Chapter 6

Numerical Optimization for Advanced
Turbomachinery Design

René A. Van den Braembussche

Abstract The multilevel-multidisciplinary-multipoint optimization system
developed at the von Kéarman Institute and its applications to turboma-
chinery design is presented. To speed up the convergence to the optimum
geometry, the method combines an Artificial Neural Network, a Design Of
Experiment technique and a Genetic Algorithm. The different components
are described, the main requirements are outlined and the basic method is
illustrated by the design of an axial turbine blade.

A procedure for multipoint optimization, aiming for optimal performance
at more than one operating point, is outlined and applied to the optimization
of a low solidity diffuser.

The extension to a multidisciplinary optimization, by combining a Navier-
Stokes solver with a Finite Element Analysis, allows an efficient search for
a compromise between the sometimes conflicting demands of high efficiency
and respect of mechanical constraints. It is shown that a significant reduction
of the stresses is possible with only a small penalty on the performance and
that this approach may lead to geometries that would normally be excluded
when using less sophisticated methods.

6.1 Introduction

Computational Fluid Dynamics (CFD) has seen a very important develop-
ment over the last 30 years. Navier-Stokes (NS) solvers have reached a high
level of reliability at affordable cost. They are now routinely used to ana-
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Fig. 6.1 2D view of the 3D flow at the exit of a turbine stage

lyze the fluid flows in the same way Finite Element Analysis (FEA) is used
for stress predictions. They provide detailed information about the 3D flow
around existing blade shapes and constitute an attractive alternative for de-
tailed flow measurements. Complex flow phenomena can now be studied in
what is called “Numerical Laboratories”. Although this has resulted in a
drastic decrease of the number of prototype testing, there are still two prob-
lems that prevent a more efficient use of CFD in the turbomachinery design
process.

The first one results from the difficulty to analyze 3D flows on 2D screens or
drawings. 2D vector plots are only a poor representation of the reality. They
can be very misleading as they may suggest that the flow is penetrating the
solid walls (Fig. 6.1). Synthetic environments, also called virtual reality, are
very promising in this respect. These techniques are not only applicable to
mere computer games but will become part of everyday reality for engineers
in the next decade [16]. Designers will walk inside blade rows and diffusers to
inspect the complex 3D flow structures by tracing the streamlines and to find
out what geometrical changes may be needed to improve the performance.

The second problem relates to the abundance of information provided by
the NS calculation. The output of an NS solver contains all the information
needed to improve the performance. However, it does not provide any infor-
mation on what modifications are needed to reach that goal. Three velocity
components, the pressure and the temperature in typically 10,000 points (2D
flows) or in more than 1,000,000 points (3D flows) are more than what the
human brain is able to grasp and fully exploit in new designs. Most of the
available information remains unused as the designer will often calculate a
global parameter to find out if one geometry performs better than another.
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The traditional design procedures in which standard 2D blade sections
are selected and scaled up or down to adapt them to the different operating
conditions are no longer acceptable. The designer is now faced with the de-
velopment of new and better performing 2D and 3D blade shapes [10]. He
needs new tools to use the available information in a more efficient way than
with the traditional trial and error procedure in which the systematic testing
of blade shapes has only been replaced by NS calculations. Those manual
designs are very time consuming and the outcome depends on the expertise
of the designer. This may become problematic since experienced designers
are replaced by young engineers, who may have expertise in CFD but limited
experience in turbomachinery design. Moreover, they can hardly be expert in
all disciplines that interfere with a design (aerodynamics, mechanics, manu-
facturing etc.). Hence there is a need for automated and computerized design
systems.

The main goal when designing turbines or compressors is to achieve light,
compact and highly efficient systems while reducing the cost and the dura-
tion of the design cycle. Existing computerized design systems are often too
expensive in terms of computational effort. Too many design processes have
been concluded not because the target has been obtained, but because the
deadline has come up. New design systems should therefore aim to be fast
and affordable.

Turbomachines often operate outside the nominal or design conditions.
Compressors for air-conditioning applications must be able to operate effi-
ciently in all seasons, i.e., at different mass flows but constant pressure ratio.
Low Solidity Diffusers (LSDs) are specially designed to increase the perfor-
mance at a large variety of inlet flow conditions. Optimizing those geometries
for one operating point is only part of the job. Multipoint design systems are
needed to find a global optimum, i.e., maximizing the performance at all
operating points to minimize the lifetime operating cost of the device.

Optimum performance is of no use if the mechanical integrity of the tur-
bomachine cannot be guaranteed. This requires a stress and/or heat transfer
analysis to verify that the stress constraints are not violated. Lower mate-
rial and manufacturing costs are also important design criteria. Designing
turbomachines is therefore a complex multidisciplinary exercise.

Inverse design methods define the geometry corresponding to a prescribed
pressure or velocity distribution. However specifying the input of such a
method, that satisfies mechanical and geometrical constraints and results in
high performance in all operating points, is not an easy task. This is particu-
larly difficult for 3D flows where secondary flow phenomena play a dominant
role. A lot of insight is required to foresee the mechanical and geometrical
consequences of a velocity variation. Adjustment of the target pressure dis-
tribution during the optimization process may be needed [7, 20].

Optimization systems searching for the geometry that best satisfies more
global requirements in terms of performance, mechanical constraints or any
other design criterion are a valuable alternative and have experienced a lot of
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attention in recent years. In what follows one will describe the fast, multipoint
and multidisciplinary optimization method, developed at the von Karmén
Institute, and its application to different turbomachinery designs.

6.2 Optimization Methods

Optimization methods attempt to determine the design variables X;(i = 1,n)
that minimize an objective function OF (U (X;), X;) where U(Xj;) is the solu-
tion of the flow equations R(U(X;), X;) = 0 and subject to na performance
constraints A;(U(X;),X;) < 0 (j = 1,n4) and ng geometrical constraints
Gr(X;) <0 (k =1,ng).

Specifying as Objective Function (OF) the difference between a prescribed
and calculated pressure distribution results in an inverse design method. Aim-
ing for the improvement of the overall performance leads to a global optimiza-
tion technique.

Numerical optimization procedures consist of the following components,
described in more detail in the following paragraphs:

e a choice of independent design parameters and the definition of the ad-
dressable part of the design space.

e definition of an OF quantifying the performance. Any standard analysis
tool can be used to calculate the components such as lift, drag, efficiency,
mass flow, manufacturing cost or a combination of all of them.

e a search mechanism to find the optimum combination of the design pa-
rameters, i.e., the one corresponding to the minimum of the OF.

6.2.1 Search Mechanisms

There are two main groups of search mechanisms:

e Analytical ones calculate the required geometry changes in a deterministic
way from the output of the performance evaluation. A common one is
the steepest descent method approaching the area of minimum OF by
following the path with the largest negative gradient on the OF surface
(Fig. 6.2). This approach requires the calculation of the direction of the
largest gradient of the OF and the step length. A comprehensive overview
of gradient based optimization techniques is given by Vanderplaats [17].

e Zero-order or stochastic procedures require only function evaluations.
They make a random or systematic sweep of the design space or use evolu-
tionary theories such as Genetic Algorithms (GA) or Simulated Annealing

(SA).
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Fig. 6.2 Gradient method (- - -) and zero-order sweep of the design space (o)

To minimize the OF, most numerical algorithms require a large number of
performance evaluations and are often very expensive in terms of computer
resources. Zero order methods may require even more evaluations than gra-
dient methods but the latter may get stuck in a local minimum. The method
presented here uses a zero order search mechanism based on an evolutionary
theory.

6.2.1.1 Zero-order Search

A systematic sweep of the design space, defining v values between the min-
imum and maximum limits of each of the n design parameters, requires v"
function evaluations. Figure 6.2 illustrates how such a sweep, calculating the
OF for 3 different values of X; and Xo, provides a very good estimation of
where the optimum is located with only 9 function evaluations. The risk of
converging to a local minimum is low and such a systematic sweep is a valid
alternative for analytical search methods for small values of n. However it
requires more than 14 x 10% evaluations for n = 15.

Evolutionary strategies such as GA and SA can accelerate the procedure
by replacing the systematic sweep with a more intelligent selection of new
geometries using the information obtained during previous calculations in a
stochastic way.

SA is derived from the annealing of solids [1]. At a given temperature, the
state of the system varies randomly. It is immediately accepted if the new
state has a lower energy level. If however, the variation results in a higher
state, it is only accepted with a probability Pr that is a function of the
temperature.
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Fig. 6.3 GA operating principle

(Eopt - Eact)
T
As the temperature decreases, the probability of accepting a higher state
becomes lower. In a SA algorithm, the design parameters characterize the
state of the system whereas the OF characterizes the energy level.

Pr =exp

6.2.1.2 Genetic Algorithm (GA)

The method presented here uses a GA to find the optimum. This is a numer-
ical technique that simulates Darwin’s evolutionary theory stating that the
fittest survives [4]. According to this theory, an individual (a geometry) with
favorable genetic characteristics (design variables) is most likely to produce
better offsprings. Selecting them as parent, increases the probability that the
individuals of next generation will perform better than the previous one.

The operational principle of a standard GA is shown in Fig. 6.3. Pairs of
individuals (parents) are selected from an initially random population of N
geometries, each represented by a binary coded string of length [. Genetic
material is subsequently exchanged between them (crossover) and altered
within the offspring (mutation). It is followed by an evaluation of each new
individual. This process is used to create the N individuals of the next gen-
eration. Such a procedure is repeated for ¢ generations and it is assumed that
the best individual of the last generation is the optimum.

Quality of the GA optimizer is measured by:

e the required computational effort, i.e., the number of performance evalu-
ations that are needed to find that optimum (GA efficiency).
e the value of the optimum (GA effectiveness).

The GA software used in the VKI design system is the one developed
by David L. Carroll [5]. The optimum parameter setting has been defined
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by means of a systematic study on two typical design cases: one geometry
defined by 7 parameters and one defined by 27 parameters [8]. Conclusions
are based on the solution quality ¢, i.e., the degree to where the GA optimum
approaches the real one within a given effort (5,000 function evaluations). It
is defined by:

~ OFxy — OFga
N OFAV - OFrnin

where OF vy is the average of the OF over the complete design space.

O Fin s the global minimum value of the OF obtained from a systematic
(numerically very expensive) scanning of the whole design space.

OFg4 is the minimum value of the OF obtained from the GA optimization.

A ¢ value of 100% indicates that the global minimum has been found. The
function evaluations for the numerical experiments are made by means of an
approximation of the NS solver based on Artificial Neural Networks (ANN,
explained in Sect. 6.3.1).

q -100%

Optimum substring length

In a standard binary-coded GA, the n real-valued design parameters X,
defining a geometry, are jointly represented by one binary string:

1101..0 1001..1 0011...0 ... ... ... 0101...1
X, X, X3 X,

The substring length, denoted by ! (number of bits per variable), deter-
mines the total number of values (2! ) that each design parameter can take.

The minimum substring length I; for the i*" design variable depends on
the lower and upper bound respectively X" and X%* as well as on the
desired resolution (g;) for this variable:

min max

l; = log, XX
&q

Very short substrings (I < 3) result in a too low resolution and the GA may
not be able to accurately locate the minimum. Longer substrings (3 < ! < 10)
enable a higher resolution but cause a larger search space, making it difficult
to find the complete optimal binary string. Systematic testing shows that
[ = 8 is the optimum substring length, independent of the number of unknown
parameters.
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Fig. 6.4 Dependence of GA solution quality on population size for the 27 parameter test
case

Selection scheme

Different selection schemes have been proposed. One is the roulette: a system
in which the chance that an individual is selected increases proportional with
1/OF. This scheme favors the best individuals as parents. It is elitist and
has larger chances to get stuck in a local optimum.

In the tournament selection, “s” individuals are chosen randomly from
the population and the individual with the highest fitness (lowest OF) is
selected as parent. The same process is repeated to find the second parent.
The parameter s is called the tournament size and can take values between
1 and N (population size). Larger values of s give more chances to the best
samples to be selected and to create offsprings. It favors a rapid, although
perhaps premature, convergence to a local optimum. Very small values of
s result in a more random selection of parents. Tests have shown that a
standard value of s = 2 gives the best results.

Population size

Fixing the total number of function evaluations at 5,000, the number of gen-
erations ¢ is a consequence of the population size N (N x t = 5,000). Fig-
ure 6.4 shows the solution quality at the end of the GA run in function of the
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population size. The solution quality is maximum for N = 11 to 20. Small
populations (N < 10) converge prematurely to suboptimal solutions, due to a
lack of high performing samples in the initial population. Larger populations
(N > 25) have a sluggish convergence to the optimal geometry because less
generations are allowed.

Crossover probability

In a single-point crossover operator, both parent strings are cut at a random
place and the right-side portions of both strings are swapped with the prob-
ability p. (Fig. 6.3). In case of uniform crossover, the value of p. defines the
probability that crossover is applied per bit of the complete parent string.
High values of p. increase mixing of string parts but at the same time, in-
crease the disruption of good string parts. Low values limit the search to
combinations of samples in the existing design space. Experiments confirm
that a single point crossover with probability p. = 0.5 is optimal.

Mutation probability

The mutation operator creates new individuals by changing in the offspring
strings a “1” to a “0” or vice versa. The mutation probability py, is defined
as the probability that a bit of a string is flipped. Systematic numerical
experiments confirm that the optimum setting for the mutation probability
is pm = 1/(N x 1) for all optimizations. This corresponds to changing on
average one bit at every generation.

Figure 6.5 shows how an optimization of the GA parameter settings can
lead to an improved and smoother GA convergence.

Creep mutation and Gray coding

Changing one digit in a binary code may result in a large variation of the
corresponding digital value: i.e., the small difference between 0111 and 1111
corresponds to a doubling of the digital value. Small variations of the digital
value may require a large number of binary digits to be changed: i.e., 0111
and 1000 are adjacent digital values but all four digits are different. This dis-
continuous relation between the digital value and binary string may confuse
the GA optimizer. Creep mutation tries to avoid this by limiting the change
of the real value to a binary step length [5]. Gray coding uses an algorithm in
which similar binary strings correspond to adjacent digital values. In contrast
to what could be expected, no acceleration of convergence was obtained with
either one of these approaches.
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Fig. 6.5 GA convergence for a 27 parameter test case (standard versus optimal parameter
setting)

6.2.2 Objective Function

The OF measures how far a geometry satisfies the aero-requirements and if
the performance goals that have been set forward are reached.

High aero-performance is not the only objective of an optimization. A
good design must also provide good off-design performance (multipoint op-
timization) and respect the mechanical and manufacturing constraints (mul-
tidisciplinary optimization). Some constraints must be satisfied without any
compromise (i.e., maximum stress level). They result in an inequality and a
more detailed discussion is given in Sect. 6.6.2. Others tolerate some margin
(i.e., cost or weight) that can be corrected for after the design is finished (i.e.,
by adjusting the blade length to achieve the required mass flow). A possi-
ble alternative for these inequalities is to add penalty terms to the OF that
increase when the constraints are violated [13].

The following lists some contributions to the global OF that are common
for the different applications. Each term is multiplied by a weight factor to
adjust its relative importance in the optimization procedure.

OFQD:wn'Pperf+wa'PaeroBC+wm'Pmech""wM'PMach

+wq - Paischarge + WG - Paeom + Ws - Pside
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Fig. 6.6 Variation of penalty function for incorrect mass flow

Pyerf is the penalty for non-optimum performance and increases with de-
creasing efficiency (n)

Pperf = max Hnreq - ’r]‘ 700]

Minimizing this term corresponds to maximizing the efficiency. The re-
quired efficiency 7yeq is set to an unachievable value (for instance 1.0) so
that this penalty never goes to zero. The argument is that, after all other
requirements are met, the efficiency should still be maximized.

PacroBc is the penalty for violating the aerodynamic boundary conditions.
The purpose of this penalty is to enforce the boundary conditions and require-
ments at the inlet and outlet of the computational domain that cannot be
imposed such as: the outlet flow angle (32), the mass flow or pressure ratio,
etc. The penalties for not respecting the boundary conditions start increasing
when the actual values differ from the target values by more than a prede-
fined tolerance. Following penalty for incorrect mass flow increases when the
mass flow differs more than 2% from the required value (Fig. 6.6):

. . 2
Prass = <max {w ~0.02, O.D

Mreq

Ppech is the penalty for not respecting the mechanical constraints. The
latter must be satisfied without compromise because exceeding the maximum
stress level cannot be tolerated as it may destroy the device. A rigorous
respect of the minimum stress limits requires a Finite Element stress Analysis
(FEA) and will be discussed in detail in Sect. 6.6. The computational effort
can be drastically reduced if one can replace the mechanical constraints by
simpler geometrical ones that are much easier to verify.

The large stresses in the blade root section of radial impellers are a complex
function of the blade curvature and lean. The subsequent deformations can
reduce the tip clearance to zero which may lead to the destruction of the
optimized geometry. Traditional design systems limit the lean (Fig. 6.7) to a
maximum value based on experience and simple stress models.

Prescribing the radial variation of the cross section area of a fan blade or
low-pressure (LP) turbine blade is a common way to control the centrifu-
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(a) (b)

Fig. 6.7 Definition of (a) lean and (b) rake in radial impellers

gal stresses. The parameters of primary importance in controlling the blade
bending due to the static and dynamic load in an axial compressor or turbine
blade are: minimum and maximum moment of inertia (Iyin) and (Imax) of
the cross sections and the direction x of its maximum value.

Palach is the penalty for a non-optimum Mach number distribution. An-
alyzing the Mach number distribution may help to rank blades that have
nearly the same loss coefficient. NS solvers are not always reliable in terms
of transition modeling and erroneous penalty function may occur when the
transition point is incorrectly located. Transition criteria based on the Mach
number distribution may help to relieve this uncertainty.

One is also not interested in designing blades that have very good per-
formance at design point but for which the flow is likely to separate (with
large increase in losses) at slightly off-design conditions. A rigorous way of
verifying the operating range is discussed in Sect. 6.5. A simpler approach
accounts for the changes in the Mach number distribution that can be ex-
pected at off-design. It increases the chances for good performance of the
blade over a wide range of operating conditions without the cost of extra NS
computations.

The Mach number penalties that have been formulated for turbine blade
optimizations are presented in Sect. 6.4. They tend to achieve a continu-
ous flow acceleration with minimum deceleration. Mach number penalties for
radial compressor impellers are presented in Sect. 6.6.

Pischarge can be used to penalize the spanwise distortion of the flow at the
exit. It results from the idea that a more uniform exit flow has a favorable
effect on the downstream diffuser or blade row and hence, on the stage effi-
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ciency. The distortion penalty quantifies the difference between the average
flow angle at 20% (hub) and 80% (shroud) span with the one at midspan

2.0
Pdist — 1= Qmidspan
Qhub + Qshroud
The penalty for flow skewness is proportional to the difference between
the flow angle, or any other flow quantity, at 20% and 80% span, non dimen-
sionalized by the average value

2~(04hub - ashroud)
Qhub T Qshroud

P. skew —

Pgeom is the penalty for violating the geometrical constraints. They either
are related to the mechanical integrity or assure dimensional agreement with
other components.

Psiqe is the penalty for violating the side constraints. Depending on the
application, the weight, manufacturing and maintenance cost may be impor-
tant issues and some geometries can be favored by formulating an appropriate
penalty.

The penalties and weight factors are specific for each design. An appro-
priate choice of the weights can be based on overall design criteria such as
energy savings, total lifetime cost, etc. Plotting the different contributions to
the OF as a Pareto front in the fitness space (Fig. 6.8) facilitates a trade-off
between different counteracting goals. This is particularly useful for problems
with only 2 or 3 groups of OF where the Pareto front can easily be visualized.
However it is much more cumbersome in higher order problems or when the
Pareto front is not convex.

6.2.3 Parameterization

The number of coordinates needed for the complete definition of an arbitrary
geometry is infinite and a direct calculation of all of them by a numerical op-
timization procedure is not feasible. A reduction of the number of variables
by an adequate parameterization of the geometry is required. It is important
that the parameterization does not exclude any physically-acceptable geom-
etry. A blade shape that can not be generated can of course not be found by
the optimizer, even if it would be the optimum one. The parameterization
should be sufficiently simple to limit the number of variables that need to
be defined. The use of Bézier curves or B-splines to describe the geometry
is recommended. This assures smoothness of the surface and facilitates the
transfer of the data to Computer-Aided Design and Manufacturing (CAD-
CAM) systems. Different parameterizations will be explained in Sects. 6.4
to 6.6.
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6.3 Two-level Optimization

The system presented here (Fig. 6.9) is developed at the von Kérman Institute
[13] and makes use of a GA to minimize the OF. A GA requires a large
number of function evaluations. Using an expensive NS solver for all function
evaluations is in most cases, prohibitive in terms of computer effort.

One way to reduce the computational effort is by working on different levels
of sophistication. Fast but approximate prediction methods can be used to
find a near optimum geometry, which is then further verified and refined
by a more accurate but also more expensive analysis. Approximations of
the NS solver and FEA, called meta-functions, are used for the first level
optimization. The more accurate but expensive NS and FEA are used only
to verify the accuracy of the meta-function predictions.

Meta-functions not only need to be fast but must also be accurate. The
GA can only converge to the real optimum if it receives accurate information
about the impact of a geometry change on the performance. Different type
of meta-functions have been proposed. The main problem is the risk that
the discrepancies between the predictions by the meta-function and the NS
results drive the optimizer to a false optimum. Euler and NS solutions on
coarse grids are sometimes proposed as meta-functions. They are fast but
inaccurate and using them for performance predictions may drive the GA to
a non-optimum combination of design parameters. Any further control by an
accurate NS solver will reveal the inherent inaccuracy of the fast calculation
methods but there is no mechanism to correct for it.
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Fig. 6.9 Flowchart of optimization system

The meta-function used in the present method is an Artificial Neural Net-
work (ANN). This interpolator uses the information contained in the database
to correlate the performance to the geometry, similar to what is done by an
NS solver. However, an ANN is a very fast predictor and allows the evaluation
of the numerous geometries generated by the GA with much less effort than
an NS solver. Unfortunately, a verification by means of a more accurate but
time consuming NS solver indicates that such a fast prediction is not always
very accurate. The results (geometry and performance) of this verification are
added to the database and a new optimization cycle is started. It is expected
that the new learning on an extended database will result in a more accurate
ANN. This procedure is repeated until the ANN predictions are in agreement
with the NS calculations, i.e., once the GA optimization has been made with
an accurate performance predictor. In this way, there will be no discrepancy
between the optimum found by a GA, driven by the meta-function or by the
results of NS analyses. However, the number of time-consuming NS analy-
ses is much smaller than what would have been required by a GA and NS
combination.

The TRAF3D NS solver [3] is used to predict the aerodynamic perfor-
mance. Similar grids with the same number of cells are used for all compu-
tations to guarantee a comparable accuracy for all the predictions.
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Fig. 6.10 Architecture of a three-layer ANN

6.3.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are used to predict the performance of a
new geometry by means of the information contained in the database. This
requires the learning of the relation between the n input data (geometry
parameters) of a process (NS solver) and the m outputs of the process (mass
flow, efficiency, local pressures and temperatures, velocities, etc.). The use
of an exact ANN predictor could reduce the effort to one design cycle by
the GA. Hence, improving the accuracy of the ANN will shorten the design
process.

An ANN (Fig. 6.10) is composed of n,k, m elementary processing units
called neurons or nodes. These nodes are organized in layers and joined with
connections (synapses) of different intensity, called the connection weight (1)
to form a parallel architecture. Each node performs two operations: the first
one is the summation of all the incoming signals and a bias b;, the second
one is the transformation of the signal by using a transfer function (FT'). For
the first layer this corresponds to:

ay(i) = FTy [ > Wi(i,§).n(j) + b1 (i)

j=1

A network is generally composed of several layers: an input layer, zero,
one or more hidden layers and one output layer. The coefficients are defined
by a learning procedure relating the output to the input data.

The main purpose of ANN is not to reproduce the existing database with
maximum accuracy but to predict the performance of new geometries it has
not seen before, i.e., to generalize. A well-trained ANN may show a less
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accurate reproduction of the database samples but predicts more realistic
values for new geometries. This is illustrated in Fig. 6.11 comparing an over-
trained ANN function with a well trained one. The first one reproduces the
database samples exactly but the large oscillations of the function between
the database values result in unrealistic predictions of the function at the
intermediate locations.

Three conditions are necessary, although not sufficient, for a good gener-
alization.

The first one is that the inputs to the ANN contain sufficient information
pertaining to the target, so that one can define a mathematical function
relating correctly outputs to inputs with the desired degree of accuracy. Hence
the designer should select design parameters that are relevant, i.e., that have
an influence on performance.

The second one is that the function to be learned (relating inputs to the
outputs) is smooth. Small changes in the input should produce a small change
in the outputs. Most physical problems are well defined in this respect. How-
ever, the appearance of large separation zones or large changes in shock posi-
tion and strength for small geometrical changes may result in discontinuous
changes of the output and complicate the problem.

The third one requires that the training set is sufficiently large and con-
tains representative samples of all cases that one wants to generalize (the
“population” in statistical terminology). It is difficult to define the minimum
size of the training set that is required. Experience has shown that there is no
advantage in creating a very large database because the design system itself
will generate new geometries until the ANN achieves the required accuracy.

The standard back-propagation technique is the most widely used algo-
rithm for ANN training. The available samples are normally subdivided into
“training”, “test” and “validation” sets. Each of them has its own purpose.

e the training set contains the samples used for the training; that is to define
the parameters (weights and bias).

e the test set contains the samples used to assess the generalization capacity
of a fully-specified ANN with given weights and architecture.
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e the validation set, if used, contains the samples used to tune the ANN
architecture (not the weights), for example to choose the number of hidden
unit layers and nodes.

6.3.2 Database

The main purpose of the database is to provide input to the ANN, i.e.,
information about the relation between the geometry and performance. The
more general and complete this information, the more accurate the ANN
can be and the closer the results of the GA optimization will be to the real
optimum. Hence, a good database may considerably speed up the convergence
to the optimum.

Making a database is an expensive operation because it requires a large
number of 3D NS calculations. One therefore aims for the smallest possible
database containing the maximum amount of information about the available
design space. This means a maximum of relevant information with minimum
redundancy so that the impact of every design parameter is included but only
once.

Any information missing in the database may result in an erroneous ANN
that could drive the GA towards a non optimum geometry. This will slow
down the convergence but will not lead to an incorrect final result since
the NS analysis of that geometry will provide the missing information when
added to the database.

A more risky situation is the one where an incomplete database results in
an erroneous extrapolation by the ANN, predicting a low performance (large
OF) in that part of the design space where in reality the OF is low. As a
consequence, the corresponding geometry will never be selected by the GA
and no information will be generated to correct this error. This is an addi-
tional argument to assure that the initial database covers the whole design
space.

Design Of Experiment (DOE) refers to the process of planning an exper-
iment so that the appropriate data, when analyzed by statistical methods,
result in valid and objective conclusions. It is used in the optimization process
to select the most significant geometries to be stored in the database. The
theory of DOE is explained in many excellent textbooks [11]. The advantages
of using DOE, to construct the database for the optimization program, have
been evaluated in detail by Kostrewa et al. [9].

Factorial designs make a systematic scan of the design space. The common
one is where each of the n design parameters has only two values correspond-
ing to the “high” or “low” level of the design variable. A complete coverage
of such a design requires 2™ observations and is called full factorial DOE.
Fractional factorial DOE requires 2" P analyses where p defines the fraction
of lower order combinations that are not analyzed. A typical initial database
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Fig. 6.12 Global error of ANN as a function of Database samples

contains a total of 26 = 64 samples. The following evaluates the loss of infor-
mation for a test function with 6 variables.

R =1-0.001(A— D)?*+0.002(C+ E)(F — B) —0.06(A— F)*(F +C)(E + A)

The results of the ANN predictions, trained on the databases defined by
DOE, are compared to those of databases in which the variables are randomly
generated between the prescribed boundaries.

The full factorial design requires 2 = 64 runs to estimate all possible
parameter combinations. The loss of information with fractional designs is
measured by:

6

2
Global error = Z
i=1

t value — predicted val
exact value — predicted value . .

exact value

Comparing the error obtained by means of the DOE technique and by
means of randomly selected samples (Fig. 6.12), clearly shows that for the
same number of NS results in the database, the DOE based predictions are
consistently more accurate than the ones based on the randomly generated
samples.

Randomly generated databases are all different and so is the accuracy of
the ANN predictions. The four randomly generated cases with 8 samples in
the database, show an error that varies between 105 (8b), equal to the one
obtained with the DOE defined database, up to an error that is almost 3
times larger (8a).
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Only 2-level designs (every variable can take two values) and one central-
point run (every value is at the center of the allowed range) are considered
for the database used in following examples. The high and low value of each
design variable are located at 75% and 25% of the parameter range, respec-
tively. The central point is the mid value (50%). The range is defined by the
designer based on his experience about feasible geometries and mechanical
constraints.

6.4 Single Point Optimization of Turbine Blade

The optimizing design procedure has been successfully tested on a large num-
ber of designs and will be illustrated here by the design of a 2D highly loaded
axial turbine blade section.

6.4.1 2D Blade Geometry Definition

The geometry definition, described here, makes use of Bézier curves to define
the camber line and the blade suction and pressure side relative to the camber
line.

The camber line is defined by 3 control points (Fig. 6.13.a). The first one
coincides with the leading edge. The second one is at the trailing edge. Its
position relative to the leading edge is defined by the stagger angle () and
axial chord length Lref. A third control point is located at the intersection
between the tangent to the camber at leading and trailing edge. It is defined
by the angles 81y, and Bon, with the axial direction.

The suction side is defined by a Bézier curve starting at the leading edge
and ending at the tangent to a circle of radius Rte, defining the trailing edge
thickness. The camber line is divided in a number of intervals which can be of
equal or variable length using a stretching factor (Fig. 6.13.b). The lengths
Tss(1), Tss(2), Tss(3), Tss(4), Tss(5), Tss(6) and Tss(7) measured in the
direction perpendicular to the camber line determine the position of the 7
Bézier control points of the suction side.

The first Bézier control point coincides with the leading edge (start of
the camber line) (Fig. 6.14.a) and the third point is the one defined by the
parameter Tss(1). The second Bézier control point is defined by imposing
that the suction side starts perpendicularly to the camber line at the leading
edge and that the suction side curvature radius at the leading edge equals
Rle. This condition defines the length Tss(0).

dte is the wedge angle between suction and pressure side at the trailing
edge (Fig. 6.14.b). A Bézier control point is defined as the intersection of the
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Fig. 6.13 Geometry model: (a) definition of the camber line and (b) the suction side

tangent at the trailing edge circle and the line perpendicular to the camber
line at point 8.

The pressure side is defined in a way similar to the suction side. Imposing
the same Rle as on the suction side assures a continuous curvature at the
leading edge. Figure 6.15 demonstrates the capabilities of the method to
represent the large variety of blades encountered in axial turbines.
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Fig. 6.15 Typical turbine blade sections generated by a 17-parameter model

6.4.2 Penalty for Non-optimum Mach Number
Distribution Pypach

The characteristics of the optimum Mach number M distribution for 2D
turbine blades are well known and allow the definition of penalties for a non
optimum Mach number distribution. These penalties can also be derived from
experimental correlations.
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Fig. 6.16 Parametric representation of the Mach number distribution

The OF used in a turbine blade optimization [15] increases when there is
a high probability of early transition, laminar or turbulent separation or poor
off-design performances. It is a sum of penalties based on the Mach number
in 20 points on each side of the blade (Fig. 6.16). The values may be defined
from an NS calculation or predicted by the ANN.

e Penalty on the local slope of the Mach number distribution: a minimum
positive slope of the Mach number distribution is required on the front
part of the suction side in order to avoid deterioration of the performance
at off-design incidence angle.

e Penalty on the second derivative of the Mach number distribution: the op-
timization process may result in a wavy Mach number distribution because
of local changes in curvature radius of the blade surface. This may have
a small impact on blade losses if the boundary layer is already turbulent
but can deteriorate the off-design performances of the blade. One therefore
penalizes the Mach number distribution for which the second derivative
changes sign, i.e., with an inflection point in the suction side Mach number
distribution.

e Penalty on the deceleration: it is important to limit the deceleration on the
front part of the blade pressure side in order to avoid separation at negative
incidence angles. This penalty is proportional to the difference between the
first maximum Mach number found on the pressure side (starting from the
stagnation point) and the minimum Mach number along the pressure side.
It is also well known that the deceleration on the second half of the suction
side has an important influence on the losses and in case of low Reynolds
number may lead to flow separation.
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Table 6.1 Imposed parameters

Bl (deg.) 18.0

Mis 0.90
Re 5.8 x 105
~=Cp/Cv 1.4
Tu (%) 4
Lref (m) 0.0520
Pitch/Lref 1.0393

TE thick. (m) 1.2 x 1073

Table 6.2 Mechanical and aerodynamical requirements

Imposed After
Min. Max. 18 modif.
Surface (m?)  5.20 x 107* 6.80 x 10~% 5.36 x 104
I'min(m?) 7.50 x 1079 1.20 x 108 7.45 x 1079
Imax(m?) 1.25 x 1077 2.20 x 107 1.28 x 1077
Klmax (deg.) -50.0 -30.0 -37.5
Bl (deg.) -57.8 -57.8 -57.62
Loss coef. (%) 0.0 0.0 1.90

6.4.3 Design of a Transonic Turbine Blade

The method is illustrated by the redesign of a transonic turbine blade with
an outlet isentropic Mach number of 0.9. The design requirements imposed
for this example are displayed in Tables 6.1 and 6.2.

The best blade of the initial database is used as starting geometry. The
Mach number distribution has a shock at mid-chord (Fig. 6.17.a). The small
constant velocity region on the suction side close to the leading edge and the
low velocity on the pressure side close to the leading edge indicate that the
incidence angle on the initial blade is too large. After the first modification
(one GA and NS verification), this incidence angle has been partially reduced
by decreasing the stagger angle (Fig. 6.17.b). The shock intensity is also
smaller but the suction side Mach number distribution is still wavy. The
shock completely disappeared after 13 design iterations. The stagger angle
has decreased in order to adapt the blade geometry to the prescribed inlet
flow angle. The smooth shock-free Mach number distribution is reflected in
the low loss coefficient.

Figure 6.18 compares the value of the OF predicted by the ANN with the
one predicted by the NS solver during the design process. The value of the
OF computed by the approximate model decreases until iteration 13 after
which only very small improvements are found. The value predicted by the NS
solver shows large discrepancies between both predictions at iteration 2, 5 and
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Fig. 6.17 Variation of (a) Mach number and (b) blade geometry during convergence

9. It indicates that during the first design iterations, the ANN predictions
are not very accurate because the database does not sufficiently cover the
relevant design space. However this shortcoming is remediated by adding
new geometries to the database. Since these blades are close to the desired
operating point they provide very valuable information and the ANN becomes
more and more accurate. Starting from iteration 13, the ANN predictions
are very reliable. This illustrates the self-learning capacity of the proposed
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Fig. 6.18 Convergence history

Table 6.3 Inlet conditions at the 3 operating points

Low rn Medium m Large m

a(deg) 68. 60. 54.
Pg(Pa)  218395. 213447.  187666.
P3/P3 09157  0.9276  0.9430
TS (K) 365.4 360.3 350.4

procedure. The whole procedure could have been stopped after 15 iterations
but has been continued to verify good convergence.

6.5 Multipoint Optimization of a Low Solidity Diffuser

The radial compressor vaned diffusers provide a higher pressure recovery and
efficiency than vaneless ones but the operating range is limited by stall, at
positive incidence, and diffuser throat choking, at negative incidence. Low
Solidity Diffusers (LSD) are characterized by a small number of short vanes
and do not show a well defined throat section. They intend to stabilize the
flow at low mass flow (avoiding diffuser stall) without limiting the maximum
mass flow by choking. The solidity (chord/pitch) is typically on the order of
1 or less (Fig. 6.19). A multipoint optimization is mandatory for the LSD
design because a wide operating range is the major purpose of these devices.

The optimization of the LSD [12] is done for the 3 operating points listed in
Table 6.3. Inlet conditions are different for each operating point and defined
by the impeller exit flow at the corresponding mass flows.
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Fig. 6.19 Low Solidity Diffusor

The blade geometry is defined by a NACA 65 thickness distribution su-
perposed on a camber line defined by a 4-parameter Bézier curve. A 5"
design parameter is the scale factor for the thickness distribution (between
0.7 and 1.3). The 6 parameter is the number of blades (between 6 and 12).

The performance criteria are the static pressure rise and total pressure
loss, non-dimensionalized by the diffuser inlet dynamic pressure

ijf]_jg—lig , wzilizo_li??
Py — P Py — P

Making the database is quite costly because it requires an NS analysis of
each geometry at three operating points. The initial database is therefore
limited to only 10 geometries requiring 30 NS calculations on a grid with
400,000 cells.

One wants to maximize what the diffuser is supposed to do: i.e., to increase
the static pressure with minimum total pressure losses. The latter is the
difference between the real pressure rise and the isentropic one.

Cp +w= Cpisentropic

The maximum value Cpjsentropic depends on the inlet conditions and dif-
fuser geometry.
The best results have been obtained with the following OF
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Fig. 6.20 Midspan velocity vector of optimized diffuser

OF = (1 - (wlow . C(plovv + Wmed - C’pmcd + Whigh * Ophigh))

FWiow * Wiow + Wmed * Wmed + Whigh * Whigh
Wlow = 0.25 ) Wmed = 0.5 5 Whigh = 0.25

Using three different ANN, dedicated to the performance prediction at the
three operating points, improves the convergence.

The velocity vectors at midspan, shown in Fig. 6.20, indicate attached flow
at all three operating points and hence stable operation at low mass flow as
well as a large pressure rise at high mass flow.
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Fig. 6.21 Multidisciplinary optimization flow chart

6.6 Multidisciplinary Optimization

Mechanical constraints such as maximum stress and deformation have a direct
impact on the turbomachinery integrity and must therefore be rigorously
respected. Some of them can be guaranteed by a simple limitation of a design
parameter and do not require any further analysis. Bird ingestion resistance
may be accounted for by specifying a minimum leading edge radius (Rle) for
fan blades. Corrosion may define the minimum trailing edge radius (Rte) and
blade thickness.

However most of the mechanically unacceptable geometries result from a
combination of different design parameters and cannot be avoided by restrict-
ing the individual parameters. A rigorous approach is the verification of the
stress level by an FEA of the N x ¢t geometries generated by the GA. This
is possible by extending the two-level design method to more than one disci-
pline [18]. The GA, searching for the optimum geometry, gets its input from
the FEA as well as from the NS flow analysis (Fig. 6.21). The same type of
extension can also be made to verify the constraints related to aero-acoustics
or weight limitations.

The multidisciplinary optimization method requires the following exten-
sions: stress predictions by the ANN, FEA stress analysis in parallel with
the NS calculations, an extension of the OF to account for mechanical tar-
gets and the specification of additional design parameters that allow stress
reductions. The main advantages of this approach (Fig. 6.21) are:

e The existence of only one “master” geometry, i.e., the one defined by
the geometrical parameters used in the GA optimizer. This eliminates
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possible approximations and errors when transmitting the geometry from
one discipline to another.

e The existence of a global OF accounting for all design criteria. This allows
a more direct convergence to the optimum geometry without iterations
between the aerodynamically optimum geometry and the mechanically
acceptable one.

e The possibility to do parallel calculations. The different analyses can be
made in parallel if each discipline is independent, i.e., if stress calculations
do not need the pressure distribution on the vanes and flow calculations
are not influenced by geometrical deformations.

The multidisciplinary optimization method is illustrated by the design
of a 20 mm diameter radial compressor for a micro-gas turbine rotating at
500,000 rpm [18]. The corresponding tip speed of 523.6 m/s results in very
high centrifugal stresses. Titanium TI-6AL-4V has been selected for its high
yield stress over mass density ratio (oyea/p). The characteristics used in
the calculation are: Elasticity modulus = 113.8 x 10° Pa, Poisson modulus =
0.342 and mass density = 4.42 x 10 kg/m3.

6.6.1 3D Geometry Definition

The hub and shroud meridional contour of radial impellers are defined by
third-order Bézier curves, between the leading edge and trailing edge section
(Fig. 6.22) [2, 6]. They are fully defined by the control points (X0,R0) to
(X3,R3) at hub and shroud. The axial length (X3-X0) and outlet radius R3
are prescribed. They are the result of a preliminary 1D design where one can
also account for the off-design operation.

The radius R1 should be larger than RO at the shroud because otherwise,
the unshrouded impeller cannot be mounted. One imposes that X2 is smaller
than or equal to X3 at hub and shroud in order to avoid that the impeller exit
bends forward. Restricting the possible variations of the design parameters
to realistic values also accelerates the convergence.

Second-order curves are used for the upstream and downstream extensions.
The points A and B at hub and shroud are automatically adjusted to obtain
a smooth transition between the impeller and the radial inlet section. The
6 unknowns that need to be defined during the optimization process are
indicated by arrows in Fig. 6.22.

The blade camber line 8 distribution at hub and shroud are defined by
cubic Bézier curves in Bernstein polynomial form

B=Bo(1 —u)’+ Bui(l — u)’u+ fa(1 — w)u® + fu’
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Bo is the blade camberline angle at the leading edge hub or shroud (u = 0)
and 5 is the blade trailing edge camber angle (v = 1). Similar curves are
defined for the splitter vane § distributions.

The coordinates 6 of the blade camber line are computed by integrating
the 3 distribution along hub and shroud (Fig. 6.23):

__dm tanf
N R

The leading and trailing edge blade angles 8y and (3 can vary over +5°
around a first estimate of the optimum value. Values of 8; and (5 are not
constrained but the values of #3, obtained by integrating § along hub and
shroud, should not be too different at the training edge, i.e., the trailing edge
rake angle (Fig. 6.7) should be less than 45°.

The splitter trailing edge blade angles are equal to the full blade values at
hub and shroud. This results in 14 design variables for the full and splitter
blade camber line definition.

The impeller blade definition is completed by a parameterized thickness
distribution (Fig. 6.24). Blade thickness distributions at hub and shroud are
function of one parameter: the thickness LE of the ellipse defining the leading
edge. Trailing edge thickness TE is related to LE. The blade thickness is fixed
at the shroud (LE=TE=0.3 mm). The parameter defining the blade thickness
at the hub can vary between 0.3 and 0.6 mm. The same value is used for the
main and splitter blades. This increases the number of design parameters
by 1.

The streamwise position of the splitter blade leading edge is also a design
parameter. It is defined as a percentage of the main blade camber length and

de
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Fig. 6.22 Parameterization of meridional contour. Meridional contour defined by Bézier
control points
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Fig. 6.23 Definition of 0 distribution

Fig. 6.24 Parameterized thickness distribution perpendicular to the blade camber line
(not to scale)

can vary between 20% and 35% at hub and shroud (2 extra design parame-
ters).

The number of blades could also be a design parameter to be optimized,
but has been fixed to 7 for manufacturing reasons. This brings the total
number of design parameters that need to be defined by the optimizer to 23.

6.6.2 Multidisciplinary Objective Function

The OF driving the multidisciplinary optimization increases with decreasing
aero performance and when the aero and mechanical requirements are not
met

OF = wm'Pmcch+ wn'Ppcrf'+wm'Pmass+ w]\l'PMach

The first penalty concerns the mechanical stresses. Limiting the maximum
stress results in an inequality and geometries that do not satisfy this condition
should be eliminated. However, this information about undesired geometries
can also be used to guide the optimization algorithm towards acceptable
ones. This is achieved by adding to the OF an extra term that increases
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Fig. 6.25 Penalty function for not respecting stress limits

when the stress exceeds the prescribed maximum allowable value. Adding
those geometries to the database makes this information available to the
ANN which in turn informs the GA about what part of the design space is
unacceptable in terms of stress level. Those geometries will therefore not be
proposed for further investigation by the NS and FEA.

The penalty increases linearly when a prescribed value cajjowable 1S €X-
ceeded and is zero when the inequality omax < Gallowable 18 true (Fig. 6.25)

Pmech — max Omax — Oallowable 7 0
Oallowable

This weak formulation of the stress constraint does not guarantee that
the proposed geometry satisfies the stress limit in a strict way. It can not be
excluded that an increase of the stress penalty is compensated by an equiva-
lent decrease of another penalty term. However this risk can be minimized by
increasing the weight factor of the stress penalty. The final selection of the
optimum geometry is anyway made by the designer, on the basis of the NS
and FEA results of all geometries produced by the optimization algorithm.

The second penalty term concerns the efficiency and has been already
explained in Sect. 6.2.2

The third penalty verifies the mass flow and has now two contributions.
The first one, explained in Sect. 6.2.2, increases when the total mass flow
differs from the required one by more than a prescribed value. The second
one penalizes the difference in mass flow on both sides of the splitter blade

. . 2
[ Mupper — Miower
Pmassdiﬁ' - -~ ., -
Mupper + Miower

Having the same mass flow in every flow channel will result in a more
uniform impeller exit flow and favors a more uniform distribution of blade
loading.

The penalty on the Mach number is different from the one used for turbine
blades (Sect. 6.4.2) and has two contributions. The first one penalizes negative
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Fig. 6.26 Penalty function for negative loading and loading unbalance in a compressor
with splitter vanes

loading and is proportional to the area between the suction and pressure side
when the pressure side Mach number is higher than the suction side one
(Fig. 6.26). Areas of negative loading are penalized because they result in
extra friction losses without contribution to the pressure rise

1
Pnegativeloading = / maX(Mps(S) - MSS(S)7O.0) - ds
0

The second contribution to the Mach penalty increases with the load un-
balance between main blade and splitter blade. This penalty compares the
area between the suction and pressure side Mach number distribution of main
blade Ay and splitter blade Ay, corrected for the difference in blade length
(Fig. 6.26):

Abl - Asp > 2

F)load unbalance — <
Abl + Asp

6.6.3 Design Conditions and Results

The computational domain starts at constant radius in the radial inlet and
ends in the parallel vaneless diffuser at R/R2 = 1.5 (Fig. 6.22). Part of the
hub surface at the inlet (for R < 4 mm) rotates because it connects the
compressor shaft to the electric generator. The total inlet temperature is
293 K and the total inlet pressure is 1.013 x 10° Pa.
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Table 6.4 List of penalty parameters and weight factors

stress penalty weight 24.0 mass flow difference weight 20.0
efficiency required 82.5 Mach negative loading weight hub 15.0
efficiency penalty weight 40.  Mach negative loading weight shroud 24.0
mass flow required 20.0 g/s Mach loading unbalance weight 1.0
mass flow penalty weight 18.0 Mach loading unbalance weight 1.5

The disk thickness at the compressor rim is 1 mm. It is connected to a
8 mm diameter shaft with a fillet of 2 mm radius, all made of one piece. A
fillet radius of 0.25 mm is applied at the blade hub to limit the local stress
concentrations. The unshrouded impeller has a tip clearance of 0.1 mm, which
is 10% of the exit blade height. This is typical for these small impellers and
one of the reasons for the moderate efficiencies.

The weights in the OF depend on the application and allow emphasis on
performance or on mechanical integrity. They have been determined from
the knowledge gained in previous optimizations and are listed in Table 6.4.
Taking into account the difference in weight factors, an efficiency drop of 1%
is as penalizing as an excess in stress limit of 40/24 = 1.66% (or 6.66 MPa).

The optimization starts from a “baseline” impeller which is the result of
a simple aerodynamic optimization without stress analysis. Although this
geometry has a good efficiency, it cannot be used because an FEA predicts
von Mises stresses in excess of 750 MPa. It serves as a reference for further
optimizations.

The TRAF3D solver [3] with an extension to calculate impellers with split-
ters is used to predict the aerodynamic performance of the radial impellers.
Structured H-grids with 2 x 216 x 48 x 52 (1,090,000 cells) are used for all
computations to guarantee a comparable accuracy for all the samples stored
in the database. All computations are non-adiabatic with wall temperature
fixed at 400 K, as found in a previous study on the heat transfer from the
turbine to the compressor [19].

The commercial code SAMCEF [14] is used for the stress calculation.
Quadratic tetrahedral elements are used as a compromise between element
quality and automatic meshing. Similar grids with 250,000 nodes and 160,000
elements are used for all samples. The grid is refined in areas of stress con-
centrations. Periodic boundary conditions are applied, such that only a 1/7%%
part of the geometry needs to be analyzed. The maximum allowable stress
is a function of the material temperature. A large safety margin, to account
for vibrations and possible local temperature peaks, results in a maximum
allowable value of 400 MPa.

Eight individual ANNs are used: one to predict the efficiency, two to pre-
dict the mass flow in the channels on each side of the splitter, 4 ANNs predict
the Mach number distribution respectively at hub and shroud of the full and
splitter blades and one predicts the maximum stress in the geometry. This
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Fig. 6.27 Convergence history of the optimization

split into dedicated ANNs enhances the accuracy by which important values
such as efficiency and maximum stress can be predicted.

A 2™7P factorial design is used where n is 23 while p is fixed at 17. This
results in a total of 26 = 64 samples in the initial database. An initial database
contains only 53 geometries since 13 geometries defined by the DOE technique
could not be analyzed due to geometrical constraints (intersection between
the main blade and the splitter blade). Two additional geometries have been
added, namely the baseline geometry and the central case. The latter is a
geometry with all parameters at 50% of their range.

Figure 6.27 shows the convergence history of the optimization. The “aero
penalty” (based only on NS predictions of the efficiency, the Mach number
distribution and mass flow), the “stress penalty” (based on the result of
the FEA analyses) and the “total penalty” are all compared to the ones
predicted by the ANNs. One observes a decrease in the discrepancy between
both prediction methods with iteration number. This is the consequence of
an increasing number of samples in the database, resulting in more accurate

ANNSs.
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Fig. 6.28 Aero penalty versus stress penalty for baseline, database and optimized geome-
tries

Only 10 iterations are needed to obtain a very good agreement for the
aero penalty. The ANN predicted stress penalty is zero for every geometry
proposed by the GA. However it takes more than 15 iterations before the
FEA confirms that the proposed geometries do not violate the mechanical
constraints.

The good agreement in both stress and aero penalties over the last 18
iterations indicates that the ANN predictions are reliable. It means that the
same optimum geometry would have been obtained if the GA optimization
had been based on the more sophisticated NS and FEA analyses. Hence no
further improvement can be expected and the optimization procedure can be
stopped after 35 iterations.

The aero penalty is plotted versus the stress penalty in Fig. 6.28. The
database geometries show a good spread. Geometries created during the op-
timization process are all in the region of low penalties. Most of them outper-
form the geometries of the database. Only a few geometries have penalties
of the same order as the database samples. Those geometries are the ones
created during the first 10 iterations when the ANN is still inaccurate.

Figure 6.29 is a zoom on the low penalty region of Fig. 6.28. A large
number of geometries have zero stress penalties but with a different aero
penalty. The geometries corresponding to iteration 17, 49 and 25 have the
lowest aero penalty and satisfy the stress constraints. Details are listed in
Table 6.5. Tteration 2 has the highest efficiency (60.4%) but has a high aero
penalty due to negative loading and loading unbalance. This geometry is also
added to Table 6.5.



184 René A. Van den Braembussche

<& e database
> optimization
> <
T
o <& <
T o ©
®© 104 .
<&
O<><> o
% <&
7 oo < &

w

7 1t49

It 25
1 1 | 1 J

1 2
stress penalty

Fig. 6.29 Zoom on the low penalty region of Fig. 6.28

Table 6.5 Comparison between baseline and optimized impellers

Baseline Iter. 2 Iter. 17 Iter. 25 Iter. 49

nrs (%) 62.34 60.42 60.31 60.06 59.68
Pacro 13.24 14.86 9.14 9.05 9.14
Ploadunbalance 0.06 3.84 0.26 0.04 0.00
OvonMises (MPa) 749. 440 389 367 396
Blade lean (°) 7.8 -11.8 -8.6 7.3 -15.0
1 (g/s) 25.9 19.6 20.2 20.2 20.1
Power (kW) 3.19 2.52 2.61 2.62 2.62
Spec.Pow. (W.s/kg) 1123.2 128.6 129.2 129.7 130.3

From all the geometries created during the optimization, iteration 25 per-
forms best. It has an efficiency a little lower than iteration 17 but less loading
unbalance and the stresses are 33 MPa below the limit. In spite of its high
efficiency, the baseline impeller shows a high aero penalty because of a very
high mass flow.

The influence of the stress penalty on the optimization is clear by com-
paring the values of the baseline impeller with the ones of iteration 25. The
reduction of the maximum stress level with 370 MPa is at the cost of a 2.3%
decrease of efficiency.

Figures 6.30 and 6.31 show the von Mises stresses in the baseline geometry
and the one of iteration 25, respectively. The drastic reduction in stress of
the optimized impeller is due to:
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Fig. 6.31 von Mises stresses due to centrifugal loading in iteration 25

e the reduced blade height at the leading edge, resulting in lower centrifugal
forces at the leading edge hub;

e the increase of blade thickness at the hub;

e the modified blade curvature.

The latter two result in a decrease of the bending stresses.
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Fig. 6.32 Blade lean versus stress and efficiency for database and optimization geometries

The blade lean is positive in the direction of rotation (Fig. 6.7). It re-
sults from the integration of the § distribution at hub and shroud when the
trailing edge rake is limited to 45.0°. It is often limited to a small arbitrary
value for stress reasons. Iteration 49 on Table 6.5 shows that it can be as low
as —15.0° without exceeding the maximum stress limit. Figure 6.32 confirms
that minimum stresses are observed around —15.0°. Several geometries with
good efficiency are found for lean angles between —40.0° to —5.0°. The de-
creasing efficiency for lean angles larger than —5.0° suggests that a limited
negative lean may have a favorable effect on performance.

Figure 6.33 shows the impact of the leading edge blade height on the stress
and efficiency. The radius at the LE shroud (see Fig. 6.22) can vary between
6.5 and 7.5 mm, resulting in a blade height of 4.25 and 5.25 mm, respectively.
Values at 4.5 mm and 5.0 mm are database samples.

Shortening the blades lowers the stresses but the database samples suggest
a small drop in efficiency. This explains the difficulty in maintaining a high
efficiency when reducing the stress. However, the optimized geometries have
shorter vanes and show a high efficiency. This indicates that the efficiency also
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Fig. 6.33 Blade leading edge height versus stress and efficiency

depends on an optimum choice of other parameters. Although they have a
less pronounced influence on stress and efficiency, a correct definition of their
value is needed to reach the optimum. This illustrates the strongly coupled
nature of the design problem and the need for an optimization tool.

6.7 Conclusions

It has been shown how a two-level optimization technique, an adequate pa-
rameter selection for the GA, the use of DOE for the definition of the database
and an optimized learning technique for the ANN can considerably decrease
the computational effort required by evolutionary theories. The proposed pro-
cedure is a self-learning system that makes full use of the expertise gained
during previous designs.

The automated design method can be used with any flow solver and does
not require the definition of a target pressure or Mach number distribution.
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The Mach number-based criteria included in the Objective Function help
enforce the convergence to the optimum and improve the off-design perfor-
mance.

The reduction in computer effort makes the design of customized profiles
and the multipoint optimizations affordable, as illustrated by the design of a
transonic turbine blade and a Low Solidity Diffuser.

The use of a pseudo Objective Function to account for the mechanical
and other constraints is presented, and the advantages and disadvantages are
discussed. It is shown that the method is able to find the optimum combi-
nation of design parameters allowing a drastic reduction of the stresses with
minimum penalty on efficiency.

The optimization algorithm provides the designer more insight into the
multidisciplinary design problem. The main parameters that allow a reduc-
tion of the stresses are identified during the optimization process. This op-
timum combination may result in unexpected geometries that would not be
accepted when using simplified stress criteria.

It has been shown how the use of computerized design techniques is a
powerful tool to cope with the increasing complexity of advanced turboma-
chinery component design. However, the outcome of this valuable support
still depends on the input of the designer in terms of a careful selection of
design parameters, a clear definition of objectives and constraints as well as
validation of results.
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