
The First Answer Set Programming System Competition

Martin Gebser1, Lengning Liu2, Gayathri Namasivayam2, André Neumann1,
Torsten Schaub1,�, and Mirosław Truszczyński2

1 Institut für Informatik, Universität Potsdam,
August-Bebel-Str. 89, D-14482 Potsdam, Germany

{gebser,aneumann,torsten}@cs.uni-potsdam.de
2 Department of Computer Science, University of Kentucky, Lexington, KY 40506-0046, USA

{gayathri,lliu1,mirek}@cs.uky.edu

Abstract. This paper gives a summary of the First Answer Set Programming
System Competition that was held in conjunction with the Ninth International
Conference on Logic Programming and Nonmonotonic Reasoning. The aims of
the competition were twofold: first, to collect challenging benchmark problems,
and second, to provide a platform to assess a broad variety of Answer Set Pro-
gramming systems. The competition was inspired by similar events in neighbor-
ing fields, where regular benchmarking has been a major factor behind improve-
ments in the developed systems and their ability to address practical applications.

1 Introduction

Answer Set Programming (ASP) is an area of knowledge representation concerned
with logic-based languages for modeling computational problems in terms of con-
straints [1,2,3,4]. Its origins are in logic programming [5,6] and nonmonotonic rea-
soning [7,8]. The two areas merged when Gelfond and Lifschitz proposed the answer
set semantics for logic programs (also known as the stable model semantics) [9,10]. On
the one hand, the answer set semantics provided what is now commonly viewed to be
the correct treatment of the negation connective in logic programs. On the other hand,
with the answer set semantics, logic programming turned out to be a special case of
Reiter’s default logic [8], with answer sets corresponding to default extensions [11,12].

Answer Set Programming was born when researchers proposed a new paradigm for
modeling application domains and problems with logic programs under the answer set
semantics: a problem is modeled by a program so that answer sets of the program
directly correspond to solutions of the problem [1,2]. At about the same time, first
software systems to compute answer sets of logic programs were developed: dlv [13]
and lparse/smodels [14]. They demonstrated that the answer set programming paradigm
has a potential to be the basis for practical declarative computing.

These two software systems, their descendants, and essentially all other ASP systems
that have been developed and implemented so far contain two major components. The
first of them, a grounder, grounds an input program, that is, produces its propositional

� Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada,
and IIIS at Griffith University, Brisbane, Australia.

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 3–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

4 M. Gebser et al.

equivalent. The second one, a solver, accepts the ground program and actually computes
its answer sets (which happen to be the answer sets of the original program).

The emergence of practical software for computing answer sets has been a major
impetus behind the rapid growth of ASP in the past decade. Believing that the ultimate
success of ASP depends on the continued advances in the performance of ASP soft-
ware, the organizers of the Ninth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’07) asked us to design and run a contest for ASP
software systems. It was more than fitting, given that the first two ASP systems, dlv
and lparse/smodels, were introduced exactly a decade ago at the Fourth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’97). We
agreed, of course, convinced that as in the case of propositional SATisfiability, where
solver competitions have been run for years in conjunction with SAT conferences, this
initiative will stimulate research on and development of ASP software, and will bring
about dramatic improvements in its capabilities.

In this paper, we report on the project — the First Answer Set Programming Sys-
tem Competition — conducted as part of LPNMR’07. When designing it, we built on
our experiences from running preliminary versions of this competition at two Dagstuhl
meetings on ASP in 2002 and 2005 [15]. We were also inspired by the approach of and
the framework developed for SAT competitions [16], along with the related competi-
tions in solving Quantified Boolean Formulas and Pseudo-Boolean constraints.

The First Answer Set Programming System Competition was run prior to the LP-
NMR’07 conference. The results are summarized in Section 6 and can be found in full
detail at [17]. The competition was run on the Asparagus platform [18], relying on
benchmarks stored there before the competition as well as on many new ones submitted
by the members of the ASP community (cf. Section 4).

The paper is organized as follows. In the next section, we explain the format of
the competition. Section 3 provides a brief overview of the Asparagus platform. In
Section 4 and 5, we survey the benchmark problems and the competitors that took part
in the competition. The competition results are announced in Section 6. Finally, we
discuss our experiences and outline potential future improvements.

2 Format

The competition was run in three different categories:

MGS (Modeling, Grounding, Solving) In this category, benchmarks consist of a prob-
lem statement, a set of instances (specified in terms of ground facts), and the names
of the predicates and their arguments to be used by programmers to encode solu-
tions. The overall performance of software (including both the grounding of input
programs and the solving of their ground instantiations) is measured. Success in
this category depends on the quality of the input program modeling a problem (the
problem encoding), the efficiency of a grounder, and the speed of a solver.

SCore (Solver, Core language) Benchmarks in this category are ground programs in
the format common to dlv [19] and lparse [20]. In particular, aggregates are not

The First Answer Set Programming System Competition 5

allowed. Instances are classified further into two subgroups: normal (SCore) and
disjunctive (SCore∨). The time needed by solvers to compute answer sets of ground
programs is measured. Thus, this category is concerned only with the performance
of solvers on ground programs in the basic logic programming syntax.

SLparse (Solver, Lparse language) Benchmarks in this category are ground programs
in the lparse format with aggregates allowed. The performance of solvers on ground
programs in lparse format is measured. This category is similar to SCore in that it
focuses entirely on solvers. Unlike SCore, though, it assesses the ability of solvers
to take advantage of and efficiently process aggregates.

Only decision problems were considered in this first edition of the competition. Thus,
every solver had to indicate whether a benchmark instance has an answer set (SAT) or
not (UNSAT). Moreover, for instances that are SAT, solvers were required to output a
certificate of the existence of an answer set (that is, an answer set itself). This certificate
was used to check the correctness of a solution.

The output of solvers had to conform to the following formats (in typewriter
font):

SAT : Answer Set: atom1 atom2 ... atomN
The output is one line containing the keywords ‘Answer Set:’ and the names
of the atoms in the answer set. Each atom’s name is preceded by a single space.
Spaces must not occur within atom names.

UNSAT : No Answer Set
The output is one line containing the keywords ‘No Answer Set’.

The competition imposed on each software system (grounder plus solver) the same
time and space limits. The number of instances solved within the allocated time and
space was used as the primary measure of the performance of a software system. Av-
erage running time is only used as a tie breaker.

3 Platform

The competition was run on the Asparagus platform [18], providing a web-based bench-
marking environment for ASP. The principal goals of Asparagus are (1) to provide
an infrastructure for accumulating challenging benchmarks and (2) to facilitate exe-
cuting ASP software systems under comparable conditions, guaranteeing reproducible
and reliable performance results. Asparagus is a continuously running benchmarking
environment that combines several internal machines running the benchmarks with an
external server for the remaining functionalities including interaction and storage. The
internal machines are clones having a modified Linux kernel to guarantee a strict lim-
itation of time and memory resources. This is important in view of controlling hetero-
geneous ASP solvers that run in multiple processes (e.g., by invoking a stand-alone
SAT solver). A more detailed description of the Asparagus platform can be found
in [15].

6 M. Gebser et al.

4 Benchmarks

The benchmarks for the competition were collected on the Asparagus platform. For
all competition categories (MGS, SCore, and SLparse), we asked for submissions of
non-ground problem encodings and ground problem instances in separate files.

To add a problem to the MGS category, the author of the problem had to provide

– a textual problem description that also specified the names and arguments of input
and output predicates and

– a set of problem instances in terms of ground facts (using only input predicates).

The submission of a problem encoding was optional for benchmark problems submitted
to the MGS category. In most cases, however, the authors provided it, too. In all remain-
ing cases, the competition team provided an encoding. From all benchmark classes
already stored on Asparagus or submitted for the competition, we selected several

Table 1. Benchmarks submitted by the ASP community

Benchmark Class #Instances Contributors M C L

15-Puzzle 15 Lengning Liu and Mirosław Truszczyński × – ×
15-Puzzle 11 Asparagus – × –
Blocked N-Queens 40 Gayathri Namasivayam and Mirosław Truszczyński × – ×
Blocked N-Queens 400 Asparagus – × –
Bounded Spanning Tree 30 Gayathri Namasivayam and Mirosław Truszczyński × – ×
Car Sequencing 54 Marco Cadoli × – ×
Disjunctive Loops 9 Marco Maratea – × –
EqTest 10 Asparagus – × –
Factoring 10 Asparagus – × ×
Fast Food 221 Wolfgang Faber × – ×
Gebser Suite 202 Martin Gebser – × ×
Grammar-Based Information Extraction 102 Marco Manna – × –
Hamiltonian Cycle 30 Lengning Liu and Mirosław Truszczyński × – ×
Hamiltonian Path 58 Asparagus – × ×
Hashiwokakero 211 Martin Brain – – ×
Hitori 211 Martin Brain – – ×
Knight’s Tour 165 Martin Brain – – ×
Mutex 7 Marco Maratea – × –
Random Non-Tight 120 Enno Schultz, Martin Gebser – × ×
Random Quantified Boolean Formulas 40 Marco Maratea – × –
Reachability 53 Giorgio Terracina × × ×
RLP 573 Yuting Zhao and Fangzhen Lin – × ×
Schur Numbers 33 Lengning Liu and Mirosław Truszczyński × – ×
Schur Numbers 5 Asparagus – × –
Social Golfer 175 Marco Cadoli × – ×
Sokoban 131 Wolfgang Faber × – –
Solitaire Backward 36 Martin Brain – – ×
Solitaire Backward (2) 10 Lengning Liu and Mirosław Truszczyński – – ×
Solitaire Forward 41 Martin Brain – – ×
Strategic Companies 35 Nicola Leone – × –
Su-Doku 8 Martin Brain – – ×
TOAST 54 Martin Brain – – ×
Towers of Hanoi 29 Gayathri Namasivayam and Mirosław Truszczyński × – ×
Traveling Salesperson 30 Lengning Liu and Mirosław Truszczyński × – ×
Weight-Bounded Dominating Set 30 Lengning Liu and Mirosław Truszczyński × – ×
Weighted Latin Square 35 Gayathri Namasivayam and Mirosław Truszczyński × – ×
Weighted Spanning Tree 30 Gayathri Namasivayam and Mirosław Truszczyński × – ×
Word Design DNA 5 Marco Cadoli × – ×

The First Answer Set Programming System Competition 7

Algorithm 1. Semiautomatic Benchmarking Procedure
Input : Classes — set of benchmark classes

Used — set of benchmark instances run already
Fresh — set of benchmark instances not run so far
max — maximum number of suitable benchmark instances per benchmark class

repeat1

ToRun ← ∅ /* no runs scheduled yet */2

foreach C in Classes do3

done ← |SUITABLE(Used [C])|4

if done < max then ToRun ← ToRun ∪ SELECT(max−done, Fresh [C])5

RUN(ToRun) /* execute the scheduled runs */6

Used ← Used ∪ ToRun7

Fresh ← Fresh \ ToRun8

until ToRun = ∅9

instances for use in the competition (we describe our selection criteria below). For
SCore and SLparse, we relied on the availability of encodings to produce ground in-
stances according to the input format of the respective category.

It is important to note that competitors in the MGS category did not have to use the
default Asparagus encodings. Instead, they had the option to provide their own problem
encodings, presumably better than the default ones, as the MGS category was also about
assessing the modeling capabilities of grounders and solvers.

The collected benchmarks constitute the result of efforts of the broad ASP com-
munity. Table 1 gives an overview of all benchmarks gathered for the competition on
the Asparagus platform, listing problems forming benchmark classes, the accompany-
ing number of instances, the names of the contributors, and the associated competition
categories (M stands for MGS, C for SCore, and L for SLparse, respectively).

For each competition category, benchmarks were selected by a fixed yet random
scheme, shown in Algorithm 1. The available benchmark classes are predefined in
Classes . Their instances that have been run already are in Used , the ones not run so
far are in Fresh . As an invariant, we impose Used ∩ Fresh = ∅. For a benchmark class
C in Classes , we access used and fresh instances via Used [C] and Fresh[C], respec-
tively. The maximum number max of instances per class aims at having approximately
100 benchmark instances overall in the evaluation, that is, |Classes | ∗ max ≈ 100
(if feasible). A benchmark instance in Used [C] is considered suitable, that is, it is in
SUITABLE(Used [C]), if at least one call script (see Section 5) was able to solve it
and at most three call scripts solved it in less than one second (in other words, some
system can solve it, yet it is not too easy). Function SELECT(n,Fresh[C]) randomly
determines n fresh instances from class C if available (if n ≤ |Fresh[C]|) in order to
eventually obtain max suitable instances of class C. Procedure RUN(ToRun) runs all
call scripts on the benchmark instances scheduled in ToRun . When ToRun runs empty,
no fresh benchmark instances are selectable. If a benchmark class yields less than max
suitable instances, Algorithm 1 needs to be re-invoked with an increased max value for
the other benchmark classes; thus, Algorithm 1 is “only” semiautomatic.

8 M. Gebser et al.

5 Competitors

As with benchmarks, all executable programs (grounders and solvers) were installed
and run on Asparagus. To this end, participants had to obtain Asparagus accounts, un-
less they already had one, and to register for the respective competition categories.

Different variants of a system were allowed to run in the competition by using dif-
ferent call scripts; per competitor, up to three of them could be registered for each
competition category. The list of participating solvers and corresponding call scripts
can be found in Table 2.

Table 2. Participating solvers and corresponding call scripts (·� used in both SCore and SCore∨;
·∨ used in SCore∨ only)

Solver Affiliation MGS SCore SLparse

asper Angers ASPeR-call-script
ASPeRS20-call-script
ASPeRS30-call-script

assat Hongkong script.assat.normal script.assat.lparse-output
clasp Potsdam clasp cmp score clasp cmp score glp clasp cmp slparse

clasp cmp score2 clasp cmp score glp2 clasp cmp slparse2
clasp score def clasp score glp def clasp slparse def

cmodels Texas default defaultGlparse.sh groundedDefault
scriptAtomreasonLp scriptAtomreasonGlparse scriptAtomreasonGr
scriptEloopLp scriptEloopGlparse scriptEloopGr

disjGlparseDefault∨

disjGparseEloop∨

disjGparseVerMin∨

dlv Vienna/ dlv-contest-special dlv-contest-special�

Calabria dlv-contest dlv-contest�

gnt Helsinki gnt gnt score� gnt slparse
dencode+gnt dencode+gnt score� dencode+gnt slparse
dencode bc+gnt dencode bc+gnt score� dencode bc+gnt slparse

lp2sat Helsinki lp2sat+minisat
wf+lp2sat+minisat
lp2sat+siege

nomore Potsdam nomore-default nomore-default-SCore nomore-default-slparse
nomore-localprop nomore-localprop-SCore nomore-localprop-slparse
nomore-D nomore-D-SCore nomore-D-slparse

pbmodels Kentucky pbmodels-minisat+-MGS pbmodels-minisat+-SCore pbmodels-minisat+-SLparse
pbmodels-pueblo-MGS pbmodels-pueblo-SCore pbmodels-pueble-SLparse
pbmodels-wsatcc-MGS pbmodels-wsatcc-SCore pbmodels-wsatcc-SLparse

smodels Helsinki smodels smodels score smodels slparse
smodels rs smodels rs score smodels rs slparse
smodels rsn smodels rsn score smodels rsn slparse

6 Results

This section presents the results of the First Answer Set Programming System Compe-
tition. The placement of systems was determined according to the number of instances
solved within the allocated time and space as the primary measure of performance. Run
times were used as tie breakers. Given that each system was allowed to participate in
each competition category in three variants, we decided to allocate only one place to
each system. The place of a system is determined by its best performing variant, repre-
sented by a call script.

The First Answer Set Programming System Competition 9

Each single run was limited to 600 seconds execution time and 448 MB RAM mem-
ory usage. For each competition category, we give below tables providing a complete
placement of all participating call scripts. We report for each call script the absolute and
relative number of solved instances (‘Solved’ and ‘%’), its minimum, maximum, and
average run times, where ‘avg’ gives the average run time on all solved instances and
‘avgt’ gives the average run time on all instances with a timeout taken as 600 seconds.
The last column gives the Euclidean distance between the vector of all run times of a
call script and the virtually best solver taken to be the vector of all minimum run times.

For each competition category, we also provide similar data for the used benchmark
classes. These tables give the number of instances selected from each class (‘#’), the
absolute and relative number of successfully completed runs (‘Solved’ and ‘%’) aggre-
gated over all instances and call scripts, the same separately for satisfiable (‘SAT’) and
unsatisfiable (‘UNSAT’) instances, and finally, the minimum, maximum, and average
times over all successfully completed runs on the instances of a class.

Finally, we chart the numbers of solved instances and the solving times of partic-
ipating call scripts for each competition category. See Section 6.1 for an exemplary
description of these graphics.

More statistics and details are available at [17].

6.1 Results of the MGS Competition

The winners of the MGS competition are:

FIRST PLACE WINNER dlv
SECOND PLACE WINNER pbmodels

THIRD PLACE WINNER clasp

The detailed placement of call scripts is given in Table 3. Table 4 gives statistics about
the benchmark classes used in the MGS competition. The performance of all participat-

Table 3. Placing of call scripts in the MGS competition

Place Call Script Solved % min max avg avgt EuclDist

1 dlv-contest-special 76/119 63.87 0.07 565.38 54.31 251.49 3542.79
2 dlv-contest 66/119 55.46 0.06 579.09 49.73 294.81 3948.3
3 pbmodels-minisat+-MGS 65/111 58.56 0.52 563.39 83.27 297.41 4142.88
4 clasp cmp score2 64/111 57.66 0.87 579.14 115.35 320.56 4285.59
5 clasp score def 60/111 54.05 0.91 542.64 80.09 318.97 4277.69
6 clasp cmp score 58/111 52.25 0.83 469.46 87.40 332.16 4280.92
7 pbmodels-pueble-MGS 54/111 48.65 0.34 584.31 80.94 347.49 4491.85
8 default 51/119 42.86 0.23 453.88 64.96 370.7 4543.12
9 smodels rs 34/118 28.81 0.30 539.33 153.86 471.45 5349.11

10 smodels 34/104 32.69 1.14 584.06 173.60 460.6 4974.14
11 pbmodels-wsatcc-MGS 23/111 20.72 1.05 563.52 136.97 504.06 5409.17
12 smodels rsn 22/111 19.82 0.12 579.10 163.14 513.42 5471.81
13 nomore-default 13/111 11.71 22.04 521.11 315.78 566.71 5714.67
14 scriptAtomreasonLp 12/24 50.00 3.59 259.88 91.18 345.59 2121.13
15 nomore-localprop 10/111 9.01 19.54 521.03 324.83 575.21 5787.71
16 nomore-D 9/111 8.11 48.50 473.89 161.99 564.49 5763.96
17 scriptEloopLp 4/16 25.00 49.92 223.03 106.09 476.52 2088.98
18 gnt 0/8 0.00 600 1696.31
19 dencode+gnt 0/8 0.00 600 1696.31
20 dencode bc+gnt 0/8 0.00 600 1696.31
21 script.assat.normal 0/50 0.00 600 4101.66

10 M. Gebser et al.

Table 4. Benchmarks used in the MGS competition

Benchmark Class # Solved % SAT % UNSAT % min max avg

Sokoban 8 16/16 100.00 6/6 100.00 10/10 100.00 12.66 109.52 54.39
Weighted Spanning Tree 8 89/127 70.08 89/127 70.08 0/0 0.06 579.10 115.27

Social Golfer 8 75/120 62.50 59/75 78.67 16/45 35.56 0.23 579.09 40.34
Bounded Spanning Tree 8 73/127 57.48 73/127 57.48 0/0 0.23 519.09 65.47

Towers of Hanoi 8 71/136 52.21 71/136 52.21 0/0 1.74 584.31 101.10
Blocked N-Queens 8 60/120 50.00 44/75 58.67 16/45 35.56 6.50 542.64 181.69
Hamiltonian Cycle 8 64/150 42.67 64/150 42.67 0/0 0.88 453.88 57.46

Weighted Latin Square 8 41/120 34.17 22/45 48.89 19/75 25.33 0.12 477.67 93.04
Weight-Bounded Dominating Set 8 42/127 33.07 42/127 33.07 0/0 0.83 563.39 127.87

Schur Numbers 8 32/120 26.67 18/90 20.00 14/30 46.67 3.27 468.79 120.96
15-Puzzle 7 24/105 22.86 24/105 22.86 0/0 52.91 579.14 291.20

Car Sequencing 8 25/120 20.83 24/105 22.86 1/15 6.67 0.69 563.52 106.08
Fast Food 8 19/127 14.96 8/64 12.50 11/63 17.46 5.30 352.11 113.08

Traveling Salesperson 8 16/128 12.50 16/128 12.50 0/0 0.72 11.18 2.17
Reachability 8 8/160 5.00 6/120 5.00 2/40 5.00 0.26 169.90 49.48

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

ru
n

ti
m

e
(s

ec
)

solved instances

nomore-D
nomore-localprop

nomore-default
pbmodels-wsatcc-MGS
pbmodels-pueble-MGS

pbmodels-minisat+-MGS

clasp cmp score2
clasp cmp score
clasp score def

smodels rsn
smodels rs

smodels

dlv-contest
dlv-contest-special

scriptEloopLp
scriptAtomreasonLp

default

Fig. 1. Chart of the MGS competition

ing call scripts is also given in graphical form in Figure 1. Thereby, the x-axis represents
the number of (solved) benchmark instances, and the y-axis represents time. For a given
call script, the solved instances are ordered by run times, and a point (x, y) in the chart

The First Answer Set Programming System Competition 11

expresses that the xth instance was solved in y seconds. The more to the right the curve
of a call script ends, the more benchmark instances were solved within the allocated
time and space. Since the number of solved instances is our primary measure of perfor-
mance, the rightmost call script is the winner of the MGS competition.

6.2 Results of the SCore Competition

The winners of the SCore competition are:

FIRST PLACE WINNER clasp
SECOND PLACE WINNER smodels

THIRD PLACE WINNER cmodels

The detailed placement of call scripts is given in Table 5. Table 6 gives statistics about
the benchmark classes used in the SCore competition. The performance of all partici-
pating call scripts is charted in Figure 2.

Table 5. Placing of call scripts in the SCore competition

Place Call Script Solved % min max avg avgt EuclDist

1 clasp cmp score glp2 89/95 93.68 0.56 530.21 29.81 65.82 1080.46
2 clasp cmp score glp 89/95 93.68 0.75 504.49 30.36 66.34 1099.14
3 clasp score glp def 86/95 90.53 0.75 431.66 25.20 79.66 1386.63
4 smodels rs score 81/95 85.26 1.21 346.36 38.93 121.61 1872.81
5 defaultGlparse.sh 81/95 85.26 1.35 597.97 46.86 128.38 2089.18
6 scriptAtomreasonGlparse 80/95 84.21 1.30 576.80 42.40 130.44 2107.83
7 pbmodels-minisat+-SCore 80/95 84.21 0.72 436.11 57.18 142.89 2170.4
8 pbmodels-pueblo-SCore 78/95 82.11 0.34 452.84 41.00 141.03 2210.39
9 dencode+gnt score 78/95 82.11 1.27 363.19 42.80 142.51 2162.64

10 smodels score 77/95 81.05 1.28 352.41 40.40 146.43 2217.61
11 dencode bc+gnt score 77/95 81.05 1.27 360.70 42.52 148.15 2228.65
12 gnt score 77/95 81.05 1.27 359.77 42.56 148.18 2228.83
13 scriptEloopGlparse 75/95 78.95 1.36 598.20 42.86 160.15 2493.41
14 smodels rsn score 75/95 78.95 1.21 486.23 63.00 176.05 2503.32
15 lp2sat+minisat 75/95 78.95 1.10 561.06 79.89 189.39 2621.13
16 wf+lp2sat+minisat 73/95 76.84 1.56 587.40 86.42 205.35 2792.51
17 dlv-contest-special 69/95 72.63 0.24 586.62 102.47 238.64 3090.71
18 dlv-contest 68/95 71.58 0.24 587.83 96.69 239.74 3110.36
19 lp2sat+siege 68/95 71.58 1.11 471.36 97.50 240.32 3052.8
20 nomore-localprop-SCore 64/95 67.37 2.45 550.43 103.23 265.34 3316.33
21 nomore-default-SCore 63/95 66.32 2.45 554.76 124.62 284.75 3415.78
22 nomore-D-SCore 62/95 65.26 2.77 559.88 161.15 313.59 3583.85
23 ASPeR-call-script 24/95 25.26 1.47 592.24 98.28 473.25 4906.79
24 ASPeRS30-call-script 21/95 22.11 1.51 561.20 88.99 487.04 4995.78
25 ASPeRS20-call-script 21/95 22.11 1.49 381.33 89.40 487.13 4980.24
26 pbmodels-wsatcc-SCore 6/95 6.32 25.57 529.80 208.15 575.25 5514.97

Table 6. Benchmarks used in the SCore competition

Benchmark Class # Solved % SAT % UNSAT % min max avg

15-Puzzle 10 236/260 90.77 121/130 93.08 115/130 88.46 0.74 480.13 25.49
Factoring 5 114/130 87.69 46/52 88.46 68/78 87.18 1.21 554.76 50.35
RLP-150 14 306/364 84.07 21/26 80.77 285/338 84.32 0.34 205.03 22.01
RLP-200 14 287/364 78.85 0/0 287/364 78.85 0.39 581.98 75.21

Schur Numbers 5 99/130 76.15 88/104 84.62 11/26 42.31 2.76 561.20 49.82
EqTest 5 93/130 71.54 0/0 93/130 71.54 0.66 592.24 75.02

Hamiltonian Path 14 219/364 60.16 201/338 59.47 18/26 69.23 0.24 559.88 64.74
Random Non-Tight 14 216/364 59.34 38/52 73.08 178/312 57.05 0.57 598.20 121.87
Blocked N-Queens 14 167/364 45.88 55/156 35.26 112/208 53.85 13.70 587.40 110.59

12 M. Gebser et al.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

ru
n

ti
m

e
(s

ec
)

solved instances

dlv-contest-special
dlv-contest

nomore-default-SCore
nomore-localprop-SCore

nomore-D-SCore
pbmodels-minisat+-SCore

pbmodels-pueblo-SCore
pbmodels-wsatcc-SCore

clasp score glp def

clasp cmp score glp
clasp cmp score glp2

smodels score
smodels rs score

smodels rsn score
lp2sat+siege

lp2sat+minisat
wf+lp2sat+minisat
defaultGlparse.sh

scriptEloopGlparse
scriptAtomreasonGlparse

ASPeR-call-script
ASPeRS20-call-script
ASPeRS30-call-script

gnt score
dencode+gnt score

dencode bc+gnt score

Fig. 2. Chart of the SCore competition

Table 7. Placing of call scripts in the SCore∨ competition

Place Call Script Solved % min max avg avgt EuclDist

1 dlv-contest-special 54/55 98.18 0.03 258.73 23.59 34.07 279.35
2 dlv-contest 54/55 98.18 0.03 259.97 23.86 34.33 279.44
3 disjGlparseDefault 33/55 60.00 1.06 521.59 54.49 272.69 2631.4
4 dencode+gnt score 29/55 52.73 2.23 521.51 56.34 313.34 2922.73
5 gnt score 29/55 52.73 2.21 521.91 56.44 313.4 2922.87
6 dencode bc+gnt score 29/55 52.73 2.22 522.63 56.45 313.4 2923.17
7 disjGparseEloop 27/55 49.09 1.21 521.55 33.83 322.06 2978.46
8 disjGparseVerMin 27/55 49.09 1.22 523.40 33.98 322.14 2978.77

The winners of the SCore∨ competition are:

FIRST PLACE WINNER dlv
SECOND PLACE WINNER cmodels

THIRD PLACE WINNER gnt

The First Answer Set Programming System Competition 13

Table 8. Benchmarks used in the SCore∨ competition

Benchmark Class # Solved % SAT % UNSAT % min max avg

Grammar-Based Information Extraction 15 120/120 100.00 64/64 100.00 56/56 100.00 0.62 7.86 5.03
Disjunctive Loops 3 21/24 87.50 0/0 21/24 87.50 0.44 522.63 95.24

Strategic Companies 15 88/120 73.33 88/120 73.33 0/0 0.35 523.40 71.22
Mutex 7 18/56 32.14 0/0 18/56 32.14 0.03 259.97 37.41

Random Quantified Boolean Formulas 15 35/120 29.17 0/0 35/120 29.17 0.11 290.99 44.41

0

100

200

300

400

500

600

0 10 20 30 40 50 60

ru
n

ti
m

e
(s

ec
)

solved instances

dlv-contest-special
dlv-contest

disjGlparseDefault
disjGparseEloop

disjGparseVerMin
gnt score

dencode+gnt score
dencode bc+gnt score

Fig. 3. Chart of the SCore∨ competition

Table 9. Placing of call scripts in the SLparse competition

Place Call Script Solved % min max avg avgt EuclDist

1 clasp cmp slparse2 100/127 78.74 0.38 556.49 75.96 187.37 2791.89
2 clasp cmp slparse 94/127 74.02 0.41 502.53 61.37 201.33 2919.46
3 pbmodels-minisat+-SLparse 91/127 71.65 0.49 503.57 76.69 225.03 3241.06
4 clasp slparse def 89/127 70.08 0.37 546.50 55.62 218.5 3152.34
5 smodels rs slparse 87/127 68.50 0.23 576.28 95.92 254.69 3403.9
6 groundedDefault 81/127 63.78 0.25 407.49 46.20 246.79 3448.34
7 scriptAtomreasonGr 81/127 63.78 0.25 407.46 50.55 249.56 3465.67
8 scriptEloopGr 78/127 61.42 0.24 407.48 46.15 259.84 3598.7
9 smodels slparse 75/127 59.06 0.26 518.08 102.76 306.35 3958.86

10 smodels rsn slparse 74/127 58.27 0.35 596.39 70.52 291.49 3815.31
11 pbmodels-pueblo-SLparse 69/127 54.33 0.25 593.05 87.25 321.42 4189.03
12 nomore-D-slparse 54/127 42.52 1.08 530.39 152.78 409.84 4765.06
13 nomore-localprop-slparse 50/127 39.37 1.08 517.63 120.80 411.34 4846.58
14 nomore-default-slparse 49/127 38.58 1.08 549.80 143.44 423.85 4920.23
15 gnt slparse 35/127 27.56 2.10 482.13 81.40 457.08 5276.26
16 dencode+gnt slparse 35/127 27.56 2.18 482.81 81.64 457.15 5276.38
17 dencode bc+gnt slparse 35/127 27.56 2.10 485.36 81.70 457.16 5276.53
18 script.assat.lparse-output 30/127 23.62 1.00 225.28 38.64 467.4 5379.18
19 pbmodels-wsatcc-SLparse 25/127 19.69 1.12 272.98 46.56 491.05 5585.82

The detailed placement of call scripts is given in Table 7. Table 8 gives statistics about
the benchmark classes used in the SCore∨ competition. The performance of all partici-
pating call scripts is charted in Figure 3.

14 M. Gebser et al.

Table 10. Benchmarks used in the SLparse competition

Benchmark Class # Solved % SAT % UNSAT % min max avg

RLP-200 5 89/95 93.68 18/19 94.74 71/76 93.42 0.25 465.69 60.94
RLP-150 5 87/95 91.58 17/19 89.47 70/76 92.11 0.25 183.29 14.17
Factoring 4 69/76 90.79 36/38 94.74 33/38 86.84 0.63 549.80 64.09

verifyTest-variableSearchSpace (TOAST) 5 81/95 85.26 81/95 85.26 0/0 0.24 303.32 16.43
Random Non-Tight 5 75/95 78.95 41/57 71.93 34/38 89.47 0.41 518.08 123.56

Knight’s Tour 5 71/95 74.74 71/95 74.74 0/0 1.04 248.97 28.29
Su-Doku 3 42/57 73.68 42/57 73.68 0/0 18.15 176.69 68.00

searchTest-plain (TOAST) 5 68/95 71.58 18/38 47.37 50/57 87.72 1.54 339.51 45.50
searchTest-verbose (TOAST) 5 63/95 66.32 63/95 66.32 0/0 25.84 485.36 136.07

Hamiltonian Path 5 60/95 63.16 60/95 63.16 0/0 0.37 530.39 58.02
Weighted Spanning Tree 5 58/95 61.05 58/95 61.05 0/0 3.24 596.39 122.04

Solitaire Forward 5 55/95 57.89 55/95 57.89 0/0 1.19 593.05 49.06
Bounded Spanning Tree 5 54/95 56.84 54/95 56.84 0/0 7.43 413.63 70.11

Hamiltonian Cycle 5 51/95 53.68 51/95 53.68 0/0 0.47 464.71 51.30
Solitaire Backward 5 47/95 49.47 33/76 43.42 14/19 73.68 0.30 552.11 71.72

Towers of Hanoi 5 43/95 45.26 43/95 45.26 0/0 6.28 478.30 169.96
Blocked N-Queens 5 40/95 42.11 36/76 47.37 4/19 21.05 1.57 590.04 193.59

Social Golfer 5 37/95 38.95 24/38 63.16 13/57 22.81 0.84 291.48 30.70
Schur Numbers 5 31/95 32.63 11/57 19.30 20/38 52.63 1.23 496.82 104.57
Hashiwokakero 5 26/95 27.37 0/0 26/95 27.37 6.71 377.69 72.36

Weighted Latin Square 5 23/95 24.21 6/19 31.58 17/76 22.37 0.23 576.28 144.13
15-Puzzle 5 17/95 17.89 17/95 17.89 0/0 106.66 502.53 327.56

Weight-Bounded Dominating Set 5 15/95 15.79 15/95 15.79 0/0 1.55 467.51 112.55
Traveling Salesperson 5 12/95 12.63 12/95 12.63 0/0 0.35 212.66 20.24

Solitaire Backward (2) 5 11/95 11.58 11/95 11.58 0/0 5.32 330.89 101.55
Car Sequencing 5 7/95 7.37 7/95 7.37 0/0 7.17 556.49 249.51

6.3 Results of the SLparse Competition

The winners of the SLparse competition are:

FIRST PLACE WINNER clasp
SECOND PLACE WINNER pbmodels

THIRD PLACE WINNER smodels

The detailed placement of call scripts is given in Table 9. Table 10 gives statistics about
the benchmark classes used in the SLparse competition. The performance of all partic-
ipating call scripts is charted in Figure 4.

7 Discussion

This First Answer Set Programming System Competition offers many interesting lessons
stemming from running diverse solvers on multifaceted benchmark instances. Some of
the lessons may have general implications on the future developments in ASP.

First, the experiences gained from the effort to design the competition clearly point
out that the lack of well-defined input, intermediate, and output languages is a major
problem. In some cases, it forced the competition team to resort to “ad hoc” solutions.
Further, there is no standard core ASP language covering programs with aggregates,
which makes it difficult to design a single and fair field for all systems to compete.
No standard way in which errors are signaled and no consensus on how to deal with
incomplete solvers are somewhat less critical but also important issues. Benchmark
selection is a major problem. The way benchmarks and their instances are chosen may

The First Answer Set Programming System Competition 15

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

ru
n

ti
m

e
(s

ec
)

solved instances

nomore-default-slparse
nomore-D-slparse

nomore-localprop-slparse
pbmodels-minisat+-SLparse

pbmodels-pueblo-SLparse
pbmodels-wsatcc-SLparse

clasp slparse def

clasp cmp slparse
clasp cmp slparse2

smodels slparse
smodels rs slparse

smodels rsn slparse
groundedDefault

scriptEloopGr

scriptAtomreasonGr
script.assat.lparse-output

gnt slparse
dencode+gnt slparse

dencode bc+gnt slparse

Fig. 4. Chart of the SLparse competition

have a significant impact on the results in view of diverging performances of solvers and
different degrees of difficulty among the instances of benchmark classes. Sometimes
even grounding problem encodings on problem instances to produce ground programs
on which solvers were to compete was a major hurdle (see below).

This first edition of the competition focused on the performance of solvers on ground
programs, which is certainly important. However, the roots of the ASP approach are
in declarative programming and knowledge representation. For both areas, modeling
knowledge domains and problems that arise in them is of major concern (this is es-
pecially the case for knowledge representation). By developing the MGS category, we
tried to create a platform where ASP systems could be differentiated from the per-
spective of their modeling functionality. However, only one group chose to develop
programs specialized to their system (hence, this group and their system are the well-
deserved winner). All other groups relied on default encodings. It is critical that a better
venue for testing modeling capabilities is provided for future competitions.

Further, not only modeling support and the performance of solvers determine the
quality of an ASP system. Grounding is an essential part of the process too and, in some
cases, it is precisely where the bottleneck lies. The MGS category was the only category

16 M. Gebser et al.

that took both the grounding time and the solving time into account. It is important to
stress more the role of grounding in future competitions.

There will be future competitions building on the experiences of this one. Their suc-
cess and their impact on the field will depend on continued broad community participa-
tion in fine-tuning and expanding the present format. In this respect, the First Answer
Set Programming System Competition should encourage the further progress in the de-
velopment of ASP systems and applications, similar to competitions in related areas,
such as SATisfiability, Quantified Boolean Formulas, and Pseudo-Boolean constraints.

Acknowledgments

This project would not have been possible without strong and broad support from the
whole ASP community. We are grateful to all friends and colleagues who contributed
ideas on the contest format, submitted benchmark problems, and provided continued
encouragement. Most of all, we want to thank all the competitors. Without you, there
would have been no competition.

Mirosław Truszczyński acknowledges the support of NSF grant IIS-0325063 and
KSEF grant 1036-RDE-008.

References

1. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4) (1999) 241–273

2. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
In Apt, K., Marek, W., Truszczyński, M., Warren, D., eds.: The Logic Programming
Paradigm: a 25-Year Perspective. Springer (1999) 375–398

3. Gelfond, M., Leone, N.: Logic programming and knowledge representation — the A-prolog
perspective. Artificial Intelligence 138(1-2) (2002) 3–38

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

5. Colmerauer, A., Kanoui, H., Pasero, R., Roussel, P.: Un systeme de communication homme-
machine en Francais. Technical report, University of Marseille (1973)

6. Kowalski, R.: Predicate logic as a programming language. In Rosenfeld, J., ed.: Proceedings
of the Congress of the International Federation for Information Processing, North Holland
(1974) 569–574

7. McCarthy, J.: Circumscription — a form of nonmonotonic reasoning. Artificial Intelligence
13(1-2) (1980) 27–39

8. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2) (1980) 81–132
9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Kowalski,

R., Bowen, K., eds.: Proceedings of the International Conference on Logic Programming,
MIT Press (1988) 1070–1080

10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4) (1991) 365–385

11. Marek, W., Truszczyński, M.: Stable semantics for logic programs and default theories.
In Lusk, E., Overbeek, R., eds.: Proceedings of the North American Conference on Logic
Programming, MIT Press (1989) 243–256

The First Answer Set Programming System Competition 17

12. Bidoit, N., Froidevaux, C.: Negation by default and unstratifiable logic programs. Theoretical
Computer Science 78(1) (1991) 85–112

13. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for non-
monotonic reasoning. In Dix, J., Furbach, U., Nerode, A., eds.: Proceedings of the Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning, Springer (1997)
364–375

14. Niemelä, I., Simons, P.: Smodels — an implementation of the stable model and well-founded
semantics for normal logic programs. In Dix, J., Furbach, U., Nerode, A., eds.: Proceed-
ings of the International Conference on Logic Programming and Nonmonotonic Reasoning,
Springer (1997) 420–429

15. Borchert, P., Anger, C., Schaub, T., Truszczyński, M.: Towards systematic benchmarking in
answer set programming: The Dagstuhl initiative. In Lifschitz, V., Niemelä, I., eds.: Proceed-
ings of the International Conference on Logic Programming and Nonmonotonic Reasoning,
Springer (2004) 3–7

16. Le Berre, D., Simon, L., eds.: Special Volume on the SAT 2005 Competitions and Evalua-
tions. Journal on Satisfiability, Boolean Modeling and Computation 2(1-4) (2006)

17. (http://asparagus.cs.uni-potsdam.de/contest)
18. (http://asparagus.cs.uni-potsdam.de)
19. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV

system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

20. Syrjänen, T.: Lparse 1.0 user’s manual. (http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz)

	Introduction
	Format
	Platform
	Benchmarks
	Competitors
	Results
	Results of the MGS Competition
	Results of the SCore Competition
	Results of the SLparse Competition

	Discussion

