
Modeling Influence Between Experts

Wen Dong and Alex Pentland

E15-383, 20 Ames Street
The MIT Media Laboratory
Cambridge, MA, 02139-4307

{wdong, sandy}@media.mit.edu

Abstract. A common problem of ubiquitous sensor-network computing
is combining evidence between multiple agents or experts. We demon-
strate that the latent structure influence model, our novel formulation for
combining evidence from multiple dynamic classification processes (“ex-
perts”), can achieve greater accuracy, efficiency, and robustness to data
corruption than standard methods such as HMMs. It accomplishes this
by simultaneously modeling the structure of interaction and the latent
states.

1 Introduction

Human computing is the next generation human-computer interaction scheme
[8]. In this scheme, a multitude of unobtrusive and ubiquitous sensors work
with each other, intelligently sense human behavior and interaction, and pro-
vide assistance accordingly. The human computing paradigm is different from
the traditional keyboard/mouse multimodal scheme: The traditional scheme is
computer-centered, and requires considerable efforts from a human user in order
to make a computer understand. In comparison, the human computing scheme is
human based. It requires the intelligent sensors to predict human behavior and
interaction precisely without even being noticeable by a human user, in order to
provide the best assistance possible.

Combining evidence from different sensors, classifiers, agents, or experts is
a major algorithmic challenge in human computing. We propose the influence
model as a new, efficient, and robust method for combining evidence from differ-
ent dynamic processes. The influence model is analogous to the work of a team of
experts. In this team, different experts cope with different types of data and use
different statistical models. Each expert consults with the other experts about
their results, instead of their raw data, to form a better understanding of the
situation. The experts find others whose results have information about their
particular problem, and form networks that can be used to pool data, identify
outliers, etc.

The influence model has proven to be an efficient, robust method for analyz-
ing multi-expert dynamics problems. It is in the tradition of N-heads dynamic
programming on coupled hidden Markov models [7], the observable structure
influence model [1], and the partially observable influence model [2], but extends
these previous models by providing greater generality, accuracy, and efficiency.

T.S. Huang et al. (Eds.): AI for Human Computing, LNAI 4451, pp. 170–189, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Modeling Influence Between Experts 171

In this introductory section, we will first outline two types of several experi-
mental platforms where we have used the influence modeling methodology. This
will allow us to sketch some of the opportunities and challenges for our method
of combining experts. We believe the same method can be applied to other hu-
man computing scenarios, and can be a good candidate for combining evidence
of human physiological signals as well as social signals.

Example Applications

Our first example illustrating the general problem of combining expert classi-
fiers is the inSense system [3] which combined several wearable sensor systems,
each of which attempted to classify the state of the wearer. The ultimate goal of
this system was to combine these local experts into a global estimate of wearer’s
state, and use this to control data collection by camera and microphone. The sys-
tem was developed as part of the DARPA Advanced Soldier Sensor Information
System and Technology (ASSIST ) program [4].

In the inSense system (see Figure 1), data are collected by two accelerometers
(worn on left hip and right wrist), an ambient audio recorder, and a camera (the
latter two worn on the chest). From the data, four within-category “experts”
are able to recognize various types of wearer context. These context categories
include (1) eight types of locations (office, home, outdoors, indoors, restaurant,
car, street, and shop), (2) six ambient audio configurations (no speech, user
speaking, other speaking, distant voice, loud crowd, and laughter), (3) seven
postures (unknown, lying, sitting, standing, walking, running, and biking), and
(4) eight activities (no activity, eating, typing, shaking hands, clapping hands,
driving, brushing teeth, and washing the dishes).

The within-category contexts recognized by the four category experts are then
combined to determining moments of interest in the wearer’s everyday life, which
are then recorded as a sort of personal diary. The context estimates can also be
used to assist a wearer in real time. Several things are worthy of mentioning in
the inSense system. First, the contexts in the recent past provide information
for recognizing the current contexts. This type of information can be utilized by,
for instance, hidden Markov models.

Second, the four categories of contexts (postures, ambient audio configura-
tions, postures, and activities) are related. For example, knowing that a user is
typing would strongly bias the system to believe that he is both sitting and in his
office / home, while knowing that a user is in his office / home only weakly hints
that he is typing. Since the inSense system does not have a GPS, most of the
user’s location contexts are inferred from the other three categories of contexts.

Third, the relation between these four categories is too complex to be speci-
fied manually. The contexts from one category can be combined freely with those
from another category, and there are as many as 8 × 6 × 7 × 8 = 2688 number
of combined states. As a result, a good algorithm for this system must be able
to explore and exploit the relations among different categories of contexts auto-
matically while avoiding consideration of the exponential number of combined
states.



172 W. Dong and A. Pentland

Fig. 1. Left: the inSense system; Right: the ASSIST system

A very similar approach was taken in developing a soldier state recognition
algorithm for the ASSIST system (see Figure 1), in collaboration with IBM
and Georgia Tech teams. In this system, data was collected in real-time from
several accelerometers, microphones, cameras, and a GPS/altimeter, all attached
to different parts of the soldiers’ clothing. Inference of soldier state was made in
real-time, and data automatically shared among different soldiers wearing the
ASSIST systems based on the pattern of activity shown among the group of
soldiers.

Both systems used the same team-of-experts approach. In the inSense sys-
tem, the raw data are computed upon in fundamentally different ways to get the
four categories of contexts. The understandings in different categories of contexts
can serve to enhance each other. In addition, there are so many combinations of
contexts that the curse of dimensionality should be carefully avoided. In compar-
ison, the sample sequences from different sensors in the ASSIST system observe
very different probability laws and can hardly be jointly Gaussian, thus it was
beneficial to apply different models to different sensors and then combine the
results.

Since sensor failures were unavoidable due to insufficient power supply, sen-
sor faults, connection errors, or other unpredictable causes, the team-of-experts
approach allowed us to offset deficiencies in sensor data by providing estimates
of the missing data that were constructed from the other experts’ results.

A second example illustrates our approach from the problem of combining
several smart sensors on a single individual to the problem of modeling a group
of persons over an extended time. The modes of input for this multi-person
experiment included not only location sensor data for an individual, but also the
sensor data on how the individuals interact with each other.



Modeling Influence Between Experts 173

In our Reality Mining project [5], 81 participants wore Nokia 6600 mobile
phones with a custom version of the Context software [9] for a period of over
nine months, and have their locations (in terms of cell tower usages), proximity
information (in terms of the Bluetooth devices seen), cell phone usages (phone
calls, short messages, voice mails), and cell phone states continuously collected.
From the recorded data set, we are able to infer the participants’ social circles,
as well as their individual behaviors. As are typical in such large, extended
experiments, the cell phone data collection for the individuals experienced several
different types of abnormalities, and the cell phone data for different individuals
are correlated. Thus this data set provided a good test for our ability to data
mine structural relationships among different participants.

The remainder of this article is organized in the following way. In section 2,
we formulate the latent structure influence model and give its latent state infer-
ence algorithm and its parameter estimation algorithm. In 3 we discuss how the
algorithm performs on these example applications, and compare the robustness,
accuracy, and efficiency of the method to some other standard approaches to
this problem.

2 Influence Modeling of Multi-sensor Dynamics

The influence model is a tractable approximation of the intractable hidden
Markov modeling of multiple interacting dynamic processes. While the num-
ber of states for the hidden Markov model is the multiplication of the number
of states for individual processes, the number of states for the corresponding in-
fluence model is the summation of the number of states for individual processes.
The influence model attains this tractability by linearly combining the contri-
butions of latent state distributions of individual processes at time t to get the
latent state distributions of individual processes at time t + 1.

In the rest of this section, we describe the influence parameters, the evolution
of the marginal latent state distributions for individual processes, and the ob-
servations for individual processes as probabilistic functions of the latent states.
The usage with an influence model is generally: inference of latent states given
parameters and observations, estimation of parameters given latent states and
observations, or simultaneous latent state inference and parameter estimation
from observations. A graphical model representation of the influence model is
plotted in Figure 2.

A latent structure influence process {s(c)
t , y

(c)
t : c = {1, · · · , C}, t ∈ N} is

a stochastic process composed of C interacting (sub-) processes. Each process
c ∈ {1, · · · , C} has latent states {s(c)

t : t ∈ N} and observations {y(c)
t : t ∈ N}

corresponding to sample times t ∈ N. The latent structure influence process is
normally used to estimate the latent states and/or the parameters based on the
observations.

The latent state s
(c)
t for processes c at time t is a random variable valued

over {1, · · · , mc}. The latent state for all C processes at time t is thus st =
(s(1)

t , · · · , s
(C)
t ). We write the probability measures of s

(c)
t over its values into



174 W. Dong and A. Pentland

a row vector p(s(c)
t ) and concatenate these row vectors for all processes c ∈

{1, · · · , C} into a longer row vector p(st),

p(s(c)
t )

�
=
(
Pr(s(c)

t = 1), . . . , Pr(s(c)
t = mc)

)

p(st)
�
=
(
p(s(1)

t ), · · · , p(s(C)
t )

)

=
(
Pr(s(1)

t = 1), . . . , Pr(s(1)
t =m1), · · · , Pr(s(C)

t =1), . . . , Pr(s(C)
t =mC)

)
.

According to the definition of the probability measure,
∑mc

j=1 Pr(s(c)
t = j) = 1

for c ∈ {1, · · · , C}.
The probability distributions P (s

(c)

t ) for latent states s
(c)
t , where c∈ {1,· · · , C}

and t ∈ {1, · · · , T }, evolve recursively and linearly in a similar way as in the
hidden Markov process case. The (initial) probability measure of the latent state
s
(c)
t=1 for process c ∈ {1, · · · , C} at time t = 1 over its values is parameterized as

a row vector π(c) , which in turn, is concatenated into a longer row vector π.

π
(c)
i

�
= Pr(s(c)

1 = i), where 1 ≤ i ≤ mc

π(c) �
=

(
π

(c)
1 , · · · , π(c)

mc

)

π
�
=

(
π(1), · · ·π(C)

)

=
(
π

(1)
1 , · · ·π(1)

m1
, · · · , π

(C)
1 , · · · , π(C)

mC

)

The probability measures p(st) evolve over time linearly as p(st+1) = p(st) ·H ,
where H is called an influence matrix, as compared to a Markov matrix in a
hidden Markov model. The influence matrix H is parameterized in accordance
with Asavathiratham’s initial parameterization [1]: Call the C×C matrix DC×C ,
whose columns each add up to 1, as a network (influence) matrix ; Call the
mc1×mc2 Markov matrices A(c1,c2) (where c1, c2 ∈ {1, · · · , C}), whose rows each
add up to 1, as inter-process state transition matrices. The influence matrix is
formed as the generalized Kronecker product

H
�
= D ⊗

{
A(c1,c2}

}
c1,c2∈{1,··· ,C}

=
(
dc1,c2A

(c1,c2)
)

c1,c2∈{1,··· ,C}
,

which is a block matrix, whose submatrix at row c1 and column c2 is dc1,c2A
(c1,c2),

and whose element indexed by (c1, c2, i, j) is h
(c1,c2)
i,j = dc1,c2 ·a(c1,c2)

i,j . The fact that
p(st) is a concatenation of probability distributions is guaranteed by the require-
ment that each column of D, as well as each row of A(c1,c2), adds up to 1.

Using this notation, the latent state distributions p(st) for the C interacting
processes are evolved as



Modeling Influence Between Experts 175

p(s1) = π

p(st+1) = p(st) · H

An observation y
(c)
t for process c at sample time t is a random variable condi-

tioned on the corresponding latent state s
(c)
t . The observations are used to adjust

the estimation of latent states

P (st) · P (yt|st)
�
=

C∏
c=1

P (s(c)
t ) · P (y(c)

t |s(c)
t ).

When the observation y
(c)
t is finite valued, y

(c)
t ∈ {1, . . . , nc}, we write b

(c)
i,j =

Pr(y(c) = j|s(c) = i) and call the mc × nc matrix B(c) = (b(c)
i,j ) as an observation

matrix. When the observation y
(c)
t is in multivariate normal distribution, we use

nc to represent the dimensionality of y
(c)
t , and use μ

(c)

s(c) , Σ
(c)

s(c) to represent the

mean and variance of y
(c)
t . In other words, when the corresponding latent state

is valued as s
(c)
t , we have y

(c)
t ∼ Nnc(μ

(c)

s(c) , Σ
(c)

s(c)).

The latent structure influence process {s(c)
t , y

(c)
t : c = {1, · · · , C}, t ∈ N}

is a simplification of the hidden Markov process {st =
(
s
(1)
t , · · · , s

(C)
t

)
, yt =(

y
(1)
t , · · · , y

(C)
t

)
: t ∈ N}. In the hidden Markov process {st, yt : t ∈ N}, a

latent state st can take
∏C

c=1 mc number of values, an observation yt can ob-
serve very complex distributions conditioned on st, and the state transition
matrix is a (

∏
c mc) × (

∏
c mc) Markov matrix. When C is large, the com-

putation on {st, yt : t ∈ N} becomes intractable, and is easy to overfit. In
comparison, in the latent structure influence process, we only need to cope
with the marginal probability distributions Pr(s(c)

t = i) for state st, and can
cope with y

(c)
t for individual interacting processes c ∈ {1, · · · , C} separately.

Asavathiratham [1] proved the following theorems concerning the relationship
between an influence process and a Markov process: (1) Given any influence
process {s(c)

t : c ∈ {1, · · · , C}, t ∈ N} parameterized by the initial state distri-
butions π = p(s1) and the influence matrix H , there exists a Markov process
{xt = (x(1)

t , · · · , x
(C)
t ) : t ∈ N} parameterized by the initial state distribution

of x1 and the (
∏

c mc) × (
∏

c mc) Markov matrix G, and the corresponding
influence process {x(c)

t : c ∈ {1, · · · , C}, t ∈ N} has the same probability mea-
sure as the original influence process {s(c)

t : c ∈ {1, · · · , C}, t ∈ N} (i.e., both
influence processes have the same parameters). (2) Given any Markov process
{xt = (x(1)

t , · · · , x
(C)
t ) : t ∈ N} with Markov matrix G, the stochastic process

{x(c)
t : c ∈ {1, · · · , C}, t ∈ N} is an influence process with influence matrix H .

The two matrices are connected by an event matrix B(m1, · · · , mC) (where B is
determined only by m1, · · · , mC), B ·H = G ·B. As a result, the stationary dis-
tribution of the Markov process can be linearly mapped into the stationary dis-
tribution of the corresponding influence process. We extended Asavathiratham’s



176 W. Dong and A. Pentland

p(�s(1)
t=1) = �π(1) p(�s(1)

t+1) =
∑

i p(�s(i)
t ) · di,1 · A(i,1)

p(�o(1)
t=1) = p(�s(1)

t=1) · p(�o(1)
t=1|�s(1)

t=1) p(�o(1)
t+1) = p(�s(1)

t+1)P (�o(1)
t+1|�s(1)

t+1)

p(�s(2)
t=1) = �π(2) p(�s(2)

t+1) =
∑

i p(�s(i)
t )di,2A

(i,2)

p(�o(2)
t=1) = p(�s(2)

t=1) · p(�o(2)
t=1|�s(2)

t=1) p(�o(2)
t+1) = p(�o(2)

t+1)P (�o(2)
t+1|�s(2)

t+1)

...
...

p(�s(C)
t=1) = �π(C) p(�s(C)

t+1) =
∑

i p(�s(i)
t )di,CA(i,C)

p(�o(C)
t=1) = p(�s(C)

t=1)p(�o(C)
t=1|�s(C)

t=1) p(�o(C)
t+1) = p(�s(C)

t+1)p(�o(C)
t+1|�s(C)

t+1)

∑

∑

∑

×p(�o(1)
t=1|�s(1)

t=1) ×p(�o(1)
t+1|�s(1)

t+1)

×p(�o(2)
t=1|�s(2)

t=1) ×p(�o(2)
t+1|�s(2)

t+1)

×p(�o(C)
t=1|�s(C)

t=1) ×p(�o(C)
t+1|�s(C)

t+1)

×d1,1A
(1,1)

×d2,1A
(2,1)

×dC
,1
A (C

,1
)

×d1,2A (1,2)

×d2,2A
(2,2)

×dC,2
A (C

,2)

×
d
1,C A (1,C

)
×d

2,C A (2,C)

×dC,CA(C,C)

Fig. 2. A graphical model representation of the influence model. The left column repre-
sents basis step, and the right column represents the induction step. Shadowed squares
are observable, while un-shadowed squares are unobservable. Our task is to learn the
parameters and latent states from observations. The two-column convention is adopted
from Murphy [6].

influence process {s(c)
t : c ∈ {1, · · · , C}, t ∈ N} into a latent structure influence

process {s(c)
t , y

(c)
t : c ∈ {1, · · · , C}, t ∈ N}, and use the latent structure influ-

ence process to understand/simulate how a group of experts cooperate with each
other and make predictions.

The forward-backward algorithm for latent state estimation and the maxi-
mum likelihood algorithm for parameter estimation for an influence model are
derived from the equivalence of the influence model and the corresponding hid-
den Markov model. Being able to model the dynamics of C interacting processes,
with mc number of latent states for individual process c, in a polynomial com-
plexity in the sum of the number of latent states for individual chains O(

∑
mc)

does not necessarily guarantee that the latent state estimation and the parame-
ter estimation algorithms also have a polynomial time complexity. We give the
latent state estimation (E-step), as well as the parameter estimation algorithm
(M-step) in Algorithm 1. The derivation is deferred in the Appendix. In this
algorithm, the random variables y

(c)
t for c ∈ {1, · · · , C} and t ∈ {1, · · · , T } are

already sampled and their values are known. We write the probability (or prob-
ability density) of observing y

(c)
t when the latent state s

(c)
t take values 1, · · · , mc

into a mc × 1 row vector b
(c)
t

�
=

(
Pr(y(c)

t |s(c)
t = 1), · · · , Pr(y(c)

t |s(c)
t = mc)

)
, and

concatenate them into a (
∑

c mc) × 1 row vector bt. The quantities α
(c)
t,i

�
=

Pr(s(c)
t = i|{y(c0)

t0 : c0 ∈ {1, · · · , C}, t0 ∈ {1, · · · , t}}) are forward parame-
ters. We write α

(c)
t,i for all i ∈ {1, · · · , mc} into a mc × 1 row vector α

(c)
t ,

and concatenate α
(c)
t into a (

∑
c mc) × 1 row vector αt. The quantities β

(c)
t,i

�
=

Pr({y(c0)
t0 : c0 ∈ {1, · · · , C}, t0 ∈ {t + 1, · · · , T }}|s(c)

t = i) are backward pa-
rameters. We write β

(c)
t,i for all i ∈ {1, · · · , mc} into a 1 × mc column vector



Modeling Influence Between Experts 177

β
(c)
t , and concatenate β

(c)
t into a 1× (

∑
c mc) column vector βt. The quantities

γ
(c)
t,i

�
= Pr(s(c)

t = i|{y(c0)
t0 : c0 ∈ {1, · · · , C}, t0 ∈ {1, · · · , T }}) are one-slice

parameters. We write γ
(c)
t,i for all i ∈ {1, · · · , mc} into a mc × 1 row vector

γ
(c)
t , and concatenate γ

(c)
t into a (

∑
c mc) × 1 row vector γt. The quantities

ξ
(c1,c2)
t−1→t,i→j

�
= Pr(s(c1)

t−1 = i, s
(c2)
t = j|{y(c0)

t0 : c0 ∈ {1, · · · , C}, t0 ∈ {1, · · · , T }})
are two-slice parameters. We write ξ

(c1,c2)
t−1→t,i→j for all i ∈ {1, · · · , mc1} and j ∈

{1, · · · , mc2} into a mc1 × mc2 matrix ξ
(c1,c2)
t−1→t, and concatenate ξ

(c1,c2)
t−1→t into a

(
∑

c mc)× (
∑

c mc) matrix whose submatrix at row c1 and column c2 is ξ
(c1,c2)
t−1→t.

3 Experimental Results

In this section, we illustrate how an influence model can capture the correlations
among different dynamic classification processes. We will show how capturing the
correct structure between different“experts”can allow improvement of the overall
classification performance. We will also illustrate the efficiency and robustness
to noise that this modeling capability provides.

We begin with a synthetic example of a noisy sensor net in order to illustrate
the structure that the influence model tries to capture, and how an influence
model can be used to improve classification precision. We then extend the noisy
body sensor net example and compare the training errors and the testing errors
of different dynamic models.

We will then show application of the algorithm to two real examples:
The first example is a wearable smart sensor net example in which the goal is

real-time context recognition, and the influence model is used to discover hidden
structure among speech, location, activity, and posture classification experts in
order to allow for more accurate and robust classification of the wearer’s overall
state.

The second example is a group of 81 people carrying smart phones that are
programmed to record location, proximity to other experimental subjects, and
cell phone usage. In this example we will focus on the ability of the influence
model to correctly determine the social structure of the group.

3.1 Combining Evidence with the Influence Model

Central to the latent structure influence model is the mechanism that the ev-
idence is combined in the latent state level over time. This mechanism both
enables coping with hetereogeneous types of evidence, and makes it possible to
automatically find out relations among the different pieces of evidence.

In this subsection, we use a simple example involving two Gaussian distribu-
tions to illustrate how the influence model combine evidence and set priors for
individual related processes (“experts”). We also compare the mechanisms of the
latent structure influence model, the hidden Markov model with full covariant
matrix, and the hidden Markov model with diagonal covariant matrix.



178 W. Dong and A. Pentland

Algorithm 1. The EM algorithm for the latent structure influence model
E-Step

α∗
t =

{
π1×∑

mc · diag[b1] t = 1

αt−1 · H · diag[bt] t > 1

Nt = diag

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
m1∑
i=1

α
∗(1)
t,i

, · · · ,
1

m1∑
i=1

α
∗(1)
t,i

︸ ︷︷ ︸
m1

, · · · ,
1

mC∑
i=1

α
∗(C)
t,i

, · · · ,
1

mC∑
i=1

α
∗(C)
t,i

︸ ︷︷ ︸
mC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

αt = α∗
t · Nt

βt =

{
1∑

mc×1 t = T

H · diag[bt] · Nt+1 · βt+1 t < T

γt = αt · diag[βt]

ξt−1→t = diag[αt−1] · H · diag[bt] · Nt · diag[βt]

p(y) =
∏
t,c

(

mc∑
i=1

α
∗(c)
t,i )

M-Step

– Parameters related to the latent state transitions

A(i,j) = normalize[
T∑

t=2

ξ
(i,j)
t−1→t]

S =

⎛
⎝

11×m1

...
11×mC

⎞
⎠

dij = normalize[S

(
T∑

t=2

ξt−1→t

)
ST]

π(c) = normalize[γ
(c)
1 ]

– Parameters related to multinomial observations

B(c) = normalize[
∑

t

γ
(c) T
t ·

(
δ(y

(c)
t , 1), · · · , δ(y

(c)
t , · · · , nc)

)
]

– Parameters related to Gaussian observations

μ(c) =

(∑
t

γ
(c) T
t · y(c)

t

)
/

(∑
t

γ
(c)
t · 1mc×1

)

Σ
(c)
i =

(∑
t

γ
(c)
t,i y

(c)
t y

(c) T
t

)
/

(∑
t

γ
(c)
t · 1mc×1

)
− μ

(c)
i · μ(c) T

i



Modeling Influence Between Experts 179

time steppr
oc

es
s 

id
(a)

500 1000

2

4

6

time steppr
oc

es
s 

id

(b)

500 1000

2

4

6

process idpr
oc

es
s 

id

(c)

1 2 3 4 5 6

1
2
3
4
5
6

time steppr
oc

es
s 

id

(d)

500 1000

2

4

6

Fig. 3. Inference from observations of interacting dynamic processes

Noisy Body Sensor Net Example. In the noisy body sensor net example, we
have six stochastic processes, and we sample these six processes with six body
sensors. Each process can be either signaled (one) or non-signaled (zero) at any
time, and the corresponding body sensor has approximately 10% of its samples
flipped. The interaction of the six stochastic processes behind the scene looks like
this: processes one through three tend to have the same states; processes four
through six tend to have the same states; the processes are more likely to be non-
signaled than to be signaled; and the processes tend to stick to their states for a
stretch of time. The parameters of the model are given as the following and are

going to be estimated: Aij =
(

.99 .01

.08 .92

)
, 1 ≤ i, j ≤ 6, Bi =

(
.9 .1
.1 .9

)
, 1 ≤ i ≤ 6,

dij = .33, 1 ≤ i, j ≤ 3, and dij = .33, 4 ≤ i, j ≤ 6.
In Figure 3, (a) shows the sampled latent state sequences, (b) shows the cor-

responding observation sequences, (c) shows the influence matrix reconstructed
from sampled observation sequences, and (d) shows the reconstructed latent state
sequences after 300 observations. The (i, j)th entry of the (c1, c2)th sub-matrix
of an influence matrix determines how likely that process c1 is in state i at time
t and process c2 is in state j at time t + 1. It can be seen from Figure 3 (c) that
the influence model computation recovers the structure of the interaction.

The influence model can normally attain around 95% accuracy in predicting
the latent states for each process. The reconstructed influence matrix has only



180 W. Dong and A. Pentland

9% relative differences with the original one. Using only observations of other
chains we can predict a missing chain’s state with 87% accuracy.

Comparison of Dynamic Models. The training errors and the testing er-
rors of the coupled hidden Markov model, the hidden Markov model, and the
influence model are compared in this example. The setup of the comparison is
described as the following. We have a Markov process with 2C , where C = 10,
number of states and a randomly generated state transition matrix. Each sys-
tem state st is encoded into a binary s

(1)
t · · · s(C)

t . Each of the mc = 2 evalua-
tions of “digit” s

(c)
t corresponds a different 1-d Gaussian observation o

(c)
t : Digit

s
(c)
t = 1 corresponds to o

(c)
t ∼ N [μ1 = 0, σ2

1 = 1] ; Digit s
(c)
t = 2 corresponds to

o
(c)
t ∼ N [μ2 = 1, σ2

2 = 1] .
In most real sensor nets we normally have redundant measures and an insuffi-

cient observations to accurately characterize sensor redundancy using standard
methods. Figure 4 compares the performances of several dynamic latent struc-
ture models applicable to multi-sensor systems. Of the 1000 samples (ot)1≤t≤100,
we use the first 250 for training and all 1000 for validation.

There are two interesting points. First, the logarithmically scaled number of
parameters of the influence model allows us to attain high accuracy based on a
relatively small number of observations. This is because the eigenvectors of the
master Markov model we want to approximate are either mapped to the eigen-
vectors of the corresponding influence model, or mapped to the null space of the
corresponding event matrix thus is not observable from the influence model, and

0 50 100 150

20

30

40

50

iteration step

er
ro

r 
ra

te
 (

%
)

A comparison of different dynamic latent structure models
on learning complex stochastic systems

testing error (HMM16)

testing error (HMM64)

training error (HMM16)

training error (influence)
training error (HMM64)

testing error (influence)

testing error (HMM/chain)

training error (HMM/chain)

Fig. 4. Comparison of dynamic models



Modeling Influence Between Experts 181

that in addition the eigenvector with the largest eigenvalue (i.e., 1) is mapped to
the eigenvector with the largest eigenvalue of the influence matrix [1].

Secondly, both the influence model and the hidden Markov model applied
to individual processes are relatively immune to over-fitting, at the cost of low
convergence rates. This situation is intuitively the same as the numerical analysis
wisdom that a faster algorithm is more likely to converge to a local extremum
or to diverge.

3.2 On-Body Smart Sensor Network

In the inSense system the sensors consist of a chest-mounted camera, a Wi-Fi
transceiver, an ambient audio recorder, and two accelerometers, worn on hip
and wrist (see Figure 1) [3]. This system is designed to classify in real time eight
locations, six speaking/non-speaking status, seven postures, and eight activities.
The classification is carried out in two steps: A pre-classifier (either a single
Gaussian, mixture of Gaussians, or C4.5 classifier) is first invoked on the audio
and accelerometer features to get a moderately accurate pre-classification result
within each the above four categories. These are the “experts” that we desire to
group in order to produce more accurate estimates of the wearer’s context.

The pre-classification result of different categories is then fed into an influence
model to learn inter-sensor structure, and then this learned structure is used to
generate an improved post-classification result. In this example the influence
model learns the conditional probabilities that relate the four categories (loca-
tion, audio, posture, and activity) and then uses this learned influence matrix to
improve the overall performance.

For example, given that the inSense wearer is typing, we can inspect the row
of the influence matrix corresponding to “typing” and see that this person is
very likely to be either in the office or at home, to not be speaking, and to be
sitting. As a result, the action of typing can play a critical role to disambiguating
confusions between sitting and standing, or between speaking vs not-speaking,
but not between office and home.

By combining evidence across different categories using the influence model,
the classification errors for locations, speaking/non-speaking, postures, and ac-
tivities decreased by an average of 23%, from 38%, 22%, 8% and 27% to 28%,
19%, 8%, and 17% respectively. The post-classification for postures does not
show significant improvement because of two reasons: (1) it is already precise
enough considering that we have labeling imprecision in our training data and
testing data, and (2) it is the driving force for improving the other categories,
and no other categories are more certain than the posture category.

3.3 Social Network Example

This example demonstates reconstructing the social structure of a set of subjects
from their cellphone-collected data [5]. In this data 81 subjects wore Bluetooth-
enabled mobile telephones that recorded which cell towers were visible to the tele-
phone, thus allowing coarse estimation of the wearers’ location, and which



182 W. Dong and A. Pentland

Influence Matrix(bnet−trained)

office

of
fic

e

home

ho
m

e

outdoors

ou
td

oo
rs

indoors

in
do

or
s

restautant

re
st

au
ta

nt

car

ca
r

street

st
re

et

shop

sh
op

no speech

no
 s

pe
ec

h

me speaking

m
e 

sp
ea

kin
g

other speaker

ot
he

r s
pe

ak
er

distant voices

di
st

an
t v

oi
ce

s

loud crowd

lo
ud

 c
ro

wd

laughter

la
ug

ht
er

unknown

un
kn

ow
n

lie

lie

sit

sit

stand

st
an

d

walk

wal
k

run

ru
n

bike

bi
ke

no event

no
 e

ve
nt

eating

ea
tin

g

typing

ty
pi

ng

shaking hands

sh
ak

in
g 

ha
nd

s

clapping hands

cla
pp

in
g 

ha
nd

s

driving

dr
ivi

ng

brushing teeth

br
us

hi
ng

 te
et

h

doing the dishes

do
in

g 
th

e 
di

sh
es

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Fig. 5. Influence matrix learned by the EM algorithm

Bluetooth devices are nearby, thus allowing inference of proximity to other sub-
jects. Note that Bluetooth signals include a unique identifier, and are typically
detectable at a range of only a few meters. In this study fixed Bluetooth beacons
were also employed, allowing fairly precise estimation of subjects location even
within buildings. Over the nine months of the study 500,000 hours of data were
recorded.

The temporal evolution of these observations were analyzed using the influence
model with 81 chains, corresponding to the 81 subjects. Each subjects’ chain was
constrained to have two latent states (“work”, “home”) but with no restriction
on social network connectivity.

In our first experiment with this data the observation vector for each chain was
restricted to the cell tower visibility of each subjects’ 10 most commonly seen cell
towers. In the resulting model the two states for each subject corresponded ac-
curately to ‘in the office’ and ‘at home’, with other locations being misclassified.
The resulting influence matrix, shown in Figure 6 (a), demonstrated that most
people follow very regular patterns of movement and interpersonal association,
and consequently we can predict their actions with substantial accuracy from
observations of the other subjects. A few of the chains were highly independent
and thus not predictable. These chains corresponded to new students, who had
not yet picked up the rhythm of the community, and the faculty advisors, whose
patterns are shown to determine the patterns of other students.

In another setup, we used the Bluetooth proximity distribution as our obser-
vations. Again, the latent states accurately reflect whether a person is at home



Modeling Influence Between Experts 183

0 1 2 3 4 5 6 7 8 9
486492968539144765606759176376282924431
457
88411230826813943
1858757187321043379501003453161951986166958390896
73263638697821351013722409910275

92511231028
4281495457709372867774465597528444561520103914

(c) subjects clustered by organizational structure from proximity data

sandy & henry 

sloan

tod

pattie

chris

barry
hugh

neil

andy
semor
necsys

mitch

selker

pattie

cynthia

E15 4th floor 

caribbean

indian

E15

Fig. 6. Finding social structures from cellphone-collected data. (a) New students and
faculty are outliers in the influence matrix, appearing as red dots due to large self-
influence values. (b) Most People follow regular patterns (red: in office, green: out of
office, blue: no data), (c) clustering influence values recovers workgroup affiliation with
high accuracy (labels show name of group).

of in office. However with this data the resulting influence matrix shows precisely
the social and geometrical structure of the subjects. The dendrogram from the
proximity influence matrix shown in Figure 6 (b) captures the actual organization
of the laboratory, clustering people into their actual work groups with only three
errors. For comparison, a clustering based on direct correlations in the data has
six errors.



184 W. Dong and A. Pentland

4 Conclusion

We have presented the formulation of a latent structure influence model, given
the parameter learning and latent state estimation algorithms, and demonstrated
the latent structure influence model’s performance in combining and analyz-
ing networks of experts. Both in simulation and real examples the influence
model proved to be an efficient and accurate method of estimating unknown
network structure and simultaneously estimating transition parameters. This
was shown to allow more accurate estimates of state, and increased tolerance to
missing data and similar noise. As a result, we believe that the latent struc-
ture influence process will provide a good framework for human computing
applications.

Matlab code for the influence model and for the synthetic sensor net example
may be found at:
http://vismod.media.mit.edu/vismod/demos/influence-model/index.html.

References

[1] Chalee Asavathiratham. The Influence Model: A Tractable Representation for the
Dynamics of Networked Markov Chains. PhD thesis, MIT, 1996.

[2] Sumit Basu, Tanzeem Choudhury, Brian Clarkson, and Alex Pentland. Learn-
ing human interactions with the influence model. Technical report, MIT
Media Laboratory Vision & Modeling Technical Report #539, 2001. URL
http://vismod.media.mit.edu/tech-reports/TR-539.pdf.

[3] Mark Blum, Alex Pentland, and Gehrard Tröster. Insense: Interest-based life log-
ging. In IEEE Multimedia, volume 13(4), pages 40–48, 2006.

[4] DARPA. Assist proposer information pamphlet, 2004. URL
http://www.darpa.mil/ipto/solicitations/open/04-38_PIP.htm.

[5] Nathan Eagle and Alex Pentland. Reality mining: Sensing complex social systems.
Journal of Personal and Ubiquitous Computing, 2005.

[6] Kevin Murphy. The bayes net toolbox for matlab. In Computing Science and
Statistics, 2001.

[7] Nuria M. Oliver, Barbara Rosario, and Alex Pentland. A bayesian computer vision
system for modeling human interactions. In IEEE Transactions on Pattern Analysis
and Machine Intelligence, volume 22(8), pages 831–843, 2000.

[8] Maja Pantic, Alex Pentland, Anton Nijholt, and Thomas Huang. Human comput-
ing and machine understanding of human behavior: A survey. In Proceedings of the
8th International Converence on Multimodal Interfaces, pages 239–248, 2006.

[9] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen. Contextphone — a prototyp-

ing platform for context-aware mobile applications. In IEEE Pervasive Computer,

April 2005.

Appendix: A Derivation of the EM Algorithm for the
Influence Process

In section 2, we gave the EM algorithm for the latent structure influence process.
The derivation of this algorithm is below.

http://vismod.media.mit.edu/vismod/demos/influence-model/index.html
http://vismod.media.mit.edu/tech-reports/TR-539.pdf
http://www.darpa.mil/ipto/solicitations/open/04-38_PIP.htm


Modeling Influence Between Experts 185

Latent State Inference

The task of latent state inference is to estimate

(
s
(c)
t

)1≤c≤C

1≤t≤T

�
=
{

s
(c)
t : c ∈ {1, · · · , C}, t ∈ {1, · · · , T }

}

from

(
y
(c)
t

)1≤c≤C

t+1≤t≤T

�
=
{

y
(c)
t : c ∈ {1, · · · , C}, t ∈ {1, · · · , T }

}

given the influence parameters.

Theorem 1. Let the marginal forward parameters α
(c)
t (s(c)

t ), the marginal back-
ward parameters β

(c)
t (s(c)

t ), the marginal one-slice parameters γ
(c)
t (s(c)

t ), the
marginal two-slice parameters ξ

(c1,c2)
t→t+1(s

(c1)
t , s

(c2)
t+1) of a latent structure influence

model be

α
(c)
t (s(c)

t ) = P

(
s
(c)
t ,

(
y
(c1)
t1

)1≤c1≤C

1≤t1≤t

)

β
(c)
t (s(c)

t ) = P

((
y
(c1)
t1

)1≤c1≤C

t+1≤t1≤T

∣∣s(c)
t

)

γ
(c)
t (s(c)

t ) = P

(
s
(c)
t

∣∣ (y
(c1)
t1

)1≤c1≤C

1≤t1≤T

)

ξ
(c1,c2)
t→t+1(s

(c1)
t , s

(c2)
t+1) = P

(
s
(c1)
t s

(c2)
t+1

∣∣ (y
(c1)
t1

)1≤c1≤C

1≤t1≤T

)

They can be computed recursively in the following way:

α
(c)
1 (s

(c)
1 ) = P

((
y
(c)
t

)1≤c≤C

|s(c)
1

)
· π(c)

s
(c)
1

α
(c)
t (s

(c)
2≤t) = P

((
y
(c)
t

)1≤c≤C

|s(c)
t

) ∑

c1,s
(c1)
t−1

α(s
(c1)
t−1 )h

(c1,c)

s
(c1)
t−1 s

(c)
t

β
(c)
T (s

(c)
T ) = 1

β
(c)
t<T (s

(c)
t ) =

1

C
·

C∑
c1=1

mc1∑

s
(c1)
t+1 =1

h
(c,c1)

s
(c)
t ,s

(c1)
t+1

· P
((

y
(c)
t+1

)1≤c≤C ∣∣s(c1)
t+1

)
β

(c)
t+1(s

(c)
t+1)

γ
(c)
t (s

(c)
t ) = α

(c)
t (s

(c)
t ) · β(c)

t (s
(c)
t )

ξ
(c1,c2)
t→t+1(s

(c1)
t , s

(c2)
t+1 ) = α

(c1)
t (s

(c1)
t ) · h(c1,c2)

s
(c1)
t ,s

(c2)
t+1

· β(c2)
t+1 (s

(c2)
t+1 ) · P

((
y
(c)
t+1

)1≤c≤C ∣∣s(c2)
t+1

)

Proof. In the following, we demonstrate that we can solve for the marginal for-
ward parameters without first solving the joint marginal forward parameters.



186 W. Dong and A. Pentland

– Basis Step

α(s(c)
1 )

= P

(
s
(c)
t ,

(
y
(c1)
1

)1≤c1≤C
)

= P

((
y
(c1)
1

)1≤c1≤C

|s(c)
1

)
· P

(
s
(c)
1

)

= P

((
y
(c1)
1

)1≤c1≤C

|s(c)
1

)
· π(c)

s
(c)
1

– Induction Step

α(s(c)
t≥2)

= P

(
s
(c)
t ,

(
y
(c1)
t1

)1≤c1≤C

1≤t1≤t

)

= P

((
y
(c1)
t

)1≤c1≤C

|s(c)
t

)
· P

(
s
(c)
t ,

(
y
(c1)
t1

)1≤c1≤C

1≤t1≤t−1

)

= P

((
y
(c1)
t

)1≤c1≤C

|s(c)
t

)
·

C∑
c1=1

mc1∑

s
(c1)
t−1 =1

P

(
s
(c1)
t−1 ,

(
y
(c1)
t1

)1≤c1≤C

1≤t1≤t−1

)
· h(c1,c)

s
(c1)
t−1 s

(c)
t

= P

((
y
(c1)
t

)1≤c1≤C

|s(c)
t

)
·

⎛
⎜⎝

C∑
c1=1

mc1∑

s
(c1)
t−1 =1

α(s(c1)
t−1) · h(c1,c)

s
(c1)
t−1 s

(c)
t

⎞
⎟⎠

In the following, we show that we can get the marginal backward parameters
without the knowledge of the joint backward parameters.

– Basis Step. We have β(s(c)
T ) = 1 trivially, and

mc∑

s
(c)
T =1

α(s(c)
T ) · β(s(c)

T ) =
mc∑

s
(c)
T =1

P

(
s
(c)
T ,

(
y
(c1)
t1

)1≤c1≤C

1≤t1≤T

)

= P

((
y
(c1)
t1

)1≤c1≤C

1≤t1≤T

)

1
C

·
C∑

c=1

mc∑

s
(c)
T =1

α(s(c)
T ) · β(s(c)

T ) = P

((
y
(c1)
t1

)1≤c1≤C

1≤t1≤T

)



Modeling Influence Between Experts 187

– Induction Step

β(s(c)
t<T )

= P

((
y
(c1)
t1

)1≤c1≤C

t+1≤t1≤T

∣∣s(c)
t

)

=
mC∑

s
(c1)
t+1 =1

P

(
s
(c1)
t+1 ,

(
y
(c1)
t1

)1≤c1≤C

t+1≤t1≤T

∣∣s(c)
t

)
, 1 ≤ c1 ≤ C

=
1
C

·
C∑

c1=1

mC∑

s
(c1)
t+1 =1

P

(
s
(c1)
t+1 ,

(
y
(c1)
t1

)1≤c1≤C

t+1≤t1≤T

∣∣s(c)
t

)

=
1
C

·
C∑

c1=1

mC∑

s
(c1)
t+1 =1

P

((
y
(c1)
t1

)1≤c1≤C

t+1≤t1≤T

∣∣s(c1)
t+1

)
· P (s(c1)

t+1 |s(c)
t )

=
1
C

·
C∑

c1=1

mc1∑

s
(c1)
t+1 =1

β(s(c1)
t+1 ) · h(c1,c)

s
(c)
t s

(c1)
t+1

· P
((

y
(c1)
t

)1≤c1≤C

|s(c1)
t+1

)

The one-slice parameters γ
(c)
t (s(c)

t ) can be computed from the marginal forward
parameters and the marginal backward parameters

γ
(c)
t (s(c)

t ) = P

(
s
(c)
t ,

(
y
(c1)
t1

)1≤c1≤C

1≤t1≤T

)

= P

(
s
(c)
t ,

(
y
(c1)
t1

)1≤c1≤C

1≤t1≤t

)
P

((
y
(c1)
t1

)1≤c1≤C

t+1≤t1≤T

∣∣s(c)
t

)

= α
(c)
t (s(c)

t ) · β(c)
t (s(c)

t )

The two-slice parameters ξ
(c1,c2)
t→t+1(s

(c1)
t , s

(c2)
t+1) can also be computed from the

marginal forward parameters α
(c)
t (s(c)

t ) and the marginal backward parameters
β

(c)
t (s(c)

t ):

ξ
(c1,c2)
t→t+1(s

(c1)
t , s

(c2)
t+1) = P

(
s
(c1)
t s

(c2)
t+1 ,

(
y
(c1)
t1

)1≤c1≤C

1≤t1≤T

)

= P

(
s
(c1)
t

(
y
(c1)
t1

)1≤c1≤C

1≤t1≤t

)
· P

(
s
(c2
t+1|s(c1)

t

)
·

P

((
y
(c1)
t+1

)1≤c1≤C ∣∣s(c2)
t+1

)
· P

((
y
(c1)
t1

)1≤c1≤C

t+2≤t1≤T

∣∣s(c2)
t+1

)

= α
(c1)
t · h(c1,c2)

s
(c1)
t s

(c2)
t+1

· P
((

y
(c1)
t+1

)1≤c1≤C ∣∣s(c2)
t+1

)
· β(c2)

t+1



188 W. Dong and A. Pentland

Parameter Estimation

Suppose the latent states at time t = 1..T is already known st = s
(1)
t · · · s(C)

t .
The likelihood function is

P

((
y
(c)
t

)1≤c≤C

1≤t≤T

)

= πS1 ·
(

T−1∏
t=1

gst→st+1

)
·
(

T∏
t=1

P (yt|st)

)

=

(
C∏

c=1

π
(c)

s
(c)
1

)
·
(

T∏
t=1

C∏
c2=1

C∑
c1=1

h
(c1,c2)

s
(c1)
t ,s

(c2)
t+1

)
·
(

T∏
t=1

C∏
c=1

P (y(c)
t |s(c)

t )

)

We can find new parameters and try to maximize the log likelihood function:

log P

((
y
(c)
t

)1≤c≤C

1≤t≤T

)

=
C∑

c=1

log π
(c)

s
(c)
1

+
T∑

t=1

C∑
c=1

log P (y(c)
t |s(c)

t ) +
T∑

t=1

C∑
c2=1

log
C∑

c1=1

h
(c1,c2)

s
(c1)
t ,s

(c2)
t+1

≥
C∑

c=1

log π
(c)

s
(c)
1

+
T∑

t=1

C∑
c=1

log P (y(c)
t |s(c)

t ) +
T∑

t=1

C∑
c2=1

C∑
c1=1

log h
(c1,c2)

s
(c1)
t ,s

(c2)
t+1

(1)

=
C∑

c=1

mc∑
i=1

δ(s(c)
1 , i) · log π

(c)
i +

T∑
t=1

C∑
c=1

mc∑
i=1

δ(s(c)
t , i) · log P (y(c)

t |i) + (2)

T−1∑
t=1

C∑
c=1

C∑
c1=1

mc1∑
i=1

mc2∑
j=1

δ(s(c1)
t , i) · δ(s(c2)

t+1 , j) · log h
(c1,c2)
i,j

�
=

C∑
c=1

mc∑
i=1

π̃
(c)
i · log π

(c)
i +

C∑
c=1

mc∑
i=1

γ̃(c)(i) · log P (y(c)
t |i) +

C∑
c=1

C∑
c1=1

mc1∑
i=1

mc2∑
j=1

ξ̃(c1,c2)(i, j) · log h
(c1,c2)
i,j

where the step 1 is according to the Jensen’s inequality, and the function δ(i, j) ={
1 i = j

0 i �= j
is the Kronecker delta function. From 2, we know that π̃

(c)
i = δ(s(c)

1 , i),

ξ̃(c1,c2)(i, j) =
∑T−1

t=1 δ(s(c1)
t , i) · δ(s(c2)

t+1 , j), and γ̃(c)(i) =
∑T

t=1 δ(s(c)
t , i) are the

sufficient statistics for π
(c)
i , h

(c1,c2)
i,j , and P (y(c)

t |i) respectively. We can maximize
the parameters involved in the influence matrix H by equaling them to the
corresponding sufficient statistics:

π
(c)
i = π̃

(c)
i (3)

h
(c1,c2)
i,j =

1
C

· ξ̃
(c1,c2)
i,j∑mc2

j=1 ξ̃
(c1,c2)
i,j

(4)



Modeling Influence Between Experts 189

We can maximize the parameters that map the latent states to the observations
in the same way as in an ordinary hidden Markov model.

When the latent states at time t = 1..T are not known. We can choose pa-
rameters that maximize the expected log likelihood function:

Es1···sT

[
log p

((
y
(c)
t

)1≤c≤C

1≤t≤T

)]

= Es1···sT

[
C∑

c=1

log π
(c)

s
(c)
1

+
T∑

t=1

C∑
c2=1

log
C∑

c1=1

h
(c1,c2)

s
(c1)
t ,s

(c2)
t+1

+
T∑

t=1

C∑
c=1

log P (y(c)
t |s(c)

t )

]

≥ Es1···sT

[
C∑

c=1

log π
(c)

s
(c)
1

+
T∑

t=1

C∑
c2=1

C∑
c1=1

log h
(c1,c2)

s
(c1)
t ,s

(c2)
t+1

+
T∑

t=1

C∑
c=1

log P (y(c)
t |s(c)

t )

]

=
C∑

c=1

mc∑
i=1

E
s
(c)
1

[
δ(s(c)

1 , i)
]
· log π

(c)
i +

C∑
c=1

C∑
c1=1

mc1∑
i=1

mc2∑
j=1

T−1∑
t=1

E
s
(c1)
t s

(c2)
t+1

[
δ(s(c1)

t , i) · δ(s(c2)
t+1 , j)

]
· log h

(c1,c2)
i,j +

C∑
c=1

mc∑
i=1

T∑
t=1

E
s
(c)
t

[
δ(s(c)

t , i)
]
· log P (y(c)

t |i)

�
=

C∑
c=1

mc∑
i=1

π̃
(c)
i · log π

(c)
i +

C∑
c=1

C∑
c1=1

mc1∑
i=1

mc2∑
j=1

ξ̃(c1,c2)(i, j) · log h
(c1,c2)
i,j +

C∑
c=1

mc∑
i=1

γ̃(c)(i) · log P (y(c)
t |i)

According to the attributes of the expectation operator and the Kronecker delta
operator, the sufficient statistics are given in the following way, and the param-
eters related to the state transitions are maximized by Equations 3 and 4:

π̃
(c)
i = γ

(c)
i

ξ̃(c1,c2)(i, j) =
T=1∑
t=1

ξ
(c1,c2)
t→t+1(i, j)

γ̃(c)(i) =
T∑

t=1

γ
(c)
t (i)

The parameters are re-estimated in the same way as in the known latent state
case.


	Modeling Influence Between Experts
	Introduction
	Influence Modeling of Multi-sensor Dynamics
	Experimental Results
	Combining Evidence with the Influence Model
	On-Body Smart Sensor Network
	Social Network Example

	Conclusion


