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Abstract. Petascale computing is currently a common topic of discus-
sion in the high performance computing community. Biological appli-
cations, particularly protein folding, are often given as examples of the
need for petascale computing. There are at present biological applica-
tions that scale to execution rates of approximately 55 teraflops on a
special-purpose supercomputer and 2.2 teraflops on a general-purpose
supercomputer. In comparison, Qbox, a molecular dynamics code used
to model metals, has an achieved performance of 207.3 teraflops. It may
be useful to increase the extent to which operation rates and total cal-
culations are reported in discussion of biological applications, and use
total operations (integer and floating point combined) rather than (or in
addition to) floating point operations as the unit of measure. Increased
reporting of such metrics will enable better tracking of progress as the
research community strives for the insights that will be enabled by petas-
cale computing.
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1 Introduction

The worldwide high performance computing (HPC) community is at present
highly focused on petascale computing – a common topic of discussion in press
releases, grant solicitations, conferences, and technical papers. Biology in general
and protein structure in particular are often important themes in discussion of
petascale computer applications. The government of Japan and the Institute of
Physical and Chemical Research (RIKEN) announced in 2003 plans to create a
high performance computing system with 1 petaflops peak theoretical capability
to model protein folding [1]. In the United States, the National Science Foun-
dation (NSF) and the US Department of Energy (DOE) have each announced
programs designed to develop and implement petaflops supercomputers, in both
cases with biology among the driving applications. The DOE has announced
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plans to install a supercomputer with 1 petaflops peak theoretical capability in
2008 [2], while the NSF’s target is 1 petaflops sustained performance achieved
by 2010–2011 [3]. Most recently, the RIKEN Institute announced that their
Protein Explorer system has been clocked at a peak theoretical capability of 1
petaflops [4]. The era of petascale computing in biology is here – at least by one
measure.

The purpose of this paper is to assess the current state of progress toward
petascale computing in biology. Petascale is used here to indicate applications
that use petaflops of computing power, petabytes of data, or both. We present
data combed from the literature on execution rates of applications in biology
and other sciences, as well as information on the size of publicly available data
sets. Based on examination of the currently available data, we make recommen-
dations about ways in which performance of applications and size of databases
could be reported so that the research community could better track progress in
capabilities of biological applications.

2 Methods and Materials

There are several ways to measure computational speed: peak theoretical ca-
pability (the maximum number of operations that could possibly be completed
by a computer given the number of instructions per clock cycle and number of
clock cycles per second); peak achieved performance on benchmark applications
(especially the Linpack benchmark program, which is used in rankings for the
Top500 List of the fastest supercomputers in the world [5]); and peak achieved
performance on a “real” applications that solve some current scientific problem.

To assess progress in scale of applications in biology and other disciplines,
we combed the literature and the World Wide Web for examples of particularly
large computations in biology and, for purposes of comparison, other scientific
disciplines. Because there is little consistency in how the performance of large
biological applications is reported, we also solicited information directly from
leading supercomputing centers. The progress of application performance can
be understood only in the context of the progress in the capabilities of hardware
systems. For comparisons of hardware capabilities we compiled information on
the peak theoretical capability of general and special-purpose supercomputers.
Key sources of information included papers about Gordon Bell prizes from the
ACM/IEEE SCxy supercomputing conferences [6, 7, 8, 9] and the Top500 List
[5]. To assess progress toward petascale data used in biology, we examined the
current sizes of major public biological data sources.

3 Results

Figure 1 demonstrates the well-understood progress of the peak theoretical ca-
pability of the top-ranked system on the Top500 List. In terms of systems that
run the Linpack benchmark, statistical extrapolation from all previous Top500
Lists suggests that the top system on that list will reach a peak theoretical
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capability of 1 petaflops in November 2009 and achieved Linpack performance
of 1 petaflops in June 2012.

Figure 1 also shows peak theoretical capability of several special-purpose sys-
tems of note. The MD-GRAPE and GRAPE systems are not included on the
Top500 list since they perform molecular dynamics and astrophysical N-body cal-
culations, respectively, and cannot run the Linpack benchmark suite. Figure 1
also shows current aggregate TFLOPS for the combined BOINC project [10],
and two subcomponents of that system – SETI@Home [11], the largest BOINC
project overall, and ROSETTA@Home [12], the largest biological application
within the BOINC system for which aggregate performance data are available.
Table 1 details the systems shown in Figure 1.

Fig. 1. Peak theoretical capacity of high performance computing systems over time.
Shown are the peak theoretical capacity of the #1 ranked system on the Top500 List since
its inception, along with the peak theoretical capability of selected special-purpose com-
puting systems. Special-purpose systems represented include the Numerical Wind Tun-
nel, GRAPE family, MD-GRAPEs, specialized QCD systems, and distributed BOINC
applications [4], [5], [8], [10,11,12,13,14,15,16,17,18,19].

Figure 2 shows progress in sustained performance on several applications since
the inception of the Top500 List. Included are the top achieved Linpack perfor-
mance from the Top500 List and the top performance achieved on several heroic
applications. Table 2 details the applications shown in Figure 2.
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Table 1. Data about systems in Figure 1

Peak theoretical
System Classification capacity Year Reference

MDGRAPE-3 MD-GRAPE 1 PF 2006 [4]
BOINC combined statistics BOINC aggregate 400.85 TF 2006 [10]
SETI@Home SETI@Home 191.233 TF 2006 [11]
GRAPE-6 GRAPE(2n) 63.4 TF 2002 [13]
Rosetta@Home Rosetta@Home 35.654 TF 2006 [12]
MDGRAPE-2 MD-GRAPE 24.6 TF 2001 [14]
MDGRAPE-2 MD-GRAPE 1 TF 2000 [15]
GRAPE-4 GRAPE(2n) 0.66 TF 1996 [8]
QCDOC QCD 0.512 TF 2004 [16]
QCDSP QCD 0.4 TF 1997 [17]
Numerical Wind Tunnel NWT 0.2 TF 1995 [18]
GRAPE-5 GRAPE(2n+1) 0.11 TF 1999 [19]

Fig. 2. Achieved floating point computation rates for applications in several disciplines.
Included are the Linpack performance data of the #1 system on the Top500 List since
its inception, and other applications that have reported high floating point operation
rates. [5,6,7,8,9], [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44].

We collected information about the size of data sets used in several fields
of research in order to study progress in data-centric life sciences research as
compared to other disciplines. Table 3 shows the sizes of several important data
sets. In many cases these databases tend to report their size in terms of numbers
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Table 2. Data about applications in Figure 2

Peak achieved
Application Discipline rate Year Reference

Qbox Physics 207.3 TF 2006 [20]
Solidification simulations Physics 103 TF 2005 [21]
Peptide simulation Biology/Molecular dynamics 55 TF 2006 [22]
Qbox Physics 22.02 TF 2005 [23]
Corona simulation Geology/Weather 15.6 TF 2006 [24]
Earth Simulator Geology/Weather 15.2 TF 2004 [25]
LSMS Physics 8 TF 2006 [26]
Weather forecast (NWS) Geology/Weather 7.3 TF 2003 [27]
Earth Simulator Geology/Weather 5 TF 2003 [28]
Lattice Boltzmann model Fluid dynamics 4.7 TF 2005 [29]
Weather forecast (NOAA) Geology/Weather 4 TF 2005 [30]
Blue Matter Biology/Molecular dynamics 2.2 TF 2006 [31]
NAMD Biology/Molecular dynamics 2.08 TF 2006 [32]
VASP Physics 2 TF 2006 [33]
CPMD Biology/Molecular dynamics 1.7 TF 2006 [33]
Wave propagation solver Geology/Weather 1.21 TF 2003 [34]
Turbulence simulation Fluid dynamics 1.18 TF 1999 [35]
DOWSER Fluid dynamics 1 TF 2002 [36]
First principles calculation Engineering 0.657 TF 1998 [37]
NAMD Biology/Molecular dynamics 0.65 TF 2003 [38]
Parallel Eigensolver Engineering 0.605 TF 1998 [39]
Turbulence simulation Fluid dynamics 0.6 TF 1999 [35]
NAMD Biology/Molecular dynamics 0.5 TF 2006 [32]
Finite element analyses Physics 0.5 TF 2004 [40]
Tree-code method Physics 0.43 TF 1997 [9]
Hairpin vortices simulation Geology/Weather 0.319 TF 1999 [41]
Cactus Physics 0.292 TF 2001 [42]
MP-QUEST Engineering 0.256 TF 1997 [9]
Cactus Physics 0.249 TF 2001 [42]
Quark modeling Physics 0.246 TF 1997 [9]
Pronto Fluid dynamics 0.225 TF 1997 [9]
MPSalsa Fluid dynamics 0.212 TF 1997 [9]
Tree-code method Physics 0.17 TF 1997 [9]
Bunyip Physics 0.163 TF 2000 [43]
Unstructured mesh CFD Fluid dynamics 0.156 TF 1999 [44]
Sound wave computation Physics 0.143 TF 1994 [7]
Numerical Wind Tunnel Fluid dynamics 0.12 TF 1994 [7]
Numerical Wind Tunnel Fluid dynamics 0.111 TF 1996 [8]
Composite modeling Engineering 0.1 TF 1994 [7]
Radar scattering Physics 0.1 TF 1994 [7]
Boltzmann equation Fluid dynamics 0.06 TF 1993 [6]
Crack modeling on CM-5 Physics 0.05 TF 1993 [6]

of records (or in the case of sequence databases number of sequences). Indiana
University maintains a repository of copies of many of these data sets, and we
determined the size in petabytes of these data sets from those copies.
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Table 3. Current size of some exemplars of databases used in the life sciences as
of summer 2006, compared with key exemplars from other disciplines. The size of
datasets marked with an * were determined from copies of data downloaded to Indiana
University from the original resources.

Database name Discipline Current estimated size

BaBar High-energy physics 2 PB [45]
National Virtual Observatory Astronomy ∼ 0.5 PB [46]
NCBI* Biology 0.005 PB
Regenstrief Medical Records System Medicine 0.004 PB [47]
Protein Data Bank Biology 0.0007 PB [48]
EarthScope Geology 0.0004 PB [49]
PubChem* Chemistry 0.0001 PB
Swiss-Prot* Biology 0.00000087 PB

4 Discussion

There are notable accomplishments in terms of peak performance of biological
applications. The top performance in terms of floating point execution rate that
we have been able to find for a biological application is 55 teraflops on a special-
purpose MDGRAPE-3 system with a peak theoretical capability of 415 teraflops
(an efficiency of 13.25%) [22]. This application simulated the formation of amy-
loid fibrils including 14 million atoms. The top performance in terms of floating
point execution rates on a general-purpose supercomputer is approximately 2.2
teraflops with Blue Matter software on 80% of an 11.5 teraflops Blue Gene/L
supercomputer (an efficiency of approximately 24%) [31], using the 92,000 atom
ApoA1 benchmark. (The Blue Matter software is discussed in this volume in the
paper by Fitch et al, “Progress in Scaling Biomolecular Simulations to Petaflop
Scale Platforms.”) Another application of note in terms of instruction rate is
NAMD, which can operate at 2.08 teraflops in a 2.7 million atom simulation
on a system with a peak theoretical capacity of 9.83 teraflops (an efficiency of
approximately 21%) [32]. Based on the data we have been able to obtain, these
seem to be the top biologically-oriented applications in terms of rates of floating
point executions. There is a fairly strong contrast between the achieved rate of
floating point operations on biological codes, the peak theoretical performance
of systems available today, and the peak achieved performance on other scientific
applications.

The progress of the peak theoretical capability of HPC systems, and of Lin-
pack performance on these systems, is progressing steadily toward petascale
computing. Special-purpose systems based on GRAPE and MD-GRAPE boards
have on several occasions managed faster peak theoretical capability than the
top system on the Top500 List. This trend is in evidence at present, as the
MDGRAPE-3 is the basis for the RIKEN Institute’s Protein Explorer, the first
system with a reported peak theoretical capability of 1 petaflops. The fastest su-
percomputer in the world according to the June 2006 Top500 List (among those
capable of running the Linpack Benchmark) is the 367 teraflops IBM BlueGene/L
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system at Lawrence Livermore National Laboratory, larger than but otherwise
similar to the system used for the Blue Matter software calculations mentioned
above. Plans announced by the US Department of Energy and National Science
Foundation will thus result in implementation of systems of 1 petaflops peak
theoretical capability (2008) and 1 petaflops achieved performance (2010–2011)
more quickly than would be predicted on the basis of extrapolation from the
existing Top500 list data.

In terms of performance of applications other than Linpack, the highest rate of
floating point executions reported to date are from simulation of crack formation
in 1,000 Molybdenum atoms with the Qbox application [20], [23]. Qbox on the
367 teraflops LLNL BlueGene/L system has achieved a peak execution rate of
207.3 teraflops – 56.5% of peak theoretical capability (as compared to 73.8% of
peak achieved on the Linpack benchmark). Another notable physics application
is LSMS [26], which ran on Pittsburgh Supercomputer Center’s Cray XT3 at
just over 8 teraflops – 82% of peak theoretical capability (as compared to 80.2%
of peak achieved on the Linpack benchmark.) This LSMS run performed an ab
initio quantum calculation of an iron nanoparticle of more than 4,400 atoms.

There seem to be fewer data available at present regarding high rates of float-
ing point executions for heroic biological applications – and fewer than seem
available for other disciplines. This is at least in part because HPC applications
in biology have been in existence for less time (and are still less prevalent) than
disciplines such as material science, physics, and computational fluid dynamics.
In addition, performance results for biological codes are most often reported
in ways that are directly meaningful to the time to solution of the particular
problem at hand. Wall clock times, and decreases thereof, to solve a particular
problem are perhaps the most common metric overall; total CPU hours used is
also a common metric. In the case of protein folding, wall clock time per time
step (or simulated time steps per unit wall clock time) is often used. In the case
of genome sequence comparisons, number of sequences compared per unit time
is a common metric. In the case of phylogenetic inference, the number of evolu-
tionary trees analyzed per wall clock hour is commonly used. Researchers in the
life sciences often do not collect and report the performance of their applications
in terms of floating point operations. For example, two of the authors of this
paper participated in an HPC Challenge project at SC2003, in which many col-
laborators created a global computational grid to run fastDNAml, a program for
inferring evolutionary relationships [50]. We reported our results in terms of rate
of analysis of trees, total number of processors used, etc. but did not instrument
the code to measure actual floating point executions. Had we tried to do so, we
would not have managed to get the application running during the time period
of the HPC Challenge at SC2003. Similarly, high throughput applications such
as Folding@home [51] and fightAIDS@home [52] involve thousands of computers
working simultaneously on particular parts of a large-scale biological problem,
but the rate at which work is done is not reported in terms of floating point
calculation rates.
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Floating point operation rates are mentioned specifically in major grant solici-
tations, and are thus of some practical import to the high performance computing
community [53]. However, rates of floating point operations have two limitations
as a measure of biological applications. One is that improving time to solution
may involve decreasing execution rates. For example, the floating point rates
for NAMD today are roughly 30% lower than in the code version in 2002 [38]
because the underlying algorithms are more efficient [32].

A second limitation, perhaps more specific to biological operations, is the
relative importance of integer operations in biological applications. The perfor-
mance of the DOTTER program [54] was carefully analyzed in terms of total
operations because of the predominance of integer mathematics in that appli-
cation [55]. Understanding the application performance was possible only by
including integer operations in the analysis. BLAST and other important bioin-
formatics applications also use integer operations extensively. Roughly two thirds
of the mathematical operations in NAMD are integer operations [32]. To the ex-
tent that execution rates provide a means to compare the behavior of diverse
biological applications, total operation rates (integer and floating point) would
likely be a better basis for comparison than floating point operation rates alone.
This poses the question of how to factor in the importance of operand length.
Double precision reals are the basis for the standard Linpack benchmark, and
there seems little reason at present to deviate from that approach in general (al-
though there may be interesting exceptions [56]). As regards integer operations,
when reporting rates it is probably best to specify the integer length – but it may
make sense in the context of biological applications to count operations without
regard to operand length. To do otherwise and somehow correct for length would
likely penalize clever coding schemes that take advantage, for example, of the
four letter alphabet of nucleotides (A,C,G,T).

In addition to measuring rates of operation execution, it will likely be useful
to measure the total amount of computation that contributed to a particular
analysis or simulation. For example, some of the largest biological computa-
tions performed to date in terms of total computer operations involve NAMD
simulations of an entire ribosome in 2005 [57] and the tobacco mosaic satellite
virus [58]. The former seems to be the largest simulation of a biological struc-
ture (in terms of CPU hours) ever published; the latter is the first ever molecular
simulation of an entire life form. A useful measure of total calculation effort com-
parable across applications and systems might be simply total operations, or a
measure analogous to the kilowatt-hour – that is, the PetaOPS-hour. Given the
diversity of biologically oriented applications, it simply may not be possible to
capture the performance of applications with a single metric. However, reporting
total operation rates (integer and floating point) and total operation counts or
PetaOPS-hours, in addition to other measures, will enable better comparisons
among biological applications. Such comparisons are only a means, and the ends
desired are biological insights rather than high operation rates. Still, tracking
the progress of operation rates as a means will enable us to better determine
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if the oft-discussed ends (new insights and knowledge) are in evidence as the
capabilities of our means progress.

The sizes of public biological data sets are growing rapidly, but life sciences
data sets are still well away from the petabytes range and well smaller than the
size of data sets found in other disciplines. Data sets in the range of 2 petabytes
are available now in high energy physics research with 20 petabytes planned by
2008 [45]. The Terashake earthquake simulation run at the San Diego Supercom-
puter Center generated a data set of 45 TB [59]. In contrast, the largest publicly
available biological data set is at present approximately 5 TB. Graphs of the
amount of data contained in NCBI’s Genbank data set show dramatic rates of
growth [60], and that dramatic rate of growth creates an impression that may
obscure the size of the actual data set: in 2006, the actual aggregate size of the
data set is still well under a terabyte. Likewise, a recent demonstration at Indi-
ana University included an analysis of some of the chemical properties of all of
the compounds in PubChem [61] in less than 10 minutes – a significant accom-
plishment from the standpoint of obtaining information from a comparatively
large data set (more than 19 million records), yet the input data amounted to
less than 100GB. Other very large and notable data-centric initiatives in the life
sciences include BIRN [62], eDiaMoND [63], and NEON [64]. Aggregated sets
of data in clinical practice and held by pharmaceutical companies may be much
larger. For example, the Regenstrief Institute [47] holds an aggregate of 4 TB of
clinical data. While reporting of biological database size in number of records,
or number of sequences, or number of compounds is common, more routine re-
porting of database size in terms of actual disk storage space would be useful in
comparability across disciplines in discussing the size of data sets.

Sterling et al [65] produced the first careful analysis of the opportunities and
challenges in achieving petascale computing. In their 1994 workshop, they iden-
tified several candidates for petaflops applications, including protein folding,
modeling of circulation in the human body, and data-intensive applications us-
ing petabytes or exabytes of data. Stevens [66], CIBIO [67], and Atkins [68]
provide more recent analyses of opportunities for petascale biological applica-
tions. Stevens [66] outlined eight categories of potential petascale applications; of
these, five categories were related to molecular structure, function, and dynam-
ics; other categories included sequence analysis, whole genome metabolic mod-
eling, and population modeling. A recent NSF-sponsored workshop on petascale
applications in biology reinforced many of these ideas, and added novel ideas
such as ecological simulations linked to climate models and real-time patient
profiling [69].

Based on data currently available, molecular dynamics codes clearly scale to
the highest operation rates achieved on monolithic supercomputers and are likely
candidates to be the first applications to achieve petaops calculation rates. One
model of circulatory function in the human body – ATREE – creates large-scale
models of biological function by employing computational physics codes (includ-
ing turbulence) to solve biological problems. These codes have been implemented
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on the NSF-funded TeraGrid [70], linking simulation of many components of
the human arterial system. By linking many HPC systems ATREE is a likely
candidate to achieve extremely high mathematical operation rates in a grid en-
vironment. In terms of data-intensive applications, several examples given by
Stevens [66] involve coarse-grained (and often very complex) parallel analyses
of large data sets; such data-parallel applications are also good candidates for
achieving very high operation rates. All in all, the current state of affairs is con-
sistent with many of the predictions made by Sterling et al. more than a decade
ago.

5 Conclusion

There are many ways to count what are petascale applications in biology; by one
measure at least the era of petascale biology begins in 2006 with the successful
operation of the Protein Explorer at a peak theoretical capability of 1 petaflops.
Many obstacles remain between the state of the art in 2006 and biological appli-
cations that achieve petaops calculation rates and process petabytes of data. In
tracking the progress toward petascale biological applications it will be helpful
to report application characteristics in ways that will enable better comparisons
across applications. For applications, routine reporting of calculation rates in
terms of total petaoperations per second, and total computing power in peta-
operations or PetaOPS-hours for particular simulations, would be helpful. For
data-intensive applications, more routine reporting of data set size in tera- or
petabytes would be helpful. Petascale applications are only a means to an end;
the ends are new insights about the function of biological systems and better
human health. Still, tracking progress of the means will enable some insight as
to whether the ends anticipated are being achieved.
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