
W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 74–86, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Transparent Framework for Hierarchical
Master-Slave Grid Computing

Nadia Ranaldo1 and Eugenio Zimeo2

1 Department of Engineering, University of Sannio,
82100 Benevento, Italy

ranaldo@unisannio.it
2 Research Centre on Software Technology (RCOST), University of Sannio,

82100 Benevento, Italy
zimeo@unisannio.it

Abstract. The use of grid computing to easily and efficiently execute data and
compute-intensive applications strongly depends on new software development
approaches able to separate application-domain aspects from non-functional
ones, such as task mapping and deployment. In this paper, we present an object-
oriented framework that is able to transparently transform non-distributed
programs into hierarchical master-slave ones, and to map and schedule them
onto a grid computing system. Moreover, the framework is able to leverage
services delivered by the underlying middleware platform, such as resource
management and communication, to satisfy user requirements. The paper
presents the framework architecture, a reflection-based implementation and its
evaluation atop of a hierarchical grid middleware.

1 Introduction

Thanks to the increasing amount of resources available across the Internet and to
improvements of wide-area network performance, in recent years grid computing is
emerging as a viable computing paradigm to execute data and compute-intensive
applications.

At the state of the art, two of the main difficulties to wide diffusion of grid
technologies are usability and efficiency: if the computing environment provided by
the grid system is seamless, user-friendly and efficient, users will potentially exploit
wide-area distributed resources to obtain high performance with a little effort related
to the management of the distributed system and the deployment of applications on it.
Existing distributed programming approaches based on message-passing (such as
MPICH-G2 [1]) adopted for not or limited distributed systems (such as parallel
machines or clusters of workstations), or “standard” approaches based on object-
oriented technologies (such as Java RMI and CORBA) are hardly applicable to write
and execute applications in highly dynamic and geographically distributed computing
environments. These approaches, in fact, require to directly deal with problems not
encountered for sequential programming, such as non-determinism, synchronization,
data partitioning and distribution, load-balancing, fault-tolerance, security, etc.

 A Transparent Framework for Hierarchical Master-Slave Grid Computing 75

To overcome the burden of these approaches, new programming models,
abstractions, tools and methodologies are required. In this connection, we believe that
object-oriented component frameworks for high-level distributed programming are
strategic to increase the spread of grid computing technologies (even in industrial and
enterprise environments) and the productivity of grid programmers. This
convincement derives from the analysis of similar technologies, such as Enterprise
Java Beans and application servers employed in enterprise environments to separate
functional and non-functional aspects in distributed software systems.

To improve efficiency, scalability and adaptability of applications, a framework for
grid computing has to: (1) permit the programmer to focus only on domain-dependent
aspects of an application, rather than on control and coordination aspects of
distribution, which depend on the target environment; (2) be able to reuse the same
application logic into different computing environments (such as parallel machines,
clusters and Grids).

As concerning distributed computing models, in this work we focus on the master-
slave pattern [2], which is a widespread architectural pattern adopted to implement
coarse-grained parallel and distributed applications either in local- and wide-area
networks. We focus on the hierarchical version of such pattern, since it is particularly
effective to be used in intrinsically hierarchical grid computing systems, because of
well-defined and limited communication patterns among computing nodes. In these
systems, computing nodes are often hosted by heterogeneous resources characterized by
limited-bandwidth communication in the levels of the hierarchy close to the user, and
high communication performance in the other levels, typically not directly accessible
through the Internet because they are often clusters accessible only through a front-end.
In future we intend to take into account other widespread patterns currently adopted in
the distributed computing, such as divide and conquer and pipeline.

This paper presents a framework to simplify the development of parallel and
distributed object-oriented applications for grid systems. The framework, called TMS
Framework (Transparent Master-Slave Framework), is able to transparently
implement hierarchical master-slave applications in a hierarchical grid environment,
and to satisfy Quality of Service (QoS) requirements by dynamically exploiting
services delivered by underlying middleware platforms. The framework was
implemented by leveraging reflection mechanisms provided by a meta-object protocol
[3]. We considered, moreover, its customisation for a hierarchical grid middleware
[4], which delivers an economy-driven resource broker usable by the TMS
Framework to automatically map and schedule distributed tasks satisfying time and
cost constraints specified by the user.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents the TMS Framework. Section 4 describes a reflection-based
framework implementation. Section 5 presents an evaluation of the TMS Framework
in writing a distributed application and a preliminary experimental analysis, and
finally Section 6 summarizes the paper and presents future work.

2 Related Work

Some frameworks for master-slave applications in dynamic and heterogeneous
systems have been proposed in literature. The most significant ones are AppLeS

76 N. Ranaldo and E. Zimeo

Master-Worker Application Template (AMWAT) [5] and Condor Master-Worker
(MW) [6]. Also Javelin 3 [7] and Satin [8] are interesting proposals.

AMWAT is a library that provides a software template to implement self-
scheduling master-slave applications written in C, C++, and Fortran in distributed
memory architectures. The AMWAT programming interface specifies the high-level
functionalities that the application developer must minimally supply. Such
functionalities are provided in form of portable and reusable modules. In particular,
the Application Template module contains fifteen application activity functions,
which are provided by developers to implement application-specific functions.

Condor MW is a framework proposed for implementing grid-enabled master-slave
applications written in C++. Condor MW provides a “top-level” interface to
application software and a “bottom-level” interface, called Infrastructure
Programming Interface (IPI). The top-level interface permits to parallelize an
application and requires the programmer to re-implement some abstract classes, in
particular the MWTask, which is the abstraction of one unit of work, and the
MWWorker, which represents a slave process. The IPI interface permits to use
existing grid computing toolkits without any changes from the view-point of the
application developer.

While the AMWAT approach focuses on application performance in terms of
execution time, the Condor MW approach emphasizes the delivery of high throughput
computing. It typically deals with many processor faults, since the default Condor
behaviour is to vacate a running process on a remote machine when it is no longer in
idle status.

Even if the approaches described above permit to simplify writing of master-slave
applications by hiding distribution, scheduling and communication aspects, they still
require to explicitly write code for the distributed version of the problem, requiring a
specific implementation of the application for the master-slave pattern and so limiting
the programmer productivity and existing code re-use.

A better separation of functional aspects from non-functional ones can be reached
through the new programming approach based on skeletons [9], conceived to design
easy-to-use structured parallel programming environments. The idea is to capture
recurring patterns in parallel and distributed applications in generic software
constructs that can be customized by the programmers to write different applications.

A recent proposal is HOC [10] based on Web services, which requires configuring
services through application-specific code, such as, in the master-slave pattern, how
to split input parameters among the slaves and how to process them. Such
customisation is obtained through the implementation of specific interfaces.

Another proposal that focuses on grid systems is Lithium [11], a library based on
Java and RMI, which supports common skeletons, including pipelines, task farms,
iterative and data parallel skeletons.

As for the skeleton-oriented approaches, our goal is to simplify writing distributed
applications, considering the difficulty in learning new paradigms and programming
approaches. For this reason, we propose a framework that permits writing (or re-
using) an application in a sequential version, hiding the distributed aspects related to

 A Transparent Framework for Hierarchical Master-Slave Grid Computing 77

the pattern/s adopted for its deployment. Our idea is to configure the pattern-related
aspects through a preliminary phase that requires writing a configuration file and the
classes for the framework customization. Moreover we focus on a framework
implementation that hides pattern-related aspects in some configurable components of
the system, able to leverage existing grid services, for example resource discovery
and load balancing.

Most of the distributed computing environments for master-slave applications,
which deliver scheduling functionalities, use mapping algorithms that try to optimise
only the execution performance [12] [13] [5]. In a future commercialisation of grid
technologies, the resource price will represent a distinctive property to regulate the
supply-and-demand for resources. To this end, the work in [14] represents one of the
first effort to introduce economy-driven mapping algorithms for generic applications
with no control or data dependencies; whereas a previous paper of the authors [15]
defines a heuristic for mapping tasks to the slaves of a master-slave application based
on deadline and budget constraints.

3 TMS Framework

The TMS Framework design is based on the following principles: (1) separation of
concerns: the framework has to permit a programmer to concentrate only on the
domain-dependent aspects, without dealing with low-level aspects of distributed
computation such as the definition of the number of resources, the distribution of
tasks among the resources, synchronization, etc.; (2) code re-use: the framework has
to permit the re-use, in a distributed computing environment, of existing code written
to solve the same problem in sequential manner, so permitting to use, in a nearly-
seamless way, the same code for execution on a single workstation, or on a
homogeneous cluster or on a heterogeneous wide-area distributed system; (3)
adaptability: the framework has to dynamically leverage services delivered by the
underlying computation architecture in order to automatically optimise application
execution and fulfil user QoS requirements.

The main objective of the proposed framework is to re-use existing code for
sequential execution to automatically produce a parallel and distributed version of it
through the adoption of the hierarchical master-slave pattern at run-time. The
hierarchical master-slave pattern consists of extending the single master of the
canonical pattern to a hierarchy of masters at different levels. The master at the top
controls the overall computation and distributes it among the masters at lower levels,
and so on, until the computation is sent to the slaves, which directly process the
request. The collection of computed results is performed in the reverse order. With
respect to the master-slave pattern, it permits to increase scalability by removing the
centralized control of a single master, which could easily become a bottleneck for a
high number of resources and limited-bandwidth networks.

The TMS Framework provides a run-time distributed environment in which
masters and slaves run. To achieve separation of concerns, it defines a generic

78 N. Ranaldo and E. Zimeo

architectural skeleton, which can be customized by the user through application-
domain code used for sequential version, and some descriptive information for the
deployment. The distribution aspects that depend on the underlying computational
infrastructure are captured and managed by the framework, without the necessity of
application-domain code modification.

The framework is designed so to automatically manage and trigger well-defined
coordination activities of the hierarchical master-slave model, which are: (1) splitting
of the workload, (2) call to slaves, (3) waiting and gathering of results performed by
the master. The idea is to set up such well-defined activities through a configuration
phase, which permits to specify the policies to adopt for each activity. In figure 1, the
main components of the framework are shown, considering one level of the hierarchy
for simplicity.

The framework is used to dynamically parallelize object-oriented applications
whose functional aspects are delivered through a method of a class (called in the
following Task class), which implements a sequential solution to a given problem. To
transparently turn the sequential computation of such method into a parallel one, a
Task object is used to customize the main framework component, called TMS Task.
The TMS Task is loaded into the TMS Framework of each computing node and is
configured in order to act as master or slave of the computation. For a master node the
TMS Task consists of the replication of the original Task object, and a customisable
framework component, called Master Behaviour, which performs the master
functionalities of workload splitting and result gathering.

invoke

TMS Framework
 configure
application

Application
reply result

Configuration Information

Master
Behaviour

TMS
Task

Task

Resource Management

create
master and slaves

Communication

request
execution

execute

Task

create slave

. . .

. . .

Communication

TMS Framework

CommunicationResource Management Resource Management

create

TMS Framework

create

create slave

create master

Slave
Behaviour

Task
execute

Slave
Behaviour

TMS
Task

TMS
Task

request
execution

Fig. 1. TMS Framework Architecture

For a slave node the TMS Task consists of the replication of the original Task
object, and a framework component, which performs the slave activities, called Slave
Behaviour component.

 A Transparent Framework for Hierarchical Master-Slave Grid Computing 79

The framework contains other two configurable components used to capture and
manage the main capabilities required to distribute and manage a master-slave
application, that are the Resource Management and the Communication components.
The Resource Management component has the task to schedule and manage the
masters and slaves on distributed resources. The communication and synchronization
between masters and slaves is managed by the Communication component.

4 Reflection-Based Implementation

The main goal of the TMS Framework is the implicit implementation of the
hierarchical master-slave pattern, which can be achieved following static or dynamic
approaches.

The static approach is based on specialized pre-compilers, which take care of
parallelising the application and deploying it on distributed resources. Such approach
does not fit in a dynamic distributed environment since it does not permit to perform
on-the-fly modifications in order to adapt applications to variations in underlying
services and resource availability.

The dynamic approach permits to overcome such limitations and is based on the
openness of the system to change, even at run-time, some aspects of its behaviour.

We propose a version of the TMS Framework based on a dynamic approach
implemented with reflection mechanisms [2]. A reflection-based framework permits
to easily adapt components to changing conditions, and to extend or reconfigure the
system to meet new requirements. With this approach, an application is logically
divided in two parts: the meta-level and the base-level. The meta-level is the part of
application which provides knowledge of its properties and makes the system self-
aware. The system properties available at the meta-level are represented by Meta
Objects, which encapsulate and represent information about a single system aspect
that should be adaptable. The base-level models and implements the application logic
and represents the various services the system offers. Its implementation uses
information and services provided by the meta-level to remain flexible and
independent from those aspects that are likely to be modified.

A reflection-based TMS Framework requires individuating the set of Meta Objects,
which capture the incomplete parts of the framework and permit to customize it for
the execution of an application. Reflection mechanisms are also used to customize the
Resource Management and Communication components so to deliver functionalities
exploiting existing basic services of the underlying middleware.

4.1 MOP-Based Implementation

We implemented the dynamic master-slave pattern by exploiting the reflection
features provided by Meta-Object Protocol (MOP) implemented in ProActive [3]. It is
a proxy-based run-time mechanism, which permits reification of method invocations
and constructor calls. It is entirely written in Java and avoids any modification or
extension to the JVMs, as opposed to other meta-object protocols.

80 N. Ranaldo and E. Zimeo

By using MOP, the TMS Framework permits to employ every existing class to
transparently instantiate the set of master and slave active objects (ProActive objects),
keeping the application very similar to that used for a sequential computation.

Therefore, the hierarchical master-slave pattern is dynamically implemented and an
existing object can be turned in a master able to transparently split the overall task
into sub-tasks and in a slave able to perform the assigned part of the overall task.

Co
m

m
un

ic
at

io
n

Se
rv

ic
es

Re
so

ur
ce

 M
an

ag
em

en
t

Se
rv

ic
es

MiddlewareTMS FrameworkLocal JVM

Application Active
Object

Remote JVM
Re

so
ur

ce
 M

an
ag

em
en

t

Active
Object

Co
m

m
un

ic
at

io
n

method call Remote JVM

Remote JVM

reply

TMS
RunActive

Active
Object

Active
Object

Remote JVM

Active
Object

Remote JVM

Active
Object

. . .

request
 execution

create
active

objects

Fig. 2. MOP-based TMS Framework implementation

The behaviour of active objects, with respect to the parallelism exploitation
patterns, is specified through the implementation of the RunActive interface of
ProActive, delivered by the framework and called TMSRunActive, which specifies
the actions executed by the active object when a method execution request is received
(see figure 2). In particular, if the active object is a master, the following actions are
performed: (1) to collect information on the performance capabilities of each resource
available for computation; (2) to perform a partition of input parameters following the
policies indicated in a configuration file; (3) to send method calls to the active objects
which are masters or slaves of the lower level, using as input parameters: the original
input parameter, if it is a non-partitioned parameter, or the corresponding part of the
partition, if it is a partitioned parameter; (4) to wait for the collection of each partial
results, which are assembled following the policy specified in a configuration file. If
the active object is a slave, it directly executes the method.

4.2 Programming Model

The programming model of the TMS Framework permits the parallelisation of one or
more tasks, each represented by a method of an existing class. The parallelisation is
initialised through the Configuration Phase, performed delivering a configuration file
and invoking the static method of the TMSFramework class:

Object configureDistributedTask(Object original, String configFile);

that returns a reified object. The input parameters are original, which is an instance
of the class used to perform the distributed task and configFile, which is the name
of the configuration file used to configure the deployment of active objects. It is an

 A Transparent Framework for Hierarchical Master-Slave Grid Computing 81

XML-based file, called Job Description Format (JDF) in which a part depends on the
underlying middleware adopted for active objects deployment, while another is
common and is used for the reflection mechanisms. The common part contains the
following information: (1) the methods whose invocations have to be distributed over
the active objects; (2) for each method, the input parameters that have to be
partitioned and the policy to partition each of them; (3) for each method, the
assembling policy of the output parameter.

A partition policy is specified by the implementation of the following method of
the SplitHelper interface:

public Object[] split (Object[] data, double[] caps);

in which, data represents the information used to obtain a partition on an input
parameter and caps the performance information on each active object, used to
eventually obtain a load balanced partition.

SplitHelper
<interface>

+ split(Object[], double[]):Object[]

AssembleHelper
<interface>

+ assemble(Object[]):Object

TMSFramework

+ configureDistributedTask(Object, String):Object
+ getConfigurationInfo(Object):ConfigurationInfo

TMSRunActive

+ runActivity(Body)

RunActive
<interface>

+ runActivity(Body)

Fig. 3. Class Diagram of MOP-based TMS Framework

An assembling policy is specified by the implementation of the following method
of the AssembleHelper interface:

public Object assemble (Object[] data);

in which data represents the partial results to assemble into a single object
representing the overall result of the distributed computation.

The Configuration Phase is followed by the Execution Phase, in which the user
performs method invocations in the same way as for standard objects. The method
invocation on ProActive active objects is asynchronous, which permits to increase the
concurrency among local and remote activities.

4.3 User QoS Requirements

The default version of ProActive leverages Java RMI and, as a consequence, requires
the direct handling of scheduling functionalities of resource discovery, selection and
task mapping, limiting the capability to fulfil user QoS requirements.

Through the adoption of the ProActive-HiMM adapter [16], the TMS Framework
can be configured to transparently leverage HiMM functionalities. HiMM is a Java-
based middleware able to exploit hierarchical collections of computers interconnected
by heterogeneous networks. Even if HiMM is not a complete grid middleware (it lacks
of sophisticated security mechanisms and efficient data access), it delivers all the basic

82 N. Ranaldo and E. Zimeo

services of resource discovery, management, scheduling, and efficient communication
mechanisms useful to implement master-slave applications into a grid system.

HiMM, in particular, provides an economy-driven broker for master-slave
applications which is responsible for automatic resource discovery and task mapping
on the basis of availability, performance and cost of resources, and on time and cost
parameters specified by the user. It is based on the task mapping heuristic proposed in
[15] which permits to minimize the total execution time without exceeding a fixed
budget. The HiMM resource broker can be adopted by the TMS Framework to
transparently deploy the distributed tasks of resources satisfying time and cost
constraints specified by the user in the configuration phase. This is obtained following
the programming model described above and using a file (JDF – Job Description
Format – file) which contains all the information necessary to exploit broker
functionalities of HiMM, which are application information (task dependencies,
overall complexity, single task complexity, etc), application code, input data and user
requirements. The current version of the HiMM broker does not take into account the
mapping problem of master hierarchy because it focuses on a grid system with an
intrinsic hierarchical topology, in which the masters are naturally hosted on those
machines used as front-end for pools of resources such as clusters.

5 Framework Evaluation

To evaluate the usefulness for programming and to analyse the performance delivered
by TMS Framework, a simple application is described. It is the well-known
multiplication of square matrices implemented with the master-slave pattern and
using the strip partitioning of the left matrix: the master partitions the received left
matrix and sends the parts to slaves for processing.

A standard class Matrix, eventually already written for sequential applications,
delivers a constructor to initialise a bi-dimensional array of float values, and the
multiply method that sequentially executes the multiplication between the current
matrix, used as right matrix, and the matrix passed as parameter, used as left matrix.

The following code shows the use of the TMS Framework to turn a standard
instance of Matrix into a transparent master-slave one:

...
Matrix rigMat = new Matrix(...); // initialisation
Matrix leftMat = new Matrix(...);
Matrix result = null;
String configFile = null;

 // Configuration Phase: definition of the XML-based JDF file
 ...

rigMat=(Matrix)TMSFramework.configureDistributedTask(
 rigMat,configFile);

// Execution Phase
result = rigMat.multiply(leftMat);
...

The parallelisation of the multiplication of two matrices requires to specify, in a
JDF file, the class which contains the method to parallelise, that is Matrix, and the
classes which implement the SplitHelper and AssembleHelper interfaces used,
respectively, to split a matrix in blocks of rows and to assemble blocks of rows into
one block to return a single matrix.

 A Transparent Framework for Hierarchical Master-Slave Grid Computing 83

We underline that such classes could be already available in a library included in
the framework or delivered by a third-part developer. A section of the JDF file for this
application is reported below.

<APPLICATION­STRUCTURE>
 <DISTR­PROG­MODEL>Master­Slave</DIST­PROG­MODEL>
<MIDDLEWARE­SPECIFIC­INFORMATION>
<USER­REQUIREMENTS>
<DEADLINE>50000</DEADLINE>
<BUDGET>100</BUDGET>
<MAPPING­POLICY>TIME_OPTIMIZATION</MAPPING­POLICY>

</USER­REQUIREMENTS>
...
</MIDDLEWARE­SPECIFIC­INFORMATION>
<TASKS>

<TASK>
 <TASK­CLASS­NAME>Matrix</TASK­CLASS­NAME>
 <METHOD­NAME>multiply</METHOD­NAME>
 <METHOD­PARAMETERS>
 <METHOD­PARAMETER>Matrix</METHOD­PARAMETER>
 </METHOD­PARAMETERS>
 <RETURN­TYPE>Matrix</RETURN­TYPE>
<DATA>

 <DISTRIBUTED­INPUTS>
 <INPUT>

 <INPUT­TYPE>Matrix</INPUT­TYPE>
 <INPUT­INDEX>0</INPUT­INDEX>
 <PARTITION>
 <PARTITION­CLASS­NAME>TMSFramework.util.MatrixSplitHelper

 </PARTITION­CLASS­NAME>
 <PARAMETERS>
 <PARAMETER>
 <INPUT­TYPE>Matrix</INPUT­TYPE>
 <INPUT­INDEX>0</INPUT­INDEX>
 </PARAMETER>
 </PARAMETERS>
 </PARTITION>

 </INPUT>
 </DISTRIBUTED­INPUTS>
 <ASSEMBLING>

<ASSEMBLING­CLASS­NAME>TMSFramework.util.MatrixAssembleHelper
 </ASSEMBLING­CLASS­NAME>

 <PARAMETERS>
 <PARAMETER>
 <INPUT­TYPE>Matrix</INPUT­TYPE>
 <INPUT­INDEX>­1</INPUT­INDEX>
 </PARAMETER>
 </PARAMETERS>

 </ASSEMBLING>
 </DATA>
</TASK>

 </TASKS>
</APPLICATION­STRUCTURE>

Figure 4 shows the components that must be provided by the developer to
configure the framework and Figure 5 shows the deployment of the components on a
pool of distributed resources through a broker for resource management. During the
configuration phase, the broker is adopted to discover and select a pool of resources
able to satisfy user performance and cost requirements specified in the JDF file.
Selected resources are adopted to build a hierarchical virtual machine managed
through HiMM.

We conducted a preliminary performance analysis on a network of workstations
composed of fourteen homogeneous machines, each equipped with Intel Pentium
Xeon 2.8 GHz, a RAM of 1GB, running Custer-Linux Rocks ver. 4 operating system,
and inter-connected by a Fast Ethernet network. The used software packages are Java
2 SDK 1.4.2, ProActive version 3.0 and HiMM version 1.1. We used the
multiplication of two square matrices as benchmark and adopted the time

84 N. Ranaldo and E. Zimeo

<interface>
SplitHelper

MatrixSplitHelper

+ split(Object[], double[]):Object[]

<interface>
AssembleHelper

MatrixAssembleHelper

+ assemble(Object[]):Object

TMS Framework Components

Matrix

...
+ multiply(Matrix): Matrix

Fig. 4. Configuration of the TMS Framework for the matrix multiplication application

Application

HIMM
Broker

Root Node
(master)

Net-IP

2.configure(
matrix)

2.3 build HiM

1. create
TMS

Framework
Configurator

JDF File 2.2 submit request
 with QoS
 parameters

Simple Node
(slave)

Simple Node
(slave)

2.1 reify matrix

2.5 replicate matrix2.6 return
reified matrix

Reified
matrix

3. multiply
(matrix2)

2.4 return
root Node

3.1 multiply(matrix2)

Matrix
SplitHelper

Matrix
AssembleHelper

TMS
RunActive3.2 split

(matrix2)

3.3 for each node i
multiply(matrix2_part[i])

Simple Node
(slave)

3.4 multiply
(matrix2_part[i])

TMS
RunActive

Matrix

3.5 assemble
(results[])

3.6 return result
3.7 return
 result

TMS
RunActive

Matrix

TMS
RunActive

Matrix

3.4 multiply
(matrix2_part[i])

3.4 multiply
(matrix2_part[i])

Fig. 5. Dynamics of the TMS Framework components for the execution of matrix multiplication
application

1
2

4

6

8

10

12

14

1700 1800 1900 2000 2100 2200 2300 2400

S
p

ee
d

u
p

F
ac

to
r

Matrix Size

2
4
6
8

10
12
14

 0
 50

 200

 400

 600

 800

 1000

 1200

 1400

 1800 1900 2000 2100 2200 2300 2400

E
xe

cu
ti

o
n

ti
m

e
(s

)

N. of nodes

1
2
4
6
8

10
12
14

Fig. 6. (a) Execution times (b) Speedup factors

 A Transparent Framework for Hierarchical Master-Slave Grid Computing 85

minimization heuristic considering the same performance parameters for each
resource so to obtain roughly the same execution time on each of them. We measured
the overall execution times and evaluated the speedup factor considering various
matrix sizes and various numbers of available resources. The execution times and
speedup factors are reported in figure 6 (a) and (b), whose trends show the system
efficiency.

6 Conclusion

We defined a component framework able to automatically implement the hierarchical
master-slave pattern in a distributed environment leveraging the application code for
the sequential solution. We described a reflection-based implementation that exploits
reflection to use the services of the underlying grid middleware. The usability of the
TMS Framework for writing distributed applications and the results of an
experimental analysis to prove the system efficiency were shown. In future, we will
test the system scalability of the TMS Framework for a heterogeneous hierarchical
environment. Moreover, we intend to customize the TMS Framework so to leverage
more efficient communication mechanisms based on IP multicast for master-slave
interactions and other middleware services, such as the WSRF-complaint services
delivered by Globus [17].

References

1. Karonis, N., Toonen, B., Foster, I.: Mpich-G2: A Grid-enabled Implementation of the
Message Passing Interface. Journal of Parallel and Distributed Computing, 63(5) (2003)
551-563

2. Bushmann, F., et al.: Pattern-Oriented Software Architecture: A System of Patterns. J.
Wiley and Sons (1996)

3. Caromel, D., Klauser, W., Vayssiere, J.: Towards Seamless Computing and Metacomputing
in Java. Concurrency: Practice and Experience, Vol. 10 (11-13) (1998) 1043-1061

4. Di Santo, M., Frattolillo, F., Russo, W., Zimeo, E.: A Component-based Approach to
Build a Portable and Flexible Middleware for Metacomputing. Parallel Computing,
Elsevier, 28(12) (2002) 1789-1810

5. Berman, F., et al.: Adaptive Computing on the Grid Using AppLeS. IEEE Trans. Parallel
and Distributed Systems, 14(4) (2003) 369-382

6. Linderoth, J., Kilkarni, S., Goux, J. P., Yoder, M.: An Enabling Framework for Master-
Worker Applications on the Computational Grid. Proceedings of the Ninth IEEE
Symposium on High Performance Distributed Computing, Pittsburgh, Pennsylvania,
(2000) 43-50

7. Neary, M. O., Cappello, P.: Advanced Eager Scheduling for Java-Based Adaptively
Parallel Computing. Proceedings of the joint ACM-ISCOPE Conference on Java Grande,
(2002)

8. van Nieuwpoort, R. V., Kelmann, T., Bal, H. E.: Efficient Load Balancing for Wide-Area
Divide-and-Conquer Applications. Proceedings of the 8-th ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming, Utah, (2001) 34-43

9. Cole, M. I.: Algorithmic Skeletons: a Structured Approach to the Management of Parallel
Computation. MIT Press & Pitman, (1989)

86 N. Ranaldo and E. Zimeo

10. Gorlatch, S., Dunnweber, J.: From Grid Middleware to Grid Applications: Bridging the
Gap with HOCs. In Future Generation Grids, Springer-Verlag, (2005)

11. Aldinucci, M., Danelutto, M., Teti, P.: An Advanced Environment Supporting Structured
Parallel Programming in Java. Future Generation Computer Systems, 19(5) (2003)
611–626

12. Banino, C., Beaumont, O., Carter, L., Ferrante, J., Legrant A., Robert, Y.: Scheduling
Strategies for Master-Slave Tasking on Heterogeneous Processor Platforms. IEEE
Transaction on Parallel and Distributed Systems, 15(4) (2004) 319-330

13. Martino, V., Mililotti, M.: Scheduling in a Grid Computing Environment using Genetic
Algorithms. International Parallel and Distributed Processing Symposium, Florida, USA,
(2002)

14. Buyya, R., Murshed, M., Abramson, D.: A Deadline and Budget Constrained Cost-Time
Optimization Algorithm for Scheduling Task Farming Applications on Global Grids. In
Proceedings of Par. and Distr. Processing Techniques and Applications, USA, (2002)

15. Ranaldo, N., Zimeo, E.: An Economy-driven Mapping Heuristic for Hierarchical Master-
Slave Applications in Grid Systems. 15-th Heterogeneous Computing Workshop. In
Proceedings of the International Parallel and Distributed Processing Symposium, Greece
(2006)

16. Di Santo, M., Frattolillo, F., Ranaldo, N., Russo, W., Zimeo, E.: Programming
Metasystems with Active Objects. Proceedings of the International Parallel and
Distributed Processing Symposium, France, (2003)

17. WSRF. http://www.globus.org/wsrf

	Introduction
	Related Work
	TMS Framework
	Reflection-Based Implementation
	MOP-Based Implementation
	Programming Model
	User QoS Requirements

	Framework Evaluation
	Conclusion
	References

