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Abstract. SHACAL-2 is a 256-bit block cipher with up to 512 bits of
key length based on the hash function SHA-2. It was recommended as
one of the NESSIE projection selections. As far as the number of the
attacked rounds is concerned, the best cryptanalytic result obtained on
SHACAL-2 so far is the analysis of a related-key rectangle attack on
the 42-round SHACAL-2 [13]. In this paper we present a related-key
rectangle attack on 43-round out of the 64-round of SHACAL-2, which
requires 2240.38 chosen plaintexts and has time complexity of 2480.4 43-
round SHACAL-2 encryptions. In this paper we also identify and fix
some flaws in previous attack on SHACAL-2.

Keywords: Block cipher, SHACAL-2, Related-Key Rectangle attack,
Differential characteristic.

1 Introduction

Differential cryptanalysis [3] is one of the most powerful known attacks on block
ciphers, which was introduced by E. Biham and A. Shamir in 1990.

The related-key attack [4] was introduced by E. Biham in 1993, in which
the attacker chooses the relationship between two unknown keys. The attack
is based on a key scheduling algorithm and shows that a block cipher with a
weak key scheduling algorithm may be vulnerable to this kind of attack. Many
cryptanalytic results of the attack were presented in [14,15,16,17].

The related-key boomerang and rectangle attacks were proposed by Kim et
al. [8,9] and independently by Biham et al. [6]. This attack is a combination of
the related-key and the rectangle attacks, and shares the features of rectangle
and related-key attacks. The attacker examines quartets of plaintexts encrypted
under four related keys. This attack exploits two types of related-key rectangle
distinguishers to retrieve the related keys. Our distinguishers can be used in
analyzing block ciphers which have a good related-key differential followed by
another good related-key differential or which have a good related-key differential
followed by a good differential.
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SHACAL-2 [2] is a 256-bit block cipher with up to 512-bit key length based
on the hash function SHA-2. It was submitted to the NESSIE project (New Eu-
ropean Schemes for Signatures, Integrity, an Encryption) and was recommended
as one of the NESSIE projection selections. It has 64 rounds. The best crypt-
analytic result obtained on SHACAL-2 so far is the analysis of a related-key
rectangle on 42-round SHACAL-2 [13]. See Table 1 for a summary of our results
and the comparison with the previous attacks.

Table 1. Comparison of our results with the previous attacks on SHACAL-2

Type of Number of Complexity
Attack Rounds Data/Time/Memory

Impossible Differential 30 744CP/2495.1/214.5 [10]
Differential-Nonlinear 32 243.4CP/2504.2/248.4[11]

Square-Nonlinear 28 463 · 232CP/2494.1/245.9[11]
Related-Key Differential-Nonlinear 35 242.32RK-CP/2452.10/247.32[12]

Related-Key Rectangle 37 2233.16RK-CP/2484.95/2238.16 [12]
40 2243.38RK-CP/2448.43/2247.38 [13]
42 2243.38RK-CP/2488.37/2247.38 [13]
43 2240.38RK-CP/2480.4/2245.38(New)

CP: Chosen Plaintexts, RK-CP: Relate-Key Chosen Plaintexts,
Time: Encryption units, Memory: Bytes of memory

The rest of the paper is organized as follows: In Section 2, we introduce some
useful properties of the nonlinear functions in SHACAL-2 and some notations,
and give a short description of the related-key rectangle attack. In Section 3, we
describe the related-key rectangle attack on 43-round SHACAL-2. Finally, we
summarize the paper in section 4.

2 Background

2.1 Description of SHACAL-2

SHACAL-2 [2] is a 256-bit block cipher based on the compression function of
the hash function SHA-2. The algorithm is composed of 64 rounds with variable
key length of up to 512-bit, and it is advised to use keys of at least 128-bit.

For a 256-bit plaintext P = A0‖B0‖C0‖D0‖E0‖F0‖G0‖H0 the corresponding
256-bit ciphertext C is denoted by A64‖B64‖C64‖D64‖E64‖F64‖G64‖H64. The
r − th round of encryption is as follows.

T 1
i+1 = Hi + g1(Ei) + G1(Ei, Fi, Gi) + Coni + Ki (1)

T 2
i+1 = g0(Ai) + G0(Ai, Bi, Ci) (2)

Hi+1 = Gi (3)
Gi+1 = Fi (4)
Fi+1 = Ei (5)
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Ei+1 = Di + T 1
i+1 (6)

Di+1 = Ci (7)
Ci+1 = Bi (8)
Bi+1 = Ai (9)
Ai+1 = T 1

i+1 + T 2
i+1 (10)

for i = 0, ..., 63 where + denotes the addition modulo 232 of 32-bit words, Ki are
the 32-bit round subkeys, and Coni denotes the 32-bit round constants which
are different in each of the 64 rounds. The function in the above encryption
process are as follows.

G1(X, Y, Z) = I(X, Y, Z) = (X ∧ Y ) ⊕ (¬X ∧ Z)
G0(X, Y, Z) = J(X, Y, Z) = (X ∧ Y ) ⊕ (X ∧ Z) ⊕ (Y ∧ Z)

g0(X) = ROTR2(X) ⊕ ROTR13(X) ⊕ ROTR22(X)
g1(X) = ROTR6(X) ⊕ ROTR11(X) ⊕ ROTR25(X)

where ¬X denotes the complement of 32-bit word X and ROTRi(X) means the
right rotation of X by i bit positions.

The key scheduling algorithm of SHACAL-2 supports a maximum 512-bit key
and shoter keys are padded by zeros to a 512-bit string. For a 512-bit key string
K = K0K1, ..., K15 the key expansion is as follows.

Ki = h1(Ki−2) + Ki−7 + h0(Ki−15) + Ki−16, (16 ≤ i ≤ 63)
h1(X) = ROTR7(X) ⊕ ROTR18(X) ⊕ SR3(X)
h0(X) = ROTR17(X) ⊕ ROTR19(X) ⊕ SR10(X)

where SRi denotes the right shift of 32-bit word X by i bit positions.

2.2 Some Basic Conclusions and Notations

In this section we will present some properties of the two nonlinear functions in
our attack.

Proposition 1. For the nonlinear function I(X, Y, Z) = (X ∧ Y ) ⊕ (¬X ∧ Z) ,
there are the following properties:

1. I(x, y, z) = I(¬x, y, z) if and only if y = z.
I(0, y, z) = 0 and I(1, y, z) = 1 if and only if y = 1 and z = 0.
I(0, y, z) = 1 and I(1, y, z) = 0 if and only if y = 0 and z = 1.

2. I(x, y, z) = I(x, ¬y, z) if and only if x = 0.
I(x, 0, z) = 0 and I(x, 1, z) = 1 if and only if x = 1.

3. I(x, y, z) = I(x, y, ¬z) if and only if x = 1.
I(x, y, 0) = 0 and I(x, y, 1) = 1 if and only if x = 0.
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Proposition 2. For the nonlinear function J(X, Y, Z) = (X ∧ Y ) ⊕ (X ∧ Z) ⊕
(Y ∧ Z) , there are the following properties:

1. J(x, y, z) = J(¬x, y, z) if and only if y = z.
J(0, y, z) = 0 and J(1, y, z) = 1 if and only if y = ¬z.

2. J(x, y, z) = J(x, ¬y, z) if and only if x = z.
J(x, 0, z) = 0 and J(x, 1, z) = 1 if and only if x = ¬z.

3. J(x, y, z) = J(x, y, ¬z if and only if x = y.
J(x, y, 0) = 0 and J(x, y, 1) = 1 if and only if x = ¬y.

Notations. In order to describe our attack conveniently, we quote some
notations.

1. The bit positions in a 32-bit word are labeled as 31, 30, 29, . . . , 2, 1, 0, where
bit 31 is the most significant bit and bit 0 is the least significant bit.

2. Ai,j , Bi,j , Ci,j , Di,j , and Ei,j represent respectively the j − th bit of Ai, Bi,
Ci, Di, and Ei where the least significant bit is the 1-st bit, and the most
significant bit is the 32-th bit.

3. ej represent the 32-bit word composed of 31 0′s and 1 in the j − th place,
ej,k = ej ⊕ ek and ej,k,l = ej ⊕ ek ⊕ el, etc.

4. Δ(A, B) denotes the difference between A and B.

2.3 Short Description of the Related-Key Rectangle Attack

The related-key rectangle attack was introduced in [8,9] and independently in
[6]. Here we give a short description of this attack. Assume that a block cipher
E : {0, 1}n × {0, 1}k −→ {0, 1}n can be described as E = E1 · E0, such that
there is a related-key differential α −→ β with probability pβ for E0, and there
is a related-key differential γ −→ δ with probability qγ for E1, i.e.,

Pr[Δ(E0(X, K), E0(X∗, K∗)) = β|Δ(X, X∗) = α, Δ(K, K∗) = ΔK∗] = pβ

Pr[Δ(E1(Y ∗, K∗), E1(Y ′∗, K ′∗)) = δ|Δ(Y ∗, Y ′∗) = γ, Δ(K∗, K ′∗) = ΔK ′] = qγ

We use the master key K and the related keys K∗, K ′ and K ′∗ with difference
Δ(K, K∗) = Δ(K ′, K ′∗) = ΔK∗ and Δ(K, K ′) = Δ(K∗, K ′∗) = ΔK ′. The
related-key rectangle distinguisher is as follows:

1. Choose m1 plaintext pairs (Pi, P
∗
i ) at random such that Δ(Pi, P

∗
i ) = α.

Encrypt Pi and P ∗
i under E0 with key K and K∗ respectively to get the

intermediate values Xi and X∗
i . Encrypt Xi and X∗

i under E1 with key K
and K∗ respectively to get the ciphertexts Ci and C∗

i .
2. Choose m2 plaintext pairs (P ′

j , P
′∗
j ) at random such that Δ(P ′

j , P
′∗
j ) = α.

Encrypt P ′
j and P ′∗

j under E0 with key K ′ and K ′∗ respectively to get the
intermediate values X ′

j and X ′∗
j . Encrypt X ′

j and X ′∗
j under E1 with key K ′

and K ′∗ respectively to get the ciphertexts C′
j and C′∗

j .
3. Search two pairs of plaintexts Pi, P

�
i and P ′

j , P
′∗
j , and their corresponding ci-

phertexts Ci, C
∗
i and C′

j , C
′∗
j respectively, satisfying: Δ(Pi, P

∗
i ) = Δ(P ′

j , P
′∗
j )

= α, Δ(Xi, X
∗
i ) = Δ(X ′

j , X
′∗
j ) = β, Δ(Xi, X

′
j) = Δ(X∗

i , X ′∗
j ) = γ, and

Δ(Ci, C
′
j) = Δ(C∗

i , C′∗
j ) = δ.
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A plaintext quartet (Pi, P
∗
i , P ′

j , P
′∗
j ) satisfying all these conditions is called a

right quartet. More generally, a right quartet represents one which satisfies any
β and γ difference conditions for given α and δ differences. As described in [7,8,9],
the expected number of right quartets is

∑
βγ m1m22−np2

βq2
γ = m1m22−np2q2,

where p = (
∑

β p2
β)

1
2 , q = (

∑
γ q2

γ)
1
2 . For a random permutation the expected

number of right quartets is m1m22−2n. Therefore as long as pq > 2−
n
2 we can

distinguish between a random permutation and E, and use this distinguisher
later to recover the key.

3 Related-Key Rectangle Attack on 43-Round
SHACAL-2

As stated earlier, as far as the number of the attacked rounds is concerned, the best
cryptanalytic result obtained on SHACAL-2 so far is the analysis of a related-key
rectangle attack on 42-round SHACAL-2 [13]. They chose two pools of plaintexts
of 2178.38 × 264 = 2242.38 each, and presented 12 bits conditions of the intermedi-
ate values, which will remove the differential probability incurred by the G0 and
G1 functions in Rounds 1 and 2. They concluded that after Step 1, there remains
2242.38 × 2−12 = 2230.38 intermediate values of each pool, then the expected num-
ber of the right quartets is (2230.38)2/2 × 2−456.76 = 23, where the distinguisher
holds with probability 2−456.76. From the differential characteristic for E0 in [13],
we know that the differential in Step 0 is (0, eM , e31, ?, e9,13,19, e18,29, e31, ?) −→
(0, 0, eM , e31, 0, e9,13,19, e18,29, e31). Obviously it needs some conditions of plain-
text to ensure that the differential holds with probability 1. But [13] didn’t present
any condition of plaintexts. There is another flaw in [13] as follows. Considering
Ql

i0,j0 ⊕ Ql
i1,j1 and Q∗l

i0,j0 ⊕ Q∗l
i1,j1 , where Ql

i0,j0 , Ql
i1,j1 are the intermediate val-

ues of Si, and Q∗l
i0,j0 , Q∗l

i1,j1 are the intermediate values of S∗
i , so it is sufficient to

guess the subkeys kl and k∗l, and it is not necessary to guess the additive differ-
ence between the subkeys kl and k∗l. Therefore, there are some flaws in the attack
procedure of the 42-round analysis in [13].

Our attack is based on the following observation.

Observation 1. Suppose the plaintext P0 and P1 are encrypted using the
same key, and we know the actual values of (Ai

0, B
i
0, C

i
0, D

i
0, E

i
0, F

i
0 , G

i
0, H

i
0) and

(Ai
1, B

i
1, C

i
1, D

i
1, E

i
1, F

i
1, G

i
1, H

i
1), then we know the actual values of (Ai−1

0 , Bi−1
0 ,

Ci−1
0 , Di−1

0 , Ei−1
0 , F i−1

0 , Gi−1
0 ), (Ai−1

1 , Bi−1
1 , Ci−1

1 , Di−1
1 , Ei−1

1 , F i−1
1 , Gi−1

1 ) and
the additive difference between Hi−1

0 and Hi−1
1 , hence we know the actual val-

ues of (Ai−5
0 , Bi−5

0 , Ci−5
0 ) and (Ai−5

1 , Bi−5
1 , Ci−5

1 ), and the additive difference
between Di−5

0 and Di−5
1 .

3.1 Related-Key Differential Characteristics for SHACAL-2

In our attack, we use the differential characteristics based on [13], and our dif-
ferential in Step 0 is

(0, eM , e31, 0, e9,13,19, e18,29, e31, Δi,j) −→ (0, 0, eM , e31, 0, e9,13,19, e18,29, e31)
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where g1(E0 ⊕e9,13,19)−g1(E0)+Δi,j = 0. From Prop.1 and Prop.2, the proba-
bility of Step 0 will be 1 if we fix some bits conditions presented in Table 2. Since
D2 = B0, H2 = F 0, according to the encryption algorithm, the probability of
Step 2 will be increased up to 2−10 by the conditions B0,i = ¬F0,i(i = 18, 29).
From [13] we know that the probability from Step 2 to Step 24 is 2−37, so the
probability of our first differential characteristic is 2−46. As stated in [13], the
second differential characteristic is 2−63.38. So the 35-round related-key rectangle
distinguisher holds with probability 2−474.76.

Table 3 present the details of the first 25-round related-key differential charac-
teristic. The difference of the master keys is (e31, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0).

Table 4 presents the details of the second 10-round related-key differential
characteristic. This differential characteristic use the same master key.

Table 2. The fixed plaintext bits for SHACAL-2

A0 B0 E0 F0

A0,31 = B0,31, A0,i = C0,i B0,i = ¬F0,i(i = 19, 30) E0,31 = 0 F0,i = G0,i

(i = 6, 9, 18, 20, 25, 29) B0,9 = ¬E0,9 E0,i = 0(i = 18, 29) (i = 9, 13, 19)

Table 3. The First Related-Key Differential Characteristic for SHACAL-2

i ΔAi ΔBi ΔCi ΔDi ΔEi ΔFi ΔGi ΔHi ΔKi Prob.

0 0 eM e31 0 e9,13,19 e18,29 e31 Δi,j e31 1
1 0 0 eM e31 0 e9,13,19 e18,29 0 0 2−11

2 e31 0 0 eM 0 0 e9,13,19 e18,29 0 2−10

3 0 e31 0 0 e6,20,25 0 0 e9,13,19 0 2−7

4 0 0 e31 0 0 e6,20,25 G4[7, 0 0 2−4

5 0 0 0 e31 0 0 e6,20,25 0 0 2−3

6 0 0 0 0 e31 0 0 e6,20,25 0 2−4

7 0 0 0 0 0 e31 0 0 0 2−1

8 0 0 0 0 0 0 e31 0 0 2−1

9 0 0 0 0 0 0 0 e31 e31 1
10 0 0 0 0 0 0 0 0 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23 0 0 0 0 0 0 0 0 0 1
24 0 0 0 0 0 0 0 0 · 2−6

25 e13,24,28 0 0 0 e13,24,28 0 0 0
g1(E0 ⊕ e9,13,19) − g1(E0) + Δi,j = 0, M={6,9,18,20,25,29}

3.2 The Key Recovery Attack Procedure for 43-Round SHACAL-2
with 512-Bit Keys

Assume that the master key is K and the related keys are K∗ with differences
ΔK = (e31, 0, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0). We will present a method to
exploit the 35-round related-key rectangle distinguisher to find a master key
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Table 4. The Second Related-Key Differential Characteristic for SHACAL-2

Round(i) ΔAi ΔBi ΔCi ΔDi ΔEi ΔFi ΔGi ΔHi Prob.

25 e31 e31 eM′ 0 0 e9,13,19 e18,29,31 0 2−15

26 e31 e31 e31 eM′ 0 0 e9,13,19 e18,29,31 2−12

27 0 e31 e31 e31 e6,20,25 0 0 e9,13,19 2−7

28 0 0 e31 e31 e31 e6,20,25 0 0 2−8

29 0 0 0 e31 e31 e31 e6,20,25 0 2−7

30 0 0 0 0 e31 e31 e31 e6,20,25 2−4

31 0 0 0 0 0 e31 e31 e31 1
32 0 0 0 0 0 0 e31 e31 2−1

33 0 0 0 0 0 0 0 e31 1
34 e31 0 0 0 e31 0 0 0 2−11

35 e6,9,18,20,25,29 e31 0 0 e6,20,25 e31 0 0
M ′={6,9,18,20,25,29,31}

of 43-round SHACAL-2. The 256-bit value P is denoted by eight 32-bit words
(A, B, C, D, E, F, G, H), and P ∗ is denoted by (A∗, B∗, C∗, D∗, E∗, F ∗, G∗, H∗).
We denote the intermediate value just before round k by Qk

i,j , and denote Qk
i,j

by eight 32-bit words Ak
i,j , Bk

i,j , Ck
i,j , Dk

i,j , Ek
i,j , F k

i,j , Gk
i,j and Hk

i,j . Also, we
denote (ΔA35, ΔB35, ΔC35, ΔD35, ΔE35, ΔF 35, ΔG35, ΔH35) by Δ. The attack
procedure for 43-round SHACAL-2 is performed as follows.

1. Choose 2175.38 structures Si of plaintext Pi,j , i = 1, 2, . . . , 2175.38, j =
1, 2, . . . , 264. XOR every 224 bits words (A, B, C, D, E, F, G) in Si with the
224 bits value (0, eM , E31, 0, e9,13,19, e18,29, e31) (M={6,9,18,20,25,29}) and
add 32-bit word H with 32-bit word Δi,j to get 2175.38 structures S∗

i , where
in every structure the 192 bits words A, B, C, E, F , G are fixed, the 16
bits conditions presented in Table 2 are satisfied in every plaintext, and
g1(E ⊕ e9,13,19) − g1(E) + Δi,j = 0. Encrypt every plaintext in Si and S∗

i

using the key K and K∗ = K ⊕ ΔK to get the corresponding ciphertexts
Ci,j and C∗

i,j respectively.
2. Guess two 96-bit subkeys (k42, k41, k40) and (k∗42, k∗41, k∗40). For the guessed

subkey pair, do the following:
(a) Decrypt all the ciphertext Ci,j and C∗

i,j through rounds 42-40 using the
subkey (k42, k41, k40) and (k∗42, k∗41, k∗40) respectively to obtain the in-
termediate values Q40

i,j and Q∗40
i,j . We put all the intermediate values Q40

i,j in
a table, and put Q∗40

i,j in another table. We can get (A35, B35, C35), (A∗35,
B∗35, C∗35), Δ(D35

i0,j0
, D35

i1,j1
) and Δ(D∗35

i0,j0
, D∗35

i1,j1
) by observation 1.

(b) Check whether C40
i0,j0 ⊕ C40

i1,j1 and C∗40
i0,j0 ⊕ C∗40

i1,j1 satisfy the first half of
Δ. Record (k42, k41, k40) and all the qualified quartets and then go to
Step 3.

3. Guess two 32-bit subkeys k39, k∗39, and decrypt all the remaining quartets
(Q40

i0,j0
, Q40

i1,j1
, Q∗40

i0,j0
, Q∗40

i1,j1
) to obtain the actual values of (A38, B38, C38,

D38, E38, F 38, G38), (A∗38, B∗38, C∗38, D∗38, E∗38, F ∗38, G∗38), the additive
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difference between H38
i0,j0

and H38
i1,j1

, and the additive difference between
H∗38

i0,j0
and H∗38

i1,j1
, hence to get the actual values of (A35

i0,j0
, B35

i0,j0
, C35

i0,j0
),

(A35
i1,j1

, B35
i1,j1

, C35
i1,j1

), (A∗35
i0,j0

, B∗35
i0,j0

, C∗35
i0,j0

), (A∗35
i1,j1

, B∗35
i1,j1

, C∗35
i1,j1

), the addi-
tive difference between D35

i0,j0 and D35
i1,j1 , and the additive difference between

D∗35
i0,j0 and D∗35

i1,j1 by observation 1. Since H38 = E35 and ΔE35 = e6,20,25,
we can discard all the quartets which do not satisfy H38

i1,j1
−H38

i0,j0
∈

∧
1 and

H∗38
i1,j1

− H∗38
i0,j0

∈
∧

1, where
∧

1 = {a + b + c|a = ±26, b = ±220, c = ±225}.
Record (k39, k40, k41, k42) and all the qualified quartets and then go to Step 4.

4. Guess two 32-bit subkeys k38, k∗38, and decrypt all the remaining quartets
(Q39

i0,j0 , Q
39
i1,j1 , Q

∗39
i0,j0 , Q

∗39
i1,j1) to obtain the actual values of (A37, B37, C37,

D37, E37, F 37, G37), (A∗37, B∗37, C∗37, D∗37, E∗37, F ∗37, G∗37), the additive
difference between H37

i0,j0
and H37

i1,j1
, and the additive difference between

H∗37
i0,j0

and H∗37
i1,j1

. Since H37 = F 35 and ΔF 35 = e31, we can discard all the
quartets which do not satisfy H37

i1,j1 − H37
i0,j0 ∈

∧
2 and H∗37

i1,j1 − H∗37
i0,j0 ∈

∧
2,

where
∧

2 = {231, −231}. Record (k38, k39, k40, k41, k42) and all the qualified
quartets and then go to Step 5.

5. Guess two 32-bit subkeys k37, k∗37, and decrypt all the remaining quartets
(Q38

i0,j0
, Q38

i1,j1
, Q∗38

i0,j0
, Q∗38

i1,j1
) to obtain the actual values of (A36, B36, C36,

D36, E36, F 36, G36), (A∗36, B∗36, C∗36, D∗36, E∗36, F ∗36, G∗36), the additive
difference between H36

i0,j0
and H36

i1,j1
, and the additive difference between

H∗36
i0,j0

and H∗36
i1,j1

. Since H36 = G35 and ΔG35 = 0, we can discard all the
quartets which do not satisfy H36

i1,j1
= H36

i0,j0
and H∗36

i1,j1
= H∗36

i0,j0
. Record

(k37, k38, k39, k40, k41, k42) and all the qualified quartets and then go to
Step 6.

6. Guess two 32-bit subkeys k36, k∗36, and decrypt all the remaining quartets
(Q37

i0,j0
, Q37

i1,j1
, Q∗37

i0,j0
, Q∗37

i1,j1
) to obtain the actual values of (A35, B35, C35,

D35, E35, F 35, G35), (A∗35, B∗35, C∗35, D∗35, E∗35, F ∗35, G∗35), the additive
difference between H35

i0,j0 and H35
i1,j1 , and the additive difference between

H∗35
i0,j0

and H∗35
i1,j1

. Since ΔH35 = 0, we can discard all the quartets which
do not satisfy H35

i1,j1
= H35

i0,j0
and H∗35

i1,j1
= H∗35

i0,j0
. If there exist more than

5 quartets passing this test, Record (k36, k37, k38, k39, k40, k41, k42) and then
go to Step 7. Otherwise, repeat Step 6 with another guessed subkeys. If all
the possible key pairs in Step 6 are tested, then repeat Step 5 with another
guessed subkeys. If all the possible key pairs in Step 5 are tested, then repeat
Step 4 with another guessed subkeys. If all the possible key pairs in Step 4
are tested, then repeat Step 3 with another guessed subkeys. If all possible
key pairs pairs in Step 3 are tested, then repeat Step 2 with another guessed
subkeys.

7. For a suggested (k36, k37, k38, k39, k40, k41, k42), exhaustively search for the
remaining 288 key bits by trial encryption. If a 512-bit key is suggested,
output it as the master key of 43-round SHACAL-2. Otherwise go to Step 2.

The data complexity of this attack is 2240.38 related-key chosen plaintexts. The
memory requirements are about 2245.38(= 2240.38 × 32) memory bytes.
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In Step 1, the time complexity is 2240.38 43-round SHACAL-2 encryptions. The
time complexity of Step 2 is about 2240.38×232×6× 8

43 ≈ 2430 43-round SHACAL-
2 encryptions, and 2240.38 × 2192 = 2432.38 memory access. For each guessed
subkeys, we have 2239.38×2/2 = 2477.76 quartets tested in Step 2. Since Sep 2 has
a 256-bit filtering for the decrypted quartets, 2477.76×2−256 = 2221.76 quartets are
suggested in Step 2. The time complexity of Step 3 is about 2221.76×232×8× 4

43 ≈
2474.4 43-round SHACAL-2 encryptions. Since there are 23 possible differences
in

∧
1, about 2221.76 × (2−29)2 = 2163.76 quartets are suggested in Step 3. The

time complexity of Step 4 is about 2163.76 × 232×10 × 4
43 ≈ 2480.4 43-round

SHACAL-2 encryptions. Since there are 2 possible values in
∧

2 (hence
∧

2 has
a 31-bit filterings), and Δ(H38) has a 3-bit filterings, about 2163.76 × (2−31)2 ×
(2−3)2 = 295.76 quartets are suggested in Step 4. The time complexity of Step 5
is about 295.76 × 232×12 × 4

43 ≈ 2476.4 43-round SHACAL-2 encryptions. About
295.76 × (2−32)2× = 231.76 quartets are suggested in Step 5. The time complexity
of Step 6 is about 231.76 ×232×14× 4

43 ≈ 2476.4 43-round SHACAL-2 encryptions.
About 231.76 × (2−32)2× = 2−32.24 quartets are suggested in Step 6.

The expected number of right quartets are about 2477.76 × 2−474.76 = 8, for
about (2175.38264)2/2 = 2477.76 quartets are tested in the attack and the 35-round
related-key rectangle distinguisher holds with probability 2−474.76. Therefore the
success rate of this attack (i.e. the probability that the number of remaining quar-
tets for the right key pair is at least 6) is about 0.8 by the Poisson distribution
X ∼ Poi(λ = 8), PrX [X > 5] ≈ 0.8.

4 Conclusions

In this paper by using the related-key differential characteristics in [13], we
fix some conditions (presented in Table 2) in each of the plaintexts, so that the
differential of Step 0 will be hold with probability 1. Hence it will be not necessary
to guess the subkey k0 like in [13], which will reduce the time complexity. We can
attack the 43-round SHACAL-2 using the related-key rectangle attack with data
complexity of 2240.38 chosen plaintexts and time complexity of 2480.4 43-round
SHACAL-2 encryptions.
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