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Preface

With the rapid technological development of information technology, computer
systems and especially embedded systems are becoming more mobile and ubiq-
uitous. Ensuring the security of these complex and yet resource-constrained sys-
tems has emerged as one of the most pressing challenges for researchers. Although
there are a number of information security conferences that look at particular
aspects of the challenge, we decided to create the Workshop in Information Se-
curity Theory and Practices (WISTP) to consider the problem as a whole. In
addition the workshop aims to bring together researchers and practitioners in re-
lated disciplines and encourage interchange and practical co-operation between
academia and industry.

Although this is the first ever WISTP event, the response from researchers
was superb with over 68 papers submitted for potential inclusion in the workshop
and proceedings. The submissions were reviewed by at least three reviewers,
in most cases by four, and for program committee (PC) papers at least five
reviewers. This long and rigorous process was only possible thanks to the hard
work of the PC members and additional reviewers, listed in the following pages.
We would like to express our gratitude to the PC members, who were very
supportive from the very beginning of this project. Thanks are also due to the
additional expert reviewers who helped the PC to select the final 20 workshop
papers for publication in the proceedings. Of course we highly appreciate the
efforts of all the authors who submitted papers to WISTP 2007. We hope they
will contribute again to a future edition and encourage others to do so.

In this first edition, Prof. Jean-Pierre Hubaux, Prof. Fred Piper, Caspar Bow-
den and Patrick Waters have honored us with their great experience offering
keynote speeches. We want to acknowledge their contribution and amiability.

To host a successful workshop requires not only support from the research
community but also practical and financial support from a range of companies
and scientific organizations. Therefore, we would like to thank every single one.

Special thanks to Matthieu Finiasz and Thomas Baignères for providing the
Web review system iChair that was a great asset for the workshop organization.

March 2007 Damien Sauveron
Konstantinos Markantonakis

Angelos Bilas
Jean-Jacques Quisquater
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A Smart Card Based Distributed Identity
Management Infrastructure for Mobile Ad Hoc

Networks�
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Abstract. The network is becoming more and more versatile because
of the variety of the computing resources and the communication tech-
nologies that have become available. The mobility of the nodes, in these
so called Mobile Ad hoc Networks (MANets), furthermore leads to a sit-
uation where it is very difficult to establish secure community-based or
even peer to peer communication channels. The basic and major prob-
lem that has to be solved is that of identity management: how to identify
and authenticate an entity that is a priori unknown and that tries to
dynamically join a community in the network? Even if we solve this
problem, how to distribute these certified identities over the network? In
this paper, we propose to make a clear distinction between two kinds of
organization of a MANet. We consider an identity-based approach and
a goal-based approach. In the identity-based approach the nodes of the
network have to be precisely identified (i.e. with their real-world identity)
and a central administration is therefore required. In the goal-based ap-
proach, identities are simply used to distinguish between the nodes that
collaborate to a certain goal. We claim that when this second approach
is considered, it is possible to support a totally distributed identity man-
agement system. Our contribution is the design and the implementation
of such a system for these goal-based networks. We assume that the
users who want to get involved are provided with PDAs supplied with
smart cards and more precisely Java Cards, which are the basic secure
bricks on which our approach relies. Of course, our approach supports
the uniqueness of identities, but it furthermore enforces permanency, i.e.
it prevents changing and repudiation of identity. In this paper, we de-
scribe the protocol that we have designed to support our solution and
its effective implementation.

Keywords: MANets, identity management, smart cards, auto-
administration.

� This work is partly supported by the ANR/SSIA project Cryscoe and by a PhD
grant funded by Region Limousin.

D. Sauveron et al. (Eds.): WISTP 2007, LNCS 4462, pp. 1–13, 2007.
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2 E. Atallah and S. Chaumette

1 Introduction

The need for identity management. Any group (either human or computer based)
composed of different and independent entities requires a system to protect its
assets and the realization of its founding goal (usually data sharing), by organiz-
ing rights and duties management. The success of such a system entirely depends
upon the recognition of its components. It is the basis of the management of all
security issues [1]. Once recognition is achieved it is for instance possible to create
restricted groups with controlled access and to establish secure communication
channels.

Specificity of the context. Our framework is that of MANets [2] (Mobile Ad hoc
Networks) where, compared to classical networks, there cannot be any central
node in charge of the administration and the organization of the network. In this
context, the network dynamically evolves, based on the arrival and departure of
(the devices of) the final users. Even though it is often claimed that almost
nothing can be achieved in such a context, we believe that a lot can be done,
provided the nature of such a network is properly taken into account. The basic
idea is that there are two ways to consider the organization of a number of
entities as a network:

– in the identity based approach, a number of nodes work altogether based
on the precise knowledge of their respective real-world identities. This can
be the case of a group of persons defining a proposal for some project. It
might be absolutely necessary to know who is who because there may be
confidential information that can only be communicated to specific partners.
This is also the case of applications where things are organized around a
central system, such as banking systems for instance, where the issuer of an
operation must be precisely identified.

– in the goal based approach, a number of nodes work altogether so as to
achieve a common goal. The question is not to know who is involved, but to
make sure that the nodes that are involved contribute to the same precise
goal. For instance, in collaborative writing like Wikipedia or in Seti like
applications (even though it is in some sens centralized) there is no reason
for knowing who is who in the real life. The thing that is important is the
goal.1

Our approach relies on this subtle difference. We claim that in spontaneous mo-
bile ad hoc networks the first approach is not feasible. Devices need to collaborate
independently of any predefined realworld organization. Groups are dynamically
built for a specific goal, and the nodes are given identities on the fly, the purpose
of which is simply to distinguish them within the group. We can also note that a

1 This is different from role based approaches [3,4] where users still need to be identified
based on their real world identities and where they are given roles by some sort of
central administration. The choice of roles comes from the top of the organization,
whereas the fact of participating to a goal comes from the bottom.
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device might be willing to participate in several activities and thus join different
groups, having a different identity in each group.

In all existing solutions, it is mandatory for all the users to be part of a
human organization that the network simply reflects. The network entities are
dependent of a central administration that must remain available at all time.
Our contribution removes these constraints. We provide an auto-administrated
architecture that enables the dynamic allocation of identities to the nodes of
a MANet; it can then serve as a basis to develop higher level security mecha-
nisms (which are out of the scope of this paper). Our system requires neither
centralization of identities nor in-line administration.

2 The Phases of Identity Management, Existing Solutions
and MANet Specific Problems

In classical networks (as opposed to MANets), a trusted entity (for instance a
dedicated national agency or a network administrator) validates and central-
izes the identities of all the users. It delivers ID cards or certificates (X509 [5]
for instance). In a MANet, there cannot be any centralization, because of the
volatility of the nodes that compose the network and of the network itself. Thus,
several specific difficulties appear during the different phases of identity man-
agement. In this section, we discuss these difficulties. We present a number of
existing approaches that deal with the different phases (validation, certification
and distribution) of identity management and explain why they do not solve
the problems that we want to address. We deduce some requirements that our
solution will need to cope with.

2.1 Nature of the Identities and Their Validation

At the user level, an identity must have a public part which is called the identifier
(for instance a login name, a pseudo plus a public key, etc.) and an authenticator
that makes the link between the entity and its identifier (for instance a password,
a private key, etc.).

Uniqueness. At least the authenticator has to be unique (and it must be kept
secret to prevent impersonation). If a central authority generates the keys, the
uniqueness is straightforward to achieve. The problem is more difficult to deal
with in a MANet, where such a central authority does not exist. It is impossible
to compare an identity with all the other identities because there is no global
knowledge of the network, i.e. no entity that knows all the identities. A distrib-
uted algorithm would not work either, because a node could leave during the
verification, or the network could be separated in several disconnected parts. It
is thus impossible to validate the uniqueness of an identity in a MANet, unless
this uniqueness is guaranteed by the nature of the identity creation process, i.e.
by the identity creation algorithm. These considerations lead to the following
requirement that we want to support in our solution.
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Definition of 1st requirement. An identity must be unique and thus a part
of it has to be unique by nature of the creation process. This unique part must
be kept secret.

Permanency. Once established, the identity of a device should be definitively
linked to this device. When asked to confirm its identity, the device should not
be able to deny it. This is the permanency condition that we want to foster.

Definition of 2nd requirement. An identity can neither be modified nor dis-
missed. The owner of an identity must confirm it when asked for.

A solution to meet this requirement (even though partial since it does not oblige
the user to confirm its identity when asked for) is proposed in [6]. Each device
is given a pair of asymmetric keys created during its production phase and
guaranteed to be unique. Its identifier is the public key of this pair of keys, and
its validity is certified by a reliable authority that signs it. The key pair as a
whole is kept secret by being stored in a secure module such as a smart card.
Identities cannot be changed by the user (the CA would be required) and this
is part of the permanency requirement defined above. This solution does not
make it possible for a device to have several identities, it does not support non
repudiation, and it depends on an administration infrastructure. It thus does
not meet our goals.

2.2 Certification and Distribution

Once the identities have been generated and validated, the next step consists in
distributing them along with the the proof that they are valid, this assembled
information being usually referred to as a certified version of the identity. Several
methods exist to achieve these operations. In the rest of this section, we describe
two of the major approaches that could at first glance be considered as potential
solutions to solve the problem in a MANet.

Auto-organization: to mitigate the problem of the availability of nodes for
the distribution of certificates, solutions such as those described in [1,7,8] rely
on the use of a trusted node chosen using a method to establish confidence [9].
Establishing confidence requires to observe a number of nodes over a period of
time and thus to recognize them. This kind of approach can therefore only be
used once identities have been validated, which is precisely what we are trying
to do. It thus cannot help in our context.

Signature by a Certification Authority (CA): in classical networks, the
authority is centralized on one or several nodes that share the same pair of pri-
mary keys. For large networks this approach is extended based on a hierarchical
organization. As MANets cannot rely on the continuing existence of any specific
node, solutions to distribute this otherwise central authority were developed that
use the threshold secret sharing principle. The key of the CA is shared by a set
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of n nodes and k < n partial signatures are required to reconstruct a complete
signed certificate. These methods allow to admit a new node in the network as
the result of the collective decision of at least k nodes. There are several partial
signatures protocols that use RSA [10,11,12,13] or DSA [14,15] keys. The dis-
tribution of the authority can be partial [16,17] or total [18,19], in which case
every node is supplied with a partial key.

The advantages of these solutions are as follows. First, to compromise the sys-
tem several nodes must be attacked (get the CA secret key, DOS, etc.) instead of
only one. Second, it increases the global availability of the certification author-
ity (by choosing n large enough compared to k). If the distribution is partial,
some devices are in charge of a more important task and thus have a specific
non symmetric role, what we do not want. We furthermore have the problem of
locating these nodes that share the authority. If the distribution is total there is
equality between the nodes and no more localization question. In any case, an
initialization step is necessary that requires the presence of an administrator and
a certain number of nodes for the initial distribution of keys. The administration
phase is then strongly dependent of the network specific usage and must be ini-
tiated before the network is constituted, what clearly removes the spontaneity,
which is a feature that we want to support. Therefore our third requirement.

Definition of 3rd requirement. The validation, certification and distribution
phases cannot rely on a central administration that would reflect an a priori
restricted human (i.e. real-world) organization.

3 Our Solution

Based on the requirements defined above we can establish a number of features
to achieve at the implementation level.

1st requirement. An identity must be unique and thus a part of it has to be
unique by nature of the creation process. This unique part must be kept secret.

To implement this constraint, we need a process to generate unique identities
and the possibility to store them in a secure, read only area.

2nd requirement. An identity can neither be modified nor dismissed. The
owner of an identity must confirm it when asked for.

This requires the capability to store data in a non erasable, read only area.
The confirmation of an identity must be out of the control of its owner, so that
he cannot deny it or wrongly confirm an identity that he does not own.

3rd requirement. The validation, certification and distribution phases cannot
rely on a central administration that would reflect an a priori restricted human
(i.e. real-world) organization.

As a consequence of this 3rd requirement we have to make virtual the notion
of CA.
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Presentation of Java Cards. Our solution satisfies these requirements by using
smart cards and more precisely Java Cards2 which provide some specific features,
among which:

– their ROM memory makes it possible to install applications (in factory)
that can thereafter neither be modified nor erased. Note that the ROM of
the cards cannot store application data.

– they allow to store persistent data.
– the information they store can be protected by a firewall that sits between

applications.

We strongly rely on the fact that smart cards are secured devices and we do not
consider physical attacks like fault injection.

We have specifically chosen Java Cards rather than any other brand of card
because they are easy to program and we have been using this technology for
quite a long time in our team.

In the rest of this section we give an overview of our solution and how it is
used. The lower level protocol is described in section 4.

Implementation of our solution. Each card is prepared as follows:

1) An applet (Java Card application) is installed in factory on each card. It
provides the methods required to define identities and to ensure their definitive
registration. The use of data stored inside a card is completely controlled by this
card and is thus limited by nature to the operations that we have defined. It
is then possible to register an identity permanently without any risk that it is
modified or erased.
2) Each card stores (installed in factory) a global public key, a specific and
unique asymmetric key pair and the public key of this pair signed by the related
global private key. These data can thereafter never be accessed from outside the
card. Even if smart cards are considered really safe, we still want to ensure that
if a card were after all compromised, security of all the identity management
architecture would not fall. Therefore we do not store a secret symmetric key or
a private asymmetric key3.

This secure platform is then used as follows:
1) To communicate its identity to another card when asked for, a card en-

crypts it with its own private key and supplements it with its signed (by the
global private key) public key. This is enough to prove that this identity has been

2 Java and all Java-based marks are trademarks or registered trademarks of Sun mi-
crosystems, Inc. in the United States and other countries. The authors are indepen-
dent of Sun microsystems, Inc. All other marks are the property of their respective
owners.

3 If we had ignored this risk, we could have chosen to include the global private key
in each card and then to generate the card key pair and to sign its public key inside
the card.
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originally provided from inside a card and that it obeys the rules that we have
defined (uniqueness, permanence) 4.

2) This could then be used to exchange a session key to achieve secure commu-
nication. This would lead to good forward secrecy and fast throughput between
smartcards5.

Our solution vs other smart card infrastructures. Even though smart cards are
already widely used for identification and authentication between a user and a
central system, there are many differences with the context of our approach. The
global key pair, the public key of which is installed on all the cards, does not
depend on a specific application that the card could be used for, and thus the
personalization of the card for a specific application does not take place at the
same level as in classical solutions. This is a consequence of our discussion on
identity vs. goal based approaches in section 1 page 2, and is described figure 1.

Advantages of our solution (See figure 2). We have established an auto-admi-
nistration system that implements the identity management requirements that
we have defined. It supports a high level of security, leaves the user total free-
dom, and requires no preparation once the cards are out of the factory. No user
or administrator of the network has to care about key management. The final
user only needs to provide an identifier. Furthermore, even once supplied with
an identity, a card is not dedicated to one single application as it is the case
for instance with banking cards that are specific to one single bank. It can be
supplied with new identities and join other goal-based networks on the fly.

Fig. 2. A comparison of solutions for identity management in MANets

4 It should be noted that if a card becomes compromised and the global public key is
discovered, the attacker can get to know the identities of the entities that partici-
pate in the network. This has no impact over the security or the proprieties of our
infrastructure. Furthermore, the fact that cards are considered today as the most
trusted available devices makes it possible to ignore this hypothetical risk.

5 This precision was suggested by one of the reviewers of this paper.
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4 Our Protocol

In our protocol, all communications between cards obey a number of rules:

1. All messages are encrypted by the private key of the sending card.
2. So that a message can be deciphered, it contains the public key of the sending

card signed by the private global key (that signed key was stored in every
card in factory).

3. A message also contains the following information:
– the nature of the request (for instance «ACert» for a certificate request).
– a nounce used to avoid replay. This for instance prevents repeated storage

operations that would saturate the memory of cards.

Additional data can then be added according to the type of the message.

Fig. 3. Structure of a message

Fig. 4. Creation of an identity

Creation of an identity (see Fig.4). The user first provides the card with an
identifier (1). The card then verifies if an identifier has already been defined (2)
and if not, generates a RSA key pair (3), associates it with the received identifier
(4) and definitively loads the association in the card (5).

This complies with our 1st requirement, since thanks to the RSA key that
it contains, the identity is unique by creation. The identity is protected by the
card and its private part is kept secret inside the card. Permanence which is
our 2nd requirement is also supported because we provide no method to mod-
ify or erase an identity6. This approach also complies with the 3rd requirement,

6 Note that swapping a smart card for a new one to get a new identity would have no
consequence over the global infrastructure. This precision has been suggseted by a
remark of one of the reviewers of this paper.
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since the validation of identities does not require any a priori restricted central
administration.

Certification and distribution (see Fig.5). First, the user sends a request to the
card asking it to discover his neighbours (1). The card prepares the request (2)
that only contains the request type and the nounce. It is sent (ciphered) to the
neighbourhood (3)(4)(5). A card that receives this request deciphers it (6) and
prepares an answer by adding its public identity (public key + identifier) to the
message (7). The response is sent (ciphered) (8)(9) and the initial card receives
all these incoming messages (10). It deciphers them (11) and temporarily stores
all the received identities (12). The identifiers are then propagated to the user
level (13).

In terms of robustness and security, the situation is as follows: if the com-
munication breaks at stage (4), there are no consequences (the remote card will
simply remain undiscovered). If communication breaks at stage (9), there is no
real consequence either since nobody has stored anything yet and it thus can-
not be an attack to saturate any of the cards. Once again, the remote card will
simply not be discovered.

Once all these steps have been achieved, the deployed validated and certified
identities can be used to enable secure communications.

5 Conclusion

In this paper we have presented an identity management system that we have de-
signed for entities willing to collaborate in a goal based approach over a MANet.
A prototype has been implemented on a number of Dell Axim PDAs and a draft
video demo can be seen on the web at [20].

This identity management architecture sets a basis to establish higher level
security features. One of its main characteristics and advantages is that it does
not impose any constraint on the natural spontaneity of such dynamic networks.
Thanks to the use of Java Cards, the creation and storage of (certified) identities
make it possible to support the basic security requirements that we have defined
(uniqueness and permanency), without any central administration or server. The
fact that all the administration takes place inside the card makes the nodes
of the network completely independent of any preexisting real-world group or
organization. Every user (or node) thus has the possibility to create a group
without any human intervention, wherever he wants, whenever he wants. This is
one of the outcomes of the clear distinction that we have made between identity
based networks and goal based networks.

Future work directions concern the way the goal of a group is defined and
the way a node willing to join a group is allowed to enter it. Basically, the goal
will be described by means of a charter [21] that contains a number of questions
the node will have to answer. This work on charters is part of the MADNESS
project carried out at XLIM, University of Limoges. Once this will be achieved,
we will be able to conduct an evaluation of the global system.
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Département Logiciel-Réseaux
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Abstract. Wireless Sensor Networks (WSN) security is an important
issue which has been investigated by researchers for few years. The most
fundamental security problem in WSN is key management that covers the
establishment, distribution, renewing and revocation of cryptographic
keys. Several key management protocols were proposed in the literature.
Unfortunately, most of them are not resilient to nodes capture. This
means that an attacker compromising a node can reuse the node’s key
materials to populate any part of the network with cloned nodes and new
injected nodes. In this article, we present a simple polynomial-based key
management protocol using a group-based deployment model without
any necessary predictable deployment location of nodes. That solution
achieves high resilience to nodes compromising compared with other pro-
tocols.

Keywords: WSN Security, Key Management, Nodes Compromising, In-
trusion Detection.

1 Introduction

Wireless sensor networks (WSN) are infrastructure-less and self-organizing net-
works, which can be deployed anywhere, and work without any assistance [1].
These characteristics motivated their deployment, but introduced critical secu-
rity issues like network control access, authentication, confidentiality and nodes
compromising. WSN are very sensitive to those issues since sensors are known
to be tamper-vulnerable devices [2], and deployment of them is mostly done in
open area that should be assimilated as hostile area for security consideration.

Current WSN security solutions rely on secret keys but today an efficient key
management protocol is still needed to generate, distribute, renew and revoke
cryptographic keys. In the last few years, several key management protocols for
WSN have been defined, but they do not satisfy the protocol efficiency require-
ments as follows:

1. Low storage, computation, and transmission overheads.
2. Resistance to nodes compromising, so keys established between non compro-

mised nodes remain confidential even in case of nodes compromising.

D. Sauveron et al. (Eds.): WISTP 2007, LNCS 4462, pp. 14–26, 2007.
c© IFIP International Federation for Information Processing 2007
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3. No on-line key management server, that would be the point of failure in case
of DoS attacks.

4. Resilience to nodes compromising that prevents attackers to populate the
network with clones of compromised nodes or injected false nodes, by reusing
their key materials.

Most of the key management protocols [2] [3] [4] [5], satisfy one or more of
the three first requirements. Unfortunately the last requirement is rarely or not
enough investigated. Most of the key management protocols are poorly resilient
to nodes compromising, and the few ones achieving an acceptable level of re-
silience, either rely on strong assumptions (i.e. nodes are tamper-resistant) [6] [4],
introduce heavy overheads (the use of public key cryptography) [6], or require
prior knowledge on nodes deployment [4].

In this article, we propose a simple key management protocol for static WSN,
based on the well-known polynomial-based key generation protocol of [7] for
pair-wise keys establishment, and our proposed group-based deployment model
to ensure resilience to nodes compromising. Our protocol requires no prior knowl-
edge on the locations of deployed nodes. It relies on realistic assumptions, and
introduces no significant overhead.

The remainder of the paper is organized as follows. In section 2, we introduce
the basic version of polynomial-based key generation protocol. In section 3, we
present our assumptions, network model, notations and we define our group-
based deployment model. In sections 4 and 5, we describe our proposed protocol,
and in section 7 we give its detailed security analysis. In section 8, we briefly
review related works on key management in WSN, and we compare the resiliency
of our protocol to the resiliency of the related works in section 9 , and we conclude
our work in section 10.

2 Polynomial-Based Key Generation Protocol

Blundo et al. [7] present a new pair-wise key establishment protocol, based on a
symmetric bivariate polynomial. A trusted key server in the network generates
a symmetric bivariate polynomial, as follows:

f(x, y) =
∑

i,j=0,...,t

aijx
iyj (mod Q) (1)

where Q is a sufficiently great prime number, 1 ≤ aij ≤ Q − 1, and t is the degree
of the polynomial and a security parameter. Initially, the key server configures
each node u with its unique secret polynomial share:

fu(y) = f(Idu, y) =
∑

i,j=0,...,t

aij(Idu)iyj (mod Q) (2)

where Idu is the unique identifier of node u in the network. Two nodes of the
network u and v, can easily establish a unique shared secret key by computing:

Kuv = f(Idu, Idv) = f(Idv, Idu) = Kvu (3)
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As long as the number of compromised nodes in the network is less than t+1
nodes, the system is secure. The greater the t-value is, the more secure (resistant
to nodes compromising) the system is.

3 Assumptions, Notations and Network Model

3.1 Assumptions

First, we suppose that the Base Station (BS) is a trusted and a powerful entity
in the network, that cannot be compromised.

Second, we suppose that sensors are static, so once they are deployed they do
not leave their locations. In many scenarios (i.e. perimeter monitoring), WSN
are considered as static, either because sensors are fixed or because sensors are
not asked to be mobile for achieving their tasks.

Third, we suppose that sensors are deployed progressively in successive gen-
erations (groups). This assumption is adopted in most group-based deployment
key management protocols like [3] and [8]. However, unlike the other group-based
key management protocols, we do not suppose that nodes of the same genera-
tion are deployed in the same neighborhood. In our protocol, nodes of the same
generation might be deployed anywhere in the network. Therefore, our protocol
is not based on any prior knowledge on deployment location of nodes, but if such
information was available, our protocol will achieve better resilience.

Fourth, we suppose that an attacker needs a minimum time Tcomp in order to
compromise a node after it is deployed. Tcomp is greater than the time Test, which
is the maximum time needed by a newly deployed node to establish pair-wise keys
with its one-hop neighbors. This assumption is present in several works like [9]
and [5], and is likely to be true, because an attacker must first have a physical
access to a sensor, and then use some programming tools in order to retrieve
sensor’s key materials. However, in [9] and [5], deployed nodes are initially loaded
with some common secrets that nodes use to establish different keys (pair-wise
keys, cluster keys) with their neighbors. In addition, [9] and [5] require that
each newly deployed node erases these common secrets after a time Test from
its deployment, to prevent that an attacker can get them if it is compromised.
In our protocol, no such assumption exists, because each node only needs its
unique secret polynomial share for pair-wise key establishment.

Fifth, we suppose that sensors are synchronized with the BS. This could be
done through an authenticated beacon periodically broadcasted by the BS, to
keep sensor’s clocks synchronized with the BS’s one. Authentication can be guar-
anteed using the μTesla protocol [10].

Finally, we suppose that an attacker can only get a partial control over the
network. In case of full control on all deployed nodes, security solutions will be
inoperative to stop the attacker.

3.2 Notations

Table 1 summarizes the notations used in this paper.
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Table 1. The used notations

Notation Significance

u, v Two nodes of the WSN
Idu 4 bytes unique identifier of node u in the network.
Nu An increasing nonce value generated by node u
fu The secret polynomial share of node u
Kuv = Kvu The secret pair-wise key established between u and v
MACK(M) The message authentication code of M using the secret key K
H A one way hash function
|x| The length on bytes of x
a||b a concatenated to b

3.3 Network Model and Security Considerations

The BS deploys nodes in multiple generations numbered successively from 1 to
n, where n is the maximum number of deployed generations. If we suppose that
n < 216 −1, each generation’s number is identified by exactly 2 bytes. The order
of deployment must be respected G1, . . . , Gi, Gi+1, . . . , Gn, where Gi is the ith

deployed generation. Each node belongs to a unique generation.
Because nodes are not mobile in our network, it is logical that only nodes of the

newly deployed generation ask for key establishment with their neighbors, which
may belong either to the same generation, or to former deployed generations.
Nodes of former generations can not request for key establishment, and even if
they do request, their requests must be rejected. Based on this assumption, we
can state that any key establishment request originates from:

- either a node from the newly deployed generation,
- or a node deployed by an attacker, which is either a node having a false Id,

or a cloned node having the Id of a compromised node.

For security reasons, we suppose that any newly deployed node u sets a timer
to the value Test straight after deployment. Once the timer expires, node u
rejects any key establishment request originating from a node of the same newly
deployed generation.

4 Our Proposed Protocol

We propose a resilient key management protocol, based on the use of a symmetric
polynomial for secure key establishment, and based on our defined group-based
deployment model for achieving resilience to nodes compromising. Our protocol
involves three phases: initialization, pair-wise key establishment and key-path
establishment.

4.1 Initialization Phase

Initially, the BS generates a random symmetric bivariate polynomial f(x, y) (see
(1)). The BS then selects a group of nodes to form the next deployed sensors
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generation. The BS loads each node u with a unique secret polynomial share
(see (2)) as follows: suppose u ∈ Gi, then the BS loads the node with the secret
polynomial share fu(y) = f(i||Idu, y).

Note that it is impossible that two different nodes can have the same secret
polynomial share, so a node can never lie on its real identifier or the real gen-
eration number to which it belongs. Indeed, suppose that u ∈ Gi and v ∈ Gj ,
with i �= j. fu(y) = fv(y) is possible, only and only if i||Idu = j||Idv. Each
generation’s number is exactly 2 bytes length, and each node identifier is exactly
4 bytes length, so | i||Idu |=| j||Idv | = exactly 6 bytes. With our well formatted
extended node identifier (2 bytes generation number, 4 bytes node ID), starting
from an extended node identifier i||Idu, it’s impossible to find another distinct
node identifier j||Idv where i �= j or Idu �= Idv.

4.2 Pair-Wise Key Establishment Phase

Suppose that the BS deployed some previous generations, say the i first gener-
ations (1, 2, . . . , i), and just deployed generation i + 1. In our protocol, nodes
know the highest deployed generation’s number i + 1 through a mechanism we
describe in section 5.

Let u ∈ Gj a newly deployed node. It is obvious that as a well-behaving node,
u ∈ Gi+1. Node u tries to establish secure links with its direct neighbors by
locally broadcasting a Hello message:

u → ∗ : Hello, j, Idu, Nu

where Nu is used to guarantee response freshness. Let v ∈ Gz , where z ≤ i + 1,
a neighbor node of u receiving its message. For node v to decide serving node u,
node v follows two steps:

1. v checks if j=i+1, to verify whether u belongs to the newly deployed gener-
ation. If the verification fails, it simply rejects the request of node u, because
u is normally already deployed.

2. If v verifies that j=i + 1 then:
- If v belongs to generation z ≤ i, then v computes Kvu = fv(i + 1||Idu)

and sends back to node u the following message:

v → u : z, Idv, Nv, MACKvu(z, Idv, Nv, Nu)

- If j=z=i+1 (u, v ∈ Gi+1), then:
• If the timer set by node v (to the value Test, see section 3.3), did not

expire, do the same treatment as the previous case.
• If the timer expired, reject the request, because node u is suspected

to be malicious.

Upon receiving node v′s message, node u computes Kuv = fu(z||Idv), and
checks the message authenticity. If the message is authenticated, node u sets
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Kuv as the shared pair-wise key with v, and sends to v the following message to
conclude and mutually authenticate the key establishment process:

u → v : ok, MACKuv(ok, Nv)

Upon receiving node u′s response, node v checks the message authenticity
using Kvu, and, if successfully done, node v sets Kvu as the shared pair-wise key
with u, otherwise (failed authentication, or non received response), it erases Kvu.

At the end of this phase, either a pair-wise key is established between two valid
nodes, or the pair-wise key establishment fails in case one of the two nodes is
suspected of being a clone or a false node. The described protocol guarantees that
any served key establishment request, originates from a node belonging to the
newly deployed generation i+1. However, the current version of the protocol fails
to detect two particular attempts of false key establishment. The first attempt
is when an attacker compromises a newly deployed node of generation i + 1 and
deploys clones in the neighborhood of nodes of older generations, and the second
attempt is when an attacker compromises an older deployed node, and tries to
respond to the Hello messages of the newly deployed nodes. Solutions to these
two particular attempts are presented in section 7.

4.3 Key-Path Establishment Phase

In our scheme, two non neighboring nodes might attempt to establish a secret
key. The two nodes might belong to the same generation, or to two different
generations. Moreover, the node initiating the establishment might be from a
higher generation, same generation, or lower generation than the target node.
This raises a problem because we supposed that only newly deployed nodes are
eligible for requesting key establishment. We rely on the previously established
pair-wise keys in order to overcome this problem, and to guarantee each node
that the other node is a valid node and not a cloned node or a false injected
node.

Let u ∈ Gi and v ∈ Gj be two distant nodes that need to establish a secret
key, and consider that u initiates the communication, and u knows Idv and
that v ∈ Gj . First, u must find a secure path to node v, formed by previously
established secure links. Once the path is found, node u sends to v the following
Key Establishment Request (KER) message:

u → v : i, Idu, Nu, MACKuv (i, Idu, Nu)

where Kuv = fu(j||Idv). The KER message is sent in a secure path, where each
node in the path, including u and v, authenticates the message with the key it
shares with the previous node in the path. Upon receiving the KER message,
node v computes Kvu = fv(i||Idu), and then checks the authenticity of the
message. If the KER message is authenticated, then v sends back to u the Key
Establishment Confirmation (KEC) message:

v → u : ok, MACKvu(ok, Nu)
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to conclude the key-path establishment. Node u checks the authenticity of the
KEC message, and in case of unsuccessful authentication, it erases Kuv.

Note that thanks to the secure path, each node is ensured that the other node
is neither a cloned node nor an injected node. Indeed, suppose that the path is
going through nodes: u, w1, . . . , wi, wi+1, . . . , wr, v. According to section 4.2,
each pair-wise key (secure link) in the network is established between two valid
nodes, which are neither cloned nodes nor false injected nodes. As a consequence,
the fact that u found a secure path and received the KEC message means that
node v is a valid node, and the fact that node v received the KER message
through the path, means that node u is a valid node.

5 Determining the Highest Deployed Generation

Now let describe how nodes know the number of the highest deployed generation,
as seen in section 4.2.

The BS initially defines a static scheduling for generations deployment. The
BS considers deploying the first generation G1 at instant T1 = 0, which serves
also as a reference within deployed nodes for synchronization and time count-
ing. If a period T is defined between each generation deployment, each node of
generation i needs only be loaded with its generation’s deployment time Ti, and
the period time T .

After nodes deployment, when a node u ∈ Gi asks for key establishment, a
neighbor node v of an older generation j verifies that u is a node of the newly
deployed generation Gi, by verifying that 0 < tcurrent − (i − 1) ∗ T < T , where
tcurrent is the current time in node v. If this inequality is not verified, v rejects
the request of u, because u is not a node from the highest deployed generation.

6 Computation and Memory Costs

Now, let consider the computation and memory costs of our protocol. For the
memory cost, each node stores its extended identifier (generation number, node
ID), its polynomial share and the established pair-wise keys. An extended iden-
tifier is 6 bytes length (see section 4.1). A polynomial share is represented by
t+1 coefficients, plus the modulo Q. If we choose a modulo Q of 8 bytes, as
in [11], and t=100, each node needs 816 bytes memory to store its polynomial
share. In addition, each established pair-wise key needs 8 bytes of memory.

For the computation cost, each node needs to evaluate its polynomial share
for each pair-wise key establishment. As described in [11], evaluating a polyno-
mial share requires t modular multiplications and t modular additions in a finite
field FQ. However, because a sensor’s CPU does not manipulate words of 64 bits
(8 bytes), and the more powerful of them, like MOTEIV [12], handles words of
16-bit only (2 bytes), more modular multiplications and modular additions are
needed. Consequently, in a 16-bit CPU processor, evaluating a t-degree polyno-
mial share fu(y) over a finite field FQ, where Q is a prime number of 64 bits,
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and y is an extended identifier (see section 4.1) of 48 bits (6 bytes), requires 4× t
modular additions, and 12 + 28 × (t − 1) modular multiplications.

7 Security Analysis of Our Solution

The proposed security analysis of our protocol focuses on the resilience to nodes
compromising, and other features.

7.1 Resilience to Nodes Compromising

Now, let consider the resilience to nodes compromising, which refers to the capa-
bility of an attacker to inject cloned nodes and new nodes in the network, using
the key materials it gets from the compromised nodes.

Injecting Nodes with False Ids. It is clear that as long as an attacker com-
promises fewer than t + 1 nodes, new nodes with non-existing Ids can not be
injected in the network. In our protocol, each node u possesses a unique poly-
nomial share bound to its identity fu = f(i||Idu, y), where u ∈ Gi. After
compromising node u, an attacker can not create node u′, with a new identity
Idu′ and a new polynomial share fu′(y) = f(i||Idu′ , y). In addition, an attacker
can not use the polynomial share fu, because node u′ will fail to establish secret
keys with this polynomial share using the new identity Idu′ .

As a conclusion, our protocol is resilient to the injection of false nodes with
non-existing identifiers in the network.

Injecting Cloned Nodes. In our protocol, and under our assumptions of
section 3, an attacker is highly unlikely to deploy cloned nodes, and convince his
neighbors of the validity of the clones.

Table 2 summarizes the different scenarios for key establishment. Four possible
cases of key establishment can be differentiated according to the generations to
which the requesting node and the responding node belong. Next the behavior
of the attacker is analyzed according to the role of the attacker which is either
a requesting node, or a responding node.

First, let see how our protocol handles the two last cases Old−New, and Old−
Old, where a node u of an older deployed generation asks for key establishment
with a node of a newer generation, or an older generation. Remember that only
nodes of the newly deployed generation are able to establish secure links with
their neighbors. As a consequence, an attacker compromising an older deployed
node u ∈ Gi, can not initiate key establishment with another deployed node
v ∈ Gj where j > i. In addition, the mechanism described in section 5 guarantees
that all nodes of the network have the same view of the number of the highest
deployed generation, so a node u ∈ Gi of an older generation can not ask for key
establishment with a node v ∈ Gj where j ≤ i.

Second, let see how our protocol handles the first case New −New, where an
attacker compromises a newly deployed node and asks for key establishment with
another newly deployed node of the same generation. By limiting the duration
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Table 2. Identified scenarios for key establishment according to the generation of
concerned nodes

Requesting node Responding node

New New
New Old
Old New
Old Old

of key establishment phase for newly deployed nodes to Test, even if an attacker
compromises a newly deployed node in a period of time Tcomp (Tcomp > Test),
he cannot establish secure links with other nodes of the same generation, simply
because the responding nodes will reject the request, as described in section 4.2.

Now let see how our protocol handles the second case, where a node of the
newly deployed generation asks for key establishment with a node of an older
generation. Again, two cases are distinguished:

- First, the newly deployed node (requesting node) is a cloned node of a com-
promised node that belongs to the newly deployed generation.

- Second, the responding node is a cloned node of a compromised node that
belongs to an older generation.

For the first case, unfortunately the algorithm in section 4.2 does not handle
this situation. This case is difficult to detect, because the cloned node looks
like a node belonging to the highest deployed generation. One solution could
be that an older deployed node accepts establishing secure links with nodes
of any newly deployed generation only during a period of time Tmax after the
deployment of any new generation, where Test < Tmax < Tcomp. According to
section 5, nodes know the static scheduling of generations deployment, so each
deployed node sets a timer to the value Tmax when the time of deployment of
a new generation is reached. Because an attacker needs at least a time Tcomp

in order to compromise a newly deployed node, we are practically ensured that
an attacker compromising a newly deployed node, can not establish secure links
with nodes of older generations, because these nodes will reject his request.

The second case is also difficult to detect, because the newly deployed node
is asked for key establishment, and it has no way to check whether the respond-
ing node is a cloned node. The problem is even more difficult if the clone stays
inactive or silent until a newly node is deployed. At this time, the clone might
become active and establish a secure link with it by simply responding to its
request. In this scenario, because the cloned node does not ask its neighbors for
key establishment, it cannot be detected, so the newly deployed node cannot
be prevented. One solution to this problem is that deployed nodes which are
neighbors of both the newly deployed node and the cloned node, detect that a
neighbor node exists but they have no secure links with it, so they conclude that
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the node is a malicious node. As a consequence, an informative message is sent
by them to the newly deployed node which erases any established key with the
cloned node.

7.2 Node Revocation and Intrusion Detection

As described above, in the four possible cases of key establishment, an active
attack is always detected. Moreover, a silent attacker (intruder) is also detected
when he tries to respond to key establishment requests from newly deployed
nodes, and the newly nodes are then notified. As a consequence, the identity of
the compromised node is known, so the neighboring nodes of the cloned node can
either launch a distributed revocation against it, or notify the BS which broad-
casts a revocation message in the network for revoking both the compromised
node and its clones.

8 Related Works

Liu et al. [4] propose a distributed location-aware key establishment protocol,
based on bivariate symmetric polynomials. The protocol assumes that the net-
work is formed by simple nodes, and some sufficiently dedicated nodes called
the service nodes, which are elected amongst sensors after deployment. These
nodes play the role of trusted key servers in the network and are assumed to be
non-compromised. The protocol also assumes that once nodes are deployed, they
know their exact location coordinates (x, y). After deployment, each service node
creates a distinct t-degree bivariate polynomial, and then securely initializes each
neighbor node with its secret polynomial share, using the unique location coordi-
nates of the node. The protocol is resistant and resilient to node compromising,
as long as the service nodes are not compromised, and there are fewer than t+1
compromised nodes initialized by the same service node. However, if a service
node is compromised - which is a current threat because a service node is just a
non tamper resistant sensor node - an attacker can inject clones and new nodes
with new positions, deploy them in the neighborhood of the compromised service
node, and establish secure links with any nodes of the network.

Dutertre et al. [9] suppose that nodes are deployed in n successive generations,
and can not be compromised in a period of time less than Tcomp > Test (see sec-
tion 3.1). Each generation is loaded with a unique two master keys, used respec-
tively for authentication and key generation between the nodes of the generation.
Once a deployed node successfully establishes secure links with its neighbors of
the same generation, it erases these two keys to prevent from attacks. In order
to establish secret keys between nodes of two different generations, each gener-
ation i is also loaded with a unique secret group key GKi that enables nodes to
establish secure links with previously deployed generations j = 1, . . . , i − 1. In
addition, each node u of generation i is loaded with a unique random value Ru,
and a secret key Suj = H(GKj , Ru) for each future generation j = i + 1, . . . , n,
allowing it to establish secure links with nodes of newly deployed generations.
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The group key GKi is also deleted at the end of the key establishment phase.
The protocol is poorly resilient to nodes compromising, as an attacker compro-
mising a node of generation i, can establish secure links with nodes of the future
deployed generations, using the compromised secret keys Suj. Moreover, if an
attacker compromises a node u of generation i in a time period less than Test,
he might retrieve the master keys of generation i, and the group key GKi. As a
consequence, he can deduce secure links established between nodes of generation
i, and can inject cloned nodes and false nodes anywhere in the network.

Bhuse et al. propose a key distribution protocol based on the use of the Hughes’s
variant of the DH protocol with encrypted key exchange (HDH-EKE) [13], and
based on the assumption that nodes can not be compromised, and even if they
are, then they self destroy without revealing their secret cryptographic materials.
All nodes are initially loaded with a common password P used for authentication,
and after deployment, nodes self organize into clusters, and elect one of them to act
as a key server. The key server of each cluster generates a cluster key, and securely
distributes the key to each one-hop neighbor using the HDH-EKE protocol, which
in turn will pursue the distribution of the key to its neighbors in the same man-
ner, until all nodes of the cluster posses the cluster key. The cluster key is used for
encrypting messages and authenticating them inside the cluster. In order to send
packets between two different clusters, boarding nodes, which posses the cluster
keys of two or more clusters will act as a gateway by decrypting/encrypting mes-
sages from the source cluster to the target cluster. The key server periodically up-
dates the cluster key, by sending a random counter value used along with the secret
password, and the current cluster key to produce the new cluster key. The main
problem of this protocol is its high computation overheaddue to the use ofmodular
exponentiations (public key cryptography), its weak authentication mechanism.
The protocol is resilient against nodes compromising as long as an attacker can-
not retrieve the secret common password P. However, it’s unlikely that sensors can
be tamper-resistant [10] [14], where memory containing the secret cryptographic
materials is hardware-protected, because this will increase significantly the cost of
sensors, and sensor nodes are intended to be very inexpensive.

9 Comparison with Previous Work

As we have seen in the description of some previous works done in the litera-
ture, most of them lack to provide resilience to nodes compromising, and those
providing some degree of resilience rely on some assumptions, that can not be
met easily. For essence, [6] and [4] suppose that nodes are tamper-resistant
devices, so they can not be compromised or they self destroy when they detect
that they are under attacks, and [4] relies also in the assumption that nodes
know their locations coordinates, in-order to tie each node’s secret key mate-
rial (i.e. its secret polynomial share) to its location coordinates, so even if in
attacker succeeds into compromising a node and creates some cloned nodes, it
can not deploy them anywhere in the network. Someone can suppose that the
future generation of sensors will be tamper-resistant. However, tamper-resistant
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devices are expensive, and constructors tendency may be to keep sensors at
lower prices, with an increase of memory and computation capacities, instead
of making them tamper-resistant. Localization in WSN is still under research,
and the actual solutions assume that either nodes are equipped with GPS re-
ceivers, or the existence of some trusted nodes (at least three) on the perimeter
of the network, that provide nodes with their locations coordinates. The first
solution is unlikely to be deployed in sensors, and is energy consuming, and the
second solution requires multiple trusted entities, and the resulting location co-
ordinates are prone to errors. In our protocol, we don’t assume that nodes are
tamper-resistant devices, and we don’t consider nodes locations.

Some other works like [5], [9] and [15], suppose that nodes share some common
secret key(s) they use for key establishment, which will be erased from their
memory straightforward after they finish key establishment when they are first
deployed. These protocols suppose, as we do, that nodes can not be compromised
in time less then Tcomp, and that any newly deployed node needs at most a time
Test < Tcomp to establish keys with its neighbors. However, in the previous
protocols, if an attacker succeeds to compromise a node in time less then Test,
it will have access to all its secret key materials, especially the common secret
key(s), consequently the entire network security can be compromised, because
established keys between non-compromised nodes can be retrieved, and future
established keys can also be computed, and evidently cloned nodes and new
nodes with non-existing identifiers can be easily injected. In our protocol, only
if an attacker compromises a newly deployed node (which belongs to the newly
deployed generation) in a time less than Test, it will be able to deploy cloned
nodes in the network and establish pair-wise keys with them, but the attacker
can not compute any pair-wise key established in the network between two non-
compromised nodes. If an attacker compromises an old deployed node (which
belongs to an old deployed generation), it can not deploy cloned nodes of it,
and even if the cloned nodes launch a silent attack (see section 7.2) they will be
detected.

10 Conclusion

Our proposed solution improves considerably resilience to nodes compromising
compared with other protocols, and does not require any prior knowledge relative
to nodes deployment, and any common secret key pre-establishment between
nodes. Moreover, the solution does not rely on non-realistic assumptions like
supposing that compromised nodes do not divulge their secret keys or that some
nodes in the network can not be compromised.

Our protocol uses t-degreepolynomial-basedkey generationprotocol for achiev-
ing resistance to nodes compromising, and the proposed group-based deployment
scheme for resilience against nodes compromising, where only nodes of the newly
deployed generation ask for key establishment. In addition, the proposed mecha-
nism for determining the highest deployed generation, guarantee that nodes will
respond only to the newly deployed nodes’ requests, and limiting the duration of
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key establishment makes it practically impossible for an attacker to succeed in es-
tablishing keys in the network. Moreover, our protocol supports detection of silent
attackers (intruders) and can be enhanced to achieve a distributed revocation. In
a future work, we’ll implement our protocol to evaluate its real resiliency to nodes
compromising, and extend it with a distributed revocation mechanism.
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Abstract. Random delays are commonly used as a countermeasure to
hinder side channel analysis and fault attacks in embedded devices. This
paper proposes a different manner of generating random delays, that in-
creases the desynchronisation compared to random delays whose lengths
are uniformly distributed. It is also shown that it is possible to reduce
the time lost due to the inclusion of random delays, while maintaining
the increased desynchronisation1.

Keywords: Smart card security, fault attack countermeasures, side chan-
nel attack countermeasures.

1 Introduction

The use of random delays in embedded software is often proposed as a generic
countermeasure against side channel analysis, such as Simple Power Analysis
(SPA) and statistical analysis of the power consumption [6] or electromagnetic
emanations [4]. Statistical analysis is meaningless in presence of desynchroni-
sation; an attacker must resynchronise the acquisitions at the area of interest
before being able to interpret what is happening at a given point in time.

This effect is discussed in detail in [3], where the case of hardware random
delays is considered. This involves clock cycles being added into a process at
random points to create desynchonisation. An attack based on taking the integral
of adjacent points is proposed to find the information required to conduct a
Differential Power Analysis (DPA) [6]. In this paper, the case where a software
delay is introduced at various points in a process to introduce desynchonisation
is discussed. This introduces a delay in the process that is too large to allow a
similar attack to be conducted.

It has also been proposed as a countermeasure against fault attacks that
require a high degree of precision in where a fault is injected [1]. Random delays
will make it difficult to implement these attacks, as the target point in time is
1 Work done while the first author was employed by Gemalto (patent pending).
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constantly changing its position. An attacker is obliged to attack the same point
numerous times and to wait until the fault and the target coincide.

In both cases, the greater the variation caused by the random delay, the more
difficult it is to overcome. Nevertheless, the use of random delays is problematic,
as it serves no purpose other than to desynchronise events. Therefore, it cannot
prevent an attack; it just renders the attack more complex. This paper proposes
an improvement to the distribution of the lengths of individual random delays, to
improve the overall efficiency, i.e. the average time loss versus the work required
to conduct side channel or fault attacks.

The paper is organised as follows. Section 2 describes how random delays are
used in embedded software to defend against side channel analysis and fault
attacks. Section 3 describes how the random value used to generate the lengths
of these random delays can be modified, to have a useful effect on the cumulative
distribution after several random delays have occurred. Section 4 describes an
attack scenario and the amount of analysis that would be required to benefit
from the modified distribution. This is followed by the conclusion in Section 5.

2 Software Random Delays

A software random delay is inserted into code to prevent an attacker from being
able to determine what is happening at a specific moment in time during a
command without some a posteriori analysis. In general, this will consist of a
dummy loop where a random value is generated and then decremented until the
random value reaches zero before executing any further code. An example of the
sort of code that could be used is given below in the 8051 assembly language:

mov a, RND
mov r0, a

Delay_Label:
djnz r0, Delay_Label

This adds very little extracode to the overall program as this moves the ran-
dom value held in the register RND to another register (via the accumulator),
and then decrements this value and loops until the accumulator contains zero.
Generally, random number generators in embedded devices are based around a
noisy resistor or a clock generator with a bad ring, and are tested using a suite
of tests (e.g. [5]). The value placed into the accumulator can therefore be con-
sidered to be uniformly distributed across all the values it can take. In the case
of 8051, an 8-bit architecture, this would be expected to be an integer from the
interval [0, 255].

These loops are inserted to prevent statistical power analysis (e.g. DPA [6])
and fault attacks [1]. An example of some power consumption acquisitions that
include a random delay is shown in Figure 1. All three acquisitions are synchro-
nous on the left hand side of the figure. This is followed by a random delay,
visible due to the repeating pattern of the loop after which the acquisitions are
no longer synchronous.
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Fig. 1. The random delays visible in the power consumption over time

To conduct a statistical power analysis, an attacker needs to exploit the rela-
tionship between the data being manipulated at a given point in time and the
power consumption. In order to do this, the acquisitions need to be synchro-
nised a posteriori at the point that an attacker wishes to analyse. As the size of
the random delay increases, an attacker is obliged to acquire more information
to be sure of acquiring the point of interest. The amount of work required to
resynchronise the acquisitions also increases, as pattern-matching software will
have to search in a larger window to find the same point in each acquisition. It
is therefore of interest to maximise the variation of the cumulative distribution
of several random delays, as there are likely to be several random delays that
occur before a potential target for statistical power analysis.

This is different to the case considered in [3]. The countermeasure evaluated
in [3] involves introducing delays of one clock cycle but at random points in
time. An attack against these small random delays can be conducted, based on
evaluating the integral of a window of the acquisition rather than in a pointwise
fashion. This is not applicable in the case of software random delays, as the
information is spread over too many clock cycles.

An attacker wishing to conduct a fault attack needs to synchronise the fault
injection with the event they wish to affect in real time. There are some features
that can be used to synchronise with automatically, such as events on the I/O
or an EEPROM write command, but these will only remove some of the syn-
chronisation. In fact, it is considered prudent to include a random delay after
such events that can take values from a comparatively large interval, to hinder
an attacker that can synchronise in real time. An attacker is obliged to inject a
fault where the event is likely to be and then repeatedly inject the fault until the
event occurs at the desired point. This renders an attack more complex, as an
attacker cannot be sure where the fault has been injected, and a means of detect-
ing that the desired fault has occurred needs to be implemented (e.g. analysing
the power consumption a posteriori [7]). This is another case where the variation
at all target points needs to be maximised, as this will mean that an attacker has
to conduct more attacks before being successful. A notable exception to this is
the first published fault attack, that describes an attack against RSA when it is
calculated using the Chinese Remainder Theorem [2]. In this case, the target is
so large that the use of any form of random delay is unlikely to hinder the attack.
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In general, an operating system will have a few large random delays placed
at strategic points to prevent fault injection. Implementations of block ciphers
will typically have smaller random delays placed between every subfunction of
every round function (the use of random delays in public key cryptographic
algorithms is somewhat similar, but is not considered in this article for clarity).
More random delays are included in cryptographic algorithms predominantly to
hinder attempts to conduct statistical power analysis. If an attacker synchronises
a set of power acquisitions to analyse a given function, the following function
will still be desynchronised and will require further work to synchronise.

This is a mild countermeasure, as it cannot prevent an attack from taking
place. However, it can render an attack time consuming to the point where it is
no longer practical.

Random delays are rarely used in one place, so an attacker is likely to be
dealing with the cumulative delay of several random delays. The distribution
of the cumulative delay is therefore distributed over the cumulative uniform
distribution. This distribution is shown in Figure 2 for some small numbers of
random delays, where the y-axis is normalised to show how the form of the
distribution changes.

The cumulative random delay generated by a sequence of random delays generated
from uniformly distributed random variables. The number of random delays

considered are 1, 2, 3, 4, and 10, from top left to bottom right.

Fig. 2. The cumulative random delay

As can be seen, as the number of random delays increases, the distribution
rapidly becomes binomial in nature, i.e. it approximates to a discrete normal
distribution. It is also interesting to note that after 10 such random delays there
is a tail on either side of the binomial, where the probability of a delay of this
length occurring is negligible.
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3 Modifying the Distribution

As described above, length of individual software random delays are generally
governed by uniformly distributed random values. The distribution of the ran-
dom value could be modified to improve the properties of the cumulative distri-
bution. This section defines the criteria necessary for the modified distribution,
and then describes how a solution was designed.

3.1 Design Criteria

The ideal criteria for the new distribution would be the following:

1. Random delays should provide more variation when compared to the same
number of random delays generated from uniformly distributed random vari-
ables.

2. The overall decrease in performance due to the inclusion of random delays
should be similar or better than if the random delays are generated from
uniformly distributed random variables. This means that the mean of the
cumulative distribution should be less than, or equal to, the mean of the
cumulative uniform distribution.

3. Individual random delays should not make an attack trivial in the event that
there is only one random delay between the synchronisation point and the
target process.

4. It should be a non-trivial task to derive the distribution of the random delay
used.

These conditions are the ideal; there will be some compromise needed between
all of the conditions, as the uniform distribution will probably be preferable for
criterion 3.

Our main aim in this paper is to optimise criteria 1 and 2, since the reverse
engineering of a random delay distribution is rarely conducted (furthermore,
it will be shown that this involves more effort than assuming the distribution
is uniform) and individual efficiency is rarely applicable due to the numerous
random delays used (as described above).

In order to be able to compare different distributions, the mean and the stan-
dard deviation are used to express the characteristics of the cumulative distribu-
tion of random delays. This was a natural choice as the cumulative distribution
is based on a binomial distribution, which approximates to a discrete version of
a normal distribution (characterised by the mean and variance). However, the
standard deviation was chosen rather than the variance, as this represents the
mean deviation from the mean.

3.2 Deriving a Suitable Distribution

In order to increase the variation in the cumulative distribution, the probabilities
of the extreme values occurring were increased, i.e. the minimum and maximum
values of one random delay. The formation of a binomial distribution after several
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random delays cannot be avoided, as the number of combinations close to the
mean value is far too large. Any modification is also required to be subtle, as
one random delay needs to be able to provide desynchronisation between two
sensitive areas (criterion 2). It was initially assumed that this could be achieved
by a distribution of the form shown in Figure 3.

Fig. 3. An example of a modified probability function

To use this probability function in a constrained environment, for example a
smart card, this needs to be expressed as a table where the number of entries for
a given value represents the probability of that value being chosen. A uniformly
distributed random value can then be used to select an entry from this table.
The function that was chosen to govern the amount of entries for each value of
x, where x can take integer values in the interval [0, N ], was:

y = �akx + bkN−x�

where a and b represent the values of the probability function when x takes 0
and N respectively, and y governs the number of entries in a table for each value
of x that can be used to represent this function. The sum of y for all values of
x will therefore give the total number of table entries. k governs the slope of
the curve and can take values in the interval (0, 1). Different values for a and
b are used so that a bias can be introduced into the sum distribution to lower
the mean delay. The two elements akx and bkN−x are both close to zero when
x ≈ N/2 for the majority of values of k that will be of interest. The ceiling
function is therefore used to provide a minimum number of entries in the table
for each value. This is important; if values are removed from the distribution
it will decrease the amount of values the random delay can take and reduce its
effect.

The parameters that generate this curve shape were changed and the effect on
the sum distribution was tested to search for the best configuration that would
satisfy the criteria given above. As given in the example, the length of each
individual random delay can be an integer value in the interval [0, 255].

For values of a and b that are approximately equal, the change in k will have
an effect on the mean and the standard deviation as shown in Figure 4. This
graph was generated by analysing a large number of random values generated
by a random look-up on a table, as described above.
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Fig. 4. The mean and the standard deviation against k for approximately equal values
of a and b

Table 1. Parameter Characteristics for Tables of 29 Entries

a b k Mean σ
% decrease % increase

22 13 0.88 13.4 34.5
23 12 0.88 16.3 33.5
23 15 0.87 11.6 35.4
24 11 0.88 19.7 32.1
24 14 0.87 13.4 34.9
25 10 0.88 22.6 30.7
26 6 0.89 32.8 23.5
26 9 0.88 25.6 29.0
26 12 0.87 19.7 32.5
32 8 0.86 31.4 25.8

The mean in Figure 4 is fairly constant for all the values of k tested. The
variance shows an optimal value of k = 0.92. This experiment was repeated for
various different values of a and b and the optimal value for k remains constant.

This value was used to examine the effect of varying b on the mean and the
standard deviation, as the mean of the cumulative distribution can be reduced
by introducing an asymmetry into the distribution of each individual random
delay. The mean shows an almost linear relationship with b, and the standard
deviation has a logarithmic relationship with b. The best configuration would be
to minimise the mean value and maximise the standard deviation. This is not
possible, and a compromise needs to be found between the two. b = 16 seemed
to be a good compromise that was used to conduct further investigation.

To provide a table that can be efficiently implemented, the number of entries
in the table should be a power of 2. A random number generator will provide
a random word where the relevant number of bits can be masked off and used
to read the value at the corresponding index the table to dictate the length of
each the random delay. If the number of entries is not equal to a power of two
any values generated between the number of entries and the next power of two
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Table 2. Parameter Characteristics for Tables of 210 Entries

a b k Mean σ
% decrease % increase

33 18 0.94 21.3 39.2
37 14 0.94 32.2 32.7
50 32 0.90 16.2 46.5
53 29 0.90 21.3 44.6
54 28 0.90 23.3 43.6
55 19 0.91 35.8 34.7
56 34 0.89 18.2 46.6
58 32 0.89 21.5 45.3
59 23 0.90 32.3 38.4
60 22 0.90 34.3 36.9

will have to be discarded. This testing of values will slow down the process and
have a potentially undesirable effect on the distribution of the random delays,
as suitable random numbers will only be generated with a certain probability.

The parameters that were found to naturally generate a table of 29 entries
are shown in Table 1. It would be possible to choose some parameters and then
modify the table so that it has 29 entries, but this was deemed overly complicated
as this occurs naturally. The percentage changes shown are in comparison to
the mean and standard deviation of a uniformly distributed random delay. The
change in the mean and the standard deviation is not dependent on the number
of random delays that are added together, which is not dependent on the number
of random delays that occur.

As can be seen a large variation is visible in the change in the mean and
standard deviation. It can also be seen that we cannot achieve the best standard
deviation increase and mean decrease at the same time. The designer will have to
make a compromise between maximising the standard deviation and minimising
the mean.

Table 2 shows the parameters that naturally generate a table of 210 entries.
The effect of the modified random delays is more pronounced when based on a
table of 210 entries, as it is possible to approach the optimal value of 0.92 for k.
However, it may not be realistic to have a table of 1024 in a constrained envi-
ronment such as a smart card, although in modern smart cards the problem of
lack of code memory is beginning to disappear. An example of the effect of using
this sort of method to govern the length of random delays on the cumulative
distribution is shown in Figure 5, where a = 26, b = 12 and k = 0.87. Again the
y-axis is normalised to show the change in the cumulative distribution. The last
graph shows the cumulative distribution for 10 random delays generated from
random values from the modified distribution plotted alongside the cumulative
distribution for 10 random delays generated from uniformly distributed random
delays. The difference in the mean and standard deviation can be clearly be seen,
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The cumulative random delay generated by a sequence of random delays generated
from a biased distribution. The number of random delays considered are 1, 2, 3, 4,
and 10, from top left to bottom right. The last graph also shows the distribution of 10
uniformly distributed random delays for comparative purposes.

Fig. 5. The cumulative random delay using a modified distribution

and the tail present on the left hand side is much smaller for the cumulative
distribution of random delays governed by random values from the modified
distribution.

This distribution satisfies the criteria 1 and 2 as described in the introduction.
It is unlikely to satisfy criterion 3 as the distribution does have some undesirable
properties. The probability of a 0 being produced by the table is (a+1)/T , where
T is the number of entries in the table.

4 Reverse Engineering the Distribution

If an attacker knows the distribution of the random delays used, this information
could potentially be used to increase the speed of an attack rather then hinder
an attack. However, the situations where this information is useful are rare. If
one random delay can be isolated, attacks can be designed around the fact that
the distribution of the length of the random delay has been modified. The aim of
changing the distribution is to make an attacker work harder to conduct a side
channel or fault attack. Situations where the modification allows an attacker to
increase the efficiency of an attack are highly undesirable.

4.1 Potential Attack Scenarios

In the case of statistical power analysis, an attacker is unlikely to be able to pro-
voke a situation where the desynchronisation present at a given point is caused
by one random delay. A suitable target for statistical power analysis will only
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occur after several functions have already taken place within a cryptographic al-
gorithm and, therefore, after several random delays (as described in Section 2).
The same argument can be applied to faults injected within a cryptographic
algorithm.

If an attacker synchronises a set of power consumptions at a given point in a
cryptographic algorithm, then there will only be one random delay between that
point and the following function. There will be a certain number of acquisitions
that remain synchronised because of the modified distribution. In theory, an
attacker could take a + 1 times as many acquisitions than would normally be
necessary to conduct a statistical power analysis, and then extract the curves
that remain synchronised to have a large area synchronised at the desired point.
However, this represents much more work than would be required to synchronise
before and after the random delay in question.

The only point where an attacker is able to isolate one random delay is when
attempting to inject a fault into the operating system running on an embedded
device. In Section 2 the mechanisms for synchronising with events in the oper-
ating system are described, followed by one random delay that hinders attacks
on a large area of the operating system. If a modified distribution is used in
this situation, an attacker could greatly increase the chances of injecting a fault
at a desired point by attacking the point in time that would correspond to the
minimum value of the random delay. It is therefore of interest to know how to
determine the distribution of a random delay at a given point in a command.

4.2 Hypothesis Testing

In order to determine whether the length of a random delay at a certain point in
a command is uniformly distributed or not, a reasonable amount of data would
need to be collected and the lengths of the random delays stored. These values
can then be tested statistically to determine whether or not they correspond to
a uniform distribution or not. This can be done by conducting a χ2 test on the
acquired data. An attacker will most likely be required to measure each delay
by hand, which will be a lengthy and tedious process. It would be possible to
develop a tool for a given chip that would generate this information, but as
soon as the chip is changed the tool would need to be updated as different chips
change the power consumption in different ways.

This process can be quite complex if hardware random delays are also present.
These normally take the form of randomly inserted clock cycles (where the chip
randomly insert clock cycles where no processing occurs) or an unstable internal
clock. This is likely to add serious complexity to the resynchronisation process.
These effects are ignored in this analysis for simplicity, but would make an
attacker work much harder for the desired information.

It can be shown that the random delay being observed is not based on a uni-
formly distributed random value by using a χ2 test with a null hypothesis that
the random delays are uniformly distributed. In order to conduct this test the
minimum frequency threshold should be around 5(N +1) (a rule of thumb given
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in [5]). In the example, given the minimum frequency threshold, 1280 samples
would be required. In practice, far fewer samples are required to consistently
provide evidence against the null hypothesis when one of the proposed distribu-
tions is used. However, the attacker cannot trust these results without repeating
the test with independent acquisitions, so the actual amount of data required
will probably still be around 5(N + 1).

However, an attacker can base some attacks on the assumption that the length
of a random delay may use the modified distribution, and not reduce the chances
of the attack being successful. For example, an attacker injecting a fault after
one random delay could attack the point in time corresponding to the minimum
length of one random delay, thus maximising the chances of the attack being
successful. If the length of a single random delay is uniformly distributed this
strategy is as good as any other, as the chances of the minimum length occurring
are the same as any other length.

5 Conclusion

In this paper we have demonstrated that the standard deviation of the length of
cumulated random delays can be improved upon, by using a specific distribution
for each individual random delay. It has also been shown that the expected
amount of time lost due to random delays can be reduced to minimise the impact
of this countermeasure on the performance of functions they are protecting. This
is not presented as an optimal solution, but is assumed to be close to optimal.

The modified distribution presented satisfies all the design criteria given, ex-
cept when one random delay is used after a synchronisation point to hinder
attacks on the operating system, as described in Section 4.1. The strategy for
implementing this countermeasure is therefore to use the uniform distribution
where one random delay is being used to protect the operating system, and to
use the modified distribution where numerous random delays are going to be
used e.g. in cryptographic algorithms.

This represents an unusual situation, where a method of increasing the se-
curity of a process can also reduce the amount of computational time required.
Given the nature of random delays, this increase in efficiency is actually a re-
duction in the time lost due to the use of random delays. Normally, in smart
card implementations of cryptographic algorithms the addition of more secure
features always comes with a reduction in performance.
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Hardware and Embedded Systems — CHES 2000, volume 1965 of Lecture Notes in
Computer Science, pages 252–263. Springer-Verlag, 2000.

4. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results.
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Abstract. In cryptographic devices like a smart card whose comput-
ing ability and memory are limited, cryptographic algorithms should be
performed efficiently. However, the issue of efficiency sometimes raises
vulnerabilities against side channel attacks (SCAs). In elliptic curve cryp-
tosystems, one of main operations is the scalar multiplication. Thus it
must be constructed in safety against SCAs. Recently, Hedabou et al.
proposed a signed-all-bits set (sABS) recoding as simple power analysis
countermeasure, which is also secure against doubling attack (DA). In
this paper we propose enhanced doubling attacks which break Hedabou’s
countermeasure based on sABS recoding, and then show the statistical
approach of noise reduction to experiment on the proposed attacks in
actuality. We also introduce a countermeasure based on a projective co-
ordinate.

Keywords: Side Channel Attacks, sABS recoding, SPA-based analysis,
scalar multiplication, Doubling Attack.

1 Introduction

Many designers of cryptosystems have proposed cryptographic algorithms based
on theoretical security such as integer factoring problem and discrete logarithm
problem. Even though these algorithms are proved as safe with mathematical
tools, they could be vulnerable to physical attacks using additional informa-
tion via side channel. Such type of attacks is referred to as Side Channel At-
tacks (SCAs) first introduced by Kocher [10]. In categories of SCAs, actively
researched power analysis attack classifies into the simple power analysis (SPA)
and the differential power analysis (DPA). To resist SPA among the power analy-
sis attack, many researchers have proposed various countermeasures. Above all,
two famous countermeasures are Coron’s method [4] adding dummy operations
and the scalar multiplication algorithm using singed all-bits set (sABS) recoding
[7]. But, Coron’s dummy method exposes a weakness by doubling attack (DA)
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[5] introduced by Fouque et al. in 2003. Contrary to Coron’s dummy method,
sABS recoding based countermeasure is secure against doubling attack.

In this paper we propose two enhanced doubling attacks applicable to scalar
multiplication algorithm based on sABS recoding, and introduce an experimental
method to justify the practicality of the proposed attacks including experiment
results. The one proposed attack is called recursive attack which is an analysis
method finding the secret key from the most significant bit to the least significant
bit in sequence through an adjustment of two input data to do the same elliptic
curve doubling (ECDBL) in the vicinity of guessing secret bit. The other is
called initializing attack which is an analysis method adjusting one input data
to do fixed ECDBL at the guessing secret bit. We also propose a solution to
detect equality of the compared two ECDBLs power signals by using a statistical
approach of noise reduction when the noise is more important. Furthermore, we
find that if we use a projective coordinate system to represent an elliptic curve
element then it is secure against not only general doubling attack and but the
proposed enhanced doubling attacks.

The remainder of this article is organized as follows. Section 2 represents that
Coron’s dummy method as an SPA countermeasure is vulnerable to SPA-based
DA. Our proposed attacks are introduced in Section 3. These new attacks are
SPA-based analysis methods applicable to scalar multiplication algorithm using
sABS recoding among SPA countermeasures, and a practical attack method and
a realistic possibility is showed in Section 4. Section 5 represents countermeasures
on our attacks. Finally we conclude in Section 6.

2 Side Channel Attacks and Countermeasures

Since side channel attacks using additional information via side channel were
introduced by Kocher, a various attack methods of this class have been pro-
posed. There are fault insertion attack [2,20], timing attack [10], power analysis
attack [11,12], electromagnetic emission attack [18], and so on. In power analysis
attack, there are SPA that can expose secret key to be used by means of simple
observation of a power consumption trace and DPA that analyzes multiple sig-
nals statistically without physical transformation of a smart card. DPA requires
measuring a lot of power consumption and additional information such as de-
scription of implementation. But SPA is so simple. In this section, we introduce
SPA and SPA countermeasures. Also we represent that Coron’s dummy method
known to be immune to SPA exposes a weakness against SPA-based DA.

2.1 Simple Power Analysis to ECC

Koblitz and Miller proposed elliptic curve cryptosystems (ECCs) in 1985 [9,14].
Because of short length of the secret key for guaranteeing the same security with
RSA, ECCs are suitable for mobile devices such as mobile phones, smart cards,
and PDAs which are limited at storage space and bandwidth. While cryptosys-
tems such as RSA [16] use the operation of modular exponentiation, ECCs use
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the operation of scalar multiplication that is regarded as similar method. And
so this operation is the most dominant operation in ECCs. Scalar multiplication
is to compute dP from a point P on an elliptic curve. Algorithm 1 that is a
standard method for computing the scalar multiplication works by scanning the
secret key from MSB to LSB.

Algorithm 1. Double-and-add algorithm
Input : A point P , and d = (dn−1dn−2...d1d0)2 , dn−1 = 1
Output : dP

1. S = P
2. For i = n − 2 downto 0

2.1 S = 2S
2.2 If di = 1, S = S + P

3. Return(S)

In Algorithm 1, the scalar multiplication for secret key d is carried out by
scanning from MSB to LSB. If a specific bit of d is 1, the algorithm comes into
operation of Step 2.1, 2.2. If not, that comes into operation of Step 2.1 only. In
other words, depending on the key bit value, one carries out both elliptic curve
addition (ECADD) and ECDBL, the other carries out ECDBL only. In general,
ECADD has different power consumption from ECDBL [3]. Thus we can deduce
the secret key by a power consumption of the scalar multiplication. This method
that can expose a portion of secret key using only one signal is called by SPA.

2.2 SPA Countermeasures

Algorithms that have a conditional branch depending on the secret key are
weak against SPA. For eliminating this weakness, algorithms that carry out
unnecessary ECADDs regardless of the value of bit have been proposed.

SPA Countermeasure 1 - Dummy Operation. Algorithm 2 proposed as
SPA countermeasure executes dummy operation when the value of bit is ‘0’.

Algorithm 2. Coron’s dummy method
Input : A point P , and d = (dn−1dn−2...d1d0)2 , dn−1 = 1
Output : dP

1. S[0] = P
2. For i = n − 2 downto 0

2.1 S[0] = 2S[0]
2.2 S[1] = S[0] + P
2.3 S[0] = S[di]

3. Return(S[0])
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This algorithm executes Step 2.2 at every loop regardless of the value of bit.
In any loop that be carried out when the value of bit is 0, Step 2.2 is the
superfluous ECADD operation. But in spite of this demerit in sense of efficiency,
this algorithm is secure against SPA because it always compute both ECADD
and ECDBL independent of a bit of the secret key. But this algorithm has
problem for efficiency, moreover we will describe that that is insecure against
SPA-based DA in the next subsection.

SPA Countermeasure 2 - sABS recoding. Other countermeasures are to
change the binary representation of the secret key using signed digits. Among
those countermeasures, sABS recoding method proposed by Hedabou et al. re-
codes the secret key into a new representation without zero bits by converting
00...01 into 11̄...1̄1̄ where 1̄ means −1.

Algorithm 3 executes the scalar multiplication with this recoded represen-
tation. If the secret key is even, this algorithm carries out the operation of
dP = (d + 1)P − P = t′P − P like Step 1 and Step 5 where t′ is the sABS re-
coded value of d + 1. Because this recoded value of the secret key does not have
‘0’ bit, the sABS recoding method is secure against SPA: in Step 4 of Algorithm
3, ECADD or elliptic curve subtraction (ECSUB) whose power consumption is
similar to ECADD is always carried out in every loop, and so this method does
not come out the weakness against SPA. Note that we show that sABS recoding
is secure against the original DA at the following section.

Algorithm 3. Scalar multiplication with sABS recoding
Input : A point P , and d = (dn−1dn−2...d1d0)2 , dn−1 = 1
Output : dP

1. if(d is even) then t = d + 1
2. sABS recoded value of t : t′ = (t′

n−1t
′
n−2...t

′
1t

′
0)2, t′

i ∈ {−1, 1}
3. S = P
4. For i = n − 2 downto 0

4.1 S = 2S
4.2 if(t′

i = 1) then S = S + P , else then S = S − P
5. if(d is even) then S = S − P
6. Return(S)

2.3 Doubling Attack

Algorithm 2 exposes a weakness against DA that uses not DPA but SPA. Because
DA is a SPA-based analysis, this attack method is much simpler than the existing
DPA method.

Doubling Attack and Weakness of Coron’s Dummy Method. DA is
a possible method when an attacker has an ability that if the card computes
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ECDBL(A) and ECDBL(B), he is able to check whether A = B or not, even so
actual values of A and B don’t be recovered by himself. The basic idea of this
attack is like the table below:

Input 1 0 1 0 0 1 0 0 1
P 0 2P 4P 10P 20P 40P 82P 164P 328P

P 3P 5P 11P 21P 41P 83P 165P 329P

2P 0 4P 8P 20P 40P 80P 164P 328P 656P
2P 6P 10P 22P 42P 82P 166P 330P 658P

We compare power signals when the card computes dP and d(2P ) for input
point P and 2P , this recovers all bits of the secret key through confirmation of
equal power consumption by same ECDBL in the vicinity of the bit value ‘0’.

Security of sABS Recoding Against Doubling Attack. DA is the attack
method using weakness that a certain bit of d is ‘0’. Hence, the original DA
cannot be applied to the scalar multiplication with sABS recoding that does not
have bit value ‘0’. In Algorithm 3, if an attacker tries DA to expect the value
of t′n−l that is the upper l-th bit of recoded value of the secret key (d or d + 1),
the values computed until the upper l-th bit for input point P and the upper
(l − 1)-th bit for input point 2P should be the same as the following equation.

(

l−1�

i=0

t′
n−l+i2

i)P = (

l−2�

i=0

t′
n−l+i+12

i)2P ⇒ (

l−1�

j=0

t′
n−l+j2

j)P = (

l−1�

j=1

t′
n−l+j2

j)P. (1)

Therefore, to satisfy equation (1), we know easily that t′n−l = 0. However, be-
cause sABS recoded value is composed of ‘1’ and ‘−1’, this is not vulnerable to
DA.

3 Proposed Attacks

Our paper proposes two attacks, recursive attack and initializing attack, against
SPA countermeasure that executes the scalar multiplication using sABS recod-
ing. Like original DA, these new two attacks are possible when an attacker has
ability to decide whether A = B or not when smart card computes ECDBL(A)
and ECDBL(B). Our paper also offers an authenticity of this assumption through
experimental result and theory in the next section. At first, we introduce our new
attacks in this section.

3.1 Recursive Attack

In the proposed attack methods, recursive attack’s basic idea is like follows:
Suppose an attacker guesses a specific bit of the target secret key d, and he
regulates two input values to have equal power consumption by the same ECDBL
in the vicinity of the target bit. In this way, all bits of the secret key d can be
discovered in sequence.
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InputValueRegulation. Suppose that an attacker knows upper bits t′n−1t
′
n−2...

t′u+2t
′
u+1 of t′ = (t′n−1t

′
n−2...t

′
1t

′
0)2, t

′
i ∈ {−1, 1} , which is a recoded value of secret

key d inAlgorithm3, let us regulate input values to find the value of t′u.Whenwe get
two input values of xP and yP , we should regulate values of x and y for originating
sameECDBL inphase of operation from i = u to i = u−1 forxP and from i = u+1
to i = u for yP in Step 4.1 of Algorithm 3. If we guess the value of t′u as 1, the value
of S until i = u for input value xP is S = (

∑n−1
i=u+1 t′i2

i−u + 1)xP , and the value
of S until i = u + 1 for input value yP is S = (

∑n−1
i=u+1 t′i2

i−u−1)yP in Step 4 of
Algorithm 3. To originate the same ECDBL at this moment, if we select xP and
yP satisfying this equation (

∑n−1
i=u+1 t′i2

i−u + 1)xP = (
∑n−1

i=u+1 t′i2
i−u−1)yP , we

can get the following values.

xP = (
n−1∑

i=u+1

t′i2
i−u−1)P, yP = (

n−1∑

i=u+1

t′i2
i−u + 1)P (2)

If we guess the value of t′u as −1, xP and yP are the following values for the
same reason as mentioned above.

xP = (
n−1∑

i=u+1

t′i2
i−u−1)P, yP = (

n−1∑

i=u+1

t′i2
i−u − 1)P (3)

∑n−1
i=u+1 t′i2

i−u−1 in equation (2) and (3) is a upper portion of t′u that we are
trying to find the bit of recoded value t′ in Algorithm 3. Hence, if we name this
value as k, two selected input values are kP and (2k + 1)P (kP , (2k − 1)P ) in
the case that we guess the value of t′u as 1 (−1). In this way, we can find all bits
of the secret key d from MSB to LSB in sequence.

Scenario and Example of Recursive Attack. In this section, we introduce
the scenario of recursive attack for finding the entire value of the secret key, and
then give a simple example to help understanding of this attack. Table 1 is the
scenario of recursive attack for finding the entire information of the secret key.

Let us Consider this scenario. For example, if the secret key d is (101010011)2
in Algorithm 3, then the value of t′ becomes 111̄11̄11̄1̄1. In Table 1, suppose
that the attacker already knows upper four bits of t′ (upper 4 bits values :
111̄1 = (11)10). For now, he attempts to guess upper 5-th bit as 1. Hence, input
values to know this bit are 11P used already to know the upper 4-th bit and
(2 ∗ 11+1)P viewed in Step 4 of the scenario. And then he confirms as the table
below whether the same ECDBL is originated in the vicinity of the upper 5-th
bit or not.

Input 1 1 1̄ 1 1̄ 1 1̄ 1̄ 1
11P 0 22P 66P 110P 242P 462P · · · · · · · · ·

11P 33P 55P 121P 231P 473P · · · · · · · · ·
23P 0 46P 138P 230P 506P · · · · · · · · · · · ·

23P 69P 115P 253P 483P · · · · · · · · · · · ·
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Table 1. The Scenario of Recursive Attack

Step 1. Set k = 1, i = 2.

Step 2. Measure a power consumption C1 related with the input point P .

Step 3. If i = n, goto Step 7.

Step 4. Measure a power consumption C2 related with the input point (2k + 1)P .

Step 5. If C1 and C2 have the same ECDBL signal in the vicinity of the upper

i-th bit, then k = 2k + 1.

Else then,

a. Measure a power consumption C2 related with input point (2k − 1)P .

b. k = 2k − 1.

Step 6. C1 ←− C2 and i = i + 1 goto Step 3.

Step 7. If the output about the input point P is (2k + 1)P , then return 2k + 1.

Else then, return 2k − 1.

In Step 5 of Table 1, because the attacker cannot confirm the same ECDBL
signal in the vicinity of the top 5-th bit, he is able to decide this bit as −1.
Hence, he measures the power signal C2 about input point 21P = (2 ∗ 11 − 1)P .
This power signal uses to know the upper 6-th bit, the next bit, of the secret key.
For knowing the upper 6-th bit, the attacker guesses this bit as 1 and so he gets
the power signal about input point 43P = (2 ∗ 21 + 1)P in Step 4 of scenario. If
this signal is compared with the signal C2, it is as follows.

Input 1 1 1̄ 1 1̄ 1 1̄ 1̄ 1
21P 0 42P 126P 210P 462P 882P 1806P · · · · · ·

21P 63P 105P 231P 441P 903P 1785P · · · · · ·
43P 0 86P 258P 430P 946P 1806P · · · · · · · · ·

43P 129P 215P 473P 903P 1849P · · · · · · · · ·

Because the same ECDBL happens in the vicinity of the upper 6-th bit, the
attacker can find the 6-th bit as 1. Through this mechanism, we can find the
secret key d used in Algorithm 3 from MSB to LSB in sequence.

3.2 Initializing Attack

When recursive attack against sABS recoding recovers the secret key d from MSB
to LSB in sequence, one bit of the secret key is exposed through inserting input
value in the card at the minimum of one time and at the maximum of two times.
We propose initializing attack as the second attackmethod against sABS recoding.
This attack uses only one input value for recoveringa bit of the secret key compared
with recursive attack which uses 1.5 input value on the average. This method uses
vulnerability that an attacker, with ease, can get an information of ECDBL from
P to 2P for input value P in Step 4.1 of Algorithm 3.
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Input Value Regulation. Initializing attack, similar to recursive attack, is an
attack method to break the next bit in sequence when it knows upper certain
bits of the secret key d in advance. The basic idea of this attack is that an
attacker selects an input value xP such that the intermediate value computed
up to a guessing bit of the key always becomes P and so originates ECDBL
operation from P to 2P at the computation time of the next bit. If we suppose
that the attacker knows upper bits t′n−1t

′
n−2...t

′
u+2t

′
u+1 of sABS recoded value

t′ in Algorithm 3, let us consider him to anticipate t′u as 1. If his guess is right,
computed value of S until the moment of i = u, in Step 4 of Algorithm 3, about
input value xP is S = (

∑n−1
i=u+1 t′i2

i−u + 1)xP . Hence, he will select the value x

such that S = P . If k =
∑n−1

i=u+1 t′i2
i−u−1, the value x is given by

x = (2k + 1)−1 mod (�E).

Here, �E represents order of elliptic curve in ECCs.
The order of an elliptic curve is in the form of q, 2q, 4q, 6q(q : prime) in

standard documents ANSI X9.62 [1], FIPS 186-2 [15], SECG [17], WTLS [19],
and ISO/IEC 15946-4 [8]. Because gcd(2k + 1, 6q) = 3 is possible in spite of
gcd(2k + 1, 2) = 1 and gcd(2k + 1, q) = 1, there is the case that (2k + 1)−1 does
not exist in the case of order 6q. But, in case of 2k + 1 = 3t, gcd(2k − 1, 6q) = 1
is satisfied because 2k − 1 = 3t − 2 is not multiple of 3. Accordingly, in case
of gcd(2k + 1, �E) �= 1, the attacker guesses that t′u is −1 not 1. The computed
value S up to i = u is S = (

∑n−1
i=u+1 t′i2

i−u − 1)xP when the input value is
xP in the Step 4, and so the attacker selects value x such that S = P . If
k =

∑n−1
i=u+1 t′i2

i−u−1, the value of x is given by

x = (2k − 1)−1 mod (�E).

Our attack seems to be Goubin’s Refined Power-analysis Attack [6], but ours
uses the discriminative method that compares two waveforms (The method is
introduced in Section 4). Also, while Goubin’s attack can use only “special point”
with zero coordinate, our attack has a merit that can use almost every points
over elliptic curve.

Scenario and Example of Initializing Attack. In this section, we introduce
the scenario of initializing attack for finding the entire value of the secret key,
and then give a simple example to help understanding of this attack. Table 2 is
the scenario of initializing attack for finding the entire value of the secret key.

Let us consider this scenario. For example, if the order of an elliptic curve
is 73 and secret key d is (101010011)2 in Algorithm 3, the value of t′ becomes
111̄11̄11̄1̄1. In Table 2, suppose that the attacker already knows upper four bits
of the secret key(upper 4 bits values : 111̄1 = (11)10). For now, he guesses the
upper 5-th bit as 1 like Step 3 of scenario. Hence, the used input value to know
this bit is 54P in Step 4 ((2 ∗ 11 + 1)−1 mod 73 = 54). The attacker ascertains
as the table below whether the card performs ECDBL of point P in the upper
5-th bit or not.
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Table 2. The Scenario of Initializing Attack

Step 1. Set k = 1, i = 2.

Step 2. If i = n, goto Step 8.

Step 3. If (2k + 1)−1 mod (�E) exists, then k′ = 2k + 1, s = 1.

Else then, k′ = 2k − 1, s = −1.

Step 4. Compute k = k′−1 mod (�E).

Step 5. Measure a power consumption C related with the input point kP .

Step 6. If C have an ECDBL signal from P to 2P in the upper i-th bit, then k = k′.

Else if s = 1, then k = k′ − 2.

Else then, k = k′ + 2.

Step 7. i = i + 1, goto Step 2.

Step 8. If the output about the input point P is (2k + 1)P , then return 2k + 1.

Else then, return 2k − 1.

Input 1 1 1̄ 1 1̄ 1 1̄ 1̄ 1
54P 0 35P 67P 26P 14P 66P · · · · · · · · ·

54P 70P 13P 7P 33P 47P · · · · · · · · ·

In Step 6 of scenario, because the attacker cannot find ECDBL signal of point
P in the upper 5-th bit, he is able to know this bit as −1 and so set k = 23 − 2.
For knowing the upper 6-th bit recursively the attacker guesses this bit as 1, and
so if he gets a power signal about input point 17P = (2 ∗ 21 + 1)−1P in Step 3
and Step 4, it is as follows.

Input 1 1 1̄ 1 1̄ 1 1̄ 1̄ 1
17P 0 34P 29P 24P 9P 57P 2P · · · · · ·

17P 51P 12P 41P 65 P 58P · · · · · ·

Because the card performs ECDBL of point P in the upper 6-th bit, the
attacker can know this bit as 1. Through this mechanism, attacker can find the
entire value of the secret key d in sequence.

4 Statistical Approach of Noise Reduction

Both the proposed attacks and DA are accomplished if an attacker is able to
become aware whether the smart card computes ECDBL of the same point or
not through two ECDBL signals only. In this section, we propose that the above
assumption can accomplish in actuality using experimental results. For example,
we show that how to an attacker knowing the upper (i−1) bits of the secret key
detects the upper i-th bit in the recursive attack under assumption that he/she
can distinguish power signals between ECDBL and ECADD.
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Let D
(j)
i,1 (D(j)

i,2 ) be a j-th ECDBL signal related with the first (second) input

point Pi,1 (Pi,2) for knowing i-th bit. Also, A
(j)
i,1 (A(j)

i,2 ) denotes a j-th ECADD
signal related with the first (second) input point Pi,1 (Pi,2) for knowing i-th bit.
Let the power signals related with input points Pi,1 and Pi,2 be represented as

Pi,1 ⇒ D
(1)
i,1 A

(1)
i,1 D

(2)
i,1 A

(2)
i,1 D

(3)
i,1 A

(3)
i,1 D

(4)
i,1 A

(4)
i,1 D

(5)
i,1 A

(5)
i,1 · · · ,

Pi,2 ⇒ D
(1)
i,2 A

(1)
i,2 D

(2)
i,2 A

(2)
i,2 D

(3)
i,2 A

(3)
i,2 D

(4)
i,2 A

(4)
i,2 D

(5)
i,2 A

(5)
i,2 · · · .

An attacker selects portions for D
(i)
i,1 and D

(i−1)
i,2 , and then aligns two portions

using ‘alignment’. Experimental circumstance and setup are as follows:

Environment PIC 16F84A microcontroller
Language PIC programmer(Assembler)
Module Scalar multiplication

+ sABS recoding + affine coordinate
(Clock cycle of ECDBL: 3368)

First of all, for getting two distributions that is needed for judgement, we
measure the three following power consumptions about time variable j.

– S
(i)
1 (j) related with the input point Pi.

– S
(i)
2 (j) related with the same input point Pi as before.

– S
(i)
3 (j) related with the different input point Qi as before.

If the cryptographic device computes 160-bit scalar multiplications, S
(i)
1 (j) and

S
(i)
2 (j) have 159 ECDBL signals for same point. Also, S

(i)
1 (j) and S

(i)
3 (j) have

159 ECDBL signals for different points. Before we define two distributions, the
discriminant that can decide whether we have measured waveforms about the
same operation or not is defined by

Disc.(S1, S2, t) =
1
m

t+m∑

j=t+1

(S1(j) − S2(j))2. (4)

m is selected value in [λ, n] where λ is the value including all coordinates x and
y for the first time in ECDBL operation using an affine coordinate system and
n is the length of signal related with 1 ECDBL.

Using this discriminant, we refer to two distributions X1, X2 as

X1 =

L�

i=1

{Disc.(S
(i)
1 , S

(i)
2 , a)|a = k × range, k ∈ {0, 1, 2, ..., 158}},

X2 =

L�

i=1

{Disc.(S
(i)
1 , S

(i)
3 , a)|a = k × range, k ∈ {0, 1, 2, ..., 158}}

where range is the length of signal related with 1 ECDBL + 1 ECADD

(range ≈ approximate starting point of 159 − th ECDBL

158
).

L is the value which decides the number of elements included in X1, X2.
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In our research, sample rate is 100MS/s, and so λ is about 60000 and n is about
336800 in equation (4). We select the value of m as 130000 in [60000, 336800].Also,
we select L as 3 in equation (5). Then, distributions X1, X2 are like a left side of
Fig. 1. (m1 = E(X1) = 24, a1 = 63, m2 = E(X2) = 85, b1 = 40) where E(·)
denotes the average of the distribution · , a1 denotes the maximum value of the
distribution X1, and b1 denotes the minimum value of the distribution X2.

Ambiguous area

k

1m 2m1a1b 2a 2b

Elimination
of ambiguous area

uk

1m 2m

=m =m

X1 X2 X1 X2

Fig. 1. Distributions of ambiguous area and eliminated ambiguous area

An ambiguous area means the range that an attacker cannot decide whether
signals related with the same operation or not. If the value of Disc.(S1, S2, t)
is in the ambiguous area (40 ≤ Disc.(S1, S2, t) ≤ 63 in ours), this value m for
distinction must be selected in [λ, n] to be the bigger value than the former.
For reducing this error for each trial, the attacker must know the value of m
that eliminates the ambiguous aria. In our experiment, we use the following
proposition for eliminating this ambiguous area.

Proposition 1. If X1 ≤ a1, X2 ≥ b1 are always completed with an error tol-
erance of (α/2) where m = k, the ambiguous area is eliminated where m =
( a1−b1

m2−m1
+ 1)2k with an error tolerance of (α − α2/4).

Proof. According to the supposition, P (X1 ≤ a1) = P (X2 ≥ b1) = α/2 where
m = k.

If we convert this distributions into the standard normal distribution Z, the
above equations are

P (Z ≤ a1 − m1

σ1/
√

k
) = P (Z ≥ b1 − m2

σ2/
√

k
) = α/2 (σ2

1 = var(X1), σ2
2 = var(X2)).

If a2, b2 satisfy P (X1 ≤ a2) = P (X2 ≥ b2) = α/2 where m = uk (See the right
side of Fig. 1.),

P (Z ≤ a2 − m1

σ1/
√

uk
) = P (Z ≥ b2 − m2

σ2/
√

uk
) = α/2.
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According to the above equations,

a2 =
a1 − m1√

u
+ m1, b2 =

b1 − m2√
u

+ m2.

For eliminating the ambiguous area, the equation b2 > a2 must be satisfied, i.e.

u > (
a1 − b1

m2 − m1
+ 1)2.

The error tolerance (ET) is also P (X1 > a2 or X2 < b2) = 1 − (1 − α/2)2 =
(α − α2/4). 	


In the proposition, the value of α means the probability that the value of
Disc.(D(i)

i,1, D
(i−1)
i,2 , 0), in the practical attack, escapes previously measured

bounds. This value depends on how many experiments have been carried out
previously. If we compute the maximum ET when the ambiguous area is elimi-
nated, these values are as follows according to the frequency L of the experiment.

L 1 2 3 4 5
ET 3.142×10−3 1.572×10−3 1.048×10−3 7.860×10−4 6.288×10−4

In our preliminary research, distributions X1 and X2 about Disc.s can have
477 values for each, and so P (X1 > a1) = P (X2 < b1) is less than 1/477
approximately. For this reason, because α is less than 1/954, the ET is also less
than 1.048× 10−3. By proposition, we used m as 246514 and the discriminating
value of Disc. as 52.321 (= a2 = b2). In other words, if the Disc. value of
compared two ECDBL signals (D(i)

i,1 and D
(i−1)
i,2 in recursive attack) is greater

than 52.321, ECDBLs about different points have been carried out; otherwise,
ECDBLs about same point have been carried out. Using these selected values
through the preliminary research, we practically find the secret key comparing
two ECDBL signals.

5 Countermeasures Against Proposed Attacks

In this section, we consider an environment that our attacks are applicable and
a countermeasure to resist our attacks. First of all, our attacks and original DA
can only be carried out in the affine coordinate. Suppose that the smart card uses
a projective coordinate system. And then, even if ECDBL operations about the
same point on an elliptic curve are carried out, values of each coordinate may not
be different like Fig. 2. Hence, because values of coordinate are different, ECDBL
signals for the same point could be considered as ECDBL about different points
from the viewpoint of the attacker.

And now, we consider a countermeasure on proposed attacks. Because those
use the method that chooses input points corresponding to the guessed bit of
a recoded secret key, those can break recoding methods of the secret key for
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Fig. 2. The attack in projective coordinate system

SPA countermeasures. Hence, the countermeasure against our attacks must use
random point. Various countermeasures using random point are introduced so
far. Among them, BRIP [13] proposed by Mamiya et al. can be applied to our
attacks efficiently.

6 Conclusion

In this paper we have proposed two attacks, recursive attack and initializing at-
tack, against sABS countermeasure proposed by Hedabou et al. As these analyses
classified into SPA the method that extend the DA, those enlarge the range of
attack. We have performed an experiment to justify the possibility of our attacks.
The concrete method of this experiment and the backing of the proposition can
furnish an practical information about these analysis methods.
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Abstract. We present a protocol that allows servers to securely distrib-
ute secrets to trusted platforms. The protocol maintains the confiden-
tiality of secrets in the face of eavesdroppers and careless users. Given
an ideal (tamper-proof) trusted platform, the protocol can even with-
stand attacks by dishonest users. As an example of its use, we present
an application to secure document processing.

1 Introduction

Trusted computing is about embedding a trusted computing base (TCB) [1] in a
computing platform that allows a third party to determine the trustworthiness
of the platform, i.e., whether or not the platform is a trusted platform from the
point of view of a third party. The Trusted Computing Group (TCG), an indus-
try standards organization, has specified a TCB for trusted computing in the
form of three so-called roots of trust [2]: the root of trust for storage (RTS), the
root of trust for reporting (RTR), and the root of trust for measurement (RTM).
In particular, the TCG has specified a Trusted Platform Module (TPM) [3] that
can act as both roots of trust for storage and measurement.1 These specifica-
tions are clearly gaining momentum as witnessed by large-scale R&D projects
such as EMSCB and OpenTC 2, open-source projects such as TPM Emulator
[6] and TrouSerS 3, the inclusion of TPM services in Windows Vista [7], and the
increasing number of personal computers with a TPM and a basic input/output
system (BIOS) that can act as the RTM [8]. In the remainder of this paper, we
understand “trusted computing” to mean trusted computing as specified by the
TCG and focus on personal computers without limiting the paper’s generality.
� This work was partially supported by the Zurich Information Security Center. It

represents the views of the authors.
1 There seems to be consensus in the information-security community that TCBs for

trusted computing must be hardware-based, but tamper-proof hardware remains an
open challenge [4,5].

2 http://www.emscb.de/ and http://www.opentc.net/.
3 http://tpm-emulator.berlios.de/ and http://trousers.sourceforge.net/.
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Contribution. Our contribution in this paper is a protocol for securely distrib-
uting and storing secrets with TPMs. We specify the protocol in detail at the
level of TPM commands and we informally analyze its security. The protocol is
general in the sense that it is independent of a specific usage-control application.
To illustrate how the protocol can be directly applied to nontrivial problems in
usage control, we describe an application from the domain of secure document
processing. In our specification, we treat the TPM as a trusted third party that
can serve as an oracle for making platform measurements; this not only results
in a clear specification, but this analogy for ideal roots of trust could also serve
as the basis for a formal model of trusted computing in the future.

Organization. In Section 2, we provide a summary of those aspects of trusted
computing that are of relevance to this paper. In Section 3, we discuss related
work. In Section 4, we describe the problem that we solve with our protocol.
We define the protocol and analyze its security in Sections 5 and 6, respectively.
In Section 7, we draw conclusions. A concrete, realistic application scenario is
presented in Appendix A.

2 Background

In this section, we summarize the TCG’s definitions for root of trust for mea-
surement, reporting, and storage. For a comprehensive description, the reader
is referred to the TCG architecture overview [2] and to textbooks on trusted
computing [9,10,11].

2.1 Root of Trust for Measurement

When a computer is booted, control passes between different subsystems. First
the BIOS is given control of the computer, followed by the boot loader, the
operating system loader, and finally the operating system. In an authenticated
boot, the BIOS measures (i.e., cryptographically hashes) the boot loader prior to
handing over control. The boot loader measures the operating system loader, and
the operating system loader measures the operating system. These measurements
reflect what software stack is in control of the computer at the end of the boot
sequence; in other words, they reflect the platform configuration. Hence the
name platform configuration register (PCR) for the TPM registers where such
measurements are stored and which are initialized at startup and extended at
every step of the boot sequence.

An attacker who wants to change the platform configuration without being
detected has to corrupt the root of trust for measurement (in the BIOS), which
we assume to be infeasible without physical access to the computer. Ideally,
a tamper-proof piece of hardware will eventually act as the root of trust for
measurement and measure the BIOS at the beginning of the boot sequence.
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2.2 Root of Trust for Reporting

Each TPM has an endorsement key (EK) which is a signing key whose public
key is certified by a trusted third party, such as the TPM manufacturer. For
privacy reasons, the EK is only used to obtain a key certificate from a certificate
authority (CA) for an attestation identity key (AIK), which the TPM generates
itself. In order to alleviate even the strongest privacy concerns, direct anonymous
attestation (DAA) [12,13] is the protocol of choice for certifying AIKs. AIKs are
signing keys whose private key is only used for signing data that has originated
in the TPM. For example, a remote party interested in learning what software
stack is in control of the computer can query the TPM for PCR values. The
query contains the set of PCRs to look up and a nonce (in order for the remote
party to check for replay attacks). The TPM answers with the respective PCR
values and the signature generated by signing the values as well as the nonce
with one of its AIKs. Put differently, the TPM attests to, or reports on, the
platform configuration.

2.3 Root of Trust for Storage

The protected storage feature of a TPM allows for the secure storage of sensitive
objects such as TPM keys and confidential data. However, storage and cost
constraints require that only the necessary (i.e., currently used) objects can
reside inside a TPM; the remaining objects must be stored outside in unprotected
memory and are revealed to the user or loaded into the TPM on demand. To this
end, externally stored objects are encrypted (or wrapped in TCG terminology)
with an asymmetric storage key, which is referred to as the parent key of the
object. A parent key can again be stored outside the TPM and (possibly along
with other keys) protected by another storage key. The thereby induced storage
tree is rooted at the so called storage root key (SRK), which is created upon
initialization of the TPM and cannot be unloaded. Consequently, a parent key
has to be loaded into the TPM before the data it protects can be revealed or a
key decrypted (or unwrapped in TCG terminology) and loaded into the TPM.
Note that protected keys are only used inside the TPM and thus (in contrast to
arbitrary data) are never disclosed to the user. Furthermore, each key is either
marked as being migrateable or non-migrateable. In the former case, the key
might be replicated and moved to other platforms whereas in the latter case
the key is bound to an individual TPM and is never duplicated. Regarding the
actual protection of objects, one differentiates between binding and sealing.

Binding is the operation of encrypting an object with the public key of a binding
key. Binding keys are encryption keys. If the binding key is non-migratable,
only the TPM that created the key can use its private key; hence, the en-
crypted object is effectively bound to a particular TPM.

Sealing takes binding one step further: the object is not only bound to a par-
ticular TPM, but in addition can only be decrypted if the current platform
configuration matches the values associated with the protected object at the
time of encryption.
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It must be assumed that an attacker with physical access to the computer can
get access to the private keys stored in the TPM. Current TPMs are designed
to protect against software attacks, but not against hardware attacks (they are
tamper-resistant at best) [10,11].

3 Related Work

Conceptually, properly measuring the software stack of a computer when the
computer is booted (1), remotely attesting to a measurement and securely dis-
tributing secrets (2), and performing usage control on a computer once it has
been deemed trustworthy and entrusted with the necessary secrets (3) are three
straightforward tasks. As is often the case, the real complexity lies in the details.

Unlike the first task (e.g., [14,15,16]) and the third task (e.g., [17,18,19,20]),
the second task has, until now, not been addressed in detail. Although pro-
tocols have been developed, those published are in the form of programming
language-dependent and TPM library-dependent source code, without any secu-
rity analysis. This may be the case because it is a deceptively simple task, which
bears similarity with SSL/TLS. However, while the basic principles of SSL/TLS
are fairly easy to understand, its details are quite intricate and the situation is
similar here.

So far, the protocols for achieving the second task have been sketched at a
very high level (similar to our summary in Figure 5 in Appendix A); for example
in the form of the integrity-reporting protocol given in the TCG architecture
overview [2, p. 9] and in the form of the two approaches for enhancing the
protection of data on remote computers given by Pearson et al. [9, pp. 47-48].
This specification gap is filled in this paper.

4 Requirements

Consider the setting depicted in Figure 1: A server has secret data ds that it is
willing to share with certain clients over an open channel (i.e., one that is not
encrypted in any way) upon request, but not with the clients’ users. In practice
(cf. the example given in Appendix A), the secret ds may be a symmetric key
KD or the private key K−1

D of an asymmetric key pair (KD, K−1
D ). The owner

of the secret ds does not trust the users because they may not understand or
respect the owner’s security requirements or because they may have an untrust-
worthy platform, such as one compromised by a Trojan horse. In any case, the
server is willing to share the secret ds with clients who are known to meet the
owner’s security requirements. Because the main security goal of our protocol
is confidentiality of the secret ds, this entails that the client uses the secret ds

without disclosing it to the user or to any other entity. Furthermore, the client
must either hinder the user from launching another process or at least force a
change in the PCRs. Otherwise, the other (potentially malicious) process could
simply request the TPM to disclose the secret ds. It is in the server’s interest
to ensure that this security goal is met. Thus, the protocol needs to be resilient
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Fig. 1. Setting

Fig. 2. Attackers

against man-in-the-middle attacks and, given an ideal (tamper-proof) trusted
platform, against dishonest users as well (cf. Figure 2).

5 Protocol

In this section, we present a protocol that ensures that the server only distributes
given secret data ds to trusted clients (i.e., clients that meet the data owner’s
security requirements, as explained in the last section). The protocol involves
three parties: the server, a client, and the client’s TPM. Considering the TPM
to be a participant in its own right may come as a surprise, but the following
model should clarify this point.

Ideal roots of trust can be modeled as trusted third parties (cf. Figure 3) with
certain oracle properties related to measurement. In particular, for each client
there is a third party whom both the server and the client trust. Furthermore,
the channel between the client and the trusted third party is secure (i.e., con-
fidential and authentic). Not even the user can intercept or insert messages on
this channel. There is no (direct) channel between the server and the trusted
third party, though. Nevertheless, the server can encrypt data with the trusted
third party’s public encryption key along with information about a platform
configuration. The trusted third party has the ability to determine the platform
configuration of the client and decrypts data for the client only if the client’s
platform configuration is the one given when the data was encrypted.
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Fig. 3. Trusted Third Parties (TTPs) as a Model for Ideal Roots of Trust

In this model, our protocol basically proceeds as follows:

1. The client requests the secret ds from the server.

2. The server encrypts ds with the trusted third party’s public key along with
information about the platform configuration it trusts and sends the en-
crypted data to the client.

3. The client sends the encrypted data to the trusted third party and requests
the trusted third party to decrypt the data for it.

4. The trusted third party determines the client’s current platform configura-
tion and reveals the decrypted data to the client only if the client’s platform
configuration is the one given when the data was encrypted.

Note that the first two steps only have to be taken once whereas the last two
steps may be taken repeatedly.

The real protocol is more complex. In particular, it involves the generation
of a platform configuration-dependent binding key and the use of an AIK. Even
though privacy is not an issue for the kinds of application we originally had in
mind, employing an AIK has the pleasant side effect of extending our protocol’s
usefulness to settings where privacy matters. For example, the secret data ds

could be the license key for a media player that manages digital rights. By using
different AIKs when requesting license keys, the requests cannot be linked to the
same client.

5.1 TPM Commands

We briefly introduce the TPM commands required in our protocol. For the sake
of simplicity, we omit input values such as command-authorization data and key
parameters as well as output values such as error codes. For a comprehensive de-
scription of the commands, the reader is referred to the TPM main specification
[3] and to Pearson et al. [9].
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TPM CreateWrapKey generates an asymmetric key and returns the public
key in plain text and the private key encrypted with the key pair’s parent
key. The input values of interest to us are a key handle that points to the
generated key’s parent key, the flag which declares the key as a binding or
signing key, the flag which declares the key as migratable or non-migratable,
and the (potentially empty) set of PCRs to whose values the key is sealed.
Note that for the key to be non-migratable, the parent key must be non-
migratable as well.

In our protocol, we use this command on the client to generate a non-
migratable binding key that is sealed to a (non-empty) set of PCRs.

TPM LoadKey2 loads an asymmetric key onto the TPM and returns the key
handle that points to the loaded key, thus making the key available for
use in subsequent TPM commands. The input values of interest to us are
the public key, the encrypted private key, and a key handle that points to
the loaded key’s parent key. A non-migratable key will only be loaded onto
the TPM if it was generated by the TPM.

In our protocol, we use this command on the client to load the binding
key generated with TPM CreateWrapKey onto the client TPM.

TPM CertifyKey returns a key certificate. The input values of interest to us
are a key handle that points to the key to certify and a key handle that
points to the certifying signing key.

In our protocol, we use this command on the client to certify with an
AIK that the binding key generated with TPM CreateWrapKey and loaded
with TPM LoadKey2 is a non-migratable binding key that is sealed to a set
of PCRs.

TSS Bind encrypts data and returns it in cipher text. The input values of in-
terest to us are the data to encrypt and the public key used for encryption.
Note that it is the responsibility of the caller to ensure that the encryp-
tion key is a non-migratable binding key. Note further that the TSS Bind
command is not a TPM command, but fully implemented in software.

In our protocol, we use this command on the server to encrypt a secret
with the public key of the binding key generated with TPM CreateWrapKey
and certified with TPM CertifyKey.

TPM UnBind decrypts data and returns it in plain text. The input values
of interest to us are the data to decrypt and a key handle that points to
the binding key (whose private key is used for decryption). A sealed binding
key will only be used by the TPM if the values in the PCRs match those
specified during sealing.

In our protocol, we use this command on the client to decrypt the secret
encrypted with TSS Bind with the private key of the binding key generated
with TPM CreateWrapKey and loaded with TPM LoadKey2.

5.2 Notation

We employ so-called “Alice & Bob” notation, which leaves implicit many of the
checks carried out by principals when executing the protocol and the associated
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control flow when these checks fail, e.g., aborting when the verification of a digi-
tal signature fails [21]. Nevertheless, we have annotated our protocol specification,
making explicit the checks of TPM-specific key properties and platform configu-
ration information, using an assert statement. The semantics of assert is standard:
it aborts the protocol execution when the asserted predicate does not hold. Fur-
thermore, we employ the following notation:

– REQ is a constant, requesting the secret data ds.

– PCR INFO is a set of PCR indices and their respective values.

– KX is a key pair with public key KX and private key K−1
X .

– HX is the handle to the key KX .

– aik, binding, and non-migratable are flags that denote properties of a key,
namely that the key is an AIK, a binding key, and non-migratable, respec-
tively.

– EncP (binding,non-migratable, PCR INFO, K−1
C ) is the private key K−1

C of
the non-migratable binding key KC sealed to PCR INFO, encrypted with
the (non-migratable) parent key KP .

– SigAIK(binding,non-migratable, PCR INFO, N, KC) is the certificate of the
public key KC of the non-migratable binding key KC sealed to PCR INFO,
signed with the private key K−1

AIK of the signing key KAIK .

– SigCA(aik, KAIK) is the certificate of the public key KAIK of the attestation
identity key KAIK , signed with the private key K−1

CA of the signing key KCA.

5.3 Initial Possessions of Parties

The server knows

– the secret data ds,
– the public key KCA of the certificate authority’s signing key, and
– the PCRs and their values for the trusted stack.

The client knows

– the handle HP to (and authorization data for) a non-migratable storage key
KP ,

– the handle HAI to (and authorization data for) an AIK, and
– the certificate SigCA(aik, KAIK) for verification of the AIK by a third party,

in our case the server.

In a protocol run, the AIK allows the client to prove to the server that the latter
is indirectly interacting with a TPM.
The TPM knows (i.e., has loaded)

– the private key K−1
P of the non-migratable storage key KP and

– the private key K−1
AI of the AIK.
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Table 1. Key Distribution Protocol

1 C −→ S REQ

2 C ←− S PCR INFO, N

3 TPM ←− C TPM CreateWrapKey(HP , binding, non-migratable, PCR INFO)

4 TPM assert KP is non-migratable

generate non-migratable binding key (KC , K−1
C )

5 TPM −→ C KC , EncP (binding,non-migratable, PCR INFO, K−1
C )

6 TPM ←− C TPM LoadKey2(KC ,

EncP (binding,non-migratable, PCR INFO, K−1
C ), HP )

7 TPM −→ C HC

8 TPM ←− C TPM CertifyKey(HC , HAIK , N)

9 TPM −→ C SigAIK(binding,non-migratable, PCR INFO, N, KC)

10 C −→ S SigAIK(binding,non-migratable, PCR INFO, N, KC),

SigCA(aik, KAIK)

11 S assert KAIK is aik

assert KC is binding

assert KC is sealed to PCR INFO

12 C ←− S EncC(ds)

13 TPM ←− C TPM UnBind(EncC(ds), HC)

14 TPM assert C is in state PCR INFO

15 TPM −→ C ds

Protocol Run. The protocol is specified in Table 1. The client initiates a
protocol run by requesting the secret data ds from the server (1). The server
replies with the set of PCRs that have to be used to represent the (trusted)
state of the client and a nonce N which identifies the protocol run (2). Note
that the nonce does not provide additional security since replay attacks are not
an issue.4 The client invokes the TPM CreateWrapKey command (3) to have the
TPM create a non-migratable asymmetric encryption key KC := (KC , K−1

C )
(4) that is sealed to the PCRs specified in step 2 (5). The client loads the key
into the TPM by invoking TPM LoadKey2 (6), receives the key handle from the
TPM (7), and has the TPM certify the loaded key with the AIK (8). The TPM
returns the certificate (9), which the client forwards to the server together with
the certificate of the AIK (10). The server checks that the certificates are valid
(11), in particular that KC is a non-migratable binding key sealed to the required

4 The reason is that it is not important when the binding key has been generated and
certified, but what its properties are. Because the binding key is non-migratable,
these properties (in particular, which TPM it is associated with) never change. So
even though the TPM CertifyKey command is specified to take a nonce as argu-
ment, the nonce could be replaced with something predictable (and more efficiently
implemented) like a counter in our protocol.
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PCRs. If the key KC has the required properties, the secret ds is bound to it
and the resulting protected object returned to the client (12). Upon receipt of
the protected object, the client invokes TPM UnBind to have the TPM decrypt
the secret ds (13). The TPM checks that the client is in the trusted state (14)
before using KC and returning the secret ds (14).

Note that there is no need for (and no additional security in) explicitly sealing
the secret ds since the private key K−1

C of the binding key KC is sealed to the
required PCRs itself. From now on, whenever the client is in the trusted state
(i.e., the PCR values match the required ones) it can have the TPM unbind the
secret ds for its intended use.

6 Security Analysis

6.1 Security Against Man-in-the-Middle Attacks

Since the communication channel between the client and the server is open, a
man in the middle sees the following four messages exchanged in steps 1, 2, 10,
and 12:

1. REQ,
2. PCR INFO, N ,
3. SigAIK(binding,non-migratable, PCR INFO, N, KC),

SigCA(aik, KAIK), and
4. EncC(ds)

Obviously, the first three messages are independent of the secret data ds, and
hence they provide no information about it, even in a strict information-theoretic
sense. The fourth message is encrypted with the public key KC , where the cor-
responding private key K−1

C is unknown to the man in the middle. Hence, the
man in the middle can only decrypt the fourth message by breaking the cryp-
tographic system, which we assume to be infeasible, or by deriving the private
key K−1

C from the first three messages. However, the first two messages are also
completely independent of the encryption key KC and deriving a private key
from the corresponding public key in the third message amounts to breaking
the cryptographic system. Thus, the protocol is also secure against a passive
man-in-the-middle attack.

An active man in the middle could try to replace the third message he sees
by SigMS[enc, nm, PCR INFO, N ](KME), SigCA[sig](KMS)—KMS is his
signing key and KME is his encryption key—in order to fool the server into
binding the secret ds to KME (EncME(ds)). However, this requires forging the
CA’s signature, which again amounts to breaking the cryptographic system.
Thus, the protocol is also secure against an active man-in-the-middle attack.

6.2 Ideal Trusted Platform: Security Against Dishonest Users

Because the server verifies the two certificates exchanged in a protocol run, in par-
ticular that KC is non-migratable and sealed to the PCRs specified by PCR INFO,
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and because it binds the secret data ds to KC , the client must execute step 13 of
the protocol as the honest client (i.e., using a trusted software stack). Afterwards,
a dishonest user could put the client into a dishonest state (by launching another
process if at all permitted or rebooting another stack) which results in different
PCR values and in the TPM not unbinding the secret ds. Alternatively, a dishonest
user could mount a hardware attack in order to read the secret ds out of the TPM,
which we assume to be infeasible given an ideal (tamper-proof) trusted platform.
Thus, an ideal (tamper-proof) trusted platform not only provides security against
man-in-the-middle attacks but also against attacks by dishonest clients.

7 Conclusion

We have presented in detail a protocol at the level of TPM commands that
allows servers to securely distribute secrets to trusted platforms. The protocol
maintains the confidentiality of secrets in the face of eavesdroppers and careless
users. Given an ideal (tamper-proof) trusted platform, the protocol maintains
the confidentiality of secrets even in the face of dishonest users.

We have provided an informal analysis of the security of the protocol. A
formal analysis of our protocol and other TPM-based protocols would require
developing formal models for TPM-specific concepts such as binding and sealing.
This is an interesting topic for future work that could be based on groundwork
laid by Lin [22].
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A Application: Document Security

We apply our protocol in situations where access to documents of an enterprise
must be controlled on computers that are not owned and administrated by the
enterprise. For example, members of the enterprise’s board of directors may be
more inclined to read documents on a computer they already have, such as their
home computer, than to be issued a computer from every enterprise on whose
board of directors they sit.5

Such a situation is depicted in Figure 4. The main entities are a user, the
user’s computer (which the user owns and administrates), and a document whose
content is confidential. Access to the document is governed by its access policy.
The document content and the document policy are paired. The document’s
content is encrypted and the document as a whole signed such that the user
can neither directly access the content component (because he does not know
the decryption key) nor alter the policy in his favor (because he does not know
the signing key). Instead, the user has to access the document via a document
processor on an operating system that the document owner trusts to enforce the
policy and to maintain confidentiality.

Fig. 4. Key Use

Within the document processor, the policy enforcement point (PEP) is re-
sponsible for enforcing the policy based on access decisions made by the policy
decision point (PDP). Upon opening a document, the document processor has to
5 Recall the case of former CIA Director John Deutch who accessed classified material

on his unsecured home computer. The problem was not that he was not trusted (as
the CIA director, he certainly was), but his software might have been untrustworthy.
Had the classified material been encrypted with a key known not even to him, he
could have been forced to boot his home computer into a trusted state, and the story
would never have made the news.
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Fig. 5. Key Distribution

verify the document’s authenticity (which implies its integrity) and decrypt the
content. The decryption key is sealed to the trusted software stack (document
processor and operating system) such that it can be used off-line but not ac-
cessed with another software stack in control. Note that the user cannot replace
the verification key without changing (the hash of) the stack.

We achieve this situation in three main steps (cf. Figure 5):

1. The document owner’s server checks whether the trusted stack is in control
of the user’s computer (steps 1–11 of the key distribution protocol).

2. It binds the decryption key to the user’s TPM (step 12).
3. The trusted stack seals the decryption key in the user’s TPM (steps 13–15).

In previous work [23,24,25], we developed an access-control system for docu-
ments. Standard operating system security mechanisms can be used to ensure
that the system is not tampered with within an enterprise. This work is the
missing link to ensuring that the system cannot be circumvented outside of the
enterprise.
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ing the information matching the query along with a proof that such
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show that such a primitive can be securely implemented in a distributed
fashion. Furthermore, we describe the design principles for a distributed
architecture that would allow the use of this primitive on mobile devices.
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1 Introduction

The growing need of mobility in the current society and the increasing availabil-
ity of low-cost wireless devices have fostered an impressive growth in the number
of services available for such devices. Currently available technologies allow the
possibility of performing tasks on wireless devices that were impossible only few
years ago. Theoretically, it is now possible to run any Java program on last gen-
eration mobile devices. On one hand, this allows the possibility of interaction
between any Java-enabled mobile device with any possible application that sup-
ports web-based access. It is possible to download programs from the Internet
and execute them in order to interact with a specific service.

This flexibility poses a number of security issues that need to be addressed. Just
to mention a few, authentication, anonymity, accountability of users/services need
be to thought for a environment in which the device has very low computational
abilities, the communicationmediumcanbe easily eavesdroppedor subject tomali-
cious attacks of various kind, etc. In particular, because of the small computational
power of such devices, one issue to address is the performance of the applications.
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In a such global scenario it is often the case that one entity has to access
information owned by a different entity. This poses a number of security issues
both from the database side and the user side. For example, the owner of the
database may require that only authorized users have access to the informa-
tion or part of it. This is an instance of the well-known access control problem.
Another example could be that each user cannot infer additional knowledge by
analyzing the answers to the issued queries. In other words, authorized users
can obtain the information they required, but they cannot infer any other infor-
mation from the received answers [5,9]. On the other hand, a user may require
that the database does not gain any information about specific content she re-
quested [6,4,10,11,1]. This means that the database should “blindly” answer all
the queries from authorized users in a way that all the requested information
can be correctly reconstructed from the answers.

The above problems mainly address the confidentiality of the information.
The primitive we consider in this prototype, introduced in [8], deals with the
problem of guaranteeing the consistency of the answer, sent by the database to
the user, with the information actually contained in the database. We assume
the possibility that a database would be willing to give wrong answer to queries
issued by a user. In this setting, since the user does not know in advance which
is the actual information he will receive from the database, there would be no
way to distinguish between a correct answer from a maliciously modified one.

Certified Information Access (CIA for short) primitives force the database
to publish a snapshot of its current contents, which we refer to as the Public
Information, on a trusted entity. After such information is available, the user may
issue queries to the database. The answers to each query have to be consistent
with the public information.

One trivial way of implementing such primitives is to publish the whole con-
tent of the database on a trusted server. In this case, a user may compare the
received query with the one contained in the public copy of the database. This
solution is, of course, neither secure nor efficient. Since the database has to pub-
lish its whole contents, the confidentiality of the information therein contained
is compromised. Furthermore, since all the elements in the database need to
be transmitted and stored, the communication and space complexities of such
solution is linear in the size of the database.

For this reasons the public information should satisfy the following properties:

– Compactness: The size of the public information should be smaller than the
size of the database.

– Confidentiality: The public information should not reveal anything about
the actual content of the database.

– Correctness: A correct answer to a query should be consistent with the public
information with probability one.

– Soundness: Any wrong answer to a query will be detected with high proba-
bility.

Currently, a way of implementing CIA primitives is by means of a new cryp-
tographic primitive, namely mercurial commitments introduced and studied in
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[8,3,2,7]. Unfortunately, the implementation of such primitive are computation-
ally intensive. On one hand, the generation of the public information is time
consuming also on current servers. On the other hand, although the verification
procedure can be easily executed on a PC in few seconds, it still requires much
more time on mobile devices.

Our Contribution. In this paper we present a distributed architecture for a CIA
service. We first describe in details the Certified Information Access service. We
briefly review the basic primitives that can be used for implementing such a
service. However, such primitives require a certain amount of computation that
would make any solution for CIA unfeasible on mobile devices or, more generally,
on devices with low computational power. We show that such primitives can
be computed securely in a distributed fashion. In other words, any device can
distribute its load securely among untrusted peers and locally combine the results
of such computations. We finally show an architectural design for the distributed
implementation of a secure CIA service.

We describe a solution for static databases, i.e., databases in which the content
does not change. To the best of our knowledge, the only secure solution to the
problem of dynamic databases is the one described in [7]. Unfortunately this
solution is not efficient. Indeed, updating a single element in the database results
in the need of storing some information whose size is linear in the size of the key.

We assume that there exists a trusted entity that does not collude with the
entity holding the database. Furthermore, the system comprises a sufficient num-
ber of peers whose only role is to compute modular exponentiations. We assume
that such peers are honest, that is, they properly execute the protocols, but a
small fraction of them may be curious, in the sense that they may collude in
order to infer additional information from the messages they have exchanged.

This document is organized as follows: In Section 2 we describe the CIA prim-
itive. In Section 3 we describe a basic tool that is used in the prototype, namely
Mercurial Commitment schemes, and techniques for distributing the computa-
tion of such primitive among the peers. In Section 4 we describe how to construct
a certified information access primitives using mercurial commitments. In Sec-
tion 5 we report the design principles for a distributed architecture implementing
a CIA service.

2 Certified Information Access

In this section we describe the CIA functionality that we will be at the base of
our prototype.

In the context of secure databases, an implementation of a certified informa-
tion access has to provide the users with a database service in which each answer
to a query consists of the actual query results and a proof that such information
is indeed the actual content of the database. The verification of the proof can
be accomplished by using some public information that the database provided
before the query was issued. Such public information should not reveal anything
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about the actual content of the database. In a CIA system we identify three
parties, the CertifiedDBOwner the User and the PubInfoStorage.

In a setup phase, the PubInfoStorage generates the public parameters
that will be used for the CIA service. The PubInfoStorage is assumed not to
collude with the CertifiedDBOwner.

The CertifiedDBOwner, based on public parameters and the content of
the database, produces the public information that is then sent to the PubIn-

foStorage. Whenever a User makes a query to the CertifiedDBOwner, he
obtains an object that contains the answer to the query and some information
that can be used, along with the information held by the PubInfoStorage, to
prove that the answer is indeed correct and that the CertifiedDBOwner has
not cheated.

Cryptographic background. A very simple type of Certified Information Access,
is the one in which the database consists of only one string, one-string CIA (or
1-CIA). The one-string CIA functionality has been studied in Cryptography
under the name of commitment and several implementations of this primitive
have been presented. Instead, the concept of a M1-CIA corresponds to a special
type of commitments called mercurial commitments introduced by [3] and later
studied by [2,7].

1-CIA can be seen as a safe. The CertifiedDBOwner writes the string m
on a piece of paper, puts it in a safe and locks the safe. The safe can be sent
to a User that cannot open it (thus guaranteeing the hiding property). On the
other hand the User is guaranteed that the message in the safe cannot change
while it is in the safe (thus guaranteeing the binding property). Whenever the
CertifiedDBOwner chooses to, he can open the safe by sending the string m
and the key to open the safe. The User can then verify that the value he sees
is the same as the original message stored in the safe.

Using a commitment scheme, we can implement a 1-CIA as follows: the Cer-

tifiedDBOwner, based on the actual value m of the string, produces a commit-
ment and a decommitment key. The commitment is sent to the PubInfoStor-

age. Whenever the CertifiedDBOwner chooses to, he opens the commitment
by releasing the the value of m and the decommitment key. The User can verify
that the opening has been correctly performed by checking the open against the
information held by the PubInfoStorage.

The M1-CIA functionality is an extension of the 1-CIA functionality with
an important extra property. In addition to the usual operation of opening a
commitment, M1-CIA also supports a partial open operation called tease. A
commitment com can be computed in two ways: it can be a hard commitment,
that is a commitment that can be opened and teased in only one way; or a soft
commitment that cannot be opened at all, but can be teased to any value.

The binding and hiding properties also hold for a M1-CIA. In addition, hard
commitments are indistinguishable from soft ones. In particular, this means that
it is computationally infeasible to distinguish whether a commitment com is a
soft or a hard one.
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The mechanism is the same as the ones of the 1-CIA. The only difference is
that the CertifiedDBOwner can also produce soft commitment that can be
teased to any string m.

A M1-CIA scheme provides the following functions.

CertifiedDBOwner

– Commit: computes, on input the string m and the public parameters, the
commitment com to be sent to PubInfoStorage and the decommitment
key dec to be used in the opening.

– SoftCommit: computes, on input the public parameters, a soft commitment
Scom along with a teasing key Sdec to be used for teasing Scom.
Notice that SoftCommit does not need a string m as Scom can be teased
to any value m.

– Tease: computes, on input the public parameters, a string m, a commitment
com (com could be a hard or a soft commitment) and a teasing key Sdec, the
teasing τ of Scom to string m.

User

– VerifyOpen: Given the public parameters, verifies that message m and a
decommitment key dec, are consistent with a commitment com.

– VerifyTease: verifies, on input the public parameters, that a teasing τ of
a commitment com (it could be a soft commitment or a hard one) to a string
m has been correctly computed.

3 Primitives

In this section we show how we implement the M1-CIA functionality. Our im-
plementation is based on the hardness of the discrete logarithm in cyclic groups
and is based on [3].

3.1 Implementing M1-CIA Via Mercurial Commitments

The Setup procedure (executed by the PubInfoStorage) consists in randomly
picking a random prime p and two generators g, h of the cyclic group Z�

p . All
operations are to be considered in the group Z�

p unless otherwise specified.
The Commit procedure (executed by the CertifiedDBOwner) takes as

input the string m and public parameters (p, g, h) and computes com and dec
as follows: randomly pick r0, r1 ∈ Z�

p−1 and set com = (gm · (hr1)r0 , hr1) and
dec = (r0, r1).

The VerifyOpen procedure (executed by the User) takes as input the public
parameters (p, g, h), a message m, a commitment com = (C0, C1) and decom-
mitment key dec = (r0, r1) and consists in checking that C0 = gm · Cr0

1 and
C1 = hr1 .
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The SoftCommit procedure (executed by the CertifiedDBOwner) takes
as input the public parameters (p, g, h) and computes Scom and Sdec as follows:
randomly pick r0, r1 ∈ Z�

p−1 and set Scom = (gr0 , gr1) and Sdec = (r0, r1).
The teasing τ of a hard commitment com = (gm ·(hr1)r0 , hr1) of string m with

the decommitment key dec = (r0, r1) consists simply of τ = r0.
Instead the teasing τ of a soft commitment Scom = (gr0 , gr1) with teasing key

Sdec = (r0, r1) to string m is computed by setting τ = (r0−m)/r1 (mod p−1).
The VerifyTease procedure (executed by the User) takes as input public

parameters (p, g, h) and teasing τ of commitment (C0, C1) to string m consists
in checking that C0 = gm · Cτ

1 .
Correctness and security of this scheme have been shown in [3].

3.2 Distributing M1-CIA Computation

This paragraph describes a way of distributing the computations needed to create
and verify mercurial commitments while preserving the security of the M1-CIA

scheme.
Since the most time-consuming operation is the modular exponentiation, we

show a way of distributing such operation securely. The idea behind the load
distribution is to use the computational power of peers to execute modular ex-
ponentiations. In this way the CertifiedDBOwner and the User are only
required to execute additions and multiplications.

Secure Computation of Exponentiations. Crucial operations to be distrib-
uted are modular exponentiations in which either the exponent or both the base
and the exponent are sensitive information. We assume that a service Mod Exp

is run a set of peers that the User and the CertifiedDBOwner may use for
such operations. Peers are assumed to be honest, i.e., compute correctly the
modular exponentiations they are required to, but curious, in the sense that
they may collect the information received in order to obtain information on the
values queried by the user or on the elements of the database.

Mod Exp: We assume that the peers can be identified by an ID in the set
{1, . . . , t}, for some integer t. This service is inkoved with input a base b, an
exponent r, the modulus p and the ID of the peer that will execute the task.
The peer with identity ID computes br mod p and sends back the result to the
player who required it. We assume secure point-to-point communication between
peers and the player who invokes their services.

Computation with secure exponent. We first analyze the case in which the expo-
nent is a secret information. Let k be an integer such that k−1 � t. We assume
that the maximum number of colluding peers is at most k−1. In this case, given
b and e, it is possible to compute be mod p keeping the exponent e private as
follows:



Distributed Certified Information Access for Mobile Devices 73

Procedure Secure Exp(b, e, p, k)

- randomly select k out of the t peers and let {ID1, . . . , IDk} be their identi-
ties.

- pick e1, . . . , ek−1 ∈R Zp−1
- ek = e − (e1 + . . . + ek−1) mod (p − 1).
- ri = Mod Exp(b, ei, p, IDi), for i = 1, . . . , k.
- r =

∏k
i=1 ri mod p

- output r

The correctness of the above procedure follows immediately from the fact
that ri = bei mod p and, thus, r = be1+...+ek = be mod p. Security follows from
the observation that the exponent e is shared among the k peers using a (k, k)-
threshold secret sharing scheme. Thus, the only way to reconstruct e is to collect
all the k shares.

Computation with secure base and exponent. Using a similar idea, it is possible
to compute be while keeping both the base b and the exponent e private. The
main difference is that, in this case, we need to properly share both the base and
the exponent and recombine the partial results.

Procedure Secure Base Exp(b, e, p, k2)

- randomly select k2 peers out of the t and let {ID1, . . . , IDk2} be their iden-
tifiers

- pick e1, . . . , ek−1 ∈R Zp−1
- pick b1, . . . , bk−1 ∈R Z�

p

- ek = e − (e1 + . . . + ek−1) mod (p − 1).
- bk = b/

∏k
i=1 bi mod p.

- ri,j = Mod Exp(bi, ej , p, IDi(j−1)+j−1), for i = 1, . . . , k and j = 1, . . . , k

- ri =
∏k

j=1 ri,j mod p

- r =
∏k

i=1 ri mod p
- output r

The correctness of the above procedure can be derived by observing that
ri = be

i mod p since Secure Base Exp implicitly contains an invocation of the
procedure Secure Exp with parameters bi and e. Furthermore, r = be

1 · . . .·be
k =

(
∏k

i=1 bi)e = be mod p. The security of the procedure derives from the fact that
we use two independent (k, k)-threshold secret sharing schemes for sharing b and
e. Since each pair (bi, ej), for i, j ∈ {1, . . . , k}, is assigned to a different peer, the
only way to reconstruct the value of b (resp., the value of e) is to collect all the
values bi (resp., ei).

Distributing the Commitment Operations. Given the above procedures,
we can distribute the computation of commitments as follows:
Recall that, given the public parameters (p, g, h), a soft commitment consists of a
pair Scom = (gr0 , gr1) and Sdec = (r0, r1), where r0 and r1 are randomly chosen.
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In this case, the values r0 and r1 need to be kept private since they are used for
the teasing of Scom. Thus, the SoftCommit procedure can be distributed as
follows:

Procedure SoftCommit(p, g, h, k)

- r0, r1 ∈R Zp

- y0 = Secure Exp(g, r0, p, k)
- y1 = Secure Exp(g, r1, p, k)
- output Scom = (y0, y1), and Sdec = (r0, r1).

The correctness of the above procedure follows immediately by inspection,
while its security follows from the fact that y0 and y1 are computed by indepen-
dent executions of the Secure Exp algorithm.
Let us now consider hard commitments. A hard commitment, given the public
parameters (p, g, h) and a message m, consists of a pair com = (gm · (hr1)r0 , hr1)
and dec = (r0, r1) where r0 and r1 are randomly chosen. In this case, clearly
the value m need to be private for guaranteeing the hiding property of the com-
mitment. The exponents r0 and r1 need to be private since they constitute the
decommitment key dec. Finally the value hr1 needs to be kept private since it
constitutes the second component of com. Indeed, if such value becomes public,
an attacker that eavesdrops a pair (x, hr1) knows, w.h.p. that such pair defines
a hard commitment, contradicting the indistinguishably of hard and soft com-
mitments. Thus, the Commit procedure can be distributed as follows:

Procedure Commit(p, g, h, m, k2)

- r0, r1 ∈R Zp.
- w = Secure Exp(g, m, p, k)
- y1 = Secure Exp(h, r1, p, k)
- y0 = Secure Base Exp(y1, r0, p, k2)
- set com = (wy0, y1) and dec = (r0, r1)

The correctness of the above algorithm can be verified by inspection while, as
before, its security follows from the independence of the computations for w, y1
and y0.

Distributing the verification. We can now show the distribution of load
on the User side. Notice that, the same observations above also apply to the
verification procedures described below.

Procedure VerifyOpen(p, g, h, (C0, C1), (r0, r1), m, k2)

- c1 = Secure Exp(h, r1, p, k)
- g = Secure Exp(g, m, p, k)
- c2 = Secure Base Exp(c1, r0, p, k2)
- if C1 = c1 and C0 = g · c2 output “Verified” else output “Failure”.
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Procedure VerifyTease(p, g, h, (C0, C1), τ, m, k2)

- c1 = Secure Base Exp(C1, τ, p, k2)
- g = Secure Exp(g, m, p, k)
- if C0 = g · c1 output “Verified” else output “Failure”.

4 Certified Information Access Via M1-CIA

In this section we describe how to implement the CIA functionality based on M1-
CIA. This description resembles the one in [3]. We consider a simple database
D associating to a key x a value D(x) = v. Let us assume that all keys have
the same length �. A reasonable choice is � = 128 since on one hand it allows
to have a large key space and, at the same time, it is possible to use hash
functions for reducing the key size to this small value while preserving collision
freeness. The database D can thus be represented by a height-� binary tree where
leaf numbered x contains the value v = D(x). If no value is associated by the
database to key x, the leaf numbered x contains the special value ⊥.

The CertifiedDBOwner constructs a binary tree that can be described as
follows: Leaves of the tree contain the commitment of elements of the database.
Each internal node of the tree contains the commitment to the contents of its
two children. The commitment to the root of such a tree constitutes the public
information that is sent to the PubInfoStorage.

To respond to a query about x, the CertifiedDBOwner simply decommits
the corresponding leaf and provides the authenticating path (along with all the
decommitments) to the root. The problem with this approach is that it requires
time exponential in the height of the tree: if we choose � = 128, then 2128

commitments need to be computed.
This is where M1-CIA helps. Observe that the exponential-size tree has large

empty subtrees (that is, subtrees where each leaf is a commitment to ⊥). Instead
of actually computing such a subtree ahead of time, the CertifiedDBOwner

forms the root of this subtree as a soft commitment and does not do anything for
the rest of the tree. Thus the size of the tree is reduced to at most 2�|D|, where
|D| represents the number of element in the database. Responding to a query
about x such that D(x) �=⊥ is still done in the same way. If instead D(x) =⊥,
the CertifiedDBOwner teases the path from the root to x. More precisely, the
path from the root to x will consists of hard commitments until the root R of the
empty subtree containing x is encountered. All hard commitments from the root
of the tree to R are teased to their real values (recall that hard commitments can
be teased only to their real value). Then, the CertifiedDBOwner generates
a path of soft commitments from R to (the leaf with number) x ending with
the commitment of ⊥. Each soft commitment corresponding to a node along the
path is teased to the soft commitments corresponding to its two children. The
User simply needs to verify that each teasing has been correctly computed. We
stress that for positive queries (that is, queries for x such that D(x) �=⊥) the
User expects to see opening of hard commitments whereas for negative queries
(that is, queries for x such that D(x) =⊥) the User expects to see teasing
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of commitments; some of them will be hard commitments and some will be
soft commitments but the user cannot say which ones are which. Due to space
limitations, we describe the above procedures in details in Appendix A.

5 The Architectural Design Principles

In this section we briefly describe the architectural design for a system im-
plementing the primitives described above. We identify four different entities,
CertifiedDBOwner, User and PubInfoStorage and Peer.

The applications cooperate as follow. At startup, the PubInfoStorage gen-
erates the public parameters that will be used for the M1-CIA implementations.
Since public parameters are used both for generating the public information and
verifying all the answers to queries, such generation is carried out once, and the
parameters are stored in a file.

At this point the CertifiedDBOwner generates the public information with
the help of the Peer applications that is run on a set of peers. The public in-
formation is sent and stored by the PubInfoStorage. When the User queries
the CertifiedDBOwner, he obtains a reply that is verified against the public
information held by the PubInfoStorage. We assume point-to-point secure
communication among CertifiedDBOwner, User and PubInfoStorage.
Furthermore, the communication between any peer and an entity invoking its
service is also secured.

In our experience, the most time-consuming operation is the creation of the
public information executed by the CertifiedDBOwner. Notice that the dis-
tribution of load clearly helps in reducing the time required for such operation
if the number t of available peers is bigger than k2, where k is the security
threshold.

A possible way of further reducing the computation time by using pre-
computation. We observe that a soft commitment is composed by a pair (gr0 , gr1)
where both r0 and r1 are random values. Furthermore, a hard commitment is a
pair whose second component is hr where, again, r is a random value. Clearly it is
immaterial whether or not the value r is chosen by the peer. What it does matter
is that the CertifiedDBOwner, given the information obtained by the peers,
is able to compute some pair (r′, gr′

) (resp., (r′, hr′
)) where both components

are private.
We can thus introduce a new service, theBatch Mod Exp that, given the pub-

lic parameter held by the PubInfoStorage, computes and stores two lists of
pairs, (r, gr) and (r′, hr′

). Whenever the CertifiedDBOwner needs to compute
a soft (resp., hard) commitment, it may simply invoke the Batch Mod Exp ser-
vice that will return the first pair (r, gr) (resp., (r, hr)) and remove it from the list.

The pre-computation technique just described can be extremely useful in the
case in which the public information associated to the database need to be
recomputed frequently. As stated in the introduction, there are no currently
available efficient solution for implementing a CIA service in case the database
is dynamic. Consider, for example, the case in which the database needs to
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be modified, say, once per day. The only way of guaranteeing the security of
the service is to recompute the public information each time. In this case the
company where the CertifiedDBOwner is running, may set up peers on its
computers so that they pre-compute the information when they are not used,
e.g., at night.

6 Conclusion

In this paper we have presented a distributed architecture for a Certified Informa-
tion Access system. We have shown that it is possible to securely distribute the
load of the most time-consuming operations among a set of untrusted peers. Fur-
thermore, we have presented a solution that allows the usage of pre-computation
in order to reduce the time needed by the CertifiedDBOwner for generating
the public information.
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A Certified Information Access Via M1-CIA

In this appendix we describe in more details the generation of the tree of com-
mitments, the construction of a answer by the CertifiedDBOwner and the
verification procedure executed by the User.

Generation of Public Information. To generate the public information represent-
ing the database D, the CertifiedDBOwner proceeds as follows. We stress,
that even though not explicitly specified, all calls to Commit and SoftCommit

take as input also the public parameter generated by the PubInfoStorage

during the SETUP.
The construction of the tree of commitments starts from its leaves. More

precisely, for each x such that D(x) �=⊥, the CertifiedDBOwner produces
(Cx, Dx) = Commit(D(x)). Then for each x such that D(x) =⊥ but D(x′) �=⊥
(where x′ is x with the last bit flipped), the CertifiedDBOwner produces
(Cx, Dx) = SoftCommit. For all the others x, Cx = ∅. Now the tree is con-
structed in a bottom-up fashion as follows: for each level i = � − 1, · · · , 0 and for
each string s of length i, define Cs as follows:

1. If Cs0 �= ∅ and Cs1 �= ∅, the let (Cs, Ds) = Commit((Cs0, Cs1)).
2. For all s such that Cs′ has been defined in the previous step (s′ is s with the

last bit flipped) but Cs has not, define (Cs, Ds) = SoftCommit.
3. For all other s, define Cs = ∅.

The value at the root Cε is the public information. If we have Cε = ∅ we set
(Cε, Dε) = SoftCommit.

Answer to a query. This method constructs an object that contains the answer
to the query and a proof of validity composed by the decommitments of the
corresponding leaf along with the authenticating path (together with all the
decommitments) to the root.

More specifically, we distinguish between the case in which the query x is such
that D(x) �=⊥ and D(x) =⊥. For a string x we denote by x|i the first i bits of
x and by (x|i)′ the first i − 1 bits of x followed by the i-th bit of x flipped.

If D(x) �=⊥, the authenticating path is computed by sending D(x), the corre-
sponding decommitment key Dx and, for 0 ≤ i ≤ � − 1, the values (Cx|i0, Cx|i1)
along with the decommitment key Dx|i .
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Suppose instead that D(x) =⊥ and let h be largest value such that Cx|h �=
∅, set (Cx, Dx) = Commit(⊥), and build a path from x to Cx|h as follows:
set (Cx′ , Dx′) = SoftCommit; for each level i from � − 1 to h + 1, define
(Cx|i , Dx|i) = Commit(Cx|i0, Cx|i1), and (C(x|i)′ , D(x|i)′) = SoftCommit. Note
that the only values inside the tree redefined by the above procedure are those
that were not defined before.

Let τx = Tease(D(x), Cx, Dx) and τx|i = Tease((Cx|i0, Cx|i1), Cx|i , Dx|i)
for 0 ≤ i < �. The response to the query consists of ⊥ along with its validation
path: (Cx|i , C(x|i)′) for 1 ≤ i ≤ � and τx|i for 0 ≤ i ≤ �.

Verification of an Answer. To verify the certified answer, for a query to a key x
such that D(x) �=⊥, User executes the VerifyOpen method on all the decom-
mitments received, from the bottom up to the root. The last verification is made
against the database commitment that he has previously retrieved from the Pu-

bInfoStorage. In case the key that has been queried is not in the database,
then the User has to execute VerifyTease instead of VerifyOpen.

Hashing the values. In the discussion above, we have in several points con-
structed a hard commitment of two hard commitments. This will make the size
of the commitment roughly double at each level. Instead we assume that instead
of committing to a string (or to a pair of strings) we commit to its hash value
computed using a collision-resistant hash function H which hashes down a string
to a fixed length �. Notice, again, that � = 128 is a good choice. Similarly, we
can have a database with keys of different length if, instead of storing the pair
(x, v) we store the pair (H(x), v).
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Abstract. Unforgeability and blindness are two important properties
of blind signature. The latter means that after interacting with vari-
ous users, the signer is unable to link a valid message-signature pair. In
ICCSA 2006, Zhang et al. showed that a signer in an identity-based blind
signature scheme proposed by Huang et al. is able to link a valid message-
signature pair obtained by some user. They also presented an improved
scheme to overcome this flaw. In ICICIC 2006, Zhang and Zou showed
that the identity-based blind signature scheme proposed by Zhang and
Kim also suffered from the similar linkability attack. In this paper, we
first show that the so-called linkability can be shown for Zhang et al.
scheme as well. We then point out that the linkability attack against the
Huang et al. scheme and the Zhang-Kim scheme is invalid.

Keywords: Blind signature, identity-based, linkability, blindness.

1 Introduction

The concept of blind signatures was first introduced by Chaum [3] in 1982. A
blind signature scheme is an interactive two-party protocol between a user and
a signer. Informally, a blind signature is a signature scheme that incorporates
a signing protocol that allows the signer to sign a document submitted by a
user blindly, without obtaining any information about the document itself. This
cryptographic scheme provides anonymity of users and is especially suited for
use in e-cash and e-voting systems.

On the other hand, identity (ID)-based public key cryptography is a concept
formalized by Shamir in 1984 [6]. In ID-based schemes, users need exchange
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neither private keys nor public keys. Generally, an ID-based scheme is an asym-
metric system wherein the public key is effectively replaced by or constructed
from a user’s publicly available identity information (e.g., name, email address,
IP address) which uniquely identifies the user and can be undeniably associated
with the user. The services of a trusted third party called private key genera-
tor (PKG) are needed solely to generate private keys for users using the PKG’s
master-key and the user’s public identity information. The main technical differ-
ence between ID-based cryptography and the traditional public key infrastruc-
ture (PKI) systems using certificates is in the binding between the public and
private keys and the means of those keys. In a traditional PKI, this is achieved
through the use of a certificate.

The first ID-based blind signature (IBBS) scheme was put forth by Zhang and
Kim in 2002 [7]. Later, the same authors provided an improved IBBS scheme
[8]. Unlike the first scheme, they claimed that the general parallel attack of this
improved scheme does not depend on the difficulty of ROS-problem, this was
then falsified by Huang et al. [4]. Huang et al. showed that the security against
generic parallel attack of Zhang and Kim’s improved scheme [8] still depends on
the difficulty of ROS-problem. Huang et al. [4] further proposed another scheme
which offers advantages in runtime, communication and memory requirements
over the first two schemes.

In ICCSA 2006, Zhang et al. showed that a signer in an IBBS scheme pro-
posed by Huang et al. is able to link a valid message-signature pair obtained by
some user [9]. They also presented an improved scheme to overcome this flaw.
Recently, in ICICIC 2006, Zhang and Zou also showed that the identity-based
blind signature scheme proposed by Zhang and Kim [7] is vulnerable to the same
linkability attack [10]. In this paper, we first show that the so-called linkability
can be shown for Zhang et al. scheme as well. We then show that the linkabil-
ity attack is invalid. We also compare the performance between the Zhang-Kim
scheme, the Zhang et al. scheme and the Huang et al. scheme. From the analysis,
we can see that the Huang et al. scheme is more efficient than the Zhang et al.
scheme.

In Section 2, we review some preliminaries. In Section 3, we review the Huang
et al. and the Zhang-Kim IBBS scheme. In Section 4, we review the Zhang et
al. scheme and discuss the linkability issue on the Zhang et al. scheme before
falsifying the soundness of the linkability attack claimed by Zhang et al. against
the Huang et al. scheme. Finally, we conclude this paper in Section 5.

2 Preliminaries

2.1 Bilinear Pairings

Throughout this paper, (G1, +) and (G2, ·) denote two cyclic groups of prime
order q. A bilinearmap , e : G1 × G1 → G2 satisfies the following properties:

1. Bilinearity: For all P, Q, R ∈ G1, e(P +Q, R) = e(P, R)e(Q, R) and e(P, Q+
R) = e(P, Q)e(P, R).
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2. Non-degeneracy: e(P, Q) �= 1.
3. Computability: There is an efficient algorithm to compute e(P, Q) for any

P, Q ∈ G1.

2.2 Identity-Based Blind Signature

An identity-based blind signature (IBBS) scheme is considered as the combina-
tion of a general blind signature scheme and an ID-based one. In other words, it
is a blind signature but the public key used in the verification is the signer iden-
tity such that no certificate is needed in authenticating the signer’s public key.
Now we review the framework and security model of an IBBS scheme [5,1,7,8,4].

An IBBS scheme is a digital signature scheme which involves three parties:
a trusted third party called the PKG, a signer and a user. It consists of the
following four algorithms:

1. Setup is a probabilistic polynomial-time (PPT) algorithm run by the PKG
that takes a security parameter k and returns the system parameters params
and master-key.

2. Extract is a deterministic algorithm run by the PKG that takes params,
master-key and an entity identifier ID ∈ {0, 1}∗ as input. It returns the
signer private key SID.

3. Issue is an interactive PPT signature issuing protocol between a signer and
a user. Suppose that the user is given its input tape (ID, m) where m is
a message and the signer is given its input tape (ID, SID). The signer and
the user then engage in the signature issuing protocol. At the end of this
protocol, the signer outputs either “completed” or “non-completed” while
the user outputs either ⊥ or the signature σ of the message m.

4. Verify is a deterministic polynomial-time algorithm that accepts a signature
σ, message m, params and ID and outputs true if the signature is correct,
or ⊥ otherwise.

These algorithms must satisfy the standard consistency constraint of an ID-
based blind signature, i.e. if σ = Issue(m, ID, SID,params), Verify(σ, m, ID,
params) = true must hold.

A secure ID-based blind signature should have the property of blindness and
the unforgeability against adaptive chosen message and ID attacks. We provide
the definition for the former only since we are particularly dealing with this
notion in this paper.

Definition 1 (Blindness). Let A be the Signer or a PPT algorithm that con-
trols the Signer. A is involved in the following game with two honest users,
namely U0 and U1.

1. (ID, SID) ← Extract(params, SID).
2. (m0, m1) ← A(ID, SID) (A produces two messages).
3. Select b ∈ {0, 1}. Put mb and m1−b to the read-only input tape of U0 and U1

respectively.
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4. A engages in the signature issuing protocol with U0 and U1 in an arbitrary
order.

5. If U0 and U1 output σ(mb) and σ(m1−b) respectively using their private
tapes, then give those outputs to A. Otherwise, give ⊥ to A.

6. A outputs a bit b′ ∈ {0, 1}.

We say that A wins the game if b′ = b. An IBBS is blind if there is no PPT
algorithm A that wins the game with probability at least 1/2 + 1/kc for any
constant c > 0. The probability is taken over the coin flips of Extract, U0, U1
and A.

3 The Huang et al. and the Zhang-Kim IBBS Schemes

3.1 The Huang et al. IBBS Scheme

1. Setup: Choose a group G1 which is a cyclic additive group generated by
P with prime order q. Choose a cyclic multiplicative group G2 with the
same order q and a bilinear pairing e : G1 × G1 → G2. Pick a random
s ∈ Z∗

q and set Ppub = sP . Choose two cryptographic hash functions H1 :
{0, 1}∗ × G2 → Z∗

q and H2 : {0, 1}∗ → G1. Publicize the system parameters
params = (G1, G2, e, q, P, Ppub, H1, H2) and keep the master key s secret.

2. Extract: Given an identity ID, compute PID = H2(ID) and return the
corresponding private key SID = sPID.

3. Issue: The user first chooses P1 ∈ G1 and computes e(P1, P ) beforehand.
In order to get a signature on a message m, the interaction between the user
and the signer is as follows:
- Sign (Part 1): The signer randomly chooses r ∈ Z∗

q and computes R′ =
e(PID, Ppub)r before sending R′ to the user as the commitment.
- Blinding: The user randomly chooses t1, t2 ∈ Z∗

q as blinding factors and
computes R = R′t1e(P1, P )t2 , h = H1(m, R) and h′ = ht1 before sending h′

to the signer as the challenge.
- Sign (Part 2): The signer sends back V ′ to the user as the response where
V ′ = (rh′ + 1)SID.
- Unblinding: The user checks whether e(V ′, P ) = R′h′

e(PID, Ppub). If yes,
then the user computes V = V ′ + ht2P1 and outputs the signature σ =
(R, V ).

4. Verify: To verify a signature σ = (R, V ) on a message m for ID, the verifier
checks whether e(V, P ) = RH1(m,R)e(PID, Ppub).

3.2 The Zhang-Kim IBBS Scheme

1. Setup: The same as Section 3.1.
2. Extract: The same as Section 3.1.
3. Issue:

- Sign (Part 1): The signer randomly chooses r ∈ Z∗
q and computes R =

rP before sending R to the user as the commitment.
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- Blinding: The user randomly chooses a, b ∈ Z∗
q as blinding factors and

computes t = e(bQID + R + aP, Ppub) and c′ = H1(m, t) + b before sending
c′ to the signer as the challenge.
- Sign (Part 2): The signer sends back V ′ to the user as the response where
V ′ = c′SID + rPpub.
- Unblinding: The user computes V = V ′+aPpub and c = c′−b and outputs
the signature σ = (V, c).

4. Verify: To verify a signature σ = (V, c) on a message m for ID, the verifier
checks whether c = H1(m, e(V, P )e(QID, Ppub)−c).

4 Soundness of the Linkability Attack

Recently, in ICCSA 2006, Zhang et al. claimed that the Huang et al. blind
signature [4] did not satisfy the blindness by analyzing the security of the scheme
where the signer is able to link a valid message-signature pair obtained by some
user after interacting with various users [9]. In ICICIC 2006, Zhang and Zou
also showed that the Zhang-Kim IBBS scheme [7] is vulnerable to the same
linkability attack [10]. In this section, we first review the Zhang et al. scheme.
We then review the Zhang et al. attack on the Huang et al. IBBS scheme and the
Zhang-Zou attack on the Zhang-Kim IBBS scheme. Subsequently, we show that
this so-called linkability attack can also be applied to the Zhang et al. scheme
[9]. Finally, we prove that the so-called linkability attack is in fact invalid.

4.1 The Zhang et al. IBBS Scheme

The Zhang et al. scheme [9] is considered as an allegedly improved scheme over
the Huang et al. which served as the countermeasure against the linkability
attack mounted by Zhang et al. against the latter.

1. Setup: The same as Section 3.1.
2. Extract: The same as Section 3.1.
3. Issue: The user first chooses P1 ∈ G1 and computes e(P1, P ) beforehand.

In order to get a signature on a message m, the interaction between the user
and the signer is as follows:
- Sign (Part 1): The signer randomly chooses r ∈ Z∗

q and computes R′ =
e(PID, Ppub)r before sending R′ to the user as the commitment.
- Blinding: The user randomly chooses t1, t2, t3 ∈ Z∗

q as the blinding factors
and computes R = R′t1e(PID, Ppub)t1t2e(P1, P )t3 , h = H1(m, R) and h′ =
ht−1

1 + t2 before sending h′ to the signer as the challenge.
- Sign (Part 2): The signer sends back V ′ to the user as the response where
V ′ = (r + h′)SID.
- Unblinding: The user computes V = t1V

′+t3P1 and outputs the signature
σ = (R, V ).

4. Verify: To verify a signature σ = (R, V ) on a message m for ID, the verifier
checks whether e(V, P ) = R · e(PID, Ppub)H1(m,R).
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4.2 Linkability of the Huang et al. IBBS Scheme

We briefly review the Zhang et al. attack below. During the interactive protocol
execution between the signer and the user, the transcript (R′, h′, V ′) is generated.
Given a blind signature σ = (R, V ) on a message m, the signer executes the
following steps:

1. Compute α = e(V − V ′, P ).
2. Compute β = R′h′

.
3. Compute h = H1(m, R) and check whether α · β = Rh. If equal, then it

indicates that the signer is managed to link the message-signature pair.

Since V = V ′ + ht2P1, thus the signer computes α as follows:

α = e(V − V ′, P )
= e(ht2P1, P )
= e(P1, P )ht2

The signer manages to compute β = R′h′
since h′ = ht1 is known. Finally, α · β

is computed as follows:

α · β = e(P1, P )ht2 · R′ht1

= {e(P1, P )t2 · R′t1}h

= Rh where R = R′t1e(P1, P )t2)

Thus, Zhang et al. claimed that the Huang et al. IBBS scheme [4] has no
blindness.

4.3 Linkability of the Zhang-Kim IBBS Scheme

Zhang and Zou showed an attack on the Zhang-Kim IBBS scheme [7]. We briefly
review the Zhang and Zou attack now. During the interactive protocol execution
between the signer and the user, the transcript (R, c′, V ′) is generated. Given
a blind signature σ = (c, V ) on a message m, the signer executes the following
steps:

1. Compute α = e(V − V ′, P ).
2. Compute β = c′ − c.
3. Compute δ = e(R, Ppub).
4. Compute t′ = α · δ · e(QID, Ppub)β .
5. Check whether c = H1(m, t′).

Notice that

t′ = α · δ · e(QID, Ppub)β

= e(V − V ′, P ) · e(R, Ppub) · e(QID, Ppub)(c
′−c)

= e(aPpub, P ) · e(R, Ppub) · e(QID, Ppub)b

= e(aP + R + bQID, Ppub)
= t
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Thus, we have that the relation H1(m, t′) = H1(m, t) = c holds and it means
that the signer is able to link a message-signature pair. Zhang and Zou then
claimed that the Zhang-Kim IBBS scheme has no blindness as well.

4.4 Linkability of the Zhang et al. Scheme

Now, we show that the similar so-called linkability can be shown for the Zhang
et al. scheme [9] as well.

During the interactive protocol execution between the signer and the user,
the transcript (R′, h′, V ′) is generated. Given a blind signature σ = (R, V ) on a
message m, the signer executes the following steps:

1. Compute α = e(V − V ′, P ).
2. compute h = H1(m, R) and set β = h − h′.
3. Compute t′ = α · e(PID, Ppub)β · R′

4. Check whether h = H(t′, m). If equal, then it indicates that the signer is
managed to link the message-signature pair.

Since V = t1V
′ + t3P1, the signer can compute α as follows:

α = e(V − V ′, P )
= e(t1V ′ + t3P1 − V ′, P )
= e((t1 − 1)V ′ + t3P1, P )
= e((t1 − 1)V ′, P )e(t3P1, P )
= e((t1 − 1)(r + h′)SID, P )e(t3P1, P )

= e(PID, Ppub)(t1−1)(r+h′)e(P1, P )t3

= e(PID, Ppub)(rt1−r+t1h′−h′)e(P1, P )t3

β can be computed as h′−h since h′ = ht−1
1 +t2 is known. Finally, t′ is computed

as follows:

t′ = α · e(PID, Ppub)β · R′

= e(PID, Ppub)(rt1−r+t1h′−h′)e(P1, P )t3e(PID, Ppub)βR′

= e(PID, Ppub)(rt1−r+t1(ht−1
1 +t2)−h′)e(P1, P )t3e(PID, Ppub)h′−he(PID, Ppub)r

= e(PID, Ppub)(rt1−r+h+t1t2−h′)e(P1, P )t3e(PID, Ppub)h′−he(PID, Ppub)r

= e(PID, Ppub)(rt1+t1t2)e(P1, P )t3

= e(PID, Ppub)rt1e(PID, Ppub)t1t2e(P1, P )t3

= R′t
1 e(PID, Ppub)t1t2e(P1, P )t3

= R

Thus, we have h = H1(m, t′). Assuming that the linkability attack shown by
Zhang et al. and Zhang-Zhou is sound, then the Zhang et al. scheme which is
an improvement over the Huang et al. scheme has no blindness too.
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4.5 Soundness of the Linkability Attack

At first glance, it seems that Zhang et al.’s claim is true. Nevertheless, we are
going to show that their claim is wrong. The main reason is that this proposed
attack works even if the blind signature is not generated from the protocol,
meaning that even if there is totally no connection between the signature and
the protocol transcript.

Let A be the signer or a PPT algorithm that controls the signer. A is involved
in the blindness game with two honest users, namely U0 and U1. First, b ∈ {0, 1}
is selected randomly. A engages in the Issue protocol with U0 and U1 in an
arbitrary order. Assume that U0 and U1 output σ(mb) and σ(m1−b) respectively
using their private tape, and give those outputs to A. The output of the Issue
protocol can be seen as in Table 1.

Table 1. Output of the Issue Protocol

U0 U1

Transcript (R′
0, h

′
0, V

′
0) (R′

1, h
′
1, V

′
1 )

Resulting message-signature pair (m0, R0, V0) (m1, R1, V1)

Now, assume that A has the knowledge of (R′
0, h

′
0, V

′
0) and it wants to link

the transcript with the output of U1: σ(m1) = (R1, V1) in order to ensure the
so-called linkability. We apply the Zhang et al. attack to show that the linka-
bility algorithm always returns true even if the blind signature has totally no
connection with the protocol transcript, thus we prove that A is unable to derive
a link between a protocol view and a blind signature that has no relationship
with the protocol view. This can be exhibited as follows:

1. Let V ′
0 = (r0h

′
0 + 1)SID and V1 = V ′

1 + h1t2P1 = (r1h
′
1 + 1)SID + h1t2P1.

2. Compute α as follows:

α = e(V1 − V ′
0 , P )

= e({(r1h
′
1 + 1)SID + h1t2P1} − (r0h

′
0 + 1)SID, P )

= e(r1h
′
1SID + h1t2P1 − r0h

′
0SID, P )

= e((r1h
′
1 − r0h

′
0)SID + h1t2P1, P )

= e((r1h
′
1 − r0h

′
0)SID, P )e(h1t2P1, P )

= e(PID, Ppub)(r1h′
1−r0h′

0)e(P1, P )h1t2

3. Compute β as follows:

β = R
′h′

0
0 = e(PID, Ppub)r0h′

0
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4. Compute α · β as follows:

α · β = e(PID, Ppub)(r1h′
1−r0h′

0)e(P1, P )(h1t2) · e(PID, Ppub)r0h′
0

= e(PID, Ppub)(r1h′
1−r0h′

0+r0h′
0)e(P1, P )h1t2

= e(PID, Ppub)r1h1t1e(P1, P )h1t2

= {e(PID, Ppub)r1t1e(P1, P )t2}h1

= Rh1
1

where h′
1 = h1t1 and R1 = R′t1

1 e(P1, P )t2 = e(PID, Ppub)(r1t1)e(P1, P )t2

Based on the above computation, the linking algorithm always returns true and
thus this shows that (R′

0, h
′
0, V

′
0) can be linked with (m1, R1, V1). Hence, the

proposed attack of Zhang et al. [9] is invalid. The similar analysis applies to the
linkability attack on the Zhang-Kim scheme [7] and the Zhang et al. scheme [9].

4.6 A Comparison

We give a comparison between the Zhang-Kim scheme [7], the Huang et al. [4]
and the Zhang et al. [9] IBBS schemes in terms of their computational complex-
ity. We denote BP as the bilinear pairing operation, PM as the point multipli-
cation on G1, PA as the point addition on G1 and E as the exponentiation on
G2. The result is summarized in Table 2.

Table 2. A Comparison

Scheme Issue Verify
Zhang-Kim [7] 1BP + 6PM + 4PA 2BP + 1E
Huang et al. [4] 2PM + 1PA + 4E 1BP + 1E
Zhang et al. [9] 3PM + 1PA + 4E 1BP + 1E

It can be easily seen that the original Huang et al. scheme [4] is more efficient
than the Zhang et al. scheme [9].

5 Conclusion

We falsified the linkability attack shown on the Huang et al. and the Zhang-Kim
IBBS schemes by Zhang et al., and Zhang and Zou respectively. Thus, the claim
that the Huang et al. and the Zhang-Kim schemes have no blindness is wrong.
Besides, we also compared the efficiency of the Zhang-Kim scheme, Huang et al.
scheme and the Zhang et al. scheme. Based on our analysis, the Huang et al.
scheme is the most efficient scheme.
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Abstract. Non-repudiation protocols with session labels have a number
of vulnerabilities. Recently Cederquist, Corin and Dashti have proposed
an optimistic non-repudiation protocol that avoids altogether the use
of session labels. We have specified and analysed this protocol using
an extended version of the AVISPA Tool and one important fault has
been discovered. We describe the protocol, the analysis method, show
two attack traces that exploit the fault and propose a correction to the
protocol.

1 Introduction

While security issues such as secrecy and authentication have been studied inten-
sively [11], most interest in non-repudiation protocols has only come in recent
years, notably in the yearly 1990s with the explosion of Internet services and
electronic transactions.1

Non-repudiation protocols must ensure that when two parties exchange infor-
mation over a network, neither one nor the other can deny having participated
to this communication. Consequently a non-repudiation protocol must gener-
ate evidences of participation to be used in case of a dispute. With the advent
of digital signatures and public key cryptography, the base for non-repudiation
services was created. Given an adequate public key infrastructure, one having
a signed message has an evidence of the participation and the identity of his
party [7].

While non-repudiation can be provided by standard cryptographic mecha-
nisms like digital signatures, fairness is more difficult to achieve: no party should
be able to reach a point where they have the evidence or the message they re-
quire without the other party also having their required evidence. Fairness is not
always required for non-repudiation protocols, but it is usually desirable.

A variety of protocols has been proposed in the literature to solve the problem
of fair message exchange with non-repudiation. The first solutions were based on
a gradual exchange of the expected information [7]. However this simultaneous
secret exchange is troublesome for actual implementations because fairness is
� This work is supported by the ACI Sécurité SATIN and the RNTL project 03V360
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1 See http://www.lsv.ens-cachan.fr/∼kremer/FXbib/references.php for a de-
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based on the assumption of equal computational power on both parties, which
is very unlikely in a real world scenario. A possible solution to this problem is
the use of a trusted third party (TTP), and in fact it has been shown that it
is impossible to achieve fair exchange without a TTP [10,9]. The TTP can be
used as a delivery agent to provide simultaneous share of evidences. The Fair
Zhou-Gollmann protocol [16] is the most known example of non-repudiation
protocol, using a TTP as a delivery agent of a key for decrypting the message
sent by one agent to another agent; a significant amount of work has been done
over this protocol and its derivations [2,6,13,17]. However, instead of passing
the complete message through the TTP and thus creating a possible bottleneck,
recent evolution of these protocols resulted in efficient, optimistic versions, in
which the TTP is only involved in case anything goes wrong. Resolve and abort
sub-protocols must guarantee that every party can complete the protocol in a
fair manner and without waiting for actions of the other party (timeliness).

One of these recent protocols, which we describe in the following section,
is the optimistic Cederquist-Corin-Dashti (CCD) non-repudiation protocol [3].
The CCD protocol has the advantage of not using session labels, contrariwise
to many others in the literature [7,8,16,13]. A session label typically consists
of a hash of all message components. Gürgens et al. [6] have shown a number
of vulnerabilities associated to the use of session labels and, to our knowledge,
the CCD protocol is the only optimistic non-repudiation protocol that avoids
altogether the use of session labels.

In this paper we describe the CCD non-repudiation protocol, present the
analysis method and explain two attack traces of an important flaw discovered
in this protocol. The attack has been found after the specification and analysis
of the protocol in the AVISPA Tool [1]2, using an extended version of the AtSe
engine [15] that supports non-repudiation analysis. We propose a correction for
the CCD protocol that have been successfully analysed for many scenarios.

2 The CCD Protocol

The CCD non-repudiation protocol has been created for permitting an agent A
to send a message M to agent B in a fair manner. This means that agent A
should get an evidence of receipt of M by B (EOR) if and only if B has really
received M and the evidence of origin from A (EOO). EOR permits A to prove
that B has received M , while EOO permits B to prove that M has been sent by
A. The protocol is divided into three sub-protocols: the main protocol, an abort
sub-protocol and a resolve sub-protocol.

2.1 Definition of the Main Protocol

This main protocol describes the sending of M by A to B and the exchange of
evidences in the case where both agents can complete the entire protocol. If a

2 http://www.avispa-project.org

http://www.avispa-project.org
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problem happens to one of the agents, in order to finish properly the protocol,
the agents can exchange messages with a trusted third party (TTP ) by executing
the abort or the resolve sub-protocol.

The main protocol is therefore composed of the following messages exchanges,
described in the Alice&Bob notation:

1. A → B : {M}K .EOOM where EOOM = {B.TTP.H({M}K).{K.A}Kttp}
inv(Ka)

2. B → A : EORM where EORM = {EOOM}inv(Kb)

3. A → B : K
4. B → A : EORK where EORK = {A.H({M}K).K}

inv(Kb)

where K is a symmetric key freshly generated by A, H is a one-way hash function,
Kg is the public key of agent g and inv(Kg) is the private key of agent g (used
for signing messages).

Note that we assure that all public keys are known by all agents (including
dishonest agents).

In the first message, A sends the message M encrypted by K and the evidence
of origin for B (message signed by A, so decryptable by B). In this evidence,
B can check his identity, learns the name of the TTP, can check that the hash
code is the result of hashing the first part of the message, but cannot decrypt
the last part of the evidence; this last part may be useful if any of the other
sub-protocols is used.

B answers by sending the evidence of receipt for A, A checking that EORM

is EOOM signed by B.
In the third message, A sends the key K, permitting B to discover the message

M .
Finally, B sends to A another evidence of receipt, permitting A to check that

the symmetric key has been received by B.

2.2 The Abort Sub-protocol

The abort sub-protocol is executed by agent A in case he does not receive the
message EORM at step 2 of the main protocol. The purpose of this sub-protocol
is to cancel the messages exchange.

1. A → TTP : {abort.H({M}K).B.{K.A}Kttp}
inv(Ka)

2. TTP → A :

����
���

ETTP where ETTP = {A.B.K.H({M}K)}inv(Kttp)

if resolved(A.B.K.H({M}K))
ABTTP where ABTTP = {A.B.H({M}K).{K.A}Kttp}

inv(Kttp)

otherwise

In this sub-protocol, A sends to the TTP an abort request, containing the abort
label and some information about the protocol session to be aborted: the hash
of the encrypted message, the name of the other agent (B), and the key used for
encrypting M .

According to what happened before, the TTP has two possible answers: if this
is the first problem received by the TTP for this protocol session, the TTP sends
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a confirmation of abortion, and stores in its database that this protocol session
has been aborted; but if the TTP has already received a request for resolving
this protocol session, he sends to A the information for completing his evidence
of receipt by B.

2.3 The Resolve Sub-protocol

The role of this second sub-protocol is to permit agents A and B to finish the
protocol in a fair manner, if the main protocol cannot be run until its end by
some of the parties. For example, if B does not get K or if A does not get EORK ,
they can invoke the resolve sub-protocol.

1. G → TTP : EORM

2. TTP → G :
{

ABTTP if aborted(A.B.K.H({M}K))
ETTP otherwise

where G stands for A or B.
A resolve request is done by sending EORM to the TTP. If the protocol session

has already been aborted, the TTP answers by the abortion confirmation. If this
is not the case, the TTP sends ETTP so that the user could complete its evidence
of receipt (if G is A) or of origin (if G is B). Then the TTP stores in its database
that this protocol session has been resolved.

2.4 Agents’ Evidences

Non-repudiation protocols require evidence of receipt (EOR) and evidence of
origin (EOO). All parties have to agree that these evidences constitute a valid
proof of participation in the protocol. In the case of a dispute, the parties should
present their evidences to an external judge. Ideally the judge should be capable
of deciding the matter by executing a verification algorithm over the evidences
presented by each party.

For the CCD protocol, the evidence of receipt for A is {M}K and EORM ,
plus either EORK or ETTP . The evidence of origin for B is {M}K , EOOM and
K. At the end of the protocol execution, each agent must have all the parts that
compose his evidence.

The choice of these evidences is not discussed here, see [3] for more
information.

3 Analysis of the CCD Protocol

The CCD protocol was formally analysed by its authors in [3] and no attack has
been found for the following scenarios: A and B honest; A honest, B dishonest;
and B dishonest, A honest.

But our analysis shows that there is a serious flaw in the protocol, even when
the agents act honestly. The attack occurs because one agent does not get all the
required information for building its evidence when the protocol finishes by the
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intervention of the TTP. We describe in Sections 3.3 and 3.4 two scenarios that
lead to an unfair situation for the agent playing the role A, thus contradicting the
result of [3] for the same fairness property. But before presenting the attacks,
we describe in the next sections the AVISPA Tool analysis method and the
representation of the non-repudiation properties in the AVISPA Tool.

3.1 Analysis Method

Our analysis method is based on the technology build into the AVISPA Tool [1]:
the protocol is specified in the High Level Protocol Specification Language
(HLPSL) [4], translated into a state transition system called the intermediate for-
mat (IF) and fed to one of the four analysis engines available with the tool. In this
work, the Attack Searcher (AtSe) engine [15] has been used. The AtSe analysis
engine implements the so-called lazy intruder model [5], which greatly increases
the performance of the searching process. Previously only used to analyse se-
crecy and authentication properties, we have extended this engine to support a
subset of Linear Temporal Logics (LTL) formulae, allowing the specification and
analysis of a broader spectrum of properties, including the fairness property for
non-repudiation.

3.2 Description of Non-repudiation Properties

The AVISPA Tool was designed to analyse complex Internet security protocols,
like the protocols described by the Internet Engineering Task Force (IETF).
Even though the tool has support for the specification of arbitrarily complex
properties by the use of LTL formulae, no analysis engine of the AVISPA Tool
actually uses this power. Natively, properties are specified by the use of macros
and only secrecy and authentication properties are supported.

In a previous work [12], we have represented non-repudiation properties as a
combination of authentication properties. This representation has been applied
to the Fair Zhou-Gollmann protocol [16] and has given good results, raising
a problem in the protocol. But because of the implementation of the intruder
strategy in the AVISPA Tool, the notion of dishonest agent could not be fully
expressed (see [12] for more details). This is the reason why we have decided to
use LTL formulae for describing non-repudiation properties in HLPSL, and to
extend AtSe for considering this kind of formulae.

The main role of a non-repudiation protocol is to give evidences of non-
repudiation to the parties involved in the protocol. To analyse this kind of proto-
col, one must verify which participants have their non-repudiation evidences at
the end of the protocol execution. If the originator has all the parts of its non-
repudiation evidence, then non-repudiation of reception is guaranteed. If the
recipient has all the parts of its non-repudiation evidence, then non-repudiation
of origin is guaranteed. If both parties (or none of them) have their evidences,
fairness is guaranteed. In other words, to analyse non-repudiation, we need to
verify if a set of terms is known by an agent at the end of the protocol execution.
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To analyse non-repudiation in the AVISPA Tool, we have to find a way to
express the knowledge of the agents by a predicate added in some protocol
transitions, and to find a way to express the non-repudiation properties by the
use of these predicates. We have then introduced the predicates aknows (for agent
knowledge) and iknows (for intruder knowledge) in all the levels of the AVISPA
Tool, namely in the specification language (HLPSL), in the intermediate format
(IF) and in the analysis engine (AtSe). Note that iknows was already used in
the IF and in AtSe. As with the other predicates, aknows and iknows are used
in the LTL description of the properties (non-repudiation properties in our case)
and to mark the protocol specification.

Definition 1 (aknows). Le A be a set of agents playing a finite number of
sessions S of a protocol, T a set of terms sent in the messages of this protocol
and E the subset of terms t ∈ T that are part of the evidences of non-repudiation
in the protocol. For an agent a ∈ A, Ea is the set of terms t ∈ E that constitute
the evidence of non-repudiation for the agent a. The predicate aknows(a, b, s, t)
with a, b ∈ A, s ∈ S and t ∈ T , express that the agent a, playing with agent b in
the session s, knows the term t.

Definition 2 (Non-repudiation of origin or receipt). If at the end of the
execution of agent a in protocol session s, the predicate aknows(a, b, s, t) is true
for all t ∈ Ea, then the non-repudiation property (of origin or receipt, according
to the role of a in the protocol) is satisfied. Otherwise, the property of non-
repudiation for agent a is false.

The fairness of the non-repudiation property is true only when both agents know
their non-repudiation evidences, or when neither one nor the other knows his
evidence. But for the properties of non-repudiation of origin and non-repudiation
of receipt, the knowledge of one agent is enough to decide if the property is true
or not.

With the predicates aknows and iknows, we know exactly when an agent
learns a term t and thus we can automatically verify the non-repudiation prop-
erties using the knowledge of the agents. If at the end of the execution of an
agent, there is no aknows for the non-repudiation evidences of that agent, then
we have a non-repudiation of origin or non-repudiation of receipt attack.

Definition 3 (Fairness). If at the end of the execution of agent a in session
s, the predicate aknows(a, b, s, t) is true for all t ∈ Ea, then the fairness property
is true from the point of view of a. And if the fairness property is true from the
point of view of the other agent, say b, the protocol session is said to be fair. The
protocol is also fair if none of the agents knows all his evidences. Otherwise, the
fairness property is false.

Even if the fairness property needs data from both agents, when the predicate
aknows is true for one agent, agent a for example, we can guarantee that the
property is satisfied from the point of view of a and concentrate the analysis on
the property by the point of view of agent b at the end of his execution. If one



96 J. Santiago and L. Vigneron

agent is dishonest or personified by the intruder, say b for example, the predicate
aknows(b, a, s, u) must be replaced by iknows(u) and the agent name is written
i (the intruder name). This last predicate is satisfied if the intruder knows (or
can build from his knowledge) the term u.

The AtSe analysis engine has been extended to analyse properties described as
LTL formulae using aknows and iknows predicates. The non-repudiation fairness
for the CCD protocol is described by the following LTL formula:

�

0
BB@

0
BB@

( aknows(A, B, s, {M}K) ∧ aknows(A, B, s, EORM ) ∧
(aknows(A, B, s, EORK) ∨ aknows(A, TTP, s, ETTP )) ) ∨

( iknows({M}K) ∧ iknows(EORM ) ∧ A = i ∧
(iknows(EORK) ∨ iknows(ETTP )) )

1
CCA ⇒

0
BB@

aknows(B, A, s, {M}K) ∧
aknows(B, A, s, EOOM ) ∧
( aknows(B, A, s, K) ∨
aknows(B, TTP, s, ETTP ) )

1
CCA

1
CCA

Basically the property states that if A knows the EOR evidence ({M}K ,
EORM , and EORK or ETTP ) or if the intruder, playing the role A, knows this
evidence, then B must know the EOO evidence. There is a similar property for
B: if B knows the EOO evidence ({M}K , EOOM , and K or ETTP ) or if the
intruder knows it, then A must know the EOR evidence:
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( aknows(B, A, s, {M}K) ∧ aknows(B, A, s, EOOM ) ∧
(aknows(B, A, s, K) ∨ aknows(B, TTP, s, ETTP )) ) ∨

( iknows({M}K) ∧ iknows(EOOM ) ∧ B = i ∧
(iknows(K) ∨ iknows(ETTP )) )

1
CCA ⇒

0
BB@

aknows(A, B, s, {M}K) ∧
aknows(A, B, s, EORM ) ∧
( aknows(A, B, s, EORK) ∨
aknows(A, TTP, s, ETTP ) )

1
CCA

1
CCA

The protocol was specified in the HLPSL language and analysed with the new
version of the AtSe engine. The attacks found in the analysis are described in
the following sections.

3.3 Delayed Abort Request Attack

When A does not receive EORM from B, the abort sub-protocol is invoked.
When B does not receive K from A, the resolve sub-protocol is invoked. So,
if the messages EORM and K are not sent or delayed in the insecure channel
between A and B (either because of a network problem, or intercepted by the
intruder), both agents will query the TTP, A trying to abort and B trying to
resolve the protocol.

The problem arises if the abort request does not reach the TTP before the
resolve request. In this case, the TTP will resolve the protocol, permitting B to
get all the knowledge for building the evidence of origin. Because of this previous
resolve request by B, the abort request by A will not lead to the abortion of the
protocol. If the TTP receives this abort request, he will send ETTP to A, but as
A does not (and cannot) know EORM , he cannot build the evidence of receipt.
So, at the end of the execution, there is a fairness attack, as B can prove that
A has sent M , but A cannot prove that B has received it.

The attack trace given below, automatically found by AtSe, is even more
surprising, as explained hereafter. In this trace, i(G) means that the intruder
impersonated agent G; and for a better clarity, the detailed contents of messages
have been replaced by more explicit names.
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1. A -> i(B) : {M}_K.EOOM
*** timeout for A ***
2. A -> i(TTP) : ABORT
3. i(A) -> B : {M}_K.EOOM
4. B -> i(A) : EORM
5. i(A) -> TTP : RESOLVE (=EORM)
6. TTP -> i(A) : ETTP
*** timeout for B ***
7. B -> i(TTP) : RESOLVE
8. i(TTP) -> A : ETTP
9. i(TTP) -> B : ETTP

The first step is the standard one, but the intruder intercepts the message
before it reaches B. Without any answer to his message, A decides to abort the
protocol, message also intercepted by i (step 2). In step 3, i impersonating A
forwards the message 1 to B, who answers with EORM (step 4). The intruder
uses this last message for pretending to the TTP that A wants to resolve the
protocol (step 5). As the TTP has not received the abort request of A, he answers
by sending ETTP (step 6). B not having any answer to his EORM message, he
decides to ask the TTP for resolving the protocol (step 7). Then the intruder
sends the TTP resolve answer to A and B (steps 8 and 9).

The originality of this attack trace is that, at the end:

– A will guess (according to the answer received to his abort request) that the
protocol has been resolved by B, so he will assume that B knows M and
can build the proof that A has sent it; but A cannot prove this;

– B has resolved the protocol and has received from the TTP the information
for getting M and building the proof that A has sent M ; but he does not
know that A does not have his proof;

– the TTP will think that A has asked for the protocol to be resolved, followed
by B; so for him, both A and B can build their evidences.

So, this trace shows that the CCD protocol is not fair, even if both agents A
and B are honest. The attack is due to a malicious intruder, and the TTP is of
no help for detecting the problem.

3.4 Dishonest Agent Attack

A variant of the previous attack has also been discovered by AtSe. It happens
when agent A plays the protocol with a dishonest agent B (called the intruder
and names i). As soon as i has received the first message from A, he builds
EORM and sends it to the TTP as resolve request. When A decides to abort the
protocol, this is too late: the protocol has already been resolved, the intruder can
get M and build the proof that A has sent M , and A cannot build the evidence
of receipt.
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1. A -> i : {M}_K.EOOM
2. i -> TTP : RESOLVE
3. TTP -> i : ETTP
*** timeout for A ***
4. A -> TTP : ABORT
5. TTP -> A : ETTP

4 Correction of the CCD Protocol

In this section, we first discuss the role of the trusted third party for trying to
solve the problems raised by the attacks found. Then we describe a correction
of the abort sub-protocol and report the new analyses done, in which no attack
has been found.

4.1 About the TTP Role

Both attacks described in the previous section come from the same flaw: the
TTP does not give EORM to agent A when the protocol is already resolved
and A tries to abort it. However, the TTP has received EORM in the resolve
request, so one can argue that A only needs to know ETTP to prove that B
knows the message M : A knowing ETTP means that TTP knows EORM , and
consequently A could know EORM by asking it to the TTP, in case of a dispute.

From B’s side, if B resolves the protocol and gets the message ETTP , this
means that B knows EORM , and according to the protocol, owning EORM

means owning EOOM and MK . If the TTP stores EORM in its database for
every resolved transaction, A could try to prove that B knows M by requesting
to the TTP a proof that EORM is known by B.

If we consider this situation acceptable, and if we prove that A knowing ETTP

implies B also knowing ETTP and MK , we can say that the protocol is fair even
when A only receives ETTP as evidence of receipt.

But this situation is not acceptable, first because accepting ETTP as an ev-
idence of receipt puts extra importance on the TTP. The evidences should be
strong enough to prove participation in the protocol without the need of using
TTP’s knowledge as part of the proof. Second, the TTP would need to store
all EORM messages for all resolved sessions of the protocol. And last, without
EORM we cannot prove that B has agreed on the use of the agent TTP as the
trusted third party: there is no message signed by B that contains the name of
the TTP. So ETTP cannot be a proof of receipt without EORM .

This is why we propose some changes to correct this flaw in the protocol.

4.2 Correction of the abort Sub-protocol

To correct the protocol, we need to change the abort sub-protocol to provide
the complete EOR evidence to A, no matter the sequence of abort and resolve
requests in the session of the protocol. Below we present the new version of the
abort sub-protocol.
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1. A → TTP : {abort.H({M}K).B.{K.A}Kttp}inv(Ka)

2. TTP → A :
{

ETTP .EORM if resolved(A.B.K.H({M}K))
ABTTP otherwise

Messages ETTP , EORM and ABTTP are the same as in the original protocol.
The only change is the addition of EORM message in the TTP’s answer to A
when the sub-protocol is invoked and the TTP has already resolved the session
(and stored EORM together with the resolved predicate in its database).

We have specified and analysed the corrected protocol. An extended number
of scenarios has been checked, compared to the original work of Cederquist et
al. [3], including two-sessions scenarios where the sessions are run in parallel.

One-session scenarios. We have analysed the common one-session scenarios: A
and B honest, A honest and B dishonest, A dishonest and B honest. In our
analysis approach, the intruder impersonates the dishonest agents. For all three
scenarios the fairness property could not be falsified.

Two-sessions scenarios. We have also analysed some critical two-sessions sce-
narios: A and B honest in parallel with A honest and B dishonest; A and B
honest in parallel with A dishonest and B honest; A honest and B dishonest in
parallel with A dishonest and B honest. When running sessions in parallel, the
intruder has an improved knowledge and he can try, for example, to use knowl-
edge/messages from one session in the other session. Again, for those scenarios
AtSe has found no fairness attack.

5 Conclusion

Non-repudiation protocols have an important role in many areas where secured
transactions with proofs of participation are necessary. The evidences of origin
and receipt of a message are the elements that the parties should have at the
end of the communication. The CCD protocol is a recent non-repudiation pro-
tocol that avoids the use of session labels and distinguishes itself by the use of
an optimistic approach, the Trusted Third Party being used only in case of a
problem in the execution of the main protocol.

The fairness of a non-repudiation protocol is a property difficult to analyse and
there are very few tools that can handle the automatic analysis of this property.
The contribution of this work is twofold. First we have extended the AVISPA
Tool and one of its analysis engines, AtSe, to implement our analysis method for
the non-repudiation properties. Our method is based on the knowledge of agents
and can be used to automatically analyse non-repudiation protocols as well as
contract signing protocols [14]. Second, with this method, we have specified and
analysed the CDD protocol and a serious flaw has been found. We have proposed
a correction that has been further analysed by additional scenarios and no attack
has been found.
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Our representation of the non-repudiation properties has also been applied
successfully to the Fair Zhou-Gollmann protocol [12]. We have tested other spec-
ifications of the CCD protocol, for example with secure communication channels
between agents and the TTP, and for the original definition for the abort sub-
protocol: no attack has been found; but using such channels is not considered as
acceptable, because it requires too much work for the TTP.

The AVISPA Tool has proved its efficiency for analysing secrecy and authen-
tication properties of protocols. We have extended it to handle non-repudiation
properties, but by this extension, adding aknows and iknows predicates and us-
ing LTL formulae as goal, we have open a highway to the specification of many
other properties, without any more change in the specification languages and
the analysis engines. And for the analysis of the CCD protocol, the use of LTL
formulae did not have any impact on the speed of AtSe for finding attacks (or
for not finding attacks concerning the fixed version of the protocol).
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Abstract. In 2006, Das et al. proposed a remote user authentication
scheme using the properties of bilinear pairings. The current paper,
however, demonstrates that Das et al.’s scheme is still vulnerable to an
impersonation attack and an off-line password guessing attack. Further-
more, we present an improved authentication scheme based on bilinear
computational Diffie-Hellman problem and one-way hash function to the
schemes, in order to isolate such problems.
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1 Introduction

Remote user authentication is an important part of security, along with confi-
dentiality and integrity, for systems that allow remote access over untrustworthy
networks, like the Internet. As such, a remote password authentication scheme
authenticates the legitimacy of users over an insecure channel, where the pass-
word is often regarded as a secret shared between the remote system and the
user. With knowledge of the password, the user can use it to create and send a
valid login message to a remote system in order to gain access. Meanwhile, the
remote system also uses the shared password to check the validity of the login
message and to authenticate the user.

ISO 10202 standards have been established for the security of financial trans-
action systems that use integrated circuit cards (IC cards or smart cards). The
smart card originates from the IC memory card which has been in the indus-
try for about 10 years [1][2]. The main characteristics of a smart card are its
small size and low-power consumption. In general, a smart card contains a mi-
croprocessor which can quickly manipulate logical and mathematical operations,
RAM, which is used as a data or instruction buffer, and ROM which stores the
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user’s secret key and the necessary public parameters and algorithmic descrip-
tions of the executing programs. The merits of a smart card regarding password
authentication are its simplicity and its efficiency in terms of the log-in and
authentication processes.

In 2000, Joux [3] discovered the bilinear computational Diffie-Hellman prob-
lem of the groups over elliptic curves. This hard problem can be considered as
a new security assumption to develop cryptosystems. Since then, several vari-
ant security schemes have been presented [4][5][6][7]. Bilinear pairings are an
effective method to reduce the complexity of the discrete log problem in a finite
field and provides a good setting for the bilinear computational Diffie-Hellman
problem.

In 2006, Das et al. [8] proposed a remote user authentication scheme using the
properties of bilinear pairings that can prohibit the scenario of many logged in
users with the same login-ID, and provide a flexible password change option to
the registered users without any assistance from the remote system. The current
paper, however, demonstrates that Das et al.’s scheme is still vulnerable to an
impersonation attack [9], where an attacker easily masquerade as another legal
users in order to access the resources of a remote system, and an off-line password
guessing attack [10], where an attacker can easily guess a legal users’s password
and can impersonate an legal users. Furthermore, we present an improved au-
thentication scheme based on bilinear computational Diffie-Hellman problem [3]
and one-way hash function [9] to the schemes, in order to isolate such problems.
As a result, the proposed scheme is more secure than Das et al.’s scheme. Also, it
provides mutual authentication between the user and remote system and it has
the same advantages of other schemes. In addition, the proposed scheme does
not require time synchronization or delay-time limitations between the user and
remote system, unlike Das et al.’s scheme.

The remainder of this paper is organized as follows: In the next section, we
give some preliminaries of bilinear pairings. Section 3 briefly reviews Das et al.’s
scheme and then Section 4 demonstrates the security weakness of Das et al.’s
scheme. The proposed authentication scheme is presented in Section 5, while
Sections 6 discusses the security of the proposed protocol. The conclusion is
given in Section 7.

2 Preliminaries

This section summarizes the underlying primitives used throughout this pa-
per. This primitive include modified Weil pairing, bilinear computational Deffie-
Hellman assumption, symmetric encryption scheme, one-way hash function and
map-to-point function [3][7][8].

2.1 Bilinear Pairings

Suppose G1 is an additive cyclic group generated by P , whose order is a prime q,
and G2 is a multiplicative cyclic group of the same order. A map ê : G1×G1 → G2
is called a bilinear mapping if it satisfies the following properties:
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1. Bilinear: ê(aP, bQ) = ê(P, Q)ab, for all P, Q ∈ G1 and all a, b ∈ Z∗
q .

2. Non-degenerate: there exists P, Q ∈ G1 such that ê(P, Q) �= 1.
3. Computable: there is an efficient algorithm to compute ê(P, Q) for all P,

Q ∈ G1.

We note that G1 is the group of points on an elliptic curve and G2 is a
multiplicative subgroup of a finite field. Typically, the mapping ê will be de-
rived from either the Weil or the Tate pairing on an elliptic curve over a finite
field.

2.2 Mathematical Problems

Definition 1. Discrete Logarithm Problem (DLP): Given Q, R ∈ G1, find an
integer x ∈ Z∗

q such that R = xQ.

The MOV and FR reductions: Menezes et al. [11] and Frey and Ruck [12] show
a reduction from the DLP in G1 to the DLP in G2. The reduction is: Given
an instance Q, R ∈ G1, where Q is a point of order q, find x ∈ Z∗

q , such that
R = xQ. Let T be an element of G1 such that g = ê(T, Q) has order q, and
let h = ê(T, R). Using bilinear property of ê, we have ê(T, R) = ê(T, Q)x. Thus,
DLP in G1 is no harder than the DLP in G2.

Definition 2. BilinearComputationalDiffie-HellmanProblem (BCDHP):Given
(P, aP, bP ) for a, b ∈ Z∗

q , compute abP .

The advantage of any probabilistic polynomial-time algorithm A in solving the
BCDHP in G1, is defined as AdvCDH

A,G1
= Prob[A(P, aP, bP, abP ) = 1 : a, b ∈ Z∗

q ].
For every probabilistic algorithm A, AdvCDH

A,G1
is negligible.

3 Review of Das et al.’s Scheme

This section briefly reviews Das et al.’s authentication scheme [8]. Das et al.’s
scheme consists of mainly three phases: Setup, registration, and authentication
phase. Figure 1 shows Das st al.’s authentication scheme. The scheme works as
follows:

3.1 Setup Phase

Let G1 is an additive cyclic group of order prime q, and G2 is a multiplica-
tive cyclic group of the same order. Let P is a generator of G1, ê : G1 ×
G1 ∈ G2 is a bilinear mapping and H : {0, 1}∗ → G1 is a cryptographic
hash function. The remote system RS selects a secret key s and computes the
public-key as PubRS = sP . Then, the RS publishes the system parameters
< G1, G2, ê, q, P, PubRS , H(·) > and keeps s secret.
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3.2 Registration Phase

This phase is executed by the following steps when a new user wants to register
with the RS:

R1. Suppose a new user Ui wants to register with the RS, then Ui submits his
identity IDi and password PWi to the RS.

R2. On receiving the registration request, theRS computesRegIDi = s·H(IDi)+
H(PWi).

R3. The RS personalizes a smart card with the parameters IDi, RegIDi , H(·)
and sends the smart card to Ui over a secure channel.

3.3 Authentication Phase

This phase is executed every time whenever a user logs into the RS. The phase
is further divided into the login and verification phases. In the login phase, user
sends a login request to the RS. The login request comprises with a dynamic
coupon, called DID, which is dependent on the user’s ID, password and RS’s
secret key. The RS allows the user to access the system only after successful
verification of the login request.

Login Phase: The user Ui inserts the smart card in a terminal and keys IDi

and PWi. If IDi is identical to the one that is stored in the smart card, the
smart card performs the following operations:

L1. Computes DIDi = T · RegIDi , where T is the user system’s timestamp.
L2. Computes Vi = T · H(PWi).
L3. Sends the login request {IDi, DIDi, Vi, T } to the RS over a public channel.

Verification Phase: Let the RS receives the login message {IDi, DIDi, Vi, T }
at time T ∗ (≥ T ). The RS performs the following operations to verify the login
request:

V1. Verifies the validity of the time interval between T ∗ and T . If (T ∗−T ) ≤ ΔT ,
the RS proceeds to the Step (V2), where ΔT denotes the expected valid
time interval for transmission delay. Otherwise, rejects the login request.
We note that at the time of registration, the user and the RS have agreed
on the accepted value of the transmission delay ΔT .

V2. Checks whether ê(DIDi −Vi, P ) = ê(H(IDi), PubRS)T . If it holds, the RS
accepts the login request; otherwise, rejects it.

3.4 Password Change Phase

When a user Ui wants to change his password, Ui can change his password
without taking any assistance from the RS by invoking this phase. Das et al.’s
password change phase works as follows:
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Shared Information: G1, G2, ê, q, P, PubRS , H(·).
Information held by User Ui: IDi, PWi, Smart card(IDi, RegIDi

, H(·)).
Information held by Remote System RS: s.

User Ui Remote System

Registration Phase:
Select IDi, PWi IDi, PWi−−−−−−−−−−−−−−−→

RegIDi
← s · H(IDi) + H(PWi)

Store IDi, RegIDi
, H(·) in Smart Card

Smart Card←−−−−−−−−−−−−−−−
(Secure Channel)

Login and Verification Phase:
Input IDi,PWi

Pick up T
DIDi ← T · RegIDi

Vi ← T · H(PWi) {IDi, DIDi, Vi, T}
−−−−−−−−−−−−−−−−→

Check (T ∗ − T ) ≤ ΔT

Check ê(DIDi − Vi, P )
?= ê(H(IDi), PubRS)T

Fig. 1. Das et al.’s Authentication Scheme

P1. Ui attaches the smart card to a terminal and keys IDi and PWi. If IDi is
identical to the one that is stored in the smart card, proceeds to the Step
(P2); otherwise, terminates the operation.

P2. Ui submits a new password PW ∗
i .

P3. The smart card computes Reg∗IDi
= RegIDi − H(PWi) + H(PW ∗

i ) = s ·
H(IDi) + H(PW ∗

i ).
P4. The password has been changed now with the new password PW ∗

i and the
smart card replaced the previously stored RegIDi value by Reg∗IDi

value.

4 Cryptanalysis of Das et al.’s Scheme

This section demonstrates that Das et al.’s authentication scheme is vulnerable
to some attacks.

4.1 Impersonation Attack

This subsection demonstrates that Das et al.’s scheme is vulnerable to an imper-
sonation attack, where an attacker can easily impersonate other legal users to
access the resources at a remote system. Suppose that an attacker E has eaves-
dropped a valid message (IDi, DIDi, Vi, T ) from an open network. It is easy to
obtain the information since it is exposed over an open network. Then, in the
Login Phase, an impersonation attack proceeds as follows:
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(1) E chooses a timestamp T ′ and computes r = T ′/T , where T ′ is E’s the
current date and time for succeeding with Step (V2) of the Authentication
Phase.

(2) E computes DID′
i = r · DIDi and V ′

i = r · Vi.
(3) E sends a forged message (IDi, DID′

i, V
′
i , T ′) to RS.

(4) It is easy to check whether RS will accept this forged message, as ê(DID′
i −

V ′
i , P )

?= ê(H(IDi), PubRS)T ′
. Its correctness easy to see that the Verifica-

tion Step (V2) of E’s forged login request is verified by the following:

ê(DID′
i − V ′

i , P ) = ê(r · DIDi − r · Vi, P )
= ê(r · T · RegIDi − r · T · H(PWi), P )
= ê(r · T · (s · H(IDi) + H(PWi)) − r · T · H(PWi), P )
= ê(r · T · s · H(IDi), P )

= ê(s · H(IDi), P )r·T

= ê(H(IDi), sP )T ′

= ê(H(IDi), PubRS)T ′

(5) Finally, RS will accept the attacker’s login request, making Das et al.’s
scheme insecure.

4.2 Off-Line Password Guessing Attack

In the login phase of Das et al.’s scheme, suppose that an attacker E has eaves-
dropped a valid message (IDi, DIDi, Vi, T ) from an open network. Then, in
order to obtain the password PWi of user Ui, the off-line password guessing
attack proceeds as follows:

(1) E makes a guess at the secret password PW ′
i .

(2) E computes T · H(PW ′
i ), where T is intercepted Ui’s current timestamp.

(3) E checks if Vi = T · H(PW ′
i ).

(4) If the computed value is the same as Vi, then E guesses the legitimate user
Ui’s password PWi. Otherwise, E repeatedly performs Steps (1), (2) and (3)
until Vi = T · H(PW ′

i ).

If a user loses his smart card and it is found out by an attacker or an attacker
steals a user’s smart card, then the attacker can easily impersonate the legitimate
user Ui by using the guessed password PW ′

i in the Login Phase. Furthermore,
if some users employ the same password for multiple accounts, those will be
compromised as well. As a result, Das et al.’s scheme is vulnerable to an off-line
password guessing attack.

5 Proposed Scheme

This section proposes an improvement of Das et al.’s scheme so that they
can withstand the above mentioned attacks. In addition, the proposed scheme
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provides mutual authentication between the user and a remote system and does
not require time synchronization or a delay-time limitations between the user
and the remote system. In order to prevent the problems of clock synchronization
or a delay-time limitations, the proposed scheme adopts a nonce-based proto-
col [13] instead of a timestamp-based protocol. The security of the proposed
scheme is based on Discrete Logarithm Problem (DLP), Bilinear Computational
Diffie-Hellman problem (BCDHP) (Definitions 1, 2 in Section Preliminaries) and
one-way hash function, and consists of setup, registration, and authentication
phases. Figure 2 shows the proposed authentication scheme. The scheme works
as follows:

5.1 Setup Phase

Let G1 is an additive cyclic group of order prime q, and G2 is a multiplicative
cyclic group of the same order. Let P is a generator of G1, ê : G1 × G1 ∈ G2
is a bilinear mapping, H : {0, 1}∗ → G1 is a cryptographic hash function and
F (·) is a collision resistant one-way hash function with an output size of 512
bits, e.g. SHA-512 [9]. The remote system RS selects a secret key s. Then, the
RS publishes the system parameters < G1, G2, ê, q, P, H(·), F (·) > and keeps s
secret.

5.2 Registration Phase

This phase is executed by the following steps when a new user wants to register
with the RS:

R1. Suppose a new user Ui wants to register with the RS, then Ui selects his
identity IDi, password PWi and random number N freely.

R2. Ui computes F (PWi|N), where | is a concatenation operation, and then
submits IDi and F (PWi|N) to the RS.

R3. On receiving the registration request, the RS computes U = H(IDi, IDs),
Ki = s · U , V Ki = F (Ki) and RegIDi = Ki + H(F (PWi|N)), where IDs

is the RS’s identity.
R4. The RS personalizes a smart card with the parameters U , V Ki, RegIDi ,

H(·), F (·) and sends the smart card to Ui over a secure channel.
R5. Ui enters N into his smart card.

5.3 Authentication Phase

This phase is executed every time whenever a user logs into the RS. The phase
is further divided into the login and session key agreement phases.

Login Phase: If the user Ui wants to login, Ui inserts the smart card in a
terminal and keys IDi and PWi. Then, the smart card performs the following
operations:
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L1. Extracts Ki from the smart card by computing RegIDi − H(F (PWi|N)).
L2. Computes hash value F (Ki) and verifies it with stored V Ki. If it holds, the

card performs next Step. Otherwise, the card rejects Ui’s login request. This
verification process performs only three times that can withstand password
guessing attack by using stolen or lost smart card.

L3. Chooses a fresh random value a ∈ Z∗
q , and computes C1 = aP .

L4. Sends a login request message {IDi, C1} to RS.

Session Key Agreement Phase: Upon receiving the authentication request
message {IDi, C1}, the remote system and smart card execute the following
steps for mutual authentication and session key agreement between the user Ui

and the remote system.

K1. The system verifies the format of IDi. If the format is incorrect, the system
rejects the login request. Otherwise, the system computes U = H(IDi, IDs)
and K∗

i = s · U . Then, the system chooses a fresh random value b ∈ Z∗
q ,

and computes C2 = bP , sk = ê(C1, bU) = ê(aP, bU) = ê(P, U)ab and
C3 = F (IDi, K

∗
i , sk, C1). The system sends back the message {C2, C3}.

K2. Upon receiving the message {C2, C3}, the smart card computes sk∗ = ê(C2,
aU) = ê(bP, aU) = ê(P, U)ab and C∗

3 = F (IDi, Ki, sk
∗, C1). Then, the

smart card compares C3 and C∗
3 . If they are equal, the user Ui believes that

the responding part is the real system, otherwise the user Ui interrupts the
connection. Finally, the smart card computes C4 = F (IDi, Ki, sk

∗, C2) and
sends this authentication token to the system for mutual authentication and
session key agreement.

K3. Upon receiving the message {C4}, the system computes C∗
4 = F (IDi, K

∗
i ,

sk, C2) and compares C4 and C∗
4 . If they are equal, the system can ensure

that the user Ui is legal.

After mutual authentication and session key agreement between the user and
the remote system, sk and sk∗ are used as a session key, respectively.

5.4 Password Change Phase

This phase is invoked whenever a user Ui wants to change his password. By
invoking this phase, Ui can easily change his password without taking any assis-
tance from the RS. The phase works as follows:

P1. Ui attaches the smart card to a terminal and keys IDi and PWi.
P2. The smart card computes Ki = RegIDi − H(F (PWi|N)).
P3. The smart card computes hash value F (Ki) and verifies it with stored V Ki.

If it holds, the smart card proceeds to the Step (P4); otherwise, terminates
the operation. This verification process performs only three times that can
withstand password guessing attack by using stolen or lost smart card.

P4. Ui submits a new password PW ∗
i .

P5. The smart card computes Reg∗IDi
= Ki + H(F (PW ∗

i |N)).
P6. The password has been changed now with the new password PW ∗

i and the
smart card replaced the previously stored RegIDi value by Reg∗IDi

value.
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Shared Information: G1, G2, ê, q, P, H(·), F (·).
Information held by User Ui: IDi, PWi, Smart card(U, V Ki, RegIDi

, H(·), F (·)).
Information held by Remote System RS: s.

User Ui Remote System

Registration Phase:
Select IDi, PWi, N IDi, F (PWi|N)

−−−−−−−−−−−−−→
U ← H(IDi, IDs)

Ki ← s · U
V Ki ← F (Ki)

RegIDi
← Ki + H(F (PWi|N))

Store U, V Ki, RegIDi
, H(·), F (·) in Smart Card

Enter N into Smart Card Smart Card←−−−−−−−−−−−−−
(Secure Channel)

Login and Session Key Agreement Phase:
Input IDi,PWi
Ki ← RegIDi

− H(F (PWi|N))

Verify V Ki
?= F (Ki)

Choose random a ∈ Z∗
q

C1 ← aP {IDi, C1}
−−−−−−−−−−−−−−→

Verify IDi

U ← H(IDi, IDs)
K∗

i ← s · U
Choose random b ∈ Z∗

q
C2 ← bP

sk ← ê(C1, bU) ← ê(P, U)ab

sk∗ ← ê(C2, aU) ← ê(P, U)ab {C2, C3}
←−−−−−−−−−−−−−−

C3 ← F (IDi, K∗
i , sk,C1)

C∗
3 ← F (IDi, Ki, sk∗, C1)

Verify C3
?= C∗

3
C4 ← F (IDi, Ki, sk

∗, C2) {C4}
−−−−−−−−−−−−−−→

C∗
4 ← F (IDi, K

∗
i , sk, C2)

Verify C4
?= C∗

4

Session Key: sk = sk∗ = ê(P, U)ab

Fig. 2. Proposed Authentication Scheme

6 Security Analysis

This section provides the proof of correctness of the proposed scheme. Here,
nine security properties: passive attack, active attack, guessing attack, insider
attack, known-key attack, secure password change, fast wrong password detec-
tion, mutual authentication and perfect forward secrecy, would be considered for
the proposed scheme [9].

(1) The proposed scheme can resist a passive attack. If an attacker, called E,
who eavesdrops on a successful proposed scheme run can make a guess at
the session key by using only information obtainable over a network and a
guessed value of the remote system’s secret key s, E could break a Bilinear
Computational Diffie-Hellman Problem (BCDHP) (Definition 2 in Section
Preliminaries). The reason will be clear. Such a problem can be reduced to
the computing of a keying material ê(P, U)ab from the value C1 and C2 in
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the scheme. Thus, we claim that it is as difficult as to break the BCDHP.
Without the ability to compute the keying material ê(P, U)ab, the messages
C3 and C4 do not leak any information to the passive attacker. Since the user
Ui and the remote system do not leak any information either, the proposed
scheme can resist a passive attack.

(2) The proposed scheme can resist an active attack. Active attacks can take
many different forms, depending on what information is available to the
attacker. An attacker who knows the remote system’s secret key s can easily
pretend to be Ui and communicate with the system. Similarly, an attacker
with s can masquerade as the system when Ui tries to contact him. A man-
in-the middle attack, which requires an attacker to fool both sides of a
legitimate conversation, cannot be carried out by an attacker who does not
know the system’s secret key s. For example, suppose that attacker E wants
to fool the system into thinking he is talking to Ui. First, E can compute
C′

1 = eP , where e is a fresh random value, and send it to the system.
Then, the system will compute sk = ê(C1, bU) = ê(P, U)ae, C2 = bP and
C3 = F (IDi, K

∗
i , sk, C′

1), and send C2 and C3 to E. When E receives C2
and C3 from the remote system, E has to make C′

4 = F (IDi, K
′
i, sk

′, C2)
and send it to the system. Since the problem is combined with the BCDHP
and a secure one-way hash function, in order to compute valid C′

4, E cannot
guess sk′ or K ′

i from C3. Thus, the proposed scheme can withstand the
man-in-the-middle attack.

(3) The proposed scheme can resist guessing attack. Assume a user loses his
smart card and it is found by an attacker or an attacker steals a user’s
smart card. The attacker, however, cannot impersonate a legitimate user
Ui by using the smart card because no one can reveal the PWi from value
RegIDi in the smart card without knowing the system’s secret key s. Since
the smart card verifies computed value F (Ki) with stored V Ki, an attacker
can perform a password guessing attack by using stolen or lost smart card.
However, in the proposed scheme, this verification process performs only
three times that can withstand the attack. Therefore, no one can get a legit-
imate user Ui’s password PWi. Even if an attacker has Ki = s ·H(IDi), it is
extremely hard for any attacker to derive s from Ki = s ·H(IDi) because of
Discrete Logarithm Problem (DLP) (Definition 1 in Section Preliminaries).
Therefore, the proposed scheme can withstand the guessing attack.

(4) The proposed scheme can resist insider attack. In many scenarios, the user
uses a common password to access several systems for his convenience. If
the user login request is password-based and the RS maintains password or
verifier table for login request verification, an insider of RS could imperson-
ate user’s login by stealing password and gets access of the other systems.
In the registration phase of Das et al.’s scheme, user Ui’s password PWi

will be revealed to remote server RS after Step (R2). If Ui uses PWi to
access several servers for his convenience, the insider of RS can impersonate
Ui to access other servers. In the proposed scheme, since Ui registers to RS
by presenting IDi, F (PWi|N) instead of IDi, PWi, the insider of RS cannot
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directly obtain PWi without knowing of random nonce N . Therefore, the
proposed scheme can withstand the insider attack.

(5) The proposed scheme can resist the known-key attack. Known-key security
means that each run of a key agreement protocol between two entities Ui

and a remote system should produce unique secret keys; such keys are called
session keys. If the session key sk is revealed to a passive attacker E, E
does not learn any new information from combining sk with publicly-visible
information. This is true because the messages C3 or C4 do not leak any
information to the attacker. We have already established that E cannot
make meaningful guesses at the session key sk from the guessed passwords,
and there does not appear to be an easy way for E to carry out an off-
line password guessing attack. It means that the attacker, having already
obtained some past session keys, cannot compromise current or future session
keys. Thus, it can resist the known-key attack.

(6) The proposed scheme provides secure password change In Das et al.’s scheme,
when a smart card is stolen, an unauthorized user can easily change a new
password for the card in password-change phase. First, an unauthorized
user inserts Ui’s smart card into the smart card reader of a terminal, enters
the IDi and PWe, where PWe is the unauthorized user’s arbitrary pass-
word, and requests a change of passwords. Since IDi is public value and
the entered IDi is identical to the one that is stored in the smart card, the
smart card will proceed to the Step (P2) of password change phase. Next,
the unauthorized user enters an arbitrary new password PW ∗

e and then the
smart card computes Reg∗IDi

= RegIDi −H(PWe)+H(PW ∗
e ), which yields

s ·H(IDi)+H(PWi)−H(PWe)+H(PW ∗
e ), and then replaces he previously

stored RegIDi with Reg∗IDi
without any checking. If a malicious user stole

user Ui’s smart card for a short time and change an arbitrary new pass-
word as above described, then the legal user Ui’s succeeding login requests
will be denied unless he re-registers with the remote server again because
ê(DIDi − Vi, P ) �= ê(H(IDi), PubRS)T in the verification phase. So consid-
ered, Das et al.’s password change phase is insecure. However, the proposed
scheme provides secure password change. Because the smart card can verify
Ki using the stored F (Ki) in Step (P3) of the password change phase, when
the smart card was stolen, unauthorized users cannot change the password of
the card without knowing the Ui’s password PWi. Therefore, the proposed
scheme provides secure password change.

(7) The proposed scheme provides fast wrong password detection In Das et al.’s
scheme, if user Ui input a wrong password by mistake, this wrong password
will be detected by the remote system in the authentication phase. Therefore,
Das et al.’s scheme is slow to detect the user’s wrong password. In contrast
to Das et al.’s scheme, in the proposed scheme, if user Ui inputs the wrong
password by mistake, this wrong password will be quickly detected by a
smart card since the smart card can verify F (Ki) = V Ki using the stored
V Ki in Step (L2) of the login phase. Therefore, the proposed scheme provides
fast wrong password detection.
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(8) The proposed scheme provides the mutual authentication. Mutual authen-
tication means that both the user and remote system are authenticated to
each other within the same protocol, while explicit key authentication is
the property obtained when both implicit key authentication and key con-
firmation hold. As such, the proposed scheme uses the Diffie-Hellman key
exchange algorithm in order to provide mutual authentication. Then, the key
is explicitly authenticated by a mutual confirmation session key, ê(P, U)ab.

(9) The proposed scheme provides perfect forward secrecy. Perfect forward se-
crecy means that if a long-term private key (e.g. user password PWi or sys-
tem’s private key s) is compromised, this does not compromise any earlier
session keys. In the proposed scheme, since the Diffie-Hellman key exchange
algorithm is used to generate a session key ê(P, U)ab, perfect forward secrecy
is ensured because an attacker with a compromised system’s secret key s is
only able to obtain the aP and bP from an earlier session. In addition, it is
also computationally infeasible to obtain the session key ê(P, U)ab from aP
and bP , as it is a DLP and a BCDHP.

The security properties of Das et al.’s scheme and the proposed scheme are
summarized in Table 1.

Table 1. A comparison of security properties

Security properties Das et al.’s Scheme Proposed Scheme

Passive attack Secure Secure

Active attack Insecure Secure

Guessing attack Insecure Secure

Stolen smart card attack Insecure Secure

Insider attack Insecure Secure

Secure password change Not Provide Provide

Mutual authentication Not Provide Provide

Session key distribution Not Provide Provide

Perfect forward secrecy Not Provide Provide

Wrong password detection Slow Fast

Timestamp Required Not Required

7 Conclusion

The current paper demonstrated that Das st al.’s scheme is vulnerable to an
impersonation attack and an off-line password guessing attack. Furthermore, we
presented an improved authentication scheme based on bilinear computational
Diffie-Hellman problem and one-way hash function to the schemes, in order
to isolate such problems. As a result, the proposed scheme is more secure than
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Das et al.’s scheme and it provides mutual authentication between the user
and remote system. In addition, the proposed scheme does not require time
synchronization or delay-time limitations between the user and remote system.
However, security of our protocol is not still proved formally. This is our future
work.
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Abstract. The concept of proxy signature was introduced by Mambo
et al. to delegate signing capability in the digital world. In this paper,
we show that three existing proxy signature schemes without certifi-
cates, namely, the Qian and Cao identity-based proxy signature (IBPS)
scheme, the Guo et al. IBPS scheme and the Li et al. certificateless
proxy signature (CLPS) scheme are insecure against universal forgery.
More precisely, we show that any user who has a valid public-private key
pair can act as a cheating proxy signer and forge the proxy signature on
behalf of the original signer at will, without obtaining the official dele-
gation from the original signer.

Keywords: Proxy signature, identity-based, certificateless, attack.

1 Introduction

Proxy Signature and Its Applications. The concept of proxy signature was
first introduced by Mambo, Usuda and Okamoto in [18]. A proxy signature
scheme involved three entities, namely, the original signer, the proxy signer and
the verifier [28]. A proxy signature scheme allows a designated signer called a
proxy signer to sign the message on behalf of an original signer. A proxy signature
convinces the verifier that the signature is signed by the proxy signer who gets
the delegation right from the original signer. Proxy signatures have found various
practical applications, particularly in distributed computing where delegation of
rights is common. Examples include e-cash systems [19], global distribution net-
work [2], grid computing [7] and mobile agent applications [15,16], to name a
few. To illuminate how to use proxy signatures, we give more explanations on
the delegating signing capabilities within organization [29]. If a manager of an
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organization is on leave, he has to delegate to his assistant manager the capa-
bility to sign on behalf of him.

Natural Constructions of Proxy Signature. Proxy signature can be con-
structed in several ways as stated in [18,14,23,25,3], according to the delegation
type:

1. Full Delegation: The most straightforward solution is for the original signer
to give its private key to the proxy signer, who can then use it to sign any
messages on behalf of the original signer.

2. Partial Delegation: In a partial delegation scheme, a proxy signer has a
new key called proxy signing key, which is different from the original signer’s
private key. The proxy signing key is generated by both the original signer
and the proxy signer.

3. Delegation by Certificate/Warrant: In delegation by warrant, the origi-
nal signer uses its private key and the signing algorithm of a standard signa-
ture to sign a warrant, which contains information regarding the particular
proxy signer. After receiving the warrant, the proxy signer uses its private
key and the signing algorithm of a standard signature to sign messages on
behalf of the original signer.

4. Partial Delegation with Warrant: Kim et al. [14] proposed a partial
delegation with warrant proxy signature scheme which enjoys the computa-
tional and bandwidth advantages over the proxy signature by warrant and
the structure advantage over the proxy signature for partial delegation.

Public Key Cryptography without Certificates. Traditional public key
cryptography (TPKC) was introduced by Diffie and Hellman [6] to solve the
key distribution problem suffered in symmetric key cryptography. As opposed to
the symmetric key cryptography, TPKC involves the use of two different keys,
namely a public key and a private key, which are mathematically related to
each other. However, TPKC requires the use of certificate in authenticating the
public key, which leads to certificate revocation problems. Thus, the design of a
secure and efficient cryptographic scheme without certificate becomes the goal of
many cryptographers nowadays. Two types of public key cryptography without
certificates in focus are identity-based cryptography (IBC) and certificateless
public key cryptography (CLPKC).

The concept of IBC was formulated by Shamir [22] to achieve implicit certi-
fication. Shamir’s original motivation was to simplify certificate management in
email systems. In IBC, the public key is effectively replaced by the user’s pub-
licly available identity information or any arbitrary string which derived from
the user identity (ID), thus certificate can be omitted. However, since all the
private keys of the users are generated by a trusted third party (TTP) called
private key generator (PKG), the private key escrow problem is inherent in the
system. CLPKC [1] is a paradigm which eliminates the usage of certificates in
TPKC while solving the inherent key escrow problem in IBC. CLPKC can be
seen as a model that is intermediate between TPKC and IBC. In this new par-
adigm, the user public key is no longer any arbitrary string that identifies the
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user, rather, it is similar with the public key used in TPKC. The user private
key is computed by using both the partial private key, a key generated by a TTP
called Key Generation Centre (KGC), and the user secret value.

Our Contributions. Most of the proxy signature schemes were proposed in
the public key infrastructure (PKI) setting. Recently, several proxy signature
schemes adapted to IBC [28,5,21,26,24,11,10] and CLPKC [17] have also been
proposed.

In this paper, we review three existing partial delegation with warrant proxy
signature schemes without certificates, namely, the Qian and Cao identity-based
proxy signature (IBPS) scheme [21], the Guo et al. IBPS [11] scheme and the
Li et al. certificateless proxy signature (CLPS) scheme. These three schemes
were derived from the provably secure identity-based signature (IBS) schemes
[22,4,12]. The Qian and Cao IBPS scheme is RSA-based. RSA-based schemes
are preferable since it is quite common that companies may have invested in
expensive hardware and software implementations of RSA. Meanwhile, the Guo
et al. IBPS scheme and the Li et al. CLPS scheme are constructed by using
bilinear pairings, which is an important tool in constructing identity-based and
certificateless scheme.

We show that these three schemes did not satisfy the basic security require-
ment of proxy signature in the ID-based setting and the certificateless setting.
More precisely, we show that any user who has a valid public-private key pair
can act as a cheating proxy signer and forge the proxy signature on behalf of the
original signer at will, without obtaining the official delegation from the original
signer.

2 Preliminaries

We review the properties of bilinear pairings below.
Bilinear Pairings: Let (G1, ◦) and (G2, ◦) denote two cyclic groups of prime
order q (◦ denotes a binary operation). A bilinear map e : G1×G1 → G2 satisfies
the following properties:

1. Bilinearity: For all P, Q, R ∈ G1, e(P ◦ Q, R) = e(P, R)e(Q, R) and e(P, Q ◦
R) = e(P, Q)e(P, R). Thus, for any a, b ∈ Z∗

q , e(aP, bP ) = e(bP, aP ) =
ê(P, P )ab.

2. Non-degeneracy: e(P, Q) �= 1G2 where 1G2 is the identity element of G2.
3. Computability: There is an efficient algorithm to compute e(P, Q) for any

P, Q ∈ G1.

3 Cryptanalysis of the Qian and Cao IBPS Scheme

Recently, Qian and Cao proposed an IBPS scheme [21] which was derived from
the Shamir IBS scheme [22]. They also proved the Shamir IBS scheme secure
against adaptive chosen message attack (CMA) [8] based on the RSA assumption
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in the same paper. In this section, we first review the IBPS scheme proposed by
Qian and Cao. We then show that this IBPS scheme is universally forgeable.

3.1 The Qian and Cao IBPS Scheme

The Qian and Cao IBPS scheme [21] is defined by the following algorithms:

1. Setup: The PKG runs the following steps:
(a) Compute n = pq where p and q are two large primes.
(b) Select e at random where gcd(e, φ(n)) = 1.
(c) Compute the master key d where ed ≡ 1 mod φ(n).
(d) Choose h : {0, 1}∗ → Zφ(n) where h is a strong one way function.
(e) Choose H : {0, 1}∗ → Zn where H is a cryptographic hash function.
The PKG keeps d as the master key and publicizes the public parameters
params = (n, e, h, H).

2. Extract: The user submits his ID ∈ {0, 1}∗ to the PKG, the PKG then
computes the user private key DID = Qd

ID, where QID = H(ID). The user
private key must be transmitted to the user through a secure channel. The
original signer Alice has her public-private key pair as (QIDA , DIDA), and
the proxy signer Bob has his public-private key pair as (QIDB , DIDB ).

3. Proxy Key Generation: When Alice delegates her signing capability to the
proxy signer Bob, Alice performs the following steps:
(a) Make a warrant mw which records the delegation policy including limits

of authority, valid periods of delegation, the proxy signer ID etc.
(b) Choose rA ∈ Zn at random and compute RA = re

A mod n.
(c) Compute SA = DIDA · r

h(RA||mw)
A mod n.

(d) Send the signature σA = (RA, SA) to the proxy signer Bob.
After receiving the signature σA, Bob checks whether Se

A = QIDA ·Rh(RA||mw)
A

mod n holds. If not, Bob rejects the signature.
4. Proxy Signature Generation: Bob generates the proxy signature as fol-

lows:
(a) Choose rB ∈ Zn at random and compute RB = re

B mod n.
(b) Compute h = h(RB||mw||m), where mw is the warrant and m is the

message to be signed.
(c) Compute SB = DIDB · (rB · SA)h(RB ||mw||m) mod n.
At last, Bob sends σB = (RA, RB, SB) to the verifier as a proxy signature
on mw and m for IDA and IDB .

5. Proxy Signature Verification: After receiving the σB, the verifier per-
forms the following steps:
(a) Check the warrant mw.
(b) Compute QIDA = H(IDA) and QIDB = H(IDB).
(c) Check whether Se

B = QIDB · (RB · QIDA · R
h(RA||mw)
A )h(RB ||mw||m) mod

n holds. If not, Bob rejects the signature.
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In [21], Qian and Cao showed that the Shamir IBS scheme cannot resist the
blinding attack as they claimed that the user private key is the common RSA
signature. The forger can pick a random t ∈ Zn and set ID0 = te· ID mod n.
The forger then requests the signature from the signer who is willing to sign
on ID0. The forger now simply computes S = S0 · t−1 mod n where S and S0
are respectively the signature for ID and ID0 on message m. Qian and Cao
thereby proposed an improved Shamir IBS scheme by setting the private key
DID = H(ID)d. We note that this improvement had been recommended by
Shamir earlier in [22].

3.2 Attack on the Qian and Cao IBPS Scheme

Now, we show that the Qian and Cao IBPS scheme is vulnerable to the forgery
attack. This strong attack is the universal forgery against no message attack
where no signing oracle is required in the adversarial model. To be more precise,
any user who has a valid public-private key pair can act as a cheating proxy
signer (which is also considered as a forger here), to sign any message at will
on behalf of the original signer, without obtaining any official delegation from
the original signer. We describe the efficient algorithm that enables the forger
to sign any message on behalf of the original signer. Let A denote the original
signer while B denote the cheating proxy signer.

Proxy Signature Generation: To sign a message m ∈ {0, 1}n, the cheating
proxy signer (the forger) who has his own private key DIDB performs the fol-
lowing steps:

1. Make a warrant mw.
2. Choose rA ∈ Zn at random and compute RA = re

A mod n.
3. Choose rB ∈ Zn at random and compute RB = re

B · Q−1
IDA

mod n where
QIDA = H(IDA).

4. Compute h = h(RB||mw||m), where mw is the warrant and m is the message
to be signed.

5. Compute SB = DIDB · (rB · r
h(RA||mw)
A )h(RB ||mw||m) mod n.

The forged proxy signature on message m signed by the cheating proxy signer
B on behalf of the original signer A is valid since the verification step is true for
the forged proxy signature as follows:

1. Check whether Se
B = QIDB · (RB · QIDA · R

h(RA||mw)
A )h(RB ||mw||m) mod n

holds. If not, rejects the signature.

Se
B = De

IDB
· (re

B · r
eh(RA||mw)
A )h(RB ||mw||m)

= QIDB · (re
B · R

h(RA||mw)
A )h(RB ||mw||m)

= QIDB · (RB · QIDA · R
h(RA||mw)
A )h(RB ||mw||m)

where re
B = RB · QIDA .
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The Qian and Cao IBPS scheme is therefore insecure against the universal
forgery since the forger can sign any message he wants on behalf of any original
signer.

4 Cryptanalysis of the Guo et al. IBPS Scheme

We first review the IBPS schemes proposed by Guo et al. [11] which was derived
from the Cha and Cheon IBS scheme [4]. In [27], Yoon et al. showed that the
Cha and Cheon IBS scheme cannot be used in constructing a provably secure
identity-based aggregate signature scheme if no further modification is made. In
this section, we show that the Guo et al. IBPS scheme is insecure against the
universal forgery by using the similar approach as in Yoon et al.

4.1 The Guo et al. IBPS Scheme

The Guo et al. IBPS scheme [11] is defined by the following algorithms:

1. Setup: The PKG first chooses a security parameter k, it then chooses two
groups G1 and G2 of the same large prime order q(|q| = k), a generator
P ∈ G1 and also a bilinear map e : G1 × G1 → G2. Two one way functions
are also necessary: H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → Z∗

q . At last, the PKG
chooses s ∈ Z

∗
q as the system master key which is known only by itself. The

PKG then computes Ppub = sP as the system public key and publicizes the
system parameters params = {G1, G2, e, q, k, P, Ppub, H1, H2}.

2. Extract: The user submits his ID ∈ {0, 1}∗ to the PKG, the PKG then
computes the user private key DID = sQID, where QID = H1(ID). The
user private key must be transmitted to the user through a secure channel.
The original signer Alice has her public-private key pair as (QIDA , DIDA),
and the proxy signer Bob has his public-private key pair as (QIDB , DIDB ).

3. Proxy Key Generation: To delegate the signing ability to the proxy signer,
the original signer Alice first makes a warrant mw, which consists of the
original signer ID, the proxy signer ID, the delegation period T , the proxy
signature scope, etc. Then, Alice performs some computations as follows:
(a) Choose xA ∈ Z

∗
q at random and compute XIDA = xADIDA and X ′

IDA
=

xAQIDA .
(b) Compute T = e(X ′

IDA
, Ppub) = e(XIDA , P ).

(c) Compute r = H2(mw||T ||X ′
IDA

).
(d) Compute S = (xA − r)DIDA .
At last, Alice sends (X ′

IDA
, S, r) and mw to Bob. When Bob receives the

warrant mw and (X ′
IDA

, S, r) from Alice, he also makes some computations
to check if the triple consists of the original signer’s authority. Bob firstly
computes:

T ′ = e(S, P ) · e(rQIDA , Ppub)
= e(xADIDA , P )
= e(XIDA , P )
= e(X ′

IDA
, Ppub)
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Then, he computes r′ = H2(mw||T ′||X ′
IDA

), only if the equations r′ = r and
T ′ = e(X ′

IDA
, Ppub) are satisfied, so that Bob can confirm that he has got

the original signer’s authority. The proxy signature key is the combination
of (DIDB , S).

4. Proxy Signature Generation: Bob generates the proxy signature as
follows:
(a) Choose xB ∈ Z∗

q at random and compute U = xBQIDB .
(b) Compute h = H2(m||mw||U), where mw is the warrant and m is the

message to be signed.
(c) Compute V = S + (xB + h)DIDB , where S is the delegation signature

from the original signer and DIDB is Bob’s private key.
At last, Bob sends (X ′

IDA
, U, V, mw, m) to the verifier as a proxy signature.

5. Proxy Signature Verification: After receiving the (X ′
IDA

, U, V, mw, m),
the verifier performs the following steps:
(a) Check the warrant mw.
(b) Compute T ′′ = e(X ′

IDA
, Ppub).

(c) Compute r′ = H2(mw||T ′′||X ′
IDA

), where mw is the warrant.
(d) Compute h′ = H2(m||mw||U), where mw is the warrant and m is the

message to be signed.
(e) Check e(P, V ) = e(Ppub, X

′
IDA

− r′QIDA + U + h′QIDB ). If it holds,
(X ′

IDA
, U, V, mw, m) will be accepted, otherwise it will be rejected.

4.2 Attack on the Guo et al. IBPS Scheme

Now, we show that the Guo et al. IBPS scheme is vulnerable to the forgery
attack by using the same approach as in Yoon et al. Similar to our previous at-
tack mounted on the Qian and Cao IBPS scheme, this strong attack is again the
universal forgery against no message attack where no signing oracle is required
in the adversarial model. More precisely, any user who has a valid public-private
key pair can act as a cheating proxy signer (which is also considered as a forger
here), to sign any message at will on behalf of the original signer, without ob-
taining any official delegation from the original signer. We describe the efficient
algorithm used to sign any message on behalf of the original signer below. Let
A denote the original signer while B denote the cheating proxy signer.

Proxy Signature Generation: To sign a message m ∈ {0, 1}n, the cheating
proxy signer (the forger) who has his own private key DIDB performs the fol-
lowing steps:

1. Select a random xA ∈ Z
∗
q and compute X ′

IDA
= xAQIDA .

2. Compute r = H2(mw||T ||X ′
IDA

) where mw is selected at random and T is
computed as e(X ′

IDA
, Ppub).

3. Select a random xB ∈ Z∗
q and compute U = xBQIDB − X ′

IDA
+ rQIDA .

4. Compute h = H2(m||mw||U).
5. Compute V = (xB + h)DIDB .
6. Return (X ′

IDA
, U, V, mw, m) as a proxy signature.
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The forged proxy signature on message m signed by the cheating proxy signer
B on behalf of the original signer A is valid since the verification step is true for
the forged proxy signature as follows:

1. Compute T ′′ = e(X ′
IDA

, Ppub).
2. Compute r′ = H2(mw||T ′′||X ′

IDA
), where mw is the warrant.

3. Compute h′ = H2(m||mw||U), where mw is the warrant and m is the message
to be signed.

4. Accept the proxy signature if e(P, V ) = e(Ppub, X
′
IDA

− r′QIDA + U +
h′QIDB ).

e(P, V ) = e(Ppub, X
′
IDA

− r′QIDA + U + h′QIDB )
= e(sP, X ′

IDA
− r′QIDA + xBQIDB − X ′

IDA
+ rQIDA + h′QIDB )

= e(sP, xBQIDB + h′QIDB )
= e(P, (xB + h′)sQIDB )
= e(P, (xB + h)DIDB )

where r′ = r and h′ = h.

Thus, the Guo et al. IBPS scheme is insecure against the universal forgery
since the forger can sign any message at will on behalf of any original signer
without the cooperation of the original signer at all.

5 Cryptanalysis of the Li et al. CLPS Scheme

The Li et al. CLPS scheme [17] was derived from the Cha and Cheon IBS scheme
[4] and the Hess IBS scheme [12]. It is the only CLPS scheme in the literature.

5.1 The Li et al. CLPS Scheme

The Li et al. CLPS scheme [17] is defined by the following algorithms:

1. Setup: Given a security parameter k ∈ Z+, the algorithm works as follows:
(a) Generate the groups G1 and G2 of prime order q and a pairing e :

G1 × G1 → G2.
(b) Choose an arbitrary generator P ∈ G1.
(c) Select a random s ∈ Z∗

q and set P0 = sP .
(d) Choose a cryptographic hash function H1 : {0, 1}∗ → G1 and H2 :

{0, 1}∗ × G1 → Z∗
q .

The system parameters are params = 〈G1, G2, e, q, P, P0, H1, H2〉. The mes-
sage space is M = {0, 1}∗. The master key is s ∈ Z∗

q .
2. Set-Partial-Private-Key: Given params and master-key, this algorithm

works as follows: Compute QIDi = H1(IDi) ∈ G1 and output a partial
private key, DIDi = sQIDi ∈ G1. Thus, the original signer Alice has her
public-private key pair as (QIDA , DIDA), and the proxy signer Bob has his
public-private key pair as (QIDB , DIDB ).
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3. Set-Secret-Value: Given params, select a random value xIDi ∈ Z∗
q where

xIDi is the secret value.
4. Set-Private-Key: Set private key, SIDi = xIDiDIDi .
5. Set-Public-Key: Given params and the secret value xIDi ∈ Z∗

q , this algo-
rithm computes XIDi = xIDiP ∈ G1 and YIDi = xIDiP0 ∈ G1.

6. Generation of the Proxy Key: To delegate the signing ability to the proxy
signer, the original signer Alice makes a warrant mw first, which consists of
the original signer ID, the proxy signer ID, the delegation period T , the proxy
signature scope, etc. Then, Alice makes some computations as follows:
(a) Choose r ∈ Z∗

q at random and compute U = rQIDA .
(b) Compute hA = H2(mw||U).
(c) Compute V = (r + hA)SIDA .
At last, Alice sends (U, V ) and mw to Bob. When Bob receives the warrant
mw and (U, V ) from Alice, he performs the following steps:
(a) Check whether e(XIDA , P0) = e(YIDA , P ) holds.
(b) Compute hA = H2(mw||U).
(c) Check whether e(P, V ) = e(YIDA , U + hAQIDA) holds.
Then, the proxy signature key SP is computed as SP = V + SIDB .

7. Proxy Signature Generation: Bob can generate the proxy signature as
follows:
(a) Choose a ∈ Z

∗
q at random and compute R = e(P, P )a.

(b) Compute hB = H2(m||R), where m is the message to be signed.
(c) Compute S = hBSP + aP .
At last, Bob sends the proxy signature (R, U, S, mw, m) to the verifier.

8. Proxy Signature Verification: After receiving (R, U, S, mw, m), the ver-
ifier performs the following steps:
(a) Check whether e(XIDA , P0) = e(YIDA , P ) holds.
(b) Check whether e(XIDB , P0) = e(YIDB , P ) holds.
(c) Compute R′ = e(P, S)e(YIDA , −hB(U + hAQIDA))e(YIDB , −hBQIDB ),

where hA = H2(mw||U) and hB = H2(m||R).
(d) Accept the proxy signature if and only if hB = H2(m||R′).

5.2 Attack on the Li et al. CLPS Scheme

Now, we show that the Li et al. certificateless proxy signature scheme is in fact
vulnerable to the public key replacement attack against the Type I adversary.
Recall that Type I adversary does not possess the knowledge of the master
key s, but the adversary can perform public key replacement, i.e. replacing the
public key with its choice. This attack is essentially the similar attack mounted
by Huang et al. [13] against the Al-Riyami and Paterson CLS scheme [1]. More
precisely, this strong attack is the universal forgery against no message attack
where no signing oracle is required in the Type I adversarial model and the forger
can sign any message at will.

We now describe the efficient algorithm used to mount the public key replace-
ment attack against the Li et al. CLPS scheme below. This efficient algorithm
enables the forger to sign any message at will.
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Sign: To sign a message m and a warrant mw on identities IDA and IDB, the
Type I adversary performs the following steps:

1. Select a random U, S ∈ G1 and compute hA = H2(mw||U).
2. Select a random r ∈ Z

∗
q .

3. Compute R = e(P, S)e(P0, −(U + hAQIDA))e(rP0, −QIDB ).
4. Compute hB = H2(m, R).
5. Set xIDA = h−1

B ∈ Z∗
q and xIDB = h−1

B · r ∈ Z∗
q .

6. Compute X ′
IDA

= xIDAP , Y ′
IDA

= xIDAP0, X ′
IDB

= xIDB P , Y ′
IDB

=
xIDB P0.

7. Replace the user public key with
〈
X ′

IDA
, Y ′

IDA
, X ′

IDB
, Y ′

IDB

〉
.

8. Return the proxy signature (R, U, S, mw, m).

The forged signature of message m and warrant mw on identities IDA and
IDB is valid the forged signature can be verified as follows:

1. Check whether e(X ′
IDA

, P0) = e(Y ′
IDA

, P ) and e(X ′
IDB

, P0) = e(Y ′
IDB

, P )
hold. If not, return Error and abort the verification. Notice that

e(X ′
IDA

, P0) = e(xIDAP, sP )
= e(xIDAsP, P )
= e(Y ′

IDA
, P )

e(X ′
IDB

, P0) = e(xIDB P, sP )
= e(xIDB sP, P )
= e(Y ′

IDB
, P )

2. Compute R′ = e(P, S)e(YIDA , −hB(U + hAQIDA))e(YIDB , −hBQIDB ).
3. Accept the signature if and only if hB = H2(m, R′) holds.

R′ = e(P, S)e(YIDA , −hB(U + hAQIDA))e(YIDB , −hBQIDB )
= e(P, S)e(xIDAP0, −hB(U + hAQIDA))e(xIDB P0, −hBQIDB )
= e(P, S)e(h−1

B P0, −(U + hAQIDA))hB e(h−1
B rP0, −QIDB )hB

= e(P, S)e(P0, −(U + hAQIDA))hB ·h−1
B e(rP0, −QIDB )hB ·h−1

B

= e(P, S)e(P0, −(U + hAQIDA))e(rP0, −QIDB )
= R

Since R′ = R holds, then hB = H2(M, R′) holds too.

The public key of IDB is different from the public key of IDA since a random r
is included.

6 Conclusion

We mounted some attacks on three proxy signature schemes without certificates,
they are the Qian and Cao IBPS scheme, the Guo et al. IBPS scheme and the
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Li et al. CLPS scheme. From the above security analyses, we may conclude that
the security of a proxy signature scheme deriving from a signature scheme is
not guaranteed even though the underlying signature scheme is provably secure.
Thus, extra caution must be exercised in extracting this kind of scheme.
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Abstract. The advent of the Java Card standard has been a major
turning point in smart card technology. With the growing acceptance of
this standard, understanding the performance behaviour of these plat-
forms is becoming crucial. To meet this need, we present in this paper, a
benchmark framework that enables performance evaluation at the byte-
code level. The first experimental results show that bytecode execution
time isolation is possible.

Keywords: Java Card, Benchmark, Performance.

1 Introduction

With more than one billion copies per year, smart cards are an important device
of today’s information society. The development of the Java Card standard made
this device even more popular: capable of processing a subset of the platform
independent, object oriented, and widely used programming language Java, the
Java Card puts smart card technology at the disposal of many programmers
and significantly shortens the time to market for smart card applications [3].
Moreover, cards are “open platforms” in the sense that programs (applets) can
be added, that is, uploaded and executed on the platforms.

In this context, understanding the performance behaviour of Java Card plat-
forms is important to the Java Card community (users, smart card manufactur-
ers, card software providers, card users, card integrators, etc.). Currently, there
is no solution on the market which makes it possible to evaluate the performance
of a smart card that implements Java Card technology. In fact, the programs
which realize this type of evaluations are generally proprietary and not avail-
able to the whole of the Java Card community. Hence, the only existing and
published benchmarks are used within research laboratories (e.g., SCCB project
from CEDRIC laboratory [7,8] or IBM Research [13]). However, benchmarks are
important in the smart card area. Indeed, from smart card manufacturers point
of view, standards will be more and more important in the smart card industry,
as it is the case currently for the information technology domain. Furthermore, it
is of primary importance to differentiate the products of the companies especially
when the products are standardized. From a smart card customers point of view,
benchmarks allow to understand the platform performance in terms of evalua-
tion and prediction. It helps choose a service according to its QoS, its execution
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time or its memory consumption. Besides, being able to efficiently measure the
performance of a cryptographic device such as a smart card in terms of time,
memory or power consumption might be used to perform some security attacks
and evaluations.

In this paper, we propose a general benchmarking solution to establish the
execution time of Java Card bytecodes. We show that our proposed solution
allows us to ascertain the feasibility of bytecode execution time isolation. Here,
we restrict ourselves to presenting the comparative performances of arithmetic
operations on several smart cards.

The remainder of this paper is organised as follows. In section 2, we give a
brief introduction of the Java Card technology and present some related bench-
marking solutions. Section 3 presents our benchmark framework and describes
a general solution to achieve bytecode execution time isolation. We explain in
section 4 how we revise the general solution to suit arithmetic operations bench-
marking. Section 5 shows the results pertaining to arithmetic performance and
also presents how the stability of the result is a function of the execution fre-
quency of the bytecode under analysis. We present some future works in section
6 and conclude in section 7.

2 Java Card and Benchmarking

2.1 Java Card Technology

Java Card technology provides means of programming smart cards [6,1] with a
subset of the Java programming language. Today’s smart cards are small com-
puters, providing 8, 16 or 32 bits CPU with clock speeds ranging from 5 up
to 40MHz, ROM memory between 32 and 64KB, EEPROM memory (writable,
persistent) between 16 and 32KB and RAM memory (writable, non-persistent)
between 1 and 4KB. Smart cards communicate with the rest of the world through
application protocol data units (APDUs, ISO 7816-4 standard). The communi-
cation is done in master-slave mode. It is always the terminal application that
initializes the communication by sending the command APDU to the card and
then the card replies by sending a response APDU (possibly with empty con-
tents). In case of Java powered smart cards, besides, the operating system, the
card’s ROM contains a Java Card Virtual Machine (JCVM) which implements
a subset of the Java programming language and allows Java Card applets to run
on the card.

A Java Card applet should implement the install method responsible for
the initialization of the applet (usually it just calls the applet constructor) and
a process method for handling incoming command APDUs and sending the
response APDUs back to the host. There can be more than one applet existing
on a single card, but there can be only one active at a time (the active one is
the most recently selected by the Java Card Runtime Environment – JCRE).
A normal Java compiler is used to convert the source code into Java bytecodes.
Then a converter must be used to convert the bytecode into a more condensed
form (CAP format) that can be loaded onto a smart card. The converter also
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checks that no unsupported features (like floats, strings, etc.) are used in the
bytecode. This is sometimes called off-card or off-line bytecode verification.

2.2 Some Attempts for Measuring Java Card Performance

Currently, there is no standard benchmark suite which can be used to demon-
strate the use of the JCVM and to provide metrics for comparing Java Card
platforms, thus allowing the Java Card users to take decision about which envi-
ronments are most suitable for their needs. In fact, even if numerous benchmarks
have been developed around the JVM, there are few works that attempt to eval-
uate the performance of smart cards.

For example, SCCB (Smart Card CNAM Benchmark) from CEDRIC labora-
tory [7,8]), was initially a very ambitious project which aimed at measuring the
performance of Java Card platforms. Unfortunately, the results obtained during
experiments were not accurate because the measurements were initiated at the
Java Card language level and were neglecting the basic operations defined at the
bytecode level.

Another interesting work is that carried out by the IBM BlueZ secure systems
group and concretized through a Master thesis [13]. JCOP framework has been
used to perform a series of tests to cover the communication overhead, DES
performance and reading and writing operations into the card’s memory (RAM
and EEPROM).

Markantonakis in [10] presents some performance comparisons between the
two most widely used terminal APIs, namely PC/SC and OCF. He measures
some operations such as: connecting/disconnecting to the smart card reader,
selecting the smart card application, sending APDUs, etc.

Guyot et al. in [9] describe how to handle session mobility by storing session
information in smart card. In this special context, they evaluate the performance
of smart cards by implementing real services and by observing how fast the cards
could retrieve and suspend a given session.

Papapanagiotou et al. in [12] evaluate the performance of two online certificate
revocation and validation protocols on two different Java Card platforms in order
to determine which protocol is more efficient for smart card use.

Chaumette et al. in [4,2] show the performance of a Java Card grid with
respect to the scalability of the grid and with different types of cards.

Regarding the problem that we address here, the works of Guyot et al. and
Papapanagiotou et al. are used in particular contexts and do not deal with Java
Card platforms while Chaumette et al. deal with the performance of a grid rather
than that of a single smart card.

3 General Benchmarking Framework

3.1 Introduction

Our research work falls under the MESURE project [11], a project funded by
the French administration (ANR), which aims at developing a set of open source
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tools to measure the performance of Java Card platforms. Currently, we have
developed benchmarks covering some VM related characteristics, such as arith-
metic. In this paper, we have chosen to present only the results pertaining to the
arithmetic benchmarks because they are completely finished, compared to others
(memory specific operations for example). The benchmarks have been developed
under the Eclipse environment based on JDK 1.6, with JSR268. The underlying
ISO 7816 smart card architecture forces us to measure the time a Java Card
platform takes to answer to a command APDU, and to use that measure to de-
duce the execution time of some bytecodes. The benchmarking development tool
covers two parts: the script part and the applet part. The script part, entirely
written in Java, defines an abstract class that is used as a template to derive
test cases characterized by relevant measuring parameters such as, the operation
type to measure, the number of loops, etc. A method run() is executed in each
script to interact with the corresponding test case within the applet. Similarly,
on the card is defined an abstract class that defines three methods:

– a method setUp() to perform any memory allocation needed during the
lifetime test case.

– a method run() used to launch the tests corresponding to the test case of
interest, and

– a method cleanUp() used after the test is done to perform any clean-up.

The testing applet is capable of recognizing all the test cases and to launch a
particular test by executing its run method.

Our Eclipse environment integrates the Converter tool from Sun MicroSys-
tems, which is used to convert a standard Java applet class into a JCA file during
a first step. This file is completed pseudo-automatically by integrating the oper-
ations to be tested with the Java Card Assembly instructions, as we explain in
the following paragraph. The second step consists in capgenerating the JCA file
into a CAP file, so that the applet could be installed on any Java Card platform.

3.2 Isolating Bytecode Execution Time

Benchmarking bytecodes within Java Card platforms requires some subtle means
in order to obtain execution results that reflect as accurately as possible the
actual execution time of the isolated execution time of an arithmetic bytecode.
This is because there exists a significant and non-predictable elapse of time
between the beginning of the measure, characterized by the starting of the timer
on the computer, and the actual execution of the bytecode of interest. This is also
the case the other way round. Indeed, when performing a request on the card,
the execution call has to travel several software and hardware layers down to the
card’s hardware and up to the card’s VM (vice versa upon response). This non-
predictability is mainly dependent on hardware characteristics of the benchmark
environment (such as the card acceptance device (CAD), PC’s hardware, etc),
the OS level interferences, services and also on the PC’s VM.
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To minimize the effect of these interferences, we need to isolate the execution
time of the bytecodes of interest, while ensuring that their execution time is
sufficiently important to be measurable.

The maximization of the bytecodes execution time requires a test applet struc-
ture with a loop having a large upper bound, which will execute the bytecodes
for a substantial amount of time. On the other hand, to achieve execution time
isolation, we need to compute the isolated execution time of any auxiliary byte-
code upon which the bytecode of interest is dependent. For example if sadd is
the bytecode of interest, then the bytecodes that need to be executed prior to
its execution are those in charge of loading its operands onto the stack, like two
sspush. Thereafter we subtract the execution time of an empty loop and the
execution time of the auxiliary bytecodes from that of the bytecode of interest
to obtain the isolated execution time of the bytecode. As presented in figure 1,
the actual test is performed within a method (run) to ensure that the stack is
freed after each invocation, thus guaranteeing memory availability.

Applet framework Test Case

process() { run() {
i = 0 op1

While i <= L op2

DO {
...

run() opn

i = i+1 op0

} }
}

Fig. 1. Test framework for a bytecode op0

In figure 1 :

– L represents the chosen loop upper bound;
– op0 represents the bytecode of interest;
– opi for i ∈ [1..n] represents the auxiliary bytecodes necessary to perform the

bytecode op0.

To compute the mean isolated execution time of op0 we need to perform the
following calculation:

M(op0) = mL(op0) − mL(Emptyloop)
L

−
n∑

i=1

M(opi)

Where :

– M(opi) is the mean isolated execution time of the bytecode opi.
– mL(opi) is the mean global execution time of the bytecode opi, including

interferences coming from other operations performed during the measure-
ment, both on the card and on the computer, with respect to a loop size L.



132 P. Paradinas, J. Cordry, and S. Bouzefrane

These other operations represent for example auxiliary bytecodes needed to
execute the bytecode of interest, or OS and JVM specific operations. The
mean is computed over a significant number of tests. It is the only value that
is experimentally measured.

– Emptyloop represents the execution of a case where the run method does
nothing.

The formula presented above implies that prior to computing M(op0) we need
to compute M(opi) for i ∈ [1..n].

4 Arithmetics

The benchmarking of arithmetic operations requires some fine-tunings. As arith-
metic operations take in general a negligible amount of time to execute, the pro-
posed general solution may not give satisfying results. More precisely, though
having a large upper bound L ensures a certain degree of accuracy in our mea-
surements, this involves making some very long and unpractical measurements.
Whereas, if we perform our tests with a smaller upper bound, we can still have
some cases where m(opi) < m(Emptyloop) (due to the small execution time of
arithmetic operations), which are mainly due to sudden load changes within the
benchmark platform. Consequently, this can affect adversely the mean execution
time of the test. To minimize these undesirable situations, our solution, consists
in executing repeatedly as many times as possible the bytecode of interest within
the run method. Some smart cards might perform some security countermea-
sures (see [5]) that will degrade the execution time of multiple similar bytecodes
executed in a row. In that case, our general solution will still work but we will
need to perform a very large number of loops which will make the overall test
tedious.

However, in the case of arithmetic operations, increasing the number of execu-
tions of the arithmetic bytecode by k times does not necessarily entail k execu-
tions of its auxiliary bytecodes (op1...opn) (generally sspush operations). This is
due to the fact that an arithmetic operation always ends up pushing an operand
onto the stack, corresponding to its result. Therefore, we can take advantage of
this to optimize the overall benchmark execution time. When benchmarking an
arithmetic operation requiring two operands, for instance a sadd operation, the
run method will contain k executions of sadd, preceded by only k+1 executions
of sspush, instead of 2k. See figure 2.

The computation of the mean isolated execution time for a binary arithmetic
operation op0, when taking into account k executions of op0 for every iteration,
is presented as follows :

M(op0) = mL(op0) − mL(Emptyloop)
L × k

− (k + 1) × M(sspush num)
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Where :

M(sspush num) = mL(sspush num)) − mL(Emptyloop)
L × k

run method to isolate op0 run method to isolate sspush
run(){ run(){

sspush num sspush num

(k)

�
sspush num
op0

(k) {sspush num

} }

Fig. 2. run methods for binary arithmetic operations

5 Performance Results

5.1 Arithmetic Performance

We have evaluated the arithmetic performance of three Java Card 2.2 platforms
denoted respectively 3060, 4045 and 2046. Cards 3060 and 2046 were designed
respectively in 2006 and 2004 by the same manufacturer, whereas card 4045 was
manufactured in 2004 by another provider. The benchmarks have been carried
out by measuring the execution time of distinct arithmetic operations for each
Java Card platform. The results presented in figure 3 show the isolated execution
time of some arithmetic operations. As we can notice, the sadd bytecode for each
card is approximately similar in time to the ssub, sor, sand and sxor bytecodes,
which is normal since they are similar binary operations. We can also observe
that sneg is the fastest one since it needs only one operand.

Fig. 3. Arithmetic performances of three cards
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Fig. 4. Linearity evaluation on M(sadd)

With this test we have also been able to assess the characteristics of the three
Java Card platforms vis-à-vis the arithmetic implementations of their JCVM.
For instance, we can observe that for the cards 3060 and 4045, the sshl bytecode
has nearly the same execution time as that of smul or sshr, whereas in card 2046
its execution time is nearer to that of sdiv or srem. From this observation, we
can easily assume that sshl is implemented by a division in card 2046.

In conclusion, when comparing the performances of the three Java Card plat-
forms, we can clearly see that card 3060 has slightly better performance than
card 2046, whereas both of them outperform greatly card 4045.

5.2 Linearity of the Results

With our proposed bytecode execution time measurement solution, we expect
that the mean execution time of the isolated bytecodes will stabilize after a
certain loop size. We have checked for this linearity on the two cards 3060 and
4045. Figure 4 shows the mean execution time of a simple isolated sadd over 100
measures, based on each loop size. During this test, we have made use of the
parameter P2 of the APDU command to change the loop size.

As we can notice, the measures tend to reach a certain degree of stability
as the loop size increases, though the results obtained for the two cards are
dissimilar. We can also observe that their execution behaviour follows the same
general pattern over the loop size range. This confirms the reliability of our
proposed “bytecode execution time isolation” technique.

In general, the execution time stabilization is dependent upon factors such as
the CAD, its driver, the computer OS, the CPU load during the test as well as
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Fig. 5. Instruction Set

the card itself. For instance, in the case of the CAD, as the precision may vary
from one CAD to another, the confidence in the results for a given loop size
will vary. As a result, the loop size necessary to obtain an accurate and stable
measure will depend generally upon the test environment, hence the needfulness
for a loop size calibration prior to testing.

6 Future Works

6.1 Expanding the Test to Other Bytecodes

In the near future, we plan to expand the test to all bytecodes. Here also, our
approach, at the outset, will be to track back any auxiliary bytecode necessary
to satisfy the bytecode dependencies. The result of this dependency analysis is
presented in figure 5. We categorise the terms upon which the bytecodes operate
as follows:

t ::= a|b|i|s
n ::= m 1|0|1|2|3|4|5

cond ::= eq|ne|gt|ge|lt|le

t represents the set of data types used, objects (a), bytes (b), integers (i) and
shorts (s). n represents the allowed integer constants used. cond represents the
different execution conditions.
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For most of the cases, the test will follow the general framework presented in
section 3. However, we will still be confronted to some exceptional cases such
as those presented in the grayed background cells of the table. Indeed, the ex-
ecution time of these bytecodes cannot be isolated. One possible solution is to
pair bytecodes execution. For instance, we can measure the execution time of a
method invocation (such as invokestatic) and the return bytecode as a whole.

6.2 Other Issues

In this paper we have focused on benchmarking Java Card bytecodes. But in
the next few months, our objective will be to evaluate the execution time at the
Java Card API level.

With the benchmark results, obtained at the bytecode and API levels, we
will also be able to evaluate the performance of several execution scenarios of
applets. The evaluation will require the analysis of an applet structure both at
the bytecode and API levels to establish the bytecodes and methods used as
well as their frequencies. The potential execution time of a given applet will be
defined as a function of the frequency of methods/bytecodes and their benchmark
results.

7 Conclusion

With the wide use of Java in smart card technology, there is a need to evaluate the
performance and characteristics of these platforms in order to ascertain whether
they fit the requirements of the different application domains. For the time being,
there is no open source benchmark solution for Java Card. The objective of our
project [11] is to satisfy this need by providing a set of freely available tools,
which, in the long term, will be used as a benchmark standard.

In this paper, we have proposed, through our general benchmark framework, a
“bytecode execution time isolation” technique that helps us assess the execution
time of a bytecode, with OS level and hardware interferences removed.

We have shown via experimental tests that our technique produces accurate
results with a confidence varying with respect to the test environment used.
Indeed, stability of the result is strongly dependent on the frequency of the
execution of the bytecode under scrutiny. We discussed that to obtain an accurate
and stable measure, there is a need to calibrate the benchmark framework prior
to testing.
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Abstract. Power analysis on smart cards is widely used to obtain infor-
mation about implemented cryptographic algorithms. We propose sim-
ilar methodology for Java Card applets reverse engineering. Because
power analysis alone does not provide enough information, we refine
our methodology by involving additional information sources. Issues like
distinguishing between bytecodes performing similar tasks and reverse
engineering of conditional branches and nested loops are also addressed.
The proposed methodology is applied to a commercially available Java
Card smart card and the results are reported. We conclude that our aug-
mented power analysis can be successfully used to acquire information
about the bytecodes executed on a Java Card smart card.

1 Introduction

Currently Java Card is the most commonly used platform for commercial smart
cards. According to Sun Microsystems, Java Card technology grew from 750
million deployments in November 2004 to over 1.25 billion deployments in No-
vember 2005 [1,2]. Because smart cards are typically used in applications that
require a high degree of security, it is needless to say that security of Java Card
applications is very important.

Power analysis is a side channel analysis technique to acquire information
about running processes on a device (such as smart cards) by monitoring the
dynamic current usage. Power analysis on smart cards is commonly used to
obtain information about running cryptographic algorithms [3,4,5,6].

In this paper, we introduce Java Card reverse engineering methodology by
means of augmented power analysis. When a Java Card applet source code could
be reverse engineered, possible vulnerabilities can be exploited. We performed
our experiments on several commercially available Java Card smart cards. In
this paper we will focus on only one specific smart card1. Experimental results
for different smart cards can be found in [7]. Nevertheless, the majority of the
proposed techniques are applicable in the general case.
1 The specific brand and type of the smart card can not be disclosed.
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The main contributions of this paper are:

– A methodology to analyse power consumption of Java Card applets;
– Techniques to determine a unique power profile template for each Java Card

bytecode. In addition, we describe how templates can be recognised in an
arbitrary power trace, in order to determine the execution trace;

– Additional information sources that can be used to reduce the number of
errors in the generated trace;

– Techniques to convert the execution trace into structured Java Card bytecode
source.

Due to the space limitation, readers are assumed to have some basic knowledge
of Java Card technology (a good introduction can be found in [8,9]).

The rest of this paper is organised as follows. Section 2 discusses the method-
ology that we used. Section 3 presents the experimental results and the method-
ology refinements. Finally, we conclude in Section 4.

2 Methodology

In order to gain information and reverse engineer arbitrary Java Card applets,
we selected a programmable Java Card smart card. A Java Card applet is com-
piled to bytecode using the Java compiler. For example, each addition operation
as depicted in Figure 1 is compiled to the following bytecode sequence

sload, sload, sadd, s2b, sstore

The multiplication sequence looks similar (i.e. the sadd bytecode is replaced
by the smul bytecode). Therefore, the power trace representing the power con-
sumption variations of the applet execution is expected to show repetitions,
making this applet interesting for power analysis.

1 public class TestApplet extends javacard.framework.Applet {
2 public void process(javacard.framework.APDU apdu) {
3 byte a = (byte) 0x04 , d, p;
4 byte buffer [] = apdu.getBuffer ();
5 short len = apdu.setIncomingAndReceive ();
6 d = buffer [( short )( javacard.framework.ISO7816.OFFSET_CDATA )];
7 p = (byte)(a+d);
8 p = (byte)(a*d);
9 p = (byte)(a*d);

10 p = (byte)(a+d);
11 p = (byte)(a*d);
12 p = (byte)(a+d);
13 p = (byte)(a+d);
14 p = (byte)(a*d);
15 }
16 }

Fig. 1. Example Java Card applet
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We can execute the above process method by sending an arbitrary command
to the smart card when the applet is active. Our acquisition framework, which is
described in Appendix A, is used to obtain a power trace from the execution of
this test applet. The resulting power trace is depicted in Figure 2. This measure-
ment was performed without any trigger delay, at low speed and the at maximal
number of samples possible for the used equipment to gain a complete overview
of the smart card power consumption.

 0  1  2  3  4  5  6
ms

S00001001PG S00000000PG

S  = Start bit
P  = Parity bit
G = Guard time

Fig. 2. Single power trace

The last part of the power trace (i.e. from 3 to 6 ms) represents the smart card
response. In this case the response was 0x9000, because the Java Card applet
executed successfully. The 0x9000 response code is returned after approximately
3 ms. Therefore, the execution of the actual Java Card applet takes place in
the first part of the power trace (i.e. from 1 to 3ms). Note that the power
consumption increases and looks noisier during the applet execution. Possibly the
investigated smart card activates some countermeasure against power analysis
when the Java Card Virtual Machine (JCVM) is running. After we determined
the approximate start time and duration of the Java Card applet, a larger number
of power traces could be collected. By delaying the trigger signal and decreasing
the number of samples, we limited the acquisition to only the interesting region
of the power trace (i.e. from 1 to 3ms).

Resampling. Performing power analysis often requires the collection of a sig-
nificant number of traces. When capturing 10000 traces at 200 MHz each con-
taining 1000000 8-bit samples, the total file size becomes ≈ 9.5 GB. Resampling
is a technique to reduce the total file size, at cost of losing some information.
When the trace set is resampled at 4 MHz (the operating frequency of the smart
card), the number of samples will be reduced by a factor 50. Each trace will then
contain only 20000 samples 2 and require only 760 MB. Therefore it is advan-
tageous to resample the traces before storing them. Some measurements that
require high precision must of course not be resampled as will be shown later.

2 All samples represent the average value of 50 samples in the original trace.
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Correlation. Correlation gives a measure of association between variables [10].
It returns a value between -1 and 1, where 1 means “identical in shape” and
-1 means a “inverted in shape”. Correlation 0 means that the values are uncor-
related. We use correlation to recognise specific templates in a power trace. In
addition, it allows us to determine if a specific input value is used by a bytecode
or not. In contrast to correlation with input values, the negative correlation is
not relevant when using it to recognise templates. In this paper, a correlation of
1 is represented as 100% and 0 is represented as 0%. Detailed information about
the correlation function is given in Appendix B.

Averaging. As depicted in Figure 2, a single power trace is noisy. Taking the
arithmetic mean of a set of traces is a simple but effective technique to remove
noise. Figure 3 depicts the average of 10000 power traces of the same Java Card
applet using the same input data. Note that, in contrast to Figure 2, a repeated
pattern is clearly visible. The techniques described in the rest of this section
assume averaged trace sets, as single traces are too noisy.

 0  200  400  600  800

sadd smul smul sadd smul sadd sadd smul

 1000  1200  1400  1600  1800  2000

µs

Fig. 3. Average of 10000 power traces. Note that only the interesting region (1 ms to
3 ms in Figure 2) is acquired.

Template determination. In order to recognise bytecodes in a power trace,
each bytecode needs to be represented by a unique template. To determine a
template for a specific bytecode, a test applet that contains this bytecode is
used. For example, the source code fragment depicted in Figure 1 can be used to
determine templates of 10 different bytecodes (i.e. aload, baload, return, s2b,
sadd, sconst 5, sload, sload 2, smul and sstore). Storing frequently occurring
bytecode sequences as a single template is also considered. These templates are
referred to as combined templates.

The execution of the fetch, decode and execute sequence of the JCVM also
corresponds to a specific template (referred to as JCVM template). This is ad-
vantageous, because this template can be utilised to split the power trace into
separate parts representing the individual bytecodes. By comparing them with
the bytecode of the known Java Card applet, it is possible to store them as the
template for that specific bytecode. The same technique can also be used to de-
termine templates of native methods, e.g. a DES operation [7]. It is important
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to note that the templates considered here are valid only for the specific smart
card type used.

Template Recognition. The templates determined in the previous section
can be used to process an unknown applet. We developed a program that au-
tomatically matches n templates against an average power trace by using the
correlation technique described earlier. The result of this program is a set of
n traces containing the correlation of the power trace with each template. One
example is depicted in Figure 4 where the power trace (shown in red on the first
row) and its correlation with templates for sload, baload, sadd+s2b+sstore
and smul+s2b+sstore respectively are shown. From Figure 4 can be concluded
that the bytecode sequence smul+s2b+sstore is probably executed three times
during the applet execution.

 0  5

 smul+s2b+sstore

0

0

0

0

0

1

1

1

1

1  sadd+s2b+sstore

baload

sload

JCVM template

Average power trace

 10  15  20  25  30  35  40  45

µs

Fig. 4. Result of the template matching process

3 Experimental Results

As our first experiment, we developed a Java Card applet that performs only
two addition statements. Table 1 shows the results of the template recognition
process as described in Section 2. The first column contains the actual bytecodes
that were executed. The second column contains the bytecode with the best
correlation, while the third column contains alternative bytecode candidates that
have a correlation greater than a predefined threshold (i.e. 50%). The JCVM
template is used to cluster the execution trace. Note that the results contain
uncertainties and even one error (i.e. on the sixth row, the aload bytecode has
a better correlation than the actual sload bytecode).
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Table 1. Example execution trace obtained from the power analysis

Expected Recognised Alternatives
sload sload (93%) aload (89%)

JCVM
sload sload (92%) aload (91%), sconst & sstore (57%)

JCVM
sadd sadd (91%) sload (55%), aload (51%)

JCVM
s2b & sstore s2b & sstore (91%) sload (51%)

JCVM
sload sload (92%) aload (78%), sconst & sstore (54%)

JCVM
sload aload (92%) sload (91%)

JCVM
sadd sadd (90%) sload (54%), aload (53%)

JCVM
s2b & sstore s2b & sstore (90%) sload (53%)

Our second experiment was to attempt distinguishing bytecodes that perform
similar operations. Some bytecodes that are available in the JCVM are used
to optimise common operations. For example, loading a short value from local
variable 2 or 3 can be performed using sload 2 or sload 3 respectively. We
performed this measurement at 200 MHz, because distinguishing between similar
bytecodes, such as sload 2 and sload 3, is difficult using resampled traces.

We performed 12500 measurements of the power consumption during the
execution of an sload 2 bytecode and another 12500 measurements during
the execution of an sload 3 bytecode. Figure 5 depicts the difference between
sload 2 and sload 3. There is some difference only during a small period of time
(i.e. approximately 400ns). Although our experiment indicated the possibility to
determine the exact type of sload operation, a lot of traces must be collected
making this process very time consuming.

 0  0.2  0.4  0.6  0.8  1  1.2  1.4
µs

sload_2
sload_3

Fig. 5. Difference between sload 2 and sload 3



144 D. Vermoen, M. Witteman, and G.N. Gaydadjiev

3.1 Methodology Refinements

Our first experiments indicated that power analysis only, sometimes can not
provide enough information to recognise the correct bytecode template. We re-
fined our methodology by identifying additional information sources as will be
described in this section.

Impossible Bytecode Sequences. Not all bytecode can follow each other.
During the reverse engineering process it is advantageous to keep an operand
type stack. Although storing the operands themselves is difficult, storing their
types is much easier. Based on the elements on top of the operand type stack,
some bytecodes can be excluded from the set of possible follow-up bytecodes.
Note that this approach will greatly reduce the search space.

When this technique is applied to the example of Table 1, the impossible
bytecode sequence in this example: sload, aload, sadd can be recognised. Be-
cause an sadd bytecode expects a short on top of the operand stack, while an
aload bytecode pushes an objectref, the aload must be replaced by an alterna-
tive bytecode (i.e. the sload bytecode that matches for 91%). This results in:
sload, sload (first alternative), sadd. In this case, it is assumed that the sload
bytecode on line 5 and the sadd bytecode on line 7 are correctly recognised.

Unlikely Bytecode Sequences. Besides impossible bytecode sequences, as
described above, there are also bytecode sequences that are unlikely to occur
even they are allowed by the JCVM. For example, sconst 0 , sdiv (divide by
constant 0) is obviously not likely to occur in a normal trace.

Bytecode Statistics. Statistical information about already processed Java
Card applets can also be used. Because the bytecode of Java Card applets on a
smart card is usually generated by the Java compiler, certain patterns will occur
more often than others. For example, experiments reveal that a for loop, will
always be generated as depicted in Figure 6. Other examples are i=0 and i++
which are depicted on lines 1-2 and 5-9 respectively. Saving a template for each
of these frequently occurring patterns is advantageous. Experiments showed that
templates which contain more samples usually have a less noisy correlation, as
depicted in the last trace of Figure 4.

Input Data. Besides correlating a power trace with templates, correlation with
input data contained in the command can also be used to determine which
bytecode uses input data. The example in Figure 7 depicts the average power
trace of the smul bytecode. In addition, it also depicts the correlation with the
first operand of the smul bytecode and the correlation with a random byte,
which is not used by the smul bytecode. From Figure 7 one can conclude that
it is possible to determine if a specific input value is used by a bytecode.
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1 sconst_0
2 sstore_2
3 goto L2
4 L1: // Loop body is inserted here
5 sload_2
6 sconst_1
7 sadd
8 s2b
9 sstore_2

10 L2: sload_2
11 bspush 3
12 if_scmplt L1

Fig. 6. A for loop as generated by the Java compiler

 0
 0

 1
 0
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Correlation with one of the operands

Correlation with random byte

 20  25  30  35  40  45
µs

Fig. 7. Correlation between input data and the power trace

Bytecode duration. In some situations the duration of a bytecode execution
gives useful information. We found that the duration of a conditional branch
bytecode indicates if a branch is taken or not. For example, the duration of the
non-taken if scmplt bytecode is approximately 5.75µs. In case the branch is
taken the duration increases by 4.5µs to 10.25µs.

Loop Rerolling. Using the techniques described earlier, it is possible to ob-
tain an applet execution trace. In order to reverse engineer a Java Card applet
completely, the execution trace should be transformed into structured bytecode.
This step is certainly not trivial, because an execution trace is very likely to
contain loops.

In the ideal case, the reverse engineering process would generate an execution
trace as depicted in Figure 8. This figure shows the execution of a loop which is
iterated 3 times.The execution trace can be divided into several parts. First of all,
lines 3-6 indicate the presence of a loop. The goto statement is used to branch
to the conditional part of the loop which loads a short value (sload), pushes a
constant (bspush) and branches if the short comparison succeeds (if scmplt).
Second, the lines following the goto statement (i.e. lines 4-6) can be used to
split the execution trace of the loop into repetitive parts. The end of the loop
is reached when the conditional branch bytecode is not followed by the loop body.



146 D. Vermoen, M. Witteman, and G.N. Gaydadjiev

1 sconst_0
2 sstore_2
3 goto
4 sload_2
5 bspush 3
6 if_scmplt
7 // Loop body
8 sload_2
9 sconst_1

10 sadd
11 s2b
12 sstore_2
13 sload_2
14 bspush 3
15 if_scmplt
16 // Loop body
17 sload_2
18 sconst_1

19 sadd
20 s2b
21 sstore_2
22 sload_2
23 bspush 3
24 if_scmplt
25 // Loop body
26 sload_2
27 sconst_1

28 sadd
29 s2b
30 sstore_2
31 sload_2
32 bspush 3
33 if_scmplt

Fig. 8. Execution trace of the program depicted in Figure 6

In addition, the duration of the conditional branch bytecode may also indicate
the end of the loop, as explained earlier.

Besides reconstructing the loop, rerolling the loop has other advantages. First
of all it is possible to derive the labels originally used on lines 3, 6, 15, 24 and 33.
Second, it is very common that the same loop variable is used in the initialisation,
condition and increment part of the loop. Therefore it is likely that the bytecodes
on lines 2, 4, 8, 12, 13, 17, 21, 22, 26, 30 and 31 share the same local variable
index.

Although this technique works fine for this relatively simple example, it is
rather difficult to automate this process. Detecting a nested loop as such is not
very difficult, because the nested loop will cause an additional goto statement.
However, reconstruction of a nested loop is difficult because the conditional part
may contain similar statements and the execution traces may contain errors.
Moreover the loop may contain conditional statements.

Conditional Branches. Conditional branch bytecodes, such as if scmplt,
make the reverse engineering process more difficult. By varying the input data,
it is possible that another part of the source code is executed. Without knowl-
edge of the source code it can be difficult to determine on what input data a
conditional branch bytecode is dependent. There are two ways to determine such
dependency:

– Use correlation between random input data and the power profile of the
conditional branch bytecode;

– Inspect the reverse engineered applet first and try to derive what input data
is used in the condition.

It is however possible that a varying input data does not affect the conditional
branch, for example when it is based on an internal state or data from a random
generator. In this case the condition has to be determined from the partially
reverse engineered source code.

3.2 Execution Trace Decompilation

When the structured bytecode is available, it is relatively easy to reconstruct
source-level expressions. In [11], a technique to automatically decompile Java
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bytecodes into Java source code is presented. Although the referred paper focuses
on decompiling standard Java bytecode, we successfully implemented a Java
Card version. Implementation details of this process are outside the scope of
this paper.

4 Conclusion and Future Work

In this paper we showed that power analysis can be used to acquire information
about executed bytecodes on a Java Card smart card. Using the right equipment
and a methodology to determine and recognise bytecode templates, we were able
to generate an execution trace of a Java Card applet. Although the tested smart
card activates a countermeasure against power analysis when the JCVM is active,
we found that this countermeasure is not very effective. Next, we showed that
besides power analysis, additional information sources can be used to reduce
the number of errors and uncertainties in the execution trace based on the fact
that:

– some bytecode sequences cannot occur in a valid Java Card applet;
– some bytecode sequences are very unlikely to occur, although they are valid;
– statistics of other Java Card applets can identify frequently occurring byte-

code sequences.
– correlation with input data can be used to determine which variables depend

on input data;
– the duration of some bytecodes can provide information. The duration of a

conditional branch bytecode indicates if a branch is taken or not.

In addition, we presented techniques to generate structured bytecode from
the execution trace using loop rerolling. Most of the time however, this step
will be difficult, as the execution trace may also contain nested loops and other
conditional statements. On the other hand it may still be possible though, to
reverse engineer those parts manually.

Finally we showed that structured bytecode, once it is available, can be de-
compiled relatively easy to Java source code using algorithms which are also
used to decompile regular Java applications.

4.1 Directions for Future Work

There are a couple of topics that will be addressed in the future. First of all,
it would be interesting to see if the techniques described in this paper can also
be applied to RFIDs (contactless smart cards). Second, we intend to investigate
different countermeasures aimed to prevent Java Card applets from being reverse
engineered using power analysis. Finally, a program that performs the template
determination for all bytecodes automatically would be interesting.
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A Acquisition Framework

In order to collect power traces, we developed an acquisition system. As depicted
in Figure 9, the system consists of a smart card reader, a Digital Storage Oscillo-
scope (DSO) and a PC. Both the smart card reader and the DSO are connected
to the PC using separate USB channels.

Our initial system triggered the oscilloscope using software. Unfortunately
this caused the oscilloscope to be triggered at different positions in the applet
execution. The time required to execute a Java Card applet, is typically longer
than an oscilloscope can store in its memory. Therefore we developed a new
smart card reader that automatically triggers the oscilloscope after sending the
last byte of a command APDU. The trigger signal can eventually be delayed
with µs precision to inspect different parts of applet under test.

The experiments performed in this paper are performed using a 200 MHz
DSO that can store approximately one million samples.
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Fig. 9. The acquisition system

B Correlation Formulas

In order to understand how the correlation between two variables can be com-
puted, some other functions must be defined first. The variance of x is defined
as:

var(x) =
(
∑

xi − x)2

n − 1
(1)

where xi represents the i-th element of x, x is the algebraic mean of x, and n is
the size of x. The covariance of x and y provides a measure of how much x and
y are related and is defined as:

cov(x, y) =
∑

(xi − x)(yi − y)
n − 1

(2)

The covariance is difficult to interpret though, because it depends on the scale
of the input values. A better measure, independent on the absolute values of the
input is given by the correlation function which is defined as:

corr(x, y) =
cov(x, y)√

var(x) · var(y)
(3)
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Abstract. ISO 14443 compliant smartcards are widely-used in privacy
and security sensitive applications. Due to the contactless interface, they
can be activated and read out from a distance. Thus, relay and other at-
tacks are feasible, even without the owner noticing it. Tools being able to
perform these attacks and carry out security analyses need to be devel-
oped. In this contribution, an implementation of a cost-effective, freely
programmable ISO 14443 compliant multi function RFID reader and
fake transponder is presented that can be employed for several promis-
ing purposes.

Keywords: RFID, Low Level Reader, Fake RFID Tag, Relay Attack.

1 Introduction

As technology evolves and chip sizes decrease, RFID (Radio Frequency Iden-
tification) is becoming widely-used for ubiquitous tasks. The ISO 14443 [14]
norm for contactless smartcards is currently employed in various security sen-
sitive applications, such as the electronic passport [3] to store biometric data
and RFID-enabled credit cards [31]. The contactless interface brings new oppor-
tunities for potential attackers: The device can not only be activated and read
out without the actual owner taking note of it, but also can the transmission
of data via the RF (Radio Frequency) field be eavesdropped from a distance
of several meters [8]. This demanded for countermeasures, such as encryption
of the interchanged data and the BAC (Basic Access Control) in the electronic
passport [15].

New Perils. However, modern attackers get physical access to the chip or its
electromagnetic field and perform so called side channel attacks like a DEMA
(Differential Electro Magnetic Analysis) which can be performed with contactless
smartcards [5]. By measuring and evaluating the electromagnetic emanation and
correlating it with the code running on the chip, information about a secret key
stored on it is gathered. A remote power analysis was performed by Oren and
Shamir [22]. Their attack, targeting at RFID tags operating in the UHF (Ultra
High Frequency) range, could probably also be applied to contactless smartcards.

D. Sauveron et al. (Eds.): WISTP 2007, LNCS 4462, pp. 150–160, 2007.
c© IFIP International Federation for Information Processing 2007
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Furthermore, fault injection1 in order to cause a malfunction of the device
may reveal a clue to the secret key [2]. A relay attack is also feasible [11]: By
redirecting the data interchanged between a reader and a tag over a separate
communication channel in real time, one can pretend to be the owner of someone
else’s tag.

The industry wants to keep the prices low and, due to the restricted energy
supply of the chip via the RF field, the number of switching transistors is
limited [19]. Hence, security measures and physical protection on the chip2 may
be very lightweight or won’t be employed at all [29], even when security or
privacy issues are relevant.

Towards More Security. As fraud involving contactless smartcards is becom-
ing more profitable, soon the first real world offences are expected to emerge.
To test and then improve the security of the existing systems, tools being able
to perform attacks, as well as to analyse the capabilities and functionality of
the used hardware and protocols, need to be developed. As the standards dif-
fer very much with regard to operating frequency, communication interface and
transmission protocol [9], the hardware for a reasonable security analysis must
be custom-made and tailored to a particular one. We opted for the ISO 14443,
being the most common and widespread norm for contactless smartcards.

Our Contribution. A cost-efficient embedded system shall be developed to
ease the security analysis of, maybe cryptographically enabled, smartcards with
an ISO 14443A compliant RF interface. Extensive control of the communication
and the energy supply is demanded, as well as interoperability with other hard-
ware and measurement equipment. In addition, stand-alone operation is required
for performing practical attacks and mobile data acquisition. Some of the tasks
to be made possible are

– communication on the bit layer with a low level reader,
– emulation of an ISO 14443 compliant tag,
– perform practical replay and man-in-the-middle (relay) attacks,
– assist remote power analysis, DEMA and fault injection analysis,
– acquisition and logging of the interchanged data, and
– testing of different types of antennas and power amplifiers.

2 ISO 14443 RFID Operation Principle

As depicted in Fig. 1, a minimum RFID system consists of two main compo-
nents, namely a reader generating a sinusoidal field with a carrier frequency of
fc = 13.56MHz which supplies the second component of the system, a tag or
transponder, with energy and often a clock. Both devices are equipped with
a coupling element which in the case of the ISO 14443 is a coil with typical
3-10 windings, allowing for data transfer in both directions.
1 For instance by manipulating the energy supply or by emission of laser pulses.
2 Including masking and sensors for detecting fault injection or light.
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Fig. 1. RFID Operation Principle

The wavelength λ = c
f of the electromagnetic field, where c denotes the speed

of light and f the carrier frequency, is approximately 22.1m at 13.56 MHz
and therefore several times greater than the typical operating distance of 8-
15 cm between reader and tag. Accordingly, the field emitted from the coil3 of
the reader may be treated as purely magnetic4, leading to the term inductive
coupling for describing the communication and energy link between reader and
tag [9].

Reader → Tag. The reader sends data to the tag using a modified (pulsed)
Miller code [9]. Pauses have to be created with a duration of approximately 2.5μs
with 100% ASK (Amplitude Shift Keying), i.e., the field has to be completely
switched off and on by the reader (compare with the upper waveform in Fig. 1).

Tag → Reader. Due to the inductive coupling, the feedback of the transponder
drawing more or less energy from the field can be sensed on the side of the
reader. Hence, the tag transmits data by switching on and off an additional
load and thereby deliberately drawing more energy from the field than during
normal operation. This process is termed load modulation. As the coupling
between tag and reader is pretty weak, the resulting effect on the field is almost
not noticeable (compare with the lower waveform in Fig. 1). For this reason, a
subcarrier of the frequency of the reader is used for the load modulation, resulting
in the transmitted information being placed in sidebands and so making its
detection possible [9]. The data is transmitted employing Manchester code and
synchronously to the field of the reader, utilising the described OOK (On-Off
Keying) with a subcarrier of fc

16 = 847.5kHz.

3 Implementation Details of the Embedded System

The developed embedded system consists of a multi purpose reader device which
is equipped with a μC (microcontroller), an RF interface and some components
for signal processing. A second device, termed fake tag, is designed to appear like
an authentic tag to an RFID reader and furthermore can acquire the information
contained in the field. Between the two units, a communication link can be
established.
3 The technical term for coil is inductivity.
4 Similar to the common transformer principle.
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Fig. 2. System Overview

As depicted in Fig. 2, the RFID tool is effortlessly integrated in a measurement
setup consisting of a PC (Personal Computer), the developed reader and fake
tag, a digital oscilloscope and more equipment for measuring and inducing faults.
The PC controls the measurements and later combines and further processes the
data acquired from scope and reader. This work focuses on ISO 14443 type A
devices using a data rate of 106 kBit

s , as specified in the standard [14].

3.1 Reader

The operation principle of the low level reader, as detailed in this section, is
depicted in Fig. 3. The RFID tool is based on an Atmel ATMega32 [1] micro-
controller, clocked at 13.56MHz, which is amongst others equipped with 32 kB
Flash RAM, 1 kB non-volatile EEPROM(Electronically Erasable Programmable
Read Only Memory) and an ADC (Analog to Digital Converter). For flexi-
ble operation and testing, the software running on the μC can be updated
through a PC without the need to remove it from the PCB (Printed Circuit
Board).

The main part of the analogue front end is provided by the EM 4094 RF-
transceiver [6] which possesses a 200mW push pull transmitter operating at
13.56MHz, is capable of 100% ASK and ready for ISO 14443A operation at a
price of less than 5e . The received HF-Signal can be conditioned by internal
filters and adjustable receiver gain. The chip allows for transparent operation,
i.e., a high input level on its DIN pin will instantly switch off the field, while
a low level switches it on, thus enabling flexible, direct control of the RF field.
The output stage of the transceiver has been matched for feeding the signal into
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Fig. 3. Operation Principle of the RFID-Reader

a common 50Ω coaxial cable, so that different antennas and power amplifiers
can be connected to a socket placed on the PCB.

Fast communication with a PC or other USB (Universal Serial Bus) equipped
hardware is made possible by the FT 245R [10] parallel to USB chip from FTDI5.
The device allows for receiving or sending of packets of eight data bits by pulling
a read or write input pin high and low. Using the supplied VCP (Virtual Com
Port) driver, a maximum data transfer rate of 1 MByte

s is possible, while the USB
port appears as a standard serial COM port, so that a reliable communication
can be established fairly easy.

To disburden the μC, the creation of pauses (see Sect. 2) is sourced out to
a 74123 [26] monoflop, creating the required pulses on every rising edge emitted
by the μC. These are fed into the EM 4094 transceiver, resulting in the field
being switched off shortly. Two more monoflops, creating pulses on any type of
transition, convert Miller coded data, for instance received from the fake tag
during a relay attack, to pulsed Miller coded data which is again applied to the
field.

The modulated Manchester code, output by the EM 4094, is demodulated
using an envelope detector circuit. The signal is rectified by a diode and then
fed into a LPF (Low Pass Filter). An LM 311 [21] voltage comparator decides
whether the subcarrier is present or not, resulting in Manchester encoded data
with the appropriate 0 and 5 V levels at its output.

As the demodulation of the signal received from the RF transceiver costs some
time (in this case ≈ 1.5μs), it can happen, that the answer of the tag is not well
synchronised with the reader when relaying data. To take this into account, a
circuit has been developed for adding a short adjustable time delay to the
outgoing signal, without altering its waveform.

An interface for serial communication between the developed reader and fake
tag is also installed on the PCB. The data pins can be driven directly by the
peripheral circuitry of the RFID tool or steered by the μC, which allows for the
emulation of a tag as well as for μC-based processing of the interchanged signals.

5 www.ftdichip.com
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3.2 Fake Tag

The counterpart to the reader, named fake tag, can be utilised for relay attacks
as well as for stand-alone emulation of a contactless smartcard. Its functional
principle is depicted in Fig. 4. Unlike a normal (passive) tag, the fake tag de-
scribed here has its own power supply6 which may also be used for supplying a
radio module for communicating with the reader.

Fig. 4. Operation Principle of the Fake-Tag

A tag needs a coil to establish the coupling with its counterpart at the reader
(see Sect. 2). A capacitor is connected in parallel to this inductance, to form
a parallel resonant circuit. For an ideal parallel resonant circuit, fc = 1√

LC

applies [32], where fc denotes the carrier frequency of the reader, C the capaci-
tance and L the inductance of the tuned circuit. In practice, first the value for L
is derived from the shape and dimensions of the coil. Afterwards, the optimal C
is calculated and then realised as a variable capacitor, so that the circuit can be
tuned more precisely later on. The induced voltage can become relatively large,
so two antiparallel Zener-diodes limit the maximum possible voltage and thus
protect the rest of the circuit.

The subcarrier with a frequency of fc

16 =847.5kHz is derived from the field
generated by the reader. For this, the antenna is connected to the input of a 4-bit
binary counter 74393 [23] through a resistor which limits the maximum current
into the input stage, as proposed in [7]. The fourth output of the binary counter
toggles every 23 = 8 clock cycles which equals frequency division by 16, i.e., the
desired subcarrier. For modulating the incoming Manchester coded signal with
the subcarrier, a 7408[24] AND gate combines it with the output of the binary
counter.

To achieve the load modulation, as described in Sect. 2, a resistor has to be
connected in parallel to the coil of the tag. This is realised via an IRFD110 [13]
N-channel MOSFET, allowing for fast switching and a maximum drain-source
voltage of 100V. The output of the AND gate (see above) is connected to the gate
of the transistor. Accordingly, by toggling the resistor, the 848kHz-modulated
6 Can be a small lithium battery.
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Manchester code is in turn modulated onto the 13.56MHz field of the reader
and the information put into the sidebands of the carrier.

To acquire data from a nearby reader, an LM 311 comparator combined with
two envelope detectors (as detailed in Sect. 3.1) are connected in parallel to the
resonant circuit. One of the detectors has a fast response time and distinguishes
between the field being completely switched off and the load modulation case.
The other envelope detector reacts slower and averages the signal at the antenna,
for adapting the threshold voltage of the comparator to the current field strength.
This approach immunises the circuit to noise caused by the RF field and so
extends the operating range.

The output of the comparator is connected to a 7474 D-type flip-flop [25],
whose inverted output is fed back into its input. Hence, a change of the output
state occurs on every rising edge at the input. This conversion from pulses into
transitions, resulting in a Miller coded data signal, is amongst others necessary
to reduce the bandwidth required for the communication link of the RFID tool.

3.3 Operation Modes

The software for the μC is mainly written in C, with assembler code inserted,
where the execution speed is crucial. Besides, a C library for controlling the RFID
tool from a PC, as well as a corresponding GUI (Graphical User Interface) is
available. The following operating modes are currently implemented:

– bit level reader : the reader is freely controlled by the PC via USB,
– stand-alone reader : mobile operation with an arbitrary command sequence

prestored in the EEPROM (and acquired data stored into it),
– tag emulation: the fake tag is directly controlled via USB,
– mobile tag emulation: prestored data is replayed by the fake tag, while the

reader’s requests are recorded to the EEPROM,
– relay mode: mobile operation of both reader and fake tag, while the relayed

bits in both directions can be recorded to the EEPROM.

Further routines are provided for generating ISO 14443 compliant bitstreams
and for reading and writing the non-volatile EEPROM.

4 Results

The flexible low level reader mode has been successfully tested with several
ISO 14443 compliant tags which are partly listed below in this section. The
exact behavior and timing of the contactless interface can be flexibly steered,
even transcending the ISO standard, if desired.

The data sent out by the fake tag is accepted by an ACG7 Dual 2.1 Passport
Reader in our laboratory, just as if it was a genuine tag. During our tests, the
answer of the fake tag to a request issued by the reader was intentionally delayed

7 http://acg-id.aaitg.com
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by more than 250μs and the resulting behaviour was analysed. Compliance of
the ACG reader with the strict timing requirements during the initialisation
phase8 could not be observed, i.e., the delayed answer was still accepted, thus
easing relay attacks.

The RFID tool can be used for logging the data interchanged in any direc-
tion. This can be helpful to analyse unknown protocols, as well as for further
processing, e.g., key-search with cost effective hardware, such as proposed in [18].

Various antennas were built, tuned to resonance with the carrier frequency
and matched to a 50Ω coaxial cable, to perform tests with regard to the oper-
ating range and the influence of the physical environment of the card.

For executing a relay attack [16], the antenna of the bit level reader possessed
by the offender has to be placed close enough to a contactless card of the victim.
At the same time, the fake tag is brought into the field of an RFID reader, e.g.,
at the cash desk, by an accomplice. The data being transferred by this reader is
acquired and directly forwarded on the bit layer through a communication link to
the attacker. There, the data is retransmitted to the card of the victim. Its answer
is relayed back to the reader at the cashpoint and so, as the attackers continue
relaying the data, both reader and tag will be convinced that they are in close
vicinity to each other and thus carry out their task, e.g., authorise a payment.

Such an attack has been successfully carried out using the here described
embedded tool with

– an RFID-enabled passport, issued by the Federal Republic of Germany,
– a student identity chip card of the Ruhr-University in Bochum,

Germany,
– Philips classic Mifare and DESFire cryptographically enabled smartcards,
– an Atmel AT88SC153 smartcard, and
– a ticket for the FIFA world cup 2006 in Germany,

until to at least reading out the UID (Unique Identifier) of the tags. In the case
of the Mifare classic, after a the successful login, encrypted data blocks were read
out and modified remotely. Furthermore, the 64 Byte content of a world cup ticket
was read out using the relay mode and the interchanged data was recorded for
subsequently analysing the protocol. The Philips Mifare Ultralight chip embedded
in the ticket [28] provides no encryption at all. Hence, the RFID access control
could easily be spoofed with the developed embedded system, by means of a replay
attack, as the communication protocol is fully published in the data sheet [27].

When relaying data, a delay is inevitable, as described in Sect. 3.1. However,
if a reader scrutinised the timing, a relay attack could still be carried out suc-
cessfully, as the (fixed) bit sequence of a command could be stored in the μC
and sent out instantly after an incoming request.

Hancke and Kuhn [12] proposed a countermeasure for relay attacks, based
on ultra-wideband pulses. Still, as it is not employed in current tags, the most
effective way to enhance privacy is constructing a Faraday’s cage for the tag:
Our experiments proved, that a single layer of aluminum foil wrapped around
8 ISO 14443 requires the tag to answer to a REQA exactly after 86.9 μs.
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the smartcard completely protects it from being activated or read out by an
unauthorised reader.

The implemented embedded system has become a valuable part of the mea-
surement setup in our laboratory and is currently employed to assist several
ongoing security analyses (compare with Sect. 5).

5 Future Prospects

At the moment, the achieved read range with the developed reader and the
antennas used is approximately 5-10 cm. It is possible to extend this range to
25 cm [17], using a power amplifier [20] and a large copper tube antenna [30].

The communication protocol of a Philips Mifare DESFire contactless smart-
card has been reverse engineered until to the point necessary for carrying out
a DEMA [4]. In the respective attack, the challenges9 were generated by a
proprietary RFID reader and had to be extracted from the oscilloscope wave-
forms, which meant a severe, time consuming constraint for the analysis. Using
the developed system, arbitrary access to the contactless interface is provided,
allowing amongst others for freely chosen challenges. A DEMA is based on a
statistical test at one certain point in time, so subsequent measurements need
to be synchronised before superimposing them. The for his purpose required
reliable signal to trigger the oscilloscope can now also be emitted by the RFID
tool, thus further improving the attack.

It is promising to use the embedded system for execution of a remote power
analysis. During the pauses occurring in the field of the reader (compare with
Sect. 2), a tag draws its energy from a built-in capacitor which recharges, when
the field is activated again. Consequently, different shaped energy peaks emerge
in the field, depending on the amount of power consumed by the tag during the
energy gap. This behaviour might be exploited to derive a secret key stored on
the tag. The RFID tool provides a corresponding output signal which can be
acquired by the Atmel’s internal ADC or an oscilloscope.

As the reader can be arbitrarily programmed, fault injection attacks are
feasible [2] in which the device is forced to show erroneous performance, by
perturbing physical parameters like the power supply or the clock frequency.
Furthermore, controlling of external pulse generators and other fault injection
equipment with the RFID tool is possible.

Finally, any new protocols based on the ISO 14443 standard can be im-
plemented and tested. If additional hardware was required, it could easily be
connected to the PCB.

6 Conclusion

In this contribution, we present an embedded implementation of a cost effective,
arbitrarily programmable RFID reader and a fake tag which can be used for var-
ious promising purposes. The tool was built using electronic hobbyist equipment
9 Random numbers interchanged for the authentification.
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and off the shelf components at a cost of less than 40e, and its design is simple
enough to be reproduced by a low skilled attacker. With the developed hard-
ware, we have successfully carried out relay and replay attacks between various
contactless smartcards and a commercial RFID reader. Integrated in a measure-
ment system, the proposed tool can help to carry out security analyses, such
as a DEMA or a remote power analysis, and assist fault injection attacks. The
stand-alone operation modes permit for mobile tag emulation, reader operation
and logging of the interchanged data.

Employing ISO 14443 compliant contactless smartcards in security sensitive ap-
plications should be regarded very critically, as the physical interface is proven to
be insecure against relay attacks. A smartcard identified by a reader does not have
to be in its direct vicinity, as declared by many manufacturers. Instead, the data
can be forwarded from large distances without permission or even notification of
the owner, as described in this paper, with little effort. If an RFID tag is indispens-
able, we suggest a metal shielding to prevent unauthorised access and propose that
the card should not be able to become active, unless the owner has performed an
action, e.g., press a button or open the cover of his electronic passport.
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1 Introduction

Smart cards and wireless sensor network nodes (hereafter referred to as WSN
nodes) are two functionally distinct technologies sharing similar design charac-
teristics. Both have severe space and computational restrictions and require low
levels of power to function.

Smart cards have evolved from being simple insecure data carriers, to quite
sophisticated devices today (e.g., mobile cell phone SIM technology). There are
many standards that govern the development and use of smart cards and many
vendors in the market place.

Conversely, WSN nodes are a relatively new form of evolving technology and
although products are widely available, there are only a few embryonic standards
governing development and use [1].

With ever increasing miniaturisation and ubiquity of computing devices there
may be overlapping areas within technologies such as smart cards and WSN
nodes (and indeed PDAs, laptops and mobile cell phone technology too). The
proposed framework and methodology for the systematic analysis of security is-
sues within this paper may help to assess potential overlaps and/or convergences
within technologies.

D. Sauveron et al. (Eds.): WISTP 2007, LNCS 4462, pp. 161–174, 2007.
c© IFIP International Federation for Information Processing 2007
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To enable this work, two high level objectives were established.

– OBJECTIVE 1: Determine if there are any security threats, vulnerabilities,
attacks and countermeasures that have been established for smart card tech-
nologies (both contact and contactless) that can be directly and/or indirectly
applied to wireless sensor network node technologies;

– OBJECTIVE 2: Determine if there are any existing or emergent security
threats, vulnerabilities, attacks and countermeasures that have been estab-
lished for wireless sensor network node technologies that can be directly
and/or indirectly applied to smart card technologies.

The rest of this paper has the following structure: Section two outlines threat
and attack models for smart cards. Section three outlines threat and attack
models for WSN nodes. Section four discusses the framework and methodology
established for the data capture phase of the study. Section 5 discusses the
comparative threat analysis of the two technologies. Finally, section six provides
conclusions and recommendations for further work.

2 Smart Card Threat and Attack Models

Historically, smart cards have endured many threats and attacks exposing vul-
nerabilities, however most of these threats now have effective countermeasures.
Many smart cards have not been through a recognised security evaluation, how-
ever, it is important to note that some industries (e.g., banking/credit cards)
have insisted that certain aspects of smart card technology are assessed through
Common Criteria [2]. We believe that historically the drive to seek Common
Criteria [2] evaluations has helped firm and mature security requirements and
functionalities within many technologies.

2.1 Smart Card Definitions

A smart card consists of an integrated circuit with some form of tamper resis-
tance, packaged and embedded within a card carrier. Overarching definitions of
smart card technologies follow:

“The integrated circuit is a single chip incorporating CPU and memory which
may include RAM, ROM, and/or programmable non-volatile memory (typically
EEPROM or Flash Memory) [3].”

“The chip is embedded in a module which provides the capability for stan-
dardised connection to systems separate from the chip [3].”

The card carrier is usually made from plastic and typically conforms to
ISO/IEC 7810:2003 [4] and ISO/IEC 7813:2006 [5].

Smart cards can be broken down into contact and contactless varieties.
Contact cards are typically in accordance with the standard ISO/IEC 7816

(parts 1-15) [6], which covers physical characteristics of the integrated circuit
and also the electrical interface and connectivity for both power and data via a
card reader.
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Contactless cards can be broken down into two main areas, proximity cards
and vicinity cards. Proximity cards are typically in accordance with ISO/IEC
14443-1:2000 (parts 1 to 4) [7]. Power and data are transferred via inductive
coupling over a distance not exceeding 10cm. Vicinity cards are typically in
accordance with ISO/IEC 15693 (parts 1 to 3) [8]. Power and data are transferred
via inductive coupling over a distance not exceeding 1.2 metres.

Within this paper, the term smart card will be used to cover both contact
and contactless smart cards (unless a distinction needs to be made).

2.2 Radio Frequency (RF) and Radio Frequency Identification
(RFID) Definitions

Contactless smart cards utilise radio frequency fields for their communications
and usually (although not always) as a source of power.

RFID devices are not restricted to card carriers and can be embedded into a
range of objects, they are less sophisticated than contactless smart cards due to
functional and cost requirements rather than technical limitations.

“RFID refers to procedures to automatically identify objects using radio
waves [9]”.

2.3 Smart Card Threats

We have derived Threat/Attack groups from the following research [10, 11].
These groups map effectively to popular generic attacker groupings

– Class I ( Clever outsiders): Smart but lack sufficient knowledge of the sys-
tem having access to only moderately sophisticated equipment. They exploit
existing weaknesses rather than creating any. “Opportunist Attacker” (Hob-
byist/Vandal/Minor Criminal possibly using widely available tools);

– Class II (Knowledgeable insiders): Substantial and specialised technical ed-
ucation and experience, understanding parts of the system and potential ac-
cess to most of it. They have sophisticated tools and instruments for analysis.
“Expert/Professional Attacker/Major Criminal” (Personal gain generally fi-
nancially motivated, using tools adapted specifically for the purpose);

– Class III (Funded organisations): Specialist teams with related and com-
plementary skills backed up with significant resources. Capable of in-depth
analysis of the system, designing sophisticated attacks, and have the most
advanced analysis tools available. They may use Class II adversaries as part
of the attack team. “Sophisticated Attacker” (Intelligence Services, highly
resourced Research Labs or very highly skilled Organised Crime).

2.4 Smart Card Attacks

This subsection will outline well known and established attacks on smart cards.
Often an attacker is aiming to ‘Reverse Engineer’ the technology to establish
how it works [10, 12]. The main objective is to identify the structure of the chip
as well as detailed information on its internal operations.
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Invasive Attacks. To gain unauthorised disclosure or modification of security
features/functions, user data, software operation, other operational information
and/or change the behaviour of the chip. This is done by physical probing and/or
physical modification of the chip.

Semi-Invasive Attacks. Skorobogatov [12] describes semi-invasive attacks in-
volving some depackaging to reach the chip’s surface, however it is not necessary
to break through the passivation layer to access the chip’s interior (e.g., the use
of light to induce a processing fault).

Non-Invasive Attacks. This type of attack is aimed at retrieving sensitive
data (e.g., keys) while observing a smart card under operation or stress. Leakage
may occur through emanations, variations in power consumption, Input/Output
characteristics, clock frequency, or by changes in processing time requirements.

Observation Attacks: Information Leakage and/or Cryptanalysis.
Kocher [13] described an attack on the RSA algorithm by conducting timing
attacks on a CPU to count and log cycles between known events (e.g., measure
the decryption times for several known cipher-texts) in order to obtain decryp-
tion keys.

Simple Power Analysis (SPA) is an analysis of power consumption to deter-
mine which set of CPU instructions are being processed and under which para-
meters. Differential Power Analysis (DPA) is similar to SPA but differs due to the
measurement of power when known data is processed by the card and results are
statistically analysed to look for patterns. Differential Electro-Magnetic (Radia-
tion) Analysis (DEMA) looks at the electromagnetic emanation from the smart
card to attempt to retrieve sensitive data. Differential Fault Analysis (DFA)
aims to retrieve secret information from the card by inducing an error whilst a
cryptographic calculation is being performed by the card. With the exception of
DFA, these attacks are sometimes known as Side Channel attacks.

Protocol and/or Functionality attacks. This type of attack looks for flaws
in the protocol implementation. Techniques can be replay-attacks or interrupting
the smart card while it is executing a command.

Software Attacks. This type of attack is looking into software malfunctions
of the smart card (e.g., software loading and badly formatted commands aiming
to circumvent security mechanisms on the card).

Deficiency of Random Numbers. An attacker may predict or obtain in-
formation about random numbers generated by the microcontroller because of
poor quality entropy and/or seeding of the random numbers created.

Perturbation, Malfunction, State, Environmental Stress. This involves
operating the smart card outside of its normal operating conditions (e.g., increas-
ing or decreasing operational temperatures) to attempt to deactivate security
features or disclose information.
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3 WSN Node Threat and Attack Models

Although there is research on Java Card 3.0 [14] and TCP/IP and there has been
research with secure distributed computing on a Java Card grid [15], the typical
usage of smart cards today is not as networked devices; conversely a WSN node
is a networked device.

3.1 Wireless Sensor Network Nodes Definitions

The term ‘Mote’ (originally labelled COTS Dust [16]) is often interchangeable
with the notion of a sensor node or wireless network node. For this paper, a WSN
node refers to a device consisting of an integrated circuit with a microprocessor
and memory which is able to function as an element within a network, passing
data onto other devices through wireless communications.

“These devices make up hundreds or thousands of ad hoc tiny sensor nodes
spread across a geographical area. These sensor nodes collaborate among them-
selves to establish a sensing network. A sensor network that can provide access
to information anytime, anywhere by collecting, processing, analysing and dis-
seminating data [17]”.

3.2 WSN Node Threats

Initially, many WSN routing protocols were vulnerable to targeted attacks,
to some degree this is still the case. Although there are many ‘open’ routing
protocols today, some implementations use proprietary routing protocols and
algorithms.

Many papers categorise threats as being network Outsiders or Insiders [18,
19, 20]; further, attackers are categorised as Mote-class attackers or laptop-class
attackers [18, 19]. Mote-class attackers are perceived to have access to only a few
WSN nodes to exploit and derive weaknesses; they also have an attack surface
affecting only a few nodes within a WSN. Conversely, a laptop-class attacker
may be in possession of much more potent devices (e.g., laptops for instance).

3.3 WSN Node Attacks

WSN nodes have limited storage, processing and bandwidth capability and power
(battery) management is essential [17].

C. Karlof and D. Wagner 2003 [18] state “Insider attacks may be mounted
from either compromised sensor nodes running malicious code or adversaries
who have stolen the key material, code, and data from legitimate nodes, and
who then use one or more laptop-class devices to attack the network.”

Attacks tend to focus on the nature of WSN nodes and known vulnerabilities:

– Denial of Service attacks on the device by running down the power source
(battery) through continuous operation;

– Denial of Service through Radio Frequency jamming so data can not be
transmitted or received;
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– Most (if not all) devices do not seem to have a crypto-coprocessor, thus any
encryption creates a processing overhead for already constrained capabilities;

– WSN node Integrated Circuits are not tamper resistant, any secret informa-
tion on the chip may be susceptible to standard smart card attacks.

We were not able to find any references for WSN node Common Criteria [2]
evaluated products or Protection Profiles to enable evaluations. However, NIST
are involved with the US Department of Homeland Security in the development
of advanced CBRNE - (chemical, biological, radiological, nuclear, and explosive)
detection sensors that could provide the underpinnings for a national sensor
network [21, 22].

4 Threat, Vulnerability, Attacker and Countermeasure
Table

To capture and categorise data, we created a framework and methodology in the
form of a TVAC Table (Fig. 1).

Fig. 1. A Sample Threat, Vulnerability, Attack and Countermeasure (TVAC) Table

The TVAC table has five main blocks with subsections. It has two initial
columns categorising the technology and its unique identifier (TUID). A contact
smart card is prefixed SCA, a contactless smart card prefixed SCB and a WSN
node prefixed WSNN.



A Comparative Analysis 167

4.1 Threat Block

In the context of this project, we have defined a threat as being, “an objective
a foe might try to realise in order to misuse a target or asset.”

Target and/or Asset: The following categories are used to categorise the threat
type:

– Physical - Chip; Physical - Other;
– Logical - Operating System; Logical - Platform;
– Logical - Application; Logical - Other;
– Communications Bearer (e.g., Physical Card Reader, RF or RFID);
– Other.

Threat Class: The classification of the threat type as follows:

– Physical Static (e.g., No Power to Hardware);
– Physical Dynamic (e.g., Power to Hardware);
– Logical Static (e.g., No Power source active, but using glitches, light, tem-

perature variances to affect software before power activated);
– Logical Dynamic (e.g., Power to Software);
– Social (e.g., Social Engineering);
– Policy (e.g., Weakness in Governing Policies);
– Other.

Threat Summary: This includes a ‘Statement’ of the Threat indicating ‘Entry
Point’ and rating the ‘Impact’ of the Threat from High, Moderate or Low.

4.2 Vulnerability Block

In the context of this project, we have defined a vulnerability as being, “a specific
means by which a threat can be executed via an unmitigated attack path.”

Vulnerability Summary: A ‘Statement’ of the Vulnerability, with a ‘Probabil-
ity’ rating from High, Moderate or Low.

CRIPAL: is an acronym and methodology we have established to cover
high level ‘primary’ security goals. The acronym stands for: (C)onfidentiality;
(R)eliability; (I)ntegrity; (P)rivacy; (A)vailability; (L)egitimate Use.

STRIDE: a method used by Microsoft [23] to categorise threats during soft-
ware development. This adds low level granularity to ‘CRIPAL’ area. It stands
for: (S)poofing, (T)ampering, (R)epudiation, (I)nformation disclosure, (D)enial
of Service, (E)levation of Privilege.

4.3 Attacker Block

In the context of this project, we have defined an attacker as being, “the entity
that is exploiting a vulnerability to establish a threat.”
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Attacker Group: As stated earlier they consist of:

– Class I (clever outsiders) - “Opportunist Attacker”;
– Class II (knowledgeable insiders) - “Expert/Professional Attacker”;
– Class III (funded organisations) - “Sophisticated Attacker”.

Attack Class: This consists of:

– Invasive Active (e.g., Cutting new tracks);
– Invasive Passive (e.g., Microprobing to observe not to modify);
– Non-Invasive Active (e.g., Power Surge or glitch attacks);
– Non-Invasive Passive (e.g., DPA and Timing Attacks);
– Semi Invasive techniques (e.g., Light attacks).

4.4 Countermeasure Block

In the context of this project, we have defined a countermeasure as being, “a
mitigation measure that prevents, detects or significantly reduces a misdeed
associated with a specific threat or group of threats.”

Countermeasure Summary: A ‘Statement’ of the Countermeasure, indicating
its ‘Effectiveness’ represented by the following options: Total (Complete Effec-
tiveness); Partial (Some Effectiveness); None

Overhead of Countermeasure on Time, Performance & Cost: This looks at
what impact the countermeasure may bring if implemented.

4.5 Applicability to WSN Nodes/Smart Cards

This is an assessment of whether any security issues and mitigation can be ap-
plied from one technology type to the other represented by the following options:
Total (Complete Effectiveness); Partial (Some Effectiveness); or None

5 Comparative Threat Analysis Assessment Matrices

Fig. 2 and Fig. 3 below illustrate Comparative Threat Analysis Assessment Ma-
trices designed by the authors, which use data from populated TVAC tables.

These matrices record any commonality/applicability from one technology to
the other. Ten threats, SCA-T1 to SCA-T10, have been explored for contact smart
cards and these have also been applicable to contactless smart cards too as SCB-
T1 to SCB-T10 respectively. Four additional threats have been applied to contact-
less smart cards as SCB-T11 to SCB-T14, giving contactless smart cards a count
of fourteen. Eight threats were listed for WSN nodes (WSNN-T1 to WSNN-T8).

Key to Matrices:

– SCA/B: Threat and/or Countermeasure is applicable to both Contact and
Contactless cards and hence are referenced as so;

– Contact Smart Card: has SCA prefix with threat reference following - e.g.,
SCA-T1;
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– Contactless Smart Card: has SCB prefix with threat reference following -
e.g., SCB-T1;

– WSN Node: has WSNN prefix with threat reference following - e.g., WSNN-
T1;

–
√

(T ) = TotalMatch;
√

(P )to(T ) = PartialtoT otalMatch;√
(P ) = PartialMatch; ×(N) = NoMatch.

Fig. 2. Smart Cards Compared to WSN Nodes Matrix

The following is a summarised breakdown of our findings:
SCA/B-T1: Smart cards are susceptible to reverse engineering of the Inte-

grated Circuit (IC). Possible countermeasures include an active shield, mesh or
sensor that once affected renders the IC unusable, destroying data on the chip
and then shutting down operations. The use of environmental sensors within the
chip would have a similar affect. Most smart cards have tamper resistance, most
if not all WSN nodes do not. Although some WSN nodes are ruggedised for use
in harsh environments, this offers no protection from known threats. Smart card
tamper resistance techniques should be transferable to WSN nodes.
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SCA/B-T2: Smart cards are susceptible to Microprobing. This attack and its
countermeasure are closely related to SCA/B-T1 above.

SCA/B-T3 and SCA/B-T4: Side Channel attacks like SPA, DPA or EM
analysis may apply to WSN nodes. Randomness and scrambling countermea-
sures used within smart cards maybe transferable to WSN nodes. The same
stands for DFA which is SCA/B-T4.

SCA/B-T5: This maps to WSNN-T8 and involves a Test Mode which smart
card and WSN node chips have [24]. It is possible to unlock the Test Mode
function and as such get full logical control of the IC. Smart cards mitigate this
by requesting authentication to the Test Mode function with a failure leading to
chip inoperability.

SCA/B-T6: Some smart cards undertake a form of internal firewalling with
memory management to prevent a protocol or functionality attack. WSN nodes
do not have this protection, but could learn from smart card countermeasures.

SCA/B-T7:Skorobogatov has undertaken research in the field of Data Rema-
nence. The countermeasures he proposes [12] for the protection of smart cards
should be applicable to WSN nodes.

SCA/B-T8: Policies. There is a need for clear operating policies such as
CONOPS, CONUSE and CONEMP, and adherence to ‘laws of the land’ (e.g.,
UK Data Protection Act 1998). Many publications also mention asymmetric keys
within smart cards and WSN nodes and public key certificates; however these
publications do not mention a Certificate Policy or Key Management Policy
which would underpin the use of keys or certificates.

SCA/B-T9: This threat involves weakness in random number generation and
many smart cards mitigate this through crypto-coprocessors. WSN nodes do not
appear to have crypto-coprocessors and their addition may help with processing
capability.

SCA/B-T10: This relates to a Smart Card Management System and/or a
Database Management System. These are required for effective management of
smart cards but also provide a path for a reach-back attack from a device like
a smart card into an Enterprise network. This may apply to WSN nodes, but
we have seen no mention of a WSN Node Management System -which in itself
seems vulnerability.

SCB-T11 and SCB-T12: These threats involve the interception of messages
via RF communications and have partial applicability to WSN nodes. SCB-
T11 is an eavesdropping threat between reader & transponder [25]. SCB-T12 is
similar but involves a malicious masquerading reader. The countermeasures in
both cases are not totally effectively for WSN nodes.

SCB-T13: Potential RFID attacks with SQL, buffer overrun and threat of
reach-back to Enterprise networks [26]. A range of RF/RFID exploits may be
applied from smart cards/RFIDs to WSN nodes and proposed countermeasures
[26] may mitigate these threats.

SCB-T14: Denial of Service (DoS) attacks on contactless smart cards by jam-
ming communications signals. There may be significant similarities and applica-
bility to WSN nodes and their communications.
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Fig. 3. WSN Nodes Compared to Smart Cards Matrix

WSNN-T1: DoS which may have a partial applicability to contactless smart
cards (e.g., Jamming). We also apply a new term of Cessation of Service (CoS).
Because WSN nodes are battery powered, they are designed to exploit a sleep
mode to conserve power. If the nodes undergo continuous operations they will
drain the battery. A sustained DoS attack may lead to a final CoS attack in that
the node uses up all of its power and is no longer enable to function. An attack
spread over a Wireless Sensor Network is a Distributed Cessation of Service
(DCoS) attack.

WSNN-T2: This involves routing data between nodes and hence as such has
no current applicability to the typical use of smart cards today, this may change
in the near future with Java Card 3.0 and grid computing concepts for smart
cards [14, 15].

WSNN-T3: The Sybil attack seems specific to WSN nodes, however the is-
sue of spoofing, masquerading or exploiting multiple identities is something
that can be shared to a partial degree between WSN nodes and smart cards.
Sun’s SSSL (Sizzle) mini web server [27] for WSN nodes may secure communica-
tions enabling confidentiality and if used with TLS meet integrity requirements
too.

WSNN-T4 through to WSNN-T6: This involves routing data between nodes
and hence as such has no applicability to smart cards. See WSNN-T2 above.

WSNN-T7: This involves weaknesses in the underlying programming lan-
guages. nesC [28] which is a C derivative used to create Tiny OS (a leading
operating system for WSN nodes). The applicability to smart cards is minimal
but may relate to native functions that smart card manufacturers utilise within
their cards before installation of widespread operating systems or platforms.
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WSNN-T8: This threat and countermeasure maps directly onto SCA/B-T5.
Many nodes examined by Becher, Benenson and Dornseif had a JTAG connector
on the node board easily accessible [24]. Attackers with appropriate kit may take
control of the WSN Node.

6 Conclusion

This paper proposed a framework and methodology for classifying and analysing
threats against smart cards and WSN nodes. Indications are that many attacks
against smart card integrated circuits apply to WSN nodes and some WSN
node RF/Communications attacks may apply to contactless smart cards and
RFIDs.

Tamper resistance features within smart cards should be considered for WSN
nodes. We suggest the need to establish High, Medium and Low assurance bench-
marks for WSN nodes offering differing levels of security relative to use. Many
technologies have matured through schemes like Common Criteria [2]and the
production of Protection Profiles may help focus the development of security
within WSN nodes.

Threats within WSN nodes shared with smart cards (specifically contactless
smart cards) lie within the Radio Frequency space. However, communication
and routing attacks are more effective against WSN nodes compared to smart
cards due to the ‘networked’ nature of these attacks.

This paper has also defined two new definitions for attacks, ‘Cessation of
Service (CoS)’ and/or a ‘Distributed Cessation of Service (DCoS)’ which may
have wider applicability than just WSN nodes.

Overall, we feel that this ‘path-finder’ research has established the need for
thorough scientific testing to prove or disprove the assertions made in this paper.

Other research areas that may closely tie into this research are suggested
below:

Investigate RF/Communications threats between WSN nodes and Mobile
Cell Phones for similarities (e.g., Bluetooth [29], IEEE 802.15.4 [1] and also
ZigBee [30]).

A study of WSN nodes and sensor technologies in airports to assist baggage
and passenger screening.

An assessment of smart card services/functionalities such as Global Platform
[31] and Card Manager [32], Java Card Runtime Environment (JCRE) [33] and
smart card APIs to determine applicability to WSN nodes.

The proposed framework and methodology in this paper may help to assess
any shared security issues between Java Card 3.0 [13], secure distributed
computing on a Java Card grid [14] and also the use of Active-RFID [34] and
Passive-RFID [35] (which have an onboard power supply) and WSN nodes.

Authentication of WSN nodes is an often quoted security challenge [36, 37,
38]. The exploration of Attribute Certificates [39] and/or Kerberos tickets may
enable novel secure authentication methods.
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We are interested in investigating the potential for a secure authentication and
routing protocol similar to IPSEC which we have provided a working label of
KAFKA (Know Allies & Family, Know Adversaries) to suit the adaptive nature
of Wireless Sensor Networks.
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Abstract. For ubiquitous communication self-organising adhoc net-
works become more and more important. We consider mobile phones as
an appropriate trusted gateway for external machines with low commu-
nication needs. A message-based approach is best in such a scenario with
moving mobile phones and machines. We propose a security model for
access control to the communication infrastructure that is also message-
based. To meet the requirements of ubiquitous communicating machines,
all algorithms on the sender’s side are based on symmetric cryptography
resulting in low computation needs. A sophisticated symmetric key in-
frastructure for message authentication provides the necessary key man-
agement. The trustworthiness of the mobile phone is achieved by using
the SIM as a secure storage and computing module. This makes it pos-
sible to use the mobile phone not only as a user terminal but also as a
trusted infrastructure component of the mobile network.

Keywords: SIM, mobile network, machine-to-machine communication,
symmetric key infrastructure, message-based communication.

1 Introduction

2G/3G mobile networks with packet transport capabilities are widely spread
today. They are also used for machine-to-machine communication. This paper
introduces a security architecture for a communication technology, in which the
external (sending) machine is equipped with a personal area radio (PAN, like
ZigBee of Bluetooth) instead of a wide area radio (WAN, like GRPS or UMTS).
This keeps the module complexity on the sender’s side as well as the resource
allocation in the mobile network very low. Interesting applications include all
sorts of vending machines, escalators or environmental sensors.

Figure 1 illustrates the communication architecture considered in this paper.
An external machine (on the left hand side) wants to send a message to a host in
the Internet (e.g. running a web service). For this it looks for a randomly passing
mobile phone and uses it as a relay. We call such a mobile phone the gateway in
the following. In the mobile network there is another intermediate component
named proxy. It performs accounting and security actions. In this paper we only
discuss the unidirectional case from the external machine to the Internet host,
although a bidirectional extension can be imagined.
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Fig. 1. The considered communication scenario: An external machine should be able
to send messages supported by a trusted mobile phone

This paper deals with the security concerns that come along with this new
approach. As the communication is message-oriented with one or more hops, a
message-based security concept (Sect. 4.3) must be chosen. We show how this
paradigm can be integrated in the existing security architecture of the mobile
network. Message authentication is done using symmetric keys backed by a light-
weight key management system (Sect. 4.2 and 5). A public key infrastructure
like X.509 is not feasible as external machines have very low computation ca-
pacities and miss some prerequisites like access to a reliable time source. The
proposed system respects the necessity of an easy deployment and allows im-
plementing a simple application on present cheap hardware. For example the
software could directly be implemented on the integrated micro-controller of the
Bluetooth transceiver (like the BlueCore 4 of CSR). Then the hardware costs
will be very low compared to other solutions.

The subscriber identity module (SIM) as a key component of the mobile net-
work security serves as a key component in this new concept too. Because the
gateway should operate as an external security wall preventing unauthorised
traffic in the mobile network, the functionality of the gateway is split into a
trusted and an untrusted part (Sect. 4.3). The SIM provides the trusted envi-
ronment for storing the secret keys and does the security relevant calculations.
The untrusted component handles the hardware access and is executed in the
main processing unit of the mobile phone.

2 Related Work

There are interesting activities in the research community to enhance today’s mo-
bile networks with relaying techniques. The goals are mostly coverage extension
and capacity improvements at moderate costs. Pabst et al. [1] provide a good start-
ing point. We specialise our concept on machine-to-machine communication only.

For security related concepts a look at adhoc networks is also interesting.
There are several proposals [2,3] to meet the adhoc nature with asymmetric
cryptography and secret sharing techniques. Yang et al. [4] introduce a very
localised and self-organising approach. However they do not really meet the
characteristics of our communication system. Further more we want to evaluate
the chances of symmetric cryptography.
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Therefore a closer look at existing symmetric key infrastructures (SKI) can
help for inspiration. The classical Needham-Schroeder protocol or Kerberos, but
also newer proposals of Crispo et al. [5] target at user / machine authentication
though. Some investigations show that this is rather different from a symmetric
key infrastructure for message authentication with its keys which are shared by
many devices.

Most closely related to our architecture, protocol and applications is the work
of the Delay Tolerant Networking Research Group (DTNRG) in the Internet
Research Task Force (IRTF). The main protocol is the Bundle Protocol [6],
accompanied the Bundle Security Protocol [7]. Both are still drafts. The protocol
is much more complex targeting more applications. However the security protocol
still has a couple of open issues, especially the key management. With our simpler
protocol we can provide a thorough and practical solution.

3 Technical Fundamentals

The mobile phone consists of three logical parts which are involved in the data
exchange. The first hardware component is the insecure communication unit
of the device responsible for the Bluetooth, NFC or IrDA communication with
the external machine. The SIM module acts as a trusted storage and run-time
environment for the security critical processes. The third component is the com-
munication interface to the outside world, in our case the GSM network as a
connection towards the Internet.

The SIM is the security critical gateway between both sides and is therefore
responsible for all security related tasks. Data received from the insecure commu-
nication unit are verified, authorised and sent in a secure manner into the mobile
network by the SIM. The communication to the SIM can be established via the
classical APDU interface according to ISO 7816 or via a TCP/IP protocol stack
on top of an USB connection to the SIM.

As we show in Sect. 5.1 the SIM must receive sensible key material from a
server in the mobile network. Using the latest generation of Internet-enabled
SIMs (like the Giesecke & Devrient GalaxSIM) a direct transport layer security
(TLS) tunnel can be established between the server and the SIM. Then the
mobile phone simply acts as a router between the SIM and the server. In case of
an APDU based communication all data is routed through the insecure mobile
phone operating system. Then additional security mechanisms have to be applied
on the application level. We detail them in Sect. 5.1

The packet data protocol context (PDP context) [8] is another concept in
2G/3G networks that is important for this paper. A mobile phone, which wants
to send packet switched data (e.g. via the general packet radio service (GPRS)),
must request a packet data protocol context first. This context can be imagined
as a virtual channel. A network protocol (e.g. IP), an interface address (e.g. an
IP address) and other information is associated with this virtual channel. This
also includes specific routing and charging rules. In our system the mobile phone
requests a certain PDP context to deliver messages to the proxy in the mobile
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network. Using this PDP context the routing to the proxy is possible and the
data transport is not charged to the mobile phone owner’s account.

Because the PDP context is requested from an early component in the core
network (the serving GPRS support node (SGSN)), refusing the PDP context
for a given device is an efficient way to keep unwanted traffic to the proxy (which
is free of charge) out of the mobile network.

4 Securing the Transport

The main purpose of this new communication approach is the message transport.
Therefore this chapter discusses security aspects of the message transmission
process. Starting with the required security services, the necessary symmetric key
infrastructure is outlined next. With this background the message transmission
process can be explained. The final section details a few important topics further.

4.1 Security Services

Talking about necessary security services corresponds with compiling the secu-
rity requirements of the system. Therefore we first discuss these security services
and show the realisation afterwards. For example Zhou and Haas [2] give the
fundamentals.

In this scenario the data should not be transmitted through an end-to-end
connection. Instead a message should be forwarded using one or more relays
to reach its final destination. Each relay must verify the message integrity and
whether it is allowed to use the infrastructure (authentication). This makes some
kind of message authentication necessary.

Because the transmission in the mobile network causes costs, the mobile net-
work operator must ensure the non-repudiation of origin. Another key infrastruc-
ture is set up for non-repudiation purposes, as the requirements are very different
from the ones for message authentication. Note that, using symmetric keys, the
mobile network operator can only prove that the message has not been created
by a third party as he is able to create verifiable messages himself. A trust rela-
tion between the machine operator and the mobile network operator is assumed,
so this will not become a problem.

Finally the anonymity of the mobile phone outside the mobile network must
be ensured. We also increase the availability through redundancy: An external
machine may re-transmit a packet several times depending on the booked service
level. It should give attention to use different gateways for each re-transmission
for security reasons.

Our system provides confidentiality too, but as an optional feature. There are
a few applications that do not need this service but want avoid the extra effort.

4.2 Key Infrastructure

As mentioned in the previous section two sets of symmetric keys are used. With
the access control key set each relay and the proxy can verify that a message
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(i.e. the sender) is authorised to use this mobile network for message-based com-
munication. The non-repudiation key set is necessary for accounting purposes.
With these keys the mobile network operator can determine the creator of the
message uniquely. They are also used for packet encryption.

The access control key set consists of 32 keys. Each key is valid for a chosen
time period (e.g. 3 years), and is replaced by a successor afterwards. It is identi-
fied with an identification number and a version number. Section 5 describes the
key management for the access control key set further. The proxy in the mobile
network has access to all 32 keys.

The access control key set is divided into two subsets of 16 keys each. A
gateway has the keys of one subset, resulting in two types of gateways depending
on the actual subset. This ensures that the system still runs, even if all 16 keys of
one mobile phone are compromised. The keys are deployed onto the subscriber
identity module card (SIM card) and cannot leave it. This guarantees the secrecy
of them, as the subscriber identity module is considered to be a rather secure
key storage. Section 4.3 details further how this module is used as a security
kernel in this architecture.

An external machine has six keys, three out of each subset. During connection
establishment with the gateway a subset is negotiated. Actually those six keys
are not specific for a machine but for all machines of a machine operator (one
company). External machines and their operating companies are considered to
be the major risk for the secrecy of the keys.

In contrast the keys of the non-repudiation key set are not shared between the
machine operators and the gateways. Each machine operator has its own unique
key. The proxy in the mobile network uses these keys to verify the sender for
accounting purposes. The keys are versioned as well, but the update process is
not automatic. Instead the keys are exchanged during other service tasks on-site
(e.g. every 5 years), so a sufficient long overlap between two consecutive key
versions is required. Using only one key per machine operator reduces the size
of the key database compared to individual SIMs in GSM modules.

4.3 Message Transmission Process

With this key infrastructure we can describe the transmission process of a mes-
sage in the following.

External machine to gateway: First the external machine needs an access con-
trol message key derived from a key out of the access control key set and a
non-repudiation message key derived from the machine’s non-repudiation key.
These message keys are recomputed for each message and help in combination
with a nonce to hinder attacks based on a large collection of data or on mes-
sages with the same payload but different keys. Because there is no end-to-end
connection the message key must be generated with a pseudo-random function
and parameters only depending on header respectively packet information (see
Sect. 4.4). The secret keys the message keys are derived from are called master
keys in the following. Another parameter is the nonce which is generated by the
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mobile phone to prevent replay attacks. Therefore the message keys must be
computed after the external machine has connected to the gateway.

With the non-repudiation message key the external machine encrypts the
payload first. The encryption is indicated through a certain value in the content
type header, as it is optional – meeting the needs of a few applications. Then
two message authentication codes (MACs) must be computed, the access con-
trol MAC for the relaying and the non-repudiation MAC for accounting (see
Fig. 2). To avoid the necessity to perform the hashing over the payload twice, a
modification of the HMAC algorithm [9] is introduced in Sect. 4.4. With this the
non-repudiation MAC is based on both message keys while the access control
MAC is a common HMAC over the whole message, including the non-repudiation
MAC. This makes it possible that every gateway can test the integrity of the
message and verify that the message is authorised for this service. In addition
the proxy can prove that the sender address indicates the right customer.

. . .

Message number Sequence number Re-transmission number
. . .

Content type Header length Authentication parameters

Nonce

Access control MAC

Non-repudiation MAC

Fig. 2. Header of each packet

All in all when the external machine has found a gateway, it receives the
number of the access control key set and a nonce, chooses an appropriate master
key out of that key set, optionally encrypts the payload, computes both MACs
and finally delivers the message to the mobile phone.

Processing within the gateway: In this concept the new extension to the security
of the 3G network is the understanding of a mobile phone as a trusted gateway
for message-based access. The trust originates from two measures: First we use
the subscriber identity module as a secure key store and trusted processing
platform, second each packet can be associated by the mobile network operator
with a mobile phone and thus with a real world person.

Figure 3 shows that a server module in the main processing area of the mobile
phone accepts the incoming messages from external machines. The symmetric
keys for the access control MAC verification must be stored in a trusted envi-
ronment. Therefore the server module forwards the message to the SIM card
next. The method for the data exchange depends on the actual SIM card type.
A small software module in the SIM verifies the access control MAC and sends
it back to the main processor if the HMAC is valid. Otherwise it simply drops
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the message. This ensures that faked messages do not pass the mobile phone.
The only chance for an attacker to send messages through the gateway consists
in revealing a valid access control key. Compromise of the key will be detected at
the proxy, because of a wrong non-repudiation key MAC. The key management
system (see Sect. 5) provides methods for key revocation, so once the compro-
mise is noticed, the abuse of the network is intercepted. All sensitive data is
handled inside the trusted environment of the SIM and no secrets are visible
from the untrusted domain at any time. This concept makes it obsolete to use
an expensive trusted platform.

Fig. 3. Software architecture in the gateway

When the message passes the HMAC test in the SIM successfully, it is given
back to another software module in the untrusted processing area of the gateway.

Gateway to proxy: To send the packet to the proxy in the mobile network, a
software component in the untrusted area of the mobile phone first requests a
specific packet data protocol context (PDP context) from the serving GPRS
support node (SGSN). With this PDP context the mobile phone can access
the proxy. It delivers the packet via an unsecured hypertext transfer protocol
(HTTP) connection. Because a packet is usually much smaller than 100kByte,
the use of an authentication protocol like the transport layer protocol (TLS, [10])
would lead to a high overhead. It is more efficient to accept every packet, limit
the packet size and verify both MACs. Therefore it is better in this situation to
react effectively on attacks, instead of preventing them – although this channel
into the mobile network is very vulnerable, because it is not charged to the
mobile phone owner’s account.

If one of the MACs or the combination of the non-repudiation key and the
access control key is not valid (one non-repudiation key and exactly six access
control keys are assigned to each machine operator), the proxy can detect an
attack. The nonce and the various numbers in the header (see Fig. 2) make it
possible to detect replay attacks. In addition optional destination filters at the
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proxy can protect companies if their non-repudiation key has been compromised.
There are several measures available to react on those attacks:

– Traffic from manipulated mobile phones can be suppressed refusing the
packet data protocol context for them. The mobile phone cannot send any
data without charging anymore.

– Further criminal acts can lead to legal consequences, because the mobile
phone owner is known.

– Attacks from devices behind the mobile phone are detected by the gateway.
Only newly compromised keys could pass the gateway.

– Key management mechanisms as described in Sect. 5 make it possible to
react precociously on compromised keys.

All in all we have seen that the use of the subscriber identity module as a
trusted kernel combined with other existing security mechanisms of the mobile
network makes it possible to keep unwanted traffic out of the mobile network.
This architecture extends the 3G network efficiently for message-based external
access.

4.4 Implementation Details

Message key computation: A limited number of 32 keys is used across many
devices and many messages respectively packets. This makes it necessary to use
a message key (km) for the MAC computation instead of one of those 32 master
keys (ki, i = 1, . . . , 32) directly. The algorithm is the same for both, the access
control message key and the non-repudiation message key. The only difference
is the chosen master key.

The message key must be derived with a pseudo-random function (PRF) from
a master key. In addition a nonce is necessary to randomise the message key. It
is the nonce generated by the gateway and shown in Fig. 2. The function must
be able to provide a bit stream with variable length depending on the actual
hash function in the HMAC computation.

The pseudo-random function as defined in the draft of the Transport Layer
Security protocol (TLS) v1.2 [10] is chosen here. The only difference is the ab-
sence of the label (see appendix A for convenience). The nonce concatenated
with the source address, the destination address and the message number builds
up the seed; the master key is used as the secret. A nonce may not be used twice,
but it may be counted sequentially; the (pseudo-) randomness is provided by the
PRF. All input values of the PRF are part of the header (see Fig. 2). Therefore
all hops equipped with the master key can and should verify the access control
MAC before forwarding the message.

Message authentication code computation: As Sect. 4.1 explains, two MACs are
necessary for two different purposes: one to control the access to the relayingmech-
anism and another one to prove the origin of the message for accounting purposes.
Using the conventional HMAC algorithm, this would result in two hash computa-
tions over the complete message. Since this system targets at external machines
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with low computation power, a modified combined method is proposed in the fol-
lowing. As a result the access control MAC can be verified with the usual HMAC
verification algorithm, whereas the non-repudiation MAC needs both keys – the
access control message key and the non-repudiation message key.

For the MAC generation an HMAC operation over the message m (without
the not yet computed MACs) is performed with the access control message key
km

ac first.

hi = HMAC(km
ac, m) (1)

The non-repudiation MAC hnr can be derived from this intermediate result
with the non-repudiation message key km

nr :

hnr = HMAC(km
nr, hi + nonce)

To verify this MAC both keys (km
ac and km

nr) must be known. This is true for the
external machine and the proxy.

To complete the access control MAC, hnr must be appended to the HMAC
operation of (1). The state of that first HMAC computation must be preserved
until this last HMAC computation. Then it is possible to verify the MAC with the
usual HMAC algorithm over the complete message including the non-repudiation
MAC, but in a slightly different order.

Both MACs can be inserted in the message as shown in Fig. 2.

5 Key Management

5.1 Access Control Keys

The system architecture as proposed in Sect. 4 relies on the secrecy of a set of
keys for access control that is shared among all participants. In the following the
proxy under control of the mobile network provider is considered equal with the
central key management server.

Even if the main system uses symmetric cryptography, each subscriber identity
module (SIM) contains an asymmetric key pair used for mutual authentication
during key roll-out and key revocation.

Key roll-out: The SIM cards are delivered to the customers with an initial ver-
sion of the secure application, an individual key pair and certificates necessary
to authenticate themselves against the central server. On first start-up the sub-
scriber identity module connects to the management system via a secure HTTP
connection with mutual authentication. The asymmetric key pair is used for this.
Through this secure tunnel it receives a current version of the software and the
current key set.

The initial set of keys in the external machine comes with the hardware roll-
out; thus the keys leave the protected environment of the network operator. This
deployment is a very critical task but not in the scope of this work. Section 5.2
details further thoughts on this topic.
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Key renewal: To allow key versioning each key index is extended by an ad-
ditional version number. A new version number is the increment-by-one of its
direct predecessor value. This enables the devices to decide if a presented key
is newer or older than the one it currently uses without having access to the
whole key history. In addition each key is associated with an expiration date.
This time information is not security critical but is one way to trigger a key
renewal procedure in the gateway.

The key renewal is done in two steps: In step I the new keys aremade available on
the central management node, from where the gateways can fetch them. A mobile
phone starts the update procedure, when the expiration date has been exceeded
or when a delivered message is rejected by the proxy because of an outdated key.

First the gateway sends a list of the key versions in its local key store to
the server via an HTTP connection. The server compares the list with the key
version in the repository and returns updates for all keys which posses a version
difference of one. In this key renewal response the new key is encrypted with its
predecessor, so no further authentication or transport encryption needs to be
done (for details about the key renewal response see Sect. 5.3). The device must
store the new key and the key renewal response for later use. If the distance
between the key versions is larger than one or if the outdated key is comprised,
the mobile phone must fetch the latest key and its key renewal response using
the schema described for key revocation below.

In step II the new keys are distributed to the external machines. When a ma-
chine sends a message to the gateway, the key version of the message is examined
and – if the version number in the local store is higher – the communication is
instantly rejected. To distinguish such a rejection from other communication
problems, a special (OBEX) error code is sent. The machine then requests a key
update and receives a key renewal response as described in Sect. 5.3.

Again only a difference of one in the version number can be bridged by this
mechanism. A larger gap would need an on-site service (compare Sect. 5.2). In
the meanwhile the machine could use one of the remaining five keys. If the key
version presented by the machine is newer than the one in the mobile device,
the communication request is accepted but the message is kept in a quarantined
state. As soon as a connection to the management system is available, a key
update is performed and the message is evaluated using the new key.

Because the adhoc connection between the external machine and the gateway
is very short-lived, some further considerations are necessary about the software
architecture in the mobile phone. The access to the subscriber identity module
is too slow. Section 5.3 details this further.

Key revocation: If one of the keys becomes compromised, any communication
that is secured with that key must be rejected by the gateway. To signal the
key invalidation to the participants in the network the version number is incre-
mented by two to distinguish normal and revoking updates. The procedure for
a revocation and a key renewal in case of a version difference larger than one is
the same. The double increment forces the gateways to fetch the key update via
an authenticated connection and breaks the update path for external machines.
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In case of a revoked key, the subscriber identity module in the gateway es-
tablishes a secure HTTP connection with mutual authentication similar to the
key roll-out procedure. Through this tunnel the SIM directly receives the new
key and a key revocation note (see below). The latter one is forwarded to the
untrusted area in the mobile phone to notify external machines about the key
revocation.

There are a couple of ways to notify the gateways about compromised keys.
The most promising methods are push messages like short message system (SMS)
messages and notifications during message delivery. In the latter case the proxy
informs the mobile phones about newly compromised keys every time they deliver
a message (with this or another key). This can be done during the first three
months for example. It seems to be a good heuristic as very active gateways are
informed very fast this way without a traffic overhead.

There is no secure way to update compromised keys inside the external ma-
chine. The knowledge of the other keys is not sufficient to receive the new version
of the key. Even if a key exchange is not possible, it is wise to push a key revo-
cation note to the machine, so it no longer sends messages with an invalid key.
This key revocation note is presented to machines using the compromised key,
and it is secured by an HMAC with the compromised key. It is safe to use the
compromised key to authenticate the key revocation note as an attacker may
also send this note with all its keys he has got.

5.2 Non-repudiation Keys

The non-repudiation keys are known only to two parties – the machine operator
and the network operator. Therefore a complex key infrastructure as introduced
above is not necessary here. Instead these keys are considered to be more long-
lived. If we assume that a service technician comes on-site at least once in two
years, the key renewal process does not lead to an additional effort.

The key deployment demands a secure process within the company of the
machine operator. It depends strongly on the organisational structure there and
is therefore out of the scope of this work. Some thoughts on it include, that all
keys (the non-repudiation and the access control keys) reside in an encrypted
form on a cheap exchangeable flash memory (something like SD cards). All
machines have a super key in their fixed flash to access their keys. This way it
the keys do not leave a certain area in the company unencryptedly.

5.3 Implementation Details

Key renewal response: For each outdated key the server sends a new key en-
crypted to the gateway. The encryption is the bit-wise difference between the
old and the new key: u = kn

i ⊕ kn−1
i . To proof the authenticity of the update

message, an HMAC using the old key is appended r = u + HMAC(kn−1
i , u). If

the HMAC is valid, the update message is considered authentic and the gateway
can recover the new key kn

i with another XOR operation.
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The above response is saved to be used for the key renewal between the
gateway and the external machine as well.

Software architecture in the gateway for the key renewal: The key renewal between
a gateway and an external machine imposes some problems based on the nature of
adhoc networks.The time slot available for communication between the subscriber
identity module and the machine can be very short and dispatching a message from
the Bluetooth stack to the trusted execution environment on the SIM card has a
high latency. To provide a fast response on key version errors and for key renewal
responses, the version list and the encrypted key material is stored (in copy) in the
untrusted area of the mobile device. Then the gatewaycan immediately respond on
messages with outdated keys and on key renewal requests. Because no unsecured
confidential data is involved in this process, the update process can be executed
over any untrusted media to any kind of gateway or external machine.

6 Discussion of Selected Attacks

This section focuses on the vulnerabilities the above system imposes. Attacks on
Bluetooth ([11,12,13] are good points of entry) or the mobile network are out
of the scope because these technologies are present with or without our system
and those attacks are mostly implementation dependent.

A major thread on today’s communication systems are denial-of-service (DoS)
attacks as they tend to be easy to execute. Looking at the external machine such
an attack could be executed by simulating a legal gateway and capturing all
packets a machine wants to send. Two methods could be combined to prevent
this. First, it is part of the communication concept, that an external machine
may send a message several times according to a booked service level. For re-
transmission different gateways should be used to complicate a successful attack.
Second, machine operators who need a very high service level could configure
their machines to authenticate the phone (with the access control keys). Because
this costs much time, this decision should be well considered.

Next someone could try to attack the MACs of a captured message. To hinder
this, message keys have been introduced. But basically it depends on the hash
function, whether such an attack is possible. The HMAC specification [9] details
the requirements for an appropriate hash function.

The next component is the gateway. All kinds of faked messages (including
replayed messages) can be detected by the mobile phone, if it chooses the nonce
appropriately. Only wrong non-repudiation MACs cannot be found. However the
attacker must know access control keys in this case.

The application on the subscriber identity module must be written with secu-
rity in mind, as a successful attack on it might reveal a whole subset of access
control keys and possibly one authentication key pair. In general we consider a
successful attack on the card hard but possible. However the keys on the SIM are
not sufficient to successfully send a message into the Internet. A non-repudiation
key is necessary too. Therefore the economic benefit in attacking a SIM is limited.
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Finally the MACs, the combination of the keys, the nonce and the various
numbers in the header of each message help to detect all kinds of attacks on
the proxy in the mobile network. Revoking compromised keys and refusing the
PDP context for the affected gateways are effective measures in this situation
(compare with the end of Sect. 4.3).

Spreading a shared secret over many entities increases the probability of a
compromisation. Alternatives like asymmetric cryptography or a significantly
increased number of keys have many other downsides. Therefore we designed a
dynamic system (with key renewal and revocation) which keeps nearly unaffected
if either a SIM or an external machine is compromised.

7 Conclusion

This article proposed a security concept to extend the present 2G/3G network
for message-based communication. It enables three interesting communication
features: The asynchronous transfer provides a communication service even in
areas without direct network coverage (the handset can carry the message into
mobile coverage). The trust relationship between the external machine and the
mobile phone is of a kind, that every user can become a potential node in this
relay network. And finally the accounting and key infrastructure is company-
based, leading to a minimal resource allocation in the mobile network.

To realise this we introduced a symmetric key infrastructure appropriate for
message authentication in a relay network. It is supported by asymmetric keys
which are only used for the initial enrolment and to renew compromised keys.
All algorithms used in the external machines have been chosen to work with very
low computation power.

The whole key management system was designed to work as a stand-alone
solution, so a third party can provide this service using well defined interfaces
to the mobile network operator. Nonetheless a good integration into the mobile
network has been achieved, especially by using the SIM card as a secure storage
pre-configured by the mobile network operator. The security level is similar to
that of existing mobile networks.

If this service should be delivered by the mobile network operator only, the
existing key infrastructure of the mobile network can take over some parts of
the presented infrastructure. This will be subject of future work.
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A Pseudo-random Function for Message Key Generation

This paper uses the pseudo-random function (PRF) of the draft of the transport
layer security (TLS) standard v1.2. It only omits the label. Then the function
reads as follows:

PRF(secret, seed) =HMAC hash(secret, A(1) + seed)+
HMAC hash(secret, A(2) + seed)+
HMAC hash(secret, A(3) + seed) + . . .

where hash must be substituted by a specific hash algorithm as defined in the
chosen cipher suite (see authentication parameters field) and “+” is the concate-
nation operator. The function A is defined as

A(0) = seed

A(i) = HMAC hash(secret, A(i − 1)).



An Information Flow Verifier for Small

Embedded Systems�

Dorina Ghindici, Gilles Grimaud, and Isabelle Simplot-Ryl

L.I.F.L. CNRS UMR 8022
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Abstract. Insecurity arising from illegal information flow represents
a real threat in small computing environments allowing code sharing,
dynamic class loading and overloading. We introduce a verifier able to
certify at loading time Java applications already typed with signatures
describing possible information flows. The verifier is implemented as a
class loader and can be used on any Java Virtual Machine. The exper-
imental results provided here support our approach and show that the
verifier can be successfully embedded. As far as we know, this is the first
information flow analysis adapted to open embedded systems.
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1 Introduction

As the use of Java-enabled embedded systems such as smart cards, mobile phones
and PDAs is growing, they are being associated with security since they provide
a partial solution to the need for personal identification and non-repudiation.
These devices evolve towards an open, multi-applicative environment supporting
dynamic class loading and unloading.

Confidential data manipulated by such systems must be protected and acces-
sible only by authorized users or programs. In a small open embedded system,
where application may share code (e.g Api) or collaborate to offer better ser-
vices, insecurity may stem from the code itself or from the code shared with
some malicious untrusted software.

In order to enforce security, the Java Virtual Machine (Jvm) [17] and the Java
Runtime Environment provide different mechanisms. For example, the bytecode
verifier [16] uses static analysis to ensure that applications comply with the
Java type system rules even for small systems [8,19], while the sandbox model
is a dynamic mechanism, which enforces security by isolating applications. Java
access modifiers (e.g. public, private, protected) express data accessibility for
the Java language. Existing Java mechanisms control information access, and so
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they are not adequate in addressing data propagation. Ad-hoc mechanisms, like
information flow verification, must be added to guarantee safe data propagation.

Despite the considerable amount of work on information flow achieved in the
past decades, the information flow based enforcement mechanisms have not been
widely used and applied in practice [26]. A survey on language-based security and
information flow is presented in [20]. Most of the contributions in this area are
based on static analysis [2,7,10,18,25] and on the type-based approach [3,13,22],
where a type system is used to check secure information flow.

Low-level languages are taken into consideration only in few papers [3,15],
while the Java language is rarely specified. In [4], only a small subset of the Java
language is taken into consideration, while in [9], a compositional information
flow analysis was implemented for mono-threaded Java bytecode. In [2], authors
propose a static analysis similar to standard type verification used for Java
bytecode. JavaCard features are considered in [5] and [11]. JFlow [18] is a
powerfull tool, implemented as an extension of the Java language and structured
as a source-to-source translator. It adds reliability to software implementation,
but not to deployment and linking on a platform. The Pacap framework [5]
involves a technique to verify interactions for Java enabled smart-cards, but the
verification relies on the call graph, so it cannot be trusted in a Java/javacard

open environment.
Unfortunately, the previous models focus on correctly checking information

flow statically and do not address the challenge raised by an open computing
environment.

In this paper, we propose an efficient model for detecting illegal information
flows. Our model was successfully applied on small, open, Java-enabled systems.
Our goal is to enforce data confidentiality for standard Java mobile code. In
order to address the challenge raised by an open system, we enforce security
properties at load time by performing a static analysis. Our implementation [23]
works directly on Java bytecode and includes support for dynamic class loading
and overloading.

The rest of the paper is structured as follows: Section 2 introduces some
aspects of information flow and our approach. In Section 3 we present how we
enforce confidentiality at load time on an embedded system. Section 4 describes
how the information flow verifier can be integrated within a dedicated class
loader in the KVM, but also how it can be used on any Jvm (e.g. JavaCard

3.0) as a user-defined class loader. Section 5 presents experimental results, while
Section 6 summarizes our contributions.

2 Information Flow Analysis

2.1 General Aspects

Information flow stands for data propagation in a program. There are informa-
tion flows arising from assignments (direct flows), from the control structure of
a program (implicit flow), etc. For example, the code p=s generates a direct
flow from s to p, while if(s) then p=1 else p=0 generates an implicit flow. If
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s contains a secret, confidential value, and p a public, observable value, then the
two examples are insecure and generate an illicit information flow, as confiden-
tial data can be induced by the reader of p. In literature, confidentiality is often
seen as a non-interference [7,25] problem, as public outputs cannot depend on
secret inputs. More exactly, for any initial value of an input secret variable, the
values of public outputs do not change.

We target open (embedded) systems, allowing dynamic class loading, over-
loading and all the Java features, and supporting multi-applications sharing
code. In this context, the insecurity for a class A may arise from the fact that
A invokes an untrusted method B.m and it passes as argument a secret value.
The system cannot guarantee that B does not make available the secret data.
As our system must fit the Java dynamic class loading paradigm, we cannot
use traditional approaches verifying the non-interference on the call-graph of a
single application. In order to deal with openness, we perform a compositional
analysis, computing for each method a stand-alone signature. The signature of a
method is independent of the context under which the method is called. It con-
tains the flows, potentially generated by the execution of the method, between
elements that survive method execution: the method parameters, the method
return value, an abstract value for the static world, one for exceptions, one for
input/output channels. One ”type” is associated with every element reflecting
the flows generated by the method between this element and the others. Based
on the knowledge of the flows, an application can check its own security policy.
Thus, direct flows inside methods will be detected by traditional analysis while
flows generated by interactions between methods will be detected by composition
of the methods signatures. (Implicit flow inside methods is a natural extension
of our approach, as the low complexity of the existing algorithms is promising
for an embedded verification.)

2.2 Algorithm

We propose a model in which, as in classical information flow, each field is
annotated by a security level, secret or public: a secret field should not be made
accessible through information flow to unauthorized parties. Tracing all the fields
of an object is expensive in time and memory and is not always possible when the
calling context is not available. Moreover, imposing some kind of ”subtyping” of
signatures constrains the use of overloading. So, we split each object in only two
parts, a secret part and a public part. The secret part of an object o, denoted
by os, stands for all access paths starting from o which contain at least one
field having the security level secret, while the public part, denoted by op is the
complementary. Experimental results showed that our simplifying assumptions
are reasonable in practice.

Considering our split of objects and the dichotomy of Java types (elementary
types and object types), the links between two elements a and b have the form

a℘(p,s) v/r−→ b℘(p,s), where v denotes a value link, r a reference/alias link, s and p
the secret or public part, while ℘(p, s) denotes subsets of {p, s}. As a reference
link includes the value link between the same elements, and as the public or
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secret part are included in the entire element, we can define an order relation
between flows. Using this partial order relation, we obtain a lattice of links
that contains 80 possible flows between two elements. The bottom of the lattice
is represented by an empty set, meaning that there is no flow of information
between a and b, while the top of the lattice is represented by {ap,s r→ bp,s},
meaning that there is a reference link (alias) between the secret and public part
of a and the secret and public part of b. More details on the type system and
the lattice of links can be found in Appendix A.

Let’s consider a class C having a secret field s, a public field p and a method m.
Fig. 1 presents the signature of m at each point of the program, considering that
the external method foo contains a value link from the return of the method,
denoted by R, to the first parameter of the method (R v→ p1).

void m(int x, A a) {
1 iload 1
2 if(x>0) ifle 6
3 aload 0
4 iload 1

5 this.s = x; putfield C.s Sm = {thiss v→ x}
6 aload 0
7 aload 2
8 iload 1
9 invokevirtual A.foo

10 this.p = a.foo(x); putfield C.p Sm = {thiss v→ x, thisp v→ x}
11 } return with Se

foo = {R
v→ p1}

Fig. 1. Example

In order to ensures threads-safety, the abstraction for static elements has the
default security level public, as all the secret data linked to static attributes and
susceptible to be accessed through different threads are considered leaky

To compute methods signatures, we perform for each method an intra-method
static abstract interpretation relying on a classical operational semantics com-
posed of a set of transformation rules. The abstract values are represented by
elements composing the signature of the method, and some other internal val-
ues needed to correctly analyze the method. The analysis does not rely on the
call graph: the interpretation of an invoke bytecode consists of applying the
signature of the called method to the signature of the calling method.

Each instruction has associated an abstract state representing the state before
executing the instruction. The state contains the local operand stack, the local
variables, and the current signature of the method at an execution point. This
state contains the union of all possible states under which the associated byte-
code can be executed. The control flow structure of the Java bytecode dictates
an iteration on the set of instructions for each method. At each iteration, the
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current bytecode is abstractly interpreted and the resulting state is merged with
the state already associated with its successors. For invokevirtual bytecodes,
when the exact type of the called object cannot be statically determined, we
take into consideration a global signature which is the union of all possible
signatures for the desired method implemented in the class hierarchy derived
from the static type of the object. Since the number of abstract values is finite
and we perform merge operations, a fixed point is reached.

The existence of recursive and inter-depended methods dictates an incremen-
tal inter-method analysis, starting with the set of empty signatures and iterating
on a set of classes until a fixed-point has been reached. This allows us to obtain
more precise results.

Noninterference is too restrictive for common applications such as crypto-
graphic functions, where outputs often depend on secret outputs. However, one
should not be able to derive the secret from the output. To handle this and
other intentional release of secret data, the proposed systems allows to manually
annotate trusted methods with the desired signature. A more precise approach
would be to include a mechanism for declassification [21,12] in order to specify
what information can be released and where.

3 Information Flow Verifier

In the previous section, we presented a compositional information flow analysis
complying with the Java dynamic class loading paradigm. But experimental
results, as depicted in Fig. 4, show that at least 3 iterations must be performed
on the set classes and an average of 1.5 iterations on the set of bytecodes for
each method. Therefore, the analysis is already expensive for a normal system
and impracticable for a device having limited resources.

In the context of small objects, a technique known as ”Lightweight bytecode
verification” (LBV) [19] has been developed for Java bytecode type verification.
This technique, closely related to proof-carrying code [6], lies on the simple idea
that it is easier to verify a result already computed. A small device can verify
code received from an untrusted source without relying on a third party even if
it has not enough power to compute the proof itself. It is based on two phases: an
external phase which computes the type correctness and annotates the bytecode
with some proof elements, and an embedded phase, which verifies, at loading
time, the annotations obtained during the external phase. The verification op-
eration is linear in code size and uses constant memory. The off-board analysis
and the proof can be computed by any device or tool, as the small device can
verify the code it receives without relying on the external device. LBV relies on
the lattice structure of types and on unification operations on this lattice. The
lattice of links allows us to use this technique in our context. While LBV checks
explicit Java types, our algorithm has to infer information flow links. We have
to deal with type inference and with signature management.
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3.1 Signature Computation

The verification process is performed while loading a Java class. In order to ease
verification, we ship with each class C some proof: the state of the Jvm for
each target instruction in each method, the signatures of methods invoked in C,
the security levels of fields used in C. The proof elements are defined as new
attributes of the class file structure, so the annotated classes can be loaded by
any Jvm, even by those not enforcing information flow security properties.

Due to limited resources of embedded systems, the size of proof elements must
be as small as possible. As the lattice of links contains 80 possible flows, we chose
a binary and compact solution on 1 byte to encode the links. This solution allows
simple manipulation operations. For example, adding a new link to a signature
requires only a binary logical operation. Moreover, the signatures within the
states of the Jvm for each target instruction are encoded incrementally: the first
signature is encoded, while the subsequent signature is defined by the the flows
added or deleted in the previous signature. Experimental results showed that
signatures have few changes from one label to another.

The verification consists in a sequential interpretation of bytecodes of each
method of the class. When a target bytecode is found, the current state of the
Jvm must be compatible with the proof corresponding to the target bytecode:
if the compatibility is not tested, the class is rejected; otherwise the verification
is carried on using the proof as the current state of the Jvm. Given two states A
and B of the verification process, A is compatible with B if the stack and local
variables are compatible (state B contains at least all the elements in A) and the
two signatures, SA and SB, are compatible. The stack comparison is possible, as
we assume that the bytecode was already checked by the Jvm verifier and thus
it is well typed. A signature SA is compatible with SB if SA contains at least all
the links present in SB, according to the lattice of method signatures, which is
a natural extension of the lattice of links defined previously.

Dead code is ignored by the external analysis and thus not annotated. In order
to deal with this situation, when a label bytecode without any proof annotation
is found, we can assume it is the beginning of a block which is never executed. In
this case, all the bytecodes following the label are ignored, until we meet a label
with a proof. If the label without a proof is not the start of a dead block, then
the class is rejected when the compatibility of predecessors instructions with the
proof of the label is tested.

The embedded verification has the advantage that each instruction is inter-
preted only once and so it is linear in time with the code size. Moreover, the
proof is used only during the verification and not stored in the system. Only the
final signature of each method is kept on board. Another advantage is that each
class is verified only once, even the code shared by many applications, as the
signatures are kept on board in a dictionary. If the type inference of method sig-
nature fails, the class is rejected. If the type inference succeeds, we must ensure
that the signatures used during validation fit within the system.

The analysis guarantees noninterference for loaded classes. All the possible
flows from secret to public data are detected and present in the signatures.
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But, due to our simplifying assumptions, we might detect false flows. Practical
experiments showed that this situation does not occur very often.

3.2 Signature Management

Classes are loaded one by one. Once a class is loaded, the validated signatures
are kept in a dictionary. In order to validate a class C at loading time, we load
with C the signatures of all methods invoked in C (called ”external methods”).

When we load the class C from the example in Fig. 1, we will also load the
signature Se

foo of the method foo in the class A. If the class A has already been
loaded, the external signature Se

foo will be ignored and the signature of foo from
the dictionary will be used while verifying C. If the class A has not been yet
loaded, Se

foo will be used while analysing C. If C is accepted, the signature Se
foo

will be kept on board into a temporary dictionary until the class A is loaded.
Let’s assume that A is loaded later and the method foo has the signature

Sfoo. A will be accepted only if the signature Sfoo is compatible with Se
foo.

The external signature Se
foo should contain at least all the links from the loaded

signature Sfoo, otherwise the previous verification of C is not correct. If the
external signature contains fewer links than the loaded one, it is acceptable,
as long as we do not miss any information leakage. If the class A is certified
and loaded on the system, Se

foo and all the external signatures for A previously
loaded are erased from the temporary dictionary.

There are different possible scenarios. We now consider the following:

load class C

external method A.foo with S′
foo = {R

v→ p1}
store S′

foo in the temporary dictionary

load class D

external method A.foo with S′′
foo = {R

v→ p1, thiss v→ p1}
store infimum(S′

foo,S
′′
foo)={R

v→ p1} in the temporary dictionary

load class A

A.foo with signature Sfoo

We load two classes C and D, and each one claims a different external sig-
nature for A.foo. As to validate the class C we use S′

foo, and to validate D we
use S′′

foo, the real signature Sfoo should be compatible with S′
foo and S′′

foo. All
the flows in Sfoo should be in S′

foo and S′′
foo, which means that Sfoo should be

compatible with infimum of S′
foo and S′′

foo according to the lattice of method
signatures. So when we have different external signatures for the same method,
we keep the infimum in the temporary dictionary.

The correctness of a signature depends also on the security levels of used
fields. To have access to security levels of external fields of a class, we use a
procedure similar to the one used to load the external methods. Two fields are
compatible if they have the same security level. We also check the compatibility
of loaded signatures with the global signatures belonging to extended classes.
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4 The Verifier as a User-Defined Class Loader

The loading process in a Jvm is performed by the class loaders. The standard
Jvm deals with multiple class loaders, hierarchically organized, and supports
user-defined class loaders. The KVM virtual machine [24] does not support
user-defined class loaders and has a single built-in class loader that cannot be
overridden or replaced by the user.

We built a verifier that can be run on any Jvm. It can be built in the single
class loader of KVM or installed as a user-defined class loader for a standard Jvm.
The embedded Jvm [1,14,24] are evolving towards the standard Java language,
and therefore towards a multiple class loader hierarchy. The recently presented
JavaCard 3.0 does the same. We describe now how the verifier can be used as
a plug-in within a standard Jvm to validate annotated bytecode.

Scl2 loads class C
external method Scl2.A.foo with signature S2

foo

Scl1 loads class D
external method Scl1.A.foo with signature S1

foo

Scl1 loads class A
Scl1.A.foo with signature Sfoo

SCL : Scl2 SCL : Scl3

SCL : Scl1

Fig. 2. Loading example in a SafeClassLoader hierarchy

Applications implement subclasses of ClassLoader in order to extend the man-
ner in which the Jvm dynamically loads classes. Class loaders may typically be
used to check security properties. The verifier was implemented as a subclass
of the ClassLoader class provided by the Java Api, named SafeClassLoader.
Certifying the underlying information flow of an application requires the instan-
tiation of a SafeClassLoader with which the application should be loaded.

In the Jvm delegation model, class loaders are arranged hierarchically in a
tree, with the bootstrap class loader as the root of the tree. Each user-defined
class loader has a ”parent” class loader. When a load request is made by a user-
defined class loader, that class loader usually first delegates the parent class
loader, and only attempts to load the class itself if the delegate fails to do so.
A loaded class in a Jvm is identified by its fully qualified name and its defining
class loader. This is sometimes referred to as the runtime identity of the class.
Consequently, each class loader in the Jvm can be said to define its own name
space. In the same manner, each SafeClassLoader defines its own dictionary
containing the signatures of loaded methods.

Let’s consider a hierarchy containing three SafeClassLoaders, Scl2, Scl3 and
their parent Scl1, and the scenario in Fig. 2. Class loader Scl2 requests to load
class C. At first, it delegates its parent class loader, Scl1, to load C. If the del-
egation fails, Scl2 attempts to load the class by itself. While loading C, Scl2
tries to find the signature of A.foo: it first searches in its dictionary, and if the
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search fails, it delegates the search to its parent, which repeats the procedure. If
the parent also fails to find the signature, external signature S2

foo is used while
validating C and stored in the temporary dictionary. Class loader Scl1 loads a
class D also containing an external signature for A.foo. The external signature
S1

foo is stored in the temporary dictionary and is associated with Scl1.
Finally, class loader Scl1 attempts to load class A. Let Sfoo be the verified

signature of foo. Class A will be loaded by Scl1 if and only if Sfoo is compatible
with the external signatures for foo in the current class loader (Scl1) and with
the external signatures in class loaders that can delegate Scl1. In our case, Sfoo

must be compatible with S1
foo and S2

foo. Otherwise, class A is rejected.

Bootstrap

System CL

SCL: A3

CL: B1

SCL: A1

SCL: A2

CL: B2

Fig. 3. Class Loader hierarchy
example

In order to verify this kind of compatibil-
ity, external signatures must be accessible to all
class loaders. This is why we implemented an
unique temporary dictionary which is used by
all class loaders. The example showed how the
SafeClassLoader extends the delegate model
to the look up of a signature of a method. The
same search process is extended to the look up
of the security level of a field.

We presented so far the case where all the
class loaders in the hierarchy have the type
SafeClassLoader. Actually, the hierarchy con-
tains different types of class loaders. As shown
in Fig. 3, the bootstrap class loader loads the
classes from the Jvm, as well as extensions to
the JDK. The system class loader loads all the classes provided by the class-
path. In the end, we have several additional class loaders, where SCL defines a
SafeClassLoader and CL any other type of class loader.

As a consequence, we must take into consideration the validation of classes
loaded by any class loader. Let’s consider that A1 loads a class C that invokes
a method of another class D already loaded by the parent B1. As B1 is not a
SafeClassLoader, the classes it has loaded have not been validated at load-
ing time. To ensure security for C, SafeClassLoader A1 will try to retrieve,
using the getResourceAsStream method, the .class files of the classes loaded
by its parent and to verify the announced signatures. If the streams cannot be
found, or they do not contain information flow attributes, or the signatures are
not compatible with the announced ones, A1 rejects class C. Otherwise, the sig-
natures of classes belonging to a non-SafeClassLoader are stored in a special
dictionary, named ”system dictionary”. The look up for a signature in a class
loader is performed in its dictionary, if the class loader is a SafeClassLoader,
and otherwise in the system dictionary.

In order to support any JVM, we do not interfere while the Bootstrap and
System class loaders load the JVM and classpath classes, and thus we consider
their signatures as part of our trust computing base.
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5 Experimental Results

This section describes the results of experiments run on some significant bench-
marks such as Dhrystone, a well known benchmark for embedded systems, The
Fast Fourier Transform (FFT), a common signal processing application, crypt
(a data encryption algorithm) and Pacap [5], an electronic purse case study for
information flow checking (for which we detected the same illicit flows as in lit-
erature). We ran the experiments using a Java Runtime Environment, Standard
Edition (build 1.5.0 09), on a Linux system running on a Intel(R) Pentium(R)
M processor 2.13GHz with 1Gb memory.
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Fig. 4. Off board analysis and on board verification measurements
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Fig. 5. Size of annotations

First, we ran the external
application computing the infor-
mation flow signatures and an-
notating the classes (Fig. 4, Off
board analysis) in order to find
out how the algorithm performs
in practice. We measured the
number of iterations for the inter-
method analysis (iterations on a
set of classes), the iterations for
the intra-method analysis (itera-
tion on each meathod’s instruc-
tions set) and the time needed to
perform the analysis. The results
showed that the computation al-
gorithm is quite expensive in terms of time complexity: in average, we need 3
iterations on the set of classes, 1.5 iterations on the instruction set and 4.5s
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for each application. For the Jvm spec benchmarks, we performed the library
analysis before carrying out the experiments.

Secondly, we loaded the annotated applications generated by the off board
analysis (Fig. 4, On board analysis). In order to find out how the Jvm loading
process is hampered by our verification, we measured the execution time in two
cases: with (SCL) and without (CL) information flow verification. We observed
that the verification implies an average execution time 3 times as large as the
standard one. But the information flow verification is performed only once, at
loading time, so any subsequent running of the applications is not hindered.
Moreover, the average verification time (342.25ms) is more than 10 times smaller
than the average analysis time (4.25s). As expected, the verifier performs much
faster than the computation algorithm.

Lastly, we measured the size of the proof and the signatures loaded with the
code (Fig. 5). The proof, the external methods and external fields represent
39.73% of the total size of initial .class files. This data is used only during the
verification process, at loading time, and it is not stored on the device, so its
size does not have a significant impact on the embedded system. The signatures,
which are stored in the dictionary and kept in the system, make up only 4.01%
of the initial .class size, an acceptable overhead.

6 Conclusion

Confidentiality represents a real concern in embedded systems manipulating sen-
sitive data. Practical information flow models are almost non-existent, despite
the quality of the underlying theory. As the algorithm for detecting illegal infor-
mation flows in an application has a high complexity, we propose a lightweight
verification for embedded systems. The information flow is certified at load-
ing time, using some proof elements previously computed and shipped with the
code. The information flow verification is performed in linear time and uses al-
most constant memory. Experimental results conducted for the external analysis
and for the embedded verification support our approach. The time penalty and
the memory consumption introduced by the verifier are acceptable. We think
that we can cut by at least 50 percents the size of the elements embedded within
the code by modifying the encoding of proof and signatures.
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A The Type System

For each element a from the set of abstract values we define the flow relation as
a tuple composed of four elements: the security level of a (in ℘(p, s)), the type
of flow (v or r for value or reference), the element to which a points to and its
security level. The type associated with a is the union of all possible flows from
a to b. For example, a value link from the publicpart of a to the secret part of b
corresponds to the type (p, v, b, s). For convenience, we will denote this flow by
ap v→ bs.

If both public and secret parts of an element can be accessed, the whole
element can be accessed. Thus, a link to the entire element (bp,s) is greater than
the same link to only one part of the element(bs, bp). Moreover, having access to
a reference means having access to all its values. Thus, the value link is included
in the reference link. Using this partial order relations, we obtain a lattice of
links (Figure 6) having union as upper bound computation and inclusion as order
relation.

ap,s r→ bp,s

ap,s r→ bs ap r→ bp,s

as r→ bs ap,s v→ bs ap r→ bs ap v→ bp,s ap r→ bp

as v→ bs ap v→ bs ap v→ bp

�� ��

��� ���

��

�� ��

��� ���

��

Fig. 6. Extract of the lattice of links
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Abstract. For security applications in wireless sensor networks (WSNs),
choosing best algorithms in terms of energy-efficiency and of small-storage
requirements is a real challenge because the sensor networks must be au-
tonomous. In [22], the authors have benchmarked on a dedicated platform
some block-ciphers using severalmodes of operations andhavededuced the
best block cipher to use in the context of WSNs.

This article proposes to study on a dedicated platform of sensors some
stream ciphers. First, we sum-up the security provided by the chosen
stream ciphers (especially the ones dedicated to software uses recently
proposed in the European Project Ecrypt, workpackage eStream [27])
and presents some implementation tests performed on the platform [16].

Keywords: stream ciphers, sensors, benchmarks.

Introduction

Sensor networks are made by the tremendous advances and convergence of micro-
electro-mechanical systems (MEMS), wireless communication technologies and
digital electronics. Sensor networks are composed of a large number of tiny de-
vices or sensors which monitor their surrounding area to measure environmental
information, to detect movements, vibrations, etc. Wireless sensor networks can
be really useful in many civil and military areas for collecting, processing and
monitoring environmental data. A sensor node contains an integrated sensor,
a microprocessor, some memories, a transmitter and an energy battery. Sensor
nodes communicate through a radio device in order to manage the network and
to gather the produced data to a specific node called the sink node. Despite the
relative simplicity of its basic components, sensor networking offers a great diver-
sity: various hardwares (MicaZ, Telos, SkyMote, AVR or TI micro-controllers),
various radio and physical layers (868MHz and 2,4GHz) using different types
of modulations, various OS (TinyOS, Contiki, FreeRTOS, JITS), various con-
straints (real-time, energy, memory or processing), various applications (military
or civil uses).

D. Sauveron et al. (Eds.): WISTP 2007, LNCS 4462, pp. 202–214, 2007.
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In such a context, a specific care must be invested in the design of the ap-
plications, communication protocols, operating systems and of course security
protocols that will be used. Lots of protocols have been proposed to enforce
the security offered by sensor networks. In despite of the increasing request in
this new area of research, few articles presented real results of implementations
or benchmarks concerning the security primitives which can be used in sensor
networks. In [22], the authors present such results concerning theoretical aspects
and benchmarks for the most famous block ciphers (including AES, MISTY1,
Skipjack,...). Even if block ciphers have lots advantages compared with stream
ciphers (they could be used for the both secure modes required for the sensor
networks: the pairwise secure links and the secure group communications), the
stream ciphers are usually used when wireless communications are required (as
done in the WEP for example) because they could reach important flows for lim-
ited costs and the use of the “one time pad” encryption do not propagate errors
induced by the communication channel. This cipher method combines using a
modular addition (for example the XOR) the plaintext with a random key or
“pad” used only once and having the same length than the plaintext. The pad
also called pseudo-random sequence is produced using a pseudo-random genera-
tor or a synchronous stream cipher and is generated from the secret shared key
K and an initial value IV , that must be different for each encryption. So, in the
context of sensor networks, stream ciphers could be useful for pairwise secure
associations.

This article then proposes to theoretically sum-up the security provided by
some stream ciphers dedicated to software uses (especially the ones recently pro-
posed in the European Project Ecrypt, workpackage eStream [27]) and presents
some implementation tests performed on a dedicated platform of sensors [16].

This paper is organized as follows: Section 1 presents several stream ciphers
and evaluates their current security based on the most recent results. Section 2
presents the dedicated platform and describes the methodology used to perform
our benchmarks. Section 3 provides our results and our analysis concerning the
benchmarking whereas Section 4 concludes this paper.

1 The Studied Stream Ciphers

We decided to study and to benchmark the stream ciphers dedicated to soft-
ware uses (Profile 1 of the eStream call for primitives) submitted to the eS-
tream call and belonging to the Focus Phase 2 (see the website of the eS-
tream project http://www.ecrypt.eu.org/stream/phase2list.html for more
details of their choice). This project is ongoing so the security evaluation of the
proposed stream ciphers is always in hand. Even if the security study concern-
ing these primitives is not finished, it seems interesting for us to study their
performances on a dedicated architecture with strong constraints due to their
high efficiency and their high reliability in wireless context. Moreover, in most of
cases, the code size required for stream ciphers is smaller than the one required
for block ciphers.
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We have added to those ciphers three other pseudo-random generators due
to their fame and their great use: RC4 (always used in WPA and in https),
SNOW v2 [12] (the updated version of the NESSIE call for primitives [26]) and
AES-CTR (the block cipher AES used in a particular mode, the CTR one) used
in WPA2. Moreover, the AES-CTR is in fact a modified block cipher and then
its performances correspond to those of a block cipher. We could then compare
the results obtained for it as a block cipher to those of stream ciphers.

All the stream ciphers presented in this section uses at least the following
parameters as suggested in the initial call of eStream: a secret shared key K of
at least 128 bits and an IV value of at least 64 bits, that must be absolutely
different at each new encryption.

In our security analysis, we claim that a stream cipher is secure until now if
no attack (with a complexity less than 2128 or respecting the recommendations
of the authors) has been exhibited against it until now.

RC4. RC4 was introduced in 1987 by R. Rivest [30] for the RSA laboratories.
RC4 is most commonly used to protect Internet traffic using the SSL (Secure
Sockets Layer) protocol. It is composed of an initialization phase that transforms
the secret shared key K of length between 40 and 1024 bits into an initial S per-
mutation from N = 2n into itself (typically n = 8). The stream sequence z(t) is
then produced by outputting particular values of the S permutation updated at
each clock.

Security. In despite of many efforts provided by the cryptographers to try to break
RC4, very few attacks are known against it. The strangest remains the “Finney
property” (see [23] for more details). However, some statistical bias could be ex-
hibited (see [23]) that allow to construct distinguishing attacks against RC4. An
other attack proposed by S. Fulher, I. Mantin et A. Shamir [15] exploits the bad
re-synchronizationofRC4 and could be applied in the WEPcase (see [25] and [24]).

RC4 stays a secure cipher for good initial choices: if the key scheduling algo-
rithm is strengthened by pre-processing the base key (of at least 128 bits) and
any counter or initialization vector by passing them through a hash function
such as MD5 or by discarding the first 256 output bytes of the pseudo-random
generator before beginning encryption (as described in [21]). Using those recom-
mendations, we say that RC4 is secure.

SNOWv2. SNOW is a stream cipher submitted by P. Ekdahl and T. Johans-
son to the NESSIE call for primitives [11]. Several attacks have been exhibited
against the first SNOW version ( [17] and [8]) and thus obliged the authors to
modify their initial submission. That has been done and a second version of
SNOW, SNOW v2, have been proposed [12]. In this version, the secret shared
key has a length of 128 or 256 bits whereas the use of an IV value of 128 bits
is optional. This stream cipher uses an LFSR of length 16 on GF (232) and a
non linear finite state machine called FSM. The first 32 bits output is generated
after 32 clocks.
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Security. The only attack describes against SNOW v2 has been proposed in [32]
and requires 2225 output words (2230 bits) and 2225 steps of analysis to distinguish
the output of SNOW 2.0 from a truly random bit sequence. This attack does
not really endanger the security of SNOW because it just allows to distinguish
the output sequence from a perfect random one and the required complexity is
not currently reachable. So, we say that SNOW v2 is secure.

AES-CTR. The AES-CTR is not exactly a stream cipher (see for example [18]
for more details). In fact, it uses the AES block cipher (see [14] for further
details) in a particular mode of operation. The block cipher AES uses a key of
length 128, 192 or 256 bits and encrypts using a parallel structure blocks of size
128 bits. The CTR mode of operations consists in ciphering a counter value -
that must be used only one time for a given key as mentioned in the chapter 2
of [18] - with a particular key K and x-oring the ciphertext obtained with the
corresponding block of plaintext. The counter corresponding with a IV value is
then updated to cipher in “one-time pad” mode the next plaintext block.

Security. The AES block cipher has been chosen in 2001 as the new block cipher
standard by the NIST after 4 years of study. So, we say that this block cipher
(used in all the known modes of operation) is secure. Moreover, the study of this
block cipher allows us to compare the performances of it as a block cipher with
the other stream ciphers.

DRAGON. DRAGON [10] was submitted to the eStream call for primitives
and is one of the FOCUS Phase 2 stream ciphers [27]. It is left unchanged com-
pared to Phase 1, the initial phase of evaluation of the eStream project. Two
versions have been proposed: Dragon-256 that uses a secret master key of 256
bits, and a publicly known initialization vector (IV), also of 256 bits; and Dragon-
128 that uses 128-bit key and IV. The two versions uses a non-linear feedback
shift register (NLFSR) of length 1024 bits and a nonlinear filter function from
{0, 1}192 into itself with a 64-bit memory component.

Security. In [13], Englund and Maximov describe a distinguishing attack against
Dragon-256, under the assumption that the cryptanalyst can obtain an enormous
amount of keystream from a single key-IV pair. Both variants of the distinguish-
ing attack require 2155 words of keystream with an operational complexity of
2187 and uses 232 words of memory for the first variant and with a complexity
of 2155 in time and of 296 in memory for the second variant. However, those
attacks do not take into account the authors recommendations: “ To protect
against unknown future attacks, and against attacks that require large amounts
of keystream, [Dragon] should be rekeyed at least once for every 264 bits of
keystream generated”.

In [7], an other statistical bias has been exhibited (with a probability equal to
2−92.8). But to detect this bias the amount of keystream required for the attack
is by far larger than the limit of keystream available from a single key. So, until
now, we say that Dragon is secure.
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HC-256 and HC-128. Two versions of HC have been proposed in [34] and
in [35]. The first one HC-256 generates keystream from a 256-bit secret key and a
256-bit initialization vector whereas the second one HC-128 supports 128-bit key
and 128-bit initialization vector but only 264 keystream bits can be generated
from each key/IV pair. The general principle of the keystream generation for
HC-256 is as follows: at each clock, a 32-bit word of one of the two secret tables
(initialized with the key K and the IV value) is updated using a non-linear
feedback function. Each table contains 1024 32-bit words. Every 2048 steps all
the elements of the two tables are updated. At each step, HC-256 generates one
32-bit output using a 32-bit-to-32-bit mapping. HC-128 is the simplified version
of HC-256: it uses two secret tables, each one having 512 32-bit elements. At each
clock, one element of a table is updated using a non-linear feedback function.
All the elements of the two tables are updated every 1024 clocks. At each clock,
one 32-bit output is generated from the non-linear output filtering function.

Security. Until now, no attack have been found against HC-256 and HC-128. So
we say that at this moment, the two HC versions are secure.

LEX. The stream cipher LEX has been proposed by A. Biryukov [5] and has
been tweaked to enter Phase 2 of estream. This new version extracts parts of
the internal state at certain rounds of the block cipher AES. The AES usual key
lengths could be used: 128, 192 or 256 bits. The size of the IV is 128 bits. The
output sequence is generated by outputting at each AES round certain four bytes
from the intermediate variables. The difference with AES is that the attacker
never sees the full 128-bit ciphertext but only portions of the intermediate states.

Security. The first version of LEX was successfully attacked by Hongjun Wu and
Bart Preneel in [36] leading to a modified IV injection as done in the second
version of LEX. Until now, no attack have been found against this new version.
So we say that at this moment, LEX is secure.

Phelix. Phelix is a stream cipher proposed by D. Whiting, B. Schneier, S. Lucks
and F. Muller [33]. It uses a 256-bit key and a 128-bit IV value. It has an internal
state that consists of nine words of 32 bits each. The state is broken up into two
groups: 5 “active” state words, which participate in the block update function,
and 4 “old” state words that are only used in the keystream output function.
Twenty elementary rounds are applied to produce one 32-bits output block.

Security. A very recent attack has been proposed by Hongjun Wu and Bart Pre-
neel against Phelix in [37]. This attack is a differential-linear one assuming nonce
reuse (corresponding with a chosen nonce attack). In this context, with 234 cho-
sen nonces and 237 chosen plaintext words, the key of Phelix can be recovered with
about 241.5 operations. Even if this kind of attacks is not clearly authorized by the
cryptographic community, it directly asks the question of the security of Phelix.

Py and Pypy. The stream cipher Py has been proposed by E. Biham et J.
Seberry in [3]. It uses the same principles of construction than RC4 on two
larger tables with a rolling update under keys of length up to 256 bits and IV
of length 128 bits. At each clock, 64 bits of the output sequence are produced.
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The allowed stream size is 264 bytes for each stream sequence. For the eStream
phase 2, an other stream cipher called Pypy (see [4]) has been proposed that
outputs every second word of Py (only 32 bits are outputted at each clock).
Security Many attacks have been proposed against Py and Pypy: the first one [28]
(improved in [9]) do not really endanger the security of Py and Pypy because
they use more than 264 bytes for each stream sequence. More recently, an other
series of attacks using chosen IVs to recover the secret key has been proposed
in [38] and in [19]. Those attacks seem to be more devastator than the previous
ones. Then the security of Py and Pypy must be more carefully studied during
the second eStream Phase.
Salsa20. The stream cipher Salsa20 has been proposed by D.J. Bernstein in [2].
It uses a key with a length from 16-byte to 32-byte and an IV of length 16-byte.
The core of Salsa20 is a hash function with 64-byte input and 64-byte output.
The hash function is used in counter mode as a stream cipher: Salsa20 encrypts
a 64-byte block of plaintext by hashing the key, nonce, and block number and
xor’ing the result with the plaintext.
Security. Until now, no attack has been found against Salsa20. So we say that
at this moment, Salsa20 is secure.
SOSEMANUK. The stream cipher SOSEMANUK has been proposed by C.
Berbain et al. in [1]. Its key length is variable between 128 and 256 bits. It
accommodates a 128-bit initial value. Any key length is claimed to achieve 128-
bit security. The SOSEMANUK cipher uses both some basic design principles
from the stream cipher SNOW 2.0 and some transformations derived from the
block cipher SERPENT. Sosemanuk aims at improving SNOW 2.0 both from
the security and from the efficiency points of view.
Security. Until now, no attack with a complexity less than 2128 has been found
against SOSEMANUK. So we say that at this moment, SOSEMANUK is secure.

2 Methodology

In this section, we present the platform used to perform the benchmarks and we
also describe the testing framework.

2.1 The Dedicated Platform

All the benchmarks performed here are produced using a sensor platform built
upon an ARM9 processor. Its processing power and the current evolution in
processor size and energy consumption make it a rather good representative for
next generation sensor network nodes. Nowadays the ARM7, which used to be
a full featured processor, is considered as a 32 bit micro-controller, for example
embedded in nearly all Bluetooth devices and in some wireless devices. Today,
current sensor network data, like temperatures, require only few processing on
the nodes, but we can state that next generation sensors will capture sounds
or even images which will need more powerful nodes. We then decide to use an
ARM9 core based CPU architecture for its computing power.
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The platform is an ARM based development board. It uses an ARM922T,
more precisely an Altera Excalibur EPXA10, which is a FPGA integrating an
ARM922T core and usual embedded systems peripherals (e.g. UART, Timers) on
the same chip. The processor accesses all peripherals and memory levels through
two levels of AMBA bus. Memories are organized in a three level hierarchy. First
level, the nearest from the processor are caches, two 8 kB of separated cache. At
the second level we can find two 256kB and two 128kB scratch pad memories
not used in the benchmarks. Finally, main memory, the furthest from processor,
is a 128 MB SDRAM.

As far as benchmark construction is concerned, they was compiled with the
standard GCC C compiler targeted to ARM processors. For the libc and op-
erating systems functionalities, we used a lightweight operating system called
Mutek [29]. It is Posix threads capable, but for the sack of predictability, all
benchmarks are mono-threaded.

The energy and time performance informations are collected thanks to a two
step simulation. The first step is the full architecture simulation. The simulator
we use for this step is derived from the open source skyeye [31] simulator. Skyeye
is a functionnal simulator targeted to ARM based embedded systems. Several
full platforms are available for simulation like full featured PDA. This simulator
is augmented in our case for our CM922T-XA10 platform support and we also
added instruction cycle accuracy timing and peripheral activity reporting. This
simulator is responsible for generating the linear execution tracelater used by the
second simulator esimu. esimu generates a full profile in terms of time and energy
of each benchmark. The results can then be visualized with profiles visualization
tools freely available like KCacheGrind [20].

2.2 Methodology

We have adopted the methodology provided with the eStream testing framework
(see [6] for more details) because it seems to be the most relevant one to evaluate
stream ciphers. Indeed, a stream cipher is composed of an initial step, called the
warm up phase, that produces from the key and the IV value an internal state
that will produce the first output bits or bytes. We then need to test the time
required to perform the “key setup” and the “IV setup”. Moreover, one of the
main advantages of stream ciphers is that they are able to produce very quickly
long sequences required for the ciphering operation. We then to measure this
particular property.

The set of tests are performed in order to study the specific requirements on
the efficiency of the primitives in various situations. The testing framework de-
scribed in [6] then proposes four performance measures to test the most relevant
implementation properties:

– Encryption rate for long streams: This aspect reflects the biggest po-
tential advantage over block ciphers and appears as an important criterion
in many applications. We have decided to measure here the encryption rate
by ciphering a long stream in chunks of about 4Kb. The encryption speed
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is computed in cycles/byte by measuring the cycles required to encrypt 10
such blocks under 10 different keys. The time to setup the key and the IV
is not considered in this test.

– Packet encryption rate: while a block cipher is likely to be a better choice
when encrypting very short packets, it is interesting to determine at which
length a stream cipher starts to take the lead. The packet encryption rate
is measured in cycles/byte for three packet lengths (40, 576 and 1500 bytes)
including an IV setup and a MAC finalization if an authenticated encryption
is supported (only Phelix has this property). This test is repeated under 10
different keys on several packets.

– Key and IV setup: The last test separately measures the efficiency of the
key setup and of the IV setup. “This is probably the least critical of the four
tests, considering that the efficiency of the IV setup is already reflected in
the packet encryption rate, and that the time for the key setup will typically
be negligible compared to the work needed to generate and exchange the
key.” ( [6]). The tests are performed for several key and IV values and the
results are provided in cycles/key or cycles/IV .

– Agility: When an application needs to encrypt many streams in parallel on
a single processor, its performance will not only depend on the encryption
speed of the cipher, but also on the time spent switching from one session to
another. The testing framework performs the following test: it first initiates a
large number of sessions (filling 16MB of RAM), and then encrypts streams
of plaintext in short blocks of around 256 bytes, each time jumping from
one session to another. The results of this test are provided in cycles/byte
repeating the test on 270 blocks of 256 bytes under one key.

We also perform some tests concerning the code size required to embed such
ciphers on the platform. We refer to two types of memory: the code memory in
the form of flash memory and the data memory in the form of RAM. We have
performed those tests on the same kind of codes for each stream cipher including
a key-setup, an IV -setup and a call to the function that encrypts long streams.

3 Results

To perform our benchmarks using the previous methodology, we have used with-
out modifying them, the C codes provided in the testing framework [6]. All the C
codes are available via the webpage http://www.ecrypt.eu.org/stream/perf/.
To obtain a point of comparison, results are also given for a simple Copy operation,
this code is also provided by the testing framework.

3.1 CPU Cycles and Energy Consumption

The results (computed using the skyeye + eSimu tools) concerning the num-
ber of cycles required to perform all the tests are summed up in the table 1.
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Table 1. Number of CPU cycles for the stream ciphers using the testing framework

cycles/byte cycles/key cycles/IV cycles/byte

Algo. Key IV Stream 40 bytes 576 bytes 1500 bytes Key setup IV setup agility

Copy 80 80 2.19 3.72 1.00 7.58 4.40 4.19 7.78

RC4 128 0 26.97 610.95 58.53 33.29 76.41 23581.61 21.24

SNOW v2.0 128 128 25.08 66.38 16.82 23.71 163.41 2273.35 20.87

AES CTR 128 128 206.19 131.52 198.73 195.76 636.49 157.52 202.23

DRAGON 128 128 30.89 177.05 69.76 64.91 421.42 4497.61 33.60

HC-256 128 128 27.00 6044.76 446.11 183.17 141.75 198126.10 49.30

HC-128 128 128 19.35 1484.72 112.12 53.70 141.76 58194.93 31.67

LEX 128 128 47.07 71.41 40.32 41.92 501.41 1415.57 50.71

Phelix 128 128 25.61 90.15 28.36 26.77 1271.42 2154.61 26.99

Py 128 64 214.25 349.23 47.58 60.88 7713.83 z 9327.43 64.40

Pypy 128 56 44.78 360.95 103.91 74.72 7713.82 9660.11 73.46

Salsa20 128 64 57.54 84.57 55.05 73.07 367.70 118.07 72.60

SOSEMANUK 128 64 14.81 385.63 37.95 30.48 16374.01 1264.09 20.78

Table 2. Number of nJ for the stream ciphers using the testing framework

nJ/byte nJ/key nJ/IV nJ/byte

Algo. Key IV Stream 40 bytes 576 bytes 1500 bytes Key setup IV setup agility

Copy 80 80 38.32 60.85 16.84 142.07 70.54 67.29 145.35

RC4 128 0 465.17 9843.25 948.49 542.06 1243.66 379636.24 354.43

SNOW v2.0 128 128 438.34 1093.46 280.59 414.20 2656.66 41749.08 365.26

AES CTR 128 128 3587.00 2197.89 3437.36 3384.26 11378.81 2861.89 3499.45

DRAGON 128 128 514.26 2912.69 1144.53 1064.58 6846.80 74109.24 575.67

HC-256 128 128 471.39 102473.69 7577.28 3112.48 2540.02 2705307.85 864.11

HC-128 128 128 342.29 24264.78 1838.04 897.21 2540.20 950661.16 559.97

LEX 128 128 804.03 1186.80 670.42 714.16 8250.66 23850.60 868.13

Phelix 128 128 421.15 1470.51 461.14 454.71 20622.78 35111.32 461.26

Py 128 64 3894.22 5822.63 827.52 1101.62 145194.31 154181.03 1141.65

Pypy 128 56 817.35 6008.43 1859.92 1361.36 145194.15 161834.16 1300.67

Salsa20 128 64 952.19 1394.11 907.17 1275.82 6884.19 2215.93 1268.12

SOSEMANUK 128 64 247.93 6727.04 648.50 528.97 286119.29 20860.01 365.30

The results concerning the energy consumption are given in the table 2. The key
and the IV sizes used to perform the tests are also specified.

3.2 Memory Requirements

We have performed some tests concerning the memory requirements of all the
ciphers (using the same key and IV lengths) using only a speed option of opti-
mization under gcc (the -O2 one). The results concerning the code and the data
memory sizes of all ciphers are given in table 3, together with the results for an
empty code and always for the Copy in order to evaluate the minimum memory
size induced by the benchmark environment.
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Table 3. Code Memory Requirements and Data Memory Requirements in bytes and
in decimal notations

Algo. Empty Copy RC4 SNOW v2.0 AES-CTR DRAGON HC-256

Code size 4992 5040 6064 11152 17456 8512 14432

Data size 480 752 692 6836 13020 2740 692

Algo. HC-128 LEX Phelix Py Pypy Salsa20 SOSEMANUK

Code size 12496 13072 9968 8736 8512 6560 21968

Data size 692 5852 724 35248 35248 724 3164

3.3 Analysis

First, we could see that most of stream ciphers (SNOW v2.0, SOSEMANUK,
Dragon,...) stay more efficients on the dedicated architecture than the AES block
cipher used in the CTR mode if we do not take into account the time required
for the key setup and for the IV setup. Some of them such as Salsa20 have also
a more efficient key and IV setup. Moreover, the code memory size and the data
memory size of the AES-CTR is among biggest (except for Py and Pypy for the
data memory size and for SOSEMANUK concerning the code memory size). So
using stream ciphers in sensor network applications could be a good solution to
achieve high encryption speed in high constraint environments.

We have then compare our benchmarks obtained on the dedicated platform
and the results provided on the page of the eStream testing framework (see [6] for
more details) that are given for traditional architectures such as Intel Pentium
4, Power PC,... (using several compilers). A really interesting point is that the
most reliable stream ciphers on traditional platforms, Py and Pypy, do no longer
work rapidly on our platform whereas SNOW v2.0, SOSEMANUK or HC-128
stay relatively fast.

This unusual property comes from the intrinsic structure of the ciphers Py and
Pypy: they both uses two rolling tables of 256 bytes. The use of many memcpy to
build at each iteration those tables explains the bad results obtained: the number
of DC-misses is huge compared with the other studied stream ciphers. On our plat-
form, and this is the case on other current sensor nodes, when the CPU accesses
memory, it is stalled since it is not superscalar as many high performance archi-
tectures are (the Pentium architecture for example). Our platform embed caches,
but their size are about the quarters of level 1 caches of current high performance
processors and it has no level 2 cache. Thus this cache architecture is not compat-
ible with the memory access hunger of Py and Pypy algorithms, even if the results
obtained for Pypy are rather better. The data are not preserved in data cache at
each access and need to be refetched from main memory. This characteristic was
underlined by table 3 with the data segment size of the implementation of these two
algorithms. In summary, whereas Py and Pypy are really efficient on traditional
high performance architectures, they could not be used without modifications in
a such constrained environment. Moreover, the structure of Pypy is the same than
the one of Py and the results obtained for Pypy stay reasonable so we think that
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because the Pypy performances are more reasonable, Py is the only algorithm that
is totally incompatible with this cache geometry.

An other surprising result concerns the number of cycles required by the Key-
setup of SOSEMANUK that is very huge compared with the results obtained on
the other traditional platforms. This very bad result could be explained by the
excessive code size (shown by table 3) that involves in our highly constrained ar-
chitecture a performances reduction. When we are looking at the SOSEMANUK
C source, we could notice that loops were unrolled for performance purposes.
This code is in fact optimized for more powerful architecture. But this improve-
ment induce the same behavior in the instruction cache than Py and PyPy in the
data cache. Cache often misses and instruction are fetched from memory while
the CPU is stalled. Then, if we want to improve the performances of SOSE-
MANUK, a good solution seems to be to reduce the code size to make it fit in
the cache.

The other observed results here go in the same direction than the one pre-
sented in [6]: the most rapid algorithms stay approximatively the same (except
for the particular case of Py and Pypy): HC-128, SOSEMANUK, SNOW v2.0,
Phelix, RC4 and HC-256. We do not have modified the C code provided on the
eStream web page but we think that it could be a solution to improve the results
of some algorithms if we use a lower level programming language.

4 Conclusion

We have presented here some benchmarks performed on stream ciphers, the tra-
ditional ones (RC4, SNOW v2.0,...) and the candidates of the ECRYPT project.
Some results could appear very strange but are in fact conditioned by the phys-
ical constraints of our platform.

Due to the ongoing state of the stream ciphers studied here, we do not have
to give any recommendation about their use in such constraint environment but
in the case of well-known and well-studied stream ciphers, we could notice that
SNOW v2.0 is swift as well on traditional platforms as on the highly constrained
environment.

As part of future work, we will benchmark the same ciphers on a MS430 16
bit micro-controller. Then, the comparison between the results obtained in [22]
concerning the performances of block ciphers using several modes of operation
and the stream ciphers presented here will be more pertinent. We also want to
estimate the general loose of performance produced by the addition of a stream
cipher in a real sensor communication environment.
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Abstract. Nowadays RSA using Chinese Remainder Theorem (CRT)
is widely used in practical applications. However there is a very powerful
attack against it with a fault injection during one of its exponentiations.
Many countermeasures were proposed but almost all of them are proven
to be insecure. In 2005, two new countermeasures were proposed. How-
ever they still have a weakness. The final signature is stored in a memory
after CRT combination and there is an error-check routine just after CRT
combination. Therefore, if an attacker can do a double-fault attack that
gives the first fault during one of the exponentiation and the other to
skip the error-checking routine, then he can succeed in breaking RSA. In
this paper, we show this can be done with the concrete result employ-
ing a glitch attack and propose a simple and almost cost-free method to
defeat it.

1 Introduction

After the advent of the concept of Side Channel Analysis by Kocher [15], many
variants have appeared to attack the embedded systems such as smart cards.
Among them, fault attacks introduced by Boneh et al. [5] are the most effective.

There are several kinds of methods to invoke faults such as variations in supply
voltage, variations in the external clock, temperature variation, white light, laser,
and X-rays and ion beams [3]. The objective of invoking faults is to make an
abnormal operation in a target and to compute hidden secret information with
the faulty output. In this paper, we use a glitch attack which makes a transient
fault with a voltage spike. The target of glitches is to corrupt data transferred
between registers and memory or to prevent the execution of the code. The glitch
attack is used to attack RSA [1] and recently DSA [16]

The first victim of the fault attack on the cryptographic algorithms was RSA.
The straightforward RSA implementation with Chinese Remainder Theorm was
shown to be broken by fault attacks [5]. The simplest way to prevent the fault
attack is just to compute signatures twice and compare them. However this dou-
bles computation time. Furthermore it cannot avoid permanent errors. Another
way is to verify the signature with the public exponent e. That is, the device
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returns the signature S only when Se ≡ m (mod N). However this method is
too costly if e is large. Furthermore in some applications (e.g. javacard), it is not
allowed to access the public exponent e during signature generation.

Many countermeasures were proposed [17,1,21] but they have been broken
[13,18]. In 2005, two new algorithms were proposed by Ciet and Joye [8] and
Giraud [10] separately. However, their schemes also missed one important point.
In the next section, we review the RSA-CRT and the existing countermeasures
against fault attacks. Section 3 shows the problem of the existing countermea-
sures and experimental results. Section 4 present the new approach to avoid the
new attack and finally we conclude in Section 5.

2 Previous Countermeasures

In this section, we briefly review the RSA-CRT (CRT based RSA) signature and
countermeasures against fault attacks .

2.1 RSA-CRT Signature Algorithm and Fault Attacks on It

Let N = p · q be the RSA modulus, where p and q are two large primes. Let e
be the RSA public exponent and d be the RSA private exponent satisfying that
e · d = 1 mod (p − 1)(q − 1). We also let dp (resp. dq) be the CRT exponent such
that dp = d mod (p− 1) (resp. dq = d mod (q − 1)). We denote by Iq the inverse
of q modulo p. Then the signature S of the message m is computed as

1. Sp = mdp mod p
Sq = mdq mod q

2. S = CRT(Sp, Sq) = Sq + q · ((Sp − Sq) · Iq mod p).

Bellcore researchers showed that if an error occurs in only one of the expo-
nentiations (that is, during a computation of Sp or Sq, but not in both), then
the factorization of N is possible with the faulty signature S̃ [5]. For example,
suppose that an error occurs during computation of Sp. Then a faulty S̃p will be
used in a CRT combination and S̃ = CRT (S̃p, Sq) will be returned. With the
correct signature S and the faulty one S̃, the secret prime q can be computed
by computing GCD(S-S̃, N).

This attack is further improved with only one execution of algorithm [12].
Secret prime number q can be found by computing GCD(S̃e − m, N).

2.2 Shamir’s Countermeasure and Its Generalizations

Shamir used a redundant way to compute Sp and Sq and checked the correctness
of Sp and Sq before RSA combination[17]. Let r be a random k-bit integer
(typically, k=32). Then the signature is computed as
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1. S∗
p = md mod (p · r)

S∗
q = md mod (q · r)

2.
{

S = CRT(S∗
p , S∗

q ) mod N if S∗
p ≡ S∗

q (mod r),
error otherwise.

Joye et al. pointed out one drawback of Shamir’s method [13]. It requires d
which is not known in CRT. Only dp = d mod (p − 1) and dq = d mod (q − 1)
are known. They proposed an improved algorithm which verifies the two half
exponentiations separately. Let r1 and r2 be two random k-bit integers. Then
device computes

1. S∗
p = mdp mod (p · r1), s1 = mdp mod ϕ(r1) mod r1

S∗
q = mdq mod (q · r2), s2 = mdq mod ϕ(r2) mod r2

2.
{

S = CRT(S∗
p , S∗

q ) mod N if S∗
p ≡ s1 mod r1 and S∗

q ≡ s2 mod r2

error otherwise.

The previous algorithms cannot detect errors occurred during RSA combina-
tion. In [1], Aumüller et al. checked the correctness of the result of RSA combi-
nation. Let r be a short prime number, e.g., 16 bits. Then device computes

1. p′ = p · r
d′p = dp + random1 · (p − 1)
S′

p = md′
p mod p′

if ¬(p′ ≡ 0 (mod p) ∧ d′p ≡ dp (mod (p − 1))) then return error

q′ = q · r
d′q = dq + random2 · (q − 1)
S′

q = md′
q mod q′

if ¬(q′ ≡ 0 (mod q) ∧ d′q ≡ dq (mod (q − 1))) then return error

2. Sp = S′
p mod p

Sq = S′
q mod q

S = CRT(Sp, Sq)

3. if ¬(S ≡ Sp (mod p) ∧ S ≡ Sq (mod q)) then return error

Spr = S′
p mod r

dpr = d′p mod (r − 1)
Sqr = S′

q mod r
dqr = d′q mod (r − 1)
if (Sdqr

pr ≡ S
dpr
qr ) then

return S,
else

return error.
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2.3 Infective Computations

Yen et al. proposed a different kind of approach, fault infective computation [21].
They noted that an error detection based on decisional tests should be avoided.
From the viewpoint of low-level implementation of this decision procedure, it
often totally relies on the status of the zero flag of a processor. The zero flag is
a bit of the status register in a processor. So, if an attack can induce a random
fault into the status register, then conditional jump instruction may perform
falsely. In their method, if an error occurs in one of the exponentiations (Sp or
Sq), then it makes both S̃ �≡ S (mod p) and S̃ �≡ S (mod q). Unfortunately,
both their countermeasures were shown to be insecure by Yen and Kim [19].

Blömer et al. suggested another countermeasure based on Shamir’s method
and on fault infective computation [7]. Given a security parameter k, for two
appropriately chosen k-bit integers r1 and r2 (stored in memory), the following
quantities are pre-computed and stored in memory:

r1p, r2q, r1r2N ,

d1 = d mod ϕ(r1p), e1 = d1
−1 mod ϕ(r1),

d2 = d mod ϕ(r2q), e2 = d2
−1 mod ϕ(r2).

The device then computes

1. S∗
p = md1 mod (r1p),

S∗
q = md2 mod (r2q),

2. S∗ = CRT(S∗
p , S∗

q ) mod (r1r2N),

3. c1 = (m − S∗e1 + 1) mod r1,
c2 = (m − S∗e2 + 1) mod r2,
S = (S∗)c1c2 mod N .

If there is no error, then c1 and c2 become 1 and the device returns a correct
signature S.

Unfortunately, this countermeasure is also shown to be insecure by Wagner
[18]. Let us suppose a random transient fault that modifies the value of m as
it is being read from memory in the computation of S∗

p while leaving the value
stored in memory unaffected, then c1 �= 1 but c2 = 1. Then the attacker can
mount a Bellcore-like attack by computing GCD(mc1 −Se, N) with the guess of
c1. In the scheme, c1 = (m − Se1 + 1) mod r1. Since Se1 = m̃ can be guessed in
his fault attack model, the attack was possible. Recently Blömer et al. proposed
a variant that overcome the weakness by randomizing the computation of ci [6].

2.4 Ciet and Joye’s Countermeasure

In 2005, Ciet and Joye generalized Shamir’s countermeasure [13] and adapted
fault infective computation [21] to avoid decisional tests [8]. For two co-prime
k-bit integers r1 and r2 and l-bit integer r3, we define
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p∗ = r1p,
q∗ = r2q,
I∗q = (q∗)−1 mod p∗.

Then device computes

1. S∗
p = mdp mod p∗ and s2 = mdq mod ϕ(r2) mod r2,

S∗
q = mdq mod q∗ and s1 = mdp mod ϕ(r1) mod r1,

2. S∗ = S∗
q + q∗ · I∗q · (S∗

p − S∗
q ) mod p∗,

3. c1 = (S∗ − s1 + 1) mod r1
c2 = (S∗ − s2 + 1) mod r2
γ = �(r3c1 + (2l − r3)c2)/2l�
S = (S∗)γ mod N

2.5 Giraud’s Countermeasure

In 2005, Giraud [10] used the fact that the temporary variables (a0, a1) are of the
form (mα, mα+1) in Joye and Yen’s SPA-countermeasure [14]. Let (dn−1, . . . , d0)
be the binary representation of d. Then a safe-error resistant exponentiation
based on Montgomery Ladder of [14] is computed as following:

a0 ← 1
a1 ← m
for i from n − 1 to 0 do

ad̄i
← ad̄i

· adi mod N
adi ← a2

di
mod N

return a0.

To construct a SPA-FA(fault attack)-resistant CRT-RSA, he first proposed
SPA-FA-resistant modular exponentiation (d is supposed to be odd):

a0 ← m
a1 ← m2 mod N
for i from n − 2 to 1 do

ad̄i
← ad̄i

· adi mod N
adi ← a2

di
mod N

a1 ← a1 · a0 mod N
a0 ← a2

0 mod N
if (Loop Counter i not modified) & (Exponent d not modified) then

return (a0, a1),
else

return error.
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Giraud used k · N instead of N , where k is a 32-bit random number in [11].
Here, we denote above algorithm as (A, B) ← SPA-FA-EXP(m, d, N). Then the
output (A, B) is (md−1 mod N , md mod N). Finally SPA and FA-resistant
CRT-RSA algorithm is as follows:

1. (S∗
p , Sp) ← SPA-FA-EXP(m, dp, p)

(S∗
q , Sq) ← SPA-FA-EXP(m, dq, q)

2. S∗ = CRT(S∗
p , S∗

q )
S = CRT(Sp, Sq)
S∗ = m · S∗ mod (p · q)

3 if S∗ = S & (Parameters p and q not modified) then
return S

else
return error

3 Problem of Previous Countermeasures

The previously known countermeasures to defeat fault attacks on RSA-CRT
mostly consist of three parts. Firstly the device computes two exponentiation
S∗

p and S∗
q . The computation of S∗

p (resp. S∗
q ) is done by either straightforward

computation like Sp = mdp mod p (resp. Sq = mdq mod q) or inclusion of a kind
of redundancy which will be used later to check errors. Secondly it combines two
exponentiations to compute signature S∗.

The final step can be divided into two categories. The first one uses conditional
check routine in which if an error does not occur then it outputs correct signature
and if error occurs it gives predefined signal like “error has been detected” (e.g.
Aumüller et al.[1], Giraud’s [10], etc.). In the other method, instead of using the
conditional check routine it gives a random value instead of a signature if error
occurs (e.g. Infective computations[21,6], Ciet and Joye’s [8], etc.).

Step 1. Computation of two exponentiation
- Compute S∗

p and S∗
q

Step 2. CRT combination
- Compute S∗ ← CRT(S∗

p , S∗
q )

Step 3. Fault detection

- Return
{

S ← f(S∗) if there is no error,
⊥ otherwise.

Suppose that the attacker tries to skip “fault detection” routine (Step 3 in
the above model) after CRT combination (Step 2). Then the attacker can get
S∗. Furthermore S can be computed easily since S = S∗ in the conditional check
routine approach and S = S∗ mod N in the other approach. Therefore we can
consider the following attack scenario.
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Our Fault Attack Model. The attacker tries to do a double-fault attack. He
gives the fist fault during only one of the two exponentiations to corrupt its
value. Then he gives the other fault during fault detection routine to skip some
operations. If he succeed in doing a double-fault attack, then he can get the
output of the CRT combination. That is, he gives a fault during Step 1. and
gets the output of Step 2. by skipping some operations of Step 3. by faults in
the above model.

Unfortunately all previous known countermeasures can be vulnerable to our
fault attack scenario. Because all of them check the occurrence of errors after
computation of a final signature.

3.1 Experiments of Our Attack

General Description. As seen in the previous section, RSA-CRT with a coun-
termeasure against fault attacks is composed of three parts. The attacker tries
to give two times faults. In the first trial, he tries to make errors during only one
of the two exponentiations during Step 1. If the attacker can get the faulty sig-
nature as the output of Step 2, then he can compute the private keys. Therefore,
he gives his second faults during Step 3 to skip some operations.

In the next section, as an example, we chose Ciet and Joye’s countermeasure
and implemented it. We gave a fault during the computation of S∗

p . Then we
gave the next fault during the computation of S = (S∗)γ mod N and tried to
skip it.

Results. We implemented 128-bit RSA-CRT with Ciet and Joye’s countermea-
sure (We note it as RSA-CRT with CJ ) [8] in an Atmel 8-bit AVR microcon-
troller, ATMega168 [2]. The program is implemented as follows:

Main() {
...
Set I/O pin low
Call subroutine RSA-CRT with CJ (as in 2.4)
Set I/O pin high
...

}

The tools used to create the glitches and the target board can be seen in
Fig.1. The chip is communicating with a computer via serial communication
and the power consumption is monitored by an oscilloscope even though they
are not shown in the figure. Fig.2 shows the I/O pin and power profiles. The
x-axis represents time and y-axis represents voltage (for I/O profile) and the con-
sumption of power (for power profile). The upper line represents the profile of
I/O behavior. The lower profile shows the power profile. The RSA-CRT with CJ
starts at the time block 0.4 and ends at the time block 6.8. In the figure the blocks
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Fig. 1. Experiment setup for the glitch attack

Fig. 2. RSA-CRT with CJ method without faults
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are numbered from 0 to 10. In our case the first exponentiation S∗
p lies in the

time frame 0.4 to 3.2. and the second one S∗
q in 3.2 to 6.0.

Firstly we gave a glitch into chip’s power supply during the first exponen-
tiation. You can see the result in Fig.3. There is a high peak in power profile
in the time frame about 0.6. You can also see the increase of total execution
time due to the faults. Since γ is no more 1, the computation of S = (S∗)γ mod
N requires more time. In Fig.3 the time frame from 6.4 to 7.0 corresponds to
this.

Then we gave another glitch just before the last computation of S = (S∗)γ

mod N as in Fig.4. Compared to Fig.3, you can see the total time is reduced
and the final computation of S = (S∗)γ mod N is disappeared. However you
can see the chip is still working and PC(program counter) is in main function
by seeing the I/O pin is high. If the chip is dead then the I/O pin will stay
at low state. Because I/O pin is set to high in the main program after calling
subroutine RSA-CRT with CJ. We confirmed the computation of S = (S∗)γ is
skipped by reading the returned value and computing the prime number p and
q with this fault signature with Bellcore-like attack [4].

In addition, the second fault skipping operations was more difficult than the
one making faults during an exponentiation. Sometimes a chip was stunned and
it never returned back to main function. Sometimes it showed whole RAM values
(there is a command shows specific RAM value, but it seemed that there was a

Fig. 3. Glitch attack during S∗
p operation



224 C.H. Kim and J.-J. Quisquater

Fig. 4. Glitch attack both S∗
p operation and (S∗)γ mod N

disturbance on the required address of RAM). We could also change the value
of γ by giving a glitch during the computation of this.

4 New Approach to Prevent Fault attacks

The simplest method to prevent our attack in Ciet and Joye’s scheme is to allo-
cate all intermediate variables in different memory buffers that are not used for
the returned signature. (Initialization of γ with a random value was not perfect
in our experiment because we skipped only the last exponentiation after compu-
tation of γ). It means, for example, 128 bytes in a 1024-bit RSA implementation
should not be used during whole RSA operations. It can be a burden for a pro-
grammer. Usually there is a specialized RAM, it is called crypto RAM, in a
smart card only for cryptographic usage and this is not so large. Therefore the
programmer should implement a RSA within comparatively small crypto RAM.
Furthermore, because there is a possibility to know the value stored in RAM
according to our experiments, the best idea is not to store the final signature
until the end of checking errors.

Therefore we suggest more general idea to overcome previously mentioned
problem. It is that the final signature S to be computed and stored only after
Step 3. Then with the result of Step 2 the attacker could not get any useful
information about secret keys. We modify Ciet and Joye’s scheme and Giraud’s
scheme as examples. We put a randomness before CRT combination and get rid
of it after an error check. Our idea can be applied for other countermeasures.
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Modified Ciet and Joye’s scheme

0. Choose a random integer a in Z∗
r1r2N

Initialize γ with a random number

1. S∗
p = (a + mdp) mod p∗ and s2 = (a + mdq mod ϕ(r2)) mod r2,

S∗
q = (a + mdq) mod q∗ and s1 = (a + mdp mod ϕ(r1)) mod r1,

2. S∗ = S∗
q + q∗ · I∗q · (S∗

p − S∗
q ) mod p∗,

3. c1 = (S∗ − s1 + 1) mod r1
c2 = (S∗ − s2 + 1) mod r2

γ = �(r3c1 + (2l − r3)c2)/2l�
S = (S∗ − aγ) mod N

After Step 2, S∗ is the form of S + a, where a is a random value. Therefore,
the attacker cannot get any information on the real signature S even though he
succeeded in skipping the subsequent operations. More detail analysis follows.

Security Analysis
Bellcore-like attack. Suppose that an attacker succeeded in introducing a fault
during one of the two exponentiations and also getting rid of the final operation
S = (S∗ −aγ) mod N . Let S̃∗

p be the faulty exponentiation and S̃∗ be the faulty
output of Step 2. Then the attacker will try to compute GCD((S̃∗)e − m, N).
However since (S̃∗)e = (S̃+a)e, neither ((S̃∗)e−m) �≡ 0 mod p nor ((S̃∗)e−m) �≡
0 mod q. Consequently the attacker cannot factorize N .

This is the same when the attacker tries to compute GCD(S∗ − S̃∗, N). Let
a be the random number used in computing S∗ and b be the random number
used in computing the second faulty signature S̃∗. Then S∗ ≡ Sp +ap (mod p)
and S∗ ≡ Sq + aq (mod q). And S̃∗ �≡ S̃p + bp (mod p) and S̃∗ ≡ Sq + bq

(mod q). Therefore, since (S∗ − S̃∗) = (Sp + ap − S̃p − bp) �≡ 0 mod p and
(S∗ − S̃∗) = (Sq + ap − Sq − bq) �≡ 0 mod q, the attacker cannot factorize N .

Consideration on skipping operations. Step 3 is consists of two parts. The one
is computing c1, c2, and γ (Let’s say Step 3.1). The other is computing S (We
call it as Step 3.2). Our experiments focused on skipping Step 3.2 . Therefore if
an attacker succeeds in skipping this, he gets (S∗ + a) and receives no valuable
information on secret keys. This is the same when he skips both Step 3.1 and
Step 3.2. Then how about skipping only Step 3.1? In our modified scheme, γ is
initialized with a random number, therefore he gets (S∗−aγ). The only possibility
to attack is to make γ = 1 which is negligible.

Let us consider Giraud’s scheme. We first modify SPA-FA-resistant modular
exponentiation in order to make the output as the form of (a + md−1 mod N ,
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a+md mod N), where a is a random value. Similar security analysis is possible,
but since Giraud’s scheme uses a conditional check-routine, if it is skipped the
attack is possible. Therefore avoiding a conditional check-routine is much better.
The proposed one is a simple example to avoid our attack (skipping Step 3.2 and
skipping both Step 3.1 and Step 3.2). To avoid the attack skipping only Step 3.1
(a conditional check) can be prevented by adding a randomness before the start
of exponentiation . Because if an error occurs in a one of exponentiations, then
it will affect also a random number used.

Modified SPA-FA-resistant modular exponentiation, SPA-FA-EXP∗

a0 ← m
a1 ← m2 mod N
for i from n − 2 to 1 do

ad̄i
← ad̄i

· adi mod N
adi ← a2

di
mod N

a1 ← (a + a1 · a0) mod N
a0 ← (a + a2

0) mod N
if (Loop Counter i not modified) & (Exponent d not modified) then

return (a0, a1),
else

return error.

Modified Giraud’s scheme

0. Choose a random integer a in Z∗
N

1. (S∗
p , Sp) ← SPA-FA-EXP∗(m, dp, p,a)

(S∗
q , Sq) ← SPA-FA-EXP∗(m, dq, q, a)

2. S∗ = CRT(S∗
p , S∗

q )
S = CRT(Sp, Sq)
S∗ = (m · S∗ + a) mod (p · q)
S = (S + a · m) mod (p · q)

3 if (S∗ = S) & (Parameters p and q not modified) then
return (S − a − a · m) mod N

else
return error
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5 Conclusions

In this paper, we pointed out the weakness of previous countermeasures against
fault attacks on CRT-RSA. Previous countermeasures are all vulnerable since
they are constructed without considering this weakness. Furthermore, to the
authors’ best knowledge, we showed the first (public reported) physical experi-
ment allowing double faults during one execution of the algorithm. Finally, we
proposed a simple and almost cost-free method to defeat this attack.

Acknowledgments. The author would like to thank for anonymous reviewers
for their valuable comments.
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7. J. Blömer, M. Otto, and J.-P. Seifert, A new CRT-RSA algorithm secure against
Bellcore attacks, 10th ACM Conference on Computer and Communications Secu-
rity, pp.311-320, 2003

8. M. Ciet and M. Joye, Practical fault countermeasures for Chinese Remaindering
based RSA, Fault Diagnosis and Tolerance in Cryptography – FDTC’05, pp.124-
131, 2005

9. P.-A. Fouque and F. Valette, The doubling attack - why upward is better than
downwards, Cryptographic Hardware and Embedded Systems – CHES’03, LNCS
V.2779, pp.269-280, 2003

10. C. Giraud, Fault resistant RSA implementation, Fault Diagnosis and Tolerance in
Cryptography - FDTC’05, pp.142-151, 2005

11. C. Giraud, An RSA implementaiton resistant to fault attacks and to simple power
analysis, IEEE Transactions on computers, VOL. 55, NO. 9, pp.1116-1120, 2006

12. M. Joye, A.K. Lenstra, and J.-J. Quisquater, Chinese remaindering based cryp-
tosystems in the presence of faults, Journal of Cryptology 12(4), pp.241-245,1999.

13. M. Joye, P. Pailler, S.-M. Yen, Secure evaluation of modular functions, Interna-
tional Workshop on Cryotpology and Network Security 2001, pp.227-229, 2001



228 C.H. Kim and J.-J. Quisquater

14. M. Joye and S.-M. Yen, The Montgomery powering Ladder, Cryptographic Hard-
ware and Embedded Systems – CHES 2002, LNCS V.2523, pp.291-302, 2002

15. P. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems, CRYPTO’96, LNCS V.1109, pp.104-113, 1996

16. D. Naccache, P.Q. Nguyen, M. Tunstall, and C. Whelan, Experimenting with
Faults, Lattices and the DSA, Public Key Cryptography - PKC 2005, LNCS V.3386,
pp.16-28, 2005

17. A. Shamir, Method and apparatus for protecting public key schemes from tim-
ing and fault attacks, United States Patent �5,991,415, November 23, 1999. Also
presented at the rump session of EUROCRYPT’97.

18. D. Wagner, Cryptanalysis of a provably secure CRT-RSA algorithm, 11th ACM
Conference on Computers and Communications Security, pp.92-97, 2004

19. S.-M. Yen and D. Kim, Cryptanalysis of two protocols for RSA with CRT based
on fault infection, Workshop on Fault Diagnosis and Tolerance in Cryptography –
FDTC’04, pp.381-385, 2004

20. S.-M. Yen, S. Kim, S. Lim, and S. Moon, RSA speedup with residue number system
immune against hardware fault cryptanalysis, Information Security and Cryptology –
ICISC 2001 LNCS V.2288, pp.397-413, 2001

21. S.-M. Yen, S. Kim, S. Lim, and S. Moon, RSA speedup with Chinese remain-
der theorem immune against hardware fault cryptanalysis, IEEE Transactions on
Computers 52(4), pp.461-472, 2003. An earlier version appears in [20]



CRT RSA Algorithm Protected Against Fault

Attacks

Arnaud Boscher1,�, Robert Naciri2, and Emmanuel Prouff2

1 Spansion,
105 rue Anatole France,

92684 Levallois-Perret Cedex, France
2 Oberthur Card Systems,

71-73 rue des Hautes Pâtures,
92726 Nanterre Cedex, France

arnaud.boscher@spansion.com, {r.naciri,e.prouff}@oberthurcs.com

Abstract. Embedded devices performing RSA signatures are subject
to Fault Attacks, particularly when the Chinese Remainder Theorem is
used. In most cases, the modular exponentiation and the Garner recom-
bination algorithms are targeted. To thwart Fault Attacks, we propose a
new generic method of computing modular exponentiation and we prove
its security in a realistic fault model. By construction, our proposal is also
protected against Simple Power Analysis. Based on our new resistant ex-
ponentiation algorithm, we present two different ways of computing CRT
RSA signatures in a secure way. We show that those methods do not in-
crease execution time and can be easily implemented on low-resource
devices.

Keywords: RSA, Chinese Remainder Theorem, Modular Exponentia-
tion, Fault Attacks, Simple Power Analysis, Smart Card.

1 Introduction

In 1997, Boneh, DeMillo and Lipton [1] introduced a new type of cryptanalysis
based on error computations: Fault Attacks (FA). Various public-key cryptosys-
tems were concerned but the RSA algorithm was especially targeted. Indeed,
Fault Attacks are particularly effective when the Chinese Remainder Theorem
(CRT) is applied. Using these techniques, an RSA modulus of arbitrary length
can be factorized practically instantly on a PC.

Fault Attacks can be directed at cryptographic embedded devices, like smart
cards, as shown in [2]. Straightforward protection mechanisms compute the sig-
nature twice, or verify it by performing the inverse operation. Nevertheless, this
can be time consuming and further complicated if the corresponding public key
is unknown to the device. So, alternative counter-measures, inside the algorithm
itself, have been proposed to protect RSA signatures computations against Fault
Attacks [3–7]. Unfortunately, many of them have been broken since their publi-
cation [2, 8, 9].
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Counteracting FA is not sufficient to ensure the security of an embedded
cryptosystem. Indeed, another threat comes from physical leakage during cryp-
tographic computations. A category of attacks, called Side Channel Analysis
(SCA), exploits this leakage to retrieve information about sensitive data manip-
ulated by the algorithm. Among these attacks, Simple Power Analysis (SPA) is
the easiest to mount in practice and an implementation of a cryptosystem in
mobile devices must thwart it. Counteracting FA and SPA attacks at the same
time is an issue. Indeed, some counter-measures against SPA can been exploited
by elaborate Fault Attacks such as Safe Error Attacks. In fact, it appears that
Simple Power Analysis and Fault Attacks (classical and Safe Error) must be si-
multaneously taken into account when implementing cryptographic algorithms.

The paper is organized as follows. In the next section we briefly recall the RSA
cryptosystem, the use of the Chinese Remainder Theorem to speed up genera-
tion of RSA signatures and the description of Fault Attacks directed against it.
Then, in Sect. 3, we present our method for computing a modular exponentiation
protected against Fault Attacks, proving its security in a practical fault model
whose relevance to (real life) scenarios is discussed. The new algorithm is used
in Sect. 4 to design two CRT RSA implementations resistant to FA and SPA.

2 RSA and Physical Attacks

2.1 RSA Cryptosystem

The public-key cryptosystem RSA [10] involves a public modulus N , which is the
product of two large secret primes p and q. The public exponent e is co-prime
with (p − 1) · (q − 1) and the private exponent d is the modular inverse of e
modulo (p − 1) · (q − 1).

An RSA signature S of a message M is computed with the following formula:

S = Md mod N.

To speed-up the exponentiation on low-resource devices, like smart cards, one
usually applies the Chinese Remainder Theorem [11]. The resulting CRT RSA
signature algorithm is four times faster compared to the classical method. It
involves two modular exponentiations and a recombination step using Garner’s
Algorithm [12]. It needs 5 parameters: the two large primes p and q, the values
dp = d mod p − 1, dq = d mod q − 1, and the pre-computed value A = p−1

mod q.

Algorithm 2.1. RSA Signature using CRT
Input: M, p, q, dp, dq, A
Output: S

1. Sp ← Mdp mod p //First Exponentiation
2. Sq ← Mdq mod q //Second Exponentiation
3. S ← ((Sq − Sp) · A mod q) · p + Sp //Garner’s Algorithm
4. return(S)
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2.2 Simple Power Analysis on RSA Algorithm

By exploiting physical leakage of a device, secret parameters can be retrieved
[13, 14] depending on the implementation of the algorithm. Among those Side-
Channels Attacks, Simple Power Analysis retrieves information by measuring
the power consumption of one execution of the algorithm, whereas Differential
Power Analysis (DPA) uses many samples of power consumption and applies
statistical techniques to get information. In the following, we particularly focus
on SPA attacks. More details about DPA attacks on modular exponentiations,
and counter-measures against these attacks, can be found in [15].

To explain how SPA allows one to get information on the secret exponent,
let us consider the following basic implementation of a modular exponentiation,
known as the Square and Multiply Algorithm, in which the exponent bits are
scanned from right to left [16]:

Algorithm 2.2. Right-to-Left Modular Exponentiation
Input: M, d = (dn−1, . . . , d0)2, N
Output: Md mod N

1. S ← 1
2. A ← M
3. for i from 0 to n − 1 do
4. if di = 1 then S ← S · A mod N
5. A ← A2 mod N
6. return(S)

If the executions of a modular square and a modular multiplication have
different power consumptions, it has been shown in [13, 14] that information on
the value of the secret exponent d can be retrieved. Indeed, if two consecutive
modular squares are identified, this means that the exponent bit processed was 0.
On the contrary, if a modular multiplication is interleaved between two modular
squares, the exponent bit was equal to 1.

To get around this problem, the following algorithm, called Square and Mul-
tiply Always, was proposed in [17]:

Algorithm 2.3. SPA Resistant Right-to-Left Modular Exponentiation
Input: M, d = (dn−1, . . . , d0)2, N
Output: Md mod N

1. S[0] ← 1
2. S[1] ← 1
3. A ← M
4. for i from 0 to n − 1 do
5. S[di] ← S[di] · A mod N
6. A ← A2 mod N
7. return(S[0])
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In Algorithm 2.3, each iteration of the loop involves a modular multiplication
whatever the bit-value of the exponent d. Since the sequence of successive oper-
ations performed are independent of the key-bits, attacks such as SPA become
impossible.

2.3 Fault Attacks on CRT RSA Algorithm

Fault Attacks have been suggested by Boneh et al. [1]. They observed that if a
device outputs an erroneous CRT RSA signature, an attacker can deduce the
private key from this information and the correct signature.

Indeed, let us assume than an error occurs during one of the modular expo-
nentiations of Algorithm 2.1. This results in an incorrect intermediate result,
e.g. S̃p, which will generate an erroneous signature S̃. The faulty signature S̃

and the correct signature S are likely to satisfy S̃ �≡ S mod p and S̃ ≡ S mod q.
Consequently, if S − S̃ is not divisible by p, the prime number q is revealed by
a gcd computation : q = gcd(S − S̃, N).

Remark 1. As noticed in [18], the attack can also be performed without the
knowledge of the correct signature: computing gcd(S̃e − M, N) will also dis-
cover q.

The classical protection against this attack is to verify the computed signature
with the public exponent e before sending the signature. The erroneous signature
being not returned, the gcd computation can no more be computed. However,
this can be costly in time (depending on the value of e) and sometimes impos-
sible, if the public key is unknown to the device1.

In Sections 2.2 and 2.3, we recalled two simple ways of thwarting SPA and
FA separately. In the next section, we show that this approach is not enough to
obtain a secure implementation of a modular exponentiation.

2.4 Fault Attacks on SPA-Resistant RSA Algorithm

Algorithm 2.3 ensures protection against SPA, but introduces a weakness with
respect to another type of Fault Attacks, known as Safe Error, as described
in [19].

When an exponent bit equals 0, the result of the dummy computation of the
modular multiplication is not used any more in the algorithm. Consequently, if
a fault is induced on this modular multiplication, an attacker can determine the
value of the bit, depending on the correctness or the incorrectness of the modular
exponentiation. If the result is correct, the modified modular multiplication was
a dummy operation, and so the bit of the exponent was 0. On the contrary, if
the result is erroneous, the modified modular multiplication was used in the rest
of the algorithm, meaning that the exponent bit was 1.

1 Computing the public exponent with the knowledge of the 5 CRT parameters is
possible but time-consuming on low-resource devices.
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This kind of attack can be applied to an RSA signature to recover the private
key, irrespective of whether it uses the CRT mode. This kind of cryptanalysis
requires more work on the part of the attacker than the analysis discussed in
Sect. 2.3 where only one fault was sufficient to obtain the private key. However, it
is much more powerful since it thwarts the classical counter-measure consisting
in checking the signature before sending it.

The attack described above illustrates the difficulty of thwarting SPA and FA
simultaneously. In the following section, we present a new method to compute
modular exponentiation resistant against Simple Power Analysis, Fault Attacks
and Safe Error Attacks.

3 Exponentiation Resistant to Fault Attacks

3.1 Our Proposal

Our idea consists essentially in modifying an SPA-resistant algorithm by intro-
ducing some coherence test at the end. This test aims at ensuring that no fault
has been induced during the execution of the algorithm. In fact, our reasoning
is very close to that proposed in [5] and [20].

Before explaining the core idea of our proposal, let us recall the content of
the loop of Algorithm 2.3:

4. for i from 0 to n − 1 do
5. S[di] ← S[di] · A mod N
6. A ← A2 mod N

Our idea is based on the three following observations:

– The value A is independent of d. At the end of the algorithm, A satisfies:

A = M2n

mod N.

– The value S[1] is the result of the modular exponentiation of M by the binary
complement of d, denoted d (and satisfying d = 2n − d − 1):

S[1] = M2n−d−1 mod N.

– Since S[0] equals Md mod N , the following relation holds for the content of
A after the loop:

M · S[0] · S[1] = M · Md · M2n−d−1 = M2n

= A mod N . (1)

Equation (1) establishes a relationship between the contents of S[0], S[1],
A and M after each loop iteration. So, to ensure that none of the modular
multiplications was interfered with (thus counteracting Fault Attacks and Safe
Error Attacks), we perform a check between the four values involved in the algo-
rithm. We verify that M , S[0], S[1] and A satisfy Equality (1) before returning
S[0]:
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Algorithm 3.1. SPA/FA Resistant Right-to-Left Modular Exponentiation
Input: M �= 0, d = (dn−1, . . . , d0)2, N
Output: Md mod N or ”Error”

1. S[0] ← 1
2. S[1] ← 1
3. A ← M
4. for i from 0 to n − 1 do
5. S[di] ← S[di] · A mod N
6. A ← A2 mod N
7. if (M · S[0] · S[1] = A mod N) and (A �= 0) then
8. return(S[0])
9. else

10. return(”Error”)

As it can be easily checked, our algorithm is still resistant to SPA: a modular
square always follows a modular multiplication, independently of the value of
the exponent. We have added two modular multiplications to the original version
(Algorithm 2.3). One modular multiplication can be avoided if, at the beginning
of the algorithm, S[1] is initialized with the message M . But as we will argue in
Sect. 4, the re-use of the message at the end of the algorithm is useful when it
comes to protect a CRT RSA that performs exponentiations with Algorithm 3.1.
We shall prove in Sect. 3.3 that the coherence check M · S[0] · S[1] = A mod N
avoids realistic fault attacks when A is not set to zero by the adversary. If A is set
to zero, then S[0] and/or S[1] and A shall be null and the coherence check will
fail in detecting the fault induction. To prevent such an attack, the verification
A �= 0 has been added.

To prove the resistance of our proposal to Fault Attacks, we first have to
clarify the capabilities of an attacker. In the following, we define the model in
which our algorithm will be proved.

3.2 Attacker Model

As argued in [3] and [8], sensitive applications (e.g. Banking, GSM or Identity
Card) cannot make use of countermeasures with ad hoc security but need coun-
termeasures which are provably secure against a precisely modeled adversary.
Blömer et al. [3], Wagner [8] and, more recently, Lemke-Rust and Paar [21]
have introduced adversarial models for Fault Analysis. They consider various
natures of faults and attack scenarios with a focus on pervasive computing on
low-cost cryptographic devices. The attacker model presented hereafter follows
the outlines of those described in [3] and [8]. It is divided into three parts which
respectively aim at specifying how the attacker interacts with the device, the
kind of variable targeted during the attack and the type of fault.

We shall assume that the attacker is only able to induce one fault per execu-
tion of the algorithm (this assumption is discussed in [2]). In [3], Blömer et al.
identified three different ways to induce faults on an algorithm.
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1. Modification of the input parameters [22].
2. Modification of the algorithm execution [23].
3. Modification of the local variables [3].

A powerful adversary is able to induce a fault in the three different manners
listed above and nowadays devices are usually provided with hardware mech-
anisms that render the task of such an adversary as difficult as possible. The
adding of redundancy by hardware functions (e.g. based on error correcting codes
or on hash functions) is often sufficiently effective to protect an implementation
against permanent modification of input parameters (first model). Hardware
mechanisms can also be successfully involved to guarantee the correctness of an
algorithm execution (second model) and they give confidence that the algorithm
does not end before all the exponent bits are processed [23]. Even if they are
effective and efficient to counteract fault inductions of types 1 and 2, hardware
mechanisms are rarely able to thwart attacks based on the perturbation of local
variables. Defeating such attacks is usually the main role of software counter-
measures. In the rest of the paper, we shall consider an adversary that modifies
local variables, assuming that the security against the two other kinds of fault
inductions is carried out by the Hardware.

Remark 2. In Appendix A, we propose a slightly modified version of Algorithm
4.1 in which a simple mechanism has been added to counteract some fault injec-
tions belonging to the first and the second categories of faults. This version may
be used when the effectiveness of some hardware countermeasures is in doubt. It
allows to check that the loop has been entirely executed and that the exponent
d used during the calculation (and temporarily stored in RAM) has not been
modified and equals the exponent d stored in the non-volatile memory of the
device.

Let X denote the value of a n-bit local variable and let X̃ denote the corre-
sponding faulty value. From X and X̃ one can deduce an error vector ε such
that X̃ = X + ε. The nature of the error vectors ε essentially depends on the
adversary type: a strong adversary shall be able to disturb the value of a local
variable at a very precise position (e.g. a bit modification at a given position),
whereas a weak adversary could induce a fault but could not determine its po-
sition or its value. Blömer et al. exhibited in [3] four different kinds of fault. We
recall their classification hereafter.

1. Precise Bit Errors. In the strongest scenario, an attacker can change the
value of one bit: X̃ = X ± 2k for 0 ≤ k ≤ n − 1

2. Precise Byte Errors. One selected byte is affected by the attack: X̃ = X±b·2k

for a known 0 ≤ k ≤ n − 8 and an unknown 0 ≤ b ≤ 255
3. Unknown Byte Errors. One random byte is affected by the attack: X̃ =

X ± b · 2k for a unknown 0 ≤ k ≤ n − 8 and an unknown 0 ≤ b ≤ 255
4. Random Errors. An attacker has no knowledge of the modification: X̃ =

X ± f(X) for 0 ≤ f(X) ≤ 2n−1



236 A. Boscher, R. Naciri, and E. Prouff

In our security proof exhibited in the next section, we shall not need to focus
on a type of fault in particular and we will prove that our proposal is secure
whatever the nature of the fault ε induced by the adversary.

3.3 Security Proof

The message M being assumed to be not null, it can be easily checked that A
cannot equal 0 if no fault is introduced. An attack consisting in setting A to zero
during the execution of the loop is thwarted by the second test at Step 7. In the
rest of this section, we argue that the first test at Step 7 allows to detect any
other kind of fault induction in the model described in Sect.3.2.

Wagner proposed in [8] a framework to prove the resistance of an algorithm
against Fault Attacks. He suggests that the algorithm be divided into a succession
of finite states that correspond to single step computations and to study how faults
propagate throughout the algorithm. Such an analysis allows to establish that the
fault is either detected by the algorithm or cannot be exploited by the attacker.

The algorithm is split up in such a way that the initial state corresponds to
the input of the algorithm and the final state corresponds to the output. All
normal transitions between intermediate states are represented by �. A Fault
Attack between intermediate states is symbolized by � .

Algorithm 3.1 involves the three variables S[0], S[1] and A. In Wagner’s frame-
work, the algorithm execution can be represented by the three following schemes
above:

1 � Md0 � Md1·2+d0 � . . . � Md

1 � Md0 � Md1·2+d0 � . . . � Md

M � M2 � M4 � . . . � M2n

To prove that the coherence test at the end of our algorithm detects any error
during the computation of the three variables, we simulate a fault in a random
state i + 1 for the three schemes above:

1. Attack changing the content of S[0]:

1 � Md0 � . . . � M
�i−1

j=0 dj ·2j

� M
�i

j=0 dj·2j

+ ε � . . . � M̃d

The wrong state M
�i

j=0 dj ·2j

+ ε implies a final state M̃d satisfying:

M̃d = (M
�i

j=0 dj·2j

+ ε) · (M
�n−1

j=i+1 dj ·2j

),

that is M̃d = Md + ε · (M
�n−1

j=i+1 dj ·2j

) which differs from Md if ε and M are
not equal to 0 modulo N .

2. Attack changing the content of S[1]. In a similar way, a disturbance of S[1]
at any moment results in the following state:

M̃d = Md + ε · (M
�n−1

j=i+1 dj·2j

)

which differs from Md if ε and M are not equal to 0 modulo N .
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3. Attack changing the content of A:

M � M2 � . . . � M2i−1 � M2i

+ ε � . . . � M̃2n

Contrary to the two previous cases, attacking A at a random state i + 1
impacts the content of the two others registers S[0] and S[1] at state i + 2.
To better analyze this error propagation, let us rewrite the error in a multi-
plicative way:
– If M2i

is co-prime with N , we deduce from the additive error ε the
multiplicative error β such that:

M2i

+ ε = M2i

· (1 + ε · M−2i

) = M2i

· β

– If M2i

is not co-prime with N , we denote by z the least common multiple
of M and N . The error β is such that:

M2i

+ ε = M2i

· (1 + ε · z ·
(

M

z

)−2i

) = M2i

· β

So, the different states of the three variables are the following

1 � Md0 � . . . � M
�i

j=0 dj·2j

� M
�i+1

j=0 dj ·2j

· βdi+1 � . . .

1 � Md0 � . . . � M
�i

j=0 dj·2j

� M
�i+1

j=0 dj ·2j

· βdi+1 � . . .

M � M2 � . . . � M2i−1 � M2i · β � M2i+1 · β2 � . . .

and the contents of S[0], S[1] and A finally equal Md · β
�n−1

j=i+1 dj ·2j−(i+1)
,

Md · β
�n−1

j=i+1 dj ·2j−(i+1)
and M2n · β2n−i

respectively.

When applying our verification formula, we get:

M · S[0] · S[1] = M · Md · β
�n−1

j=i+1 dj ·2j−(i+1)
· Md · β

�n−1
j=i+1 dj ·2j−(i+1)

= M2n · β2n−i−1
,

which is different from the value M2n · β2n−i

if the original error ε was not
equal to 0.

Remark 3. The error β may have the undesired property that there exists
some value k (lower than n − i − 1) such that β2k ≡ 1 mod N . However, it
has been shown in [24] that those values are extremely rare. For instance if
N is a RSA modulus equal to the product of two primes p and q, then we
have β2k ≡ 1 mod N iff 2n−i−1 ≡ 0 mod lcm(fp, fq), where fp and fq are
the orders of β modulo p and q respectively. If p and q are such that p − 1
and q−1 are not divisible by large powers of 2, then the probability that this
equality holds is comparable to the probability of factoring N by randomly
picking one of its prime factors.

Consequently, any error in an intermediate state of the three variables will result
in an erroneous result. Thus, we prove that the final check of our algorithm
detects any disturbance of any variable during any step of the computation.



238 A. Boscher, R. Naciri, and E. Prouff

4 CRT RSA Resistant to Fault Attacks

In the previous section, we introduced an exponentiation algorithm and proved
its security in a realistic fault model. However, even if the two modular expo-
nentiations in the CRT RSA algorithm have not yet been compromised, the
correctness of the whole algorithm is not guaranteed. Indeed, it has been shown
in [2] that Garner’s recombination can be successfully attacked using FA tech-
niques.

The following algorithms use the same principle as the method described in [5]
and [20]. A secure modular exponentiation algorithm (Algorithm 3.1) is used to
prevent faults during the two exponentiations in the CRT RSA algorithm. Then,
additional information given by this secure modular exponentiation is employed
to check that the recombination step was not disturbed.

4.1 First Method

Algorithm 3.1 can be used to strengthen the security of a CRT RSA implemen-
tation but it has to be slightly modified. Instead of always returning the result
of the exponentiation, it returns the three variables if they satisfy Equality (1).
Garner’s Algorithm is then applied three times, and finally a check is performed
to verify that those results satisfy an equality we exhibit below. The goal of this
coherence verification is to protect the recombination step.

Proposal. We denote by l the bit-length of the secret moduli. Our CRT-RSA
algorithm protected against FA is:

Algorithm 4.1. FA-Resistant RSA Signature using CRT
Input: M �= 0, p, q, dp, dq, A, and l the bit-length of p and q
Output: S or ”Error”

1. (Sp, S′
p, Tp) ← (Mdp mod p,M2l−dp−1 mod p, M2l

mod p)

2. (Sq, S
′
q , Tq) ← (Mdq mod q, M2l−dq−1 mod q, M2l

mod q)
3. S ← ((Sq − Sp) · A mod q) · p + Sp

4. S′ ← ((S′
q − S′

p) · A mod q) · p + S′
p

5. T ← ((Tq − Tp) · A mod q) · p + Tp

6. if M · S · S′ = T mod N then
7. return(S)
8. else
9. return(”Error”)

Correctness. We now consider the relevance of the coherence test in Step 6.
First, let us denote by d, dp and dq the binary complements of the values d, dp

and dq respectively. They all satisfy:

d + d = 22l − 1, dp + dp = 2l − 1, dq + dq = 2l − 1.
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Moreover, by definition of dp, there exists an integer k such that d = dp + k ·
(p − 1). Thus, we have:

d = dp + k · (p − 1),
22l − 1 − d = 2l − 1 − dp + k · (p − 1),
d − 22l + 2l = dp − k · (p − 1) .

In a same manner, for an integer k′ we have:

d − 22l + 2l = dq − k′ · (q − 1) .

Due to the Chinese Remainder Theorem, the result of the Garner’s recombi-
nation of S′

p = Mdp mod p with S′
q = Mdq mod q is S′ = Md−22l+2l

mod N .
Thus, since d equals 22l − d − 1, the value S′ satisfies S′ = M2l−d−1 mod N .

After multiplying S′ by the signature S and the message M (Step 6), we get
M · S · S′ = M · Md · M2l−d−1 mod N that is M · S · S′ = M2l

mod N .
The fifth step of Algorithm 4.1 computes the value T = M2l

mod N . Con-
sequently, if no error occurs during the execution of the CRT RSA algorithm,
then the four values M , S, S′ and T must satisfy the equality:

M · S · S′ = T mod N.

Security. The security of Algorithm 4.1 with respect to FA is straightforwardly
deduced from the coherence test and the analysis done in Sect. 3 (it thwarts in
particular the recent attack [25]). The Square and Multiply Always structure
of the algorithm makes it resistant against known-plaintext SPA attacks. SPA-
Attacks assuming that the messages can be chosen by the adversary (e.g. [26,27])
are out of the scope of this paper. Classical countermeasures such as the ran-
domization of M (see for instance [28]) can be used together with our SPA/FA
countermeasure to counteract such attacks by rendering the value of M unpre-
dictable. The use of the message at the end of Algorithm 4.1 (during the last
check) protects against modification of the message before one of the two expo-
nentiations and thwarts the attack described in [8]. To insure the validity of the
other input parameters of Algorithm 4.1, hardware mechanisms may be used
(for instance in order to check the CRC value of each parameter).

Complexity. This method requires adding only two Garner’s recombinations
and two modular multiplications to the classical CRT RSA algorithm. However,
memory consumption is larger. Four l-bit values and two additional 2l-bit values
are required compared to non-protected implementations.

As an alternative, we propose the following algorithm which detects an error
with some probability.

4.2 Second Method

Our second proposal uses less memory than the previous one, but the coherence
verification is made with a probability error, depending on the bit-length b of a
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security parameter r. This means that an error can remain undetected with a
probability equal to 1

2b . In the following, we decided to choose a 32-bit parameter
b, which is a good compromise between security and efficiency:

Our memory-optimized version of Algorithm 4.1 is:

Algorithm 4.2. FA-Resistant RSA Signature using CRT
Input: M �= 0, p, q, dp, dq, A, and l the bit-length of p and q
Output: S or ”Error”

1. (Sp, S′
p, Tp) ← (Mdp mod p,M2l−dp−1 mod p, M2l

mod p)

2. (Sq, S
′
q , Tq) ← (Mdq mod q, M2l−dq−1 mod p,M2l

mod q)
3. r ← 32-bit random number
4. Rp ← Tp mod r
5. Rq ← Tq mod r
6. S ← ((Sq − Sp) · A mod q) · p + Sp

7. if (M · S · S′
p mod p) �= Rp mod r then

8. return(”Error”)
9. if (M · S · S′

q mod q) �= Rq mod r then
10. return(”Error”)
11. return(S)

The accuracy of the proposed algorithm comes from the definition of the
modular exponentiation algorithm employed. The value Rp computed before
the recombination is equal to:

Rp = Tp mod r

Rp = (M2l

mod p) mod r .

The first check computes the value:

M · S · S′
p = (M · M2l−1 mod p) mod r

= (M2l

mod p) mod r

= Rp .

In a similar way, the last verification step is coherent:

M · S · S′
q = (M2l

mod q) mod r

= Rq .

This method requires two additional comparisons with respect to the previous
one. But these comparisons are made on values of the same length as p (or q),
whereas the comparison in Algorithm 4.1 involves values of same length as N .

Algorithm 4.2 does not require the storage of the l-bit values M2l

mod p and
M2l

mod q, during the Garner recombination. Only three 32-bits values must be
stored. Instead of Tp and Tq, we store their remainders modulo the 32-bit random
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number r. Also, the computation and the storage of the public modulus N is no
more required.

This optimized version ensures that no attack occurs during the recombination
step with a detection probability, which can be parameterized following the bit-
size b of the security parameter r.

5 Conclusion

In this paper, we propose a modular exponentiation algorithm that is resistant to
Fault Attacks and Simple Power Analysis. We formally prove that this algorithm
thwarts classical Fault Attacks and Safe Error Attacks in a realistic and practical
fault model. Moreover the timing/memory overhead incurred by the security
add-on is quite reasonable. Compared to the classical modular exponentiation
algorithms that are resistant to SPA, it requires only two additional modular
multiplications.

We show that this exponentiation algorithm can be used to strengthen both
versions of the CRT RSA signature algorithm against Fault Attacks. In the first
one, only two additional Garner’s recombinations and two modular multiplica-
tions are needed. And in the second one, only two modular reductions and two
modular multiplications are required. These additional overheads do not consid-
erably increase execution time, particularly when compared to the overhead of
computing the signature twice over, and is well suited for use on low-resource
devices.

Further, the method proposed for computing modular exponentiation in a
secure way could be used to compute scalar multiplication of points over the
group defined by the points of an elliptic curve.
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A SPA/FA Resistant Exponentiation with Software
Checking of the Exponent

Algorithm A.1. SPA/FA Resistant Right-to-Left Modular Exponentiation - 2nd ver-
sion
Input: M �= 0, d = (dn−1, . . . , d0)2, N
Output: Md mod N or ”Error”

1. S[0] ← 1
2. S[1] ← 1
3. A ← M
4. ectrl ← 0
5. for i from 0 to n − 1 do
6. S[di] ← S[di] · A mod N
7. ectrl ← ectrl + 2n · di

8. A ← A2 mod N
9. ectrl ← ectrl/2

10. if (M · S[0] · S[1] = A mod N) and (ectrl = d) and (A �= 0) then
11. return(S[0])
12. else
13. return(”Error”)
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Abstract. In this paper we present a clock frequency watch dog that
can be realized using a digital standard CMOS library. Such watch dog
is required to prevent clock speed manipulations that can support side
channel attacks on cryptographic hardware devices. The additional area
and power consumed by the watch dog for an AES hardware accelerator
are 4,200μm2 and 2nJ per 128 bit respectively. The physical properties
and the use of standard CMOS technology ensure extremely low addi-
tional production cost. Thus, our approach is very well suited to improve
the security of low cost devices such as wireless sensor nodes.

1 Introduction

Wireless sensor networks (WSN) are becoming more and more popular, and the
area of their application is constantly increasing. Their use in military and home-
land security applications obviously demands a high level of security. This holds
true also for other application areas such as vehicular scenarios [5]. The fact that
wireless sensor nodes are exposed to potential attackers requires means to protect
them against side channel attacks that exploit physical access to the devices, e.g.
against power analysis attacks. These protection mechanisms are normally quite
expensive and therefore not used in low cost devices. However, high end smart
cards are already equipped with initial protection mechanisms [5].

The main contribution of this paper is the introduction of a circuit that is
capable to detect manipulations of the clock frequency, which can be used to
simplify differential power analysis attacks. The major benefits of this circuit are
extremely small area and energy consumption i.e. 3.5 per cent more energy and
approximately 1.0 per cent of the silicon area of the AES (Advanced Encryption
Standard [6]) core we used for our experiments. Additionally our approach is
a combinatorial logic so that it can be manufactured in a pure CMOS design,
which dramatically reduces the costs on integrating this kind of a clock frequency
watch dog into crypto hardware. By this, the proposed approach turns formerly
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unprotected devices to be partly protected devices of level 3 according to the
FIPS 140-02 [7].

The rest of this paper is structured as follows. In section 2 we give a overview of
the side channel issue and present previous solutions. The AES crypto device that
we are evaluating and a successful side channel attack are described in section 3.
The a low cost countermeasure is presented and the results are discussed before
the paper concludes.

2 Related Work

Side channel attacks as means for revealing secret information of a cryptographic
implementation have a long history. In the 1960s intelligence exploited sound and
electromagnetic emissions to deduct secret information from cryptographic type-
writer [19]. In 1985 van Eck published an analysis of electromagnetic emanations
of computer devices [17]. Nowadays timing and power consumption are the major
side channels that can be used against cryptographic devices. The first timing at-
tack was published in 1996 [11]. If the processing of a ’1’ takes a different amount
of time than for a ’0’, key information can be deducted. With a strict separation of
data path and control path, as it is possible for modern cryptographic algorithms,
that attack does not pose a serious threat anymore. In contrast, power attacks have
been a major threat for cryptographic devices. Two kinds of power attacks can be
distinguished: the simple power analysis (SPA) and the differential power analysis
(DPA). The SPA tries to deduct information directly from the power trace. It can
be applied if power consumption for different keys differs a lot. An example for an
SPA attack on AES is shown in [12]. The DPA [10] analyses the power consump-
tion of hundreds up to millions of operations and exploits smallest differences of
the power trace in order to deduct information. DPA attacks on AES implemen-
tations are described in [13][14][4]. Several countermeasures have been presented
in [2][3]. A common approach to prevent such analysis is randomization or mask-
ing of the performed operations so that small operational differences are covered
by intentionally inserted noise. Another approach is the avoidance of any power
side channel information. However, solutions for constant power dissipating logic
[16, 8] require additional logic gates, additional power consumption and individ-
ual design libraries that render these approaches very expensive if not infeasible.
In particular for mobile environment, smart cards or in wireless sensor networks
where production costs and power consumption must be kept as low as possible
such ideas are not practicable.

Additionally most approaches have weaknesses if the circuit is forced into
exceptional states. Fault injection, inserted glitches or tampered clock speeds
produce errors that finally reveal secret information as described in [13]. Many
attacks require a tampered clock frequency in order to force faults. Countermea-
sures are embedded clock generator or PLLs [15], which are quite expensive and
require a lot of additional energy. Thus, we are looking for a low cost mechanism
that ensures that the circuit is driven at correct frequency.
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3 AES Chip

In this section we first describe the architecture of the evaluated cryptographic
accelerator. Afterwards a DPA attack to the AES accelerator is presented.

The IHP Dual2-Crypto-Chip is a hardware accelerator for the symmetric ci-
pher algorithm AES (Advanced Encryption Standard) and the asymmetric ci-
pher algorithm ECC (Elliptic Curve Cryptography). The chip was manufactured
in IHP 0.25μm CMOS technology [9]. Two different interfaces for the connec-
tion of the ASIC with a PC were implemented. One is 16-bit PCCARD-Interface,
and the other one is a 32-bit PCI-interface. Figure 1 shows the schematic of the
interfaces and the AES block. We implemented both interfaces on the demon-
stration device pursuing the goal to test the device on as many computers and
environments as possible. It should be mentioned that the PCI interface gets a
system generated clock (33 MHz) while the clock for the PCMCIA interface has
to be generated by an external quartz oscillator. That is why we perform our
security analysis with the PCMCIA interface and do not consider PCI.

Fig. 1. Block diagram of the IHP Dual2 crypto chip

3.1 Description of AES Implementation

From side channel security aspects the most interesting block of the IHP Dual2-
Crypto-Chip is the AES block. The AES block investigated in this paper is a
similar preceding version of the AES implementation comprehensively described
in [18].

The version considered in this paper needs 90 clock cycles to encrypt or de-
crypt a 128 bit data word using a 128 bit key. As usual the implementation
consists of a key generator, an algorithm part and a controller block, which co-
ordinates the key and the algorithm block (see Fig. 2). AES [6] is a block cipher
protocol that encrypts each block (i.e. 128 bit) not only in one steps but in sev-
eral rounds (10). Based on the initial key the AES algorithm needs a new key for
every round. The new round key is computed in the key generator block. Once
per round the round key is applied in the algorithm block where key and data is
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Fig. 2. Block diagram of the AES block

combined to the output stream. In the algorithm block the sub-algorithms add
key, shift row, substitution box and mix column are performed once per round.
Since the implementation focusses very small low energy devices, the operation
are executed successively and not in parallel.

3.2 Successful DPA Attack on the Chip

Considered the AES key is stored on the chip, protocol is known, data streams
are fully accessible and the chip can be fully accessed, we want to deduct the
internal key exploiting the power consumption as side channel. We also use the
fact that we can set the input stream.

In order to deduct the key we observe the initial round of the AES. In other
words, we are interested in what the chip is doing when our input data and the
stored key are combined for the first time. We are not interested in the actual
result of the encryption. In the first AES round the key is bitwise logically
XORed with the input data word. The result is stored in a register. The idea is
to observe the power that is required for writing the data into the register.

Our approach is to select a constant input value (e.g. all bits ’0’). Then we
toggle one bit. The theory is that writing a ’1’ requires more energy than writing
a ’0’, because after reset all registers are set to zero 1. The power consumption
can be monitored with an oscilloscope (Agilent 54854A 20GSa/s [1]). Since the
power cannot be measured directly, we use a resistor in the power line that gen-
erates a voltage drop equivalent to the supply current. Based on our assumption,
repeatedly executing the measurement we could filter the noise from other blocks
and determine the key. The test environment is shown in Figure 3. It shows a
PCMCIA card with the mounted crypto chip, resistor and a port for an external
adjustable clock.
1 That all registers are set to zero after a reset is a property of the circuit that severely

weakens the side channel resistance.



248 F. Vater, S. Peter, and P. Langendörfer

Fig. 3. The tested Dual2 crypto card with attached measurement equipment

In our experiment in average we could deduct 113 bits out of the 128 bit AES
key within 850 iterations of the measuring process. Please consider that even
without sophisticated attack statistically the number of correctly guessed bits of
the key is already 64.

Our described attack has similarities to the one presented in [14]. However, [14]
described an ASIC with separated power supplies for core and I/O-pads, what
significantly improves the observability of the core. Our investigated ASIC has
only one power supply for both core and pads, what is a more practical scenario
for very small and cheap devices as they are applied in mobile environments.

4 Low Cost Countermeasures

Initially we expected that higher capacities of the I/O pads would better cover
the action inside the chip. But with the attack assumptions, that are indeed
based on the knowledge of the chip design, we could deduct the internal key quite
easily. It is a bit surprising and poses the question for efficient countermeasures.
In literature several approaches have been described. Many of them require very
costly changes in design process and design libraries what is not acceptable in
most cases, in particular for cheap small devices.

That is why we are looking for low cost approaches that need as little addi-
tional silicon as possible, do not imply much higher power consumption and do
not require huge changes in the design chain.
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4.1 Clock Stabilization Approach

One thing we could observe in our experiments is that lower clock frequencies
improve the observability of the chip significantly. In [14] the clock frequency
of the device was reduced to 2 MHz. Our results were also achieved with clock
frequencies far under the intended chip specifications (i.e. 10 MHz). We assume
that due to capacities on the chip the observability of the internal transitions is
reduced with higher clock frequencies - a property that is strengthened by the
combined power supply for pads and core.

A straightforward solution for this issue is to ensure that the device is always
driven at the intended clock frequency. A standard approach is to integrate a
PLL (phase looked loop) into the chip [15]. Though it indeed solves the problem,
it is quite expensive. A PLL requires many analogue design elements that are
not available in a low cost pure digital design process, so it implies increased
costs in developing process and especially for manufacturing.

In the following we propose an approach that can be realized by standard
CMOS digital libraries on chip, and is also applicable for FPGAs. The idea is
that the gate delay of standard gates is known. With a chain of such gates (e.g.
an inverter chain) it is possible to construct a specific delay in the circuit. If
the clock edge compared to the output of the inverter chain comes too early or
to late, the circuit concludes that the clock frequency has been tampered and
causes an invalidation of all results. Since gates in real circuits are not ideal
and are depending on temperature and voltage, it is necessary to implement
an additional margin. For example if the ideal clock is 50 MHz then one could
implement a tolerance of 10 per cent, so that 45 - 55 MHz are still accepted.
Figure 4 shows the schematic of such a circuit. The clock is connected to an
inverter chain. Two connected inverters are one inseparable buffer. From the
inverter chain we fork two signals. The first corresponds to the lower time limit
and the second (that is the end of the chain) is the upper threshold. The number
of required buffers is computed with following equation:

buffersshort =
100 − p

200
· period

delayper buffer
(1)

bufferslong =
100 + p

200
· period

delayper buffer
(2)

Where p is the percentage of tolerance.
In our example circuit we want to ensure a clock frequency of 50 MHz with 10%

tolerance while the delay per buffer element is 0.0914ns in the considered 0.25μm
CMOS technology. Then the required number of buffers needed to supervise the
lower boundary of the allowed clock frequency interval is

buffersshort =
100 − 10

200
· 20ns
0.0914ns

= 98 (3)

and the number of buffers for the upper threshold is 120.
As shown on Figure 4 each of the forked signals is XNORed with the actual

clock signal. In the evaluation logic (box at the right) both XNOR results are



250 F. Vater, S. Peter, and P. Langendörfer

Fig. 4. Structure of the clock watch dog element: Signals A1 and A2 are forked from
the delay chain corresponding to the computed threshold time. If A1 equals A2 at
toggling clock, it is an indicator for a tampered clock.

compared. We want to see that in the moment the clock toggles, the first forked
signal (A1) has been toggled and the second signal not yet. That is, if A1 is
’0’ and the A2 is ’1’, or vice versa, then the clock frequency is correct. If in
contrast both signals are identical then the clock speed is either too slow or to
high because it means that the clock came before or after both threshold signals
changed. In case such condition is recognized, the ’untouched’ signal is set to ’1’
what causes an invalidation of the cryptographic circuit. If the clock is assumed
as correct the ’untouched’ signal is ’0’.

4.2 Results

The result of our experiment is shown in Figure 5. If the clock frequency is too
slow (on the right) the untouched signal is ’1’ and consequently the cryptographic
operation will not be executed. In the area from 45 to 55 MHz untouched clk
is ’0’, i.e. it is correct, and higher clock frequencies result in a ’1’. However,
in the figure it can be seen that higher frequencies sometimes are mistakenly
recognized as correct. It happens when the applied clock frequency is a multiple
of the correct frequency. That is still an open issue in our approach.

In order to evaluate power and area consumption we integrated our approach
into our in house AES implementation. For the IHP 0.25μm CMOS technology
the chain of 240 inverters requires 3810μm2 and the needed additional logic
requires 374μm2. The AES design has an silicon area of 430,000μm2, thus the
additional 4,200μm2 are reasonable.

The AES encryption of 128 bit with the initial design requires energy con-
sumption of 57 nJ. The same design with secured clock frequency needs 59 nJ,
i.e. merely 3.5 percent more energy.
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Fig. 5. Waveform of simulated watch dog circuit. On the top is the clock frequency.
The row ’untouched clk’ shows the (low active) result of the watch dog. Is it ’0’ the
clock is assumed to ok. Is it ’1’ it is an indication for a tampered clock.

4.3 Discussion and Further Work

Figure 5 has already shown that high clock frequencies could not be properly
detected. Another potential problem is that the production yield will be de-
creased if the variance of the manufacturing process leads to deviations from the
ideal gate delays. It is considerable to implement a delay element that can be
calibrated on time after production.

However, beside production deviations, voltage and temperature interfere gate
delay times. Lower voltage and higher temperature cause slower circuits. That
effect can cause false alerts but can also be exploited to tamper the clock fre-
quency. The PVT (production, voltage, temperature) effects are a serious issue
that we have to evaluate in practice after manufacturing silicon circuits with
integrated clock watch dog.

Indeed, the proposed mechanism is not a one size fits all solution that prevents
from all potential side channel attacks. It is merely a stand alone solution that
solves the specific issue of clock frequency manipulation when DPA is used.
Thus, it is a piece of a puzzle which can provide complete protection as soon as
it is completed. In other words additional means that have to be invented and
investigated are still essentially needed. Some potential means are inverse data
paths, an increased level of random noise and fixing of design flaws that increase
the observability. Also additional capacitors in the pad path could reduce the
leaked side channel information in particular if it is guaranteed that the design
is driven on sufficiently high clock speeds.

5 Conclusions

In this paper we have presented a clock frequency watch dog realized using com-
binatorial logic. Our approach causes minimal additional power consumption
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and negligible area overhead. For our AES design these costs were 3.5 per cent
more energy and approximately 1.0 per cent more area. Our simulation results
clearly show that the proposed design works very well if a reduction of the clock
frequency has to be detected. In the opposite case not all manipulation have
been detected. Due to the fact that especially a clock frequency reduction bears
a serious risk with respect to DPA, we think that our result is very encouraging.

With the technology presented in this paper we provide a first step towards
the realization of partly protected low-cost devices. According to the FIPS 140-
02 [7] classification devices using our mechanism can even be grouped into level
3: ”devices, that implement tamper evidence and tamper response mechanisms”.

To summarize, our approach is a suitable means to significantly improve the
security of wireless sensor network for example.
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