
Debugging ASP Programs by Means of ASP�

Martin Brain1, Martin Gebser2, Jörg Pührer3, Torsten Schaub2,��,
Hans Tompits3, and Stefan Woltran3

1 Department of Computer Science, University of Bath,
Bath, BA2 7AY, United Kingdom

mjb@cs.bath.ac.uk
2 Institut für Informatik, Universität Potsdam,

August-Bebel-Straße 89, D-14482 Potsdam, Germany
{gebser,torsten}@cs.uni-potsdam.de

3 Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9–11, A–1040 Vienna, Austria

{puehrer,tompits,stefan}@kr.tuwien.ac.at

Abstract. Answer-set programming (ASP) has become an important paradigm
for declarative problem solving in recent years. However, to further improve the
usability of answer-set programs, the development of software-engineering tools
is vital. In particular, the area of debugging provides a challenge in both theoreti-
cal and practical terms. This is due to the purely declarative nature of ASP that, on
the one hand, calls for solver-independent methodologies and, on the other hand,
does not directly apply to tracing techniques. In this paper, we propose a novel
methodology, which rests within ASP itself, to sort out errors on the conceptual
level. Our method makes use of tagging, where the program to be analyzed is
rewritten using dedicated control atoms. This provides a flexible way to specify
different types of debugging requests and a first step towards a dedicated (meta
level) debugging language.

1 Introduction

Answer-set programming (ASP) has become a popular approach to declarative prob-
lem solving. The highly declarative semantics of the language decouples the problem
specification from the computation of a solution. As a consequence, there is no general
handle on the solving process whenever the output is in question. This deprives us of ap-
plying standard, procedural debugging methodologies and has led to a significant lack
of methods and tools for debugging logic programs in ASP. However, the semantics
itself allows for debugging methodologies that explain why, rather than how, a program
is wrong. Another challenge is that the specification of a problem and its solutions are
expressed in different fragments of the underlying language. While an encoding is usu-
ally posed in terms of predicate and variable symbols, a solution is free of variables and
consists of ground atomic formulas.

We address this gap by proposing a novel debugging methodology that allows for
debugging logic programs by appeal to ASP itself. To this end, we exploit and further

� This work was partially supported by the Austrian Science Fund (FWF) under project P18019.
�� Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 31–43, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

32 M. Brain et al.

extend the tagging technique introduced by Delgrande, Schaub, and Tompits [1] for
compiling ordered logic programs into standard ones. The idea is to compile a program
in focus (once) and to subsequently accomplish different types of debugging requests by
appeal to special debugging modules using dedicated control atoms, called tags. Tags
allow for controlling the formation of answer sets and reflect different properties (like
the applicability status of a rule, for instance) and therefore can be used for manipulating
the evaluation of the program (like the actual application of a rule).

The basic tagging technique is then used to conceive a (meta level) debugging lan-
guage providing dedicated debugging statements. The idea here is to first translate a
program into its tagged form and then to analyze it by means of debugging statements.
More specifically, starting with a program Π over an alphabet A, Π is translated into
a tagged kernel program TK[Π] over an extended alphabet A+, and a debugging re-
quest Δ, formulated in the debugging language, is then compiled into a tagged pro-
gram D[Δ] over A+. The debugging results are eventually read off the answer sets of
the combined tagged program TK[Π] ∪ D[Δ]. In this paper, we focus on the basic con-
stituents of such a debugging language, confining ourselves to a detailed account of the
tagging method.

Our approach has several advantageous distinct features: Firstly, it is based on meta-
programming techniques that keep it within the realm of ASP. The dedicated debugging
language offers an easy and modular way of specifying debugging requests. Notably, it
allows the users to pose their requests with variables, which provides a tight connection
to an encoding at hand. Secondly, the different debugging techniques are derived from
semantic principles and relate to different characterizations of answer set formation. As
a consequence, we can ascribe meaning to different debugging outcomes as well as the
underlying compilation techniques. This is nicely demonstrated by our extrapolation
techniques that allow for debugging incoherent logic programs. Finally, our approach
has been implemented within the tool spock, which is publicly available at [2].

Our approach is not meant to be universal. For one thing, it aims at exploring the
limits of debugging within the realm of ASP. For another, it nicely complements the
majority of existing approaches, all of which are external to ASP [3,4,5,6]. Most of
them rely on graph-based characterizations, in the simplest case dependency graphs,
and use specific algorithms for analyzing such graphs.

2 Background

Given an alphabet A, a (normal) logic program is a finite set of rules of form

a ← b1, . . . , bm,not cm+1, . . . ,not cn , (1)

where a, bi, cj ∈ A are atoms for 0 ≤ i ≤ m ≤ j ≤ n. A literal is an atom a or
its negation not a. For a rule r of form (1), let head(r) = a be the head of r and
body(r) = {b1, . . . , bm,not cm+1, . . . ,not cn} be the body of r. Furthermore, we
define body+(r) = {b1, . . . , bm} and body−(r) = {cm+1, . . . , cn}. The set of atoms
occurring in a program Π is given by At(Π). For regrouping rules sharing the same
head a, we use def (a, Π) = {r ∈ Π | head(r) = a}. For uniformity, we assume that
any integrity constraint ← body(r) is expressed as a rule w ← body(r),not w, where

Debugging ASP Programs by Means of ASP 33

w is a globally new atom. Moreover, we allow nested expressions of form not not a,
where a is some atom, in the body of rules. Such rules are identified with normal rules
in which not not a is replaced by not a�, where a� is a globally new atom, together
with an additional rule a� ← not a. We also take advantage of (singular) choice rules
of form {a} ← body(r) [7], which are an abbreviation for a ← body(r),not not a.

We define answer sets following the approach of Lin and Zhao [8]. Given a pro-
gram Π , let PF (Π) ∪ CF (Π) be the completion of Π [9], where

PF (Π) =
{
body(r) → head(r) | r ∈ Π

}
and

CF (Π) =
{
a →

∨
r∈def (a,Π)body(r) | a ∈ A

}
.1

A loop is a (non-empty) set of atoms that circularly depend upon each other in a pro-
gram’s positive atom dependency graph [8]. Programs having an acyclic positive atom
dependency graph are tight [10]. The loop formula associated with a loop L is

LF (Π, L) = ¬
(∨

r∈R(Π,L)body(r)
)

→
∧

a∈L¬a ,

where R(Π, L) = {r ∈ Π | head(r) ∈ L, body+(r)∩L = ∅}. We denote the set of all
loops in Π by loop(Π). The set of all loop formulas of Π is LF (Π) = {LF (Π, L) |
L ∈ loop(Π)}. A set X of atoms is an answer set of a logic program Π iff X is a
model of PF (Π)∪CF (Π)∪LF (Π). If Π is tight, then the answer sets of Π coincide
with the models of PF (Π) ∪ CF (Π) (models of the latter are also referred to as the
supported models of Π). The set ΠX of generating rules of a set X of atoms from
program Π is defined as {r ∈ Π | body+(r) ⊆ X, body−(r) ∩ X = ∅}.

As an example, consider Π1 = {a ←; c ← not b, not d; d ← a, not c} and
its two answer sets {a, c} and {a, d}. The completion of Π1 is logically equivalent
to a ∧ ¬b ∧ (c ↔ ¬b ∧ ¬d) ∧ (d ↔ a ∧ ¬c); its models coincide with the answer
sets of Π1. Adding {b ← e; e ← b} to Π1 induces the loop {b, e} but leaves the set of
answer sets of Π1 intact. Unlike this, the completion of Π1 becomes a∧(b ↔ e)∧(c ↔
¬b ∧ ¬d) ∧ (d ↔ a ∧ ¬c) and admits an additional model {a, b, d, e}. This supported
model violates the loop formula LF (Π1, {b, e}) = � → ¬b ∧ ¬e, which denies it the
status of an answer set.

3 Debugging Modules

Our approach relies on the tagging technique introduced by Delgrande, Schaub, and
Tompits [1] for compiling ordered logic programs back into normal programs. The
idea is to rewrite a program by introducing so-called tags that allow for controlling the
formation of answer sets. More formally, given a logic program Π over A and a set
N of names for all rules in Π , we consider an enriched alphabet A+ obtained from A
by adding new pairwise distinct propositional atoms such as ap(nr), bl(nr), ok(nr),
ko(nr), etc., where nr ∈ N for each r ∈ Π . Intuitively, ap(nr) and bl(nr) express
whether a rule r is applicable or blocked, respectively, while ok(nr) and ko(nr) are
used for manipulating the application of r. Further tags are introduced in the sequel.

1 Strictly speaking, CF (Π) should take A as additional argument; for simplicity, we leave
this implicit. Moreover, body(r) is understood as a conjunction of (classical) literals within
PF (Π), CF (Π), and LF (Π,L) in what follows.

34 M. Brain et al.

3.1 Kernel Debugging Module

Our kernel translation, TK, decomposes rules of a given program such that they can be
accessed by tags for controlling purposes.

Definition 1. Let Π be a logic program over A. Then, the program TK[Π] over A+

consists of the following rules, for r ∈ Π , b ∈ body+(r), and c ∈ body−(r):

head(r) ← ap(nr),not ko(nr) , bl(nr) ← ok(nr),not b ,

ap(nr) ← ok(nr), body(r) , bl(nr) ← ok(nr),not not c ,

ok(nr) ← not ok(nr) .

An auxiliary atom ap(nr), bl(nr), or ok(nr), respectively, occurs in an answer set X of
TK[Π] only if r ∈ Π . Also, for any r ∈ Π , there is a priori no atom ko(nr) contained
in an answer set of TK[Π], whereas ok(nr) is contained in any answer set of TK[Π] by
default. The role of ok(nr) is to implement potential changes of this default behavior.

The following proposition collects more interesting relations.

Proposition 1. Let Π be a logic program over A and X an answer set of TK[Π]. Then,
for any r ∈ Π and a ∈ A:

1. ap(nr) ∈ X iff r ∈ ΠX iff bl(nr) ∈ X;
2. if a ∈ X , then ap(nr) ∈ X for some r ∈ def (a, Π);
3. if a ∈ X , then bl(nr) ∈ X for all r ∈ def (a, Π).

The relation between auxiliary atoms and original atoms from A is described next.

Theorem 1. Let Π be a logic program over A. We have a one-to-one correspondence
between the answer sets of Π and TK[Π] satisfying the following conditions:

1. If X is an answer set of Π , then

X ∪ {ok(nr) | r ∈ Π} ∪ {ap(nr) | r ∈ ΠX} ∪ {bl(nr) | r ∈ Π \ ΠX}

is an answer set of TK[Π].
2. If Y is an answer set of TK[Π], then (Y ∩ A) is an answer set of Π .

3.2 Extrapolating Non-existing Answer Sets

Whenever a program Π has no answer set, this means in terms of the characterization
by Lin and Zhao [8] that there is no interpretation jointly satisfying PF (Π), CF (Π),
and LF (Π). In other words, each interpretation X over A causes at least one of the
following problems:

– If X falsifies PF (Π), then there is some rule r in Π such that body+(r) ⊆ X and
body−(r) ∩ X = ∅, but head(r) ∈ X .

– If X falsifies CF (Π), then there is some atom a in X that lacks a supporting rule,
that is, body+(r) ⊆ X or body−(r) ∩ X = ∅ for each r ∈ def (a, Π).

– If X falsifies LF (Π), then X contains some loop L in Π that is unfounded with
respect to X , that is, X |= LF (Π, L).

Debugging ASP Programs by Means of ASP 35

This intuition is captured in the debugging model described below. It aims at analyzing
incoherent situations by figuring out which rules or atoms cause some of the aforemen-
tioned problems. The names of the translations, TP, TC, and TL, reflect their respective
purpose, indicating problems originating from the program, its completion, or its (non-
trivial) loop formulas. We use abnormality atoms with a corresponding naming schema
to indicate the respective problem: abp(nr) signals that rule r is falsified under some
interpretation, abc(a) points out that atom a is true but has no support, and abl(a) aims
at indicating an unfounded atom a.

Definition 2. Let Π be a logic program over A and A a set of atoms. Then:

1. The logic program TP[Π] over A+ consists of the following rules, for all r ∈ Π:

{ head(r) } ← ap(nr) , abp(nr) ← ap(nr),not head(r) ,

ko(nr) ← .

2. The logic program TC[Π, A] over A+ consists of the following rules, for all a ∈ A,
where {r1, . . . , rk} = def (a, Π):

{ a } ← bl(nr1), . . . , bl(nrk
) , abc(a) ← a, bl(nr1), . . . , bl(nrk

) .

3. The logic program TL[A] over A+ consists of the following rules, for all a ∈ A:

{ abl(a) } ← not abc(a) , a ← abl(a) .

The purpose of adding facts (ko(nr) ←) in TP[Π] is to avoid the application of the rule
(head(r) ← ap(nr),not ko(nr)) in TK[Π] (rather than to enforce a re-compilation in
conjunction with TK[Π]). Regarding TC[Π, A], note that def (a, Π) might be empty, in
which case we obtain for a the choice rule ({ a } ←) along with (abc(a) ← a). Observe
that TL[A] allows us to add abl(a) to an answer set if a is supported. In contrast to
abp(nr) in TP[Π] and abc(a) in TC[Π, A], indicating violations of PF (Π) or CF (Π),
respectively, the presence of abl(a) in an answer set does not necessarily indicate the
violation of any loop formula in LF (Π). In fact, as the number of loops for Π can
be exponential, we cannot reasonably check loop formula violations within TL[A] (via
an additional argument Π and tagged rules for analyzing loop formulas). Rather, as
discussed below, we filter occurrences of abl(a) in answer sets by minimization.

Next, we put things together. The answer sets of the subsequent translation are
thought of as extrapolations of putative yet non-existing answer sets of the original pro-
gram Π . That is, an atom abp(nr) signals that an answer set could be obtained if rule r
was not contained in Π . Dually, abc(a) indicates that an answer set could be obtained
if atom a would be supported, that is, if it would be derivable by some rule. Finally,
abl(a) points to the violation of a loop formula that involves a. Moreover, we provide
further possibilities to parametrize a debugging request by two additional arguments,
Π ′ and A. Hereby, Π ′ restricts the set of rules (from program Π) whose violation is
tolerated for debugging purposes, while A restricts the atoms that can be assumed true
though being unsupported or belonging to a (non-trivial) unfounded set.

36 M. Brain et al.

Definition 3. Let Π be a logic program over A, Π ′ ⊆ Π , and A ⊆ At(Π). Then:

TE[Π, Π ′, A] = TK[Π] ∪ TP[Π ′] ∪ TC[Π, A] ∪ TL[A] .

Moreover, let TE[Π, Π ′] = TE[Π, Π ′,At(Π ′)] and TE[Π] = TE[Π, Π,At(Π)].

Note that TL[A] can be omitted in the definition of TE[Π, Π ′, A] if Π is tight.
We list some basic properties first.

Proposition 2. Let Π be a logic program over A and X an answer set of TE[Π]. Then,
for each r ∈ Π:

1. abp(nr) ∈ X iff ap(nr) ∈ X , bl(nr) ∈ X , and head(r) ∈ X;
2. abp(nr) ∈ X if abc(head(r)) ∈ X or abl(head(r)) ∈ X .

Moreover, for every a ∈ At(Π), it holds that:

1. abc(a) ∈ X and abl(a) ∈ X iff a ∈ X and (X ∩ A) |= (
∨

r∈def (a,Π)body(r));
2. abc(a) ∈ X if a ∈ X and (X ∩ A) |= (

∨
r∈def (a,Π)body(r));

3. abc(a) ∈ X and abl(a) ∈ X if a ∈ X;
4. abc(a) ∈ X if abl(a) ∈ X .

The next result shows that abnormality-free answer sets of the translated program cor-
respond to the answer sets of the original program.2 To this end, we introduce, for a
program Π , AB(Π) = ({abp(nr) | r ∈ Π} ∪ {abc(a), abl(a) | a ∈ At(Π)}).

Theorem 2. Let Π be a logic program over A. Then, it holds that:

1. If X is an answer set of Π , then

X ∪ {ok(nr), ko(nr) | r ∈ Π} ∪ {ap(nr) | r ∈ ΠX} ∪ {bl(nr) | r ∈ Π \ ΠX}

is an answer set of TE[Π].
2. If Y is an answer set of TE[Π] such that (Y ∩ AB(Π)) = ∅, then (Y ∩ A) is an

answer set of Π .

The interesting case, however, is when the original program is incoherent. For illustrat-
ing this, let us consider three simple examples. To begin with, consider:

Π2 = { nr1 : a ←, ni1 : ← a } .

The program TK[Π2] consists of the following rules:

a ← ap(nr1),not ko(nr1) , ← ap(ni1),not ko(ni1) ,

ap(nr1) ← ok(nr1) , ap(ni1) ← ok(ni1), a ,

bl(ni1) ← ok(ni1),not a ,

ok(nr1) ← not ok(nr1) , ok(ni1) ← not ok(ni1) .

2 Due to relaxing Π by tolerating abnormalities, TE[Π] always admits (abnormal) answer sets.

Debugging ASP Programs by Means of ASP 37

We obtain TE[Π2, {r1}] by adding (TP[{r1}] ∪ TC[Π2, {a}] ∪ TL[{a}]), given next:

ko(nr1) ← , { a } ← bl(nr1) ,

abc(a) ← a, bl(nr1) ,

{ a } ← ap(nr1) , { abl(a) } ← not abc(a) ,

abp(nr1) ← ap(nr1),not a , a ← abl(a) .

The unique answer set of TE[Π2, {r1}] is:3

{abp(nr1), ap(nr1), bl(ni1), ok(nr1), ok(ni1), ko(nr1)} . (2)

Note that applying the modules from Definition 2 only to subprogram {r1} makes us
focus on answer set candidates satisfying the residual program {i1}. The abnormality
tag abp(nr1) signals that, in order to obtain an answer set, rule r1 must not be applied.

As another example, consider:

Π3 = { nr1 : a ← b, ni1 : ← not a } .

Program TE[Π3, {r1}, {a}] has the unique answer set:

{a, abc(a), bl(nr1), bl(ni1), ok(nr1), ok(ni1), ko(nr1)} , (3)

indicating that a lacks supporting rules.
Finally, consider the following program:

Π4 = { nr1 : a ← b, nr2 : b ← a, ni1 : ← not a } .

Program TE[Π4, {r1, r2}] has four answer sets (omitting ok(nr1), ok(nr2), ok(ni1)):

{a, abp(nr2), abc(a), bl(nr1), ap(nr2), bl(ni1), ko(nr1), ko(nr2)} , (4)

{a, b, abl(a), ap(nr1), ap(nr2), bl(ni1), ko(nr1), ko(nr2)} , (5)

{a, b, abl(b), ap(nr1), ap(nr2), bl(ni1), ko(nr1), ko(nr2)} , (6)

{a, b, abl(a), abl(b), ap(nr1), ap(nr2), bl(ni1), ko(nr1), ko(nr2)} . (7)

The last example illustrates that the relaxation mechanisms underlying translation TE

can lead to overly involved explanations of the source of incoherence, as manifested by
the first and last answer set (cf. (4) and (7)). Therefore, we suggest focusing on answer
sets containing a minimum number of instances of ab predicates.4 In the last case, this
gives the second and third answer set (cf. (5) and (6)). Indeed, adding only one fact,
either (a ←) or (b ←), to the (untagged) incoherent program Π4 makes it coherent.

The next results shed some more light on the semantic links between the original and
the transformed program, whenever the former admits no answer set.

3 In what follows, we underline abnormality tags.
4 This can be implemented via minimize statements as available in Smodels.

38 M. Brain et al.

Theorem 3. Let Π be a logic program over A. Then, it holds that:

1. If Y is an answer set of TE[Π] and abp(nr) ∈ Y , then (Y ∩ A) |= (body(r) →
head(r)), where (body(r) → head(r)) ∈ PF (Π);

2. If Y is an answer set of TE[Π] and abc(a) ∈ Y , then (Y ∩ A) |= (a →∨
r∈def (a,Π)body(r)), where (a →

∨
r∈def (a,Π)body(r)) ∈ CF (Π);

3. If Y is an answer set of TE[Π] such that, for some L ∈ loop(Π), we have L ⊆
(Y ∩ A), (Y ∩ A) |= LF (Π, L), and (Y ∩ A) |= (

∨
r∈def (a,Π)body(r)) for every

a ∈ L, then abl(a′) ∈ Y for some a′ ∈ L.

The same results hold for partial compilations, TE[Π, Π ′, A], but are omitted for brevity.
For illustration, let us return to the last three examples. Intersecting the only answer

set (2) of TE[Π2, {r1}] with the alphabet of Π2 yields the empty set. We obtain ∅ |=
(a ←), as indicated by abp(nr1) in (2). Note that the empty set is the only subset
of At(Π2) that satisfies integrity constraint i1 ∈ Π2. Proceeding analogously with the
only answer set (3) of TE[Π3, {r1}, {a}] yields {a}, and we obtain {a} |= (a → b),
as signaled by abc(a) in (3). In fact, {a} is the only subset of the atoms subject to
extrapolation that satisfies integrity constraint i1 ∈ Π3.

Finally, consider the two abnormality-minimum answer sets (5) and (6) of
TE[Π4, {r1, r2}]. Both are actually symmetrical since they refer to the same loop {a, b}
through different elements, as indicated by abl(a) and abl(b), respectively. Hence, both
answer sets (5) and (6) of TE[Π4, {r1, r2}] induce candidate set {a, b}, which falsifies
its own loop formula: {a, b} |= (� → ¬a ∧ ¬b). Note that {a} is actually another
candidate subset of At(Π4). However, this candidate suffers from two abnormalities,
as indicated by the non-minimum answer set (4) through abp(nr2) and abc(a). In fact,
we have {a} |= (b ← a), violating r2, and {a} |= (a → b), violating the completion.

The next result captures a more realistic scenario, in which only a subset of a program
is subject to extrapolation and only abnormality-minimum answer sets of the transla-
tion are considered. From the perspective of an original program Π , the abnormality-
minimum answer sets of TE[Π, Π ′] provide us with the candidate sets among At(Π)
that satisfy the requirement of being an answer set of Π under a minimum number
of repairs on Π ′. A repair is either the deletion of a rule r or an addition of a fact
(a ←) (which prevents a from being not supported or unfounded). The former repair
refers to abp(nr), which is clearly avoided when r is deleted, and the latter to abc(a) or
abl(a), since (a →

∨
r∈def (a,Π∪{a←})body(r)) and LF (Π ∪ {a ←}, L), for any loop

L containing a, then amount to (a → �) and (⊥ →
∧

a∈L¬a).

Theorem 4. Let Π be a logic program over A and (Π1, Π2) a partition of Π such that
({head(r1) | r1 ∈ Π1} ∩ At(Π2)) = ∅. Furthermore, let M be the set of all answer
sets Y of TE[Π, Π2] such that the cardinality of (Y ∩ AB(Π2)) is minimum among all
answer sets of TE[Π, Π2]. Then, it holds that:

1. If Y ∈ M, then (Y ∩A) satisfies all formulas in (PF (Π1)∪ (CF (Π1)\ {a → ⊥ |
a ∈ At(Π2)}) ∪ LF (Π1)) and all formulas in (PF (Π2) ∪ CF (Π2) ∪ LF (Π2))
under a minimum number of repairs on Π2;

2. If X ⊆ A satisfies all formulas in (PF (Π1) ∪ (CF (Π1) \ {a → ⊥ | a ∈
At(Π2)})∪LF (Π1)) and all formulas in (PF (Π2)∪CF (Π2)∪LF (Π2)) under a
minimum number of repairs on Π2, then there is a Y ∈ M such that X = (Y ∩A).

Debugging ASP Programs by Means of ASP 39

3.3 Ordering Rule Applications

Our last debugging component allows for imposing an order on the rule applications. To
this end, we make use of ordered logic programs following the framework of Delgrande,
Schaub, and Tompits [1].

Definition 4. Let Π be a logic program over A and let < be a strict partial order
over Π . Then, To[Π, <] consists of the following rules, for all r, r′ ∈ Π with r < r′

and {r1, . . . , rk} = {r′′ | r < r′′}:

ok(nr) ← , rdy(nr,nr′) ← ap(nr′) ,

ok(nr) ← rdy(nr,nr1), . . . , rdy(nr,nrk
) , rdy(nr,nr′) ← bl(nr′) .

Furthermore, To[<] is a shortcut for To[Π<, <], where Π< = {r, r′ ∈ Π | r < r′}.

The order < on Π singles out the answer sets of Π whose rule application and/or block-
age is compatible with <. That is, given the order r1 < r2, the higher-ranked rule r2
must be applied or found to be blocked before r1. In other words, < selects those an-
swer sets X of Π that can be generated by an appropriate sequence of elements of ΠX .
We refer for a detailed formal elaboration to Delgrande, Schaub, and Tompits [1].5

3.4 Debugging Programs with Variables

With two exceptions, the translations discussed so far carry over to programs with vari-
ables simply by using parametrized names. To this end, replace every occurrence of a
name nr by nr(X), where X is the sequence of variables occurring in rule r. Accord-
ingly, a rule (r : p(X, Y) ← q(1, X),not s(Y)) gets the name nr(X, Y), for instance,
yielding

ap(nr(X, Y)) ← ok(nr(X, Y)), q(1, X),not s(Y) and
{ p(X, Y) } ← ap(nr(X, Y)) .

Similarly, we get for an atomic formula p(X, Y):

{ abl(p(X, Y)) } ← not abc(p(X, Y)) .

The final representation (e.g., with or without function symbols) of an atomic formula
like abl(p(X, Y)) depends on the language capacities of the target ASP solver.

The first exception is resolved by replacing the rules in Item 2 of Definition 2 by

{ a(X) } ← not apx(a(X)) and abc(a(X)) ← a(X),not apx(a(X)) ,

and by adding, for each r ∈ def (a, Π), the rule

apx(a(X)) ← ap(nr(Y)) ,

5 For obtaining the precise semantics of [1], predicate bl must actually be replaced by another
predicate bl� using no nested expressions like not not c. The definition of bl� is omitted here.

40 M. Brain et al.

where apx is an auxiliary predicate symbol and X is a subsequence of the variables
in Y . An atom apx(a(c)) indicates that a(c) is not derivable given that all putative
rules in def (a, Π) are inapplicable.

The second exception concerns translation To which necessitates that the set of dom-
inating rules {r′′ | r < r′′} is ground in order to guarantee that all instances have been
applied or blocked (cf. Definition 4). Unlike this, the name of r, nr, can be parametrized.

Apart from firmer instantiations, further optimizations are possible by use of domain
predicates for names and atoms, like name and atom. For instance, a rule (ok(nr) ←
not ok(nr)) could be represented as (ok(X) ← name(X),not ok(X)).

3.5 Implementation

The tool spock implements a collection of methods for debugging ASP programs,
following the ideas introduced above. The system can be used either with DLV [11] or
with Smodels [7] (together with Lparse) and is obtainable at [2], where also some
further information about the system is available.

The tool is written in Java 5.0 and published under the GNU General Public Li-
cense. The input of spock is a logic program in the core language of either DLV or
Smodels, read from the system standard input and/or from (multiple) files. The out-
put varies according to the selected functionalities, determined by a set of options. The
most important syntax extension of the input programs, however, is the labeling of rules,
allowing debugging mechanisms to explicitly refer to certain rules.

4 Elements of a Debugging Language

In order to enhance the usability and convenience of our debugging technique, we pro-
vide in this section some basic elements for a higher-level debugging language. The
idea is to compile a program once and to explore it subsequently by means of debugging
statements. To this end, we assume that the program Π has been compiled into TK[Π].
A debugging request, Δ, formulated in the debugging language, is compiled by means
of a function D into a tagged program D[Δ] such that the debugging results are read
off the answer sets of the combined tagged program TK[Π] ∪ D[Δ]. We stress that the
subsequent discussion is intended as a starting point only, given at a rather informal
level; a detailed elaboration of the full language will be explored elsewhere.

The first type of expressions are referred to as enforcement statements since they
may alter the original set of answer sets. The following expressions are enforcement
statements (in what follows, let C be a set of literals over At(Π) and nr the name of
some r ∈ Π):

– block nr if C;
– apply nr if C;
– assign a1 = v1, . . . , ak = vk if C, where ai ∈ At(Π) and vi ∈ {t, f} for

i = 1, . . . , k.

Debugging ASP Programs by Means of ASP 41

The semantics of enforcement statements is given via a compilation function D:

– D[block nr if C] = {ko(nr) ← C, bl(nr) ← C, ok(nr) ← C};
– D[apply nr if C] = {ap(nr) ← C, ok(nr) ← C};
– D[assign a1 =v1, . . . , ak =vk if C] = {ai ← C | vi = t} ∪ {← ai, C | vi = f}.

For example, block nr(X) if not (X > 5) blocks rule r unless instantiated
with objects larger than 5. Also, one may use tags within the precondition, as in
block nr(X) if ap(ns(X)).

Unlike the above, projection statements do not alter the original set of answer sets
but return a specific subset of the original answer sets:

– blocked n1, . . . ,nk if C;
– applied n1, . . . ,nk if C;
– assigned a1 = v1, . . . , ak = vk if C, where ai ∈ At(Π) and vi ∈ {t, f} for

i = 1, . . . , k.

The semantics of projection statements is again given in terms of a compilation:

– D[blocked n1, . . . ,nk if C] = {← not bl(n1), . . . ,not bl(nk), C};
– D[applied n1, . . . ,nk if C] = {← not ap(n1), . . . ,not ap(nk), C};
– D[assigned a1 = v1, . . . , ak = vk if C] = {← not ai, C | vi = t} ∪ {← ai, C |

vi = f}.

For example, blocked nr(X), ns(Y) if X = Y eliminates answer sets to which rules
r and s contribute with different instantiations. Applying the compilation function D,
we get

D[blocked nr(X), ns(Y) if X = Y] =
{← not bl(nr(X)),not bl(ns(Y)), X = Y }.

Observe that the translation of the corresponding enforcement statement would yield
multiple rules whose instantiations cannot be controlled in a synchronous fashion.

Next, we introduce expressions for analyzing incoherent situations by extrapolation,
correspondingly called extrapolation statements:

– extrapolate nr if C;
– extrapolate x s if C, where x ∈ {p, c, l} and s ∈ ({nr | r ∈ Π} ∪ At(Π));
– minimize X , where X ⊆ {p, c, l}.

Further constructs, for instance, statements applying to entire sets of rules and/or atoms,
are definable in a straightforward way but omitted for space reasons.

For a program Π , the function D defines the semantics of extrapolation statements:

– D[extrapolate nr if C] = TE[Π, {r}];
– D[extrapolate p s if C] = TP[{r}], provided that s ∈ {nr | r ∈ Π};
– D[extrapolate c s if C] = TC[Π, {s}], provided that s ∈ At(Π);
– D[extrapolate l s if C] = TL[{s}], provided that s ∈ At(Π).

The semantics of the minimize command depends on the capacities of the underlying
ASP solver. For instance, in Smodels, a global minimization of abnormalities, using
a binary predicate ab/2, could be expressed as minimize{ab(X, Y)}.

42 M. Brain et al.

A pragmatic variant of extrapolation is variation:

– vary a1, . . . , ak if C, where ai ∈ At(Π) for i = 1, . . . , k.

The semantics of variation statements is as follows:

– D[vary a1, . . . , ak if C] = { {ai} ← C | i = 1, . . . , k }∪{ ko(nr) ← C | r ∈ Π,
head(r) = ai, i = 1, . . . , k }.

Finally, we introduce some procedural flavor, which allows for imposing a certain
order of rule and/or atom considerations. A basic ordinal statement is an expression of
the following form:

– s before t, where s, t ∈ {nr | r ∈ Π} or s, t ∈ At(Π).

Its semantics is defined in the following way:

– D[s before t] = To[{rt < rs}], provided that s = nrs and t = nrt ;
– D[s before t] = To[{rt < rs | head(rs) = s, head(rt) = t}], provided that

s, t ∈ At(Π).

The (atom-based) generalization to sets is defined as A before B where A, B ⊆
At(Π), and it could be used to debug a generate-and-test encoding by specifying the
generate atoms’ precedence over the test atoms.

5 Discussion and Related Work

Although debugging is mentioned as a possible application in many papers on program
analysis (often with the implicit assertion that incoherent and erroneous programs are
the same thing), there are relatively few papers that are primarily focused on debugging.

The noMoRe system [3] uses a graph-based algorithm for computing the answer sets
of a program. The interface to the system allows the computation process to be visu-
alized and animated, so that the user can observe certain parts of the computation pro-
cess. Given some background knowledge on how answer-set computation algorithms
work, this is an intuitive and appealing approach to debugging. However, as it works
on ground programs, dealing with larger programs is difficult. Also, at the conceptual
level, it blurs the distinction between what a program means and how its answer sets
are computed.

Brain and De Vos [4] start by characterizing bugs as mismatches between what the
programmer expects and the actual answer sets of a program. Two query algorithms,
answering why some set S is in some answer set A and why some set S is not con-
tained in any answer set, can then be used to explore these mismatches. The algorithms
suggested are procedural and similar to the ones used in ASP solvers, suggesting that
an approach using a program-level transformation would be more practical.

Syrjänen [5] discusses a pragmatic approach to debugging, focusing on incoherent
ground programs, whose source of incoherence is an active constraint (or an odd nega-
tive cycle). Derived from the field of symbolic diagnosis [12], the corresponding system
uses an approach similar to ours, using program transformations to find minimal sets of
constraints that would be active and to find odd cycles.

Debugging ASP Programs by Means of ASP 43

Pontelli and Son [6] adopt the concept of justifications [13,14,15] to the context of
ASP. Roughly, justifications formalize reasons why an atom is in an answer set.

One important area that is not considered by the existing approaches is that of inter-
faces to debugging systems. Most of the proposed methods produce very large amounts
of structured information, and it is difficult to automatically identify which parts of it
are of interest to the programmer [4]. Thus, the design of the debugging interface is
critical to the utility of the finished system. It must allow the programmers to quickly
and easily focus in on areas that they consider to be erroneous without overloading them
with information. This is an open and important area of research if ASP is to achieve
truly wide-spread use. Other directions of future work include extending the results
given here to handle constructs such as cardinality rules, disjunction, aggregates, and
functions. Also, there is a potential to use similar tagging systems to allow programs to
reason about their own consistency. We mention consistency restoring rules [16] as one
such example.

References

1. Delgrande, J., Schaub, T., Tompits, H.: A framework for compiling preferences in logic
programs. Theory and Practice of Logic Programming 3(2) (2003) 129–187

2. (http://www.kr.tuwien.ac.at/research/debug)
3. Bösel, A., Linke, T., Schaub, T.: Profiling answer set programming: The visualization com-

ponent of the noMoRe system. In Proc. JELIA’04. Springer (2004) 702–705
4. Brain, M., De Vos, M.: Debugging logic programs under the answer set semantics. In Proc.

ASP’05. (2005) 141–152
5. Syrjänen, T.: Debugging inconsistent answer set programs. In Proc. NMR’06. (2006) 77–83
6. Pontelli, E., Son, T.: Justifications for logic programs under answer set semantics. In Proc.

ICLP’06. Springer (2006) 196–210
7. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligence 138(1-2) (2002) 181–234
8. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Arti-

ficial Intelligence 157(1-2) (2004) 115–137
9. Clark, K.: Negation as failure. In Logic and Data Bases. Plenum (1978) 293–322

10. Fages, F.: Consistency of Clark’s completion and the existence of stable models. Journal of
Methods of Logic in Computer Science 1 (1994) 51–60

11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

12. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1) (1987)
57–95

13. Roychoudhury, A., Ramakrishnan, C., Ramakrishnan, I.: Justifying proofs using memo ta-
bles. In Proc. PPDP ’00. (2000) 178–189

14. Pemmasani, G., Guo, H., Dong, Y., Ramakrishnan, C., Ramakrishnan, I.: Online justification
for tabled logic programs. In Proc. FLOPS’04. Springer (2004) 24–38

15. Specht, G.: Generating explanation trees even for negations in deductive database systems.
In Proc. LPE’93. (1993) 8–13

16. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In Proc.
Commonsense’03. (2003) 9–18

http://www.kr.tuwien.ac.at/research/debug

	Introduction
	Background
	Debugging Modules
	Kernel Debugging Module
	Extrapolating Non-existing Answer Sets
	Ordering Rule Applications
	Debugging Programs with Variables
	Implementation

	Elements of a Debugging Language
	Discussion and Related Work

