are briefly reviewed.

2.1 Dynamic Loop Scheduling Schemes

Dynamic loop scheduling schemes make a scheduling decision at runtime. Its
disadvantage is more overhead at runtime, while the advantage is load balance. The
schemes we focus in this paper are self-scheduling, which a large class of dynamic
loop scheduling schemes. Several self-scheduling schemes have been reviewed in [15,
21,22, 30, 33, 41, 42, 46], and they are restated here as follows.

e Pure Self-scheduling (PSS). This is a straightforward dynamic loop scheduling
algorithm [32]. Whenever a processor becomes idle, a loop iteration is assigned to
it. This algorithm achieves good load balance but also induces excessive overhead.

Performance-Based Workload Distribution on Grid Environments 387

e Chunk Self-scheduling (CSS). Instead of assigning one iteration to an idle
processor at one time, CSS assigns k iterations each time, where k, called the chunk
size, is a constant.

e Guided Self-scheduling (GSS). This scheme can dynamically change the number
of iterations assigned to each processor [35]. More specifically, the next chunk size
is determined by dividing the number of remaining iterations of a parallel loop by
the number of available processors.

¢ Factoring Self-scheduling (FSS). The Factoring algorithm addresses this problem
[31]. The assignment of loop iterations to working processors proceeds in phases.
During each phase, only a subset of the remaining loop iterations (usually half) is
divided equally among the available processors.

e Trapezoid Self-scheduling (TSS). This approach tries to reduce the need for
synchronization while still maintaining a reasonable load balance [43]. This
algorithm allocates large chunks of iterations to the first few processors and
successively smaller chunks to the last few processors.

In [44], the authors enhanced well-known loop self-scheduling schemes to fit an
extremely heterogeneous PC cluster environment. A two-phased approach was proposed
to partition loop iterations and it achieved good performance in heterogeneous test-beds.
In [20, 45, 46], NGSS was further enhanced by dynamically adjusting the parameter o
according to system heterogeneity. A performance benchmark was used to determine
whether target systems are relatively homogeneous or relatively heterogeneous. In
addition, the types of loop iterations were classified into four classes, and were analyzed
respectively. The scheme enhanced from GSS is called ANGSS in this paper.

2.2 Association Rule Mining

The objective of association rule mining is to discover correlation relationships
among a set of items [29]. The well-known application of association rule mining is
market basket analysis. This technique can extract customer buying behaviors by
discover what items they buy together. The managers of shops can place the
associated items at the neighboring shelf to raise their probability of purchasing. For
example, milk and bread are frequently bought together.

The formulation of association rule mining problem is described as follows [12-13]. Let
I={I, L, L, ..., I,} be a set of items, and D a database of transactions. Each transaction in
D is a subset of I. An association rule is a rule of the form A=B, where A c I, B — I, and
ANB={}. The well-known algorithm for finding association rules in large transaction
databases is Apriori. It utilizes the Apriori property to reduce the search space.

As the rising of parallel processing, parallel data mining have been well investigated
in the past decade. Especially, much attention has been directed to parallel association
rule mining. A good survey can be found in [47].

3 Approach: Performance-Based Workload Distribution (PWD)

In this section, the system and programming model is introduces first. Then, the
parameters of performance ratio and static-workload ratio are described. Finally, we
present the skeleton algorithm for the performance-based workload distribution.

388 W.-C. Shih et al.

3.1 The System Model

The system in this work is modeled by a master-slave paradigm, which is represented
by a star graph, G = (N, E). In this graph, N means the set of all nodes on the grid, and
E is the set of all edges between the master and the slaves. In this model, there are two
kinds of attributes associated with nodes, constants and variables. The values of the
constant attributes do not vary during the lifetime of the node. For example, CPU
clock speed, memory size, etc. are all constant attributes. On the other hand, the
values of the variable attributes may fluctuate during the lifetime of the node. For
example, CPU loading, available memory size, etc. are all constant attributes. In the
following sections, the two kinds of attributes are utilized to model the heterogeneity
of the dynamic grid.

3.2 Performance Ratio

The concept of performance ratio was previously defined in [37-39] in different forms
and parameters, according to the requirements of applications. In this work, a
different formulation is proposed to model the heterogeneity of the dynamic grid
nodes. The purpose of calculating performance ratio is to estimate the current
capability of processing for each node. With this metric, we can distribute appropriate
workloads to each node, and load balancing can be achieved. The more accurate the
estimation is, the better the load balance is.

To estimate the performance of each slave node, we define a performance function
(PF) for a slave node j as

PE;(V1, Vs, .., Vi) €y

where V,, 1< i <m, is a variable of the performance function. In more detail, the
variables could include CPU speed, networking bandwidth, memory size, etc. We
propose to utilize a Grid Resource Monitoring Tool [11] to acquire the values of
variable attributes for all slaves, and to acquire the values of constant attributes by
MDS. In this paper, the PF for node j is defined as

PF % CSJ' / CLJ‘ + % B j (2)
=W, w
L Yes e, 7t Y B,
Vnode,eN Vnode,e S

where

e Nis the set of all grid nodes.

e (S;is the CPU clock speed of node i, and it is a constant attribute. The value of
this parameter is acquired by the MDS service.

e CL,; is the CPU loading of node i, and it is a variable attribute. The value of this
parameter is acquired by the Ganglia tool, as shown in Figure 1.

e B;is the bandwidth (Mbps) between node i and the master node.

e w is the weight of the first term.

® w;, is the weight of the second term.

Performance-Based Workload Distribution on Grid Environments 389

2 Ganglin: Tiger Grid Report - Mictosoft Infernet Exglorer. FEX
WEG REG HRO FOSEW TAD P SEE (3 Cof ()Cows (HDBLP £y EJACMA &)dW &]Buoler &) GonglaTigor GridReport &) EEECS &) eesplore &) Hlinchp (31 (3C » 4F
Q- (¥ B O 9 @ B0 & izt e cse tcdnigmglel ~] Google -

Tiger Grid Report for Wed, 06 Sep 2006 03:16:22 +0800

Last [hour | sorted |descending v/

Tiger Grid >

Tiger Grid (11 SOUrces) qes view

CPUs Total 66 Tiger Grid Load last hour g Tiger Grid Menory Tast hour £
Hosts up: 37 - g I 1]
Hosts down: 0 i e : : 2

106

Load/Procs

o

20 i
Aug Load (15,5, 1m) i '\
% oziz0 ozia0 o210

14%,15%, 15% 2i20 02140
Localtime nin Load @ Wodes Ecrus Ml Rumning Processes vy used W renory shared B memory Cached
2006-03-D6 03:16 O Mewory Buffered B Menory swapped B Totsl In-Core Memery

o

JAMMA (ahysical viewy

CPUs Total 8 ganna Load last hour g ganna Hemory last hour
Hosts up: 4 g I 13
Hosts down 0 n g moel i i ik

206

Load/Procs

Aug Load (15,5, 1m)

12%, 112%, 111% = ozia0 0300

Localtime =1 umning pracesses B venory used W renory shared 0 wenory Cached

2006-09-06 0316 O Memary BufFered M Memory swapped B Total In<Core Memory
12 Gohysical view

CPUs Total 4 1z Load Tast hour g 1z Henory Tast hour

Hosts up 4 L, T ree f

Hosts down 0 H I = : i

S 20 n e &
£ © AR

Fig. 1. The snapshot of the monitoring tool on the TIGER Grid

3.3 Determination of Static-Workload Ratio (SWR)

Another important factor to be estimated is the proportion of the workload which can
be statically scheduled. For example, Mandelbrot Set Computation is a problem
involving irregular workloads. In each iteration, the workload is different and varies
significantly, as shown in Figure 2. Obviously, a distribution scheme which does not
consider the effect of irregular workload could not estimate PR accurately.

We propose to use a parameter, SWR (Static-Workload Ratio), to alleviate the
effect of irregular workload. In order to take advantage of static scheduling, SWR
percentage of the total workload is dispatched according to Performance Ratio. If the
workload of the target application is regular, SWR can be set to be 100. However, if
the application has irregular workload, such as Mandelbrot Set Computation, it is
reasonable to reserve some amount of workload for load balancing. We propose to
randomly take five sampling iterations, and compute their execution time. Then, the
SWR of the target application i is determined by the following formula.

min,
SWR =t 3)

where

e min; is the minimum execution time of all sampled iterations for application i.
e MAX; is the maximum execution time of all sampled iterations for application i.

For example, for a regular application with uniform workload distribution, the five
sampled iterations are the same. Therefore, the SWR is 100%, and the whole workload
can be dispatched according to Performance Ratio, with good load balance. However,
for another application, the five sampling execution time might be 7, 7.5, 8, 8.5 and

390 W.-C. Shih et al.

> 200000
k3
» 150000 A
c
.2
=
® 100000 |
2
%S 50000
= 0
1 101 201 301 401 501 601 701
i-th iteration of X

Fig. 2. The Mandelbrot Set on [-1.8, 0.5] to [-1.2, 1.2] an 800x800 pixel window

10 seconds, respectively. Then the SWR is 7/10, i.e. a percentage of 70. Therefore, 70
percentages of the workload would be scheduled statically according to PR, while 30
percentages of the workload would be scheduled dynamically by GSS.

3.4 Algorithm

Our algorithm is composed of four stages. In stage one, the related information are
acquired. Then, stage two calculates the Static-workload Ratio and Performance
Ratio. Next, SWR percentage of the total workload is statically scheduled according to
the performance ratio among all slave nodes in stage three. Finally, the remainder of
the workload is dynamically scheduled by Guided Self-Scheduling for load balancing.
The algorithm of our approach is described as follows.

Module MASTER

Stage 1: Gathering the following information

— CPU_Loading

— CPU_Clock_Speed

— the sample execution time
Stage 2: Calculate two scheduling parameters
Stage 3: Static Scheduling for SWR% of workload
Stage 4: dynamic Scheduling for the remaining
END MASTER

Module SLAVE

While (a chunk of workload arrives) {
Receive the chunk of workload
Compute on this chunk
Send the result to the Master

}

END SLAVE

Performance-Based Workload Distribution on Grid Environments 391

4 Experimental Results

To verify our approach, a grid test-bed is built based on the TIGER grid [11], and
three types of application programs are implemented with MPI (Message Passing
Interface) to be executed on this test-bed. This grid test-bed consists of one master
and four domains, totally 33 nodes. The master node is at Tunghai University (THU),
and the 32 slave nodes are located at Tunghai University (THU), Providence
University (PU), Li-Zen High School (LZ), and Hsiuping Institute of Technology
School (HIT). We have built this grid test-bed by the following middleware:

e Globus Toolkit 4.0.1 [2, 10]
e Mpich library 1.2.6 [5, 6]

In this study, we have implemented applications in C language, with message
passing interface (MPI) directives for parallelizing code segments to be processed by
multiple CPUs. For readability of experimental results, the brief description of all
implemented programs is listed in Table 1.

Table 1. Description of all implemented programs

Scheduling Description Reference
Scheme
static Weighted static scheduling
gss Dynamic scheduling (GSS) [35]
fss Dynamic scheduling (FSS) [31]
tss Dynamic scheduling (TSS) [43]
ngss Fixed a scheduling + GSS [44]
angss Adaptive a scheduling + GSS [46]
pwd Performance-based Workload Distribution
450 Ostatic Mgss Ofss Otss Wngss DOangss Bpwd ‘
400
350 [
__ 800
2 250 |
(]
E 200
[
150
100
50
0

512 *512 1024 * 1024 1536 * 1536 2048 * 2048
Matrix Size

Fig. 3. Execution time for Matrix multiplication with different input sizes

392 W.-C. Shih et al.

4.1 Application 1: Matrix Multiplication

Matrix Multiplication is a fundamental operation in many numerical linear algebra
applications. In this application, the workload is loop iterations. First, we want to
compare the proposed PWD scheme with previous schemes with respect to the
execution time. Figure 3 illustrates the execution time for input matrix size 512x512,
1024x1024, 1536x1536 and 2048x2048 respectively. The results are shown as follows.

e Among these schemes, PWD performs better than other schemes. The reason is
that PWD accurately estimates the PR, and takes the advantage of static
scheduling, thus reducing the runtime overhead.

e The weighted static scheme obviously performs worse than other dynamic
schemes. It is reasonable to say that the static scheme is not suitable for a dynamic
environment, with respect to performance.

e [t is interesting that traditional self-scheduling schemes (FSS and TSS) perform
slightly better than NGSS and ANGSS. However, this result is inconsistent with
that of previous research. The reason might be that the parameter a is set too high,
75. If the parameter a is set appropriately, it is possible for NGSS and ANGSS to
perform better, as previous work has shown.

4.2 Application 2: Association Rule Mining

In this application, the workload is the dataset to be mined on. We implemented the
Apriori algorithm, and applied our approach to conduct data distribution. Specifically,
the parallelized version of Apriori we adopt is Count Distribution (CD) [12, 13]. In this
experiment, “cd_eq” means to distribute the workload to slaves equally, and “cd_cpu”
means to distribute the workload to slaves according to the ratio of CPU speed values of
slaves. And, cd_pwd is the proposed scheme. Our datasets are generated by the tool as
in [13]. The parameters of the synthetic datasets are described in Table 2.

Table 2. Description of our dataset

Dataset Number of Average Number of Items
Transactions Transaction Length
D10KT5I10 10,000 5 10
D50KT5110 50,000 5 10
D100KT5110 100,000 5 10
D200KT5110 200,000 5 10

First, execution time on the grid for the three schemes is investigated. As shown in
Figure 4, cd_pwd outperforms cd_eq and cd_cpu. From this experiment, we can see
the significant influence of partition schemes on the total completion time. In grid
environments, network bandwidth is an important criterion to evaluate the
performance of a slave node. Cd_eq and cd_cpu are static data partition schemes.
Therefore, they can not adapt to the practical network status. When communication
cost becomes a major factor, the proposed scheme would be well adaptive to the
dynamic network environment.

Performance-Based Workload Distribution on Grid Environments 393

Moreover, the reason why cd_cpu got the worst performance can be contributed to
the inappropriate estimation of node performance. In grid computing environments,
CPU speed is not the only factor to determine the node performance. A node with the
fastest CPU is not necessary the node with optimal performance.

‘—0— cd_eq —#— cd_cpu —&—cd_pwd ‘

700
g 600 |
8 e
2 500
[}
£ 400
|_ /./
£ 300 /
2
3 200 M/‘
:ﬁ’ 100 W

0 [‘ ‘ ‘
D10KT5H0 D50KT5I10 D100KT5110 D200KTS5I10
Data Set

Fig. 4. Performance of data partition schemes for different datasets

60 Jlgss Ofss Otss Mngss Dangss Mpwd|

50

40

30 -

Time (s)

20

64 * 64 128 * 128 192 %192 256 * 256

Image Size
Fig. 5. Execution time for Mandelbrot Set Computation with different input sizes

4.3 Application 3: Mandelbrot Set Computation

The Mandelbrot set computation is a problem involving the same computation on
different data points which have different convergence rates [34]. In the following
experiment, we want to compare the execution time of previous schemes with the
proposed approach. Figure 5 illustrates the results for input image size 64x64,
128%128, 192x192 and 256x256 respectively. The execution time of weighted static
scheduling is omitted due to its bad performance. According to the experience in
Matrix Multiplication example, the parameter a is set to 30. The results are discussed
as follows.

394

W.-C. Shih et al.

e Among these schemes, the PWD still performs better than other schemes. The
reason is also that PWD accurately estimates the PR, and takes the advantage of
static scheduling, thus reducing the runtime overhead.

e Traditional self-scheduling schemes (GSS, FSS and TSS) perform worse than
NGSS and ANGSS. The reason is that irregular workload is difficult to schedule. If
the parameter a is set appropriately, it is certain for NGSS and ANGSS to perform
better, as previous work has shown.

5 Conclusions

In this paper, we have investigated the workload distribution problem on dynamic and
heterogeneous grid environments. First, a performance-based approach was proposed
to schedule workloads on grid environments. In this approach, the system
heterogeneity is estimated by performance functions, and the variation of workload is
estimated by Static-Workload Ratio. On our grid platform, the proposed approach can
obtain performance improvement on previous schemes. In our future work, we will
implement more types of application programs to verify our approach.

References
[1] Divisible Load Theory, http://www.ee.sunysb.edu/~tom/MATBE/index.html
[2] Global Grid Forum, http://www.ggf.org/
[3] Introduction to Grid Computing with Globus, http://www.ibm.com/redbooks
[4] KISTI Grid Testbed, http://Gridtest.hpcnet.ne.kr/
[5] MPICH, http://www-unix.mcs.anl.gov/mpi/mpich/
[6] MPICH-G2, http://www.hpclab.niu.edu/mpi/
[7] Network Weather Service, http:/nws.cs.ucsb.edu/
[8] Sun ONE Grid Engine, http://wwws.sun.com/software/Gridware/
[9] TeraGrid, http://www.teragrid.org/

[10] The Globus Project, http://www.globus.org/

[11] TIGER Grid Report, http://gamma?2.hpc.csie.thu.edu.tw/ganglia/

[12] R. Agrawal and J. C. Shafer, “Parallel Mining of Association Rules,” IEEE Transactions
on Knowledge and Data Engineering, vol. 8, no. 6, pp. 962-969, Dec. 1996.

[13] R. Agrawal and R. Srikant, “Fast algorithms for Mining Association Rules,” Proc. 20th
Very Large Data Bases Conf., pp. 487-499, 1994.

[14] M. A. Baker and G. C. Fox. “Metacomputing: Harnessing Informal Supercomputers.”
High Performance Cluster Computing. Prentice-Hall, May 1999. ISBN 0-13-013784-7.

[15] I. Banicescu, R. L. Carino, J. P. Pabico, and M. Balasubramaniam, “Overhead Analysis of
a Dynamic Load Balancing Library for Cluster Computing,” Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium, 2005.

[16] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert, “Scheduling
strategies for master-slave tasking on heterogeneous processor platforms,” [EEE
Transactions on Parallel and Distributed Systems, Vol. 15, No. 4, pp. 319-330, Apr.
2004.

[17] O. Beaumont, H. Casanova, A. Legrand, Y. Robert and Y. Yang, “Scheduling Divisible

Loads on Star and Tree Networks: Results and Open Problems,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 16, No. 3, pp. 207-218, Mar. 2005.

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]
[26]
(27]
(28]
[29]

(30]

(31]
(32]

(33]

[34]
(35]

(36]

Performance-Based Workload Distribution on Grid Environments 395

V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi, Scheduling Divisible Loads in
Parallel and Distributed Systems, IEEE Press, 1996.

V. Bharadwaj, D. Ghose and T.G. Robertazzi, “Divisible Load Theory: A New Paradigm
for Load Scheduling in Distributed Systems,” Cluster Computing, vol. 6, no. 1, pp. 7-18,
Jan. 2003.

K. W. Cheng, C. T. Yang, C. L. Lai, and S. C. Chang, “A Parallel Loop Self-Scheduling
on Grid Computing Environments,” Proceedings of the 2004 IEEE International
Symposium on Parallel Architectures, Algorithms and Networks, pp. 409-414, KH, China,
May 2004.

A. T. Chronopoulos, R. Andonie, M. Benche and D.Grosu, “A Class of Loop Self-
Scheduling for Heterogeneous Clusters,” Proceedings of the 2001 IEEE International
Conference on Cluster Computing, pp. 282-291, 2001.

A. T. Chronopoulos, S. Penmatsa, J. Xu and S.Ali, “Distributed Loop-Self-Scheduling
Schemes for Heterogeneous Computer Systems,” Concurrency and Computation:
Practice and Experience, vol. 18, pp. 771-785, 2006.

N. Comino and V. L. Narasimhan, “A Novel Data Distribution Technique for Host-Client
Type Parallel Applications,” IEEE Transactions on Parallel and Distributed Systems,
Vol. 13, No. 2, pp. 97-110, Feb. 2002.

M. Drozdowski and M. Lawenda, “On Optimum Multi-installment Divisible Load
Processing in Heterogeneous Distributed Systems,” Euro-Par 2005 Parallel Processing:
11th International Euro-Par Conference, Lecture Notes in Computer Science, vol. 3648,
pp. 231-240, Springer-Verlag, August 2005.

I. Foster, N. Karonis, “A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems.” Proc. 1998 SC Conference, November, 1998.

I. Foster, C. Kesselman., “Globus: A Metacomputing Infrastructure Toolkit,”
International J. Supercomputer Applications, 11(2):115-128, 1997.

I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” International J. Supercomputer Applications, 15(3), 2001.

I. Foster, “The Grid: A New Infrastructure for 21st Century Science.” Physics Today,
55(2):42-47, 2002.

J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishers, 2001.

J. Herrera, E. Huedo, R. S. Montero, and I. M. Llorente, “Loosely-coupled loop
scheduling in computational grids,” Proceedings of the 20th IEEE International Parallel
and Distributed Processing Symposium, 2006.

S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: a method scheme for
scheduling parallel loops,” Communications of the ACM, Vol. 35, 1992, pp. 90-101.

“C. Kruskal and A. Weiss, “Allocating independent subtaskson parallel processors,” IEEE
Transactions on Software Engineering, vol. 11, pp 1001-1016, 1984.

H. Li, S. Tandri, M. Stumm and K. C. Sevcik, “Locality and Loop Scheduling on NUMA
Multiprocessors,” Proceedings of the 1993 International Conference on Parallel
Processing, vol. 11, pp. 140-147, 1993.

B. B. Mandelbrot, Fractal Geometry of Nature, W. H. Freeman: New york, 1988.

C. D. Polychronopoulos and D. Kuck, “Guided Self-Scheduling: a Practical Scheduling
Scheme for Parall