
Modularity Aspects of Disjunctive Stable Models�

Tomi Janhunen1, Emilia Oikarinen1, Hans Tompits2, and Stefan Woltran2

1 Helsinki University of Technology
Department of Computer Science and Engineering

P.O. Box 5400, FI-02015 TKK, Finland
{Tomi.Janhunen,Emilia.Oikarinen}@tkk.fi

2 Technische Universität Wien
Institut für Informationssysteme, 184/3

Favoritenstraße 9–11, A-1040 Vienna, Austria
{tompits,stefan}@kr.tuwien.ac.at

Abstract. Practically all programming languages used in software engineering
allow to split a program into several modules. For fully declarative and nonmono-
tonic logic programming languages, however, the modular structure of programs
is hard to realise, since the output of an entire program cannot in general be
composed from the output of its component programs in a direct manner. In this
paper, we consider these aspects for the stable-model semantics of disjunctive
logic programs (DLPs). We define the notion of a DLP-function, where a well-
defined input/output interface is provided, and establish a novel module theorem
enabling a suitable compositional semantics for modules. The module theorem
extends the well-known splitting-set theorem and allows also a generalisation of
a shifting technique for splitting shared disjunctive rules among components.

1 Introduction

Practically all programming languages used in software engineering allow the user to
split a program into several modules, which are composed by well-defined semantics
over the modules’ input/output interface. This not only helps towards a good program-
ming style, but admits also to delegate coding tasks among several programmers, which
then realise the specified input/output behaviour in terms of concrete modules.

The paradigm of answer-set programming (ASP), and in particular the case of dis-
junctive logic programs (DLPs) under the stable-model semantics [1], which we deal
with herein, requires a fully declarative nonmonotonic semantics which is defined only
over complete programs and therefore prima facie not directly applicable to modu-
lar programming. Due to this obstacle, the concept of a module has not raised much
attention yet in nonmonotonic logic programming, and, except for a few dedicated pa-
pers [2,3,4], modules mostly appeared as a by-product in investigations of formal prop-
erties like stratification, splitting, or, more recently, in work on equivalence between

� This work was partially supported by the Academy of Finland under project #211025 (“Ad-
vanced Constraint Programming Techniques for Large Structured Problems”) and by the Aus-
trian Science Foundation (FWF) under project P18019-N04 (“Formal Methods for Comparing
and Optimizing Nonmonotonic Logic Programs”).

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 175–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



176 T. Janhunen et al.

programs [5,6,7,8]. The approach by Oikarinen and Janhunen [8] accommodates the
module architecture discussed by Gaifman and Shapiro [2] for non-disjunctive pro-
grams and establishes a module theorem for stable models. This result indicates that the
compositionality of stable models can be achieved in practice if positively interdepen-
dent atoms are not scattered among several modules.

In this paper, we deal with the formal underpinnings for modular programming in
the context of disjunctive logic programs under the stable-model semantics. To begin
with, we introduce the notion of a DLP-function which can roughly be described as a
disjunctive logic program together with a well-defined input/output interface providing
input atoms, output atoms, and hidden (local) atoms. In that, we follow Gelfond [9] who
introduced lp-functions for specifying (partial) definitions of new relations in terms of
old, known ones. This functional view of programs is also apparent if the latter are
understood as queries over an input (i.e., a database). Indeed, several authors (like, e.g.,
Eiter, Gottlob, and Mannila [6]) introduce logic programs as an extension of Datalog,
which poses no major problems with respect to stable semantics as long as a single
program with a specified input/output behaviour is considered.

The latter point leads us to the second main issue addressed in our framework, viz.
the question of a (semantically meaningful) method for the composition of modules.
If the underlying semantics is inherently nonmonotonic, as is the case for stable se-
mantics, this generates several problems, which were first studied in detail by Gaifman
and Shapiro [2] for logic programs (without default negation) under minimal Herbrand
models. As they observed, it is necessary to put certain syntactical restrictions on the
programs to be composed, in order to make the semantics act accordingly. We shall
follow their approach closely but extend it to programs permitting both default negation
and disjunction. Notably, the problem of compositional semantics also arises in relation
to the so-called splitting-set theorem [5,6,7], which aims at computing the stable mod-
els of a composed program by a suitable combination of the models of two programs
which result from the split of the entire program.

After having the basic syntactical issues of DLP-functions laid out, we then define
their model theory in terms of a generalisation of the stable-model semantics, where
particular care is taken regarding the input of a DLP-function. The adequacy of our
endeavour is witnessed by the main result of our paper, viz. the module theorem, pro-
viding the foundation for a fully compositional semantics: It shows how stable models
of entire programs can be composed by joining together compatible stable models of
their respective component programs. We round off our results with some applications
of the module theorem. First, the module theorem readily extends the splitting-set the-
orem [5,6]. Second, it leads to a general shifting principle that can be used to simplify
programs, i.e., to split shared disjunctive rules among components. Third, it gives rise
to a notion of modular equivalence for DLP-functions that turns out to be a proper
congruence relation supporting program substitutions.

2 The Class D of DLP-Functions

A disjunctive rule is an expression of the form

a1 ∨ · · · ∨ an ← b1, . . . , bm, ∼c1, . . . , ∼ck, (1)



Modularity Aspects of Disjunctive Stable Models 177

where n, m, k ≥ 0, and a1, . . . , an, b1, . . . , bm, and c1, . . . , ck are propositional atoms.
Since the order of atoms is considered insignificant, we write A ← B, ∼C as a short-
hand for rules of form (1), where A = {a1, . . . , an}, B = {b1, . . . , bm}, and C =
{c1, . . . , ck}. The basic intuition behind (1) is that if each atom in the positive body
B can be inferred and none of the atoms in the negative body C, then some atom in
the head A can be inferred. When both B and C are empty, we have a disjunctive fact,
written A ←. If A is empty, then we have a constraint, written ⊥ ← B, ∼C.

A disjunctive logic program (DLP) is conventionally formed as a set of disjunctive
rules. Additionally, we want a distinguished input and output interface for each DLP.
To this end, we extend a definition originally proposed by Gaifman and Shapiro [2] to
the case of disjunctive programs.1 Given a set R of disjunctive rules, we write At(R)
for the signature of R, i.e., the set of (ground) atoms appearing in the rules of R. The
set Head(R) consists of those elements of At(R) having head occurrences in R. This
is exactly the set of atoms which are defined by the rules of R.

Definition 1. A DLP-function, Π , is a quadruple 〈R, I, O, H〉, where I , O, and H are
pairwise distinct sets of atoms, and R is a set of disjunctive rules such that

At(R) ⊆ I ∪ O ∪ H and Head(R) ⊆ O ∪ H .

The elements of I are called input atoms, the elements of O output atoms, and the
elements of H hidden atoms.

Given a DLP-function Π = 〈R, I, O, H〉, we write, with a slight abuse of notation,
A ← B, ∼C ∈ Π to denote that the rule A ← B, ∼C is contained in the set R. The
atoms in I ∪O are considered to be visible and hence accessible to other DLP-functions
conjoined with Π ; either to produce input for Π or to utilise the output of Π . On the
other hand, the hidden atoms in H are used to formalise some auxiliary concepts of Π
which may not make sense in the context of other DLP-functions but may save space
substantially (see, e.g., Example 4.5 of Janhunen and Oikarinen [11]). The condition
Head(R) ⊆ O ∪ H ensures that a DLP-function may not interfere with its own input
by defining input atoms of I in terms of its rules. In spite of this, the rules of Π may
be conditioned by input atoms appearing in the bodies of rules. Following previous
ideas [9,8], we define the signature At(Π) of a DLP-function Π = 〈R, I, O, H〉 as
I ∪ O ∪ H .2 For notational convenience, we distinguish the visible and hidden parts of
At(Π) by setting Atv(Π) = I∪O and Ath(Π) = H = At(Π)\Atv(Π), respectively.
Additionally, Ati(Π) and Ato(Π) provide us a way of referring to the sets I and O of
input and output atoms of Π , respectively. Lastly, for any set S ⊆ At(Π) of atoms, we
denote the projections of S on Ati(Π), Ato(Π), Atv(Π), and Ath(Π) by Si, So, Sv,
and Sh, respectively.

In formal terms, a DLP-function Π = 〈R, I, O, H〉 provides a mapping from subsets
of I to a set of subsets of O ∪ H in analogy to the method by Gelfond [9]. However,
the exact definition of this mapping is deferred until Section 3 where the semantics of
DLP-functions will be anchored. In the sequel, the (syntactic) class of DLP-functions is

1 There are already similar approaches within the area of ASP [9,10,11,8].
2 Consequently, the length of Π in symbols, denoted by ‖Π‖, gives an upper bound for |At(Π)|

which is important when one considers the computational cost of translating programs [10].



178 T. Janhunen et al.

denoted by D. It is assumed for the sake of simplicity that D spans over a fixed (at most
denumerable) signature At(D)3 so that At(Π) ⊆ At(D) holds for each DLP-function
Π ∈ D.

The composition of DLP-functions takes place as set out in Definition 2 below. We
say that a DLP-function Π1 respects the hidden atoms of another DLP-function Π2 iff
At(Π1) ∩ Ath(Π2) = ∅, i.e., Π1 does not use any atoms from Ath(Π2).

Definition 2 (Gaifman and Shapiro [2]). The composition of two DLP-functions Π1
and Π2 that respect the hidden atoms of each other is the DLP-function

Π1 ⊕ Π2 = 〈R1 ∪ R2, (I1 \ O2) ∪ (I2 \ O1), O1 ∪ O2, H1 ∪ H2〉. (2)

As discussed by Gaifman and Shapiro [2], program composition can be generalised
for pairs of programs not respecting each other’s hidden atoms. The treatment of atom

Table 1. Division of atoms
under ⊕ into input (i), out-
put (o), or hidden (h) atoms

⊕
I2

i

O2

o

H2

h
I1 i i o -
O1 o o o -
H1 h - - -

types under Definition 2 is summarised in Table 1 where
the intersections of the sets of the input, output, and hid-
den atoms of Π1 and Π2 are represented by the cells in the
respective intersections of rows and columns (e.g., an atom
a ∈ O1 ∩ I2 becomes an output atom in Π1 ⊕ Π2). Given
that hidden atoms are mutually respected, ten cases arise
in all. The consequences of Definition 2 should be intuitive
to readers acquainted with the principles of object-oriented
programming: (i) Although Π1 and Π2 must not share hid-
den atoms, they may share input atoms, i.e., I1 ∩ I2 �= ∅
is allowed. For now, the same can be stated about out-
put atoms but this will be excluded by further conditions as done by Gaifman and
Shapiro [2], where O1 ∩O2 = ∅ is assumed directly. (ii) An input atom of Π1 becomes
an output atom in Π1 ⊕ Π2 if it appears as an output atom in Π2, i.e., Π2 provides the
input for Π1 in this setting. The input atoms of Π2 are treated in a symmetric fashion.
(iii) The hidden atoms of Π1 and Π2 retain their status in Π1 ⊕ Π2.

Given DLP-functions Π1, Π2, and Π3 that pairwise respect the hidden atoms of each
other, it holds that Π1 ⊕ Π2 ∈ D (closure), Π1 ⊕ ∅ = ∅ ⊕ Π1 = Π1 for the empty
DLP-function ∅ = 〈∅, ∅, ∅, ∅〉 (identity), Π1 ⊕ Π2 = Π2 ⊕ Π1 (commutativity), and
Π1 ⊕ (Π2 ⊕ Π3) = (Π1 ⊕ Π2) ⊕ Π3 (associativity). However, the notion of modular
equivalence [8] is based on a more restrictive operator for program composition. The
basic idea is to forbid positive dependencies between programs. Technically speaking,
we define the positive dependency graph DG+(Π) = 〈At(Π), ≤1〉 for each DLP-
function Π in the standard way [12] using only positive dependencies: an atom a ∈ A
in the head of a rule A ← B, ∼C ∈ Π depends positively on each b ∈ B and each pair
〈b, a〉 belongs to the edge relation ≤1 in DG+(Π), i.e., b ≤1 a holds. The reflexive and
transitive closure of ≤1 gives rise to the dependency relation ≤ over At(Π).

A strongly connected component (SCC) S of DG+(Π) is a maximal set S ⊆ At(Π)
such that b ≤ a holds for every a, b ∈ S. Given that Π1 ⊕ Π2 is defined, we say that
Π1 and Π2 are mutually dependent iff DG+(Π1 ⊕ Π2) has a SCC S shared by Π1 and
Π2 such that S ∩ Ato(Π1) �= ∅ and S ∩ Ato(Π2) �= ∅ [8].

3 In practice, this set could be the set of all identifiers (names for propositions or similar objects).



Modularity Aspects of Disjunctive Stable Models 179

Definition 3. The join, Π1 � Π2, of two DLP-functions Π1 and Π2 is Π1 ⊕ Π2, pro-
viding Π1 ⊕ Π2 is defined and Π1 and Π2 are not mutually dependent.

It is worth pointing out that Ato(Π1)∩Ato(Π2) = ∅ follows in analogy to Gaifman and
Shapiro [2] when Π1 �Π2 is defined. At first glance, this may appear rather restrictive,
e.g., the head of a disjunctive rule A ← B, ∼C cannot be shared by modules: either
A ⊆ Ato(Π1) or A ⊆ Ato(Π2) must hold but not both. The general shifting technique
to be presented in Section 5 allows us to circumvent this problem by viewing shared
rules as syntactic sugar. Moreover, since Π1 and Π2 are not mutually dependent in
Π1 � Π2, we have (i) S ⊆ Ati(Π1 � Π2), (ii) S ⊆ Ato(Π1) ∪ Ath(Π1), or (iii) S ⊆
Ato(Π2) ∪ Ath(Π2), for each SCC S of DG+(Π1 ⊕ Π2). The first covers joint input
atoms a ∈ Ati(Π1 � Π2) which do not depend on other atoms by definition and which
end up in singleton SCCs {a}.

The dependency relation ≤ lifts to the level of SCCs as follows: S1 ≤ S2 iff there
are a1 ∈ S1 and a2 ∈ S2 such that a1 ≤ a2. In the sequel, a total order S1 < · · · < Sk

of the strongly connected components in DG+(Π1 ⊕ Π2) is also employed. Such an
order < is guaranteed to exist but it is not necessarily unique. E.g., the relative order of
S2 and S3 can be freely chosen given that S1 ≤ S2 ≤ S4 and S1 ≤ S3 ≤ S4 hold for
four components under ≤. Nevertheless < is consistent with ≤, i.e., Si < Sj implies
Sj �≤ Si but either Si ≤ Sj or Si �≤ Sj may hold depending on ≤. Given that Π1 � Π2
is defined, we may project S1 < · · · < Sk for Π1 and Π2 as follows. In case of Π1,
for instance, S1,i = Si, if Si ⊆ Ato(Π1) ∪ Ath(Π1) or Si ⊆ Ati(Π1 � Π2), and
S1,i = Si ∩ Ati(Π1), if Si ⊆ Ato(Π2) ∪ Ath(Π2). In the latter case, it is possible
that S1,i = ∅ or S1,i contains several input atoms of Π1 which are independent of
each other. This violates the definition of a SCC but we do not remove or split such
exceptional components—also called SCCs in the sequel—to retain a uniform indexing
scheme for the components of Π , Π1, and Π2. Thus, we have established the respective
component structures S1,1 < · · · < S1,k and S2,1 < · · · < S2,k for Π1 and Π2.

3 Model Theory and Stable Semantics

Given any DLP-function Π , by an interpretation, M , for Π we understand a subset
of At(Π). An atom a ∈ At(Π) is true under M (symbolically M |= a) iff a ∈ M ,
otherwise false under M . For a negative literal ∼a, we define M |= ∼a iff M �|= a. A
set L of literals is satisfied by M (denoted by M |= L) iff M |= l, for every l ∈ L. We
also define M |=

∨
L, providing M |= l for some l ∈ L.

To begin with, we cover DLP-functions with a pure classical semantics, which treats
disjunctive rules as classical implications.

Definition 4. An interpretation M ⊆ At(Π) is a (classical) model of a DLP-function
Π = 〈R, I, O, H〉, denoted M |= Π , iff M |= R, i.e., for every rule A ← B, ∼C ∈ R,

M |= B ∪ ∼C implies M |=
∨

A.

The set of all classical models of Π is denoted by CM(Π).

Classical models provide a suitable level of abstraction to address the role of input
atoms in DLP-functions. Given a DLP-function Π and an interpretation M ⊆ At(Π),



180 T. Janhunen et al.

the projection Mi can be viewed as the actual input for Π which may (or may not)
produce the respective output Mo, depending on the semantics assigned to Π . The
treatment of input atoms in the sequel will be based on partial evaluation: the idea is to
pre-interpret input atoms appearing in Π with respect to Mi.

Definition 5. For a DLP-function Π = 〈R, I, O, H〉 and an actual input Mi ⊆ I
for Π , the instantiation of Π with respect to Mi, denoted by Π/Mi, is the quadruple
〈R′, ∅, I ∪ O, H〉 where R′ consists of the following rules:

1. the rule A ← (B \ I), ∼(C \ I), for each rule A ← B, ∼C ∈ Π such that
Mi |= Bi ∪ ∼Ci,

2. the fact a ←, for each atom a ∈ Mi, and
3. the constraint ⊥ ← a, for each atom a ∈ I \ Mi.

The rules in the first item are free of input atoms since A ∩ I = ∅ holds for each rule
A ← B, ∼C in R by Definition 1. The latter two items list rules that record the truth
values of input atoms of Π in the resulting program Π/Mi. The reduct Π/Mi is a DLP-
function without input whereas the visibility of atoms is not affected by instantiation.

Proposition 1. Let Π be a DLP-function and M ⊆ At(Π) an interpretation that de-
fines an actual input Mi ⊆ Ati(Π) for Π . Then, for all interpretations N ⊆ At(Π),

N |= Π and Ni = Mi ⇐⇒ N |= Π/Mi.

Thus, the input reduction, as given in Definition 5, is fully compatible with classical
semantics and we may characterise the semantic operator CM by pointing out the fact
that CM(Π) =

⋃
Mi⊆I CM(Π/Mi). Handling input is slightly more complicated in

the case of minimal models but Lifschitz’s parallel circumscription [13] provides us a
standard approach to deal with it. The rough idea is to keep the interpretation of input
atoms fixed while minimising, i.e., falsifying others as far as possible.

Definition 6. Let Π be a DLP-function and F ⊆ At(Π) a set of atoms assumed to
have fixed truth values. A model M ⊆ At(Π) of Π is F -minimal iff there is no model
N of Π such that N ∩ F = M ∩ F and N ⊂ M .

The set of F -minimal models of Π is denoted by MMF (Π). In the sequel, we treat
input atoms by stipulating Ati(Π)-minimality of models of Π . Then, the condition
N ∩ F = M ∩ F in Definition 6 becomes equivalent to Ni = Mi. Using this idea,
Proposition 1 lifts for minimal models as follows. Recall that Ati(Π/Mi) = ∅.

Proposition 2. Let Π be a DLP-function and M ⊆ At(Π) an interpretation that de-
fines an actual input Mi ⊆ Ati(Π) for Π . Then, for all interpretations N ⊆ At(Π),

N ∈ MMAti(Π)(Π) and Ni = Mi ⇐⇒ N ∈ MM∅(Π/Mi).

The set MMAti(Π)(Π) of models is sufficient to determine the semantics of a positive
DLP-function, i.e., whose rules are of the form A ← B where A �= ∅ and only B may
involve atoms from Ati(Π). Therefore, due to non-empty heads of rules, a positive
DLP Π is guaranteed to possess classical models since, e.g., At(Π) |= Π , and thus
also Ati(Π)-minimal models. To cover arbitrary DLP-functions, we interpret negative
body literals in the way proposed by Gelfond and Lifschitz [1].



Modularity Aspects of Disjunctive Stable Models 181

Definition 7. Given a DLP-function Π = 〈R, I, O, H〉 and an interpretation M ⊆
At(Π), the Gelfond-Lifschitz reduct of Π with respect to M is the positive DLP-
function

ΠM = 〈{A ← B | A ← B, ∼C ∈ Π , A �= ∅, and M |= ∼C}, I, O, H〉. (3)

Definition 8. An interpretation M ⊆ At(Π) is a stable model of a DLP-function Π
iff M ∈ MMAti(Π)(ΠM ) and M |= CR(Π), where CR(Π) is the set of constraints
⊥ ← B, ∼C ∈ Π .

Hidden atoms play no special role in Definition 8 and their status will be clarified in
Section 5 when the notion of modular equivalence is introduced. Definition 8 gives rise
to the respective semantic operator SM : D → 22At(D)

for DLP-functions:

SM(Π) = {M ⊆ At(Π) | M ∈ MMAti(Π)(ΠM ) and M |= CR(Π)}. (4)

As a consequence of Proposition 2, a stable model M of Π is a minimal model of
ΠM/Mi = (Π/Mi)M which enables one to dismiss Ati(Π)-minimality if desirable.

Example 1. Consider a DLP-function

Π = 〈{a ∨ b ← ∼c; a ← c, ∼b; b ← c, ∼a}, {c}, {a, b}, ∅〉,
which has four stable models, M1 = {a}, M2 = {b}, M3 = {a, c}, and M4 = {b, c},
which are minimal models of the respective reducts of Π :

ΠM1/(M1)i = ΠM2/(M2)i = 〈{a ∨ b ←; ⊥ ← c}, ∅, {a, b, c}, ∅〉,
ΠM3/(M3)i = 〈{a ←; c ←}, ∅, {a, b, c}, ∅〉, and
ΠM4/(M4)i = 〈{b ←; c ←}, ∅, {a, b, c}, ∅〉.

��
An immediate observation is that we loose the general antichain property of stable
models when input signatures are introduced. For instance, we have M1 ⊂ M3 and
M2 ⊂ M4 in Example 1. However, since the interpretation of input atoms is fixed by the
semantics, we perceive antichains locally, i.e., the set of stable models {N ∈ SM(Π) |
Ni = Mi} forms an antichain, for each input Mi ⊆ Ati(Π). In Example 1, the sets
associated with actual inputs ∅ and {c} are {M1, M2} and {M3, M4}, respectively.

4 Module Theorem for DLP-Functions

Our next objective is to show that stable semantics allows substitutions under joins of
programs as defined in Section 2. Given two DLP-functions Π1 and Π2, we say that
interpretations M1 ⊆ At(Π1) and M2 ⊆ At(Π2) are mutually compatible (with respect
to Π1 and Π2), or just compatible for short, iff M1 ∩ Atv(Π1) = M2 ∩ Atv(Π2), i.e.,
M1 and M2 agree about the truth values of their joint visible atoms. A quick inspection
of Table 1 reveals the three cases that may arise if the join Π = Π1 � Π2 is defined
and joint output atoms for Π1 and Π2 are disallowed: There are shared input atoms in
Ati(Π) = Ati(Π1)∩Ati(Π2) and atoms in Ato(Π1)∩Ati(Π2) and Ati(Π1)∩Ato(Π2)
that are output atoms in one program and input atoms in the other program. Recall that
according to Definition 3 such atoms end up in Ato(Π) when Π1 � Π2 is formed. Our
first modularity result deals with the classical semantics of DLP-functions.



182 T. Janhunen et al.

Proposition 3. Let Π1 and Π2 be two positive DLP-functions with the respective input
signatures Ati(Π1) and Ati(Π2) so that Π1 � Π2 is defined. Then, for any mutually
compatible interpretations M1 ⊆ At(Π1) and M2 ⊆ At(Π2),

M1 ∪ M2 |= Π1 � Π2 ⇐⇒ M1 |= Π1 and M2 |= Π2. (5)

The case of minimal or stable models, respectively, is much more elaborate. The proof
of Theorem 1 (see below) is based on cumulative projections defined for a join Π1 �Π2
of DLP-functions Π1 and Π2 and a pair of compatible interpretations M1 ⊆ At(Π1)
and M2 ⊆ At(Π2). It is clear that M1 = M ∩ At(Π1) and M2 = M ∩ At(Π2) hold
for M = M1 ∪ M2 in this setting. Next, we use a total order S1 < · · · < Sk of the
SCCs in DG+(Π1 ⊕ Π2) to define an increasing sequence of interpretations

N j = Ni ∪ (N ∩ (
⋃j

i=1 Si)), (6)

for each interpretation N ∈ {M, M1, M2} and 0 ≤ j ≤ k. Furthermore, let Π =
〈R, I, O, H〉 = Π1 � Π2. The relative complement M = At(Π) \ M contains atoms
false under M and we may associate a set R[Si] of rules with each SCC Si using M :

R[Si] = {(A ∩ Si) ← B | A ← B ∈ R, A ∩ Si �= ∅, and A \ Si ⊆ M}. (7)

For each rule A ← B ∈ R, the reduced rule (A ∩ Si) ← B is the contribution of
A ← B for the component Si in case

∨
(A \ Si) is false under M , i.e.,

∨
A is not

eventually satisfied by some other component of Π ; note that M |= Π will be assumed
in the sequel. Although R[Si] depends on M , we omit M in the notation for the sake
of conciseness. For each 0 ≤ j ≤ k, we may now collect rules associated with the first
j components and form a DLP-function with the same signature as Π :

Πj = 〈
⋃j

i=1 R[Si], I, O, H〉. (8)

This implies that non-input atoms in
⋃k

i=j+1 Si are false under interpretations defined

by (6). Since each rule of Π is either contained in Π1 or Π2, we may use M1 =
At(Π1) \M1 and M2 = At(Π2) \M2 to define Πj

1 and Πj
2 analogously, using (7) and

(8) for Π1 and Π2, respectively. It follows that Πj
1 �Πj

2 is defined and Πj = Πj
1 �Πj

2
holds for every 0 ≤ j ≤ k due to the compatibility of M j

1 and M j
2 and the fact that Π =

Π1 � Π2. Moreover, it is easy to inspect from the equations above that, by definition,
M j−1 ⊆ M j and the rules of Πj−1 are contained in Πj , for every 0 < j ≤ k.

Finally, we may accommodate the definitions from above to the case of a single
DLP-function by substituting Π for Π1 and ∅ for Π2. Then, DG+(Π) is partitioned
into strongly connected components S1 < · · · < Sk of Π and the construction of
cumulative projections is applicable to an interpretation M ⊆ At(Π), giving rise to
interpretations M j and DLP-functions Πj for each 0 ≤ j ≤ k. Lemmas 1 and 2 deal
with a structure of this kind associated with Π and describe how the satisfaction of rules
and Ati(Π)-minimality are conveyed under cumulative projections.

Lemma 1. Let Π be a positive DLP-function with an input signature Ati(Π) and
strongly connected components S1 < · · · < Sk. Given a model M ⊆ At(Π) for
Π , the following hold for the cumulative projections M j and Πj , with 0 ≤ j ≤ k:



Modularity Aspects of Disjunctive Stable Models 183

1. For every 0 ≤ j ≤ k, M j |= Πj .
2. If N j |= Πj , for some interpretation N j ⊆ M j of Πj , where j > 0, then N j−1 |=

Πj−1, for the interpretation N j−1 = N j \ Sj of Πj−1.
3. If M j is an Ati(Π)-minimal model of Πj , for j > 0, then M j−1 is an Ati(Π)-

minimal model of Πj−1.

Example 2. To demonstrate cumulative projections in a practical setting, let us analyse
a DLP-function Π = 〈R, ∅, {a, b, c, d, e}, ∅〉, where R contains the following rules:

a ∨ b ←; d ← c;
a ← b; e ← d;
b ← a; d ← e;
a ← c; c ∨ d ∨ e ← a, b.

The SCCs of Π are S1 = {a, b, c} and S2 = {d, e} with S1 < S2. The classical
models of Π are M = {a, b, d, e} and N = {a, b, c, d, e}. Given M , Π1 and Π2 have
the respective sets of rules R[S1] = {a ∨ b ←; a ← b; b ← a; a ← c} and R[S1] ∪
R[S2] where R[S2] = {d ← c; e ← d; d ← e; d ∨ e ← a, b}. According to (6), we
have M0 = ∅, M1 = {a, b}, and M2 = M . Then, e.g., M1 |= Π1 and M2 |= Π2

by the first item of Lemma 1. Since M2 is an ∅-minimal model of Π2, the last item of
Lemma 1 implies that M1 is an ∅-minimal model of Π1. ��

Lemma 2. Let Π be a positive DLP-function with an input signature Ati(Π) and
strongly connected components S1 < · · · < Sk. Then, an interpretation M ⊆ At(Π)
of Π is an Ati(Π)-minimal model of Π iff M is an Ati(Π)-minimal model of Πk.

Example 3. For Π from Example 2, the rule d ∨ e ← a, b forms the only difference
between Π2 and Π but this is insignificant: M is also an ∅-minimal model of Π . ��

Proposition 4. Let Π1 and Π2 be two positive DLP-functions with the respective input
signatures Ati(Π1) and Ati(Π2) so that Π1 � Π2 is defined. Then, for any mutually
compatible models M1 ⊆ At(Π1) and M2 ⊆ At(Π2) of Π1 and Π2, respectively,

M1 ∪ M2 is Ati(Π1 � Π2)-minimal ⇐⇒ M1 is Ati(Π1)-minimal and M2 is
Ati(Π2)-minimal.

Proof sketch. The proof of this result proceeds by induction on the cumulative projec-
tions M j , M j

1 , and M j
2 induced by the SCCs S1 < · · · < Sk of DG+(Π1 � Π2), i.e.,

M j is shown to be an Ati(Π)-minimal model of Πj iff M j
1 is an Ati(Π1)-minimal

model of Π1 and M j
2 is an Ati(Π2)-minimal model of Π2, where Πj , Πj

1 , and Πj
2 , for

0 ≤ j ≤ k, are determined by (7) and (8) when applied to Π , Π1, and Π2. Lemma 2
closes the gap between the Ati(Π)-minimality of Mk = M as a model of Πk from (8)
with j = k and as that of Π . The same can be stated about Mk

1 = M1 and Mk
2 = M2

but in terms of the respective projections Si,1 < · · · < Si,k obtained for i ∈ {1, 2}. ��

Lemma 3. Let Π1 and Π2 be two DLP-functions with the respective input signatures
Ati(Π1) and Ati(Π2) so that Π = Π1 � Π2 is defined. Then, also ΠM1

1 � ΠM2
2 is

defined for any mutually compatible interpretations M1 ⊆ At(Π1) and M2 ⊆ At(Π2),
and ΠM = ΠM1

1 � ΠM2
2 holds for their union M = M1 ∪ M2.



184 T. Janhunen et al.

Theorem 1 (Module Theorem). Let Π1 and Π2 be two DLP-functions with the re-
spective input signatures Ati(Π1) and Ati(Π2) so that Π1 � Π2 is defined. Then, for
any mutually compatible interpretations M1 ⊆ At(Π1) and M2 ⊆ At(Π2),

M1 ∪ M2 ∈ SM(Π1 � Π2) ⇐⇒ M1 ∈ SM(Π1) and M2 ∈ SM(Π2).

Proof. Let M1 ⊆ At(Π1) and M2 ⊆ At(Π2) be compatible interpretations and M =
M1 ∪ M2. Due to compatibility, we can recover M1 = M ∩ At(Π1) and M2 = M ∩
At(Π2) from M . Additionally, we have CR(Π) = CR(Π1) ∪ CR(Π2) and ΠM =
ΠM1

1 � ΠM2
2 is defined by Lemma 3. Now, M ∈ SM(Π) iff

M is an Ati(Π)-minimal model of ΠM and M |= CR(Π). (9)

By Proposition 4, we get that (9) holds iff (i) M1 is an Ati(Π1)-minimal model of
ΠM1

1 and M1 |= CR(Π1), and (ii) M2 is an Ati(Π2)-minimal model of ΠM2
2 and

M2 |= CR(Π2). Thus, M ∈ SM(Π) iff M1 ∈ SM(Π) and M2 ∈ SM(Π). ��

The moral of Theorem 1 and Definition 3 is that stable semantics supports modularisa-
tion as long as positive dependencies remain within program modules. The proof of the
theorem reveals the fact that such modules may involve several strongly connected com-
ponents. Splitting them into further modules is basically pre-empted by hidden atoms
which cannot be placed in separate modules. Theorem 1 can be easily extended for
DLP-functions consisting of more than two modules. In view of this, we say that a
sequence M1, . . . , Mn of stable models for modules Π1, . . . , Πn, respectively, is com-
patible, iff Mi and Mj are pairwise compatible, for all 1 ≤ i, j ≤ n.

Corollary 1. Let Π1, . . . , Πn be a sequence of DLP-functions such that Π1 �· · ·�Πn

is defined. Then, for all compatible sequences M1, . . . , Mn of interpretations,
⋃n

i=1 Mi ∈ SM(Π1 � · · · � Πn) ⇐⇒ Mi ∈ SM(Πi), for all 1 ≤ i ≤ n.

5 Applications

In this section, we demonstrate the applicability of Theorem 1 on three issues, viz.
splitting DLP-functions, shifting disjunctions, and checking equivalence.

Splitting DLP-Functions. Theorem 1 is strictly stronger than the splitting-set theo-
rem [5]. Given a DLP-function of form Π = 〈R, ∅, O, ∅〉 (which is essentially an
“ordinary” DLP), a splitting set U ⊆ O for Π satisfies, for each A ← B, ∼C ∈ R,
A∪B∪C ⊆ U , whenever A∩U �= ∅. Given a splitting set U for Π , the bottom, bU (R),
of R with respect to U contains all rules A ← B, ∼C ∈ R such that A ∪ B ∪ C ⊆ U ,
whereas the top, tU (R), of R is R \ bU (R). Thus, we may define Π = ΠB � ΠT ,
where ΠB = 〈bU (R), ∅, U, ∅〉 and 〈tU (R), U, O \ U, ∅〉. Then, Theorem 1 implies for
any interpretation M ⊆ At(Π) = O that M ∩ U ∈ SM(ΠB) and M ∈ SM(ΠT ) iff
〈M ∩ U, M \ U〉 is a solution for Π with respect to U , i.e., M is a stable model of
Π . On the other hand, as demonstrated in previous work [8], the splitting-set theorem
can be applied to DLP-functions like 〈{a ← ∼b; b ← ∼a}, ∅, {a, b}, ∅〉 only in a triv-
ial way, i.e., for U = ∅ or U = {a, b}. In contrast, Theorem 1 applies to the preceding
DLP-function, i.e., 〈{a ← ∼b}, {b}, {a}, ∅〉 � 〈{b ← ∼a}, {a}, {b}, ∅〉 is defined.



Modularity Aspects of Disjunctive Stable Models 185

Shifting Disjunctions. A further application of our module theorem results in a general
shifting principle, defined as follows.

Definition 9. Let Π = 〈R, I, O, H〉 be a DLP-function with strongly connected com-
ponents S1 < · · · < Sk. The general shifting of Π is the DLP-function GSH(Π) =
〈R′, I, O, H〉, where R′ is

{(A∩Si) ← B, ∼C, ∼(A\Si) | A ← B, ∼C ∈ Π , 1 ≤ i ≤ k, and A∩Si �= ∅}.

This is a proper generalisation of the local shifting transformation [14] which is not
applicable to the program Π given below because of head cycles involved.

Example 4. Consider Π with the following rules:

a ∨ b ∨ c ∨ d ←;
a ← b; c ← d;
b ← a; d ← c.

For GSH(Π), the first rule is replaced by a∨b ← ∼c, ∼d and c∨d ← ∼a, ∼b. It is easy
to verify that both Π and GSH(Π) have {a, b} and {c, d} as their stable models. ��

Theorem 2. For any DLP-function Π = 〈R, I, O, H〉, SM(Π) = SM(GSH(Π)).

Proof. Let S1 < · · · < Sk be the strongly connected components of Π and M ⊆
At(Π) = I ∪ O ∪ H an interpretation. By applying the construction of cumulative
projections for both ΠM and GSH(Π)M , we obtain

(ΠM )k = {(A ∩ Si) ← B | A ← B, ∼C ∈ Π ,

M ∩ C = ∅, 1 ≤ i ≤ k, A ∩ Si �= ∅, and A \ Si ⊆ M},

which coincides with (GSH(Π)M )k . It follows by Lemma 2 that M is an Ati(Π)-
minimal model of ΠM iff M is an Ati(Π)-minimal model of GSH(Π)M . ��

Theorem 2 provides us a technique to split disjunctive rules among components that
share them in order to get joins of components defined.

Example 5. For the DLP-function Π from Example 4, we obtain R1 = {a ∨ b ←
∼c, ∼d; a ← b; b ← a} and R2 = {c ∨ d ← ∼a, ∼b; c ← d; d ← c} as the sets of
rules associated with Π1 = 〈R1, {c, d}, {a, b}, ∅〉 and Π2 = 〈R2, {a, b}, {c, d}, ∅〉, for
which Π1 � Π2 = 〈R1 ∪ R2, ∅, {a, b, c, d}, ∅〉 is defined. ��

Checking Equivalence. Finally, we briefly mention how DLP-functions can be com-
pared with each other at the level of modules as well as entire programs.

Definition 10. Two DLP-functions Π1 and Π2 are modularly equivalent, denoted by
Π1 ≡m Π2, iff

1. Ati(Π1) = Ati(Π2) and Ato(Π1) = Ato(Π2), and
2. there is a bijection f : SM(Π1) → SM(Π2) such that for all interpretations M ∈

SM(Π1), M ∩ Atv(Π1) = f(M) ∩ Atv(Π2).



186 T. Janhunen et al.

Using ≡m, we may reformulate the content of Theorem 2 as Π ≡m GSH(Π). The
proof for a congruence property lifts from the case of normal programs using the module
theorem strengthened to the disjunctive case (i.e., Theorem 1).

Corollary 2. Let Π1, Π2, and Π be DLP-functions. If Π1 ≡m Π2 and both Π1 � Π
and Π2 � Π are defined, then Π1 � Π ≡m Π2 � Π .

Applying Corollary 2 in the context of Theorem 2 indicates that shifting can be localised
to a particular component Π2 = GSH(Π1) in a larger DLP-function Π1 � Π .

A broader discussion which relates modular equivalence with similar notions pro-
posed in the literature [15] is subject of future work but some preliminary comparisons
in the case of disjunction-free programs are given by Oikarinen and Janhunen [8].

6 Conclusion and Discussion

In this paper, we discussed a formal framework for modular programming in the context
of disjunctive logic programs under the stable-model semantics. We introduced syntax
and semantics of DLP-functions, where input/output interfacing is realised, and proved
a novel module theorem, establishing a suitable compositional semantics for program
modules. Although our approach is not unique in the sense that there are different pos-
sibilities for defining the composition of modules, it nevertheless shows the limits of
modularity in the context of a nonmonotonic declarative programming language. In any
case, we believe that research in this direction not only yields results of theoretical in-
terest but also could serve as a basis for future developments addressing practicably
useful methods for software engineering in ASP.

Concerning previous work on modularity in ASP, Eiter, Gottlob, and Mannila [6]
consider the class of disjunctive Datalog as query programs over relational databases. In
contrast to our results, their module architecture is based on both positive and negative
dependencies and no recursion between modules is tolerated. These constraints enable
a straightforward generalisation of the splitting-set theorem for that architecture. Eiter,
Gottlob, and Veith [3] address modularity within ASP by viewing program modules as
generalised quantifiers allowing nested calls. This is an abstraction mechanism typical
to programming-in-the-small approaches. Finally, Faber et al. [16] apply the magic set
method in the evaluation of Datalog programs with negation, introducing the concept of
an independent set, which is a specialisation of a splitting set. The module theorem put
forward by Faber et al. [16] is, however, weaker than Theorem 1 presented in Section 4.

References

1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9 (1991) 365–385

2. Gaifman, H., Shapiro, E.: Fully Abstract Compositional Semantics for Logic Programs. In:
Proceedings of the 16th Annual ACM Symposium on Principles of Programming Languages
(POPL’89). (1989) 134–142

3. Eiter, T., Gottlob, G., Veith, H.: Modular Logic Programming and Generalized Quantifiers.
In: Proceedings of the 4th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’97). Volume 1265 of LNCS, Springer (1997) 290–309



Modularity Aspects of Disjunctive Stable Models 187

4. Baral, C., Dzifcak, J., Takahashi, H.: Macros, Macro Calls and Use of Ensembles in Modular
Answer Set Programming. In: Proceedings of the 22nd International Conference on Logic
Programming (ICLP’06). Volume 4079 of LNCS, Springer (2006) 376–390

5. Lifschitz, V., Turner, H.: Splitting a Logic Program. In: Proceedings of the 11th International
Conference on Logic Programming (ICLP’94), MIT Press (1994) 23–37

6. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database
Systems 22(3) (1997) 364–418

7. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules
with External Evaluations for Semantic Web Reasoning. In: Proceedings of the 3rd European
Semantic Web Conference (ESWC’06). Volume 4011 of LNCS, Springer (2006) 273–287

8. Oikarinen, E., Janhunen, T.: Modular Equivalence for Normal Logic Programs. In: Proceed-
ings of the 17th European Conference on Artificial Intelligence (ECAI’06). (2006) 412–416.

9. Gelfond, M.: Representing Knowledge in A-Prolog. In Kakas, A., Sadri, F., eds.: Compu-
tational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski,
Part II. Volume 2408 of LNCS, Springer (2002) 413–451

10. Janhunen, T.: Some (In)translatability Results for Normal Logic Programs and Propositional
Theories. Journal of Applied Non-Classical Logics 16(1–2) (2006) 35–86

11. Janhunen, T., Oikarinen, T.: Automated Verification of Weak Equivalence within the SMOD-
ELS System. Theory and Practice of Logic Programming (2006). To appear

12. Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Programs. An-
nals of Mathematics and Artificial Intelligence 12(1–2) (1994) 53–87

13. Lifschitz, V.: Computing Circumscription. In: Proceedings of the 9th International Joint
Conference on Artificial Intelligence (IJCAI’85), Morgan Kaufmann (1985) 121–127

14. Eiter, T., Fink, M., Tompits, H., Woltran, T.: Simplifying Logic Programs under Uniform and
Strong Equivalence. In: Proceedings of the 7th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’03). Volume 2923 of LNAI, Springer (2004)
87–99

15. Eiter, T., Tompits, H., Woltran, S.: On Solution Correspondences in Answer-Set Program-
ming. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI’05), Professional Book Center (2005) 97–102

16. Faber, W., Greco, G., Leone, N.: Magic Sets and Their Application to Data Integration. In:
Proceedings of the 10th International Conference on Database Theory (ICDT’05). Volume
3363 of LNCS, Springer (2005) 306–320


	Introduction
	The Class D of DLP-Functions
	Model Theory and Stable Semantics
	Module Theorem for DLP-Functions
	Applications
	Conclusion and Discussion

