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Abstract. The use of grid computing to easily and efficiently execute data and 
compute-intensive applications strongly depends on new software development 
approaches able to separate application-domain aspects from non-functional 
ones, such as task mapping and deployment. In this paper, we present an object-
oriented framework that is able to transparently transform non-distributed 
programs into hierarchical master-slave ones, and to map and schedule them 
onto a grid computing system. Moreover, the framework is able to leverage 
services delivered by the underlying middleware platform, such as resource 
management and communication, to satisfy user requirements. The paper 
presents the framework architecture, a reflection-based implementation and its 
evaluation atop of a hierarchical grid middleware.

1   Introduction 

Thanks to the increasing amount of resources available across the Internet and to 
improvements of wide-area network performance, in recent years grid computing is 
emerging as a viable computing paradigm to execute data and compute-intensive 
applications.  

At the state of the art, two of the main difficulties to wide diffusion of grid 
technologies are usability and efficiency: if the computing environment provided by 
the grid system is seamless, user-friendly and efficient, users will potentially exploit 
wide-area distributed resources to obtain high performance with a little effort related 
to the management of the distributed system and the deployment of applications on it. 
Existing distributed programming approaches based on message-passing (such as 
MPICH-G2 [1]) adopted for not or limited distributed systems (such as parallel 
machines or clusters of workstations), or “standard” approaches based on object-
oriented technologies (such as Java RMI and CORBA) are hardly applicable to write 
and execute applications in highly dynamic and geographically distributed computing 
environments. These approaches, in fact, require to directly deal with problems not 
encountered for sequential programming, such as non-determinism, synchronization, 
data partitioning and distribution, load-balancing, fault-tolerance, security, etc.  
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To overcome the burden of these approaches, new programming models, 
abstractions, tools and methodologies are required. In this connection, we believe that 
object-oriented component frameworks for high-level distributed programming are 
strategic to increase the spread of grid computing technologies (even in industrial and 
enterprise environments) and the productivity of grid programmers. This 
convincement derives from the analysis of similar technologies, such as Enterprise 
Java Beans and application servers employed in enterprise environments to separate 
functional and non-functional aspects in distributed software systems. 

To improve efficiency, scalability and adaptability of applications, a framework for 
grid computing has to: (1) permit the programmer to focus only on domain-dependent 
aspects of an application, rather than on control and coordination aspects of 
distribution, which depend on the target environment; (2) be able to reuse the same 
application logic into different computing environments (such as parallel machines, 
clusters and Grids). 

As concerning distributed computing models, in this work we focus on the master-
slave pattern [2], which is a widespread architectural pattern adopted to implement 
coarse-grained parallel and distributed applications either in local- and wide-area 
networks. We focus on the hierarchical version of such pattern, since it is particularly 
effective to be used in intrinsically hierarchical grid computing systems, because of 
well-defined and limited communication patterns among computing nodes. In these 
systems, computing nodes are often hosted by heterogeneous resources characterized by 
limited-bandwidth communication in the levels of the hierarchy close to the user, and 
high communication performance in the other levels, typically not directly accessible 
through the Internet because they are often clusters accessible only through a front-end. 
In future we intend to take into account other widespread patterns currently adopted in 
the distributed computing, such as divide and conquer and pipeline.   

This paper presents a framework to simplify the development of parallel and 
distributed object-oriented applications for grid systems. The framework, called TMS 
Framework (Transparent Master-Slave Framework), is able to transparently 
implement hierarchical master-slave applications in a hierarchical grid environment, 
and to satisfy Quality of Service (QoS) requirements by dynamically exploiting 
services delivered by underlying middleware platforms. The framework was 
implemented by leveraging reflection mechanisms provided by a meta-object protocol 
[3]. We considered, moreover, its customisation for a hierarchical grid middleware 
[4], which delivers an economy-driven resource broker usable by the TMS 
Framework to automatically map and schedule distributed tasks satisfying time and 
cost constraints specified by the user.  

The rest of the paper is organized as follows. Section 2 discusses related work. 
Section 3 presents the TMS Framework. Section 4 describes a reflection-based 
framework implementation. Section 5 presents an evaluation of the TMS Framework 
in writing a distributed application and a preliminary experimental analysis, and 
finally Section 6 summarizes the paper and presents future work. 

2   Related Work 

Some frameworks for master-slave applications in dynamic and heterogeneous 
systems have been proposed in literature. The most significant ones are AppLeS 
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Master-Worker Application Template (AMWAT) [5] and Condor Master-Worker
(MW) [6]. Also Javelin 3 [7] and Satin [8] are interesting proposals. 

AMWAT is a library that provides a software template to implement self-
scheduling master-slave applications written in C, C++, and Fortran in distributed 
memory architectures. The AMWAT programming interface specifies the high-level 
functionalities that the application developer must minimally supply. Such 
functionalities are provided in form of portable and reusable modules. In particular, 
the Application Template module contains fifteen application activity functions, 
which are provided by developers to implement application-specific functions. 

Condor MW is a framework proposed for implementing grid-enabled master-slave 
applications written in C++. Condor MW provides a “top-level” interface to 
application software and a “bottom-level” interface, called Infrastructure 
Programming Interface (IPI). The top-level interface permits to parallelize an 
application and requires the programmer to re-implement some abstract classes, in 
particular the MWTask, which is the abstraction of one unit of work, and the 
MWWorker, which represents a slave process. The IPI interface permits to use 
existing grid computing toolkits without any changes from the view-point of the 
application developer.  

While the AMWAT approach focuses on application performance in terms of 
execution time, the Condor MW approach emphasizes the delivery of high throughput 
computing. It typically deals with many processor faults, since the default Condor 
behaviour is to vacate a running process on a remote machine when it is no longer in 
idle status. 

Even if the approaches described above permit to simplify writing of master-slave 
applications by hiding distribution, scheduling and communication aspects, they still 
require to explicitly write code for the distributed version of the problem, requiring a 
specific implementation of the application for the master-slave pattern and so limiting 
the programmer productivity and existing code re-use.  

A better separation of functional aspects from non-functional ones can be reached 
through the new programming approach based on skeletons [9], conceived to design 
easy-to-use structured parallel programming environments. The idea is to capture 
recurring patterns in parallel and distributed applications in generic software 
constructs that can be customized by the programmers to write different applications.   

A recent proposal is HOC [10] based on Web services, which requires configuring 
services through application-specific code, such as, in the master-slave pattern, how 
to split input parameters among the slaves and how to process them. Such 
customisation is obtained through the implementation of specific interfaces.  

Another proposal that focuses on grid systems is Lithium [11], a library based on 
Java and RMI, which supports common skeletons, including pipelines, task farms, 
iterative and data parallel skeletons.  

As for the skeleton-oriented approaches, our goal is to simplify writing distributed 
applications, considering the difficulty in learning new paradigms and programming 
approaches. For this reason, we propose a framework that permits writing (or re-
using) an application in a sequential version, hiding the distributed aspects related to  
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the pattern/s adopted for its deployment. Our idea is to configure the pattern-related 
aspects through a preliminary phase that requires writing a configuration file and the 
classes for the framework customization. Moreover we focus on a framework 
implementation that hides pattern-related aspects in some configurable components of 
the system, able to leverage existing grid services, for example resource discovery 
and load balancing.   

Most of the distributed computing environments for master-slave applications, 
which deliver scheduling functionalities, use mapping algorithms that try to optimise 
only the execution performance [12] [13] [5]. In a future commercialisation of grid 
technologies, the resource price will represent a distinctive property to regulate the 
supply-and-demand for resources. To this end, the work in [14] represents one of the 
first effort to introduce economy-driven mapping algorithms for generic applications 
with no control or data dependencies; whereas a previous paper of the authors [15] 
defines a heuristic for mapping tasks to the slaves of a master-slave application based 
on deadline and budget constraints. 

3   TMS Framework  

The TMS Framework design is based on the following principles: (1) separation of 
concerns: the framework has to permit a programmer to concentrate only on the 
domain-dependent aspects, without dealing with low-level aspects of distributed 
computation such as the definition of the number of resources, the distribution of 
tasks among the resources, synchronization, etc.; (2) code re-use: the framework has 
to permit the re-use, in a distributed computing environment, of existing code written 
to solve the same problem in sequential manner, so permitting to use, in a nearly-
seamless way, the same code for execution on a single workstation, or on a 
homogeneous cluster or on a heterogeneous wide-area distributed system; (3) 
adaptability: the framework has to dynamically leverage services delivered by the 
underlying computation architecture in order to automatically optimise application 
execution and fulfil user QoS requirements. 

The main objective of the proposed framework is to re-use existing code for 
sequential execution to automatically produce a parallel and distributed version of it 
through the adoption of the hierarchical master-slave pattern at run-time. The 
hierarchical master-slave pattern consists of extending the single master of the 
canonical pattern to a hierarchy of masters at different levels. The master at the top 
controls the overall computation and distributes it among the masters at lower levels, 
and so on, until the computation is sent to the slaves, which directly process the 
request. The collection of computed results is performed in the reverse order. With 
respect to the master-slave pattern, it permits to increase scalability by removing the 
centralized control of a single master, which could easily become a bottleneck for a 
high number of resources and limited-bandwidth networks.  

The TMS Framework provides a run-time distributed environment in which 
masters and slaves run. To achieve separation of concerns, it defines a generic 
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architectural skeleton, which can be customized by the user through application-
domain code used for sequential version, and some descriptive information for the 
deployment. The distribution aspects that depend on the underlying computational 
infrastructure are captured and managed by the framework, without the necessity of 
application-domain code modification.  

The framework is designed so to automatically manage and trigger well-defined 
coordination activities of the hierarchical master-slave model, which are: (1) splitting 
of the workload, (2) call to slaves, (3) waiting and gathering of results performed by 
the master. The idea is to set up such well-defined activities through a configuration 
phase, which permits to specify the policies to adopt for each activity. In figure 1, the 
main components of the framework are shown, considering one level of the hierarchy 
for simplicity.  

The framework is used to dynamically parallelize object-oriented applications 
whose functional aspects are delivered through a method of a class (called in the 
following Task class), which implements a sequential solution to a given problem. To 
transparently turn the sequential computation of such method into a parallel one, a 
Task object is used to customize the main framework component, called TMS Task.
The TMS Task is loaded into the TMS Framework of each computing node and is 
configured in order to act as master or slave of the computation. For a master node the 
TMS Task consists of the replication of the original Task object, and a customisable 
framework component, called Master Behaviour, which performs the master 
functionalities of workload splitting and result gathering. 
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Fig. 1. TMS Framework Architecture

For a slave node the TMS Task consists of the replication of the original Task 
object, and a framework component, which performs the slave activities, called Slave 
Behaviour component. 
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The framework contains other two configurable components used to capture and 
manage the main capabilities required to distribute and manage a master-slave 
application, that are the Resource Management and the Communication components. 
The Resource Management component has the task to schedule and manage the 
masters and slaves on distributed resources. The communication and synchronization 
between masters and slaves is managed by the Communication component. 

4   Reflection-Based Implementation 

The main goal of the TMS Framework is the implicit implementation of the 
hierarchical master-slave pattern, which can be achieved following static or dynamic 
approaches.  

The static approach is based on specialized pre-compilers, which take care of 
parallelising the application and deploying it on distributed resources. Such approach 
does not fit in a dynamic distributed environment since it does not permit to perform 
on-the-fly modifications in order to adapt applications to variations in underlying 
services and resource availability.  

The dynamic approach permits to overcome such limitations and is based on the 
openness of the system to change, even at run-time, some aspects of its behaviour.  

We propose a version of the TMS Framework based on a dynamic approach 
implemented with reflection mechanisms [2]. A reflection-based framework permits 
to easily adapt components to changing conditions, and to extend or reconfigure the 
system to meet new requirements. With this approach, an application is logically 
divided in two parts: the meta-level and the base-level. The meta-level is the part of 
application which provides knowledge of its properties and makes the system self-
aware. The system properties available at the meta-level are represented by Meta 
Objects, which encapsulate and represent information about a single system aspect 
that should be adaptable. The base-level models and implements the application logic 
and represents the various services the system offers. Its implementation uses 
information and services provided by the meta-level to remain flexible and 
independent from those aspects that are likely to be modified.  

A reflection-based TMS Framework requires individuating the set of Meta Objects, 
which capture the incomplete parts of the framework and permit to customize it for 
the execution of an application. Reflection mechanisms are also used to customize the 
Resource Management and Communication components so to deliver functionalities 
exploiting existing basic services of the underlying middleware. 

4.1   MOP-Based Implementation 

We implemented the dynamic master-slave pattern by exploiting the reflection 
features provided by Meta-Object Protocol (MOP) implemented in ProActive [3]. It is 
a proxy-based run-time mechanism, which permits reification of method invocations 
and constructor calls. It is entirely written in Java and avoids any modification or 
extension to the JVMs, as opposed to other meta-object protocols. 
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By using MOP, the TMS Framework permits to employ every existing class to 
transparently instantiate the set of master and slave active objects (ProActive objects), 
keeping the application very similar to that used for a sequential computation.  

Therefore, the hierarchical master-slave pattern is dynamically implemented and an 
existing object can be turned in a master able to transparently split the overall task 
into sub-tasks and in a slave able to perform the assigned part of the overall task.  
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Fig. 2. MOP-based TMS Framework implementation 

The behaviour of active objects, with respect to the parallelism exploitation 
patterns, is specified through the implementation of the RunActive interface of 
ProActive, delivered by the framework and called TMSRunActive, which specifies 
the actions executed by the active object when a method execution request is received  
(see figure 2). In particular, if the active object is a master, the following actions are 
performed: (1) to collect information on the performance capabilities of each resource 
available for computation; (2) to perform a partition of input parameters following the 
policies indicated in a configuration file; (3) to send method calls to the active objects 
which are masters or slaves of the lower level, using as input parameters: the original 
input parameter, if it is a non-partitioned parameter, or the corresponding part of the 
partition, if it is a partitioned parameter; (4) to wait for the collection of each partial 
results, which are assembled following the policy specified in a configuration file. If 
the active object is a slave, it directly executes the method. 

4.2   Programming Model 

The programming model of the TMS Framework permits the parallelisation of one or 
more tasks, each represented by a method of an existing class. The parallelisation is 
initialised through the Configuration Phase, performed delivering a configuration file 
and invoking the static method of the TMSFramework class: 

Object configureDistributedTask(Object original, String configFile);

that returns a reified object. The input parameters are original, which is an instance 
of the class used to perform the distributed task and configFile, which is the name 
of the configuration file used to configure the deployment of active objects. It is an 
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XML-based file, called Job Description Format (JDF) in which a part depends on the 
underlying middleware adopted for active objects deployment, while another is 
common and is used for the reflection mechanisms. The common part contains the 
following information: (1) the methods whose invocations have to be distributed over 
the active objects; (2) for each method, the input parameters that have to be 
partitioned and the policy to partition each of them; (3) for each method, the 
assembling policy of the output parameter. 

A partition policy is specified by the implementation of the following method of 
the SplitHelper interface: 

public Object[] split (Object[] data, double[] caps); 

in which, data represents the information used to obtain a partition on an input 
parameter and caps the performance information on each active object, used to 
eventually obtain a load balanced partition. 

SplitHelper
<interface>

+ split(Object[], double[]):Object[]

AssembleHelper
<interface>

+ assemble(Object[]):Object

TMSFramework

+ configureDistributedTask(Object, String):Object
+ getConfigurationInfo(Object):ConfigurationInfo

TMSRunActive

+ runActivity(Body)

RunActive
<interface>

+ runActivity(Body)

Fig. 3. Class Diagram of MOP-based TMS Framework  

An assembling policy is specified by the implementation of the following method 
of the AssembleHelper interface: 

public Object assemble (Object[] data);

in which data represents the partial results to assemble into a single object 
representing the overall result of the distributed computation. 

The Configuration Phase is followed by the Execution Phase, in which the user 
performs method invocations in the same way as for standard objects. The method 
invocation on ProActive active objects is asynchronous, which permits to increase the 
concurrency among local and remote activities. 

4.3   User QoS Requirements 

The default version of ProActive leverages Java RMI and, as a consequence, requires 
the direct handling of scheduling functionalities of resource discovery, selection and 
task mapping, limiting the capability to fulfil user QoS requirements. 

Through the adoption of the ProActive-HiMM adapter [16], the TMS Framework 
can be configured to transparently leverage HiMM functionalities. HiMM is a Java-
based middleware able to exploit hierarchical collections of computers interconnected 
by heterogeneous networks. Even if HiMM is not a complete grid middleware (it lacks 
of sophisticated security mechanisms and efficient data access), it delivers all the basic 
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services of resource discovery, management, scheduling, and efficient communication 
mechanisms useful to implement master-slave applications into a grid system. 

HiMM, in particular, provides an economy-driven broker for master-slave 
applications which is responsible for automatic resource discovery and task mapping 
on the basis of availability, performance and cost of resources, and on time and cost 
parameters specified by the user. It is based on the task mapping heuristic proposed in 
[15] which permits to minimize the total execution time without exceeding a fixed 
budget. The HiMM resource broker can be adopted by the TMS Framework to 
transparently deploy the distributed tasks of resources satisfying time and cost 
constraints specified by the user in the configuration phase. This is obtained following 
the programming model described above and using a file (JDF – Job Description 
Format – file) which contains all the information necessary to exploit broker 
functionalities of HiMM, which are application information (task dependencies, 
overall complexity, single task complexity, etc), application code, input data and user 
requirements. The current version of the HiMM broker does not take into account the 
mapping problem of master hierarchy because it focuses on a grid system with an 
intrinsic hierarchical topology, in which the masters are naturally hosted on those 
machines used as front-end for pools of resources such as clusters.     

5   Framework Evaluation 

To evaluate the usefulness for programming and to analyse the performance delivered 
by TMS Framework, a simple application is described. It is the well-known 
multiplication of square matrices implemented with the master-slave pattern and 
using the strip partitioning of the left matrix: the master partitions the received left 
matrix and sends the parts to slaves for processing.  

A standard class Matrix, eventually already written for sequential applications, 
delivers a constructor to initialise a bi-dimensional array of float values, and the 
multiply method that sequentially executes the multiplication between the current 
matrix, used as right matrix, and the matrix passed as parameter, used as left matrix. 

The following code shows the use of the TMS Framework to turn a standard 
instance of Matrix into a transparent master-slave one: 

...
Matrix rigMat = new Matrix(...); // initialisation 
Matrix leftMat = new Matrix(...); 
Matrix result = null;
String configFile = null;

   // Configuration Phase: definition of the XML-based JDF file 
   ...

rigMat=(Matrix)TMSFramework.configureDistributedTask(
                  rigMat,configFile); 

// Execution Phase 
result = rigMat.multiply(leftMat); 
...

The parallelisation of the multiplication of two matrices requires to specify, in a 
JDF file, the class which contains the method to parallelise, that is Matrix, and the 
classes which implement the SplitHelper and AssembleHelper interfaces used, 
respectively, to split a matrix in blocks of rows and to assemble blocks of rows into 
one block to return a single matrix.  
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We underline that such classes could be already available in a library included in 
the framework or delivered by a third-part developer. A section of the JDF file for this 
application is reported below. 

<APPLICATION­STRUCTURE>
  <DISTR­PROG­MODEL>Master­Slave</DIST­PROG­MODEL>
<MIDDLEWARE­SPECIFIC­INFORMATION>
<USER­REQUIREMENTS>
<DEADLINE>50000</DEADLINE>
<BUDGET>100</BUDGET>
<MAPPING­POLICY>TIME_OPTIMIZATION</MAPPING­POLICY>

</USER­REQUIREMENTS>
...
</MIDDLEWARE­SPECIFIC­INFORMATION>
<TASKS>

<TASK>
 <TASK­CLASS­NAME>Matrix</TASK­CLASS­NAME>
 <METHOD­NAME>multiply</METHOD­NAME>
 <METHOD­PARAMETERS>
   <METHOD­PARAMETER>Matrix</METHOD­PARAMETER>
 </METHOD­PARAMETERS>
 <RETURN­TYPE>Matrix</RETURN­TYPE>
<DATA>

  <DISTRIBUTED­INPUTS>
   <INPUT>

 <INPUT­TYPE>Matrix</INPUT­TYPE>
 <INPUT­INDEX>0</INPUT­INDEX>
 <PARTITION>
   <PARTITION­CLASS­NAME>TMSFramework.util.MatrixSplitHelper

           </PARTITION­CLASS­NAME>
   <PARAMETERS>
     <PARAMETER>
       <INPUT­TYPE>Matrix</INPUT­TYPE>
       <INPUT­INDEX>0</INPUT­INDEX>
     </PARAMETER>
   </PARAMETERS>
 </PARTITION>

   </INPUT>
  </DISTRIBUTED­INPUTS>
  <ASSEMBLING>

<ASSEMBLING­CLASS­NAME>TMSFramework.util.MatrixAssembleHelper
     </ASSEMBLING­CLASS­NAME>

 <PARAMETERS>
   <PARAMETER>
     <INPUT­TYPE>Matrix</INPUT­TYPE>
     <INPUT­INDEX>­1</INPUT­INDEX>
   </PARAMETER>
 </PARAMETERS>

 </ASSEMBLING>
 </DATA>
</TASK>

  </TASKS>
</APPLICATION­STRUCTURE>

Figure 4 shows the components that must be provided by the developer to 
configure the framework and Figure 5 shows the deployment of the components on a 
pool of distributed resources through a broker for resource management. During the 
configuration phase, the broker is adopted to discover and select a pool of resources 
able to satisfy user performance and cost requirements specified in the JDF file. 
Selected resources are adopted to build a hierarchical virtual machine managed 
through HiMM.  

We conducted a preliminary performance analysis on a network of workstations 
composed of fourteen homogeneous machines, each equipped with Intel Pentium 
Xeon 2.8 GHz, a RAM of 1GB, running Custer-Linux Rocks ver. 4 operating system, 
and inter-connected by a Fast Ethernet network. The used software packages are Java 
2 SDK 1.4.2, ProActive version 3.0 and HiMM version 1.1. We used the 
multiplication of two square matrices as benchmark and adopted the time  
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minimization heuristic considering the same performance parameters for each 
resource so to obtain roughly the same execution time on each of them. We measured 
the overall execution times and evaluated the speedup factor considering various 
matrix sizes and various numbers of available resources. The execution times and 
speedup factors are reported in figure 6 (a) and (b), whose trends show the system 
efficiency. 

6   Conclusion 

We defined a component framework able to automatically implement the hierarchical 
master-slave pattern in a distributed environment leveraging the application code for 
the sequential solution. We described a reflection-based implementation that exploits 
reflection to use the services of the underlying grid middleware. The usability of the 
TMS Framework for writing distributed applications and the results of an 
experimental analysis to prove the system efficiency were shown. In future, we will 
test the system scalability of the TMS Framework for a heterogeneous hierarchical 
environment. Moreover, we intend to customize the TMS Framework so to leverage 
more efficient communication mechanisms based on IP multicast for master-slave 
interactions and other middleware services, such as the WSRF-complaint services 
delivered by Globus [17]. 
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