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Preface

These are the proceedings of the Ninth International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR 2007). LPNMR is a forum
for exchanging ideas on declarative logic programming, nonmonotonic reasoning,
and knowledge representation. LPNMR encompasses theoretical studies, design
and implementation of logic-based programming languages and database sys-
tems, and development of experimental systems.

LPNMR 2007 was held in Tempe Arizona, USA, May 15–17, 2007, with
workshops on May 14. Previous conferences were organized in Washington D.C.,
USA (1991), Lisbon, Portugal (1993), Lexington Kentucky, USA (1995), Schloß
Dagstuhl, Germany (1997), El Paso Texas, USA (1999), Vienna, Austria (2001),
Fort Lauderdale Florida, USA (2004), and Diamante, Italy (2005).

The conference included invited talks by Nicola Leone and Jorge Lobo, 18
technical papers, 7 system descriptions, and 5 posters. Keynote speaker was Jack
Minker who gave a talk entitled

Reminiscences on Logic Programming and Nonmonotonic Reasoning
and Future Directions

There was again an answer set programming competition (Torsten Schaub
and Mirek Truszczynski, organizers), whose results are reported in these proceed-
ings. Prior to the conference there were three workshops: Software Engineering
and Answer Set Programming (Marina de Vos and Torsten Schaub, organizers),
Correspondence and Equivalence for Nonmonotonic Theories (David Pearce),
and Argumentation and Nonmonotonic Reasoning (Paolo Torroni and Guillermo
Simari).

The organizers of LPNMR 2007 thank the Program Committee and all re-
viewers for their commitment and hard work on the program. Special thanks for
support are due to Arizona State University and to its School of Computing and
Informatics.

LPNMR 2007 was dedicated to the memory of Marco Cadoli, who died
November 21, 2006. He was a professor at the University of Rome La Sapienza
and a long-time leader in the LPNMR research areas, as well as a Program
Committee member for this conference. He was a brilliant researcher, whose
work ranged from nonmonotonic logic and knowledge compilation to databases,
software development tools, and to computational complexity. Our community
has lost an excellent scientist and a wonderful person.

February 2007 Chitta Baral
Gerhard Brewka

John Schlipf
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Logic Programming and Nonmonotonic Reasoning:
From Theory to Systems and Applications

Nicola Leone

Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
leone@mat.unical.it

Abstract. LPNMR is based on very solid theoretical foundations. After nearly
twenty years of research, LPNMR languages are expressively rich, and their se-
mantic and computational properties are well understood today. Moreover, in the
last decade the LPNMR community has focused also on systems implementation,
and, after the pioneering work carried out in DLV and Smodels, many efficient
LPNMR systems are now available.

The main challenge of LPNMR now concerns applications. Two key questions
are:

– Is LPNMR technology mature enough for the development of industrial ap-
plications?

– Can LPNMR be attractive also for the market?
In this talk, we will address the above questions. We will report also some

feedback that we have got ”from the field”, in the collaboration with a Calabrian
spin-off company, which is developing three Knowledge Management products
based on the DLV system, in a joint venture with a US company. We will present
our vision on the future development of LPNMR, pointing out promising appli-
cation areas where LPNMR can be profitably exploited, and specifying the key
theoretical and practical issues to be addressed in order to enhance the applica-
bility of LPNMR.

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Policy-Based Computing:
From Systems and Applications to Theory

Jorge Lobo

IBM T. J. Watson Research Center
jlobo@us.ibm.com

Abstract. The need for a more autonomous management of distributed systems
and networks has driven research and industry to look for management frame-
works that go beyond the direct manipulation of network devices and systems.
One approach towards this aim is to build policy-based management systems.
Policy-based computing refers to a software paradigm developed around the con-
cept of building autonomous systems that provide system administrators and de-
cision makers with interfaces that let them set general guiding principles and poli-
cies to govern the behavior and interactions of the managed systems. Although
many of the tasks are still carried out manually and ad hoc, instances of limited
policy-based systems can be found in areas such as Internet service management,
privacy, security and access management, management of quality of service and
service level agreements in networks.

Policies can be specified at many levels of abstraction, from natural language
specifications to more elementary condition-action rule specifications. From
these specifications policy systems need to come up with implementations. Some
of these implementations can be done automatically, others require manual steps.
In some cases policies impose legal commitments and systems should be able to
demonstrate compliance. There are also situations in which policies are in con-
flict with each other and a system cannot implement them simultaneously without
providing methods for conflict resolution. In this presentation I will review a few
policy systems, applications and specification languages. Then I will provide a
more formal characterization of policies and their computational model. I will
show a simple policy language in the style of the action description language A.
I will discuss current solutions to policy conflicts, discuss the problem of policy
refinement, i.e. transformations from high level specifications to lower level spec-
ifications, current approaches to refinement and provide a partial formalization of
the general problem. I will discuss limitations of current systems and directions
of research.

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, p. 2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



The First Answer Set Programming System Competition

Martin Gebser1, Lengning Liu2, Gayathri Namasivayam2, André Neumann1,
Torsten Schaub1,�, and Mirosław Truszczyński2

1 Institut für Informatik, Universität Potsdam,
August-Bebel-Str. 89, D-14482 Potsdam, Germany

{gebser,aneumann,torsten}@cs.uni-potsdam.de
2 Department of Computer Science, University of Kentucky, Lexington, KY 40506-0046, USA

{gayathri,lliu1,mirek}@cs.uky.edu

Abstract. This paper gives a summary of the First Answer Set Programming
System Competition that was held in conjunction with the Ninth International
Conference on Logic Programming and Nonmonotonic Reasoning. The aims of
the competition were twofold: first, to collect challenging benchmark problems,
and second, to provide a platform to assess a broad variety of Answer Set Pro-
gramming systems. The competition was inspired by similar events in neighbor-
ing fields, where regular benchmarking has been a major factor behind improve-
ments in the developed systems and their ability to address practical applications.

1 Introduction

Answer Set Programming (ASP) is an area of knowledge representation concerned
with logic-based languages for modeling computational problems in terms of con-
straints [1,2,3,4]. Its origins are in logic programming [5,6] and nonmonotonic rea-
soning [7,8]. The two areas merged when Gelfond and Lifschitz proposed the answer
set semantics for logic programs (also known as the stable model semantics) [9,10]. On
the one hand, the answer set semantics provided what is now commonly viewed to be
the correct treatment of the negation connective in logic programs. On the other hand,
with the answer set semantics, logic programming turned out to be a special case of
Reiter’s default logic [8], with answer sets corresponding to default extensions [11,12].

Answer Set Programming was born when researchers proposed a new paradigm for
modeling application domains and problems with logic programs under the answer set
semantics: a problem is modeled by a program so that answer sets of the program
directly correspond to solutions of the problem [1,2]. At about the same time, first
software systems to compute answer sets of logic programs were developed: dlv [13]
and lparse/smodels [14]. They demonstrated that the answer set programming paradigm
has a potential to be the basis for practical declarative computing.

These two software systems, their descendants, and essentially all other ASP systems
that have been developed and implemented so far contain two major components. The
first of them, a grounder, grounds an input program, that is, produces its propositional

� Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada,
and IIIS at Griffith University, Brisbane, Australia.

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 3–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



4 M. Gebser et al.

equivalent. The second one, a solver, accepts the ground program and actually computes
its answer sets (which happen to be the answer sets of the original program).

The emergence of practical software for computing answer sets has been a major
impetus behind the rapid growth of ASP in the past decade. Believing that the ultimate
success of ASP depends on the continued advances in the performance of ASP soft-
ware, the organizers of the Ninth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’07) asked us to design and run a contest for ASP
software systems. It was more than fitting, given that the first two ASP systems, dlv
and lparse/smodels, were introduced exactly a decade ago at the Fourth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’97). We
agreed, of course, convinced that as in the case of propositional SATisfiability, where
solver competitions have been run for years in conjunction with SAT conferences, this
initiative will stimulate research on and development of ASP software, and will bring
about dramatic improvements in its capabilities.

In this paper, we report on the project — the First Answer Set Programming Sys-
tem Competition — conducted as part of LPNMR’07. When designing it, we built on
our experiences from running preliminary versions of this competition at two Dagstuhl
meetings on ASP in 2002 and 2005 [15]. We were also inspired by the approach of and
the framework developed for SAT competitions [16], along with the related competi-
tions in solving Quantified Boolean Formulas and Pseudo-Boolean constraints.

The First Answer Set Programming System Competition was run prior to the LP-
NMR’07 conference. The results are summarized in Section 6 and can be found in full
detail at [17]. The competition was run on the Asparagus platform [18], relying on
benchmarks stored there before the competition as well as on many new ones submitted
by the members of the ASP community (cf. Section 4).

The paper is organized as follows. In the next section, we explain the format of
the competition. Section 3 provides a brief overview of the Asparagus platform. In
Section 4 and 5, we survey the benchmark problems and the competitors that took part
in the competition. The competition results are announced in Section 6. Finally, we
discuss our experiences and outline potential future improvements.

2 Format

The competition was run in three different categories:

MGS (Modeling, Grounding, Solving) In this category, benchmarks consist of a prob-
lem statement, a set of instances (specified in terms of ground facts), and the names
of the predicates and their arguments to be used by programmers to encode solu-
tions. The overall performance of software (including both the grounding of input
programs and the solving of their ground instantiations) is measured. Success in
this category depends on the quality of the input program modeling a problem (the
problem encoding), the efficiency of a grounder, and the speed of a solver.

SCore (Solver, Core language) Benchmarks in this category are ground programs in
the format common to dlv [19] and lparse [20]. In particular, aggregates are not
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allowed. Instances are classified further into two subgroups: normal (SCore) and
disjunctive (SCore∨). The time needed by solvers to compute answer sets of ground
programs is measured. Thus, this category is concerned only with the performance
of solvers on ground programs in the basic logic programming syntax.

SLparse (Solver, Lparse language) Benchmarks in this category are ground programs
in the lparse format with aggregates allowed. The performance of solvers on ground
programs in lparse format is measured. This category is similar to SCore in that it
focuses entirely on solvers. Unlike SCore, though, it assesses the ability of solvers
to take advantage of and efficiently process aggregates.

Only decision problems were considered in this first edition of the competition. Thus,
every solver had to indicate whether a benchmark instance has an answer set (SAT) or
not (UNSAT). Moreover, for instances that are SAT, solvers were required to output a
certificate of the existence of an answer set (that is, an answer set itself). This certificate
was used to check the correctness of a solution.

The output of solvers had to conform to the following formats (in typewriter
font):

SAT : Answer Set: atom1 atom2 ... atomN
The output is one line containing the keywords ‘Answer Set:’ and the names
of the atoms in the answer set. Each atom’s name is preceded by a single space.
Spaces must not occur within atom names.

UNSAT : No Answer Set
The output is one line containing the keywords ‘No Answer Set’.

The competition imposed on each software system (grounder plus solver) the same
time and space limits. The number of instances solved within the allocated time and
space was used as the primary measure of the performance of a software system. Av-
erage running time is only used as a tie breaker.

3 Platform

The competition was run on the Asparagus platform [18], providing a web-based bench-
marking environment for ASP. The principal goals of Asparagus are (1) to provide
an infrastructure for accumulating challenging benchmarks and (2) to facilitate exe-
cuting ASP software systems under comparable conditions, guaranteeing reproducible
and reliable performance results. Asparagus is a continuously running benchmarking
environment that combines several internal machines running the benchmarks with an
external server for the remaining functionalities including interaction and storage. The
internal machines are clones having a modified Linux kernel to guarantee a strict lim-
itation of time and memory resources. This is important in view of controlling hetero-
geneous ASP solvers that run in multiple processes (e.g., by invoking a stand-alone
SAT solver). A more detailed description of the Asparagus platform can be found
in [15].
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4 Benchmarks

The benchmarks for the competition were collected on the Asparagus platform. For
all competition categories (MGS, SCore, and SLparse), we asked for submissions of
non-ground problem encodings and ground problem instances in separate files.

To add a problem to the MGS category, the author of the problem had to provide

– a textual problem description that also specified the names and arguments of input
and output predicates and

– a set of problem instances in terms of ground facts (using only input predicates).

The submission of a problem encoding was optional for benchmark problems submitted
to the MGS category. In most cases, however, the authors provided it, too. In all remain-
ing cases, the competition team provided an encoding. From all benchmark classes
already stored on Asparagus or submitted for the competition, we selected several

Table 1. Benchmarks submitted by the ASP community

Benchmark Class #Instances Contributors M C L

15-Puzzle 15 Lengning Liu and Mirosław Truszczyński × – ×
15-Puzzle 11 Asparagus – × –
Blocked N-Queens 40 Gayathri Namasivayam and Mirosław Truszczyński × – ×
Blocked N-Queens 400 Asparagus – × –
Bounded Spanning Tree 30 Gayathri Namasivayam and Mirosław Truszczyński × – ×
Car Sequencing 54 Marco Cadoli × – ×
Disjunctive Loops 9 Marco Maratea – × –
EqTest 10 Asparagus – × –
Factoring 10 Asparagus – × ×
Fast Food 221 Wolfgang Faber × – ×
Gebser Suite 202 Martin Gebser – × ×
Grammar-Based Information Extraction 102 Marco Manna – × –
Hamiltonian Cycle 30 Lengning Liu and Mirosław Truszczyński × – ×
Hamiltonian Path 58 Asparagus – × ×
Hashiwokakero 211 Martin Brain – – ×
Hitori 211 Martin Brain – – ×
Knight’s Tour 165 Martin Brain – – ×
Mutex 7 Marco Maratea – × –
Random Non-Tight 120 Enno Schultz, Martin Gebser – × ×
Random Quantified Boolean Formulas 40 Marco Maratea – × –
Reachability 53 Giorgio Terracina × × ×
RLP 573 Yuting Zhao and Fangzhen Lin – × ×
Schur Numbers 33 Lengning Liu and Mirosław Truszczyński × – ×
Schur Numbers 5 Asparagus – × –
Social Golfer 175 Marco Cadoli × – ×
Sokoban 131 Wolfgang Faber × – –
Solitaire Backward 36 Martin Brain – – ×
Solitaire Backward (2) 10 Lengning Liu and Mirosław Truszczyński – – ×
Solitaire Forward 41 Martin Brain – – ×
Strategic Companies 35 Nicola Leone – × –
Su-Doku 8 Martin Brain – – ×
TOAST 54 Martin Brain – – ×
Towers of Hanoi 29 Gayathri Namasivayam and Mirosław Truszczyński × – ×
Traveling Salesperson 30 Lengning Liu and Mirosław Truszczyński × – ×
Weight-Bounded Dominating Set 30 Lengning Liu and Mirosław Truszczyński × – ×
Weighted Latin Square 35 Gayathri Namasivayam and Mirosław Truszczyński × – ×
Weighted Spanning Tree 30 Gayathri Namasivayam and Mirosław Truszczyński × – ×
Word Design DNA 5 Marco Cadoli × – ×
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Algorithm 1. Semiautomatic Benchmarking Procedure
Input : Classes — set of benchmark classes

Used — set of benchmark instances run already
Fresh — set of benchmark instances not run so far
max — maximum number of suitable benchmark instances per benchmark class

repeat1

ToRun ← ∅ /* no runs scheduled yet */2

foreach C in Classes do3

done ← |SUITABLE(Used [C])|4

if done < max then ToRun ← ToRun ∪ SELECT(max−done, Fresh [C])5

RUN(ToRun) /* execute the scheduled runs */6

Used ← Used ∪ ToRun7

Fresh ← Fresh \ ToRun8

until ToRun = ∅9

instances for use in the competition (we describe our selection criteria below). For
SCore and SLparse, we relied on the availability of encodings to produce ground in-
stances according to the input format of the respective category.

It is important to note that competitors in the MGS category did not have to use the
default Asparagus encodings. Instead, they had the option to provide their own problem
encodings, presumably better than the default ones, as the MGS category was also about
assessing the modeling capabilities of grounders and solvers.

The collected benchmarks constitute the result of efforts of the broad ASP com-
munity. Table 1 gives an overview of all benchmarks gathered for the competition on
the Asparagus platform, listing problems forming benchmark classes, the accompany-
ing number of instances, the names of the contributors, and the associated competition
categories (M stands for MGS, C for SCore, and L for SLparse, respectively).

For each competition category, benchmarks were selected by a fixed yet random
scheme, shown in Algorithm 1. The available benchmark classes are predefined in
Classes . Their instances that have been run already are in Used , the ones not run so
far are in Fresh . As an invariant, we impose Used ∩ Fresh = ∅. For a benchmark class
C in Classes , we access used and fresh instances via Used [C] and Fresh[C], respec-
tively. The maximum number max of instances per class aims at having approximately
100 benchmark instances overall in the evaluation, that is, |Classes | ∗ max ≈ 100
(if feasible). A benchmark instance in Used [C] is considered suitable, that is, it is in
SUITABLE(Used [C]), if at least one call script (see Section 5) was able to solve it
and at most three call scripts solved it in less than one second (in other words, some
system can solve it, yet it is not too easy). Function SELECT(n,Fresh[C]) randomly
determines n fresh instances from class C if available (if n ≤ |Fresh[C]|) in order to
eventually obtain max suitable instances of class C. Procedure RUN(ToRun) runs all
call scripts on the benchmark instances scheduled in ToRun . When ToRun runs empty,
no fresh benchmark instances are selectable. If a benchmark class yields less than max
suitable instances, Algorithm 1 needs to be re-invoked with an increased max value for
the other benchmark classes; thus, Algorithm 1 is “only” semiautomatic.
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5 Competitors

As with benchmarks, all executable programs (grounders and solvers) were installed
and run on Asparagus. To this end, participants had to obtain Asparagus accounts, un-
less they already had one, and to register for the respective competition categories.

Different variants of a system were allowed to run in the competition by using dif-
ferent call scripts; per competitor, up to three of them could be registered for each
competition category. The list of participating solvers and corresponding call scripts
can be found in Table 2.

Table 2. Participating solvers and corresponding call scripts (·� used in both SCore and SCore∨;
·∨ used in SCore∨ only)

Solver Affiliation MGS SCore SLparse

asper Angers ASPeR-call-script
ASPeRS20-call-script
ASPeRS30-call-script

assat Hongkong script.assat.normal script.assat.lparse-output
clasp Potsdam clasp cmp score clasp cmp score glp clasp cmp slparse

clasp cmp score2 clasp cmp score glp2 clasp cmp slparse2
clasp score def clasp score glp def clasp slparse def

cmodels Texas default defaultGlparse.sh groundedDefault
scriptAtomreasonLp scriptAtomreasonGlparse scriptAtomreasonGr
scriptEloopLp scriptEloopGlparse scriptEloopGr

disjGlparseDefault∨

disjGparseEloop∨

disjGparseVerMin∨

dlv Vienna/ dlv-contest-special dlv-contest-special�

Calabria dlv-contest dlv-contest�

gnt Helsinki gnt gnt score� gnt slparse
dencode+gnt dencode+gnt score� dencode+gnt slparse
dencode bc+gnt dencode bc+gnt score� dencode bc+gnt slparse

lp2sat Helsinki lp2sat+minisat
wf+lp2sat+minisat
lp2sat+siege

nomore Potsdam nomore-default nomore-default-SCore nomore-default-slparse
nomore-localprop nomore-localprop-SCore nomore-localprop-slparse
nomore-D nomore-D-SCore nomore-D-slparse

pbmodels Kentucky pbmodels-minisat+-MGS pbmodels-minisat+-SCore pbmodels-minisat+-SLparse
pbmodels-pueblo-MGS pbmodels-pueblo-SCore pbmodels-pueble-SLparse
pbmodels-wsatcc-MGS pbmodels-wsatcc-SCore pbmodels-wsatcc-SLparse

smodels Helsinki smodels smodels score smodels slparse
smodels rs smodels rs score smodels rs slparse
smodels rsn smodels rsn score smodels rsn slparse

6 Results

This section presents the results of the First Answer Set Programming System Compe-
tition. The placement of systems was determined according to the number of instances
solved within the allocated time and space as the primary measure of performance. Run
times were used as tie breakers. Given that each system was allowed to participate in
each competition category in three variants, we decided to allocate only one place to
each system. The place of a system is determined by its best performing variant, repre-
sented by a call script.
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Each single run was limited to 600 seconds execution time and 448 MB RAM mem-
ory usage. For each competition category, we give below tables providing a complete
placement of all participating call scripts. We report for each call script the absolute and
relative number of solved instances (‘Solved’ and ‘%’), its minimum, maximum, and
average run times, where ‘avg’ gives the average run time on all solved instances and
‘avgt’ gives the average run time on all instances with a timeout taken as 600 seconds.
The last column gives the Euclidean distance between the vector of all run times of a
call script and the virtually best solver taken to be the vector of all minimum run times.

For each competition category, we also provide similar data for the used benchmark
classes. These tables give the number of instances selected from each class (‘#’), the
absolute and relative number of successfully completed runs (‘Solved’ and ‘%’) aggre-
gated over all instances and call scripts, the same separately for satisfiable (‘SAT’) and
unsatisfiable (‘UNSAT’) instances, and finally, the minimum, maximum, and average
times over all successfully completed runs on the instances of a class.

Finally, we chart the numbers of solved instances and the solving times of partic-
ipating call scripts for each competition category. See Section 6.1 for an exemplary
description of these graphics.

More statistics and details are available at [17].

6.1 Results of the MGS Competition

The winners of the MGS competition are:

FIRST PLACE WINNER dlv
SECOND PLACE WINNER pbmodels

THIRD PLACE WINNER clasp

The detailed placement of call scripts is given in Table 3. Table 4 gives statistics about
the benchmark classes used in the MGS competition. The performance of all participat-

Table 3. Placing of call scripts in the MGS competition

Place Call Script Solved % min max avg avgt EuclDist

1 dlv-contest-special 76/119 63.87 0.07 565.38 54.31 251.49 3542.79
2 dlv-contest 66/119 55.46 0.06 579.09 49.73 294.81 3948.3
3 pbmodels-minisat+-MGS 65/111 58.56 0.52 563.39 83.27 297.41 4142.88
4 clasp cmp score2 64/111 57.66 0.87 579.14 115.35 320.56 4285.59
5 clasp score def 60/111 54.05 0.91 542.64 80.09 318.97 4277.69
6 clasp cmp score 58/111 52.25 0.83 469.46 87.40 332.16 4280.92
7 pbmodels-pueble-MGS 54/111 48.65 0.34 584.31 80.94 347.49 4491.85
8 default 51/119 42.86 0.23 453.88 64.96 370.7 4543.12
9 smodels rs 34/118 28.81 0.30 539.33 153.86 471.45 5349.11

10 smodels 34/104 32.69 1.14 584.06 173.60 460.6 4974.14
11 pbmodels-wsatcc-MGS 23/111 20.72 1.05 563.52 136.97 504.06 5409.17
12 smodels rsn 22/111 19.82 0.12 579.10 163.14 513.42 5471.81
13 nomore-default 13/111 11.71 22.04 521.11 315.78 566.71 5714.67
14 scriptAtomreasonLp 12/24 50.00 3.59 259.88 91.18 345.59 2121.13
15 nomore-localprop 10/111 9.01 19.54 521.03 324.83 575.21 5787.71
16 nomore-D 9/111 8.11 48.50 473.89 161.99 564.49 5763.96
17 scriptEloopLp 4/16 25.00 49.92 223.03 106.09 476.52 2088.98
18 gnt 0/8 0.00 600 1696.31
19 dencode+gnt 0/8 0.00 600 1696.31
20 dencode bc+gnt 0/8 0.00 600 1696.31
21 script.assat.normal 0/50 0.00 600 4101.66
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Table 4. Benchmarks used in the MGS competition

Benchmark Class # Solved % SAT % UNSAT % min max avg

Sokoban 8 16/16 100.00 6/6 100.00 10/10 100.00 12.66 109.52 54.39
Weighted Spanning Tree 8 89/127 70.08 89/127 70.08 0/0 0.06 579.10 115.27

Social Golfer 8 75/120 62.50 59/75 78.67 16/45 35.56 0.23 579.09 40.34
Bounded Spanning Tree 8 73/127 57.48 73/127 57.48 0/0 0.23 519.09 65.47

Towers of Hanoi 8 71/136 52.21 71/136 52.21 0/0 1.74 584.31 101.10
Blocked N-Queens 8 60/120 50.00 44/75 58.67 16/45 35.56 6.50 542.64 181.69
Hamiltonian Cycle 8 64/150 42.67 64/150 42.67 0/0 0.88 453.88 57.46

Weighted Latin Square 8 41/120 34.17 22/45 48.89 19/75 25.33 0.12 477.67 93.04
Weight-Bounded Dominating Set 8 42/127 33.07 42/127 33.07 0/0 0.83 563.39 127.87

Schur Numbers 8 32/120 26.67 18/90 20.00 14/30 46.67 3.27 468.79 120.96
15-Puzzle 7 24/105 22.86 24/105 22.86 0/0 52.91 579.14 291.20

Car Sequencing 8 25/120 20.83 24/105 22.86 1/15 6.67 0.69 563.52 106.08
Fast Food 8 19/127 14.96 8/64 12.50 11/63 17.46 5.30 352.11 113.08

Traveling Salesperson 8 16/128 12.50 16/128 12.50 0/0 0.72 11.18 2.17
Reachability 8 8/160 5.00 6/120 5.00 2/40 5.00 0.26 169.90 49.48
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Fig. 1. Chart of the MGS competition

ing call scripts is also given in graphical form in Figure 1. Thereby, the x-axis represents
the number of (solved) benchmark instances, and the y-axis represents time. For a given
call script, the solved instances are ordered by run times, and a point (x, y) in the chart
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expresses that the xth instance was solved in y seconds. The more to the right the curve
of a call script ends, the more benchmark instances were solved within the allocated
time and space. Since the number of solved instances is our primary measure of perfor-
mance, the rightmost call script is the winner of the MGS competition.

6.2 Results of the SCore Competition

The winners of the SCore competition are:

FIRST PLACE WINNER clasp
SECOND PLACE WINNER smodels

THIRD PLACE WINNER cmodels

The detailed placement of call scripts is given in Table 5. Table 6 gives statistics about
the benchmark classes used in the SCore competition. The performance of all partici-
pating call scripts is charted in Figure 2.

Table 5. Placing of call scripts in the SCore competition

Place Call Script Solved % min max avg avgt EuclDist

1 clasp cmp score glp2 89/95 93.68 0.56 530.21 29.81 65.82 1080.46
2 clasp cmp score glp 89/95 93.68 0.75 504.49 30.36 66.34 1099.14
3 clasp score glp def 86/95 90.53 0.75 431.66 25.20 79.66 1386.63
4 smodels rs score 81/95 85.26 1.21 346.36 38.93 121.61 1872.81
5 defaultGlparse.sh 81/95 85.26 1.35 597.97 46.86 128.38 2089.18
6 scriptAtomreasonGlparse 80/95 84.21 1.30 576.80 42.40 130.44 2107.83
7 pbmodels-minisat+-SCore 80/95 84.21 0.72 436.11 57.18 142.89 2170.4
8 pbmodels-pueblo-SCore 78/95 82.11 0.34 452.84 41.00 141.03 2210.39
9 dencode+gnt score 78/95 82.11 1.27 363.19 42.80 142.51 2162.64

10 smodels score 77/95 81.05 1.28 352.41 40.40 146.43 2217.61
11 dencode bc+gnt score 77/95 81.05 1.27 360.70 42.52 148.15 2228.65
12 gnt score 77/95 81.05 1.27 359.77 42.56 148.18 2228.83
13 scriptEloopGlparse 75/95 78.95 1.36 598.20 42.86 160.15 2493.41
14 smodels rsn score 75/95 78.95 1.21 486.23 63.00 176.05 2503.32
15 lp2sat+minisat 75/95 78.95 1.10 561.06 79.89 189.39 2621.13
16 wf+lp2sat+minisat 73/95 76.84 1.56 587.40 86.42 205.35 2792.51
17 dlv-contest-special 69/95 72.63 0.24 586.62 102.47 238.64 3090.71
18 dlv-contest 68/95 71.58 0.24 587.83 96.69 239.74 3110.36
19 lp2sat+siege 68/95 71.58 1.11 471.36 97.50 240.32 3052.8
20 nomore-localprop-SCore 64/95 67.37 2.45 550.43 103.23 265.34 3316.33
21 nomore-default-SCore 63/95 66.32 2.45 554.76 124.62 284.75 3415.78
22 nomore-D-SCore 62/95 65.26 2.77 559.88 161.15 313.59 3583.85
23 ASPeR-call-script 24/95 25.26 1.47 592.24 98.28 473.25 4906.79
24 ASPeRS30-call-script 21/95 22.11 1.51 561.20 88.99 487.04 4995.78
25 ASPeRS20-call-script 21/95 22.11 1.49 381.33 89.40 487.13 4980.24
26 pbmodels-wsatcc-SCore 6/95 6.32 25.57 529.80 208.15 575.25 5514.97

Table 6. Benchmarks used in the SCore competition

Benchmark Class # Solved % SAT % UNSAT % min max avg

15-Puzzle 10 236/260 90.77 121/130 93.08 115/130 88.46 0.74 480.13 25.49
Factoring 5 114/130 87.69 46/52 88.46 68/78 87.18 1.21 554.76 50.35
RLP-150 14 306/364 84.07 21/26 80.77 285/338 84.32 0.34 205.03 22.01
RLP-200 14 287/364 78.85 0/0 287/364 78.85 0.39 581.98 75.21

Schur Numbers 5 99/130 76.15 88/104 84.62 11/26 42.31 2.76 561.20 49.82
EqTest 5 93/130 71.54 0/0 93/130 71.54 0.66 592.24 75.02

Hamiltonian Path 14 219/364 60.16 201/338 59.47 18/26 69.23 0.24 559.88 64.74
Random Non-Tight 14 216/364 59.34 38/52 73.08 178/312 57.05 0.57 598.20 121.87
Blocked N-Queens 14 167/364 45.88 55/156 35.26 112/208 53.85 13.70 587.40 110.59
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Fig. 2. Chart of the SCore competition

Table 7. Placing of call scripts in the SCore∨ competition

Place Call Script Solved % min max avg avgt EuclDist

1 dlv-contest-special 54/55 98.18 0.03 258.73 23.59 34.07 279.35
2 dlv-contest 54/55 98.18 0.03 259.97 23.86 34.33 279.44
3 disjGlparseDefault 33/55 60.00 1.06 521.59 54.49 272.69 2631.4
4 dencode+gnt score 29/55 52.73 2.23 521.51 56.34 313.34 2922.73
5 gnt score 29/55 52.73 2.21 521.91 56.44 313.4 2922.87
6 dencode bc+gnt score 29/55 52.73 2.22 522.63 56.45 313.4 2923.17
7 disjGparseEloop 27/55 49.09 1.21 521.55 33.83 322.06 2978.46
8 disjGparseVerMin 27/55 49.09 1.22 523.40 33.98 322.14 2978.77

The winners of the SCore∨ competition are:

FIRST PLACE WINNER dlv
SECOND PLACE WINNER cmodels

THIRD PLACE WINNER gnt
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Table 8. Benchmarks used in the SCore∨ competition

Benchmark Class # Solved % SAT % UNSAT % min max avg

Grammar-Based Information Extraction 15 120/120 100.00 64/64 100.00 56/56 100.00 0.62 7.86 5.03
Disjunctive Loops 3 21/24 87.50 0/0 21/24 87.50 0.44 522.63 95.24

Strategic Companies 15 88/120 73.33 88/120 73.33 0/0 0.35 523.40 71.22
Mutex 7 18/56 32.14 0/0 18/56 32.14 0.03 259.97 37.41

Random Quantified Boolean Formulas 15 35/120 29.17 0/0 35/120 29.17 0.11 290.99 44.41
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Fig. 3. Chart of the SCore∨ competition

Table 9. Placing of call scripts in the SLparse competition

Place Call Script Solved % min max avg avgt EuclDist

1 clasp cmp slparse2 100/127 78.74 0.38 556.49 75.96 187.37 2791.89
2 clasp cmp slparse 94/127 74.02 0.41 502.53 61.37 201.33 2919.46
3 pbmodels-minisat+-SLparse 91/127 71.65 0.49 503.57 76.69 225.03 3241.06
4 clasp slparse def 89/127 70.08 0.37 546.50 55.62 218.5 3152.34
5 smodels rs slparse 87/127 68.50 0.23 576.28 95.92 254.69 3403.9
6 groundedDefault 81/127 63.78 0.25 407.49 46.20 246.79 3448.34
7 scriptAtomreasonGr 81/127 63.78 0.25 407.46 50.55 249.56 3465.67
8 scriptEloopGr 78/127 61.42 0.24 407.48 46.15 259.84 3598.7
9 smodels slparse 75/127 59.06 0.26 518.08 102.76 306.35 3958.86

10 smodels rsn slparse 74/127 58.27 0.35 596.39 70.52 291.49 3815.31
11 pbmodels-pueblo-SLparse 69/127 54.33 0.25 593.05 87.25 321.42 4189.03
12 nomore-D-slparse 54/127 42.52 1.08 530.39 152.78 409.84 4765.06
13 nomore-localprop-slparse 50/127 39.37 1.08 517.63 120.80 411.34 4846.58
14 nomore-default-slparse 49/127 38.58 1.08 549.80 143.44 423.85 4920.23
15 gnt slparse 35/127 27.56 2.10 482.13 81.40 457.08 5276.26
16 dencode+gnt slparse 35/127 27.56 2.18 482.81 81.64 457.15 5276.38
17 dencode bc+gnt slparse 35/127 27.56 2.10 485.36 81.70 457.16 5276.53
18 script.assat.lparse-output 30/127 23.62 1.00 225.28 38.64 467.4 5379.18
19 pbmodels-wsatcc-SLparse 25/127 19.69 1.12 272.98 46.56 491.05 5585.82

The detailed placement of call scripts is given in Table 7. Table 8 gives statistics about
the benchmark classes used in the SCore∨ competition. The performance of all partici-
pating call scripts is charted in Figure 3.
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Table 10. Benchmarks used in the SLparse competition

Benchmark Class # Solved % SAT % UNSAT % min max avg

RLP-200 5 89/95 93.68 18/19 94.74 71/76 93.42 0.25 465.69 60.94
RLP-150 5 87/95 91.58 17/19 89.47 70/76 92.11 0.25 183.29 14.17
Factoring 4 69/76 90.79 36/38 94.74 33/38 86.84 0.63 549.80 64.09

verifyTest-variableSearchSpace (TOAST) 5 81/95 85.26 81/95 85.26 0/0 0.24 303.32 16.43
Random Non-Tight 5 75/95 78.95 41/57 71.93 34/38 89.47 0.41 518.08 123.56

Knight’s Tour 5 71/95 74.74 71/95 74.74 0/0 1.04 248.97 28.29
Su-Doku 3 42/57 73.68 42/57 73.68 0/0 18.15 176.69 68.00

searchTest-plain (TOAST) 5 68/95 71.58 18/38 47.37 50/57 87.72 1.54 339.51 45.50
searchTest-verbose (TOAST) 5 63/95 66.32 63/95 66.32 0/0 25.84 485.36 136.07

Hamiltonian Path 5 60/95 63.16 60/95 63.16 0/0 0.37 530.39 58.02
Weighted Spanning Tree 5 58/95 61.05 58/95 61.05 0/0 3.24 596.39 122.04

Solitaire Forward 5 55/95 57.89 55/95 57.89 0/0 1.19 593.05 49.06
Bounded Spanning Tree 5 54/95 56.84 54/95 56.84 0/0 7.43 413.63 70.11

Hamiltonian Cycle 5 51/95 53.68 51/95 53.68 0/0 0.47 464.71 51.30
Solitaire Backward 5 47/95 49.47 33/76 43.42 14/19 73.68 0.30 552.11 71.72

Towers of Hanoi 5 43/95 45.26 43/95 45.26 0/0 6.28 478.30 169.96
Blocked N-Queens 5 40/95 42.11 36/76 47.37 4/19 21.05 1.57 590.04 193.59

Social Golfer 5 37/95 38.95 24/38 63.16 13/57 22.81 0.84 291.48 30.70
Schur Numbers 5 31/95 32.63 11/57 19.30 20/38 52.63 1.23 496.82 104.57
Hashiwokakero 5 26/95 27.37 0/0 26/95 27.37 6.71 377.69 72.36

Weighted Latin Square 5 23/95 24.21 6/19 31.58 17/76 22.37 0.23 576.28 144.13
15-Puzzle 5 17/95 17.89 17/95 17.89 0/0 106.66 502.53 327.56

Weight-Bounded Dominating Set 5 15/95 15.79 15/95 15.79 0/0 1.55 467.51 112.55
Traveling Salesperson 5 12/95 12.63 12/95 12.63 0/0 0.35 212.66 20.24

Solitaire Backward (2) 5 11/95 11.58 11/95 11.58 0/0 5.32 330.89 101.55
Car Sequencing 5 7/95 7.37 7/95 7.37 0/0 7.17 556.49 249.51

6.3 Results of the SLparse Competition

The winners of the SLparse competition are:

FIRST PLACE WINNER clasp
SECOND PLACE WINNER pbmodels

THIRD PLACE WINNER smodels

The detailed placement of call scripts is given in Table 9. Table 10 gives statistics about
the benchmark classes used in the SLparse competition. The performance of all partic-
ipating call scripts is charted in Figure 4.

7 Discussion

This First Answer Set Programming System Competition offers many interesting lessons
stemming from running diverse solvers on multifaceted benchmark instances. Some of
the lessons may have general implications on the future developments in ASP.

First, the experiences gained from the effort to design the competition clearly point
out that the lack of well-defined input, intermediate, and output languages is a major
problem. In some cases, it forced the competition team to resort to “ad hoc” solutions.
Further, there is no standard core ASP language covering programs with aggregates,
which makes it difficult to design a single and fair field for all systems to compete.
No standard way in which errors are signaled and no consensus on how to deal with
incomplete solvers are somewhat less critical but also important issues. Benchmark
selection is a major problem. The way benchmarks and their instances are chosen may
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have a significant impact on the results in view of diverging performances of solvers and
different degrees of difficulty among the instances of benchmark classes. Sometimes
even grounding problem encodings on problem instances to produce ground programs
on which solvers were to compete was a major hurdle (see below).

This first edition of the competition focused on the performance of solvers on ground
programs, which is certainly important. However, the roots of the ASP approach are
in declarative programming and knowledge representation. For both areas, modeling
knowledge domains and problems that arise in them is of major concern (this is es-
pecially the case for knowledge representation). By developing the MGS category, we
tried to create a platform where ASP systems could be differentiated from the per-
spective of their modeling functionality. However, only one group chose to develop
programs specialized to their system (hence, this group and their system are the well-
deserved winner). All other groups relied on default encodings. It is critical that a better
venue for testing modeling capabilities is provided for future competitions.

Further, not only modeling support and the performance of solvers determine the
quality of an ASP system. Grounding is an essential part of the process too and, in some
cases, it is precisely where the bottleneck lies. The MGS category was the only category
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that took both the grounding time and the solving time into account. It is important to
stress more the role of grounding in future competitions.

There will be future competitions building on the experiences of this one. Their suc-
cess and their impact on the field will depend on continued broad community participa-
tion in fine-tuning and expanding the present format. In this respect, the First Answer
Set Programming System Competition should encourage the further progress in the de-
velopment of ASP systems and applications, similar to competitions in related areas,
such as SATisfiability, Quantified Boolean Formulas, and Pseudo-Boolean constraints.
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Abstract. CR-Prolog is an extension of the knowledge representation language
A-Prolog. The extension is built around the introduction of consistency-restoring
rules (cr-rules for short), and allows an elegant formalization of events or ex-
ceptions that are unlikely, unusual, or undesired. The flexibility of the language
has been extensively demonstrated in the literature, with examples that include
planning and diagnostic reasoning.

In this paper we present the design of an inference engine for CR-Prolog that is
efficient enough to allow the practical use of the language for medium-size appli-
cations. The capabilities of the inference engine have been successfully demon-
strated with experiments on an application independently developed for use by
NASA.

1 Introduction

In recent years, A-Prolog – a knowledge representation language based on the answer
set semantics [8] – was shown to be a useful tool for knowledge representation and
reasoning (e.g. [5,7]). The language is expressive and has a well understood method-
ology of representing defaults, causal properties of actions and fluents, various types
of incompleteness, etc. Over time, several extensions of A-Prolog have been proposed,
aimed at improving event further the expressive power of the language.

One of these extensions, called CR-Prolog [3], is built around the introduction of
consistency-restoring rules (cr-rules for short). The intuitive idea behind cr-rules is that
they are normally not applied, even when their body is satisfied. They are only applied
if the regular program (i.e. the program consisting only of conventional A-Prolog rules)
is inconsistent. The language also allows the specification of a partial preference order
on cr-rules, intuitively regulating the application of cr-rules.

One of the most immediate uses of cr-rules is an elegant encoding of events or excep-
tions that are unlikely, unusual, or undesired (and preferences can be used to formalize
the relative likelihood of these events and exceptions).

The flexibility of CR-Prolog has been extensively demonstrated in the literature
[1,3,4,6], with examples including planning and diagnostic reasoning. For example,
in [3], cr-rules have been used to model exogenous actions that may occur, unobserved,
and cause malfunctioning in a physical system. In [1,4], cr-rules have been applied to
the task finding high quality plans. The technique consists in encoding requirements
that high quality plans must satisfy, and using cr-rules to formalize exceptions to the
requirements, that should be considered only as a last resort.
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Most of the uses of CR-Prolog in the literature are not strongly concerned with com-
putation time, and use relatively simple prototypes of CR-Prolog inference engines.
However, to allow the use of CR-Prolog for practical applications, an efficient infer-
ence engine is needed. In this paper, we present the design of an inference engine for
CR-Prolog that is efficient enough to allow the practical use of CR-Prolog for medium-
size applications. The paper is organized as follows. In the next section, we introduce
the syntax and semantics of CR-Prolog. Section 3 contains the description of the algo-
rithm of the inference engine. Finally, in Section 4 we talk about related work and draw
conclusions.

2 CR-Prolog

Like A-Prolog, CR-Prolog is a knowledge representation language that allows the for-
malization of commonsense knowledge and reasoning. The consistency-restoring rules
introduced in CR-Prolog allow the encoding of statements that should be used “as rarely
as possible, and only if strictly necessary to obtain a consistent set of conclusions,” with
preferences intuitively determining which statements should be given precedence. The
language has been shown to allow the elegant formalization of various sophisticated
reasoning tasks that are problematic to encode in A-Prolog.

The syntax of CR-Prolog is determined by a typed signature Σ consisting of types,
typed object constants, and typed function and predicate symbols. We assume that the
signature contains symbols for integers and for the standard functions and relations of
arithmetic. Terms are built as in first-order languages.

By simple arithmetic terms of Σ we mean its integer constants. By complex arith-
metic terms of Σ we mean terms built from legal combinations of arithmetic functions
and simple arithmetic terms (e.g. 3 + 2 · 5 is a complex arithmetic term, but 3 + · 2 5
is not). Atoms are expressions of the form p(t1, . . . ,tn), where p is a predicate symbol
with arity n and t’s are terms of suitable types. Atoms formed by arithmetic relations
are called arithmetic atoms. Atoms formed by non-arithmetic relations are called plain
atoms. We allow arithmetic terms and atoms to be written in notations other than pre-
fix notation, according to the way they are traditionally written in arithmetic (e.g. we
write 3 = 1 + 2 instead of = (3,+(1,2))). Literals are atoms and negated atoms, i.e.
expressions of the form ¬p(t1, . . . ,tn). Literals p(t1, . . . ,tn) and ¬p(t1, . . . ,tn) are called
complementary. By l we denote the literal complementary to l. The syntax of the state-
ments of CR-Prolog is defined as follows.

Definition 1. A regular rule ρ is a statement of the form:

r : h1 OR h2 OR . . . OR hk ← l1, l2, . . . lm,not lm+1,not lm+2, . . . ,not ln. (1)

where r is a term that uniquely denotes ρ (called name of the rule), l1, . . . , lm are literals,
and hi’s and lm+1, . . . , ln are plain literals. We call h1 OR h2 OR . . . OR hk the head of
the rule (head(r)); l1, l2, . . . lm,not lm+1,not lm+2, . . . ,not ln is its body (body(r)), and
pos(r), neg(r) denote, respectively, {l1, . . . , lm} and {lm+1, . . . , ln}.

The informal reading of the rule (in terms of the reasoning of a rational agent about its
own beliefs) is the same used in A-Prolog: “if you believe l1, . . . , lm and have no reason
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to believe lm+1, . . . , ln, then believe one of h1, . . . ,hk.” The connective “not” is called
default negation. To simplify the presentation, we allow the rule name to be omitted
whenever possible.

A rule such that k = 0 is called constraint, and is considered a shorthand of:

f alse ← not f alse, l1, l2, . . . lm,not lm+1,not lm+2, . . . ,not ln.

Definition 2. A consistency-restoring rule (or cr-rule) is a statement of the form:

r : h1 OR h2 OR . . . OR hk
+← l1, l2, . . . lm,not lm+1,not lm+2, . . . ,not ln. (2)

where r, hi’s and li’s are as before.

The intuitive reading of a cr-rule is “if you believe l1, . . . , lm and have no reason to be-
lieve lm+1, . . . , ln, then you may possibly believe one of h1, . . . ,hk.” The implicit assump-
tion is that this possibility is used as little as possible, and only to restore consistency
of the agent’s beliefs.

Definition 3. A CR-Prolog program is a pair 〈Σ ,Π〉, where Σ is a typed signature and
Π is a set of regular rules and cr-rules.

In this paper we often denote programs of CR-Prolog by their second element. The
corresponding signature is denoted by Σ(Π). We also extend the basic operations on
sets to programs in a natural way, so that, for example, Π1 ∪Π2 is the program whose
signature and set of rules are the unions of the respective components of Π1 and Π2.

The terms, atoms and literals of a program Π are denoted respectively by terms(Π),
atoms(Π) and literals(Π). Given a set of relations{p1,. . ., pm}, atoms({p1, . . . , pm},Π)
denotes the set of atoms from the signature of Π formed by every pi. literals({p1, . . . ,
pm},Π) is defined in a similar way. To simplify notation, we allow the use of atoms(p,Π)
as an abbreviation of atoms({p},Π) (and similarly for literals).

Given a CR-Prolog program, Π , the regular part of Π is the set of its regular rules,
and is denoted by reg(Π). The set of cr-rules of Π is denoted by cr(Π).

Example 1. {
r1 : p

+← not r. r2 : q
+← not r.

s. ← not p,not q.

The regular part of the program (consisting of the last two rules) is inconsistent. Con-
sistency can be restored by applying either r1 or r2, or both. Since cr-rules should be
applied as little as possible, the last case is not considered. Hence, the agent is forced to
believe either {s, p} or {s,q}.1

When different cr-rules are applicable, it is possible to specify preferences on which
one should be applied by means of atoms of the form pre f er(r1,r2), where r1, r2 are
names of cr-rules. The atom informally says “do not consider solutions obtained using
r2 unless no solution can be found using r1.” The next example shows the effect of the
introduction of preferences in the program from Example 1.

1 The examples in this section are only aimed at illustrating the features of the language, and not
its usefulness. Please refer to e.g. [3,1] for more comprehensive examples.
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Example 2.

⎧⎨
⎩

r1 : p
+← not r. r2 : q

+← not r.
s. pre f er(r1,r2).
← not p,not q.

The preference prevents the agent from applying r2 unless no solution can be found
using r1. We have seen already that r1 is sufficient to restore consistency. Hence, the
agent has only one set of beliefs, {s, p, pre f er(r1,r2)}.

Notice that our reading of the preference atom pre f er(r1,r2) rules out solutions in
which r1 and r2 are applied simultaneously, as the use of r2 is allowed only if no solution
is obtained by applying r1.

As usual, we assume that rules containing variables are shorthands for the sets of
their ground instances.

Now we define the semantics of CR-Prolog. In the following discussion, Π denotes
an arbitrary CR-Prolog program. Also, for every R′ ⊆ cr(Π), θ (R′) denotes the set of

regular rules obtained from R′ by replacing every connective
+← with ←. Notice that

the regular part of any CR-Prolog program is an A-Prolog program. We will begin by
introducing some terminology.

An atom is in normal form if it is an arithmetic atom or if it is a plain atom and its
arguments are either non-arithmetic terms or simple arithmetic terms. Notice that liter-
als that are not in normal form can be mapped into literals in normal form by applying
the standard rules of arithmetic. For example, p(4 + 1) is mapped into p(5). For this
reason, in the following definition of the semantics of CR-Prolog, we assume that all
literals are in normal form.

A literal l is satisfied by a consistent set of plain literals S (denoted by S |= l) if: (1) l
is an arithmetic literal and is true according to the standard arithmetic interpretation; or
(2) l is a plain literal and l ∈ S. If l is not satisfied by S, we write S 	|= l. An expression
not l, where l is a plain literal, is satisfied by S if S 	|= l. A set of literals and literals
under default negation (not l) is satisfied by S if each element of the set is satisfied by
S. A rule is satisfied by S if either its head is satisfied or its body is not satisfied.

Next, we introduce the transitive closure of relation pre f er. To simplify the presen-
tation, we use, whenever possible, the same term to denote both a rule and its name. For
example, given rules r1,r2 ∈ cr(Π), the fact that r1 is preferred to r2 will be expressed
by a statement pre f er(r1,r2). Notice that this is made possible by the fact that rules are
uniquely identified by their names.

Definition 4. For every set of literals, S, from the signature of Π , and every r1,r2 from
cr(Π), pre fS(r1,r2) is true iff (1) pre f er(r1,r2) ∈ S, or (2) there exists r3 ∈ cr(Π) such
that pre f er(r1,r3) ∈ S and pre fS(r3,r2).

To see how the definition works, consider the following example.

Example 3. Given S = {pre f er(r1,r2), pre f er(r2,r3),a,q, p} and cr(Π) consisting of
cr-rules r1,r2,r3:
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– pre fS(r1,r2) holds (because pre f er(r1,r2) ∈ S).
– pre fS(r2,r3) holds (because pre f er(r2,r3) ∈ S).
– pre fS(r1,r3) holds (because pre f er(r1,r2) ∈ S and pre fS(r2,r3) holds).

The semantics of CR-Prolog is given in three steps. Intuitively, in the first step we look
for combinations of cr-rules that restore consistency. Preferences are not considered,
with the exception that solutions deriving from the simultaneous use of two cr-rules
between which a preference exists are discarded.

Definition 5. Let S ⊆ literals(Π) and R ⊆ cr(Π). V = 〈S,R〉 is a view of Π if:

1. S is an answer set of reg(Π)∪θ (R), and
2. for every r1, r2, if pre fS(r1,r2), then {r1,r2} 	⊆ R, and
3. for every r in R, body(r) is satisfied by S.

We denote the elements of V by V S and V R respectively. The cr-rules in V R are said
to be applied.

Example 4. Consider the program, P1:
⎧⎨
⎩

r1 : t
+← . r2 : p

+← q.

r3 : s
+← . r4 : q

+← .
← not t,not p,not s. pre f er(r1,r3).

The regular part of the program is inconsistent. According to Definition 5, V1 = 〈{t,
pre f er(r1,r3)},{r1}〉 is a view of P1. In fact: (1) V S

1 is an answer set of reg(P1) ∪
θ (V R

1 ); (2) {r1,r3} 	⊆ V R
1 ; and (3) the body of r1 is trivially satisfied. On the other

hand, Vx = 〈{t,s, pre f er(r1,r3)},{r1,r3}〉 is not a view of P1, because it does not satisfy
condition (2) of the definition. In fact, pre fV S

1
(r1,r3) holds but {r1,r3} ⊆ V R

1 . Similarly,

Vy = 〈{t, pre f er(r1,r3)},{r1,r2}〉 is not a view of P1. In this case, condition (3) of the
definition is not satisfied, as the body of r2 does not hold in V S

1 . It is not difficult to show
that the views of P1 are (from now on, we omit preference atoms, whenever possible, to
save space):

V1 = 〈{t},{r1}〉 V2 = 〈{t,q},{r1,r4}〉
V3 = 〈{s},{r3}〉 V4 = 〈{s,q},{r3,r4}〉
V5 = 〈{p,q},{r2,r4}〉 V6 = 〈{s, p,q},{r2,r3,r4}〉
V7 = 〈{t, p,q},{r1,r2,r4}〉

The second step in the definition of the answer sets of Π consists in selecting the best
views with respect to the preferences specified. Particular attention must be paid to the
case when preferences are dynamic. The intuition is that we consider only preferences
on which there is agreement in the views under consideration.

Definition 6. For every pair of views of Π , V1 and V2, V1 dominates V2 if there exist
r1 ∈ V R

1 , r2 ∈ V R
2 such that pre f(V S

1 ∩V S
2 )(r1,r2).

Example 5. Let us consider the views of program P1 from Example 4. View V1 dom-
inates V3: in fact, V S

1 ∩V S
3 = {pre f er(r1,r3)} and pre f{pre f er(r1,r3)}(r1,r3) obviously

holds. On the other hand, V1 does not dominate V5, as neither pre f{pre f er(r1,r3)}(r1,r2)
nor pre f{pre f er(r1,r3)}(r1,r4) hold.
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Definition 7. A view, V , is a candidate answer set of Π if, for every view V ′ of Π , V ′
does not dominate V .

Example 6. According to the conclusions from Example 4, V3 is not a candidate answer
of P1, as it is dominated by V1. Conversely, it is not difficult to see that V1 is not domi-
nated by any other view, and is therefore a candidate answer set. Overall, the candidate
answer sets of P1 are: V1 = 〈{t},{r1}〉V2 = 〈{t,q},{r1,r4}〉V5 = 〈{p,q},{r2,r4}〉V7 =
〈{t, p,q},{r1,r2,r4}〉.

Finally, we select the candidate answer sets that are obtained by applying a minimal set
(w.r.t. set-theoretic inclusion) of cr-rules.

Definition 8. A set of literals, S, is an answer set of Π if:

1. there exists R ⊆ cr(Π) such that 〈S,R〉 is a candidate answer set of Π , and
2. for every candidate answer set 〈S′,R′〉 of Π , R′ 	⊂ R.

Example 7. Consider V1 and V2 from the list of the candidate answer sets of P1 from
Example 6. Since V R

1 ⊆ V R
2 , V2 is not an answer set of P1. According to Definition 8,

the answer sets of P1 are: V1 = 〈{t},{r1}〉 V5 = 〈{p,q},{r2,r4}〉 .

It is worth pointing out how the above definitions deal with cyclic preferences. For sim-
plicity, let us focus on static preferences. Let r be a cr-rule that occurs in the preference
cycle. It is not difficult to see that, for any view V , pre f(V S∩V S)(r,r) holds. This pre-
vents any view where r is used from being a candidate answer set. Hence, the cr-rules
involved in preference cycle cannot be used to restore consistency.

3 The CRMODELS Algorithm

The algorithm for computing the answer sets of CR-Prolog programs is based on a
generate-and-test approach. We begin our description of CRMODELS by presenting the
algorithm at a high level of abstraction. Next, we increase the level of detail in various
steps, until we have a complete specification of CRMODELS.

At a high level of abstraction, one answer set of a CR-Prolog program Π can be
computed as show below (Figure 1). Notice that, in the algorithm, ⊥ is used to indicate
the absence of a solution. The algorithm begins by looking for a view V such that
|V R| = 0. If one is found, CRMODELS1 checks that V is a candidate answer set of Π
(line 5). Notice that, because |V R| = 0, the condition of Definition 6 is never satisfied
(as there is no r ∈ V R). Hence, if a view if found for i = 0, that view is a candidate
answer set, which causes the test at line 5 to succeed. Such a candidate answer set is
also minimal w.r.t. set-theoretic inclusion on V R, which implies that V S is an answer
set of Π according to Definition 8. Hence, the algorithm returns V S and terminates.

Now let us consider what happens if no view is found for i = 0. According to line 4,
V is set to ⊥, which causes the test on line 5 to fail. Because the termination condition
of the inner loop (line 8) is true, the loop terminates, i is incremented and, assuming
Π contains at least one cr-rule, execution goes back to line 4, where a view V with
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Algorithm: CRMODELS1
input: Π : CR-Prolog program
output: one answer set of Π
var i: number of cr-rules to be applied
1. i := 0 { first we look for an answer set of reg(Π) }
2. while (i ≤ |cr(Π)|) do { outer loop }
3. repeat { inner loop }
4. generate new view V of Π s.t. |V R| = i; if none is found, V := ⊥
5. i f V is candidate answer set of Π then { test fails if V = ⊥ }
6. return V S { answer set found }
7. end i f
8. until V = ⊥
9. i := i+1 { consider views obtained with a larger number of cr-rules }
10. done
11. return ⊥ { signal that no answer set was found }

Fig. 1. Algorithm CRMODELS1

|V R| = 1 is computed. It is important to notice2 that, because of the iteration over
increasing values of i in the outer loop (lines 2–10), the first candidate answer set found
by the algorithm is always guaranteed to be set-theoretically minimal (with respect to
the set of cr-rules used). Hence, according to Definition 8, V S is an answer set of Π .
That explains why the return statement at line 6 is executed without further testing. If
no candidate answer set is found for i = 1, the iterations of the outer loop continue for
increasing values of i until either a candidate answer set is found or the condition on
line 2 becomes false (i.e. all possible combinations of cr-rules have been considered).
In this case, the algorithm returns ⊥.

In our approach, both the generation and the test steps (lines 4 and 5 in Figure 1)
are reduced to the computation of answer sets of A-Prolog programs. To allow a com-
pact representation of the A-Prolog programs involved in these steps, we introduce the
following macros.

– A macro-rule of the form: {p(X)}. informally says that any X can have property p,
and stands for the rules: p(X) ← not ¬p(X). ¬p(X) ← not p(X).

– A macro-rule of the form: ← not i{p(X)} j. informally states that only between i
and j X’s can have property p and is expanded as follows. Let t denote the car-
dinality of the ground atoms of the form p(X) and Δ(m) denote the collection of
inequalities: Xk 	= Xh for every k, h such that 1 ≤ k ≤ m,1 ≤ h ≤ m,k 	= h. The
macro-rule stands for:

← p(X1), p(X2), . . . , p(Xj), p(Xj+1),Δ ( j +1).
← not p(X1),not p(X2), . . . ,not p(Xj−i),Δ ( j − i).

We call the former a choice macro and the latter a cardinality macro. These macros
allow for compact programs without committing to a particular extension of A-Prolog
(and to its inference engine). Moreover, the structure of the macros is simple enough

2 A refinement of this statement is proven in [2].
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to allow their translation, at the time of the implementation of the algorithm, to more
efficient expressions, specific of the inference engine used.

Central to the execution of steps 5 and 6 of the algorithm is the notion of hard
reduct. The hard reduct of a CR-Prolog program Π , denoted by hr(Π), maps Π into an
A-Prolog program. The importance of hr(Π) is in the fact that there is a one-to-one
correspondence between the views of Π and the answer sets of hr(Π) [2].

The signature of hr(Π) is obtained from the signature of Π by the addition of pred-
icate symbols appl, is pre f erred, bodytrue, o appl, o is pre f erred, dominates. For
simplicity we assume that none of those predicate names occurs in the signature of Π .
We also assume that the signature of Π already contains the predicate name pre f er. In
the description of the hard reduct that follows, variable R, possibly indexed, ranges over
the names of cr-rules.

Definition 9 (Hard Reduct of Π ). Let Π be a CR-Prolog program. The hard reduct of
Π , hr(Π), consists of:

1. Every regular rule from Π .
2. For every cr-rule r ∈ cr(Π) with head h1 OR . . . OR hk and body l1, . . . lm,not lm+1,

. . . ,not ln, two rules: h1 OR . . . OR hk ← l1, . . . lm,not lm+1, . . . ,not ln,appl(r). and
bodytrue(r) ← l1, . . . lm,not lm+1, . . . ,not ln.

3. The generator rule, (intuitively allowing the application of arbitrary sets of
cr-rules): { appl(R) }.

4. A constraint prohibiting the application of a cr-rule when its the body is not satis-
fied (intuitively corresponding to condition (3) of Definition 5):

← not bodytrue(R),appl(R).

5. Rules defining the transitive closure of relation pre f er:

is pre f erred(R1,R2) ← pre f er(R1,R2).
is pre f erred(R1,R2) ← pre f er(R1,R3), is pre f erred(R3,R2).

6. A rule prohibiting the application of cr-rules r1 and r2 if r1 is preferred to r2

(intuitively corresponding to condition (2) of Definition 5):

← appl(R1),appl(R2), is pre f erred(R1,R2).

Example 8. Let us compute the hard reduct of the following program, P2:
{

r1 : p
+← not q. r2 : s

+← .
r3 :← not p,not s. r4 : pre f er(r1,r2).

According to item (1) above, hr(P2) contains the regular rules r3 and r4. For cr-rule r1,
hr(P2) contains {p ← not q,appl(r1). bodytrue(r1) ← not q.}. For r2, hr(P2) contains
{s ← appl(r2). bodytrue(r2).}. Items (3 – 6) result in the addition of the rules:

{appl(R)}. ← not bodytrue(R),appl(R).
is pre f erred(R1,R2) ← pre f er(R1,R2). ← appl(R1),appl(R2), is pre f erred(R1,R2).
is pre f erred(R1,R2) ← pre f er(R1,R3), is pre f erred(R3,R2).
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The answer sets of hr(P2) are:

{p,appl(r1),bodytrue(r1),bodytrue(r2), pre f er(r1,r2), is pre f erred(r1,r2)}
{s,appl(r2),bodytrue(r1),bodytrue(r2), pre f er(r1,r2), is pre f erred(r1,r2)}

corresponding to the views V1 = 〈{p, pre f er(r1,r2)},{r1}〉,V2 = 〈{s, pre f er(r1,r2)},{r2}〉.
In the generation step of the algorithm (line 4 from Figure 1), we find a view V of Π
such that V R has a specified cardinality i (the task of finding a new view satisfying the
condition will be addressed later). The task is reduced to that of computing an answer
set of hr(Π) containing exactly i occurrences of atoms of the form appl(R). In turn,
this is reduced to finding an answer set of the i-generator of Π , γi(Π), defined below.

Definition 10 (i-Generator of Π ). Let Π be a CR-Prolog program, and i a non-negative
integer such that i ≤ |cr(Π)|. The i-generator of Π is the program: hr(Π) ∪ { ←
not i{appl(R)}i. }.

It is not difficult to show that γi(Π) has the following properties [2]: (1) M is an answer
set of γ0(Π) iff M ∩ Σ(Π) is an answer set of reg(Π); (2) Every answer set of γi(Π)
is an answer set of hr(Π); (3) Every answer set M of γi(Π) contains exactly i atoms of
the form appl(R).

Example 9. Consider program P2 from Example 8. The i-generators for P2 for various
values of i and the corresponding answer sets are as follows:

– γ0(P2) = hr(P2) ∪ { ← not 0{appl(R)}0 }.
The program has no answer sets, since the constraint prevents any cr-rules from
being applied and the regular part of P2 is inconsistent.

– γ1(P2) = hr(P2) ∪ { ← not 1{appl(R)}1 }.
The program allows the application of 1 cr-rule at a time. Its answer sets are:

{p,appl(r1),bodytrue(r1),bodytrue(r2), pre f er(r1,r2), is pre f erred(r1,r2)}
{s,appl(r2),bodytrue(r1),bodytrue(r2), pre f er(r1,r2), is pre f erred(r1,r2)}

– γ2(P2) = hr(P2) ∪ { ← not 2{appl(R)}2 }.
The program is inconsistent. In fact, of the only two cr-rules in P2, one is preferred
to the other, and the constraint added to hr(P2) by item (6) of Definition 9 prevents
the application of two cr-rules if one of them is preferred to the other.

Intuitively, the task of generating a new view at each execution of line 4 of the algorithm
can be accomplished, with γi(Π), by keeping track of the answer sets of γi(Π) found
so far and by adding suitable constraints to prevent them from being generated again.
More precisely, for each answer set M that has already been found, we need a constraint
{← λ (M),ν(M).} where λ (M) is the list of the literals that occur in M and ν(M) is a
list not l1,not l2, . . . ,not lk containing all the literals from the signature of hr(Π) that
do not belong to M. Let U be the set of the constraints for all the answer sets that
have already been found. It is not difficult to see that the answer sets of the program:
γi(Π) ∪ U correspond exactly to the “new” answer sets of γi(Π).

The test step of the algorithm (line 5 from Figure 1) checks whether a view V found
during the generation step is a candidate answer set of Π . Let M be the answer set
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corresponding to V . The test is reduced to checking whether a suitable A-Prolog program
is consistent. The A-Prolog program is called the tester for M w.r.t Π , and is defined
below.

Definition 11 (Tester for M w.r.t. Π , τ(M,Π)). Let Π be a CR-Prolog program and
M be an answer set corresponding to a view V of Π . The tester for M w.r.t. Π , τ(M,Π),
contains:

1. The hard reduct of Π .
2. For each atom appl(r) ∈ M, a rule: o appl(r).
3. For each atom is pre f erred(r1,r2) ∈ M, a rule: o is pre f erred(r1,r2).
4. The rules:

dominates ← appl(R1),o appl(R2),
is pre f erred(R1,R2),o is pre f erred(R1,R2).

← not dominates.

Intuitively, relations o appl and o is pre f erred are used to store information about
which cr-rules have been applied to obtain M and which preferences hold in the model.
The first rule of item (4) above embodies the conditions of Definition 6, while the
constraint enforces Definition 7.

The following is a list of important properties of τ(M,Π) [2]: (1) If M does not
contain any atom formed by appl, τ(M,Π) is inconsistent; (2) Every answer set of
τ(M,Π) contains an answer set of hr(Π) (they differ only by the atoms formed by
relations o appl, o is pre f erred, and dominates); (3) M′ is an answer set of τ(M,Π)
iff the view corresponding to M′ dominates the view encoded by M; (4) τ(M,Π) is
inconsistent iff there exists no view of Π that dominates the view, V , encoded by M
(i.e. V is a candidate answer set according to Definition 7).

Example 10. Consider program P2 from Example 8 and the answer set, M, of γi(Π):

{s,appl(r2),bodytrue(r1),bodytrue(r2), pre f er(r1,r2), is pre f erred(r1,r2)}.

The tester for M w.r.t. P2, τ(M,P2) consists of hr(P2) together with (the constraint from
item (4) of Definition 11 has been grounded for sake of clarity):

{
o appl(r2). o is pre f erred(r1,r2).
dominates ← appl(r1),appl(r2), is pre f erred(r1,r2),o is pre f erred(r1,r2).
← not dominates.

It is not difficult to show that τ(M,P2) has a unique answer set: {p,appl(r1),bodytrue
(r1),bodytrue(r2), pre f er(r1,r2), is pre f erred(r1,r2), o appl(r2),o is pre f erred
(r1,r2),dominates}. In fact, view V1 = 〈{s},{r2}〉 is no a candidate answer set, as it is
dominated by V2 = 〈{p},{r1}〉. On the other hand, τ(M′,P2), where M′ is the answer
set encoding V2 is inconsistent, implying that V2 is a candidate answer set.

We can now describe the complete CRMODELS algorithm. We need the following ter-
minology. Given an A-Prolog program Π , the set of the answer sets of Π is denoted
by α∗(Π). We also define an operator α1(Π), which non-deterministically returns one
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Algorithm: CRMODELS

input: Π : CR-Prolog program
output: the answer sets of Π
var i: number of cr-rules to be applied

M: a set of literals or ⊥
A : a set of answer sets of Π
C,C′: sets of constraints

1. C := /0; A := /0
2. i := 0 { first we look for an answer set of reg(Π) }
3. while (i ≤ |cr(Π)|) do { outer loop }
4. C′ := /0
5. repeat { inner loop }
6. i f γi(Π) ∪ C is inconsistent then
7. M := ⊥
8. else
9. M := α1(γi(Π) ∪ C)
10. i f τ(M,Π) is inconsistent then { answer set found }
11. A := A ∪ {M ∩Σ (Π) }
12. C′ := C′ ∪ { ← λ (M ∩atoms(appl,hr(Π))). }
13. end i f
14. C := C ∪ { ← λ (M),ν(M). }
15. end i f
16. until M = ⊥
17. C := C ∪ C′
18. i := i+1 { consider views obtained with a larger number of cr-rules }
19. done
20. return A

Fig. 2. Algorithm CRMODELS

of the answer sets of Π , or ⊥ is Π is inconsistent. Recall that, given a set of literals M
from the signature of hr(Π), λ (M) denotes the list (as opposed to the set) of the literals
that occur in M and ν(M) is the list not l1,not l2, . . . ,not lk containing all the literals
from the signature of hr(Π) that do not belong to M.

Algorithm CRMODELS is shown in Figure 2 below. Notice that, differently from
CRMODELS1, CRMODELS computes all the answer sets of the program. The answer
sets of the program are stored in the set A . The algorithm works as follows. At the time
of the first execution of line 6, the consistency of γ0(Π) is checked (C is /0). From the
properties of the i-generator, it follows that γ0(Π) is consistent iff reg(Π) is consistent.
If the test succeeds, M is set to one of the answer sets of γ0(Π) and the consistency of
τ(M,Π) is tested. Since no cr-rules were used to generate M (i is 0), τ(M,Π) must be
inconsistent according to the properties of τ(M,Π). Hence, the restriction of M to Σ(Π)
is added to the set of answer sets of Π , A . Notice that the set returned corresponds to
an answer set of reg(Π), as expected. If instead γ0(Π) is inconsistent, M is set to ⊥, the
inner loop terminates and a new iteration of the outer loop is performed. When line 6
is executed again, γ1(Π) is checked for consistency. If the program is inconsistent, the
algorithm proceeds to check γ2(Π), etc. On the other hand, if γ1(Π) is consistent, one
of its answer sets is assigned to M and consistency of τ(M,Π) is tested. If the program
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is inconsistent, it follows that M encodes a candidate answer set (as well as an answer
set, as explained at the beginning of Section 3) and its restriction to Σ(Π) is returned.
Finally, if instead τ(M,Π) is found to be consistent, the algorithm needs to prevent
future computations of the answer sets of γ1(Π)∪C (lines 6 and 9) from considering M
again. This is accomplished on line 14 by adding a suitable constraint to set C.

As the algorithm computes all the answer sets of the program, CRMODELS needs to
ensure that the set of cr-rules applied at each generation step is minimal. Set C′ has a
key role in this. As can be seen from line 12, every time an answer set of Π is found, we
add to C′ a constraint whose body contains the atoms of the form appl(R) that occur in
the answer set. The idea is to use C′ to prevent any strict superset of the corresponding
cr-rules from being applied in the future generation steps (lines 6 and 9). However,
particular attention must be paid to the way C′ is used, because each constraint in C′
can prevent the generation step from using any superset of the corresponding cr-rules —
not only the strict supersets. This would affect the computation when multiple answer
sets exist for a fixed choice of cr-rules. Therefore, the use of the constraints added to
C′ during one iteration of the outer loop is delayed until the beginning of the following
iteration, when the cardinality of the sets of cr-rules considered is increased by 1. This
ensures that only the strict supersets of the constraints in C′ are considered at all times.

Let us stress that the implementation correctly deals with preference cycles, dis-
cussed at the end of Section 2: for any cr-rule r from a preference cycle and any M such
that appl(r) ∈ M, there always exists an answer set of τ(M,Π) (it contains M itself,
together with appropriate definitions of o appl and o is pre f erred). Hence, cr-rules
from preference cycles cannot be used by the implementation to restore consistency.

The following theorems guarantee termination, soundness, and completeness of CR-
MODELS. The proofs cannot be shown because of space restrictions, but can be found,
together with the description of the implementation of the algorithm, in [2].

Theorem 1. CRMODELS(Π) terminates for any CR-Prolog program Π .

Theorem 2. For every CR-Prolog program Π , if J ∈ CRMODELS(Π), then J is an an-
swer set of Π .

Theorem 3. For every CR-Prolog program Π , if J is an answer set of Π , then J ∈
CRMODELS(Π).

4 Related Work and Conclusions

There are no previous published results on the design and implementation of an infer-
ence engine for CR-Prolog. However, this paper builds on years of research on the topic,
which resulted in various prototypes. Here we extend previous work by L. Kolvekar [9],
where the first description of the CRMODELS algorithm was given. The algorithm and
theoretical results presented here are a substantial simplification of the ones from [9].

In this paper we have described our design of an inference engine for CR-Prolog. The
inference engine is aimed at allowing practical applications of CR-Prolog that require
the efficient computation of the answer sets of medium-size programs.
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The efficiency of CRMODELS has been demonstrated experimentally on 2000 plan-
ning problems by using a modified version of the experiment from [10]. The modifica-
tion consisted in replacing the A-Prolog planning module from [10] with a CR-Prolog
based module capable of finding plans that satisfy (if at all possible) 3 sets of non-
trivial requirements, aimed at improving plan quality. The planning module has been
tested both with and without preferences on the sets of requirements. The experiments
have been successful (refer to [4] for a more detailed discussion of experiments and
results): the average time to find a plan was about 200 seconds, against an average time
of 10 seconds for the original A-Prolog planner3, with an increase of about one order
of magnitude in spite of the substantially more complex reasoning task (the quality of
plans increased, depending on the parameters used to measure it, between 19% and
96%). Moreover, the average time obtained with the CR-Prolog planner was substan-
tially lower than the limit for practical use by NASA, which is 20 minutes.

The proofs of the theorems in this paper and a discussion on the implementation of
CRMODELS can be found in [2]. An implementation of the algorithm is available for
download from http://www.krlab.cs.ttu.edu/Software/.

The author would like to thank Michael Gelfond for his help. This research was
partially supported, over time, by United Space Alliance contract NAS9-20000, NASA
contract NASA-NNG05GP48G, and ATEE/DTO contract ASU-06-C-0143.
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Abstract. Answer-set programming (ASP) has become an important paradigm
for declarative problem solving in recent years. However, to further improve the
usability of answer-set programs, the development of software-engineering tools
is vital. In particular, the area of debugging provides a challenge in both theoreti-
cal and practical terms. This is due to the purely declarative nature of ASP that, on
the one hand, calls for solver-independent methodologies and, on the other hand,
does not directly apply to tracing techniques. In this paper, we propose a novel
methodology, which rests within ASP itself, to sort out errors on the conceptual
level. Our method makes use of tagging, where the program to be analyzed is
rewritten using dedicated control atoms. This provides a flexible way to specify
different types of debugging requests and a first step towards a dedicated (meta
level) debugging language.

1 Introduction

Answer-set programming (ASP) has become a popular approach to declarative prob-
lem solving. The highly declarative semantics of the language decouples the problem
specification from the computation of a solution. As a consequence, there is no general
handle on the solving process whenever the output is in question. This deprives us of ap-
plying standard, procedural debugging methodologies and has led to a significant lack
of methods and tools for debugging logic programs in ASP. However, the semantics
itself allows for debugging methodologies that explain why, rather than how, a program
is wrong. Another challenge is that the specification of a problem and its solutions are
expressed in different fragments of the underlying language. While an encoding is usu-
ally posed in terms of predicate and variable symbols, a solution is free of variables and
consists of ground atomic formulas.

We address this gap by proposing a novel debugging methodology that allows for
debugging logic programs by appeal to ASP itself. To this end, we exploit and further
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extend the tagging technique introduced by Delgrande, Schaub, and Tompits [1] for
compiling ordered logic programs into standard ones. The idea is to compile a program
in focus (once) and to subsequently accomplish different types of debugging requests by
appeal to special debugging modules using dedicated control atoms, called tags. Tags
allow for controlling the formation of answer sets and reflect different properties (like
the applicability status of a rule, for instance) and therefore can be used for manipulating
the evaluation of the program (like the actual application of a rule).

The basic tagging technique is then used to conceive a (meta level) debugging lan-
guage providing dedicated debugging statements. The idea here is to first translate a
program into its tagged form and then to analyze it by means of debugging statements.
More specifically, starting with a program Π over an alphabet A, Π is translated into
a tagged kernel program TK[Π ] over an extended alphabet A+, and a debugging re-
quest Δ, formulated in the debugging language, is then compiled into a tagged pro-
gram D[Δ] over A+. The debugging results are eventually read off the answer sets of
the combined tagged program TK[Π ] ∪ D[Δ]. In this paper, we focus on the basic con-
stituents of such a debugging language, confining ourselves to a detailed account of the
tagging method.

Our approach has several advantageous distinct features: Firstly, it is based on meta-
programming techniques that keep it within the realm of ASP. The dedicated debugging
language offers an easy and modular way of specifying debugging requests. Notably, it
allows the users to pose their requests with variables, which provides a tight connection
to an encoding at hand. Secondly, the different debugging techniques are derived from
semantic principles and relate to different characterizations of answer set formation. As
a consequence, we can ascribe meaning to different debugging outcomes as well as the
underlying compilation techniques. This is nicely demonstrated by our extrapolation
techniques that allow for debugging incoherent logic programs. Finally, our approach
has been implemented within the tool spock, which is publicly available at [2].

Our approach is not meant to be universal. For one thing, it aims at exploring the
limits of debugging within the realm of ASP. For another, it nicely complements the
majority of existing approaches, all of which are external to ASP [3,4,5,6]. Most of
them rely on graph-based characterizations, in the simplest case dependency graphs,
and use specific algorithms for analyzing such graphs.

2 Background

Given an alphabet A, a (normal) logic program is a finite set of rules of form

a ← b1, . . . , bm,not cm+1, . . . ,not cn , (1)

where a, bi, cj ∈ A are atoms for 0 ≤ i ≤ m ≤ j ≤ n. A literal is an atom a or
its negation not a. For a rule r of form (1), let head(r) = a be the head of r and
body(r) = {b1, . . . , bm,not cm+1, . . . ,not cn} be the body of r. Furthermore, we
define body+(r) = {b1, . . . , bm} and body−(r) = {cm+1, . . . , cn}. The set of atoms
occurring in a program Π is given by At(Π). For regrouping rules sharing the same
head a, we use def (a, Π) = {r ∈ Π | head(r) = a}. For uniformity, we assume that
any integrity constraint ← body(r) is expressed as a rule w ← body(r),not w, where
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w is a globally new atom. Moreover, we allow nested expressions of form not not a,
where a is some atom, in the body of rules. Such rules are identified with normal rules
in which not not a is replaced by not a�, where a� is a globally new atom, together
with an additional rule a� ← not a. We also take advantage of (singular) choice rules
of form {a} ← body(r) [7], which are an abbreviation for a ← body(r),not not a.

We define answer sets following the approach of Lin and Zhao [8]. Given a pro-
gram Π , let PF (Π) ∪ CF (Π) be the completion of Π [9], where

PF (Π) =
{
body(r) → head(r) | r ∈ Π

}
and

CF (Π) =
{
a → ∨

r∈def (a,Π)body(r) | a ∈ A}
.1

A loop is a (non-empty) set of atoms that circularly depend upon each other in a pro-
gram’s positive atom dependency graph [8]. Programs having an acyclic positive atom
dependency graph are tight [10]. The loop formula associated with a loop L is

LF (Π, L) = ¬(∨
r∈R(Π,L)body(r)

) → ∧
a∈L¬a ,

where R(Π, L) = {r ∈ Π | head(r) ∈ L, body+(r)∩L = ∅}. We denote the set of all
loops in Π by loop(Π). The set of all loop formulas of Π is LF (Π) = {LF (Π, L) |
L ∈ loop(Π)}. A set X of atoms is an answer set of a logic program Π iff X is a
model of PF (Π)∪CF (Π)∪LF (Π). If Π is tight, then the answer sets of Π coincide
with the models of PF (Π) ∪ CF (Π) (models of the latter are also referred to as the
supported models of Π). The set ΠX of generating rules of a set X of atoms from
program Π is defined as {r ∈ Π | body+(r) ⊆ X, body−(r) ∩ X = ∅}.

As an example, consider Π1 = {a ←; c ← not b, not d; d ← a, not c} and
its two answer sets {a, c} and {a, d}. The completion of Π1 is logically equivalent
to a ∧ ¬b ∧ (c ↔ ¬b ∧ ¬d) ∧ (d ↔ a ∧ ¬c); its models coincide with the answer
sets of Π1. Adding {b ← e; e ← b} to Π1 induces the loop {b, e} but leaves the set of
answer sets of Π1 intact. Unlike this, the completion of Π1 becomes a∧(b ↔ e)∧(c ↔
¬b ∧ ¬d) ∧ (d ↔ a ∧ ¬c) and admits an additional model {a, b, d, e}. This supported
model violates the loop formula LF (Π1, {b, e}) = � → ¬b ∧ ¬e, which denies it the
status of an answer set.

3 Debugging Modules

Our approach relies on the tagging technique introduced by Delgrande, Schaub, and
Tompits [1] for compiling ordered logic programs back into normal programs. The
idea is to rewrite a program by introducing so-called tags that allow for controlling the
formation of answer sets. More formally, given a logic program Π over A and a set
N of names for all rules in Π , we consider an enriched alphabet A+ obtained from A
by adding new pairwise distinct propositional atoms such as ap(nr), bl(nr), ok(nr),
ko(nr), etc., where nr ∈ N for each r ∈ Π . Intuitively, ap(nr) and bl(nr) express
whether a rule r is applicable or blocked, respectively, while ok(nr) and ko(nr) are
used for manipulating the application of r. Further tags are introduced in the sequel.

1 Strictly speaking, CF (Π) should take A as additional argument; for simplicity, we leave
this implicit. Moreover, body(r) is understood as a conjunction of (classical) literals within
PF (Π), CF (Π), and LF (Π,L) in what follows.
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3.1 Kernel Debugging Module

Our kernel translation, TK, decomposes rules of a given program such that they can be
accessed by tags for controlling purposes.

Definition 1. Let Π be a logic program over A. Then, the program TK[Π ] over A+

consists of the following rules, for r ∈ Π , b ∈ body+(r), and c ∈ body−(r):

head(r) ← ap(nr),not ko(nr) , bl(nr) ← ok(nr),not b ,

ap(nr) ← ok(nr), body(r) , bl(nr) ← ok(nr),not not c ,

ok(nr) ← not ok(nr) .

An auxiliary atom ap(nr), bl(nr), or ok(nr), respectively, occurs in an answer set X of
TK[Π ] only if r ∈ Π . Also, for any r ∈ Π , there is a priori no atom ko(nr) contained
in an answer set of TK[Π ], whereas ok(nr) is contained in any answer set of TK[Π ] by
default. The role of ok(nr) is to implement potential changes of this default behavior.

The following proposition collects more interesting relations.

Proposition 1. Let Π be a logic program over A and X an answer set of TK[Π ]. Then,
for any r ∈ Π and a ∈ A:

1. ap(nr) ∈ X iff r ∈ ΠX iff bl(nr) ∈ X;
2. if a ∈ X , then ap(nr) ∈ X for some r ∈ def (a, Π);
3. if a ∈ X , then bl(nr) ∈ X for all r ∈ def (a, Π).

The relation between auxiliary atoms and original atoms from A is described next.

Theorem 1. Let Π be a logic program over A. We have a one-to-one correspondence
between the answer sets of Π and TK[Π ] satisfying the following conditions:

1. If X is an answer set of Π , then

X ∪ {ok(nr) | r ∈ Π} ∪ {ap(nr) | r ∈ ΠX} ∪ {bl(nr) | r ∈ Π \ ΠX}
is an answer set of TK[Π ].

2. If Y is an answer set of TK[Π ], then (Y ∩ A) is an answer set of Π .

3.2 Extrapolating Non-existing Answer Sets

Whenever a program Π has no answer set, this means in terms of the characterization
by Lin and Zhao [8] that there is no interpretation jointly satisfying PF (Π), CF (Π),
and LF (Π). In other words, each interpretation X over A causes at least one of the
following problems:

– If X falsifies PF (Π), then there is some rule r in Π such that body+(r) ⊆ X and
body−(r) ∩ X = ∅, but head(r) ∈ X .

– If X falsifies CF (Π), then there is some atom a in X that lacks a supporting rule,
that is, body+(r) ⊆ X or body−(r) ∩ X = ∅ for each r ∈ def (a, Π).

– If X falsifies LF (Π), then X contains some loop L in Π that is unfounded with
respect to X , that is, X |= LF (Π, L).
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This intuition is captured in the debugging model described below. It aims at analyzing
incoherent situations by figuring out which rules or atoms cause some of the aforemen-
tioned problems. The names of the translations, TP, TC, and TL, reflect their respective
purpose, indicating problems originating from the program, its completion, or its (non-
trivial) loop formulas. We use abnormality atoms with a corresponding naming schema
to indicate the respective problem: abp(nr) signals that rule r is falsified under some
interpretation, abc(a) points out that atom a is true but has no support, and abl(a) aims
at indicating an unfounded atom a.

Definition 2. Let Π be a logic program over A and A a set of atoms. Then:

1. The logic program TP[Π ] over A+ consists of the following rules, for all r ∈ Π:

{ head(r) } ← ap(nr) , abp(nr) ← ap(nr),not head(r) ,

ko(nr) ← .

2. The logic program TC[Π, A] over A+ consists of the following rules, for all a ∈ A,
where {r1, . . . , rk} = def (a, Π):

{ a } ← bl(nr1), . . . , bl(nrk
) , abc(a) ← a, bl(nr1), . . . , bl(nrk

) .

3. The logic program TL[A] over A+ consists of the following rules, for all a ∈ A:

{ abl(a) } ← not abc(a) , a ← abl(a) .

The purpose of adding facts (ko(nr) ←) in TP[Π ] is to avoid the application of the rule
(head(r) ← ap(nr),not ko(nr)) in TK[Π ] (rather than to enforce a re-compilation in
conjunction with TK[Π ]). Regarding TC[Π, A], note that def (a, Π) might be empty, in
which case we obtain for a the choice rule ({ a } ←) along with (abc(a) ← a). Observe
that TL[A] allows us to add abl(a) to an answer set if a is supported. In contrast to
abp(nr) in TP[Π ] and abc(a) in TC[Π, A], indicating violations of PF (Π) or CF (Π),
respectively, the presence of abl(a) in an answer set does not necessarily indicate the
violation of any loop formula in LF (Π). In fact, as the number of loops for Π can
be exponential, we cannot reasonably check loop formula violations within TL[A] (via
an additional argument Π and tagged rules for analyzing loop formulas). Rather, as
discussed below, we filter occurrences of abl(a) in answer sets by minimization.

Next, we put things together. The answer sets of the subsequent translation are
thought of as extrapolations of putative yet non-existing answer sets of the original pro-
gram Π . That is, an atom abp(nr) signals that an answer set could be obtained if rule r
was not contained in Π . Dually, abc(a) indicates that an answer set could be obtained
if atom a would be supported, that is, if it would be derivable by some rule. Finally,
abl(a) points to the violation of a loop formula that involves a. Moreover, we provide
further possibilities to parametrize a debugging request by two additional arguments,
Π ′ and A. Hereby, Π ′ restricts the set of rules (from program Π) whose violation is
tolerated for debugging purposes, while A restricts the atoms that can be assumed true
though being unsupported or belonging to a (non-trivial) unfounded set.
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Definition 3. Let Π be a logic program over A, Π ′ ⊆ Π , and A ⊆ At(Π). Then:

TE[Π, Π ′, A] = TK[Π ] ∪ TP[Π ′] ∪ TC[Π, A] ∪ TL[A] .

Moreover, let TE[Π, Π ′] = TE[Π, Π ′,At(Π ′)] and TE[Π ] = TE[Π, Π,At(Π)].

Note that TL[A] can be omitted in the definition of TE[Π, Π ′, A] if Π is tight.
We list some basic properties first.

Proposition 2. Let Π be a logic program over A and X an answer set of TE[Π ]. Then,
for each r ∈ Π:

1. abp(nr) ∈ X iff ap(nr) ∈ X , bl(nr) ∈ X , and head(r) ∈ X;
2. abp(nr) ∈ X if abc(head(r)) ∈ X or abl(head(r)) ∈ X .

Moreover, for every a ∈ At(Π), it holds that:

1. abc(a) ∈ X and abl(a) ∈ X iff a ∈ X and (X ∩ A) |= (
∨

r∈def (a,Π)body(r));
2. abc(a) ∈ X if a ∈ X and (X ∩ A) |= (

∨
r∈def (a,Π)body(r));

3. abc(a) ∈ X and abl(a) ∈ X if a ∈ X;
4. abc(a) ∈ X if abl(a) ∈ X .

The next result shows that abnormality-free answer sets of the translated program cor-
respond to the answer sets of the original program.2 To this end, we introduce, for a
program Π , AB(Π) = ({abp(nr) | r ∈ Π} ∪ {abc(a), abl(a) | a ∈ At(Π)}).

Theorem 2. Let Π be a logic program over A. Then, it holds that:

1. If X is an answer set of Π , then

X ∪ {ok(nr), ko(nr) | r ∈ Π} ∪ {ap(nr) | r ∈ ΠX} ∪ {bl(nr) | r ∈ Π \ ΠX}

is an answer set of TE[Π ].
2. If Y is an answer set of TE[Π ] such that (Y ∩ AB(Π)) = ∅, then (Y ∩ A) is an

answer set of Π .

The interesting case, however, is when the original program is incoherent. For illustrat-
ing this, let us consider three simple examples. To begin with, consider:

Π2 = { nr1 : a ←, ni1 : ← a } .

The program TK[Π2] consists of the following rules:

a ← ap(nr1),not ko(nr1) , ← ap(ni1),not ko(ni1) ,

ap(nr1) ← ok(nr1) , ap(ni1) ← ok(ni1), a ,

bl(ni1) ← ok(ni1),not a ,

ok(nr1) ← not ok(nr1) , ok(ni1) ← not ok(ni1) .

2 Due to relaxing Π by tolerating abnormalities, TE[Π ] always admits (abnormal) answer sets.
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We obtain TE[Π2, {r1}] by adding (TP[{r1}] ∪ TC[Π2, {a}] ∪ TL[{a}]), given next:

ko(nr1) ← , { a } ← bl(nr1) ,

abc(a) ← a, bl(nr1) ,

{ a } ← ap(nr1) , { abl(a) } ← not abc(a) ,

abp(nr1) ← ap(nr1),not a , a ← abl(a) .

The unique answer set of TE[Π2, {r1}] is:3

{abp(nr1), ap(nr1), bl(ni1), ok(nr1), ok(ni1), ko(nr1)} . (2)

Note that applying the modules from Definition 2 only to subprogram {r1} makes us
focus on answer set candidates satisfying the residual program {i1}. The abnormality
tag abp(nr1) signals that, in order to obtain an answer set, rule r1 must not be applied.

As another example, consider:

Π3 = { nr1 : a ← b, ni1 : ← not a } .

Program TE[Π3, {r1}, {a}] has the unique answer set:

{a, abc(a), bl(nr1), bl(ni1), ok(nr1), ok(ni1), ko(nr1)} , (3)

indicating that a lacks supporting rules.
Finally, consider the following program:

Π4 = { nr1 : a ← b, nr2 : b ← a, ni1 : ← not a } .

Program TE[Π4, {r1, r2}] has four answer sets (omitting ok(nr1), ok(nr2), ok(ni1)):

{a, abp(nr2), abc(a), bl(nr1), ap(nr2), bl(ni1), ko(nr1), ko(nr2)} , (4)

{a, b, abl(a), ap(nr1), ap(nr2), bl(ni1), ko(nr1), ko(nr2)} , (5)

{a, b, abl(b), ap(nr1), ap(nr2), bl(ni1), ko(nr1), ko(nr2)} , (6)

{a, b, abl(a), abl(b), ap(nr1), ap(nr2), bl(ni1), ko(nr1), ko(nr2)} . (7)

The last example illustrates that the relaxation mechanisms underlying translation TE

can lead to overly involved explanations of the source of incoherence, as manifested by
the first and last answer set (cf. (4) and (7)). Therefore, we suggest focusing on answer
sets containing a minimum number of instances of ab predicates.4 In the last case, this
gives the second and third answer set (cf. (5) and (6)). Indeed, adding only one fact,
either (a ←) or (b ←), to the (untagged) incoherent program Π4 makes it coherent.

The next results shed some more light on the semantic links between the original and
the transformed program, whenever the former admits no answer set.

3 In what follows, we underline abnormality tags.
4 This can be implemented via minimize statements as available in Smodels.
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Theorem 3. Let Π be a logic program over A. Then, it holds that:

1. If Y is an answer set of TE[Π ] and abp(nr) ∈ Y , then (Y ∩ A) |= (body(r) →
head(r)), where (body(r) → head(r)) ∈ PF (Π);

2. If Y is an answer set of TE[Π ] and abc(a) ∈ Y , then (Y ∩ A) |= (a →∨
r∈def (a,Π)body(r)), where (a → ∨

r∈def (a,Π)body(r)) ∈ CF (Π);
3. If Y is an answer set of TE[Π ] such that, for some L ∈ loop(Π), we have L ⊆

(Y ∩ A), (Y ∩ A) |= LF (Π, L), and (Y ∩ A) |= (
∨

r∈def (a,Π)body(r)) for every
a ∈ L, then abl(a′) ∈ Y for some a′ ∈ L.

The same results hold for partial compilations, TE[Π, Π ′, A], but are omitted for brevity.
For illustration, let us return to the last three examples. Intersecting the only answer

set (2) of TE[Π2, {r1}] with the alphabet of Π2 yields the empty set. We obtain ∅ |=
(a ←), as indicated by abp(nr1) in (2). Note that the empty set is the only subset
of At(Π2) that satisfies integrity constraint i1 ∈ Π2. Proceeding analogously with the
only answer set (3) of TE[Π3, {r1}, {a}] yields {a}, and we obtain {a} |= (a → b),
as signaled by abc(a) in (3). In fact, {a} is the only subset of the atoms subject to
extrapolation that satisfies integrity constraint i1 ∈ Π3.

Finally, consider the two abnormality-minimum answer sets (5) and (6) of
TE[Π4, {r1, r2}]. Both are actually symmetrical since they refer to the same loop {a, b}
through different elements, as indicated by abl(a) and abl(b), respectively. Hence, both
answer sets (5) and (6) of TE[Π4, {r1, r2}] induce candidate set {a, b}, which falsifies
its own loop formula: {a, b} |= (� → ¬a ∧ ¬b). Note that {a} is actually another
candidate subset of At(Π4). However, this candidate suffers from two abnormalities,
as indicated by the non-minimum answer set (4) through abp(nr2) and abc(a). In fact,
we have {a} |= (b ← a), violating r2, and {a} |= (a → b), violating the completion.

The next result captures a more realistic scenario, in which only a subset of a program
is subject to extrapolation and only abnormality-minimum answer sets of the transla-
tion are considered. From the perspective of an original program Π , the abnormality-
minimum answer sets of TE[Π, Π ′] provide us with the candidate sets among At(Π)
that satisfy the requirement of being an answer set of Π under a minimum number
of repairs on Π ′. A repair is either the deletion of a rule r or an addition of a fact
(a ←) (which prevents a from being not supported or unfounded). The former repair
refers to abp(nr), which is clearly avoided when r is deleted, and the latter to abc(a) or
abl(a), since (a → ∨

r∈def (a,Π∪{a←})body(r)) and LF (Π ∪ {a ←}, L), for any loop
L containing a, then amount to (a → �) and (⊥ → ∧

a∈L¬a).

Theorem 4. Let Π be a logic program over A and (Π1, Π2) a partition of Π such that
({head(r1) | r1 ∈ Π1} ∩ At(Π2)) = ∅. Furthermore, let M be the set of all answer
sets Y of TE[Π, Π2] such that the cardinality of (Y ∩ AB(Π2)) is minimum among all
answer sets of TE[Π, Π2]. Then, it holds that:

1. If Y ∈ M, then (Y ∩A) satisfies all formulas in (PF (Π1)∪ (CF (Π1)\ {a → ⊥ |
a ∈ At(Π2)}) ∪ LF (Π1)) and all formulas in (PF (Π2) ∪ CF (Π2) ∪ LF (Π2))
under a minimum number of repairs on Π2;

2. If X ⊆ A satisfies all formulas in (PF (Π1) ∪ (CF (Π1) \ {a → ⊥ | a ∈
At(Π2)})∪LF (Π1)) and all formulas in (PF (Π2)∪CF (Π2)∪LF (Π2)) under a
minimum number of repairs on Π2, then there is a Y ∈ M such that X = (Y ∩A).
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3.3 Ordering Rule Applications

Our last debugging component allows for imposing an order on the rule applications. To
this end, we make use of ordered logic programs following the framework of Delgrande,
Schaub, and Tompits [1].

Definition 4. Let Π be a logic program over A and let < be a strict partial order
over Π . Then, To[Π, <] consists of the following rules, for all r, r′ ∈ Π with r < r′

and {r1, . . . , rk} = {r′′ | r < r′′}:

ok(nr) ← , rdy(nr,nr′) ← ap(nr′) ,

ok(nr) ← rdy(nr,nr1), . . . , rdy(nr,nrk
) , rdy(nr,nr′) ← bl(nr′) .

Furthermore, To[<] is a shortcut for To[Π<, <], where Π< = {r, r′ ∈ Π | r < r′}.

The order < on Π singles out the answer sets of Π whose rule application and/or block-
age is compatible with <. That is, given the order r1 < r2, the higher-ranked rule r2
must be applied or found to be blocked before r1. In other words, < selects those an-
swer sets X of Π that can be generated by an appropriate sequence of elements of ΠX .
We refer for a detailed formal elaboration to Delgrande, Schaub, and Tompits [1].5

3.4 Debugging Programs with Variables

With two exceptions, the translations discussed so far carry over to programs with vari-
ables simply by using parametrized names. To this end, replace every occurrence of a
name nr by nr(X), where X is the sequence of variables occurring in rule r. Accord-
ingly, a rule (r : p(X, Y ) ← q(1, X),not s(Y )) gets the name nr(X, Y ), for instance,
yielding

ap(nr(X, Y )) ← ok(nr(X, Y )), q(1, X),not s(Y ) and
{ p(X, Y ) } ← ap(nr(X, Y )) .

Similarly, we get for an atomic formula p(X, Y ):

{ abl(p(X, Y )) } ← not abc(p(X, Y )) .

The final representation (e.g., with or without function symbols) of an atomic formula
like abl(p(X, Y )) depends on the language capacities of the target ASP solver.

The first exception is resolved by replacing the rules in Item 2 of Definition 2 by

{ a(X) } ← not apx(a(X)) and abc(a(X)) ← a(X),not apx(a(X)) ,

and by adding, for each r ∈ def (a, Π), the rule

apx(a(X)) ← ap(nr(Y )) ,

5 For obtaining the precise semantics of [1], predicate bl must actually be replaced by another
predicate bl� using no nested expressions like not not c. The definition of bl� is omitted here.
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where apx is an auxiliary predicate symbol and X is a subsequence of the variables
in Y . An atom apx(a(c)) indicates that a(c) is not derivable given that all putative
rules in def (a, Π) are inapplicable.

The second exception concerns translation To which necessitates that the set of dom-
inating rules {r′′ | r < r′′} is ground in order to guarantee that all instances have been
applied or blocked (cf. Definition 4). Unlike this, the name of r, nr, can be parametrized.

Apart from firmer instantiations, further optimizations are possible by use of domain
predicates for names and atoms, like name and atom. For instance, a rule (ok(nr) ←
not ok(nr)) could be represented as (ok(X) ← name(X ),not ok(X)).

3.5 Implementation

The tool spock implements a collection of methods for debugging ASP programs,
following the ideas introduced above. The system can be used either with DLV [11] or
with Smodels [7] (together with Lparse) and is obtainable at [2], where also some
further information about the system is available.

The tool is written in Java 5.0 and published under the GNU General Public Li-
cense. The input of spock is a logic program in the core language of either DLV or
Smodels, read from the system standard input and/or from (multiple) files. The out-
put varies according to the selected functionalities, determined by a set of options. The
most important syntax extension of the input programs, however, is the labeling of rules,
allowing debugging mechanisms to explicitly refer to certain rules.

4 Elements of a Debugging Language

In order to enhance the usability and convenience of our debugging technique, we pro-
vide in this section some basic elements for a higher-level debugging language. The
idea is to compile a program once and to explore it subsequently by means of debugging
statements. To this end, we assume that the program Π has been compiled into TK[Π ].
A debugging request, Δ, formulated in the debugging language, is compiled by means
of a function D into a tagged program D[Δ] such that the debugging results are read
off the answer sets of the combined tagged program TK[Π ] ∪ D[Δ]. We stress that the
subsequent discussion is intended as a starting point only, given at a rather informal
level; a detailed elaboration of the full language will be explored elsewhere.

The first type of expressions are referred to as enforcement statements since they
may alter the original set of answer sets. The following expressions are enforcement
statements (in what follows, let C be a set of literals over At(Π) and nr the name of
some r ∈ Π):

– block nr if C;
– apply nr if C;
– assign a1 = v1, . . . , ak = vk if C, where ai ∈ At(Π) and vi ∈ {t, f} for

i = 1, . . . , k.
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The semantics of enforcement statements is given via a compilation function D:

– D[block nr if C] = {ko(nr) ← C, bl(nr) ← C, ok(nr) ← C};
– D[apply nr if C] = {ap(nr) ← C, ok(nr) ← C};
– D[assign a1 =v1, . . . , ak =vk if C] = {ai ← C | vi = t} ∪ {← ai, C | vi = f}.

For example, block nr(X) if not (X > 5) blocks rule r unless instantiated
with objects larger than 5. Also, one may use tags within the precondition, as in
block nr(X) if ap(ns(X)).

Unlike the above, projection statements do not alter the original set of answer sets
but return a specific subset of the original answer sets:

– blocked n1, . . . ,nk if C;
– applied n1, . . . ,nk if C;
– assigned a1 = v1, . . . , ak = vk if C, where ai ∈ At(Π) and vi ∈ {t, f} for

i = 1, . . . , k.

The semantics of projection statements is again given in terms of a compilation:

– D[blocked n1, . . . ,nk if C] = {← not bl(n1), . . . ,not bl(nk), C};
– D[applied n1, . . . ,nk if C] = {← not ap(n1), . . . ,not ap(nk), C};
– D[assigned a1 = v1, . . . , ak = vk if C] = {← not ai, C | vi = t} ∪ {← ai, C |

vi = f}.

For example, blocked nr(X), ns(Y ) if X = Y eliminates answer sets to which rules
r and s contribute with different instantiations. Applying the compilation function D,
we get

D[blocked nr(X), ns(Y ) if X = Y ] =
{← not bl(nr(X)),not bl(ns(Y )), X = Y }.

Observe that the translation of the corresponding enforcement statement would yield
multiple rules whose instantiations cannot be controlled in a synchronous fashion.

Next, we introduce expressions for analyzing incoherent situations by extrapolation,
correspondingly called extrapolation statements:

– extrapolate nr if C;
– extrapolate x s if C, where x ∈ {p, c, l} and s ∈ ({nr | r ∈ Π} ∪ At(Π));
– minimize X , where X ⊆ {p, c, l}.

Further constructs, for instance, statements applying to entire sets of rules and/or atoms,
are definable in a straightforward way but omitted for space reasons.

For a program Π , the function D defines the semantics of extrapolation statements:

– D[extrapolate nr if C] = TE[Π, {r}];
– D[extrapolate p s if C] = TP[{r}], provided that s ∈ {nr | r ∈ Π};
– D[extrapolate c s if C] = TC[Π, {s}], provided that s ∈ At(Π);
– D[extrapolate l s if C] = TL[{s}], provided that s ∈ At(Π).

The semantics of the minimize command depends on the capacities of the underlying
ASP solver. For instance, in Smodels, a global minimization of abnormalities, using
a binary predicate ab/2, could be expressed as minimize{ab(X, Y )}.
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A pragmatic variant of extrapolation is variation:

– vary a1, . . . , ak if C, where ai ∈ At(Π) for i = 1, . . . , k.

The semantics of variation statements is as follows:

– D[vary a1, . . . , ak if C] = { {ai} ← C | i = 1, . . . , k }∪{ ko(nr) ← C | r ∈ Π,
head(r) = ai, i = 1, . . . , k }.

Finally, we introduce some procedural flavor, which allows for imposing a certain
order of rule and/or atom considerations. A basic ordinal statement is an expression of
the following form:

– s before t, where s, t ∈ {nr | r ∈ Π} or s, t ∈ At(Π).

Its semantics is defined in the following way:

– D[s before t] = To[{rt < rs}], provided that s = nrs and t = nrt ;
– D[s before t] = To[{rt < rs | head(rs) = s, head(rt) = t}], provided that

s, t ∈ At(Π).

The (atom-based) generalization to sets is defined as A before B where A, B ⊆
At(Π), and it could be used to debug a generate-and-test encoding by specifying the
generate atoms’ precedence over the test atoms.

5 Discussion and Related Work

Although debugging is mentioned as a possible application in many papers on program
analysis (often with the implicit assertion that incoherent and erroneous programs are
the same thing), there are relatively few papers that are primarily focused on debugging.

The noMoRe system [3] uses a graph-based algorithm for computing the answer sets
of a program. The interface to the system allows the computation process to be visu-
alized and animated, so that the user can observe certain parts of the computation pro-
cess. Given some background knowledge on how answer-set computation algorithms
work, this is an intuitive and appealing approach to debugging. However, as it works
on ground programs, dealing with larger programs is difficult. Also, at the conceptual
level, it blurs the distinction between what a program means and how its answer sets
are computed.

Brain and De Vos [4] start by characterizing bugs as mismatches between what the
programmer expects and the actual answer sets of a program. Two query algorithms,
answering why some set S is in some answer set A and why some set S is not con-
tained in any answer set, can then be used to explore these mismatches. The algorithms
suggested are procedural and similar to the ones used in ASP solvers, suggesting that
an approach using a program-level transformation would be more practical.

Syrjänen [5] discusses a pragmatic approach to debugging, focusing on incoherent
ground programs, whose source of incoherence is an active constraint (or an odd nega-
tive cycle). Derived from the field of symbolic diagnosis [12], the corresponding system
uses an approach similar to ours, using program transformations to find minimal sets of
constraints that would be active and to find odd cycles.
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Pontelli and Son [6] adopt the concept of justifications [13,14,15] to the context of
ASP. Roughly, justifications formalize reasons why an atom is in an answer set.

One important area that is not considered by the existing approaches is that of inter-
faces to debugging systems. Most of the proposed methods produce very large amounts
of structured information, and it is difficult to automatically identify which parts of it
are of interest to the programmer [4]. Thus, the design of the debugging interface is
critical to the utility of the finished system. It must allow the programmers to quickly
and easily focus in on areas that they consider to be erroneous without overloading them
with information. This is an open and important area of research if ASP is to achieve
truly wide-spread use. Other directions of future work include extending the results
given here to handle constructs such as cardinality rules, disjunction, aggregates, and
functions. Also, there is a potential to use similar tagging systems to allow programs to
reason about their own consistency. We mention consistency restoring rules [16] as one
such example.
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concisely. In particular, for programs without negation, the new approach
collapses to the usual minimal model semantics, and when restricted to
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semantics for disjunctive programs, which generalizes both the well-founded se-
mantics of normal logic programs as well as the minimal model semantics of
(negationless) disjunctive programs. An important characteristic of the new ap-
proach is that it is purely logical: the meaning of a program is characterized
solely by examining its models (actually, its infinite-valued models, see below).
Having a purely logical semantics allows one to reason about programs using
properties of the logic under consideration.

The present work builds on the infinite-valued approach that was recently
introduced for normal logic programs [9]. In [9] a new infinite-valued logic is
introduced and it is demonstrated that every normal logic program has a unique
minimum model under this new logic; moreover, it is shown that when this model
is collapsed to three-valued logic, it coincides with the well-founded semantics.
It is therefore natural to ask: “can the infinite-valued approach be lifted to the
class of disjunctive logic programs with negation giving in this way a respectable
new semantics for this class of programs?”.

In this paper we reply affirmatively to this question. In particular, we argue
that the semantics of a disjunctive logic program with negation can be captured
by the program’s set of minimal infinite-valued models which, as we demonstrate,
is always non-empty. Moreover, we show that the infinite-valued semantics can
be equivalently defined using Kripke models. This alternative characterization
allows us to prove properties of the new semantics more concisely. In particular,
we prove that when restricted to programs without negation, the new approach
collapses to the usual minimal model semantics, and when restricted to normal
logic programs, it collapses to the well-founded semantics. Finally, we demon-
strate that every program has a finite set of minimal infinite-valued models;
actually, these models can be identified by restricting attention to a finite subset
of the truth values of the underlying logic. We conclude with a comparison of the
proposed approach with some other proposals for assigning semantics to disjunc-
tive logic programs with negation that are related to well-founded semantics.

2 The Infinite-Valued Semantics

In this section we define the infinite-valued semantics for disjunctive logic pro-
grams with negation. Our presentation extends the one given in [9] for normal
logic programs. We study the class of disjunctive logic programs:

Definition 1. A disjunctive logic program is a finite set of clauses of the form:

p1 ∨ · · · ∨ pn ← q1, . . . , qk, ∼r1, . . . , ∼rm (1)

where n ≥ 1 and k, m ≥ 0.

Note that in this paper we consider only finite programs; the results can be lifted
to the more general first-order case (with a corresponding notational overhead).

The basic idea behind the infinite-valued approach is that in order to have a
purely model theoretic semantics for negation-as-failure, one should consider a
richer logical framework than classical logic. Informally, we extend the domain of
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truth values and use these extra values to distinguish between ordinary negation
and negation-as-failure. Consider for example the following (normal) program:

p ← r ← ∼p s ← ∼q

Under the negation-as-failure approach both p and s receive the value True.
We would argue, however, that in some sense p is “truer” than s. Namely, p
is true because there is a rule which says so, whereas s is true only because
we are never obliged to make q true. In a sense, s is true only by default. Our
truth domain adds a “default” truth value T1 just below the “real” truth T0,
and a weaker false value F1 just above (“not as false as”) the real false F0. We
can then understand negation-as-failure as combining ordinary negation with
a weakening. Thus ∼ F0 = T1 and ∼ T0 = F1. Since negations can effectively
be iterated, our domain requires a whole sequence . . . , T3, T2, T1 of weaker and
weaker truth values below T0 but above a neutral value 0; and a mirror image
sequence F1, F2, F3, . . . above F0 and below 0. In fact, in [9] a Tα and a Fα are
introduced for all countable ordinals α; since in this paper we deal with finite
propositional programs, we will not need this generality here.

In [9] it is demonstrated that, over this extended domain, every normal logic
program with negation has a unique minimum model; and that in this model, if
we collapse all the Tα and Fα to True and False respectively, we get the three-
valued well-founded model [10]. Considering the above example program, its
minimum infinite-valued model is {(p, T0), (q, F0), (r, F1), (s, T1)}, and therefore
its well-founded model is {(p, T ), (q, F ), (r, F ), (s, T )}. In this paper we extend
the results of [9] by demonstrating that every disjunctive logic program has a
(non-empty) set of minimal infinite-valued models.

The above discussion can now be formalized as follows. We first need to define
an infinite-valued logic whose truth domain consists of the following values:

F0 < F1 < F2 · · · < 0 < · · · < T2 < T1 < T0

Intuitively, F0 and T0 are the classical False and True values and 0 is the unde-
fined value. The values below 0 are ordered like the natural numbers. The values
above 0 have exactly the reverse order. In the following we denote by V the set
consisting of the above truth values. A notion that will prove useful in the sequel
is that of the order of a given truth value:

Definition 2. The order of a truth value is defined as follows: order(Tn) = n,
order(Fn) = n and order(0) = +∞.

Let Q be a set of propositional symbols out of which our programs are con-
structed. Interpretations are then defined as follows:

Definition 3. An infinite-valued interpretation is a function from the set Q of
propositional symbols to the set V of truth values.

In the rest of the paper, the term “interpretation” will mean an infinite-valued
one (unless otherwise stated). As a special case of interpretation, we will use ∅
to denote the interpretation that assigns the F0 value to all members of Q.
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Definition 4. The meaning of a formula with respect to an interpretation I can
be defined as follows:

I(∼A) =

⎧⎨
⎩

Tn+1 if I(A) = Fn

Fn+1 if I(A) = Tn

0 if I(A) = 0

I(A ∧ B) = min{I(A), I(B)}
I(A ∨ B) = max{I(A), I(B)}

I(A ← B) =
{

T0 if I(A) ≥ I(B)
I(A) if I(A) < I(B)

The notion of satisfiability of a clause can now be defined:

Definition 5. Let Π be a program and I an interpretation. Then, I satisfies a
clause p1∨· · ·∨pk ← l1, . . . , ln of Π if I(p1∨· · ·∨pk) ≥ I(l1∧· · ·∧ln). Moreover,
I is a model of Π if I satisfies all clauses of Π.

We denote by L∞ the infinite-valued logic induced by infinite-valued models.
Given an interpretation of a program, we adopt specific notations for the set of
atoms of the program that are assigned a specific truth value and for the subset
of the interpretation that corresponds to a particular order:

Definition 6. Let Π be a program, I an interpretation and v ∈ V . Then I ‖ v =
{p ∈ Q | I(p) = v}. Moreover, if n < ω, then I�n = {(p, v) ∈ I | order(v) = n}.
The following relations on interpretations will be used later in the paper:

Definition 7. Let I and J be interpretations and n < ω. We write I =n J , if
for all k ≤ n, I ‖ Tk = J ‖ Tk and I ‖ Fk = J ‖ Fk.

Definition 8. Let I and J be interpretations and n < ω. We write I �n J , if
for all k < n, I =k J and either I ‖ Tn ⊂ J ‖ Tn and I ‖ Fn ⊇ J ‖ Fn, or
I ‖ Tn ⊆ J ‖ Tn and I ‖ Fn ⊃ J ‖ Fn. We write I �n J if I =n J or I �n J .

Definition 9. Let I and J be interpretations. We write I �∞ J , if there exists
n < ω (that depends on I and J) such that I �n J . We write I �∞ J if either
I = J or I �∞ J .

In comparing two interpretations I and J we consider first only those variables
assigned “standard” truth values (T0 or F0) by at least one of the two interpre-
tations. If I assigns T0 to a particular variable and J does not, or J assigns F0 to
a particular variable and I does not, then we can rule out I �∞ J . Conversely,
if J assigns T0 to a particular variable and I does not, or I assigns F0 to a
particular variable and J does not, then we can rule out J �∞ I. If both these
conditions apply, we can immediately conclude that I and J are incomparable. If
exactly one of these conditions holds, we can conclude that I �∞ J or J �∞ I,
as appropriate. However, if neither apply, then I and J are equal in terms of
standard truth values; they both assign T0 to each of one group of variables and
F0 to each of another. In this case we must now examine the variables assigned
F1 or T1. If this examination proves inconclusive, we move on to T2 and F2, and
so on. Thus �∞ gives the standard truth values the highest priority, T1 and F1
the next priority, T2 and F2 the next, and so on.
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It is easy to see that the relation �∞ on the set of interpretations is a partial
order (i.e., it is reflexive, transitive and antisymmetric). On the other hand, for
every n < ω, the relation �n is a preorder (i.e., reflexive and transitive).

From the above discussion it should be now clear that the infinite-valued
semantics of a disjunctive logic program with negation is captured by the set of
�∞-minimal infinite-valued models of the program. In Section 4 we’ll see that
this set is always non-empty. These ideas are illustrated by the following example:

Example 1. Consider the program:

b ∨ l ← ∼p l ∨ p ←
We examine the minimal models of this program. Obviously, in every mini-
mal model either l or p must have the value T0 (this is due to the second
clause). Assume first that l is T0; then this immediately gives the minimal model
{(l, T0), (p, F0), (b, F0)}. Assume on the other hand that p is T0; this implies that
∼p is F1, and therefore either b or l must be F1 (or greater). Therefore, we also
have the minimal models {(l, F0), (p, T0), (b, F1)} and {(l, F1), (p, T0), (b, F0)}.

We denote by Lmin
∞ the non-monotonic logic induced by �∞-minimal L∞ models.

3 Kripke Semantics

We present an alternative but equivalent representation of the infinite-valued
semantics in terms of Kripke models. This representation is useful in several
respects. First, as a heuristic device it may help in visualising and proving prop-
erties about the semantics (Section 5). Second, it may help to relate the semantics
to other approaches based on possible-worlds frames, such as equilibrium and
partial equilibrium logic ([6,4]). Third, it may provide a basis in the future when
searching for axiomatic systems capturing the underlying logic L∞.

Definition 10 (Centered linear frame). A centered linear frame is a Kripke
frame 〈W, ≤〉 with a set of worlds W consisting of two distinguished elements
w∞, w′∞ plus two ω-sequences w0, w1, . . . and w′0, w

′
1, . . . and a linear ordering

‘≤’ satisfying, wi ≤ wi+1, wi ≤ w∞, w′i+1 ≤ w′i, w′∞ ≤ w′i and w∞ ≤ w′∞ for
any i < ω.

From Definition 10 it follows that wi ≤ w′j for any i, j. Furthermore, we can
depict both infinite chains w0, w1, . . . and . . . , w′1, w

′
0 respectively bounded by

w∞ and w′∞ in the middle as follows:

w0 ≤ w1 ≤ · · · ≤ w∞ ≤ w′∞ ≤ · · · ≤ w′1 ≤ w′0.

Given any world w �∈ {w′∞, w′0} we define next(w) as the immediate successor of
w in the chain, that is, next(wi) = wi+1, next(w∞) = w′∞ and next(w′i+1) = w′i.

Definition 11 (Centered linear model). A centered linear model is a Kripke
model 〈W, ≤, σ〉 where 〈W, ≤〉 is a centered linear frame and σ : Q×W −→ {0, 1}
is a valuation such that σ(p, w) = 1, w ≤ u ⇒ σ(p, u) = 1 and σ(p, w0) = 0 and
σ(p, w′0) = 1 for all atoms p.
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Given a Kripke model, we let Wi, W
′
i stand for the sets of atoms that are true at

the respective worlds wi, w
′
i, for i = 0, 1, . . . , ∞. From Definition 11 we conclude:

∅ = W0 ⊆ W1 ⊆ · · · ⊆ W∞ ⊆ W ′
∞ ⊆ · · · ⊆ W ′

1 ⊆ W ′
0 = Q (2)

where in particular
⋃
i

Wi ⊆ W∞ and W ′
∞ ⊆

⋂
i

W ′
i .

An interesting way of describing a centered linear model M is using the se-
quence M = (W0,W1, . . . ,W∞) where each Wi is a three-valued interpretation
Wi = (Wi, W

′
i ) so that atoms in Wi, W ′

i \ Wi and Q \ W ′
i are respectively seen

as true, undefined and false up to order i. We may define the standard “less
or equal truth” relation � between pairs so that Wi � Wj iff Wi ⊆ Wj and
W ′

i ⊆ W ′
j . This allows rephrasing (2) as a simple chain W0 � W1 � · · · � W∞

with W0 = 〈∅, Q〉 assigning false to all atoms. Interpretation W∞ contains
the maximum truth in the chain and is important for comparisons with well-
founded semantics (Proposition 4 in Section 5). A three-valued interpretation
like W = (W, W ) is said to be complete (no undefined atoms). We say that
M = (W0,W1, . . . ,W∞) is i-complete for some i ∈ {1, 2, . . . , ∞} when Wi is
complete. Note that this means that ∀j (j ≥ i ⇒ Wj = Wi) and W∞ = Wi.

Definition 12 (Routley frame). A Routley frame is a triple 〈W, ≤, ∗〉 where
〈W, ≤〉 is a Kripke frame and ∗ : W → W is such that x ≤ y if y∗ ≤ x∗.

Definition 13 (Zigzag model). A zigzag model is a tuple 〈W, ≤, ∗, σ〉 where
〈W, ≤, σ〉 is a centered linear Kripke model and 〈W, ≤, ∗〉 is a Routley frame with
∗ defined as: (wi)∗ = w′i and (w′i)

∗ = wi for i = 0 and i = ∞; (w′j+1)
∗ = wj and

(wj+1)∗ = w′j for all j < ω.

The structure below shows the effect of ∗ in solid lines, and the linear accessibility
relation ≤ in dotted lines:

w0

��

�� w1

����
��

��
�� w2

����
��

��
�� . . . ��

����
��

��
�

w∞

�� ��
w′0

��

w′1

��������
�� w′2

��������
�� . . .

���������
�� w′∞��

��

The name of “zigzag” comes from the path followed by successive applications of
the ∗-function. Given a zigzag model M = 〈W, ≤, ∗, σ〉, valuation σ is extended to
an arbitrary formula ϕ by means of the usual conditions for positive connectives
in intuitionistic logic, and for negation by the following condition: σ(∼ϕ, w) = 1
iff σ(ϕ, w∗) = 0.

Proposition 1. For any zigzag model 〈W, ≤, ∗, σ〉 and any formula ϕ,
σ(ϕ, w) = 1 and w ≤ u ⇒ σ(ϕ, u) = 1.

We say that M is a model of a theory Γ , written M |= Γ , if σ(ϕ, w1) = 1 for all
ϕ ∈ Γ (note that satisfaction is in world w1 and not w0).
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Definition 14 (Induced valuation). Given a zigzag model M = 〈W, ≤, ∗, σ〉
we define its induced valuation function M̂ that assigns a value M̂(ϕ) ∈ V to
any formula ϕ as follows:

M̂(ϕ) def=

⎧⎨
⎩

Ti iff wi �|= ϕ and wi+1 |= ϕ
Fi iff w′i+1 �|= ϕ and w′i |= ϕ
0 iff w∞ �|= ϕ and w′∞ |= ϕ

This definition applied to atoms implies M̂ ‖ Ti = Wi+1\Wi, M̂ ‖ Fi = W ′
i \W ′

i+1

and M̂ ‖ 0 = W ′∞ \ W∞. Notice that this assignment is well constructed due to
condition (2). Truth constants T and F can be incorporated as special atoms
satisfying M̂(T ) = T0 and M̂(F ) = F0, that is, T ∈ W1 \ W0 and F ∈ W ′

0 \ W ′
1.

Proposition 2. Let M = (W0,W1, . . . ,W∞) be a zigzag model. Then the
three-valued interpretation W∞ corresponds to collapsing all M̂(p) = Ti to true,
all M̂(p) = Fi to false and M̂(p) = 0 to undefined.

It is not difficult to see that for any infinite-valued interpretation I we can always
build a zigzag model M whose induced valuation coincides with I on all atoms
– the next theorem asserts that it also coincides for any arbitrary formula.

Theorem 1. Let I be an infinite-valued interpretation and M a zigzag model
such that M̂(p) = I(p) for all atom p. Then I(ϕ) = M̂(ϕ) for any formula ϕ.

Proof. We begin defining the last world last(ϕ) in the chain at which formula
ϕ does not hold so that last(ϕ) = wi when M̂(ϕ) = Ti, last(ϕ) = w′i+1 when
M̂(ϕ) = Fi and last(ϕ) = w∞ when M̂(ϕ) = 0. Note that last(ϕ) �∈ {w′∞, w′0}
and so next(last(ϕ)) (the first world at which ϕ holds) is always defined.

Lemma 1. M̂(α) ≥ M̂(β) iff last(α) ≤ last(β).

Thus, last(α) = last(β) implies M̂(α) = M̂(β). We proceed now by structural
induction.

1. For the base case, if ϕ is an atom p, M̂(p) = I(p) by construction.
2. If ϕ = α∧β, the last world at which ϕ does not hold is max(last(α), last(β)).

By Lemma 1 we conclude M̂(α ∧ β)=min(M̂(α), M̂(β)). If ϕ = α ∨ β the
proof is analogous.

3. If ϕ = α → β, we have two cases: first, if M̂(α) ≤ M̂(β) then, by Lemma 1,
last(α) ≥ last(β) and this means that any world wk satisfies wk �|= α or wk |=
β, excepting w0. In other words, last(α → β) = w0 and so M̂(α → β) = T0.
Otherwise, when M̂(α) > M̂(β), by Lemma 1 we get last(α) < last(β).
Then, the last world wk where wk |= α but wk �|= β is last(β), and thus
α → β is also false until last(β). As a result, M̂(α → β) = M̂(β).

4. If ϕ =∼ α. Assume M̂(α) = Ti, that is, wi �|= α and wi+1 |= α. As wi =
(w′i+1)

∗ and wi+1 = (w′i+2)
∗ we get w′i+1 |=∼α and w′i+2 �|=∼ α. But then,

from Definition 14, we get M̂(α) = Fi+1. Analogously, when M̂(α) = Fi we
have w′i+1 �|= α and w′i |= α that, since w′i+1 = (wi+2)∗ and w′i = (wi+1)∗, we
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get wi+1 �|=∼α and wi+2 |=∼α and so M̂(α) = Ti+1. Finally, when M̂(α) = 0
we have w∞ �|= α and w′∞ |= α, but as w∞ = (w′∞)∗ and w′∞ = (w∞)∗, we
obtain w′∞ |=∼α and w∞ �|=∼α that means M̂(∼α) = 0. �

We can now alternatively define Lmin
∞ in terms of minimal Kripke models. Let

M1 = (W0,W1, . . . ,W∞) and M2 = (U0,U1, . . . ,U∞) be a pair of zigzag
models. We say that M1 � M2 iff either M1 = M2 or ∃i

(∀j (j ≤ i ⇒ Wj =
Uj) ∧ Wi ≺ Ui

)
.

Proposition 3. M1 � M2 iff M̂1 �∞ M̂2.

Therefore, we have two alternative but equivalent definitions of the semantics
of disjunctive logic programs with negation. In the rest of the paper, the two
approaches will be used interchangeably.

4 Existence of Minimal Models

In this section we demonstrate that every disjunctive program has at least one
minimal infinite-valued model. The proof is based on the dual of Zorn’s Lemma1:

Lemma 2 (The dual of Zorn’s Lemma). Every non-empty partially ordered
set in which each downward chain has a lower bound, contains a minimal element.

First, notice that the set of models of a disjunctive logic program is non-empty,
because the interpretation which assigns to every propositional atom the value
T0 is always a model. Second, notice that the set of models of a program is
partially ordered by the �∞ relation. It suffices to show that every (possibly
transfinite) downwards chain of models under �∞, has a lower bound which is
also a model of the program.

Therefore, consider a chain M of infinite-valued models of a disjunctive pro-
gram Π : M0 �∞ M1 �∞ M2 �∞ · · · �∞ Mα �∞ · · · . We describe at an
intuitive level the construction of a lower bound M of this chain. We first start
with all models that belong to M and we “intersect” them at their zero’th level
of truth values. This gives us a (partial) interpretation that will serve as the
zero’th level of the lower bound M . We now consider only those elements of the
chain M whose zero’th order part agrees with the partial interpretation we have
just constructed. We repeat the above process with this new set of models and
with the order one values. In the limit of this process, certain atoms may have
not received a value; we assign to them the value 0. We now formalize the above
construction:

Definition 15. Let S be a set of infinite-valued interpretations of a given pro-
gram and n ∈ ω. Then, we define

∧n S = {(p, Tn) | ∀M ∈ S, M(p) = Tn}
and

∨n
S = {(p, Fn) | ∃M ∈ S, M(p) = Fn}. Moreover, we define

⊙n
S =

(
∧n

S)
⋃

(
∨n

S).
1 Notice that the proof given in this section can be extended to apply to infinite

propositional programs (and therefore also to the case of first-order programs).
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Let Π be a program and let M be a downward chain of models of Π . We can
now define the following sequence of sets of models of Π :

S0 = M
Sn+1 = {M ∈ Sn | M�n =

⊙n
Sn}

We now have the following lemma:

Lemma 3. For every n < ω, Sn �= ∅.

Proof. We demonstrate by induction on n that Sn is a non-empty chain identical
to M the only difference being that an initial part of M may be missing from
Sn. The base case is obvious. Assume the statement holds for n ie., that Sn is
a nonempty downward chain of the form Mα �∞ Mα+1 �∞ Mα+2 �∞ · · · .
For the induction step observe that since Mα ‖ Tn ⊇ Mα+1 ‖ Tn ⊇ · · · and
Mα ‖ Fn ⊆ Mα+1 ‖ Fn ⊆ · · · , after an initial segment of this chain, all the
members of the chain agree on their level n components. Therefore, Sn+1 forms
a non-empty chain. This establishes the desired result. �

Example 2. Consider the program just consisting of rule: s ∨ p ←∼s

Moreover, consider the following models of the above program:
Mn = {(s, Tn), (p, F0)}. Clearly, M0 �∞ M1 �∞ M2 �∞ · · · . Then, it is not
hard to see that S0 = {M0, M1, M2, M3, . . .}, S1 = {M1, M2, M3, . . .}, and so on.

We can now demonstrate the main theorem of this section which actually states
that for every downward chain of models of a given disjunctive program, there
exists a lower bound:

Theorem 2. Let Π be a program and let M be a downwards chain of models
of Π. Then M has a lower bound which is a model of Π.

Proof. Consider models N0 ∈ S1, N1 ∈ S2, . . . , Nk ∈ Sk+1, . . . , k < ω. We
construct an interpretation M as follows:

M(p) =
{

(
⋃

k<ω(Nk�k))(p) if this is defined
0 otherwise

We claim that M is a model of the program. Assume it is not. Consider then a
clause p1 ∨ · · · ∨ pm ← B such that M(p1 ∨ · · · ∨ pm) < M(B). There are three
cases:

– M(p1 ∨ · · · ∨ pm) = Fk, k < ω. But then, Nk(p1 ∨ · · · ∨ pm) = Fk and since
Nk is a model of Π , we have Nk(B) ≤ Fk. But this implies that M(B) ≤ Fk,
and therefore M(p1 ∨ · · · ∨ pm) ≥ M(B) (contradiction).

– M(p1∨· · ·∨pm) = Tk, k < ω. Then, Nk(p1 ∨· · ·∨pm) = Tk and since Nk is a
model of Π , we have Nk(B) ≤ Tk. But this easily implies that M(B) ≤ Tk,
and therefore M(p1 ∨ · · · ∨ pm) ≥ M(B) (contradiction).
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– M(p1 ∨· · ·∨pm) = 0. But then, for every k < ω, we have Nk(p1 ∨· · ·∨pm) <
Tk. Now, since Nk is a model of Π for every k, it is Nk(B) < Tk. But
this then implies that M(B) ≤ 0, and therefore M(p1 ∨ · · · ∨ pm) ≥ M(B)
(contradiction).

Moreover, it is straightforward to see that, by construction, M is a lower bound
for all the members of the chain. �

The above discussion leads to the following theorem:

Theorem 3. Every disjunctive logic program with negation has a non-empty set
of minimal infinite-valued models.

Proof. Immediate from the dual of Zorn’s Lemma and Theorem 2. �

Example 3. Consider again the program:

s ∨ p ←∼s

together with the models:

Mn = {(s, Tn), (p, F0)}
Applying the above construction to the chain M0 �∞ M1 �∞ M2 �∞ · · · , we
get the lower bound M = {(s, 0), (p, F0)} of the chain.

Actually, it is not hard to see that the above program has two minimal models,
namely {(p, T1), (s, F0)} and {(p, F0), (s, 0)}.

Example 4. Consider the program:

p ∨ q ∨ r ←
p ← ∼q
q ← ∼r
r ← ∼p

By inspection, this programhas the threeminimalmodels {(p, T0), (q, T2), (r, F1)},
{(p, F1), (q, T0), (r, T2)} and {(p, T2), (q, F1), (r, T0)}.

5 Properties of the Minimal Model Semantics

We turn to properties of the minimal infinite-valued semantics. First we see that
new approach extends the well-founded semantics of normal logic programs:

Proposition 4. A normal logic program Π has a �-minimum model M =
(W0,W1, . . . ,W∞) where W∞ is the well-founded model of Π.

Proof. [9] shows that every normal logic program has a minimum infinite-valued
model (Theorem 7.4) which when collapsed to three-valued logic coincides with
the well-founded model (Theorem 7.6). From these two results and Proposition 2,
the result above follows immediately. �
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In other words, when we restrict the syntax to that of normal logic programs, the
infinite-valued approach provides the well-founded model of the program, apart
from additional information. In the case of the �∞-least model characterisation,
the well-founded model is obtained by collapsing all the Ti and Fi values in the
model into T and F respectively. In the case of the corresponding �-least zigzag
model, the well-founded model is directly obtained by just keeping the W∞ pair
and ignoring all the rest. In fact, when we later compare the infinite-valued ap-
proach to other disjunctive well-founded semantics, we will also restrict the study
to pair W∞ so that we just handle a three-valued interpretation. A different and
interesting open topic is the possible utility of the rest of information contained
in the infinite-valued minimal models, which captures somehow the ordering or
level in which we make default assumptions to compute the final result.

As we are now going to see, the approach we propose is compatible with the
minimal model semantics for (negation-less) disjunctive logic programs. A pos-
itive disjunctive logic program is a set of clauses like (1) where m = 0 (i.e.,
they have no negated literals). Given a classical model X we can define a corre-
sponding 1-complete zigzag model MX so that W1 = (X, X). This implies all
Wj = W ′

j = X except W0 = ∅ and W ′
0 = Q that are fixed. An i-complete model

assigns to any atom a value of order smaller than i – when i = 1 the value can
just be T0 or F0. The following pair of lemmas can be easily proved.

Lemma 4. For a positive disjunctive program Π, X |= Π in classical logic iff
MX |= Π.

Lemma 5. Any �-minimal model of a positive disjunctive program Π is
1-complete.

Theorem 4. Let Π be a positive disjunctive logic program. Then: (i) if X is
a minimal classical model of Π then MX is a �-minimal model of Π; (ii) if
M = (W0,W1, . . . ,W∞) is a �-minimal model of Π, then M is 1-complete,
and W1 is a minimal classical model of Π.

Proof. (i) If X is a minimal classical model, by Lemma 4, MX |= Π . Assume we
have some �-minimal model of Π strictly smaller than MX – by Lemma 5, such a
model is 1-complete, call it MY , and since it is strictly smaller than MX , Y ⊂ X .
By Lemma 4, Y |= Π , and this contradicts minimality of classical model X . For
(ii), Lemma 5 directly implies that M is 1-complete, i.e., W1 = (W1, W1). By
Lemma 4, W1 |= Π . Assume there exists a smaller classical model Y ⊂ W1. By
Lemma 4, MY |= Π . Since MY is �-smaller than MX we get a contradiction. �

6 Identifying the Minimal Models

In this section we demonstrate that every disjunctive logic program has a finite
set of minimal infinite-valued models. This result is not immediately obvious
since the underlying logic has an infinite number of truth values. The key idea
behind the proof is that if |S| is the number of propositional symbols of a pro-
gram, then it suffices to consider as possible candidates for minimality the models
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of the program that use truth values with order at most |S| − 1. The following
definition will be needed in the proof of the theorem:

Definition 16. Let Π be a program and let M be an infinite-valued model of
Π. We will say that M contains a gap at order δ ∈ ω if:

– For every n < δ, there exists an atom p in Π with order(M(p)) = n.
– There does not exist an atom p in Π with order(M(p)) = δ.
– There exists an atom p of Π such that δ < order(M(p)) < ∞.

The proof of the following theorem demonstrates that minimal models cannot
contain gaps. This easily implies that in our search for minimal models we need
only inspect a finite number of models.

Theorem 5. Let Π be a program, S be the set of propositional symbols that
appear in P and let M be a minimal infinite-valued model of Π. Then, for every
propositional symbol p ∈ S, M(p) ∈ {0, F0, T0, . . . , F|S|−1, T|S|−1}.
Proof. It suffices to demonstrate that if a model of Π contains a gap then it can
not be minimal. The theorem then follows by the fact that if a program does
not contain a gap then its propositional symbols will necessarily get values from
the set {0, F0, T0, . . . , F|S|−1, T|S|−1}.

Assume for the sake of contradiction that M is a minimal model of Π that
contains a gap at order δ ∈ ω. We establish a contradiction by constructing a
model M∗ of Π such that M∗ � M . Let m > δ be the least natural number
such M�m �= ∅. We distinguish the following two cases:
Case 1: There exists some p such that (M�m)(p) = Tm. We define the following
interpretation:

M∗(p) =
{

Tm+1, if M(p) = Tm

M(p), otherwise

Obviously, M∗ � M . Let p1 ∨ · · · ∨ pn ← B be a clause in Π . By a simple case
analysis on the possible values of M∗(p1 ∨ · · · ∨ pn), we get that M∗ satisfies the
given clause and therefore the whole program. Consequently, M is not a minimal
model of Π (contradiction).
Case 2: There does not exist any p such that (M�m)(p) = Tm. We define the
following interpretation:

M∗(p) =

⎧⎨
⎩

Tn−1, if M(p) = Tn and n > δ
Fn−1, if M(p) = Fn and n > δ
M(p), otherwise

Obviously, M∗ � M . Let p1 ∨ · · · ∨ pn ← B be a clause in Π . By a simple case
analysis on the possible values of M∗(p1 ∨ · · · ∨ pn), we get that M∗ satisfies the
given clause and therefore the whole program. Consequently, M is not a minimal
model of Π (contradiction). Therefore, if a model of Π contains a gap, it cannot
be a minimal one. �
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7 Related Approaches

In this section we mention some examples that are useful for comparing the
infinite-valued approach Lmin∞ with other existing approaches to the seman-
tics of disjunctive logic programs with negation, in particular, STATIC (of [8]),
D-WFS (of [2,3]), WFDS (of [11]), WFSd of [1] and with PEL (of [4]). We observe
in particular that Lmin∞ differs from all these semantics.

Example 1 was presented in [11], where it was reasoned that b should be false,
while STATIC and D-WFS just fail to derive any information. In fact, the three
semantics WFDS, PEL and Lmin

∞ allow one to derive the falsity of b.
Consider now the following example borrowed from [1]: {(a ∨ b ←∼b), (b ←∼

b)}. For this example, Lmin∞ yields the minimal model {(a, F0), (b, 0)}. PEL agrees
that a should be false and b undefined. However, WFDS makes both atoms
undefined.

An interesting observation is that, as in PEL, the unfolding transformation
rule (see eg [3]) does not preserve equivalence in Lmin

∞ . Unfolding atom b on pro-
gram Π1 = {(a∨b), (a ←∼a), (c ← a∧b)} leads to program Π2 = {(a∨b), (a ←∼
a), (c∨a ← a)}. Both programs have the minimal model {(a, T0), (b, F0), (c, F0)}
but Π1 has a second minimal model {(a, 0), (b, T0), (c, 0)} while the second mini-
mal model of Π2 is {(a, 0), (b, T0), (c, F0)} (in fact, PEL agrees with these results
too). It follows that Lmin

∞ differs from WFSd ([1]).
Another similarity between PEL and the Lmin

∞ semantics is that applying the
S-Implication (S-IMP) transformation rule from WFDS [12] does not generally
yield a strongly equivalent program. For instance, the result of applying S-IMP
on program Π3 = {(b ∨ c ← a), (b ← a∧ ∼ c)} deletes the second rule Π4 =
{(b∨c ← a)}. However, if we add Π5 = {(c ←∼a), (a ←∼a)} to both programs,
we obtain that Π3 ∪ Π5 and Π4 ∪ Π5 have different Lmin

∞ models: both have
unique minimal models, but the former makes all atoms undefined, while the
latter makes b false and the rest undefined.

Partial equilibrium logic (PEL) ([4]) is a general nonmonotonic framework
that extends the partial stable model semantics of [7]. In some respects it ap-
pears to be conceptually close to the semantics of Lmin

∞ . In particular, it also
provides a purely declarative, model-theoretic semantics and is even based on
Routley frames. However, the most important difference has to do with the ex-
istence of Lmin

∞ model for disjunctive programs, something not guaranteed by
PEL. This is illustrated by Example 4, which has no PEL models whereas, as
we saw before, it has three Lmin

∞ models. Another difference is that in the Lmin
∞

approach the intended models are reached via one minimization process. In PEL
one first defines partial stable or partial equilibrium models through a minimiza-
tion process, while a second minimality condition captures those models that are
said to be well-founded.

8 Conclusions

We have introduced a new purely model-theoretic semantics for disjunctive logic
programs with negation and showed that every such program has at least one
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minimal infinite-valued model. The new semantics generalizes both the minimal
model semantics of positive disjunctive logic programs as well as the well-founded
semantics of normal logic programs. Future work includes the study of efficient
proof procedures for the new semantics and possible applications of the new
approach. An interesting open question is the possible application of the addi-
tional information provided by the infinite-valued approach not present in other
variants of well-founded semantics which return three-valued answers. This ex-
tra information is related to the level or ordering in which default assumptions
are made to compute the final result, and can be of valuable help for debugging
an unexpected outcome, pointing out unobserved dependences or even capturing
priorities as different truth levels. We also plan to investigate the underlying logic
L∞ of this approach in more detail. Another interesting topic for future research
is the generalization of the recently introduced game semantics of negation [5]
to the case of disjunctive logic programs.
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Abstract. Reiter’s default logic formalizes nonmonotonic reasoning using de-
fault assumptions. The semantics of a given instance of default logic is based
on a fixpoint equation defining an extension. Three different reasoning problems
arise in the context of default logic, namely the existence of an extension, the
presence of a given formula in an extension, and the occurrence of a formula in
all extensions. Since the end of 1980s, several complexity results have been pub-
lished concerning these default reasoning problems for different syntactic classes
of formulas. We derive in this paper a complete classification of default logic rea-
soning problems by means of universal algebra tools using Post’s clone lattice. In
particular we prove a trichotomy theorem for the existence of an extension, clas-
sifying this problem to be either polynomial, NP-complete, or Σ2P-complete,
depending on the set of underlying Boolean connectives. We also prove similar
trichotomy theorems for the two other algorithmic problems in connection with
default logic reasoning.

1 Introduction

Nonmonotonic reasoning is one of the most important topics in computational logic
and artificial intelligence. Different logics formalizing nonmonotonic reasoning have
been developed and studied since the late 1970s. One of the most known is Reiter’s de-
fault logic [21], which formalizes nonmonotonic reasoning using default assumptions.
Default logic can express facts like “by default, a formula ϕ is true”, in contrast with
standard classical logic, which can only express that a formula ϕ is true or false.

Default logic is based on the principle of defining the semantics of a given set of
formulas W (also called premises or axioms) through a fixpoint equation by means of
a finite set of defaults D. The possible extensions of a given set W of axioms are the
sets E, stable under a specific transformation, i.e., satisfying the identity Γ (E) = E.
These fixpoint sets E represent the different possible sets of knowledge that can be
adopted on the base of the premises W . Three important decision problems arise in
the context of reasoning in default logic. The first is to decide whether for a given
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set of axioms W and defaults D there exists a fixpoint. The second, called credulous
reasoning, is the task to determine whether a formula ϕ occurs in at least one extension
of the set W . The third one, called skeptical reasoning asks to determine whether a
given formula ϕ belongs to all extensions of W .

At the end of 1980s and the beginning of 1990s, several complexity results were
proved for default logic reasoning. Several authors have investigated the complexity of
the three aforementioned problems for syntactically restricted versions of propositional
default logic. Kautz and Selman [13] proved the NP-completeness of propositional
default reasoning restricted to disjunction-free formulas, i.e., all propositional formulas
occurring in the axioms W and the defaults D are conjunctions of literals. Furthermore,
they show that for very particular restrictions default reasoning is feasible in polyno-
mial time. Stillman [23,24] extends the work of Kautz and Selman by analyzing further
subclasses of disjunction-free default theories, as well as some other classes that allow
a limited use of disjunction. The work of Kautz and Selman [13], as well as of Still-
man [23, 24] provided a good understanding of the tractability frontier of propositional
default reasoning. The complexity of the general case was finally settled by Gottlob
in [11], where he proved that propositional default reasoning is complete for the sec-
ond level of the polynomial hierarchy. All these complexity results indicate that default
logic reasoning is more complicated than that of the standard propositional logic.

In the scope of the aforementioned results a natural question arises whether the pre-
vious analysis covers all possible cases. We embark on this challenge by making two
generalizations. First, the usual clauses have been generalized to constraints based on
Boolean relations. Second, we allow in the axioms W and the defaults D not only for-
mulas built as conjunctions of constraints, but also conjunctive queries, i.e., existential
positive conjunctive formulas built upon constraints. This approach using a restricted
existential quantification can be seen as a half way between the usual propositional for-
mulas and the default query language DQL defined in [6]. Moreover, this approach is
natural in the scope of relation-based constraints, since it allows us to use the universal
algebra tools to reason about complexity. We take advantage of the closed classes of
Boolean functions and relations, called clones and co-clones, which allow us to prove
a complexity result for a single representant of this class, that extends by means of
closure properties to all Boolean functions or queries, respectively, in the same class.
Using these algebraic tools we deduce a complete classification of the three default
reasoning problems parametrized by sets of Boolean constraints. Similar classification,
using universal algebra tools and Post lattice, had been already done for other nonmono-
tonic reasoning formalisms, namely circumscription [16] and abduction [8,17]. Finally,
a complexity classification of propositional default logic along other lines, studying the
structural aspects of the underlying formulas, had been done in [1]. Our approach to the
complexity classification differs from Ben-Eliyahu’s [1] in the following points: (1) the
class of formulas in the the axioms, prerequisite, justification, and consequence of de-
faults is always the same; (2) the classification is performed on the set of underlying
Boolean relations S, taking the role of a parameter, from which the formulas are built
and not on the input formulas itself; (3) the studied classes of formulas are closed under
conjunction and existential quantification. The aforementioned requirements for unifor-
mity of the formulas in all three parts of defaults and in the axioms, plus the closure
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under conjunction exclude prerequisite-free, justification-free, normal, semi-normal, or
any other syntactically restricted default theories from this classification.

2 Preliminaries

Throughout the paper we use the standard correspondence between predicates and rela-
tions. We use the same symbol for a predicate and its corresponding relation, since the
meaning will always be clear from the context, and we say that the predicate represents
the relation.

An n-ary logical relation R is a Boolean relation of arity n. Each element of a logical
relation R is an n-ary Boolean vector m = (m1, . . . , mn) ∈ {0, 1}n. Let V be a set
of variables. A constraint is an application of R to an n-tuple of variables from V , i.e.,
R(x1, . . . , xn). An assignment I : V → {0, 1} satisfies the constraint R(x1, . . . , xn) if
(I(x1), . . . , I(xn)) ∈ R holds.

Example 1. Equivalence is the binary relation defined by eq = {00, 11}. Given the
ternary relations nae = {0, 1}3

� {000, 111} and 1-in-3 = {100, 010, 001}, the con-
straint nae(x, y, z) is satisfied if not all variables are assigned the same value and
1-in-3(x, y, z) is satisfied if exactly one of the variables x, y, and z is assigned to 1.

Throughout the text we refer to different types of Boolean constraint relations following
Schaefer’s terminology [22]. We say that a Boolean relation R is 1-valid if 1 · · · 1 ∈ R
and it is 0-valid if 0 · · · 0 ∈ R; Horn (dual Horn) if R can be represented by a con-
junctive normal form (CNF) formula having at most one unnegated (negated) variable
in each clause; bijunctive if it can be represented by a CNF formula having at most
two variables in each clause; affine if it can be represented by a conjunction of linear
functions, i.e., a CNF formula with ⊕-clauses (XOR-CNF); complementive if for each
(α1, . . . , αn) ∈ R, also (¬α1, . . . , ¬αn) ∈ R. A set S of Boolean relations is called
0-valid (1-valid, Horn, dual Horn, affine, bijunctive, complementive) if every relation
in S is 0-valid (1-valid, Horn, dual Horn, affine, bijunctive, complementive).

Let R be a Boolean relation of arity n. The dual relation to R is the set of vectors
dual(R) = {(¬α1, . . . , ¬αn) | (α1, . . . , αn) ∈ R}. Note that R¬ = R ∪ dual(R) is
a complementive relation called the complementive closure of R. The set dual(S) =
{dual(R) | R ∈ S} denotes the corresponding dual relations to the set of relations S.

Let S be a non-empty finite set of Boolean relations. An S-formula is a finite con-
junction of S-clauses, ϕ = c1 ∧ · · · ∧ ck, where each S-clause ci is a constraint appli-
cation of a logical relation R ∈ S. An assignment I satisfies the formula ϕ if it satisfies
all clauses ci. We denote by sol(ϕ) the set of satisfying assignments of a formula ϕ.

Schaefer in his seminal paper [22] developed a complexity classification of the sat-
isfiability problem of S-formulas. Conjunctive queries turn out to be useful in order to
obtain this result. Given a set S of Boolean relations, we denote by COQ(S) the set of
all formulas of the form

F (x1, . . . , xk) = ∃y1∃y2 · · · ∃yl ϕ(x1, . . . , xk, y1, . . . , yl),

where ϕ is an S-formula. We call these existentially quantified formulas conjunctive
queries over S, with x = (x1, . . . , xk) being the vector of distinguished variables.
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Pol(R) ⊇ E2 ⇔ R is Horn Pol(R) ⊇ V2 ⇔ R is dual Horn
Pol(R) ⊇ D2 ⇔ R is bijunctive Pol(R) ⊇ L2 ⇔ R is affine
Pol(R) ⊇ N2 ⇔ R is complementive Pol(R) ⊇ R2 ⇔ R is disjunction-free
Pol(R) ⊇ I0 ⇔ R is 0-valid Pol(R) ⊇ I1 ⇔ R is 1-valid
Pol(R) ⊇ I ⇔ R is 0- and 1-valid Pol(R) ⊇ I2 ⇔ R is Boolean

Fig. 1. Polymorphism correspondences

As usually in computational complexity, we denote by A ≤m B a polynomial-time
many-one reduction from the problem A to problem B. If there exist reductions A ≤m

B and B ≤m A, we say that the problems A and B are polynomially equivalent,
denoted by A ≡m B.

3 Closure Properties of Constraints

There exist easy criteria to determine if a given relation is Horn, dual Horn, bijunctive,
or affine. We recall these properties here briefly for completeness. An interested reader
can find a more detailed description with proofs in the paper [5] or in the monograph [7].
Given a logical relation R, the following closure properties fully determine the structure
of R, where ⊕ is the exclusive or and maj is the majority operation:

– R is Horn if and only if m, m′ ∈ R implies (m ∧ m′) ∈ R.
– R is dual Horn if and only if m, m′ ∈ R implies (m ∨ m′) ∈ R.
– R is affine if and only if m, m′, m′′ ∈ R implies (m ⊕ m′ ⊕ m′′) ∈ R.
– R is bijunctive if and only if m, m′, m′′ ∈ R implies maj(m, m′, m′′) ∈ R.

The notion of closure property of a Boolean relation has been defined more generally,
see for instance [12, 18]. Let f : {0, 1}k → {0, 1} be a Boolean function of arity k. We
say that R is closed under f , or that f is a polymorphism of R, if for any choice of k
vectors m1, . . . , mk ∈ R, not necessarily distinct, we have that

(
f
(
m1[1], . . . , mk[1]

)
, . . . , f

(
m1[n], . . . , mk[n]

)) ∈ R, (1)

i.e., that the new vector constructed coordinate-wise from m1, . . . , mk by means of f
belongs to R. We denote by Pol(R) the set of all polymorphisms of R and by Pol(S)
the set of Boolean functions that are polymorphisms of every relation in S. It turns out
that Pol(S) is a closed set of Boolean functions, also called a clone, for every set of
relations S. In fact, a clone is a set of functions containing all projections and closed
under composition. A clone generated by a set of functions F , i.e., a set containing F ,
all projections, and closed under composition, is denoted by [F ]. All closed classes of
Boolean functions were identified by Post [20]. Post also detected the inclusion struc-
ture of these classes, which is now referred to as Post’s lattice, presented in Fig. 2 with
the notation from [2]. We did not use the previously accepted notation for the clones, as
in [18,19], since we think that the new one used in [2] is better suited mnemotechnically
and also scientifically than the old one. The correspondence of the most studied classes
with respect to the polymorphisms of a relation R is presented in Fig. 1. The class I2
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is the closed class of Boolean functions generated by the identity function, thus for ev-
ery Boolean relation R we have Pol(R) ⊇ I2. If the condition Pol(S) ⊇ C holds for
C ∈ {E2, V2, D2, L2}, i.e., S being Horn, dual Horn, bijunctive, or affine, respectively,
then we say that the set of relations S belongs to the Schaefer’s class.

A Galois correspondence has been exhibited between the sets of Boolean functions
Pol(S) and the sets of Boolean relations S. A basic introduction to this correspondence
can be found in [18] and a comprehensive study in [19]. See also [5]. This theory helps
us to get elegant and short proofs for results concerning the complexity of conjunc-
tive queries. Indeed, it shows that the smaller the set of polymorphisms is, the more
expressive the corresponding conjunctive queries are, which is the cornerstone for ap-
plying the algebraic method to complexity (see [2] and [5] for surveys). The following
proposition can be found, e.g., in [5, 18, 19].

Proposition 2. Let S1, S2 be two sets of Boolean relations. The inclusion Pol(S1) ⊆
Pol(S2) implies COQ(S1 ∪ {eq}) ⊇ COQ(S2 ∪ {eq}).

Given a k-ary Boolean function f : {0, 1}k −→ {0, 1}, the set of invariants Inv(f)
of f is the set of Boolean relations closed under f . More precisely, a relation R belongs
to Inv(f) if the membership condition (1) holds for any collection of not necessarily
distinct vectors mi ∈ R for i = 1, . . . , k. If F is a set of Boolean functions then Inv(F )
is the set of invariants for each function f ∈ F . It turns out that Inv(F ) is a closed set of
Boolean relations, also called a co-clone, for every set of functions F . In fact, a co-clone
is a set of relations (identified by their predicates) closed under conjunction, variable
identification, and existential quantification. A co-clone generated by a set of relations S
is denoted by 〈S〉. Polymorphisms and invariants relate clones and co-clones by a Galois
correspondence. This means that F1 ⊆ F2 implies Inv(F1) ⊇ Inv(F2) and S1 ⊆ S2
implies Pol(S1) ⊇ Pol(S2). Geiger [10] proved the identities Pol(Inv(F )) = [F ] and
Inv(Pol(S)) = 〈S〉 for all sets of Boolean functions F and relations S.

4 Default Logic

A default [21] is an expression of the form

α : Mβ1, . . . , Mβm

γ
(2)

where α, β1, . . . βm, γ are propositional formulas. The formula α is called the prereq-
uisite, β1, . . . , βm the justification and γ the consequence of the default. The notation
with M serves only to syntactically and optically distinguish the justification from the
prerequisite. A default theory is a pair T = (W, D), where D is a set of defaults and W
a set of propositional formulas also called the axioms. For a default theory T = (W, D)
and a set E of propositional formulas let Γ (E) be the minimal set such that the
following properties are satisfied:

(D1) W ⊆ Γ (E)
(D2) Γ (E) is deductively closed
(D3) If
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α : Mβ1, . . . , Mβm

γ
∈ D, α ∈ Γ (E), and ¬β1, . . . , ¬βm /∈ E

then γ ∈ Γ (E)

Any fixed point of Γ , i.e., a set E of formulas satisfying the identity Γ (E) = E, is an
extension for T . Each extension E of a default theory T = (W, D) is identified by a
subset gd(E, T ) of D, called the generating defaults of E, defined as

gd(E, T ) =

{
α : Mβ1, . . . , Mβm

γ
∈ D

∣∣∣∣∣ α ∈ E, ¬β1 /∈ E, . . . , ¬βm /∈ E

}
.

There exists an equivalent constructive definition of the extension. It has been proved
equivalent to the previous definition by Reiter in [21], whereas some authors, like Kautz
and Selman [13], take it for the initial definition of the extension. Define E0 = W and

Ei+1 = Th(Ei) ∪
{

γ

∣∣∣∣∣
α : Mβ1, . . . , Mβm

γ
∈ D, α ∈ Ei, and ¬β1, . . . , ¬βm /∈ E

}
,

where Th(E) is the deductive closure of the set of formulas E. Then the extension of
the default theory T = (W, D) is the union E =

⋃∞
i=0 Ei. Notice the presence of the

final union E in the conditions ¬βi /∈ E.
We generalize the default theories in the same way as propositional formulas are gen-

eralized to S-formulas. For a non-empty finite set of Boolean relations S, an S-default
is an expression of the form (2), where α, β1, . . . βm, γ are formulas from COQ(S). An
S-default theory is a pair T (S) = (D, W ), where D is a set of S-defaults and W a
set of formulas from COQ(S). An S-extension is a minimal set of COQ(S)-formulas
including W and closed under the fixpoint operator Γ .

Three algorithmic problems are investigated in connection with default logic, namely
the existence of an extension for a given default theory T , the question whether a given
formula ϕ belongs to some extension of a default theory (called credulous or brave
reasoning), and the question whether ϕ belongs to every extension of a theory (called
skeptical or cautious reasoning). We express them as constraint satisfaction problems.

Problem: EXTENSION(S)
Input: An S-default theory T (S) = (W, D).
Question: Does T (S) have an S-extension?

Problem: CREDULOUS(S)
Input: An S-default theory T (S) = (W, D) and an S-formula ϕ.
Question: Does ϕ belong to some S-extension of T (S)?

Problem: SKEPTICAL(S)
Input: An S-default theory T (S) = (W, D) and an S-formula ϕ.
Question: Does ϕ belong to every S-extension of T .

To be able to use the algebraic tools for exploration of complexity results by means
of clones and co-clones, and to exploit Post’s lattice, we need to establish a Galois
connection for the aforementioned algorithmic problems.
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Theorem 3. Let S1 and S2 be two sets of relations such that the inclusion Pol(S1) ⊆
Pol(S2) holds. Then we have the following reductions among problems:

EXTENSION(S2) ≤m EXTENSION(S1) CREDULOUS(S2) ≤m CREDULOUS(S1)
SKEPTICAL(S2) ≤m SKEPTICAL(S1)

Proof. Since Pol(S1) ⊆ Pol(S2) holds, then any conjunctive query on S2 can be
expressed by a logically equivalent conjunctive query using only relations from S1, ac-
cording to Proposition 2. Let T (S2) = (W2, D2) be an S2-default theory. Perform the
aforementioned transformation for every conjunctive query in W2 and D2 to get corre-
sponding sets of preliminaries W1 and defaults D1, equivalent to W2 and D2, respec-
tively. Therefore the default theory T (S2) has an S-extension if and only if T (S1) =
(W1, D1) has one. An analogous result holds for credulous and skeptical reasoning. ��
Post’s lattice is symmetric according to the main vertical line BF ←→ I2 (see
Figure 2), expressing graphically the duality between various clones and implying the
duality between the corresponding co-clones. This symmetry extends to all three algo-
rithmic problems observed in connection with default logic, as we see in the following
lemma. It will allow us to considerably shorten several proofs.

Lemma 4. Let S be a set of relations. Then the following equivalences hold:

EXTENSION(S) ≡m EXTENSION(dual(S))
CREDULOUS(S) ≡m CREDULOUS(dual(S))

SKEPTICAL(S) ≡m SKEPTICAL(dual(S))

Proof. It is clear that ϕ(x) = R1(x)∧ · · · ∧ Rk(x) belongs to an S-extension E of the
default theory T (S) if and only if the dual(S)-formula ϕ′(x) = dual(R1)(x) ∧ · · · ∧
dual(Rk)(x) belongs to a dual(S)-extension E′ of the default theory T (dual(S)). ��

5 Complexity Results

Complexity results for reasoning in default logic started to be published in early 1990s.
Gottlob [11] proved that deciding the existence of an extension for a propositional de-
fault theory is Σ2P-complete. Kautz and Selman [13] investigated the complexity of
propositional default logic reasoning with unit clauses. They proved that deciding the
existence of an extension for this special case is NP-complete. Zhao and Ding [26] also
investigated the complexity of several special cases of default logic, when the formulas
are restricted to special cases of bijunctive formulas. We complete here the complexity
classification for default logic by the algebraic method.

Proposition 5. If S is 0-valid or 1-valid, i.e., if Pol(S) ⊇ I0 or Pol(S) ⊇ I1, then
every S-default theory always has a unique S-extension.

Proof. Consider Reiter’s constructive definition of the extension of an S-default theory
T (S) = (W, D). Since every formula in W and D is 0-valid (respectively 1-valid),
every justification β of any default is also 0-valid (1-valid). Then ¬β is not 0-valid
(1-valid) and therefore it cannot appear in any S-extension E. Therefore any default
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from D is satisfied if and only if its prerequisite α is in the set Ei for some i. Since
every formula in D is 0-valid (1-valid), whatever consequence γ is added to Ei, there
cannot be a contradiction with the formulas previously included into Ei. Hence we just
have to add to E every consequence γ recursively derived from the prerequisites until
we reach a fixpoint E. Since we start with a finite set of axioms W and there is only a
finite set of defaults D, an S-extension E always exists and it is unique. ��
We need to distinguish the Σ2P-complete cases from the cases included in NP. The
following proposition identifies the largest classes of relations for which the existence
of an extension is a member of NP. According to the Galois connection, we need to
identify the smallest clones that contain the corresponding polymorphisms. The reader
is invited to consult Figure 1 to identify the clones of polymorphisms corresponding to
the mentioned relational classes.

Proposition 6. If S is Horn, dual Horn, bijunctive, or affine, i.e., if the inclusions
Pol(S) ⊇ E2, Pol(S) ⊇ V2, Pol(S) ⊇ D2, or Pol(S) ⊇ L2 hold, then the prob-
lem EXTENSION(S) is in NP.

Proof. We present a nondeterministic polynomial algorithm which finds an extension
for an S-default theory T (S) = (W, D).

1. Guess a set D′ ⊆ D of generating defaults.
2. For every COQ(S)-formula ϕ ∈ W ∪ {γ | γ consequence of d ∈ D′} verify that

ϕ � ¬β holds for every justification β in D′, i.e., check that ϕ ∧ β is satisfiable.
3. Check that D′ is minimal, i.e., for every S-default α:Mβ1,...,Mβm

γ ∈ D � D′ and
every COQ(S)-formula ϕ ∈ W ∪ {γ | γ consequence of d ∈ D′} verify that ϕ � α
or ϕ � βi holds for an i.

Step 1 ensures Γ (E) ⊆ E. Instead of ϕ � α and ϕ � βi for an i we check whether
ϕ ⇒ α and ϕ ⇒ βi hold, respectively. Note that θ ⇒ ρ holds if and only if θ ≡ ρ ∧ θ.
Equivalence is decidable in polynomial time for S-formulas from Schaefer’s class [3],
which extends to conjunctive queries. Therefore we can decide if ϕ∧β, ϕ ⇒ α, ϕ ⇒ βi

hold, and also if ϕ � α, ϕ � βi for an i, in polynomial time. Hence, Steps 2 and 3 can
be performed in polynomial time. ��
Now we need to determine the simplest relational classes for which the extension prob-
lem is NP-hard. The first one has been implicitly identified by Kautz and Selman [13]
as the class of formulas consisting only of literals.

Proposition 7. If Pol(S) ⊆ R2 holds then EXTENSION(S) is NP-hard.

Proof. Kautz and Selman proved in [13] using a reduction from 3SAT, that the exten-
sion problem is NP-hard for default theories T = (W, D), where all formulas in the
axioms W and the defaults D are literals. Böhler et al. identified in [4] that the rela-
tional class generated by the sets of satisfying assignments to a literal is the co-clone
Inv(R2). Therefore from the Galois connection and Theorem 3 follows that the inclu-
sion Pol(S) ⊆ R2 implies that the extension problem for T (S) is NP-hard. ��
The second simplest class with an NP-hard extension problem contains all relations
which are at the same time bijunctive, affine, and complementive.
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Proposition 8. If Pol(S) ⊆ D holds, then EXTENSION(S) is NP-hard.

Proof. Recall first that Inv(D) is generated by the relation {01, 10} (see [4]), which is
the set of satisfying assignments of the clause x⊕ y, or equivalently of the affine clause
x ⊕ y = 1. Note that the affine clause x ⊕ y = 0 represents the equivalence relation
x ≡ y belonging to every co-clone. Hence, the co-clone Inv(D) contains both relations
generated by x ⊕ y = 1 and x ⊕ y = 0.

We present a polynomial reduction from the NP-complete problem NAE-3SAT (Not-
All-Equal 3SAT [9, page 259]) to EXTENSION(S). Consider the following instance
of NAE-3SAT represented by the formula ϕ(x1, . . . , xn) =

∧k
i=1 nae(ui, vi, ti) built

upon the variables x1, . . . , xn, where nae(x, y, z) ensures that the variables x, y, z do
not take the same Boolean value. We first build the following 2(n − 1) defaults

d0
i =

� : M(xi ⊕ xi+1 = 0)
xi ⊕ xi+1 = 0

and d1
i =

� : M(xi ⊕ xi+1 = 1)
xi ⊕ xi+1 = 1

for each i = 1, . . . , n − 1. For each clause nae(u, v, t) in the formula ϕ we build the
corresponding default

d(u, v, t) =
� : M(u ⊕ z = 1), M(v ⊕ z = 1), M(t ⊕ z = 1)

⊥
where z is a new variable. From each pair (d0

i , d
1
i ) exactly one default will apply. It will

assign two possible pairs of truth values (bi, bi+1) to the variables xi and xi+1. This
way the first set of default pairs separates the variables x1, . . . , xn into two equivalence
classes. All variables in one equivalence class take the same truth value.

Note that the formula (u ⊕ z = 1) ∧ (v ⊕ z = 1) ∧ (t ⊕ z = 1) is satisfied only
if the identity u = v = t holds. Therefore the default d(u, v, t) applies if and only if
the clause nae(u, v, t) is not satisfied. Let D be the set of all constructed defaults d0

i ,
d1

i , and d(u, v, t) for each clause nae(u, v, t) from ϕ. This implies that the formula
ϕ(x1, . . . , xn) has a solution if and only if the default theory (∅, D) has an extension.
The proposition then follows from Theorem 3. ��
Finally, we deal with the most complicated case of default theories. The following
proposition presents a generalization of Gottlob’s proof from [11] that the existence
of an extension is Σ2P-complete.

Proposition 9. If Pol(S) ⊆ N2 holds then EXTENSION(S) is Σ2P-hard.

Proof. Let ψ = ∃x ∀y ϕ(x, y) be a quantified Boolean formula, with the variable vec-
tors x = (x1, . . . , xn) and y = (y1, . . . , ym), such that the relation R = sol(ϕ(x, y))
satisfies the condition Pol(R) = I2. Let R¬ be the dual closure of the relation R. It is
clear that R(x, y) is satisfiable if and only if R¬(x, y) is. Suppose that Pol(S) = N2
holds, meaning that S is a set of complementive relations. Since R¬ is complementive,
the relation R̄ = {0, 1}n+m

� R¬ must be complementive as well. Therefore both
relations R¬ and R̄ must be in the co-clone 〈S〉 = Inv(Pol(S)) = Inv(N2) generated
by the relations S. Moreover, we have that R̄(x, y) = ¬R¬(x, y).

The identity relation is included in every co-clone, therefore we can use the identity
predicate (x = y). Since S is complementive, the co-clone 〈S〉 contains the relation
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nae, according to [4]. By identification of variables we can construct the predicate
nae(x, y, y) which is identical to the inequality predicate (x �= y).

Construct the S-default theory T (S) = (W, D) with the empty set of axioms W = ∅
and the defaults D = D1 ∪ D2, where

D1 =

{
� : M(xi = xi+1)

xi = xi+1
,

� : M(xi �= xi+1)
xi �= xi+1

∣∣∣∣∣ i = 1, . . . , n − 1

}
,

D2 =
{� : MR̄(x, y)

⊥
}

.

The satisfiability of ψ is the generic Σ2P-complete problem [25]. To prove Σ2P-hard-
ness for S-EXTENSION where Pol(S) = N2, it is sufficient to show that ψ is valid if
and only if T (S) has an extension by same reasoning as in the proof of Theorem 5.1
in [11]. Since I2 ⊆ N2 and Pol(S) = N2 hold, the proof of our proposition follows. ��
Gottlob [11] proved the Σ2P membership of the extension problem using a construc-
tive equivalence between default logic and autoepistemic logic, previously exhibited by
Marek and Truszczyński [14], followed by a Σ2P-membership proof of the latter, which
itself follows from a previous result of Niemelä [15]. A straightforward generalization
of these results to S-default theories and the aforementioned propositions allow us to
prove the following trichotomy theorem.

Theorem 10. Let S be a set of Boolean relations. If S is 0-valid or 1-valid then the
problem EXTENSION(S) is decidable in polynomial time. Else if S is Horn, dual Horn,
bijunctive, or affine, then EXTENSION(S) is NP-complete. Otherwise EXTENSION(S)
is Σ2P-complete.

Gottlob exhibited in [11] an intriguing relationship between the EXTENSION problem
and the two other algorithmic problems observed in connection with default logic rea-
soning. In fact, the constructions used in the proofs for the EXTENSION problem can be
reused for the CREDULOUS and SKEPTICAL problems, provided we make some minor
changes. These changes can be carried over to our approach as well, as we see in the
following theorems.

Theorem 11. Let S be a set of Boolean relations. If S is 0-valid or 1-valid then the
problem CREDULOUS(S) is decidable in polynomial time. Else if S is Horn, dual
Horn, bijunctive, or affine, then CREDULOUS(S) is NP-complete. Otherwise the prob-
lem CREDULOUS(S) is Σ2P-complete.

Proof. The extension E constructed in the proof of Proposition 5 is unique and testing
whether a given S-formula ϕ belongs to E takes polynomial time. The nondeterministic
polynomial-time algorithm from the proof of Proposition 6 can be extended by the
additional polynomial-time step

4. Check whether ϕ ∈ Th(W ∪ {γ | γ consequence of d ∈ D′}) holds.

to test whether a given S-formula ϕ belongs to E. If Pol(S) ⊆ R2 holds, it is sufficient
to take the default theory T = (W, D) with the axiom W = {ϕ(x1, . . . , xn)} and the
defaults
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Fig. 2. Graph of all closed classes of Boolean functions

D =

{
� : Mxi

xi
,

� : M¬xi

¬xi

∣∣∣∣∣ i = 1, . . . , n

}
.

Note that the possible truth value assignments correspond to different extensions of the
default theory T . Hence ϕ belongs to an extension of T if and only if there exists an
extension of T . The same construction also works for Pol(S) ⊆ D and Pol(S) ⊆ N2,
provided that we take the set of defaults D = {d0

i , d
1
i | i = 1, . . . , n − 1} in the former

and D1 in the latter case. ��
Theorem 12. Let S be a set of Boolean relations. If S is 0-valid or 1-valid then the
problem SKEPTICAL(S) is decidable in polynomial time. Else if S is Horn, dual Horn,
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bijunctive, or affine, then SKEPTICAL(S) is coNP-complete. Otherwise the problem
SKEPTICAL(S) is Π2P-complete.

Proof. Skeptical reasoning is dual to the credulous one. For each credulous reasoning
question whether an S-formula ϕ(x) = R1(x)∧· · ·∧Rk(x) belongs to an extension of
a default theory T (S) = (W, D), we associate the (dual) skeptical reasoning question
whether the dual(S)-formula ϕ′(x) = dual(R1)(x) ∧ · · · ∧ dual(Rk)(x) belongs to
no extension of the corresponding dual default theory T (dual(S)) = (W ′, D′). Every
S-formula in W and D is replaced by its corresponding dual(S)-formula in W ′ and D′.
Note that the co-clones Inv(N2), Inv(L2), Inv(D2), Inv(D), and Inv(R2) are closed
under duality, i.e., for each X ∈ {Inv(N2), Inv(L2), Inv(D2), Inv(D), Inv(R2)} we
have X = dual(X). Moreover we have the identities dual(Inv(E2)) = Inv(V2) and
dual(Inv(V2)) = Inv(E2), what relates the co-clones of Horn and dual Horn relations.
Using now Lemma 4, the result follows from Theorem 11. ��

6 Concluding Remarks

We found a complete classification for reasoning in propositional default logic, ob-
served for the three corresponding algorithmic problems, namely of the existence of
an extension, the presence of a given formula in an extension, and the membership of
a given formula in all extensions. To be able to take advantage of the algebraic proof
methods, we generalized the propositional default logic formulas to conjunctive queries.
This generalization is in the same spirit and it is done along the same guidelines as
the one going from the satisfiability problem SAT for Boolean formulas in conjunctive
normal form to the constraint satisfaction problem CSP on the Boolean domain. Gott-
lob [11], Kautz and Selman [13], Stillman [23,24], and Zhao with Ding [26] explored a
large part of the complexity results for default logic reasoning. We completed the afore-
mentioned results and found that only a trivial subclass of default theories have the
three algorithmic problems decidable in polynomial time. The corresponding polymor-
phism clones are colored white in Figure 2. Another part of default theories (composed
of Horn, dual Horn, bijunctive, or affine relations) have NP-complete (resp. coNP-
complete) algorithmic problems, with the corresponding polymorphism clones colored
light gray in Figure 2. Finally, for the default theories, based on complementive or on
all relations, the algorithmic problems are Σ2P-complete (resp. Π2P-complete), with
the corresponding polymorphism clones colored dark gray in Figure 2. This implies the
existence of a trichotomy theorem for each of the studied algorithmic problems.
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Abstract. We present a framework for updating logic programs under the
answer-set semantics that builds on existing work on preferences in logic
programming. The approach is simple and general, making use of two distinct
complementary techniques: defaultification and preference. While defaultifica-
tion resolves potential conflicts by inducing more answer sets, preferences then
select among these answer sets, yielding the answer sets generated by those rules
that have been added more recently. We examine instances of the framework with
respect to various desirable properties; for the most part, these properties are sat-
isfied by instances of our framework. Finally, the proposed framework is also
easily implementable by off-the-shelf systems.

1 Introduction

Over the last decade, answer-set programming (ASP) [1] has become a major approach
for knowledge representation and reasoning. Given that knowledge is always subject
to change, there has been a substantial effort in developing approaches to updating
logic programs under the answer-set semantics [2,3,4,5,6,7,8,9,10]. Unfortunately, the
problem of update appears to be intrinsically more difficult in a nonmonotonic setting
(such as in ASP) than in a monotonic one, such as in propositional logic [11]. As a
consequence, many approaches are quite involved and the set of approaches is rather
heterogeneous.

In contrast to this, we propose a simple and general framework for updating logic
programs that is based on two well-known parameterisable techniques in ASP: defaulti-
fication [12,13] and preference handling [14,15,16]. This is based on the following idea:
The primary purpose of updating mechanisms is to resolve conflicts among more re-
cent and less recent rules. To this end, we first need to detect potential conflicts between
newer and older rules. Second, we need to prevent them from taking place. And finally,
we need to resolve conflicts in favour of more recent updating rules. The two last steps are
accomplished by defaultification and preferences. While defaultification resolves poten-
tial conflicts by inducing complementary answer sets, preferences then are used to select

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 71–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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among these answer sets, producing those answer sets generated by rules that have been
added more recently. As a result, our approach is easily implementable by appeal to ex-
isting off-the-shelf technology for preference handling, such as the front-end tool plp1

(used in conjunction with standard ASP-solvers, like smodels2 or dlv3), the genuine
preference-handling ASP-solver nomore<4, or meta-interpretation methods [17].

Our techniques have further advantages: First, defaultification also allows for the
elimination of incoherent situations, even in an updating program or in intermediate
programs in an updating sequence. Second, preferences provide a modular way of cap-
turing an update history, rather than an explicit program transformation, as done for
instance in the approaches of Eiter et al. [9] or Zhang and Foo [4].

After giving some background, we introduce our framework in Section 3, along with
an evaluation according to update principles proposed by Eiter et al. [9] in the context
of ASP. Section 4 gives a more detailed comparison to the latter approach and shows
how our approach deals with two well-known examples from the literature. The paper
concludes with a discussion in Section 5.

2 Background

Given an alphabet P , an extended logic program, or simply a program, is a finite set of
rules of form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln, (1)

where n ≥ m ≥ 0 and each li (0 ≤ i ≤ n) is a literal, that is, an atom a ∈ P or its
negation ¬a. The set of all literals is given by L = P ∪ {¬a | a ∈ P}. For a literal l,
define l = a if l = ¬a, and l = ¬a if l = a. The set of atoms occurring in a program
Π is denoted by atom(Π). For a rule r of form (1), let head(r) = l0 be the head
of r and body(r) = {l1, . . . , lm,not lm+1, . . . ,not ln} the body of r. Furthermore,
let body+(r) = {l1, . . . , lm} and body−(r) = {lm+1, . . . , ln}. Rule r is positive, if
body−(r) = ∅.

A set of literals X is consistent if it does not contain a complementary pair a, ¬a
of literals. We say that X is logically closed iff it is either consistent or equals L. The
smallest set of literals being both logically closed and closed under a set Π of positive
rules is denoted by Cn(Π). The reduct, ΠX , of Π relative to a set X of literals is
defined by ΠX = {head(r) ← body+(r) | r ∈ Π, body−(r) ∩ X = ∅} [18]. A set
X of atoms is an answer set of an extended logic program Π if Cn(ΠX) = X . Two
programs Π1 and Π2 are said to be equivalent, written Π1 ≡ Π2, if both programs have
the same answer sets.

An ordered logic program is a pair (Π, <), where Π is a logic program and
< ⊆ Π × Π is a strict partial order. Given r1, r2 ∈ Π , the relation r1 < r2 ex-
presses that r2 has higher priority than r1. This informal interpretation can be made
precise in different ways. In what follows, we consider three such interpretations:

1 http://www.cs.uni-potsdam.de/∼torsten/plp
2 http://www.tcs.hut.fi/Software/smodels
3 http://www.dlvsystem.com
4 http://www.cs.uni-potsdam.de/wv/nomorepref
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B-preference [14], D-preference [15], and W -preference [16]. Given (Π, <), all of
these approaches use < for selecting preferred answer sets among the standard answer
sets of Π . The approaches are defined as follows. Let X be a consistent set of literals
and define ΠX = {r ∈ Π | body+(r) ⊆ X and body−(r) ∩ X = ∅}. Then:

1. X is <D-preserving, if there exists an enumeration 〈ri〉i∈I of ΠX such that, for
every i, j ∈ I , we have that:
(a) if ri < rj , then j < i;
(b) body+(ri) ⊆ {head(rk) | k < i}; and
(c) if ri < r′ and r′ ∈ Π \ ΠX , then

i. body+(r′) ⊆ X or
ii. body−(r′) ∩ {head(rk) | k < i} = ∅.

2. X is <W -preserving, if there exists an enumeration 〈ri〉i∈I of ΠX such that, for
every i, j ∈ I , we have that:
(a) if ri < rj , then j < i;
(b) i. body+(ri) ⊆ {head(rk) | k < i} or

ii. head(ri) ∈ {head(rk) | k < i}; and
(c) if ri < r′ and r′ ∈ Π \ ΠX , then

i. body+(r′) ⊆ X or
ii. body−(r′) ∩ {head(rk) | k < i} = ∅ or

iii. head(r′) ∈ {head(rk) | k < i}.
3. X is <B-preserving, if there exists an enumeration 〈ri〉i∈I of ΠX such that, for

every i, j ∈ I , we have that:
(a) if ri < rj , then j < i; and
(b) if ri < r′ and r′ ∈ Π \ ΠX , then

i. body+(r′) ⊆ X or
ii. body−(r′) ∩ {head(rk) | k < i} = ∅ or

iii. head(r′) ∈ X .

As shown by Schaub and Wang [16], the three strategies yield an increasing number
of preferred answer sets. That is, D–preference is stronger than W–preference, which
is stronger than B–preference, which is stronger than the empty preference (i.e., having
no preference).

Analogously to the unordered case, we call two ordered logic programs equivalent
iff they have the same order-preserving answer sets, and we use again “≡” as a symbol
for program equivalence. Note that an unordered program Π is trivially equivalent to
the program (Π, ∅) having an empty order relation, as every answer set of Π is a <σ-
preserving answer set of (Π, <), for <= ∅ and σ ∈ {D, B, W}. Hence, allowing a
slight abuse of notation, we sometimes identify an unordered program Π with (Π, ∅).

3 The Basic Framework

3.1 Update Programs

The primary purpose of updating mechanisms is to resolve conflicts among newer and
older rules. As mentioned, our approach is to first detect potential conflicts, second,
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to stop them from taking place, and third, to resolve these conflicts in favour of the
updating rules.

A potential conflict manifests itself by complementary head literals. Two rules r1,
r2 are said to be conflicting if head(r1) = head(r2). We represent potential conflicts
among rules within two programs Π1 and Π2 in terms of the set

C(Π1, Π2) = {(r1, r2) | r1 ∈ Π1, r2 ∈ Π2, head(r1) = head(r2)}.

For avoiding conflicts, we weaken rules by turning them into defaultised rules, as
originally used by Sadri and Kowalski [12]. For rule r, we define

rd = head(r) ← body(r),not head(r).

Similarly, for a program Π , we define Πd = {rd | r ∈ Π} and call it the default-
ification of Π . For example, program {a ←, ¬a ←} has the answer set L, while
{a ←, ¬a ←}d = {a ← not ¬a, ¬a ← not a} has two answer sets, {a} and {¬a}.
Note that, given that bodies of rules are sets, we have rd = (rd)d, for every rule r.

The next result shows how the aforementioned “weakening” is to be understood.

Theorem 1. Let Π be a logic program.
Every consistent answer set of Π is an answer set of Πd.

We propose to use preferences among rules for resolving inconsistencies. This provides
us with several degrees of freedom: First, one can choose among different preference-
handling strategies; and second, these strategies can be imposed in different ways on
the rules. As well, defaultification can be applied universally or selectively to rules. We
next detail three specific ways of applying the framework.

To begin with, we give the following very basic definition of an update operator on
logic programs:

Definition 1. The update program obtained for updating program Π1 by the program
Π2 via update operator ∗0 is given by the ordered logic program

Π1 ∗0 Π2 = (Πd
1 ∪ Πd

2 , Πd
1 × Πd

2 ).

Thus, the ordered logic program is over Πd
1 ∪ Πd

2 , and < is defined so that every rule
in Πd

1 has less priority than every rule in Πd
2 . We do not suggest that this is a good

update operator; in fact this operator is usually too strict, since it establishes a preference
between all rules in programs Π1 and Π2 even though they may not conflict. However,
it provides a simple, basic instance of our approach.

A conflict-oriented approach is the following.

Definition 2. The update program obtained for updating program Π1 by the program
Π2 via update operator ∗1 is given by the ordered logic program

Π1 ∗1 Π2 = (Πd
1 ∪ Πd

2 , C(Πd
1 , Πd

2 )).

Operator ∗1 globally weakens the rules in the program and imposes preferences along
potential conflicts.

A refinement of the above approach is the following:
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Definition 3. The update program obtained for updating program Π1 by the program
Π2 via update operator ∗2 is given by the ordered logic program

Π1 ∗2 Π2 = (Πd
c ∪ ((Π1 ∪ Π2) \ Πc)), C(Πd

1 , Πd
2 )),

where Πc = {r1, r2 | (r1, r2) ∈ C(Π1, Π2)}.

Operator ∗2 restricts defaultification to conflicting rules. Unlike the previous update
operations, this necessitates program transformations whenever conflicting rules are
encountered upon iterated updates (see below). Further definitions are possible.

As well, one must also specify a preference-handling strategy, which we consider
next.

Definition 4. Let Π1 ∗ Π2 be an update program for some update operator ∗, σ ∈
{B, D, W} a preference-handling strategy, and X a set of literals.

Then, X is an answer set of Π1 ∗ Π2 with respect to σ iff X is a <σ-preserving
answer set of Π1 ∗ Π2.

Depending on the chosen preference-handling strategy, update programs may admit
several, one, or no answer sets. The latter is worth illustrating because it motivates the
increasing restriction of preferences among rules when defining our update operators.
For instance, the update program {b ← not a} ∗0 {c ← not b} has no answer set
with respect to either the B-, D-, or W -strategy. In contrast, we obtain answer set {b}
when applying ∗1 and ∗2. For another example, consider {a ←}∗0 {b ← a}. We obtain
answer set {a, b} with respect to the B strategy, but no answer set with the D or W
strategy. In contrast to this, we get answer set {a, b} when applying ∗1 and ∗2 no matter
which preference-handling strategy we chose.

For illustrating the different behaviour of ∗0, ∗1, and ∗2 with respect to inconsistent
programs, consider Π1 = {r1 : a ←, r2 : ¬a ←} and Π2 = {r3 : b ← a}. Here, we
have

rd
1 = a ← not ¬a, rd

2 = ¬a ← not a,

rd
3 = b ← a,not ¬b,

and C(Πd
1 , Πd

2 ) = ∅. Hence, we get the following update programs:

Π1 ∗0 Π2 = ({rd
1 , rd

2 , rd
3}, {rd

1 < rd
3 , rd

2 < rd
3}),

Π1 ∗1 Π2 = Πd
1 ∪ Πd

2 = {rd
1 , rd

2 , rd
3}, and

Π1 ∗2 Π2 = Π1 ∪ Π2 = {r1, r2, r3}.

Clearly, Π1 is inconsistent, i.e., it has the single answer set L. Under B-preference,
Π1 ∗0 Π2 has {¬a} and {a, b} as its answer sets, whereas under D- and W -preference,
only {¬a} is an answer set of Π1 ∗0 Π2. Roughly speaking, {a, b} is not an answer
set under D- and W -preference because of the “prescriptive” nature of these preference
strategies. For Π1 ∗1 Π2, we also get the two answer sets {¬a} and {a, b}, while Π1 ∗2
Π2 again yields the inconsistent answer set L.

The common factor, however, is that each selection criterion chooses its preferred
answer sets among those of the defaultification of the union of the original programs.
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Theorem 2. Let Π1 ∗i Π2 be an update program for some i = 0, 1, 2 and let σ ∈
{B, D, W} be a preference-handling strategy.

Then, every answer set of Π1 ∗i Π2 with respect to σ is an answer set of (Π1 ∪Π2)d.

Iterated updates are easily defined.

Definition 5. Let (Π1, . . . , Πn) be a sequence of logic programs, for n ≥ 2, and let ∗
be a binary update operator.

Then, ∗(Π1, . . . , Πn), the update program obtained from (Π1, . . . , Πn), is the or-
dered logic program given as follows:

∗(Π1, . . . , Πn) =
{

Π1 ∗ Π2, if n = 2;
([∗(Π1, . . . , Πn−1)] ∗ Πn), if n > 2.

Definition 6. Let ∗(Π1, . . . , Πn) be an update program for some update operator ∗,
let σ ∈ {B, D, W} be a preference-handling strategy, and let X be a set of literals.

Then, X is an answer set of ∗(Π1, . . . , Πn) with respect to σ iff X is a <σ-preserving
answer set of ∗(Π1, . . . , Πn).

Whenever convenient, we write (Π1 ∗ . . .∗Πn) instead of ∗(Π1, . . . , Πn). As in Theo-
rem 2, every answer set of (Π1∗. . .∗Πn) is selected among the ones of (Π1∗. . .∗Πn)d.

3.2 Properties of Updates

Different instantiations of our framework yield different properties. To this end, we ex-
amine some properties proposed by Eiter et al. [9]. We focus below on the slightly more
elaborate operators ∗1 and ∗2. For comparison, we also mention whether a property at
hand is satisfied by the update operation defined by Eiter et al. [9], which we denote by
◦e (the operator ◦e is formally defined in Section 4).

The first property is the following:5

Initialisation: ∅ ∗ Π ≡ Π . (Fulfilled by ◦e.)

While this property holds for ∗2 over all preference strategies, it is not satisfied by ∗1,
no matter which preference-handling strategy is used. To see this, consider the program
{a ←, ¬a ← not a}. While ∅ ∗2 Π = Π and hence ∅ ∗2 Π ≡ Π , we get

∅ ∗1 Π = Πd = {a ← not ¬a, ¬a ← not a} = Π.

Π has the single answer set {a}, but Πd admits two answer sets, {a} and {¬a}.
A similar situation is encountered when regarding the following property:

Idempotency: Π ∗ Π ≡ Π . (Fulfilled by ◦e.)

For analogous reasons as above, ∗1 fails to satisfy this property, while it is satisfied by
∗2, whenever Π has consistent answer sets (see below).

5 Henceforth we understand a property to hold for all strategies unless otherwise mentioned.
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In fact, despite the lack of the previous two properties, ∗1 yields only consistent
answer sets, even if an update is inconsistent. For instance, in a variation of one of the
above examples, updating program Π1 = {a ←} by Π2 = {b ←, ¬b ←} yields

Π1 ∗1 Π2 = Πd
1 ∪ Πd

2 = {a ← not ¬a} ∪ {b ← not ¬b, ¬b ← not b},

from which we obtain two answer sets, {a, b} and {a, ¬b}. Unlike this, Π1 ∗2 Π2 =
Π1 ∪ Π2 has the inconsistent answer set L (as in the above example).

Another property deals with the addition of tautologies (or more generally, the influ-
ence of redundant information).

Tautology: If head(r) ∈ body+(r), for all r ∈ Π2, then Π1 ∗ Π2 ≡ Π1.
(Violated by ◦e.)

This property is violated by most update approaches in the literature. For example, let us
update Π1 = {a ← not ¬a, ¬a ←} by Π2 = {a ← a}. No matter which of the above
update operators we take, we obtain a single answer set {a} from the update program,
which is generated by rule a ← not ¬a in Π1. The conclusion of ¬a is prohibited by
the single rule in Π2, taking precedence over the second one in Π1.

For another example, consider ((Π1 ∗ Π2) ∗ Π3) where

Π1 = {a ←}, Π2 = {¬a ←}, Π3 = {a ← a} .

Clearly, (Π1 ∗ Π2) induces a single answer set {¬a} in all of the above approaches,
including ◦e. Unlike this, update operation ◦e results in two answer sets, {¬a} and {a},
once Π3 has been added and so does each update operation in our framework when us-
ing the preference-handling strategy B. This is different, however, when using strategy
D, in which case we obtain only a single answer set {¬a} from ((Π1 ∗ Π2) ∗ Π3).
It remains for future work to see how the addition of tautologies can be counterbal-
anced by stronger preference-handling strategies. A general approach to overcome this
deficiency is proposed by Alferes et al. [19]; it also remains future work whether that
technique applies in our framework as well.

The next property deals with iterated updates.

Associativity: (Π1 ∗ (Π2 ∗ Π3)) ≡ ((Π1 ∗ Π2) ∗ Π3). (Violated by ◦e.)6

This property holds for all instances of our framework. In fact, one can show that both
updates yield the same update programs.

Absorption: If Π2 = Π3, then ((Π1 ∗ Π2) ∗ Π3) ≡ (Π1 ∗ Π2). (Fulfilled by ◦e.)

This property is also satisfied by all instances of our framework. This is also the case
with the following generalisation of absorption:

Augmentation: If Π2 ⊆ Π3, then ((Π1 ∗ Π2) ∗ Π3) ≡ (Π1 ∗ Π3). (Violated by ◦e.)

6 Strictly speaking, in the approach of Eiter et al. [9], the associativity principle is formulated
not in terms of the update operation itself, but in terms of the associated update program P�
(see Section 4); the same applies for the disjointness and parallelism properties below.
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Table 1. Summary of update properties

∗1 ∗2 ◦e

Initialisation
√ √

Idempotency
√ √

Tautology
Associativity

√ √

Absorption
√ √ √

Augmentation
√ √

Disjointness
√ √ √

Non-Interference
√ √ √

The next property captures update with disjoint programs.

Disjointness: If atom(Π1) ∩ atom(Π2) = ∅, then (Π1 ∪ Π2) ∗ Π3 ≡ (Π1 ∗ Π3) ∪
(Π2 ∗ Π3). (Fulfilled by ◦e.)

This principle is satisfied by all instances of our framework.
The next property is a variant of the previous.

Parallelism: If atom(Π2) ∩ atom(Π3) = ∅, then Π1 ∗ (Π2 ∪ Π3) ≡ (Π1 ∗ Π2) ∪
(Π1 ∗ Π3). (Violated by ◦e.)

This property does not hold in our approach. To see this, let Π3 = ∅. Clearly, we obtain
different results from Π1 ∗ Π2 and (Π1 ∗ Π2) ∪ Π1. Arguably, given this example,
unrestricted parallelism is not a desirable property.

The last property deals with commutativity when dealing with non-interacting update
programs.

Non-Interference: If atom(Π2) ∩ atom(Π3) = ∅, then (Π1 ∗ Π2) ∗ Π3 ≡ (Π1 ∗
Π3) ∗ Π2. (Fulfilled by ◦e.)

This property is satisfied by all instances of our framework.
These properties are summarised in Table 1 (with the exception of parallelism, which

we feel is undesirable). We note that ∗2 satisfies the most properties, followed by ◦e,
and then ∗1.

Up to now, we have ignored the treatment of integrity constraints (cf. Baral [1]) in
updating logic program. In this respect, we simply follow the approach taken by Eiter et
al. [9] by handling them as global constraints that are discarded in the defaultification
and preference-handling process. Updating a program Π1 by the program Π2 in the
presence of integrity constraints Πc then amounts to computing the order-preserving
answer sets of (Π1 ∗ Π2) ∪ Πc. Although we do not detail it here, we mention that
our approach allows for accommodating the update of integrity constraints just as well
by making them subject to an appropriately adapted defaultification and preference-
handling mechanism.
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4 Examples and Properties vis-à-vis ◦e

In what follows, we discuss some examples comparing the present update approach with
the update approach due to Eiter et al. [9]. For simplicity, we focus on our operator ∗1
under the weakest (reasonable) preference handling strategy, B, given that it is closest
to ◦e (cf. Theorem 3 below).

In the approach of Eiter et al. [9], the semantics of an n-fold update Π1◦e · · ·◦eΠn is
given by the semantics of an (ordinary) program P�, for P = (Π1, . . . , Πn), containing
the following elements:

1. all integrity constraints in Πi, 1 ≤ i ≤ n;
2. for each r ∈ Πi, 1 ≤ i ≤ n:

li ← body(r),not rej (r), where head(r) = l;

3. for each r ∈ Πi, 1 ≤ i < n:

rej (r) ← body(r), ¬li+1, where head(r) = l;

4. for each literal l occurring in P (1 ≤ i < n):

li ← li+1; l ← l1.

Here, for each rule r, rej (r) is a new atom not occurring in Π1, . . . , Πn. Intuitively,
rej (r) expresses that r is “rejected.” Likewise, each li, 1 ≤ i ≤ n, is a new atom not
occurring in Π1, . . . , Πn. Then, answer sets of Π1 ◦e · · · ◦e Πn are given by the answer
sets of P�, modulo the original language. This is similar to compiling ordered logic
programs to standard ones as done in our previous work [15].

Example 1. Consider the following programs:

Π1 = {r1 : ¬a ←},

Π2 = {r2 : a ← b,not ¬a},

Π3 = {r3 : b ←}.

The program Π1 has a single answer set, namely {¬a}. In updating Π1 by Π2, nothing
changes because rd

2 = r2 is not applicable (b is not derivable). A further update by
Π3 changes this situation: b becomes derivable and rd

2 can be applied. In fact, since
rd
1 < rd

2 , rule rd
2 must be applied before rd

1 and so rd
1 is defeated. Thus, {a, b} is the

single answer set of ∗1P , for P = (Π1, Π2, Π3). Observe that {a, b} is of course also
an answer set of the unordered program Πd

1 ∪ Πd
2 ∪ Πd

3 , together with {¬a, b}. In fact,
the latter set is the unique answer set of Π1 ∪Π2 ∪Π3, which shows that answer sets of
update programs ∗P are not selected among answer sets of the union of the constituents
of P , but rather of the union of the defaultification of its constituents (cf. Theorem 2).
Note, however, that Π1 ◦e Π2 ◦e Π3 has both {a, b} and {¬a, b} as answer sets. ♦
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The operations ∗1 and ◦e also yield different results on inconsistent programs.
Consider:

Π1 = {b ←, ¬b ←},

Π2 = {a ←},

Π3 = {b ←},

and let P = (Π1, Π2). P� has the set of all literals as its unique (inconsistent) answer
set, but ∗1P has {a, b} and {a, ¬b} as answer sets. On the other hand, both Π1 ◦e Π2 ◦e

Π3 and Π1 ∗1 Π2 ∗1 Π3 have {a, b} as unique answer set.
The same holds for programs which may become inconsistent due to new information:

Π1 = {b ← a, ¬b ← a},

Π2 = {a ←},

Π3 = {¬a ←}.

Π1 has a consistent answer set, but Π1 ∗1 Π2 has {a, b} and {a, ¬b} as answer sets,
whereas Π1 ◦e Π2 has the set of all literals as unique answer set. For the additional
update with Π3, both approaches yield {¬a} as unique answer set.

In general, we can formulate the following relation between the answer sets of ∗1
and ◦e:

Theorem 3. Let P = (Π1, . . . , Πn) be a sequence of programs such that P� has only
consistent answer sets.

Then, any answer set of ∗1P is also an answer set of Π1 ◦e · · · ◦e Πn.

The converse does not hold, as Example 1 illustrates. Actually, there is an even simpler
counterexample: consider

Π1 = {a ←} and Π2 = {¬a ← not a}.

Then, Π ◦e Π2 has two answer sets, viz. {a} and {¬a}, while Π1 ∗1 Π2 has only {¬a}
as answer set. Actually, {¬a} is the only answer set of Π1 ∗1 Π2 under any of the three
preference strategies B, D, and W .

Finally, let us consider two examples on updating logic programs that have been
discussed in the literature, showing that ∗1 and ◦e behave the same in these cases.

Example 2 (Adapted from [5]). Consider the update of Π1 by Π2, where

Π1 = { r1 : sleep ← not tv on, r2 : night ← ,
r3 : tv on ←, r4 : watch tv ← tv on },

Π2 = { r5 : ¬tv on ← power failure, r6 : power failure ← }.

The single answer set of both Π1 ∗1 Π2 and Π1 ◦e Π2 is

S = {power failure, ¬tv on, sleep,night}.

If new information arrives as program Π3, given by

Π3 = { r7 : ¬power failure ← },
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then again Π1 ∗1 Π2 ∗1 Π3 and Π1 ◦e Π2 ◦e Π3 have the unique answer set

T = { ¬power failure, tv on ,watch tv ,night }. ♦
Example 3 ([9]). An agent consulting different sources in search of a performance or
a final rehearsal of a concert on a given weekend may be faced with the following
situation. First, the agent is notified that there is no concert on Friday:

Π1 =
{

r1 : ¬concert friday ← }
.

Later on, a second source reports that there is neither a final rehearsal on Friday nor a
concert on Saturday:

Π2 =
{

r2 : ¬final rehearsal friday ←, r3 : ¬concert saturday ← }
.

Finally, the agent is assured that there is a final rehearsal or a concert on Friday and that
whenever there is a final rehearsal on Fridays, a concert on Saturday or Sunday follows:

Π3 =
{
r4 : concert friday ← not final rehearsal friday ,
r5 : final rehearsal friday ← not concert friday ,
r6 : concert saturday ← final rehearsal friday ,not concert sunday,
r7 : concert sunday ← final rehearsal friday ,not concert saturday

}
.

The update program Π1 ∗1 Π2 ∗1 Π3 has three answer sets:

S1 = {final rehearsal friday , ¬concert friday , concert saturday},

S2 = {final rehearsal friday , ¬concert friday , ¬concert saturday ,

concert sunday},

S3 = {¬final rehearsal friday , concert friday , ¬concert saturday},

where Π1 ∗1 Π2 ∗1 Π3 is given as follows:

Πd
1 ∪ Πd

2 ∪ Πd
3 ={

rd
1 : ¬concert friday ← not concert friday,

rd
2 : ¬final rehearsal friday ← not final rehearsal friday ,

rd
3 : ¬concert saturday ← not concert saturday ,

rd
4 : concert friday ← not final rehearsal friday ,not ¬concert friday ,

rd
5 : final rehearsal friday ← not concert friday ,

not ¬final rehearsal friday ,

rd
6 : concert saturday ← final rehearsal friday ,not concert sunday,

not ¬concert saturday ,

rd
7 : concert sunday ← final rehearsal friday ,not concert saturday ,

not ¬concert sunday
}
,

together with the following order:

rd
1 < rd

4 , rd
2 < rd

5 , and rd
3 < rd

6 .

The same answer sets are obtained in case of Π1 ◦e Π2 ◦e Π3. ♦
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5 Discussion

We have presented a simple and general framework to updating logic programs un-
der the answer-set semantics. Our approach is based on two well-known techniques in
ASP: defaultification and preference handling. Depending on how we fix the interplay
among both techniques, we obtain distinct update operations. An interesting feature is
that inconsistencies are removed by defaultification and can subsequently be resolved
through preferences. Also, the approach is iterative and the history of the continued up-
dates is (mainly7) captured by preferences rather than explicit program transformations.
Another advantage of this approach is that it is easily implementable by off-the-shelf
systems developed for ASP.

More elaboration of the different instances of our framework is desirable. In par-
ticular, it will be interesting to see how the properties of the framework change with
different ordering mechanisms, in particular, ones that are especially designed for up-
date purposes. Another interesting question is in how far our framework is suitable as a
uniform approach in which other approaches can be simulated. As well, although our fo-
cus has been on the development of a general framework, it appears that the approaches
under strategy ∗2 have good properties (as evidenced by our survey of properties, as
well as the examples presented) and warrant fuller investigation in their own right.

Given the numerous approaches to updating logic programs, among them
[2,3,4,5,6,7,8,9,10], a detailed comparison to the literature is beyond the scope of this
paper. An excellent survey is given by Eiter et al. [9]. We have already compared our
approach in some detail to the one of Eiter et al. [9]. We summarise here differences
with some particularly related approaches. Alferes et al. [8] use similar techniques for
combining update operations with preferences. However, in contrast to our approach,
preferences are not used to implement updates but rather as an additional means for
guiding the update. Zhang and Foo [4] were first in mapping update operations onto
preference handling in answer-set programming. Unlike us, however, their approach is
based on the elimination of conflicting rules and thus on rewriting logic programs. Fur-
thermore, the resulting update program is given in terms of a set of programs, which
prohibits iterated update operations as well as a comparison in view of the postulates
discussed in Section 3. Interesting recent work [10] gives a framework for characteris-
ing update approaches in terms of the notion of forgetting.
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Abstract. Approximation theory is a fixpoint theory of general (mono-
tone and non-monotone) operators which generalizes all main semantics
of logic programming, default logic and autoepistemic logic. In this pa-
per, we study inductive constructions using operators and show their
confluence to the well-founded fixpoint of the operator. This result is
one argument for the thesis that Approximation theory is the fixpoint
theory of certain generalised forms of (non-monotone) induction. We
also use the result to derive a new, more intuitive definition of the well-
founded semantics of logic programs and the semantics of ID-logic, which
moreover is easier to implement in model generators.

1 Introduction

This paper studies inductive constructions in relation to the well-founded se-
mantics. The study of induction can be defined as the investigation of a class of
effective construction techniques in mathematics. There, sets are frequently de-
fined through a constructive process of iterating some recursive recipe that adds
new elements to the set given that one has established the presence or absence
of other elements in the set. In an inductive definition, this recipe is often rep-
resented as a collection of informal rules representing base cases and inductive
cases. Inductive rules may be monotone or non-monotone. Consider for example
the well-known definition of satisfiability, denoted I |= ϕ, by induction on the
structure of (propositional) formulas:

– I |= P if P ∈ I and P is a propositional variable;
– I |= ψ ∧ φ if I |= ψ and I |= φ;
– I |= ¬ψ if I �|= ψ.

The third rule states that I satisfies ¬ψ if I does not satisfy ψ. This is a non-
monotone rule, in the sense that it adds a pair (I, ¬ψ) in absence of the pair
(I, ψ), and therefore, applying the “recipe” to sets of formulas does not preserve
the order ⊆.

Different forms of inductive constructions have been studied extensively in
mathematical logic. Monotone induction was studied starting with [19], and
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later in landmark studies such as [1,16,20]. Also non-monotone forms of induc-
tion have been studied, such as inflationary induction [17] and iterated inductive
definitions [10]. In computational logic, the results of these studies were used in
extensions of logic with fixpoints constructs, such as FO(LFP) (see, e.g., [9]),
μ-calculus and description logics. Inductive definitions are also related to logic
programming. It was argued in [3,8] that the well-founded semantics of logic pro-
gramming [23] correctly formalizes the semantics of different types of definitions
that can be found in mathematics, e.g., recursion-free definitions, monotone in-
ductive definitions, and non-monotone inductive definitions such as inductive
definitions over well-founded orders (e.g., the definition of |=) and iterated in-
ductive definitions. The fact that the inability to express inductive definitions is
a well-known weakness of first order logic, has subsequently motivated an exten-
sion of FO with a new construct for representing definitions, whose semantics is
based on the well-founded semantics [2,7,8]. This logic FO(ID), also called ID-
logic, is in some sense an integration of classical logic and logic programming,
and can be viewed equally well as a new member of the family of fixpoint logics
and even as new (very general sort of) description logic. FO(ID) has recently
been proposed as (one of) the underlying language for a constraint programming
framework [15].

The study of inductive definitions is strongly related to fixpoint theory. An
inductive definition corresponds to an algebraic lattice operator, and, in the
monotone case, the object “defined” by such an operator is the least fixpoint. In
this sense, Tarski’s fixpoint theory of monotone operators [21] can be considered
as an entirely abstract algebraic theory of monotone induction. This naturally
raises the question whether this theory can be extended to general (monotone
and non-monotone) operators in a way that matches with different forms of non-
monotone induction. Such extensions are well-known for inflationary induction,
but not for induction over a well-founded order or its generalization, iterated
induction. But there is a promising candidate. Building on Fitting’s work [12] on
semantics of logic programming in bilattices, Denecker, Marek and Truszczynski
showed that all main types of semantics of a logic program can be characterized
algebraically in terms of the three-valued immediate consequence operator of
logic programs[4,6]. The underlying theory, in [4] called Approximation theory, is
an algebraic fixpoint theory for (bilattice extensions of) general lattice operators
which defines the so-called Kripke-Kleene, stable and well-founded fixpoints of
an operator. In case of the immediate consequence operator, these fixpoints are
the models of the logic program in the corresponding semantics. This suggests
that the well-founded fixpoint construction in this theory is the missing fixpoint
theory of iterated induction.

The main goal of this paper is to explore the link between inductive definitions
and Approximation theory. As a point of departure, we observe that an inductive
definition defines a set by describing how to construct it, and as such, it is essen-
tially a description of a construction process. Informally, such a process starts from
the empty set, and proceeds by iteratively applying rules of the definition with a
satisfied antecedent, until saturation follows. Of course, as a specification of such
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a process, an inductive definition is highly non-deterministic. Indeed, in the case
of monotone induction, at any intermediate stage, many rules may be applicable.
It is a key property of this sort of induction that the order in which the rules are
applied does not matter: all such construction processes produce the same out-
come. For non-monotone induction, on the other hand, the provided well-founded
order must be respected (e.g., applying the third rule to derive I |= ¬φ can only
be done after it has been established whether I |= φ), but still, there remain in-
finitely many ways in which |= can be constructed. The first goal of this paper
is to formalize these construction processes and to study how they relate to the
well-founded fixpoint construction of Approximation theory. We will define the
notion of a well-founded induction of a (bilattice extension of an) operator, and
demonstrate that all such inductions converge to the well-founded fixpoint.

Secondly, we will concretize this notion of a well-founded induction in the
context of ID-logic. This leads to a new, intuitive and much simpler characteri-
zation of the well-founded model of a definition (and of a logic program) which
does not involve fixpoint operators anymore. Our results thus allow to simplify
the definition of the semantics of FO(ID), and of the well-founded semantics of
logic programming.

Thirdly, our study of induction sequences has also computational relevance.
First, the non-deterministic inference processes that we describe here general-
ize various methods of well-founded model computation as presented in e.g.
[13]. Second, in ASP systems such as SModels [18], and in the FO(ID) model
generator MIDL [14], the well-founded model is computed through a kind of
constraint propagation mechanism. These systems do not iterate the immediate
consequence operator, for this is too expensive. Instead, they iteratively perform
inference steps, inferring truth or falsity of an atom with a true, respectively
false body, and inferring falsity of unfounded sets. These computation steps are
exactly the atomic inference steps that make up a well-founded induction. Thus,
our study can give insight in the properties of intermediate objects constructed
during such a constraint propagation proces, and may lead to easier correctness
proofs for such systems.

2 Approximation Theory

Our presentation of Approximation theory is based on [4,6].
A structure 〈L, ≤〉 is a poset if ≤ is a partial order on the set L, i.e., a reflexive,

asymmetric, transitive relation. The relation ≤ is a total order if, in addition, for
each x, y ∈ L, x ≤ y or y ≤ x. A subset S of a poset L is a chain if ≤ is a total
order in S. The structure 〈L, ≤〉 is chain-complete if each of its chains C has a
least upperbound lub≤(C), and is a complete lattice if each subset S ⊆ L has a
least upperbound lub≤(S) and a greatest lowerbound glb≤(S). A chain complete
poset has a least element ⊥ and a complete lattice has both a least element ⊥
and a greatest element 
.

Given a poset 〈L, ≤〉, an operator O : L → L is called ≤-monotone if O
preserves ≤, i.e., x ≤ y implies O(x) ≤ O(y). An element x ∈ L is a pre-fixpoint
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of O if O(x) ≤ x, a fixpoint if O(x) = x and a post-fixpoint if x ≤ O(x). The
sets of all such x ∈ L are denoted Pre(O), respectively Fix(O) and Post(O).
A monotone operator in a chain complete poset or a complete lattice has a
least fixpoint which is also its least pre-fixpoint and the limit of the increasing
sequence 〈xξ〉ξ≥0, defined by transfinite induction:

– x0 = ⊥;
– xξ+1 = O(xξ);
– xλ = lub({xξ|ξ < λ}), for limit ordinals λ.

In Approximation theory, pairs (x, y) ∈ L2 are used to approximate certain
elements of L, namely those in the (possibly empty) interval [x, y] = {z ∈ L | x ≤
z ≤ y}. Abusing this correspondence between pairs and intervals, we sometimes
write z ∈ (x, y) instead of z ∈ [x, y], to denote that (x, y) approximates z. On
L2, two natural orders can be defined:

the product order: (x, y) ≤ (u, v) if x ≤ u and y ≤ v
the precision order: (x, y)≤p(u, v) if x ≤ u and v ≤ y

The precision order is the most important. Indeed, if (x, y)≤p(u, v), then [x, y] ⊇
[u, v], i.e., (u, v) approximates fewer elements than (x, y). If L is a complete
lattice, then both these orders are complete lattice orders in L2.

In this paper, the relevant pairs of L2 are the consistent pairs. A pair (x, y) ∈
L2 is consistent if x ≤ y (or [x, y] �= ∅), and the subset of L2 consisting of such
pairs is denoted Lc. The order ≤ is a complete lattice order in Lc, but ≤p is not,
because Lc has no most precise element. However, 〈Lc, ≤p〉 is chain-complete.
Elements (x, x) of L2 are called exact. The set of exact elements forms a natural
embedding of L in L2. They are also the maximally precise elements of Lc.

Approximation theory studies fixpoints of lattice operators O : L → L through
the use of approximations of O. We define that an operator A : L2 → L2 is
a approximator if it is ≤p-monotone. An approximator is consistent if it maps
consistent pairs to consistent pairs. An approximator A approximates an operator
O : L → L (is an approximation of O) if for each x ∈ L, O(x) ∈ A(x, x). Such an
operator A provides approximate information on O. Indeed, when z ∈ (x, y), then
≤p-monotonicity gives us O(z) ∈ A(z, z) ⊆ A(x, y). Or, O(z) is approximated
by A(x, y), and, abusing the duality of pairs and intervals, O([x, y]) ⊆ A(x, y). It
is easy to see that when A approximates an operator O, then A is consistent. For
this reason, below we only consider consistent approximators. An approximator
A is exact if it preserves exactness, i.e., if for all x ∈ L, A(x, x) is exact. In
general, an approximator A approximates a collection of lattice operators O,
but when A is exact, then the only approximated operator is the operator which
maps each x ∈ L to A(x, x)1 (= A(x, x)2). An approximator A is symmetric
if for all (x, y) ∈ L2, if A(x, y) = (x′, y′) then A(y, x) = (y′, x′). A symmetric
approximator is exact.

For an approximator A on L2 and lattice elements x, y ∈ L, the operators
λz.A(z, y)1 and λz.A(x, z)2 on L will be denoted A(·, y)1, respectively A(x, ·)2.
These operators are monotone. We define an operator (·)A↓ on L, called the
downward revision operator of A, as yA↓ = lfp(A(·, y))1 for each y ∈ L. We
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also define the upward revision operator (·)A↑ of A as xA↑ = lfp(A(x, ·)2) for
every x ∈ L. Note that if A is symmetric, both operators are identical. We
define the stable operator StA : L2 → L2 of A by StA(x, y) = (yA↓, xA↑). It can
easily be seen that both (·)A↓ and (·)A↑ are anti-monotone. It follows that StA
is ≤p-monotone.

An approximator A defines a number of different fixpoints: the ≤p-least fix-
point of A, denoted k(A), is called its Kripke-Kleene fixpoint, fixpoints of its
stable operator StA are stable fixpoints and the ≤p-least fixpoint of StA, de-
noted w(A), is called the well-founded fixpoint of A. In [4,5], it was shown that
all main semantics of logic programming, autoepistemic logic and default logic
can be characterized in terms of the different types of fixpoints of approximation
operators associated to theories in these logics. For example, in the context of
logic programming, the four-valued van Emden-Kowalski operator TP of a logic
program P is a symmetric approximation of the two-valued van Emden-Kowalski
operator. The downward revision operator of TP (which is equal to the upward
one, since TP is symmetric) coincides with the Gelfond-Lifschitz stable operator
P . The Kripke-Kleene, well-founded, stable and exact stable fixpoints of TP co-
incide with, respectively, the Kripke-Kleene model, the well-founded model, the
four-valued stable models and the stable models of the logic program P .

Given an approximator A on L2, we denote by Ac its restriction to Lc. Con-
versely, any approximator A on Lc, i.e., a ≤p-monotone Lc-operator, can be
extended to an approximator on L2, in many ways. When A is exact then A can
be extended to a symmetric approximator on L2, in many ways. It was shown in
[6], that all symmetric extensions of A have the same consistent stable fixpoints,
the same well-founded fixpoint and the same exact stable fixpoints. This suggests
that consistent stable fixpoints can also be algebraically characterized in terms
of Ac. As shown in [6], this is indeed the case but the alternative characterization
is slightly more more tedious, mainly because the revision operators (·)A↑ and
(·)A↓ are only partial functions, since A(·, y)1 and A(x, ·)2 are not operators on
L, but only functions from [⊥, y], respectively [x, 
], to L. Consequently, they
may have no least fixpoint.

A lattice operator O can have multiple approximations. This raises the ques-
tion of how the different types of fixpoints of these approximators relate to
each other. By point-wise extension of the precision order ≤p on Lc, we ob-
tain a precision order between Lc-approximators. When A≤p B, then any op-
erator O approximated by B is also approximated by A and k(A)≤p k(B),
w(A)≤p w(B), and the set of exact stable fixpoints of A is a subset of that
of B. Also, a lattice operator O has a most precise Lc-approximator, called the
ultimate approximation. This operator, denoted UO, maps any tuple (x, y) to
(glb(O([x, y])), lub(O([x, y]))). Because it is the most precise, its Kripke-Kleene
and well-founded fixpoints are the most precise of all approximations of O, and
the set of its exact stable fixpoints comprises the exact stable fixpoints of all
approximations of O.

The precision order can be further extended to L2-approximators, by defining
A≤p B if Ac ≤p Bc (or, equivalently, A(x, y)≤p B(x, y), for each (x, y) ∈ Lc).
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3 Monotone and Well-Founded Inductions

Let 〈L, ≤〉 be a complete lattice and O a monotone operator on L.

Definition 1. A monotone induction of O is a (possibly transfinite) sequence
〈xξ〉ξ≤α such that

– x0 = ⊥;
– xξ < xξ+1 ≤ O(xξ), for every ξ < α;
– xλ = lub({xξ|ξ < λ}), for every limit ordinal λ ≤ α.

A monotone induction 〈xξ〉ξ≤α is terminal if it cannot be extended, i.e., there
is no xα+1 such that 〈xξ〉ξ≤α+1 is a monotone induction.

Clearly, a monotone induction is an increasing sequence and xα is its limit. Note
that the standard construction of the least fixpoint lfp(O) is a terminal monotone
induction. All terminal monotone inductions are confluent, i.e., have the same
limit, namely lfp(O).

Proposition 1. The limit of each terminal monotone induction of O is lfp(O).

There are many ways in which a set, defined by monotone induction, can be
constructed. E.g., the transitive closure T of a graph R can be constructed by
an arbitrary process of (non-deterministically) selecting an edge (a, b) from R
and adding it to T , or finding a pair (a, b), (b, c) of edges in the current set T
and extending this set with (a, c). All these processes lead to the same outcome,
namely the transitive closure of R. Proposition 1 formalizes this property.

Let us now investigate the case of arbitrary lattice-operators O. Assume that
we have an approximation A of O on L2. First, note that A is a ≤p-monotone
operator, so we can construct monotone inductions with A. Each terminal mono-
tone induction of A constructs the Kripke-Kleene fixpoint k(A).

Observe that a monotone induction of a consistent approximator A consists
only of consistent pairs. Therefore, a monotone induction of such an A is also
a monotone induction of any more precise operator B, because for any xξ+1 in
such a sequence, xξ+1 ≤p A(xξ) then implies that also xξ+1 ≤p B(xξ) . It follows
from this that k(A)≤p k(B), as claimed earlier.

The weakness of the Kripke-Kleene fixpoint construction surfaces when we
consider the case that O is monotone. Since k(A) approximates all fixpoints of
O, we have k(A)≤p(lfp(O), gfp(O)). We therefore need to consider more precise
constructions.

We call a pair (x′, y′) ∈ L2 an A-refinement of (x, y) ∈ L2 if:

– (x, y) <p (x′, y′)≤p A(x, y); or
– x′ = x and y′ < y and A(x, y′)2 ≤ y′.

Note that the second case is equivalent to saying that y′ must be a pre-fixpoint
of A(x, ·)2. It follows that if xA↑ < y, then taking y′ = xA↑ gives us the least
value for which (x, y′) is an A-refinement by the second rule.
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Definition 2. A well-founded induction of A in (x, y) is a sequence 〈(xξ , yξ)〉ξ≤α

such that

– (x0, y0) = (⊥, 
);
– (xξ+1, yξ+1) is an A-refinement of (xξ, yξ), for each ξ < α;
– (xλ, yλ) = lub({(xξ, yξ) : ξ < λ}), for limit ordinal λ ≤ α.

A well-founded induction is terminal if its limit (xα, yα) has no A-refinement.

A well-founded induction is a ≤p-increasing sequence of pairs with limit (xα, yα).
The main task now is to prove that well-founded inductions are confluent and
produce the well-founded fixpoint. This is the main technical contribution of this
paper.

The proof of the convergence of all well-founded inductions is based on an
invariance analysis. We will show that all pairs constructed during a well-founded
induction satisfy certain invariants and that there is exactly one pair that satisfies
these invariants and has no A-refinement. Hence, all well-founded inductions
must converge to this pair.

The first invariant is A-contractingness. Recall that all elements in a mono-
tone induction are post-fixpoints. A post-fixpoint (a, b) of A has the interesting
property that O([a, b]) ⊆ A(a, b) ⊆ (a, b). Therefore, the operator O is internal
in [a, b]. In fact, it is contracting in [a, b] since (a, b) ⊇ A(a, b) ⊇ A2(a, b) ⊇ . . . .
This property is our motivation for calling a post-fixpoint of A an A-contracting
pair1.

Proposition 2. Each pair in a well-founded induction of A is A-contracting.

The second invariant aims to express that the lower bound of a pair in an well-
founded induction cannot grow too large. For example, if O is monotone, then
the pair (gfp(O), 
) could be contracting w.r.t. some approximation A. Unless
lfp(O) = gfp(O), this pair would never occur during a well-founded induction
because gfp(O) is too large.

Definition 3. A pair (a, b) is A-prudent if a ≤ x for every x ∈ L such that
A(x, b)1 ≤ x.

Equivalently, (a, b) is A-prudent if a is less than each pre-fixpoint x of A(·, b)1,
or, more compactly, if a ≤ bA↓. This definition extends the notion of A-prudence
of Lc-approximators in [6] to the case of L2-approximators.

When O is a monotone operator, then for each symmetric ultimate approxi-
mation UO of O on L2, for every pair (x, y), UO(x, y)1 = O(x). Consequently, a
pair (a, b) is UO-prudent if a is less than each pre-fixpoint of O or equivalently,
if a ≤ lfp(O).

Clearly, the least precise pair (⊥, 
) is A-prudent. Since taking A-refinements
and taking limits of A-prudent sequences both preserve A-prudence, we obtain
a second invariant.
1 In [6], A-contracting pairs were called A-reliable.
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Proposition 3. Each pair in a well-founded induction of A is A-prudent.

The third invariant is consistency. To obtain this, however, we need to impose
an additional condition on A.

Definition 4. We say that an approximator A gracefully degrades if for all
(x, y) ∈ L2, A(y, x)1 ≤ A(x, y)2.

The intuition behind this definition is that the behaviour of such an operator on
inconsistent pairs is constrained by its behaviour on consistent pairs. It cannot,
for example, map all inconsistent pairs to the most precise pair (
, ⊥). Clearly,
a symmetric approximator gracefully degrades.

Lemma 1. Assume that A degrades gracefully. If (a, b) is A-prudent and con-
sistent, then a ≤ aA↑.

Proposition 4. Each pair in a well-founded induction of a gracefully degrading
approximator A is consistent.

As mentioned in Section 2, all symmetric approximators extending an exact
Lc-approximator A have the same consistent stable fixpoints. A more general
condition that guarantees this is graceful degradation.

Corollary 1. Two gracefully degrading L2-approximators A, B for which Ac =
Bc, have the same consistent stable fixpoints (and hence, w(A) = w(B)).

A fourth invariant is that each element in a well-founded induction is less than
each stable fixpoint. Recall that a stable fixpoint (c, d) satisfies c = dA↓ and
d = cA↑.

Proposition 5. Let (c, d) be a stable fixpoint of A. If (a, b)≤p(c, d), then for
each (u, v) such that (a, b) <p (u, v)≤p A(a, b), (u, v)≤p(c, d). If (a, b)≤p(c, d)
then for each y < b such that A(a, y)2 ≤ y, (a, y)≤p(c, d).

Clearly, (⊥, 
) approximates all stable fixpoints of A. This property is preserved
by taking A-refinements and by taking limits of sequences of increasing precision.
From this, we obtain the fourth invariant of well-founded inductions.

Proposition 6. For each pair (x, y) in a well-founded induction of A and each
stable fixpoint of (c, d) of A, (x, y) ≤p (x, d).

We have now identified four main invariants. It follows that the limit (x, y) of
a well-founded induction is contracting, prudent, less precise than each stable
fixpoint of A and, if A gracefully degrades, consistent. In addition, we know that
(x, y) has no A-refinement. What can be concluded from this?

Proposition 7. Let (a, b) be an A-contracting, A-prudent pair such that (a, b)
has no A-refinement. Then (a, b) is a stable fixpoint of A.
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Theorem 1. There exists a least precise stable fixpoint of A, and it is the limit
of each terminal well-founded induction of A. If A is gracefully degrading, then
this least precise stable fixpoint is consistent.

This theorem shows that all terminal well-founded inductions indeed reach the
same limit and, moreover, that this limit is precisely the well-founded model.

Proposition 8. Let A, B be gracefully degrading approximators on L2 such that
A≤p B. A well-founded induction of A is a well-founded induction of B.

In [6], it was proven that w(A)≤p w(B), which is also a corollary of the above
proposition.

Another theorem links monotone inductions with well-founded inductions.
One of the symmetric ultimate approximations of a monotone lattice operator
O : L → L is the operator UO : L2 → L2 which maps (x, y) to (O(x), O(y)) [6].

Theorem 2. For any terminal monotone induction 〈xξ〉ξ≤α of O, the sequence
〈(xξ, yξ)〉ξ≤α+1 with yξ = 
 for every ξ ≤ α and xα+1 = yα+1 = lfp(O), is a
terminal well-founded induction of UO.

4 Well-Founded Semantics of ID-Logic Definitions

We assume familiarity with classical logic. A vocabulary Σ consists of a set of
predicate and function symbols. Propositional symbols and constants are 0-ary
predicate symbols, respectively function symbols. Terms and FO formulas are
defined as usual, and are built inductively from variables, constant and function
symbols and logical connectives and quantifiers.

A definition is a set of rules of the form

∀x̄ (P (t̄) ← φ)

where φ is a FO formula over Σ and t̄ is a tuple of terms over Σ such that the
free variables of φ and the variables of t̄ all occur in x̄. We call P (t̄) the head
of the rule, and φ the body. The connective ← is called definitional implication
and is to be distinguished from material implication ⊃. A predicate appearing in
the head of a rule of a definition Δ is called a defined predicate of Δ , any other
symbol is called an open symbol of Δ. The sets of defined predicates, respectively
open symbols of Δ are denoted Def(Δ), respectively Open(Δ) = Σ \ Def(Δ).
For simplicity, we assume that every rule is of the form ∀x̄ (P (x̄) ← φ). Every
rule ∀x̄ (P (t̄) ← φ) can be transformed in an equivalent rule of that form.
An FO(ID) (or ID-logic) formula is a boolean combination of FO formulas and
definitions. An FO(ID) theory is a set of FO-ID formulas without free variables.

The semantics of the FO(ID) is an integration of standard two-valued FO
semantics with the well-founded semantics of definitions. For technical reasons,
we need to introduce some concepts from three-valued logic. Consider the set
T HREE = {f ,u, t}. The truth order ≤ on this set is induced by f < u < t;
the precision order ≤p is induced by u <p f and u <p t. Define f−1 = t,u−1 =
u, t−1 = f .
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Given a domain D, a value for a n-ary function symbol is a function from Dn

to D. A value for an n-ary predicate symbol is a function from Dn to T HREE . A
Σ-interpretation I consists of a domain DI , and a value σI for each symbol σ ∈ Σ.
A two-valued interpretation is one in which predicates have range {f , t}. For each
interpretation F for the function symbols of Σ, both truth and precision order
have a pointwize extension to an order on all Σ-interpretations extending F .

A domain atom of I is a tuple of a predicate P ∈ Σ and a tuple (a1, . . . , an) ∈
Dn; it will be denoted P (a1, . . . , an), or more compactly, P (ā).

For a given Σ-interpretation I, symbol σ and a value v for σ, we denote by
I[σ/v] the Σ ∪ {σ}-interpretation, that assigns to all symbols the same value as
I, except that σI[σ/v] = v. Likewise, for a domain atom P (ā) and a truth value
v ∈ T HREE , we define I[P (ā)/v] as the interpretation I ′ identical to I except
that P (ā)I′

= P I′
(ā) = v. Similarly, for any set U of domain atoms, I[U/v] is

identical to I except that all atoms in U have value v.
When all symbols of term t are interpreted in I, we define its value tI using

the standard induction. The truth value ϕI of an FO sentence ϕ in I is defined
by induction on the subformula order:

– P (t1, . . . , tn)I := P I(tI1, . . . , t
I
n);

– (ψ ∧ φ)I := Min≤(ψI , φI);
– (¬ψ)I := (ψI)−1;
– (∃x ψ)I = Max≤({ψI[x/d] | d ∈ DI}).

We now define the semantics of definitions. Let Δ be a definition over Σ and O
a two-valued Open(Δ)-interpretation. Consider the collection VΣ

O of three-valued
Σ-structures extending O. On this set, we define the three-valued immediate
consequence operator ΨO

Δ , also called the Fitting operator, which maps any I ∈
VΣ

O to the O-extension J such that for each defined domain atom P (ā),

P (ā)J = Max≤({ϕ(ā)J |∀x(P (x) ← ϕ) ∈ Δ}).

The Fitting operator [11] is the extension of the van Emden-Kowalski operator
to three-valued structures.

Let L be the lattice of two-valued Σ-structures extending O. As shown in
[6], VΣ

O is isomorphic with Lc and the correspondence is between three-valued
interpretations K and tuples of two-valued interpretations (I, J) such that for
each domain atom P (ā),

⎧⎨
⎩

P (ā)K = t and P (ā)I = t = P (ā)J ;
P (ā)K = u and P (ā)I = f , P (ā)J = t;
P (ā)K = f and P (ā)I = f = P (ā)J .

We denote the two components of a three-valued K by K1 and K2. In this
view, the Fitting operator is an exact Lc-approximation of the van Emden-
Kowalski operator, and has a well-founded fixpoint, denoted IΔ

o . This is, in
general, a three-valued structure. We extend the truth valuation function ϕI to
all FO(ID) formulas by extending the above recursive rules with a new base case
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for definitions. For a given three-valued structure I and definition Δ, we define
ΔI = t if I = (I|Open(Δ))Δ, and ΔI = f otherwise.

We are now ready to define the semantics of FO(ID). A structure I satisfies a
FO(ID) sentence ϕ (is a model of ϕ) if I is two-valued and ϕI = t. As usual, this
is denoted I |= ϕ. I satisfies a FO(ID) theory T if I satisfies every ϕ ∈ T . Note
that the semantics is two-valued and extends the semantics of classical logic.
The restriction to consider only two-valued well-founded models boils down to
the requirement that a definition Δ should be total, i.e., should define the truth
of all defined domain atoms (see [8]).

We now apply the results of the previous section to derive an alternative
definition of the well-founded model, which is simpler, more intuitive and more
flexible than the one above. We first generalize the well-known concept of an
unfounded set [23].

Definition 5. Given a definition Δ and a three-valued Σ-structure I, an un-
founded set of Δ in I is a non-empty set U of defined domain atoms such that
each P (ā) ∈ U is unknown in I and for each rule ∀x̄ (P (x̄) ← φ(x̄)) ∈ Δ,
φ(ā)I[U/f ] = f .

When U is an unfounded set in an interpretation I which corresponds to a
pair (J, K), then I[U/f ] corresponds to (J, K[U/f ]). If, in addition, I is ΨO

Δ -
contracting, then it is easy to see that each domain atom P (ā), false in I[U/f ],
is false in ΨO

Δ (I[U/f ]), or, equivalently, ΨO
Δ(I[U/f ])2 ≤ I[U/f ]2 = K[U/f ]. Hence,

I[U/f ] is a ΨO
Δ -refinement of I.

Definition 6. We define a well-founded induction of a definition Δ in an Open
(Δ)-interpretation O as a sequence 〈Iξ〉ξ≤α of three-valued Σ-structures extend-
ing O such that:

– for every defined predicate symbol P , P I0
is the constant function u,

– for each limit ordinal λ ≤ α, Iλ = lub≤p({Iξ | ξ < λ}), and
– for every ordinal ξ, Iξ+1 relates to Iξ in one of the following ways.

• Iξ+1 := Iξ[P (ā)/t], for some domain atom P (ā), unknown in Iξ, such
that for some rule ∀x̄ (P (x̄) ← φ(x̄)) ∈ Δ, φ(ā)Iξ

= t;
• Iξ+1 := Iξ[U/f ], where U is an unfounded set of Δ in Iξ.

A well-founded induction is terminal if it cannot be extended anymore.

We will call an interpretation I[P (ā)/t] or I[U/f ] satisfying the conditions in
the above definition a Δ-refinement of I in O.

In such a sequence, for each ξ < α, it either holds that Iξ <p Iξ+1 =
Iξ[P (ā)/t] ≤p ΨO

Δ (Iξ), or Iξ+1 = Iξ[U/f ] with U an unfounded set. It follows
that Iξ+1 is a ΨO

Δ -refinement. Hence, each well-founded induction of Δ in O is a
well-founded induction of ΨO

Δ . The inverse is clearly not the case (in an induc-
tion of ΨO

Δ , many atoms can be made true at the same time). Still, a terminal
well-founded induction of Δ with limit Iα is a terminal induction of ΨO

Δ . In-
deed, suppose Iα has a ΨO

Δ -refinement J . Then either it must be that Iα has an
unfounded set U , or Iα <p ΨO

Δ (Iα) which implies that for at least one domain
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atom P (ā), P (ā)I = u while P (ā)ΨO
Δ(Iα) = t or P (ā)ΨO

Δ (Iα) = f . In the latter
case, {P (ā)} is an unfounded set. In all cases, Iα has a Δ-refinement.

Proposition 9. A (terminal) well-founded induction of definition Δ in O is a
(terminal) well-founded induction of the approximator ΨO

Δ .

Therefore, the results of the previous section now directly yield following theo-
rem, which gives us a characterization of the well-founded model as the limit of
any well-founded induction.

Theorem 3. There exist terminal well-founded inductions of Δ in O. Each well-
founded induction of Δ in O is strictly increasing in precision. The limit of every
terminal well-founded induction of Δ in O is the well-founded model OΔ.

5 Conclusion

Approximation theory is an extension of Tarski’s least-fixpoint theorem of mono-
tone lattice operators [21] to the case of arbitrary ones. The claim has been made
that this theory is the (missing) fixpoint theory of generalized non-monotone
forms of induction such as induction over a well-founded order and iterated in-
duction. In this paper, we gave an argument for this, by investigating a natural
class of constructive processes and showing that these are confluent, all having
the well-founded model as their limit. This result allowed us to derive a new,
simpler and more elegant definition of the well-founded semantics of rule sets,
that does not rely on the immediate consequence operator. It would also allow to
derive new, simpler constructive characterisations of the well-founded semantics
of default logic and auto-epistemic logic. As we have argued in the introduc-
tion, this definition also provides a better model of what happens in current
implementations of the well-founded semantics.
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ment of default and autoepistemic logics. Artificial Intelligence, 143(1):79–122,
2003.



96 M. Denecker and J. Vennekens

6. Marc Denecker, Victor Marek, and Miros�law Truszczyński. Ultimate approxima-
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Abstract. The addition of aggregates has been one of the most relevant enhance-
ments to the language of answer set programming (ASP). They strengthen the
modelling power of ASP in terms of natural and concise problem representations.

In this paper, we carry out an in-depth study of the computational complexity
of the language. The analysis pays particular attention to the impact of syntacti-
cal restrictions on programs in the form of limited use of aggregates, disjunction,
and negation. While the addition of aggregates does not affect the complexity of
the full language with negation and disjunction, it turns out that their presence
does increase the complexity of non-disjunctive ASP programs up to the second
level of the polynomial hierarchy. Interestingly, under cautious reasoning non-
monotone aggregates are even harder than disjunction (ΠP

2 -complete vs co-NP-
complete on positive programs). However, we show that there are large classes
of aggregates the addition of which does not cause any complexity gap even for
normal programs, including the fragment allowing for arbitrary monotone, arbi-
trary antimonotone, and stratified (i.e., non-recursive) nonmonotone aggregates.
Moreover, we also prove that for positive programs with arbitrary monotone,
stratified antimonotone, and stratified nonmonotone aggregates the complexity
remains polynomial. This analysis provides some useful indications on the pos-
sibility to implement aggregates in existing reasoning engines.

1 Introduction

Answer Set Programs [1] are logic programs where (nonmonotone) negation may occur
in the bodies, and disjunction may occur in the heads of rules. This language is very ex-
pressive in a precise mathematical sense: under brave and cautious reasoning, it allows
to express every property of finite structures that is decidable in the complexity classes
ΣP

2 and ΠP
2 , respectively, [2]. The high expressive power of the language, along with

its simplicity, and the availability of a number of efficient ASP systems has encouraged
the usage of ASP and the investigation of new constructs enhancing its capabilities.

One of the most relevant improvements to the language of answer set programming
has been the addition of aggregates [3,4,5,6,7,8,9,10]. Aggregates significantly enhance
the language of answer set programming (ASP), allowing for natural and concise mod-
elling of many problems. In this paper, we focus on the semantics for ASP with aggre-
gates as defined in [4], which has been received favorably [10,11,12].
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Several properties of ASP with aggregates under this semantics have been analyzed
and are well-understood, and some interesting complexity results have been derived
[4,10,13]. However, a systematic complexity study, such as identifying precisely which
language elements cause a complexity increase is missing.

In this work, we conduct a comprehensive analysis of the computational complexity
of ASP with aggregates and fragments thereof, deriving a full picture of the complex-
ity of the ASP languages where negation and/or disjunction are combined with the
different kinds of aggregates (monotone, antimonotone, nonmonotone, stratified).1 The
analysis focuses on cautious reasoning, providing a complete view of the computational
complexity of ASP with aggregates:

– The addition of aggregates does not increase the complexity of the full ASP lan-
guage. Cautious reasoning on full ASP programs (with disjunction and negation)
including all considered types of aggregates (monotone, antimonotone, and non-
monotone) even unstratified, remains ΠP

2 -complete, as for standard DLP.
– The “cheapest” aggregates, from the complexity viewpoint, are the monotone ones,

the addition of which does never cause any complexity increase, even for negation-
free programs, and even for unstratified monotone aggregates.

– The “hardest” aggregates, from the complexity viewpoint, are the nonmonotone
ones: even on non-disjunctive positive programs (definite horn clauses), their addi-
tion causes a big complexity jump from P up to ΠP

2 . This means that nonmono-
tone aggregates are harder than disjunction (cautious reasoning is “only” co-NP on
positive disjunctive programs), and provide the modelling power of negation and
disjunction combined into one construct.

– Instead, antimonotone aggregates behave similar to negated literals: On non-
disjunctive positive programs their presence increases the complexity from P to
co-NP.

– The largest set of aggregates which can be added to non-disjunctive ASP with-
out inducing a complexity overhead consists of arbitrary monotone, arbitrary an-
timonotone, and stratified nonmonotone aggregates. When adding these kinds of
aggregates to non-disjunctive ASP, the complexity of reasoning remains in co-NP.

Our work complements and strengthens previous results on the complexity of ASP
with aggregates reported in [4,10,13], adding new insight on the complexity impact of
aggregates. An interesting novelty concerns, for instance, the complexity of nonmono-
tone aggregates: in [10,13], the authors show that they can simulate disjunction; here,
we prove that they are even harder than disjunction (which cannot, instead, simulate
nonmonotone aggregates by a polynomial rewriting).

Importantly, our complexity analysis gives us valuable information about intertrans-
latability of different languages, having relevant implications also on the possibility
to implement aggregates in existing reasoning engines, or using rewriting-based tech-
niques (like those employed in ASSAT [14] or Cmodels [15]) for their implementation
(see Section 3).

1 Note that the results mentioned here refer to the complexity of propositional programs. In
Section 3, however, we discuss also the complexity of non-ground programs.
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2 The DLPA Language

In this section, we provide a formal definition of the syntax and semantics of the lan-
guage DLPA– an extension of Disjunctive Logic Programming (DLP) by set-oriented
functions (also called aggregate functions). For further background on DLP, we refer
to [16,17].

2.1 Syntax

We assume that the reader is familiar with standard DLP; we refer to the respective
constructs as standard atoms, standard literals, standard rules, and standard programs.
A structure (e.g. standard atom, standard literal, conjunction) is ground, if neither the
structure itself nor any substructures contain any variables.

Set Terms. A (DLPA) set term is either a symbolic set or a ground set. A symbolic
set is a pair {Vars :Conj }, where Vars is a list of variables and Conj is a conjunction
of standard atoms.2 A ground set is a set of pairs of the form 〈t :Conj 〉, where t is a list
of constants and Conj is a ground (variable free) conjunction of standard atoms.

Aggregate Functions. An aggregate function is of the form f(S), where S is a set
term, and f is an aggregate function symbol. Intuitively, an aggregate function can be
thought of as a (possibly partial) function mapping multisets3 of constants to a constant.

Aggregate Literals. An aggregate atom is f(S) ≺ T , where f(S) is an aggregate
function, ≺∈ {=, <, ≤, >, ≥, �=} is a comparison operator, and T is a term (variable
or constant).

We note that our choice for the notation of aggregate atoms is primarily motivated by
readability. One could define aggregate atoms as an arbitrary relation over a sequence
of aggregate functions and terms. In fact, aggregates in DLV and cardinality and weight
constraints for Smodels can be of the form T ≺ f(S) ≺ U , but semantically this is a
shorthand for the conjunction of T ≺ f(S) and f(S) ≺ U .

An atom is either a standard (DLP) atom or an aggregate atom. A literal L is an
atom A or an atom A preceded by the default negation symbol not; if A is an aggregate
atom, L is an aggregate literal.

DLPA Programs. A (DLPA) rule r is a construct

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm.

where a1, · · · , an are standard atoms, b1, · · · , bm are atoms, and n ≥ 0, m ≥ k ≥ 0,
n + m > 0. The disjunction a1 ∨ · · · ∨ an is referred to as the head of r, while the
conjunction b1, ..., bk, not bk+1, ..., not bm is the body of r. Let H(r) = {a1, . . . , an},
B+(r) = {b1, . . . , bk}, B−(r) = {not bk+1, . . . , not bm}, and B(r) = B+(r) ∪
B−(r). Furthermore let Pred(σ) denote the set of predicates that occur in σ, where σ
may be a program, a rule, a set of atoms or literals, an atom or a literal. Whenever it is
clear that this set has one element (for standard atoms and literals), Pred(σ) may also
denote a single predicate. A (DLPA) program is a set of DLPA rules.

2 Intuitively, a symbolic set {X : a(X,Y ), p(Y )} stands for the set of X-values making
a(X, Y ), p(Y ) true, i.e., {X |∃Y s.t . a(X,Y ), p(Y ) is true}.

3 Note that aggregate functions are evaluated on the valuation of a (ground) set w.r.t. an inter-
pretation, which is a multiset, cf. Section 2.2.
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A local variable of r is a variable appearing solely in an aggregate function in r; a
variable of r which is not local is called global. A nested atom of r is an atom appearing
in an aggregate atom of r; an atom of r which is not nested is called unnested.

Safety. A rule r is safe if the following conditions hold: (i) each global variable of r
appears in a positive standard unnested literal of the body of r; (ii) each local variable
of r that appears in a symbolic set {Vars : Conj } also appears in Conj . Finally, a
program is safe if all of its rules are safe.

Condition (i) is the standard safety condition adopted in datalog, to guarantee that
the variables are range restricted [18], while Condition (ii) is specific for aggregates.

Aggregate-Stratification. A DLPA program P is stratified on an aggregate atom A
if there exists a level mapping || || from Pred(P) to ordinals, such that for each rule
r ∈ P and for each a ∈ Pred(H(r)) the following holds: 1. For each b ∈ Pred(B(r)):
||b|| ≤ ||a||, 2. if A ∈ B(r), then for each b ∈ Pred(A): ||b|| < ||a||, and 3. for each
b ∈ Pred(H(r)): ||b|| = ||a||. A DLPA program P is aggregate-stratified if it is
stratified on all aggregate atoms in P .

2.2 Semantics

Universe and Base. Given a DLPA program P , let UP denote the set of constants ap-
pearing in P , and BP the set of standard atoms constructible from the (standard) pred-

icates of P with constants in UP . Given a set X , let 2X
denote the set of all multisets

over elements from X . Without loss of generality, we assume that aggregate functions
map to I (the set of integers).

Instantiation. A substitution is a mapping from a set of variables to UP . A substitu-
tion from the set of global variables of a rule r (to UP ) is a global substitution for r; a
substitution from the set of local variables of a symbolic set S (to UP) is a local sub-
stitution for S. Given a symbolic set without global variables S = {Vars : Conj }, the
instantiation of S is the following ground set of pairs inst(S): {〈γ(Vars) : γ(Conj )〉 |
γ is a local substitution for S}.4 A ground instance of a rule r is obtained in two steps:
(1) a global substitution σ for r is first applied over r; (2) every symbolic set S in σ(r)
is replaced by its instantiation inst(S). The instantiation Ground(P) of a program P
is the set of all possible instances of the rules of P .

Interpretation. An interpretation for a DLPA program P is a set of standard ground
atoms I ⊆ BP . A standard ground atom a is true w.r.t. an interpretation I , denoted
I |= a, if a ∈ I; otherwise it is false w.r.t. I . A standard ground literal not a is true
w.r.t. an interpretation I , denoted I |= not a, if I �|= a, otherwise it is false w.r.t. I.

An interpretation also provides a meaning to (ground) sets, aggregate functions and
aggregate literals, namely a multiset, a value, and a truth value, respectively. Let f(S)
be a an aggregate function. The valuation I(S) of S w.r.t. I is the multiset I(S) defined
as follows: Let SI = {〈t1, ..., tn〉 | 〈t1, ..., tn :Conj 〉∈S ∧ Conj is true w.r.t. I}, then
I(S) is the multiset obtained as the projection of the tuples of SI on their first constant,
that is I(S) = [t1 | 〈t1, ..., tn〉 ∈ SI ].

4 Given a substitution σ and a DLPA object Obj (rule, set, etc.), we denote by σ(Obj) the
object obtained by replacing each variable X in Obj by σ(X).
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The valuation I(f(S)) of an aggregate function f(S) w.r.t. I is the result of the
application of f on I(S). If the multiset I(S) is not in the domain of f , I(f(S)) = ⊥
(where ⊥ is a fixed symbol not occurring in P).

An instantiated aggregate atom A = f(S) ≺ k is true w.r.t. an interpretation I ,
denoted I |= A if: (i) I(f(S)) �= ⊥, and, (ii) I(f(S)) ≺ k holds; otherwise, A is false.
An instantiated aggregate literal not A = not f(S) ≺ k is true w.r.t. an interpretation
I , denoted I |= not A, if (i) I(f(S)) �= ⊥, and, (ii) I(f(S)) ≺ k does not hold;
otherwise, A is false.

A rule r is satisfied w.r.t. I , denoted I |= r if some head atom is true w.r.t. I (∃h ∈
H(r) : I |= h) whenever all body literals are true w.r.t. I (∀b ∈ B(r) : I |= b).

Definition 1. A ground literal � is monotone, if for all interpretations I, J , such that
I ⊆ J , I |= � implies J |= �; antimonotone, if for all interpretations I, J , such that
I ⊆ J , J |= � implies I |= �; nonmonotone, if it is neither monotone nor antimonotone.

Note that positive standard literals are monotone, whereas negative standard literals are
antimonotone. Aggregate literals may be monotone, antimonotone or nonmonotone,
regardless whether they are positive or negative.

Example 1. Of #count{Z : r(Z)} > 1 and not #count{Z : r(Z)} < 1 all ground in-
stances are monotone, while of #count{Z : r(Z)} < 1, not #count{Z : r(Z)} > 1 all
ground instances are antimonotone. Nonmonotone literals include the sum over (possi-
bly negative) integers and the average.

We will next recall the notion of answer sets for DLPA programs as defined in [4]. An
interpretation M is a model of a DLPA program P , denoted M |= P , if M |= r for
all rules r ∈ Ground(P). An interpretation M is a subset-minimal model of P if no
I ⊂ M is a model of Ground(P).

Definition 2. Given a ground DLPA program P and an interpretation I , let PI denote
the transformed program obtained from P by deleting rules in which a body literal is
false w.r.t. I: PI = {r | r ∈ P , ∀b ∈ B(r) : I |= b}
Definition 3 (Answer Sets for DLPA Programs). Given a DLPA program P , an in-
terpretation A of P is an answer set if it is a subset-minimal model of Ground(P)A.

3 Overview of Complexity Results

We analyze the complexity of DLPA on cautious reasoning, a main reasoning task
in nonmonotone formalisms, amounting to the following decision problem: Given a
DLPA program P and a standard ground atom A, is A true in all answer sets of P?

For identifying fragments of DLPA, we use the notation LPLA, where L ⊆ {not, ∨}
and A ⊆ {Ms, M, As, A, Ns, N}. Let P ∈ LPLA. If not ∈ L, then rules in P may
contain negative literals. Likewise, if ∨ ∈ L, then rules in P may have disjunctive
heads. If Ms ∈ A (resp., As ∈ A, Ns ∈ A), then P may contain monotone (resp.
antimonotone, nonmonotone) aggregates, on which P is stratified. If M ∈ A (resp.,
A ∈ A, N ∈ A), then P may contain monotone (resp. antimonotone, nonmonotone)
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aggregates (on which P is not necessarily stratified). If a symbol is absent in a set, then
the respective feature cannot occur in P , unless another symbol is included which spec-
ifies a more general feature. For example, if P ∈ LP

{}
{A}, then antimonotone aggregates

on which P is stratified may occur in P even if As is not specified.
For the technical results, we consider ground (i.e., variable-free) DLPA programs,

and polynomial-time computable aggregate functions (note that all sample aggregate
functions appearing in this paper fall into this class). However, we also provide a dis-
cussion on how results change when considering non-ground programs or aggregates
which are harder to compute.

Table 1 summarizes the complexity results derived in the next sections for various
fragments LPLA, where L is specified in columns and A in rows. Results for LPLA, where
Ms ∈ A have been omitted from Table 1 for readability, as they are equal to those of
the respective fragment containing M instead of Ms.

As already noticed in [4], the addition of aggregates does not increase the complexity
of disjunctive logic programming, remaining ΠP

2 -complete.
Monotone aggregates are the “cheapest,” from the viewpoint of complexity. Their

presence never causes any complexity increase, even for negation-free programs, and
even for unstratified monotone aggregates. The largest polynomial-time computable
fragment is LP

{}
{M,As,Ns} (positive ∨-free programs), suggesting that also the stratified

aggregates As and Ns are rather “cheap”. Indeed, they behave similarly to stratified
negation from the complexity viewpoint, and increase the complexity only in the case
of positive disjunctive programs (from co-NP to ΠP

2 ).
Antimonotone aggregates act similarly to negation: In the positive ∨-free case their

presence alone increases the complexity from P to co-NP. The complexity remains
the same if monotone and stratified nonmonotone aggregates are added. The maximal
co-NP-computable fragments are LP

{not}
{M,A,Ns} and LP

{∨}
{M}.

The most “expensive” aggregates, from the viewpoint of complexity, are the non-
monotone ones: In the positive ∨-free case (definite Horn programs) they cause a big
complexity jump from P to ΠP

2 . For each language fragment containing nonmonotone
aggregates we obtain ΠP

2 -completeness. Intuitively, the reason is that nonmonotone ag-
gregates can express properties which can be written using negation and disjunction in
standard DLP.

Note that implemented ASP systems allow for expressing nonmonotone aggregates
such as 1 < #count{X : p(X)} < 3, which however, can be treated like a conjunction of
a monotone and an antimonotone aggregate atom (#count{X : p(X)} > 1,
#count{X : p(X)} < 3). The complexity of nondisjunctive programs with these con-
structs is therefore the same as for LP

{not}
{M,A} (lower than LP

{not}
{N} ). In [19], a broad

class of nonmonotone aggregates, that can be rewritten as monotone and antimonotone
aggregates in this style, is identified.

The above complexity results give us valuable information about intertranslatability
of different languages, having important implications on the possibility to implement
aggregates in existing reasoning engines. For instance, we know now that cautious rea-
soning on LP

{not}
{M,A,Ns} can be efficiently translated to UNSAT (the complement of

propositional satisfiability) or to cautious reasoning on non-disjunctive ASP; thus, ar-
bitrary monotone, arbitrary antimonotone, and stratified nonmonotone aggregates can
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Table 1. The Complexity of Cautious Reasoning in ASP with Aggregates (Completeness Results
under Logspace Reductions)

{} {not} {∨} {not, ∨}

{} P co-NP co-NP ΠP
2 1

{M} P co-NP co-NP ΠP
2 2

{As} P co-NP ΠP
2 ΠP

2 3

{Ns} P co-NP ΠP
2 ΠP

2 4

{M,As} P co-NP ΠP
2 ΠP

2 5

{M,Ns} P co-NP ΠP
2 ΠP

2 6

{As, Ns} P co-NP ΠP
2 ΠP

2 7

{M,As, Ns} P co-NP ΠP
2 ΠP

2 8

{A} co-NP co-NP ΠP
2 ΠP

2 9

{M,A} co-NP co-NP ΠP
2 ΠP

2 10

{A,Ns} co-NP co-NP ΠP
2 ΠP

2 11

{M,A,Ns} co-NP co-NP ΠP
2 ΠP

2 12

{N} ΠP
2 ΠP

2 ΠP
2 ΠP

2 13

{M,N} ΠP
2 ΠP

2 ΠP
2 ΠP

2 14

{As, N} ΠP
2 ΠP

2 ΠP
2 ΠP

2 15

{M,As, N} ΠP
2 ΠP

2 ΠP
2 ΠP

2 16

{A,N} ΠP
2 ΠP

2 ΠP
2 ΠP

2 17

{M,A,N} ΠP
2 ΠP

2 ΠP
2 ΠP

2 18

1 2 3 4

be implemented efficiently on top of SAT solvers or non-disjunctive ASP systems. On
the other hand, since nonmonotone aggregates (even without negation and disjunction)
bring the complexity to ΠP

2 , the existence of a polynomial translation from cautious
reasoning with nonmonotone aggregates to UNSAT cannot exist (unless the polyno-
mial hierarchy collapses).

As mentioned above, our results rely on the assumption that aggregate functions are
computable in polynomial time. If one were to allow computationally more expensive
aggregates, complexity would rise according to the complexity of additional oracles,
which are needed to compute the truth value of an aggregate.

We end this overview by briefly addressing the complexity of non-ground programs.
When considering data-complexity (i.e. a program P is fixed, while the input consists
only of facts), the results are as for propositional programs. If, however, one consid-
ers program complexity (i.e. a program P is given as input), complexity rises in a
similar manner as for aggregate-free programs. A non-ground program P can be re-
duced, by naive instantiation, to a ground instance of the problem. In the general case,
where P is given in the input, the size of the grounding Ground(P) is single expo-
nential in the size of P . Informally, the complexity of Cautious Reasoning increases
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accordingly by one exponential, from P to EXPTIME, co-NP to co-NEXPTIME, ΠP
2 to

co-NEXPTIMENP. For aggregate-free programs complexity results in the non-ground
case are reported in [20]. For the other fragments, the results can be derived using com-
plexity upgrading techniques as presented in [21].

4 Proofs of Hardness Results

All P-hardness results in the table (rows 1–8 in column 1) follow directly from the
well-known result that (positive) propositional logic programming is P-hard [20].

We recall that in Theorems 4 and 5 of [4] it has been shown that each program
P ∈ LP

{not,∨}
{} can be transformed into an equivalent program Γ (P) ∈ LP

{∨}
{A} in

LOGSPACE, and if P is negation-stratified, then Γ (P) ∈ LP
{∨}
{As}. As a consequence

of these results, we obtain hardness for positive non-disjunctive programs containing
antimonotone aggregates.

Theorem 1. Cautious reasoning over LP{}{A} programs is co-NP-hard.

Proof. Follows from co-NP-hardness of cautious reasoning for positive disjunctive
aggregate-free programs (programs in LP

{∨}
{} ), see Theorem 6.1 in [20], together with

Theorems 4 and 5 of [4].

Whenever one allows for nonmonotone aggregates in positive, non-disjunctive pro-
grams, cautious reasoning becomes harder by one level in the polynomial hierarchy.

Theorem 2. Cautious reasoning over LP{}{N} programs is ΠP
2 -hard.

Proof. We provide a reduction from 2QBF. Let Ψ = ∀x1, . . . , xm∃y1, . . . , yn : Φ,
where w.l.o.g. Φ is a propositional formula in 3DNF format, over precisely the variables
x1, . . . , xm, y1, . . . , yn. Let the LP{}{N} program ΠΨ be:

t(xi, 1):-#sum{〈1: t(xi, 1)〉, 〈−1: t(xi, −1)〉} ≥ 0.
t(xi, −1):-#sum{〈1: t(xi, 1)〉, 〈−1: t(xi, −1)〉} ≤ 0.
t(yi, 1):-#sum{〈1: t(yi, 1)〉, 〈−1: t(yi, −1)〉} ≥ 0.
t(yi, −1):-#sum{〈1: t(yi, 1)〉, 〈−1: t(yi, −1)〉} ≤ 0.
t(yi, 1):- sat(−1). t(yi, −1):- sat(−1).
sat(−1):-#sum{〈−1:sat(−1)〉, 〈−1:unsat(−1)〉} ≤ 0.

For each disjunct ci = li,1 ∧ li,2 ∧ li,3 of Φ, we add: sat(1):-μ(li,1), μ(li,2), μ(li,3),
where μ(l) is t(l, −1) if l is positive, and t(l, 1) otherwise. The query sat(−1)? holds for
ΠΨ , iff Ψ is true.

Intuitively, t(v, 1) and t(v, −1) encode truth and falsity of the propositional variable
v, respectively, while sat(−1) encodes unsatisfiability of ¬Φ. The first four rules en-
code all possible truth assignments for x1, . . . , xm, y1, . . . , yn. If sat(−1) holds, the
subsequent two rules entail that both truth and falsity of y1, . . . , yn must hold (the first
four rules are then still satisfied). If an assignment for x1, . . . , xm, y1, . . . , yn does not
satisfy ¬Φ, then sat(−1) must hold in any answer set encoding the assignment. But
then both truth and falsity will be derived for any yi (saturation). Now, by minimality of
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answer sets, if for some assignment for x1, . . . , xm, y1, . . . , yn, sat(−1) is not derived
(hence the assignment does satisfy ¬Φ), no answer set including sat(−1) and the same
assignment for x1, . . . , xm can exist, as it would be a superset. Moreover, whenever
sat(−1) is not derived for some x1, . . . , xm, y1, . . . , yn, the resulting model is not an
answer set. In total, if ¬Ψ ≡ ∃x1, . . . , xm∀y1, . . . , yn : ¬Φ is false (if and only if Ψ
is true), then at least one answer set of ΠΨ exists, and all answer sets of ΠΨ contain
sat(−1). Otherwise, ΠΨ has no answer sets.

We note that a related result — deciding whether an answer set exists for a posi-
tive, non-disjunctive program with weight constraints over possibly negative integers is
ΣP

2 -complete — has been shown in [10]. Weight constraints can be monotone, anti-
monotone, or nonmonotone aggregate atoms. In particular, Ferraris elegantly shows that
disjunctive programs can be efficiently rewritten to ∨-free programs with nonmonotonic
aggregates (under brave reasoning). We strengthen Ferraris’ result, showing that, under
cautious reasoning and positive programs, the opposite direction does not hold: pos-
itive ∨-free programs with nonmonotonic aggregates cannot be efficiently translated
into positive disjunctive programs (unless P = NP). Theorem 2 strengthens also The-
orem 21 in [13], where ΠP

2 -hardness is stated for LP{not}{M,A,N} (and the reduction uses
negation).

The following result has implicitly been given in Theorem 7 in [4].

Theorem 3 ([4]). Cautious reasoning over LP{∨}{As} and LP{∨}{Ns} programs is ΠP
2 -hard.

Leveraging results in the literature, we have shown hardness for all fields in Table 1.

Theorem 4. Each field of Table 1 states the respective hardness of cautious reasoning
for the corresponding fragment of DLPA.

5 Proofs of Membership Results

For the membership proofs, we will advance in the reverse order, and first prove results
for richer languages, which cover also several results for sublanguages.

For the complete language, we recall Theorem 9 of [4]:

Theorem 5 ([4]). Cautious reasoning over LP{not,∨}{M,A,N} programs is in ΠP
2 .

Concerning disjunctive programs, for most fragments cautious reasoning is in ΠP
2 , with

two exceptions which are in co-NP. The reason is that for the respective classes it is
sufficient to look at an arbitrary model, rather than an answer set or a minimal model,
as shown in Theorem 8 of [4]:

Theorem 6 ([4]). Cautious reasoning over LP{∨}{M} programs is in co-NP.

ΠP
2 -memberships for non-disjunctive programs already follow from the respective re-

sult for disjunctive programs, and it remains to show co-NP- and P-memberships. Let
us now consider the less complex language LP{}{M,As,Ns}.
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Lemma 1. An LP{}{M,As,Ns} program has at most one answer set and the answer sets

of a LP{}{M,As,Ns} program can be computed in polynomial time.

Proof. For a LP{}{M,As,Ns} program P , let us define an operator TP on interpretations
of P as follows: TP(I) = {h | r ∈ P , I |= B(r), h ∈ H(r)}. Furthermore, given an
interpretation I , let the sequence {T

n
P(I)}n∈N be defined as T

0
P(I) = I and T

i
P =

TP(Ti−1
P (I)) for i > 0. Since TP is monotone and the number of interpretations for P

is finite, the sequence reaches a fixpoint T
∞
P (I).

Consider a level mapping || || such that for each rule r ∈ P , for which H(r) = {h}
and an antimonotone or nonmonotone aggregate literal A ∈ B(r), it holds for each
predicate p nested in A that ||p|| < ||p′||, where p′ is the predicate of h. Moreover,
||p|| ≤ ||p′|| holds for any p and p′ such that p′ occurs in the head and p in the body
of a rule. W.l.o.g., we assume the co-domain of |||| to be 0, . . . , n. Based on || ||, we
define a partition P0, . . . , Pn, Pconstr of P as follows: Pi = {r | r ∈ P , H(r) =
{h}, ||Pred(h)|| = i}, Pconstr = {r | r ∈ P , H(r) = ∅}. Furthermore, we define
FP 0
P = T

∞
P0

(∅) and FP i
P = T

∞
Pi

(FP i−1
P ) for 0 < i ≤ n, and let FPP = FPn

P . If
FPP is a model of Pconstr, let FMP = {FPP}, otherwise FMP = ∅. In the sequel
H(P) = {h | ∃r ∈ P : h ∈ H(r)} will denote the set of head atoms of a program.
We now show by induction that FPP = A for each answer set A of P . The base is
FP 0
P ∩ H(P0) = A ∩ H(P0) for each answer set A of P .

To prove FP 0
P ∩ H(P0) ⊆ A ∩ H(P0), we use another induction over T

i
P0

(∅).
The base here is T

0
Pi

(∅) = ∅ ⊆ A for each answer set A of P . Then, assuming that
S ⊆ A for each answer set A of P , we can show that TP0(S) ⊆ A for each answer
set A of P : Each rule r ∈ P0 is also in P and since A is a model of P , whenever
S |= b for all b ∈ B(r), then also for any answer set A, A |= b, as B(r) may not
contain antimonotone or nonmonotone aggregate literals, otherwise ||p|| < 0 for some
predicate in such an aggregate would hold. Since H(r) = {h}, h must be contained in
each answer set. It follows that FP 0

P = T
∞
P0

⊆ A. It is easy to see that FP 0
P ⊆ H(P0),

so FP 0
P ∩ H(P0) ⊆ A ∩ H(P0).

Now assume that X = (A ∩ H(P0)) \ (FP 0
P ∩ H(P0)) �= ∅. We show that then

A \ X is a model of PA, contradicting the assumption that A is an answer set. Each
rule in PA ∩P0 is clearly satisfied by A\X , because it is satisfied by FP 0

P . Now recall
that each rule r in PA \ P0 has a true body w.r.t. A, which is either true or false w.r.t.
A \ X . Since H(r) ∩ X = ∅, r is also satisfied by A \ X . Therefore A is not an answer
set of P if X �= ∅, and so FP 0

P ∩ H(P0) ⊇ A ∩ H(P0). We have shown the base of
the induction, FP 0

P ∩ H(P0) = A ∩ H(P0).
For the inductive step, we assume FP k

P ∩ H(Pk) = A ∩ H(Pk) holds for all
k < i, i > 0 and each answer set A. In order to show FP i

P ∩ H(Pi) = A ∩ H(Pi), we
use yet another induction over T

j
Pi

(FP i−1
P ). The base is T

0
Pi

(FP i−1
P ) = FP i−1

P ⊆ A
for each answer set A, which holds by the inductive hypothesis of the “larger” induc-
tion. Now, we assume that T

j
Pi

(FP i−1
P ) ⊆ A holds for each answer set, and show that

Tpi(T
j
Pi

(FP i−1
P )) ⊆ A holds for each answer set. We observe that each rule r ∈ Pi is

also in P and since A is a model of P , whenever T
j
Pi

(FP i−1
P ) |= b for all b ∈ B(r),
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then also for any answer set A, A |= b, because the only antimonotone or nonmonotone
literals are aggregates which, however, contain only atoms formed by predicates p, for
which ||p|| < i. Any of these atoms are however in H(Pk) for k < i and so by the
inductive hypothesis (of the “larger” induction), T

j
Pi

(FP i−1
P ) ∩H(Pk) = A ∩H(Pk).

In total, we get FP i
P = T

∞
Pi

⊆ A.
It remains to show that FP i

P ∩ H(Pi) ⊇ A ∩ H(Pi). Similar to the base case of the
“larger” induction, we assume X = (A ∩ H(Pi)) \ (FP i

P ∩ H(Pi)) �= ∅. We show
that then A \X is a model of PA, contradicting the assumption that A is an answer set.
Each rule in PA ∩Pi is clearly satisfied by A \ X , because it is satisfied by FP i

P . Now
recall that each rule r in PA \ Pi has a true body w.r.t. A, which is either true or false
w.r.t. A \ X . Since H(r) ∩ X = ∅, r is also satisfied by A \ X . Therefore A is not an
answer set of P if X �= ∅, and so FP i

P ∩ H(Pi) ⊇ A ∩ H(Pi). We have shown the
step of the induction, FP i

P ∩ H(Pi) = A ∩ H(Pi) for each answer set A.
In total, for FPP we have FPP ∩ (

⋃n
i=1 H(Pi)) = A ∩ (

⋃n
i=1 H(Pi)) for each an-

swer set A of P . Clearly each answer set of P is also an answer set of (
⋃n

i=1 H(Pi)) =
P \Pconstr. Therefore, for each answer set A of P , we know that A = FPP . It follows
that P has at most one answer set. Moreover, since FPP is an answer set of P\Pconstr,
it is a minimal model of (P \ Pconstr)FPP . If FPP satisfies all rules in Pconstr, then
(P \ Pconstr)FPP = PFPP , and FPP is an answer set of P . If any rule of Pconstr

exists which is not satisfied by FPP , it cannot be an answer set of P , so FMP is the
set of answer sets for P . Computing FPP and FMP using TP is clearly polynomial.

Since there is at most one answer set, cautious reasoning is easy.

Theorem 7. Cautious reasoning over LP{}{M,As,Ns} is in P.

Proof. This is a simple consequence of Lemma 1. We compute the set of answer sets
in polynomial time. If it is empty, all atoms are a cautious consequence. If there is one
answer set, check in polynomial time whether it contains the query atom.

Let us now focus on the co-NP-memberships. For doing so, we will re-use the fact
that answer sets of LP{}{M,As,Ns} programs are computable in polynomial time, as for

answer set checking of LP{not}{M,A,Ns} programs, one can eliminate antimonotone literals.

Lemma 2. Given a LP{not}{M,A,Ns} program P and an interpretation I ⊆ BP , I is a

subset-minimal model of PI iff it is a subset-minimal model of Ψ(PI), which is derived
from PI by deleting all antimonotone literals.

Proof. (⇒) If I is a minimal model of PI , it is obviously also a model of Ψ(PI).
Moreover, each interpretation N ⊂ I is not a model of PI , so there is at least one
rule r ∈ PI , for which N �|= r, that is all body atoms are true w.r.t. N but all head
atoms are false w.r.t. N . Now there is a rule r′ ∈ Ψ(PI) with H(r) = H(r′) and
B(r) ⊇ B(r′). So also the body of r′ is true w.r.t. N , and hence r′ is not satisfied by N .
As a consequence, N is not a model of Ψ(PI), and so I is a minimal model of Ψ(PI).

(⇐) Let I be a minimal model of Ψ(PI). We first note that no rule in PI (and
Ψ(PI)) has a body literal which is false w.r.t. I by construction of PI . So for any rule
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in Ψ(PI), all body literals are true w.r.t. I , and hence one of its head atoms is true w.r.t.
I , since I is a model. Since each rule in Ψ(PI) has a corresponding rule in PI with
equal head, I is also a model of PI .

Now, consider an arbitrary interpretation N ⊂ I . N is not a model of Ψ(PI), that is,
there is a rule r ∈ Ψ(PI) with true body and false head w.r.t. N . By construction, there
is a rule r′ ∈ pI , for which H(r) = H(r′) and B(r) ⊆ B(r′). By construction of pI ,
all literals of r′ are true w.r.t. I , and since each deleted body literal � ∈ B(r′) \ B(r)
is an antimonotone literal, � is also true w.r.t. N . Hence, the body of r′ is true and the
head of r′ is false w.r.t. N . Hence N is not a model of PI , and we obtain that I is a
minimal model of PI .

Theorem 8. Cautious reasoning over LP{not}{M,A,Ns} is in co-NP.

Proof. We guess an interpretation I , and check whether it is an answer set and does not
contain the queried atom. The latter check is clearly polynomial. Answer set check-
ing amounts to checking whether I is a subset-minimal model of PI . Because of
Lemma 2, I is a subset-minimal model of PI iff I is a subset-minimal model of Ψ(PI),
in which all negative standard and antimonotone aggregate literals have been deleted
(this transformation is obviously polynomial). Note that I is a subset-minimal model
of PI if I is an answer set of PI , hence if I is an answer set of Ψ(PI). Now since

Ψ(PI) ∈ LP
{}
{M,Ns} ⊆ LP

{}
{M,As,Ns} we know by Lemma 1 that its answer sets (at

most one) are computable in polynomial time, and hence also the set of minimal models
of Ψ(PI). If it is empty, I is not an answer set; otherwise there is exactly one minimal
model, and we check whether it is equal to I . If it is, I is an answer set, otherwise it is
not. Checking whether I is an answer set is therefore feasible in polynomial time.

All membership results of Table 1 follow from these results.

Theorem 9. Each field of Table 1 states the respective membership of cautious reason-
ing for the corresponding fragment of DLPA.

6 Conclusions

Concluding, we have given a fine-grained analysis of the computational complexity
of ASP with aggregates, drawing a full picture of the complexity of the ASP frag-
ments where negation and/or disjunction are combined with different kinds of aggre-
gates (monotone, antimonotone, nonmonotone, stratified or not). Importantly, we have
shown that the presence of aggregate literals (of arbitrary kind) will not increase the
computational complexity of full ASP programs (with disjunction and negation). How-
ever, the presence of unstratified nonmonotone aggregates does increase the complexity
of normal, non-disjunctive programs up to ΠP

2 .
Additionally we have singled out relevant classes of aggregates which do not cause

any complexity overhead for normal programs and can be efficiently implemented in
normal ASP systems. Likewise, we have identified classes of aggregates which do
not increase the complexity even for positive non-disjunctive programs, for which the
problem stays polynomial. The latter result is particularly interesting in a database
setting.
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Abstract. Competitive native solvers for Answer Set Programming (ASP) per-
form a backtracking search by assuming the truth of literals. The choice of literals
(the heuristic) is fundamental for the performance of these systems.

Most of the efficient ASP systems employ a heuristic based on look-ahead,
that is, a literal is tentatively assumed and its heuristic value is based on its deter-
ministic consequences. However, looking ahead is a costly operation, and indeed
look-ahead often accounts for the majority of time taken by ASP solvers. For Sat-
isfiability (SAT), a radically different approach, called look-back heuristic, proved
to be quite successful: Instead of looking ahead, one uses information gathered
during the computation performed so far, thus looking back. In this approach,
atoms which have been frequently involved in inconsistencies are preferred.

In this paper, we carry over this approach to the framework of disjunctive ASP.
We design a number of look-back heuristics exploiting peculiarities of ASP and
implement them in the ASP system DLV. We compare their performance on a
collection of hard ASP programs both structured and randomly generated. These
experiments indicate that a very basic approach works well, outperforming all of
the prominent disjunctive ASP systems — DLV (with its traditional heuristic),
GnT, and CModels3 — on many of the instances considered.

1 Introduction

Answer set programming (ASP) is a comparatively novel programming paradigm,
which has been proposed in the area of nonmonotonic reasoning and logic program-
ming. The idea of answer set programming is to represent a given computational prob-
lem by a logic program whose answer sets correspond to solutions, and then use an
answer set solver to find such solutions [1]. The knowledge representation language of
ASP is very expressive in a precise mathematical sense; in its general form, allowing for
disjunction in rule heads and nonmonotonic negation in rule bodies, ASP can represent
every problem in the complexity class ΣP

2 and ΠP
2 (under brave and cautious reasoning,

respectively) [2]. Thus, ASP is strictly more powerful than SAT-based programming, as
it allows for solving problems which cannot be translated to SAT in polynomial time
(unless P = NP ). For instance, several problems in diagnosis and planning under in-
complete knowledge are complete for the complexity class ΣP

2 or ΠP
2 [3,4], and can

be naturally encoded in ASP [5,6].
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Since the model generators of native ASP systems are similar to the DPLL procedure,
employed in many SAT solvers, the heuristic (branching rule) for the selection of the
branching literal (i.e., the criterion determining the literal to be assumed true at a given
stage of the computation) is fundamentally important for the efficiency of an ASP sys-
tem. Many of the efficient ASP systems, and especially the disjunctive ASP systems,
employ a heuristic based on look-ahead. This means that the available choices are hy-
pothetically assumed, their deterministically entailed consequences are computed, and
a heuristic function is evaluated on the result. The look-ahead approach has been shown
to be effective [7,8] and it bears the additional benefit of detecting choices that determin-
istically cause an inconsistency. However, the sheer number of potential choices and the
costly computations done for each of these makes the look-ahead a rather costly opera-
tion. Indeed, look-ahead often accounts for the majority of time taken by ASP solvers.

In SAT, a radically different approach, called look-back heuristics, proved to be quite
successful [9]: Instead of making tentative assumptions and thus trying to look into the
future of the computation, one uses information already collected during the computa-
tion so far, thus looking back; atoms which have been most frequently involved in in-
consistencies are heuristically preferred (following the intuition that “most constrained”
atoms are to be decided first).

In this paper, we take this approach from SAT to the framework of disjunctive ASP,
trying to maximally exploit peculiarities of ASP, and experiment with alternative ways
of addressing the key issues arising in this framework. The main contributions of the
paper are as follows.

• We define a framework for look-back heuristics in disjunctive ASP. We build upon
the work in [10], which describes a calculus identifying reasons for encountered in-
consistencies in order to allow backjumping (i.e., avoiding backtracking to choices
which do not contribute to an encountered inconsistency). For obtaining a “most
constrained choices first” strategy, we prefer those choices that were the reasons
for earlier inconsistencies. Our framework exploits the peculiarities of disjunctive
ASP, a relevant feature concerns the full exploitation of “hidden” inconsistencies
which are due to the failure of stable-model checks.

• We design a number of look-back heuristics for disjunctive ASP. In particular, we
study different ways of making choices when information on inconsistencies is
poor (e.g., at the beginning of the computation, when there is still nothing to look
back to).
We consider also different ways of choosing the “polarity” (positive or negative) of
the atoms to be taken (intuitively negative choices keep the interpretation closer to
minimality, which is mandatory in ASP).

• We implement all proposed heuristics in the ASP system DLV [11].
• We carry out an experimental evaluation of all proposed heuristics on programs

encoding random and structured 2QBF formulas, the prototypical problem for ΠP
2

(the class characterizing hard disjunctive ASP programs).

The results are very encouraging, the new heuristics perform very well compared to
the traditional disjunctive ASP systems DLV, GnT [12] and CModels3 [13]. In particu-
lar, a very basic heuristic outperforms all other systems on a large part of the considered
instances.
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To our knowledge, while look-back heuristics have been widely studied for SAT (see,
e.g., [9] [14], [15]), so far only few works have studied look-back heuristics for ∨-free
ASP [16,17], and this is the first paper on look-back heuristics for disjunctive ASP.1

2 Answer Set Programming Language

A (disjunctive) rule r is a formula

a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm.

where a1, · · · , an, b1, · · · , bm are function-free atoms and n ≥ 0, m ≥ k ≥ 0. The
disjunction a1 ∨ · · · ∨ an is the head of r, while b1, · · · , bk, not bk+1, · · · , not bm is
the body, of which b1, · · · , bk is the positive body, and not bk+1, · · · , not bm is the
negative body of r.

An (ASP) program P is a finite set of rules. An object (atom, rule, etc.) is called
ground or propositional, if it contains no variables. Given a program P , let the Herbrand
Universe UP be the set of all constants appearing in P and the Herbrand Base BP be the
set of all possible ground atoms which can be constructed from the predicate symbols
appearing in P with the constants of UP .

Given a rule r, Ground(r) denotes the set of rules obtained by applying all possible
substitutions σ from the variables in r to elements of UP . Similarly, given a program
P , the ground instantiation Ground(P) of P is the set

⋃
r∈P Ground(r).

For every program P , its answer sets are defined using its ground instantiation
Ground(P) in two steps: First answer sets of positive programs are defined, then a
reduction of general programs to positive ones is given, which is used to define answer
sets of general programs.

A set L of ground literals is said to be consistent if, for every atom � ∈ L, its com-
plementary literal not � is not contained in L. An interpretation I for P is a consistent
set of ground literals over atoms in BP .2 A ground literal � is true w.r.t. I if � ∈ I; �
is false w.r.t. I if its complementary literal is in I; � is undefined w.r.t. I if it is neither
true nor false w.r.t. I . Interpretation I is total if, for each atom A in BP , either A or
not A is in I (i.e., no atom in BP is undefined w.r.t. I). A total interpretation M is a
model for P if, for every r ∈ Ground(P), at least one literal in the head is true w.r.t.
M whenever all literals in the body are true w.r.t. M . X is an answer set for a positive
program P if it is minimal w.r.t. set inclusion among the models of P .

Example 1. For the positive program P1 = {a ∨ b ∨ c. , :– a.}, {b, not a, not c} and
{c, not a, not b} are the only answer sets.

For the positive program P2 = {a ∨ b ∨ c. , :– a. , b :– c. , c :– b.}, {b, c, not a} is
the only answer set.

The reduct or Gelfond-Lifschitz transform of a general ground program P w.r.t. an in-
terpretation X is the positive ground program PX , obtained from P by (i) deleting all

1 The disjunctive ASP system CModels3 [13] “indirectly” uses look-back heuristics, since it
works on top SAT solvers which may employ this technique.

2 We represent interpretations as set of literals, since we have to deal with partial interpretations
in the next sections.
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rules r ∈ P the negative body of which is false w.r.t. X and (ii) deleting the negative
body from the remaining rules. An answer set of a general program P is a model X of
P such that X is an answer set of Ground(P)X .

Example 2. Given the (general) program P3 = {a ∨ b :– c. , b :– not a, not c. , a ∨
c :– not b.} and I = {b, not a, not c}, the reduct PI

3 is {a∨ b :– c., b.}. It is easy to see
that I is an answer set of PI

3 , and for this reason it is also an answer set of P3.

3 Answer Set Computation

In this section, we describe the main steps of the computational process performed by
ASP systems. We will refer particularly to the computational engine of the DLV system,
which will be used for the experiments, but also other ASP systems, employ a similar
procedure.

An answer set program P in general contains variables. The first step of a compu-
tation of an ASP system eliminates these variables, generating a ground instantiation
ground(P) of P .3 The subsequent computations are then performed on ground(P).

Function ModelGenerator(I: Interpretation): Boolean;
var inconsistency: Boolean;
begin

I := DetCons(I);
if I = L then return False; (* inconsistency *)
if no atom is undefined in I then return IsAnswerSet(I);
Select an undefined ground atom A according to a heuristic;
if ModelGenerator(I ∪ {A}) then return True;
else return ModelGenerator(I ∪ {not A});

end;

Fig. 1. Computation of Answer Sets

The heart of the computation is performed by the Model Generator, which is sketched
in Figure 1. The ModelGenerator function is initially called with parameter I set to the
empty interpretation.4 If the program P has an answer set, then the function returns
True, setting I to the computed answer set; otherwise it returns False. The Model Gen-
erator is similar to the DPLL procedure employed by SAT solvers. It first calls a function
DetCons(), which returns the extension of I with the literals that can be deterministi-
cally inferred (or the set of all literals L upon inconsistency). This function is similar
to a unit propagation procedure employed by SAT solvers, but exploits the peculiarities
of ASP for making further inferences (e.g., it exploits the knowledge that every answer
set is a minimal model). If DetCons does not detect any inconsistency, an atom A is

3 Note that ground(P) is usually not the full Ground(P); rather, it is a subset (often much
smaller) of it having precisely the same answer sets as P .

4 Observe that the interpretations built during the computation are 3-valued, that is, a literal can
be True, False or Undefined w.r.t. I .
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selected according to a heuristic criterion and ModelGenerator is called on I ∪{A} and
on I ∪ {not A}. The atom A plays the role of a branching variable of a SAT solver.
And indeed, like for SAT solvers, the selection of a “good” atom A is crucial for the
performance of an ASP system. In the next section, we describe some heuristic criteria
for the selection of such branching atoms.

If no atom is left for branching, the Model Generator has produced a “candidate” an-
swer set, the stability of which is subsequently verified by IsAnswerSet(I). This function
checks whether the given “candidate” I is a minimal model of the program Ground(P)I

obtained by applying the GL-transformation w.r.t. I , and outputs the model, if so. IsAn-
swerSet(I) returns True if the computation should be stopped and False otherwise.

4 Reasons for Literals

Once a literal has been assigned a truth value during the computation, we can associate
a reason for that fact with the literal. For instance, given a rule a :– b, c, not d., if b
and c are true and d is false in the current partial interpretation, then a will be derived
as true (by Forward Propagation). In this case, we can say that a is true “because” b
and c are true and d is false. A special case are chosen literals, as their only reason is
the fact that they have been chosen. The chosen literals can therefore be seen as being
their own reason, and we may refer to them as elementary reasons. All other reasons are
consequences of elementary reasons, and hence aggregations of elementary reasons.

Each literal l derived during the propagation (i.e., DetCons) will have an associated
set of positive integers R(l) representing the reason of l, which are essentially the re-
cursion levels of the chosen literals which entail l. Therefore, for any chosen literal c,
|R(c)| = 1 holds. For instance, if R(l) = {1, 3, 4}, then the literals chosen at recursion
levels 1, 3 and 4 entail l. If R(l) = ∅, then l is true in all answer sets.

The process of defining reasons for derived (non-chosen) literals is called reason
calculus. The reason calculus we employ defines the auxiliary concepts of satisfying
literals and orderings among satisfying literals for a given rule. It also has special defi-
nitions for literals derived by the well-founded operator. Here, for lack of space, we do
not report details of this calculus, and refer to [10] for a detailed definition.

When an inconsistency is determined, we use reason information in order to under-
stand which chosen literals have to be undone in order to avoid the found inconsistency.
Implicitly this also means that all choices which are not in the reason do not have any
influence on the inconsistency. We can isolate two main types of inconsistencies: (i)
Deriving conflicting literals, and (ii) failing stability checks. Of these two, the second
one is a peculiarity of disjunctive ASP.

Deriving conflicting literals means, in our setting, that DetCons determines that an
atom a and its negation not a should both hold. In this case, the reason of the incon-
sistency is – rather straightforward – the combination of the reasons for a and not a:
R(a) ∪ R(not .a).

Inconsistencies from failing stability checks are different and a peculiarity of dis-
junctive ASP, as non-disjunctive ASP systems usually do not employ a stability check.
This situation occurs if the function IsAnswerSet(I) of Section 3 returns false, hence if



Experimenting with Look-Back Heuristics for Hard ASP Programs 115

the checked interpretation (which is guaranteed to be a model) is not stable. The rea-
son for such an inconsistency is always based on an unfounded set, which has been
determined inside IsAnswerSet(I) as a side-effect. Using this unfounded set, the reason
for the inconsistency is composed of the reasons of literals which satisfy rules which
contain unfounded atoms in their head (the cancelling assignments of these rules). Note
that unsatisfied rules with unfounded atoms in their heads are not relevant for stability
and hence do not contribute to the reason. The information on reasons for inconsis-
tencies can be exploited for backjumping, as described in [10], by going back to the
closest choice which is a reason for the inconsistency, rather than always to the imme-
diately preceding choice. In the remainder of this paper, we will describe extensions of
a backjumping-based solver by further exploiting the information provided by reasons.
In particular, in the following section we describe how reasons for inconsistencies can
be exploited for defining a look-back heuristic.

5 Heuristics

In this section we will first describe the two main heuristics for DLV (based on look-
ahead), and subsequently define several new heuristics based on reasons, which are
computed as side-effects of the backjumping technique. Throughout this section, we
assume that a ground ASP program P and an interpretation I have been fixed. We
first recall the “standard” DLV heuristic hUT [7], which has recently been refined to
yield the heuristic hDS [18], which is more “specialized” for hard disjunctive programs
(like 2QBF). These are look-ahead heuristics, that is, the heuristic value of a literal Q
depends on the result of taking Q true and computing its consequences. Given a literal
Q, ext(Q) will denote the interpretation resulting from the application of DetCons on
I ∪ {Q}; w.l.o.g., we assume that ext(Q) is consistent, otherwise Q is automatically
set to false and the heuristic is not evaluated on Q at all.

Standard Heuristic of DLV (hUT ). This heuristic, which is the default in the DLV
distribution, has been proposed in [7], where it was shown to be very effective on many
relevant problems. It exploits a peculiar property of ASP, namely supportedness: For
each true atom A of an answer set I , there exists a rule r of the program such that the
body of r is true w.r.t. I and A is the only true atom in the head of r. Since an ASP
system must eventually converge to a supported interpretation, hDS is geared towards
choosing those literals which minimize the number of UnsupportedTrue (UT) atoms,
i.e., atoms which are true in the current interpretation but still miss a supporting rule.
The heuristic hUT is “balanced”, that is, the heuristic values of an atom Q depends on
both the effect of taking Q and not Q, the decision between Q and not Q is based on
the same criteria involving UT atoms.

Enhanced Heuristic of DLV (hDS). The heuristic hDS , proposed in [19] is based on
hUT , and is different from hUT only for pairs of literals which are not ordered by hUT .
The idea of the additional criterion is that interpretations having a “higher degree of
supportedness” are preferred, where the degree of supportedness is the average number
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of supporting rules for the true atoms. Intuitively, if all true atoms have many supporting
rules in a model M , then the elimination of a true atom from the interpretation would
violate many rules, and it becomes less likely finding a subset of M which is a model
of PM (which would disprove that M is an answer set). Interpretations with a higher
degree of supportedness are therefore more likely to be answer sets. Just like hUT , hDS

is “balanced”.

The Look-back Heuristics (hLB). We next describe a family of new look-back heuris-
tics hLB. Different to hUT and hDS , which provide a partial order on potential choices,
hLB assigns a number (V (L)) to each literal L (thereby inducing an implicit order).
This number is periodically updated using the inconsistencies that occurred after the
most recent update. Whenever a literal is to be selected, the literal with the largest
V (L) will be chosen. If several literals have the same V (L), then negative literals are
preferred over positive ones, but among negative and positive literals having the same
V (L), the ordering will be random.

In more detail, for each literal L, two values are stored: V (L), the current heuristic
value, and I(L), the number of inconsistencies L has been a reason for (as discussed in
Section 4) since the most recent heuristic value update. After having chosen k literals,
V (L) is updated for each L as follows: V (L) := V (L)/2 + I(L). The motivation for
the division (which is assumed to be defined on integers by rounding the result) is to
give more impact to more recent values. Note that I(L) �= 0 can hold only for literals
that have been chosen earlier during the computation.

A crucial point left unspecified by the definition so far are the initial values of V (L).
Given that initially no information about inconsistencies is available, it is not obvious
how to define this initialization. On the other hand, initializing these values seems to
be crucial, as making poor choices in the beginning of the computation can be fatal for
efficiency. Here, we present two alternative initializations: The first, denoted by hMF

LB , is
done by initializing V (L) by the number of occurrences of L in the program rules. The
other, denoted by hLF

LB, involves ordering the atoms with respect to hDS , and initializing
V (L) by the rank in this ordering. The motivation for hMF

LB is that it is fast to compute
and stays with the “no look-ahead” paradigm of hLB . The motivation for hLF

LB is to try
to use a lot of information initially, as the first choices are often critical for the size of
the subsequent computation tree.

We introduce yet another option for hLB , motivated by the fact that answer sets
for disjunctive programs must be minimal with respect to atoms interpreted as true,
and the fact that the checks for minimality are costly: If we preferably choose false
literals, then the computed answer set candidates may have a better chance to be already
minimal. Thus even if the literal, which is optimal according to the heuristic, is positive,
we will choose the corresponding negative literal first. If we employ this option in the
heuristic, we denote it by adding AF to the superscript, arriving at hMF,AF

LB and hLF,AF
LB

respectively.
Note also that the complexity of look-ahead heuristics is in general quadratic (in

the number of atoms), and becomes linear is a bound on the number of atoms to be
analyzed is a-priori known. On the other hand, hLB heuristics are constant time, but
need the values V (L) to be re-ordered after having chosen k literals.
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6 Experiments

We have implemented all the proposed heuristics in DLV; in this section, we report on
their experimental evaluation.

6.1 Compared Methods

For our experiments, we have compared several versions of DLV [11], which differ on
the employed heuristics and the use of backjumping. For having a broader picture, we
have also compared our implementations to the competing systems GnT and CModels3.
The considered systems are:
• dlv.ut: the standard DLV system employing hUT (based on look-ahead).
• dlv.ds: DLV with hDS , the look-ahead based heuristic specialized for ΣP

2 /ΠP
2 hard

disjunctive programs.
• dlv.ds.bj: DLV with hDS and backjumping.
• dlv.mf: DLV with hMF

LB .5

• dlv.mf.af: DLV with hMF,AF
LB .

• dlv.lf: DLV with hLF
LB .

• dlv.lf.af: DLV with hLF,AF
LB .

• gnt [12]: The solver GnT, based on the Smodels system, can deal with disjunctive
ASP. One instance of Smodels generates candidate models, while another instance tests
if a candidate model is stable.
• cm3 [13]: CModels3, a solver based on the definition of completion for disjunctive
programs and the extension of loop formulas to the disjunctive case. CModels3 uses two
SAT solvers in an interleaved way, the first for finding answer set candidates using the
completion of the input program and loop formulas obtained during the computation,
the second for verifying if the candidate model is indeed an answer set.

Note that we have not taken into account other solvers like Smodelscc [16] or Clasp
[17] because our focus is on disjunctive ASP.

6.2 Benchmark Programs and Data

The proposed heuristic aims at improving the performance of DLV on disjunctive ASP
programs. Therefore we focus on hard programs in this class, which is known to be able
to express each problem of the complexity class ΣP

2 . All of the instances that we have
considered in our benchmark analysis have been derived from instances for 2QBF, the
canonical ΣP

2 -complete problem. This choice is motivated by the fact that many real-
world, structured instances for problems in ΣP

2 are available for 2QBF on QBFLIB
[20], and moreover, studies on the location of hard instances for randomly generated
2QBFs have been reported in [21,22,23].

The problem 2QBF is to decide whether a quantified Boolean formula (QBF) Φ =
∀X∃Y φ, where X and Y are disjoint sets of propositional variables and φ = D1∧ . . .∧
Dk is a CNF formula over X ∪ Y , is valid.

5 Note that all systems with hLB heuristics exploit backjumping.
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The transformation from 2QBF to disjunctive logic programming is a slightly altered
form of a reduction used in [24]. The propositional disjunctive logic program Pφ pro-
duced by the transformation requires 2 ∗ (|X |+ |Y |)+ 1 propositional predicates (with
one dedicated predicate w), and consists of the following rules. Rules of the form v ∨ v̄.
for each variable v ∈ X ∪ Y .
Rules of the form y ← w. ȳ ← w. for each y ∈ Y . Rules of the form w ←
v̄1, . . . , v̄m, vm+1, . . . , vn. for each disjunction v1 ∨ ... ∨ vm ∨ ¬vm+1 ∨ ... ∨ ¬vn

in φ. The rule ← not w. The 2QBF formula Φ is valid iff PΦ has no answer set [24].
We have selected both random and structured QBF instances. The random 2QBF in-

stances have been generated following recent phase transition results for QBFs
[21,22,23]. In particular, the generation method described in [23] has been employed
and the generation parameters have been chosen according to the experimental results
reported in the same paper. We have generated 13 different sets of instances, each of
which is labelled with an indication of the employed generation parameters. In partic-
ular, the label “A-E-C-ρ” indicates the set of instances in which each clause has A
universally-quantified variables and E existentially-quantified variables randomly cho-
sen from a set containing C variables, such that the ratio between universal and existen-
tial variables is ρ. For example, the instances in the set “3-3-50-0.8” are 6CNF formu-
las (each clause having exactly 3 universally-quantified variables and 3 existentially-
quantified variables) whose variables are randomly chosen from a set of 50 containing
22 universal and 28 existential variables, respectively. In order to compare the per-
formance of the systems in the vicinity of the phase transition, each set of generated
formulas has an increasing ratio of clauses over existential variables (from 1 to maxr).
Following the results presented in [23], maxr has been set to 21 for each of the sets 3-
3-50-* and 3-3-70-*, and 12 for each of the 2-3-80-*. We have generated 10 instances
for each ratio, thus obtaining, in total, 210 and 120 instances per set, respectively.

The structured instances we have analyzed are:

– Narizzano-Robot - These are real-word instances encoding the robot navigation
problems presented in [25].

– Ayari-MutexP - These QBFs encode instances to problems related to the formal
equivalence checking of partial implementations of circuits, as presented in [26].

– Letz-Tree - These instances consist of simple variable-independent subprograms
generated according to the pattern: ∀x1x3...xn−1∃x2x4...xn(c1∧. . .∧cn−2) where
ci = xi ∨ xi+2 ∨ xi+3, ci+1 = ¬xi ∨ ¬xi+2 ∨ ¬xi+3, i = 1, 3, . . . , n − 3.

The benchmark instances belonging to Letz-tree, Narizzano-robot, Ayari-MutexP have
been obtained from QBFLIB [20], including the 32 Narizzano-robot instances used in
the QBF Evaluation 2004, and all the ∀∃ instances from Letz-tree and Ayari-MutexP.

6.3 Results

All the experiments were performed on a 3GHz PentiumIV equipped with 1GB of
RAM, 2MB of level 2 cache running Debian GNU/Linux. Time measurements have
been done using the time command shipped with the system, counting total CPU time
for the respective process.
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Table 1. Number of solved instances within timeout for Random 2QBF

dlv.ut dlv.ds dlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3

2-3-80-0.4 106 114 114 107 100 109 103 3 47
2-3-80-0.6 83 88 89 92 71 90 83 4 58
2-3-80-0.8 78 92 95 93 70 89 86 3 65
2-3-80-1.0 78 90 91 98 66 88 85 8 77
2-3-80-1.2 72 89 94 105 74 93 95 4 87

3-3-50-0.8 210 210 210 210 210 210 210 21 166
3-3-50-1.0 191 205 202 201 199 203 202 30 163
3-3-50-1.2 196 207 206 208 203 207 206 41 191

3-3-70-0.6 126 136 135 140 127 131 131 1 61
3-3-70-0.8 112 115 115 128 103 113 119 0 68
3-3-70-1.0 91 108 109 137 94 110 108 3 82
3-3-70-1.2 104 121 122 139 90 117 121 5 108
3-3-70-1.4 106 123 124 151 98 131 126 3 118

#Total 1552 1698 1706 1809 1505 1691 1675 126 1291

We start with the results of the experiments with random 2QBF formulas. For every
instance, we have allowed a maximum running time of 6 minutes. In Table 1 we re-
port, for each system, the number of instances solved in each set within the time limit.
Looking at the table, it is clear that the new look-back heuristic combined with the
”mf” initialization (corresponding to the system dlv.mf) performed very well on these
domains, being the version which was able to solve most instances in most settings,
particularly on the 3-3-70-* sets. Also dlv.lf performed quite well, while the other vari-
ants do no seem to be very effective. Considering the look-ahead versions of DLV,
dlv.ds performed reasonably well. Considering GnT and CModels3, we can note that
they could solve comparatively few instances.

Comparing between the 3-3-50-* and 3-3-70-* settings, we can see that dlv.mf is the
system that scales best: It is on the average when considering 50 variables, while it is
considerably better when considering 70 variables.

We do not report details on the execution times due to lack of space, as aggregated
results such as average or median are problematic because of the many timeouts. How-
ever, for 3-3-50-0.8 all DLV-based systems terminated, and here the average times
do not differ dramatically, the best being dlv.ds (23.62s), dlv.mf (25.26s) and dlv.ds.bj
(26.02s). In other settings, such as 2-3-80-0.6, we observe that dlv.mf is the best on
average time over the solved instances (18.31s), while all others solve fewer instances
with a higher average time. Similar considerations hold for 3-3-70-1.2 where dlv.mf
solves 17 instances more than the second best, dlv.ds.bj, yet its average time is about
30% lower (22.93s vs. 34.89s).

In Tables 2, 3 and 4, we report the results, in terms of execution time for finding
one answer set, and number of instances solved within 11 minutes, about the groups:
Letz-Tree, Narizzano-Robot, and Ayari-MutexP, respectively. The last columns (AS?)
indicate if the instance has an answer set (Y), or not (N). A “–” in these tables indi-
cates a timeout. For hLB heuristics, we experimented a few different values for “k”,
and we obtained the best results for k=100. However, it would be interesting to analyze
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Table 2. Execution time (seconds) and number of solved instances on Narizzano-Robot instances

dlv.ut dlv.ds dlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 AS?

2-38.1 0.31 0.31 0.31 0.36 0.39 0.37 0.33 44.4 1.31 N
2-64.1 0.30 0.30 0.32 0.36 0.39 0.37 0.33 43.77 1.3 N
2-93.1 0.31 0.30 0.32 0.36 0.39 0.37 0.33 44.35 1.3 N
2-69.4 – – – 536.97 – – – – 263.05 N
2-3.5 – – – 14.39 352.94 387.11 364.89 – 431.55 N
2-61.6 – – – 629.35 – – – – – Y
2-72.7 – – – 14.21 – – – – 390.62 N
3-17.2 14.26 7.45 5.67 4.59 5.85 8.22 7.31 – 8.1 N
3-62.4 – – – 362.57 – – – – 211.68 N
3-80.4 – – – 404.93 – – – – 239.96 N
4-78.1 0.30 0.30 0.31 0.43 0.51 0.37 0.33 37.3 1.31 N
4-21.2 13.40 6.84 5.27 3.60 4.25 5.68 7.31 – 8.14 N
4-73.2 13.36 6.80 4.07 2.49 3.18 4.72 6.65 – 6.68 N
4-91.4 – – – 236.41 – – – – 212.76 N
4-85.5 – – 504.61 3.59 156.60 109.04 372.78 – 103.04 N
4-87.8 – – – 244.47 – 600.36 – – – Y
5-29.1 0.30 0.30 0.31 0.43 0.51 0.36 0.32 37.1 1.3 N
5-5.2 13.39 6.83 4.09 2.50 3.18 4.73 6.68 – 6.66 N
5-75.3 655.78 188.80 71.56 14.70 31.44 62.93 47.85 – 34.74 N
5-18.5 – – – 357.04 – – – – – Y
5-59.5 – – – 357.15 – – – – – Y
5-55.6 – – – 5.51 – 233.23 – – 219.39 N
5-4.9 – – – 89.16 – – – – – Y

#Solved 10 10 11 23 12 15 12 5 18

more thoroughly the effect of the factor k. In Table 2 we report only the instances which
were solved within the time limit by at least one of the compared methods. On these in-
stances, dlv.mf was able to solve all the shown 23 instances, followed by CModels3 (18)
and dlv.lf (15). Moreover, dlv.mf was also always the fastest system on each instance
(sometimes dramatically), if we consider the instances on which it took more than 1 sec.

In Table 3, we then report the results for Ayari-MutexP. In that domain all the ver-
sions of DLV were able to solve all 7 instances, outperforming both CModels3 and
GnT which solved only one instance. Comparing the execution times required by all
the variants of dlv we note that, also in this case, dlv.mf is the best-performing version.

About the Letz-Tree domain, the DLV versions equipped with look-back heuristics
solved a higher number of instances and required less CPU time (up to two orders of
magnitude less) than all competitors. In particular, the look-ahead based versions of
DLV, GnT and CModels3 could solve only 3 instances, while dlv.mf and dlv.lf solved
4 and 5 instances, respectively. Interestingly, here the ”lf” variant is very effective in
particular when combined with the “af” option.

Summarizing, DLV equipped with look-back heuristics showed very positive per-
formance in all of the test cases presented, both random and structured, obtaining good
results both in terms of number of solved instances and execution time compared to
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Table 3. Execution time (seconds) and number of solved instances on Ayari-MutexP instances

dlv.ut dlv.ds dlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 AS?

mutex-2-s 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.89 0.65 N
mutex-4-s 0.05 0.05 0.05 0.06 0.05 0.06 0.05 – – N
mutex-8-s 0.21 0.2 0.23 0.21 0.21 0.23 0.21 – – N
mutex-16-s 0.89 0.89 0.98 0.89 0.89 1.01 0.9 – – N
mutex-32-s 3.67 3.72 4.06 3.63 3.64 4.16 3.79 – – N
mutex-64-s 15.38 16.08 17.64 14.97 15.04 18.08 16.97 – – N
mutex-128-s 69.07 79.39 90.92 62.97 62.97 92.92 93.05 – – N

#Solved 7 7 7 7 7 7 7 1 1

Table 4. Execution time (seconds) and number of solved instances on Letz-Tree instances

dlv.ut dlv.ds dlv.ds.bj dlv.mf dlv.mf.af dlv.lf dlv.lf.af gnt cm3 AS?

exa10-10 0.18 0.17 0.17 0.04 0.1 0.06 0.06 0.12 0.03 N
exa10-15 7.49 7.09 7.31 0.34 0.71 0.48 0.38 6.46 0.73 N
exa10-20 278.01 264.53 275.1 12.31 17.24 5.43 2.86 325.26 67.56 N
exa10-25 – – – 303.67 432.32 44.13 19.15 – – N
exa10-30 – – – – – 166.93 129.54 – – N

#Solved 3 3 3 4 4 5 5 3 3

traditionals DLV, GnT and CModels3. dlv.mf, the “classic” look-back heuristic, per-
formed best in most cases, but good performance was obtained also by dlv.lf. The results
of dlv.lf.af on the Letz-Tree instances show that this option can be fruitfully exploited
in some particular domains.

7 Conclusions

We have defined a general framework for employing look-back heuristics in disjunctive
ASP, exploiting the peculiar features of this setting. We have designed a number of look-
back based heuristics, addressing some key issues arising in this framework. We have
implemented all proposed heuristics in the DLV system, and carried out experiments on
hard instances encoding 2QBFs, comprising randomly generated instances, generated
according to the method proposed in [23], and structured instances from the QBFLIB
archive (Letz-Tree, Narizzano-Robot, Ayari-MutexP). It turned out that the proposed
heuristics outperform the traditional (disjunctive) ASP systems DLV, GnT and CMod-
els3 in most cases, and a rather simple approach (“dlv.mf”) works particularly well.
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Abstract. Recent research in answer-set programming (ASP) is concerned with
the problem of finding faithful transformations of logic programs under the stable
semantics. This is in particular relevant in practice when programs with variables
are considered, where such transformations play a basic role in (offline) simplifi-
cations of logic programs. So far, such transformations of non-ground programs
have been considered under the implicit assumption that the domain (i.e., the
set of constants of the underlying language) is always suitably extensible. How-
ever, this may not be a desired scenario, e.g., if one needs to deal with a fixed
number of objects. In this paper, we investigate how an explicit restriction of the
domain influences the applicability of program transformations and we study in
detail computational aspects for the concepts of tautological rules and rule sub-
sumption. More precisely, we provide a full picture of the complexity to decide
whether a non-ground rule is tautological or subsumed by another rule under sev-
eral restrictions.

1 Introduction

Answer-set programming (ASP) has emerged as an important paradigm for declarative
problem solving, and provides a host for many different application domains on the ba-
sis of nonmonotonic logic programs. The increasing popularity of ASP has also raised
interest in the question of equivalence between programs [1,2], which is relevant con-
cerning formal underpinnings for program optimization, where equivalence-preserving
modifications are of primary interest; in particular, rewriting rules which allow to per-
form a local change in a program are important. Many such rules have been considered
in the propositional setting [3,4,5,6], but just recently have they been extended to the
practicably important case of non-ground programs [7].

In the latter work, a countable domain of constants is assumed, and although this
is a reasonable assumption for many scenarios and also common in database theory, it
is sometimes more desirable to consider the underlying language in a more restricted
way, assuming only a finite, possibly fixed set of constants. While such a finite set comes
for free in computing answer-sets of a (complete) program via its active domain, i.e.,
the set of constants occurring in the program under consideration, this is not the case
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for program replacements, which should be applicable in a local sense, for instance
to program parts. To this end, such replacements have to take the underlying global
domain into account, rather than the active domain of a given program.

In this paper, we consider two important replacements in non-ground answer-set pro-
gramming under this point of view and analyze their complexity. Intuitively, one would
expect that the complexity of a problem decreases as the domain under consideration
decreases. In particular, one might hope to get more favorable complexity results when
a finite domain is considered rather than a countable domain. On the one hand, Eiter
et al. [1] show that the restriction to finite domains turns the, in general, undecidable
problem of uniform equivalence between logic programs into a decidable one. On the
other hand, there is a related problem in the literature where the complexity increases
when the domain is restricted: Lassez and Marriot [8] identify so-called implicit gen-
eralizations as a formal basis of machine learning from counter examples. One of the
main problems studied there is the following: Given an atom A and a set {B1, . . . , Bn}
of atoms over some domain C, is every ground instance of A also a ground instance
of some Bi? Lassez and Marriot [8] show that this problem is tractable in case of a
countably infinite set of constants. This is in contrast to the case of a finite domain,
where this problem becomes coNP-complete [9,10]. Now the question naturally arises
whether this somewhat counter-intuitive effect of an increased complexity in case of
a decreased size of domain also holds for replacements in non-ground answer-set pro-
gramming. We show that this is indeed the case. In particular, our contributions are as
follows, assuming the restriction to a finite domain:

– We show that the detection of tautological rules is NP-complete; and that hardness
remains even for some restrictions on the syntax of rules.

– We show that the problem of deciding rule subsumption becomes ΠP
2 -complete,

and again hardness holds also under several restrictions.

These two main results reveal that complexity increases when we restrict our attention
to finite domains, since the detection of tautological rules is tractable under countably
infinite domains and rule subsumption is only NP-complete in this setting [7]. However,
we also provide results where the problems under consideration are tractable under
finite domains as well. In particular, we show that

– detecting tautological Horn rules remains tractable if the maximal arity of predi-
cates is fixed by some constant, and

– detecting tautological rules, as well as rule subsumption, remains tractable in case
the number of variables occurring in the involved rules is fixed by some constant.

2 Preliminaries

Our objects of interest are disjunctive logic programs formulated in a language L over
a finite set A of predicate symbols, a finite set V of variables, and a set C of constants
(also called the domain), which may be either finite or countably infinite.

An atom (over L) is an expression of the form p(t1, . . .,tn), where p is a predicate
symbol from A of arity ar(p) = n and ti ∈ C ∪ V , for 1 ≤ i ≤ n. A (disjunctive) rule
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(over L), r, is an ordered pair of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm,

where a1, . . . , an, b1, . . . , bm are atoms (with n ≥ 0, m ≥ k ≥ 0, and n+ m > 0), and
“not” denotes default negation. The head of r is H(r) = {a1, . . . , an}, and the body of
r is B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. We also define B+(r) = {b1, . . . , bk}
and B−(r) = {bk+1, . . . , bm}. We call r positive if k = m, and Horn if r is positive
and n = 1. Furthermore, r is a fact if m = 0 and n = 1 (in which case “←” is usually
omitted). As well, r is safe if each variable occurring in H(r) ∪ B−(r) also occurs in
B+(r). By a program (over L) we understand a finite set of safe rules (over L).

Let ε be an atom, a rule, or a program. The set of variables occurring in ε is denoted
by Vε, and ε is called ground if Vε = ∅. Similarly, we write Cε to refer to the set of
constants occurring in ε and Aε to refer to the set of predicates occurring in ε. Further-
more, for a set C ⊆ C of constants, we write BA,C to denote the set of all ground atoms
constructible from the predicate symbols from A and the constants from C. Moreover,
for a set A of predicates, armax(A) = max{ar(p) | p ∈ A}.

Given a rule r and some C ⊆ C, we define grd(r, C) as the set of all rules rϑ
obtained from r by all possible substitutions ϑ : Vr → C. Moreover, for any program
P , the grounding of P with respect to C is given by grd(P, C) =

⋃
r∈P grd(r, C). The

program grd(P ) is grd(P, CP ) for CP �= ∅, and grd(P, {c}) otherwise, where c is an
arbitrary element from C.

By an interpretation (over L) we understand a set of ground atoms (over L). A
ground rule r is satisfied by an interpretation I , symbolically I |= r, iff H(r) ∩ I �= ∅
whenever B+(r) ⊆ I and B−(r)∩I = ∅. I satisfies a ground program P , symbolically
I |= P , iff I |= r, for each r ∈ P . The Gelfond-Lifschitz reduct [11] of a ground
program P with respect to an interpretation I is given by P I = {H(r) ← B+(r) | r ∈
P, I ∩ B−(r) = ∅}. An interpretation I is an answer set of P iff I is a minimal model
of grd(P )I . AS(P ) denotes the set of all answer sets of a program P .

Programs P1 and P2 are called (ordinarily) equivalent iff AS(P1) = AS(P2). Fur-
thermore, P1 and P2 are strongly equivalent (in L), in symbols P1 ≡s P2, iff, for
each set S of rules, AS(P1 ∪ S) = AS(P2 ∪ S). (J, I)C is an SE-model [1] of a
program P iff (i) J ⊆ I , (ii) I |= grd(P, C), and (iii) J |= grd(P, C)I . We de-
fine SEC(P ) = {(J, I)C | (J, I)C is an SE-model of P}, for a given C ⊆ C, and
SE (P ) =

⋃
C⊆C SEC(P ). For all programs P1 and P2, the following three condi-

tions are equivalent [1]: (i) P1 ≡s P2, (ii) SE (P1) = SE (P2), and (iii) SEC(P1) =
SEC(P2), for every finite C ⊆ C.

Deciding strong equivalence is co-NEXPTIME-complete both for languages over a
finite domain as well as for languages over an infinite domain [1]. In what follows, we
assume familiarity with the basic complexity classes P, NP, coNP, ΔP

2 , ΣP
2 , and ΠP

2
from the literature (cf., e.g., Garey and Johnson [12] for an overview).

3 Tautological Rules

In this section, we syntactically characterize rules which can be deleted in any program
(over a given language L), i.e., which are tautological. Following Eiter et al. [7], let us
define



126 M. Fink et al.

Θ = {r | B+(r) ∩ (H(r) ∪ B−(r)) �= ∅} and

ΞC = {r | for each ϑ : Vr → C, B+(rϑ) ∩ (H(rϑ) ∪ B−(rϑ)) �= ∅}.

Note that the former set does not explicitly refer to the domain of the underlying lan-
guage. The following proposition rephrases results by Eiter et al. [7].

Proposition 1. Let L be a language over an infinite domain C and r a rule. Then, the
following conditions are equivalent: (i) P ≡s P \ {r}, for each program P over L;
(ii) r ∈ Θ; and (iii) r ∈ ΞC .

In other words, both sets, Θ and ΞC , contain exactly the same rules in case the domain
C of the underlying language L is infinite. Moreover, they capture all rules which can
be faithfully removed in programs over L. Also observe that both sets are equal if only
ground rules are taken into account.

Deciding r ∈ Θ is an easy syntactic check. Thus, in case the underlying language
is given over an infinite domain, the problem of recognizing exactly those rules which
can be deleted in any program is an easy task. In particular this test is not harder than in
the ground case (which was fully established by Inoue and Sakama [5] and by Lin and
Chen [6]), and can be done in linear time.

The situation differs, however, if we restrict our attention to a finite domain. Consider
r : h(1) ∨ h(0) ← h(X), which is obviously not contained in Θ. However, under the
binary domain C = {0, 1}, we have r ∈ ΞC . Observe that each grounding rϑ with
ϑ : Vr → C yields a tautological (ground) rule contained in Θ. As shown below, each
r ∈ ΞC can be faithfully removed from a program. Thus, in the setting of a finite
domain C, we have, for each rule r, that r ∈ Θ implies r ∈ ΞC , but not vice versa.

In the remainder of this section, we assume L to be given over a finite domain C.
Our first result shows that ΞC contains all rules which can be faithfully removed from
programs in this scenario. Hence, we subsequently call rules r ∈ ΞC tautological in
(domain) C.

Theorem 1. For a language L over finite domain C, we have that for any program P
and any rule r, P is strongly equivalent in L to P \ {r} iff r ∈ ΞC .

The proof of this result is along the lines of proofs given by Eiter et al. [7].

3.1 Complexity of Detecting Tautological Rules in a Finite Domain

In what follows, we establish results about the computational cost for deciding whether
a rule is tautological in C, i.e., whether it is contained in ΞC . Thus, assuming a finite
domain, in view of Theorem 1, the considered problem amounts to checking which
rules can be faithfully deleted from any program. Recall that in the infinite case, this
problem is decidable in linear time by just checking r ∈ Θ, according to Proposition 1.
As we show below, in the finite case we observe an increase of the difficulty to recognize
tautological rules, even in very restricted settings.

Theorem 2. Given a rule r, checking whether r is tautological in a fixed finite domain
C of size ≥ 2 is coNP-complete. Hardness holds even for positive rules with bounded
arities.
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Proof. Membership is easy. In order to test that a rule is not tautological in C, we guess a
ground substitution ϑ : Vr → C and check in polynomial time that B+(rϑ)∩ (H(rϑ)∪
B−(rϑ)) = ∅ holds.

For hardness, suppose that the domain C is of size 	 + 1 with 	 ≥ 1. Without loss
of generality, let C be of the form C = {0, 1, , . . . , 	}. We prove coNP-hardness via
a reduction from UNSAT. Let φ =

∧n
i=1 li,1 ∨ li,2 ∨ li,3 be a formula in CNF over

propositional atoms X1, . . . , Xm, and consider a positive rule rφ with

H(rφ) = {c(0, 0, 0)} ∪ {v(α, β) | (α, β) ∈ C2 \ {(0, 1), (1, 0)}} and

B(rφ) = {c(l∗i,1, l
∗
i,2, l

∗
i,3) | 1 ≤ i ≤ n} ∪ {v(Xj , X̄j) | 1 ≤ j ≤ m},

where l∗ = X if l = X , and l∗ = X̄ if l = ¬X , with X̄1, . . . , X̄m being new variables.
By a slight abuse of notation, we use Xi to denote either a propositional atom (in φ) or
a first-order variable (in rφ). We claim that φ is unsatisfiable iff rφ is tautological in C.

For the “only if”-direction, suppose that rφ is not tautological in C. Hence, since
B−(rφ) = ∅, there exists a substitution ϑ : V → C such that B+(rφϑ) ∩ H(rφϑ) = ∅.
Thus, for each propositional atom Xi in φ, the pair of first-order variables (Xi, X̄i) in
rφ is either instantiated to (0, 1) or (1, 0), since otherwise v(Xi, X̄i)ϑ would match with
some atom v(α, β) from H(rφ). Thus, we can view ϑ as an assignment to the propo-
sitional variables Xi from φ. Now, since no atom in B+(rφϑ) matches with c(0, 0, 0)
from H(rφ), each clause in φ is satisfied “under ϑ”, i.e., in each clause at least one
propositional literal is assigned to true by the truth assignment ϑ. Hence, φ is satisfi-
able. The “if”-direction is by essentially the same arguments. �

Note that according to Theorem 2, checking whether a disjunctive rule is tautological is
coNP-hard even if the domain is fixed and, moreover, the number of predicate symbols
and their arities are bounded. If we drop the restriction of bounded arities, then coNP-
hardness can be shown even for Horn rules.

Theorem 3. Given a Horn rule r, checking whether r is tautological in a fixed finite
domain C of size ≥ 2 is coNP-complete.

Proof. Membership is shown as above. Hardness is along the lines of Kunen [9] and
Kapur et al. [10]. Suppose that the domain C is of size 	 + 1 with 	 ≥ 1. Without
loss of generality, let C be of the form C = {0, 1, , . . . , 	}. Again, we prove coNP-
hardness via a reduction from UNSAT. Let φ =

∧n
i=1 li,1 ∨ li,2 ∨ li,3 be a formula in

CNF over propositional atoms X1, . . . , Xm. Without loss of generality, we may assume
that every propositional variable Xj occurs at most once in each clause, i.e., for every
i ∈ {1, . . . , n}, there cannot be two literals such that one is either identical to the other
or one is the dual of the other. Note that clauses containing some propositional variable
plus its dual can be faithfully deleted from φ.

Now consider a Horn rule rφ such that

H(rφ) = {p(X1, . . . , Xm)} and

B(rφ) = {p(si1, . . . , sim) | 1 ≤ i ≤ n} ∪
{p(X1, , . . . , Xj−1, α, Xj+1, . . . , Xm) | α ∈ C \ {0, 1} and 1 ≤ j ≤ m},
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where the arguments sij with 1 ≤ i ≤ n and 1 ≤ j ≤ m are defined as follows:

sij =

⎧⎨
⎩

1 if the negative literal ¬Xj occurs in the i-th clause of φ;
0 if the positive literal Xj occurs in the i-th clause of φ;
Xi otherwise.

We claim that φ is unsatisfiable iff rφ is tautological in C.
For the “only if”-direction, suppose that φ is unsatisfiable. Moreover, let ϑ : V →

C be an arbitrary ground substitution over the variables in rφ. Since B−(rφ) = ∅,
we have to show that B+(rφϑ) ∩ H(rφϑ) �= ∅. First suppose that ϑ instantiates at
least one variable Xj to α ∈ C \ {0, 1}. Then, p(X1, . . . , Xj−1, α, Xj+1, . . . , Xm)ϑ
and p(X1, . . . , Xm)ϑ are identical. Thus, in this case, p(X1, . . . , Xm)ϑ ∈ B+(rφϑ) ∩
H(rφϑ), and therefore B+(rφϑ) ∩ H(rφϑ) �= ∅.

It remains to consider the case that ϑ instantiates all variables Xj to either 0 or 1.
Hence, ϑ defines a truth assignment of {X1, . . . , Xm}. Since φ is unsatisfiable, there
must exist some clause li,1 ∨ li,2 ∨ li,3 with truth value false in ϑ. We claim that then
p(X1, . . . , Xm)ϑ = p(si1, . . . , sim)ϑ holds, i.e., for every j, Xjϑ = sijϑ. We prove
this claim by distinguishing the three cases of the definition of sij :

– If the negative literal ¬Xj occurs in the i-th clause, then sij = 1. On the other hand,
the i-th clause, and therefore also the literal ¬Xj , is false under the assignment ϑ.
Thus, Xj has the value true in this assignment, i.e., Xjϑ = 1 = sijϑ.

– If the positive literal Xj occurs in the i-th clause, then sij = 0. On the other hand,
the i-th clause, and therefore also the literal Xj , is false under the assignment ϑ.
Thus, Xjϑ = 0 = sijϑ.

– If Xj does not occur in the i-th clause, then sij = Xj , and therefore Xjϑ = sijϑ
trivially holds.

The “if”-direction is shown analogously and is therefore omitted. �

Note that the coNP-completeness results in Theorems 2 and 3 were shown for an arbi-
trary but fixed finite domain C of size |C| ≥ 2. As far as coNP-hardness is concerned,
we thus get slightly stronger results than if we considered the domain C as part of the
problem input. On the other hand, it can be easily verified that the membership proofs
clearly also work if the finite domain C is not fixed (i.e., if it is part of the problem
input). In other words, detecting tautological rules has the same complexity no matter
whether we have to deal with a specific finite domain or with all finite domains.

3.2 Tractable Cases

We conclude our discussion on the detection of tautological rules by identifying two
tractable cases. The first one combines the restrictions considered in Theorems 2 and 3;
the second one is obtained by a restriction on the variables occurring in a rule.

Theorem 4. Given a Horn rule r, where the arity of all predicate symbols is bounded
by some fixed constant, checking whether r is tautological in a finite domain is in P.
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Proof. Since r is Horn, the head H(r) of r consists of a single atom A and B−(r) is
empty. Hence, r is tautological in C iff Aϑ ∈ B+(rϑ) holds for every ground substitu-
tion ϑ. In order to check this condition, we loop over all possible ground instantiations
Aσ of A. Since the arity of the predicate symbols is bounded and the domain is finite,
there are only polynomially many such ground instantiations. For each Aσ, we have to
check whether σ can be extended to a substitution ϑ such that Aσ = Aϑ ∈ B+(rϑ).
This is a matching problem, which can be clearly solved in polynomial time. �

Theorem 5. Given a rule r such that |Vr| ≤ k for some fixed constant k, checking
whether r is tautological in a finite domain is in P.

Proof. Since the number of variables in r is bounded by a constant and the domain
is finite, there are only polynomially many ground instances rϑ of r. In order to test
whether r is tautological in C, we just have to test for each ground instance rϑ of r
whether B+(rϑ) ∩ (H(rϑ) ∪ B−(rϑ)) �= ∅ holds. �

4 Rule Subsumption

Rule subsumption is a syntactic criterion to identify a rule r which can be faithfully
deleted from any program containing another (“more general”) rule s. For the ground
case, Lin and Chen [6] generalized replacements from the literature [3,13] and showed
that their syntactic criterion captures all such pairs of rules. The non-ground case was
first studied by Eiter et al. [7] and Traxler [14]. As shown by the latter author, also rule
subsumption can be characterized in two alternative ways (similarly as before for tau-
tological rules), which turn out to be equivalent for languages over an infinite domain.
To formulate these characterizations, let us define the following relations (for any pair
of rules r, s):

s ≤ r iff there exists a substitution ϑ : Vs → Vr ∪ Cr such that

H(sϑ) ⊆ H(r) ∪ B−(r) and B(sϑ) ⊆ B(r);
s �C r iff, for each ϑr : Vr → C, there exists a ϑs : Vs → C such that

H(sϑs) ⊆ H(rϑr) ∪ B−(rϑr) and B(sϑs) ⊆ B(rϑr).

Observe that ≤ does not take the underlying domain into account, but only variables and
constants involved in the two rules, r and s, while �C explicitly refers to the domain
C of the underlying language. The following proposition collects results from Eiter et
al. [7] and Traxler [14].

Proposition 2. Let L be given over an infinite domain C and let r, s be rules. Then,
the following relations hold: (i) s ≤ r iff s �C r; and (ii) if s ≤ r (or, equivalently,
s �C r), then P ≡s P \ {r}, for each P with s ∈ P .

Note that not only in case C is infinite, but also if r is ground, the equivalence between
s ≤ r and s �C r holds, for arbitrary s. As shown by Eiter et al. [7], given rules r, s,
deciding whether s ≤ r holds is NP-complete. The proof was carried out by a reduction
of the 3-coloring problem to checking containment in ≤. Inspecting the proof reveals
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that NP-hardness already holds if r is restricted to be ground. Again, we can show by
a simple example that the equivalence between ≤ and �C does not hold in case C is
finite. Consider, e.g., s : q(X) ← p(X, X), r : q(0) ← p(1, Y ), p(Y, 0), not q(1),
and C = {0, 1}. Then, s �≤ r, while s �C r. Again, we have the effect that, for each
pair s, r of rules, s ≤ r implies s �C r, but not vice versa.

Whenever s �C r holds, we say that r is subsumed by s (in C). We next show that
s �C r implies that r can be removed from each program containing s also in case C is
finite.

Theorem 6. If s �C r, for a finite domain C, then P ≡s P \ {r}, for each program P
with s ∈ P .

Proof. We first show that {r, s} ≡s {s}. To this end, we show that grd({r, s}, C) ≡s
grd({s}, C), for any C ⊆ C.

Consider any C ⊆ C. By assumption, for every ϑ : Vr → C, there exists a substi-
tution ϑs : Vs → C such that H(sϑs) ⊆ H(rϑr) ∪ B−(rϑr) and B(sϑs) ⊆ B(rϑr).
Note that this implies ϑs(x) ∈ C, for each x ∈ Vs. We thus have grd({r, s}, C) =
grd({s}, C)∪{rϑ, sϑs | ϑ : Vr → C}, with ϑs as above. To every subset {rϑ, sϑs} ⊆
grd({r, s}, C), i.e., for every ϑ : Vr → C, we can apply Theorem 6 of Lin and Chen [6]
and replace it by {sϑs}. By construction, the resulting program is strongly equiv-
alent to grd({r, s}, C), and exactly matches grd({s}, C). Thus, grd({r, s}, C) ≡s
grd({s}, C), for any C ⊆ C.

Assume now that there exists a program P such that s ∈ P but P �≡s P \ {r}, i.e.,
P ∪ Q �≡ (P \ {r}) ∪ Q, for some program Q. For P ′ = (P \ {r, s}) ∪ Q, we thus
have {r, s} ∪ P ′ �≡ {s} ∪ P ′, which implies {r, s} �≡s {s}, a contradiction. Hence,
P ≡s P \ {r} must hold for any program P with s ∈ P . �

4.1 Complexity of Rule Subsumption

Concerning complexity, we already mentioned the NP-completeness of checking rule
subsumption given an infinite domain. As in the previous section, we observe an in-
crease of complexity when a finite domain is considered. Note that there is a subtle
difference between the ΠP

2 -hardness result in Theorem 7 below and the hardness re-
sults in Section 3: In Theorem 7, the domain C is considered to be part of the input
and therefore |C| is not bounded by a fixed constant. In contrast, Section 3 provided
hardness results even for a fixed domain.

Theorem 7. Given rules r and s, checking whether r is subsumed by s in a finite do-
main C is ΠP

2 -complete. Hardness holds even for Horn rules over a bounded number
of predicate symbols with bounded arities.

Proof. For membership, we show that the complementary problem is in ΣP
2 : Guess

ϑr and check that for each ϑs : Vs → C, either H(sϑs) �⊆ H(rϑr) ∪ B−(rϑr) or
B(sϑs) �⊆ B(rϑr) holds. The latter check is in coNP, since checking whether there
exists some ϑs : Vs → C with H(sϑs) ⊆ H(rϑr) ∪ B−(rϑr) and B(sϑs) ⊆ B(rϑr)
is clearly in NP.
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For showing hardness, we proceed along the lines of Pichler [15]. We reduce the ΠP
2 -

complete decision problem of ∀∃-QSAT to testing whether s �C r holds. To this end,
let Φ = ∀X1 . . . ∀Xk∃Xk+1 . . . ∃Xmφ be a QBF with φ =

∧n
i=1 li,1 ∨ li,2 ∨ li,3, and let

the domain C be of size k+1, i.e., without loss of generality, assume C = {0, 1, , . . . , k}.
We use two rules, rΦ and sΦ, which have empty heads and purely positive bodies:

B+(rΦ) = {p(1, X1), . . . , p(k, Xk)} ∪ {v(α, 0), v(0, α) | α ∈ C \ {0}} ∪
{c(α, β, γ) | (α, β, γ) ∈ C3 \ {(0, 0, 0)}},

B+(sΦ) = {p(1, X1), . . . , p(k, Xk)} ∪ {v(Xj , X̄j) | 1 ≤ j ≤ m} ∪
{c(l∗i,1, l

∗
i,2, l

∗
i,3) | 1 ≤ i ≤ n},

where l∗ = X if l = X , and l∗ = X̄ if l = ¬X , with X̄1, . . . , X̄m being new atoms.
We show that Φ is true iff sΦ �C rΦ.

For the “only if”-direction, suppose that Φ is true and let ϑr be an arbitrary ground
substitution of the variables {X1, . . . , Xk} in rΦ. We define a truth assignment I for
{X1, . . . , Xk} with I(Xi) = false if Xiϑr = 0 and I(Xi) = true otherwise. By hypoth-
esis, Φ is true. Hence, there exists an extension J of I for {X1, . . . , Xm} such that φ is
true in J . From J , we define the ground substitution ϑs as follows:

Xiϑs =

⎧⎨
⎩

0 if Xi is false in J ;
Xiϑr if Xi is true in J and i ≤ k;
1 if Xi is true in J and i > k;

X̄ϑs =
{

0 if Xi is true in J ;
1 if Xi is false in J.

It remains to show that B+(sΦϑs) ⊆ B+(rΦϑr) holds for ϑs. For every i ≤ k, we have
Xiϑs = Xiϑr by construction. Hence, every atom p(i, Xi)ϑs in sΦϑs is contained
in B+(rΦϑr). Moreover, by construction, for every j ∈ {1, . . . , m}, exactly one of
the variables Xj and X̄j is instantiated to 0 by ϑs. Hence, every atom v(Xj , X̄j)ϑs is
either of the form v(α, 0) or v(0, α), for some α �= 0. Thus, every atom v(Xj , X̄j)ϑs

is contained in B+(rΦϑr). Finally, φ is true in J , i.e., in all clauses of φ, at least one
literal is true in J . Hence, by construction, for each i, at least one of the first-order
variables l∗i,1, l

∗
i,2, l

∗
i,3 is instantiated to a constant different from 0 by ϑs. Thus, all atoms

c(l∗i,1, l
∗
i,2, l

∗
i,3)ϑs are different from c(0, 0, 0) and are therefore contained in B+(rΦ).

For the “if”-direction, suppose that sΦ �C rΦ, and let I be an arbitrary truth assign-
ment for {X1, . . . , Xk}. Then, we define the ground substitution ϑr over {X1, . . . , Xk}
as Xiϑr = 0 if I(Xi) = false and Xiϑr = 1 if I(Xi) = true. By hypothesis, sΦ �C rΦ.
Thus, there is a substitution ϑs over {X1, . . . , Xm} where B+(sΦϑs) ⊆ B+(rΦϑr).
From ϑs we define the extension J of I for {X1, . . . , Xm} as follows: J(Xi) = false if
Xiϑs = 0 and J(Xi) = true if Xiϑs �= 0.

For every i ≤ k, Xiϑs = Xiϑr holds. Hence, J and I coincide on {X1, . . . , Xk},
and therefore J is indeed an extension of I . By assumption, every atom v(Xj , X̄j)ϑs

is either of the form v(α, 0) or v(0, α), for some α �= 0. Thus, by the definition of
J , we also have that J(X̄i) = false if X̄iϑs = 0 and J(X̄i) = true if X̄iϑs �= 0.
Finally, all atoms c(l∗i,1, l

∗
i,2, l

∗
i,3)ϑs are contained in B+(rΦ) and are therefore different

from c(0, 0, 0), i.e., for each i, at least one of the first-order variables l∗i,1, l
∗
i,2, l

∗
i,3 is

instantiated to a constant different from 0 by ϑs. But then, in all clauses li,1 ∨ li,2 ∨ li,3
of φ, at least one literal is true in J . Thus, φ is true in J . This holds for arbitrary I ,
consequently Φ is true. �
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Note that in the proof of Theorem 7, the domain C is part of the input. This is in stark
contrast to Theorems 2 and 3, were the domain C is arbitrary but fixed—thus leading to
slightly stronger hardness results. However, in the ΠP

2 -hardness proof of Theorem 7,
it is crucial that there is no fixed bound on the size of the domain. In particular, we
indeed need k pairwise distinct domain elements (where k corresponds to the number
of universally quantified propositional variables in Φ) in order to make sure that any in-
stantiation of a first-order variable Xi in rΦ forces the same instantiation of the variable
Xi (with precisely the same index i) in sΦ.

Alternatively, we could have considered the domain C to be fixed (with |C| ≥ 2)
and either let the number of predicate symbols or the arity of the predicate symbols
be unbounded. In case of an unbounded number of predicate symbols, we can sim-
ply replace the atoms p(1, X1), . . . , p(k, Xk) in both rΦ and sΦ by atoms of the form
p1(X1), . . . , pk(Xk). Likewise, if the domain is fixed and the arities of predicate sym-
bols are unbounded, then we replace the atoms p(1, X1), . . . , p(k, Xk) in both rΦ and
sΦ by a single atom p(X1, . . . , Xk).

However, if the domain C is fixed (or at least its cardinality is bounded) and, more-
over, both the number of predicate symbols and their arity is bounded, then ΠP

2 -com-
pleteness no longer holds unless the polynomial hierarchy collapses.

Theorem 8. Given rules r and s, with armax(A{r,s}) ≤ k and |A{r,s}| ≤ k′ for fixed
constants k, k′, checking whether r is subsumed by s in a domain of fixed size is in ΔP

2 .

Proof. Since the cardinality of C, the number of predicate symbols, and the arity of
predicate symbols are all bounded, there is only a constant number, K , of different
ground rules in this language. Note that s ��C r iff there exists a ground instance rϑr

of r such that, for every ground substitution ϑs : Vs → C, either H(sϑs) �⊆ H(rϑr) ∪
B−(rϑr) or B(sϑs) �⊆ B(rϑr).

In order to check whether such a ground instance rϑr of r exists, we loop over all
K ground rules t and check by one NP-oracle call that t is a ground instance of r and
by another NP-oracle call that s ��C t. Note that both checks are indeed feasible by
NP-oracles: On the one hand, checking whether t is a ground instance of r amounts to
guessing a ground substitution ϑr and checking that rϑr = t holds. On the other hand,
checking whether s �C t amounts to guessing a ground substitution ϑs and checking
that both H(sϑs) ⊆ H(t) ∪ B−(t) and B(sϑs) ⊆ B(t) hold. �

4.2 Restricting Variable Occurrences and Tractability

As in Section 3, we conclude our discussion by considering restrictions on the vari-
ables occurring in the rules. Since, for subsumption, we are dealing with two rules, we
distinguish those cases where variable occurrences are restricted in either one of the
rules, or in both. It turns out that just a restriction of variable occurrences in both rules
guarantees tractability of subsumption detection.

Theorem 9. Given rules r, s, checking whether r is subsumed by s in a domain of fixed
size ≥ 2 is (a) NP-hard, if |Vr| is bounded by a fixed constant, and even if r is ground
and purely positive, and (b) coNP-hard, if |Vs| is bounded by a fixed constant, and even
if s consists of a single body atom.
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Proof. (a) Even when r is ground and purely positive, the problem of subsumption
detection in answer-set programming corresponds to “normal” first-order subsumption
of clauses, which is a well known NP-hard problem (cf. Problem [LO18] in Garey and
Johnson [12]).

(b) Let |C| = k. Without loss of generality, assume C = {1, . . . , k}. We first suppose
that k ≥ 3. In this case, we reduce the k-colorability problem to the complementary
problem of rule subsumption. Let an instance of the k-colorability problem be given by
the graph G = (V, E), where V denotes the vertices and E the edges. We construct two
rules, rG and sG, as follows:

B+(rG) = {e(Xi, Xj) | {vi, vj} ∈ E};
B+(sG) = {e(X, X)}.

We claim that G is k-colorable iff sG ��C rG.
For the ‘if”-direction, suppose that G is k-colorable, i.e., there exists a coloring

f : V → {1, . . . , k} such that no two adjacent vertices are assigned with the same
color. Now define the ground substitution ϑr : V → C as Xiϑr = f(vi). Then, by
construction, B+(rGϑr) does not contain an atom e(Xi, Xj)ϑ with Xiϑ = Xjϑ, since
otherwise also f(vi) = f(vj) for some edge {vi, vj} of the graph G. But this is impos-
sible for a valid k-coloring f .

For the “only if”-direction, suppose that sG ��C rG. Hence, there exists a ground
substitution ϑ : V → C such that B+(rGϑr) does not contain an atom e(Xi, Xj)ϑ
with Xiϑ = Xjϑ. But then we can clearly define a valid k-coloring of the graph G as
f : V → {1, . . . , k} such that f(vi) = Xiϑr.

It remains to consider the case where |C| = 2. Without loss of generality, assume
C = {0, 1}. In this case, we establish coNP-hardness by a reduction of the 4-colorability
problem to the complementary problem of rule subsumption. Let an instance of the 4-
colorability problem be given by the graph G = (V, E). We construct the rules rG and
sG as follows:

B+(rG) = {e(Xi, Yi, Xj , Yj) | {vi, vj} ∈ E};
B+(sG) = {e(X, Y, X, Y )}.

We claim that G is 4-colorable iff sG ��C rG. The proof is essentially as in the case k ≥
3 above. However, now pairs of variables (X, Y ) are considered as a binary encoding
of the four colors in the graph. �

Theorem 10. Given rules r, s such that |Vr ∪Vs| is bounded by a fixed constant, check-
ing whether r is subsumed by s in a finite domain is in P.

Proof. Since the number of variables in r and s is bounded by a constant and the number
of domain elements is finite, there are only polynomially many ground instances rϑr

and sϑs, respectively. Hence, we may test in a loop over all ground instances rϑr if
there exists an instance sϑs such that H(sϑs) ⊆ H(rϑr) ∪ B−(rϑr) and B(sϑs) ⊆
B(rϑr) hold. The latter test requires simply a nested loop over polynomially many
ground instances sϑs. �
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Table 1. Complexity of detecting tautological rules in finite (possibly fixed) domains

general case armax(Ar) ≤ k |Vr| ≤ k

r disjunctive coNP-complete coNP-complete in P
r positive coNP-complete coNP-complete in P
r Horn coNP-complete in P in P

Table 2. Complexity of detecting rule subsumption s �C r in fixed finite domains

general case armax(A{r,s}) ≤ k |Vr| ≤ k

general case ΠP
2 -complete ΠP

2 -complete NP-hard
|A{r,s}| ≤ k ΠP

2 -complete in ΔP
2 NP-hard

|Vs| ≤ k coNP-hard coNP-hard in P

5 Discussion and Conclusion

We investigated the complexity of applying rule eliminations in the setting of finite do-
mains, and provided a full complexity picture with respect to several restrictions, in
particular restricting the syntax to Horn rules, imposing a bound on predicate arities
and/or on the number of variables (a summary of our results is given in Tables 1 and
2). Note that the concept of bounded predicate arities was suggested by Eiter et al. [16]
in order to reduce the complexity of basic reasoning tasks in answer-set programming
from nondeterministic exponential time classes to classes from the polynomial hierar-
chy. Similarly, Vardi [17] used bounded variables in order to narrow the gap between
expression and data complexity of database queries (i.e., Horn programs).

The main observation of our results is that if we consider finite domains then the de-
tection of tautological or subsumed rules becomes, in general, harder. More specifically,
we observed an increase from P to coNP as well as from NP to ΠP

2 . However, we also
identified restrictions such that complexity does not increase. To wit, a restriction to
Horn clauses makes the detection of tautological rules tractable, but only if we addi-
tionally impose a bound on the arities of predicate symbols (cf. the first two columns of
Table 1).

As for the detection of subsumed rules, restricting to Horn clauses is irrelevant since
all hardness results in Section 4 were shown for Horn clauses. On the other hand,
Table 2 reflects the effects of other restrictions: In the second row, the case of fixing
the number of predicate symbols by some constant is considered. This restriction leads
to a decrease of complexity if it is combined with a bound on the arities of predicate
symbols. However, in order to obtain tractability, more severe restrictions are required.
For instance, a restriction on the number of variable occurrences in both r and s is a
sufficient condition for the tractability of detecting subsumed rules (cf. the third row,
last column, of Table 2).

We finally remark, however, that local checks for rule redundancy, as presented here,
may pay off in program simplification since the complexity of checking rule redundancy
(which amounts to testing strong equivalence) is in general much harder, viz. complete
for co-NEXPTIME.
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Abstract. We elaborate upon a recently proposed approach to finding an answer
set of a logic program based on concepts from constraint processing and sat-
isfiability checking. We extend this approach and propose a new algorithm for
enumerating answer sets. The algorithm, which to our knowledge is novel even
in the context of satisfiability checking, is implemented in the clasp answer set
solver. We contrast our new approach to alternative systems and different options
of clasp, and provide an empirical evaluation.

1 Introduction

Answer set programming (ASP; [1]) has become a primary tool for declarative problem
solving. Although the corresponding solvers are highly optimized (cf. [2,3]), their per-
formance does not match the one of state-of-the-art solvers for satisfiability checking
(SAT; [4]). While SAT-based ASP solvers like assat [5] and cmodels [6] exploit SAT
solvers, the underlying techniques are not yet established in genuine ASP solvers. We
addressed this deficiency in [7] by introducing a new computational approach to ASP
solving, centered around the constraint processing (CSP; [8]) concept of a nogood.
Apart from the fact that this allows us to easily integrate solving technology from the
areas of CSP and SAT, it also provided us with a uniform representation of inferences
from logic program rules, unfounded sets, as well as nogoods learned from conflicts.

While we have detailed in [7] how a single answer set is obtained, we introduce
in what follows an algorithm for enumerating answer sets. In contrast to systematic
backtracking approaches, the passage from computing a single to multiple solutions is
non-trivial in the context of backjumping and clause learning. A popular approach con-
sists in recording a found solution as a nogood and exempting it from nogood deletion.
However, such an approach is prone to blow up in space in view of the exponential
number of solutions in the worst case. Unlike this, our algorithm runs in polynomial
space and is (to the best of our knowledge) even a novelty in the context of SAT.

After establishing the formal background, we describe in Section 3 the constraint-
based specification of ASP solving introduced in [7]. Based on this uniform repre-
sentation, we develop in Section 4 algorithms for answer set enumeration, relying on
conflict-driven learning and backjumping. In Section 5, we provide a systematic empir-
ical evaluation of different approaches to answer set enumeration, examining different
systems as well as different options within our conflict-driven answer set solver clasp.
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2 Background

Given an alphabet P , a (normal) logic program is a finite set of rules of the form p0 ←
p1, . . . , pm,not pm+1, . . . ,not pn where 0 ≤ m ≤ n and pi ∈ P is an atom for 0 ≤
i ≤ n. A body literal is an atom p or its negation not p. For a rule r, let head(r) = p0
be the head of r and body(r) = {p1, . . . , pm,not pm+1, . . . ,not pn} be the body of r.
The set of atoms occurring in a logic program Π is denoted by atom(Π). The set of
bodies in Π is body(Π) = {body(r) | r ∈ Π}. For regrouping rule bodies sharing
the same head p, define body(p) = {body(r) | r ∈ Π, head(r) = p}. In ASP, the
semantics of a program Π is given by its answer sets. For a formal introduction to ASP,
we refer the reader to [1].

We consider Boolean assignments, A, over the domain dom(A) = atom(Π) ∪
body(Π). Formally, an assignment A is a sequence (σ1, . . . , σn) of signed literals σi of
form Tp or Fp for p ∈ dom(A) and 1 ≤ i ≤ n; Tp expresses that p is true and Fp that
it is false. (We omit the attribute signed for literals whenever clear from the context.) We
denote the complement of a literal σ by σ, that is, Tp = Fp and Fp = Tp. We let A◦B
denote the sequence obtained by concatenating assignments A and B. We sometimes
abuse notation and identify an assignment with the set of its contained literals. Given
this, we access true and false members of A via AT = {p ∈ dom(A) | Tp ∈ A} and
AF = {p ∈ dom(A) | Fp ∈ A}.

A nogood is a set {σ1, . . . , σn} of signed literals, expressing a constraint violated
by any assignment that contains σ1, . . . , σn. An assignment A such that AT ∪ AF =
dom(A) and AT ∩ AF = ∅ is a solution for a set Δ of nogoods if δ 	⊆ A for all δ ∈ Δ.
For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that σ is unit-resulting
for δ wrt A if (1) δ \ A = {σ} and (2) σ 	∈ A. By (1), σ is the single literal from δ
that is not contained in A. This implies that a violated constraint does not have a unit-
resulting literal. Condition (2) makes sure that no duplicates are introduced: If A already
contains σ, then it is no longer unit-resulting. For instance, literal Fq is unit-resulting
for nogood {Fp,Tq} wrt assignment (Fp), but neither wrt (Fp,Fq) nor wrt (Fp,Tq).
Note that our notion of a unit-resulting literal is closely related to the unit clause rule of
DPLL (cf. [4]). For a set Δ of nogoods and an assignment A, we call unit propagation
the iterated process of extending A with unit-resulting literals until no further literal is
unit-resulting for any nogood in Δ.

3 Nogoods of Logic Programs

Our approach is guided by the idea of Lin and Zhao [5] and decomposes ASP solving
into (local) inferences obtainable from the Clark completion of a program [9] and those
obtainable from loop formulas.

We begin with nogoods capturing inferences from the Clark completion of a program
Π . The latter can be defined as follows:

{pβ ≡ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn |
β ∈ body(Π), β = {p1, . . . , pm,not pm+1, . . . ,not pn}} (1)

∪ {p ≡ pβ1 ∨ · · · ∨ pβk
| p ∈ atom(Π), body(p) = {β1, . . . , βk}} . (2)
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This formulation relies on auxiliary atoms representing bodies; this avoids an exponen-
tial blow-up of the corresponding set of clauses. The first type of equivalences in (1)
takes care of bodies, while the second one in (2) deals with atoms.

For obtaining the underlying set of constraints, we begin with the body-oriented
equivalence in (1). Consider a body β ∈ body(Π). The equivalence in (1) can be de-
composed into two implications. First, we get pβ → p1 ∧· · ·∧pm ∧¬pm+1∧· · ·∧¬pn,
which is equivalent to the conjunction of ¬pβ ∨ p1, . . . , ¬pβ ∨ pm, ¬pβ ∨ ¬pm+1, . . . ,
¬pβ ∨ ¬pn. These clauses express the following set of nogoods:

Δ(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} } .

As an example, consider the body {x,not y}. We obtain the nogoods Δ({x,not y}) =
{ {T{x,not y},Fx}, {T{x,not y},Ty} }. Similarly, the converse of the previous im-
plication, viz. pβ ← p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn, gives rise to the nogood

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn} .

Intuitively, δ(β) forces the truth of β or the falsity of a body literal in β. For instance,
for body {x,not y}, we get the nogood δ({x,not y}) = {F{x,not y},Tx,Fy}.

Proceeding analogously with the atom-based equivalences in (2), we obtain for an
atom p ∈ atom(Π) along with its bodies body(p) = {β1, . . . , βk} the nogoods

Δ(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } and δ(p) = {Tp,Fβ1, . . . ,Fβk} .

For example, for an atom x with body(x) = {{y}, {not z}}, we get the nogoods
Δ(x) = { {Fx,T{y}}, {Fx,T{not z}} } and δ(x) = {Tx,F{y},F{not z}}.

Combining the four types of nogoods leads us to the following set of nogoods:

ΔΠ = {δ(β) | β ∈ body(Π)} ∪ {δ ∈ Δ(β) | β ∈ body(Π)}
∪ {δ(p) | p ∈ atom(Π)} ∪ {δ ∈ Δ(p) | p ∈ atom(Π)} . (3)

The nogoods in ΔΠ capture the supported models of a program [10]. Any answer set is
a supported model, but the converse only holds for tight programs [11]. The mismatch
on non-tight programs is caused by loops [5], responsible for cyclic support among true
atoms. Such cyclic support can be prohibited by loop formulas. As shown in [12], the
answer sets of a program Π are precisely the models of Π that satisfy the loop formulas
of all non-empty subsets of atom(Π).

For a program Π and some U ⊆ atom(Π), we define the external bodies of U for Π
as EBΠ(U) = {body(r) | r ∈ Π, head(r) ∈ U, body(r) ∩ U = ∅}. The (disjunctive)
loop formula of U for Π is

¬(∨
β∈EBΠ(U)(

∧
p∈β+ p ∧ ∧

p∈β− ¬p)
) → ¬(∨

p∈U p
)

where β+ = β ∩ atom(Π) and β− = {p | not p ∈ β}. The loop formula of a set U
of atoms forces all elements of U to be false if U is not externally supported [12].
To capture the effect of a loop formula induced by a set U ⊆ atom(Π) such that
EBΠ(U) = {β1, . . . , βk}, we define the loop nogood of an atom p ∈ U as

λ(p, U) = {Fβ1, . . . ,Fβk,Tp} .
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Overall, we get the following set of loop nogoods for a program Π :

ΛΠ =
⋃

U⊆atom(Π),U �=∅{λ(p, U) | p ∈ U} . (4)

As shown in [7], completion and loop nogoods allow for characterizing answer sets.

Theorem 1 ([7]). Let Π be a logic program, let ΔΠ and ΛΠ as given in (3) and (4).
Then, a set X of atoms is an answer set of Π iff X = AT ∩ atom(Π) for a (unique)
solution A for ΔΠ ∪ ΛΠ .

The nogoods in ΔΠ ∪ΛΠ describe a set of constraints that must principally be checked
for computing answer sets. While the size of ΔΠ is linear in atom(Π)×body(Π),
the one of ΛΠ is exponential. Thus, answer set solvers use dedicated algorithms that
explicate loop nogoods in ΛΠ only on demand, either for propagation or model verifi-
cation.

4 Answer Set Enumeration

We presented in [7] an algorithm for computing one answer set that is based upon
Conflict-Driven Clause Learning (CDCL; [4]). In what follows, we combine ideas from
the First-UIP scheme of CDCL and Conflict-directed BackJumping (CBJ; [13]) with
particular propagation mechanisms for ASP in order to obtain an algorithm for enu-
merating a desired number of answer sets (if they exist). Our major objective is to use
First-UIP learning and backjumping in the enumeration of solutions, while avoiding re-
peated solutions and the addition of (non-removable) nogoods to the original problem.

In fact, First-UIP backjumping constitutes a “radical” strategy to recover from con-
flicts: It jumps directly to the point where a conflict-driven assertion takes effect, undo-
ing all portions of the search space in between. The undone part of the search space is
not necessarily exhausted, and some portions of it can be reconstructed in the future. On
the one hand, the possibility to revisit parts of the search space makes the termination
of CDCL less obvious than it is for other search procedures. (For a proof of termina-
tion, see for instance [14].) On the other hand, avoiding repetitions in the enumeration
of solutions becomes non-trivial: When a solution has been found and a conflict occurs
after flipping the value of some variable(s) in it, then a conflict-driven assertion might
reestablish a literal from the already enumerated solution, and after backjumping, the
same solution might be feasible again. This is avoided in CDCL solvers by recording
“pseudo” nogoods for prohibiting already enumerated solutions. Such a nogood must
not be removed, which is different from conflict nogoods that can be deleted once they
are obsolete. Of course, an enumeration strategy that records nogoods for prohibiting
solutions runs into trouble if there are numerous solutions, in which case the solver
blows up in space.

Unlike First-UIP backjumping, CBJ, which has been designed for CSP and is also
used in the SAT solver relsat [15], makes sure that backjumping only undoes exhausted
search spaces. In particular, if there is a solution, then an unflipped decision literal of
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Algorithm 1. NOGOODPROPAGATION

Input : A program Π , a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

U ← ∅ // set of unfounded atoms1

loop2

while ε �⊆ A for all ε ∈ ΔΠ ∪ ∇ and3

there is some δ ∈ ΔΠ ∪ ∇ st δ \ A = {σ} and σ �∈ A do4

A ← A ◦ (σ)5

dlevel(σ) ← max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})6

if ε ⊆ A for some ε ∈ ΔΠ ∪ ∇ or TIGHT(Π) then7

return (A,∇)8

else9

U ← U \ AF10

if U = ∅ then U ← UNFOUNDEDSET(Π,A)11

if U = ∅ then return (A,∇)12

else let p ∈ U in13

∇ ← ∇ ∪ {λ(p,U)}14

if Tp ∈ A then return (A, ∇)15

else16

A ← A ◦ (Fp)17

dlevel(Fp) ← max ({dlevel(ρ) | ρ ∈ λ(p, U) \ {Tp}} ∪ {0})18

that solution cannot be jumped over, as no nogood excludes the search space below it.
Only the fact that all solutions containing a certain set of decision literals have been
enumerated justifies retracting one of them. This is reflected by CBJ, where a decision
literal can only be retracted if the search space below it is exhausted.

Our strategy to enumerate solutions combines First-UIP learning and backjumping
with CBJ. As long as no solution has been found, we apply the First-UIP scheme as
usual (cf. [7]). Once we have found a solution, its decision literals must be backtracked
chronologically. That is, we cannot jump over any unflipped decision literal contributing
to a solution. (Other decision literals are treated as usual.) Only if a search space is
exhausted, we flip the value of the last decision literal contained in a solution. Note that
the First-UIP scheme can be applied even if some decision literals belong to a solution
as long as only other decision literals are jumped over.

Algorithm 1 refines the propagation algorithm introduced in [7]. The major change
is given in ll. 3–6: For every unit-resulting literal σ that is added to A, the value of
dlevel (σ) is explicated. Instead of the current decision level, we assign the greatest
value dlevel (ρ) of any literal ρ ∈ δ \ {σ}. So dlevel (σ) is the smallest decision level
such that σ is unit-resulting for δ wrt A. In Line 18, dlevel (Fp) is determined in the
same way for λ(p, U). See [7] for details on the unchanged parts of Algorithm 1.

Algorithm 2 implements our approach to enumerating a given number of answer
sets. Its key element is the chronological backtracking level bl . At any state of the
computation, its value holds the greatest decision level such that (1) the corresponding
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Algorithm 2. CDNL-ENUM-ASP
Input : A program Π and a number s of solutions to enumerate.

A ← ∅ // assignment over atom(Π) ∪ body(Π)1

∇ ← ∅ // set of (dynamic) nogoods2

dl ← 0 // decision level3

bl ← 0 // (systematic) backtracking level4

loop5

(A, ∇) ← NOGOODPROPAGATION(Π, ∇, A)6

if ε ⊆ A for some ε ∈ ΔΠ ∪ ∇ then7

if dl = 0 then exit8

else if bl < dl then9

(δ, σUIP , k) ← CONFLICTANALYSIS(ε, Π,∇, A)10

∇ ← ∇ ∪ {δ}11

dl ← max({k, bl})12

A ← A \ {σ ∈ A | dl < dlevel(σ)}13

A ← A ◦ (σUIP)14

dlevel(σUIP) ← k15

else16

σd ← dliteral(dl)17

dl ← dl − 118

bl ← dl19

A ← A \ {σ ∈ A | dl < dlevel(σ)}20

A ← A ◦ (σd)21

dlevel(σd) ← dl22

else if AT ∪ AF = atom(Π) ∪ body(Π) then23

print AT ∩ atom(Π)24

s ← s − 125

if s = 0 or dl = 0 then exit26

else27

σd ← dliteral(dl)28

dl ← dl − 129

bl ← dl30

A ← A \ {σ ∈ A | dl < dlevel(σ)}31

A ← A ◦ (σd)32

dlevel(σd) ← dl33

else34

σd ← SELECT(Π,∇, A)35

dl ← dl + 136

A ← A ◦ (σd)37

dlevel(σd) ← dl38

dliteral(dl) ← σd39

decision literal has not (yet) been flipped and (2) some enumerated solution contains all
decision literals up to decision level bl . To guarantee that no solution is repeated, we
have to make sure that backjumping does not retract decision level bl without flipping a
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Algorithm 3. CONFLICTANALYSIS

Input : A violated nogood δ, a program Π , a set ∇ of nogoods, and an assignment A.
Output : A derived nogood, a UIP, and a decision level.

let σ ∈ δ st A = B ◦ (σ) ◦ B′ and δ \ B = {σ}1

while {ρ ∈ δ | dlevel(ρ) = dlevel(σ)} �= {σ} do2

let ε ∈ ΔΠ ∪ ∇ st σ ∈ ε and ε \ B = {σ}3

δ ← (δ \ {σ}) ∪ (ε \ {σ})4

let σ ∈ δ st B = C ◦ (σ) ◦ C′ and δ \ C = {σ}5

B ← C6

k ← max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})7

return (δ, σ, k)8

decision literal whose decision level is smaller than or equal to bl .1 We exclude such a
situation in Algorithm 2 by denying backjumps “beyond” decision level bl , if a conflict
is encountered at a decision level dl > bl , or by enforcing the flipping of the decision
literal of decision level bl , if a conflict (or a solution) is encountered at decision level bl .
The latter means that the search space below decision level bl is exhausted, that is, all
its solutions have been enumerated, so that the decision literal of decision level bl needs
to be flipped for enumerating any further solutions.

As in Algorithm 1, we explicitly assign dlevel (σ) whenever some literal σ is added to
assignment A in Algorithm 2. Also, we set dliteral(dl ) to σd in Line 39 when decision
literal σd is added to A at decision level dl . In this way, no confusion about the decision
level of a literal or the decision literal of a decision level is possible.2

Conflict analysis in Algorithm 3 follows the approach in [7]; it assumes that there
is a Unique Implication Point (UIP) at the decision level where the conflict has been
encountered. This is always the case: A look at ll. 8–22 in Algorithm 2 reveals that the
conflict to be analyzed is a consequence of the last decision, and not caused by flipping
a decision literal in order to enumerate more solutions. (Note that flipping a decision
literal does not produce a new decision level, hence, we have bl = dl if a deliberate
flipping causes a conflict. In such a case, we do not analyze the respective conflict.)

We illustrate answer set enumeration by CDNL-ENUM-ASP on the schematic ex-
ample in Figure 1. Thereby, we denote by σi

d the ith decision literal picked by SELECT

in Line 35 of Algorithm 2. We denote by σi
a the complement of a UIP, asserted in

Line 14 of Algorithm 2, after decision literal σi
d led to a conflict. For a literal σ, we

write σ[n] to indicate the decision level of σ, that is, dlevel (σ) = n. Note that, in Fig-
ure 1, we represent assignments only by their decision and asserted literals, respectively,
and omit any literals derived by NOGOODPROPAGATION. We underline the decision lit-
eral of the chronological backtracking level bl . If an assignment contains such a literal,

1 A backjump without flipping could happen if we would exclusively use the First-UIP scheme.
An assertion at a decision level dl<bl would be such that the complement of the corresponding
UIP has been present in a solution enumerated before. Hence, reassigning all decision literals
between dl (exclusive) and bl (inclusive) would lead to an already enumerated solution.

2 We assume that σd �∈ A and σd �∈ A for any decision literal σd returned by SELECT(Π,∇, A)
in Line 35 of Algorithm 2.
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A1 = (σ1
d[1], σ2

d[2], σ3
d[3], σ4

d[4], σ5
d[5]) conflict at dl = 5

A2 = (σ1
d[1], σ2

d[2], σ3
d[3], σ5

a[3]) assertion at dl = 3

A3 = (σ1
d[1], σ2

d[2], σ3
d[3], σ5

a[3], σ6
d[4]) solution at dl = 4

A4 = (σ1
d[1], σ2

d[2], σ3
d[3], σ5

a[3], σ6
d[3]) backtracking to bl = 3

A5 = (σ1
d[1], σ2

d[2], σ3
d[3], σ5

a[3], σ6
d[3], σ7

d[4], σ8
d[5]) conflict at dl = 5

A6 = (σ1
d[1], σ8

a[1], σ2
d[2], σ3

d[3], σ5
a[3], σ6

d[3]) assertion at dl = 1

backtracking to bl = 3

A7 = (σ1
d[1], σ8

a[1], σ2
d[2], σ3

d[3], σ5
a[3], σ6

d[3], σ9
d[4]) solution at dl = 4

A8 = (σ1
d[1], σ8

a[1], σ2
d[2], σ3

d[3], σ5
a[3], σ6

d[3], σ9
d[3]) backtracking to bl = 3

solution/conflict at dl = 3 = bl

A9 = (σ1
d[1], σ8

a[1], σ2
d[2], σ3

d[2]) backtracking to bl = 2 . . .

Fig. 1. Answer set enumeration example

it must not be retracted unless the search space below it is exhausted, that is, unless a
conflict or a(nother) solution is encountered at decision level bl .

Consider assignment A1 in Figure 1, and assume that NOGOODPROPAGATION

yields a violated nogood after decision literal σ5
d has been selected at decision

level dl = 5. Let CONFLICTANALYSIS return a nogood δ such that σ5
a ∈ δ and

max ({dlevel (σ) | σ ∈ δ \ {σ5
a}} ∪ {0}) = 3, that is, σ5

a is a UIP. Given that no
solution has been found yet, we have bl = 0. Thus, CDNL-ENUM-ASP jumps back
to decision level 3 and asserts σ5

a, yielding assignment A2. Up to this point, the enumer-
ation of solutions is similar to the search for a single solution. We next select decision
literal σ6

d at decision level dl = 4. Assume that NOGOODPROPAGATION on assign-
ment A3 yields a solution. Since we are enumerating solutions, we cannot stop here.
Rather, we continue with assignment A4 obtained by flipping σ6

d , and bl = 3 is the
greatest decision level of any unflipped decision literal. Note that σ6

d at decision level

dlevel (σ6
d) = 3 = bl is not asserted by any nogood. We continue by selecting deci-

sion literals σ7
d and σ8

d , yielding assignment A5. Suppose that NOGOODPROPAGATION

yields again a violated nogood at decision level dl = 5 and that CONFLICTANALYSIS

returns a nogood δ with σ8
a ∈ δ and max ({dlevel (σ) | σ ∈ δ \ {σ8

a}} ∪ {0}) = 1.
That is, σ8

a is asserted by δ at decision level 1. Given that the previous solution in-
cluded σ1

d = dliteral (1), it must also have contained σ8
a; otherwise, some nogood had

been violated after NOGOODPROPAGATION. If we would now jump back to decision
level 1 and assert σ8

a, then the already enumerated solution would be feasible again,
and CDNL-ENUM-ASP would repeat it. After asserting σ8

a, we thus have to return
to decision level dl = 3 = bl , rather than to 1, yielding assignment A6. Note that A6

still contains σ6
d, so that the solution encountered after selecting σ6

d (cf. A3) cannot be
repeated. Assume that selecting decision literal σ9

d at decision level dl = 4 yields a
second solution for assignment A7. Then, we backtrack to decision level dl = 3 = bl
and flip σ9

d, yielding assignment A8. Note that σ9
d is not asserted by any nogood. If now

NOGOODPROPAGATION yields a third solution, then decision level 3 is exhausted, that
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is, all solutions containing σ1
d, σ2

d , and σ3
d have been enumerated. Hence, we let bl = 2

and flip σ3
d, yielding assignment A9. Otherwise, if NOGOODPROPAGATION on A8 leads

to a violated nogood, then we do not analyze the conflict because dl = 3 = bl . In
fact, flipped decision literals σ6

d and σ9
d lack asserting nogoods, so that the result of

CONFLICTANALYSIS would be undefined. If NOGOODPROPAGATION yields a conflict
for A8, we thus proceed with A9, as in the case that a solution is found for A8.

We now introduce the notions of correctness, completeness, and redundancy-
freeness for an answer set enumeration algorithm.

Definition 1. For a logic program Π , we define an enumeration algorithm as

– correct, if every enumerated solution is an answer set of Π;
– complete, if all answer sets of Π are enumerated;
– redundancy-free, if no answer set of Π is enumerated twice.

Furthermore, we need the following property (UF):

For any assignment A, let UNFOUNDEDSET(Π, A) in Algorithm 1 return some
non-empty unfounded set U ⊆ atom(Π) \ AF for Π wrt A, if there is such a
set U , and return the empty set ∅, otherwise.3

By letting Π be a logic program and s ∈ Z, we have the following correctness result.

Theorem 2. CDNL-ENUM-ASP(Π, s) is correct, provided that (UF) holds.

For a program Π and X ⊆ atom(Π), we say that X agrees with a nogood δ if one of
the following conditions holds, where X = atom(Π) \ X :

– Fp ∈ δ for some p ∈ X ,
– Tp ∈ δ for some p ∈ X ,
– Fβ ∈ δ for some β ∈ body(Π) such that β ⊆ X ∪ {not p | p ∈ X}, or
– Tβ ∈ δ for some β ∈ body(Π) such that β ∩ (X ∪ {not p | p ∈ X}) 	= ∅.

Intuitively, the notion of agreement expresses that δ 	⊆ A for the total assignment A
corresponding to X . That is, Tp ∈ A for all atoms p ∈ X , Fp ∈ A for all atoms
p ∈ X , and for a body β ∈ body(Π), Tβ ∈ A if all body literals of β are true wrt X
and Fβ ∈ A otherwise. We can show that any answer set X of Π agrees with all
nogoods dealt with by CDNL-ENUM-ASP, both static and dynamic ones.

We first consider static nogoods in ΔΠ ∪ ΛΠ , as given in (3) and (4).

Proposition 1. Any answer set of Π agrees with all nogoods in ΔΠ ∪ ΛΠ .

Given this, we can show that the answer sets of Π agree with all nogoods added to ∇.

Proposition 2. At every state of CDNL-ENUM-ASP(Π, s), any answer set of Π
agrees with all nogoods in ∇, provided that (UF) holds.4

This leads us to the completeness of CDNL-ENUM-ASP, when invoked with s = 0.

Theorem 3. CDNL-ENUM-ASP(Π, 0) is complete, provided that (UF) holds.

Finally, we can show that CDNL-ENUM-ASP is redundancy-free.

Theorem 4. CDNL-ENUM-ASP(Π, s) is redundancy-free.
3 A set U of atoms is unfounded for Π wrt A if we have EBΠ(U) ⊆ AF.
4 We here stipulate (UF) for making sure that the result of CONFLICTANALYSIS is well-defined

at every invocation.
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Table 1. Experiments enumerating answer sets

No Instance #Sol claspa claspar claspb claspbr smodels smodelsr smodelscc cmodels

1 hc 19 104 7.2 7.2 7.7 7.2 • • • •
2 hc 19 105 71.4 77.1 83.5 91.2 • • • •
3 hc 20 104 9.3 9.5 10.9 9.5 • • • •
4 hc 20 105 103.4 117.2 115.8 109.9 • • • •
5 mutex3IDFD 105 1.4 1.4 35.4 35.9 5.5 5.8 240.6 •
6 mutex3IDFD 106 14 13.9 • • 55.9 52.8 • •
7 mutex4IDFD 104 20.8 27.4 43.8 37 44.7 574.7 47.5 •
8 mutex4IDFD 105 52.2 63.2 596.7 585.7 273.4 • • •
9 pigeon 15 105 2.7 2.7 4 3.9 7.1 8.6 126.7 •

10 pigeon 15 106 26.1 26.5 53 54.7 71.8 73.6 • •
11 pigeon 15 107 260.7 262.8 • • • • • •
12 pigeon 16 105 3.2 3.1 4.4 4.6 7.8 9.9 175.2 •
13 pigeon 16 106 30.1 30.5 57.7 59.6 78.5 80.9 • •
14 pigeon 16 107 303 304.5 • • • • • •
15 queens 19 104 14.4 17.1 13.1 15.1 47.1 115 49 427.49
16 queens 19 105 141.5 143.8 135.9 162.7 265.1 358.1 • •
17 queens 20 104 14.1 15.8 13.1 15.3 127 172.1 48.3 569.15
18 queens 20 105 147.2 170.5 149.6 178.6 380.3 • • •
19 schur-n29-m44 104 22.4 26.4 19.8 22.7 17.4 49.4 15.6 •
20 schur-n29-m44 105 203.1 212.5 177.2 246.4 132.4 175.9 353.2 •
21 schur-n29-m45 104 24.7 21.8 21.5 24.6 17.2 50.2 16.1 •
22 schur-n29-m45 105 231.6 265.6 190.7 199.9 133.3 176 397.3 •

5 Experiments

Our empirical evaluation addresses the following two questions: First, how does our
algorithm improve on solution recording (via nogoods) and, second, in how far are
backjumps hampered by the backtracking level. Our comparison considers clasp (RC4)
in two different modes: (a) the one with bounded backjumping (and learning), using
the algorithms from Section 4 (referred to by claspa), and (b) the one using unlimited
backjumping (and learning) in conjunction with solution recording (claspb). Note that
a solution nogood consists of decision literals only. The same strategy is pursued by
smodelscc [16], but with decisions limited to atoms. In contrast, cmodels provides a
whole answer set as solution nogood to the underlying (learning) SAT solver. Given
that restarts are disabled in claspa and claspb, our experiments also include both vari-
ants augmented with bounded and unbounded restarts, respectively (indicated by an ad-
ditional subscript r). The bounded restart variant, claspar, is allowed to resume search
from the backtracking level (cf. Algorithm 2),5 while claspbr can perform unlimited
restarts. We also incorporate standard smodels (2.32) and the variant smodelsr with ac-
tivated restart option, smodelscc (1.08) with option “nolookahead” as recommended by
the developers, and cmodels (3.67) using zchaff (2004.11.15). All experiments were run
on a 2.2GHz PC on Linux. We report results in seconds, taking the average of 10 runs,
each restricted to 600s time and 512MB memory. A timeout (in all 10 runs) is indicated
by “•”. The benchmark instances and extended results are available at [17].

In Table 1, we report results for enumerating a vast number of answer sets. The in-
stances are from the areas of Hamiltonian cycles in complete graphs (1-4), bounded

5 In order to guarantee redundancy-freeness, restarts must not discard the backtracking level
with its flipped decision literals.
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Table 2. Experiments illustrating backjumping and backtracking behavior

No Instance #Sol Backtracks Backjumps Bounded Skippable Skipped Jump Bounded Jump Bounded Time
Jumps Levels Levels Length Length Length Length

(%) (max) (max) (avg) (avg)
1 gryzzles.3 1 0 311 0 771 100 17 0 2.5 0 0.1
2 gryzzles.3 857913 618092 208373 4135 321000 97.6 21 15 1.5 1 178.4
3 gryzzles.7 1 0 675 0 1931 100 22 0 2.9 0 0.1
4 gryzzles.7 106 895612 215995 2783 324951 98 23 22 1.5 2 246.9
5 gryzzles.18 1 0 599 0 2026 100 27 0 3.4 0 0.1
6 gryzzles.18 106 811593 51219 1605 92953 96.1 27 18 1.7 2 235
7 mutex4IDFD 1 0 280 0 26698 100 590 0 95.4 0 17
8 mutex4IDFD 106 0 280 0 26698 100 590 0 95.4 0 579.7
9 sequence2-ss2 1 0 156 0 674 100 35 0 4.3 0 13.3
10 sequence2-ss2 38 64 2875 225 13915 53 73 43 2.6 29 17.9
11 sequence3-ss3 1 0 10921 0 40213 100 65 0 3.7 0 66.9
12 sequence3-ss3 332 315 55111 731 121435 97.8 65 20 2.2 3 361

model checking (5-8), pigeonhole (9-14), n-queens (15-18), and Schur numbers (19-
22). We have chosen these combinatorial problems because of their large number of an-
swer sets. This allows us to observe the effect of an increasing number of answer sets on
the performance of the respective approaches. The number of requested (and success-
fully enumerated) solutions is given in the third column. Comparing the two variants
of clasp, we observe that claspa and claspar scale better than claspb and claspbr. This
is most intelligible on examples from bounded model checking (5-8) and pigeonhole
problems (9-14). Solutions for the former contain many decision literals, and the large
solution nogoods significantly slow down claspb and claspbr. The pigeonhole problems
are structurally simple, so that all decisions yield solutions. Since the number of easy-
to-compute solutions is massive, the sheer number of recorded solution nogoods slows
down claspb and claspbr. Also note that the time that smodels spends in lookahead is
wasted here. With Hamiltonian cycles (1-4), n-queens (15-18), and Schur numbers (19-
22), the picture is rather indifferent. That is, solving time tends to dominate enumeration
time, and the recorded solution nogoods are not as critical as with the aforementioned
problems. Notably, smodels is very effective on Schur numbers. We verified that all
clasp variants make the same number of decisions (or choices) as smodels, so we con-
jecture that different run-times come from implementation differences: counter-based
propagation in smodels versus watched literals in clasp. Regarding the other systems,
we see that smodelscc is slower than smodels as regards enumeration (9-14) but some-
times faster if search is needed (17), and cmodels is clearly outperformed. Comparing
claspa to claspar and claspb to claspbr, we see that restarts make (almost) no difference
on the problems in Table 1. Indeed, clasp hardly ever restarts on these problems, so that
the effect is negligible. However, this indifference does not account for smodelsr, where
restarts turn out to be quite counterproductive on our combinatorial problems.

Table 2 provides statistics regarding the backjumping and backtracking of claspa

upon the enumeration of answer sets. The first three instances are Hamiltonian path
problems (1-6), the fourth is from bounded model checking (7,8), and the last two from
compiler superoptimization (9-12). For every instance, we provide two rows: the back-
jump statistics for one answer set versus that for a certain number of answer sets. The
“Backtracks” column shows the number of chronological backtracks, that is, conflicts
on the backtracking level, while “Backjumps” indicates conflicts on greater decision
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levels. The number of backjumps that were forced to stop at the backtracking level is
given by “Bounded Jumps”. The “Skippable Levels” are the sum of backjump lengths
(not counting backtracks), and “Skipped Levels” shows the percentage of levels that
have effectively been skipped. We also provide the maximum “Jump Length” and the
maximum “Bounded Length”. The latter is the maximum number of skippable levels
that have not been retracted in a jump because of hitting the backtracking level. Finally,
we show the average “Jump Length”, the average “Bounded Length”, and the time.
On the Hamiltonian path problems (1-6), we observe that the number of backtracks
dominates that of backjumps. Indeed, we also observed on other problems, not shown
here, that the “hard” part of the search was before finding the first answer set; after-
wards, the number of conflicts above the backtracking level decreased significantly. We
see this very drastically on the bounded model checking instance (7,8) where 280 long
backjumps are performed (jump length 95 on average). After this “warm-up” phase,
no further conflicts are encountered, even not on the backtracking level (0 backtracks).
Finally, the superoptimization examples (9-12) are rather sparse regarding answer sets,
and backjumps are still noticeable after the first solution has been found. In Line 10,
we observe an exceptionally low percentage of skipped levels, approximately half of
the skippable levels are kept. The few bounded jumps that are done have a significant
length (29 unskipped levels on average). However, on all instances in Table 2, the jump
of maximum length was unbounded and thus effectively executed. The average “Jump
Length” and the average “Bounded Length” are usually small, except for 7, 8, and 10.

6 Discussion

We introduced a new approach to enumerating answer sets, centered around First-UIP
learning and backjumping. To the best of our knowledge, our solution enumeration ap-
proach is novel even in the context of SAT. Unlike relsat [15], applying the Last-UIP
scheme, our approach uses First-UIP backjumping as long as systematic backtracking
is unnecessary. Different from the #SAT solver cachet [18], using so-called “component
caching”, our approach combines CDCL with CBJ for avoiding the repetition of solu-
tions. Recent approaches to adopt SAT and CSP techniques in ASP solving [16,19,20]
are rather implementation-specific and lack generality. Unlike this, we provided a uni-
form CSP-based approach by viewing ASP inferences as unit propagation on nogoods,
which allowed us to directly incorporate techniques from CSP and SAT.

The clasp system implements state-of-the-art techniques from Boolean constraint
solving, avoiding a SAT translation as done by assat [5], cmodels [6], and sag [19].
Also, clasp records loop nogoods only when ultimately needed for unit propagation;
this is different from assat and sag, which determine loop formulas for all “terminat-
ing” loops. Unlike genuine ASP solvers smodels [2] and dlv [3], clasp does not de-
termine greatest unfounded sets. Rather, it applies local propagation directly after an
unfounded set has been found. Different from smodelscc [16] and dlv with backjump-
ing [20], the usage of rule bodies in nogoods allows for a straightforward extension of
unit propagation to ASP, abolishing the need for multiple inference rules. Notably, our
novel approach allows clasp to enumerate answer sets of a program without explicitly
prohibiting already computed solutions by nogoods, as done by cmodels and smodelscc.
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Abstract. The recently proposed notion of an elementary set yielded a refine-
ment of the theorem on loop formulas, telling us that the stable models of a
disjunctive logic program can be characterized by the loop formulas of its ele-
mentary sets. Based on the notion of an elementary set, we propose the notion
of head-elementary-set-free (HEF) programs, a more general class of disjunctive
programs than head-cycle-free (HCF) programs proposed by Ben-Eliyahu and
Dechter, that can still be turned into nondisjunctive programs in polynomial time
and space by ”shifting” the head atoms into the body. We show several prop-
erties of HEF programs that generalize earlier results on HCF programs. Given
an HEF program, we provide an algorithm for finding an elementary set whose
loop formula is not satisfied, which has a potential for improving stable model
computation by answer set solvers.

1 Introduction

Disjunctive logic programs under the stable model semantics are more expressive than
nondisjunctive programs. The problem of deciding whether a disjunctive program has a
stable model is ΣP

2 -complete [1], while the same problem for a nondisjunctive program
is NP-complete.

However, Ben-Eliyahu and Dechter [2] showed that a class of disjunctive programs
called “head-cycle-free (HCF)” programs can be turned into nondisjunctive programs
in polynomial time and space, by “shifting” the head atoms into the body—a simple
operation defined in [3]. This tells us that an HCF program is an “easy” disjunctive
program, which is merely a syntactic shortcut of a nondisjunctive program. Thus, HCF
programs play an important role in efficient computation of stable models for disjunc-
tive programs. Indeed, the HCF property is exploited by answer set solvers DLV1 [4]
and CMODELS2 [5].

In this paper, we propose the notion of head-elementary-set-free (HEF) programs, a
more general class of disjunctive programs than HCF programs, that can still be turned
into nondisjunctive programs in polynomial time and space by shifting. This is mo-
tivated by the recent study on elementary sets [6], which yielded a refinement of the
theorem on loop formulas by Lin and Zhao [7]. All elementary sets are loops, but not
all loops are elementary sets; still stable models can be characterized by elementary

1 http://www.dbai.tuwien.ac.at/proj/dlv/
2 http://www.cs.utexas.edu/users/tag/cmodels/

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 149–161, 2007.
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sets’ loop formulas. Our definition of an HEF program is similar to the definition of
an HCF program except that the former refers to elementary sets instead of loops. We
observe that some other properties of nondisjunctive programs and HCF programs can
be extended to HEF programs, including the main results by Lin and Zhao [8] charac-
terizing the stable models of a nondisjunctive program by “inherent tightness,” and the
operational characterization of stable models of HCF programs by Leone et al. [9].

The properties of HEF programs studied here may be useful for improving the com-
putation of disjunctive answer set solvers, such as DLV and CMODELS. As a first step,
we provide an algorithm for finding an elementary set whose loop formula is not satis-
fied for a given HEF program, which is simpler and more efficient than the algorithm
described in [10].

The outline of the paper is as follows. In Section 2, we review the definition of an
elementary set introduced in [6] and show some of its properties. In Section 3, we intro-
duce the notion of HEF programs and show that shifting preserves their stable models.
In Section 4, we demonstrate that the notion of inherent tightness can be generalized
to HEF programs, but not to general disjunctive programs. This section also includes
simplifications of earlier notions. In Section 5, we show that the operational character-
ization of stable models by Leone et al. [9] can be extended to HEF programs as well.
We also define “bounding” loops that allow for enhancing the model checking approach
for disjunctive programs introduced in [9,11]. In Section 6, we present an algorithm for
computing an elementary set for a given HEF program.

2 Review of Elementary Sets for Disjunctive Programs

We begin with a review of elementary sets, introduced in [6], which are a reformulation
and generalization of elementary loops [12].

A disjunctive program is a finite set of (disjunctive) rules of the form

a1; . . . ; ak ← ak+1, . . . , al, not al+1, . . . , not am, not not am+1, . . . , not not an (1)

where n ≥ m ≥ l ≥ k ≥ 0 and a1, . . . , an are propositional atoms. We will identify a
rule of the form (1) with the propositional formula

(ak+1 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬am ∧ ¬¬am+1 ∧ · · · ∧ ¬¬an) → (a1 ∨ · · · ∨ ak) .

We will also write (1) as
A ← B, F (2)

where A is a1; . . . ; ak, B is ak+1, . . . , al, and F is

not al+1, . . . , not am, not not am+1, . . . , not not an ,

and we identify A and B with their corresponding sets of atoms.
Let Π be a disjunctive program. A nonempty set X of atoms occurring in Π is called

a loop of Π if, for all nonempty proper subsets Y of X , there is a rule (2) in Π such
that A ∩ Y �= ∅ and B ∩ (X \ Y ) �= ∅. As shown in [6], this definition of a loop is
equivalent to the definition based on a positive dependency graph given in [13].
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We say that a subset Y of X is outbound in X for Π if there is a rule (2) in Π such
that A ∩ Y �= ∅, B ∩ (X \ Y ) �= ∅, A ∩ (X \ Y ) = ∅, and B ∩ Y = ∅. A nonempty
set X of atoms that occur in Π is elementary for Π if all nonempty proper subsets of X
are outbound in X for Π . It is clear that every elementary set is also a loop, but the
converse does not hold. The definition of an elementary set above remains equivalent
even if we restrict Y to be loops or even elementary sets.

Proposition 1. For any disjunctive program Π and any nonempty set X of atoms that
occur in Π , X is elementary for Π iff all proper subsets of X that are elementary for Π
are outbound in X for Π .

For any set Y of atoms, the external support formula of Y , denoted by ESΠ(Y ), is
the disjunction of conjunctions B ∧ F ∧ ∧

a∈A\Y ¬a for all rules (2) of Π such that
A ∩ Y �= ∅ and B ∩ Y = ∅.

The following proposition describes the relationship between the external support
formula of an arbitrary set of atoms and the external support formulas of its subsets.

Proposition 2. Let Π be a disjunctive program, and let X , Y , Z be sets of atoms
such that X ⊇ Y ⊇ Z . If Z is not outbound in Y for Π and X |= ESΠ(Z), then
X |= ESΠ(Y ).

This proposition is similar to Lemma 5 in [14], which states that ESΠ(Z) |= ESΠ(Y )
holds if there is no rule (2) in Π such that A∩Z �= ∅ and B∩(Y \Z) �= ∅. Proposition 2
is more general in the sense that it refers to the stronger condition of “outboundness.”

For any set Y of atoms, by LFΠ(Y ) we denote the following formula:

∧
a∈Y a → ESΠ(Y ) . (3)

Formula (3) is called the (conjunctive) loop formula of Y for Π . Note that we still call
(3) a loop formula even when Y is not a loop.

From Proposition 2, we derive the following relationship among loop formulas.

Proposition 3. For any disjunctive program Π and any nonempty set X of atoms that
occur in Π , there is a subset Y of X such that Y is elementary for Π and LFΠ(Y ) |=
LFΠ(X).

Proposition 3 allows us to restrict the attention to loop formulas of elementary sets only,
rather than those of arbitrary sets or even loops. This yields the following theorem.

Theorem 1. [6] For any disjunctive program Π and any model X of Π whose atoms
occur in Π , the following conditions are equivalent:

(a) X is stable for Π;3

(b) X satisfies LFΠ(Y ) for all nonempty sets Y of atoms occurring in Π;
(c) X satisfies LFΠ(Y ) for all loops Y of Π;
(d) X satisfies LFΠ(Y ) for all elementary sets Y of Π .

3 For a model of Π , we will say that it is “stable for Π” if it is a stable model of Π .
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3 Head-Elementary-Set-Free Logic Programs

Ben-Eliyahu and Dechter [2] defined a class of disjunctive programs called “head-cycle-
free” programs that can be mapped in polynomial time and space to nondisjunctive
programs, preserving the stable models. A disjunctive program Π is called Head-Cycle-
Free (HCF) if, for every rule (2) in Π , there is no loop Y of Π such that |A ∩ Y | > 1.

By referring to elementary sets in place of loops in the definition, we can define a
class of programs that is more general than HCF programs. We will call a program Π
Head-Elementary-set-Free (HEF) if, for every rule (2) in Π , there is no elementary
set Y of Π such that |A ∩ Y | > 1. From the fact that every elementary set is a loop,
it is clear that every HCF program is an HEF program as well. However, not all HEF
programs are HCF. For example, consider the following program Π1:

p ← r
q ← r
r ← p, q
p ; q ← .

(4)

The program has 6 loops, {p}, {q}, {r}, {p, r}, {q, r}, {p, q, r}. Since the head of the
last rule contains two atoms from loop {p, q, r}, the program is not HCF. However, it
is HEF since {p, q, r} is not elementary for Π1 (its subsets {p, r} and {q, r} are not
outbound in {p, q, r} for Π1).

Let us write rule (2) in the following form:

a1; . . . ; ak ← B, F . (5)

Gelfond et al. [3] defined a mapping of a disjunctive program Π into a nondisjunctive
program Πsh , the “shifted” variant of Π , by replacing each rule (5) with k new rules:

ai ← B, F, not a1, . . . , not ai−1, not ai+1, . . . , not ak . (6)

They showed that every stable model of Πsh is also a stable model of Π , but not vice
versa. Ben-Eliyahu and Dechter [2] showed that the other direction holds as well if Π
is HCF. Here we extend the result to HEF programs.

Theorem 2. If a program Π is HEF, then Π and Πsh have the same stable models.

For instance, one can check that both Π1 and (Π1)sh have {p} and {q} as their only sta-
ble models. Theorem 2 shows that HEF programs are not more expressive than nondis-
junctive programs, so that one can regard the use of disjunctive rules in such programs
as a syntactic shortcut. Another consequence is that the problem of deciding whether
a model is stable for an HEF program is tractable, as in the case of nondisjunctive and
HCF programs. (In the general disjunctive case, it is coNP-complete [4].)

Comparing the elementary sets of Π and the elementary sets of Πsh gives the fol-
lowing result.

Proposition 4. For any disjunctive program Π , if X is an elementary set of Π , then X
is an elementary set of Πsh .
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The converse of Proposition 4 does not hold, even if Π is HEF. For instance, consider
the following HEF program Π2:

p ; q ← r
r ← p
r ← q .

Set {p, q, r} is not elementary for Π2 since, for instance, {p} is not outbound in {p, q, r}.
On the other hand, {p, q, r} is elementary for (Π2)sh :

p ← r, not q
q ← r, not p
r ← p
r ← q .

(7)

However, there is a certain subset of Πsh whose elementary sets are also elementary
sets of Π . For a set X of atoms, by ΠX we denote the set of all rules in Π whose bodies
are satisfied by X .

Proposition 5. Let Π be a disjunctive program, X a set of atoms that occur in Π , and
Y a subset of X . If Y is elementary for (Πsh )X , then Y is elementary for Π as well.

For X = {p, q, r} and (Π2)sh , we have that [(Π2)sh ]X consists of the last two rules
of (7) only. Only singletons {p}, {q}, and {r} are elementary for [(Π2)sh ]X , and they
are elementary for Π2 as well.

4 HEF Programs and Inherent Tightness

When we add more rules to a program, a stable model of the original program remains
to be a stable model of the extended program as long as it satisfies the new rules.

Proposition 6. For any disjunctive program Π and any model X of Π , X is stable
for Π iff there is a subset Π ′ of Π such that X is stable for Π ′.

In view of Theorem 1, Proposition 6 tells us that, provided that X is a model of Π , it is
sufficient to find a subset Π ′ of Π such that X is stable for Π ′, in order to verify that X
is stable for Π . Of course, one can trivially take Π itself as the subset Π ′, but there
are nontrivial subsets that deserve attention. If Π is nondisjunctive in Proposition 6, it
is known that the subset Π ′ can be further restricted to a “tight” program [15,16]—the
result known as “inherently tight”, or “weakly tight” programs [8,17]. We will reformu-
late these results and show that they can be extended to HEF programs.

As in [13], we call a set of atoms occurring in Π trivial if it consists of a single
atom a that has no rule (2) in Π such that a ∈ A ∩ B. Recall that by ΠX we denote the
set of all rules in Π whose bodies are satisfied by X .

Definition 1. [16,13] A disjunctive program Π is called tight if every loop of Π is
trivial. Program Π is called tight on a set X of atoms if every loop of ΠX is trivial.

As defined in [18], a set X of atoms is supported by a nondisjunctive program Π if, for
every atom a ∈ X , there is a rule (2) in ΠX such that A = {a}. We reformulate Lin
and Zhao’s notion of inherent tightness [8] as follows.
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Definition 2. A nondisjunctive program Π is called inherently tight on a set X of atoms
if there is a subset Π ′ of Π such that Π ′ is tight and X is supported by Π ′.

Theorem 1 from [8] can be reformulated as follows.

Proposition 7. For any nondisjunctive program Π and any model X of Π , X is stable
for Π iff Π is inherently tight on X .

One may wonder whether Proposition 7 can be extended to disjunctive programs as
well, since the definition of a tight program (Definition 1) applies to disjunctive pro-
grams as well, and the notion of support was already extended to disjunctive pro-
grams [19,20,13]: a set X of atoms is supported by a disjunctive program Π if, for
every atom a ∈ X , there is a rule (2) in ΠX such that A ∩ X = {a}. We extend
Definition 2 to disjunctive programs with these extended notions.

Unfortunately, for disjunctive programs, this straightforward extension of inherent
tightness is not sufficient to characterize the stability of a model. In other words, only
one direction of Proposition 7 holds for disjunctive programs.

Proposition 8. For any disjunctive program Π and any model X of Π , if Π is inher-
ently tight on X , then X is stable for Π .

The following program Π3 illustrates that the converse does not hold:

p ; q ←
p ← q
q ← p .

Set {p, q} is the only stable model of Π3, but there is no subset Π ′ of Π3 such that Π ′

is tight and {p, q} is supported by Π ′.
However, one may expect that Proposition 7 can be extended to HEF programs since,

as we noted in Section 3, HEF programs are merely a syntactic shortcut of nondisjunc-
tive programs. Indeed, the following proposition holds.

Proposition 9. For any HEF program Π and any model X of Π , X is stable for Π iff
Π is inherently tight on X .

Since every HCF program is HEF, the proposition also holds for HCF programs.
We observed that by turning to the notion of an elementary set in place of a loop, we

can get generalizations of results known for loops, such as Theorem 2 and Proposition 9.
This brings our attention to the following question. Can the notion of a tight program,
which is based on loops, be generalized by referring to elementary sets instead? To
answer this, let us modify Definition 1 as follows.

Definition 3. A disjunctive program Π is called e-tight if every elementary set of Π is
trivial. Program Π is called e-tight on a set X of atoms if every elementary set of ΠX

is trivial.

Since every elementary set is a loop, it is clear that a tight program is e-tight as well. But
is the class of e-tight programs strictly more general than the class of tight programs?
The reason why this is an interesting question to consider is because, if so, it would
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lead to a generalization of Fages’ theorem [15], which would provide a more general
class of programs for which the stable model semantics and the completion semantics
coincide. However, it turns out that e-tight programs are not truly more general than
tight programs.

Proposition 10. (a) A disjunctive program is e-tight iff it is tight.
(b) A disjunctive program is e-tight on a set X of atoms iff it is tight on X .

This result also indicates that the notion of an inherently tight program does not become
more general by referring to elementary sets. That is, replacing “Π ′ is tight” in the
statement of Definition 2 by “Π ′ is e-tight” does not affect the definition.

In the remainder of this section, we compare our reformulation of inherent tightness
above with the original definition by Lin and Zhao.

Definition 4. [8] A nondisjunctive program Π is called inherently tight on a set X of
atoms if there is a subset Π ′ of Π such that Π ′ is tight on X and X is a stable model
of Π ′.

There are two differences between our reformulation (Definition 2) and Definition 4.
The former does not rely on the relative notion of tightness (“tight on a set of atoms”)
and uses a weaker condition of supportedness. Nevertheless it is not difficult to check
that the two definitions are equivalent.

Proposition 7 above is a simplification of Theorem 1 from [8].

Proposition 11. [8, Theorem 1] For any nondisjunctive program Π and any set X of
atoms, X is a stable model of Π iff X is a model of the completion of Π and Π is
inherently tight on X .

Our reformulation of inherently tight programs is closely related to what Fages’ called
“well-supported” models [15]. We do not reproduce Fages’ definition here due to lack
of space, but it is not difficult to check that, for a nondisjunctive program Π and a set X
of atoms, X is well-supported by Π iff Π is inherently tight on X . Proposition 7 is
similar to Theorem 3.1 from [15], which showed that well-supported models coincide
with stable models.

The notion of an inherently tight program is also closely related to the notion of a
weakly tight program presented in [17].

5 Checking the Stability of Models for HEF Programs

The problem of deciding whether a given model is stable is coNP-complete for a dis-
junctive program, while it is tractable for HCF programs [9]. Leone et al. [9] presented
an operational framework for checking the stability of a model in polynomial time for
HCF programs. Given a disjunctive program Π and sets X , Y of atoms, they defined a
sequence R0

Π,X(Y ), R1
Π,X(Y ), . . . that converges to a limit Rω

Π,X(Y ) as follows:

– R0
Π,X(Y ) = Y and

– Ri+1
Π,X(Y ) is obtained from Ri

Π,X(Y ) by removing every atom a for which there is
a rule (2) in ΠX such that A ∩ X = {a} and B ∩ Ri

Π,X(Y ) = ∅.4

4 Recall that ΠX consists of all rules (2) in Π such that X |= B, F .
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A set Y of atoms is called unfounded by Π w.r.t. X if X �|= ESΠ(Y ). Set X is
unfounded-free for Π if it contains no nonempty subset that is unfounded by Π w.r.t. X .
As shown in Corollary 2 from [21] and Theorem 4.6 from [9], unfounded-free models
coincide with stable models.

Proposition 6.5 from [9] shows that X is unfounded-free for Π if Rω
Π,X(X) = ∅.

The converse also holds if Π is restricted to be a HCF program, as shown in Theo-
rem 6.9 from the same paper. That theorem can be extended to HEF programs.5

Proposition 12. For any HEF program Π and any set X of atoms, X is unfounded-free
for Π iff Rω

Π,X(X) = ∅.

As an example, consider again program Π1 ((4) in Section 3), which is HEF but not
HCF. Theorem 6.9 from [9] does not apply since it is limited to HCF programs. How-
ever, for set X1 = {p, q, r}, it holds that Rω

Π1,X1
(X1) = X1, and in accordance

with Proposition 12, X1 is not a stable model of Π1. For set X2 = {p}, the limit
Rω

Π1,X2
(X2) = ∅, and X2 is a stable model of Π1.

The following proposition shows how the HEF property and Rω
Π,X can be used to

decide whether a set Y of atoms contains a nonempty unfounded set for Π w.r.t. X .
By ΠX,Y we denote the set of all rules (2) in ΠX such that X ∩ (A \ Y ) = ∅.

Proposition 13. For any disjunctive program Π , any set X of atoms, and any subset Y
of X such that ΠX,Y is HEF, Rω

Π,X(Y ) �= ∅ iff Y contains a nonempty unfounded
subset for Π w.r.t. X .

If we replace “Rω
Π,X(Y ) �= ∅” by “Rω

Π,X(Y ) = Y and Y is nonempty” in Proposi-
tion 13, only the left-to-right direction still holds. In the next section, we present an
algorithm based on this for finding a non-trivial unfounded set for a HEF (sub)program.

As defined in [6], we say that a set Y of atoms occurring in a disjunctive program Π
is elementarily unfounded by Π w.r.t. a set X of atoms if

– Y is an elementary set of ΠX,Y that is unfounded by Π w.r.t. X , or
– Y is a singleton that is unfounded by Π w.r.t. X .

For a model X of Π , Theorem 1(e′) from [6] states that X is stable for Π iff no subset
of X is elementarily unfounded by Π w.r.t. X . Thus stability checking can be cast into
a problem of ensuring the absence of elementarily unfounded sets. Since every elemen-
tarily unfounded set is a loop, every elementarily unfounded set is clearly contained
in a maximal loop, which allows us to split the search for elementarily unfounded sets
by maximal loops. Below we describe a notion called “bounding loops,” which give
tighter bounds than maximal loops. We remark that the idea of using maximal loops for
partitioning the program and splitting stability checking by subprograms was already
presented by Leone et al. [9] and Koch et al. [11]. Their results can be enhanced by
referring to bounding loops.

For a disjunctive program Π and a set X of atoms, let S be the set of all sets Y of
atoms such that Y is a loop of ΠX,Y and Rω

Π,X(Y ) = Y . We call a maximal element

5 We here consider slightly more general rules than those considered in [9], since the body of a
rule may contain double negation (not not).
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of S a bounding loop for Π w.r.t. X . The following two propositions describe prop-
erties of bounding loops, that are similar to maximal loops used for modular stability
checking.

Proposition 14. For any disjunctive program Π and any set X of atoms, bounding
loops for Π w.r.t. X are disjoint.

Proposition 15. For any disjunctive program Π and any set X of atoms, every non-
singleton elementarily unfounded set for Π w.r.t. X belongs to a bounding loop for Π
w.r.t. X .

Clearly, every bounding loop is contained in a maximal loop. However, as shown in the
example below, bounding loops provide tighter bounds than maximal loops for locating
elementarily unfounded sets. Propositions 14 and 15 tell us that the process of checking
the absence of elementarily unfounded sets can be split by bounding loops.

Proposition 16. For any disjunctive program Π and any model X of Π , X is stable
for Π iff X is supported by Π and X contains no bounding loop Y for Π w.r.t. X such
that Y has a nonempty unfounded subset for Π w.r.t X .

We note that computing all bounding loops for Π w.r.t. X that are contained in X can
be done in polynomial time using the following method:

1. Let Y := X .
2. Let Z := Rω

Π,X(Y ). (Note that Z = Rω
Π,X(Z) holds.)

3. If Z �= ∅, then consider the following cases:
(a) If Z is a loop of ΠX,Z , then mark Z as a bounding loop for Π w.r.t. X .
(b) Otherwise, proceed with step 2 for every maximal loop Y of ΠX,Z that is

contained in Z .

For example, consider program Π4,

p ← r s ; t ← p ; q ← s
q ← r s ← t t ; u ← q
r ← p, q t ← s, u u ; v ← ,

and its model X = {p, q, r, s, t, u}. It holds that (Π4)X,X = Π4, and X is a maximal
loop of Π4. Note that Rω

Π4,X(X) = {p, q, r, s, t} �= X , so that X is not a bounding
loop for Π4 w.r.t. X . Set Z = {p, q, r, s, t} is not a loop of (Π4)X,Z ; the maximal loops
of (Π4)X,Z contained in Z are Y1 = {p, q, r} and Y2 = {s, t}. Indeed, Y1 and Y2 are
the two bounding loops for Π4 w.r.t. X .

From Proposition 13 and the definition of a bounding loop, we derive the following.

Corollary 1. Let Π be a disjunctive program, X a set of atoms, and Y a bounding
loop for Π w.r.t. X that is contained in X . If ΠX,Y is HEF, then there is a nonempty
subset of Y that is unfounded by Π w.r.t. X .

Recall program Π4, its model X , and bounding loop Y1. Note that (Π4)X,Y1 is HEF. By
Corollary 1, the fact that (Π4)X,Y1 is HEF implies that X is not stable for Π4. In fact,
Y1 contains {p, r} and {q, r}, which are both elementarily unfounded by Π4 w.r.t. X .
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6 Computing Elementarily Unfounded Sets

It is inevitable that exponentially many loop formulas have to be considered in the worst
case [22]. Hence, SAT-based answer set solvers do not try to find all loop formulas at
once; loop formulas are added incrementally until a stable model is found (if there is
any). As shown in [6], it is sufficient to consider only loop formulas of elementarily
unfounded sets in this process. Thus, it is important to design an efficient algorithm for
finding elementarily unfounded sets.

For a general disjunctive program, it has been shown that deciding whether a given
set of atoms is elementary is coNP-complete [6]. While we do not expect a tractable
algorithm for computing elementarily unfounded sets of general disjunctive programs,
it is possible for HEF programs. Below we present a tractable algorithm for HEF pro-
grams, which is simpler and more efficient than the one described in [10].6

For any disjunctive program Π and any set Y of atoms, we define (Y, ECΠ(Y )) as
a directed graph where:

EC0
Π(Y ) = ∅

ECi+1
Π (Y ) = { (a, b) | there is a rule (2) in Π such that A ∩ Y = {a} and

all atoms b in B ∩ Y belong to the same
strongly connected component of (Y, ECi

Π(Y )) }
ECΠ(Y ) =

⋃
i≥0ECi

Π(Y ) .

This graph is equivalent to the “elementary subgraph” defined in [6], and it is closer to
the algorithm for computing an elementarily unfounded set described below.

We first note that Theorem 2 in [6] can be extended to HEF programs.

Proposition 17. For any HEF program Π and any nonempty set Y of atoms that occur
in Π , Y is elementary for Π iff (Y, ECΠ(Y )) is a strongly connected graph.

Given a disjunctive program Π , a set X of atoms occurring in Π , and a nonempty subset
Y of X such that ΠX,Y is HEF and Rω

Π,X(Y ) = Y , Figure 1 shows an algorithm for
computing an elementarily unfounded set by Π w.r.t. X that is contained in Y .7

Due to Step I, E-SET never considers any rule (2) of ΠX,Y such that |A ∩ Y | > 1.
This is similar to the definition of ECi+1

Π (Y ) above, where only rules (2) satisfying
A ∩ Y = {a} contribute to any edge. In a bottom-up manner, Step 1(a) of E-SET adds
edges to ECΠX,Y (Y ) for rules (2) such that |B ∩ Y | = 1. This ensures that all rules
contributing to edges depend on a single SCC of (Y, ECΠX,Y (Y )). In rules (2) of ΠX,Y

such that B contains multiple atoms from a recently computed SCC, Step 1(b) replaces
all atoms of the SCC by a single representative. If this leads to |B ∩ Y | = 1, rule (2)
contributes an edge in the next iteration of Step 1(a). The described process is iterated
until no further edges can be added. If a single SCC is obtained, i.e., if (Y, ECΠX,Y (Y ))
is strongly connected, then Y is elementarily unfounded by Π w.r.t. X . Otherwise,
in Step 2, we remove atoms from Y that belong to some SCC C that is not reached
(Y \C still contains an elementarily unfounded set for Π w.r.t. X). In the next iteration

6 That algorithm was designed for nondisjunctive programs, but also applies to HEF programs.
7 “SCC” is used as a shorthand for “Strongly Connected Component.”
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E-SET(ΠX,Y , Y )

I. ΠX,Y := ΠX,Y \ {(A ← B, F ) ∈ ΠX,Y | |A ∩ Y | > 1}
II. ECΠX,Y (Y ) := ∅

III. While (Y, ECΠX,Y (Y )) is not strongly connected Do

1. While there is a rule (A ← B, F ) in ΠX,Y such that |A ∩ Y | = 1 and |B ∩ Y | = 1 Do

(a) For each rule (A ← B, F ) in ΠX,Y such that |A ∩ Y | = 1 and |B ∩ Y | = 1 Do

i. ECΠX,Y (Y ) := ECΠX,Y (Y ) ∪ {(a, b) | A ∩ Y ={a}, B ∩ Y ={b}}
ii. ΠX,Y := ΠX,Y \ {(A ← B, F )} /* the rule needs not be considered further */

(b) For each (non-trivial) SCC (C, ECΠX,Y (Y ) ∩ (C×C)) of (Y, ECΠX,Y (Y )) Do

i. Select an atom b ∈ C

ii. ΠX,Y := (ΠX,Y \ {(A ← B, F ) ∈ ΠX,Y | |B ∩ C| > 1}) ∪
{(A ← b, B \ C, F ) | (A ← B, F ) ∈ ΠX,Y , |B ∩ C| > 1}

2. If (Y, ECΠX,Y (Y )) is not strongly connected Then

(a) Select some SCC (C, ECΠX,Y (Y ) ∩ (C ×C)) of (Y, ECΠX,Y (Y )) that is not reached
in (Y, ECΠX,Y (Y ))

(b) Y := Y \ C /* some Z ⊆ Y \ C is elementarily unfounded by Π w.r.t. X */

(c) ECΠX,Y (Y ) := ECΠX,Y (Y ) \ {(a, b) ∈ ECΠX,Y (Y ) | a ∈ C}

IV. Return Y

Fig. 1. E-SET: An algorithm to compute an elementarily unfounded set

of Step 1, this might allow to add more edges to ECΠX,Y (Y ) for rules (2) of ΠX,Y such
that B ∩ C �= ∅. The process is repeated until (Y, ECΠX,Y (Y )) becomes a strongly
connected graph. Note that the computed set Y can be a proper subset of the Y in the
invocation of E-SET(ΠX,Y , Y ).

When we apply E-SET to Π1 ((4) in Section 3) and Y = {p, q, r}, it adds edges (p, r)
and (q, r) to ECΠ1(Y ). As the resulting graph is not strongly connected, either q or p
is removed from Y . After this, adding edge (r, p) or (r, q), respectively, to ECΠ1(Y )
leads to a strongly connected graph. The result of E-SET is thus either {p, r} or {q, r},
which are the two elementarily unfounded sets for Π1 w.r.t. {p, q, r}.

The following proposition states the correctness of the E-SET algorithm.

Proposition 18. Let Π be a disjunctive program, X a set of atoms that occur in Π , and
Y a nonempty subset of X . If ΠX,Y is HEF and Rω

Π,X(Y ) = Y , then E-SET(ΠX,Y ,Y )
returns an elementarily unfounded set for Π w.r.t. X .

It is reasonable to take a bounding loop Y for Π w.r.t. X such that ΠX,Y is HEF as
input for E-SET since every elementarily unfounded set is a subset of some bound-
ing loop. For the correctness of E-SET, it is however sufficient that ΠX,Y is HEF and
Rω

Π,X(Y ) = Y .
Finally, we comment on the complexity of E-SET. Note that E-SET successi-

vely merges atoms from an input set Y into SCCs until finally obtaining a single SCC.
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Whenever a new SCC C is produced, all its atoms are replaced by a single element of C
in rules (2) such that |B∩C| > 1. This can be regarded as counting down body elements
until only one atom from Y is left, in which case a rule “fires.” This behavior is similar
to the Dowling-Gallier algorithm [23], also used to compute the minimal model of a
set of Horn clauses. Since the computation of SCCs and the Dowling-Gallier algorithm
have linear complexity, the same is concluded for E-SET. In contrast, the elementary
set computation algorithm in [10] has complexity O(n × log n).

7 Conclusion

The main contribution of this paper is identifying the class of HEF programs, a more
general class of disjunctive programs than HCF programs, that can be turned into
nondisjunctive programs in polynomial time and space by shifting head atoms into the
body. We showed that several properties of nondisjunctive programs and HCF programs
can be extended to HEF programs in a straightforward way. Since HCF programs have
played an important role in the computation of stable models for disjunctive programs,
we expect that HEF programs can be useful as well. As a first step, we have provided
an algorithm for finding an elementarily unfounded set for a HEF program, which has
a potential for improving the stable model computation for disjunctive programs.

As a future work, we plan to implement algorithm E-SET, presented in this paper, in
CMODELS for an empirical evaluation. It is an open question whether identifying HEF
programs is tractable, while it is known that identifying HCF programs can be done in
linear time.
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We are grateful to Selim Erdoğan, Tomi Janhunen, Dan Lessin, Vladimir Lifschitz,
Torsten Schaub, Jicheng Zhao, and the anonymous referees for their useful comments.
Joohyung Lee was partially supported by DTO AQUAINT.

References

1. Eiter, T., Gottlob, G.: Complexity results for disjunctive logic programming and application
to nonmonotonic logics. In: Proceedings of International Logic Programming Symposium.
(1993) 266–278

2. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals
of Mathematics and Artificial Intelligence 12 (1994) 53–87
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Abstract. The logic FO(ID) uses ideas from the field of logic program-
ming to extend first order logic with non-monotone inductive definitions.
This paper studies a deductive inference method for PC(ID), its proposi-
tional fragment. We introduce a formal proof system based on the sequent
calculus (Gentzen-style deductive system) for this logic. As PC(ID) is an
integration of classical propositional logic and propositional inductive
definitions, our deductive system integrates inference rules for proposi-
tional calculus and definitions. We prove the soundness and completeness
of this deductive system for a slightly restricted fragment of PC(ID). We
also give a counter-example to show that cut-elimination does not hold
in this proof system.

1 Introduction

Inductive definitions are common in mathematical practice. For instance, the
non-monotone inductive definition of the satisfaction relation |= can be found in
most textbooks on first order logic (FO). This prevalence of inductive definitions
indicates that these offer a natural and well-understood way of representing
knowledge. It is well-known that, in general, inductive definitions cannot be
expressed in first order logic. For instance, the transitive closure of a graph
is one of the simplest concepts typically defined by induction – the relation is
defined by two inductive rules: (a) if (x, y) is an edge of the graph, (x, y) belongs
to the transitive closure and (b) if there exists a z such that both (x, z) and (z, y)
belongs to the transitive closure, then (x, y) belongs to the transitive closure –
yet it cannot be defined in first order logic.

It turns out, however, that certain knowledge representation logics do allow
a natural and uniform formalization of the most common forms of inductive
definitions. Recently, the authors of [5,6] pointed out that semantical studies in
the area of logic programming might contribute to a better understanding of
such generalized forms of induction. In particular, it was argued that the well-
founded semantics of logic programming [10] extends monotone induction and
formalizes induction over well-founded sets and iterated induction. The language
of FO(ID) uses the well-founded semantics to extend classical first order logic
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with a new “inductive definition” primitive. In the resulting formalism, all kinds
of definitions regularly found in mathematical practice – e.g., monotone induc-
tive definitions, non-monotone inductive definitions over a well-ordered set, and
iterated inductive definitions – can be represented in a uniform way. Moreover,
this representation neatly coincides with the form such definitions would take in
a mathematical text. For instance, in FO(ID) the transitive closure of a graph
can be defined as:

{ ∀x, y T ransCl(x, y) ← Edge(x, y)
∀x, y T ransCl(x, z) ← (∃z T ransCl(x, y) ∧ TransCl(y, z))

}

However, FO(ID) is able to handle more than only mathematical concepts.
Indeed, inductive definitions are also crucial in declarative Knowledge Represen-
tation. Not only non-inductive definitions are frequent in common-sense reason-
ing as argued in [2], also inductive definitions are. For instance, in [7], it was
shown that situation calculus can be given a natural representation as an iter-
ated inductive definition. The resulting theory is able to correctly handle tricky
issues such as recursive ramifications, and is in fact, to the best of our knowl-
edge, the most general representation of this calculus to date. Also does FO(ID)
have strong links to several KR-logics. For instance, it can be classified in the
family of Description Logics, which it extends by allowing n-ary predicates and
non-monotone inductive definitions.

As for every formal logical system, the development of deductive inference
methods is an important research topic. For instance, it is well-known that de-
ductive reasoning is a distinguished feature of Description Logics. Description
Logics support inference on ontologies without using Closed World Assumption
and Unique Name Assumption [1]. As FO(ID) generalizes Description Logics,
one could investigate how these inference methods can be extended to FO(ID).
In this paper we take a first step towards the development of a proof system for
FO(ID). However, because FO(ID) is not even semi-decidable, it is clear that
a sound and complete proof system for FO(ID) cannot exist. As such, we will
have to investigate deductive systems for FO(ID) and the subclasses of FO(ID)
for which these systems are complete.

The goal of this paper is to present a proof system for PC(ID), as the initial
investigation to that for FO(ID). Our work is inspired by the one of Compton,
who used sequent calculus (Gentzen-style deductive system) methods in [3,4] to
investigate sound and complete deductive inference methods for existential least
fixpoint logic and stratified least fixpoint logic. Indeed, these two logics can be
viewed as fragments of FO(ID). We introduce a sequent calculus for PC(ID) and
prove its soundness and completeness for a restricted fragment of PC(ID). We
also prove that cut-elimination does not hold in our proof system by showing a
counter-example.

By developing a proof system for PC(ID), we want to enhance the understand-
ing of proof-theoretic foundations of FO(ID). The proof-theoretic perspective
also allows us to investigate the possibility of FO(ID) as an assertion language
for program verification, which can overcome the limitations of first order logic.
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Another application of this work could be the development of tools to check
the correctness of the outputs generated by PC(ID) model generators such as
MidL [14]. Given a PC(ID) theory T as input, MidL outputs a model for T
or concludes that T is unsatisfiable. In the former case, an independent model
checker can be used to check whether the output is indeed a model of T . How-
ever, when MidL concludes that T is unsatisfiable, it is less obvious how to check
the correctness of this answer. One solution is to transform a trace of MidL’s
computation into a proof of unsatisfiability in some PC(ID) proof system. An
independent proof checker can be used to check this formal proof. Model and
proof checkers can be a great help to detect bugs in model generators. An analo-
gous checker for the Boolean Satisfiability problem (SAT) solvers was described
in [18].

The structure of this paper is as follows. We introduce PC(ID) in Section 2.
We present a deductive system for PC(ID) in Section 3. The main results of
the soundness and completeness of the deductive system are investigated in
Section 4. We finish with conclusions, related and future work.

2 Preliminaries

In this section, we introduce PC(ID), the propositional fragment of FO(ID), and
explain its semantics.

A propositional vocabulary τ is a set of propositional atoms. A definition D
over τ is a finite set of rules of the form P ← ϕ, where P ∈ τ and ϕ is a
propositional formula over τ . An atom appearing in the head of a rule of D is
called a defined atom of D, any other atom is called an open atom of D. The
set of defined symbols is denoted by τd

D, and the set of open symbols by τo
D. A

PC(ID)-formula over τ is a boolean combination of propositional formulae and
definitions over τ . A literal is an atom P or its negation ¬P .

A three-valued τ -interpretation is a function I from τ to the set of truth values
{t, f ,u}. An interpretation is called two-valued if it maps no atom to u. When
τ ′ ⊆ τ , we denote the restriction of a τ -interpretation I to the symbols of τ ′ by
I|τ ′ . For a τ -interpretation I, a truth value v and an atom P ∈ τ , we denote by
I[P/v] the τ -interpretation that assigns v to P and coincides with I on all other
atoms. We extend this notation to sets of atoms.

The truth order ≤ on {t, f ,u} is induced by f ≤ u ≤ t; the precision order
≤p is induced by u ≤p f and u ≤p t. Both truth and precision order pointwise
extend to interpretations. Define f−1 = t, u−1 = u and t−1 = f .

A three-valued interpretation I on τ can be extended to all propositional
formulae over τ by induction on formulae:

– P I = I(P ) if P ∈ τ ;
– (ϕ ∧ ψ)I = min≤({ϕI , ψI});
– (ϕ ∨ ψ)I = max≤({ϕI , ψI});
– (¬ϕ)I = (ϕI)−1.

It can be shown that if I ≤p J , then ϕI ≤p ϕJ .
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Let D be a definition over τ and let IO be a three-valued τo
D-interpretation.

Consider any sequence of three-valued τ -interpretations (Iα)α≥0 extending IO

such that I0(P ) = u for every P ∈ τd
D, and for every natural number α, Iα+1

relates to Iα in one of the following ways:

– Iα+1 = Iα[P/t] where P is a defined atom such that P Iα

= u and for some
rule P ← ϕ ∈ D, ϕIα

= t.
– Iα+1 = Iα[U/f ], where U is a non-empty set of defined atoms, such that for

each P ∈ U , Iα(P ) = u and for each rule P ← ϕ ∈ D, ϕIα+1
= f .

We call such a sequence a well-founded induction. A well-founded induction is
terminal if it cannot be extended anymore. It can be shown that each terminal
well-founded induction is a sequence of increasing precision and its limit is the
well-founded model extending IO [8].

We say that an interpretation I satisfies a definition D and define DI = t
if I is the well-founded model extending I|τo

D
. Otherwise, we define DI = f .

By adding this as a new base case to the definition of the truth function of
formulae, we can extend the truth function inductively to all PC(ID)-formulae.
For an arbitrary PC(ID)-formula ϕ, we say that an interpretation I satisfies ϕ,
or I is a model of ϕ, denoted by I |= ϕ, if I is two-valued and ϕI = t.

Example 1. Consider the definition D1 =
{

P ← Q
}
. Then P ∈ τd

D1
, Q ∈ τo

D1
.

There are only two interpretations satisfying D1. One maps both P and Q to
t, the other one maps both P and Q to f . These are also the models of D2 ={

Q ← P
}
, where Q ∈ τd

D2
and P ∈ τo

D2
. Note that D3 =

{
P ← Q
Q ← P

}
has only

one model, namely the model mapping both P and Q to false.

Remark that we are only interested in two-valued interpretations. We call a
definition D total if for every interpretation IO of its open atoms, the well-
founded model of D extending IO is two-valued.

3 The Deductive System for PC(ID)

In this section, we present LPC(ID), a proof system for PC(ID) based on the
propositional part of Gentzen’s sequent calculus LK [11,16]. First, we introduce
some basic definitions and notations. Let capital Greek letters Γ, Δ, . . . denote
finite (possibly empty) sequences of PC(ID)-formulae separated by commas. By∧

Γ , respectively
∨

Γ , we denote the conjunction, respectively disjunction of all
formulae in Γ . By Γ \ Δ, we denote the sequence obtained by deleting from Γ
all occurrences of formulae that occur in Δ. A sequence Γ of literals is called
consistent if Γ does not contain any complementary literals P and ¬P .

A sequent is an expression of the form Γ → Δ, where Γ and Δ are sequences of
PC(ID)-formulae. Γ and Δ are respectively called the antecedent and succedent
of the sequent and each formula in Γ and Δ is called a sequent formula. We will
denote sequents by S, S1, . . .. A sequent Γ → Δ is valid, denoted by |= Γ → Δ,
if every two-valued model of

∧
Γ satisfies

∨
Δ. A counter-model for Γ → Δ is a
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two-valued interpretation I such that I |= ∧
Γ but I �|= ∨

Δ. The sequent Γ →
is equivalent to Γ → ⊥ and → Δ is equivalent to  → Δ, where ⊥,  are logical
constants for false and true, respectively.

An inference rule is an expression of the form
S1; . . . ; Sn

S
n ≥ 0, where

S1, . . . , Sn and S are sequents. The Si are called the premises of the inference
rule, S is called the consequence. Intuitively, an inference rule means that S can
be inferred, given that all S1, . . . , Sn have already been inferred.

The initial sequents, or axioms of LPC(ID) are the sequents of the form
Γ, A → A, Δ or ⊥ → Δ or Γ → , where A is any formula, Γ and Δ are
arbitrary sequences of formulae.

The inference rules for LPC(ID) consist of the structural rules, logical rules
and definition rules. The structural and logical rules deal with the propositional
calculus part of PC(ID) and are given as follows.

Structural rules

– Weakening rules: left:
Γ → Δ

A, Γ → Δ
; right:

Γ → Δ

Γ → Δ, A
.

– Contraction rules: left:
A, A, Γ → Δ

A, Γ → Δ
; right:

Γ → Δ, A, A

Γ → Δ, A
.

– Exchange rules: left:
Γ1, A, B, Γ2 → Δ

Γ1, B, A, Γ2 → Δ
; right:

Γ → Δ1, A, B, Δ2

Γ → Δ1, B, A, Δ2
.

– Cut rule:
Γ → Δ, A; A, Γ → Δ

Γ → Δ
.

Logical rules

– ¬ rules: left:
Γ → A, Δ

¬A, Γ → Δ
; right:

A, Γ → Δ

Γ → Δ, ¬A
.

– ∧ rules: left:
A, B, Γ → Δ

A ∧ B, Γ → Δ
; right:

Γ → Δ, A; Γ → Δ, B

Γ → Δ, A ∧ B

– ∨ rules: left:
A, Γ → Δ; B, Γ → Δ

A ∨ B, Γ → Δ
; right:

Γ → Δ, A, B

Γ → Δ, A ∨ B
.

By a left (right) generalized logical rule, we mean a left (right) logical rule where
the formula of interest in the consequence (i.e. ¬A, A ∧ B or A ∨ B) can occur in
an arbitrary position in Γ (Δ) instead of only left (right) from it. A generalized
logical rule can be obtained by combining the exchange and logical rules.

The definition rules of LPC(ID) consist of the right definition rule, the left
definition rule and the definition introduction rule. Without loss of generality, we
assume from now on that there is only one rule with head P in a definition D for
every P ∈ τd

D. We refer to this rule as the rule for P in D. Indeed, any set of rules
{P ← ϕ1, . . . , P ← ϕn} can be transformed into a single rule P ← ϕ1 ∨ . . .∨ϕn.

The right definition rule allows inferring the truth of a defined atom from a
definition D. It is closely related to the first rule for extending a well-founded
induction. Let D be a definition and P ← ϕ the rule for P in D. Then the right
definition rule for P is given as follows.
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Right definition rule for P
Γ, D → ϕ, Δ

Γ, D → P, Δ
.

We illustrate this inference rule with an example.

Example 2. Consider the definition D =
{

P ← P ∧ ¬Q
Q ← ¬P

}
. The right definition

rule for P is
Γ, D → P ∧ ¬Q, Δ

Γ, D → P, Δ
.

The next two inference rules are somewhat more involved. To state them, we
first introduce some notations. Given an arbitrary set A of atoms, let PA be
a new atom for every atom P ∈ A. The vocabulary τ augmented with these
symbols is denoted by τA. Given a propositional formula ϕ, ϕA denotes the
formula obtained by replacing all occurrences of every atom P ∈ A in ϕ by
PA. We call ϕA the renaming of ϕ with respect to A. For a set of propositional
formulae F , FA denotes {ϕA|ϕ ∈ F}. For a definition D, we denote by DA the
definition obtained by replacing every occurrence of every atom P ∈ A by PA.

The left definition rule allows inferring the falsity of a defined atom from a
definition D and is therefore related to the second rule for extending a well-
founded induction. Let D be a definition and U ⊆ τd

D. Denote by NU the set
{¬PU | P ∈ U} and let Γ and Δ be sequences of PC(ID)-formulae such that
none of the renamed atoms PU occurs in them. The left definition rule for every
Pi ∈ U is given as follows.

Left definition rule for Pi ∈ U
Γ, NU → ¬(ϕU

1 ), Δ; . . . ; Γ, NU → ¬(ϕU
n ), Δ

Γ, D, Pi → Δ
,

where P1, . . . , Pn are all atoms in U and Pj ← ϕj is the rule for Pj in D for
every j ∈ [1, n].

We illustrate this inference rule with an example.

Example 3. Given a definition D =
{

P ← P ∧ ¬Q
Q ← Q

}
,

– U = {P}, the left definition rule for P ∈ U is

Γ, ¬PU → ¬(PU ∧ ¬Q), Δ
Γ, D, P → Δ

.

– U = {P, Q}, the left definition rule for P ∈ U is

Γ, ¬PU , ¬QU → ¬(PU ∧ ¬QU ), Δ; Γ, ¬PU , ¬QU → ¬QU , Δ

Γ, D, P → Δ
.

The definition introduction rule allows inferring the truth of a total definition
from PC(ID)-formulae. Let D be a total definition and let R = τd

D. Let Γ and Δ
be sequences of PC(ID)-formulae such that for every P ∈ R, PR does not occur
in Γ or Δ. The definition introduction rule for D is given as follows.
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Definition introduction rule for D

Γ, DR → PR
1 ≡ P1, Δ; . . . ; Γ, DR → PR

n ≡ Pn, Δ

Γ → D, Δ
,

where P1, . . . , Pn are all defined atoms of D.

We illustrate this inference rule with an example.

Example 4. Given a definition D =
{

P ← O
Q ← Q ∧ ¬P

}
, the definition introduc-

tion rule for D is

Γ, DR → PR ≡ P, Δ; Γ, DR → QR ≡ Q, Δ

Γ → D, Δ

where DR =
{

PR ← O
QR ← QR ∧ ¬PR

}
.

We denote by LPC(ID)∗ the proof system containing all the inference rules of
LPC(ID) except the definition introduction rule. We now come to the notion
of an LPC(ID)-proof for a sequent, which is applicable for LPC(ID)∗ as well.

Definition 1. A proof in LPC(ID) or LPC(ID)-proof for a sequent S, is a
tree T of sequents with root S. Moreover, each leaf of T must be an axiom and for
each interior node S′ there exists an inference rule such that S′ is the consequence
of that inference rule while the children of S′ are precisely the premises of that
inference rule. T is called a proof tree for S. A sequent S is called provable in
LPC(ID), or LPC(ID)-provable, if there is an LPC(ID)-proof for it.

Example 5. Given a definition D =
{

P ← O
}

and R = τd
D, the following is an

LPC(ID)-proof for O, P → D.

O → Oleft weakening
O, DR → O

right definition
O, DR → PR

left weakening
O, P, DR → PR

P → P left weakening
O, P, DR → P

right ∧
O, P, DR → P ∧ PR

right weakening
O, P, DR → P ∧ PR, ¬P ∧ ¬PR

right ∨
O, P, DR → PR ≡ P

definition introduction
O, P → D

4 Main Results

In this section, we outline the proof of the soundness and completeness of
LPC(ID). We also show that cut-elimination is not possible for this deduc-
tive system.
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4.1 Soundness

To prove the soundness of LPC(ID), it is sufficient to prove that all axioms of
LPC(ID) are valid and that every inference rule of LPC(ID) is sound, i.e. if
all premises of an inference rule are valid then the consequence of that rule is
valid. It is trivial to verify that the axioms are valid and that the structural and
logical rules are sound. Hence, only the soundness of the right definition rule,
the left definition rule and the definition introduction rule must be proven.

Lemma 1 (Soundness of the right definition rule). Let D be a definition,
containing the rule P ← ϕ. If |= Γ, D → ϕ, Δ, then |= Γ, D → P, Δ.

Proof. Assume |= Γ, D → ϕ, Δ but �|= Γ, D → P, Δ. Then there exists a counter-
model I for Γ, D → P, Δ. Therefore, I |= ϕ. Let (Iα)α≤ξ be a terminal well-
founded induction for D with limit Iξ = I. This sequence is strictly increasing
in precision, hence there is no α ≤ ξ such that ϕIα

= f . As such, P I �= f and
because I is two-valued, we can conclude P I = t, which is a contradiction to the
assumption that I is a counter-model of Γ, D → P, Δ.

Lemma 2 (Soundness of the left definition rule). Let D be a definition
and U = {P1, . . . , Pn} be a subset of τd

D. Denote for every i ∈ [1, n] the body
of the rule for Pi by ϕi. If |= Γ, NU → ¬(ϕU

i ), Δ for every i ∈ [1, n], then
|= Γ, D, Pi → Δ for all i ∈ [1, n].

Proof. Assume |= Γ, NU → ¬(ϕU
i ), Δ for every i ∈ [1, n], but �|= Γ, D, Pj → Δ

for some j ∈ [1, n]. Then there exists a counter-model I for Γ, D, Pj → Δ. Let
(Iα)α≤ξ be a terminal well-founded induction for D with limit Iξ = I. There
exists a smallest α ≤ ξ such that for some i ∈ [1, n], P Iα

i = u and P Iα+1

i = t.
Consequently, for each k ∈ [1, n], P Iα

k = f or P Iα

k = u. Denote by I ′α the
interpretation that assigns P Iα

k to PU
k for every k ∈ [1, n] and coincides with

Iα on all other atoms. So, for any formula ϕ not containing renamed atoms,
ϕIα

= (ϕU )I′α
. Denote by I ′ the interpretation that assigns f to every PU

k ,
k ∈ [1, n] and coincides with I on all other atoms. Remark that I ′ is more
precise than I ′α. Also, I ′ |= NU and because neither Γ nor Δ contain any of
the PU

k , I ′ |= ∧
Γ and I ′ �|= ∨

Δ. Therefore, I ′ |= ¬(ϕU
i ) and because I ′ is more

precise than I ′α, (ϕU
i )I′α �= t. It follows that ϕIα

i �= t, which is a contradiction
to P Iα+1

i = t. Therefore |= Γ, D, Pj → Δ for all j ∈ [1, n].

Having the soundness of the left definition rule, we can explain the introduction
of renaming formulae in the left definition rule. Our original idea for the left
definition rule was of the form

Γ, ¬P1, . . . , ¬Pn → ¬ϕ1, Δ; . . . ; Γ, ¬P1, . . . , ¬Pn → ϕn, Δ

Γ, D, Pi → Δ
(1)

where {P1, . . . , Pn} ⊆ τd
D, Pi is an arbitrary atom in {P1, . . . , Pn} and for every

j ∈ [1, n], Pj ← ϕj is the rule for Pj in D.
However, this inference rule is not sound. For an arbitrary definition D and

any defined atom P of D, D → ¬P can be inferred using this rule. We illustrate
this with the next example.
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Example 6. Consider the definition D =
{

P ← }
and Γ = P . Since P, ¬P →

¬, we can prove D → ¬P by using the inference rule (1), the right ¬ rule and
the right contraction rule. However, for the same definition D and an empty
sequence Γ , it is obvious that D → P by using the left definition rule, which
shows that (1) is not a sound inference rule.

From the viewpoint of semantics, since the left definition rule corresponds to
the second case of the well-founded induction, we have to adopt the approach of
renaming to represent that the defined atoms of U are unknown in Iα and false
in Iα+1.

Lemma 3 (Soundness of the definition introduction rule). Let D be a
total definition and R = τd

D = {P1, . . . , Pn}. If |= Γ, DR → PR
i ≡ Pi, Δ for every

i ∈ [1, n], then |= Γ → D, Δ.

Proof. Assume |= Γ, DR → PR
i ≡ Pi, Δ for every i ∈ [1, n], but �|= Γ → D, Δ.

Then there exists a τ -interpretation I such that I |= ∧
Γ , but I �|= D, I �|= ∨

Δ.
Denote by I ′ the well-founded model of D extending I|τo

D
. Because I �|= D,

there exists a defined atom Pj of D, such that P I
j �= P I′

j . Let J be the τ ∪ τR-
interpretation such that J is the well-founded model of DR extending I. Because
Γ nor Δ contains an occurrence of an atom PR

i , J |= ∧
Γ and J �|= ∨

Δ.
Therefore, J |= PR

i ≡ Pi for every i ∈ [1, n]. Also, because DR is obtained by
renaming all defined atoms and none of the open atoms, it holds that P I′

i =
(PR

i )J for every i ∈ [1, n]. Hence P I
j = (PR

j )J = P I′

j , which is a contradition.
Therefore, |= Γ → D, Δ.

Note that the definition introduction rule is not sound if D is not total. We
illustrate it with an example.

Example 7. Consider the definition D =
{

P ← ¬P
}
, R = {P} and Γ is the

empty sequence. It is obvious that DR is non-total. Thus, |= DR → PR ≡ P but
�|=→ D, which shows that the definition introduction rule is not sound when D
is non-total.

By the fact that all inference rules in LPC(ID) except the definition introduc-
tion rule are sound with respect to non-total definitions and a straightforward
induction, the soundness of LPC(ID)∗ and LPC(ID) can now be proven.

Theorem 1 (Soundness). If a sequent Γ → Δ is provable in LPC(ID)∗, then
|= Γ → Δ. If a sequent Γ → Δ is provable in LPC(ID) and all definitions in
Γ and Δ are total, then |= Γ → Δ.

4.2 Completeness

In this subsection, we will prove that the deductive system LPC(ID) is com-
plete, given that all definitions are total. The main difficulty in the completeness
proof for LPC(ID) is to handle definitions in the sequents (We already know
that the propositional calculus part of LPC(ID) is complete. See e.g. [16]).

The lemmas that follow show the completeness of the sequents of the form
Γ, D1, . . . , Dn → Δ, where Γ and Δ are consistent sequences of literals.
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Lemma 4. Let D be a total definition and let Γ be a sequence of open literals
of D, such that for every atom Q ∈ τo

D either Q ∈ Γ or ¬Q ∈ Γ . Let L be a
defined literal of D. If |= Γ, D → L, then Γ, D → L is provable in LPC(ID).

Proof. Let IO be the unique τo
D-interpretation such that IO |= ∧

Γ and let
(Iα)α≤ξ be a well-founded induction for D extending IO. Denote by Δα the
sequence of all defined literals L such that LIα

= t. We prove that Γ, D, Δα →
L is provable for all L ∈ Δα+1 \ Δα. We distinguish between the case where
Δα+1 \ Δα contains one positive literal and the case where it contains a set of
negative literals.

– Assume Δα+1 \ Δα consists of one defined atom P and denote by ϕ the
body of the rule for P in D. Because (Iα)α≤ξ is a well-founded induction,
|= Γ, Δα → ϕ. Therefore, by the completeness of the propositional part of
LPC(ID), the sequent Γ, Δα → ϕ is provable. Hence, by left weakening and
the right definition rule, Γ, D, Δα → P is provable.

– For the other case, assume Δα+1 \ Δα is a sequence of negative literals and
denote it by N = {¬P1, . . . , ¬Pn}. Denote {P1, . . . , Pn} by U and denote the
rule of each Pi in D by Pi ← ϕi. Because (Iα)α≤ξ is a well-founded induction,
|= Γ, Δα, N → ¬ϕi for every i ∈ [1, n]. Hence also |= Γ, Δα, NU → ¬(ϕU

i ).
By the completeness of the propositional part of LPC(ID), left weakening,
the left definition rule and right ¬ rule, the sequent Γ, Δα, D → ¬Pi is
provable for every i ∈ [1, n].

Since D is total, it is obvious that the set of literals L for which |= Γ, D → L is
exactly the set of all literals inferred during the well-founded induction (Iα)α≤ξ.
Thus, by using the cut rule, it is easy to show by induction on α that if |= Γ, D →
L for a defined literal L of D, the sequent Γ, D → L is provable in LPC(ID).

Lemma 5. Let D be a total definition and Γ an arbitrary consistent sequence
of literals. If L is a defined literal of D such that |= Γ, D → L, then Γ, D → L
is provable in LPC(ID).

Proof. For every extension Γ ′ of Γ such that for every open atom P of D,
either P ∈ Γ ′ or ¬P ∈ Γ ′, |= Γ ′, D → L. Consider Γ ′′ as the sequence of open
literals of D in Γ ′. If |= Γ ′′, D → L, then by the previous lemma, Γ ′′, D → L
is provable in LPC(ID), and by the left weakening rule, so is Γ ′, D → L. If
�|= Γ ′′, D → L, then by totality of D, |= Γ ′′, D → ¬L and hence, |= Γ ′, D → ¬L.
This means that Γ ′ ∧ D is unsatisfiable, which implies that for some defined
literal L′ in Γ ′, |= Γ ′′, D → ¬L′. By the previous lemma and the left weakening
rule, Γ ′, D → ¬L′ is provable in LPC(ID). Given that Γ ′, D → L′ is an axiom,
we can use the left ¬ rule, the cut rule and the right weakening rule to show
that Γ ′, D → L is provable in LPC(ID). By the right ¬ rule and the cut rule,
an LPC(ID)-proof for Γ, D → L can be constructed from the LPC(ID)-proofs
of all Γ ′, D → L.

Lemma 5 can be extended to the case where more than one definition is allowed in
the antecedent of a sequent and more than one literal is allowed in the succedent.
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Lemma 6. Let D1, . . . , Dn be total definitions and let Γ, Δ be consistent se-
quences of literals. If |= Γ, D1, . . . , Dn → Δ, then Γ, D1, . . . , Dn → Δ is prov-
able.

For lack of space, we omit the proof. It relies on the fact that by using the
structural rules and the ¬ rules, Γ, D1, . . . , Dn → Δ can be proven from all valid
sequents Γi, Di → Li where Γi is a sequence of open literals of Di and Li is a
defined literal of Di.

The remainder of the completeness proof follows the approach in [17]. We first
introduce some terminology.

Definition 2. A reduction tree for a sequent S is a tree TS of sequents with
root S such that the following two conditions hold.

1. For each non-leaf node S′ of TS there exists either a generalized logical rule or
a definition introduction rule such that S′ is the consequence of that inference
rule while the children of S′ are precisely the premises of that inference rule.

2. TS is maximal, i.e. it is not the subtree of any tree that satisfies (1).

Observe that the structural rules, the right definition rule and the left definition
rule cannot be used in constructing a reduction tree. Remark that each leaf node
of a reduction tree is either an axiom or a sequent of the form Γ, D1, . . . , Dn → Δ
where Γ and Δ are sequences of atoms and D1, . . . , Dn are definitions.

It can easily be verified that the generalized logical rules and the definition
introduction rule preserve counter-models, i.e., a counter-model for one of the
premises of such an inference rule is also a counter-model to the consequence of
that inference rule. Given this observation, the following property of reduction
trees can also easily be verified.

Proposition 1. For each sequent S = Γ → Δ, (a) there exists a reduction tree
TS, (b) if all leaf nodes of a reduction tree TS are provable in LPC(ID), then
the root sequent is provable in LPC(ID), and (c) a counter-model for a leaf
node of TS is a counter-model for the root.

Theorem 2 (Completeness). If |= Γ → Δ and all definitions occurring in Γ
and Δ are total, then Γ → Δ is provable in LPC(ID).

Proof. Let Γ → Δ be a valid sequent and let TS be a reduction tree with root
Γ → Δ. Then by (c) of proposition 1, all leaves of TS are valid. Since all leaves of
TS are of the form Π, D1, . . . , Dn → Σ, where Π and Σ are sequences of atoms
and D1, . . . , Dn are definitions, it follows from lemma 6 that they are provable.
Hence, by (b) of proposition 1, Γ → Δ is provable.

4.3 Cut-Elimination

An important property of the propositional sequent calculus and many other for-
mal proof systems is the cut-elimination, i.e. removing the cut rule from the sys-
tem does not lead to incompleteness. However, for LPC(ID), the cut-elimination
does not hold. The following is a counter-example.
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Example 8. Let D1, respectively D2 be the definitions {P ← O1}, respectively
{P ← O2}. Then D1, D2, O1, ¬O2 → ⊥ can be proven in LPC(ID) as follows.

D1, O1 → O1right definition
D1, O1 → P

weakening
D1, D2, O1, ¬O2 → P

D2, ¬O2, ¬PU → ¬O2
left definition

D2, ¬O2, P → ⊥
weakening

D1, D2, O1, ¬O2, P → ⊥
cut

D1, D2, O1, ¬O2 → ⊥
It can be proven that the use of the cut rule can not be avoided for this example.
The idea of the proof is as follows. In a proof tree for D1, D2, O1, ¬O2 → ⊥, both
D1 and D2 must be used in an application of the right definition or left definition
rule. For if not, all occurrences of them could be removed from the proof tree,
yielding a correct proof tree with a non-valid root. Therefore, at some point in
the proof tree, P must appear as an atomic formula in the antecedent or the
succedent of a sequent. But in the root, P does only occur inside D1 and D2.
So the other occurrences of P must have been removed by some rule. There are
only four rules that remove formulae: the left, right and definition introduction
rules, and the cut rule. But the left and right definition rules using D1 or D2
will introduce new occurrences of P , and the definition introduction rule will
introduce a definition in the succedent, which can only be removed by the cut
rule. Hence the cut rule is needed to remove the occurrences of P .

5 Conclusions, Related and Further Work

We presented a deductive system for the propositional fragment of FO(ID) which
extends the sequent calculus for propositional logic. The main technical results
are the soundness and completeness theorems of LPC(ID). We also showed a
counter-example to cut-elimination for PC(ID).

Related work is provided by Hagiya and Sakurai in [12]. They proposed to
interpret a (stratified) logic program as iterated inductive definitions of Martin-
Löf [15] and developed a proof theory which is sound with respect to the perfect
model, and hence, the well-founded semantics of logic programming. A formal
proof system based on tableau methods for analyzing computation for Answer
Set Programming (ASP) was given as well by Gebser and Schaub [9]. As shown
in [13], ASP is closely related to FO(ID). Their approach furnishes declarative
and fine-grained instruments for characterizing operations as well as strategies
of ASP-solvers and provides a uniform proof-theoretic framework for analyzing
and comparing different algorithms, which is the first of its kind for ASP.

The first topic for future work, as mentioned in Section 1, is the development
and implementation of a proof checker for MidL. This would require more study
on resolution-based inference rules since MidL is basically an adaption of the
DPLL-algorithm for SAT.

On the theoretical level, we plan to extend the deductive system for PC(ID) to
FO(ID). As mentioned in the Introduction, a sound and complete proof system
for FO(ID) does not exist. Therefore, we hope to build useful proof systems for
FO(ID) that can solve a broad class of problems and investigate subclasses of
FO(ID) for which they are complete.
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Abstract. Practically all programming languages used in software engineering
allow to split a program into several modules. For fully declarative and nonmono-
tonic logic programming languages, however, the modular structure of programs
is hard to realise, since the output of an entire program cannot in general be
composed from the output of its component programs in a direct manner. In this
paper, we consider these aspects for the stable-model semantics of disjunctive
logic programs (DLPs). We define the notion of a DLP-function, where a well-
defined input/output interface is provided, and establish a novel module theorem
enabling a suitable compositional semantics for modules. The module theorem
extends the well-known splitting-set theorem and allows also a generalisation of
a shifting technique for splitting shared disjunctive rules among components.

1 Introduction

Practically all programming languages used in software engineering allow the user to
split a program into several modules, which are composed by well-defined semantics
over the modules’ input/output interface. This not only helps towards a good program-
ming style, but admits also to delegate coding tasks among several programmers, which
then realise the specified input/output behaviour in terms of concrete modules.

The paradigm of answer-set programming (ASP), and in particular the case of dis-
junctive logic programs (DLPs) under the stable-model semantics [1], which we deal
with herein, requires a fully declarative nonmonotonic semantics which is defined only
over complete programs and therefore prima facie not directly applicable to modu-
lar programming. Due to this obstacle, the concept of a module has not raised much
attention yet in nonmonotonic logic programming, and, except for a few dedicated pa-
pers [2,3,4], modules mostly appeared as a by-product in investigations of formal prop-
erties like stratification, splitting, or, more recently, in work on equivalence between
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programs [5,6,7,8]. The approach by Oikarinen and Janhunen [8] accommodates the
module architecture discussed by Gaifman and Shapiro [2] for non-disjunctive pro-
grams and establishes a module theorem for stable models. This result indicates that the
compositionality of stable models can be achieved in practice if positively interdepen-
dent atoms are not scattered among several modules.

In this paper, we deal with the formal underpinnings for modular programming in
the context of disjunctive logic programs under the stable-model semantics. To begin
with, we introduce the notion of a DLP-function which can roughly be described as a
disjunctive logic program together with a well-defined input/output interface providing
input atoms, output atoms, and hidden (local) atoms. In that, we follow Gelfond [9] who
introduced lp-functions for specifying (partial) definitions of new relations in terms of
old, known ones. This functional view of programs is also apparent if the latter are
understood as queries over an input (i.e., a database). Indeed, several authors (like, e.g.,
Eiter, Gottlob, and Mannila [6]) introduce logic programs as an extension of Datalog,
which poses no major problems with respect to stable semantics as long as a single
program with a specified input/output behaviour is considered.

The latter point leads us to the second main issue addressed in our framework, viz.
the question of a (semantically meaningful) method for the composition of modules.
If the underlying semantics is inherently nonmonotonic, as is the case for stable se-
mantics, this generates several problems, which were first studied in detail by Gaifman
and Shapiro [2] for logic programs (without default negation) under minimal Herbrand
models. As they observed, it is necessary to put certain syntactical restrictions on the
programs to be composed, in order to make the semantics act accordingly. We shall
follow their approach closely but extend it to programs permitting both default negation
and disjunction. Notably, the problem of compositional semantics also arises in relation
to the so-called splitting-set theorem [5,6,7], which aims at computing the stable mod-
els of a composed program by a suitable combination of the models of two programs
which result from the split of the entire program.

After having the basic syntactical issues of DLP-functions laid out, we then define
their model theory in terms of a generalisation of the stable-model semantics, where
particular care is taken regarding the input of a DLP-function. The adequacy of our
endeavour is witnessed by the main result of our paper, viz. the module theorem, pro-
viding the foundation for a fully compositional semantics: It shows how stable models
of entire programs can be composed by joining together compatible stable models of
their respective component programs. We round off our results with some applications
of the module theorem. First, the module theorem readily extends the splitting-set the-
orem [5,6]. Second, it leads to a general shifting principle that can be used to simplify
programs, i.e., to split shared disjunctive rules among components. Third, it gives rise
to a notion of modular equivalence for DLP-functions that turns out to be a proper
congruence relation supporting program substitutions.

2 The Class D of DLP-Functions

A disjunctive rule is an expression of the form

a1 ∨ · · · ∨ an ← b1, . . . , bm, ∼c1, . . . , ∼ck, (1)
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where n, m, k ≥ 0, and a1, . . . , an, b1, . . . , bm, and c1, . . . , ck are propositional atoms.
Since the order of atoms is considered insignificant, we write A ← B, ∼C as a short-
hand for rules of form (1), where A = {a1, . . . , an}, B = {b1, . . . , bm}, and C =
{c1, . . . , ck}. The basic intuition behind (1) is that if each atom in the positive body
B can be inferred and none of the atoms in the negative body C, then some atom in
the head A can be inferred. When both B and C are empty, we have a disjunctive fact,
written A ←. If A is empty, then we have a constraint, written ⊥ ← B, ∼C.

A disjunctive logic program (DLP) is conventionally formed as a set of disjunctive
rules. Additionally, we want a distinguished input and output interface for each DLP.
To this end, we extend a definition originally proposed by Gaifman and Shapiro [2] to
the case of disjunctive programs.1 Given a set R of disjunctive rules, we write At(R)
for the signature of R, i.e., the set of (ground) atoms appearing in the rules of R. The
set Head(R) consists of those elements of At(R) having head occurrences in R. This
is exactly the set of atoms which are defined by the rules of R.

Definition 1. A DLP-function, Π , is a quadruple 〈R, I, O, H〉, where I , O, and H are
pairwise distinct sets of atoms, and R is a set of disjunctive rules such that

At(R) ⊆ I ∪ O ∪ H and Head(R) ⊆ O ∪ H .

The elements of I are called input atoms, the elements of O output atoms, and the
elements of H hidden atoms.

Given a DLP-function Π = 〈R, I, O, H〉, we write, with a slight abuse of notation,
A ← B, ∼C ∈ Π to denote that the rule A ← B, ∼C is contained in the set R. The
atoms in I ∪O are considered to be visible and hence accessible to other DLP-functions
conjoined with Π ; either to produce input for Π or to utilise the output of Π . On the
other hand, the hidden atoms in H are used to formalise some auxiliary concepts of Π
which may not make sense in the context of other DLP-functions but may save space
substantially (see, e.g., Example 4.5 of Janhunen and Oikarinen [11]). The condition
Head(R) ⊆ O ∪ H ensures that a DLP-function may not interfere with its own input
by defining input atoms of I in terms of its rules. In spite of this, the rules of Π may
be conditioned by input atoms appearing in the bodies of rules. Following previous
ideas [9,8], we define the signature At(Π) of a DLP-function Π = 〈R, I, O, H〉 as
I ∪ O ∪ H .2 For notational convenience, we distinguish the visible and hidden parts of
At(Π) by setting Atv(Π) = I∪O and Ath(Π) = H = At(Π)\Atv(Π), respectively.
Additionally, Ati(Π) and Ato(Π) provide us a way of referring to the sets I and O of
input and output atoms of Π , respectively. Lastly, for any set S ⊆ At(Π) of atoms, we
denote the projections of S on Ati(Π), Ato(Π), Atv(Π), and Ath(Π) by Si, So, Sv,
and Sh, respectively.

In formal terms, a DLP-function Π = 〈R, I, O, H〉 provides a mapping from subsets
of I to a set of subsets of O ∪ H in analogy to the method by Gelfond [9]. However,
the exact definition of this mapping is deferred until Section 3 where the semantics of
DLP-functions will be anchored. In the sequel, the (syntactic) class of DLP-functions is

1 There are already similar approaches within the area of ASP [9,10,11,8].
2 Consequently, the length of Π in symbols, denoted by ‖Π‖, gives an upper bound for |At(Π)|

which is important when one considers the computational cost of translating programs [10].
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denoted by D. It is assumed for the sake of simplicity that D spans over a fixed (at most
denumerable) signature At(D)3 so that At(Π) ⊆ At(D) holds for each DLP-function
Π ∈ D.

The composition of DLP-functions takes place as set out in Definition 2 below. We
say that a DLP-function Π1 respects the hidden atoms of another DLP-function Π2 iff
At(Π1) ∩ Ath(Π2) = ∅, i.e., Π1 does not use any atoms from Ath(Π2).

Definition 2 (Gaifman and Shapiro [2]). The composition of two DLP-functions Π1
and Π2 that respect the hidden atoms of each other is the DLP-function

Π1 ⊕ Π2 = 〈R1 ∪ R2, (I1 \ O2) ∪ (I2 \ O1), O1 ∪ O2, H1 ∪ H2〉. (2)

As discussed by Gaifman and Shapiro [2], program composition can be generalised
for pairs of programs not respecting each other’s hidden atoms. The treatment of atom

Table 1. Division of atoms
under ⊕ into input (i), out-
put (o), or hidden (h) atoms

⊕ I2

i

O2

o

H2

h
I1 i i o -
O1 o o o -
H1 h - - -

types under Definition 2 is summarised in Table 1 where
the intersections of the sets of the input, output, and hid-
den atoms of Π1 and Π2 are represented by the cells in the
respective intersections of rows and columns (e.g., an atom
a ∈ O1 ∩ I2 becomes an output atom in Π1 ⊕ Π2). Given
that hidden atoms are mutually respected, ten cases arise
in all. The consequences of Definition 2 should be intuitive
to readers acquainted with the principles of object-oriented
programming: (i) Although Π1 and Π2 must not share hid-
den atoms, they may share input atoms, i.e., I1 ∩ I2 �= ∅
is allowed. For now, the same can be stated about out-
put atoms but this will be excluded by further conditions as done by Gaifman and
Shapiro [2], where O1 ∩O2 = ∅ is assumed directly. (ii) An input atom of Π1 becomes
an output atom in Π1 ⊕ Π2 if it appears as an output atom in Π2, i.e., Π2 provides the
input for Π1 in this setting. The input atoms of Π2 are treated in a symmetric fashion.
(iii) The hidden atoms of Π1 and Π2 retain their status in Π1 ⊕ Π2.

Given DLP-functions Π1, Π2, and Π3 that pairwise respect the hidden atoms of each
other, it holds that Π1 ⊕ Π2 ∈ D (closure), Π1 ⊕ ∅ = ∅ ⊕ Π1 = Π1 for the empty
DLP-function ∅ = 〈∅, ∅, ∅, ∅〉 (identity), Π1 ⊕ Π2 = Π2 ⊕ Π1 (commutativity), and
Π1 ⊕ (Π2 ⊕ Π3) = (Π1 ⊕ Π2) ⊕ Π3 (associativity). However, the notion of modular
equivalence [8] is based on a more restrictive operator for program composition. The
basic idea is to forbid positive dependencies between programs. Technically speaking,
we define the positive dependency graph DG+(Π) = 〈At(Π), ≤1〉 for each DLP-
function Π in the standard way [12] using only positive dependencies: an atom a ∈ A
in the head of a rule A ← B, ∼C ∈ Π depends positively on each b ∈ B and each pair
〈b, a〉 belongs to the edge relation ≤1 in DG+(Π), i.e., b ≤1 a holds. The reflexive and
transitive closure of ≤1 gives rise to the dependency relation ≤ over At(Π).

A strongly connected component (SCC) S of DG+(Π) is a maximal set S ⊆ At(Π)
such that b ≤ a holds for every a, b ∈ S. Given that Π1 ⊕ Π2 is defined, we say that
Π1 and Π2 are mutually dependent iff DG+(Π1 ⊕ Π2) has a SCC S shared by Π1 and
Π2 such that S ∩ Ato(Π1) �= ∅ and S ∩ Ato(Π2) �= ∅ [8].

3 In practice, this set could be the set of all identifiers (names for propositions or similar objects).
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Definition 3. The join, Π1 � Π2, of two DLP-functions Π1 and Π2 is Π1 ⊕ Π2, pro-
viding Π1 ⊕ Π2 is defined and Π1 and Π2 are not mutually dependent.

It is worth pointing out that Ato(Π1)∩Ato(Π2) = ∅ follows in analogy to Gaifman and
Shapiro [2] when Π1 �Π2 is defined. At first glance, this may appear rather restrictive,
e.g., the head of a disjunctive rule A ← B, ∼C cannot be shared by modules: either
A ⊆ Ato(Π1) or A ⊆ Ato(Π2) must hold but not both. The general shifting technique
to be presented in Section 5 allows us to circumvent this problem by viewing shared
rules as syntactic sugar. Moreover, since Π1 and Π2 are not mutually dependent in
Π1 � Π2, we have (i) S ⊆ Ati(Π1 � Π2), (ii) S ⊆ Ato(Π1) ∪ Ath(Π1), or (iii) S ⊆
Ato(Π2) ∪ Ath(Π2), for each SCC S of DG+(Π1 ⊕ Π2). The first covers joint input
atoms a ∈ Ati(Π1 � Π2) which do not depend on other atoms by definition and which
end up in singleton SCCs {a}.

The dependency relation ≤ lifts to the level of SCCs as follows: S1 ≤ S2 iff there
are a1 ∈ S1 and a2 ∈ S2 such that a1 ≤ a2. In the sequel, a total order S1 < · · · < Sk

of the strongly connected components in DG+(Π1 ⊕ Π2) is also employed. Such an
order < is guaranteed to exist but it is not necessarily unique. E.g., the relative order of
S2 and S3 can be freely chosen given that S1 ≤ S2 ≤ S4 and S1 ≤ S3 ≤ S4 hold for
four components under ≤. Nevertheless < is consistent with ≤, i.e., Si < Sj implies
Sj �≤ Si but either Si ≤ Sj or Si �≤ Sj may hold depending on ≤. Given that Π1 � Π2
is defined, we may project S1 < · · · < Sk for Π1 and Π2 as follows. In case of Π1,
for instance, S1,i = Si, if Si ⊆ Ato(Π1) ∪ Ath(Π1) or Si ⊆ Ati(Π1 � Π2), and
S1,i = Si ∩ Ati(Π1), if Si ⊆ Ato(Π2) ∪ Ath(Π2). In the latter case, it is possible
that S1,i = ∅ or S1,i contains several input atoms of Π1 which are independent of
each other. This violates the definition of a SCC but we do not remove or split such
exceptional components—also called SCCs in the sequel—to retain a uniform indexing
scheme for the components of Π , Π1, and Π2. Thus, we have established the respective
component structures S1,1 < · · · < S1,k and S2,1 < · · · < S2,k for Π1 and Π2.

3 Model Theory and Stable Semantics

Given any DLP-function Π , by an interpretation, M , for Π we understand a subset
of At(Π). An atom a ∈ At(Π) is true under M (symbolically M |= a) iff a ∈ M ,
otherwise false under M . For a negative literal ∼a, we define M |= ∼a iff M �|= a. A
set L of literals is satisfied by M (denoted by M |= L) iff M |= l, for every l ∈ L. We
also define M |= ∨

L, providing M |= l for some l ∈ L.
To begin with, we cover DLP-functions with a pure classical semantics, which treats

disjunctive rules as classical implications.

Definition 4. An interpretation M ⊆ At(Π) is a (classical) model of a DLP-function
Π = 〈R, I, O, H〉, denoted M |= Π , iff M |= R, i.e., for every rule A ← B, ∼C ∈ R,

M |= B ∪ ∼C implies M |= ∨
A.

The set of all classical models of Π is denoted by CM(Π).

Classical models provide a suitable level of abstraction to address the role of input
atoms in DLP-functions. Given a DLP-function Π and an interpretation M ⊆ At(Π),
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the projection Mi can be viewed as the actual input for Π which may (or may not)
produce the respective output Mo, depending on the semantics assigned to Π . The
treatment of input atoms in the sequel will be based on partial evaluation: the idea is to
pre-interpret input atoms appearing in Π with respect to Mi.

Definition 5. For a DLP-function Π = 〈R, I, O, H〉 and an actual input Mi ⊆ I
for Π , the instantiation of Π with respect to Mi, denoted by Π/Mi, is the quadruple
〈R′, ∅, I ∪ O, H〉 where R′ consists of the following rules:

1. the rule A ← (B \ I), ∼(C \ I), for each rule A ← B, ∼C ∈ Π such that
Mi |= Bi ∪ ∼Ci,

2. the fact a ←, for each atom a ∈ Mi, and
3. the constraint ⊥ ← a, for each atom a ∈ I \ Mi.

The rules in the first item are free of input atoms since A ∩ I = ∅ holds for each rule
A ← B, ∼C in R by Definition 1. The latter two items list rules that record the truth
values of input atoms of Π in the resulting program Π/Mi. The reduct Π/Mi is a DLP-
function without input whereas the visibility of atoms is not affected by instantiation.

Proposition 1. Let Π be a DLP-function and M ⊆ At(Π) an interpretation that de-
fines an actual input Mi ⊆ Ati(Π) for Π . Then, for all interpretations N ⊆ At(Π),

N |= Π and Ni = Mi ⇐⇒ N |= Π/Mi.

Thus, the input reduction, as given in Definition 5, is fully compatible with classical
semantics and we may characterise the semantic operator CM by pointing out the fact
that CM(Π) =

⋃
Mi⊆I CM(Π/Mi). Handling input is slightly more complicated in

the case of minimal models but Lifschitz’s parallel circumscription [13] provides us a
standard approach to deal with it. The rough idea is to keep the interpretation of input
atoms fixed while minimising, i.e., falsifying others as far as possible.

Definition 6. Let Π be a DLP-function and F ⊆ At(Π) a set of atoms assumed to
have fixed truth values. A model M ⊆ At(Π) of Π is F -minimal iff there is no model
N of Π such that N ∩ F = M ∩ F and N ⊂ M .

The set of F -minimal models of Π is denoted by MMF (Π). In the sequel, we treat
input atoms by stipulating Ati(Π)-minimality of models of Π . Then, the condition
N ∩ F = M ∩ F in Definition 6 becomes equivalent to Ni = Mi. Using this idea,
Proposition 1 lifts for minimal models as follows. Recall that Ati(Π/Mi) = ∅.

Proposition 2. Let Π be a DLP-function and M ⊆ At(Π) an interpretation that de-
fines an actual input Mi ⊆ Ati(Π) for Π . Then, for all interpretations N ⊆ At(Π),

N ∈ MMAti(Π)(Π) and Ni = Mi ⇐⇒ N ∈ MM∅(Π/Mi).

The set MMAti(Π)(Π) of models is sufficient to determine the semantics of a positive
DLP-function, i.e., whose rules are of the form A ← B where A �= ∅ and only B may
involve atoms from Ati(Π). Therefore, due to non-empty heads of rules, a positive
DLP Π is guaranteed to possess classical models since, e.g., At(Π) |= Π , and thus
also Ati(Π)-minimal models. To cover arbitrary DLP-functions, we interpret negative
body literals in the way proposed by Gelfond and Lifschitz [1].
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Definition 7. Given a DLP-function Π = 〈R, I, O, H〉 and an interpretation M ⊆
At(Π), the Gelfond-Lifschitz reduct of Π with respect to M is the positive DLP-
function

ΠM = 〈{A ← B | A ← B, ∼C ∈ Π , A �= ∅, and M |= ∼C}, I, O, H〉. (3)

Definition 8. An interpretation M ⊆ At(Π) is a stable model of a DLP-function Π
iff M ∈ MMAti(Π)(ΠM ) and M |= CR(Π), where CR(Π) is the set of constraints
⊥ ← B, ∼C ∈ Π .

Hidden atoms play no special role in Definition 8 and their status will be clarified in
Section 5 when the notion of modular equivalence is introduced. Definition 8 gives rise
to the respective semantic operator SM : D → 22At(D)

for DLP-functions:

SM(Π) = {M ⊆ At(Π) | M ∈ MMAti(Π)(ΠM ) and M |= CR(Π)}. (4)

As a consequence of Proposition 2, a stable model M of Π is a minimal model of
ΠM/Mi = (Π/Mi)M which enables one to dismiss Ati(Π)-minimality if desirable.

Example 1. Consider a DLP-function

Π = 〈{a ∨ b ← ∼c; a ← c, ∼b; b ← c, ∼a}, {c}, {a, b}, ∅〉,
which has four stable models, M1 = {a}, M2 = {b}, M3 = {a, c}, and M4 = {b, c},
which are minimal models of the respective reducts of Π :

ΠM1/(M1)i = ΠM2/(M2)i = 〈{a ∨ b ←; ⊥ ← c}, ∅, {a, b, c}, ∅〉,
ΠM3/(M3)i = 〈{a ←; c ←}, ∅, {a, b, c}, ∅〉, and
ΠM4/(M4)i = 〈{b ←; c ←}, ∅, {a, b, c}, ∅〉.

��
An immediate observation is that we loose the general antichain property of stable
models when input signatures are introduced. For instance, we have M1 ⊂ M3 and
M2 ⊂ M4 in Example 1. However, since the interpretation of input atoms is fixed by the
semantics, we perceive antichains locally, i.e., the set of stable models {N ∈ SM(Π) |
Ni = Mi} forms an antichain, for each input Mi ⊆ Ati(Π). In Example 1, the sets
associated with actual inputs ∅ and {c} are {M1, M2} and {M3, M4}, respectively.

4 Module Theorem for DLP-Functions

Our next objective is to show that stable semantics allows substitutions under joins of
programs as defined in Section 2. Given two DLP-functions Π1 and Π2, we say that
interpretations M1 ⊆ At(Π1) and M2 ⊆ At(Π2) are mutually compatible (with respect
to Π1 and Π2), or just compatible for short, iff M1 ∩ Atv(Π1) = M2 ∩ Atv(Π2), i.e.,
M1 and M2 agree about the truth values of their joint visible atoms. A quick inspection
of Table 1 reveals the three cases that may arise if the join Π = Π1 � Π2 is defined
and joint output atoms for Π1 and Π2 are disallowed: There are shared input atoms in
Ati(Π) = Ati(Π1)∩Ati(Π2) and atoms in Ato(Π1)∩Ati(Π2) and Ati(Π1)∩Ato(Π2)
that are output atoms in one program and input atoms in the other program. Recall that
according to Definition 3 such atoms end up in Ato(Π) when Π1 � Π2 is formed. Our
first modularity result deals with the classical semantics of DLP-functions.
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Proposition 3. Let Π1 and Π2 be two positive DLP-functions with the respective input
signatures Ati(Π1) and Ati(Π2) so that Π1 � Π2 is defined. Then, for any mutually
compatible interpretations M1 ⊆ At(Π1) and M2 ⊆ At(Π2),

M1 ∪ M2 |= Π1 � Π2 ⇐⇒ M1 |= Π1 and M2 |= Π2. (5)

The case of minimal or stable models, respectively, is much more elaborate. The proof
of Theorem 1 (see below) is based on cumulative projections defined for a join Π1 �Π2
of DLP-functions Π1 and Π2 and a pair of compatible interpretations M1 ⊆ At(Π1)
and M2 ⊆ At(Π2). It is clear that M1 = M ∩ At(Π1) and M2 = M ∩ At(Π2) hold
for M = M1 ∪ M2 in this setting. Next, we use a total order S1 < · · · < Sk of the
SCCs in DG+(Π1 ⊕ Π2) to define an increasing sequence of interpretations

N j = Ni ∪ (N ∩ (
⋃j

i=1 Si)), (6)

for each interpretation N ∈ {M, M1, M2} and 0 ≤ j ≤ k. Furthermore, let Π =
〈R, I, O, H〉 = Π1 � Π2. The relative complement M = At(Π) \ M contains atoms
false under M and we may associate a set R[Si] of rules with each SCC Si using M :

R[Si] = {(A ∩ Si) ← B | A ← B ∈ R, A ∩ Si �= ∅, and A \ Si ⊆ M}. (7)

For each rule A ← B ∈ R, the reduced rule (A ∩ Si) ← B is the contribution of
A ← B for the component Si in case

∨
(A \ Si) is false under M , i.e.,

∨
A is not

eventually satisfied by some other component of Π ; note that M |= Π will be assumed
in the sequel. Although R[Si] depends on M , we omit M in the notation for the sake
of conciseness. For each 0 ≤ j ≤ k, we may now collect rules associated with the first
j components and form a DLP-function with the same signature as Π :

Πj = 〈⋃j
i=1 R[Si], I, O, H〉. (8)

This implies that non-input atoms in
⋃k

i=j+1 Si are false under interpretations defined

by (6). Since each rule of Π is either contained in Π1 or Π2, we may use M1 =
At(Π1) \M1 and M2 = At(Π2) \M2 to define Πj

1 and Πj
2 analogously, using (7) and

(8) for Π1 and Π2, respectively. It follows that Πj
1 �Πj

2 is defined and Πj = Πj
1 �Πj

2
holds for every 0 ≤ j ≤ k due to the compatibility of M j

1 and M j
2 and the fact that Π =

Π1 � Π2. Moreover, it is easy to inspect from the equations above that, by definition,
M j−1 ⊆ M j and the rules of Πj−1 are contained in Πj , for every 0 < j ≤ k.

Finally, we may accommodate the definitions from above to the case of a single
DLP-function by substituting Π for Π1 and ∅ for Π2. Then, DG+(Π) is partitioned
into strongly connected components S1 < · · · < Sk of Π and the construction of
cumulative projections is applicable to an interpretation M ⊆ At(Π), giving rise to
interpretations M j and DLP-functions Πj for each 0 ≤ j ≤ k. Lemmas 1 and 2 deal
with a structure of this kind associated with Π and describe how the satisfaction of rules
and Ati(Π)-minimality are conveyed under cumulative projections.

Lemma 1. Let Π be a positive DLP-function with an input signature Ati(Π) and
strongly connected components S1 < · · · < Sk. Given a model M ⊆ At(Π) for
Π , the following hold for the cumulative projections M j and Πj , with 0 ≤ j ≤ k:
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1. For every 0 ≤ j ≤ k, M j |= Πj .
2. If N j |= Πj , for some interpretation N j ⊆ M j of Πj , where j > 0, then N j−1 |=

Πj−1, for the interpretation N j−1 = N j \ Sj of Πj−1.
3. If M j is an Ati(Π)-minimal model of Πj , for j > 0, then M j−1 is an Ati(Π)-

minimal model of Πj−1.

Example 2. To demonstrate cumulative projections in a practical setting, let us analyse
a DLP-function Π = 〈R, ∅, {a, b, c, d, e}, ∅〉, where R contains the following rules:

a ∨ b ←; d ← c;
a ← b; e ← d;
b ← a; d ← e;
a ← c; c ∨ d ∨ e ← a, b.

The SCCs of Π are S1 = {a, b, c} and S2 = {d, e} with S1 < S2. The classical
models of Π are M = {a, b, d, e} and N = {a, b, c, d, e}. Given M , Π1 and Π2 have
the respective sets of rules R[S1] = {a ∨ b ←; a ← b; b ← a; a ← c} and R[S1] ∪
R[S2] where R[S2] = {d ← c; e ← d; d ← e; d ∨ e ← a, b}. According to (6), we
have M0 = ∅, M1 = {a, b}, and M2 = M . Then, e.g., M1 |= Π1 and M2 |= Π2

by the first item of Lemma 1. Since M2 is an ∅-minimal model of Π2, the last item of
Lemma 1 implies that M1 is an ∅-minimal model of Π1. ��
Lemma 2. Let Π be a positive DLP-function with an input signature Ati(Π) and
strongly connected components S1 < · · · < Sk. Then, an interpretation M ⊆ At(Π)
of Π is an Ati(Π)-minimal model of Π iff M is an Ati(Π)-minimal model of Πk.

Example 3. For Π from Example 2, the rule d ∨ e ← a, b forms the only difference
between Π2 and Π but this is insignificant: M is also an ∅-minimal model of Π . ��
Proposition 4. Let Π1 and Π2 be two positive DLP-functions with the respective input
signatures Ati(Π1) and Ati(Π2) so that Π1 � Π2 is defined. Then, for any mutually
compatible models M1 ⊆ At(Π1) and M2 ⊆ At(Π2) of Π1 and Π2, respectively,

M1 ∪ M2 is Ati(Π1 � Π2)-minimal ⇐⇒ M1 is Ati(Π1)-minimal and M2 is
Ati(Π2)-minimal.

Proof sketch. The proof of this result proceeds by induction on the cumulative projec-
tions M j , M j

1 , and M j
2 induced by the SCCs S1 < · · · < Sk of DG+(Π1 � Π2), i.e.,

M j is shown to be an Ati(Π)-minimal model of Πj iff M j
1 is an Ati(Π1)-minimal

model of Π1 and M j
2 is an Ati(Π2)-minimal model of Π2, where Πj , Πj

1 , and Πj
2 , for

0 ≤ j ≤ k, are determined by (7) and (8) when applied to Π , Π1, and Π2. Lemma 2
closes the gap between the Ati(Π)-minimality of Mk = M as a model of Πk from (8)
with j = k and as that of Π . The same can be stated about Mk

1 = M1 and Mk
2 = M2

but in terms of the respective projections Si,1 < · · · < Si,k obtained for i ∈ {1, 2}. ��
Lemma 3. Let Π1 and Π2 be two DLP-functions with the respective input signatures
Ati(Π1) and Ati(Π2) so that Π = Π1 � Π2 is defined. Then, also ΠM1

1 � ΠM2
2 is

defined for any mutually compatible interpretations M1 ⊆ At(Π1) and M2 ⊆ At(Π2),
and ΠM = ΠM1

1 � ΠM2
2 holds for their union M = M1 ∪ M2.
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Theorem 1 (Module Theorem). Let Π1 and Π2 be two DLP-functions with the re-
spective input signatures Ati(Π1) and Ati(Π2) so that Π1 � Π2 is defined. Then, for
any mutually compatible interpretations M1 ⊆ At(Π1) and M2 ⊆ At(Π2),

M1 ∪ M2 ∈ SM(Π1 � Π2) ⇐⇒ M1 ∈ SM(Π1) and M2 ∈ SM(Π2).

Proof. Let M1 ⊆ At(Π1) and M2 ⊆ At(Π2) be compatible interpretations and M =
M1 ∪ M2. Due to compatibility, we can recover M1 = M ∩ At(Π1) and M2 = M ∩
At(Π2) from M . Additionally, we have CR(Π) = CR(Π1) ∪ CR(Π2) and ΠM =
ΠM1

1 � ΠM2
2 is defined by Lemma 3. Now, M ∈ SM(Π) iff

M is an Ati(Π)-minimal model of ΠM and M |= CR(Π). (9)

By Proposition 4, we get that (9) holds iff (i) M1 is an Ati(Π1)-minimal model of
ΠM1

1 and M1 |= CR(Π1), and (ii) M2 is an Ati(Π2)-minimal model of ΠM2
2 and

M2 |= CR(Π2). Thus, M ∈ SM(Π) iff M1 ∈ SM(Π) and M2 ∈ SM(Π). ��
The moral of Theorem 1 and Definition 3 is that stable semantics supports modularisa-
tion as long as positive dependencies remain within program modules. The proof of the
theorem reveals the fact that such modules may involve several strongly connected com-
ponents. Splitting them into further modules is basically pre-empted by hidden atoms
which cannot be placed in separate modules. Theorem 1 can be easily extended for
DLP-functions consisting of more than two modules. In view of this, we say that a
sequence M1, . . . , Mn of stable models for modules Π1, . . . , Πn, respectively, is com-
patible, iff Mi and Mj are pairwise compatible, for all 1 ≤ i, j ≤ n.

Corollary 1. Let Π1, . . . , Πn be a sequence of DLP-functions such that Π1 �· · ·�Πn

is defined. Then, for all compatible sequences M1, . . . , Mn of interpretations,⋃n
i=1 Mi ∈ SM(Π1 � · · · � Πn) ⇐⇒ Mi ∈ SM(Πi), for all 1 ≤ i ≤ n.

5 Applications

In this section, we demonstrate the applicability of Theorem 1 on three issues, viz.
splitting DLP-functions, shifting disjunctions, and checking equivalence.

Splitting DLP-Functions. Theorem 1 is strictly stronger than the splitting-set theo-
rem [5]. Given a DLP-function of form Π = 〈R, ∅, O, ∅〉 (which is essentially an
“ordinary” DLP), a splitting set U ⊆ O for Π satisfies, for each A ← B, ∼C ∈ R,
A∪B∪C ⊆ U , whenever A∩U �= ∅. Given a splitting set U for Π , the bottom, bU (R),
of R with respect to U contains all rules A ← B, ∼C ∈ R such that A ∪ B ∪ C ⊆ U ,
whereas the top, tU (R), of R is R \ bU (R). Thus, we may define Π = ΠB � ΠT ,
where ΠB = 〈bU (R), ∅, U, ∅〉 and 〈tU (R), U, O \ U, ∅〉. Then, Theorem 1 implies for
any interpretation M ⊆ At(Π) = O that M ∩ U ∈ SM(ΠB) and M ∈ SM(ΠT ) iff
〈M ∩ U, M \ U〉 is a solution for Π with respect to U , i.e., M is a stable model of
Π . On the other hand, as demonstrated in previous work [8], the splitting-set theorem
can be applied to DLP-functions like 〈{a ← ∼b; b ← ∼a}, ∅, {a, b}, ∅〉 only in a triv-
ial way, i.e., for U = ∅ or U = {a, b}. In contrast, Theorem 1 applies to the preceding
DLP-function, i.e., 〈{a ← ∼b}, {b}, {a}, ∅〉 � 〈{b ← ∼a}, {a}, {b}, ∅〉 is defined.
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Shifting Disjunctions. A further application of our module theorem results in a general
shifting principle, defined as follows.

Definition 9. Let Π = 〈R, I, O, H〉 be a DLP-function with strongly connected com-
ponents S1 < · · · < Sk. The general shifting of Π is the DLP-function GSH(Π) =
〈R′, I, O, H〉, where R′ is

{(A∩Si) ← B, ∼C, ∼(A\Si) | A ← B, ∼C ∈ Π , 1 ≤ i ≤ k, and A∩Si �= ∅}.

This is a proper generalisation of the local shifting transformation [14] which is not
applicable to the program Π given below because of head cycles involved.

Example 4. Consider Π with the following rules:

a ∨ b ∨ c ∨ d ←;
a ← b; c ← d;
b ← a; d ← c.

For GSH(Π), the first rule is replaced by a∨b ← ∼c, ∼d and c∨d ← ∼a, ∼b. It is easy
to verify that both Π and GSH(Π) have {a, b} and {c, d} as their stable models. ��
Theorem 2. For any DLP-function Π = 〈R, I, O, H〉, SM(Π) = SM(GSH(Π)).

Proof. Let S1 < · · · < Sk be the strongly connected components of Π and M ⊆
At(Π) = I ∪ O ∪ H an interpretation. By applying the construction of cumulative
projections for both ΠM and GSH(Π)M , we obtain

(ΠM )k = {(A ∩ Si) ← B | A ← B, ∼C ∈ Π ,

M ∩ C = ∅, 1 ≤ i ≤ k, A ∩ Si �= ∅, and A \ Si ⊆ M},

which coincides with (GSH(Π)M )k . It follows by Lemma 2 that M is an Ati(Π)-
minimal model of ΠM iff M is an Ati(Π)-minimal model of GSH(Π)M . ��
Theorem 2 provides us a technique to split disjunctive rules among components that
share them in order to get joins of components defined.

Example 5. For the DLP-function Π from Example 4, we obtain R1 = {a ∨ b ←
∼c, ∼d; a ← b; b ← a} and R2 = {c ∨ d ← ∼a, ∼b; c ← d; d ← c} as the sets of
rules associated with Π1 = 〈R1, {c, d}, {a, b}, ∅〉 and Π2 = 〈R2, {a, b}, {c, d}, ∅〉, for
which Π1 � Π2 = 〈R1 ∪ R2, ∅, {a, b, c, d}, ∅〉 is defined. ��

Checking Equivalence. Finally, we briefly mention how DLP-functions can be com-
pared with each other at the level of modules as well as entire programs.

Definition 10. Two DLP-functions Π1 and Π2 are modularly equivalent, denoted by
Π1 ≡m Π2, iff

1. Ati(Π1) = Ati(Π2) and Ato(Π1) = Ato(Π2), and
2. there is a bijection f : SM(Π1) → SM(Π2) such that for all interpretations M ∈

SM(Π1), M ∩ Atv(Π1) = f(M) ∩ Atv(Π2).
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Using ≡m, we may reformulate the content of Theorem 2 as Π ≡m GSH(Π). The
proof for a congruence property lifts from the case of normal programs using the module
theorem strengthened to the disjunctive case (i.e., Theorem 1).

Corollary 2. Let Π1, Π2, and Π be DLP-functions. If Π1 ≡m Π2 and both Π1 � Π
and Π2 � Π are defined, then Π1 � Π ≡m Π2 � Π .

Applying Corollary 2 in the context of Theorem 2 indicates that shifting can be localised
to a particular component Π2 = GSH(Π1) in a larger DLP-function Π1 � Π .

A broader discussion which relates modular equivalence with similar notions pro-
posed in the literature [15] is subject of future work but some preliminary comparisons
in the case of disjunction-free programs are given by Oikarinen and Janhunen [8].

6 Conclusion and Discussion

In this paper, we discussed a formal framework for modular programming in the context
of disjunctive logic programs under the stable-model semantics. We introduced syntax
and semantics of DLP-functions, where input/output interfacing is realised, and proved
a novel module theorem, establishing a suitable compositional semantics for program
modules. Although our approach is not unique in the sense that there are different pos-
sibilities for defining the composition of modules, it nevertheless shows the limits of
modularity in the context of a nonmonotonic declarative programming language. In any
case, we believe that research in this direction not only yields results of theoretical in-
terest but also could serve as a basis for future developments addressing practicably
useful methods for software engineering in ASP.

Concerning previous work on modularity in ASP, Eiter, Gottlob, and Mannila [6]
consider the class of disjunctive Datalog as query programs over relational databases. In
contrast to our results, their module architecture is based on both positive and negative
dependencies and no recursion between modules is tolerated. These constraints enable
a straightforward generalisation of the splitting-set theorem for that architecture. Eiter,
Gottlob, and Veith [3] address modularity within ASP by viewing program modules as
generalised quantifiers allowing nested calls. This is an abstraction mechanism typical
to programming-in-the-small approaches. Finally, Faber et al. [16] apply the magic set
method in the evaluation of Datalog programs with negation, introducing the concept of
an independent set, which is a specialisation of a splitting set. The module theorem put
forward by Faber et al. [16] is, however, weaker than Theorem 1 presented in Section 4.
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a very special syntactic form. Later it was extended to arbitrary propositional
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to formulas with quantifiers is important, in particular, in view of its close
relation to conditional literals—an lparse construct widely used in answer set
programming [14]. For instance, according to [4], the choice rule

{q(x) : p(x)}

can be viewed as shorthand for the first-order formula
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Similarly, the lparse rule
2 {q(x) : p(x)}

can be thought of as shorthand for the formula

∀x(p(x) → (q(x) ∨ ¬q(x)))∧
∃xy(p(x) ∧ q(x) ∧ p(y) ∧ q(y) ∧ x �= y).

In this paper we extend the main theorem of [8] to stable models of first-order
sentences. That theorem relates strong equivalence of propositional (grounded)
logic programs to the propositional logic of here-and-there. Recall that two
sets of rules are said to be strongly equivalent to each other if replacing
one by the other within any logic program preserves the program’s stable
models; the propositional logic of here-and-there is the extension of propositional
intuitionistic logic obtained by adding the axiom schema

HOS F ∨ (F → G) ∨ ¬G.

This is a simplified form of an axiom from [7], proposed in [2]. It is weaker than
the law of the excluded middle, but stronger than the weak law of the excluded
middle

WEM ¬F ∨ ¬¬F .

(To derive WEM from HOS, take G to be ¬F .)
Such characterizations of strong equivalence are interesting because they tell

us which transformations can be used to simplify rules, or groups of rules, in a
logic program. For instance, if we replace the pair of rules

q ← not p
q ← {not p} 0

in a logic program with the fact q then the stable models of the program will
remain the same. Indeed, the formula

(¬p → q) ∧ (¬¬p → q)

is equivalent to q in the propositional logic of here-and-there. (Proof: use WEM
with p as F .)

There are several natural extensions of the logic of here-and-there to first-
order formulas; all of them include the axioms and inference rules of intuitionistic
predicate logic, axiom schema HOS, and some other axioms. Our goal here is
to determine which of these extensions corresponds to the strong equivalence of
first-order sentences in the sense of [4].

The next section is a review the definition of a stable model from [4]. In
Section 3 we state our main theorem, which characterizes strong equivalence in
terms of a first-order version of the logic of here-and-there, and give examples
of the use of that logic for establishing the strong equivalence of formulas
and corresponding programs in the language of lparse. Section 4 describes
a characterization of our first-order logic of here-and-there in terms of Kripke
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models; the soundness and completeness theorem stated in that section is a key
element of the proof of the main theorem. Proofs are outlined in Sections 5
and 6. In Section 7 the theorem on strong equivalence is extended from formulas
to theories—sets of formulas, possibly infinite. Related work is discussed in
Section 8.

2 Stable Models of a First-Order Sentence

If p and q are predicate constants of the same arity then p = q stands for the
formula

∀x(p(x) ↔ q(x)),

and p ≤ q stands for
∀x(p(x) → q(x)),

where x is a tuple of distinct object variables. If p and q are tuples p1, . . . , pn

and q1, . . . , qn of predicate constants then p = q stands for the conjunction

p1 = q1 ∧ · · · ∧ pn = qn,

and p ≤ q for
p1 ≤ q1 ∧ · · · ∧ pn ≤ qn.

Finally, p < q is an abbreviation for p ≤ q ∧ ¬(p = q). In second-order logic,
we will apply the same notation to tuples of predicate variables.

According to [4], for any first-order sentence (closed formula) F , SM[F ] stands
for the second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where p is the list of all predicate constants p1, . . . , pn occurring in F , u is a list
of n distinct predicate variables u1, . . . , un, and F ∗(u) is defined recursively, as
follows:

– pi(t1, . . . , tm)∗ = ui(t1, . . . , tm);
– (t1 = t2)∗ = (t1 = t2);
– ⊥∗ = ⊥;
– (F � G)∗ = F ∗ � G∗, where � ∈ {∧, ∨};
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (QxF )∗ = QxF ∗, where Q ∈ {∀, ∃}.

(There is no clause for negation here, because we treat ¬F as shorthand for
F → ⊥.) A model of F is stable if it satisfies SM[F ].

This definition looks very different from the original definition of a stable
model from [6], but it is actually a generalization of that definition, in the
following sense. Let F be (the sentence corresponding to) a finite set of rules
of the form

A0 ← A1, . . . , Am,not Am+1, . . . ,not An,
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where A0, . . . , An are atomic formulas not containing equality. According to
Proposition 1 from [4], the Herbrand stable models of F in the sense of the
definition above are identical to the stable models of F in the sense of the
original definition. For instance, the sentence

p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x)) → r(x)), (1)

representing the logic program

p(a),
q(b),
r(x) ← p(x),not q(x),

(2)

has a unique Herbrand stable model

{p(a), q(b), r(a)},

which is the stable model of (2) in the sense of the 1988 definition.
Here is an example illustrating the relationship between the definition above

and the semantics of programs with conditional literals and choice rules proposed
in [14]. The sentence

p(a) ∧ p(b) ∧ ∀x(p(x) → (q(x) ∨ ¬q(x))),

representing the program
p(a),
p(b),
{q(x) : p(x)},

(3)

has 4 Herbrand stable models

{p(a), p(b)},
{p(a), p(b), q(a)},
{p(a), p(b), q(b)},
{p(a), p(b), q(a), q(b)},

which are identical to the stable models of (3) in the sense of [14].

3 Theorem on Strong Equivalence

About first-order sentences F and G we say that F is strongly equivalent to G
if, for every first-order sentence H (possibly of a larger signature), F ∧ H has
the same stable models as G ∧ H [4].

By INT= we denote first-order intuitionistic logic with the usual axioms for
equality:

x = x

and
x = y → (F (x) → F (y))

for every formula F (x) such that y is substitutable for x in F (x).
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Our characterization of strong equivalence refers to the axiom schema

SQHT ∃x(F (x) → ∀xF (x)).

The notation SQHT stands for “static quantified here-and-there”; see Section 4
below for an explanation. We also need the “decidable equality” axiom

DE x = y ∨ x �= y.

Theorem on Strong Equivalence. A sentence F is strongly equivalent to a
sentence G iff the equivalence F ↔ G is provable in

INT= + HOS + SQHT + DE. (4)

We will denote system (4) by SQHT=.

Example 1. In any program containing the rules

{q(x) : p(x)}
p(a)
q(a)

replacing the fact q(a) with the constraint

← not q(a)

would not change the program’s stable models. Indeed, the formula

∀x(p(x) → (q(x) ∨ ¬q(x))) ∧ p(a) ∧ q(a) (5)

is intuitionistically equivalent to

∀x(p(x) → (q(x) ∨ ¬q(x))) ∧ p(a) ∧ ¬¬q(a).

Proof: The first two conjunctive terms of (5) imply q(a)∨¬q(a), and consequently
¬¬q(a) ↔ q(a).

Replacing a fact by a constraint can be viewed as a simplification, because
the effect of adding a constraint to a program on its stable models is easy to
describe. For instance, adding the constraint ← not q(a) to a program eliminates
its stable models that do not satisfy q(a). Adding the fact q(a) to a program
may affect its stable models, generally, in a very complicated way.

Example 2. Dropping x �= y from the body of the rule

p(y) ← p(x), q(x, y), x �= y

would not change a program’s stable models, because the formula

∀xy(p(x) ∧ q(x, y) ∧ x �= y → p(y)) (6)

is equivalent to
∀xy(p(x) ∧ q(x, y) → p(y)) (7)
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in INT= + DE. Proof: By DE, (7) is equivalent to the conjunction of (6) and

∀xy(p(x) ∧ q(x, y) ∧ x = y → p(y)).

The last formula is provable in INT=.

Example 3. A different characterization of strong equivalence is used in [4,
Section 4] to show that ¬∀xF (x) is strongly equivalent to ∃x¬F (x). To prove
this fact using the theorem above, observe that the equivalence

¬∀xF (x) ↔ ∃x¬F (x) (8)

is provable in INT + SQHT. (Proof: the implication right-to-left is provable
intuitionistically; the implication left-to-right is an intutionistic consequence of
SQHT.) Furthemore, ¬¬∃xF (x) is strongly equivalent to ∃x¬¬F (x). (Proof: the
formula

¬¬∃xF (x) ↔ ∃x¬¬F (x). (9)

is intuitionistically equivalent to the instance of (8) in which ¬F (x) is taken
as F (x).)

4 Kripke Models

Our proof of the theorem on strong equivalence refers to the class of Kripke
models introduced in [4]. In this section we discuss two reasons why this class
of models is relevant. On the one hand, system SQHT=, introduced above in
connection with the problem of strong equivalence, turns out to be a sound and
complete axiomatization of this class of models. On the other hand, according
to Proposition 4 from [4], the first-order equilibrium logic based on this class of
models provides a characterization of the concept of a stable model that we are
interested in.

The definition of this class of models uses the following notation. If I is
an interpretation of a signature σ (in the sense of classical logic) then by σI

we denote the extension of σ obtained by adding pairwise distinct symbols ξ∗,
called names, for all elements ξ of the universe of I as object constants. We will
identify I with its extension to σI defined by I(ξ∗) = ξ. The value that I assigns
to a ground term t of signature σI will be denoted by tI . By σf we denote the
part of σ consisting of its function constants (including object constants, which
are viewed as function constants of arity 0).

An HT-interpretation of σ is a triple 〈I f , Ih, It〉, where

– I f is an interpretation of σf , and
– Ih, It are sets of atomic formulas formed using predicate constants from σ

and object constants ξ∗ for arbitrary elements ξ of the universe of I f , such
that Ih ⊆ It.

The symbols h, t are called worlds; they are ordered by the relation h<t.
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Note that according to this definition the two worlds share a common universe.
In this sense, our Kripke models are static; this explains the use of the word
“static” in the name of the axiom SQHT (Section 3). The worlds share also a
common equality relation: in both of them, equality is understood as identity.

The satisfaction relation between an HT-interpretation I = 〈I f , Ih, It〉, a
world w and a sentence F of the signature σU , where U is the universe of I f , is
defined recursively:

– I, w |= p(t1, . . . ) if p((tI1)
∗, . . . ) ∈ Iw,

– I, w |= t1 = t2 if tI1 = tI2,
– I, w �|= ⊥,
– I, w |= F ∧ G if I, w |= F and I, w |= G,
– I, w |= F ∨ G if I, w |= F or I, w |= G,
– I, w |= F → G if, for every world w′ such that w ≤ w′,

I, w′ �|= F or I, w′ |= G,
– I, w |= ∀xF (x) if, for each ξ from the universe of I f , I, w |= F (ξ∗),
– I, w |= ∃xF (x) if, for some ξ from the universe of I f , I, w |= F (ξ∗).

We write I |= F if I, h |= F .1

For any set Γ of sentences and any sentence F , we write Γ |= F if every
HT-interpretation satisfying all formulas in Γ satisfies F also. We write Γ � F
if F is derivable from Γ in SQHT=.

Soundness and Completeness Theorem. Γ |= F iff Γ � F .

In the next section we outline a proof of the more difficult part of this claim,
the implication left-to-right.

The corresponding concept of an equilibrium model is defined as follows.
An HT-interpretation 〈I f , Ih, It〉 is total if Ih = It. A total HT-interpretation
〈I, J, J〉 is an equilibrium model of F if

(i) 〈I, J, J〉 |= F , and
(ii) for any proper subset J ′ of J , 〈I, J ′, J〉 �|= F .

We can represent an interpretation I of σ in the sense of classical logic as
the pair 〈I|σf , I ′〉, where I ′ is the set of all atomic formulas, formed using
predicate constants from σ and names ξ∗, which are satisfied by I. According to
Proposition 4 from [4], an interpretation 〈I, J〉 is a stable model of a sentence F
iff 〈I, J, J〉 is an equilibrium model of F . Thus stable models of a sentence are
essentially identical to its equilibrium models.

5 Proof of Completeness

Assume that Γ �� F . We will define an HT-interpretation I that satisfies all
formulas in Γ but does not satisfy F .

There exists a signature σ′, obtained from σ by adding new object constants,
and a set Γh of sentences of this signature, satisfying the following conditions:
1 This definition looks different from the definition of satisfaction proposed in [4], but

it easy to check that they are equivalent to each other.
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(i) Γ ⊆ Γh,
(ii) F �∈ Γh,
(iii) Γh is closed under �,
(iv) for any sentence of the form G ∨ H in Γh, G ∈ Γh or H ∈ Γh,
(v) for any sentence of the form ∃xF (x) in Γh there exists an object constant c

in σ′ such that F (c) ∈ Γh.

(Conditions (iii)–(v) can be expressed by saying that Γh is prime.) The proof is
the same as in Henkin’s proof of completeness of intuitionistic logic [1, Section 3].
For any ground terms t1 and t2 of the signature σ′, we write t1 ≈ t2 if the formula
t1 = t2 belongs to Γh. Let Γt be a maximal superset of Γh that is consistent and
closed under classical logic; such a superset exists by the Lindenbaum lemma.
Now I = 〈I f , Ih, It〉 is defined as follows:

(i) the universe of I f is the set of equivalence classes of the relation ≈;
(ii) for each object constant c from σ, I f [c] is the equivalence class of ≈ that

contains c,
(iii) for each function constant g from σ of arity n > 0, I f [g](ξ1, . . . , ξn) is the

equivalence class of ≈ that contains g(t1, . . . , tn) for all terms t1 ∈ ξ1,. . . ,
tn ∈ ξn.

(iv) for each world w, Iw is the set of formulas of the form p(ξ∗1 , . . . , ξ∗n) such
that Γw contains p(t1, . . . , tn) for all terms t1 ∈ ξ1, . . . , tn ∈ ξn.

Note that I can be viewed as an HT-interpretation of the extended
signature σ′ if we extend clause (ii) to all objects constants from σ′. In the
rest of this section, terms and formulas are understand as terms and formulas of
the extended signature.

Lemma 1. For any ground terms t1, t2, (t1 = t2) ∈ Γt iff (t1 = t2) ∈ Γh.

Proof. The if part follows from the fact that Γh ⊆ Γt. Only if: Assume that
(t1 = t2) �∈ Γh. Since Γh contains the instance t1 = t2 ∨ t1 �= t2 of DE and is
prime, it follows that (t1 �= t2) ∈ Γh. Since Γt is a consistent superset of Γh, we
can conclude that (t1 = t2) �∈ Γt.

Lemma 2. For any sentence of the form ∃xG(x) there exists an object constant c
such that the formula

∃xG(x) → G(c) (10)

belongs to Γt.

Proof. Case 1: ∃xG(x) ∈ Γt. Since Γh contains the instance

¬∃xG(x) ∨ ¬¬∃xG(x)

of WEM and is prime, Γh contains one of its disjunctive terms. But the first
disjunctive term cannot belong to Γh because the consistent superset Γt of Γh
contains ∃xG(x). Consequently ¬¬∃xG(x) ∈ Γh. Since equivalence (9) belongs
to Γh, it follows that ∃x¬¬G(x) ∈ Γh. Since Γh is prime, it follows that there
exists an object constant c such that ¬¬G(c) ∈ Γh. Since Γh ⊆ Γt and (10) is
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a classical consequence of ¬¬G(c), it follows that (10) belongs to Γt. Case 2:
∃xG(x) �∈ Γt. Since Γt is maximally consistent, it follows that ¬∃xG(x) ∈ Γt.
Since (10) is a classical consequence of ¬∃xG(x), it follows that (10) belongs
to Γt.

Recall that our goal is to prove two properties of the interpretation I: it satisfies
all formulas in Γ but does not satisfy F . By the choice of Γh, this is immediate
from the following lemma:

Lemma 3. For any sentence G of signature σ′ and any world w,

I, w |= G iff G ∈ Γw.

Proof. by induction on G. We will consider the three cases where reasoning is
different than in the similar proof for intuitionistic logic [1, Section 3]: t1 = t2,
G → H , and ∀xG(x).

1. To check that
I, w |= t1 = t2 iff t1 = t2 ∈ Γw

we show that each side is equivalent to t1 ≈ t2. For the left-hand side, this follows
from the fact that for every ground term t, tIf is the equivalence class of ≈ that
contains t (by induction on t). For the right-hand side, if w = h then this is
immediate from the definition of ≈; if w = t then use Lemma 1.

2. Assume that
I, w |= G iff G ∈ Γw

and
I, w |= H iff H ∈ Γw;

we want to show that

I, w |= G → H iff G → H ∈ Γw.

The if part follows from the induction hypothesis and the clause for → in the
definition of satisfaction. To prove the only if part for w = t, use the induction
hypothesis and the fact that, by the maximal consistency of Γt, this set contains
either G or ¬G. For w = h, we conclude from the induction hypothesis and the
assumption I, h |= G → H that

G �∈ Γh or H ∈ Γh (11)

and
G �∈ Γt or H ∈ Γt. (12)

Case 1: G ∈ Γh. Then, by (11), H ∈ Γh and consequently G → H ∈ Γh.
Case 2: ¬G ∈ Γh. Since ¬G � G → H , G → H ∈ Γh. Case 3: G, ¬G �∈ Γh.
Since Γh contains the instance ¬G ∨ ¬¬G of WEM and is prime, it follows that
¬¬G ∈ Γh ⊆ Γt. Then G ∈ Γt and, by (12), H ∈ Γt. Since Γt is consistent
and contains Γh, ¬H �∈ Γh. On the other hand, Γh contains the instance
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G ∨ (G → H) ∨ ¬H of HOS and is prime; since neither G nor ¬H belongs
to Γh, G → H ∈ Γh.

3. Assume that for every object constant c

I, w |= G(c) iff G(c) ∈ Γw;

we need to show that

I, w |= ∀xG(x) iff ∀xG(x) ∈ Γw.

The if part follows from the induction hypothesis and the clause for ∀ in the
definition of satisfaction. To prove the only if part for w = t, take an object
constant c such that the formula

∃x¬G(x) → ¬G(c) (13)

belongs to Γt (Lemma 2). It follows from the induction hypothesis and the clause
for ∀ in the definition of satisfaction that G(c) belongs to Γt too; ∀xG(x) is a
classical consequence of (13) and G(c). To prove the only if part for w = h,
consider the instance

∃x(G(x) → ∀xG(x))

of SQHT. Since Γh is prime, there exists an object constant c such that Γh
contains the formula

G(c) → ∀xG(x). (14)

By the induction hypothesis and the clause for ∀ in the definition of satisfaction,
G(c) ∈ Γh; ∀xG(x) is an intuitionistic consequence of G(c) and (14).

6 Proof of the Strong Equivalence Theorem

In view of the soundness and completeness theorem, the theorem on strong
equivalence can be rewritten as: a sentence F is strongly equivalent to a
sentence G iff F and G are satisfied by the same HT-interpretations.

If F and G are satisfied by the same HT-interpretations then F ∧H and G∧H
are satisfied by the same HT-interpretations; then F ∧ H and G ∧ H have the
same equilibrium models, and consequently the same stable models.

For the converse, let us assume that F ∧ H and G ∧ H have the same
stable models for every first order sentence H . Then these formulas have the
same equilibrium models. For any predicate constant P , let C(P ) stand for the
sentence

∀x(¬¬P (x) → P (x)).

Note first that F and G have the same total models. Indeed, let H0 be the
conjunction of sentences C(P ) for all predicate constants P occurring in F or G;
the total models of F can be characterized as the equilibrium models of F ∧H0,
and the total models of G can be characterized as the equilibrium models of
G ∧ H0.
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Assume that 〈I f , Ih, It〉 satisfies F but not G, and consider the total HT-
interpretation 〈I f , It, It〉. It is clear that the total interpretation 〈I f , It, It〉
satisfies F , and consequently G. Let H0 be the conjunction of sentences C(P )
for all predicate constants P occurring in G, and let H1 be the implication
G → H0. The HT-interpretation 〈I f , Ih, It〉 satisfies H1. Indeed, it does not
satisfy its antecedent G, and It satisfies its consequent H0. Therefore 〈I f , It, It〉
is not an equilibrium model of F ∧ H1. Then 〈I f , It, It〉 is not an equilibrium
model of G ∧ H1 either. But this is impossible, because G ∧ H1 implies H0, so
that all models of that set are total.

7 Strong Equivalence for Theories

The definition of a stable model from [4], reproduced here in Section 2, can
be extended to finite sets of first-order sentences: a model of such a set Γ
is called stable if it satisfies SM

[∧
F∈Γ F

]
. The relationship between stable

models and equilibrium models, discussed at the end of Section 4, suggests a
way to further extend this definition to “theories”—arbitrary sets of first-order
sentences, possibly infinite. We say that a total HT-interpretation 〈I, J, J〉 is an
equilibrium model of a set Γ of first order sentences if

(i) 〈I, J, J〉 |= Γ , and
(ii) for any proper subset J ′ of J , 〈I, J ′, J〉 �|= Γ .

An interpretation 〈I, J〉 is a stable model of Γ iff 〈I, J, J〉 is an equilibrium model
of Γ .

About sets Γ , Δ of first-order sentences we say that Γ is strongly equivalent
to Δ if, for any set Σ of first-order sentences (possibly of a larger signature),
Γ ∪Σ has the same stable models as Δ∪Σ. This relation between sets of formulas
can be characterized in the same way as the strong equivalence relation between
formulas:

Theorem on Strong Equivalence for Theories. A set Γ of sentences is
strongly equivalent to a set Δ of sentences iff Γ is equivalent to Δ in SQHT=.

This theorem, in combination with the theorem on strong equivalence for
formulas, shows that the new definition of strong equivalence is a generalization
of the definition from Section 3: F and G are strongly equivalent to each other
as sentences iff {F} and {G} are strongly equivalent to each other as theories.

The proof is similar to that in the previous section, but considering the
(possibly infinite) set Σ0 of formulas C(P ) instead of the conjunction H0 of
these formulas, and the set of implications G → C(P ) instead of H1.

8 Related Work

An alternative proof that the logic SQHT= captures strong equivalence for
theories in the sense of the previous section can be found in [12]. The two proofs
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highlight different properties. In each case it is shown that when two theories Γ
and Δ are not equivalent in SQHT=, an extension Σ can be constructed such
that the equilibrium models of Γ ∪ Σ and Δ ∪ Σ differ. From the proof given in
Section 7 above it is clear that Σ can be constructed in the same signature, without
additional constants. From the proof given in [12] the extension may use object
constants not appearing in Γ or Δ. However, Σ is shown there to have a very
simple form: its elements are “unary” formulas, that is, ground atomic formulas
and implications F → G where F and G are ground atomic formulas. From this
observation it follows that if Γ and Δ consist of logic program rules and are not
strongly equivalent then there exists a set of program rules Σ (of a simple form)
such that Γ ∪ Σ and Δ ∪ Σ have different equilibrium or stable models.

Strong equivalence for non-ground logic programs under the answer set
semantics has also been defined and studied in [9,3]. In the case of [3] the
concept is similar to the one presented in the previous section, except that the
equivalence is defined with respect to a somewhat different notion of stable
model than the one used here, and equality is not explicitly treated. In general
the two concepts are different since stable or equilibrium models as defined here
are not required to satisfy the unique name assumption. As a consequence not
every equilibrium model need be a stable model or answer set in the sense of [3].
However for the safe programs without equality studied in [3] we can establish a
simple characterisation of strong equivalence. Let us denote by SQHT the logic
SQHT= without an equality predicate and axioms for equality:

SQHT = INT + HOS + SQHT + DE.

Disjunctive logic programs are defined in the usual way, and rules where each
variable appears in at least one positive body atom are called safe; a program is
safe if all its rules are safe. According to a theorem from [12], two safe disjunctive
programs are strongly equivalent in the sense of [3] if and only if they are
equivalent in the logic SQHT. The proof makes use of the fact that if Γ and Δ
are non-strongly equivalent safe programs then there exists a set of Σ of unary
program rules such that Γ ∪ Σ and Δ ∪ Σ, which are both safe, have different
stable models. For safe programs, this theorem also encompasses the notion of
strong equivalence found in [9].

9 Conclusion

In this paper we understand logic programs with variables in a very general way,
as arbitrary first-order formulas with equality. The logic SQHT= is the first-
order version of the logic of here-and-there that characterizes strong equivalence
for such programs. This logic is an extension of the intuitionistic first-order logic
with equality. One of its three additional postulates is the axiom schema HOS,
familiar from the propositional logic of here-and-there. Another is the well-known
decidable equality axiom DE. The third, SQHT, is apparently new; it can be
thought of as the result the first step towards converting the trivial implication
∀xF (x) → ∀xF (x) to prenex form. Studying properties of this intermediate logic
is a topic for future work.



200 V. Lifschitz, D. Pearce, and A. Valverde

References

1. Dirk van Dalen. Intuitionistic logic. In Dov Gabbay and Franz Guenther,
editors, Handbook of Philosophical Logic, Volume III: Alternatives in Classical
Logic, Dordrecht, 1986. D. Reidel Publishing Co.

2. Dick De Jongh and Lex Hendriks. Characterization of strongly equivalent logic
programs in intermediate logics. Theory and Practice of Logic Programming, 3:250–
270, 2003.

3. T. Eiter, M. Fink, H. Tompits, and S. Woltran Strong and Uniform Equivalence
in Answer-Set Programming: Characterizations and Complexity Results for the
Non-Ground Case. KR 2005, AAAI, 2005.

4. Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A new perspective on stable
models. In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI), pages 372–379, 2007.

5. Paolo Ferraris. Answer sets for propositional theories. In Proceedings of
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR), pages 119–131, 2005.

6. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert Kowalski and Kenneth Bowen, editors, Proceedings of
International Logic Programming Conference and Symposium, pages 1070–1080,
1988.

7. T. Hosoi. The axiomatization of the intermediate propositional systems sn of gödel.
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Abstract. Reasoning on Constraint Handling Rules (CHR) programs
and their executional behaviour is often ad-hoc and outside of a formal
system. This is a pity, because CHR subsumes a wide range of important
automated reasoning services. Mapping CHR to Transaction Logic (T R)
combines CHR rule specification, CHR rule application, and reasoning
on CHR programs and CHR derivations inside one formal system which
is executable. This new T R semantics obviates the need for disjoint
declarative and operational semantics.

1 Introduction

Constraint Handling Rules (CHR) [6] is a concurrent, committed-choice, rule-
based language which was originally created as a declarative logic constraint lan-
guage to implement monotonic reasoning services. Its main features are guarded
rules which transform multi-sets of constraints (atomic formulas) into simpler
ones until they are solved.

Over the last decade, CHR has become available for most Prolog systems,
Java, Haskell, and Curry and has matured into a general-purpose programming
language with many applications [12]: Nonmonotonic reasoning services can be
implemented in CHR, e.g. the fluent executor (FLUX) [13] which provides gen-
eral reasoning facilities about actions and sensor information under incomplete
information. Also, classic algorithms like the union-find, which rely on inher-
ently nonmonotonic updates, have been implemented with optimal complexity
in CHR [11].

The operational semantics of CHR is specified by a state transition system.
Although applicability of a CHR rule is defined within predicate logic, the opera-
tional semantics is not integrated into a logic and is different from the declarative
semantics in predicate logic. Basically the problem is that there is no elegant
predicate logic-based semantics for changing the constraint store. Hence, rea-
soning on CHR programs and their executional behaviour is often ad-hoc and
outside of a formal logic-based system.
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We integrate the operational semantics of CHR into Transaction Logic (T R)
[3,4,5] which extends predicate logic with – among other things – a declarative
account for state changes in logic programs (cf. [3] for a list of failed attempts
to formalise updates in a logic programming language). Transaction Logic nat-
urally enjoys nonmonotonic behaviour due to the dynamics of a database which
represents a current state [8].

Contributions and overview of the paper. By mapping the core of CHR to T R, we
combine CHR rule specification, CHR rule application, and reasoning on CHR
programs and CHR derivations inside one formal system which is executable.
We show that a CHR rule applies if and only if the T R query of the mapping
of this CHR rule succeeds in T R and extend this result to CHR derivations
by integrating the CHR run-time system. A formal statement then links the
procedural aspect of execution (the operational semantics) with a new model-
theoretic (declarative) reading. Thus our semantics covers both operational and
declarative aspects elegantly. An efficient proof system in T R executes CHR
programs and reasons on CHR derivations mechanically.

– We present the aspect of a missing unified semantics for CHR through an
easy example in Section 2 and propose our solution to overcome this missing
aspect in Section 3.

– We explain the most basic instantiation of T R to give a logical account for
range-restricted ground CHR programs in Section 4.

– We map the constraint store to a database, the CHR program to a serial-
Horn T R program that updates this database, and the CHR run-time system
to a generalised-Horn T R program. The details of our CHR-to-T R mapping
in Section 5 are necessary for our sound- and completeness result which is
our main contribution.

– In Section 6 we apply our approach to two examples, showing how to execute
and reason on them in the framework of Transaction Logic. We use the
FLORA-2 system [14] for implementation.

Complete proofs and full CHR and FLORA-2 sources of the examples are
available at http://www.informatik.uni-ulm.de/pm/index.php?id=138.

2 The Problem: Reasoning on Constraint Handling Rules

Example 1. Consider a coin-throw simulation program1, consisting of two CHR
rules r1 and r2.

r1 @ throw ⇔ caput r2 @ throw ⇔ nautica

Intuitively, as both rules are applicable for the goal throw, the answer constraint
is caput or nautica depending on the rule selection. Clearly, we have the two
1 To avoid misunderstandings with the head of a rule, we replaced the good old “head”

and “tail” with the ancient “caput” and “nautica”.

http://www.informatik.uni-ulm.de/pm/index.php?id=138
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possible state transitions (throw) �r1 (caput) and (throw) �r2 (nautica) for
the goal throw.

What we are missing is one logic-based formal system for mechanical execution
and reasoning, which should be implemented to also allow automatic reasoning.
Available CHR run-time systems (e.g. the reference implementation in SICStus
Prolog for CHR) come as black-boxes and offer no means for reasoning. For
example, we want to prove the following three properties automatically:

(P1) Throwing a coin can yield caput.
(P2) Throwing a coin cannot yield both caput and nautica.
(P3) Application of r1 cannot yield nautica.

Because the constraint throw is interpreted as a trigger (and not as static
truth) in the coin-throw simulation program, the gap between the predicate
logic declarative semantics [6] of this general-purpose CHR program – the mean-
ingless formula caput ↔ nautica – and its executions is especially large. The
underlying problem is that predicate logic is a static logic, unable to express
the dynamics of deletion and insertion directly. Here, reasoning has to be done
ad-hoc (outside of a logic) along the operational semantics of CHR [1].

The linear logic semantics [2] overcomes this restriction of the classic predicate
logic semantics and gives a meaningful declarative semantics also for general-
purpose CHR programs. While the linear logic notion of a resource models the
necessary dynamics, it does not cover all aspects of the operational semantics:
Linear logic has no inherent notion of execution and we cannot reason on the
execution itself but only on the result of an execution. Similar to the classic
declarative semantics, the linear logic semantics links initial and final state with
a logical reading of the program. As CHR derivations are mimicked inside its
proofs, reasoning on derivations is not possible directly.

Summarising, both predicate and linear logic declarative semantics allow rea-
soning on the properties of the program, but lack the possibility to actually
execute the rules, reason on the execution, and are not readily mechanised.
Thus, reasoning on execution lacks a formal logic-based framework. Most im-
portantly, specification (as CHR rules), execution (by a CHR run-time system),
and reasoning are not integrated and reasoning is either done by hand or by
special-purpose tools (e.g. for confluence [1]). The need to integrate the oper-
ational semantics into a logic was recognised by Maher [9]: Besides a “logical”
(declarative) semantics, also a data/control-flow analysis is highly desirable, e.g.
to prove termination of a program. Clearly this data/control-flow analysis as-
pect is inherently absent in [6,2] which cover the “logical” (declarative) semantics
only. Maher continues, that “there is possibility that this analysis can be carried
out within a logic framework”[9, p. 870]. We argue that Transaction Logic (T R)
provides this missing aspect in the next section.

3 The Idea: Map CHR to Transaction Logic

We map CHR to Transaction Logic to simulate the operational semantics of
CHR by logic programming with state changes and use executional entailment
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– a formal statement in T R – to execute and to reason on CHR derivations. In
their seminal work on Transaction Logic [3], Bonner and Kifer extend predicate
logic with a declarative account for state changes in logic programming. As the
operational semantics of CHR is formalised by a state transition system, where
a CHR rule application changes the constraints store, we map CHR programs
to serial-Horn T R programs and identify the application of a CHR rule by the
state transition system with a successful query of the T R program. To this end,
we map the constraint store to a database with the elementary database updates
insertion and deletion. A CHR derivation is then the side-effect on the database
when the T R proof system infers the T R query to be true.

Example 1 (Cont.). We show the basic ideas for the coin-throw simulation pro-
gram with a non-deterministic rule selection strategy (and review this example
in Section 6 in detail). We map rule r1 to the serial-Horn T R rule rT R1 .

rT R1 ≡ chr(r1) ← throw⊗ throw.del ⊗ caput.ins

To make the T R-predicate chr(r1) true, we have to execute the serial conjunction
on its right hand side: First check that throw is present, then delete it, and
then insert caput. The order in the serial conjunction ⊗ is crucial, as the T R-
predicates throw.del and caput.ins have side-effects on the database2. If we
execute chr(r1) on the (initial) database {throw}, we pass through the empty
database {}, and arrive at the (final) database {caput}. For P = {rT R1 }, we
have the following executional entailment statement |=x in T R, which states,
that the successful invocation of program P by chr(r1) can successfully update
the database along the given execution path {throw}, {}, {caput}.

P, {throw}, {}, {caput} |=x chr(r1)

The executional entailment statement has both a procedural (operational) and
a model-theoretic (declarative) semantics in T R. On the one hand, an available
efficient T R inference system for the subclass of serial-Horn programs actually
computes the necessary updates of an initial database {throw} when establishing
the truth of chr(r1) and implements the procedural aspect of T R. Integrating the
operational semantics of CHR into T R by executional entailment, we have – on
the other hand – a new model-theoretic (declarative) semantics which captures
the possible executions of a CHR program.

We show in Section 5, that a CHR rule r is applicable iff we can establish the
truth of the head of a T R rule rT R and then extend our mapping to cover the
CHR run-time system. The changes caused on the constraint store are mapped
one-to-one to updates of the database as we simulate CHR rule application by
the T R inference system.

We can then prove properties (P1-3) from Section 2 mechanically. Even bet-
ter, the FLORA-2 system allows us to both execute and reason on this example
automatically (cf. Section 6).
2 The symbol ⊗ stands for serial conjunction in T R and not for join of views on

databases.
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4 Preliminaries

We provide necessary background for readers not familiar with CHR and T R.

4.1 Constraint Handling Rules

Constraint Handling Rules (CHR) [6,12] is a concurrent, committed-choice, rule-
based logic programming language. We distinguish between two different kinds
of constraints: built-in constraints which are solved by a given constraint solver,
and user-defined (CHR) constraints which are defined by the rules in a CHR
program. This distinction allows one to embed and utilise existing constraint
solvers as well as side-effect-free host language statements. As we trust the built-
in black-box constraint solvers, there is no need to modify or inspect them.

A CHR program is a finite set of rules. There are two main kinds of rules:
Simplification rules R @ H ⇔ G | B and propagation rules R @ H ⇒ G | B.
Each rule has a unique name R, the head H is a non-empty multi-set conjunction
of CHR constraints, the guard G is a conjunction of built-in constraints, and
the body B is a goal. A goal is a multi-set conjunction of built-in and CHR
constraints. A trivial guard expression “true |” can be omitted.

Since we do not focus on propagation rules in this paper, it suffices to say
that they are equivalent (in the standard semantics) to simplification rules of
the form R @ H ⇔ G | (H ∧ B).

The operational semantics of CHR is defined by a state transition system
where states are conjunctions of constraints. To a conjunction of constraints,
rules are applied until a fixpoint is reached. Note that conjunctions in CHR
are considered as multi-sets of atomic constraints. Any of the rules that are
applicable can be applied and rule application cannot be undone since CHR is a
committed-choice language. A simplification rule R @ H ⇔ G | B is applicable
in state (H ′ ∧ C), if the built-in constraints Cb of C imply that H ′ matches the
head H and the guard G is entailed under this matching, cf. (1). The consistent,
predicate logic, built-in constraint theory CT contains Clark’s syntactic equality.

IF R @ H ⇔ G | B is a fresh variant of rule R with variables X̄
AND CT |= (∀)Cb → ∃X̄ (H = H ′ ∧ G)
THEN (H ′ ∧ C) �R (B ∧ G ∧ H = H ′ ∧ C)

(1)

If applied, a simplification rule replaces the matched CHR constraints in the
state by the body of the rule. In the operational semantics, rules are applied until
exhaustion, i.e. the CHR run-time system (which actually runs a CHR program
by selecting applicable rules and matching constraints) computes the reflexive
transitive closure �∗ of �. The CHR run-time system should stop immediately,
when insertion of a built-in constraint makes Cb inconsistent. However, this
termination at failure is not explicitly addressed in the operational semantics.

4.2 Transaction Logic

Transaction Logic (T R) [3,4,5] is a conservative extension of classical predicate
logic, where predicates can have side-effects on a database, allowing to model
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state changes. Similar to predicate logic, T R features a Horn fragment which
supports logic programming. While T R is an extremely versatile logic to handle
specification, execution, and reasoning on logic programs with updates, it suffices
for this work to use a basic instantiation of T R which restricts side-effects to
the updates insertion and deletion on a relational, ground database.

A database is a set of ground atoms. A sequence of databases D0, . . . , Dn is
called a path π = 〈D0, . . . , Dn〉 which can be split into sub-paths 〈D0, . . . , Di〉 ◦
〈Di, . . . , Dn〉 (for 0 ≤ i ≤ n). Access to the database is restricted by two oracles:
The data oracle Od maps a database D to a set of ground atoms that are
considered to be true along the path 〈D〉. Elementary database updates are
captured by the transition oracle Ot which maps two databases D and D′ to a
set of ground atoms considered to be true along the path 〈D, D′〉.
Definition 1 (Path Structure with Relational Oracles). A path struc-
ture M assigns a classical Herbrand structure (or � which satisfies everything)
to every path and is subject to the following restrictions for ground atoms p.

M(〈D〉) |= p if p ∈ D (p ∈ Od(D))
M(〈D, D′〉) |= p.ins if D′ = D ∪ {p} (p.ins ∈ Ot(D, D′))
M(〈D, D′〉) |= p.del if D′ = D \ {p} (p.del ∈ Ot(D, D′))

(2)

Quantification of T R formulas and satisfaction of composed T R formulas are
defined analogously to predicate logic: A T R formula with ¬, ∧, ∨, or ← as
main connective is satisfied along a path π if the appropriate property holds
between its sub-formulas along the same path π. Satisfaction from the basic
properties (2) extends to the case of longer paths by the new serial conjunction
operator: A serial conjunction φ⊗ψ is satisfied along the path π iff φ is satisfied
along π1 and ψ is satisfied along π2 for some split of the path π = π1 ◦ π2. The
modal possibility ♦φ expresses that φ is satisfiable along some path starting
from the current database, formally M(〈D〉) |= ♦φ iff there is a path π starting
at database D with M(π) |= φ.

The formal statement executional entailment links a program, a possible se-
quence of databases which captures the side-effects of the program, and the
invocation of the program.

Definition 2 (Executional Entailment). Consider a set of T R formulas P
and an execution path consisting of a sequence of databases D0, . . . , Dn. A path
structure MP is a model of P iff MP (π) |= φ for every T R formula φ ∈ P and
every path π.

P, D0, . . . , Dn |=x φ iff MP (〈D0, . . . , Dn〉) |= φ for every model MP of P

Executional entailment, |=x, selects one of (possibly several) valid execution
paths, for which φ is true for all models MP of P . A model MP of P is a path
structure that respects the oracles and satisfies every formula of P along every
path. The execution path D0, . . . , Dn records all side-effects when establishing
the truth of φ, i.e. the “successful program invocation of φ for program P can
update the database along execution path from D0 to D1 . . . to Dn” [3, p. 31].
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Example 2. Consider the T R program P = {r ← p ⊗ p.del}. Invocation of r
deletes p from the database, but only if p was initially present and we have
P, {p, q}, {q} |=x r but P, {q}, {} �|=x r. Also, deletion of p should be the only
side-effect of the invocation of r, hence P, {p, q}, {} �|=x r as MP (〈{p, q}, {}〉) |= r
is not correct for all models MP of P . When we insert q under the condition
that r can execute, e.g. P, {p}, {p, q} |=x ♦r ⊗ q.ins , we keep p in the database.

For the class of serial-Horn programs (i.e. sets of Horn rules with only serial con-
junctions in the r.h.s) and serial queries, T R features an executional deduction
inference system [3]. For a serial-Horn program P , an initial database D0, and an
existentially quantified serial query (∃)φ, it infers the sequent P, D0--- � (∃)φ
iff there is an executional entailment of (∃)φ along an execution path starting
from D0. Most importantly the system both tries to infer the truth of (∃)φ
and computes the necessary changes to D0 which we record in D0, . . . , Dn. For-
mally, the following fundamental sound- and completeness result links the model-
theoretic executional entailment with the mechanised executional deduction.

Theorem 1 (Bonner and Kifer [3]). P, D0, . . . , Dn |=x (∃)φ iff there is an
executional deduction of (∃)φ with execution path D0, . . . , Dn.

For our serial-Horn program P from Example 2 we have P, {p, q}--- � r and
the successful inference of the query r computes the execution path {p, q}, {q}
from the initial database {p, q}. Of course, we cannot infer P, {q}--- � r as
there exists no execution path for the query r starting from {q}. By the def-
inition of executional entailment, an execution either succeeds or all tentative
side-effects are rolled back. Due to this transaction property of T R we cannot
infer P, {p}--- � r ⊗ r and the tentative deletion of p by the first call to r is not
manifested as the second call to r fails.

5 The Details: CHR-to-T R-Mapping

We map CHR states to databases, adapt the data oracle Od, map CHR rules to
serial-Horn T R rules, and specify the CHR run-time system as a generalised-
Horn T R program. We then show our sound- and completeness result that links
CHR derivations with executional entailment statements of T R.

For this paper, we restrict ourselves to range-restricted ground CHR. Range-
restricted CHR rules have no local variables, i.e. every variable in each rule
already occurs in the head of the rule and all CHR states are ground as there
are no variables in the goal.

5.1 Mapping CHR States to Valid Databases

We map each ground, user-defined constraint ci of a CHR state (recall that
a CHR state is a multi-set conjunction) to a T R-predicate u(ci, i) where the
second argument is a unique identifier – we use a natural number. We trail a
new, unique identifier k in a bookkeeping T R-predicate n(k) (assuming that
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u/2 and n/1 are not defined by CT ). Reflecting user-defined constraints as T R-
function symbols allows us to specify the necessary bookkeeping for the insertion
and deletion of user-defined constraints as a serial-Horn program.

Definition 3. A valid database D contains one bookkeeping predicate n(k),
predicates u/2 with unique identifiers that are all smaller than k, and built-
ins bi. The mapping ms is defined from the set of CHR states S (consisting of
user-defined constraints ci and built-ins bi) to the set of valid databases D by

(
∧

0≤i<k

ci ∧
∧

0≤i<l

bi) �→ {u(ci, i) : 0 ≤ i < k} ∪ {n(k)} ∪ {bi : 0 ≤ i < l} .

Two valid databases are equivalent, ∼, iff they differ only in the set of identifiers
(including the argument of the bookkeeping predicate) and there is a bijective
mapping between these sets.

Clearly, ms(c(a)) = {u(c(a), 0), n(1)} and {u(c(a), 5), n(9)} are equivalent. We
update valid databases through the serial-Horn program Pbasic:

udel(U) ← u(U, K) ⊗ u(U, K).del
uins(U) ← n(K) ⊗ n(K).del ⊗ n(K + 1).ins ⊗ u(U, K).ins

(3)

Deletion of a ground user-defined constraint is conditional (cf. Example 2) and
insertion requires some bookkeeping.

Property 1 (Conditional Deletion of User-Defined Constraints). Invocation of
udel(c) deletes a copy of the ground, user-defined constraint c from the valid
database D + {u(c, k)}3 and terminates in the valid database D.

Pbasic, D + {u(c, k)}, D |=x (∃) udel(c) with k ∈ N

Property 2 (Insertion of User-Defined Constraints). Invocation of uins(c) inserts
a new copy of the ground, user-defined constraint c into the valid database D +
{n(k)} and terminates in the valid database D + {n(k + 1), u(c, k)}.

Pbasic, D + {n(k)}, . . . , D + {n(k + 1), u(c, k)} |=x (∃) uins(c) with k ∈ N

5.2 Mapping the Built-In Theory CT to the Data Oracle Od

For range-restricted ground CHR the entailment condition of the state transition
system, defined in (1) can be simplified as there are no local variables. Because
we match the head H with the ground constraints H ′ from the store, the formula
∃X̄(H = H ′ ∧ G) is ground. We extend the relational data oracle Od, defined
in (2), to implement the built-in constraint theory CT .

Definition 4 (Data Oracle as Built-in Solver). For any database D and
ground atomic built-in φ, the data oracle respects CT :
φ ∈ Od(D) if CT |= Db → φ for the conjunction Db of built-in predicates of D.
3 We use “+” to denote disjoint set union.
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5.3 Mapping CHR Rules to Serial-Horn Rules in T R

We map CHR rules to T R rules that update the database through Pbasic as de-
fined in (3). We normalise any range-restricted CHR rule to contain no function
symbols in the head by introducing a new variable for any implicit equality in the
head and adding an explicit (new) equality to the guard, e.g. r @ p(a) ⇔ true
normalises to r @ p(X) ⇔ X = a | true.

Definition 5. Consider a normalised range-restricted simplification rule r. The
head H of rule r is the (multiset) conjunction

∧nh

i=0 hi of user-defined con-
straints hi, the guard G is the conjunction

∧ng

i=1 gi of built-in constraints gi

(ng = 0 represents true), and the body B is the (multiset) conjunction
∧nu

i=1 ui

of constraints ui (nu = 0 represents true). The auxiliary t maps user-defined
constraints ui to uins(ui) and built-in constraints to ui.ins. We define the map-
ping mr : r @ H ⇔ G | B �→ rT R by

rT R ≡ chr(r) ←
( nh⊗

i=0

udel(hi)
)

⊗
( ng⊗

i=1

gi

)
⊗

( nu⊗
i=1

t(ui)
)

. (4)

Our mapping mr is guided by the intuition that establishing the truth of chr(r)
should have the same effect on the database as rule application by CHR’s state
transition system on the constraint store. The body of chr(r) consists of parts
corresponding to head, guard, and body of the CHR rule r: First, we succinctly
query the database for copies of each head constraint and delete them. Then
we pass the check for the guard (as r is range-restricted, all variables in the
guard are now bound) to our data oracle which respects the built-in constraint
theory CT . Finally, we add the body constraints, labelling each inserted user-
defined constraint with a new identifier.

By the transaction property of T R we can safely intertwine applicability
checks with updates of the database, e.g. if the guard fails, the tentative deletions
of the user-defined head constraints are undone.

Formally, application of r by the state transition system is equivalent to exe-
cutional entailment of chr(r) modulo identifier renaming.

Lemma 1. Consider two ground CHR states S and S′, two valid databases D
and D′, a normalised range-restricted CHR simplification rule r, and its map-
ping rT R as defined in (4). For D ∼ ms(S) and D′ ∼ ms(S′) we have

S �r S′ iff Pbasic + {rT R}, D, . . . , D′ |=x (∃) chr(r) .

5.4 Sound and Complete: CHR Run-Time System in T R

We now extend Lemma 1 from a single rule step of a single CHR rule to a CHR
derivation of a CHR program by integrating the fixpoint computation, i.e. the
operational semantics of CHR, into T R.
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Our main result shows that our mapping from CHR to T R is sound- and
complete w.r.t. the operational semantics of CHR. To this end, we express ap-
plicability of a CHR rule in state S by P, D |=x (∃)♦ chr(R) with D ∼ ms(S)
and use induction on the derivation length for the extension from � to �n.

Theorem 2 (Sound- and Completeness). Consider two ground CHR states
S and S′, two valid databases D and D′, a CHR program P consisting of range-
restricted simplification rules, and its mapping P T R = Pbasic + {rT R : r ∈ P}.
For D ∼ ms(S), D′ ∼ ms(S′), and an execution path π starting in D and ending
in D′ we have

S �∗
P S′ iff P T R, π |=x (∃)

(
n⊗

i=1

chr(Ri)

)
⊗ [¬♦ chr(R)] with n ∈ N

where [¬♦ chr(R)] restricts satisfaction of ¬♦ chr(R) to paths of length one.

We now sketch how to implement the CHR run-time system as T R program
with hypothetic goals (to express possibility) and negated goals (to check that
no rule is applicable). We capture the fixpoint semantics of CHR as

fixpoint ← while applicable do chr(R) od

and implement the imperative while-loop programming construct as a simple
generalised-Horn program PrunTime in T R.4

fixpoint ← chr(R) ⊗ fixpoint (5)
applicable ← ♦ chr(R) (6)

fixpoint ← [¬ applicable] (7)

Rule (5) succeeds if the call chr(R) – which successfully applies a CHR rule R –
succeeds. In this case we call fixpoint (tail-recursively). We need two generalised-
Horn rules to express that no CHR rule is applicable: Rule (6) succeeds if a CHR
rule is applicable and this test leaves the database D untouched and rule (7)
succeeds if no CHR rule is applicable at the current state using negation-as-
failure to compute [¬ applicable].

Bonner and Kifer give an extended (sound- and complete) executional deduc-
tion inference system that integrates the ♦ operator. Negation ¬ is then treated
(outside of the proof system) as negation-as-failure. A slight modification of the
model-theoretic executional statement allows to give a declarative account for
locally stratified generalised-Horn programs. Compared to Definition 2, we no
longer look at all but only at the perfect models of the program. As PrunTime is
stratified we can use this executional entailment statement, |=perf

x , cf. [3].

Corollary 1. Under the premises of Theorem 2 we have

S �∗
P S′ iff P T R + PrunTime, π |=perf

x (∃) fixpoint .

4 Note that we can add termination at failure by adding “Db consistent” to the loop
condition easily, allowing to reason also on failed derivations.
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Our declarative T R semantics of the CHR program P is the perfect-model se-
mantics of the generalised-Horn T R program P T R + PrunTime. Invocation of
fixpoint – on the other hand – computes �∗ as side-effect on the database,
i.e. captures the operational semantics of CHR. This brings together the opera-
tional and declarative semantics of CHR in T R.

6 Examples

We use the FLORA-2 system [14], a sophisticated object-oriented, knowledge
management environment that implements the executional deduction inference
system of T R by offering backtrackable deletion and insertion of facts, to ex-
ecute and reason on CHR. Similar to Prolog, but with handling updates in a
declarative way, serial queries are treated from left to right and one database is
kept at any time. We have P, D0, --- � (∃)φ iff the query “?- φ” succeeds for
the program P from the initial database D0. In this case, FLORA-2 updates the
database according to the computed executional path as side-effect.

Example 3 (Coin-Throw Simulation Program). We revisit Example 1 in detail.
For the program P T Rcoin = Pbasic +{rT R1 , rT R2 }, defined in (3) and by (4), and the
initial database ms(throw) = {u(throw, 0), n(1)} we throw a coin by querying
“?- chr(R)”. This query succeeds, returns an answer substitution for R, and
updates the database. In a subsequent query “?- u(S, I)” we query the current
database state for the side S of the coin.

We now prove properties (P1-3) from Section 2 automatically:

(P1) The query “?- chr(R), u(nautica, I)”5 succeeds from D0, i.e. we have a
mechanical proof that a computation (throw) � (nautica) exists. Due to
the post-condition u(nautica, I) the FLORA-2 system backtracks over rule-
application if rule r1 is selected in the first try.

(P2) Throwing a coin cannot yield both caput and nautica is true because the
query “?- chr(R), u(nautica, I), u(caput, J)” fails (from database D0).

(P3) Applying rule r1 cannot yield nautica as “?- chr(r1), u(nautica, I)” fails
(from database D0).

For complex CHR programs this knowledge is much less trivial and very valuable
for understanding. While CHR programs are usually very concise, debugging is
often tedious, and automatised reasoning is highly desirable.

Example 4 (Greatest Common Denominator). Euclid’s algorithm to compute
the greatest common denominator (gcd) is probably the first algorithm in history
that is still commonly used. The CHR implementation of the gcd consists of only
two rules, where the built-in theory CT also contains the order between natural
numbers.

r1 @ gcd(0) ⇔ true
r2 @ gcd(X1) ∧ gcd(X2) ⇔ 0 < X1 ∧ X1 ≤ X2 | gcd(X1) ∧ gcd(X2%X1)

5 The serial conjunction operator ⊗ is written as comma in FLORA-2.
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The CHR derivation (gcd(24)∧gcd(30)∧gcd(42)) �∗ (gcd(6)) computes the gcd
of 24, 30, and 42. The gcd algorithm can be seen as a (very basic) nonmonotonic
reasoning service, as e.g. adding gcd(7) to the goal invalidates the original answer
constraint gcd(6).

As FLORA-2 does not implement the possibility operator ♦, we carry out
the next two inferences mechanically – but not automatically. We now assume
D0 = ms(gcd(24) ∧ gcd(30) ∧ gcd(42)) as initial database and simulate one
(of several possible) CHR derivations – recall that CHR is a committed-choice
language – by inferring the sequent P T Rgcd + PrunTime, D0--- � (∃) fixpoint. Then
we inspect the final database Dn of the computed executional path D0, . . . , Dn

which contains u(gcd(6), k) with some identifier k ∈ N. Similarly, we have a
mechanical proof that no gcd(0) constraint is in the final constraint store as we
cannot infer P T Rgcd + PrunTime, D0--- � (∃) fixpoint⊗u(gcd(0), I). Here the post-
condition u(gcd(0), I) forces us to backtrack over all possible execution paths,
i.e. CHR derivations, due to non-deterministic constraint and rule selection.

We can reason automatically on the derivation length: There is no CHR
derivation of the gcd with only 4 CHR rule applications because the FLORA-2
query “?- chr(r2), chr(r2), chr(r1), chr(r1)” fails. Similarly, we prove that the
gcd can be computed with derivation length 5 and that another CHR deriva-
tion with length 8 exists, e.g. (24, 30, 42) �r2 (24, 30, 18) �r2 (24, 12, 18) �r2

(6, 12, 18) �r2 (6, 12, 6) �r2 (6, 0, 6) �r1 (6, 6) �r2 (6, 0) �r1 (6).

7 Conclusion

We showed how we can execute and reason on execution of CHR programs within
one logical framework by integrating the operational and declarative semantics
of CHR into T R. We introduced rule names into the formalism, mapped CHR
states and CHR rules to databases and T R rules, and mapped the CHR run-
time system for non-deterministic rule application to a recursively defined T R-
predicate. The perfect-model semantics of a generalised-Horn T R program is
our new declarative T R semantics of CHR. The model-theoretical executional
entailment statement (“one possible execution sequence”) brings together T R
program, execution path, and program invocation. The executional deduction
inference system mechanically infers a T R-query and computes the necessary
updates to the database. We showed execution and automatic reasoning on CHR
using the FLORA-2 system.

By bringing the operational semantics of CHR into T R, we merged opera-
tional and declarative semantics of CHR in one formal system which allows both
execution and reasoning. Our approach is more practical than the one taken for
the available declarative semantics of CHR. Both the declarative classic predi-
cate logic semantics and its recent extension to linear logic are more theoretical.
They cannot execute a CHR program, cannot reason on its execution, and offer
only limited help to mechanise reasoning.

We plan to extend our mapping and to investigate the connections between
the formalisms of CHR, constraint programming, and T R in more detail:
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– Lift the restrictions on ground, range-restricted CHR by encoding variables
in the database, introduce propagation rules H ⇒ G | B (which do not
remove H upon application), and avoid trivial non-termination, by encoding
the propagation history in the database.

– Use full T R to reason on the effect properties [5] of a CHR program starting
from our new declarative T R semantics.

– Another direction is to extend T R with constraints according to the general
CLP-scheme [7] which would then allow constraint solving over a side-effect-
full, logic programming host language.

As CHR enables the direct implementation of many important monotonic and
nonmonotonic reasoning services, this work can be seen as very first step towards
a unifying framework to specify, execute, and reason about the semantics of rule-
based programs, knowledge bases, and inference engines as envisioned in [10].

Acknowledgements. We thank Thom Frühwirth and the anonymous reviewers
for their valuable comments which helped us to improve this paper.
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2. H. Betz and T. Frühwirth. A linear-logic semantics for Constraint Handling Rules.
In CP 2005, volume 3709 of LNCS, pages 137–151. Springer, 2005.

3. A. J. Bonner and M. Kifer. Transaction Logic programming (or, a logic of proce-
dural and declarative knowledge). Technical Report CSRI-323, Computer Systems
Research Institute, University of Toronto, Canada, 1995.

4. A. J. Bonner and M. Kifer. A logic for programming database transactions. In
Logics for Databases and Information Systems, pages 117–166. Kluwer, 1998.

5. A. J. Bonner and M. Kifer. Results on reasoning about updates in Transaction
Logic. In Transactions and Change in Logic Databases, volume 1472 of LNCS,
pages 166–196. Springer, 1998.
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Abstract. We introduce the logic-based planning language Kc as an extension
of K [5]. Kc has two advantages upon K. First, the introduction of external func-
tion calls in the rules of a planning description allows the knowledge engineer
to describe certain planning domains, e.g. involving complex action effects, in a
more intuitive fashion then is possible in K. Secondly, in contrast to the confor-
mant planning framework K, Kc is formalized as a conditional planning system,
which enables Kc to solve planning problems that are impossible to express in K,
e.g. involving sensing actions. A prototype implementation of conditional plan-
ning with Kc is build on top of the DLVKsystem, and we illustrate its use by
some small examples.

1 Introduction

In general, the task of a planning system consists of finding, dependent on the ini-
tial state, a sequence of actions such that a certain goal will be reached if, starting
from that initial state, the actions in the sequence are executed in the correct order.
In the context of logic-based languages, a number of frameworks have been proposed
in the literature to logically describe and reason about such planning problems, e.g.
[8,9,3,13,11,4,15,5,16].

In [4,5], the planning language K was introduced as a system for planning under
incomplete knowledge, i.e. rather than describing transitions between states of the world
(complete knowledge), one can describe in K transitions between states of (incomplete)
knowledge. K’s ability to deal with incomplete knowledge comes from the fact that
its semantics is close in spirit to the answer set semantics [7], thus allowing negation
as failure (naf) to be used in the causation rules of the planning description. As for
answer sets, the semantics of K is defined in a two step process. First, the semantics is
defined for planning descriptions without naf. Next, for arbitrary planning descriptions,
a reduction is introduced, similar to the GL-reduct [7], which removes naf from the
planning descriptions w.r.t. a candidate state transition. Finally, if the state transition
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is valid w.r.t. the reduct of the planning description, the state transition is valid for the
planning description.

Although K is an expressive framework, it suffers from two shortcomings. The first
problem encountered is a direct consequence of the fact that K is a conformant planning
system. Consider e.g. the problem (taken from [15]) of defusing a bomb. To defuse the
bomb, a special lock has to be placed in the locked position. If one defuses the bomb
while the lock is unlocked, the bomb explodes and the person defusing the bomb is
killed. The person defusing the bomb can determine if the bomb is locked or unlocked
by looking at it, and she can switch the lock from the locked to the unlocked position
and vice-versa. Obviously, no action can be undertaken once the bomb has exploded. A
possible encoding of this problem in K is depicted below.

fluents: exploded. locked. unlocked. disarmed. dead.
actions: disarm. turn. look.
always: caused exploded after disarm, unlocked.

caused disarmed after disarm, locked.
caused unlocked after turn, locked.
caused locked after turn, unlocked.
caused dead if exploded.
caused locked if not unlocked after look.
caused unlocked if not locked after look.
executable disarm if not exploded, not dead.
nonexecutable disarm if not locked, not unlocked.
executable turn if not exploded, not dead.
executable look if not exploded, not dead.
inertial dead.
noConcurrency.

goal: disarmed?(3)

One can check that no conformant plan1 for the above problem exists. Indeed, if the
action look is performed we know that the bomb is either locked or unlocked, but both
cases need a different, but incompatible, strategy for defusing the bomb. In such cases,
one needs to switch from conformant to conditional planning. A conditional plan for
the above problem could be

look ; case
{ {locked} → disarm

{unlocked} → turn; disarm (1)

Thus, the person defusing the bomb first looks at the bomb. If it is locked, she disarms
it; but if it is unlocked, she first turns the switch and then disarms the bomb.

A second problem with K is encountered when one needs to describe effects of
actions that are not easily captured by logic programming rules. Consider the following
variant of the Bubble Breaker game. We have a grid of a certain height and certain width
and on each position in the grid we have a colored bubble. We can tap on any position in
the grid, but if we tap a position, the biggest connected (left/right/up/down directions)
region of bubbles with the same color and including the tapped position, is removed
from the board. In case the biggest connected region only contains the tapped position
itself, nothing is removed. After the bubbles are removed, the remaining bubbles in each
column fall down, such that there are no holes between the bubbles in the same column.
An illustration of the course of the game is provided in Figure 1. The goal of the game
is to tap certain positions in such a way that all the bubbles are removed from the board.

1 A conformant (or secure) plan is a plan that always leads to a goal state when it is executed.
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Fig. 1. Left: the initial configuration of the board. Middle: the region that is selected after tap-
ping position (1, 1), i.e. the lower left corner. Right: the configuration after the selected block is
removed.

Clearly, it is not so easy to describe the effects of the tap action using causation rules.
First, one has to compute the biggest connected region, afterwards that region has to be
removed and finally the blocks on top of the removed region have to fall down. One
solution is to add an additional action update and some extra fluents to take care of this
complicated process of computing the effects of the tap action. The complete encoding
in K can be found in [17], but we will briefly describe parts of it here.

First, some (non)executability statements are needed for the tap and update action,
i.e. when there are holes between bubbles in the same column, the update action is
executable and the tap action is not.

executable update if pos(X,Y,C), not placed(X,Yn), succ(Yn,Y).
nonexecutable tap(X,Y) if pos(A,B,C), not placed(A,Bn), succ(Bn,B).

Next, to compute the region that has to be removed from the board and to actually
remove that region, one can use the following set of causation rules.

caused remove(X,Y,C) after tap(X,Y), pos(X,Y,C).
caused remove(Xn,Y,C) if remove(X,Y,C) after pos(Xn,Y,C), succ(X,Xn).
caused remove(Xn,Y,C) if remove(X,Y,C) after pos(Xn,Y,C), succ(Xn,X).
caused remove(X,Yn,C) if remove(X,Y,C) after pos(X,Yn,C), succ(Y,Yn).
caused remove(X,Yn,C) if remove(X,Y,C) after pos(X,Yn,C), succ(Yn,Y).
caused pos(X,Y,C) if not remove(X,Y,C) after pos(X,Y,C), tap(A,B).

Finally, to encode that the bubbles have to fall down, the update action will be exe-
cuted a number of times and each time all the bubbles with a free position below them
are moved one position lower.

caused pos(X,Yn,C) after update, pos(X,Y,C), not placed(X,Yn), succ(Yn,Y).
caused pos(X,1,C) after update, pos(X,1,C).
caused pos(X,Y,C) after update, pos(X,Y,C), pos(X,Yn,Cn), succ(Yn,Y).

Note that a plan for this problem using the encoding in K will always be of the form

tap(x , y); update; . . . , update; tap(v ,w); update; . . . ; tap(k , l); . . . ; update; tap(a, b).

To solve problems like the above, we propose to extend the action language K by
allowing external functions to be called2 in the causation rules of an action descrip-
tion. Intuitively, an external function call allows a knowledge engineer to import fluent
information from an external source in response to an action that is performed. These
external function calls are inspired by the DLVHEX system [6], i.e. a system for answer

2 We assume that the external functions have no side effects when they are called.
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set programming with higher-order atoms and external evaluations. For this reason, our
external functions will use the same notation as the ones in DLVHEX.

Reconsider e.g. the Bubble Breaker game and the following causation rule involving
an external function &nbc, which stands for new board configuration

caused pos(Xn,Yn,Cn) after &nbc[X ,Y ](Xn,Yn,Cn), tap(X ,Y ) .

When the action tap is executed for a certain position (X, Y ), the external function
&nbc will return a set of tuples of the form (Xn, Y n, Cn), with (Xn, Y n) a position
and Cn a color, that correspond to the new configuration of the grid when a tap action
is executed on the given position. The above rule imports this output into the fluent
pos, yielding that the above rule can be intuitively read as “executing the action tap on
position X and Y of the grid causes the fluents pos(Xn, Y n, Cn) to become true if the
tuple (Xn, Y n, Cn) is an output of the external function call &nbc”.

The external function in the previous rule is deterministic, i.e. for a given config-
uration of the grid and a position (X, Y ), the external function always produces the
same output tuples. However, when we reconsider the defusing a bomb problem with
external functions &look effect and &disarm effect computing the effects of the look
(resp. disarm) action, we get non-deterministic outcomes. E.g., consider the following
causation rules

caused X after &look effect()[X ], look .

caused X after &disarm effect()[X ], disarm.

Intuitively, the external functions will return, when their corresponding action gets ex-
ecuted, some fluents as output which are imported into the planning process by the
above causation rules. Clearly, the outcomes of these functions are non-deterministic.
E.g., disarming the bomb when you don’t know if it is locked or not can either yield
disarmed or exploded. Further, this example on non-deterministic external functions
demonstrates that the proposed extension to K can be used to simulate sensing actions
[12,10,14,15,16]. By combining an ordinary action together with an external function
that materializes the sensed values of executing the “sensing” action, we have very flex-
ible means to encode sensing, e.g. sensing more than one fluent, or a combination of
fluents at the same time; or sensing that depends on what is known (or not known) in
the current (incomplete) state, . . . .

The rest of the paper is organized as follows. In Section 2 we introduce the syntax
of Kc, while its semantics is defined in Section 3. Before concluding in Section 5, we
discuss our prototype implementation in section 4.

2 Syntax of Kc

A signature of a planning domain with external actions PD is a tuple PDsig = (σact, σfl,
σec, σtyp, σcon, σvar), where σact, σfl, σec and σtyp are mutually disjoint sets of respec-
tively action, fluent, external function and type names. The names in σact, σfl and σtyp

actually correspond to predicate symbols, so we associate with each of them an arity
n ≥ 0. On the other hand, the names in σec correspond to external predicate symbols,
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with whom we associate both an input arity i and an output arity o (i, o ≥ 0)3. Further,
σcon and σvar are mutually disjoint sets of respectively constants and variable symbols4.

For a given signature PDsig , an action atom is defined as p(t1, . . . , tn), where p ∈
σact, n is the arity associated with p and t1, . . . , tn ∈ σcon ∪ σvar ∪ σfl. We define fluent
atoms and type atoms similarly by substituting p ∈ σact by p ∈ σfl or p ∈ σtyp respec-
tively. An external function call is defined as &p[i1, . . . , im](o1, . . . , on), where p ∈
σec, m, n are the input and output arities associated with p and i1, . . . , im, o1, . . . , on ∈
σcon ∪ σvar ∪ σfl. A variable atom is defined as X(t1, . . . , tn), n ≥ 0, where X ∈ σvar

and t1, . . . , tn ∈ σcon ∪ σvar ∪ σfl.
An action (resp. fluent, external function call, type, variable) literal is an action (resp.

fluent, external function call, type, variable) atom a or its classical negation ¬a. For a
set of literals X we use ¬X to denote the set {¬p | p ∈ X }, where ¬(¬a) ≡ a for
an atom a. Furthermore, we use X+ (resp. X−) to denote the set of positive (resp.
negative) literals in X . To denote the set of all action (resp. fluent, external function
call, type, variable) literals that can be formed using the signature, we use Lact (resp.
Lfl, Lec, Ltyp, Lvat). In addition, we use Lfl,typ = Lfl ∪ Ltyp, Ldyn = Lfl ∪ Lact

+ ∪ Lec
+

and L = Lfl,typ ∪ Lact
+ ∪ Lec

+.
All actions, fluents, and external function calls that can be used in a planning de-

scription have to be declared using the following declaration rules.

Definition 1. An action (resp. fluent) declaration is an expression of the form

p(X1 , . . . ,Xm) requires t1 , . . . , tn

where either p ∈ σact (resp. p ∈ σfl) or p ∈ σvar, i.e. either p(X1, . . . , Xm) ∈ Lact
+

(resp. p(X1, . . . , Xm) ∈ Lfl
+) or p(X1, . . . , Xm) ∈ Lvat

+, and X1, . . . , Xm ∈ σvar.
Further, t1, . . . , tn ∈ Ltyp, n ≥ 0, and every Xi (and p if p ∈ σvar) occurs in t1, . . . , tn.
Whenever n = 0, the keyword requires may be omitted.

An external function call declaration is an expression of the form

&p[I1, . . . , Im](O1, . . . , On) requires t1, . . . , tk ranges r1, . . . , rl

where &p[I1, . . . , Im](O1, . . . , On) ∈ Lec
+ and I1, . . . , Im, O1, . . . , On ∈ σvar. Fur-

ther, t1, . . . , tk, r1, . . . , rl ∈ Ltyp, k, l ≥ 0, and every Ii occurs in t1, . . . , tk and every
Oi occurs in r1, . . . , rl.

To describe the static and dynamic dependencies of fluents on other fluents, external
functions, and actions, we introduce causation rules, while initial state constraints are
used to describe the initial state of a planning problem.

Definition 2. A causation rule (rule, for short) is an expression of the form

caused f if b1 , . . . , bk , not bk+1 , . . . , not bl after a1 , . . . , am , not am+1 , . . . , not an

where f ∈ Lfl ∪ Lvat ∪ {false}, b1, . . . , bl ∈ Lfl,typ ∪ Lec
+, a1, . . . , an ∈ L, l ≥ k ≥ 0,

and n ≥ m ≥ 0. Whenever l = 0 (resp. n = 0), the keyword if (resp. after) may be

3 Note that predicate symbols with the same name, but different arities, are not allowed.
4 As usual constants begin with a lower case letter, while variables start with an upper case letter.



Conditional Planning with External Functions 219

omitted. When both l = n = 0, the keyword caused may also be dropped. Rules where
n = 0 are called static rules, while all other rules are called dynamic rules. A static
rule preceded by the keyword initially, is called an initial state constraints.

To access the different parts of a causation rule r (or an initial state constraint), we
define h(r) = f , post+(r) = {b1 , . . . , bk}, post−(r) = {not bk+1 , . . . , not bl},
pre+(r) = {a1 , . . . , am}, pre−(r) = {not am+1 , . . . , not an}, and lit(r) = {f, b1,
. . . , bl, a1, . . . , an}.

To allow conditional execution of actions, we define executability conditions.

Definition 3. An executability condition is an expression of the form

executable a if b1 , . . . , bk , not bk+1 , . . . , not bl

where a ∈ Lact
+ ∪ Lvat, b1, . . . , bl ∈ L and l ≥ k ≥ 0. Whenever l = 0, i.e. the

execution is unconditional, the keyword if may be omitted.

To access the different parts of an executability condition e, we define h(e) = a,
post+(e)=post−(e)=∅, pre+(e)={b1 , . . . , bk}, pre−(e) = {not bk+1 , . . . , not bl},
and lit(e) = {a, b1 , . . . , bl}.

Furthermore, we define, for any rule, initial state constraint, or executability condi-
tion r, that post(r) = post+(r) ∪ post−(r) and pre(r) = pre+(r) ∪ pre−(r).

From K, we also adopt the safety restriction notion, i.e. all rules (including initial
state constraints) and executability conditions have to satisfy the syntactic restriction
that all variables in a naf type literal must also occur in some literal which is not a naf
type literal.

Definition 4. An action description is a pair (D, R) where D is a finite set of action,
fluent and external function declarations and R is a finite set of safe executability con-
ditions, safe causation rules, and safe initial state constraints.

A planning domain is a pair PD = (Π, AD), where Π is a logic program over the
literals of Ltyp admitting exactly one answer set, and AD is an action description.

A query is of the form

g1, . . . , gm, not gm+1, . . . , not gn?(i)

where g1, . . . , gn ∈ Lfl are variable-free, and i, j ≥ 0, n ≥ m ≥ 0.
A planning problem is a pair (PD, q), where PD is a planning domain and q is a

query.

In appendix B and C of [17], one can find the Kc encodings of the Bubble Breaker
game and the defusing a bomb problem respectively. Especially note the difference in
readability between the encoding, of the same problem, in K from Appendix A of [17]
and the one in Kc from Appendix B of [17].

3 Semantics of Kc

3.1 Instantation

Similar to the grounding of a logic program, we instantiate a planning problem such that
the semantics can be defined more easily. The main difference with classical grounding
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is that we only allow correctly typed action, fluent, and external function call literals to
be generated.

A substitution is any function θ : σvar �→ σcon∪σfl, i.e. a function assigning constants
or fluent names to variables. The application of a substitution θ can be extended to any
syntactic object x by defining θ(x) as the object x′ obtained from x by replacing every
X ∈ σvar that occurs in x, and that is defined by θ, with θ(x).

First, we define the valid instantiations of the fluents, actions, and external functions.

Definition 5. Let PD = (Π, (D, R)) be a planning domain, and let M be the unique
answer set of Π .

For a fluent (resp. action) declaration d ∈ D and a substitution θ that is at least
defined over X1, . . . , Xm (and p if p ∈ σvar), we say that θ(p(X1, . . . , Xm)) is a legal
fluent (resp. action) instantiation if {θ(t1 ), . . . , θ(tn)} ⊆ M and θ(p) ∈ σfl (resp.
θ(p) ∈ σact) if p ∈ σvar.

For an external function declaration d ∈ D and a substitution θ that is at least de-
fined over I1, . . . , Im, O1, . . . , On, θ(&p[I1, . . . , Im](O1, . . . , On)) is a legal external
function call instantiation if {θ(I1 ), . . . , θ(Im), θ(O1 ), . . . , θ(On)} ⊆ M .

To denote the set of all legal fluent (resp. action, external function call) instantiations
of PD and their classical negations, we will use Lfl

PD (resp. Lact
PD , Lec

PD ). In addition,
we use LPD = Lfl

PD ∪ Lact
PD

+ ∪ Lec
PD

+.

Using the above, we can define the instantiation of a planning domain.

Definition 6. Let PD = (Π, (D, R)) be a planning domain. The instantiation of PD,
denoted PD ↓, is defined as PD ↓= (Π ↓, (D, R ↓)), where Π ↓ is the grounding of
Π over σcon and R ↓= {θ(r) | r ∈ R, θ ∈ Θr}, where Θr is the set of all substitutions
θ that define all the variables in r, such that

– lit(θ(r)) ∩ Ldyn ⊆ LPD ;
– (post+(θ(r)) ∪ pre+(θ(r))) ∩ Ltyp ⊆ M ;
– h(r) ∈ Lfl

PD ∪ {false} if r is a causation rule or an initial state constraint; and
– h(r) ∈ Lact

PD
+ if r is an executability condition.

Intuitively, the above ensures that in the instantiation of PD all actions, fluents and
external function calls agree with their declarations, that positive type literals agree
with the background knowledge, that causation rules or initial state constraints should
cause a fluent literal and that executability conditions should have an action in their
head. A planning domain PD is said to be ground if PD and PD ↓ coincide.

From now on, we will assume that we are working with the grounded version of a
given planning domain PD, i.e. we will implicitly replace PD by PD ↓.

3.2 Conditional Planning

A plan in K is a sequence of sets of actions. However, this approach is not feasible in
the context of conditional planning, where one wants to cope with non-deterministic
effects of actions. For this reason, we will introduce the concept of a conditional plan,
i.e. a plan that allows to branch depending on the effects that are caused by executing an
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action. Our notion of a conditional plan is inspired by the one from [16], and is limited
to conditional plans with only the case-endcase construct5.

In what follows, we use P(X) to denote the powerset of X .

Definition 7. Let PD be a planning domain. A conditional plan for PD is defined
inductively as follows:

1. A sequence of sets of actions A1; . . . ; Ak, with Ai ⊆ Lact
PD

+, is a conditional plan.
2. If we have a sequence of sets of actions A1; . . . ; Ak ∈ Lact

PD
+ and conditional plans

c1, . . . , cl, with 1 ≤ l ≤ |P(Lfl
PD )|, then

A1; . . . ; Ak; case

⎧⎨
⎩

o1 → c1
. . .

ol → cl

(2)

is a conditional plan, where oi ∈ P(Lfl
PD ) and oi = oj whenever i = j, i.e. each

element of P(Lfl
PD ) is associated to at most one ci.

3. Nothing else is a conditional plan.

Intuitively, a conditional plan of the form6 (2) in the above definition has to be read as
“execute the actions in A1, then the ones in A2, . . . , then the ones in Ak; and depending
on which set of fluent literals that are true after executing these actions, execute the
corresponding plan ci”.

The plan we introduced in the introduction, i.e. (1) on page 215, is a conditional plan
for our running defusing a bomb example. Although in general, a conditional planner
should consider all possible sets of fluent literals in a case construct, in practice this
is not always necessary as certain sets cannot occur, given the current state and the
actions performed. E.g., the external function look effect will never return both locked
and unlocked at the same time.

Definition 8. For a planning domain PD, a state is any consistent subset s ⊆ Lfl
PD .

For each external function p ∈ σec, we will use, with t1, . . . , tm ∈ σcon ∪ σfl,

out(&p[t1, . . . , tm]) = {(o1 , . . . , on) | &p[t1 , . . . , tm ](o1 , . . . , on) ∈ Lec
PD

+} ,

i.e. the set containing all possible output tuples for a given input tuple. As not all input
tuples are valid for the legal instantations of p, we will use

vit(&p) = {(t1 , . . . , tm) | &p[t1 , . . . , tm ](o1 , . . . , on) ∈ Lec
PD

+} .

Further, we associate with p an (m + 1)-ary function f&p that associates with each
tuple (s, t1, . . . , tm) an element of P(P(out(&p[t1, . . . , tm]))), where s is a state and

5 Although e.g. [12,14] introduce constructs as if-then-else or while-do in conditional plans, the
former can be easily transformed to case-endcase statements, while the same holds for the
latter in case one is interested in plans of bounded length.

6 For practical purposes, multiple oi (having the same ci) might be compactly represented by
a Boolean combination F of fluent literals using the connectives ∧, ∨ and not , which is
evaluated on a state s in the obvious way. A state s would correspond to the conjunction∧

l∈s l ∧
∧

l∈Lfl
PD\s

not l.
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(t1, . . . , tm) ∈ vit(&p). Intuitively, the function f&p returns, for an external function
p ∈ σec and an input tuple (t1, . . . , tm) w.r.t. a state s, the combinations of output
tuples that are possible as a return value when the function is executed. Clearly, when
|f&p(s, t1, . . . , tm)| = 1, the external function is deterministic, otherwise it is non-
deterministic.

To handle the external functions correctly in a state transition, we need to take care
that each external function is evaluated exactly once for each possible input tuple. If
not, we would have undesired results in case of non-deterministic functions, e.g. hav-
ing two different rules with the same external function evaluating to different sets of
output tuples. For this reason, we define an external function evaluation w.r.t. a state
s as a function gs, such that for each p ∈ σec and for each (t1, . . . , tm) ∈ vit(&p),
gs(&p[t1, . . . , tm]) = o, where o ∈ f&p(s, t1, . . . , tm). Thus, each external function
evaluates in gs to exactly one set of output tuples for each possible input w.r.t. a state s.

Definition 9. Let PD be a planning domain. A state transition is a tuple

t = 〈s, gs, A, s′, gs′〉 ,

where s, s′ are states, gs, gs′ are external function evaluations w.r.t. s (resp. s′) and A
is a set of action atoms.

Similar to the answer set semantics[7], we define our semantics first for positive plan-
ning domains, i.e. planning domains that are free from negation as failure. Afterwards,
we will define a reduction from a general planning domain to a positive one. In what
follows, we consider a ground planning domain PD = (Π, (D, R)), where M the
unique answer set of Π .

For a set of ground literals X ⊆ Lfl,typ ∪Lact
+, a ground literal l ∈ Lfl,typ ∪Lact

+ and
an external function evaluation gs, with s = X ∩ Lfl

PD , we use

– X |=gs l, when l ∈ X ;
– X |=gs not l, when l ∈ X ;
– X |=gs &p[t1, . . . , tm](o1, . . . , om), when (o1, . . . , om) ∈ gs(&p[t1, . . . , tn]); and
– X |=gs not &p[t1, . . . , tm](o1, . . . , om), when (o1, . . . , om) ∈ gs(&p[t1, . . . , tn]).

Finally, for a set of ground literals Y ⊆ L, we use X |=gs Y iff X |=gs y for each
y ∈ Y . As usual, we have X |=gs Y if we have not X |=gs Y .

Definition 10. For a positive PD, a state s0 and an external function evaluation gs0 ,
we call s0 a legal initial state if s0 is the smallest (w.r.t. subset inclusion) set such that
h(r) ∈ s0 whenever s0 ∪ M |=gs0

post(r) for all initial state constraints and static
rules r ∈ R.

For a positive PD, a state s and an external function evaluation gs, a set A ⊆ Lact
PD

+

is called an executable action set w.r.t. s and gs, if for each a ∈ A there exists an
executability condition e ∈ R such that h(e) = a and s ∪ M ∪ A |=gs pre(e).7

7 Note that we allow dependent actions, i.e. actions that depend on the execution of other actions.
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Definition 11. Let PD be a positive planning domain, let t = 〈s, gs, A, s′, gs′〉 be a
state transition and let r ∈ R be a causation rule. We say that r is satisfied by s′ w.r.t.
t iff either h(r) ⊆ s′ \ {false} or we do not have both s′ ∪ M |=gs′ post(r) and
s ∪ M ∪ A |=gs pre(r).

A state transition t = 〈s, gs, A, s′, gs′〉 is called a legal state transition if A is an ex-
ecutable action set w.r.t. s and gs, and s′ is a minimal (w.r.t. subset inclusion) consistent
set that satisfies all causation rules in R, except initial state constraints, w.r.t. t.

Next, we generalize the above to arbitrary ground planning domains PD, i.e. planning
domains containing negation as failure in the rules. This is done by defining a reduction
to positive planning domains, similar to the GL-reduct for the answer set semantics [7].

Definition 12. Let PD be an arbitrary planning domain and consider a state transition
t = 〈s, gs, A, s′, gs′〉. The reduction of PD w.r.t. t, denoted PDt, is defined by PDt =
(Π, (D, Rt)), where Rt is obtained from R by removing:

– every r ∈ R for which either s′ ∪ M |=gs′ post−(r) or s ∪ A ∪ M |=gs pre−(r);
– all literals not l, with l ∈ L, from the remaining rules.

Clearly, PDt is a positive planning domain. Now we can define the concepts of legal
initial states, executable action sets and legal state transitions in the case of arbitrary
planning domains.

Definition 13. Let PD be a planning domain. A state s0 is a legal initial state if s0
is a legal initial state for PDt, where t = 〈∅, g∅, ∅, s0, gs0〉. A set A is an executable
action set w.r.t. a state s, if A is an executable action set w.r.t. s in PDt, where t =
〈s, gs, A, ∅, g∅〉. A state transition t = 〈s, gs, A, s′, gs′〉 is a legal state transition if it is
a legal state transition for PDt.

Before we can define optimistic conditional plans, we need some additional notions.
For a planning domain PD and two states s0 and sn, with n ≥ 0, a sequence of state
transitions

T = 〈〈s0, gs0 , A1, s1, gs1〉, 〈s1, g
′
s1

, A2, s2, gs2〉, . . . , 〈sn−1, g
′
sn−1

, An, sn, gsn〉〉
is called a trajectory from s0 to sn for PD if all state transitions in T are legal. Further,
we use T (s0, sn) to denote the set of all trajectories from s0 to sn; and for a sequence
of sets of actions A1; . . . ; Ak and a set of states S, we use

PD(A1; . . . ; Ak, S) = {sk | 〈〈s0, gs0 , A1, s1, gs1〉, 〈s1, g
′
s1

, A2, s2, gs2〉, . . . ,
〈sk−1, g

′
sk−1

, Ak, sk, gsk
〉〉 ∈ T (s0, sk) ∧ s0 ∈ S} .

Now, we have all necessary means to define optimistic conditional plans.

Definition 14. Let PP = (PD, q) be a planning problem, let C be a conditional plan
and let S be a set of states. We define C being optimistic w.r.t. S inductively as

1. if C = A1; . . . ; Ak and ∃s ∈ S · ∃x ∈ PD(C, {s}) · {gm+1 , . . . , gn} ∩ x = ∅ ∧
{g1 , . . . , gm} ⊆ x, then C is optimistic w.r.t. S.
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2. if C = A1; . . . ; Ak; case

⎧⎨
⎩

o1 → c1
. . .

ol → cl

; and {o1 , . . . ol}∩PD(A1; . . . ; Ak, S) = ∅;

and ci is optimistic w.r.t. oi for each i ∈ [1 . . . l], then C is optimistic w.r.t. S.

Now, C is an optimistic plan for PP if it is optimistic w.r.t. the set of all legal initial
states.

Intuitively, condition (1) in the above definition demands that a goal state can be reached
for each starting state in S, while condition (2) demands that each of the conditional
states oi can be reached, starting from the states in S, and that for each of these condi-
tional states oi a goal state can be reached by executing ci.

Note that an optimistic conditional plan corresponds to an optimistic plan in K when
the conditional plan does not contain case constructs. This implies that executing an
optimistic conditional plan can yield situations where the goal is not reached. Similar to
K, we can define when a conditional plan is secure, i.e. when executing the conditional
plan will always result in a goal state.

Definition 15. Let PP = (PD, q) be a planning problem, let C be a conditional plan
and let S be a set of states. The secureness of C w.r.t. S is inductively defined as

1. if C = A1; . . . ; Ak and ∀s ∈ S · ∀i ∈ [1 . . . k] · ∀s′ ∈ PD(A1; . . . ; Ai−1, {s}) ·
PD(Ai, {s ′}) = ∅ and ∀s ∈ S · ∀x ∈ PD(C, {s}) · {gm+1 , . . . , gn} ∩ x = ∅ ∧
{g1 , . . . , gm} ⊆ x, then C is secure w.r.t. S.

2. if C = A1; . . . ; Ak; case

⎧⎨
⎩

o1 → c1
. . .

ol → cl

; and PD(A1; . . . ; Ak, S) ⊆ {o1 , . . . , on}

and ∀s ∈ S ·∀i ∈ [1 . . . k] ·∀s′ ∈ PD(A1; . . . ; Ai−1, {s}) ·PD(Ai, {s ′}) = ∅ and
ci is secure w.r.t. oi for each i ∈ [1 . . . l], then C is secure w.r.t. S.

Now, C is a secure plan for PP if it is secure w.r.t. the set of all legal initial states.

Intuitively, the condition ∀s ∈ S · ∀i ∈ [1 . . . k] · ∀s′ ∈ PD(A1; . . . ; Ai−1, {s}) ·
PD(Ai, {s ′}) = ∅ in the above definition ensures that a secure plan never gets “stuck”
in a state during execution.

The conditional plan (1) on page 215 is a secure plan for our defusing a bomb exam-
ple. However, if we change the behavior of the external function look effect such that it
either returns locked , unlocked or neither locked nor unlocked , than one can check that
the conditional plan is not any longer secure. Furthermore, it turns out that no secure
plan exists for this modification.

On the other hand, consider the following extension of the defusing a bomb example.
We can look at the bomb and if the light is on, we know that the bomb is either locked or
unlocked, but if we do not have light (or we don’t know if there is light or not) looking at
the bomb can either yield locked , unlocked or neither locked nor unlocked . Further, we
have an action check light with a corresponding external function check light effect
which materializes the effect of the “sensing” action check light. Finally, using the ac-
tion switch we can switch the state from the light. Now8 one can see that the following

8 The encoding in Kc of this example can be found in Appendix D of [17].
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conditional plan

check light ; case

⎧⎪⎪⎨
⎪⎪⎩

{light} → look ; case
{ {locked} → disarm

{unlocked} → turn; disarm

{no light} → switch; look ; case
{ {locked} → disarm

{unlocked} → turn; disarm

is secure, while the conditional plan on page 215 is only an optimistic one.

4 Computing Conditional Plans Using DLV K

To demonstrate our conditional planning framework, we developed a prototype imple-
mentation of a part of the semantics of Kc on top of DLVK. As DLVK does not support
external evaluations, our prototype currently disregards9 this feature of Kc. Further,
we only implemented optimistic plan generation so far, but in the next step a secure
checker will be added, using the built-in security checker of DLVK. When provided
with a classical K planning problem description, DLVKc will generate a conditional plan
in a graphical representation. E.g., feeding the defusing a bomb planning description
from the introduction (page 2) to the system, will yield the conditional plan depicted in
Figure 2. To generate this plan, we use DLVK’s batch mode for generating optimistic
plans. Each optimistic plan received from DLVK is first compressed by removing use-
less planning steps, and afterwards this compressed optimistic plan is put into the graph
representing the optimistic conditional plan, i.e. each optimistic plan from DLVK can
be seen as a valid trajectory in an optimistic conditional plan.

Initial state: 

unlocked, 

look

locked, 

look

turn

disarmed, 

disarm

Initial State

look, 

 

turn, 

 

disarm, 

 

 

Fig. 2. The generated conditional plan for the defusing a bomb example from page 2. On the left,
we have a conditional plan that also contains the states reached, while the plan on the right only
contains the different actions that need to be taken to reach the goal. To increase readability, our
implementation compacts the tree shape of a conditional plan into a dag whenever possible.

The prototype implementation is built using the Python programming language and
can be run on any modern platform that DLVK supports. The implementation, together

9 One can of course, naı̈vely, introduce the behavior of external evaluations by adding mutually
exclusive rules that introduce the possible outcomes of the external evaluations hard-coded.
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with additional information and examples, can be found at http://tinfpc2.vub.
ac.be/cdlvk.

5 Related Work and Conclusion

In this paper we presented Kc, a conditional planning language that can use external
functions to outsource the computation of certain effects when an action is executed. As
Kc is a proper extension of the planning language K, it relates to most other planning
language in the same way, and we therefore refer to [5]. One exception here, are exten-
sions of those languages that incorporate sensing actions to obtain non-deterministic,
i.e. conditional, planning. For these extensions, e.g. [15,16], we clearly showed that
external function calls are well-suited to simulate sensing actions by combining an or-
dinary action with an external function that materializes the effects of the “sensing”
action.

In future work, we plan to extend our prototype so the generated conditional plans
can be checked for secureness. We also want to incorporate external functions natively,
such that the explicit introduction of such functions by using mutually exclusive rules
can be dropped, improving the readability and robustness of the planning descriptions.
Finally, we are currently employing our framework in the context of repairing web
service workflows by planning [1], one of the topics of the ongoing WS-Diamond re-
search project [2]. The high expressiveness and declarativity of Kc, together with its
conditional planning capabilities, turns out to be beneficial in that area of application.

References

1. Private Communications with Gerhard Friedrich, University of Klagenfurt, Austria.
2. Ws-diamond: Web-service diagnosability, monitoring & diagnosis (ist-516933). Project

website at http://wsdiamond.di.unito.it.
3. Special issue on reasoning about action and change. Journal of Logic Prog., 31(1-3), 1997.
4. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under incomplete knowl-

edge. In Computational Logic, volume 1861 of LNCS, pages 807–821. Springer, 2000.
5. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach

to knowledge-state planning: Semantics and complexity. Transactions on Computational
Logic, 5(2):206–263, 2004.

6. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-order
reasoning and external evaluations in answer-set programming. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI-05), pages 90–96, 2005.

7. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9(3-4):365–386, 1991.

8. M. Gelfond and V. Lifschitz. Representing action and change by logic programs. Journal of
Logic Programming, 17(2/3&4):301–321, 1993.

9. E. Giunchiglia, G. N. Kartha, and V. Lifschitz. Representing action: Indeterminacy and
ramifications. Artificial Intelligence, 95(2):409–438, 1997.

10. K. Golden and D. Weld. Representing sensing actions: The middle ground revisited. In Proc.
of the 5th Intl. Conf. on Principles of KR and Reasoning, pages 174–185, 1996.

http://tinfpc2.vub.ac.be/cdlvk
http://tinfpc2.vub.ac.be/cdlvk


Conditional Planning with External Functions 227

11. L. Iocchi, D. Nardi, and R. Rosati. Planning with sensing, concurrency, and exogenous
events: logical framework and implementation. In Proc. of the 7th Intl. Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 2000), pages 678–689, 2000.

12. H. J. Levesque. What is planning in the presence of sensing? In AAAI/IAAI, Vol. 2, pages
1139–1146, 1996.

13. V. Lifschitz. The Logic Programming Paradigm - A 25-Year Perspective. Springer, 1999.
14. J. Lobo, S. Taylor, and G. Mendez. Adding knowledge to the action description language A.

In Proc. of the 14th National Conf. on AI (AAAI97), pages 454–459. AAAI Press, 1997.
15. T. C. Son and C. Baral. Formalizing sensing actions a transition function based approach.

Artificial Intelligence, 125(1-2):19–91, 2001.
16. T. C. Son, P. H. Tu, and C. Baral. Planning with sensing actions and incomplete informa-

tion using logic programming. In Proc. of the 7th Intl. Conf. on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2004), volume 2923 of LNAI, pages 261–274, 2004.

17. D. Van Nieuwenborgh, T. Eiter, and D. Vermeir. Conditional planning with external func-
tions. Technical report, 2007, http://tinf2.vub.ac.be/˜dvnieuwe/lpnmr2007technical.ps.



Logic Programs with Abstract Constraints:
Representaton, Disjunction and Complexities

Jia-Huai You1, Li Yan Yuan1, Guohua Liu1, and Yi-Dong Shen2

1 Department of Computing Science
University of Alberta, Edmonton, Alberta, Canada
2 Lab of Computer Science, Institute of Software

Chinese Academy of Sciences, Beijing, China

Abstract. We study logic programs with arbitrary abstract constraint atoms,
called c-atoms. As a theoretical means to analyze program properties, we inves-
tigate the possibility of unfolding these programs to logic programs composed
of ordinary atoms. This approach reveals some structural properties of a pro-
gram with c-atoms, and enables characterization of these properties based on the
known properties of the transformed program. Furthermore, this approach leads
to a straightforward definition of answer sets for disjunctive programs with c-
atoms, where a c-atom may appear in the head of a rule as well as in the body. We
also study the complexities for various classes of logic programs with c-atoms.

1 Introduction

Logic programs with abstract constraints were introduced as a general framework for
representing, and reasoning with, sets of atoms [12,13]. This is in contrast with tradi-
tional logic programs, which are used primarily to reason with individuals.

An abstract constraint atom, which is also called a c-atom following [21], is of the
form (D, C), where D is a domain and C is a collection of subsets from the power
set of D, which are intended to represent admissible solutions. By allowing c-atoms to
appear anywhere in a rule, the framework of logic programs with c-atoms has become
a highly expressive knowledge representation language. For example, many problems
can be conveniently represented with constraints over sets of atoms, such as weight and
cardinality constraints and aggregates (see, e.g. [2,3,4,5,7,15,16,17,18,19]).

In the study of logic programs with abstract constraints, a crucial assumption was
made: an abstract constraint be monotone [12,13]. A constraint is monotone if it holds
that whenever it is satisfied by a set of atoms I , it must be satisfied by any extension of I .
It is observed that under this assumption, much of the basic concepts and techniques for
characterizing the semantics of normal logic programs can be generalized to the new
context. In addition, some important constraints, such as pseudo-boolean constraints
and cardinality constraints, can be represented by abstract monotone atoms [11,12].

The assumption on monotone atoms, however, also limits the scope of applications
that the framework supports. For example, many constraints involving aggregate func-
tions are not monotone. More generally, when a c-atom is allowed to appear in the head
of a rule, it is fully capable of expressing a constraint in the sense of Constraint Satisfac-
tion Problem (CSP). Hence, a CSP can be represented by a collection of condition-free

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 228–240, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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rules. In this way, the framework of logic programs with c-atoms can express complex
constraint satisfaction problems, such as those involving conditional constraints [14]1,
which are useful in modeling configuration and design problems.

Recently, Son et al. propose to define answer sets for programs with arbitrary c-atoms
with a notion of conditional satisfaction [21]. They show that answer sets defined this
way generalize the notion of well-supported models for normal logic programs [6], and
the resulting semantics coincides with the previously introduced semantics for logic
programs with monotone c-atoms. In addition, they point out the different behaviors
between answer sets defined by reduct and those defined by complement.

In this paper, we extend the work of [21] in three directions. First, we study the
possibility of representing logic programs with c-atoms by logic programs composed
of ordinary atoms. This can be seen as an extension of the unfolding approach presented
in [20], but we also consider unfolding c-atoms in the head of a rule as well as negative
c-atoms in the body. In addition, we use the term unfolding in a more general sense
in which new atoms are introduced in the transformed program in order to guarantee
polynomial time transformation. The unfolding approach leads to a characterization of
the existence of answer sets based on an extended call-consistent condition [6]. Second,
the unfolding approach leads to an answer set semantics for disjunctive programs with
c-atoms. Disjunctive programs with aggregates have previously been studied in [5,17],
where aggregates do not appear in the heads of program rules. In our case, an arbitrary c-
atom can appear in a disjunctive head as well as positively or negatively in a rule body.
Since the unfolding approach reveals structural properties, it is possible to formulate
the notion of head cycle for the new context. We know that if a disjunctive program is
head cycle-free, it can be reduced to a normal program by shifting [1]. A similar result
holds for disjunctive programs with c-atoms. Finally, we provide complexity results for
classes of programs with c-atoms.

The next section provides background and defines the notations, followed by an ex-
ample to show a usage of arbitrary c-atoms to represent CSPs in Section 3. Section 4
shows unfolding of (non-disjunctive) logic programs with c-atoms to normal programs
while preserving the underlying answer set semantics. By further unfolding disjunc-
tions in the rule heads, in Section 5 we define a semantics for disjunctive programs with
c-atoms. Section 6 gives some complexity results. Section 7 is about related work, with
Section 8 containing final remarks.

2 Background and Notation

We follow the notation used in [10,21]. The key definitions are taken from [21].
We assume a propositional language L with a countable set A of propositional

atoms. A propositional atom is also called an ordinary atom or just an atom. An ab-
stract constraint atom, or c-atom for abbreviation, is a pair (D, C) such that D ⊆ A
and C ⊆ 2D. Given a c-atom A = (D, C), we use Ad and Ac to denote D and C,
respectively.

A c-atom is called elementary if it is of the form ({a}, {{a}}), where a is an atom.
In expressing such a c-atom, we may simply write the atom instead.

1 Which were called dynamic CSPs.
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A disjunctive program (with c-atoms) is a collection of rules of the form

A1 ∨ ... ∨ Ak ← B1, ..., Bm,not C1, ...,not Cn. (1)

where k ≥ 1, m, n ≥ 0, and Ai’s, Bi’s, and Ci’s are all c-atoms. not Ci is called
a negation-as-failure c-atom, or simply a negative c-atom. A literal refers to a c-atom
or a negative c-atom. For a rule r of the form (1), the left hand side of ← is called
the head and the right hand side the body. We use head(r), pos(r) and neg(r) to
denote {A1, ..., Ak}, {B1, ..., Bn}, and {not C1, ...,not Cn}, respectively, and let
body(r) = pos(r)∪neg(r). By abuse of notation, we may denote a rule r by head(r) ←
pos(r), neg(r). Note that by doing so we have assumed that when we write a set of lit-
erals in the body we mean a conjunction, and in the head we mean a disjunction.

C-atoms of the form (D, ∅) are always false (to be defined shortly). When a c-atom
of this type appears in the head of a rule, we will write ⊥ instead, and call it a constraint.

A program P is called a general program (or a non-disjunctive program), if for every
rule r ∈ P , head(r) is singleton. A general program P is called basic if for any r ∈ P ,
either r is a constraint or the head of r is elementary. A condition-free program is a
general program where all the rules have an empty body. A positive program is a gen-
eral program without negative c-atoms. A positive disjunctive program is a disjunctive
program without negative c-atoms.

Given a program P , At(P ) denotes the set of (ordinary) atoms appearing in P .
Sometimes we say a model M restricted to the atoms appearing in a program P . By

this we mean M ∩ At(P ), and denote it by M |At(P ).
Let I ⊆ A and A be a c-atom. We say I satisfies A, denoted I |= A, if I ∩Ad ∈ Ac;

we say I satisfies not A, denoted I |= not A, if I ∩ Ad �∈ Ac. I satisfies the body
of a rule r if I |= l for each l ∈ body(r); I satisfies the disjunctive head of a rule r if
I |= A for some atom A ∈ head(r). A set of atoms S is a model of a program P if for
each rule r ∈ P , S |= head(r) whenever S |= body(r).

Answer sets for basic positive programs are defined with a notion of conditional
satisfaction.

Definition 1. Let R and S be two sets of atoms. The set R conditionally satisfies a c-
atom A w.r.t. S, denoted by R |=S A, if R |= A and, for every I such that R ∩ Ad ⊆ I
and I ⊆ S ∩ Ad, we have that I ∈ Ac.

Conditional satisfaction is used to define a generalized version of one-step provability
operator. Given a basic positive program P , and sets of atoms R and S, define

TP (R, S) = {a | ∃r ∈ P, R |=S body(r) & head(r) = ({a}, {{a}})}
Definition 2. Let M be a model of a basic positive program P . M is an answer set for
P iff M = T∞P (∅, M), where T 0

P (∅, M) = ∅ and T i+1
P (∅, M) = TP (T i

P (∅, M), M),
for all i ≥ 0.

Answer sets for general programs are defined in two steps. In the first step, answer sets
for basic programs are defined, and in the second, a general program is represented by
a collection of basic programs, and the answer sets for the former are defined in terms
of the answer sets for the latter.
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There have been two different interpretations of negation-as-failure. The first treats
a negative c-atom not A by its complement, and replaces it with a positive c-atom
A′ where A′d = Ad and A′c = 2Ad\Ac. Given a program P , the resulting program is
called the complement of P . The second adopts the well-known technique of reduct,
and defines the reduct of a program P w.r.t. a set of atoms M as

PM = {head(r) ← pos(r) | r ∈ P, ∀not C ∈ neg(r), M �|= C}
Definition 3. Let P be a basic program and M a set of atoms. (i) M is an answer set
by complement for P iff M is an answer set for its complement. (ii) M is an answer set
by reduct for P iff M is an answer set for PM .

Next, a general program is represented by its instances in the form of a basic program,
and the answer sets of the former are defined in terms of the answer sets of the latter.

Let P be a general program and r ∈ P . For each π ∈ head(r)c (when |head(r)| = 1,
we write head(r) to denote the only c-atom in it), the instance of r w.r.t. π is the set of
rules consisting of

1. b ← body(r), for each b ∈ π, and
2. ⊥ ← d, body(r), for each d ∈ head(r)d\π.

An instance of P is a program obtained by replacing each rule of P with one of its
instances. Note that an instance of P is a basic program.

Definition 4. Let P be a general program and M a set of atoms. M is an answer set by
reduct (by complement, resp.) for P iff M is an answer set by reduct (by complement,
resp.) for one of its instances.

For convenience, from now on, the term answer set may refer to either answer set by
reduct or answer set by complement. Distinction will be made when necessary.

3 Representing Constraint Satisfaction Problem

C-atoms can be used to represent CSPs in a straightforward way. A CSP, denoted
A(X , D, C), consists of a finite set of variables X , a collection of finite domains D,
where variable x’s domain is denoted D(x), and a collection of constraints C. A con-
straint Rx1...xj ∈ C is a subset of the Cartesian product D(x1) × ... × D(xj); the set
of variables {x1, ..., xj} is called the scope of the constraint. A solution to a CSP is an
assignment where each variable is assigned a value from its domain such that all of the
constraints are satisfied. A constraint Rx1...xj is satisfied if and only if the assignment
to variables in its scope yields a tuple in the relation Rx1...xj .

In the following, we will use an atom x(v) to represent that the CSP variable x takes
the value v ∈ D(x). Given a CSP A(X , D, C), we define the corresponding program
PA as the one that consists of the following condition-free rules:

– for each constraint Rx1...xj ∈ C, there is a condition-free rule (D, C) ← in PA,
where

D = {x(v) | x ∈ {x1, ..., xj}, v ∈ D(x)}
C = {{x1(v1), ..., xj(vj)} | (v1, ..., vj) ∈ Rx1...xj}
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– if a variable x ∈ X doesn’t appear in any constraint, we have a condition-free rule
(D, C) ← in PA, where

D = {x(v) | v ∈ D(x)} and C = {{x(v)} | v ∈ D(x)}.

Let A(X , D, C) be a CSP. We can show that an assignment of the variables in X , de-
noted {x1←v1, ..., xn←vn}, is a solution to the CSP if and only if {x1(v1), ..., xn(vn)}
is an answer set for PA.

Thus, the class of general programs can be used to represent conditional CSPs, where
the satisfaction of a constraint may be conditioned upon the satisfaction of some other
constraints. The expressiveness can be further enhanced by allowing a disjunction of
constraints in the head of a rule.

4 Unfolding General Programs

We will describe the process of unfolding in three steps: unfolding the heads of rules,
unfolding positive c-atoms in rule bodies, and unfolding negative c-atoms. It turns out
that these transformations are independent of each other. As such, the order of their
applications is unimportant.

4.1 Unfolding the Head

Let P be a general program. Unfolding the rule heads in P will yield a basic program,
which is denoted Uhd(P ).

Let A be a c-atom in the head of a rule. In our unfolding, each subset π ∈ Ac will be
named explicitly by a new atom, say ξπ. For each rule r ∈ P , of the form A ← body(r),
where Ac = {π1, ..., πk}, the resulting rules in Uhd(P ) are:

1. 1{ξπ1 , ..., ξπk
}1 ← body(r).

2. h ← ξπ . for each π ∈ Ac, and for each h ∈ π, and
3. ⊥ ← ξπ , d, body(r). for each π ∈ Ac, and for each d ∈ Ad \π.

Note that the choice rule used above is a convenient representation of a collection of
normal rules; that is,

ξπi ← body(r),not ξπ1 , ...,not ξπi−1 ,not ξπi+1 , ...,not ξπk
. for each 1 ≤ i ≤ k

Example 1. Suppose we have a rule: ({a, b, c}, {∅, {a}, {a, b}}) ← . The unfolded
program consists of the rules:

1{ξ∅, ξ{a}, ξ{a,b}}1 ← .
⊥ ← ξ∅, a. ⊥ ← ξ∅, b. ⊥ ← ξ∅, c.
a ← ξ{a}. ⊥ ← ξ{a}, b. ⊥ ← ξ{a}, c.
a ← ξ{a,b}. b ← ξ{a,b}. ⊥ ← ξ{a,b}, c.

Unfolding the head resembles the definition of answer sets for a general program in
terms of its instances in the form of basic program. However, the use of new symbols is
essential in representing all the instances by a program in a compact way.
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In the following, and in the rest of this paper, given a program P , we will denote by
AS(P ) the set of all answer sets of P , and by AS|N (P ) the set of all answer sets of P
restricted to the atoms in N .

Proposition 1. For any general program P , the transformation from P to Uhd(P ) takes
polynomial time (in the size of P ), and satisfies AS(P ) = AS|At(P )(Uhd(P )).

A condition-free program may not have an answer set. An advantage of unfolding is to
understand this behavior in terms of its unfolded program.

Example 2. The following condition-free program has no answer set.

({a}, {∅}) ← . ({a}, {{a}}) ← .

The unfolded program is

ξ∅ ← . ⊥ ← ξ∅, a. ξ{a} ← . a ← ξ{a}.

where the conflict in the original program can be demonstrated by a derivation of ⊥.

4.2 Unfolding Positive C-Atoms in Rule Body

Unfolding positive c-atoms in rule bodies can be applied to any program. Given a pro-
gram P , the unfolded program will be denoted Upos(P ).

For each rule r ∈ P of the form

head(r) ← (D1, C1), ..., (Dn, Cn), neg(r). (2)

where n ≥ 0, we will have a rule

head(r) ← φ1, ..., φn, neg(r).

in Upos(P ), where φi’s are new symbols, plus the following rules: for each 1 ≤ j ≤ n,

φj ← π,not d1, ...,not dk. for each π ∈ Cj where {d1, ..., dk} = Dj \ π.

Example 3. Consider the following program from [21]:

p(1). p(−1) ← p(2).
p(2) ← SUM({X | p(X)}) ≥ 1.

SUM({X | p(X)}) ≥ 1 above denotes a constraint, say A, where Ad = {p(1), p(2),
p(−1)} and Ac = {{p(1)}, {p(2)}, {p(1), p(2)}, {p(2), p(−1)}, {p(1), p(2), p(−1)}}.
As shown in [21], P has no answer set.

An important intuition in answer set programming is that a positive conclusion must
be supported by a non-circular argument. E.g., that {p(1), p(2), p(−1)} above is not
an answer set is precisely due to this intuition. The conclusions of p(2) and p(−1) are
drawn from a circular argument. This will be made apparent by unfolding, where five
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rules are generated out of the last rule in P , one for each π ∈ C. The unfolded program
Upos(P ) therefore consists of the following rules

p(1). p(−1) ← p(2). p(2) ← φ.
φ ← p(1),not p(2),not p(−1).
φ ← p(2),not p(1),not p(−1).
φ ← p(1), p(2),not p(−1).
φ ← p(−1), p(2),not p(1).
φ ← p(1), p(2), p(−1).

Suppose M is an answer set for P . Then, p(2) is either in M or not in M . Assume
p(2) ∈ M . Then φ ∈ M since φ is the only support for p(2). For each rule with φ
as the head, only the first doesn’t have p(2) in the body. But this rule relies on having
not p(2). Thus, p(2) is not well-supported, and therefore p(2) �∈ M . If p(2) is not in
M , then we have p(−1) �∈ M , since p(2) is the only support for p(−1). However, the
fourth rule now has a satisfied body, which derives φ and then p(2). Contradiction.

Proposition 2. For any general program P , the transformation from P to Upos(P )
takes polynomial time, and satisfies AS(P ) = AS|At(P )(Upos(P )).

Remarks: Due to the introduction of new symbols, our unfolding in general results in
much smaller programs than that of [20].

The paper [20] deals with logic programs with aggregates. Assume an aggregate α
is represented by a c-atom (D, C), where D is the domain of α and C ⊆ 2D consists
of all π such that π satisfies α. For the purpose of this discussion, assume program P
consists of basic positive rules of the form

A ← (D1, C1), ..., (Dn, Cn). (3)

The size of such a rule is bounded by expression 1 + (d + mk) ∗ n, where, for all i,
d is the maximum size of Di, m is the maximum size of any π, π ∈ Ci, and k is the
maximum size of Ci.

In our unfolding, the size of the rules unfolded from r is bounded by O(dkn), be-
cause each π ∈ Ci is unfolded using every atom in Di exactly once. Clearly, this is a
polynomial time process. We therefore conclude that Upos(P ) can be transformed from
P in polynomial time.

In the approach given in [20], a rule r of the form (3) is unfolded to the collection of
all instances of the rule, one for each combination of solutions to the n aggregates, in
which case, the program unfolded from r is bounded by O(dkn).

Call-consistent condition: We can formulate a call-consistent condition [6] and de-
scribe sufficient conditions for the class of basic positive programs to possess an answer
set and multiple answer sets, respectively. This is an an important class, since it includes
basic programs under the by-complement semantics.

Let P be a basic positive program consisting of rules of the form (3). To be consistent
with the original definition of stable model [8], we assume that a constraint ⊥ ← body
in a program is already replaced by a rule with an elementary head:

({f}, {{f}}) ← body, ({f}, {∅}).

where f is a new symbol.
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We construct a dependency graph GP as follows: for each rule of the form (3) in P ,
there is a positive edge from atom A to each atom b ∈ π, for all π ∈ Ci, 1 ≤ i ≤ n; and
a negative edge from A to each d ∈ Di, 1 ≤ i ≤ n, such that ∃π ∈ Ci such that d �∈ π.

We say that P has an odd loop if there is a path in GP from an atom to itself via an
odd number of negative edges, and P has an even loop if there is a path in GP from an
atom to itself via an even number of negative edges. P is said to be call-consistent if P
has no odd loops.

Theorem 1. Let P be a basic positive program. (i) P has an answer set if P is call-
consistent. (ii) P has more than one answer set only if P has an even loop.

Example 4. To illustrate the point (ii) above, consider the following program.

p ← . a ← ({p, b}, {{p}}). b ← ({p, a}, {{p}}).

The program has two answer sets {p, a} and {p, b}. Then, according to the theorem,
there must exist an even loop in its dependency graph. Indeed, the path from a to b
negatively, and then from b to a negatively, is an even loop.

4.3 Unfolding Negative C-Atoms in Rule Bodies

Unfolding negative c-atoms is formulated for answer sets by reduct. Given a program
P , the unfolded program will be denoted by Uneg(P ).

For each rule r ∈ P of the form

head(r) ← pos(r),not (D1, C1), ...,not (Dn, Cn). (4)

where n ≥ 0, we will have a rule in Uneg(P ), which is obtained by replacing each
negative c-atom not (Dj , Cj) in (4), where Cj = {πj1 , ..., πjk

}, by a conjunction
not ψj1 , ...,not ψjk

, where ψji ’s are new symbols; in addition, for each 1 ≤ j ≤ n,
we will have the following rules in Uneg(P ):

ψji ← bodyji . for each j1 ≤ ji ≤ jk

where bodyji = πji ∪ {not a | a ∈ Dj \ πji}.

Example 5. Consider the following program P from [21]:

c ← not 1{a, b}1. a ← c. b ← a.

Note that 1{a, b}1 represents the constraint ({a, b}, {{a}, {b}}). P has {a, b, c} as its
unique answer set by reduct. The unfolded program is:

c ← not ψ1,not ψ2. ψ1 ← a,not b. ψ2 ← b,not a. a ← c. b ← a.

Note that the unique answer set above is not an answer set by complement for P . In
fact, the program has no answer sets by complement. As noticed in [21], an answer
set by reduct may not be well-supported. The unfolded program provides a technical
explanation to this phenomenon.
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As noted in [21], for the program P above, {a, b, c} is not a minimal model, since
{b} is a model. It is also known that every answer set by complement is an answer
set by reduct, but the reverse does not hold. Thus, answer sets by complement can be
computed by first computing answer sets by reduct, and then checking the minimality.
Such an extra level of minimality checking sometimes may push the complexity to a
higher level (e.g., this is the case from normal programs to disjunctive programs). An
interesting question arises: Is the complexity of the semantics by complement higher
than that of the semantics by reduct? We will see in Section 6 that the answer is NO.

Proposition 3. For any general program P , the transformation from P to Uneg(P ) takes
polynomial time and, under the by-reduct semantics, AS(P )=AS|At(P )(Uneg(P )).

5 Unfolding Disjunction

When a c-atom A appears in the head of a rule, there may be multiple specified solutions
in Ac, and thus an answer set may not be a minimal model. Therefore, the traditional
method of defining answer sets for disjunctive programs, namely requiring a set of
atoms M to be a minimal model of PM , is not applicable. On the other hand, when the
head of a rule is a disjunction of c-atoms, minimal truth in these c-atoms is desirable,
and when every c-atom in a disjunctive program is elementary, the semantics should
reduce to the stable model semantics [9].

In this section, we describe unfolding of disjunction in the head, based on which
we define answer sets for disjunctive programs. Given a disjunctive program P , the
resulting program will be denoted Udis(P ).

Consider any rule r in P of the form

(D1, C1) ∨ ... ∨ (Dk, Ck) ← body(r). (5)

where k ≥ 1. Let Ci = {πi1 , ..., πim}, where 1 ≤ i ≤ k. The rule r can be unfolded to
yield the following rules in Udis(P )

Φ1 ∨ ... ∨ Φk ← body(r).
1{ξπi1

, ..., ξπim
}1 ← Φi. for each 1 ≤ i ≤ k,

h ← ξπij
. for each πij ∈ Ci, and for each h ∈ πij , and

⊥ ← ξπij
, d, Φi. for each πij ∈ Ci, and for each d ∈ Di \πij

where Φi and ξπij
are all new symbols.

It’s clear that unfolding of disjunction is a polynomial time process in the size of P .

Example 6. Consider the following rule where D = {sunny, windy, raining}.

(D, {{sunny}}) ∨ (D, {{windy}, {raining}, {windy, raining}}) ← .

The rule can be unfolded to

pleasant ∨ annoying ← . 1{nice}1 ← pleasant.
sunny ← nice. ⊥ ← nice, windy. ⊥ ← nice, raining.
......
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where the variables pleasant, annoying, and nice are all new symbols. In the unfold-
ing of disjunction, we first name the c-atoms in the head (e.g., pleasant and annoying);
when a disjunct in the head is satisfied, exactly one admissible set is implied (e.g., the
second rule above), where each admissible set is explicitly named (e.g. nice above);
then the meaning of an admissible set is encoded (e.g., nice implies sunny, and so on).

We now define answer sets for disjunctive programs with c-atoms.

Definition 5. Let P be a disjunctive program and M be a set of atoms.
Answer set by reduct: Let P ′ = Uneg ◦ Upos ◦ Udis(P ). M is an answer set by reduct
for P iff there is an answer set M ′ for P ′ such that M = M ′|At(P ).
Answer set by complement: Let P ′ be the complement of P , and P ′′ = Upos ◦
Udis(P ′). M is an answer set by complement for P iff there is an answer set M ′ for
P ′′ such that M = M ′|At(P ).

Theorem 2. (i) If P is a general program, then the answer sets defined in Def. 5
coincide with those defined in Def. 4.

(ii) If P is a disjunctive program, where any c-atom appearing in any rule head is
elementary, then any answer set by complement for P is a minimal model.

(iii) If P is a disjunctive program where every c-atom is elementary, then the answer
sets by reduct for P coincide with those by complement for P , and coincide with
the stable models of P as defined in [9].

The result in (i) states that our semantics for disjunctive programs is a faithful extension
of the semantics for non-disjunctive programs. The result stated in (ii) gives a condition
for an answer set by complement to be minimal. In (iii), our semantics reduces to the
standard stable model semantics for (conventional) disjunctive programs.

Head cycle-free condition: We can formulate a head cycle-free condition for a dis-
junctive program P . Let P consist of rules r of the form

(A1, B1) ∨ ... ∨ (Ak, Bk) ← (D1, C1), ..., (Dn, Cn), neg(r). (6)

We construct a positive dependency graph GP as follows: there is a positive edge from
an atom p to an atom q if there is a rule r ∈ P of the form (6) such that p ∈ ξ for some
ξ ∈ Bi, 1 ≤ i ≤ k, and q ∈ π for some π ∈ Cj , 1 ≤ j ≤ n.

Two atoms a1 and a2 are said to be head sharing if there is a rule of the form 6 such
that a1 ∈ Bi and a2 ∈ Bj , for some i and j such that 1 ≤ i, j ≤ k and i �= j. A head
cycle refers to a path in GP that goes through two head-sharing atoms. GP is said to
be head cycle-free if there is no head cycle in it.

Below, by shifting, we mean that, given program P , any disjunctive rule r ∈ P , of
the form A1 ∨ ... ∨ Ak ← body(r) is replaced by the collection of rules

Ai ← body(r),not A1, ...,not Ai−1,not Ai+1, ...,not Ak.

where 1 ≤ i ≤ k. Let us denote the resulting program by Pshift.

Theorem 3. Let P be a disjunctive program. If GP is head cycle-free, then P can be
reduced to a general program by shifting such that AS(P ) = AS(Pshift).
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6 Complexity

Theorem 4. For the following classes of programs with c-atoms, the problem of decid-
ing whether an answer set exists for a program P in that class is NP-complete.

(i) P is a condition-free program.
(ii) P is a positive program.

(iii) P is a general program under the by-reduct semantics.
(iv) P is a general program under the by-complement semantics.
(v) P is a disjunctive program such that GP is head cycle-free.

Proof
Hardness: There is a polynomial time reduction from the NP-complete problem CSP
to a condition-free program, and the class of condition-free programs is a subclass of
all the other classes.

Membership in NP: The decision problems for (ii) & (iii) are no harder than the cor-
responding decision problem for normal logic programs (Propositions 1, 2, and 3). For
(v), the conclusion follows from Theorem 3 and the result on shifting [1].

We prove it for (iv). Let’s guess a set of atoms I for which we are to verify deter-
ministically in polynomial time whether it is an answer set by complement for P . We
can do this by checking whether I = T∞P (∅, I), with a straightforward extension of
conditional satisfaction to negative c-atoms: for any set of atoms S, S |=I not A iff
S |=I A′, where A′ is the complement of A.

In computing T∞P (∅, I), the whole process terminates after at most n iterations,
where n = |At(P )|. Thus, we only need to show that each iteration in computing
T n

P (∅, I) takes polynomial time in the size of P . Clearly, this holds if checking the (ex-
tended) conditional satisfaction of a c-atom A as well as a negative c-atom notA takes
polynomial time in the size of A.

Let S be a set of atoms and A a c-atom. We check S |=I A as follows. By definition,
S |=I A means S ∩ Ad ∈ Ac, and any set in between S ∩ Ad and I ∩ Ad must be in
Ac. We know that the number of the sets that are said to be in Ac here is 2N , where
N = |I ∩ Ad − S ∩ Ad|. (Note that S ∩ Ad may not be a subset of I ∩ Ad, in which
case, N = 0 and S ∩ Ad is the only set that is counted.) So, if the size of the set
{S ∩ Ad | S ∩ Ad ∈ Ac} ∪ {π | π ∈ Ac, I ∩ π ⊇ S ∩ Ad} is also 2N , then S |=I A,
otherwise S �|=I A. Clearly, this can be checked in polynomial time in the size of A.

Now consider not A, with A′ being the complement of A. By definition, S |=I

not A iff S |=I A′ iff

(i) S |= A′, and for any S′ such that S ∩ Ad ⊆ S′ ⊆ I ∩ Ad, S′ ∩ Ad ∈ A′c, iff
(ii) S ∩ Ad �∈ Ac, and for each π ∈ Ac, it is not the case that S ∩ Ad ⊆ π ⊆ I ∩ Ad.

Clearly, the last statement can be checked in polynomial time in the size of A. ��
We can also show

Theorem 5. For the following classes of programs with c-atoms, the problem of decid-
ing whether an answer set exists for a program P in that class is ΣP

2 -complete.

(i) P is a disjunctive program under the by-reduct semantics.
(ii) P is a disjunctive program under the by-complement semantics.
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7 Relation to Previous Work

Logic programming with abstract constraints was proposed in [13], where the semantics
were studied for the programs with monotone c-atoms. Son et al. [21] treated arbitrary
c-atoms. In this paper, we further extended this line of work by treating disjunction.
Our treatment is based on unfolding, which was used earlier in [20] to unfold positive
c-atoms in rule bodies. We extend this approach by also unfolding the head, including
the disjunctive head, and negative c-atoms in rule bodies (for the by-reduct semantics).

Disjunction has been considered in [5,17], where the head of a rule is a disjunc-
tion of elementary c-atoms. We have shown in Theorem 2 that when the head contains
only elementary c-atoms, we will get the expected behavior, namely all answer sets by
complement are minimal models.

Logic programs with aggregates have gained quite a bit attention lately. Usually, it is
assumed that an aggregate only occurs positively in a rule body. By allowing c-atoms to
appear anywhere in a disjunctive rule, we are able to represent conditional constraints
and disjunctive constraints.

Our complexity results are derived for the language of logic programs with c-atoms,
where the size of a c-atom A could be exponential in the size of Ad. It is important
to note that this language differs from the language of logic programs with aggregates,
where aggregates are expressed by pre-defined aggregate functions over some relational
operators. The complexity for the latter has been reported in [19]. To the best of our
knowledge, the complexity for programs with aggregates/c-atoms in the head has not
been studied before.

8 Final Remarks

In this paper, we have studied the class of disjunctive programs with c-atoms, and var-
ious subclasses, where a c-atom can appear anywhere in a rule. We have also provided
some complexity results for these classes of programs. We have shown that programs
in these classes all have an intuitive, rather direct interpretation in terms of the familiar
programs composed of ordinary atoms, which can be obtained by unfolding. We have
shown that the insights into the semantical issues for logic programs with c-atoms can
often be revealed by their unfolded counterparts.

An interesting question is how to compute answer sets for classes of programs with
arbitrary c-atoms. The unfolding approach studied here is intended as a means for the-
oretical analysis. In practical systems, c-atoms are typically expressed in terms of some
pre-defined functions and predicates, such as weight and cardinality constraints, and
those involving aggregates. In this case, an implementation supported by special con-
straint propagation algorithms for effective space pruning is highly desirable, which we
are studying at the present time.
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Abstract. In this paper, We propose a general default logic. It extends
Reiter’s default logic by adding rule connectives like disjunction in logic
programming, and Ferraris’s general logic program by allowing arbitrary
propositional formulas to be the base in forming logic programs. We show
the usefulness of this logic by applying it to formalizing rule constraints,
generalized closed world assumptions, and conditional defaults.

1 Introduction

In this paper, we consider a language with connectives from both classical logic
and logic programming, and provide a fixed-point semantics for the language so
that our logic is both a generalization of Reiter’s default logic [1] and Ferraris’s
general logic programs with stable model semantics [2].

The interplay between Reiter’s default logic and logic programming with
negation-as-failure has been going on since the beginning of nonmonotonic rea-
soning. Reiter’s default logic was considered to be a formalization of default
reasoning including the negation-as-failure mechanism used in Prolog. This is
confirmed when Gelfond and Lifschitz [3] showed that their stable model se-
mantics of normal logic programs [4] can be embedded in Reiter’s default logic.
In a normal logic program, the head of a rule must be an atom. If one allows
disjunctions of atoms in the head of rule, then one obtains what has been called
disjunctive logic programs, and Gelfond et al. [5] showed that the answer set
semantics of these disjunctive logic programs can be embedded in their disjunc-
tive default logic. Notice that Reiter’s default logic also allows disjunction in the
formulas occurring in default rules, but this disjunction is different from the dis-
junction used in disjunctive logic programming. One could say that the former
is classical disjunction as in classical logic while the latter is default disjunction.
The difference is that default disjunction means minimality while classical dis-
junction does not. For instance, the logic program {a|b ←} has two answer sets
{a} and {b}, but the default theory ({}, {: a∨b/a∨b}) has one extension {a∨b}
which has three models1 {a}, {b}, and {a, b}.

1 We identify a model with the set of atoms that are true in the model.
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Another difference between disjunction in disjunctive logic programs and dis-
junction in formulas in classical logic is that the former is allowed only in the
head of a rule. It cannot occur in the body of a rule nor can it be nested. This
limitation in the use of disjunction in disjunctive logic programming has been
addressed by Lifschitz et al. [6], Pearce [7] and recently by Ferraris [2]. He defined
logic programs that look just like propositional formulas but are interpreted ac-
cording to a generalized stable model semantics. In other words, in these formulas
called general logic programs, negations are like negation-as-failure, implications
are like rules, and disjunctions are like those in disjunctive logic programs. While
Ferraris’s general logic programs go well-beyond disjunctive logic programs by
allowing disjunctions, negation-as-failure, and rules to occur anywhere, they do
not allow any classical disjunctions and implications. Thus the natural ques-
tion is whether a meaningful logic can be defined that allow both connectives
from logic programming and classical logic. This paper answers this question
positively. Before we proceed to define our logic formally, the following example
illustrates the need for classical disjunction in default reasoning.

Example 1. Suppose that we have the following information about the students
in a high school:

(*) A student good at math is normally good at physics. Conversely, a student
good at physics is normally good at math.

In logic programming, this can be represented as follows:

1. GoodAtPhysics(x) ← GoodAtMath(x), not ¬GoodAtPhysics(x)2;
2. GoodAtMath(x) ← GoodAtPhysics(x), not ¬GoodAtMath(x).

Now suppose we are told that Mike is either good at math or good at physics.
If we represent this disjunctive information as:

3. GoodAtMath(Mike) | GoodAtPhisics(Mike)

then we would conclude that Mike is both good at math and good at physics
as the logic program {1, 2, 3} has a unique answer set. One could argue whether
this is a reasonable conclusion. If we do not wish the defaults to be applied here,
then we could replace (3) by the following fact:

3’. GoodAtMath(Mike) ∨ GoodAtPhisics(Mike).

As we shall see, in our logic, the theory representing {1, 2, 3′} will have a unique
extension {GoodAtMath(Mike) ∨ GoodAtPhisics(Mike)}.

2 General Default Logic

In this section, we define our logic R that allow both classical connectives and
logic programming connectives. Then, we show that Reiter’s default logic, Gel-
fond et al.’s disjunctive default and Ferraris’s general logic programs are special
cases of the extension semantics of general default logic.
2 We use a first order notation here to denote the set of all grounded propositional

rules.
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2.1 Syntax and Basic Semantics

Let Atom be a set of atoms, also called propositional variables. By L we mean
the classical propositional language defined recursively by Atom and classical
connectives ⊥, ¬, → as follows:

F ::= ⊥ | p | ¬F | F → F,

where p ∈ Atom. �, F ∧ G, F ∨ G and F ↔ G are considered as shorthands of
⊥ → ⊥, ¬(F → ¬G), ¬F → G and (F → G) ∧ (G → F ) respectively, where
F and G are formulas in L. Formulas in L are called facts. The satisfaction
relation between a set of facts and a fact is defined as usual. A theory T is a set
of facts which is closed under the classical entailment. Let Γ be a set of facts,
Th(Γ ) denotes the logic closure of Γ under classical entailment. We write Γ to
denote the theory Th({Γ}) if it clear from the context. For instance, we write ∅
to denote the theory of all tautologies; we write {p} to denote the theory of all
logic consequences of p. We say that a theory T is inconsistent if there is a fact
F such that T |= F and T |= ¬F , otherwise, we say that T is consistent.

We introduce a set of new connectives, called rule connectives. They are −
for negation as failure or rule negation, ⇒ for rule implication, & for rule and,
| for rule or and ⇔ for rule equivalence respectively. We define a propositional
language R recursively by facts and rule connectives as follows:

R ::= F | R ⇒ R | R & R | R | R,

where F is a fact. −R and R ⇔ S are considered as shorthands of R ⇒ ⊥ and
(R ⇒ S) & (S ⇒ R) respectively, where R and S are formulas in R. Formulas
in R are called rules or rule formulas. Particularly, facts are also rules. A rule
base Δ is a set of rules.

The order of priority for these connectives are

{¬} > {∧, ∨} > {→, ↔} > {−} > { & , | } > {⇒, ⇔}.

For example, −p ∨ ¬p ⇒ q is a well defined rule, which denotes the rule (−(p ∨
(¬p))) ⇒ q. Both ¬p ∨ p and ¬p | p are well defined rules. The former is also a
fact but the latter is not a fact. However, ¬(p | p) is not a well defined rule.

We define the subrule relationship between two rules recursively as follows:

1. R is a subrule of R;
2. R and S are subrules of R ⇒ S;
3. R and S are subrules of R & S;
4. R and S are subrules of R | S,

where R and S are rules. Thus, clearly, R is a subrule of −R. For example, p is
a subrule of ¬p | p but not a subrule of ¬p ∨ p.

We now define the satisfaction relation |=R between a theory and a rule
inductively:

– If R is a fact, then T |=R R iff T |= R.
– T |=R R & S iff T |=R R and T |=R S;
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– T |=R R | S iff T |=R R or T |=R S;
– T |=R R ⇒ S iff T |=R R or T |=R S.

Thus, T |=R −R iff T |=R R → ⊥ iff T |=R R or T |=R ⊥. If T is consistent,
then T |=R −R iff T |=R R. If T is inconsistent, then for every rule R, T |=R R.
T |=R R ⇔ S iff T |=R (R ⇒ S) & (S ⇒ R) iff T |=R R ⇒ S and T |=R S ⇒ R.

We say that T satisfies R, also T is a model of R iff T |=R R. We say that T
satisfies a rule base Δ iff T satisfies every rule in Δ. We say that two rule bases
are weakly equivalent if they have the same set of models.

For example, let T be ∅. T is a model of ¬p∨p, but T is not a model of ¬p |p.
This example also shows a difference between the two connectives ∨ and | . As
another example, T is a model of −p but not a model of ¬p. This example also
shows a difference between the two connectives ¬ and −.

Theorem 1. Let T be a theory and R, S two rule formulas in R.

1. T |=R − − R iff T |=R R.
2. T |=R −(R & S) iff T |=R −R | − S.
3. T |=R −(R | S) iff T |=R −R & − S.
4. T |=R R ⇒ S iff T |=R −R | S.

Proof. These assertions follow directly from the definitions. As an example, we
write down the proof of assertion 2 here. According to the definition, T |=R

−(R & S) iff T is not a model of R & S, which holds iff a) T is not a model of
R or b) T is not a model of S. On the other hand, T |=R −R | − S iff a) T is a
model of −R or b) T is a model of −S, which holds iff a) T is not a model of R
or b) T is not a model of S. Hence, assertion 2 holds.

2.2 Extension

Let T be a theory and R a rule in R. The reduction of R on T , denoted by RT ,
is the formula obtained from R by replacing every maximal subrules of R which
is not satisfied by T with ⊥. It can also be defined recursively as follows:

– If R is a fact, then RT =
{

R if T |=R R
⊥ otherwise ,

– If R is R1 � R2, then RT =
{

RT
1 � RT

2 if T |=R R1 � R2
⊥ otherwise , where � is & ,

⇔, | or ⇒.

Thus, if R is −S and T is consistent, then RT =
{⊥ if T |=R S

� otherwise .

Let T be a theory and Δ a rule base, the reduction of Δ on T , denoted by
ΔT , is the set of all the reductions of rules in Δ on T .

For example, let T be {p}. The reduction of −p ⇒ q on T is ⊥ ⇒ ⊥, which
is weakly equivalent to �. The reduction of p | q on T is p. The reduction of
p ∨ q on T is p ∨ q. This example also shows that although two rules are weakly
equivalent (e.g. −p ⇒ q and p | q), their reductions on a same theory might not
be weakly equivalent.
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This notion of reduction is similar to Ferraris’s notion of reduction for general
logic programs [2].

Definition 1. Let T be a theory and Δ a rule base. We say that T is an exten-
sion of F iff:

1. T |=R ΔT .
2. There is no theory T1 such that T1 ⊂ T and T1 |=R ΔT .

Example 2. Consider the rule base Δ1 = {−p ⇒ q}.

– Let T1 be ∅. The reduction of Δ1 on T1 is {⊥}. T1 is not a model of ΔT1
1 .

Hence, T1 is not an extension of Δ1.
– Let T2 be {p}. The reduction of Δ1 on T2 is ⊥ ⇒ ⊥. T2 is a model of ΔT2

1 .
But ∅ is also a model of ΔT2

1 and ∅ ⊂ T2. Hence, T2 is not an extension of
Δ1.

– Let T3 be {q}. The reduction of Δ1 on T3 is � ⇒ q, which is weakly equivalent
to q. T3 is a model of q and there is no proper subset of T3 which is also a
model of q. Hence, T3 is an extension of Δ1.

– Let T4 be {¬p∧q}. The reduction of Δ1 on T4 is � ⇒ q, which is also weakly
equivalent to q. T4 is a model of ΔT4

1 . But {q} is also a model of ΔT4
1 . Hence

T4 is not an extension of Δ1.
– We can examine that the only extension of Δ1 is T3.

Similarly, p | q has two extensions: {p} and {q}. p ∨ q has a unique extension
{p∨q}. This example shows that although two rules are weakly equivalent, their
extensions might not be the same (e.g. −p ⇒ q and p | q).

Example 3 (Example 1 continued). Consider the example mentioned in the in-
troduction section again. Reformulated in general default logic with domain
D = {Mike}, the rule base 1, 2, 3′, denoted by Δ, is:

1. GoodAtMath(Mike)&−¬GoodAtPhysics(Mike)⇒GoodAtPhysics(Mike);
2. GoodAtPhysics(Mike)& − ¬GoodAtMath(Mike) ⇒ GoodAtMath(Mike);
3’. GoodAtMath(Mike) ∨ GoodAtPhisics(Mike).

Let T1 be the theory Th({GoodAtMath(Mike), GoodAtPhysics(Mike)}). The
reduction of Δ on T1 is

1-1 GoodAtMath(Mike) ⇒ GoodAtPhysics(Mike);
1-2 GoodAtPhysics(Mike) ⇒ GoodAtPhysics(Mike);
1-3 GoodAtMath(Mike) ∨ GoodAtPhysics(Mike).

Although T1 is a model of ΔT1 , GoodAtMath(Mike) ∨ GoodAtPhysics(Mike)
is also a model of ΔT1 and it is a proper subset of T1. Thus, T1 is not a extension
of Δ. And we can examine the only extension of Δ is {GoodAtMath(Mike) ∨
GoodAtPhysics(Mike)}.
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It is clear that if Δ is a set of facts, then Δ has exactly one extension, which is
the deductive closure of itself.

Intuitively, the extensions of a rule base represent all possible beliefs which can
be derived from the rule base. The following theorem shows that every extension
of a rule base is also a model of it.

Theorem 2. Let T be a consistent theory and Δ a rule base. If T is an extension
of Δ, then T satisfies Δ.

Proof. According to the definitions, it is easy to see that T |=R ΔT iff T |=R Δ.
On the other hand, if T is an extension of Δ, then T |=R ΔT . Hence, this
assertion holds.

The converse of Theorem 2 does not hold in general. For instance, {p} is a model
of {− − p}, but not an extension of it.

2.3 Default Logic

In this paper, we only consider Reiter’s default logic in propositional case. A
default rule has the form

p : q1, . . . , qn/r,

where p, qi, 1 ≤ i ≤ n and r are propositional formulas. p is called the prerequi-
site, qi, 1 ≤ i ≤ n are called the justifications and r is called the consequent. A
default theory is a pair Δ = (W, D), where W is a set of propositional formulas
and D is a set of default rules. A theory T is called an extension of a default
theory Δ = (W, D) if T = Γ (T ), where for any theory S, Γ (S) is the minimal
set (in the sense of subset relationship) satisfying the following three conditions:

1. W ⊆ Γ (S).
2. Γ (S) is a theory.
3. For any default rule p : q1, . . . , qn/r ∈ D, if p ∈ Γ (S) and ¬qi ∈ S, 1 ≤ i ≤ n,

then r ∈ Γ (S).

We now show that Reiter’s default logic in propositional case can be embedded
into the logic R. Let R be a default rule with the form p : q1, . . . , qn/r. By R∗

we denote the following rule in R
p & − ¬q1 & . . . & − ¬qn ⇒ r.

Let Δ = (W, D) be a default theory, by Δ∗ we denote the rule base

W ∪ {R∗ | R ∈ D}.

Theorem 3. Let T be a theory and Δ = (W, D) a default theory. T is an
extension of Δ iff T is an extension of Δ∗.

Proof. ⇒: Suppose that T is an extension of Δ. Then T |=R WT since W is a
set of facts. Moreover, for all rule R ∈ D with the form p : q1, . . . , qn/r. There
are three cases:
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– p ∈ T . In this case, R∗T is weakly equivalent to �. Thus, T |=R R∗T .
– There is a qi, 1 ≤ i ≤ n such that ¬qi ∈ T . In this case, R∗T is also weakly

equivalent to �. Thus, T |=R R∗T .
– p ∈ T and there is no qi, 1 ≤ i ≤ n such that ¬qi ∈ T . In this case, according

to the definition of extensions in default logic, r ∈ T . Therefore, R∗T is
weakly equivalent to p ⇒ r. Hence, T |=R R∗T .

This shows that for all R ∈ D, T |=R R∗T . Hence, T |=R Δ∗T . On the other
hand, there is no consistent theory T1 ⊂ T and T1 |=R Δ∗T . Otherwise, suppose
there is such a T1. T1 must satisfy W since W ⊆ Δ∗T . For all rule R ∈ D,
T1 satisfies R∗T . Therefore, T1 satisfies the third condition in the definition of
default extensions. Therefore, Γ (T ) ⊆ T1. Hence, Γ (T ) = T . This shows that T
is not an extension of Δ, a contradiction.

⇐: Suppose that T is an extension of Δ∗. We now show that T is the smallest
theory satisfying condition 1 to 3 in the definition of default extensions. First,
T |=R W since W ⊆ Δ∗ and W is a set of facts. Second, T is a theory. Finally,
for all rule R ∈ Δ with the form p : q1, . . . , qn/r, if p ∈ T and there is no
qi, 1 ≤ i ≤ n such that ¬qi ∈ T , then R∗T is p ⇒ r. And T |=R R∗T , therefore
r ∈ T . This shows that T satisfies all those conditions. Now suppose otherwise
there is a proper subset T1 of T also satisfies Condition 1 to 3. Then, similarly
T1 |=R W and for all rule R ∈ D, T1 |=R R∗T . Thus, T1 |=R Δ∗T . This shows
that T is not an extension of Δ∗, a contradiction.

Observe that R and R∗ are essential the same except the syntax to represent
them. Thus, Reiter’s default logic in propositional case is a special case of general
default logic. In the rest of this section, we shall also show that Gelfond et al.’s
disjunctive default logic is a special case of R by a similar translation.

A disjunctive default rule has the form

p : q1, . . . , qn/r1, . . . , rk,

where p, qi, 1 ≤ i ≤ n and rj , 1 ≤ j ≤ k are propositional formulas. A disjunctive
default theory is a pair Δ = (W, D), where W is a set of propositional formulas
and D is a set of disjunctive default rules. A theory T is called an extension
of a disjunctive default theory Δ = (W, D) if T = Γ (T ), where for any theory
S, Γ (S) is the minimal set (in the sense of subset relationship) satisfying the
following three conditions:

1. W ⊆ Γ (S).
2. Γ (S) is a theory.
3. For any default rule p : q1, . . . , qn/r1, . . . , rk ∈ D, if p ∈ Γ (S) and ¬qi ∈

S, 1 ≤ i ≤ n, then for some j, 1 ≤ j ≤ k, rj ∈ Γ (S).

We now show that Gelfond et al.’s default logic in propositional case can be
embedded into the logic R as well. Let R be a disjunctive default rule with the
form p : q1, . . . , qn/r1, . . . , rk. By R∗ we denote the following rule in R

p & − ¬q1 & . . . & − ¬qn ⇒ r1 | . . . | rk.
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Let Δ = (W, D) be a disjunctive default theory, by Δ∗ we denote the rule base

W ∪ {R∗ | R ∈ D}.

Theorem 4. Let T be a theory and Δ = (W, D) a disjunctive default theory. T
is an extension of Δ iff T is an extension of Δ∗.

Proof. This proof is quite similar with the proof of Theorem 3.

2.4 General Logic Programming

Ferraris’s general logic programs are defined over propositional formulas. Given a
propositional formula F and a set of atoms X , the reduction of F on X , denoted
by FX , is the proposition formula obtained from F by replacing every subformula
which is not satisfied by F into ⊥. Given a set of propositional formulas Δ, ΔX

is the set of all reductions of formulas in Δ on X . A set of atoms X is said to be
a stable model of Δ iff X is the minimal set (in the sense of subset relationship)
satisfying ΔX .

Let F be a propositional formula. By F ∗ we denote the formula in R obtained
from F by replacing every classical connectives into corresponding rule connec-
tives, that is, from → to ⇒, from ¬ to −, from ∧ to & , from ∨ to | and from
↔ to ⇔. Let Δ be a general logic program, by Δ∗ we denote the rule base

{F ∗ | F ∈ Δ}.

Lemma 1. Let X be a set of atoms and F a propositional formula. Th(X) is a
model of F ∗ iff X is a model of F .

Proof. We prove this assertion by induction on the structure of F .

1. If F is � or ⊥, it is easy to see that this assertion holds.
2. If F is an atom p, then Th(X) |=R F ∗ iff p ∈ X iff X is a model of F .
3. If F is ¬G, then Th(X) |=R F ∗ iff Th(X) |=R −G∗ iff Th(X) is not a model

of G∗ iff X is not a model of G iff X is a model of ¬G.
4. If F is G ∧ H , then Th(X) |=R F ∗ iff Th(X) |=R G∗ & H∗ iff Th(X) is a

model of G∗ and Th(X) is a model of H∗ iff X is a model of G and X is a
model of H iff X is a model of G ∧ H .

5. If F is G ∨ H , then Th(X) |=R F ∗ iff Th(X) |=R G∗ | H∗ iff Th(X) is a
model of G∗ or Th(X) is a model of H∗ iff X is a model of G or X is a
model of H iff X is a model of G ∨ H .

6. If F is G → H , then Th(X) |=R F ∗ iff Th(X) |=R G∗ ⇒ H∗ iff Th(X) is
not a model of G∗ or Th(X) is a model of H∗ iff X is not a model of G or
X is a model of H iff X is a model of G → H .

7. If F is G ↔ H , then Th(X) |=R F ∗ iff Th(X) |=R G∗ ⇔ H∗ iff a) Th(X) is
both a model of G∗ and a model of H∗ or b) Th(X) is neither a model of
G∗ nor a model of H∗ iff a) X is both a model of G and a model of H or b)
X is neither a model of G and nor a model of H iff X is a model of G ↔ H .

This completes the induction proof.
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Theorem 5. Let X be a set of atoms and Δ a general logic program. X is a
stable model of Δ iff Th(X) is an extension of Δ∗.

Proof. By Lemma 1, it is easy to see that (ΔX)∗ is the same as (Δ∗)Th(X).
⇒: Suppose X is a stable model of Δ. Then X is the minimal set satisfy-

ing ΔX . By Lemma 1, Th(X) is a model of (ΔX)∗. Thus Th(X) is a model
of (Δ∗)Th(X). And there is no proper subset T1 of Th(X) such that T1 |=R

(Δ∗)Th(X). Otherwise, T1 is a model of (ΔX)∗. Let X1 be the set of atoms
{p | T1 |= p}. By induction on the structure, it is easy to see that for any set
of propositional formulas Γ , T1 is a model of Γ ∗ iff Th(X1) is a model of Γ ∗.
Hence, Th(X1) is a model of (ΔX)∗. Therefore by Lemma 1, X1 is a model of
ΔX . Moreover X1 ⊂ X since T1 ⊂ Th(X). This shows that X is not a stable
model of Δ, a contradiction.

⇐: Suppose Th(X) is an extension of Δ∗. Then Th(X) is the minimal set
satisfying (Δ∗)Th(X). Therefore, Th(X) is the minimal set satisfying (ΔX)∗. By
Lemma 1, it is easy to see that X is the minimal set satisfying ΔX . Therefore,
X is a stable model of Δ.

Actually, although Ferraris used the notations of classical connectives to denote
the connectives in general logic programs, those connectives are still connectives
in answer set programming. They are essentially rule connectives. In this paper,
we use a set of rule connectives to denote them. Hence, the answer set semantics
for general logic programs is also a special case of general default logic. More-
over, it is a special case of general default logic which only allows the facts are
atoms, while general logic programming with strong negation (namely classical
negation) is also a special case of general default logic which allows the facts are
literals.

In [3], Gelfond and Lifschitz showed that the answer set semantics for normal
logic programs is a special case of Reiter’s default logic; in [5], Gelfond et al.
showed that the answer set semantics for disjunctive logic programs is a special
case of their disjunctive default logic. Together with this work, one can observe
that the series of semantics for answer set programs (with classical negation)
are essentially special cases of corresponding semantics for default logics which
restrict the facts into atoms (literals).

3 Applications

In this section, we show that this logic is flexible enough to represent several im-
portant situations in common sense reasoning, including rule constraints, general
closed world assumptions and conditional defaults.

3.1 Representing Rule Constraints

Similar to constraints in answer set programming, constraints in general default
logic eliminate the extensions which do not satisfy the constraints. Let R be a
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rule, the constraint of R can be simply represented as

−R.

Theorem 6. T is an extension of Δ ∪ {−R} iff T is an extension of Δ and
T |=R R.

Proof. ⇒: Suppose that T is an extension of Δ ∪ {−R}. Then by the definition,
T |=R (−R)T . Thus, T |=R −R. Therefore T |=R R. On the other hand, T |=R

ΔT . We only need to prove that T is a minimal theory satisfying ΔT . Suppose
otherwise, there is a theory T1 such that T1 ⊂ T and T1 |=R ΔT . Notice that
(Δ ∪ {−R})T is ΔT ∪{(−R)T }, which is ΔT ∪{�}. Thus, T1 |=R (Δ ∪ {−R})T .
This shows that T is not an extension of Δ ∪ {−R}, a contradiction.

⇐: Suppose that T is an extension of Δ and T |=R R. Then T is the minimal
theory satisfying ΔT . Thus, T is also the minimal theory satisfying (Δ∪{−R})T

since (−R)T is �. Therefore, T is an extension of Δ ∪ {−R}.

3.2 Representing General Closed World Assumptions

In answer set programming, given an atom p, closed world assumption for p is
represented as follows:

¬p ← not p.

Reformulated in general default logic, it is

−p ⇒ ¬p.

However, this encoding of closed world assumption may lead to counter-
intuitive effects when representing incomplete information. Consider the follow-
ing example [8,9].

Example 4. Suppose we are give the following information:

(*) If a suspect is violent and is a psychopath then the suspect is extremely dangerous.
This is not the case if the suspect is not violent or not a psychopath.

This statement can be represented (in general default logic) as three rules:

1. violent & psychopath ⇒ dangerous.
2. ¬violent ⇒ ¬dangerous.
3. ¬psychopath ⇒ ¬dangerous.

Let us also assume that the DB has complete positive information. This can
be captured by closed world assumption. In the classical approach, it can be
represented as follows:

4. −violent ⇒ ¬violent.
5. −psychopath ⇒ ¬psychopath.

Now suppose that we have a disjunctive information that a person is either
violent or a psychopath. This can be represented as:
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6. violent | psychopath.

It is easy to see that the rule base 1 − 6 3 has two extensions:

Th({¬violent, psychopath, ¬dangerous});

Th({violent, ¬psychopath, ¬dangerous}).

Thus, we can get a result ¬dangerous. Intuitively, this conclusion is too opti-
mistic.

In our point of view, the reason is that the closed world assumption (4 and
5) are too strong. It should be replaced by

7. −(violent ∨ psychopath) ⇒ ¬(violent ∨ psychopath).

We can see that 1 − 3, 6, 7 has two extensions

Th({violent}) and Th({psychopath}).

Here, the answer of query dangerous is unknown.

Generally, given a fact F , the general closed world assumption of F can be
represented as (in general default logic)

−F ⇒ ¬F.

Given a rule base Δ such that −F ⇒ ¬F ∈ Δ, it is clear that if a theory T is
an extension of Δ and T |= F , then T |= ¬F .

3.3 Representing Conditional Defaults

A conditional rule has the following form:

R ⇒ S,

where R and S are rules. R is said to be the condition and S is said to be the
body. Of course, this yields a representation of conditional defaults in Reiter’s
default logic.

Let us consider the following example about New Zealand birds from [10]. We
shall show how we can represent it using conditional defaults in a natural way.

Example 5. Suppose that we have the following information:

(*) Birds normally fly. However, in New Zealand, birds normally do not fly.
3 There are fours kinds of formalization for this example in general default logic. It

depends on the way of representing the conjunctive connective in 1 and the way of
representing the disjunctive connective in 6. This kind of formalization is a trans-
lation from the representation in disjunctive logic program. However, all these four
kinds of formalization are fail to capture the sense of this example if the classical
approach of closed world assumption is adopted.
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One can represent this information in Reiter’s default logic as follows:

d1 : bird : fly / fly;
d2 : bird ∧ newzealand : ¬fly / ¬fly.

Given the fact

1. bird,

the default theory (1, {d1, d2}) has exactly one extension Th({bird, f ly}). How-
ever, given the fact

2. newzealand, bird,

the default theory (2, {d1, d2}) has two extensions Th({bird, newzealand, f ly})
and Th({bird, newzealand, ¬fly}).

In [10], Delgrande and Schaub formalized this example by using dynamic
priority on defaults. We now show that the information (∗) can be represented
by using conditional defaults in a natural way as follows:

3. newzealand ⇒ (bird & − fly ⇒ ¬fly).
4. −newzealand ⇒ (bird & − ¬fly ⇒ fly).

We can see that the rule base 1, 3, 4 still has exactly one extension Th({bird,
f ly}), and the rule base 2, 3, 4 has a unique extension Th({newzealand,
bird, ¬fly}).

4 Conclusion

We have proposed a general default logic, called R. It extends Reiter’s default
logic by adding rule connectives, and Ferraris’s general logic program by allowing
arbitrary propositional formulas to be the base in forming logic programs. We
also show that this logic is flexible enough to capture several important situations
in common sense reasoning.

Just as Lin and Shoham [11] showed that propositional default logic can be
embedded in the logic of GK, a non-standard modal logic with two modal op-
erators K for knowledge and A for assumption, and Lin and Zhou [12] showed
that Ferraris’s general logic programs can be embedded in the logic of GK, it
is possible to show that our new logic R can also be embedded in the logic of
GK. One potential benefit of doing so would be to obtain a way to check strong
equivalence in R in classical logic. Another important task is to compare the
expressive power of R with other non-monotonic formalisms. It is also possible
to extend our logic R to allow facts to be first order sentences as in Reiter’s
default logic. We leave these to future work.
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Abstract. The development of effective knowledge discovery techniques has be-
come a very active research area in recent years due to the important impact it has
had in several relevant application domains. One interesting task therein is that of
singling out anomalous individuals from a given population, e.g., to detect rare
events in time-series analysis settings, or to identify objects whose behavior is
deviant w.r.t. a codified standard set of rules. Such exceptional individuals are
usually referred to as outliers in the literature.

In this paper, the LP- OD logic programming outlier detection system is
described, based on the concept of outlier formally stated in the context of
knowledge-based systems in [1]. The LP- OD system exploits a rewriting al-
gorithm that transforms any outlier detection problem into an equivalent infer-
ence problem under stable model semantics, thereby making outlier computation
effective and realizable on top of any stable model solver.

1 Overview of Outlier Detection

Outlier detection, i.e., identifying anomalous individuals from a given population, has
important applications in bioinformatics, fraud detection, and intrusion detection, just
to cite a few. In fact, several approaches have already been developed to realize out-
lier detection, mainly by means of data mining techniques including clustering-based
and proximity-based methods as well as domain density analysis [4]. Usually, these
approaches model the “normal” behavior of individuals by performing some statistical
kind of computation on the given data set (various methods basically differ on the ba-
sis of the way such computation is carried out) and, then, single out those individuals
whose behavior or characteristics “significantly” deviate from normal ones.

However, while looking over a set of observations to discover outliers, it often hap-
pens that there is some “qualitative” description of the domain of interest encoding,
e.g., what an expected normal behavior should be. This description might be, for in-
stance, derived by an expert and might be formalized by means of a suitable language
for knowledge representation. This is precisely the approach pursued in [1], where the
formalization is carried out by exploiting logic programs under stable model semantics.

This means that the background knowledge, that is, what is known in general about
the world (also called in the following rule component), and the observations, that is,
what is currently perceived about (possibly, a portion of) the world (also called in the

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 254–259, 2007.
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following observation component), are respectively encoded in the form of a logic
program P rls and a set of facts P obs under stable models semantics. The structure
P = 〈P rls, P obs〉, called rule-observation pair, constitutes the input for outlier detec-
tion problems.

According to the formalization of [1], the fact that an individual is an outlier has
to be witnessed by a suitable associated set of observations, the outlier witness, which
shows why the individual “deviates” from normality. Specifically, the choice is to as-
sume that outlier witnesses are sets of facts that are “normally” (that is in the absence
of the outlier) explained by the domain knowledge which, in turns, entails precisely the
opposite of the witnesses whenever outliers are there. In this way, witnesses are meant
to precisely characterize the abnormality of outliers with respect to both the theory and
the other data at hand. This intuition is formalized in the following definition.

Let P = 〈P rls, P obs〉 be a rule-observation pair and let O ⊆ P obs be a set of facts.
Then, O is an outlier in P if there is a non-empty set W ⊆ P obs with W∩O = ∅, called
outlier witness for O in P , such that (1) P (P)W |= ¬W , and (2) P (P)W,O �|= ¬W ,
where P (P) = P rls ∪ P obs, P (P)W = P (P) \ W , P (P)W,O = P (P)W \ O, and |=
denotes entailment under either cautious semantics (|=c) or brave semantics (|=b).

Example 1. Suppose that during a visit to Australia you notice a mammal, say Donald,
that you classify as a platypus because of its graceful, yet comical appearance. However,
it seems to you that Donald is giving birth to a young, but this is very strange given
that you know that a platypus is a peculiar mammal that lays eggs. Formalizing this
scenario as an outlier detection problem is simple. Indeed, observations can be encoded
as the facts {Mammal(Donald), GiveBirth(Donald), Platypus(Donald)} and the
additional knowledge by means of the following logical rule:

Platypus(X) ← Mammal(X), not GiveBirth(X).

It is worthwhile noting that if you had not observed that Donald was a platypus, you
would not have inferred this conclusion, given your background knowledge and the
fact GiveBirth(Donald). However, if for some reason you have doubted the fact that
Donald was giving birth to its young, then it would come as no surprise that Donald was
a platypus. Therefore, the fact GiveBirth(Donald) is precisely recognized to represent
an outlier, whose anomaly is indeed witnessed by the fact Platypus(Donald). �

Clearly enough, detecting outliers by exploiting a logical characterization of the do-
main of interest is generally more complex than it appears from the previous example.
And, indeed, outlier detection problems turn out to be generally intractable under stable
model semantics: if P rls is stratified, then deciding for the existence of an outlier in a
given rule-observation pair is NP-complete; otherwise, if P rls is a general logic pro-
gram, then deciding for the same problem is ΣP

2 -complete under both the brave and the
cautious semantics. Furthermore, if the basic notion of outliers is constrained to single
out outliers of minimum size, which is desirable in many application scenarios, then the
complexity of computing an arbitrary outlier (if defined) is in FΔP

2 , for stratified P rls,
and in FΔP

3 (under both brave and cautious semantics), for general P rls. In particular,
if P rls is stratified, then the above problem is FNP//OptP[O(log n)]-complete.

Motivated by the above complexity results witnessing the need of high expressive-
ness to deal with outlier detection, we have implemented a system, named LP- OD,



256 F. Angiulli et al.

Fig. 1. Architecture of the LP- OD system

supporting this mining task via logic programming. In fact, the system encodes the dif-
ficult part of the computation in suitable logic programs (eventually with negation and
disjunction) under the stable model semantics. The rationale is to put outliers in one-
to-one correspondence with the stable models of the associated encoding, by exploiting
the ability of disjunctive logic programs to capture problems complete for the second
level of the polynomial hierarchy.

Details on the architecture of LP- OD, and on its usage are illustrated in the remain-
der of the paper.

2 The LP- OD System

An overview of the architecture of LP- OD is reported in Figure 1.1 The system is
composed of eight main modules, whose description follows:

– User Interface: it is the module through which the user interacts with the system.
– Knowledge Editor: this is a text editor used to load, save, and edit the rule-

observation pair. When writing down the program the user is allowed to use the
syntax of first order logic programs.

– Program Parser: this module checks that the input knowledge is syntactically cor-
rect, determines all the constants in the rule observation components, computes the
grounded version of the input knowledge, and stores this knowledge in an interme-
diate format, referred to as the Grounded rule-observation pair.

– Program Analyzer: this module determines the class of logic programs to which
the input knowledge belongs to, i.e., either stratified logic programs or general logic
programs, by exploiting Tarjan’s algorithm [8] to determine the strongly connected
components of the graph associated to the grounded pair. In fact, depending on
the type of the input at hand, suited algorithms are to be selected for the rewriting
(cf. Section 2.1).

1 The actual implementation of LP- OD has been carried out by using Java.
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– Program Rewriter: the module takes in input the grounded rule-observation pair
and outputs a new (disjunctive) logic program consisting in a rewriting of the orig-
inal one (the DLP Rewriting, in the architecture of Figure 1). We use two differ-
ent rewritings: one applicable to any logic program, yielding a disjunctive logic
program, and one suitable for stratified logic programs, yielding an ordinary logic
program. The Program Rewriter consults the Program Analyzer to decide the type
of rewriting to apply. Note that the rewriting introduces auxiliary atoms, some of
which are in one-to-one correspondence with atoms belonging to the observation
part and are used to guess outlier and witness sets. Thus, the Program Rewriter
stores this mapping in the Auxiliary atoms dictionary, since it is needed at outlier
detection time.

– Reasoning System: the transformation carried out by the Program Rewriter can
be evaluated on top of available stable models engine, such as GnT [5], DLV [6]
and Smodels [7]. In the present version of LP- OD, this module is implemented
through the DLV system.

– Post-processing Module: it gets the models computed by the Reasoning System
as soon as they are generated, and extracts from each model the auxiliary atoms
encoding the outlier set and the witness set computed, i.e., a solution of the out-
lier detection problem. Since for general logic programs, the same solution can be
returned by several models, this module also filters out repeated solutions. Further-
more, if the user declares of being interested in minimal outliers only, the module
is responsible for filtering out those which are not minimal.

– Outlier Detector: this module starts the execution of the Reasoning System module
and collects the solutions returned by the Post-processing Module. These solutions
are not immediately interpretable by the user, as they are encoded through auxiliary
atoms. Thus, the Auxiliary Atoms Dictionary is exploited to replace auxiliary atoms
with the original atoms belonging to the observation component. Solutions are pre-
sented to the user and can be stored in different formats to be further analyzed or
integrated in the input knowledge.

We next discuss our rewriting strategy and the way users interact with the system.

2.1 Program Rewriter

The Program Rewriter module implements a transformation from any rule-observation
pair P = 〈P rls, P obs〉 to a suitable logic program L(P) such that its stable models are
in correspondence with the outliers in P .

Assume P rls is a stratified logic program, then the rewriting L(P) outputs a logic
program composed by the following groups of rules:

i. two renamed copies of the original rule component, used for checking conditions
(1) and (2) in the definition of outlier;

ii. rules serving the purpose of guessing an outlier and its associated witness;
iii. rules simulating the removal of the outlier and the witness from the observation com-

ponent, which are needed for verifying whether the definition of outlier is satisfied;
iv. rules actually evaluating the definition of outlier;
v. constraints imposing that atoms cannot belong to an outlier and to witness at the

same time.
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Instead, in the case where P rls is a general logic program, rules inserted in the rewrit-
ing for stratified logic programs do not suffice to check condition (1) of the outlier def-
inition. Thus, we resort to disjunctive logic programs that capture the complexity class
ΣP

2 (see, e.g., [3]). Specifically, a well-known characterization of minimal models for
positive programs is exploited [9]: let P be a (non-disjunctive) positive propositional
logic program, and let M be a model for it. Then, M is minimal if and only if there is
a function φ assigning a natural number to each atom occurring in M , and a function
r assigning a rule of P to each element p in M such that: (a) body(r(p)) ⊆ M , (b)
head(r(p)) = p, and (c) φ(q) < φ(p), for each q ∈ body(r(p)).

Thus, besides the previous group of rules, the rewriting for general rule-observation
pairs contains the following additional groups of rules:

vi. rules guessing:
– a truth value assignment M to the atoms of the rule-observation pair;
– the rules r(p) associated with each atom p evaluating true in M , that is rule

r(p) such that head(r(p)) = p;
– the natural number φ(p) associated with each atom p in M .

vii. rules checking if the assignment M is a stable model of P (P)W , i.e. if it satisfies
all the conditions above described;

viii. rules checking, for each stable models M of P (P)W , that ¬W is not contained
in M (i.e. the condition (1) of the outlier definition under the cautious semantics).
This is carried out with a saturation technique.

Minimum-size outliers. As a further functionality of the system, we have also provided
support for detection problems aiming at singling out minimum-size outliers into a suit-
able logic program. To this end, we make use of weak constraints. Weak constraints,
taking the form of rules such as :∼ b1, · · · , bk, not bk+1, · · · , not bk+m, express a set
of desired conditions that may be however violated; their informal semantics is to min-
imize the number of violated instances. In fact, in [2] it is proved that the introduction
of weak constraints allows the solution of optimization problems since each weak con-
straint can be regarded as an “objective function” of an optimization problem. Thus, by
inserting the constraint :∼ oi. into L(P), for each oi ∈ P obs, into the program L(P),
we have that minimum-size outliers in P are in one-to-one correspondence with best
stable models of the rewriting.

2.2 User Interface

Two snapshots for the graphical interface of LP- OD are shown in Figure 2. The inter-
face has some input panels to edit the rule and the observation components.

By entering the menu “Execute” and the submenu “Translate into DLV”, the rewrit-
ing L(P) described in the preceding section is performed. In this preliminary phase,
the user is in charge of deciding which kinds of outlier have to be singled out, i.e., if the
focus is on all the outliers, on minimal ones, or on minimum-sized ones.

Having translated the rule-observation pair, it is possible to perform outlier detection
by entering the menu “Execute” and then the submenu “Outlier detection”.

The system starts executing the DLV interpreter in a separate process, and opens
a terminal window. Moreover, as soon as they are computed by the DLV system, the



The LP- OD System: Logic Programming Meets Outlier Detection 259

Fig. 2. User Interface: Rewriting of the input rule-observation program (left), and the outlier
detection phase (right)

system displays, in the left part of the window, the stable models of the program L(P),
and, in the right part of the window, the outliers together with the associated witnesses.
Note that the possibility of singling out minimal outliers only is implemented as a post-
processing step. In this case, LP- OD does not display the outliers as soon as they are
available, but firstly collects them and filters out non-minimal ones.

The output of the system can eventually be saved in various formats, to be further
analyzed or integrated in the input knowledge.
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Abstract. We describe the conflict-driven answer set solver clasp, which is
based on concepts from constraint processing (CSP) and satisfiability checking
(SAT). We detail its system architecture and major features, and provide a sys-
tematic empirical evaluation of its features.

1 Introduction

Our new system clasp [1] combines the high-level modeling capacities of Answer Set
Programming (ASP; [2]) with state-of-the-art techniques from the area of Boolean con-
straint solving. Unlike existing ASP solvers, clasp is originally designed and optimized
for conflict-driven ASP solving [3,4], centered around the concept of a nogood from the
area of constraint processing (CSP). Rather than applying a SAT(isfiability checking)
solver to a CNF conversion, clasp directly incorporates suitable data structures, particu-
larly fitting backjumping and learning. This includes dedicated treatment of binary and
ternary nogoods [5], and watched literals for unit propagation on “long” nogoods [6].
Unlike smodelscc [7], which builds a material implication graph for keeping track of
the multitude of inference rules found in ASP solving, clasp uses the more economical
approach of SAT solvers: For a derived literal, it only stores a pointer to the responsible
constraint. Despite its optimized data structures, the implementation of clasp provides
an elevated degree of abstraction for handling different types of (static and dynamic)
nogoods. This paves the way for the future support of language extensions, e.g., ag-
gregates. Different from smodels [8] and dlv [9], unfounded set detection within clasp
does not determine greatest unfounded sets. Rather, an identified unfounded atom is
immediately falsified, before checking for any further unfounded sets.

We focus on clasp’s primary operation mode, viz., conflict-driven nogood learning;
its second operation mode runs (systematic) backtracking without learning. Beyond
backjumping and learning, clasp features a number of related techniques, typically found
in SAT solvers based on Conflict-Driven Clause Learning (CDCL; [10]). clasp incor-
porates restarts, deletion of recorded conflict and loop nogoods, and decision heuristics
favoring literals from conflict nogoods. All these features are configurable via command
line options and subject to our experiments. The two major contributions of this paper
consist, first, in a detailed description of the system architecture (in Section 2) and, sec-
ond, in a systematic empirical evaluation of some selected run-time features (in Sec-
tion 3). Many of these features are based on experiences made in the area of SAT; hence
it is interesting to see how their variation affects solving ASP problems.
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c© Springer-Verlag Berlin Heidelberg 2007



clasp: A Conflict-Driven Answer Set Solver 261

2 System Architecture

The system architecture of clasp can be divided into three major components by follow-
ing the underlying data flow (cf. Figure 1): clasp reads ground logic programs in lparse
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Fig. 1. The system architecture of clasp

format [11], possibly includ-
ing choice rules, cardinality
and weight constraints. The
latter constructs are compiled
away during parsing. The re-
sulting normal rules are then
taken by the program builder
to generate nogoods (captur-
ing Clark’s completion) and
to create an initial positive
atom-body-dependency graph
(containing only distinct bod-
ies). While all vertices of
this graph are associated with
assignable variables in the
static data, only the non-trivial
strongly connected compo-
nents of the positive atom-
body-dependency graph are
kept and used to initialize the unfounded set checker. Note that clasp uses hybrid as-
signments, treating atoms and bodies equitably as assignable objects.

The elementary data type used in the solver is that of a Boolean constraint (and
thus not restricted to sets of literals). The solver distinguishes static nogoods (see above)
that are excluded from nogood deletion and recorded nogoods (stemming from conflicts
or loops) accumulated during the search. While the former are part of the static data, the
latter are kept in a separate database. Also, a learnt nogood maintains an activity counter
that is used as a parameter for nogood deletion (see below). Different data structures
are used for binary, ternary, and longer nogoods (accounting for the large number of
short nogoods capturing Clark’s completion). This is complemented by maintaining two
watch lists [5,6] for each variable, storing all longer nogoods that need to be updated if
the variable becomes true or false, respectively.

Variable assignments are either done by propagation or via a decision heuristics.
clasp’s local propagation amounts to applying the well-known unit clause rule to no-
goods (cf. [3]). A variable assigned by local propagation has a pointer to the (unit)
nogood it was derived from; this includes unfounded atoms derived from loop nogoods
(see [3] for details). During propagation, binary nogoods are preferred over ternary
ones, which are preferred over longer nogoods. Also, our propagation procedure is dis-
tinct in giving a clear preference to local propagation over unfounded set computations.
Once an unfounded set U is determined, only a single atom from U is taken to gener-
ate a loop nogood that is added to the recorded nogoods. Then, local propagation re-
sumes until a fixed point is reached. This is repeated until there are no non-false atoms
left in U . Afterwards, either another unfounded set is found or propagation terminates.
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Unfounded set detection within clasp combines source pointers [12] with the unfounded
set computation algorithm in [13]. Notably, it aims at small and “loop-encompassing”
rather than greatest unfounded sets, as determined by smodels and dlv.

Whenever propagation encounters a conflict, clasp’s conflict resolution is engaged.
As described in [3], conflict resolution determines a conflict nogood (that is recorded)
and a decision level to jump back to. Backjumping and nogood recording work similar
to CDCL with First-UIP scheme [10]. The corresponding algorithms are detailed in [3].
For enumerating answer sets, clasp uses a novel bounded backjumping approach that
is elaborated upon in [4]. Given that clasp’s learning and backjumping strategy have
already been theoretically as well as experimentally elaborated upon elsewhere [3,4],
let us concentrate in what follows on heuristic aspects and in particular investigate how
established CSP and SAT strategies apply in the context of ASP. This also provides an
overview of the variety of different strategies supported by clasp.

clasp’s decision heuristics depends on whether learning is in effect or not. With-
out learning, clasp relies on look-ahead strategies (that extend unit propagation by
failed-literal detection [14]). When learning, clasp uses look-back strategies derived
from corresponding CDCL-based approaches in SAT, viz., VSIDS [6], BerkMin [15],
and VMTF [5]. All of them are conflict-oriented and so primarily influenced by con-
flict resolution. The heuristic values mainly need to be updated when a new nogood is
recorded. Notably, clasp leaves it to the user whether this includes loop nogoods or not.

clasp distinguishes two types of restart policies. The first starts with an initial num-
ber of conflicts after which clasp restarts; this threshold is then increased by a factor
after each restart. The second policy goes back to Luby et al. [16] and is based on a
sequence of numbers of conflicts (e.g., 32 32 64 32 32 64 128 32 . . . for unit 32) after
each of which it restarts. The bounded restart strategy used when enumerating answer
sets is described in [4]. Moreover, clasp allows for a limited number of initial random-
ized runs, typically with a small restart threshold, in the hope to discover putatively
interesting nogoods before actual search starts.

clasp’s nogood deletion strategy borrows ideas from minisat [17] and berkmin [15].
It associates an activity with each dynamic nogood and limits the number of recorded
nogoods by removing nogoods whenever a threshold is reached. The limit is initialized
with the size of the input program and increased by a factor every restart. Note that
nogood deletion applies to both conflict as well as loop nogoods.

3 Experiments

We conducted experiments on a variety of problem classes. Our comparison includes
clasp (RC4) in various modes: the normal mode (N) and variants of it changing either
the heuristics (H), initial randomized runs (I), restarts (R), or nogood deletion (D):

N The standard mode of clasp (RC4) defaults to the following command line options:
--heuristic=berkmin indicates that choices (on atoms and bodies) are done

according to an adaption of the BerkMin heuristics [15].
--lookback-loops=no indicates that the heuristics ignores loop nogoods.
--restarts=simple(100,1.5) makes clasp restart every 100× 1.5k con-

flicts for k ≥ 0 (i.e., after 100 150 225 337 506 . . . conflicts).
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--deletion=3,1.1 fixes the size and growth factor of the dynamic nogood
database. Initially, clasp allows for recording (|atom(Π) ∪ body(Π)|/3) no-
goods before nogood deletion is invoked. The size is increased with each restart
by the factor 1.1, given as second parameter.

--loops=common uses a fixed set of bodies when composing the loop nogoods
of an unfounded set (alternatives: distinct and shared; cf. [1]).

H1 --heuristic=berkminemodifies the initialization of berkmin by counting
watched literals rather than taking the original randomized approach.

H2 --heuristic=vmtfe --lookback-loops=yes uses an extended adap-
tion of the VMTF heuristics [5] and furthermore takes loop nogoods into account.
(Actually, the other heuristics could use loop nogoods as well. But only with
VMTF, they showed an improvement, while hampering the other heuristics.)

H3 --heuristic=vsids uses an adaption of the VSIDS heuristics [6].
I --randomize=50,20makes clasp perform 50 initial runs with a random choice

policy before actual search commences; each run is stopped after 20 conflicts.
R1 --restarts=luby(64) uses Luby et al.’s restart strategy [16] with base 64.
R2 --restarts=simple(16000,1) is similar to siege’s fixed-interval restart

strategy [5], cutting of every 16000 conflicts.
R3 --restarts=simple(700,1) is similar to chaff ’s fixed-interval restart strat-

egy [18], cutting of every 700 conflicts.
R4 --no-restarts inhibits restarting.
D1 --deletion=25,1.1 keeps the dynamic nogood database rather small.
D2 --no-deletion turns off deletion of dynamic nogoods.

For comparison, we include smodels with default settings (S; V2.32) and with its restart
option (Sr). We also incorporate smodelscc (Scc; V1.08) with option “nolookahead”, as
recommended by the developers, and cmodels (C; V3.65) using zchaff (2004.11.15).

All experiments were run on a 800MHz PC on Linux. We report the average time (in
seconds) on ten different shuffles of an input program. Each run was restricted to 300s
time and 512MB RAM. Times exclude parsing, done off-line with lparse (V1.0.17).
A timeout in all 10 runs is indicated by “•”; otherwise, it is taken to be 300s within
statistics. The benchmark instances as well as extended results are available at [1,19].
The instances in Table 1 are random programs (1-10); computing bounded spanning
trees (11-15), weighted spanning trees (16-20), and Hamiltonian cycles (21-25); game
solving for Sokoban (26-35) and Gryzzles (36-40); from bounded model checking (41-
52); Social Golfers scheduling (53-57); and machine code superoptimization (58-62).
The problems have a variety of different characteristic properties, such as SAT vs UN-
SAT, random vs structured, tight vs non-tight, etc. Our aim is to give an overview of
clasp’s performance on a broad palette of problems, from which instances are picked
representatively with the only requirement that they are selective.

For brevity, we here only provide a summary of the benchmark results shown in
Table 1. For each solver, the last 7 rows show statistics over all runs (62 × 10 = 620
runs per solver). Let us focus on the number of “Timeouts” indicating robustness. (Re-
call that we shuffled the inputs in order to compensate for luckiness.) It turns out that
all different features of clasp, that is, heuristics, restarts, and clause deletion, have an
impact. Among heuristics, the BerkMin variants N and H1 turned out to be more reli-
able than VMTF (H2) and VSIDS (H3). Although VMTF is often best, it also leads to
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Table 1. Experiments computing one answer set

No Instance N H1 H2 H3 I R1 R2 R3 R4 D1 D2 S Sr Scc C

1 lp.200.00900.9 25.3 24.3 94.2 56.3 25.2 64.4 22.4 55.7 16.1 21 50.6 291.6 291.8 94.6 60.3
2 lp.200.00900.19 25.2 24.6 65.2 44.6 26.7 86.5 16.4 72.9 12.7 23.2 56.6 229.1 231.5 86.9 72.6
3 lp.200.00900.23 20.4 19.8 64 41 22 67.9 16.1 62.1 12.1 21.5 50.5 254.8 244.6 77.2 72.6
4 lp.200.01000.2 21.3 25.3 75.5 47.2 26 60.6 18.9 56.9 13.5 21.7 47 247.1 245.5 70.2 49.8
5 lp.200.01000.22 24.2 21.4 77.1 46.2 25.4 62.1 18.4 55.7 13.3 23.2 43.9 234 232.4 68.8 57.9
6 b5 43.4 45.5 67.6 56.5 45.6 • 158 • 19.4 35.8 216.6 108.5 103.4 • 279.5
7 b9 51 49 72.6 60.6 48.1 • 254.6 • 24.8 37.1 257.4 127.4 131 • •
8 b10 54.7 52.4 87.8 61.6 55.6 • 243.3 • 25.1 43.4 276.4 165.7 164.9 • •
9 b17 29.7 25.9 49.7 58 24.6 153.1 50.3 174.1 10.8 21.1 154.6 80.8 76.3 233.1 182.8
10 b26 32.4 36.7 26.7 60.2 55.9 114.7 26.5 151.2 27 17.4 103.8 81.3 177.9 269.9 172.8
11 104 rand 45 250 1727040059 0 48.8 45.9 24.1 52.8 40.6 52.6 45.8 41.7 50.9 48.9 48.9 • • 296.1 152.3
12 104 rand 45 250 1727040917 0 56.3 51.7 24.9 57.6 39.8 60.7 42.1 42.3 42.2 56.3 56.3 • • 297.6 184.2
13 104 rand 45 250 1727042043 0 61.7 65 27.5 108.5 40.2 78.8 41.6 56.2 41.6 61.7 61.7 • • 287.5 102.3
14 104 rand 45 250 1727044175 0 47.4 43.6 24.8 47.8 38.7 53.6 42.3 42.7 42.2 47.5 47.4 • • 298.7 163.3
15 104 rand 45 250 1727068226 0 48.8 49.1 26.5 57.8 40.7 57 41.2 41.9 41.2 48.8 48.8 • • 296.9 122.1
16 207 rand 35 138 2077101081 0 12.8 16.3 8.2 18.9 12.9 13.4 11.7 10.9 11.7 12.8 12.8 191.8 225.7 85.8 11.6
17 207 rand 35 138 2077159055 0 10.2 10.6 7.6 13.3 12.8 10.2 10 10.1 10 10.2 10.2 290 296.5 76.7 10.5
18 209 rand 45 138 1119566817 0 23.3 23.1 15.4 31.2 23.4 24.1 25.4 23.6 30.3 23.3 23.3 • • 215.9 21.4
19 209 rand 45 138 1119569108 0 26.8 27.9 21.4 44.1 24.5 27.7 25.4 25.1 25.5 26.8 26.8 • • 222.3 19.4
20 209 rand 45 138 1119571853 0 24 25 15.4 37.4 22.5 24.2 22.7 21 22.7 24 24 • • 202.7 30.4
21 rand 200 1800 1154991214 4 6.6 19.9 28 9.3 10 7.1 24.9 5.2 68.9 6.6 6.6 179.9 71.8 18.7 106.7
22 rand 200 1800 1154991214 7 5.1 18.6 4.1 5.4 9.4 5 27.1 5.4 95.1 5.1 5.1 219.5 123.7 16.8 127.2
23 rand 200 1800 1154991214 9 6 14.9 5.7 5.6 7.9 9.5 60.2 7.9 182 6 6 218.2 57.5 28 120.6
24 rand 200 1800 1154991214 11 5.6 19.7 8 6.9 9 6.5 40 6 93.3 5.6 5.6 • 206.1 17.3 91.9
25 rand 200 1800 1154991214 14 5.9 18.2 6.4 4.9 9 8.3 21.4 5.6 53.1 5.8 5.9 154.6 82.8 21.3 96.5
26 yoshio.2.n16.len15 24 26.5 32.9 56.7 19.3 26.4 26.1 29.4 26.1 32.3 26.1 • • 63 78.6
27 yoshio.2.n16.len16 24 37.7 48.2 50.6 16.8 34.3 21.9 26.9 19.6 31.2 33.2 • • 62.2 92.5
28 yoshio.11.n15.len14 4.8 4.9 7.3 28.1 5 4.6 4.7 4.8 4.7 4.9 4.8 • • 12.8 18.7
29 yoshio.11.n15.len15 4.5 6.2 8.6 31.2 6.3 5.2 5.8 6.2 5.9 5.3 4.5 • • 12.8 36.4
30 yoshio.36.n14.len13 13.8 13.7 15.7 38.9 9.1 10.4 12.1 12 12 15 43.8 • • 18.2 22.7
31 yoshio.36.n14.len14 12.3 10.4 12.5 29.2 6.7 9.5 8.9 10.2 8.9 13.3 13.7 • 258.4 21.7 27.7
32 yoshio.46.n13.len12 13.5 15 18.2 24.5 12.9 14.6 13.6 12.7 13.6 17.6 13.4 • • 34.3 36.3
33 yoshio.46.n13.len13 14.5 20.7 17.7 15.1 11.1 11 15.3 12.9 15.3 11.8 14.5 • • 48.3 30.7
34 yoshio.52.n12.len11 10.8 13.2 19 23 11.5 12.6 11.3 11.8 11.3 12.7 10.8 180.4 181.5 29.8 32.4
35 yoshio.52.n12.len12 10.3 10.7 13.6 20.5 11.9 9.5 8.9 8.3 8.9 11.6 11.2 • • 24.4 40.3
36 gryzzles.0 38.2 24.1 44.2 37.5 22.7 12.4 30.4 2.8 210.3 42.3 90.8 • 181 117.1 26.1
37 gryzzles.3 0.3 0.3 0.3 0.3 0.7 0.3 1.2 0.3 1.6 0.2 0.3 21.7 0.5 0.6 1
38 gryzzles.7 0.3 0.5 0.5 0.4 0.8 0.3 3.7 0.4 81.3 0.5 0.3 180.5 3 2 1.1
39 gryzzles.18 0.6 0.7 0.7 0.6 1 0.6 6.3 0.6 34.8 1 0.6 4.8 1.8 2 2.5
40 gryzzles.47 1.3 1.4 1.9 1.7 1.9 1.5 7.6 1.5 116 1.4 1.1 • 18.7 8.5 11.3
41 dp 10.formula1-i-O2-b12 6.9 9.7 14.1 47.5 10.5 11.8 18.3 6.4 15.9 8.7 6.9 165.6 273.3 10.8 38
42 dp 12.formula1-i-O2-b14 44.8 73.6 102.6 200.1 43.6 70.6 77.9 88.1 234.8 38.4 64.6 • • 75.4 150.5
43 dp 12.formula1-s-O2-b10 3.8 5.6 9.8 10.8 5.4 2.7 3.6 4.3 3.6 3.2 2.9 • • 6.4 16.6
44 dp 10.fsa-D-i-O2-b10 2.4 0.4 0.3 10.4 4.1 1.5 6.8 0.9 39.7 0.8 3.5 294 6.5 33.9 1.2
45 dp 12.fsa-D-i-O2-b9 • • • • • • • • 287.6 • • • • • •
46 elevator 2-D-i-O2-b12 10.1 8.7 7.8 26.7 10 11.7 8.3 10.2 8.4 10.1 10.1 4.4 22.4 14.4 7.4
47 elevator 4-D-s-O2-b10 3.4 5.2 3.2 7.8 4.5 3.3 4.4 4 4.4 3.5 3.4 97 7.4 21 5.1
48 key 2-D-i-O2-b29 25.2 33.5 39.5 140.2 22.7 31 36.3 30.4 35.1 25.6 25.2 • • 83.6 50.2
49 key 2-D-s-O2-b29 33.1 32.7 39 91 28 30.6 30.1 30.7 28.7 29.3 35.2 • • 65 40.8
50 mmgt 3.fsa-D-i-O2-b10 9.6 15.9 23.8 35 6.5 9 10.6 8.7 10.6 8.6 9.6 40.8 16.9 13 9.5
51 mmgt 4.fsa-D-i-O2-b12 180.2 95.4 120.8 217 126.8 76.7 139.5 96 144.6 115.9 180.6 • 274.9 28.3 36.4
52 q 1.fsa-D-i-O2-b17 221.7 187 278.9 293.1 132.3 274.9 176.1 290 161.6 87.8 292.3 • • 201.1 281.6
53 csp010-SocialGolfer w3 g3 s6 35 35.7 50.3 103.3 57.9 50.7 34.8 33.4 38.9 84.3 34 • • 57.2 23.8
54 csp010-SocialGolfer w4 g3 s6 34.9 41.2 61.7 102.7 60.9 44.3 35.9 38.7 44.2 76 38.9 • • 64.2 31
55 csp010-SocialGolfer w6 g3 s4 14.8 24.2 9.5 277.9 97.1 14.8 9.2 20.6 9.3 17.2 16.9 189.2 187.7 40 38.5
56 csp010-SocialGolfer w6 g3 s5 40.9 60.5 13.7 234.4 141.6 59.3 52.5 49.4 42.9 70.5 55.7 • • 62.3 40
57 csp010-SocialGolfer w7 g3 s6 40.1 79.8 18.4 284.5 52.1 91.8 38.7 38.4 45.3 80.6 45.4 • • 75.1 35.5
58 sequence2-ss2 14.9 15.7 14.7 17.3 14.4 16.1 14.2 14.2 14.2 14.9 14.9 83.5 136.8 115.5 38.2
59 sequence3-ss2 27 27 27.2 27.1 27 26.9 26.9 26.9 26.9 27 26.9 22.8 22.8 24.6 12.8
60 sequence3-ss3 170.7 177 128.5 175.5 128.9 209.8 183.9 141.9 185.7 168.4 170.5 • • • 289.5
61 sequence4-ss2 69.2 70.9 80.8 75.8 77.2 73.5 70.1 69.6 70 69.1 69.1 235.6 232.1 225.1 294.8
62 sequence4-ss4 292.5 297.7 293.5 • • • • • • 292.7 292.6 • • • •

Timeouts 23 25 31 66 26 65 33 67 57 22 40 396 342 110 79
Best 51 56 147 41 64 52 47 64 120 60 42 26 17 21 67
Worst 25 25 39 77 28 66 34 67 63 22 40 445 384 115 94
Better 461 379 360 238 431 333 408 378 427 423 386 48 46 103 163
Worse 159 241 260 382 189 287 212 242 193 197 234 572 574 517 457
Average 39.9 41.3 45.3 70.5 40.1 61.5 49.4 58.4 53.4 38.5 58.3 233.8 212.7 109 87.2
Euclidian Distance 341.9 312.2 387.4 685.3 312.6 651.9 476.2 645.9 509 287.2 597.9 1860.5 1753.5 1048.5 825.9

more timeouts. As one might expect, the variant without restarts (R4) is less robust than
the restarting variants N and R2. This is also confirmed by smodels, where the restart
option (Sr) significantly reduces the number of timeouts in comparison to the default
setting (S). On the clasp variants R1 and R3, we however see that very short restart in-
tervals also degrade performance. Except for smodels, all solvers shown in Table 1 use
learning and turn out to be more robust than smodels. But we also observe that keeping
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all recorded nogoods, as done by clasp variant D2, degrades performance. In contrast,
making the dynamic nogood database smaller (D1) was useful on the benchmarked in-
stances. Finally, initial randomized runs (I) tend to slightly increase the solving time
when compared to the fastest non-randomized clasp variants. However, if the determin-
istic variants of clasp fail, then randomization might be useful. The last 6 rows in Table 1
count how often a solver was “Best”, “Worst”, and “Better” or “Worse” than the me-
dian solving time on a (shuffled) instance, provide its “Average” time over all runs, and
finally, the “Euclidian Distance” to the virtual optimum solver (best on all instances) in
a 62–dimensional space. Benchmark results for combinations of different options are
beyond the scope of this paper. However, the fine-tuning of clasp is an ongoing process.
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8. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligence 138(1-2) (2002) 181–234
9. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV

system for knowledge representation and reasoning. ACM TOCL 7(3) (2006) 499–562
10. Mitchell, D.: A SAT solver primer. Bulletin of the EATCS 85 (2005) 112–133
11. Syrjänen, T.: Lparse 1.0 user’s manual. (http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz)
12. Simons, P.: Extending and Implementing the Stable Model Semantics. Dissertation, Helsinki

University of Technology (2000)
13. Anger, C., Gebser, M., Schaub, T.: Approaching the core of unfounded sets. In: Proc.

NMR’06. Clausthal University of Technology (2006) 58–66
14. Freeman, J.: Improvements to propositional satisfiability search algorithms. PhD thesis,

University of Pennsylvania (1995)
15. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT solver. In: Proc. DATE’02.

(2002) 142–149
16. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Informa-

tion Processing Letters 47(4) (1993) 173–180
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Abstract. We describe a new grounder system for logic programs under answer
set semantics, called GrinGo. Our approach combines and extends techniques
from the two primary grounding approaches of lparse and dlv. A major emphasis
lies on an extensible design that allows for an easy incorporation of new language
features in an efficient system environment.

1 Motivation, Features, and System Architecture

A major advantage of Answer Set Programming (ASP; [1]) is its rich modeling lan-
guage. Paired with high-performance solver technology, it has made ASP a popular
tool for declarative problem solving. As a consequence, all ASP solvers rely on sophis-
ticated preprocessing techniques for dealing with the rich input language. The primary
purpose of preprocessing is to accomplish an effective variable substitution in the input
program. This is why these preprocessors are often referred to as grounders.

Although there is meanwhile quite a variety of ASP solvers, there are merely two
major grounders, namely lparse [2] and dlv’s grounding component [3]. We enrich this
underrepresented area and present a new grounder, called GrinGo, that combines and
extends techniques from both aforementioned systems. A salient design principle of
GrinGo is its extensibility that aims at facilitating the incorporation of additional lan-
guage constructs. In more detail, GrinGo combines the following features:

– its input language features normal logic program rules, cardinality constraints, and
further lparse constructs,

– its parser is implemented by appeal to flex and bison++ paving an easy way for
language extensions,

– it offers the new class of λ-restricted programs (detailed in Section 2) that extends
lparse’s ω-restricted programs [4],

– its instantiation procedure uses back-jumping and improves on the technique used
in dlv’s grounder [5] by introducing binder-splitting (see Section 3),

– its primary output language currently is textual, as with dlv’s grounding component;
lparse format will be supported soon.

We identify four phases in the grounding process and base the core components
of GrinGo upon them. The primary GrinGo architecture is shown in Figure 1. First,
the parser checks the syntactical correctness of an input program and creates an inter-
nal representation of it. Subsequently, the checker verifies that the input program is λ-
restricted, so that the existence of a finite equivalent ground instantiation is guaranteed.
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Input
File � Parser � Checker � Instantiator � Evaluator �

�
��

��

Output
File

Fig. 1. The GrinGo architecture

From this analysis, the checker also schedules the grounding tasks. The instantiator
computes ground instances of rules as scheduled. Note that the grounding procedure
of the instantiator is based on an enhanced version of dlv’s back-jumping algorithm.
The generated ground rules are then passed to the evaluator which identifies newly de-
rived ground instances of predicates. The evaluator also checks for potential program
simplifications and finally decides whether a ground rule is output or not.

2 λ-Restricted Programs

For simplicity, we confine ourselves to normal logic programs with function symbols
and first-order variables. Let F and V be disjoint sets of function and variable symbols,
respectively. As usual, a term is defined inductively: Each variable v ∈ V is a term, and
f(t1, . . . , tk) is a term if f/k ∈ F and t1, . . . , tk are terms. Note that the arity k of f/k
can be zero. For a term t, we let V (t) denote the set of all variables occurring in t.

A rule r over F and V has the form

p0(t10 , . . . , tk0) ← p1(t11 , . . . , tk1), . . . , pm(t1m , . . . , tkm),
not pm+1(t1m+1 , . . . , tkm+1), . . . ,not pn(t1n , . . . , tkn) , (1)

where p0/k0, . . . , pn/kn are predicate symbols, p0(t10 , . . . , tk0), . . . , pn(t1n , . . . , tkn)
are atoms, and tji is a term for 0 ≤ i ≤ n and 1 ≤ j ≤ ki. For an atom
p(t1, . . . , tk), we let P(p(t1, . . . , tk)) = p/k be its predicate, and V (p(t1, . . . , tk)) =
(V (t1) ∪ · · · ∪ V (tk)) be the set of its variables. For r as in (1), we define the head
as H (r) = p0(t10 , . . . , tk0). The sets of atoms, positive body atoms, predicates, and
variables, respectively, in r are denoted by A(r) = {pi(t1i , . . . , tki) | 0 ≤ i ≤ n},
B(r) = {pi(t1i , . . . , tki) | 1 ≤ i ≤ m}, P(r) = {P(a) | a ∈ A(r)}, and
V (r) =

⋃
a∈A(r) V (a). For a rule r and a variable v ∈ V , we let B(v, r) = {P(a) |

a ∈ B(r), v ∈ V (a)} be the set of binders for v in r. Note that the set of binders is
empty if v does not occur in any positive body atom of r.

A normal logic program Π over F and V is a finite set of rules over F and V . We
let P(Π) =

⋃
r∈Π P(r) be the set of predicates in Π . For a predicate p/k ∈ P(Π),

we let R(p/k) = {r ∈ Π | P(H (r)) = p/k} be the set of defining rules for p/k in Π .
Program Π is ground if V (r) = ∅ for all r ∈ Π . The semantics of ground programs is
given by their answer sets [1]. We denote by AS(Π) the set of all answer sets of Π .

We now introduce the notion of λ-restrictedness for normal logic programs.
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Definition 1. A normal logic program Π over F and V is λ-restricted if there is a level
mapping λ : P(Π) → N such that, for every predicate p/k ∈ P(Π), we have

max{
︷ ︸︸ ︷
max{

︷ ︸︸ ︷
min{λ(p′/k′) | p′/k′ ∈ B(v, r)︸ ︷︷ ︸} | v ∈ V (r)} | r ∈ R(p/k) } < λ(p/k) .

(We added over- and underbraces for the sake of easier readability.) Intuitively, λ-
restrictedness means that all variables in rules defining p/k are bound by predicates
p′/k′ such that λ(p′/k′) < λ(p/k). If this is the case, then the domains of rules in
R(p/k), i.e., their feasible ground instances, are completely determined by predicates
from lower levels than the one of p/k.

We now provide some properties of λ-restricted programs and compare them with
the program classes handled by lparse and dlv. Recall that lparse deals with ω-restricted
programs [2], while programs have to be safe with dlv [3].

Theorem 1. If a normal logic program Π is ω-restricted, then Π is λ-restricted.

Note that the converse of Theorem 1 does not hold. To see this, observe that the rules

a(1) b(X) ← a(X), c(X) c(X) ← a(X)
c(X) ← b(X)

constitute a λ-restricted program, but not an ω-restricted one. The cyclic definition of
b/1 and c/1 denies both predicates the status of a domain predicate (cf. [2]). This de-
prives rule c(X) ← b(X) from being ω-restricted. Unlike this, the λ-restrictedness of
the above program is witnessed by the level mapping λ = {a �→ 0, b �→ 1, c �→ 2}.

On the one hand, the class of λ-restricted programs is more general than that of
ω-restricted ones. On the other hand, there are safe programs (that is, all variables oc-
curring in a rule are bound by positive body atoms) that are not λ-restricted. In contrast
to safe programs, however, every λ-restricted program has a finite equivalent ground
instantiation, even in the presence of functions with non-zero arity.

Theorem 2. For every λ-restricted normal logic program Π , there is a finite ground
program Π ′ such that AS(Π ′) = AS (Π).

To see the difference between safe and λ-restricted programs, consider the following
program, which is safe, but not λ-restricted:

a(1) a(Y ) ← a(X), Y = X + 1

This program has no finite equivalent ground instantiation, which is tolerated by the
safeness criterion. To obtain a finite ground instantiation, dlv insists on the definition
of a maximum integer value maxint (in the presence of arithmetic operations, like +)
for restricting the possible constants to a finite number.

3 Back-Jumping Enhanced by Binder-Splitting

GrinGo’s grounding procedure is based on dlv’s back-jumping algorithm [5,6]. To avoid
the generation of redundant rules, this algorithm distinguishes atoms binding relevant
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a(X, Y ) Output

a(1, 1)

a(1, 2)

a(1, 3)

fail

b(1) ← not c(1)

b(1) ← not c(1)

b(1) ← not c(1)

�

�

�

�
��

�
��
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��

a(X, ) Output

a(1, )

fail

a(X, Y )

a(1, 1) b(1) ← not c(1)� �
��������

Fig. 2. Back-jumping in (a) dlv and (b) GrinGo

and irrelevant variables. A variable is relevant in a rule, if it occurs in a literal over an
unsolved predicate; and a predicate is solved, if the truth value of each of its ground
instances is known. dlv’s back-jumping algorithm avoids revisiting binders of irrelevant
variables, whenever different substitutions for these variables result in rule instantia-
tions that only differ in solved literals.

The back-jumping algorithm of GrinGo goes a step further and distinguishes
between relevant and irrelevant variables within the same binder. The instantiator in-
ternally splits such binders into two new binders, the first one binding the relevant vari-
ables and the second one binding the irrelevant ones. While the original dlv algorithm
necessitates that a binder is revisited whenever it contains some relevant variables to
find all substitutions for these variables, the GrinGo approach allows us to jump over
the binder of the irrelevant variables, directly to the binder of the relevant ones. This
technique allows us to further reduce the generation of redundant rules.

To illustrate this, consider the rules

a(1, 1..3) b(X) ← a(X, Y ), not c(X) c(X) ← b(X) .

The predicate a/2 is solved before the ground instantiations of the second rule are com-
puted; the atom a(X, Y ) acts as binder for the relevant variable X and the irrelevant
variable Y . Figure 2 illustrates on the left how dlv’s back-jumping algorithm works;
it revisits the binder a(X, Y ) three times to create all possible substitutions and thus
outputs three times the same rule. The scheme on the right in Figure 2 exemplifies
GrinGo’s binder-splitting. The binder a(X, Y ) is replaced with a binder for the rele-
vant variable a(X, ) plus a second binder a(X, Y ) accounting for the bindings of the
irrelevant variable Y , depending on the substitution of X . Due to this binder-splitting,
it is now possible to jump directly from a solution back to the binder of the relevant
variable X , avoiding any further substitutions of Y . As no further substitutions of X
are found, the algorithm terminates and does not generate redundant ground rules.
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Table 1. GrinGo’s back-jumping versus dlv’s back-jumping and lparse’s backtracking

Sudoku
board lparse GrinGo

1 584.28 5.27
2 190.82 5.48
3 1878.91 5.44
4 1.29 5.40
5 42.13 5.14
6 94.78 5.40
7 10901.35 5.32
8 118.75 5.53
9 165.50 5.42

10 1.58 5.32
SUM 13979.39 53.72

Graph 3-Colorability
graph dlv lparse GrinGo

g40 05 0 0.00 57.30 0.01
g40 05 1 0.00 62.27 0.01
g40 05 2 0.24 39.82 4.01
g40 05 3 0.07 3.49 0.04
g40 05 4 0.00 4.49 0.01
g40 05 5 0.01 21.24 0.03
g40 05 6 0.02 159.69 0.00
g40 05 7 0.62 0.81 57.50
g40 05 8 0.00 1.36 1.12
g40 05 9 4.70 71.38 3.48

SUM 5.66 421.85 66.21

4 Experiments

We tested GrinGo [7] (V 0.0.1) together with dlv’s grounder (build BEN/Jul 14 2006)
and lparse (V 1.0.17) on benchmarks illustrating the computational impact of back-
jumping and binder-splitting. All tests were run on an Athlon XP 2800+ with 1024 MB
RAM; each result shows the average of 3 runs.

For demonstrating the effect of back-jumping, we use logic programs encoding Su-
doku games. An encoding consists of a set of facts, representing the numbers in Sudoku
board coordinates, viz. number(1..9), and a single rule that encodes all constraints
on a solution of the given Sudoku instance. All Sudoku instances are taken from news-
papers and have a single solution, the corresponding logic programs are available at [7].
The major rule contains 81 variables, which exceeds the maximum number of variables
that dlv allows in a single rule. We thus only compare our results with lparse,1 the latter
relying on systematic backtracking. However, given that dlv uses back-jumping as well,
we would expect it to perform at least as good as GrinGo (if it would not restrict the
number of allowed variables below the threshold of 81).

Further, we tested logic programs that encode Graph 3-Colorability as grounding
problem on a set of random graphs such that a valid coloring corresponds to the ground
instantiation of a program. We tested 10 randomly generated graphs, each having 40
nodes and a 5% probability that two nodes are connected by an edge.

Table 1 shows the run times of lparse, dlv, and GrinGo in seconds. Due to its
back-jumping technique, GrinGo’s performance is almost constant on the Sudoku
examples. In addition, GrinGo on most instances is faster than lparse, the latter
showing a great variance in run times. Also on the Graph 3-Colorability examples
the grounders using back-jumping techniques turn out to be more robust. The out-
lier of GrinGo on graph ‘g40 05 7’ however shows that also back-jumping needs a
good heuristics for the instantiation order among binders; this is a subject to future
improvement.

1 Note that the grounding procedures of lparse and GrinGo actually solve the Sudokus, and
could in principle be (ab)used for solving other constraint satisfaction problems as well.
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Table 2. The effect of GrinGo’s binder-splitting

dlv lparse GrinGo
n time rules time rules time rules

50 4.13 252500 0.95 252500 0.09 7500
75 24.77 849375 3.14 849375 0.18 16875

100 72.91 1020000 7.80 1020000 0.37 30000
125 166.14 3921875 15.86 3921875 0.68 46875
150 332.40 6772500 26.29 6772500 0.99 67500
175 — — 42.20 10749375 1.44 91875
200 — — 65.89 16040000 1.87 120000

For showing the effect of GrinGo’s binder-splitting, we use a suite of examples that
have a solved predicate with a large domain (viz. b/2) and rules in which this predicate
is used as the binder of both relevant and irrelevant variables:

b(1..n, 1..n).
p(X,Z) :- b(X,Y), b(Y,Z), not q(X,Z).
q(X,Z) :- b(X,Y), b(Y,Z), not p(X,Z).

The programs in this suite mainly aim at comparing dlv and GrinGo, both using back-
jumping but differing in binder-splitting; lparse is included as a reference. The results
for parameter n varying from 50 to 200 are provided in Table 2. It shows the run time
in seconds and the number of generated rules for dlv, lparse, and GrinGo. In fact, all
three systems output the same set of rules, differing only in the number of duplicates.
Interestingly, both dlv and lparse even produce the same collection of n2 + 2n3 rules
(ignoring compute statements in lparse’s output). A hyphen “—” indicates a (repro-
ducible) system failure. The results clearly show that dlv and lparse generate many
(duplicate) rules, avoided by GrinGo, and therefore perform poorly on these (artificial)
examples. This gives an indication on the computational prospect of binder-splitting.

A more general evaluation of all three grounder systems is an ongoing yet difficult
effort, given the small common fragment of the input languages.
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Abstract. We describe BE, an implemented system for solving belief change
problems in the presence of actions. We illustrate how we can use BE to compute
the result of belief progression, belief revision, and belief evolution in a transi-
tion system framework. The basic idea is to identify belief change problems with
path-finding problems in a transition system. First, BE translates belief change
problems into logic programs with answer sets corresponding to an agent’s evolv-
ing beliefs. Second, it uses existing smodels libraries to find the answer sets for
the given logic programs. Conflicting observations are handled in a separate pre-
processing phase, which is also based on finding answer sets.

1 Introduction

There has been a great deal of formal work on belief change, with comparatively few
implemented systems. In this paper, we present a simple command-line tool for com-
puting the result of some natural belief change operators. We are concerned with belief
change in the presence of actions, where the effects of actions are given in the action
language A. In this context, our system is able to compute the belief change following
iterated sequences of actions and observations.

This paper makes two contributions to existing research. The first contribution is the
introduction of an implemented system for experimenting with iterated belief change
due to action. The second contribution is methodological: we use answer set program-
ming to compute the result of belief change. This application of answer sets has not
been extensively explored.

We proceed as follows. Following a brief description of the action language A, we
define specific approaches to belief progression, belief revision, and belief evolution.
We then illustrate how to identify belief change with path-finding in a transition system.
Finally, we describe BE, an implemented system for solving belief change problems
through answer set programming.

2 Preliminaries

2.1 The Action Language A

We introduce some useful notation and definitions for describing action effects in a
transition system framework, essentially following [1]. An action signature is a pair
〈F,A〉 where F is a non-empty set of fluent symbols and A is a non-empty set of of
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action symbols. A formula is a propositional combination of fluent symbols, using the
usual set of logical connectives {¬, →, ∧, ∨}. A literal is either an element of F or
an element of F preceded by the negation symbol, and we let Lits denote the set of
all literals. A state is a propositional interpretation over F. If φ is a formula, then |φ|
denotes the set of states satisfying φ. We let S denote the set of all states for a fixed
action signature.

A proposition of the language A is an expression of the form

A causes f if g1 ∧ · · · ∧ gp

where A ∈ A, f ∈ Lits and each gi ∈ Lits. A set of propositions is called an action
description. The semantics of A is defined in terms of transition systems. Formally, a
transition system T is a pair 〈V, E〉 where V ⊆ S and E ⊆ S × A × S.

Definition 1. Let AD be an action description, let s, s′ be states and let A be an action
symbol. The transition system defined by AD is 〈S, E〉 where (s, A, s′) ∈ E iff

E(A, s) ⊆ s′ ⊆ E(A, s) ∪ s

where E(A, s) is the set of literals such that f ∈ E(A, s) iff (A causes f if g1 ∧ · · · ∧
gp) ∈ AD and s |= g1 ∧ · · · ∧ gp.

A path from s to s′ is a finite sequence of edges 〈(s, A1, s1), . . . (sn−1, An, s′)〉. We
say that a transition system is strongly connected if there is a path between every pair
of states.

2.2 Belief Progression

A belief state is a set of states. A belief change operator is a function mapping a belief
state to a new belief state, in response to some event. Belief progression refers to the
process where an agent’s beliefs change due to the execution of a state-changing action
(for a discussion, see [2]). For each belief state κ and each action symbol A,

κ 
 A = {s′ | s ∈ κ and (s, A, s′) ∈ E}.

Hence κ 
 A is the set of states obtained from κ by projecting each state to the outcome
of A. If φ is a propositional formula, we will write φ 
 A as a shorthand for |φ| 
 A.

2.3 Belief Revision

For our purposes, belief revision refers to the belief change that occurs when new in-
formation is obtained about an unchanged world. We assume the reader is familiar with
AGM belief revision [3]. Our presentation differs from the standard AGM approach in
that we represent beliefs as sets of states, rather than sets of formulas. We also represent
new information by sets of states, which we call observations. Intuitively, an observa-
tion α represents evidence that the actual state is in α. Our implementation is defined
for the topological revision operator associated with a transition system [4]. Let T be a
strongly connected transition system, let κ be a belief state, and let α be an observation.
The topological revision operator ∗ associated with T is defined by setting κ ∗ α to be
the subset of α that can be reached by a minimum length path in T . Translating the
AGM postulates into conditions on sets of states, we have the following result.
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Proposition 1. For every strongly connected transition system, the associated topolog-
ical revision operator is an AGM revision operator.

We do not claim that topological revision is suitable for all action domains, but it is
suitable for domains where erroneous beliefs can plausibly be explained by actions.
Again, for formulas φ and ψ, we write φ ∗ ψ as a shorthand for |φ| ∗ |ψ|.

2.4 Belief Evolution

Belief evolution operators were introduced to reason about iterated belief change due to
action in a transition system framework. We briefly introduce the basic idea, and refer
the reader to [5] for the details.

A world view W is a pair 〈Ā, ᾱ〉, where Ā = A1, . . . , An is a sequence of action
symbols and α = α1, . . . , αn is a sequence of observations. A belief evolution operator
◦ is defined with respect to a given progression operator 
 and a given revision operator
∗. A belief evolution operator maps a belief state and a world view to a sequence of
belief states representing the evolution of an agent’s beliefs. Informally, the evolution
κ ◦ 〈Ā, ᾱ〉 is intended to represent the iterated belief change

κ 
 A1 ∗ α1 · · · 
 An ∗ αn.

In examples such as Moore’s litmus paper problem [6], it is clear that these operations
can not be carried out sequentially.

Let α be an observation and let A1, . . . , An be a sequence of action symbols. The
pre-image α−1(A1, . . . , An) consists of every state s such that s 
 A1 
 · · · 
 An ∈ α.
For consistent observations, belief evolution is defined as follows:

κ ◦ 〈Ā, ᾱ〉 = κ ∗
⋂
i

α−1
i (A1, . . . , Ai) 
 Ā.

Hence, every observation is treated as information about the initial state, suitably trans-
lated. This is intuitively correct in examples like the litmus paper problem. In domains
where there may be conflicting observations, we need to use some heuristic to find a
maximally consistent subsequence of observations.

3 The Approach

Assume we are given an action description AD in the action language A. This action
description picks out a transition system, which in turn defines a belief progression
operator 
, a topological revision operator ∗, and a belief evolution operator ◦. Suppose
that λ denotes a null action that does not change the state of the world. The following
equalities are immediate: κ 
 A = κ ◦ 〈A, S〉 and κ ∗ α = κ ◦ 〈λ, α〉. In other words,
both belief progression and belief revision can be expressed as special cases of belief
evolution. Hence, to implement all three operators, it is sufficient to consider only belief
evolution.

To illustrate, consider the case involving a single action and a single observation:

κ ◦ 〈A, α〉 = κ ∗ α−1(A) 
 A.
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According to the definition of topological revision, κ ∗ α−1(A) consists of all states
in α−1(A) that are minimally distant from κ. This observation leads to the following
simple procedure for computing κ ◦ 〈A, α〉.
1. Determine α−1(A).
2. Let PATH denote the set of shortest paths from κ to α−1(A).
3. Let κ0 be the set of terminal nodes on paths in PATH .
4. Return κ0 
 A.

This procedure was originally presented in [4]. The only difficult computation in the
procedure occurs at step 2, where we must find all paths from κ to α−1(A).

4 The Implementation

4.1 A Logic Program Representing Action Effects

BE is a command-line tool that runs in a Linux environment, using the smodels API
[7] to compute answer sets. We describe the implementation in this section.

In [4], a procedure is outlined for translating an action description AD into a logic
program τn(AD) such that answer sets for τn(AD) correspond to plans of length n
in the transition system described by AD. The translation is based on a well-known
translation from C [8]. In the interest of space, we omit the details here.

Let K be a conjunction of literals representing the initial beliefs of an agent, and let
W = 〈Ā, ᾱ〉 be a world view. We can extend τn(AD) to a program τn,m(AD, K, W )
where the answer sets correspond to plans in the action domain AD of length n + m
with the following properties.

1. m is the length of the sub-path between some state s that satisfies the initial condi-
tions K , and some state s′ ∈ α−1(A1, . . . , An),

2. n is the length of the world view W ,
3. K is satisfied at time 0,
4. Ai executes at time m + i − 1
5. αi is satisfied at time m + i − 1.

The logic program τn(AD) representing the action description consists of time stamped
atoms such as F (i) and notF (i), representing the fact that F holds or does not hold at
time i. Hence, it is straightforward to add rules ensuring these conditions. For example,
if K = K1 ∧ · · · ∧ Kp, then we can guarantee (3) by adding the rules Ki(0) for each i.

The first step performed by BE is to generate the logic program τn,m(AD, K, W ),
given input AD, K and W . The input is entered at the command line, or it can be passed
in from a prepared text file.

4.2 Conflicting Observations

If the observations in W are conflicting, then the logic program τn,m(AD, K, W ) has
no answer sets. Hence, we need a method for dealing with conflicting observations.
In BE, our approach is to resolve conflicting observations by keeping the more recent
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information. Specifically, we handle conflict as follows. First, for p ≤ n, we define
a logic program τn(AD, W, p) where the answer sets correspond to paths of length n
with the following properties.

1. Ai executes at time i, for all i ≤ n.
2. αp is satisfied at time p.
3. αi is satisfied at time i for each i such that p < i ≤ n.

We can detect conflict and remove conflicting observations using the following algo-
rithm. The input is an action description AD and a world view W .

1. Set p = n, set W ′ = 〈Ā, 〈α′1, . . . , α′n〉〉 = W .
2. Determine whether τn(AD, W, p) has any valid answer sets.
3. If there are no valid answer sets, set α′p = �.
4. If p > 1, set p = p − 1 and goto 2.
5. If p = 1, return W ′.

Note that W ′ is consistent in the sense that there is a path following A1, . . . , An and
satisfying each α′i at time i. For any input (AD, K, W ), BE removes inconsistencies by
using this algorithm to implicitly change the input to (AD, K, W ′).

4.3 Belief Evolution

In order to solve belief evolution problems, we need to find the minimal m such that
τn,m(AD, K, W ′) has a non-empty set of answer sets. We find the minimal m using
the following algorithm.

1. Set m = 0
2. Determine all answer sets to τn,m(AD, K, W ′).
3. Let PATH be the corresponding set of paths.

(a) If PATH = ∅, set m = m + 1 and goto 2
(b) If PATH �= ∅, then continue.

4. Let κi denote the set of states in PATH at time m + i.
5. Return 〈κ0, κ1, . . . , κn〉.

Each set κi represents the set of states believed possible at time i following belief evo-
lution. A formula representing the final beliefs can be obtained in the obvious manner
from κn. The current version of BE returns the complete history of beliefs, simply be-
cause it requires the same computational effort.

4.4 Example

We can represent the litmus paper problem in BE by creating a text file litmus.txt
containing the following information.

FillAcid causes Acid
FillBase causes -Acid
Dip causes Red if Acid
Dip causes Blue if -Acid
|-Blue & -Red & Acid| o <<Dip>, <Blue>>
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The first 4 lines give the action description that describes the domain, and the last line
gives a belief evolution query. The meaning of each line is clear, since the BE repre-
sentation is a simple translation of the usual formal syntax. In this problem, an agent
initially believes that a particular beaker contains an acid. After dipping the paper, the
agent observes that the paper is blue. We compute the belief change by typing be <
litmus.txt at the command line. The output in this case is K0{{}} K1{{Blue}}.
The ouput gives belief states representing an agent’s beliefs at time 0 and time 1, re-
spectively. A state is represented by the set of true fluent symbols. In this example, K0
contains a single state where every fluent is false. Informally, this means that the agent
now believes the beaker contained a base at time 0. This indicates that the agent has
revised the initial belief state in response to the observed color of the paper. At time 1,
the only difference is the color of the litmus paper. This is intuitively correct, and it is
the actual ouput of the belief evolution operator defined by the given action description.

More detailed documentation, including command-line flags and complete source
code, at www.cs.sfu.ca/∼cl/software/BeliefEvolution.

5 Discussion

We have presented an implemented system for solving belief change problems in an
action domain. Our system defines belief progression and belief revision with respect
to a transition system, and it can be used to to solve iterated belief change problems
by using a recency-based consistency check. The key is that we solve belief change
through path-finding; it is known that action languages and answer sets are well-suited
for this task. In future versions of the software, we would like to allow more flexible
initial belief states and we would like to consider alternative heuristics to deal with
inconsistency. The current system provides a proof of concept, and represents a first
step towards the development of a new application of the smodels API to explore
non-monotonic belief change.
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Abstract. We describe an answer-set programming solver smodels−,
derived from smodels by eliminating some lookahead computations. We
show that for some classes of programs smodels− outperforms smodels
and demonstrate the computational potential of our approach.

1 Introduction

In this paper we describe an answer-set programming solver smodels−. It is a
modification of the smodels solver [8]. The main difference is that smodels−

attempts to identify and eliminate unnecessary lookaheads.
A common step in many answer-set programming and satisfiability solvers

consists of expanding partial truth assignments. That is, given a partial truth
assignment P , the solver applies some efficient inference rules to derive additional
truth assignments that are forced by P . In the case of satisfiability solvers this
process is called unit-propagation or boolean constraint propagation (cf. [3] for a
recent overview).

These rules generalize to logic programs. Together with some other infer-
ence rules, specific to logic programming (cf. [5] for examples), they imply an
expansion method for logic programs that can be viewed as a computation of
the Kripke-Kleene fixpoint [4]. This method can be implemented to run in lin-
ear time. A stronger expansion technique, giving in general more inferences, is
obtained when we replace the Kripke-Kleene fixpoint computation with a com-
putation of the well-founded fixpoint [9]. The greater inference power comes at
a cost. The well-founded fixpoint computation can be implemented to run in
polynomial time, but no linear-time implementation is known.

Any polynomial-time expansion technique can be strengthened to another
polynomial-time expansion method by applying the lookahead. Given a partial
assignment, we assume a truth value for an unassigned atom and apply the
expansion method at hand to the resulting partial assignment. If a contradiction
is derived, the opposite truth value can be inferred and the expansion procedure
is invoked again. The full lookahead consists of applying this technique to every
unassigned atom and to both ways atoms can be assigned truth values until no
more truth values for atoms (no more literals) can be derived. The full lookahead
and the well-founded fixpoint computation form the basis for the expansion
method used by smodels.
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When expansion terminates, a typical answer-set programming solver selects
an atom for branching. This step has a major effect on the performance of the
overall search. Smodels uses the results obtained by the lookahead computation
to decide which atom to choose.

Thus, in at least two important ways the performance of smodels depends on the
full lookahead: it strengthens the expansionmethod, and it provides a goodmethod
to select atoms for branching. However, the full lookahead is costly. Our goal in this
paper is to propose and implement a method that aims to improve the performance
of smodels by limiting its use of lookahead so that few essential lookaheads (possibly
evennoneatall) aremissed.Wecall smodels− the resultingmodificationof smodels.

2 Algorithm for Identification of Propagating Literals

An unassigned literal is propagating (with respect to a program, a partial as-
signment and a particular expansion method) if assuming it is true and running
the expansion method infers another literal that has been unassigned so far.

We will now present a method to identify propagating literals. The programs
we consider consist of rules of the following types (in particular, such programs
are output by lparse[2]; a and ai stands for atoms, li stands for literals, m, w
and wi are non-negative integers):

Basic rule: a :- l1, . . . , lk
Choice rule: {a1, . . . , an} :- l1, . . . , lk
Cardinality rule: a :- m{l1, . . . , lk}
Weight rule: a :- w{l1 = w1, . . . , lk = wk}.

A rule is active with respect to the current partial assignment if its body is
neither implied to be true nor false by the assignment. Our algorithm identifies a
literal l as propagating, if there is an active rule r which, if we assume l to be true,
allows us to make an inference. To this end, we consider all active rules in which l
or its dual, l̄, appear. Let us assume that r is a rule currently under consideration.
Let hd(r) and bd(r) denote the set of literals that appear in the head and body
of the rule r, respectively. There are four main cases (the cases not listed below
either cannot occur or do not allow additional derivations based just on r).

Case 1. The literal l appears in the bd(r).
Case 1a: The rule r is basic. If l is the only unassigned literal in the bd(r) and
the hd(r) is unassigned then, we identify l as propagating (assuming l is true
allows us to derive the hd(r)).

If l and exactly one other literal, say l′, in the bd(r) are unassigned and, in
addition, the hd(r) is assigned false, then assuming l allows us to infer that l′

must be false. Thus, we identify l as propagating.
Case 1b: The rule r is a weight rule (the case of the cardinality rule is a special
case). If the hd(r) is unassigned and the sum of the weights of literals in the
weight atom of r that are assigned true in the current partial assignment plus
the weight of the literal l exceeds the lower bound w, then we identify l as
propagating (assuming l is true allows us to derive the hd(r)).
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If the hd(r) is assigned false and the sum of the weights of literals in the
weight atom of r that are assigned true in the current partial assignment plus
the weight of l plus the largest weight of an unassigned literal other than l (say
this literal is l′) exceeds the lower bound, then we identify l as propagating
(assuming l is true would allow us to infer that l′ is false).

Case 2. The literal l̄ appears in the bd(r). To handle this case, for each atom a
we maintain a counter, ctr(a), for the number of active rules with this atom in
the head.
Case 2a: The rule r is a basic or choice rule. If the head of r is an unassigned
atom, say h, with ctr(h) = 1, or contains an unassigned atom h with ctr(h) = 1,
we identify l as propagating (assuming l to be true blocks r and allows us to
establish that h is false).

If the hd(r) is an atom h such that h is assigned true and ctr(h) = 2, or if the
hd(r) contains an atom h assigned true and such that the ctr(h) = 2, we identify
l as propagating. Assuming l is true blocks r and leaves only one active rule, say
r′, to justify h. This allows us to infer that the body of r′ is true and may allow
new inferences of literals. We do not check whether knowing that the body of r′ is
true allows new inferences. Thus, we may identify l as propagating even though
it actually is not. This may lead to some unnecessary lookaheads that smodels−

will occasionally perform. We are currently developing an implementation which
eliminates this possibility here (and in some other similar cases below).
Case 2b: The rule r is a weight rule (the cardinality rule is a special case). If the
hd(r) is unassigned, ctr(hd(r)) = 1, and if setting l to true makes the weight
atom in the bd(r) false1, then we identify l as propagating (setting it to true
blocks r and allows us to infer that h is false).

If h is assigned true and the ctr(h) = 1 , then we identify l as propagating
(assuming l to be true may force other literals in the weight atom to be true; in
this case we again do not actually guarantee that l will lead to new inferences).

If h is assigned true, ctr(h) = 2, and assuming l to be true forces the weight
atom in the body of r to be false (blocks r), then there is only one other rule,
say r′ that could be used to justify h. The body r′ must be true and it may lead
to new inferences of literals. Again, we identify l as propagating, even though
there is actually no guarantee that it is.

Case 3. The literal l appears in the hd(r). It follows that l is an atom. If the
ctr(l) = 1, we identify l as propagating (assuming l true forces the bd(r) to be
true and will lead to new inferences in the case of basic and choice rules, and
may lead to new inferences in the case of cardinality and weight rules).

Case 4. The literal l̄ is the hd(r) (that is, l = not h for some atom h).
Case 4a: The rule r is a basic rule. If the bd(r) contains a single unassigned
literal, say t, we identify l as propagating (assuming l true forces t to be false).
Case 4b: The rule r is a weight rule (the cardinality rule is a special case). If

1 It will be the case when the total weight of unassigned literals in the weight atom
together with the total weight of literals assigned true in the weight atom is less
than the lower bound of the weight atom.
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the sum of the weights of all literals assigned true in the weight atom of r plus
the largest weight of an unassigned literal (say t) exceeds the lower bound, we
identify l as propagating (assuming l true allows us to infer t to be false).

3 Implementation and Usage

We implemented smodels− by modifying the source code of smodels. In smodels−,
we take each atom from the queue of atoms that smodels performs lookaheads
on and check, using the approach described above, if any of the two literals of
this atom is propagating. If so, then smodels− performs lookahead on this literal.
Otherwise, smodels− skips this lookahead.

Our program2 is used in exactly the same way as smodels. It requires that
input programs consist of rules described above. Lparse can be used to produce
programs in the appropriate input.

4 Experimental Results and Discussion

For tight logic programs our method to limit lookaheads does not miss any es-
sential lookaheads. Therefore, on tight programs smodels− and smodels traverse
the same search space. As concerns the time performance, smodels− performs
(in general) fewer lookaheads. However, it incurs an overhead related to identi-
fying atoms that do not propagate. For programs with many fewer lookaheads,
the savings outweigh the costs and we expect smodels− to perform better than
smodels. On programs where few lookaheads are saved, one might expect that
smodels− would perform worse but not drastically worse, as our algorithm to
eliminate lookaheads works in polynomial time (in the worst case).

Our experiments confirm this expected behavior. We considered three classes
of programs: (1) programs obtained by encoding as logic programs instances used
in the SAT 2006 competition of pseudo-boolean solvers [7] (154 instances); (2)
randomly generated tight logic programs (39 instances); and (3) logic programs
encoding instances of the weighted spanning-tree problem (27 instances) [1]. The
results are presented in Figure 1. The graphs show how many times smodels− is
slower or faster (whichever is the case) than smodels, based on the running times.
The instances are arranged according to ascending running time of smodels−.
The dotted lines separate the instances into those for which smodels− is slower
than, runs in the same time as, and is faster than smodels.

For the first category of programs, smodels− clearly outperforms smodels.
It is due to two factors: smodels− performs on average 71% fewer lookahead
computations; and the time needed by lookahead in smodels to discover that no
inferences can be made is non-negligible.

For the next two classes of programs, the benefits of limiting lookahead are less
obvious.Overall there is no significant difference in time in favor of any of the meth-
ods. For programs in the second group, calling lookahead for an atom and discover-
ing no new inferences can be made does not take much computation due to a simple
2 Smodels− can be obtained from http://www.cs.engr.uky.edu/ai/
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form of rules in programs (no weight or cardinality atoms, each rule consisting of
three literals). Thus, even though fewer lookaheads were made by smodels− (16%
fewer on average on programs in the second group), the savings often did not always
compensate the overhead. For the programs in the third group, most atoms appear
in 2-literal clauses and no such atom will be excluded from lookahead by our tech-
nique. Thus, both smodels− and smodels perform an identical number of lookahead
computations and their time performance is within a small percentage from each
other (in all but one case, within 1.5% from each other; 4% in the remaining case).
As the times are essentially identical, we do not provide the graph.

For non-tight programs, our method may eliminate lookaheads yielding new
inferences through the well-founded fixpoint computation (whether the computa-
tion yields new inferences cannot be determined by inspecting rules individually).
Therefore, the expansion method of smodels− is in general weaker than that of
smodels. Moreover, due to missing essential lookaheads, the search heuristics of
smodels− may miss atoms that will be used for branching by smodels.

Thus, for non-tight programs the benefits of using smodels− may diminish or
disappear entirely. However, in our experiments it was not so. We tested two
classes of programs: the non-tight programs encoding the traveling salesperson
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problem (TSP) [6] (47 instances); and random logic programs [1] (281 instances,
all turned out to be non-tight, even though it is not a priori guaranteed). The
results are presented in Figure 2. For TSP problem, smodels− still shows an
overall better performance than smodels (although the improvement does not
exceed 7%). In the case of random programs, no program seems to have any
discernible edge.

5 Conclusion

We presented an answer-set programming solver smodels−, obtained by limiting
lookaheads in smodels. The experiments show that on tight programs smodels−

often outperforms smodels, especially on programs using many weight atoms. It
is never much worse than smodels as it always searches through the same search
space and extra computation it incurs runs in polynomial time. For non-tight
programs, our experiments showed that smodels− performs comparably to smod-
els despite the fact it may miss essential lookaheads. However, we expect that
there are classes of non-tight programs on which smodels would prove superior.

In our ongoing work we study additional techniques to limit lookahead and
more efficient ways to implement them to decrease the overhead.
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The authors thank Ilkka Niemelä for suggesting this research direction and
Lengning Liu for help in preparing the graphs. The authors acknowledge the
support of NSF grant IIS-0325063 and KSEF grant 1036-RDE-008.

References

1. Asparagus, http://www.asparagus.cs.uni-potsdam.de/.
2. Lparse, http://www.tcs.hut.fi/Software/smodels/.
3. H.E. Dixon, M.L. Ginsberg, and A.J. Parkes, Generalizing Boolean Satisfiability I:

Background and Survey of Existing Work, Journal of Artificial Intelligence Research
21 (2004), 193–243.

4. M. C. Fitting, A Kripke-Kleene semantics for logic programs, Journal of Logic Pro-
gramming 2 (1985), no. 4, 295–312.

5. M. Gebser and T. Schaub, Tableau calculi for answer set programming, Proceedings
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Abstract. We show how to deploy the CIFF System 4.0 for abductive
logic programming with constraints in a number of applications, ranging
from combinatorial applications to web management. We also compare
the CIFF System 4.0 with a number of logic programming tools, namely
the A-System, the DLV system and the SMODELS system.

1 Introduction

Abduction has broad applications as a tool for hypothetical reasoning with in-
complete knowledge. It allows the labeling of some pieces of information as ab-
ducibles, i.e. as hypotheses, that can be assumed to hold, provided that they
are “consistent” with the given knowledge base. Abductive Logic Program-
ming (ALP) combines abduction with logic programming enriched by integrity
constraints to further restrict the range of possible hypotheses. ALP has also
been integrated with Constraint Logic Programming (CLP), for having an arith-
metic tool for constraint solving. Important applications of ALP with constraints
(ALPC) include agent programming [1,2] and web management tools [3].

Many proof procedures for ALPC have been proposed, including ACLP [4],
the A-System [5] and CIFF [6], which extends the IFF procedure for ALP [7]
by integrating a CLP solver and by relaxing some allowedness conditions given
in [7]. In this paper we describe the CIFF System 4.01 implementation and we
compare it empirically with other systems showing that (1) they have compa-
rable performances and (2) the CIFF System 4.0 has some unique features, in
particular its handling of variables taking values on unbound domains.

2 Background

Here we summarize some background concepts. For more details see [6,7,8].
An abductive logic program with constraints consists of three components: (i)

A constraint logic program, referred to as the theory, namely a set of clauses of
the form A ← L1 ∧ . . . ∧ Lm, where the Lis are literals (ordinary atoms, their
negation, or constraint atoms) and A is an ordinary atom, whose variables are
all implicitly universally quantified from the outside. (ii) A finite set of abducible
1 The CIFF System 4.0 is available at www.di.unipi.it/∼terreni/research.php.
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predicates, that do not occur in any conclusion A of any clauses in the theory.
(iii) A finite set of integrity constraints (ICs), namely implications of the form
L1∧· · ·∧Lm → A1 ∨· · ·∨An where the Lis are literals and the Ajs are (ordinary
or constraint) atoms or the special atom false. All the variables in an IC are
implicitly universally quantified from the outside, except for variables occurring
only in the Ajs which are existentially quantified with scope A1 ∨ · · · ∨ An. The
theory provides definitions for non-abducible, non-constraint, ordinary predi-
cates; it can be extended by means of sets of atoms in the abducible predicates,
subject to satisfying the integrity constraints. Constraint atoms are evaluated
within an underlying structure, as in conventional CLP.

A query is a conjunction of literals (whose variables are free). An answer to a
query specifies which instances of the abducible predicates have to be assumed to
hold so that both (some instance of) the query is entailed by the constraint logic
program extended with the abducibles and the ICs are satisfied, wrt a chosen
semantics for (constraint) logic programming and a notion of satisfaction of ICs.

The CIFF procedure computes such answers, with respect to the notion of
entailment given by the 3-valued completion. It operates with a presentation
of the theory as a set of iff-definitions, which are obtained by the (selective)
completion of all predicates defined in the theory except for the abducible and
the constraint predicates. CIFF returns three possible outputs: (1) an abductive
answer to the query, (2) a failure, indicating that there is no answer, and (3) an
undefined answer, indicating that a critical part of the input is not allowed (i.e.
does not satisfy certain restrictions on variable occurrences). (1) is in the form of
a set of (non-ground) abducible atoms and a set of constraints on the variables
of the query and of the abducible atoms.

The CIFF procedure operates on so-called nodes which are conjunctions of for-
mulas called goals. Intuitively, sequences of nodes represent branches in the proof
search tree. A proof (and the search tree) is initialised with a node containing the
ICs and the original query. The iff-definitions are used to unfold defined predi-
cates as they are encountered in goals. The proof procedure repeatedly replaces
one node with another by applying the procedure’s rewrite rules to the goals. If
a disjunction of goals is encountered, then the splitting rule can be applied, giv-
ing rise to alternative branches in the search tree. Besides unfolding and splitting,
CIFF uses other rewrite rules (see [6]) such as propagation with the ICs.

A node containing a goal false is called a failure node. If all branches in a
derivation terminate with failure nodes, then the procedure is said to fail (no
answer to the query). A non-failure (allowed) node to which no more rewrite
rules apply can be used to extract an (abductive) answer.

ICs can be used to specify reactive rules in many applications, e.g modelling
agents. In some cases the classical treatment of negation in ICs in CIFF can lead
to non-intuitive answers being computed. For example, ICs A ∧ ¬B → C and
A → C ∨ B are treated equivalently in CIFF. Hence, one way to satisfy these
ICs is to ensure that C holds whenever A holds. However, the only “reactive
meaning” of the original IC is to ensure that C holds when both A and ¬B
have been proven. We have therefore investigated a different way of treating
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negation within ICs, namely negation as failure (NAF) [8], and have integrated
this treatment into CIFF [9], by allowing ICs to be either marked or unmarked
depending upon the required treatment of negation in them.

3 The CIFF System 4.0

CIFF 4.0 is a Sicstus Prolog implementation of CIFF. It maintains the com-
putational basis of version 3.0 [10,9], but the underlying engine has been al-
most completely rewritten in order to improve efficiency. The main predicate is
run ciff( +ALP, +Query, -Answer) where the first argument is a list of .alp
files representing an abductive logic program with constraints, the Query is a
query, represented as a list of literals, and Answer will be instantiated either
to a triple with a list of abducible atoms and two lists of variable restrictions
(i.e. disequalities and constraints on the variables in the Answer and/or in the
Query) or to the special atom undefined if an allowedness condition is not met.
In (any file in) ALP, abducible predicates Pred, e.g. with arity 2, are declared
via abducible(Pred( , )), equality/disequality atoms are defined via =, \==
and constraint atoms are defined via #=, #\=, #<, #=< and so on. Finally,
negative literals are of the form not(A) where A is an ordinary atom. Clauses
and ICs are represented (resp.) as

A :- L 1, ..., L n. [L 1, ..., L m] implies [A 1, ..., A n].
CIFF rewrite rules are implemented as Prolog clauses defining sat(+State,
-Answer), where State represents the current CIFF node and it is initialised,
within the prolog clause defining run ciff( +ALP, +Query, -Answer), to
Query plus all the ICs in the ALP. State is defined as:

state(Diseqs,CLPStore,ICs,Atoms,Abds,Disjs). The predicate sat/2

calls itself recursively until no more rules can be applied to the current
State.Then it instantiates the Answer.

Belowwe sketch themost important techniquesused to renderCIFF4.0 efficient.
Managing variables. Variables play a fundamental role in CIFF nodes: they
can be either universally quantified or existentially quantified or free. A universal
variable can appear only in an IC (which defines its scope). An existential/free
variable can appear anywhere in the node with scope the entire node. To distin-
guish at run-time free/existential and universal variables we associate with the
former an existential attribute.

Determining variable quantification efficiently is very important as CIFF proof
rules for variable operations such as equality rewriting and substitution are heav-
ily used in a CIFF computation. In CIFF 4.0 these rules are not treated as sep-
arate rewrite rules, but have been incorporated within the main rewrite rules
(propagation, unfolding etc) resulting in improvements of performances.
Constraint solving. Interfacing efficiently CIFF 4.0 with the underlying
CLPFD solver in Sicstus Prolog is fundamental for performance purposes. How-
ever, the CLPFD solver binds variables to numbers when checking satisfiability
of constraints in the CLPstore, while we want to be able to return non-ground
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answers. The solution adopted in CIFF 4.0 is an algorithm which allows, when
needed, to check the satisfiability of the CLPstore as usual and then to restore
the non-ground values via a forced backtracking.
Grounded integrity constraints. CIFF 4.0 adopts some specialised tech-
niques for managing some classes of ICs, referred to as grounded ICs. Roughly
speaking, grounded ICs are ICs whose variables will eventually be grounded dur-
ing a computation, after unfolding and propagation. For example, if p(1) is the
only clause for p, then the IC [p(X)] implies [a(X)] is grounded. If p(1) is
replaced by p(Y) then the IC is not grounded anymore.

Grounded ICs are managed at a system level by exploiting both dynamic asser-
tions/retractions of ground terms and the coroutining mechanisms of the under-
lying Prolog. This algorithm allows both to reduce the node size and to perform
the operations on the grounded ICs efficiently because they are not physically in
the node but they are dynamically maintained in the Prolog global state.

Todeclare an ICas grounded, the operatorimplies g is used insteadofimplies.

4 Experimentation and Comparison

Experiments have been made on a Linux machine equipped with a 2.4 Ghz
PENTIUM 4 - 1Gb DDR Ram, using SICStus Prolog version 3.11.2. Execution
times are in seconds (“—” means “above 5 minutes”). Comparisons are with
the A-system (AS) [5], the DLV system [11], and SMODELS (SM) [12]. In all
examples, unless otherwise specified, the CIFF initial query is true. The adopted
problem representations for the other systems are omitted due to lack of space
but they can be found on the CIFF web site.
Problem 1: N-Queens. The CIFF formalisation of this problem is very simple:
abducible(q_pos(_,_)). %%%ABDS

queen(X) :- q_domain(X). %%%CLAUSES

q_domain(X) :- X in 1..n. %%% in real code n is an integer!

exists_q(R) :- q_pos(R,C), q_domain(C).

safe(R1,C1,R2,C2) :- C1#\=C2, R1+C1#\=R2+C2, C1-R1#\=C2-R2.

[queen(X)] implies [exists_q(X)]. %%%ICS

[q_pos(R1,C1),q_pos(R2,C2),R1#\=R2] implies [safe(R1,C1,R2,C2)].

All systems return all the correct solutions. In the comparison below, we also
include CIFF 3.0 to underline the performance improvements of CIFF 4.0.

Queens CIFF 3 CIFF 4 AS SM DLV
N-Queens results n = 8 24.75 0.03 0.03 0.01 0.01

(first solution) n = 28 — 0.29 0.27 55.32 35.17
n = 32 — 0.37 0.32 — —
n = 64 — 1.62 1.52 — —
n = 100 — 4.55 4.24 — —

Problem 2: Hamiltonian cycles. The CIFF 4.0 encoding makes use of the NAF
module for ICs in order to avoid loops and to collect all possible answers.
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abducible(ham_edge(_,_,_)). abducible(checked(_,_)). %%%ABDS

ham_cycle(X) :- ham_cycle(X,X,0). %%%CLAUSES
ham_cycle(X,Y,N) :- ham_edge(X,Y,N),edge(X,Y),checked(X,N).
ham_cycle(X,Y,N) :- ham_edge(X,Z,N),edge(X,Z),checked(X,N),

ham_cycle(Z,Y,M),M#=N+1,Z\==Y.
is_checked(V2) :- checked(V2,M).

[checked(X,N),checked(X,M),M#\=N] implies [false]. %%%ICS
[vertex(V2),not(is_checked(V2))] implies [false].

The predicates edge/2 and vertex/1 represent any given graph and are given
as (domain-dependent) additional clauses, and is checked(V2) is introduced to
guarantee allowedness. The query is [ham cycle(V)] where V is any vertex of
the graph. In the comparison below, CIFF G stands for CIFF but replacing the
first IC by a grounded IC. We omit here a comparison with the A-system as we
were unable to specify the problem avoiding looping.

Nodes CIFF CIFF G SM DLV
Hamiltonian cycles results 4 0.04 0.03 0.03 0.02

(all solutions) 20 0.45 0.15 0.16 0.02
40 1.93 0.41 1.53 0.03
80 10.95 1.20 11.41 0.04
120 27.62 2.39 43.43 0.07

Problem 3: Web Sites repairing. The last example shows how abduction can be
used for checking and repairing links in a web site, given the specification of the
site via an abductive logic program with constraints. Here, a node represents a
web page. [3]. As an example, consider a web site where a node is either a book,
a review or a library, a link is a relation between two nodes and every book
must have at least a link to both a review and a library. The CIFF System 4.0
formalisation of this problem (together with a simple web site instance) is:
abducible(add_node(_,_)). abducible(add_link(_,_)). %%% ABDS

is_node(N,T) :- node(N,T),node_type(T). %%%CLAUSES
is_node(N,T) :- add_node(N,T),node_type(T).
node_type(lib). node_type(book). node_type(review).

is_link(N1,N2) :- link(N1,N2),link_check(N1,N2).
is_link(N1,N2) :- add_link(N1,N2),link_check(N1,N2).
link_check(N1,N2) :- is_node(N1,_), is_node(N2,_), N1 \== N2.
book_links(B) :- is_node(B,book), is_node(R,review),is_link(B,R),

is_node(L,lib),is_link(B,L).

[is_node(B,book)] implies [book_links(B)]. %%% ICS
[add_node(N,T),node(N,T)] implies [false].
[add_link(N1,N2),link(N1,N2)] implies [false].
[is_node(N,T1),is_node(N,T2),T1 \== T2] implies [false].

node(n1,book). node(n3,review). link(n1,n3). %%%WEB SITE INSTANCE
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CIFF 4.0 returns the following answer representing correctly the need of a
new link between the book n1 and a new library node L:

Abds: [add_link(n1,L), add_node(L,lib)].
Diseqs: [L\==n3,L\==n1] CLP store: []

Notice that the variable L in the answer can neither be bounded to a finite
domain nor grounded. This is the reason why the other systems seem unable to
deal with these cases and thus no comparison is provided.

5 Conclusions

The experiments performed (including some for planning and graph-coloring
omitted here for lack of space) show that CIFF 4.0 performances are compa-
rable with other existing systems on classical problems, though allowing the
exploitation of abduction on problems where non ground solutions are required.
We plan to improve the treatment of (grounded) ICs, and to build a GUI for
better usability. Finally, we are porting the system onto a free Prolog platform.
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Abstract. We describe the development of a constraint logic program-
ming based system, called CPP, which is capable of generating most
preferred plans with respect to a user’s preference and evaluate its per-
formance.

1 Introduction

The problem of finding a plan satisfying the preferences of a user has been
discussed in [13] and recently attracted the attention of researchers in planning
[2,3,5]. Indeed, PDDL, the de-facto language of the planning community, has
been recently extended [9] to include constructs for the specification of users’
preferences.

The original proposal described in [13] describes a model to integrate the
users’ preferences into a planning system based on Answer Set Programming
(ASP). Due to the lack of a list operator and the inflexibility in dealing with
function symbols, the encoding of preferences in this system is somewhat un-
natural, and it requires the introduction of artificial constant and predicates
symbols. Furthermore, the encoding proposed in [13] inherits the requirement
of answer set solvers that all variables have to be instantiated before computing
the answer sets, possibly leading to extremely large encodings. For these reasons,
the encoding in [13] is not expected to scale well to handle complex preferences.

This paper describes a Constraint Logic Programming (CLP) [11] based sys-
tem, called CPP, for computing most preferred plans of planning problems.
The detailed implementation of CPP is presented in [14]. The choice of CLP
is suggested by a number of factors. First, CLP is a logic programming based
paradigm, very declarative, and it is expected to allow us to maintain the under-
lying model proposed in [13]. Second, CLP does not require program grounding,
and it allows the use of lists and other function symbols, leading to a more com-
pact encoding of problems. CLP (and, in particular, CLP over Finite Domains
(CLP(FD)) [15]) provides the ability to express and efficiently handle arith-
metic constraints, and the paradigm offers methodologies for describing search
and optimization strategies. These two features appear to be vital in the context
of dealing with preferences. Finally, recent studies [7] have suggested that CLP
can provide an effective alternative, in terms of performance, to ASP for many
classes of problems.

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 290–296, 2007.
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The CPP system is implemented in GNU Prolog [6]—a Prolog compiler with
constraint solving over finite domains capabilities. CPP accepts planning prob-
lems described in the action language AL [1] in terms of logic programs. Users’
preferences are described in terms of logic programs as well, using the preference
language PP from [13].

2 Background

Action Language AL and Planning Problems: An action theory of AL is a
pair 〈D, I〉, where D is a set of propositions expressing the conditional effects of
actions, the causal relationships between fluents and the executability conditions
for the actions, and I is the set of propositions describing the initial state of the
world. Semantically, an action theory 〈D, I〉 describes a transition diagram, whose
nodes correspond to possible configurations of the world, and whose arcs are la-
beled with actions. A path in the transition diagram corresponds to a trajectory
of a sequence of actions. We assume that domains are deterministic, i.e., there is
at most one trajectory for a sequence of actions. A planning problem P in AL is a
triple 〈D, I, G〉 where 〈D, I〉 is an action theory and G is a set of literals describing
goal states. A plan of P is a sequence of actions that leads to a state satisfying G
from the initial state, according to the transition diagram of 〈D, I〉.
Preference Language PP: The language PP [13] supports three types of
preferences: basic desires, atomic preferences, and general preferences. A basic
desire is a temporal formula expressing desired constraints on trajectories of
plans. E.g., in the transportation domain, to express the fact that a user prefers
to stop by a post office, we can write

eventually(
∨

post office(X) at(X))
or, if the user’s preference is not to go by bus, we can use the formula

always(
∧

bus line(X,Y ) ¬occ(bus(X, Y ))).
In the above formulae, occ(A) means that action A must occur at the current
state; eventually(ϕ) (resp. always(ϕ)) means that the formula ϕ must some-
times (resp. always) hold during the execution of the plan. An atomic preference
provides users with a way to rank their basic desires, e.g., the fact that going by
bus is preferred to going by subway can be expressed as

∧
bus line(X,Y )∧subway(X,Y )

occ(bus(X, Y ))�occ(subway(X, Y )). A general preference is composed of atomic
preferences using the connectives & (and), | (or), ! (not), and � (preferable).
Given a preference ψ, PP defines an ordering relation ≺ψ between trajectories
of plans: α ≺ψ β means that the trajectory α is preferred to the trajectory β
w.r.t. ψ. In this regard, a plan π is most preferred w.r.t. ψ if there is no plan π′

s.t. the trajectory of π′ is preferred to the trajectory of π.

3 System Description

We developed a system, called CPP1, in GNU Prolog for finding most preferred
plans. CPP takes as input a planning problem P and a set of preferences and
1 CPP’s source code is available at http://www.cs.nmsu.edu/∼tphan/software.htm

http://www.cs.nmsu.edu/~tphan/software.htm
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returns as output most preferred plans of P w.r.t. a preference. It works by
translating a planning problem into a constraint satisfaction problem, whose
satisfying truth assignments correspond to plans of P2. To handle preferences,
CPP defines a weight function that maps plans to (integer) numbers in such
a way that any plan with a maximal value of the weight function is a most
preferred plan of P . However, the other direction does not hold in general: some
of the most preferred plans do not correspond to any optimal solution of the
constraint satisfaction problem. If we wish to find them, we might have to use
another weight function.

In our framework, a planning problem P is described in AL in terms of a
Prolog program. Since GNU Prolog does not allow the symbol ¬, a literal ¬F
where F is a fluent is written as neg(F ). Listed below is an example of an input
file for the transportation domain with three actions walk, bus, and subway,
with obvious meaning. Initially the user is at home and his goal is to be at his
office.

% locations, facilities & transportation media ---------------------------
loc(home). loc(office). loc(stA). loc(stB). loc(stC). loc(stD).
post_office(stA). post_office(stB). phone(stB). phone(stC). phone(stD).
bus_line(stA,stB). bus_line(stC,stD). sub_line(stA,stD). sub_line(stC,stB).
pedestrian(home,stA). pedestrian(stB,office). pedestrian(home,stC).
pedestrian(stD,office).
% actions & fluents ------------------------------------------------------
action(bus(L1,L2)):- bus_line(L1,L2).action(subway(L1,L2)):- sub_line(L1,L2).
action(walk(L1,L2)) :- pedestrian(L1,L2). fluent(at(L)) :- loc(L).
% executable condition ---------------------------------------------------
executable(bus(L1,L2), [at(L1)]) :- action(bus(L1,L2)).
executable(subway(L1,L2), [at(L1)]) :- action(subway(L1,L2)).
executable(walk(L1,L2), [at(L1)]) :- action(walk(L1,L2)).
% dynamic causal laws ----------------------------------------------------
causes(bus(L1,L2), at(L2), []) :- action(bus(L1,L2)).
causes(subway(L1,L2), at(L2), []) :- action(subway(L1,L2)).
causes(walk(L1,L2), at(L2), []) :- action(walk(L1,L2)).
% static causal laws: cannot be at L1 if at L2 ---------------------------
caused([at(L2)],neg(at(L1))) : loc(L1), loc(L2), L1 \== L2.
% initial state & goal ---------------------------------------------------
initially(at(home)). goal(at(office)).

The set of preferences is also described in terms of Prolog clauses. A basic desire
is expressed as a fact of the form basic desire(Name,Formula), where Name is the
name of the basic desire and Formula is a temporal formula representing the basic
desire. An atomic preference is expressed as atomic preference(Name,Desires),
where Name is the name of the atomic preference and Desires is a list of basic
desire names. Intuitively, Desires = [D1,..,Dk] corresponds to the atomic pref-
erence D1 � .. � Dk. A general preference is general preference(Name,Formula),
where Name is the name of the preference and Formula is the formula representing
the preference.

2 Our translation is similar to SAT-based approaches to planning such as [4,12,10].
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In addition to basic desires, atomic preferences and general preferences, which
are supported by PP, CPP allows another type of preferences, called metric
preferences, which are declared as metric preference([(D1,W1),..,(Dk,Wk)])
where Di’s are basic desires and Wi’s are weights associated with them. The
weight of a plan π w.r.t. a metric preference ψ is the sum of the weights of the
basic desires in ψ that are satisfied by π. A plan is most preferred if it has a
maximal weight value. The following is a simple example of an input file for
preferences.

basic_desire(ds1,eventually(or(L))) :- findall(at(X),post_office(X),L).
basic_desire(ds2,eventually(or(L))) :- findall(at(X),phone(X),L).
basic_desire(ds3,always(and(L))) :-

findall( neg(occ(bus(X,Y))), action(bus(X,Y)), L ).
atomic_preference(ap1,[ds1,ds2]). atomic_preference(ap2,[ds1,ds3]).
general_preference(gp1,and(ap1,ap2)). general_preference(gp2,or(ap1,ap2)).
metric_preference(mp1,[(ds1,2),(ds2,3),(ds4,5)]).

In this example, the first three lines define three different basic desires. The first
basic desire ds1 describes that the user wants to be at a post office during his
plan (just because he wants to send a package). The second basic desire ds2 says
that he wants to be at a phone box (to make a call, for example). The last basic
desire, ds3, states that he does not want to go by bus.

The fourth line defines two atomic preferences: ap1 corresponds to the atomic
preference ds1� ds2, and ap2 corresponds to the atomic preference ds1� ds3,
which means that ds1 is preferred to ds2, and ds1 is preferred to ds3, respec-
tively. The next line describes two general preferences: gp1 stands for ap1 &
ap2, and gp2 stands for ap1 | ap2. The last line describes a metric preference
consisting of basic desires ds1, ds2, and ds3 with weights 2, 3, and 5 respectively.

The input planning problem and the preference file are compiled to CLP,
and execution is initiated by issuing the predicate main/2 to compute the most
preferred plans. The first argument of main is the name of the preference and
the second argument is the length of the plan we wish to find. For example, to
find a most preferred plan of length 3 w.r.t. the basic desire ds1 (resp. gp1) we
can submit the query main(ds1,3) (resp. main(gp1,3)). The following is the
output of the queries main(ds1,3) and main(gp1,3):

| ?- main(ds1,3). | ?- main(gp1,3).
A most preferred trajectory is: A most preferred trajectory is:

+ walk(home,stA) + walk(home,stC)
+ bus(stA,stB) + subway(stC,stB)
+ walk(stB,office) + walk(stB,office)

4 Experiments

We compared CPP with the ASP planner in [13] on the blocks world domain
(Block). In this domain, there are m × n blocks, numbered from 1 . . .m × n.
Initially, the blocks are organized in m piles, each having n blocks. The i-th pile
consists of n blocks that are numbered (1+(i−1)×n) . . . (i×n), where the blocks
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with smaller numbers are on top of the blocks with larger numbers. The goal is
to have a pile of blocks from 1 to m × n − 1 where blocks with larger numbers
are on top of ones with smaller numbers. The location of the remaining block
(block number m×n), can be anywhere (i.e., on the table, on block m×n−1, or
below block 1). For this domain, we tested with preferences ψ1, . . . , ψ8 defined
as follows. The first four preferences are basic desires. ψ1 is a goal preference of
having the last block (block number m × n) on the top of block m × n − 1 in
the final state. ψ2 is also a goal preference but it prefers to have the last block
under block 1. ψ3 and ψ4 are state desires. ψ3 prefers to never place any block
except block 1 on the table; ψ4 states that eventually block 1 is on block m × n.
ψ5 is the atomic preference ψ1 � ψ2, and ψ6 is the atomic preference ψ3 � ψ4.
ψ7 and ψ8 are the general preferences ψ4&ψ5 and ψ8 = ψ4|ψ5.

All the experiments have been conducted on a 2.4 GHz CPU, 768MB RAM
machine. Time out is set to 10 minutes. The test results are shown in Table 1.
In the table, N is the length of plans that we wish to find. In each cell of the

Table 1. Performance of CPP vs ASPlan

Domain N ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8
Block(1,4) 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.72 1.68 1.85 1.73 1.72 1.73 1.72 1.77
5 0.02 0.00 0.00 0.00 0.02 0.02 0.02 0.02

1.79 1.75 1.78 1.78 1.81 1.83 1.85 1.81
6 0.00 0.00 0.02 0.02 0.00 0.03 0.02 0.02

1.91 1.87 2 1.98 1.97 1.99 1.98 2.02
7 0.02 0.00 0.02 0.03 0.00 0.03 0.03 0.03

2.11 2.07 2.29 2.36 2.91 2.16 2.1 2.18
Block(1,5) 5 0.00 0.02 0.02 0.02 0.00 0.02 0.02 0.02

5.65 5.51 5.63 5.73 5.53 5.65 5.73 5.74
6 0.02 0.03 0.03 0.02 0.02 0.05 0.05 0.03

6.85 5.72 5.76 5.97 5.99 5.89 6.11 6.18
7 0.03 0.03 0.05 0.06 0.03 0.09 0.05 0.06

6.15 6.27 6.19 6.13 6.18 6.32 6.53 6.45
8 0.08 0.03 0.08 0.08 0.06 0.14 0.06 0.08

6.53 6.51 6.69 6.56 6.56 6.71 7.14 7.28
Block(1,6) 6 0.02 0.02 0.31 0.02 0.02 0.03 0.03 0.03

17.14 17.19 17.21 16.82 16.83 16.99 16.75 20.43
7 0.06 0.08 0.16 0.09 0.09 0.17 0.14 0.14

17.6 17.64 17.7 17.56 17.72 17.59 17.62 17.51
8 0.11 0.14 0.19 0.28 0.14 0.31 0.22 0.24

18.2 18.42 18.44 18.35 18.41 18.38 18.45 18.46
9 0.42 0.39 0.28 0.56 0.47 0.52 0.66 0.67

19.26 19.87 19.17 19.3 19.37 19.28 19.56 19.48
10 2.00 0.28 0.53 0.66 2.33 0.94 2.02 2.08

20.98 20.4 20.02 20.09 20.3 20.45 20.22 20.24
Block(1,7) 9 0.48 0.47 0.67 0.78 0.5 0.97 0.52 0.52

32.66 32.33 33.13 32.53 32.59 32.86 32.82 32.52
10 1.94 1.5 0.86 1.81 2.28 1.55 1.72 1.72

34.84 34.82 34.72 34.97 34.5 34.4 38.86 35.18
11 10.78 6.00 1.97 7.27 11.02 2.81 7.64 7.5

38.7 38.65 38.58 38.27 38.1 38.91 38.18 38.23
12 66.28 3.34 2.61 5.3 76.24 5.08 40.67 41.31

42.47 42.12 42.66 42.36 42.66 45.64 42.71 43.62
Block(2,3) 5 0.2 0.23 0.36 0.38 0.24 0.55 0.56 0.66

16.45 16.84 16.85 16.74 16.73 17.19 16.69 17.85
6 0.12 0.18 0.2 0.47 0.11 0.44 0.22 0.2

17.57 17.27 17.3 17.62 17.3 17.42 18.13 22.98
7 0.25 0.31 0.23 0.75 0.27 0.38 0.34 0.33

19.51 19.24 19.24 19.01 19.19 19.25 19.02 19.37
8 0.82 1.15 0.28 1.92 0.81 0.89 1.05 1.05

20.41 20.71 20.73 20.54 20.45 20.53 20.28 20.54
Block(2,4) 7 3.95 4.28 3.06 5.69 7.84 5.12 5.86 5.82

78.97 77.21 79.95 78.77 78.76 77.63 77.75 79.04
8 1.26 1.72 1.08 5.51 2.15 2.65 1.4 1.4

82.53 80.87 138.38 86.54 80.8 81.05 82.08 82.56
9 7.2 7.75 1.34 27.56 8.75 4.97 4.93 4.98

89.53 88.68 91.09 89.17 90.09 90.68 90.26 89.21
10 44.58 33.75 1.58 43.42 38.79 8.95 27.15 27.12

99.02 96.81 98.24 96.64 96.08 98.7 98.46 98.34
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table, the first row and the second row shows the solving times (in seconds) for
CPP and ASPlan, respectively, to return a most preferred plan; TO indicates a
timeout.

As can be seen from Table 1, CPP on the block world domain outperforms
ASPlan on most of instances. When the number of blocks is less than or equal to
6 (problems Block(1, 4) and Block(1, 5)), the solving time for CPP is negligible
(less than 0.1s), while that for ASPlan is in range from 1.7 to 7.2 seconds. How-
ever, when the number of blocks increases to more than 6 (instances Block(1, 6),
Block(1, 7), Block(2, 3), and Block(2, 4)), the solving time for CPP increases ex-
ponentially but is still much less than the solving time for ASPlan on most of
instances.

5 Conclusion and Future Work

This paper describes a CLP based system, called CPP, for computing most
preferred plans with respect to a user’s preference. The preliminary results are
encouraging and suggest a valid alternative for reasoning with actions and prefer-
ences. Our work is somewhat related to the work in [3] in the sense that planning
problems with preferences are translated into constraint satisfaction problems.
The main difference is that the work in [3] can handle preferences and constraints
over goals only; they cannot handle preferences over trajectories of plans.

The system has been encoded in GNU Prolog. It is worth noting that there
are other constraint programming systems, and the performance of a constraint
program heavily depends on the encoding of the problem and on the underly-
ing solver. Hence, as future work, we would like to try exploring encodings of
CPP on different systems. We would also like to investigate the usefulness of
heuristics and the applicability of Constraint Handling Rules [8] to improve the
performance and extensibility of CPP. In addition, we would like to extend CPP
to deal with non-deterministic and/or incomplete action theories. This involves
extending the preference language PP so as to be able to compare plans in
non-deterministic and/or incomplete action theories.
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Abstract. Decision making models for autonomous agents have rece-
ived increased attention, particularly in the field of intelligent robots. In
this paper we will show how a Defeasible Logic Programming approach
with an underlying argumentation based semantics, could be applied in a
robotic domain for knowledge representation and reasoning about which
task to perform next. At this end, we have selected a simple application
domain, consisting of a micro-world environment using real and simu-
lated robots for cleaning tasks.

1 Introduction

In this paper we will show how a Defeasible Logic Programming approach could
be applied in a robotic domain for knowledge representation and reasoning about
which task to perform next. At this end, we have selected a simple application
domain, consisting of a micro-world environment using real and simulated robots
for cleaning tasks. We use the Khepera 2 robot [1], a miniature mobile robot
ideal for this kind of experimentation. We also use a professional simulator (see
Fig. 1) called Webots [2], which allows behavior simulation prior to physical
experimentation with the robot.

The experimental environment (see Fig. 1(a)) is a square arena of 100 units
per side which is conceptually divided into square cells of 10 units per side each.
There is a global camera which provides the necessary information to perform
their activities. The store is a 30 × 30 units square on the top-right corner and
represents the target area where boxes should be transported. There are boxes
of three different sizes (small, medium and big) spread over the environment.

As the robot is not able of measuring the state of its battery, it cannot perform
a globally optimized task. In this way, the robot will reason about which box
is more convenient to select next trying to minimize the time spent in moving
boxes. To reason, the robot will use perceptual information about the boxes and
its preferences (represented with defeasible rules). For example, the robot could

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 297–302, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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prefer the smallest box, or the nearest one, or the box that it is nearest to the
store. As we will show below, arguments for and against selecting a box will be
considered to select the more appropriate one.

A robot capable of solving this kind of problems must at least address the
following issues: to perceive the surrounding world, to decide which goal to reach
and to have the capabilities for reaching this goal. Several architectures providing
the agents with these skills have been proposed [3,4,5]. In this work, we only
consider the necessary reasoning processes to make decisions about which is
the most suitable box to be transported by the robots. We will not address
the low-level aspects related to sensorial perception and the implementation
of low-level actions for the Khepera robots, because they have been presented
elsewhere [6].

(a) (b)

Fig. 1. Two possible different environments

2 Knowledge Representation and Defeasible Reasoning

Figure 1(a) shows an example with one robot (khep1) and three boxes to be
carried: a small one (box1) near to the robot, box3 that is medium size and it
is near to the store, and box4 that is big and it is far from both, robot and
store. Taking into account its preferences the robot will consider reasons for and
against selecting each box. We will refer to these reasons as arguments.

For example, there is an argument for selecting box3 because “it is near to
the store” but there is an argument against selecting box3 because box1 “is near
to the robot and it is smaller than box3.” As it will be shown below a dialec-
tical analysis involving arguments and counter-arguments will be performed to
decide which argument prevails. In this case box1 will be chosen, because it is
the smallest box near to the robot. Since the environment is dynamic, when
it changes new arguments could be generated and others could be invalidated.
Thus, the robot might select different boxes in different circumstances. For in-
stance, let us consider Fig. 1(b), that differs from Fig. 1(a) in that there is one



An Application of Defeasible Logic Programming 299

more small box (box2) in the environment. Here, in the new situation, the robot
khep1 will choose box2 because it has a new argument against selecting box1:
“there is another small box (box2) that it is nearer to the store than box1.”

The robot’s knowledge about the environment and its preferences for select-
ing a box will be represented using Defeasible Logic Programming (DeLP) a
formalism that combines logic programming and defeasible argumentation (for
a detailed presentation see [7]). In DeLP, knowledge is represented using facts,
strict rules or defeasible rules. Facts are ground literals representing atomic in-
formation or the negation of atomic information using the strong negation “∼”.
Strict Rules, are denoted L0 ← L1, . . . , Ln, where the head L0 is a ground literal
and the body {Li}i>0 is a set of ground literals. In the same way, Defeasible
Rules, are denoted L0 –≺ L1, . . . , Ln, where the head L0 is a ground literal and
the body {Li}i>0 is a set of ground literals. In this work, facts will be used for
representing perceptual information about the environment, (e.g., box(box2) or
near(box2, store)), strict rules will be used for representing non-defeasible infor-
mation (e.g., ∼far(box1, khep1)← near(box1, khep1)), and defeasible rules will
be used for representing tentative reasons for (or against) selecting a box (e.g.,
choose(X) –≺ small(X)). The symbol “–≺ ” distinguishes a defeasible rule from
a strict one with the pragmatic purpose of using a defeasible rule to represent
defeasible knowledge, i.e., tentative information.

A Defeasible Logic Program P is a set of facts, strict rules and defeasible rules.
When required, P is denoted (Π, Δ) where Π=Πf ∪ Πr, distinguishing the
subset Πf of facts, strict rules Πr and the subset Δ of defeasible rules. Observe
that strict and defeasible rules are ground following the common convention [9].
Some examples will use “schematic rules” with variables. As usual in Logic
Programming, variables are denoted with an initial uppercase letter.

Strong negation is allowed in the head of program rules, and hence may be
used to represent contradictory knowledge. From a program (Π, Δ) contradic-
tory literals could be derived, however, the set Π (which is used to represent non-
defeasible information) must possess certain internal coherence. Therefore, Π
has to be non-contradictory, i.e., no pair of contradictory literals can be derived
from Π. Given a literal L the complement with respect to strong negation will be
denoted L (i.e., a=∼a and ∼a=a). To deal with contradictory and dynamic in-
formation, in DeLP, arguments for conflicting pieces of information are built and
then compared to decide which one prevails. The prevailing argument provides
a warrant for the information that it supports (A DeLP interpreter satisfying
the semantics of [7] is accessible online at http://lidia.cs.uns.edu.ar/DeLP).

In DeLP a literal L is warranted from (Π, Δ) if a non-defeated argument A
supporting L exists. An argument for a literal L, denoted 〈A, L〉, is a minimal
set of defeasible rules A⊆Δ, such that A ∪ Π is non-contradictory and there is
a derivation for L from A ∪ Π . To establish if 〈A, L〉 is non-defeated, argument
rebuttals or counter-arguments that could be defeaters for 〈A, L〉 are considered,
i.e., counter-arguments that by some criterion are preferred to 〈A, L〉. Since
counter-arguments are arguments, defeaters for them may exist, and defeaters for
these defeaters, and so on. Thus, a sequence of arguments called argumentation
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line is constructed, where each argument defeats its predecessor in the line.
Given a query Q there are four possible answers: yes, if Q is warranted; no, if
the complement of Q is warranted; undecided, if neither Q nor its complement
are warranted; and unknown, if Q is not in the language of the program.

3 Robot Decision Making: A Simple Example

In this section we describe the components used by the robot to decide which box
to transport next. Consider the situation depicted in Fig. 1(b). The knowledge
of the robot, referring to this particular scenario, will be represented with the
defeasible logic program P = (Π ,Δ) shown in Fig. 2.

robot(khep1) (1) big(box4) (10)
self(khep1) (2) near(box1, khep1) (11)
box(box1) (3) near(box2, khep1) (12)
box(box2) (4) near(box2, store) (13)
box(box3) (5) near(box3, store) (14)
box(box4) (6) far(box1, store) (15)
small(box1) (7) far(box3, khep1) (16)
small(box2) (8) far(box4, store) (17)
medium(box3) (9) far(box4, khep1) (18)

(a) Πf

∼near(X, O)← far(X, O) (19)
smaller(X, Y )← small(X), medium(Y ) (20)
smaller(X, Y )← small(X), big(Y ) (21)
smaller(X, Y )← medium(X), big(Y ) (22)
∼smaller(X, Y )← same size(X, Y ) (23)
same size(X, Y )← small(X), small(Y ) (24)
same size(X, Y )← medium(X), medium(Y ) (25)
same size(X, Y )← big(X), big(Y ) (26)

(b) Πr

choose(X)–≺ near(X, store) (27)
choose(X)–≺ self(Z), near(X, Z) (28)
∼choose(X)–≺ self(Z), near(Y, Z), near(X, store), diff(X, Y ) (29)
∼choose(X)–≺ big(X) (30)
choose(X)–≺ big(X), self(Z), near(X, Z) (31)
choose(X)–≺ big(X), near(X, store) (32)
choose(X)–≺ small(X) (33)
∼choose(X)–≺ small(X), far(X, store), self(Z), far(X, Z) (34)
∼choose(X)–≺ self(Z), near(X, Z), near(Y, Z), near(Y, store),

diff(X, Y ), same size(X, Y ) (35)
∼choose(X)–≺ choose(Y ), smaller(Y, X) (36)

(c) Δ

Fig. 2. Defeasible Logic program P = (Π,Δ)

The defeasible rules of Δ describe the robot’s preferences about which box to
choose in different situations. In this case, the defeasible rules model preference
criteria with respect to the size and location of the boxes. For instance, rules (27)
and (28) represent the robot’s preferences on those boxes near to the store or
near to itself. Moreover, rule (29) states that boxes near to the robot are more
desirable than those near to the store. Furthermore, rules (30)-(34) represent
the preferences of the robot with respect to the boxes’ size as well as in which
situations, boxes of a determined size are eligible. In addition, rule (35) states
that when two boxes of the same size, X and Y , are near to the robot, but Y
is also near to the store, then Y is preferred over X . Finally, rule (36) provides
defeasible reasons not to choose X if a smaller box Y was already chosen.

In the scenario depicted in Fig. 1(b), the robot should choose box2 because it
is near to itself and it is also near to the store. Observe that although from P ,
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there are two arguments (A1 and A2) supporting choose(box1), these arguments
are defeated by A3. Thus, the answer for choose(box1) is no.

A1 =
{

choose(box1)–≺ small(box1)
} A2 =

{
choose(box1)–≺ self(khep1), near(box1, khep1)

}

A3 =
{ ∼choose(box1)–≺ self(khep1), near(box1, khep1), near(box2, khep1), near(box2, store),

diff(box1, box2), same size(box1, box2)

}

The interaction among these arguments is shown below (where white triangles
represent defeated arguments, black triangles non-defeated ones, and arrows the
defeat relation). From P three arguments for choose(box2) can be obtained (A4,
A5 and A6) and one argument against it (A7). Here, A7 is a blocking defeater
of A4 and A5 and it is a proper defeater of A6, but A5 is also a blocking defeater
of A7, therefore, the answer to choose(box2) is yes because A6 is defeated by
A7 which is in turn defeated by A5, reinstating A6. Finally, the answers for
choose(box3) and choose(box4) are no because arguments that use rule (36) are
built to support ∼choose(box3) and ∼choose(box4).

A4 =
{

choose(box2)–≺ small(box2)
} A5 =

{
choose(box2)–≺ self(khep1), near(box2, khep1)

}

A6 =
{

choose(box2)–≺ near(box2, store)
}

A7 =
{ ∼choose(box2)–≺ self(khep1), near(box1, khep1), near(box2, store), diff(box2, box1)

}

4 Related Work

Our proposal is closely related to the approach adopted by Parsons et al. [10]. In
particular, in our work we follow some ideas exposed in [10] about the integration
of high-level reasoning facilities with low-level robust robot control. We share the
approach of seeing the low-level module as a black box which receives goals to be
achieved from the high-level component, and plans to reach goals are internally
generated. However, our work differs from the proposal of [10] in that we do
not use a BDI deliberator as high-level reasoning layer, instead we use a non-
monotonic reasoning module based on a defeasible argumentation system.

With respect to this last issue, our approach to decision making is related to
other works which use argumentative processes as a fundamental component in
the decision making of an agent [11,12,13]. It is important to note that these
argumentation systems have been usually integrated in software agents. On the
other hand, in our approach, defeasible argumentation is applied in a robotic
domain where the uncertainty generated by noisy sensors and effectors, changes
in the physical environment and incomplete information about it, make this kind
of problems a more challenging test-bed for the decision processes of an agent.
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5 Conclusions and Future Work

In this paper we have shown how a Logic Programming approach could be ap-
plied in a robotic domain for knowledge representation and reasoning about
which task to perform next. Our approach considers the ability of Defeasible
Logic Programming to reason with incomplete and potentially inconsistent in-
formation. The simple application domain described consists of a micro-world
environment using real and simulated robots for cleaning tasks. We have pre-
sented a problem and its solution when there is only one robot in the environ-
ment. Future work includes considering more complex environments, such as
more than one robot with different abilities working in the same environment
with the inclusion of obstacles.
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Abstract. Most complete SAT/ASP solvers are based on DPLL. One of the con-
straint propagation methods is the so-called lookahead, which has been somewhat
controversial, due to its high overhead. In this paper, we show characterizations
of the problems for which lookahead is ineffective, and demonstrate, experimen-
tally, that for problems that lie in the phase transition regions, search efficiency
can be improved significantly by lookahead. This understanding leads to the pro-
posal of a mechanism called adaptive lookahead, which decides when lookahead
should be invoked dynamically upon learned information. Our experiments show
that adaptive lookahead adapts well to different situations where lookahead may
or may not be beneficial.

1 Introduction

Most complete SAT/ASP solvers are based on DPLL [2]. Unit propagation, also called
boolean constraint propagation (BCP) [3], is considered the most important constraint
propagation technique in a DPLL search engine [11]. In answer set solver Smodels [8],
the component that corresponds to BCP is called the Expand function.

On top of BCP/Expand, other deductive mechanisms may be adopted. One of these
is called lookahead [3] - before a decision on a choice point is made, for each atom, if
fixing the atom’s truth value leads to a contradiction, the atom gets the opposite truth
value. In this way, such an atom gets a truth value from the truth value propagation of
the already assigned atoms without going through a search process.

Lookahead, however, incurs high overhead [10] and has been shown ineffective in
some SAT solvers [6]. The high pruning power, along with non-ignorable overhead, has
made lookahead a controversial technique. There are two camps of constraint solvers.
In one of them lookahead is employed during the search and in the other it is not.

This paper investigates the effectiveness of lookahead, namely how to exploit its
pruning power and avert the unnecessary overhead. We choose the well-known answer
set solver Smodels as our experimental system. We report the following findings. First,
we show some characterizations of the programs for which lookahead is ineffective,
and identify representative benchmarks in which the situation arises. Second, we show
experimentally that lookahead can significantly increase search efficiency in solving
some hard problem instances especially those in their phase transition regions. Third,
we propose a mechanism called adaptive lookahead, which turns lookahead on and off
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dynamically upon learned information. We implemented adaptive lookahead in Smod-
els, which adapts well to different search environments it is going through.

Next section provides the background. In Section 3 we identify problems that run
much slower with lookahead and discuss the reasons. Section 4 introduces the algorithm
of adaptive lookahead. Section 5 provides experimental results, with final remarks given
in Section 6.

2 Constraint Propagation in Smodels

The class of logic programs considered here is that of normal programs, which are
collections of program rules of the form h ← a1, ..., am, not b1, ..., not bn, where h,
ai, 1 ≤ i ≤ m and bi, 1 ≤ i ≤ n are ground atoms, or positive literals and not bi are
negative literals. For an atom a, not(not a) yields a. The answer sets of a program are
defined in [5].

A set of literals is consistent if there is no atom a such that a and not a are both in
the set, otherwise there is a conflict. A partial assignment is a consistent set of literals.

A choice point is defined as a point during search where the branching heuristic
picks a literal. In the literature, this is also referred to as making a decision. Smodels
performs constraint propagation before a decision is made. When lookahead is not in-
volved, constraint propagation is carried out by a function called expand(P, A), where
P is a program and A a partial assignment. When lookahead is employed, constraint
propagation is carried out as follows: for each unassigned atom a, assumes a truth value
for it. If this leads to a conflict, then a gets the opposite truth value. This process contin-
ues, repeatedly, until no atom can be fixed a truth value by lookahead. Truth values are
propagated in lookahead by expand(P, A), which returns a superset of A, representing
the process of propagating the values of the atoms in A to some additional atoms. For
more details, the reader is referred to [8].

3 Situations Where Overhead Dominates
Easy sub-program. Given a program, when searching for a solution it could happen
that no pruning is ever generated by lookahead in the course of solving some parts of
the problem. This could be caused by easy sub-programs described as follows.

Let P ′ and P be two ground programs, P ′ is called a sub-program of P if P ′ ⊆ P .
A program P is said to be easy if any partial assignment can be extended to a solu-
tion. In the process of solving an easy program lookahead is totally wasted in that, if
expand(P, A) = A then lookahead(P, A) = A, for any partial assignment A gener-
ated during the search.

A hard program may contain many easy sub-programs. An example is the pigeon-
hole problem, which is known to be hard for resolution-based solvers. When the num-
ber of holes is smaller than the number of pigeons by a small number, e.g. by one, the
corresponding program has lots of easy sub-program, which can be obtained by remov-
ing some facts about pigeons so that the resulting number of pigeons equals to or less
than the number of holes. The process of lookahead for solving such a sub-program is
entirely useless.



On the Effectiveness of Looking Ahead in Search for Answer Sets 305

Spurious Pruning. When lookahead finds a conflict, some search space is pruned. But
some pruning may be immaterial to the rest of the search. Suppose, by an invocation
of lookahead, a literal, say l, is added to the current partial assignment A. The addition
of l may not contribute to further constraint propagations. This can be described by the
following equation: expand(P, A)∪{l} = expand(P, A∪{l}). In this case, lookahead
is unnecessary since the decision on l can be delayed to any later choice point.

We can use the number of calls to the Expand function during search to measure the
effectiveness of lookahead. Let us use Nlh and Nnlh to denote the number of calls to
Expand in Smodels with and without lookahead, respectively. It is easy to see, for a
given program P , if all the pruning by lookahead are spurious, then Nnlh ≤ Nlh.

4 Adaptive Lookahead

Adaptive lookahead is designed to avoid lookahead when its use tends to be ineffective.
Two pieces of information are useful for this purpose. One is the number of failed
literals (literals whose addition to the current partial assignment cause a conflict by
the expand function). Note that a failed literal does not necessarily cause backtracking,
since it could be the case that the negation of the failed literal is consistent with current
partial assignment. Another is the number of dead-ends (where backtracking is needed)
detected during the search. The idea is that if after some runs failed literals have been
rare, it is likely that the search is in a space where pruning is insignificant, and likely
to remain so for sometime to come, so lookahead is turned off; if dead-ends have been
frequently encountered after some runs, it is likely that the search has entered into a
space where pruning can be significant, so lookahead is turned on.

We call the resulting system adaptive smodels The control of lookahead is real-
ized by manipulating two scores, look score and dead end counter. The look score
is initialized to be some positive number, then deducted each time when lookahead
does not detect any conflict. When it becomes zero, lookahead will be turned off. The
dead end counter is initialized to be zero and increased each time when a dead-end is
encountered. Lookahead will be turned on if dead end counter reaches some thresh-
old. The counters will be reset after each turn.

In addition to the on/off control, lookahead will never be used in late search processes
if it cannot detect any conflict after a number of atoms have been assigned. This is
because the search efficiency cannot be improved much by lookahead if the conflicts it
detects only happen in late stages of the search. The lateness is measured by a ratio of
the number of assigned literals to the number of literals in the program.

The initial value for look score, the amount of increase/decrease, and the thresholds
are all determined empirically. We set the amount of increase/decrease to 1, look score
to 10, the thresholds of dead end counter and ratio to 1 and 0.8, respectively.

5 Experiments

The experiments serve three purposes. First, they confirm our findings of the problems
where the performance is significantly deteriorated by the use of lookahead; second,
they show that lookahead tends to be very effective for hard programs, especially for
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those that lie in the known regions of phase transition; and third, adaptive lookahead
behaves as if it “knows” when to employ lookahead and when not to.

We run Smodels 2.32 with lookahead, without lookahead, and with adaptive looka-
head, respectively. All of the experiments are run on Red Hat Linux AS release 4 with
2GHz CPU and 2GB RAM.

5.1 Cases Where Lookahead Improves Search Efficiency

Graph coloring. We use Culberson’s flat graph generator [1] to generate graph in-
stances. In these graphs, each pair of vertices is assigned an edge with an independent
identity probability p. We use the suggested value of p to sample across the “phase
transition”. The number of colors is 3 and the number of vertices of the graph is 400.
The cutoff time is 3 hours. For each measure point, we generate 100 instances and the
average running time is reported.

The experiments show that lookahead drastically speeds up the search in the hard
region. In the easier regions, the effectiveness of lookahead is insignificant (Fig. 1). The
savings by lookahead can also be measured by the number of calls to Expand (Fig. 2.1)

Random 3-SAT. Another problem with well-known phase transition is random 3-SAT.
We test instances around its known phase transition region [7]. The results are similar
to graph coloring. The data are omitted for lack of space.

Blocks-world. The blocks-world problem is a typical planning problem. The instances
we use are generated as follows. For n blocks, b1, ..., bn, the initial configuration is b1
on the table and bi+1 on bi for 1 ≤ i ≤ n − 1. The goal is bn on the table, b1 on bn and
bi+1 on bi for 1 ≤ i ≤ n − 2. Under this setting, each block in the initial state has to be
moved to get to the goal state, so the problem turns out to be nontrivial. The minimum
steps needed is 2n − 2.

 0.1

 1

 10

 100

 1000

 10000

 0.012  0.014  0.016  0.018  0.02  0.022  0.024  0.026  0.028  0.03

D
ur

at
io

n 
(s

ec
)

Probability

without lookahead
with lookahead

adaptive lookahead

Fig. 1. Running time for graph coloring

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.012  0.014  0.016  0.018  0.02  0.022  0.024  0.026  0.028  0.03

N
um

be
r 

of
 e

xp
an

d 
ca

lls

Probability

without lookahead
with lookahead

adaptive lookahead

Fig. 2. Number of expand calls

Grippers. The grippers problem is another intensively studied planning problem. It’s
interesting partly because the inherent symmetry in the problem causes a domain
independent planner to waste a lot of time on exploring symmetric search subtrees.

1 In comparison, the number of choice points is usually not a good indicator, as a reduction may
be achieved in the expense of a huge overhead.
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Table 1. Blocks-world Problem

b s No Lookahead Lookahead A-Lookahead

14
26 165.88 30.49 7.34
25 359.65 5.45 5.46

15
28 335.11 53.07 10.54
27 4673.35 7.35 7.35

16
30 375.20 6276.28 14.66
29 8585.08 10.15 10.50

17
32 1197.65 145.59 21.24
31 701.86 16.48 16.40

18
34 – 145.48 29.28
33 – 21.42 21.39

Table 2. Gripper problem

R1 R2 s No Lookahead Lookahead A-Lookahead

4 0
7 0.1 0.43 0.41
6 0.09 0.17 0.17

5 0
11 8.31 77.35 64.94
10 1824.55 189.40 97.12

6 0
11 263.75 1117.02 1084.31
10 2345.49 490.93 487.64

3 3
11 0.70 15.80 15.98
10 77.93 15.64 15.52

4 4
12 1749.35 419.42 412.64
11 5463.57 175.61 175.73

Table 3. Pigeon hole

p h No Lookahead Lookahead A-Lookahead
5 4 0.00 0.01 0.01
6 5 0.00 0.02 0.01
7 6 0.02 0.06 0.02
8 7 0.13 0.49 0.11
9 8 1.18 4.38 0.94
10 9 12.10 43.66 9.78
11 10 137.06 480.19 112.47
12 11 1608.41 5439.09 1343.93

Table 4. Hamiltonian cycle

n No Lookahead Lookahead A-Lookahead
50 2.25 64.92 8.57
60 3.91 183.59 19.74
70 6.31 467.28 40.18
80 9.58 986.85 74.02
90 13.77 1862.86 123.66
100 19.12 3522.24 194.24
110 25.56 6129.59 288.53
120 33.36 7255.97 412.58

The goal of the problem is to transport all the balls from room R1 to room R2. To ac-
complish this, a robot is allowed to move from one room to the other, pick up and put
down a ball. Each gripper of the robot can hold one ball at a time.

In our experiments two kinds of settings are used. In the first, all of the balls are in
R1 initially and R2 in the goal state. In the second, there are equal number of balls in
R1 and R2 initially and in the goal state, the balls initially in R1 are in R2 and initially
in R2 are in R1.

The use of lookahead is very helpful in both of these two planning problems, espe-
cially when the instances are hard (Tables 1 and 2).

5.2 Cases Where Lookahead Reduces Search Efficiency

We choose the pigeon-hole problem where the number of pigeons is greater than holes
by 1 and Hamiltonian cycle problem over complete graphs as the representatives of
programs with easy sub-programs and spurious pruning respectively. The experiments
show lookahead hugely degrades the search(Table 3, 4).

5.3 Adaptive Smodels

The adaptiveness of adaptive smodels is clearly shown by the experiments. For the
problems where lookahead helps, adaptive smodels performs as well as or sometimes
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even better than smodels (Figures 1, 2 and Tables 1, 2). For the problems where the
overhead of lookahead dominates, adaptive smodels works largely as smodels without
lookahead (Tables 3, 4).

6 Summary and Future Directions

In this paper, we show that lookahead could be a burden as well as an accelerator to the
DPLL search. We analyze why lookahead sometimes slows down the search and char-
acterize the reasons as embedded easy sub-programs and spurious pruning. Based on
this analysis, we propose an adaptive lookahead mechanism, which takes the advantage
of lookahead while avoiding the unnecessary overhead caused by it.

The effectiveness of lookahead in SAT solvers were studied in [6]. The main conclu-
sion is that lookahead does not pay off when integrated with look-back techniques. This
paper focuses on the effect of lookahead on an ASP solver without the mechanism of
look-back. Our results are applicable to a SAT solver with lookahead but without look-
back in comparison with the same SAT solver with only BCP (e.g., with lookahead
turned off). Under this setting, our conclusion is somewhat different from [6]: looka-
head can indeed significantly improve search efficiency for some of the extremely hard
problem instances.

Some recent answer set solvers [4,9] adopt look-back techniques in ASP solvers.
The effect of lookahead in these solvers and the better way to integrate lookahead into
them require additional studies.
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Abstract. The paper introduces a collection of knowledge representa-
tion languages, V(C), parametrised over a class C of constraints. V(C) is
an extension of both CR-Prolog and CASP allowing the separation of a
program into two parts: a regular program of CR-Prolog and a collec-
tion of denials1 whose bodies contain constraints from C with variables
ranging over large domains. We study an instance V0 from this family
where C is a collection of constraints of the form X − Y > K. We give
some implementation details of an algorithm computing the answer sets
of programs of V0 which does not ground constraint variables and tightly
couples the “classical” ASP algorithm with an algorithm checking consis-
tency of difference constraints. This makes it possible to solve problems
which could not be solved by pure ASP or constraint solvers.

1 Introduction

The KR language CR-Prolog [4] is an extension of Answer Set Prolog (ASP)
[3] which allows natural encoding of “rare events”. These events are normally
ignored by a reasoner associated with the program and only used to restore
consistency of the reasoner’s beliefs. CR-Prolog has been shown to be a useful
tool for knowledge representation and reasoning [4,6]. Simple CR-Prolog solvers
[5] built on top of the ASP solvers: Smodels and Surya[], proved to be sufficiently
efficient for building industrial size applications [6]. Neither ASP nor CR-Prolog
however, can deal with applications which require a combination of, say, planning
and scheduling. This happens because reasoning with time normally requires
programs which include variables with rather large numerical domains. ASP
and CR-Prolog solvers compute answer sets of a ground instance of the input
program. If a program contains variables with large domains such an instance can
be too large, which renders the program unmanageable for the solver, despite the
use of multiple optimization procedures. A step toward resolving this problem
was made in [1], where the authors introduced a language CASP , which splits a
given program into two modules: regular rules of ASP, not containing variables
with large domains, and denials containing such variables which must satisfy
constraints from some given class C. In this paper we expand this idea to CR-
Prolog. In particular, we introduce a collection, V(C), of languages parametrised

1 By a denial we mean a logic programming rule with an empty head.
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over a class C of constraints. V(C) is an extension of both, CR-Prolog and CASP.
We study an instance V0 of the resulting language where C is a collection of
constraints of the form X − Y > K where X and Y range over integers or
reals and K is an integer. We design and implement an algorithm computing
the answer sets of programs of V0 which does not ground constraint variables
and tightly couples the classical ASP algorithm with an algorithm checking the
consistency of difference constraints. This makes it possible to declaratively solve
problems which could not be solved by pure ASP or by pure constraint solvers.

2 Syntax and Semantics of V(C)

2.1 Syntax

The language V(C) contains a sorted signature Σ, with sorts partitioned into two
classes: regular, sr, and constrained, sc. Intuitively, the former are comparatively
small but the latter are too large for the ASP grounders. Functions defined on
regular (constrained) classes are called r-functions (c-functions). Terms are built
as in first-order languages. Predicate symbols are divided into three disjoint sets
called regular, constrained and mixed and denoted by Pr, Pc and Pm respectively.
Constrained predicate symbols are determined by C. Parameters of regular and
constrained predicates are of sorts sr and sc respectively. Mixed predicates have
parameters from both classes. Atoms are defined as usual. A literal is an atom a
or its negation ¬a. An extended literal is a literal l or not l, where not stands for
negation as failure. Atoms formed from regular, constrained, and mixed predi-
cates are called r-atoms, c-atoms and m-atoms respectively. Similarly for literals.
We assume that predicates of Pc have a predefined interpretation, represented
by the set Mc of all true ground c-atoms. For instance, if ′>′∈ Pc, and ranges
over integers, Mc consists of {...0 > −1, 1 > 0, ...}. The c-literals allowed in V(C)
depend on the class C. The V(C) rules over Σ are defined as follows.

Definition 1. [rules]

1. A regular rule (r-rule) ρ is a statement of the form:

h1 or · · · or hk ← l1, · · · , lm, not lm+1, · · · ,not ln

where k >= 0; hi’s and li’s are r-literals.
2. A constraint rule (c-rule) is a statement of the form:

← l1, · · · , lm, not lm+1, · · · ,not ln

where at least one li is non-regular.
3. A consistency restoring rule (cr-rule) is a statement of the form:

r : h1 or · · · or hk
+← l1, · · · , lm, not lm+1, · · · ,not ln

where k > 0, r is a term which uniquely denotes the name of the rule and
hi’s and li’s are r-literals.
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A regular rule and constraint rule have the same intuitive reading as standard
rules of ASP. The intuitive reading of a cr-rule is: if one believes in l1, . . . lm
and has no reason to believe lm+1, . . . , ln, then one may possibly believe one of
h1, . . . , hk. The implicit assumption is that this possibility is used as little as
possible, and only to restore consistency of the agent’s beliefs.

Definition 2. [program] A V(C) program is a pair (Σ,Π), where Σ is a sorted
signature and Π is a set of V(C) rules over Σ.

Example 1. To represent conditions: ”John goes to work either by car which
takes 30 to 40 minutes, or by bus which takes at least 60 minutes”, we start by
defining the signature Σ = {Cr = {start, end}, Pr = {by car, by bus}, Cc =
{Dc = [0..1439], Rc = [−1439..1439]}, Vc = {Ts, Te}, Fc = {−}, Pc = {>
}, Pm = {at}}. The sets Cr and Pr contain regular constants and predicates;
elements of Cc, Vc, Fc, and Pc are constrained constants, variables, functions
and predicate symbols. Pm is the set of mixed predicates. Values in Dc represent
time in minutes. Consider one whole day from 12:00am to 11:59pm mapped to
the interval [0..1439]. Regular atom “by car” says that “John travels by car”;
mixed atom at(start, T ) says that “John starts from home at time T ”. Similarly
for “by bus” and “at(end, T )”. Function “−” has the domain Dc and range Rc;
Ts, Te are variables for Dc. The rules below represent the information from the
story.
% ’John travels either by car or bus’ is represented by an r-rule
ra : by car or by bus.
% Travelling by car takes between 30 to 40 minutes. This information is encoded
by two c-rules
rb : ← by car, at(start, Ts), at(end, Te), Te − Ts > 40.
rc : ← by car, at(start, Ts), at(end, Te), Ts − Te > −30.
% Travelling by bus takes at least 60 minutes
rd : ← by bus, at(start, Ts), at(end, Te), Ts − Te > −60.
Te − Ts > 40, Ts − Te > −30, and Ts − Te > −60 are c-atoms.

Example 2. Let us expand the story from example 1 by new information: ’John
prefers to come to work before 9am’. We add new constant ′time0′ to Cr of Σ
which denotes the start time of the day, regular atom ’late’ which is true when
John is late and constrained variable Tt for Dc. Time 9am in our representation
is mapped to 540th minute. We expand example 1 by the following rules:
% Unless John is late, he comes to work before 9am
re : ← at(time0, Tt), at(end, Te), ¬late, Te − Tt > 540
% Normally, John is not late
rf : ¬late ← not late
% On some rare occasions he might be late, which is encoded by a cr-rule
rg : late

+←

2.2 Semantics

We denote the sets of r-rules, cr-rules and c-rules in Π by Πr, Πcr and Πc

respectively. A rule r of (Π, Σ) will be called r-ground if regular terms in r are
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ground. A program is called r-ground if all its rules are r-ground. A rule rg is
called a ground instance of a rule r if it is obtained from r by: (1). replacing
variables by ground terms of respective sorts; (2). replacing the remaining terms
by their values. For example, 3+4 will be replaced by 7. The program ground(Π)
with all ground instances of all rules in Π is called the ground instance of Π .
Obviously ground(Π) is an r-ground program.

We first define semantics for programs without cr-rules. We believe that this
definition is slightly simpler than the equivalent definition from [1].
Definition 3. [answer set 1] Given a program (Σ, Π), where Π contains no
cr-rules, let X be a set of ground m-atoms such that for every predicate p ∈ Pm

and every ground r-term tr, there is exactly one c-term tc such that p(t̄r, t̄c) ∈ X.
A set S of ground atoms over Σ is an answer set of Π if S is an answer set of
ground(Π) ∪ X ∪ Mc.

Example 3. Consider example 1 and let X = {at(start, 430), at(end, 465)}. The
set S = {by car, at(start, 430), at(end, 465)}∪Mc is an answer set of ground(Π)∪
X ∪Mc and therefore is an answer set of Π . According to S, John starts to travel
by car at 7:10am and reaches work at 7:45am. Of course there are other answer
sets where John travels by car and his start and end times differ but satisfy given
constraints. There are also answer sets where John travels by bus.

Now we give the semantics for programs with cr-rules. By α(r), we denote a
regular rule obtained from a cr-rule r by replacing +← by ←; α is expanded in
a standard way to a set R of cr-rules. Recall that according to [6], a minimal
(with respect to set theoretic inclusion) collection R of cr-rules of Π such that
Πr∪Πc∪α(R) is consistent (i.e. has an answer set) is called an abductive support
of Π . Definition 4 is a simplification of the original definition from [4], which
includes special preference rules.
Definition 4. [answer set 2] A set S is called an answer set of Π if it is an
answer set of program Πr ∪ Πc ∪ α(R) for some abductive support R of Π.
The next two examples illustrate the above definition.
Example 4. Consider example 2 and let X = {at(start, 430), at(end, 465)}. The
set S = {by car, ¬late, at(time0, 0), at(start, 430), at(end, 465)} ∪ Mc is an
answer set of ground(Π)∪X∪Mc and therefore is an answer set of Π . According
to S, John starts by car at 7:10am and reaches work at 7:45am and is not late.
The cr-rule was not applied and α(∅) = ∅.

Example 5. Let us consider example 2, and add new information that ’John’s
car is not available and he could not start from home until 8:15am’.
% ’John’s cannot use his car’ is encoded by an r-rule with empty head.
rh : ← by car.
% ’John cannot start before 8:15am’ is encoded as a c-rule:
ri : ← at(time0, Tt), at(start, Ts), Tt − Ts > −495.
Let X ={at(time0, 0), at(start, 495), at(end, 560)}. S ={ by bus, late, at(time0, 0),
at(start, 495), at(end, 560) } ∪ Mc is an answer set of the program, where John
arrives late by bus at 9:20am. The cr-rule rg was used and α({rg}) = {late ←}.
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3 Implementation

In this section we describe the algorithm which takes a program (Σ, Π) of V0 as
an input and returns sets A and X of regular and mixed atoms such that M =
A∪X ∪Mc is an answer set of Π . We assume that c-rules of the program contain
exactly one c-literal. Since the negation of constraint X − Y > K is a difference
constraint X − Y ≤ K, this restriction makes it possible to find answer sets of Π
by solving the constraints with a difference constraint solver. The algorithms con-
sists of the partial grounder and the V0 solver. The grounder outputs the r-ground
program obtained from program Π of V0 by replacing regular variables by their
values and ground terms by their values. The implementation of partial grounder
uses lparse [8]. To allow for partial grounding by lparse, we need intermediate
transformations before and after grounding by lparse. The transformations ensure
that c-variables are not ground and rules containing m-atoms are not removed by
lparse. The transformations remove and store c-variables, m-atoms and c-atoms
from Π before grounding and then restore them back after grounding. The V0
solver integrates the standard CR-Prolog solver and a difference constraint solver.
The input to the constraint solver is a conjunction of difference constraints. The
output is a consistent solution, which is defined as the assignment of values to the
variables in the constraints such that the constraints are satisfied. If there is no
consistent solution then the constraint solver returns false. The constraint solver
is interleaved with asp solver. The set of difference constraints in constraint store
(input to the constraint solver) depends on the partial model of Π as computed
by asp solver. With changes in the partial model, new constraints are added or
old constraints are removed from the constraint store. To allow re-use of informa-
tion on solutions of the current store, we implemented an incremental difference
constraint solver [7]. When a new constraint is added, the incremental solver does
not compute solution from scratch but makes use of the solution of the previous
store and computes a new solution much faster. When a constraint is added to
store, the complexity of finding a solution is O(m + nlogn) where m and n are
the number of constraints and variables respectively. Finding consistent solutions
when a constraint is deleted takes constant time.

4 Related Work and Conclusion

Semantically programs in V0 and CR-Prolog are fairly similar to each other. In par-
ticular, V0 programs can be translated to CR-Prolog programs with answer sets
of V0 having a one to one correspondence with answer sets of CR-Prolog. V0 pro-
grams not containing cr-rules, can be transformed to ASP programs with one to
one correspondence between their answer sets. The main difference between V0 and
CR-Prolog/ASP is the efficiency of the solvers to compute answer sets. There are
some loosely coupled solvers, in particular CASP solver [1]. The CASP solver uses
off-the-shelf ASP and CLP solvers and couples them to compute answer sets for
programs in CASP language. ASP and CLP solvers are not tightly integrated as in
our solver, but they allow general constraint atoms. We believe that if substantial
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backtracking is required then a tightly coupled solverwould be faster than a loosely
coupled solver. If no backtracking is needed, then loosely coupled solvers can be
faster because tightly coupled solvers do more book-keeping. It is not entirely ob-
vious how much time the book-keeping takes. A full investigation needs to be done
on the advantages and disadvantages of tight coupling. Recently, SAT solvers have
been integrated with constraint solvers [2] towards developing solvers for satisfia-
bility modulo theories. The knowledge represented by the input language of these
solvers is all propositional. The language of V0 allows variables, and can represent
more sophisticated knowledge using recursive rules and cr-rules.

Finally to recap, we introduced a collection, V(C), of languages parametri-sed
over a class C of constraints. We studied an instance V0 where C is a collection
of constraints of the form X − Y > K. We designed and implemented a system
for computing the answer sets of programs of V0. This implementation does
not ground constraint variables and tightly couples the classical ASP solver
with a difference constraint solver. The implementation integrates the use of A-
Prolog / CR-Prolog methodology of knowledge representation for planning; and
computational machinery for reasoning with difference constraints. We solved
some problems which could not be solved either by ASP or constraint solvers
alone. We are investigating the extent of tight-coupling that would maximize the
solver efficiency.
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Abstract. In this paper by considering answer set programming approach and
some basic ideas from possibilistic logic, we introduce a possibilistic disjunc-
tive logic programming approach able to deal with reasoning under uncertain and
incomplete information. Our approach permits to use explicitly labels like pos-
sible, probable, plausible, etc., for capturing the incomplete state of a belief in a
disjunctive logic program.

1 Introduction

As Tversky and Kahneman observed in [12], many decisions that we make in our com-
mon life are based on beliefs concerning the likelihood of uncertain events. In fact, we
commonly use statements such as “I think that . . . ”, “chances are . . . ”, “it is probable
that . . . ”, “it is plausible that . . . ”, etc., for supporting our decisions. In this kind of state-
ments usually we appeal to our experience or our commonsense. It is not surprising to
think that a reasoning based on these kind of statements could reach bias conclusions.
However these conclusions could reflect the experience or commonsense of an expert.
Pelletier and Elio pointed out in [8] that people simply have tendencies to ignore cer-
tain information because of the (evolutionary) necessity to make decisions quickly. This
gives rise to “biases” in judgments concerning what they “really” want to do.

In view of the fact that we know that a reasoning based on statements which are
quantified by relative likelihoods could capture our experience or our commonsense,
the question is: how could these statements be captured by real application systems like
Multi Agent Systems? For those steeped in probability, Halpern has remarked in [6] that
probability has its problems. For one thing, the numbers are not always available. For
another, the commitment to numbers means that any two events must be comparable in
terms of their probabilities: either one event is more probable than the other, or they have
equal probability. Now, the question is why not to use explicitly labels like possible,
probable, plausible, etc., for capturing the incomplete state of a belief in a logic program
when the numerical representations are not available or difficult to get.

In [7], it was proposed a possibilistic framework for reasoning under uncertainty. It is
a combination between Answer Set Programming (ASP) [1] and Possibilistic Logic [3].

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 315–320, 2007.
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This framework is able to deal with reasoning that is at the same time non-monotonicand
uncertain. Nicolas et al.’s approach is based on the concept of possibilistic stable model
which defines a semantics for possibilistic normal logic programs. One weak point of this
approach is that it relies on the expressiveness of normal logic programs and it always
depends of a numerical representation for capturing the incomplete state of a belief.

In this paper, we introduce the use of possibilistic disjunctive clauses which are able
to capture incomplete information and incomplete states of a knowledge base at the same
time. It is important to point out that our approach is not exactly a generalization of Nico-
las et al.’s approach since our semantics is based on an operator T which is inspired in
partial evaluation [2] and an inference rule of possibilistic logic [3]. Also whereas Nicolas
et al.’s approach only permits to express the states of a belief by totally ordered sets, our
approach permits to consider partially ordered sets for expressing the states of a belief.
Moreover we does not adopt to use strict α-cuts for handling an inconsistent possibilistic
logic program. However our approach in the class of possibilistic normal logic programs
coincides with Nicolas et al.’s approach when it considers totally ordered sets for cap-
turing the incomplete state of a belief and the possibilistic program is consistent.

By considering partially ordered sets, it is possible to capture the confidence of a
claim by using quantifies like the Toulmin’s famous “quantifies”[11]. For instances,
in [4] Fox and Modgil discuss the expressiveness of these quantifiers for capturing
the uncertainty of medical claims. We use relative likelihoods for modeling different
quantifiers e.g., certain, confirmed, probable, plausible, supported and open1, where
each quantifier is a possible world/class of beliefs. The user can provide a likelihood
ordering for the worlds/classes of beliefs as it is shown in Fig. 1.

Fig. 1. A lattice where the following relations hold: Open � Supported, Supported �
P lausible, Supported � Probable, Probable � Confirmed, P lausible � Confirmed,
and Confirmed � Certain

The rest of the paper is divided as follows: In the next section, it is presented the
syntax and semantics of our possibilistic framework. In the last section, we present our
conclusions.

1 This set of labels was taken from [4].
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2 Possibilistic Disjunctive Logic Programs

In this section, we introduce our possibilistic logic programming framework. We shall
start by defining the syntax of a valid program and some relevant concepts, after that
we shall define the semantics for the possibilistic disjunctive logic program.

In whole paper, we will consider finite lattices. This convention was taken based
on the assumption that in real applications rarely we will have an infinite set of labels
for expressing the incomplete state of a knowledge base. Also we will assume some
background on ASP. Mainly we will assume knowledge on the syntax and semantics of
extended disjunctive logic programs (see [5] for definitions).

2.1 Syntax

First of all, we start defining some relevant concepts2. A possibilistic literal is a pair
l = (a, q) ∈ L × Q, where L is a finite set of literals and (Q, ≤) is a lattice. We apply
the projection ∗ over l as follows: l∗ = a. Given a set of possibilistic literals S, we
define the generalization of ∗ over S as follows: S∗ = {l∗|l ∈ S}. Given a lattice
(Q, ≤) and S ⊆ Q, LUB(S) denotes the least upper bound of S and GLB(S) denotes
the greatest lower bound of S. A possibilistic disjunctive logic program is a finite set of
possibilistic disjunctive clauses of the form:

r = (α : l1 ∨ . . . ∨ lm ← l1, . . . , lj, not lj+1, . . . , not ln)

where α ∈ Q. The projection ∗ over r is the extended disjunctive clause r∗ = l1 ∨ . . .∨
lm ← l1, . . . , lj , not lj+1, . . . , not ln. n(r) = α is a necessity degree representing
the certainty level of the information described by r (see [3] for a formal definition
of n). If P is a possibilistic disjunctive logic program, then P ∗ = {r∗|r ∈ P} is an
extended disjunctive program. Given an extended disjunctive clause C, we denote C by
A ← B+, not B−, where A contains all the head literals, B+ contains all the positive
body literals and B− contains all the negative body literals.

2.2 Semantics

The semantics of the possibilistic disjunctive logic programs is defined in terms of a
syntactic reduction which is defined as follows:

Definition 1 (Reduction PM ). Let P be a possibilistic disjunctive logic program, M
be a set of literals. P reduced by M is the positive possibilistic disjunctive program:
PM := {(n(r) : A ∩ M ← B+)|r ∈ P, A ∩ M 	= ∅, B− ∩ M = ∅, B+ ⊆ M}
where r∗ is of the form A ← B+, not B−.

Notice that (P ∗)M is not exactly the Gelfond-Lifschitz reduction. In fact, our reduction
is stronger that Gelfond-Lifschitz reduction when P ∗ is a disjunctive program [5]. One
of the main differences is the condition A∩ M 	= ∅ which suggests that any clause that
does not have a true head literal is false.

2 Some concepts presented in this subsection extend some terms presented in [7].
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Once a possibilistic logic program P has been reduced by a set of literals M∗, it
is possible to test whether M is a possibilistic answer set of the program P . In order
to define a possibilistic answer set, we introduce an operator which is inspired in par-
tial evaluation for disjunctive logic programs [2] and an inference rule of Possibilistic
Logic [3].

Definition 2. Let P be a possibilistic logic program. The operator T (P ) is defined as
follows:

T (P ) := P ∪
{

r′ if (α : A ← (B+ ∪ {B}), not B−) ∈ P and
(α1 : A1 ← �) ∈ P such that B ∈ A1

}

where r′ := GLB({α, α1}) : A ∪ (A1 \ {B}) ← B+, not B−.

Intuitively, the operator T is an inference rule for possibilistic disjunctive logic pro-
grams. For instance, let us consider the lattice of Fig. 1 and the possibilistic clauses:
probable : a ∨ b ← � and confirmed : e ← b. Then by applying the operator T , one
can get the new possbilistic clause supported : e ∨ a ← �. Also if we consider the
possibilistic clauses: probable : a ∨ b ← � and plausible : a ← b, one can get the
new possibilistic clause supported : a ← �. An important property of the operator T
is that it always reaches a fix-point.

Proposition 1. Let P be a possibilistic disjunctive logic program. If Γ0 := T (P ) and
Γi := T (Γi−1) such that i ∈ N , then ∃ n ∈ N such that Γn = Γn−1. We denote Γn by
Π(P ).

From any possibilistic program, it is possible to identify a set of possibilistic literals
which we call Semmin.

Definition 3. Let P be a possibilistic logic program and Facts(P, A) := {(α : A ←
�)|(α : A ← �) ∈ P}. Semmin(P ) := {(x, α)|Facts(P, x) 	= ∅ and
α := LUBr∈Facts(P,x)(n(r))} where x ∈ LP .

Notice that if a possibilistic literal is obtained by different possibilistic clauses, then
the possibilistic part of the literal will be obtained by LUB. Now by considering the
operator T and Semmin, we define a posibilistic answer set of a possibilistic program
as follows:

Definition 4 (Possibilistic answer set). Let P be a possibilistic disjunctive logic pro-
gram and M be a set of possibilistic literals such that M∗ is an answer set of P ∗. M is
a possibilistic answer set of P if and only if M = Semmin(Π(PM∗

)).

We have to notice that there is an important condition w.r.t. the definition of the possi-
bilistic answer sets. This is that a possibilistic set S is not a possibilistic answer set of a
possibilistic logic program P if S∗ is not an answer set of the extended logic program
P ∗. This condition guarantees that any clause of P ∗ is satisfied by M∗. In fact, when all
the possibilistic clauses of a possibilistic program P have as certainty level the top of
the lattice that was considered in P , the answer sets of P ∗ can be directly generalized
to the possibilistic answer sets of P .
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In the class of possibilistic normal logic programs3, our definition of possibilistic
answer set is closely related to the definition of possibilistic stable model presented in
[7]. In fact, both semantics coincide.

Proposition 2. Let P be a possibilistic normal logic program. M is a possibilistic an-
swer set of P if and only if M is a possibilistic stable model.

In terms of computability, we can observe that Π(P ) is computable.

Proposition 3. Let P be a finite possibilistic disjunctive logic program. Suppose also
that (Q, ≤) is a finite lattice. Then Π(P ) is computable.

The main implication of Proposition 3 is that the possibilistic answer sets of a possi-
bilistis logic program are computable.

Proposition 4. Given a possibilistic program P there exists an algorithm that compute
the set of possibilistic answer sets of P .

3 Conclusions

We have been working in the decision making process for deciding if a human organ is
viable or not for being transplanted [10,9]. Our experience suggests that in our medical
domain, we require a qualitative theory of default reasoning like ASP for modeling
incomplete information and a quantitative theory like possibilistic logic for modeling
uncertain events which always exist in the medical domain.

This paper describes a possibilistic disjunctive logic programming approach which
considers some basic ideas from ASP and possibilistic logic. This approach introduces
the use of possibilistic disjunctive clauses which are able to capture incomplete infor-
mation and incomplete states of a knowledge base at the same time. In fact, one of
main motivations of our approach is to define a description languages and a reasoning
process where the user could consider relative likelihoods for modeling different lev-
els of uncertainty e.g., possible, probable, plausible, supported and open, where each
likelihood is a possible world/class of beliefs. We know that this kind of representation
of uncertainty could reach bias conclusions. However, we have to accept that this is a
common form that ordinary people perform a reasoning. In fact, these kind of bias are
many times well-accepted since they could reflect the experience or commonsense of
an expert in a field [12].

In general terms, we are proposing a possibilistic disjunctive logic programming
framework able to deal with reasoning under uncertainty and incomplete information.
This framework permits to use explicitly labels like possible, probable, plausible, etc.,
for capturing the incomplete state of a belief in a disjunctive logic program when the
numerical representations are not available or difficult to get. In terms of computability,
we observe that our approach is computable.

In conclusion, the possibilistic disjunctive logic programs define a possibilistic ap-
proach able to capture incomplete information and incomplete states of a knowledge

3 A possibilistic logic program P is called possibilistic normal logic program if P ∗ is a normal
program.
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base. To the best of our knowledge this approach is the first one that deals with dis-
junctive programs and partially ordered sets in order to define a possibilistic disjunctive
semantics.
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Abstract. A recently proposed module system for answer set programming is
generalized for the input language of the SMODELS system. To show that the
stable model semantics is compositional and modular equivalence is a congru-
ence for composition of SMODELS program modules, a general translation-based
scheme for introducing syntactic extensions of the module system is presented. A
characterization of the compositionality of the semantics is used as an alternative
condition for module composition, which allows compositions of modules even
in certain cases with positive recursion between the modules to be composed.

1 Introduction

There is a number of approaches within answer set programming (ASP) [1] involving
modularity in some sense, based on e.g. generalized quantifiers [2], templates [3], im-
port rules [4], the splitting set theorem [5] or its variants [6,7]. However, only few of
these approaches describe a flexible module system with a clearly defined interface for
module interaction, and a very typical restriction is that no recursion between modules
is allowed. In [8] we accommodate Gaifman and Shapiro’s program modules [9] to the
context of ASP resulting in a simple and intuitive notion for normal logic program mod-
ules under the stable model semantics [10]. A module interacts through an input/output
interface, and full compatibility of the module system and the stable model semantics
is achieved by allowing positive recursion inside modules only. However, the use of
negative recursion is not limited in any way, and positive recursion is allowed inside
modules. One of the main results is a module theorem showing that module-level sta-
bility implies program-level stability, and vice versa, as long as the stable models of the
submodules are compatible. We also introduce a notion of modular equivalence which
is a proper congruence relation for composition of modules, i.e., modular equivalence
is preserved if a submodule is substituted with a modularly equivalent one.

In this article we extend the module system in [8] for SMODELS programs [11] by
proposing a general translation-based scheme for introducing syntactical extensions
of the module system. Furthermore, we present a semantical reformulation of mod-
ule composition and modular equivalence, which occasionally allows compositions of
modules even if there is positive recursion between modules to be composed.

2 SMODELS Programs and Equivalence Relations

We consider the class of programs in the input language of the SMODELS system [11]
excluding optimization statements. An SMODELS program P is a finite set of basic
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constraint rules and compute statements, combined with a Herbrand base Hb(P ),
which is a fixed finite set of atoms containing all atoms appearing in P . A basic con-
straint rule is either a weight rule of the form h ← w ≤ {B = WB , ∼C = WC} or
a choice rule of the form {H} ← B, ∼C and compute statements are of the form
compute{B, ∼C}, where h is an atom, B, C, and H are sets of atoms, H �= ∅,
WB, WC ⊆ N, and w ∈ N. In a weight rule each b ∈ B (c ∈ C) is associated with a
weight wb ∈ WB (wc ∈ WC ). A basic rule, denoted by h ← B, ∼C, is a special case
of a weight rule with all weights equal to 1 and w = |B| + |C|. An SMODELS program
consisting only of basic rules is called a normal logic program (NLP). Basic constraint
rules consist of two parts: h or H is the head of the rule, and the rest is called the body.
Head(P ) denotes the set of atoms appearing in the heads of basic constraint rules in
an SMODELS program P . An interpretation M of a program P is a subset of Hb(P )
defining which atoms a ∈ Hb(P ) are true (a ∈ M ) and which are false (a �∈ M ). A
choice rule in P is satisfied in all interpretations M ⊆ Hb(P ); a weight rule in P is
satisfied in M iff w ≤ ∑

b∈B∩M wb +
∑

c∈C\M wc implies h ∈ M ; and a compute
statement in P is satisfied in M iff B ⊆ M and M ∩ C = ∅. An interpretation M is a
model of a program P , denoted by M |= P , iff all the rules in P are satisfied in M .

Definition 1. The reduct PM of an SMODELS program P w.r.t. M ⊆ Hb(P ) contains

1. rule h ← B iff there is a choice rule {H} ← B, ∼C in P such that h ∈ H ∩ M ,
and M ∩ C = ∅;

2. rule h ← w′ ≤ {B= WB} iff there is a weight rule
h ← w ≤ {B = WB, ∼C = WC} in P and w′ = max(0,

∑
c∈C\M wc).

An SMODELS program P is positive if each rule in P is a weight rule with C = ∅.
Given the least model semantics for positive programs the stable model semantics [10]
straightforwardly generalizes for SMODELS programs [11,16]. In analogy to the case of
NLPs the reduct from Definition 1 is used, but the effect of compute statements must
also be taken into account. Let CompS(P ) denote the union of literals appearing in the
compute statements of P .

Definition 2. An interpretation M ⊆ Hb(P ) is a stable model of an SMODELS pro-
gram P , denoted by M ∈ SM(P ), iff M = LM(PM ) and M |= CompS(P ).

Given a, b ∈ Hb(P ), we say that b depends directly on a, denoted by a ≤1 b, iff
there is a basic constraint rule in P such that b is in the head of the rule and a appears
in the positive body B of the rule. The positive dependency graph of P , denoted by
Dep+(P ), is a graph with Hb(P ) and {〈b, a〉 | a ≤1 b} as the sets of vertices and
edges, respectively. A strongly connected component (SCC) of a graph is a maximal
subset D of vertices such that there is a path between a and b for all a, b ∈ D.

There are several notions of equivalence proposed for logic programs. Given SMOD-
ELS programs P and Q, they are weakly equivalent [12], denoted by P ≡ Q, iff
SM(P ) = SM(Q), and strongly equivalent [12], denoted by P ≡s Q, iff P∪R ≡ Q∪R
for all SMODELS programs R. Visible equivalence relation [13] takes the interfaces of
programs into account; the Herbrand base of P is partitioned into two parts, Hbv(P )
and Hbh(P ) determining the visible and the hidden parts of Hb(P ), respectively. Pro-
grams P and Q are visibly equivalent, denoted by P ≡v Q, iff Hbv(P ) = Hbv(Q)
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and there is a bijection f : SM(P ) → SM(Q) such that for all M ∈ SM(P ), it holds
M ∩ Hbv(P ) = f(M) ∩ Hbv(Q). The verification of ≡/≡s is a coNP-complete de-
cision problem for SMODELS programs [14,15]. Deciding ≡v can be hard in general,
but the computational complexity can be governed by limiting the use of hidden atoms
by the property of having enough visible atoms, i.e. the EVA property. Intuitively, if a
program has the EVA property, then its stable models can be distinguished on the basis
of their visible parts. For SMODELS programs with the EVA property, the verification
of visible equivalence is a coNP-complete decision problem [16].

3 Modular SMODELS Programs

We define SMODELS program modules in analogy to normal logic program modules
(NLP modules) in [8] and program modules by Gaifman and Shapiro [9].

Definition 3. A triple P = (P, I, O) is a SMODELS program module, if (i) P is a finite
set of basic constraint rules and compute statements, and I and O are sets of atoms;
(ii) I ∩ O = ∅; and (iii) Head(P ) ∩ I = ∅.

The Herbrand base of an SMODELS program module P is the set of atoms appearing in
P combined with I ∪ O, Hbv(P) = I ∪ O, and Hbh(P) = Hb(P) \ Hbv(P). As noted
in [9,8] module composition needs to be restricted in order to achieve compositionality
for the semantics. In [9] module composition is restricted to cases in which the output
sets of the modules are disjoint and the hidden part of each module remains local.

Definition 4. Let P1 = (P1, I1, O1) and P2 = (P2, I2, O2) be SMODELS program
modules such that (i) O1∩O2 = ∅, and (ii) Hbh(P1)∩Hb(P2) = Hbh(P2)∩Hb(P1) =
∅. Then the GS-composition of P1 and P2 is defined as

P1 ⊕ P2 = (P1 ∪ P2, (I1 \ O2) ∪ (I2 \ O1), O1 ∪ O2).

As shown in [8, Example 3] the conditions for ⊕ are not enough to guarantee compo-
sitionality under the stable model semantics. We say that there is a positive recursion
between P1 = (P1, I1, O1) and P2 = (P2, I2, O2), if there is a SCC in Dep+(P1 ∪ P2)
containing atoms from both O1 and O2. We deny positive recursion between modules
as a further restriction for module composition.

Definition 5. Let P1 = (P1, I1, O1) and P2 = (P2, I2, O2) be SMODELS program
modules. If P1 ⊕ P2 is defined and there is no positive recursion between P1 and P2,
the join of P1 and P2, denoted by P1 � P2, is defined as P1 ⊕ P2.

The stable model semantics of an SMODELS program module is defined with respect
to a given input, i.e., a subset of the input atoms of the module. Input is seen as a set
of facts (or a database) to be combined with the module. The instantiation of a module
P = (P, I, O) with respect to an input A ⊆ I is P(A) = P � FA = (P ∪ FA, ∅, I ∪ O),
where FA = {a. | a ∈ A}. In the sequel P(A) is identified with the program P ∪ FA.

Definition 6. An interpretation M ⊆ Hb(P) is a stable model of an SMODELS program
module P = (P, I, O), denoted by M ∈ SM(P), iff M = LM(PM ∪ FM∩I) and
M |= CompS(P ).
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We generalize the notions of visible and modular equivalence, denoted by ≡v and ≡m,
respectively, for SMODELS program modules as follows.

Definition 7. For SMODELS program modules P=(P, IP , OP ) and Q=(Q, IQ, OQ),

– P ≡v Q iff Hbv(P) = Hbv(Q) and there is a bijection f : SM(P) → SM(Q) such
that for all M ∈ SM(P), M ∩ Hbv(P) = f(M) ∩ Hbv(Q); and

– P ≡m Q iff IP = IQ and P ≡v Q.

The definition of ≡m above is a reformulation of the one given in [8] and results in
exactly the same relation. Note that the condition Hbv(P) = Hbv(Q) insisted by ≡v
together with IP = IQ implies OP = OQ for ≡m. Visible equivalence relates more
modules than modular equivalence, e.g., consider P = ({a ← b.}, {b}, {a}) and Q =
({b ← a.}, {a}, {b}). Now, P ≡v Q as SM(P) = SM(Q) = {∅, {a, b}}, but P �≡m Q

because input interfaces of P and Q differ. This indicates that visibly equivalent modules
cannot necessarily act as substitutes for each other.

A concept of compatibility is used to describe when interpretations of modules can
be combined together. Given modules P1 and P2 we say that M1 ⊆ Hb(P1) and M2 ⊆
Hb(P2) are compatible iff M1 ∩ Hbv(P2) = M2 ∩ Hbv(P1). Furthermore, given sets
of interpretations A1 ⊆ 2Hb(P1) and A2 ⊆ 2Hb(P2) for modules P1 and P2, the natural
join of A1 and A2, denoted by A1 � A2, is defined as

{M1 ∪ M2 | M1 ∈ A1, M2 ∈ A2 and M1 ∩ Hbv(P2) = M2 ∩ Hbv(P1)}.

If a program (module) consists of several submodules, its stable models are locally
stable for the respective submodules; and on the other hand, local stability implies
global stability for compatible stable models of the submodules.

Theorem 1. (Module theorem) Let P1 and P2 be SMODELS program modules such that
P1 � P2 is defined. Then SM(P1 � P2) = SM(P1) � SM(P2).

Theorem 1 is a generalization of [8, Theorem 1] for SMODELS program modules. In-
stead of proving Theorem 1 directly from scratch we propose a general translation-
based scheme for introducing syntactical extensions for the module theorem.

Proposition 1. Let C1 and C2 be two classes of logic program modules such that C2 ⊆
C1, and consider a translation function Tr : C1 → C2 such that for any program modules
P = (P, I, O), Q ∈ C1,

1. if P � Q is defined, then Tr(P) � Tr(Q) is defined,
2. Tr(P) � Tr(Q) ≡m Tr(P � Q), and
3. (P, I, O ∪ Hbh(P)) ≡m (Tr(P ), I, O ∪ Hbh(P)).

Now, if the module theorem holds for modules in C2, then it holds for modules in C1.

The proof is omitted due to space limitations. Intuitively, the conditions for the transla-
tion function serve the following purposes: first, possible compositions of modules are
not limited by the translation; second, the translation is modular; and third, it has to be
faithful in the sense that it preserves the roles to the atoms in the original module.
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Now, to prove Theorem 1 it suffices to provide a translation from SMODELS program
modules to NLP modules satisfying the conditions of Proposition 1. For instance, it
suffices to take a (possibly exponential) translation similarly to [11]. Furthermore, the
congruence property of ≡m directly generalizes for SMODELS program modules, as
Theorem 1 can be used instead of [8, Theorem 1] in the proof of [8, Theorem 2].

Corollary 1. Let P, Q and R be SMODELS program modules such that P�R and Q�R

are defined. If P ≡m Q, then P � R ≡m Q � R.

To analyze the computational complexity of verifying ≡m for SMODELS program mod-
ules, note first that P ≡v Q iff (P, ∅, Hbv(P )) ≡m (Q, ∅, Hbv(Q)) for any SMODELS

programs P and Q. Furthermore, given SMODELS program modules P = (P, I, O) and
Q = (Q, I, O), P ≡m Q iff P � GI ≡v Q � GI , where GI = ({{I}.}, ∅, I) a context
generator module for I . Thus the problem of verifying ≡m has the same computa-
tional complexity as verification of ≡v. We say that an SMODELS program module P =
(P, I, O) has the EVA property iff P has the EVA property for Hbv(P ) = I ∪ O [16].
Verification of ≡m is a coNP-complete decision problem for SMODELS program mod-
ules with the EVA property, since GI has the EVA property trivially.

4 Semantical Reformulation of Modular Equivalence

Even though [8, Example 3] shows that conditions for ⊕ are not enough to guarantee
that the module theorem holds, there are cases where P � Q is not defined and SM(P ⊕
Q) = SM(P) � SM(Q). Consider, e.g., P = ({a ← b. a ← ∼c.}, {b}, {a, c}) and
Q = ({b ← a.}, {a}, {b}). Now, P ⊕ Q = ({a ← b. a ← ∼c. b ← a.}, ∅, {a, b, c}) is
defined as outputs and hidden atoms differ. Since SM(P)={{a}, {a, b}} and SM(Q) =
{∅, {a, b}}, we get SM(P ⊕ Q) = SM(P) � SM(Q) = {{a, b}}. This suggests that the
denial of positive recursion between modules can be relaxed in certain cases.

We define a semantical characterization for module composition that maintains the
compositionality of the semantics.

Definition 8. Let P1 = (P1, I1, O1) and P2 = (P2, I2, O2) be SMODELS program
modules such that P1 ⊕ P2 is defined and SM(P1 ⊕ P2) = SM(P1) � SM(P2). Then
the semantical join of P1 and P2, denoted by P1�P2, is defined as P1 ⊕ P2.

The module theorem holds by definition for SMODELS program modules composed
with �. We present an alternative formulation for modular equivalence taking features
from strong equivalence [12]: P = (P, IP , OP ) and Q = (Q, IQ, OQ) are semantically
modularly equivalent, denoted by P ≡sem Q, iff IP = IQ and P�R ≡v Q�R for all
modules R such that P�R and Q�R are defined. It is straightforward to see that ≡sem
is a congruence for � and reduces to ≡v for modules with a completely specified input.

Theorem 2. P ≡m Q iff P ≡sem Q for any SMODELS program modules P and Q.

Theorem 2 implies that ≡m is a congruence for �, too, and it is possible to replace
P with modularly equivalent Q in contexts allowed by �. The syntactical restriction
denying positive recursion between modules is easy to check, since SCCs can be found
in a linear time with respect to the size of the dependency graph [17]. Checking whether
SM(P1 ⊕ P2) = SM(P1) � SM(P2) holds can be a computationally much harder.
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Theorem 3. For SMODELS program modules P1 and P2 such that P1 ⊕ P2 is defined,
deciding whether SM(P1 ⊕ P2) = SM(P1) � SM(P2) holds is a coNP-complete
decision problem.

Theorem 3 shows that there is a tradeoff for allowing positive recursion between mod-
ules, as more effort is needed to check that composition of such modules does not
compromise the compositionality of the semantics.
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Truszczyński, Miros�law 3, 278
Tu, Phan Huy 290

Valverde, Agust́ın 188
Van Nieuwenborgh, Davy 214
Vennekens, Joost 84
Vermeir, Dirk 214

Wadge, William W. 44
Wittocx, Johan 162
Woltran, Stefan 31, 123, 175

You, Jia-Huai 228, 303
Yuan, Li Yan 228

Zhang, Yan 241
Zhou, Yi 241


	Title page
	Preface
	Conference Organization
	Table of Contents
	Logic Programming and Nonmonotonic Reasoning: From Theory to Systems and Applications
	Policy-Based Computing: From Systems and Applications to Theory
	The First Answer Set Programming System Competition
	Introduction
	Format
	Platform
	Benchmarks
	Competitors
	Results
	Results of the MGS Competition
	Results of the SCore Competition
	Results of the SLparse Competition

	Discussion

	CR-MODELS: An Inference Engine for CR-Prolog
	Introduction
	CR-Prolog
	The CRMODELS Algorithm
	Related Work and Conclusions

	Debugging ASP Programs by Means of ASP
	Introduction
	Background
	Debugging Modules
	Kernel Debugging Module
	Extrapolating Non-existing Answer Sets
	Ordering Rule Applications
	Debugging Programs with Variables
	Implementation

	Elements of a Debugging Language
	Discussion and Related Work

	A Purely Model-Theoretic Semantics for Disjunctive Logic Programs with Negation
	Introduction
	The Infinite-Valued Semantics
	Kripke Semantics
	Existence of Minimal Models
	Properties of the Minimal Model Semantics
	Identifying the Minimal Models
	Related Approaches
	Conclusions

	Complexity of Default Logic on Generalized Conjunctive Queries
	Introduction
	Preliminaries
	Closure Properties of Constraints
	Default Logic
	Complexity Results
	Concluding Remarks

	A Preference-Based Framework for Updating Logic Programs
	Introduction
	Background
	The Basic Framework
	Update Programs
	Properties of Updates

	Examples and Properties vis-à-vis bold0mu mumu Rawbold0mu mumu eeRaweeee
	Discussion

	Well-Founded Semantics and the Algebraic Theory of Non-monotone Inductive Definitions
	Introduction
	Approximation Theory
	Monotone and Well-Founded Inductions
	Well-Founded Semantics of ID-Logic Definitions
	Conclusion

	On the Complexity of Answer Set Programming with Aggregates
	Introduction
	The DLP^A Language
	Syntax
	Semantics

	Overview of Complexity Results
	Proofs of Hardness Results
	Proofs of Membership Results
	Conclusions

	Experimenting with Look-Back Heuristics for Hard ASP Programs
	Introduction
	Answer Set Programming Language
	Answer Set Computation
	Reasons for Literals
	Heuristics
	Experiments
	Compared Methods
	Benchmark Programs and Data
	Results

	Conclusions

	Complexity of Rule Redundancy in Non-ground Answer-Set Programming over Finite Domains
	Introduction
	Preliminaries
	Tautological Rules
	Complexity of Detecting Tautological Rules in a Finite Domain
	Tractable Cases

	Rule Subsumption
	Complexity of Rule Subsumption
	Restricting Variable Occurrences and Tractability

	Discussion and Conclusion

	Conflict-Driven Answer Set Enumeration
	Introduction
	Background
	Nogoods of Logic Programs
	Answer Set Enumeration
	Experiments
	Discussion

	Head-Elementary-Set-Free Logic Programs
	Introduction
	Review of Elementary Sets for Disjunctive Programs
	Head-Elementary-Set-Free Logic Programs
	HEF Programs and Inherent Tightness
	Checking the Stability of Models for HEF Programs
	Computing Elementarily Unfounded Sets
	Conclusion

	A Deductive System for PC(ID)
	Introduction
	Preliminaries
	The Deductive System for PC(ID)
	Main Results
	Soundness
	Completeness
	Cut-Elimination

	Conclusions, Related and Further Work

	Modularity Aspects of Disjunctive Stable Models
	Introduction
	The Class D of DLP-Functions
	Model Theory and Stable Semantics
	Module Theorem for DLP-Functions
	Applications
	Conclusion and Discussion

	A Characterization of Strong Equivalence for Logic Programs with Variables
	Introduction
	Stable Models of a First-Order Sentence
	Theorem on Strong Equivalence
	Kripke Models
	Proof of Completeness
	Proof of the Strong Equivalence Theorem
	Strong Equivalence for Theories
	Related Work
	Conclusion

	A Unified Semantics for Constraint Handling Rules in Transaction Logic
	Introduction
	The Problem: Reasoning on Constraint Handling Rules
	The Idea: Map CHR to Transaction Logic
	Preliminaries
	Constraint Handling Rules
	Transaction Logic

	The Details: CHR-to-TR-Mapping
	Mapping CHR States to Valid Databases
	Mapping the Built-In Theory CT to the Data Oracle O^d
	Mapping CHR Rules to Serial-Horn Rules in TR
	Sound and Complete: CHR Run-Time System in TR

	Examples
	Conclusion

	Conditional Planning with External Functions
	Introduction
	Syntax of K^c
	Semantics of K^c
	Instantation
	Conditional Planning

	Computing Conditional Plans Using DLV^K
	Related Work and Conclusion

	Logic Programs with Abstract Constraints: Representaton, Disjunction and Complexities
	Introduction
	Background and Notation
	Representing Constraint Satisfaction Problem
	Unfolding General Programs
	Unfolding the Head
	Unfolding Positive C-Atoms in Rule Body
	Unfolding Negative C-Atoms in Rule Bodies

	Unfolding Disjunction
	Complexity
	Relation to Previous Work
	Final Remarks

	General Default Logic
	Introduction
	General Default Logic
	Syntax and Basic Semantics
	Extension
	Default Logic
	General Logic Programming

	Applications
	Representing Rule Constraints
	Representing General Closed World Assumptions
	Representing Conditional Defaults

	Conclusion

	The LP-OD System: Logic Programming Meets Outlier Detection
	Overview of Outlier Detection
	The LP-OD System
	Program Rewriter
	User Interface


	clasp: A Conflict-Driven Answer Set Solver
	Introduction
	System Architecture
	Experiments

	GrinGo: A New Grounder for Answer Set Programming
	Motivation, Features, and System Architecture
	$lambda$-Restricted Programs
	Back-Jumping Enhanced by Binder-Splitting
	Experiments

	Using Answer Sets to Solve Belief Change Problems
	Introduction
	Preliminaries
	The Action Language A
	Belief Progression
	Belief Revision
	Belief Evolution

	The Approach
	The Implementation
	A Logic Program Representing Action Effects
	Conflicting Observations
	Belief Evolution
	Example

	Discussion

	An Smodels System with Limited Lookahead Computation
	Introduction
	Algorithm for Identification of Propagating Literals
	Implementation and Usage
	Experimental Results and Discussion
	Conclusion

	Programming Applications in CIFF
	Introduction
	Background
	The CIFF System 4.0 
	Experimentation and Comparison
	Conclusions

	CPP: A Constraint Logic Programming Based Planner with Preferences
	Introduction
	Background
	System Description
	Experiments
	Conclusion and Future Work

	An Application of Defeasible Logic Programming to Decision Making in a Robotic Environment
	Introduction
	Knowledge Representation and Defeasible Reasoning 
	Robot Decision Making: A Simple Example
	Related Work
	Conclusions and Future Work

	On the Effectiveness of Looking Ahead in Search for Answer Sets
	Introduction
	Constraint Propagation in Smodels
	Situations Where Overhead Dominates
	Adaptive Lookahead
	Experiments
	Cases Where Lookahead Improves Search Efficiency
	Cases Where Lookahead Reduces Search Efficiency
	Adaptive Smodels

	Summary and Future Directions

	Enhancing ASP Systems for Planning with Temporal Constraints
	Introduction
	Syntax and Semantics of ${\cal V(C)}$
	Syntax
	Semantics

	Implementation
	Related Work and Conclusion

	Semantics for Possibilistic Disjunctive Programs
	Introduction
	Possibilistic Disjunctive Logic Programs
	Syntax
	Semantics

	Conclusions

	Modularity in SMODELS Programs
	Introduction
	SMODELS Programs and Equivalence Relations
	Modular SMODELS Programs
	Semantical Reformulation of Modular Equivalence

	Author Index



