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Preface

The idea of this book was born during the “Conference on Modelling Fluid
Flow” held in Budapest at the beginning of September 2006. During this oc-
casion, we had decided to propose and thus hold a workshop entitled “Cou-
pling CFD with Optimisation”, based on our rapidly increasing experience
with this highly interesting topic. We were nevertheless surprised to see the
resonating enthusiasm displayed throughout the workshop by the conference
participants.

From the discussions with all the speakers present at this workshop as well
as the survey of the scope of the available books and review articles on this
subject, it became easier to understand this great interest. While there is a
wealth of new research projects that deal with the coupling of Computational
Fluid Dynamics (CFD) and modern Optimization techniques, it is however
difficult to find reference publications on this topic. There are indeed a few,
excellent books available (see also the Introduction), but they are mostly
restricted to aerodynamics, since this has been the first field of CFD for
which optimization has become a tool of major importance. Moreover, the
connection between CFD and Evolutionary Algorithms, often required when
considering more complex systems of equations and physical models, has not
been documented extensively.

Therefore we decided, together with the support of almost all workshop
participants and a few internationally renowned newcomers, to gather and re-
count our experience concerning Optimization based on evaluations obtained
through Computational Fluid Dynamics (a procedure abbreviated in this
book as CFD-O), in order to prepare a book covering most of the relevant
aspects and issues. Thanks to the hard work and constant support of all con-
tributors, it has been finally possible to release this publication almost exactly
one year after the workshop in Budapest. We hope that the interested readers
will find here appropriate answers to the main questions: “What is indeed
CFD-O? What simulation is today possible using CFD-O? How can I rely on
CFD-O for my own applications and which approach should I choose?”
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vi Preface

Our first research project on CFD-O was connected with the Ph.D. super-
vision of Mr. R. Baron at the École Centrale in Paris. He is the creator of our
Optimization library (Opal) and must be thanked here for the quality of his
work and for his unsurpassed motivation. The authors would furthermore like
to thank Ms. Imelda Pasley for her thorough corrections of the manuscript.
The quality of many graphical illustrations has been greatly enhanced by
Mr. Imre Ferencsin.

Magdeburg, Dominique Thévenin
August 2007 Gábor Janiga
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Part I

Generalities and methods



Chapter 1

Introduction

Dominique Thévenin

A book dedicated to optimization applied to practical engineering configura-
tions must probably start with a warning: “optimization” means much more
than “improvement”! It is indeed a pity that so many researchers and engi-
neers still employ the terminology “optimization” in the title or abstract of
their publications when they simply mean in practice that starting from a
non-satisfactory configuration, they have tried two or three other ones and
chosen at the end the best case. This is undoubtedly related to optimization,
but in a very minimalistic sense! In the present book optimization means

the design and operation of a system or process to make it as good as
possible in some defined sense

which is the definition proposed by the WiKi dictionary, that can be con-
sulted under http://en.wiktionary.org/wiki/optimization. As a consequence,
the best possible solution constrained by appropriate conditions should be
found, and not simply a “better” one.

Mathematical optimization methods allowing to identify such a con-
strained, best possible solution have been known for a long time, but have
not permeated all engineering disciplines yet. Concerning fluid dynamics more
specifically, the first applications of optimization are found for aeronautical
problems (see, e.g., as a starting point the relevant chapters of the recent pub-
lication by Capasso and Périaux [2]), in particular to improve wing profile
and flight properties (typically, reduce drag). This is a problem with a high
added-value and involves “only” the basic equations of fluid dynamics (Euler
or Navier-Stokes equations, depending on the investigated properties). This

Dominique Thévenin
Lab. of Fluid Dynamics and Technical Flows,
University of Magdeburg “Otto von Guericke”, Germany
(e-mail: thevenin@ovgu.de)
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Fig. 1.1 Number of publications regarding CFD-O based on the search tool Scopus. The
year 1999 is chosen as reference year and is thus associated to a value of 1

explains why most available books and articles dealing with Optimization
relying on evaluations obtained by Computational Fluid Dynamics (what we
abbreviate in this book as CFD-O, or CFD-based Optimization) concern such
situations. Even then, the number of such books and review articles remains
quite limited. We have so far only found two books published since 1999
that deal exclusively with CFD-O (obviously, a large number of books con-
sider this issue, but only for a single chapter or a few pages). The work of
Mohammadi and Pironneau [5] sets the emphasis on shape optimization for
aeronautical applications using adjoint methods, a topic that will be mostly
considered in Chapters 3 to 5 of the present book. The book by Gunzbur-
guer [4] covers both optimization and control of flows relying on CFD, but
concentrates mostly on control issues in practice and is mainly written as a
tutorial for students. No review article could be found on this topic at all.

In order to get a more global albeit inexact scope of the literature, an
Internet-based literature search has been carried out using the professional
scientific literature search tool Scopus (see http://www.scopus.com). The
year 1999 is retained as reference year and is thus associated to a value
of 1. By comparison, the number of references found by Scopus for all the
years until 2006 is represented in Fig. 1.1. The search criterion considers only
title and abstracts of all corresponding publications and looks for ((CFD or
Computational Fluid Dynamics) and (Optimization or Optimisation)). This
is obviously a very nonspecific search and hence will leave out a few relevant
publications as well as identify several publications for which “Optimization”
simply means “Improvement”, as explained previously. It is nevertheless in-
teresting to identify the trend associated with CFD-O. As seen in Fig. 1.1,
the number of corresponding publications has multiplied by a factor of 12
within 7 years demonstrating the rapid development of this field.
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It seems therefore appropriate to prepare an extensive work on CFD-O.
For this purpose, both theoretical foundations and practical engineering ap-
plications of optimization relying on CFD evaluations should be presented in
a unified framework. This is the main challenge of the present publication.
In what follows the first three chapters illustrate the considered issues and
introduce most mathematical tools needed to tackle this problem, in par-
ticular when considering adjoint methods which are mathematically much
more demanding. The subsequent five chapters cover a variety of specific
engineering applications (aerospace, turbomachines, automotive, heat trans-
fer, papermaking) illustrating different possibilities to carry out successfully
CFD-O depending on varying requirements concerning accuracy, computing
times and/or complexity. This should allow most readers to find both the
needed theoretical background and examples of practical realizations very
similar to her/his own problems, so that the first few steps on the long way
toward a successful CFD-O should be greatly facilitated.

In order to make it even easier, let us try now to illustrate the challenges
of CFD-O using only basic concepts. In Fig. 1.2 the simplest possible opti-
mization problem is considered: find the input parameter (sometimes called
degree of freedom) that minimizes the objective function (OF , sometimes
also called cost function) for an analytically known, smooth function. This
is a case with a single parameter (or degree of freedom, the x-coordinate in
Fig. 1.2) and a single objective (the y-coordinate in Fig. 1.2) with an OF
involving only a single minimum. It is therefore an extremely simplified con-
figuration almost never found in practice. It could nevertheless represent a
problem found when thermodynamically optimizing a process [1], e.g., min-
imizing exergy loss when varying one process parameter, knowing analyti-
cally all thermodynamical properties. In such a case, the optimization could
in principle be carried out by hand, computing the full functional behavior,
since this will be quite trivial. A standard gradient-based (also called “steep-
est descent”) algorithm [3] would easily find the solution of this basic problem.
Otherwise, any optimization technique presented in this book would also be
able to identify the optimum within a few seconds of computing time.

The picture presented in Fig. 1.2 is somewhat misleading, since it suggests
that the full function OF (x) is known. If this would be the case, the engineer
in charge could obviously identify the optimal solution at first glance without
resorting to any optimization algorithm! In practice, only a discrete set of
points OF (xi) with i . . .Np will be known at the end of the process: these
are the points for which a CFD-based evaluation has been requested. This
issue is illustrated in Fig. 1.3 where the successive points obtained by a simple
steepest-descent algorithm are shown schematically using ∗-symbols on top
of the (in fact unknown) objective function represented by the solid line in
the background.

To further increase the relevance of the considered problem, Figure 1.4
should now be considered. It involves again a single parameter (x-axis) and
a single objective (y-axis) for an analytically known, smooth function, but
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Fig. 1.2 Schematic representation of the simplest possible optimization problem involving
a single parameter, a single objective and an objective function with a single minimum

shows this time two minima. One of those is obviously only a local minimum,
while the other one corresponds to the optimal parameter which should be
found. This configuration illustrates one major difficulty of optimization, not
specific to CFD-O: a robust optimization algorithm must be able to cope with
local minima, avoiding to get “stuck” into them. For a classical, steepest-
descent search, the success would, in the case illustrated in Fig. 1.4 usually
depend on the starting point for the search algorithm: starting from Point 1
would lead to the optimal solution, while a search initiated at Point 2 would
end at the local minimum. Obviously, for practical applications, it is not a
good idea to rely too much on luck and hope that the starting point will
always be the right one! Therefore, solutions have to be found to take the
optimization algorithm “out” of possible local minima. Practical solutions
have been proposed for most existing optimization methods, but will be usu-
ally problem-dependent. In practice, the issue of local minima hinders most
classical gradient-based methods and simple ad-hoc procedures like Simplex
optimization [6]. A combination of different optimization algorithms (gradi-
ent method and Evolutionary Algorithms) could for example be employed to
solve this issue.

When trying to get even closer to practical optimization problems involv-
ing CFD, it is necessary now to abandon the idea of an exact evaluation
of the Objective Function. From now on each evaluation is itself the result
of an (approximate) numerical simulation, obtained typically by solving the
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Fig. 1.3 Schematic representation of the simplest possible optimization problem involving
a single parameter, a single objective, and an objective function with a single minimum.
The points really known through a CFD-based evaluation are shown using ∗-symbols (the
starting point for the algorithm is identified by a ◦) on top of the (in fact unknown)
objective function, represented by the solid line in the background

Navier-Stokes equations together with appropriate physical models used for
example to describe turbulent, multiphase or reacting flows. This leads di-
rectly to two new issues:

1. First, many scientific questions are still unsolved concerning such complex
flows. This means that the CFD solution might be indeed quite far from
the real, physical solution. This is of course an essential issue usually called
model validation, but there is no solution for this problem: further studies
are then required until very accurate models become available to describe
complex flows. The optimal solution delivered by the methods considered
in this book will implicitly but obviously rely on the hypothesis that the
CFD evaluations indeed describe correctly the physics of the considered
flows.

2. Second, and more important for this Introduction, the evaluation obtained
by CFD will be subject to a certain amount of numerical uncertainty lead-
ing to a probably small but not necessarily negligible inaccuracy. Several
reasons can be identified for this problem: a discretization grid that is
too coarse in important regions of the flow; an insufficiently low threshold
on the residuals leading to a premature interruption of the iterative solu-
tion of the flow equations; computer round-off errors; spatial or temporal
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0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Point 1

Point 2 

Parameter

O
bj

ec
tiv

e

Fig. 1.4 Schematic representation of a simple optimization problem involving a single
parameter and a single objective. Now, the objective function shows two minima. The
points really known through a CFD-based evaluation are shown using symbols on top of
the (in fact unknown) objective function represented by the solid line in the background.
A gradient-based algorithm starting at Point 1 would probably find the right optimum
(symbols ∗) while the same algorithm starting from Point 2 (symbols +) would most
probably get stuck in the local minimum

discretization errors, etc. Such problems are often to be expected since
the numerical cost of the evaluations is the main problem for CFD-O as
explained at the end of the present Introduction. Therefore, in order to
facilitate CFD-O, many users will try to speed-up the evaluation process
as much as possible, thus using coarse grids or a very limited number of
iterations. As a consequence, the evaluations will be typically associated
with a certain amount of inaccuracy, which will depend on the configura-
tion considered. Obviously, it should remain small enough to allow for a
meaningful optimization. In many cases, it will lead to both a systematic
and to a stochastic evaluation uncertainty as depicted in Fig. 1.5.

The systematic error will move the optimal solution obtained by CFD-O
slightly away from the truly physical, optimal solution. There is no possibility
to solve this problem in principle, apart from using an extremely accurate
numerical procedure. The stochastic error will lead to a specific difficulty:
the appearance of a potentially high number of non-physical, local minima.
It becomes therefore even more important to be able to deal with this issue
in practice, in order to come near enough to the true optimal solution.
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Fig. 1.5 Schematic representation of a simple optimization problem involving a single pa-
rameter and a single objective. The objective function shows two minima. The (unknown)
exact objective function is represented by the solid line in the background while the (un-
known) inaccurate CFD-based evaluation of the objective function is shown as a dashed
line

Finally, real optimization problems found in engineering as well as in fun-
damental research will generally involve several (often too many!) input pa-
rameters (degrees of freedom) and several objectives. In general, these objec-
tives will be furthermore concurrent, meaning that it is impossible to identify
a single set of parameter that would be best for all objectives simultaneously.
Instead, a so-called Pareto Optimal Frontier (POF) will appear, a concept
that will be discussed several times in this book. The POF contains all the
parameter sets that are optimal in the sense of Pareto that is nondominated
by any other realization. In common language, this parameter set belongs
to the elite (the group containing the best configurations), but this group
contains many sets and not a single point any more. The concept of POF is
illustrated schematically in Fig. 1.6.

Moreover, the input parameters are not always continuous, but can also
be discrete numbers, or a combination of continuous and discrete entries.
When considering several input parameters, it will often happen that some
parameter sets do not correspond to any practical configuration as shown in
Chapter 8 of this book. Usually, all the input parameters will be constrained
to some acceptable subspace, possibly much smaller than the full parameter
space.
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Fig. 1.6 Schematic representation of the concept of Pareto Optimal Frontier

After having introduced these notions, the practical limits of CFD-O in
terms of computer requirements have to be discussed: what can be investi-
gated today using CFD-O, and how can it be done? In order to investigate
this point, the natural reference point for discussing the requirements in terms
of computing time (CPU) and computer memory is of course the correspond-
ing requirement for a single evaluation, i.e., for us one CFD simulation of the
considered configuration. Admittedly, each CFD evaluation will usually lead
to slightly different numerical costs (needed computing time and computer
memory), but the variations are normally negligible. On the other hand, the
typical cost of a single CFD evaluation depends tremendously on the con-
sidered problem. Looking for example at the examples presented in the next
chapter of this book:

• one simulation of the burner considering multispecies transport and com-
bustion takes typically about 20 hours of computing time and 1.8 Giga-
bytes (GB) of computer memory;

• one simplified simulation of the turbulent channel flows requires less than 5
seconds of computing time and 10 Megabytes (MB) of computer memory.

In other words, the computing times vary by 5 orders of magnitude and the
computer memory by 3 orders of magnitude. This is typical of what will be
found in practice: simple CFD problems can be solved within seconds on a
standard PC; high-end CFD problems can require weeks of computing times
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and Terabytes (1 TB=1000 GB) of memory on supercomputers. In such cases,
the limits of CFD-O are clear in principle: CFD-O is possible for simple CFD
problems and almost impossible for high-end CFD configurations. This can
be quantified somewhat more precisely by remembering that the optimiza-
tion process will usually require a large number of evaluations (i.e., CFD
computations). Considering again the examples of the next chapter:

• only 64 evaluations corresponding to realizable configurations have been
possible for the burner involving multispecies transport, and this already
at an extremely high computational cost;

• on the other hand, more than 5000 evaluations have been easily carried
out for the simplified turbulent channel flow.

Since the dimension and size of the parameter space (or in other words,
the number of degrees of freedom) directly conditions the requested number
of evaluations to get an accurate estimation of the optimal solution(s), the
feasibility of CFD-O is listed in Table 1.1 where the figures concerning number
of parameters, computing time and memory should only be considered as
typical values, and not as exact limits since this will be clearly problem-
dependent:

Even if this is only a crude description, it corresponds quite well to what
can be found in the literature. When looking for instance at all the examples
presented in this book, no CFD-O has been carried out for cases where a
single CFD-evaluation requires more than a day of computing time. Many
examples require less than one hour of computing time for each evaluation
(CFD-computation). As a rule of thumb for engineering practice, it seems
therefore appropriate to state

CFD-O is possible when the duration of a single CFD computation does
not exceed a few hours at most.

This is of course a disappointing information! There are indeed many inter-
esting applications for which the CFD evaluation is fast enough, as shown in
the present book. But, in many cases involving for example a large, complex,

Table 1.1 Limits of CFD-O

Evaluation cost Optimization cost (# of parameters)
≤ 2 parameters ≥ 3 parameters

low cost
(1 h CPU, 100 MB memory) very easy still possible
high cost
(20 h CPU, 2 GB memory) still possible almost impossible
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three-dimensional flow geometry discretized using millions of elements and
involving complex physics, typical computing times will be days or weeks.
Should we abandon the hope of any optimization for such interesting prob-
lems?

Not necessarily! Since the duration of the complete optimization process
reads in principle “(number of evaluations)×(duration of a single CFD eval-
uation)”, there are at least two clear possibilities to still use CFD-O for such
problems:

1. the first one consists in speeding-up as much as possible the evaluation
procedure;

2. the second one consists in reducing as much as possible the number of
required evaluations.

To speed-up each CFD-based evaluation, different solutions might again
be employed and intelligently combined. It is in principle possible to use,
separately or simultaneously, a physical, a mathematical or an algorithmic
point of view:

• From the physical point of view, speeding-up the evaluation means re-
ducing the model complexity while keeping all (or most) of the needed
coupling processes describing the important physics. This will for example
be demonstrated in the last chapter of this book, where reduced equations
will be partly used instead of the full Navier-Stokes equations, leading
to a tremendous reduction in the needed computing time. It is also em-
ployed in the next chapter when considering optimization of turbulence
model parameters: instead of solving the full multi-dimensional Reynolds-
Averaged Navier-Stokes (RANS) equations to describe turbulent channel
flows, a reduced model will be used instead. Model reduction is clearly
a very efficient procedure and should be used every time this is possible.
But it requires of course a clear understanding of all physical processes
controlling the application considered!

• Applied mathematics should also be considered to reduce as much as pos-
sible the needed computing time and computer memory needed by CFD.
This means that the most efficient solution procedures should be employed.
This can lead for example to multigrid acceleration, perhaps to solve the
pressure/velocity coupling equation; or to the implementation of a highly
complex, three-dimensional adaptive unstructured grid or Adaptive Mesh
Refinement, in order to drastically reduce the needed number of discretiza-
tion elements; or to an efficient pre-conditioning of the system. None of
these are specific to CFD-O. But clearly, an experienced CFD specialist
has a better chance to succeed also in CFD-O!

• Finally, the practical coding of the CFD evaluation should also be im-
proved as much as possible. From an algorithmic point of view, this will
mean in particular the adaptation of the code to the properties of the
employed computer: perhaps a vector, more often today a parallel system.
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Optimization loop

Parallel, level 1: 6 simultaneous evaluations
in parallel

CFD1 CFD2 CFD3 CFD4 CFD5 CFD61 2 3 4 5 6

Parallel, level 2: parallel CFD
using 3 nodes for speed-up

Evaluation results

Fig. 1.7 Principle of a double-layer parallelization as might be used for example when

carrying out CFD-O with Evolutionary Algorithms. A very small parallel cluster with 18
nodes is represented here to facilitate the graphical illustration, but this technique could be
used without modification on a much larger parallel computer, using hundreds or thousands
of nodes

Clearly, parallelizing the CFD evaluation using an adequate number of
processors can drastically reduce the user waiting time, but not really the
“computing” time, since the accounting of CPU hours usually relies on
the cumulated computing time on all nodes. Nevertheless, CFD on par-
allel computers might easily be used to bring the duration of one single
evaluation from 1 day down to 1 hour, just using perhaps 30 processors.

The advantage of parallelization for CFD-O can be even two-fold. It is in-
deed not only possible to parallelize each CFD evaluation, but very often, the
optimization loop itself can be parallelized again. This is for example demon-
strated in the next chapter considering Evolutionary Algorithms (EA). Using
a farmer/worker paradigm on a multiprocessor machine, CFD-O relying on
EA is in principle a so-called embarassingly parallel application for which a
linear speed-up is expected when increasing the number of employed nodes.
In this case, one can thus end up with the structure presented in Fig. 1.7
where a double layer of parallelization can be used on a parallel supercom-
puter with a large number of nodes that should lead to a huge reduction
of the user waiting time. Such a structure, in principle easy to implement,
could allow CFD-O based on EA for very complex configurations provided
an appropriate parallel computer is available.
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Let us come now to the second possibility mentioned previously: reduce
as much as possible the needed number of evaluations. Here again, at least
two different sub-methods can be identified for this purpose:

• the first one consists in replacing a CFD-based evaluation by an appro-
priate approximation of it. Depending on how this is done, this could also
be implemented as a model reduction and is thus related to the first item
listed in the previous list. But using Artificial Neural Networks, as done
in the Chapter 6 of this book, or some other kind of intelligent “interpo-
lation” in the broadest sense like the Response Surface Technique could
be seen indeed as a reduction of the number of needed CFD-evaluations.
As demonstrated in the present book, this method can be very efficient
to speed-up the full optimization procedure. Nevertheless, it is obvious
that great care must be taken, since the alternative evaluation method
should not falsify in any way the evolution of the optimization algorithm.
It is therefore not at all a trivial task to identify suitable approximation
methods!

• the second one leads again back to applied mathematicians. They have al-
ready recognized a long time ago the issues associated with a large number
of evaluations, and indeed proposed an alternative formulation, “optimal”
from the point of view of numerical analysis: the adjoint method. Due to
its importance for many practical problems, in particular in the aerospace
industry, three chapters of this book (3 to 5) will be mostly dedicated to
CFD-O based on adjoint methods. In principle, the adjoint approach re-
quires not much more than a “single evaluation”, which sounds almost too
good to be true! One difficulty of the adjoint approach is its formal com-
plexity for the common engineer, perhaps not familiar with all the needed
mathematical concepts. It is our hope that the corresponding chapters will
help such users understand how this method works. But two other major
difficulties are more or less inherent to the adjoint approach itself:

– a suitable consistent adjoint system must first be identified for the
considered system of equations. While this is easily done (and well-
documented in the literature), e.g., for the Euler equations, the task
will become much more difficult when considering complex, multiphysics
problems involving perhaps a turbulent multiphase flow with chemical
reactions and concurrent objectives.

– furthermore, the adjoint approach requires a full knowledge of the inter-
mediate approximations on the way to the full solution of the system of
equations solved by CFD. In simple words, this means that the adjoint
approach, while reducing tremendously the requested number of evalu-
ations (and thus to a large extent the needed computing time), will lead
to a huge increase of the requested computer memory which will again
become a major problem for complex, three-dimensional flows involving
many unknowns at each discretization point.
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Fig. 1.8 Principle requirements of CFD-O in terms of computing time and computer
memory. Again, the figures listed here are just orders of magnitude to help the reader, and
should by no means be considered as exact limits

Fig. 1.9 What is the true connection between Optimization and Evolutionary Algorithms?
(reproduction courtesy of Noémi Janiga)

To summarize, one ends up with the schematic picture shown in Fig. 1.8.
This will hopefully help any interested user to decide if CFD-O is possible
at all for a specific application and how to tackle the problem. If now you
need to know more, well. . . just read the book!
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Chapter 2

A Few Illustrative Examples of
CFD-based Optimization
Heat Exchanger, Laminar Burner and
Turbulence Modeling

Gábor Janiga

Abstract In this chapter, several multi-objective design optimizations are
performed in order to illustrate major issues associated with CFD-based op-
timization. First, a heat exchanger configuration (Case A) is considered using
the coupled solution of the flow/heat transfer processes. The aim of the pro-
cedure is to find the positions of the tubes most favorable to simultaneously
maximize heat exchange while obtaining a minimum pressure loss.

Next, the optimization of the flame shape of a laminar burner is investi-
gated when varying the fuel/air ratio in a primary and a secondary inlet (Case
B). The objectives are to reduce the CO emission at a prescribed distance
from the injection plane and to obtain the most homogeneous temperature
profile at the same position. The flow involving chemical reactions is solved
using the in-house Computational Fluid Dynamics (CFD) code UGC+. These
two cases are the continuation of our previous studies, introducing new re-
sults and new aspects.

The last case presented here is a new proposal to optimize the model pa-
rameters of an engineering turbulence model (Case C).

In all the presented cases, an Evolutionary Algorithm (EA) is applied to
find the optimal configurations. An in-house computer package, called Opal,
performs the optimization process in a fully automatic manner. The EA relies
on a relatively large number of simulations which may result in a consider-
able computational effort, depending on the configuration. The procedure can
thus be performed in parallel on a Linux PC-cluster to reduce user waiting
time.

Gábor Janiga
Lab. of Fluid Dynamics and Technical Flows,
University of Magdeburg “Otto von Guericke”, Germany
(e-mail: janiga@ovgu.de)
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2.1 Introduction

Designing optimal shapes or optimal configurations for practical engineer-
ing applications has been the subject of numerous publications during the
last decade. Generic and robust search methods inside the design space, such
as Evolutionary Algorithms (EAs), offer several attractive features for such
problems [38]. The basic idea associated with the EA approach is to search
for optimal solutions using an analogy to the evolution theory. During the
iteration (or “evolution” using EA terminology) procedure, the decision vari-
ables or genes are manipulated using various operators (selection, combina-
tion, crossover or mutation) to create new design populations, i.e., new sets
of decision variables. For simpler optimization problems, more classical op-
timization methods, like the Simplex approach, are often better adapted to
find the optimal solution within a small number of iterations [74].

The main goal of this work is to achieve cost-efficient design optimization
of problems involving complex flows with heat transfer or chemical reactions
using Computational Fluid Dynamics (CFD) codes for practical configura-
tions, while keeping reasonable overall computing times.

Classical optimization techniques, like gradient-based methods are known
for their lack of robustness and for their tendency to fall into local op-
tima. Generic and robust search methods, such as EAs [16, 34], offer several
attractive features and have been used widely for design shape optimiza-
tion [1, 48, 55, 62, 64]. They can, in particular, be used for multi-objective
multi-parameter problems. They have been successfully tested in many prac-
tical cases, for example for design shape optimization in the aerospace
[1, 24, 54, 55, 64] and automotive industry [61]. The use of a fully automatic
EA coupled with CFD for a multi-objective problem still remains limited by
the computing time and is up to now far from being a practical tool for all
engineering applications.

2.1.1 Purpose

The purpose of this chapter is to illustrate possible methodologies for the
fully automatic optimization of various engineering problems involving CFD.
We are not interested here in developing a new algorithm for optimization.
We solely wish to demonstrate that it is possible to reach an optimal con-
figuration for a case involving coupled fluid flow, heat transfer and chemical
reactions, investigated using CFD within a reasonable computing time, for
configurations very close to practical ones.

In Case A, we consider laminar flows because it corresponds to a realistic
engineering problem, for example for low-power systems. A model configu-
ration is chosen consisting of a cross-flow tube bank heat exchanger. The
problem is to optimize the positions of the tubes so that the heat exchange is
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maximal while keeping a minimal pressure loss. A set of automatized numer-
ical tools are used together to solve this problem involving mesh generation,
CFD, an in-house C++ implementation of EAs, a shell-script and comple-
mentary C programs for automatization and parallelization (Sect. 2.3).

Case B introduces the optimization of the flame shape of a laminar burner.
The fuel/air ratio in a primary and a secondary inlet vary and the objectives
are to reduce the pollutant (CO) emission at a prescribed distance from the
injection plane and to obtain the most homogeneous temperature at the same
location (Sect. 2.4).

In Case C, the model parameters of the k–ω engineering turbulence model
from Wilcox [79] are studied for Reynolds-Averaged Navier-Stokes (RANS)
computation. The objective in this work is to fit the parameters of the model
using optimization, in order to better predict the time-averaged turbulent
velocity profiles in channel flows (Sect. 2.5).

The applied multi-objective Evolutionary Algorithm (MOEA), based on
the concept of Pareto dominance, is described next. In the following sections,
the model problems are introduced first, putting into evidence the require-
ments for the choice of an adequate optimization strategy. The practical
computational methodology for mesh generation, CFD solution and paral-
lelization are presented afterwards. Results are then shown and discussed
followed by concluding remarks.

2.1.2 Heat Exchanger Optimization (Case A)

Improving the performance of an existing configuration often involves opti-
mization. The optimal placement of the heat sources or sinks in a channel,
a cavity or a heat exchanger may affect dramatically the performance of the
device. In these circumstances, CFD have a high potential to easily explore a
large number of different configurations. As a whole, optimization of config-
urations involving the coupled simulation of flow and heat transfer remains
a fairly new field of research.

Heat exchange through smooth and corrugated walls has been for example
investigated in [22]. Shape improvement of a cylinder with heat transfer was
carried out in [15]. The optimal shapes of fins and pins inside heat exchangers
have been examined by various authors [3, 12, 21, 23, 49]. Tiwari et al. [75]
have studied different angles of attack for the delta winglets mounted on the
fin-surface on top of oval-shaped tubes. Heat transfer of finned and non-finned
circular and elliptic tubular arrangements are investigated numerically in [57]
to maximize the total heat transfer rate. The flow through a heated pipe with
an inserted twisted tape was examined in [46] for different slopes. This anal-
ysis is based on the entropy production minimization [9]. Multi-parameter
optimization coupled with CFD was investigated in [76] to maximize the per-
formance of a heat sink. Foli et al. [31] and Okabe et al. [66] have obtained
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Fig. 2.1 Schematic description of the tube bank heat exchanger configuration considered
in Case A

optimal results for a micro heat exchanger based on different multi-objective
optimization methods.

The optimal spacing problem with three chips in an enclosure is reported
in [51]. The optimal location of heat sources was investigated by da Silva
et al. [70] for forced convection and in [71] for natural convection. The latter
was examined by Dias and Milanez [17] using Genetic Algorithm (GA) to
find the optimal location. Staggered finned circular and elliptic tubes in forced
convection are studied by Matos et al. [56]. Bello-Ochende et al. [10] analyzed
cylinders in cross-flow with up to three different sizes in row configurations
for maximizing the heat transfer density.

Nevertheless, optimization based on an arbitrary positioning of the tubes
in a cross-flow heat exchanger could not be found in the literature. This will
be considered now. In Case A, parallel EA are coupled with a CFD code and a
two-dimensional model of a cross-flow tube bank heat exchanger is considered.
One possible simulated configuration is shown in Fig. 2.1. Air enters the
domain at Tinlet = 293 K and is warmed up by passing between the tubes
in which a warm fluid flows in the corresponding practical application. The
tubes are supposed to have a constant outer wall temperature, Twall = 353 K.
The outlet is at atmospheric pressure.

The optimization problem consists of finding the best locations of the
tubes to increase heat exchange while at the same time to limit the pres-
sure loss. The two corresponding numerical parameters to optimize are the
average temperature difference ΔT and pressure difference ΔP . These two
objectives are obviously interrelated. If the exchange surface increases, the
heat exchange will be favored and the temperature difference between inflow
and outflow will be also enhanced. But, simultaneously for a given air flow
rate, the pressure loss will increase and the heat exchanger loses efficiency.
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2.1.3 Optimization Coupled with Chemical Reactions
(Case B)

There is also a great interest at present to optimize complex flows involving
chemical reactions. A detailed description of the chemical kinetics is generally
needed to fully understand the combustion processes in such cases. MOEAs
are often employed for determining and adjusting the reaction parameters
or for reducing the number of reactions [18, 19, 20]. Furthermore, the re-
duction of pollutant emission (NOx, CO, soot) is of major practical interest.
EAs have been applied in gas turbines for minimizing NOx emissions and/or
for reducing combustion noise [13, 14, 67]. Mono-objective optimization of
a laminar burner was investigated in [74] where the objective was to obtain
a homogeneous temperature profile at a prescribed distance from the injec-
tion plane. As a whole, optimization of configurations involving the coupled
simulation of flows and combustion processes remains a fairly new field of
research.

Laminar flows involving chemical reactions play an important role in many
practical applications, for example domestic burners. In this section, a two-
dimensional simulation dedicated to solving the Navier-Stokes equations in
the low-Mach number limit is presented using accurate models for chemistry,
diffusion and thermodynamics.

A two-dimensional configuration is considered, involving a primary inlet
in the center of the computational domain and a secondary inlet at the pe-
riphery. The optimization problem consists of finding the minimal mass-flow
rate of the pollutant species CO while maintaining a homogeneous temper-
ature distribution. The corresponding integral value and the variation are
computed at a prescribed distance from the inlet. These two objectives are
in this case the minimal concentration of CO along the corresponding hori-
zontal cut through the solution and the temperature difference between the
maximum and minimum value. The parameters modified by the optimization
procedure are the fuel and oxidizer mass flows of the primary inlet while the
total amount of fuel and oxidizer injected through both inlets is of course
kept constant. There are, therefore, two parameters that may freely vary be-
tween a lower bound (0: no fuel or no oxidizer injected through this inlet) and
an upper bound (all the available fuel or all the available oxidizer injected
through this inlet).

The investigated configuration is depicted in Fig. 2.2. Due to the sym-
metry, only the right half of the domain is considered in the computation.
Depending on the input parameters, methane/air mixtures with different
compositions enter the domain through the primary and secondary inlets
with a fresh gas temperature of 298 K. Atmospheric pressure is imposed at
the outlet. The inlet wall temperature is constant and equal to 298 K.

It will be shown that it is possible using CFD to reach an optimal configu-
ration for such a complex problem involving coupled fluid flow, heat transfer
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Fig. 2.2 General configuration of the laminar burner (Case B). A methane/air mixture
enters through the primary and secondary inlets with a varying composition

and chemical reactions, and this within a reasonable computing time, even
for configurations close to practical ones.

2.1.4 Determination of Turbulence Model Parameters
Based on Optimization (Case C)

Turbulent flows are essential for a wealth of practical applications. Predictive
numerical tools are of course deeply needed to improve existing devices and
develop new configurations in the turbulent regime. The broad range of prob-
lems underlying turbulent flows cannot be solved with a unique method. It is
therefore useful to identify different levels of modeling, describe their domain
of application and some characteristic features. Direct Numerical Simulations
(DNS) are only possible for simple configurations and low-Reynolds number
flows. Large-Eddy Simulations (LES) resolve the large structures of the flow
while the small scales are modeled. LES modeling becomes now feasible in
many situations due to the increase of computing power but remains an ex-
pensive solution for industrial problems. In the RANS modeling, the balance
equations are averaged in time with respect to the turbulent fluctuations of
the flow variables. This averaging introduces higher-order moments which
cannot be computed without approximate closure schemes. Nevertheless, nu-
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merical simulations based on RANS are still widely used today for engineering
problems and complex geometries due to a higher computational efficiency.
The objective in this case is to optimize the prediction of the time-averaged
turbulent velocity distribution in channel flows.

A similar investigation was performed in [37], where a variable Schmidt
number model for jet-in-crossflows was improved using GA optimization.
Multi-objective EAs have been also employed for determining and adjust-
ing reaction parameters in [18, 19, 20]. But, to our knowledge, no paper has
been published up to now considering the optimization of the model constants
of an engineering turbulence model.

2.2 Evolutionary Algorithms for Multi-objective
Optimization

2.2.1 Multi-objective Optimization

Mathematically speaking, a multi-objective problem consists of optimizing
(i.e., minimizing or maximizing) several objectives simultaneously, with a
number of inequality or equality constraints. The problem can be formally
written as follows:

Find x = (xi) ∀ i = 1, 2, . . . , Nparam such as
fi(x) is a minimum (resp. maximum), ∀ i = 1, 2, . . . , Nobj

subject to:

gj(x) = 0, ∀ j = 1, 2, . . . ,M (2.1)
hk(x) ≤ 0, ∀ k = 1, 2, . . . ,K (2.2)

where x is a vector containing the Nparam design parameters, (fi)i=1...Nobj

the objective functions and Nobj the number of objectives. In this study, only
inequality constraints are considered and are prescribed as bounded domains.
In other words, upper and lower limits are imposed on all parameters:

xi ∈ [xi,min;xi,max] i = 1 . . .Nparam . (2.3)

The objective function (fi(x))i=1...Nobj
returns a vector containing the set

of Nobj values associated with the elementary objectives to be optimized
simultaneously. The number of input parameters and objective functions for
the different cases considered in this chapter are summarized in Table 2.1.

A common practice to solve such a problem is to use a trade-off between
the objectives by linearly combining them using some fixed weights prescribed
by the user (see for example [16, 73]). The resulting single objective function
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Table 2.1 Number of input parameters and objectives functions

Case Section # of parameters # of objectives
Nparam Nobj

Case A (heat exchanger) 2.3 8 2
Case B (laminar burner) 2.4 2 2
Case C (turbulence model) 2.5 5 4

is optimized using for instance, a classical gradient-based or Simplex method
[63]. The first limitation of this kind of approach is that the choice of the
weights associated with each objective obviously influences the solution of
the optimization problem. A bad choice can lead to completely sub-optimal
results in comparison with the solution obtained by considering the interre-
lated objectives in an independent manner. Moreover, this method does not
allow access to all the set of optimal solutions.

The EAs are semi-stochastic methods, based on an analogy with Darwin’s
laws of natural selection [34]. Each configuration x is considered as an in-
dividual. The parameters xi represent its genes. The main principle is to
consider a so-called population of N individuals, i.e., a set of individuals cov-
ering the search domain and to let it evolve along generations (or iterations)
so that the best individuals survive and have offsprings, i.e., are taken into
account and allow to find better and better configurations.

The characteristics of the EA used in the present study are based on the
approach proposed by Fonseca and Fleming [32]. The genes (sometimes called
characters) of the individuals (also called strings or chromosomes) are the
Nparam design parameters, encoded using a floating-point representation [59].
The initial population is a set of quasi-random configurations in the domain
defined by the limits imposed on the parameters, Eq. (2.3). The creation of
a new generation from the previous one is performed by applying genetic
operators to the individuals of the present generation, as described below.
One common way to select individuals to be parent in the next generation is
the tournament selection [16]. In the present study, the fitness-based selection
is applied. At each generation, the individuals are classified as a function of
their corresponding objective values, leading to a rank within the population
and finally to a fitness. The definition of the rank for our specific case is
described later in Sect. 2.2.2. The probability for an individual to participate
in the reproduction process is determined by a probability based on its fitness
value, linearly calculated from its rank in the classification. For example, for
individual number i in a group of N individuals:

Fitness(i) =
N − rank(i) + 1∑
j (N − rank(j) + 1)

(2.4)

with index j varying from 1 to N .
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Fig. 2.3 Example for the rank of 10 individuals and the corresponding probability
(Eq. (2.4)) to participate in the reproduction process, represented on a circular diagram

Figure 2.3 depicts a simple example showing for a group of 10 individu-
als, the rank values and the corresponding probability to participate in the
reproduction process, directly based on its fitness. Using this technique, indi-
viduals with equal rank have an equal probability to reproduce. Individuals
associated with a higher fitness value have a better chance to survive and to
take part in the reproduction process, as explained in Sect. 2.2.3. In this way,
better and better generations are generated step by step. EAs operate on
the entire population. Thus, they offer a good potential to explore the whole
search space and to avoid local optima. Their good robustness is mainly due
to the fact that there is no evaluation of the derivatives of the objective
function. Moreover, the process can iterate further even if some evaluations
fail.

The main drawback associated to EAs in general remains their cost in
terms of computing (CPU) time. On the other hand, due to the fact that
the evaluations are performed independently, they are easily parallelizable as
demonstrated later.

2.2.2 The Concept of Pareto Dominance

In a multi-objective problem, the set of parameters (the individuals in the EA
terminology) can be compared according to Pareto’s rule [32]: the individual
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A dominates the individual B if, for at least one of the objectives, A is strictly
better adapted than B and if, for all other objectives, A is not worse than
B. An individual will be considered as optimal if it is non-dominated in the
sense of this rule. The rank is computed for each individual according to the
number of individuals dominating him. If an individual is not dominated by
any other individual, he gets the top rank (of course, there may be several
non-dominated individuals at the same time). Then come all individuals that
are dominated by only one individual, and so on. This is a true multi-objective
approach because objectives are considered as independent and there is no
trade-off. An individual i that is dominated by j individuals is given rank(i) =
1 + j. Non-dominated individuals have rank 1, so 1 ≤ rank(i) ≤ N . At
the end, the best individuals are all the non-dominated individuals over all
generations, leading to the computed Pareto front, supposed to represent
the real one. The use of this rule allows one to classify the individuals of
the population and therefore to calculate the corresponding fitness values,
Eq. (2.4).

2.2.3 Evolutionary Algorithm for Multi-objective
Problems

Three groups are defined in the population, two for the EA generations and
one for storing the non-dominated configurations:

• Elite. The currently non-dominated individuals.
• Parents. Individuals that may reproduce.
• Offsprings. Individuals of next generation, built from parents.

An individual can belong at the same time to several groups. To generate
an offspring, one or two parents are selected using their fitness values. The
selection of the parents relies on the roulette wheel method. Each roulette
wheel slot receives a current individual from the population. An individual
with better fitness value is associated with a larger roulette wheel slot size
(Fig. 2.3). A larger size of a roulette wheel slot corresponds to a better chance
to survive or to reproduce than the others. The new population is produced
spinning the roulette wheel N times where N represents the total size of
the population. This favors individuals with a higher fitness while leaving a
chance for the worst individuals to take part in the reproduction process,
hence keeping diversity through the generations. Individuals with an equal
rank get the same fitness value and have thus the same probability to survive
or to reproduce.

Once the parents have been selected with this method, the offspring can
be generated. The genes of the offsprings can be computed using the values
of the genes of the parents (Fig. 2.4). To prescribe the properties of the
offsprings, we use randomly one of the three following methods:
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Fig. 2.4 Principle of the EA after selection showing survival, average, crossover and mu-
tation. The individuals have here 3 genes, all of them are between 0 and 10

• Survival. Only one individual is selected and the offspring will be the same
as this parent without any change.

• Average. Two parents are chosen and the genes of the offspring are the
average of the corresponding genes of the two parents.

• Crossover. The crossover can be used to increase the diversity among the
population. The genes are represented by floating-point numbers. In the
present studies, only uniform crossover is applied where the genes are
selected randomly from either one of the parents during the crossover
process. In this way, randomly selected genes from both parents will be
kept in the future generations by being associated with the corresponding
offspring.

To introduce diversity, the offsprings further go through a mutation step.
A mutation operator is needed because important genetic information may
occasionally be lost or missing. In many cases, mutation is a key search
operator for the domain exploration so that the mutation probability must
be 1 or close to 1. A mutation probability of 1 means that all individual
genes obtained by averaging or crossover will be modified by mutation. This
mutation is performed after defining the offsprings, to randomly modify the
genes of the offsprings. Figure 2.4 represents a simple example with three
genes based on the floating-point representation between 0 and 10 illustrating
the procedure.

Multi-objective methods attempt to localize the Pareto front, which is
the set of all non-dominated configurations according to the definition given
above. Thus, the multi-objective optimization problem aims at finding a dis-
crete approximation of the Pareto front (sometimes also denoted Pareto Opti-
mal Frontier, POF) which is the set of all non-dominated parameters. As will
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be shown later, the POF is clearly visible as soon as enough non-dominated
configurations have been identified and plotted.

All parameters of the EA procedure used in this work are listed later in
corresponding sections (Table 2.2, 2.4 and 2.6). Parameters usually chosen in
the literature as well as further parameter sets have been tested extensively in
previous works [6], showing that the values retained in these tables are well-
suited for the problems considered here. The applied mutation probability
may seem quite high. It should be pointed out, that the mutation magnitude
is continuously decreasing at each generation to stabilize the population. A
high initial mutation probability is needed to obtain a fine-grain resolution
of the POF.

2.3 The Optimal Position of the Tubes in a Heat
Exchanger (Case A)

2.3.1 Tube Bank Heat Exchanger

A two-dimensional model of a cross-flow tube bank heat exchanger is consid-
ered first. One possible configuration can be seen in Fig. 2.1. Air enters the
domain at Tinlet = 293 K and is warmed up by passing between the tubes in
which warm fluid flows in the corresponding practical application. The tubes
are supposed to have a constant outer wall temperature, Twall = 353 K. The
outlet is at atmospheric pressure.

The optimization problem consists of finding the best locations of the tubes
to increase heat exchange while at the same time to limit the pressure loss.
The two corresponding numerical parameters to optimize are the average
temperature difference ΔT and pressure difference ΔP between inflow and
outflow.

The domain bounded by a black line in Fig. 2.1 is simulated in this
study. The Reynolds number is equal to 41 defined using the tube diame-
ter D = 2 cm and the uniform velocity at the inlet, vinlet = 0.03 m/s. The
length of the domain has been chosen to prevent any influence of the inflow
or outflow boundary conditions on the inter-blade flow. Corresponding tests
have, in particular, demonstrated the importance of extending the computa-
tional domain well beyond the last tube in order to avoid the influence of the
outflow boundary conditions. The full extent of the numerical domain and a
typical numerical grid can be seen in Fig. 2.5.

The stability analysis in Barkley and Henderson [5] proved that three-
dimensional effects first appear at a Reynolds number around 188 in the
flow around a cylinder. Furthermore, the flow around a single cylinder is
steady up to a Reynolds number of 46 [4]. In the present investigation, several
cylinders are simulated and will interact with each other, but due to the low
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Fig. 2.5 Typical computational grid in Case A

Reynolds number, a steady two-dimensional flow can still be assumed as a
good approximation of the true physics.

2.3.2 Problem Parameters

The numerical simulation of a physical problem can be performed using var-
ious geometries and/or boundary conditions. Here, for the different simula-
tions, the boundary and inlet conditions are the same, only the computational
geometries differ.

The outer dimensions of the computational domain, as well as the number
of the tubes in the domain, are fixed and only the positions of the tubes inside
the computational region are varied. The positions of all four tubes are al-
ways changed simultaneously, but their locations are kept within a predefined
range to avoid crossing the boundaries. Furthermore, the positions are con-
strained to prevent overlapping and direct contacts between cylinders. Since
all other properties and boundary conditions are constant, these position pa-
rameters are the only input parameters of the optimization algorithm. After
defining the computational geometry and obtaining a corresponding mesh,
the numerical simulation can be performed. In this study, the industrial CFD
program Fluent 6.3 [30] solves the governing equations of the fluid flow phe-
nomena including the energy equation. The two-dimensional fields of pressure
and temperature are obtained in this way and provide the two objective pa-
rameters, the average temperature and pressure differences: ΔT , ΔP between
inflow and outflow.

The set of coupled numerical tools used to solve the multi-objective op-
timization problem are now described and schematically shown in Fig. 2.6.

2.3.3 Opal (OPtimization ALgorithms) Package

Opal [6, 38] is an object-oriented C++ code for Unix/Linux systems using a
Tcl script interpreter [78]. A Tcl script is used for coupling Opal with other
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Fig. 2.6 Flow chart showing the numerical solution procedure

computer codes and is employed in our case to call a C interfacing program
responsible for the evaluation of the objective functions.

2.3.4 Evaluation of the Objectives for Case A

In the present case, this evaluation relies on the commercial software Gam-
bit [29] for geometry and mesh generation, and Fluent [30] for solving the
flow and energy equations. Therefore, the evaluation of an individual set of
parameters requires four steps:

1. the generation of the computational geometry using the position variables;
2. the generation of an appropriate mesh for the obtained geometry;
3. the CFD simulation, i.e., the solution of the governing coupled equations

for the flow variable and the energy on the mesh generated in the previous
step;

4. the post-processing of the obtained results to extract the values of the
objective functions for these specific design variables.

Steps 1 and 2 are performed using the commercial software Gambit 2.3 [29],
step 3 using the CFD code Fluent 6.3 [30] and step 4 takes place in the
in-house interfacing code.

2.3.4.1 Step 1: Computational Geometry of the Heat Exchanger
Configuration with 4 Tubes

The geometrical constraints are prescribed in terms of lower and upper limits
on the parameters. The positions of the middle points of the four circular
tubes of the heat exchanger are given with their two-dimensional coordinates.
The domain is separated in six non-overlapping zones in x-direction, the first
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is the inlet part and the last one is the outlet part. Positioning the tubes are
not permitted here to prevent any interaction with the boundary conditions.
The four middle zones contain the tubes. Overlapping and direct contacts
are not allowed. The locations of the tubes are also varied in the y-direction,
but without crossing the periodic boundaries.

2.3.4.2 Step 2: Mesh Generation

After having defined the geometry, the mesh is produced in an automatic
manner using the commercial software Gambit 2.3 [29]. This is easily done
by modifying the so-called journal file containing the important geometrical
parameters as variables. Knowing the middle point coordinates of the tubes
(x1, y1), (x2, y2), (x3, y3) and (x4, y4) is sufficient to fully define the geometry
and therefore to generate the mesh in an automatic manner and export it to
Fluent. The script checks that the mesh generation has been successful before
going on with the CFD computation, which has always been the case for this
simple geometry but might pose a problem for complex three-dimensional
configurations. A typical example of the resulting grid is shown in Fig. 2.5.
The internal fluid region is meshed using quadrilateral cell elements with the
“pave” algorithm of Gambit. The computational nodes are uniformly spaced
along the boundaries. The typical number of computational cells in a mesh
lies around 11, 000− 12, 000. A systematic grid-independence study has been
performed as presented next.

2.3.4.3 Step 3: CFD Simulation

The in-house interfacing code now starts Fluent [30] in an automatic manner
using again a journal file. Only the geometry and the mesh change between
two CFD computations.

The inlet (left side in Fig. 2.1) boundary is considered as a velocity in-
let with imposed conditions for the velocity, set to vinlet = 0.03 m/s, and
the temperature Tinlet = 293 K. Wall boundary conditions with a constant
temperature Twall = 353 K are prescribed on all four tube surfaces. Peri-
odic condition is applied on the top and bottom boundaries. On the right, a
pressure outlet condition relaxing to atmospheric pressure is imposed.

The discretized governing equations are solved iteratively using a finite-
volume description with the new pressure based solver (PBS) in Fluent 6.3
[30]. To improve the accuracy, second-order upwind discretization is system-
atically used for all variables, along with a double-precision computation.
The normalized residuals are computed at every iteration by Fluent. As soon
as all of these residuals fall below a prescribed value, convergence is consid-
ered to be reached. In our case, the fixed prescribed value is 10−4 for the
flow equations and 10−6 for the temperature equation, providing a sufficient
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Fig. 2.7 A typical CFD result, showing the obtained temperature field in Kelvin of one
of the optimum solutions (see also Fig. 2.8)

accuracy for an acceptable CPU time. This point has been checked for one
of the solutions identified as optimal, by further decreasing these thresholds.
A completely negligible influence has been observed for the two objective
variables.

In the same way, a systematic grid-independence study has been carried
out for this selected non-dominated case. By refining several times the grid
in a uniform manner, the relative pressure and temperature differences do
not change by more than 1.1% and 0.05%, respectively, demonstrating that
the initial grid is sufficient to obtain quantitative estimations. Restarting as
an unsteady simulation leads only to completely negligible variations in the
objective values, confirming that the steady assumption is appropriate for
such a low Reynolds-number flow.

The velocity-pressure coupling is treated with the standard SIMPLE
pressure-correction method. In most cases, the convergence is achieved in
300 to 500 iteration steps. If the convergence is not reached within 900 iter-
ation steps, the simulation is considered as not converging and is dismissed.
This has been observed only for less than 5% of the evaluations.

2.3.4.4 Step 4: Post-processing

After convergence, the temperature difference between the inlet (uniform
constant value) and the averaged value along the outlet is computed. The
pressure difference between the inlet and outlet averaged pressure values is
also computed. These two differences are the two objectives of the optimiza-
tion problem. The resulting temperature and pressure fields of one of the
optimum solutions are presented as an example in Figs. 2.7 and 2.8, respec-
tively.

In the present case, the configuration is two-dimensional and can be easily
optimized on a single PC with a reasonable computing time. Nevertheless,
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Fig. 2.8 A typical CFD result, showing the obtained relative pressure field in Millipascal
of one of the optimum solutions (same solution as in Fig. 2.7)

this will not always be the case. Therefore, a parallel version of this optimiza-
tion procedure has been developed.

2.3.5 Parallelization

As already mentioned, an important issue related with EAs is the high com-
putational effort needed to perform the necessary evaluations of the objec-
tives associated with the population. The evaluation of a large number of
individuals for a large number of generations can lead to unaffordable CPU
times in practical engineering cases. On the other hand, the EAs have the
advantage to be easily and efficiently parallelizable. At each generation, all
N individuals can be evaluated independently on different processors since
the central algorithm only needs the values of the objectives to iterate. In the
current case, the parallelization has been implemented using the C interfacing
program (see Fig. 2.6) responsible for the evaluation of the Nobj = 2 objec-
tive values associated with the N configurations. A farmer/worker paradigm
has been retained [34] using the portable MPICH implementation [36] of the
Message Passing Interface (MPI) [58] communication routines. All the eval-
uations are carried out on a Linux PC cluster running under Red Hat 9.
Figure 2.9 shows a principle description of this multi-processor optimization
procedure. In the present case, each worker PC performs independently its
own CFD simulation.

Alternatively, if one CFD simulation requires a lot of computational effort
(memory and time), each evaluation could be performed in parallel. In this
situation, all the PC represented in Fig. 2.9 would simultaneously collaborate
on one single CFD evaluation. Any optimization method (Simplex, gradient-
based, EA,. . . etc.) can be used in this case for the optimization without
impacting parallelization.
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Fig. 2.9 Schematic flow chart showing the multi-objective CFD optimization problem
running on a multi-node PC cluster

An EA optimization procedure can easily be carried out in parallel to
reduce the complete simulation time. The individuals (here the CFD simu-
lations) are completely independent from each other in one generation. In
this way, several evaluations can be performed at the same time on several
processors (Fig. 2.9). A single simulation for the presented heat exchanger
problem requires only some minutes of CPU time.

The parallel computation can be limited by the required computational
resources, i.e., the number of free computers in the system or the available
licenses when using commercial codes. Most cluster systems are supervised
by a so-called batch system to control and organize the computational work
and the available licenses. Depending on the load of the cluster, it is possible
that at one time no simulation is running or that several computations are
processed at the same time. In this case, the load will not be uniform and
the resulting total wall-clock time may not be representative to measure the
speed-up of the parallel optimization.

Typical results leading to Pareto fronts can be extracted from these cal-
culations and are presented and discussed next.

2.3.6 Computational Results

2.3.6.1 Pareto Fronts

After several tests, EA optimization was carried out using 40 individuals at
every generation. The applied probabilities are given in Table 2.2.
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Table 2.2 Parameters of the EA for the heat exchanger optimization, Case A

Parameter Value

Population size, N 40
Generations 20
Survival probability 25%
Average probability 25%
Crossover probability 50%
Mutation probability 100%
Mutation magnitude 50%a (i.e., ±25%)

aThis value is multiplied by 0.8 at each generation. For example, the mutation magnitude
is 6.7% (±3.35%) after 10 generations or 0.72% (±0.36%) after 20 generations. Mutation
magnitude must be decreased during the optimization process to stabilize the population.

The parents in the first generation are generated using the quasi-random
method proposed by Sobol’ [72] and modified by Antonov and Saleev [2]. This
leads to an optimal initial coverage of the parameter space, as recommended
by the method called Design of Experiments (DOE). The non-dominated
individuals at each generation belong to the elite group. At each iteration,
10 individuals can survive for the next generation and 30 new offsprings are
added, 10 using averaging and 20 using crossover, leading again to 40 individ-
uals. Since there are 40 parents and only 10 survive for the next generation,
the 30 others disappear from the reproduction cycle but are kept in the elite
if they are non-dominated. Nevertheless, in this case, they cannot generate
offsprings anymore. If more than 30 non-dominated individuals exist in the
present population, the integration within the next generation is again based
on the roulette wheel method described in Sect. 2.2.2.

The resulting temperature and pressure differences for all points of the
elite group evaluated over 20 generations are plotted in Fig. 2.10. The two
objectives, temperature and pressure difference are plotted on the x and y
axes, respectively. The points already generate a clearly visible POF in the
middle part of the figure. In Fig. 2.10, the concept of the Pareto front is also
illustrated. The POF is the boundary between infeasible configurations and
possible, but non-optimal solutions.

Five different optimal placements obtained by the optimization procedure
are presented in Fig. 2.11. The flow direction is from left to right. The first
two figures correspond to a low pressure loss, but the average temperature
difference between the inlet and the outlet is small. Higher temperature differ-
ences can be achieved using the placements shown for example in Fig. 2.11(e)
but in this case, the pressure losses increase.
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Fig. 2.10 Results of the best evaluations after 20 generations of the EA: Pareto front
(POF), feasible and infeasible configurations

(a) ΔT = 14.9 K, ΔP = 0.79 mPa. (b) ΔT = 18.6 K, ΔP = 1.03 mPa.

(c) ΔT = 21.5 K, ΔP = 1.33 mPa. (d) ΔT = 23.7 K, ΔP = 1.59 mPa.

(e) ΔT = 25.4 K, ΔP = 2.04 mPa.

Fig. 2.11 Example of the resulting placement for 5 individuals belonging to the POF.
The flow direction is from left to right

2.3.6.2 EA Parameters

The objective values obtained from the simulations are shown as a function
of the number of generations in Fig. 2.12, in which only the non-dominated
configurations are represented. We observe that the POF can be recognized
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Fig. 2.12 The non-dominated individuals for the heat-exchanger problem (elite). (a) The
non-dominated individuals after one generation. (b) The non-dominated individuals after
two generations. (c) The non-dominated individuals after five generations. (d) The non-
dominated individuals after 20 generations

very early, i.e., already after 2 or 3 generations. Nevertheless, the quality
increases with the number of generations and the POF becomes more refined.
There are two reasons for this progressive improvement: first, we have more
and more individuals in the elite group. Secondly, Opal favors individuals
that are very different. For example, if we have 5 non-dominated individuals
with the same fitness value in the group of the parent, with 4 of them very
close to each other in parameter space and the last one quite different, this
last individual will be favored for reproduction to enhance diversity, which
improves the spatial extension of the POF.

2.3.6.3 Speed-up Obtained Through Parallelization

In order to reduce the waiting time for the user, the process has been par-
allelized and carried out on a multi-node Linux PC cluster with 16 worker
PCs. Each node is a 2.6 GHz/2 GB-RAM Pentium-IV Linux PC. The com-
munications are performed via a Fast Ethernet (1 Gb/s) network connection.
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Table 2.3 Speed-up obtained using the parallel optimization method (Case A)

Number of processors Wall-clock time Speed-up

1 1280 min 1.00
2 661 min 1.94
5 294 min 4.35
10 153 min 8.37

Table 2.3 shows the resulting CPU times needed for the evaluation of 20 gen-
erations consisting of 40 individuals, performed with an increasing number
of processors on the PC-cluster. The speed-up is defined here as the ratio
between the wall-clock time obtained when using Nproc processors compared
to the one needed with a single processor. The theoretical optimal value of
the speed-up using Nproc processors is Nproc. In practical cases, the commu-
nication times between processors and load-imbalance reduce the speed-up
value below the theoretical maximum.

In the present case, the obtained parallel speed-up is nearly optimal. This
is not really a surprise since the quantity of information transferred between
the so-called farmer and workers is very small: four real parameters in one
direction, two in the reverse direction. The communication times are therefore
almost negligible compared to the CPU times required for the evaluation of
the objectives on each processor. Deviation from the optimal speed-up is
thus mainly due to boundary effects at the end of each optimization iteration
when some worker PCs become inactive for a short time waiting for the next
iteration to start.

2.4 Multi-objective Optimization of a Laminar Burner
(Case B)

2.4.1 Governing Equations

Laminar flows involving chemical reactions are considered in this section. In
the presented application Mach numbers M are very low. It is observed that
pressure variations through laminar flames at low Mach numbers are always of
the order of magnitude of a few Pascal and stem mainly from hydrodynamical
and not from compressibility effects. Stated differently, density variations only
result from heat release due to chemical reactions and from changes in the
mixture composition, but not from local fluid compression. Temperature and
density vary in opposite directions, such that their effects within the ideal
gas law compensate. These physical observations motivate the decomposition
of pressure into a bulk background uniform thermodynamic pressure pu and
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a hydrodynamic fluctuation term p̃ [33, 53]:

p (x, t) = pu (t) + p̃ (x, t) . (2.5)

For the presented application (a domestic gas burner), the numerical do-
main is considered open, hence pu equals the atmospheric pressure and is
constant. If acoustic waves may propagate in the gas mixture, then an ad-
ditional acoustic pressure term has to be considered. Since acoustic-flame
interactions are not addressed here, it is assumed from now on that acous-
tic waves are either nonexistent or of negligible effect on the flame structure
and on the flow. Readers particularly interested in acoustic-flame interactions
may refer to [35, 47] for further specific details.

Within the low-Mach number approximation, the density appears as a
function of temperature T and mean molar weight W . When the numerical
domain is opened to the atmosphere, the influence of the hydrodynamic pres-
sure pu on the density must be neglected. The full problem is then described
by the following set of balance equations, written in conservative form for
mass, momentum, mass fractions and enthalpy, solved in the present case:

∂ρ

∂t
+ ∇ · (ρv) = 0 (2.6)

∂(ρv)
∂t

+ ∇ · (ρvv) = −∇p̃+ ∇ · {μ (∇v + (∇v)T
)}

(2.7)

∂(ρYk)
∂t

+ ∇ · (ρYkv) = −∇ · (ρYkV k) +Wkω̇k , 1 ≤ k ≤ K − 1 (2.8)

∂(ρh)
∂t

+ ∇ · (ρhv) = ∇ ·
(
λ∇T − ρ

K∑
k=1

hkYkV k

)
. (2.9)

The notations used here are standard in the combustion community and
are explained for example in [39]. Using a unity Lewis number assumption
Le = λ/(ρcpD) = 1 for the molecular diffusion model, Eqs. (2.8) and (2.9)
become much simpler:

∂(ρYk)
∂t

+ ∇ · (ρYkv) = ∇ ·
(
λ

cp
∇Yk

)
+Wkω̇k (2.10)

∂(ρh)
∂t

+ ∇ · (ρhv) = ∇ ·
(
λ

cp
∇h

)
. (2.11)

Equation (2.10) is solved for N − 1 species, because the last species (the
nitrogen) is a non-reacting species (dilutant) simply determined using:

YN2 = 1 −
K−1∑
k=1

Yk . (2.12)
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For all computations presented in this paper, the complete set of chemical
species and elementary reactions, with their Arrhenius coefficients Ai (pre-
exponential factor), β (temperature exponent) and Ei (activation energy), is
taken for methane/air flames from [50]. This detailed reaction scheme involves
29 species and 141 elementary reactions. It thus involves 28 supplementary
transport equations in the form of Eq. (2.8) plus Eq. (2.12), leading to a
tremendous increase of the requested computing time compared to Case A.

2.4.2 Numerical Solution

The numerical simulation is performed using UGC+. This code has been
optimized for the computation of steady laminar low-Mach number flows
with chemical reactions [7, 68]. It is designed as an application of the multi-
purpose UG library [8]. UG is a modular numerical toolbox originally aimed
at investigations of multigrid methods on various model problems described
by sets of partial differential equations.

UGC+is based on two main modules: a low-Mach Navier-Stokes solver
and a thermo-reactive solver. A joint module has been developed to achieve
the full coupling of the two sub-modules into one single Partial Differential
Equations (PDE) system. The two solvers are in charge of their own diagonal
block of the Jacobian matrix and there is an information interchange between
them (mass fluxes, density and viscosity).

The optimization procedure varies the mass flows of the fuel and air at the
two inlets. The corresponding velocity values are used at the inlets for the
Navier-Stokes equations. On both sides of the numerical domain, symmetry
conditions are applied. The temperature of the fresh gas and walls at the
inlets is 298 K. The total quantity of methane and air injected in the system
(primary + secondary inlet) is kept constant, so that in principle the same
energy is always available. At the outlet atmospheric pressure is imposed.

The UGC+code attempts to find steady solutions through time-marching.
Time discretization is of first-order implicit type. The value of the time-step
can be adapted at each iteration, according to convergence or any user-defined
condition. The unsteady equations are solved by fixed-point or approximate-
Newton iterations and the user can freely specify how often the Jacobian
matrix has to be assembled. The linearized equations are then solved by a
Bi-CGSTAB [77] algorithm, preconditioned by multigrid V- or W-cycles with
an ILU smoother [69]. A dynamic adaptive grid is used to increase resolution
for such multi-scale problems (thin reaction zones, large geometries).

The numerical simulation of a physical problem can be performed using
various geometries and/or boundary conditions. For the present burner, the
computational geometry is fixed for all computations, but the boundary con-
ditions (composition of the mixture for the primary and the secondary inlets)
are varied during the optimization procedure.
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In previous works [43, 44, 74], the optimization problem was simple (single
objective) and the Simplex method [28, 63] has been used to speed-up the
computational procedure. Here a multi-objective problem is considered and
an EA is employed to investigate the optimization domain for the retained
input parameters. For the present problem, one evaluation is extremely costly
in CPU time.

One possibility to speed-up the evaluation is to perform every numerical
simulation on parallel computers [42] or to use simplified methods to describe
the chemical processes (e.g., the flamelet or tabulated chemistry approach
[11, 25, 26, 27, 41, 52, 65]). In the presented application, the Navier-Stokes
equations are solved for a two-dimensional flow. In the case of detailed chem-
istry, 29 species conservation equations are solved additionally. Tabulated
chemistry involves only three supplementary transport equations. In UGC+,
both the detailed reaction mechanism and the tabulated chemistry (FPI, for
Flame-Prolongation of ILDM) are implemented and available for the com-
putations [41]. In the first case, all chemical parameters are computed using
the standard software CHEMKIN [45] while FPI computations rely on tab-
ulated values. The computation using detailed chemistry can be performed
either with simple molecular transport using the unity Lewis number assump-
tion or using detailed transport modeling [39]. The presented investigation is
based on both detailed chemistry and detailed transport computation. This
high level of physical accuracy is important to reduce the modeling uncer-
tainty associated with the CFD solutions, especially for cases with minor
differences in the objective functions. However, the stability and the speed
of the evaluations are greatly enhanced by starting the simulation using the
simplified method (FPI, see [41]) during 30 time-steps. The corresponding
results are converted into an initial, detailed chemistry solution based on the
tabulated values. The detailed chemistry computation is then continued for
another 40 time-steps, leading to the “final” result of the evaluation, used to
evaluate the objective functions after the necessary post-processing. Unfor-
tunately, the detailed chemistry computations are extreme stiff. Therefore, in
many cases, the residual values will still be very high after this fixed number
of iterations, indicating convergence problems. Such simulations are marked
as non-feasible results and dismissed from the optimization. “Non-feasible”
means also that either no converged solution can be found or that the CPU
time required until convergence would be unacceptably long.

All CFD evaluations rely on adaptive time-steps in order to stabilize the
solution procedure. A starting value of 0.1 s has been always used here for
the restart of the detailed computation from the tabulated chemistry results.
Further investigations are needed to check if other time-step values would
improve the number of valid evaluations. Although the detailed computations
considerably decrease the number of feasible solutions, they deliver also more
realistic and accurate results.

The smallest grid spacing employed in the present computations is 62.5 μm.
This resolution is needed for very stiff intermediate radicals like HCO and
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Fig. 2.13 Zoom on the part of the numerical grid close to the flame front

C2H2. The numerical grid is refined adaptively according to a predefined
criterion, here the mass fraction of HCO. During the computations, the nu-
merical grid contains up to 8,000 finite-volume cells after reaching the fourth
level of grid refinement (see Fig. 2.13). Computations using detailed chem-
istry with more than 9,000 grid elements are not possible due to memory
limitation (2 GB physical memory on a single PC in our system). When us-
ing detailed chemistry, a higher resolution or more complex configurations
can only be computed on parallel supercomputers [42].

The optimization procedure is carried out on five Pentium-IV PC with
2.6 GHz/2 GB-RAM running under Red Hat 9 Linux. Every computation
is performed on a single computer. The computation based on tabulated
chemistry used as starting condition for the detailed one takes roughly 90
minutes. Typical computation times for one CFD evaluation with detailed
chemistry vary between 9 and 22 hours, depending on the inlet conditions.

2.4.3 Optimization of the Laminar Burner

For computing the burner, both the adaptive mesh generation and the flow
computations are carried out inside the in-house CFD-software UGC+. To
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illustrate the full computational procedure, the evaluation of an individual
set of parameters requires four steps:

1. the computation of the composition of the mixture in the primary and
secondary inlet, knowing the specific design variables;

2. the simplified CFD simulation, i.e., the resolution of the governing coupled
equations for the flow variables, the energy and the species conservation
equations, using first tabulated chemistry (FPI);

3. the high-quality CFD simulation using detailed chemistry and transport
models, restarted from the previously obtained FPI solution;

4. the post-processing of the obtained results to extract the values of the ob-
jective functions (average mass flow rate of CO along a horizontal cut and
maximal variation of the temperature profile along this cut, respectively)
for these design variables.

For the case considered here, the configuration is two-dimensional and can
be optimized on a single PC with a high but acceptable computing time,
provided a CFD software as efficient as UGC+is employed. Nevertheless, this
will not always be the case. Therefore, a parallel version of this optimization
procedure has been developed, as already described for another optimization
problem in Sect. 2.3.5. As a whole, 254 configurations have been evaluated
during the optimization procedure and 64 feasible cases have been found.
The total computational time requested by the optimization using 5 PCs is
roughly 3 weeks.

The optimization procedure can now be started with the objectives of
reducing as much as possible the average mass flow rate of CO and reducing
the temperature variations along a horizontal cut through the solution at
y = 0.025 m, near the outlet.

The optimization space is defined, as explained before, by two parameters
as shown in Figs. 2.14 and 2.15, where the objective functions are represented
as function of the input parameters using a contour plot representation. The
darker values correspond to a higher mass flow rate of CO and a higher tem-
perature variation, respectively. The top left corners of these figures contain
no results. Since the corresponding input parameters would yield a config-
uration in contradiction with the concept of a central primary inlet with a
surrounding secondary inlet, they are not considered in the procedure.

It can be seen that both objectives improve roughly in the same direction
in parameter space. Differences are only observed when looking at the details
of these evolutions, so that we observe a posteriori that these objectives are
in fact not really concurrent, but approach a nearly identical optimum. The
differences between both optimal solutions are so small (less than 2 K for the
temperature variation) that they probably approach solution accuracy, even
using detailed chemistry.

All EA parameters are listed in Table 2.4.
The two objective values of the feasible cases are shown in Fig. 2.16, in

which 20% of the evaluation results are not shown to improve clarity. This
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Fig. 2.14 Contour plot of the average mass fraction of CO (in g/s) as function of the
input parameters

Table 2.4 Parameters of the EA for the laminar burner optimization (Case B)

Parameter Value

Population size, N 20
Generations 14
Survival probability 10%
Average probability 40%
Crossover probability 50%
Mutation probability 100%
Mutation magnitude 50%a (i.e., ±25%)

aThis value is multiplied by 0.85 at each generation. For example, the mutation magnitude
is 11.6% (±5.8%) after 10 generations. Mutation magnitude must be decreased during the
optimization process to stabilize the population.

figure shows again that both objectives improve roughly in the same direction
in parameter space and converge to an almost identical optimal solution.

Figure 2.16 does not contain any information on the corresponding input
parameters. The relation between the input parameters and the objectives are
demonstrated in Fig. 2.17 using parallel coordinates. In this figure, only good
configurations are shown to improve readability. The optimal configurations
correspond to two almost identical fully premixed and nearly stoichiometric
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Fig. 2.15 Contour plot of the temperature variation (in K) as function of the input
parameters

Table 2.5 Primary inlet flow-rates for the selected simulations

Figure number Primary injector: Primary injector:
Methane mass flow rate [g/s] Air mass flow rate [g/s]

Fig. 2.18 7.19 × 10−2 7.49 × 10−1

Fig. 2.19 4.92 × 10−2 8.31 × 10−1

mixtures, injected through the primary and the secondary inlet and leading
to the shortest possible flame.

The mass fraction field of CO obtained for the two-dimensional burner
considered here at two chosen compositions of the two inlets are presented
in Figs. 2.18 and 2.19. In both figures, the mass fraction of the radical HCO
is also shown on the right side to visualize the shape and position of the
active reaction zone. Figure 2.18 corresponds to a non-optimal solution of
the EA. Compared with the optimal solution in Fig. 2.19, a large CO mass
fraction and thus CO mass-flow rate is found at the outlet of the combustion
chamber for this set of compositions. These two figures employ the same
gray-scale values to facilitate comparisons.

The values chosen by the optimization procedure for the primary inlet for
the cases corresponding to Figs. 2.18-2.19 are listed in Table 2.5. Consid-
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Fig. 2.16 Feasible configurations for Case B. To improve clarity only a part of the results
are shown here

erable variations have been tested by the optimization procedure, exploring
the whole parameter space before identifying the best solution. Such large
variations would certainly not have been considered by a human being carry-
ing out a manual optimization. The automatic optimization requires in this
case a considerable computing time but leads to a reduction of the pollutant
emission (CO) by a factor 2.5 and of the temperature variation by a factor
exceeding 20, compared to the worst feasible configuration (Fig. 2.18).

2.5 Optimization of the Standard k–ω Turbulence
Model Parameters (Case C)

Numerical simulations based on RANS are widely used for engineering prob-
lems and complex geometries, due to a high computational efficiency. The
determination of the closure constants for RANS turbulence models is based
on dimensional analysis, theoretical observations or experiments for some
special cases like channel or pipe flows. Such experiments often consider two-
dimensional flows, so that most model developments are originally suited for
two-dimensional situations. Nevertheless, these models are mostly used in
quite different – usually complex three-dimensional – configurations so that
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Fig. 2.17 Input parameters and objectives of the EA optimization for good configurations
in the laminar burner case

they may fail or lead to inaccurate results. There are well-known issues like
swirl, secondary flow, large pressure gradients, strong streamline curvature,
etc., where model predictions often become poor. In such cases, some modi-
fications and/or additional terms are needed in the model. Different authors
often propose slightly different parameter values when introducing such mod-
ifications.

The determination of the model constants for engineering turbulence mod-
els is indeed a difficult task. The values are often considered as some ad-hoc
values. Changing one parameter in order to observe consequences concern-
ing, for instance, the time-averaged turbulent velocity distribution or the
shear-stress distribution is easy. But the simultaneous modification of several
parameters of a turbulence model in order to increase accuracy rapidly be-
comes a formidable issue. If all the model parameters are changed in small
steps, then the number of possible combinations would yield an enormous –
and probably unnecessary – computational effort to explore the whole do-
main. In that case, numerical optimization techniques may help to speed-up
the search procedure in order to find the best possible combination of the
model constants with a minimum computational load, since optimization is
much more efficient than a simple trial and error manual procedure.

The objective in this case is to optimize the prediction of the time-averaged
turbulent velocity distribution in channel flows. Direct numerical simulation
(DNS) data [40, 60] for four different Reynolds numbers are chosen as ref-
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Fig. 2.18 Mass fraction field of CO (left) and HCO (right) in the worst feasible case for
the EA optimization

erence. In this way, the optimization problem involves several concurrent
objectives that must be fulfilled simultaneously. Generic and robust search
methods, such as EA, can be used for such problems as demonstrated here.
The present optimization problem consists of finding the best group of values
for the model constants of the k–ω turbulence model [79] leading to the most
accurate prediction of the velocity distribution, in agreement with the DNS
data. The k–ω model is widely used in CFD, demonstrating the importance
of this issue. In a first investigation, the shear-stress profiles have been also
examined, but the differences were quite small compared with DNS. It was
observed that the constants producing a good velocity profile automatically
lead to an accurate shear-stress distribution as well, which is not unexpected,
since the shear-stress directly depends on the velocity gradients. Therefore,
the shear-stress profiles are dropped from the objectives and the number of
reference cases is increased, involving different Reynolds numbers.

2.5.1 Governing Equations

The Reynolds-averaged governing equations that describe turbulent flow mo-
tion are summarized here following Wilcox [79]. An incompressible flow with
constant thermodynamic properties is now assumed, unlike Case B.
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Fig. 2.19 Mass fraction field of CO (left) and HCO (right) at the optimal point

The Reynolds-averaged turbulent flow variables can be separated as:

ui (x, t) = Ui (x, t) + u′i (x, t) (2.13)

where the vector Ui is the time-averaged velocity and u′i is the fluctuation
term. The time-averaged mass conservation equation reads:

∂Ui

∂xi
= 0 (2.14)

and the momentum equations can be written as:

ρ
∂Ui

∂t
+ ρUi

∂Ui

∂xj
= − ∂P

∂xi
+

∂

∂xj

[
μ

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
+

∂

∂xj
(−ρu′iu′j) . (2.15)

According to the Boussinesq hypothesis, the Reynolds stress-tensor (cor-
responding to the last term in Eq .(2.15)) can be modeled as:

−u′iu′j = νt

(
∂Ui

∂xj
+
∂Uj

∂xi

)
− 2

3
kδij (2.16)

where νt is usually called turbulent eddy viscosity, expressed as:

νt =
k

ω
. (2.17)
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The modified k–ω turbulence model proposed by Wilcox [79] in 1998 is
employed in this study. The transport equations for k and ω can be written
as, respectively:

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− β∗kω +

∂

∂xj

[
(ν + σ∗νT )

∂k

∂xj

]
, (2.18)

∂ω

∂t
+ Uj

∂ω

∂xj
= α

ω

k
τij
∂Ui

∂xj
− βω2 +

∂

∂xj

[
(ν + σνT )

∂ω

∂xj

]
. (2.19)

The model includes several auxiliary relations and closure coefficients1. In
this study, five parameters of the model are selected for the optimization,
listed here with their standard values:

α = 13/25 , β0 = 9/125 , β∗
0 = 9/100 , σ = 1/2 , σ∗ = 1/2 . (2.20)

A more detailed description of this turbulence model as well as the extension
of this model to compressible flows is extensively discussed in Wilcox [79].

2.5.2 Numerical Results

After calculating one set of values for the four selected Reynolds numbers, the
time-averaged turbulent velocity profiles are compared with the DNS results.
The differences between the four corresponding profiles are measured using
the area enclosing the curves. Due to the fine grid, this area can be approxi-
mated quite well using a simple numerical integration based on the rectangle
rule. The four corresponding numerical parameters to optimize (minimize)
are these area values for the four different Reynolds numbers.

The main drawback associated to EAs in general remains their cost in
terms of computing time because they require a large number of evaluations
on different configurations. Here, a fast computational procedure is chosen in
this investigation to speed-up the optimization. The numerical simulations
for a fully developed channel flow are performed using the simplified compu-
tational code from Wilcox [79]. This program is based on a simple numerical
integration and one single simulation takes only a few seconds on a standard
PC.

Five values have been selected as the input parameters of the optimiza-
tion procedure. The model parameters α, β0, β∗

0 , σ and σ∗ may freely vary
between 0 and 1. A graphical representation in five dimensions is difficult.
Therefore, parallel coordinates are used to show the connection between the

1 In this work, these closure coefficients are referred to as model parameters. Calling them
“model constant” is confusing, since these values are probably not constant and possibly
problem-dependent.
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Fig. 2.20 The five input parameters of the optimization represented using parallel coor-
dinates

corresponding values in Fig. 2.20. The original values proposed by Wilcox
[79] are also represented in this figure with symbols.

Figure 2.20 also shows that considerable modifications of the model pa-
rameters have been tested by the optimization procedure, compared to the
original reference values proposed by Wilcox [79].

A total of 5,050 evaluations have been performed during the optimization
procedure. Plotting two arbitrary objectives (i.e., the errors for two different
Reynolds numbers) against each other, a strong linear dependence can be
observed (Fig. 2.21). This is satisfactory, since it demonstrates that, globally,
a good parameter set will be valid for different Reynolds numbers, which is
essential for practical purposes. However, zooming on the best results (lower
left corner) in order to see the details, a Pareto front corresponding to con-
current objectives is detected (Fig. 2.22). This proves that one single, optimal
parameter set cannot be found that would be equally valid for all Reynolds
numbers.

The computed velocity profiles using the model constants in one optimum
configuration are shown in Fig. 2.23. These profiles are compared to DNS data
and to the results computed with the original parameter values. The proposed
modifications lead to a considerably better agreement with the DNS.

Figure 2.24 finally shows the four objectives of the optimization compared
with results obtained by the original model ([79], shown with symbols). Paral-
lel coordinates are used to represent the connection between the correspond-
ing values. It can be clearly seen that, in all four cases, better results are
obtained with an optimal parameter set compared with the values proposed
by Wilcox in 1998 for channel flows.
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front

All EA parameters of the optimization procedure are listed in Table 2.6.

2.6 Conclusions

In this study, EAs have first been applied to a multi-objective shape de-
sign optimization problem concerning a heat exchanger configuration close
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Fig. 2.23 Velocity profiles in a semi-logarithmic plot (top) and in a standard plot (bottom)

to practical applications. The characteristic Pareto front associated with this
problem has been obtained within a very reasonable computational time. The
heat exchanger model problem is based on a description of the tube positions
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Fig. 2.24 The four objectives of the optimization represented using parallel coordinates
for the individuals belonging to the POF

Table 2.6 Parameters of the EA for the turbulence model optimization (Case C)

Parameter Value

Population size, N 100
Generations 100
Survival probability 50%
Average probability 30%
Crossover probability 20%
Mutation probability 100%
Mutation magnitude 50%a (i.e., ±25%)

aThis value is multiplied by 0.95 at each generation. For example, the mutation magnitude
is 31.5% (±1.75%) after 10 generations or 0.3% (±0.15%) after 100 generations. Mutation
magnitude must be decreased during the optimization process to stabilize the population.

using eight parameters. This is a simple description that could be refined.
Computing times can be further reduced by using parallelization, as demon-
strated in this chapter. More complex, practical industrial cases are solvable
using on one side appropriate modeling and simplification of the problem and
on the other side parallelization.

Furthermore, we have demonstrated that optimization of complex flows
involving heat transfer and complex chemical reactions is possible, provided
very efficient numerical methods are used for the optimization process (here,
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the in-house Opal library) as well as for the CFD procedure (here, the in-
house UGC+code). The optimization domain has been explored using EA,
but with a very high computational effort, leading to specific difficulties.

Finally, we have improved the model parameters of a well-known engineer-
ing turbulence model using optimization. The proposed new values predict
more accurately the time-averaged velocity profiles in channel flows, as shown
by a comparison with DNS.

As a whole, this paper has demonstrated that CFD-O can be used for a
variety of complex engineering problems, but is still associated with major
issues. Some of them will be discussed in more detail in further chapters of
this book:

• For complex optimization problems, parallel computations will be abso-
lutely necessary to reduce user waiting time. CFD-O is indeed very well
suited for parallel computers. The CFD evaluations can be performed in
parallel, or the independent individuals in the optimization can be eval-
uated in parallel, as presented in this chapter (Cases A and B). It is of
course possible to combine both and again speed-up the procedure.

• Evolutionary Algorithms require a large number of evaluations (for ex-
ample Case C, with more than 5,000 evaluations) to obtain a refined de-
scription of the Pareto front. This is a major problem when the evaluation
is computationally expensive like in Case B. Therefore, the best way to
speed-up optimization is indeed to improve the computational efficiency
of the CFD software!

• If an evaluation is computationally very demanding, as in Case B (burner
computation using detailed chemistry and transport), it is essential to re-
duce as far as possible the number and the cost of the evaluations. For
this purpose, concepts like Design of Experiments or approximate evalua-
tions based, for example, on Artificial Neural Networks appear promising.
As a complement, simplified physical models might be used to get a first
approximation as demonstrated in the present chapter.

• When considering many parameters and many concurrent objectives, the
visualization of the results becomes increasingly difficult. Graphical and
post-processing tools dedicated to optimization would greatly facilitate the
analysis.
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58 Gábor Janiga
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Centrale Paris, France, 1999-40 (1999)

69. Reusken, A.: The smoothing property for regular splittings. In: W. Hackbusch, G. Wit-
tum (eds.) Incomplete Decompositions (ILU)-Algorithms, theory and applications, pp.
130–138. Vieweg, Braunschweig, Germany (1993)

70. da Silva, A., Lorente, S., Bejan, A.: Optimal distribution of discrete heat sources on a
plate with laminar forced convection. International Journal of Heat and Mass Transfer
47(10-11), 2139–2148 (2004)

71. da Silva, A., Lorente, S., Bejan, A.: Optimal distribution of discrete heat sources on a
wall with natural convection. International Journal of Heat and Mass Transfer 47(2),
203–214 (2004)

72. Sobol’, I.M.: Distribution of points in a cube and approximate evaluation of integrals.
U.S.S.R. Computational Mathematics and Mathematical Physics 7, 86–112 (1967)

73. Srinivas, N., Deb, K.: Multiobjective optimization using non-dominated sorting in
genetic algorithm. Evolutionary Computing 2(3), 221–248 (1995)
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Chapter 3

Mathematical Aspects of CFD-based
Optimization

Hans Georg Bock and Volker Schulz

Abstract There exist several computational strategies of different efficiency
for the solution of model-based optimization problems – particularly, in the
case of models based on challenging CFD problems. Applied mathematics
provides means for their analysis and for advice on their proper usage.

In this chapter, methods are mainly analyzed based on the explicit treat-
ment of the underlying CFD-problem as a constraint of a nonlinear optimiza-
tion problem, thus providing the potential for high computational efficiency.
Methods of this form are termed optimization boundary value problem meth-
ods, simultaneous optimization methods or one-shot optimization methods.
The necessary conditions of optimality play a key structural role in devising
those strategies. Special attention is given to the following issues: modular
sequential quadratic programming with approximate linear solvers, precon-
ditioning of the Karush-Kuhn-Tucker (KKT) system and multigrid optimiza-
tion in the case of stationary problems. In the case of unsteady problems, we
will concentrate on time-domain decomposition such as by multiple shoot-
ing, and on algorithmic developments for real-time optimization. The aim of
the presentation is to give a survey on advanced and fast methods for opti-
mization within a CFD framework. For details, the reader is referred to the
relevant literature.
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3.1 Introduction

Computational fluid dynamics (CFD) models can be written in the general
abstract form

F (ẏ(t), y(t), u(t), p, t) = 0 , t ∈ [0, T ] (3.1)

where we use the following nomenclature:

t time within horizon [0, T ];
y(t) state vector (dependent variables);
ẏ(t) velocity (time derivative) of state vector (dependent variables);
u(t) control vector (independent variables);
p ∈ R

np finite-dimensional parameter vector (independent variables).

The variables y(t) and ẏ are functions defined on a spatial domain, the con-
trol vector u(t) are usually functions on (a subset of) the spatial domain
or its boundary. F is a suitable differential operator that includes transport
and diffusion as well as source terms and boundary conditions. We assume
that Eq. (3.1) is an initial-boundary value problem that defines the states
y(t) uniquely, if u(t), p and initial data y(0) are given. In CFD-model based
optimization (CFD-O), we want to determine p and the control function u(t)
in such a way that a scalar objective function such as

J(y, u, p) :=
∫ T

0

j(y(t), u(t), p, t)dt (3.2)

is minimized. The objective function can have different forms in process con-
trol, shape optimization, inverse modeling/parameter estimation or optimum
experimental design. Usually, there arise additional constraints for the state
and control functions in terms of inequalities

r(y(t), u(t), p, t) ≥ 0 (3.3)

modeling technical restrictions. For a sizeable part of the discussion in this
paper, it is convenient to choose an even more abstract formulation of the
optimization problem above.

If we consider stationary problems (i.e., ∂F/∂ẏ = 0 in Eq. (3.1)) and
choose a spatial discretization for the steady state y and the steady control
u, we can reformulate the problem as

min
y,p

f(y, p) (3.4)

s.t. c(y, p) = 0 (3.5)
h(y, p) ≥ 0 . (3.6)

Here, y ∈ R
n is the discretized state vector, the influence vector p ∈ R

np

now summarizes the discretized control u and the formerly denoted pa-
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rameter vector p, f : R
n × R

np → R denotes the objective function,
Eq. (3.2), c : R

n × R
np → R

n the discretized CFD-model, Eq. (3.1) and
h : R

n × R
np → R

m formulates the restrictions, Eq. (3.3). We arrive at the
same formulation also by use of a full space-time discretization of the un-
steady CFD-model, Eq. (3.1). Therefore, we use the formulation Eqs. (3.4)-
(3.6) for general discussions on CFD-model based optimization in Sect. 3.2
with emphasis on stationary optimization problems and discuss special issues
exploiting the structure of unsteady problems in Sect. 3.3.

Again, we assume that the states y are uniquely determined by the state
equation (3.5) if the influence vector p is given, which means that the Jacobian
∂c/∂y is nonsingular. The implicit function theorem ensures the existence of a
function φ such that y = φ(p) and one can reformulate the problem described
by Eqs. (3.4)-(3.6) in a so-called black-box fashion

min
p
f(φ(p),p) (3.7)

s.t. h(φ(p), p) ≥ 0 . (3.8)

Formulation (3.7, 3.8) is chosen in straightforward implementations of stan-
dard optimization techniques like genetic algorithms, the Nelder-Mead-Sim-
plex or simulated annealing. These techniques require a relatively small
amount of implementation effort, lead to a modular coupling of the opti-
mization task with the simulation task and are often robust with respect to
roughness in the objective function. However, since each evaluation of the
implicit function φ requires a full CFD simulation, these methods lead to an
overall computational effort which is several orders of magnitude higher than
a forward simulation of the model (3.1). Furthermore, the inequality condi-
tions (3.8), which are an integral and essential part of all realistic problem
formulations, still pose challenges for these techniques. Therefore, we discuss
simultaneous techniques for the direct solution of the constrained optimiza-
tion problem (3.4-3.6), which have the potential for high efficiency, leading
to an overall effort of only a small multiple of the forward simulation effort.

3.2 Simultaneous Model-based Optimization

3.2.1 Sequential Quadratic Programming (SQP)

For ease of presentation, we drop the inequalities in problem (3.4-3.6) and
lump together the variables as z := (y, p) in order to investigate the generic
problem
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min
z
f(z) (3.9)

s.t. c(z) = 0 . (3.10)

We nevertheless keep in mind that all or some of the equality constraints
might later represent so-called active inequality constraints. Optimization
theory provides the following necessary conditions in terms of the Lagrangian
(L), which hold at an optimal solution to this problem, provided the functions
involved are sufficiently smooth

∂L(z, λ)/∂z = 0 , where L(z, λ) := f(z) + λ�c(z) . (3.11)

The principle of SQP methods starts at Newton’s method for the necessary
conditions (3.11) together with the constraints (3.10). This method iterates
over z and the adjoint variables λ in the form (zk+1, λk+1) = (zk, λk) +
(Δzk+1, Δλk+1), where the increments solve the linear system[

H c�z
cz 0

](
Δz
Δλ

)
=

(−∇fk − cz(zk)�λk

−c(zk)

)
. (3.12)

Here, H denotes the Hessian of the Lagrangian L with respect to z, i.e.,
H = Lzz(zk, λk) and subscripts denote respective derivatives.

Because the derivative generation needed to establish the matrix on the left
hand side of this equation often turns out to be prohibitively expensive, one
often uses approximations instead, i.e., G :≈ H and A :≈ cz (of course, these
approximations may also change from iteration to iteration). This substitu-
tion will deteriorate the convergence behavior of this approximate Newton
method. However, the fixed points of the iteration are not changed as long

as the matrix
[
G A�

A 0

]
is nonsingular. If the approximations G and A are

sufficiently accurate, one may expect at least linear local convergence of the
iteration method. In the implementation, one will terminate the iteration as
soon as (Δzk+1, Δλk+1) is sufficiently close to zero in a suitable norm. If an
estimate of the convergence rate is known an a priori estimate for the distance
to the limit point can be given.

In order to arrive at a generalization of this approach to inequality con-
strained problems, we first reformulate the system of equations[

G A�

A 0

](
Δz
Δλ

)
=

(−∇fk − cz(zk)�λk

−c(zk)

)
(3.13)

in the form of an equivalent linear-quadratic problem. Setting Δλ = λk+1 −
λk, we obtain the formulation[

G A�

A 0

](
Δz
λk+1

)
=

(−∇fk + (A− cz(zk))�λk

−c(zk)

)
.
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If g is symmetric and positive definite on the null space of A, this is equivalent
to the linear quadratic problem

min 1/2Δz�GΔz+
(∇fk − (A− cz(zk))�λk

)�
Δz (3.14)

s.t. AΔz + c(zk) = 0 (3.15)

where the adjoint variable for Eq. (3.15) is λk+1. In this way, accurate eval-
uations of the matrices cz or H can be avoided. Nevertheless, the matrix cz
appears in the objective of the quadratic program (QP), however, only in the
form of a matrix-vector product with λk, which can be efficiently realized
such as in the adjoint mode of automatic differentiation [17].

This formulation is generalizable to inequality constraints, cf. [6, 7], e.g.,
of the form c(z) ≥ 0 in (3.10), which leads to linear-quadratic sub-problems
of the form

min 1/2Δz�GΔz+
(∇fk − (A− cz(zk))�λk

)�
Δz (3.16)

s.t. AΔz + c(zk) ≥ 0 . (3.17)

The adjoint variables of Eq. (3.17) converge to the adjoint variables of the in-
equality constraints at the solution. Therefore, they provide a proper decision
criterion within an active-set strategy. This formulation of SQP methods al-
lowing for approximations of derivatives, forms also the basis for the real-time
investigations presented later (see also [14]).

3.2.2 Modular SQP Methods

Here, we discuss again the separability framework, i.e., problems of the type
(3.4-3.6) – first without inequality constraints

min
y,p

f(y, p) (3.18)

s.t. c(y, p) = 0 . (3.19)

The essential feature is the nonsingularity of cy, which means that we can
look at the problem as an unconstrained problem of the form

min
p
f(y(p), p) . (3.20)

When applied to the necessary optimality condition ∇pf(y(p), p) = 0, New-
ton’s method, or its variants, yield good local convergence properties. Every
iteration consists of two steps

(1) solve BΔp = −∇pf(y(pk), pk) = 0, where B ≈ ∇p
2f(y(pk), pk)

(2) update pk+1 = pk + τ ·Δp, where τ is an appropriate step length



66 H.G. Bock and V. Schulz

The approximationB of the Hessian of f is often performed by Quasi-Newton
update formulas as discussed in [29]. Step (1) of this algorithm involves two
costly operations which, however, can be performed in a highly modular
way. First, y(pk) has to be computed, which means basically a full nonlinear
solution of the flow problem abbreviated by equation (3.19). Furthermore,
the corresponding gradient, ∇pf(y(pk), pk), has to be determined. One of the
most efficient methods for this purpose is the adjoint method which means
the solution of the linear adjoint problem, since for yk = y(pk) one obtains

∇pf(y(pk), pk) = fp(yk, pk)� + cp(yk, pk)�λ

where λ solves the adjoint problem

cy(yk, pk)�λ = −fy(yk, pk)� .

Assuming that the CFD-model (3.19) is solved by Newton’s method, one
might wonder whether it may be enough to perform only one Newton step per
optimization iteration in the algorithm above. This results in the algorithmic
steps

(1) solve

⎡
⎣ 0 0 c�x

0 B c�p
cx cp 0

⎤
⎦
⎛
⎝ΔyΔp
λ

⎞
⎠ =

⎛
⎝−f�

y

−f�
p

−c

⎞
⎠

(2) update (yk+1, pk+1) = (yk, pk) + τ · (Δyk+1, Δpk+1)

This algorithm is called a reduced SQP algorithm. The local convergence can
be again of quadratic, super-linear or linear type [26, 34], depending on how
well B approximates the so-called reduced Hessian of the Lagrangian

B ≈ Lpp − Lpyc
−1
y cp − (Lpyc

−1
y cp)� + c�p c

−�
y Lyyc

−1
y cp .

The vector λ produced in each step of the reduced SQP algorithm converges
to the adjoint variable vector of problem (3.18, 3.19) at the solution. This
iteration again can be written in the form of a Newton-type method⎡
⎣ 0 0 c�x

0 B c�p
cx cp 0

⎤
⎦
⎛
⎝ΔyΔp
Δλ

⎞
⎠ =

⎛
⎝−L�

y

−L�
p

−c

⎞
⎠ ,

⎛
⎝yk+1

pk+1

λk+1

⎞
⎠ =

⎛
⎝yk

pk

λk

⎞
⎠ + τ ·

⎛
⎝ΔyΔp
Δλ

⎞
⎠ . (3.21)

This iteration can be generalized to inexact linear solves with an approximate
matrix A ≈ cx such that the approximate reduced SQP iteration reads as⎡
⎣0 0 A�

0 B c�p
A cp 0

⎤
⎦
⎛
⎝ΔyΔp
Δλ

⎞
⎠ =

⎛
⎝−L�

y

−L�
p

−c

⎞
⎠ ,

⎛
⎝yk+1

pk+1

λk+1

⎞
⎠ =

⎛
⎝yk

pk

λk

⎞
⎠ + τ ·

⎛
⎝ΔyΔp
Δλ

⎞
⎠ . (3.22)

It is shown in [23] that in this case, the use of an approximation of the
consistently reduced Hessian, i.e.,
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B ≈ Lpp − LpyA
−1cp − (LpyA

−1cp)� + c�p A
−�LyyA

−1cp

is recommended. Let us compare this with the SQP-formulation of equation
(3.12) in the separability framework⎡
⎣Lyy Lyp c

�
x

Lpy Lpp c�p
cx cp 0

⎤
⎦
⎛
⎝ΔyΔp
Δλ

⎞
⎠ =

⎛
⎝−L�

y

−L�
p

−c

⎞
⎠ ,

⎛
⎝yk+1

pk+1

λk+1

⎞
⎠ =

⎛
⎝yk

pk

λk

⎞
⎠+τ ·

⎛
⎝ΔyΔp
Δλ

⎞
⎠ . (3.23)

Because of the triangular structure of the system matrix in Eqs. (3.21) or
(3.22), the reduced SQP formulation is much more modular than the full SQP
formulation (3.23). This is the reason why the matrices in Eqs. (3.21) or (3.22)
are used as pre-conditioner in large scale linear-quadratic optimal control
problems [2] or as pre-conditioners in Lagrange-Newton-Krylov methods as
discussed in [3, 4]. Indeed, one observes for the (iteration) matrix

M = I −
⎡
⎣ 0 0 c�x

0 B c�p
cx cp 0

⎤
⎦−1⎡⎣Lyy Lyp c

�
x

Lpy Lpp c�p
cx cp 0

⎤
⎦

the fact that M 
= 0 in general, but M3 = 0, which is the basis of the
convergence considerations in [23].

Now, let us discuss CFD-optimization in the context of one-shot aerody-
namic shape optimization as in [20, 21]. The typical problem formulation
there is

min
y,p

f(y, p) (drag) (3.24)

s.t. c(y, p) = 0 (CFD-model) (3.25)
h(y, p) ≥ 0 (lift constraint) (3.26)

where y collects the state variables of an Euler or Navier-Stokes flow model
and p is a finite-dimensional vector parameterizing the shape of a part of an
aircraft by means of a suitable spline family. The lift constraint h is a scalar
valued function. Additionally, one often also has to treat a pitching moment
constraint, which is also a scalar valued function. Engineering knowledge tells
us that the lift constraint will be active at the solution. Therefore, we can
formulate the constraint right from the beginning in the form of an equality
constraint. In this context, a full SQP-approach as in equation (3.23) reads⎡
⎢⎢⎣
Lyy Lyp h

�
x c�x

Lpy Lpp h�p c�p
hx hp 0 0
cx cp 0 0

⎤
⎥⎥⎦
⎛
⎜⎜⎝
Δy
Δp
Δμ
Δλ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−L�

y

−L�
p

−h
−c

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
yk+1

pk+1

μk+1

λk+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
yk

pk

μk

λk

⎞
⎟⎟⎠ + τ ·

⎛
⎜⎜⎝
Δy
Δp
Δμ
Δλ

⎞
⎟⎟⎠ .

(3.27)
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This approach is not implementable in general because one usually starts
out with a flow solver for c(y, p) = 0 and seeks a modular coupling with
an optimization approach, which does not necessarily change the whole code
structure, as would be the case with formulation (3.23). A modular but nev-
ertheless efficient alternative is an approximate reduced SQP approach as in
Eq. (3.22), which is adapted to the case of the additional lift (or pitching)
constraint, as established in [16].⎡
⎢⎢⎣

0 0 0 A�

0 B γ c�p
0 γ� 0 0
A cp 0 0

⎤
⎥⎥⎦
⎛
⎜⎜⎝
Δy
Δp
Δμ
Δλ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−L�

y

−L�
p

−h
−c

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
yk+1

pk+1

μk+1

λk+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
yk

pk

μk

λk

⎞
⎟⎟⎠+τ ·

⎛
⎜⎜⎝
Δy
Δp
Δμ
Δλ

⎞
⎟⎟⎠ (3.28)

where
γ = h�p + c�p α , such that A�α = −h�x .

An algorithmic version of this modular formulation is given by the following
steps:

(1) generate λk by performing N iterations of an adjoint solver with right
hand side f�

y (yk, pk) starting in λk

(2) generate αk by performing N iterations of an adjoint solver with right
hand side h�y (yk, pk) starting in αk

(3) compute approximate reduced gradients

g = f�
p + c�p λ

k+1 , γ = h�p + c�p α
k+1

(4) generate Bk+1 as an approximation of the consistently reduced Hessian
(5) solve the QP [

B γ
γ� 0

](
Δp
μk+1

)
=

(−g
−h

)
(6) update pk+1 = pk +Δp
(7) compute the corresponding shape geometry and adjust the computational

mesh
(8) generate yk+1 by performing N iterations of the forward state solver

starting from an interpolation of yk at the new mesh.

This highly modular algorithmic approach is not an exact transcription of
Eq. (3.28), but is shown in [16] to be asymptotically equivalent and to con-
verge to the same solution. The overall algorithmic effort for this algorithm
is typically in the range of factor 7 to 10 compared to a forward stationary
simulation.
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3.2.3 Multiple Set-point Optimization

Often, it is not enough to compute an optimal solution for one specific prob-
lem setting. Rather, one is interested in computing solutions, which optimize
the performance of the process averaged over a range of process parameters
or scenarios. Alternatively, one might want to optimize the worst case, which
leads to a min-max formulation. This goal leads naturally to robust optimiza-
tion or working range optimization, which we denote in the form of multiple
set-point optimization (cf. [8, 9]). There, instead of problem (3.18, 3.19) we
formulate the problem

min
y1,y2,y3,p

ω1f1(y1, p)+ω2f2(y2, p) + ω3f3(y3, p) (3.29)

s.t. c1(y1, p) = 0 (3.30)
c2(y2, p) = 0 (3.31)
c3(y3, p) = 0 . (3.32)

For the sake of simplicity, we have restricted the formulation above to a prob-
lem with three set-points coupled via the objective, which is a weighted sum
of all set-point objectives (weights: ω1, ω2, ω3), and via the free optimization
variables p, which are the same for all set-points. The generalization to more
than three set-points and to additional equality and inequality constraints is
obvious. The corresponding Lagrangian in our example is

L(y1, y2, y3, p, λ1, λ2, λ3) =
3∑

i=1

ωifi(yi, p) +
3∑

i=1

λ�i ci(yi, p) . (3.33)

The approximate reduced SQP method (3.22) applied to this case can be
written in the following form⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 A�
1 0 0

0 0 0 0 0 A�
2 0

0 0 0 0 0 0 A�
3

0 0 0 B c�1,p c
�
2,p c

�
3,p

A1 0 0 c1,p 0 0 0
0 A2 0 c2,p 0 0 0
0 0 A3 c3,p 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δy1
Δy2
Δy3
Δp
Δλ1

Δλ2

Δλ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−L�
y1

−L�
y2

−L�
y3

−L�
p

−c1
−c2
−c3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.34)

We notice that the linear sub-problems involving matricesA�
i are to be solved

independently, and therefore trivially in parallel. The information from all
these parallel adjoint problems is collected in the reduced gradient

g =
3∑

i=1

ωif
�
p +

3∑
i=1

c�p λi .
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Next, the solution of optimization step Δp = −B−1g is distributed to all
approximate linearized forward problems

AiΔyi + ci,pΔp = −ci
which can then again be solved in parallel.

3.2.4 Multigrid Optimization

The main motivation for multigrid (MG) methods is derived from the ob-
servation that the convergence properties of most iterative methods for the
solution of systems of equations, or of optimization problems, deteriorate
when the discretization mesh is refined. This means that when approaching
the continuous problem by the use of successively finer meshes, the effort
required for the solution of the resulting discretized (non-)linear systems in-
creases more than linearly with the number of variables.

The promise of MG methods is to provide grid refinement independent
convergence rates by performing more work on coarser grids than on the
finer ones. This goal of optimal numerical complexity (which grows then only
linearly with respect to the number of unknowns) can be achieved by MG
methods in many cases, particularly if the problem possesses the feature that
coarser grids are able to provide improvements for finer grids. This is the
reason why theoretical convergence results always assume that the coarsest
grid is already sufficiently fine. The highest advantage can be gained from MG
methods, which are optimally adapted to the problem under investigation,
in particular with respect to the spatial distribution of variables in so-called
geometric MG methods. With general-purpose MG method solvers, e.g., of
algebraic type, one can not expect to achieve optimal complexity, but can
however expect to obtain high flexibility.

Besides the huge progress in MG methods for simulation problems, the
field of multigrid optimization (MG/OPT) has also come to a certain de-
gree of maturity. The review [12] gives an up-to-date survey on the diverse
MG/OPT approaches in the literature. In the following, we want to focus
on the most simply implementable MG/OPT approach, which is based on
an MG structure only with respect to the free variables p in the reduced
formulation (3.20).

Numerical experiments, e.g. [28], demonstrate that MG/OPT greatly
improves the efficiency of the underlying optimization scheme used as a
“smoother”, suggesting that the MG/OPT scheme may be beneficial in com-
bination with well known optimization algorithms. This claim appears to be
true as long as a line search along the coarse-grid correction is performed.
Also in [28], it is reported that MG/OPT without a line search diverges in
some cases. Therefore, a line search appears to be necessary for convergence.
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Consider the following (locally) convex optimization problem

min
pk

gk(pk) := fk(yk(pk), pk) (3.35)

where k = 1, 2, . . . , L is the resolution or discretization parameter, where
L denotes the finest resolution, and pk is the (unconstrained) optimization
variable in the space Vk. For the resolution k, one chooses an appropriate
discretized state variable yk and an accordingly resolved objective evaluation
fk. For variables defined on Vk, we introduce the inner product (·, ·)k with
associated norm ‖y‖k = (y, y)1/2

k . Between spaces Vk, restriction operators
Ik−1
k : Vk → Vk−1 and prolongation operators Ik

k−1 : Vk−1 → Vk are defined.
We require that (Ik−1

k y, v)k−1 = (y, Ik
k−1v)k for all y ∈ Vk and v ∈ Vk−1.

On each space, denote with Sk an optimization algorithm, e.g., a gradient
based technique. Given an initial approximation p0

k of the solution to (3.35),
the application of Sk results in gk(Sk(p0

k)) < gk(p0
k).

The MG/OPT scheme is an iterative method. One cycle of this method is
defined as follows. Let p0

k be the starting approximation at resolution k.

Algorithm 1 (MG/OPT (k) Algorithm) If k = 1 (coarsest resolution)
solve Eq. (3.35) exactly.
Else if k > 1 :

1. Pre-optimization. Define p1
k = Sk(p0

k).
2. Set up and solve a coarse-grid minimization problem. Define p1

k−1 =
Ik−1
k p1

k and σk−1 = ∇gk−1(y1
k−1) − Ik−1

k ∇gk(y1
k). The coarse-grid min-

imization problem is given by

min
pk−1

(
gk−1(pk−1) − σT

k−1 pk−1

)
. (3.36)

Apply one cycle of MG/OPT(k-1) to Eq. (3.36) to obtain p2
k−1.

3. Line-search and coarse-grid correction. Perform a line search in the Ik
k−1(p2

k−1−
p1

k−1) direction to obtain τk. The coarse-grid correction is given by

p2
k = p1

k + τk I
k
k−1(p2

k−1 − Ik−1
k p1

k) .

4. Post-optimization. Define p3
k = Sk(p2

k).

Roughly speaking, the essential guideline for constructing gk on coarse
levels is that it must sufficiently well approximate the convexity properties
of the functional f(y(·), ·) at finest resolution. In addition, we have that the
gradient of the coarse-grid functional at p1

k−1 = Ik−1
k p1

k equals the restriction
of the gradient of the fine-grid functional at p1

k. In fact, by adding the term
−σT

k−1 pk−1 in Step 2, we have that

∇ (
gk−1(pk−1) − σT

k−1 pk−1

) |p1
k−1

= Ik−1
k ∇gk(p1

k) .
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It is shown in [12] that therefore the coarse grid correction is indeed a secant
direction for the optimization problems on the higher refinement levels.

A typical area of application for this multigrid strategy is the inverse prob-
lems for distributed parameters and control or shape optimization problems,
where the optimization variable is of function type.

3.3 Unsteady Problems

In principle, unsteady optimization problems of the form (3.1, 3.2, 3.3) can
be treated by the methods discussed above after a discretization in space
and time. However, the adjoint variables to the CFD equation always have
the same dimensionality as the solution of the CFD equation, i.e., if y is a
function of space and time, then so is λ. When performing simulations of
CFD problems, one typically provides only a space discretization of the flow
variables and marches forward in time so that during the whole simulation,
the main memory is only populated by one (or two, but at most six, depending
on the time marching scheme) spatially discretized state variable pertaining
to the solution at the current time-step. Unfortunately, the time direction is
reversed for the corresponding adjoint problems and, in nonlinear problems,
the solution of the (discretized) adjoint problem needs information from the
(discretized) primal CFD solution y. That means, a direct application of the
methodology sketched above to time-dependent problems requires storage for
at least the size of the whole space-time history of the solution y of the CFD
problem. If this amount of storage easily fits into the available memory, one
can just skip the following comments and continue with the next section,
where we discuss special features of the resulting SQP methods. Otherwise,
there are mainly four options:

• It is possible to counteract the lack of storage by investing more computing
time. In the situation of time-dependent optimization problems, this can
be facilitated by the use of so-called check-pointing strategies as described
in [18]. The algorithmic complexity then grows only logarithmically in the
number of time-steps to be thus virtually stored and so does the actual
storage space required. Note that the multiple shooting approach outlined
below provides a natural kind of checkpoints.

• Another interesting option is model reduction. In a trivial form this could
just mean choosing a coarser space-grid, which is however not feasible in
many cases. But the same line of thought leads to proper orthogonal de-
composition (POD), where low dimensional ansatz spaces are constructed
by the use of snapshots, which mirror already the major properties of the
solution of the CFD problem. The result is a low dimensional system of
Ordinary Differential Equations (ODE) or Differential Algebraic Equa-
tions (DAE), for which the optimization problems can be solved in the
fashion of the methods discussed below. A description of the use of POD
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for optimization problems together with strategies for the adaptation of
the POD-bases can be found in [1, 22, 25].

• If the dimension of the optimization variables is comparatively low, it is
possible to apply the boundary value problem techniques described below
in a forward sensitivity driven manner as described in [19, 31, 32, 33]. The
resulting storage space required is then equivalent to the dimension of the
optimization variables times the dimension of one space discretization of y.

• The direct usage of the reduced formulation (3.20) can be considered as an
ultima ratio, if the available main memory is not large enough to exploit all
other options. Nevertheless, one has to be careful in evaluating derivatives
and also be aware that the resulting unconstrained optimization problem is
typically much more nonlinear than the original, constrained formulation
(3.18,3.19).

Furthermore, an inconsistent adjoint time integration scheme becomes a
major and frequent pitfall in CFD-optimization. It is important that the ad-
joint discretization scheme is indeed adjoint to the discretized primal CFD
time integration scheme, according to the principle of internal numerical dif-
ferentiation (IND). A deviation from this requirement may lead to gradi-
ent approximations which are not descent directions and would thus lead to
premature stopping of gradient-based algorithms. The requirement of con-
sistency of the adjoint scheme with the forward scheme leads typically to
adjoint schemes which cannot be interpreted as integration schemes for the
(infinite) adjoint CFD problem. More details can be found in [11].

3.3.1 Time-domain Decomposition by Multiple
Shooting

The direct multiple shooting method for optimization of unsteady processes
as described below was introduced by Bock and Plitt for optimal control in
[10, 30], and for parameter estimation problems in [5]. The basic idea is to
decompose the time history of the problem into subdomains, in which the
unsteady PDE solutions are uniquely parameterized by their initial data and
by the unknown parameters. For this purpose, one divides the time interval
[0, T ] into subintervals [ti, ti+1] with

0 = t0 < t1 < . . . < tN = T . (3.37)

If the problem depends on a control function rather than a parameter, we
parameterize this control on each subinterval [ti, ti+1] by setting

u(t) = φi(t, qi) (3.38)
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where φi are given basis functions parameterized by a finite dimensional
parameter vector qi. The functions φi may be vectors of polynomials; in
practice, one often uses piecewise constant controls, i.e.,

φi(t, qi) = qi ∀t ∈ [ti, ti+1] . (3.39)

Note that for this particular choice of basis functions bounds on the control
u transfer immediately to bounds on the parameter vectors qi and vice versa.

Additional degrees of freedom are introduced by the variables si, i =
0, . . . , N−1 which represent the initial values yi(ti) of the state variables yi(t)
on each subinterval [ti, ti+1], and a variable sN for the final state. We compute
the trajectories as the solutions of the corresponding initial value problems
(IVP):

ẏi(t) = f(yi(t), φi(t, qi)) ∀ t ∈ [ti, ti+1] , (3.40a)
yi(ti) = si . (3.40b)

For ease of presentation, we formulate the CFD-problem in the form of an
explicit ODE via the method of lines. Note that every trajectory piece yi(t)
is uniquely determined by the initial value si and the control parameter
vector qi. To stress the dependence on the initial value and the control pa-
rameters we also write yi(t; si, qi). To ensure continuity of the whole state
trajectory y(t) we set up the continuity or matching conditions

si+1 − yi(ti+1; si, qi) = 0, i = 0, . . . , N − 1 . (3.41)

The objective function is evaluated on each subinterval independently:

Li(si, qi) =
∫ ti+1

ti

j(yi(t), φi(t, qi)) dt . (3.42)

This leads to the following structured nonlinear program (NLP):

min
si,qi

∑N−1
i=0 Li(si, qi) (3.43a)

s. t. si+1 = yi(ti+1; si, qi), i = 0, . . . , N − 1, (3.43b)
s0 − y0 = 0 (3.43c)

plus additional path and control constraints. Note that the part of the
Jacobian corresponding to the continuity conditions has a special block
banded structure and is invertible with respect to (s1, . . . , sN). Exploiting
this fact, one can reduce the degrees of freedom in the quadratic subprob-
lem to the variables Δw̃ = (Δs0, Δq0, . . . , ΔqN−1) by applying a condens-
ing step before solving the subproblem. A further reduction to the variables
Δq = (Δq0, . . . , ΔqN−1) can be achieved by using the linearization of the
initial value constraint (3.43c). For detailed information about the condens-
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ing technique in general and especially in the context of Nonlinear Model
Predictive Control (NMPC), the reader is referred to [13, 14].

Within classical multiple shooting, these blockwise matrices, also called
Wronskians, are built up in a sensitivity approach, which means that the
Jacobian matrix of the constraints are explicitly constructed and completely
stored. Matrix factorization techniques dovetailed to the multiple shooting
QP are applied in order to solve the quadratic programs. Note, however, that
these Jacobians need only be approximated in a coarse manner, when using
formulation (3.16, 3.17) such as by secant update techniques. In case of CFD
optimization problems they should only capture unstable and slowly decaying
modes. In certain cases, the frequent generation of the constraint Jacobian
can also be avoided, so that only the very first Jacobian is constructed and
factorized by the use of formulation (3.16, 3.17), where the matrix A de-
notes the (multiple shooting) Jacobian at the data of the first optimization
iteration.

3.3.2 Parallel Multiple Shooting

Parallelization of multiple shooting is trivially based on the idea that the
initial value solvers on each multiple shooting interval can work completely
independently, provided the initial values si are available. Parallel realizations
of multiple shooting have existed for a long time, cf. [15, 24, 36], and more
recently as parareal in [27]. Ulbrich has described the use of this approach
within an optimal control context [35] in a formulation similar to Eqs. (3.16)-
(3.17). There the initial values are provided by a coarse discretization scheme
(often implicit Euler) which operates only on the multiple shooting nodes.
It is obvious that this approach works only well with CFD problems, which
are dissipative enough so that even coarse time discretizations give some
consistent information.

3.3.3 Real-time Optimization and Nonlinear Model
Predictive Control

Real-time optimization is not just fast optimization, rather it means a shift
in philosophy: in order to minimize the delay time such as for a control
response to a perturbation of the process, one tries to compute as much
information as possible before data about the values of states and parameters
or of scenarios for the real process become available in real-time. In the CFD
context this means in particular that matrix factorizations, which are often
avoided for computational speed, or the pre-computation of sophisticated
pre-conditioners, receive an increased attention, insofar as they can often be
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computed in advance, and have a potential to speed up the final solution
process.

In the special case of NMPC, a sequence of neighboring optimization prob-
lems on a receding time horizon has to be solved, which differ only by (an
estimate of) the initial value of the states y(t0) and possibly by a change in
the set-point, i.e., parameters and scenarios. Minimal response delays can be
achieved by the “real–time iteration” (RTI) in combination with a “perturba-
tion embedding” as developed in [7, 13, 14]. Here, huge savings in computing
time are gained by a kind of hot start property because already the first
QP solution in a full step inexact SQP method provides a nearly tangential
approximation of the exact solution if the problem is initialized with the so-
lution of the previous problem, even in the presence of a change of the active
constraints. Furthermore, the calculations can be divided into a preparation
phase that can be performed without knowledge of y0, and a much shorter
feedback phase that allows to make the delay even shorter than the sampling
time. This remaining delay is typically orders of magnitude smaller than the
sampling time and thus we can consider the feedback to be instantaneous. So
the sampling time is practically only needed to prepare the following real–
time iteration. Additionally, cheap feasibility and/or optimality improving
subiterations (FOI) can be performed that reuse Jacobians and Hessians of
the previous step and require only one forward and additionally one adjoint
solution, respectively.

For a more detailed description of the real-time iteration scheme and its
convergence and nominal stability properties, please refer to [14].

3.3.4 Sensitivity Driven Multiple Shooting

In parameter estimation problems for CFD models, it is possible to use a
multiple shooting time-domain decomposition and profit from its superior
convergence properties, and on the other hand reduce the optimization space
only to the parameters to be estimated. In these problems, one uses a general-
ized Gauss-Newton approach which achieves rather good convergence already
with information of first order only. The linearized least-squares subproblem
is condensed to the unknown parameters, which can be achieved while only
marching forward in time with a conventional time-integration scheme. This
idea was originally developed in [33], and has been successfully applied to
multiphase problems, e.g., in [19]. Extensions to Newton-type methods for
general objectives, e.g., in control problems were developed in [31, 32].
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Chapter 4

Adjoint Methods for Shape
Optimization

Kyriakos C. Giannakoglou and Dimitrios I. Papadimitriou

Abstract In aerodynamic shape optimization, gradient-based methods often
rely on the adjoint approach, which is capable of computing the objective
function sensitivities with respect to the design variables. In the literature
adjoint approaches are proved to outperform other relevant methods, such
as the direct sensitivity analysis, finite differences or the complex variable
approach. They appear in two different formulations, namely the continuous
and the discrete one, which are both discussed in this chapter.

In the first part, continuous and discrete approaches for the computation
of first derivatives are presented. The mathematical background for both ap-
proaches is introduced. Based on it, adjoints for either inverse design problems
associated with inviscid or viscous flows or for the minimization of viscous
losses in internal aerodynamics are developed. The Navier-Stokes equations
are used as state equations. The elimination of field integrals expressed in
terms of variations in grid metrics leads to a formulation which is indepen-
dent of the grid type and can thus be employed with either structured or
unstructured grids. From the physical point of view, the minimization of vis-
cous losses in ducts or cascades is handled by minimizing either the difference
in total pressure between inlet and outlet (the objective function is, then, a
boundary integral) or the field integral of entropy generation. The discrete
adjoint approach is, practically, used to compare and cross-check the deriva-
tives computed by means of the continuous approach.

In the second part of this chapter, recent theoretical formulations on the
computation and use of the Hessian matrix in optimization problems are
presented. It is demonstrated that the combined use of the direct sensitivity
analysis for the first derivatives followed by the adjoint approach for second
derivatives may support the Newton method at the cost of N+2 equivalent
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(e-mail: kgianna@central.ntua.gr, e-mail: dpapadim@mail.ntua.gr)

79



80 Kyriakos C. Giannakoglou and Dimitrios I. Papadimitriou

flow solutions per optimization cycle. The computation of the exact Hessian
is demonstrated using both discrete and continuous approaches.

Test problems are solved using the proposed methods. They are used to
compare the so-computed first and second derivatives with those resulting
from the use of finite difference schemes. On the other hand, the efficiency of
the proposed methods is demonstrated by presenting and comparing conver-
gence plots for each test problem.

4.1 Introduction

Gradient-based methods, often used in aerodynamic optimization, must be
supported by a tool to compute the gradient of an objective function which
quantifies the efficiency of candidate solutions to the problem. Since this
text focuses on aerodynamic shape optimization only, candidate solutions
are considered to be 2D or 3D aerodynamic shapes (airfoils, blades, wings,
air inlets, etc.). The objective function is expressed in terms of flow variables
computed by numerically solving the flow equations in the corresponding
domains, with problem-specific boundary conditions. The adjoint approach,
based on control theory, is a means to compute the gradient required by a
gradient-based optimization method.

Generally, deterministic algorithms driven by the gradient of the objective
function converge to the global optimal solution much faster than evolution-
ary algorithms, provided that the starting solution does not mislead them by
trapping the search around local optima. The reason for the superiority of the
adjoint method (despite the aforementioned risk) is that the gradient points
towards a better solution whereas the evolutionary algorithms are, generally,
unable to exploit local information during the solution refinement. On the
other hand, evolutionary algorithms have some other advantages [8, 20]. How-
ever, the analysis of these algorithms and their performance is beyond the
scope of this chapter which is exclusively concerned with adjoint methods.

Aerodynamic problems usually involve a great number of design variables,
so the computation of gradients by means of finite difference schemes renders
deterministic algorithms very time-consuming. Compared to other methods,
such as the complex-variable approach [48], or the direct sensitivity analysis
(as it will become clear as this chapter develops, the direct approach is based
on the computation and use of the gradient of flow variables with respect to
the design variables as intermediate quantities), the adjoint approach is more
efficient to compute the gradient of the objective function. The total cost for
the gradient computation does not depend on the number of design variables
and is approximately equal to that of solving the flow equations.

Two adjoint approaches, namely the continuous and discrete, have been
developed. In continuous adjoint, the adjoint Partial Differential Equations
(PDE) are formed starting from the corresponding flow PDE’s and are then



4 Adjoint Methods for Shape Optimization 81

discretized and numerically solved to compute the adjoint variables’ field. In
discrete adjoint, the equations are obtained directly from the discretized flow
PDE’s. Concerning their requirements at the development stage, both ap-
proaches have their advantages and disadvantages and the interested reader
may refer to [55] for more details. However, according to [43, 44] and the per-
sonal experience of the authors, both approaches result in sensitivity deriva-
tives of the same accuracy.

In fluid mechanics, the adjoint method has been introduced by Pironneau,
[57] and applied to flows governed by elliptic PDE’s. Jameson was the first
to present the continuous adjoint formulation for the optimal design of aero-
dynamic shapes [28, 29, 33] in transonic flows. These papers deal with the
inverse design of airfoils and wings in inviscid flows, while the extension to
viscous flows is found in [32] where the Navier-Stokes equations are used as
state equations.

Since 1988, Jameson has presented many publications on discrete and pref-
erentially on continuous adjoint approaches. Among them, we report on the
inverse design of wings in subsonic, transonic and supersonic flows using
multiblock structured grids [30, 59], minimization of drag and/or maximiza-
tion of lift in inviscid [35] and viscous flows [36], sonic boom reduction for
supersonic flows [1, 46], shock wave reduction in external aerodynamics [25],
unsteady aerodynamic design of isolated airfoils and wings [45, 47], aerody-
namic design of full aircraft configurations [34], multipoint drag minimization
[39] and multidisciplinary optimization [38, 40].

On the other hand, Giles made a considerable improvement in the devel-
opment of the discrete adjoint approach. The properties of solutions to the
adjoint equations are analyzed in [23, 24]. He also presented the analytical
solutions of the adjoint equations using Green’s functions [56], an exact ap-
proach for the solution of the adjoint equations [22], a shock wave reduction
method in external aerodynamics [21] and the harmonic approach to turbo-
machinery steady and unsteady designs [11, 14].

The discrete adjoint approach using unstructured grids was first presented
by Peraire in inviscid, [15] and viscous flows [16], for 2D and 3D [17], configu-
rations. Peraire also applied the adjoint approach to multipoint optimization
problems [18].

The continuous adjoint approach for unstructured grids has been devel-
oped by Anderson [4, 5] for inviscid and viscous flows. The discrete adjoint
formulation for turbulent flows with the Spalart-Allmaras turbulence model
can be found in [2, 3]. Improvements of the discrete approach concerning the
handling of grid sensitivities can be found in [49, 50] where remeshing and
mesh movement strategies used at each optimization cycle are discussed.

The convergence of the iterative optimization algorithm, which in each cy-
cle solves the flow and adjoint equations followed by the updating of the de-
sign variables, can be significantly improved by the so-called one-shot method
[61, 37]. The three systems of equations are solved simultaneously in one shot,
and the convergence is further accelerated using multigrid. Improvements of
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the one-shot method can be found in [27, 26] where the three systems of equa-
tions are solved with the same time-step. Another variation of the one-shot
method can be found in [12, 13].

A different approach, which under certain circumstances may lower the
total computational cost is the incomplete gradient method [42, 60]. Less
important terms in the gradient expression are omitted, reducing thus the
accuracy of sensitivity derivatives while increasing the overall efficiency.

The continuous adjoint approach may become unable to deal with func-
tionals not expressed in terms of pressure (inadmissible functionals). To han-
dle inadmissible functionals, the adjoint formulation needs to be carefully
modified [6, 9].

An adjoint approach which avoids the computation of sensitivities of grid
metrics over the flow field has been presented for inviscid [31] and viscous [53]
flows. According to this approach, the gradient depends on flow and adjoint
variables as well as grid sensitivities over the boundary only, irrespective of
whether the objective function is a boundary or field integral. The lack of in-
ternal grid sensitivities in the gradient expression reduces the computational
cost and increases accuracy by avoiding repetitive grid remeshings at each
optimization cycle. Approaches that skip the computation of grid sensitivities
in the discrete adjoint approach are presented in [41, 51].

The computation of the exact Hessian matrix using adjoint approaches
and its use in shape optimization is rare in the literature. In aerodynamic
design, the Hessian matrix in the neighborhood of the optimal solution is
analyzed in [7], while a method to compute the Hessian matrix can be found
in [62], although the structural optimization is of concern.

This chapter presents a detailed framework for the development of discrete
and especially continuous adjoint methods developed by the authors. The de-
velopment covers inverse design and optimization problems (minimization of
viscous losses, expressed as either entropy generation or total pressure losses)
in internal aerodynamics. Applications in external aerodynamics (where the
method can be extended to other objectives such as drag minimization con-
strained by the lift, etc.) have been worked out using the present approach but
are not included in this chapter in the interest of space. The Navier-Stokes
equations with the Spalart-Allmaras turbulence model are used as state equa-
tions. The demonstration is restricted to internal aerodynamics (design of a
cascade airfoil and a duct). In addition to theory and examples on the compu-
tation and use of gradients (in steepest descent, quasi-Newton methods like
BFGS, etc.), recent achievements on the formulation of adjoint-based exact
Hessian methods in aerodynamic optimization are presented.

The principles of the adjoint approaches, discrete and continuous, are first
presented. Since the discrete adjoint is based on the already discretized flow
equations, any further discussion would be useful only for a specific discretiza-
tion scheme. On the other hand, the continuous adjoint formulation is pre-
sented in complete detail. Emphasis is laid on the formulation which leads to
an expression of the objective function gradient which is free of field integrals.
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In structured grid terminology, such a formulation avoids the computation of
grid metrics sensitivities, a procedure which would otherwise require repeti-
tive generations of new meshes in domains defined by slightly perturbing one
design variable at a time, followed by the computation of metrics and their
variations. Extra computational (CPU) cost and ambiguities relevant to the
correct implementation of finite differences are implicit in this procedure.

Both discrete and continuous approaches are discussed with regard to the
shape optimization methods that are based on the computation and use of
the exact Hessian of the objective function. Irrespective of the approach to be
used, it is demonstrated that the computation of the Hessian requires not only
the gradient of the objective function (computable using the adjoint approach
discussed in the previous paragraph) but also the sensitivity derivatives of the
flow quantities with respect to the design variables. It is then necessary to in-
vestigate any combination of direct and adjoint approaches (either in discrete
or continuous form) that produce the Hessian matrix. There are, in fact, four
algorithms: direct-direct, direct-adjoint, adjoint-direct, adjoint-adjoint; the
first term denotes the method used to compute the gradient and the second
describes how the Hessian can be derived starting from a known gradient.
From the CPU cost viewpoint, it is shown that the direct-adjoint approach
is the least costly among them and the one developed herein, in discrete and
continuous mode. Note that it is unnecessary to make any comparison on
their accuracy since all of them compute exact Hessians and, therefore, only
some unavoidable numerical errors (due to the different operations and com-
putations involved in each one of them) may appear. Such a comparison has
been made but the four curves are almost identical, so there is no need to in-
clude it in this chapter. If the exact Hessian is available, the Newton method
can be used as optimization algorithm. In this chapter and at least for the
examined cases, the superiority of the exact Newton method over other opti-
mization methods (such as quasi-Newton methods, steepest descent, BFGS)
is demonstrated.

4.2 Principles of the Adjoint Approach

4.2.1 The Discrete Adjoint Approach

In aerodynamic shape optimization, the adjoint method aims at computing
the gradient of an objective function F with respect to the design variables
bi, i = 1, N . Total derivatives dF

dbi
can be computed using [55],

dF

dbi
=
∂F

∂bi
+

∂F

∂Uk

dUk

dbi
(4.1)
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constrained by the state (flow) equations Rm(U) = 0,m = 1, ...,M , which
must be satisfied over the M grid nodes. The gradient of these constraints is
expressed as

dRm

dbi
=
∂Rm

∂bi
+
∂Rm

∂Uk

dUk

dbi
= 0 . (4.2)

The combination of Eqs. (4.1) and (4.2) allows the elimination of dUk

dbi
and

produces the final expression for dF
dbi

. By introducing the adjoint or costate
variables Ψm,m=1, ...,M , this expression becomes

dF

dbi
=
∂F

∂bi
+ Ψm

∂Rm

∂bi
(4.3)

where the adjoint variables result from the solution of the adjoint equations

RΨ
k =

∂F

∂Uk
+ Ψm

∂Rm

∂Uk
= 0 . (4.4)

Since such a development relies on the discrete state equations, Eqs. (4.2),
it is usually referred to as the discrete adjoint method to distinguish it from
the continuous one (see below). The advantage of the adjoint formulation is
that only one adjoint equation has to be solved irrespective of the value of
N .

The adjoint approach, which is associated with Eqs. (4.1) to (4.4) for the
computation of the gradient of F , can also be applied to the computation
of any quantity F = γT U , where U satisfies the linear system AU = φ;
γ and φ are known vectors and A is a known square matrix. Here also,
the direct computation of F (F = γTA−1φ) can be replaced by an adjoint
approach. The adjoint equation AT Ψ = γ is first solved and then, F results
from F = ΨT φ, [55].

4.2.2 The Continuous Adjoint Approach

Section 4.2.1 summarizes the discrete adjoint approach as a means to compute
the gradient of an objective function F , in discrete form, constrained by the
discretized state PDE’s. Alternatively, the same problem may be handled by
the continuous adjoint approach, where the adjoint PDE’s are first produced
and then, discretized and solved.

Assume that the sensitivity derivatives of F with respect to bi can be
expressed as

δF

δbi
=

∫
Ω

γ
δU

δbi
dΩ +

∫
S

ζB1(
δU

δbi
)dS +

δFg

δbi
(4.5)
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where γ and ζ are functions of geometrical quantities and state variables, B1

is a differential operator and δFg

δbi
is the gradient of a function depending on

the contour and/or grid sensitivity derivatives. Equation (4.5) contains both
field (over the flow domain Ω) and boundary (along its boundary S = ∂Ω)
integrals. Expressions for δU

δbi
can be obtained using the derivatives of the

state equations and their boundary conditions that may be written as

L(
δU

δbi
)=φ , over Ω

B2(
δU

δbi
)=ε , along S (4.6)

where φ, ε are known functions and L, B2 are known operators. Using the
continuous adjoint approach, δF

δbi
can be expressed as

δF

δbi
=

∫
Ω

ΨφdΩ +
∫

S

(B∗
1Ψ)εdS +

δFg

δbi
(4.7)

where the adjoint field Ψ is computed by discretizing and solving the adjoint
PDE’s with appropriate boundary conditions, namely

L∗Ψ=γ , over Ω

B∗
2Ψ=ζ , along S (4.8)

where L∗ is the adjoint operator to L and B∗
1 , B∗

2 are boundary operators
satisfying the following equation [55],∫

Ω

ΨL(
δU

δbi
)dΩ−

∫
Ω

(L∗Ψ)
δU

δbi
dΩ =

∫
S

(B∗
2Ψ)B1(

δU

δbi
)dS

−
∫

S

(B∗
1Ψ)B2(

δU

δbi
)dS . (4.9)

Advantages and disadvantages of the discrete and continuous approaches
are discussed in Sect. 4.2.3. Nevertheless, regardless of the form (discrete
or continuous), the adjoint approach, as a means to compute the objective
function gradient in aerodynamic optimization, is much more inexpensive
than the direct approach.

4.2.3 Differences Between Discrete and
Continuous Adjoint

A marked difference that distinguishes the discrete from the continuous ad-
joint approach is the way the discrete adjoint equations are derived, starting
from the state PDE’s. The two alternative ways to produce the discrete ad-
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joint equations are schematically shown below.

DISCRETE CONTINUOUS
ADJOINT ADJOINT

Differential State Equations

�
Discretization

�
Adjoint Operation

Discrete State

Equations

Differential Adjoint

Equations

�
Adjoint Operation

�
Discretization

Discrete Adjoint Equations

Theoretically, the value of F can be estimated with the same accuracy
irrespective of the approach used [43, 44]. However, each approach has its
own advantages and disadvantages which influence users’ preferences. In the
discrete approach, the derivation of the discrete adjoint equations is more
cumbersome, unless automatic differentiation is used [58]. Once the discrete
adjoint equations have been found, they can be solved using the same solvers
as those used to solve the state equations. Using the continuous approach,
one might use different discretization schemes. This might become important,
since the adjoint equations can be derived and solved without having access
to the flow solver source code. However, in practice, it has been proven that
the accuracy of the continuous adjoint approach depends on the discretization
scheme which must be as close as possible to that used for the discretization
of the state equations [4, 5]. Note that differences in the gradient values,
computed by the two approaches, may also appear if the computational grid
is not adequate enough.

4.3 Inverse Design Using the Euler Equations

The continuous adjoint approach for the inverse design of aerodynamic shapes
in inviscid flow is now presented. The Euler equations are used as state equa-
tions and these are written in vector form as

∂U

∂t
+
∂f inv

k

∂xk
= 0 (4.10)
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where U is the vector of conservative flow variables, U =
[
ρ , ρvT , E

]T ,

f inv
k =

[
ρuk , ρukvT + pδT

k , uk(E + p)
]T is the vector of the inviscid fluxes,

ρ is the local fluid density, uk are the velocity v components, p is pressure,
E = ρe + 1

2ρv
2 is the total energy per unit volume and δk is the vector of

Kronecker symbols. For the sake of simplicity, throughout this section which
is exclusively concerned with inviscid flows, the inviscid fluxes f inv

k will be
denoted by fk.

In inverse design problems, the goal is to compute the aerodynamic shape
that produces a given pressure (or any other) distribution over the shape
contour. The term “aerodynamic shape” is used to denote isolated or cascade
airfoils, ducts, etc. (in 2D) or wings, blades, ducts, etc. (in 3D). The objective
function is written as

F =
1
2

∫
Sw

(p− ptar)2dS (4.11)

where ptar(S) is the target pressure distribution along the solid walls Sw.
The gradient of F with respect to the design variables controlling the shape
is expressed as

δF

δbi
=

1
2

∫
Sw

(p− ptar)2
δ(dS)
δbi

+
∫

Sw

(p− ptar)
δp

δbi
dS . (4.12)

It is straightforward to derive expressions for δU
δbi

using the so-called direct
approach. Starting from the Euler equations, we obtain

δ

δbi

(
∂fk

∂xk

)
=

δ

δbi

(
Ak

∂U

∂xk

)
= 0 . (4.13)

Equation (4.13) can be solved for the flow sensitivities δU
δbi

, provided that

the sensitivities of spatial derivatives δ
δbi

(
∂U
∂xk

)
can be transformed to the

spatial derivatives of flow sensitivities ∂
∂xk

(
δU
δbi

)
. Since δp

δbi
, which appears in

Eq. (4.12), is expressed in terms of δU
δbi

, an expression for δF
δbi

can be produced.
Unfortunately, to compute the grid sensitivities that appear in any possible
form of Eq. (4.13) (see, for instance, Eq. (4.17) for grid metrics sensitivities)
through finite differences, 2N calls to the grid generation software are needed.
The detailed development and solution algorithm are omitted.

Alternatively, the partial derivatives of Eq. (4.10) with respect to bi

∂

∂bi

(
∂fk

∂xk

)
=

∂

∂xk

(
Ak

∂U

∂bi

)
= 0 (4.14)

can be used to produce expressions for ∂U
∂bi

. The assumption that the Jacobian
matrix derivatives can be omitted is made. Once ∂U

∂bi
are known, δU

δbi
can be

computed using
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δU

δbi
=
∂U

∂bi
+

∂U

∂xm

δxm

δbi
. (4.15)

This alternative formulation of the direct approach skips the computation of
grid sensitivities at the interior, since Eq. (4.12) depends only on δp

δbi
at the

boundaries. However, as stated in the previous section, the CPU cost of the
direct approach is high since N solutions of the linearized flow equations are
necessary.

To set up the continuous adjoint approach, the augmented objective func-
tion Faug is introduced by adding to F the field integral of the adjoint vari-
ables multiplied by the flow equations. One may directly express the gradient
of F with respect to bi, by using either the total or the partial sensitivity
derivatives of the flow equations. The two alternative expressions are

δFaug

δbi
=
δF

δbi
+

∫
Ω

ΨT δ

δbi

(
∂fk

∂xk

)
dΩ (4.16a)

δFaug

δbi
=
δF

δbi
+

∫
Ω

ΨT ∂

∂bi

(
∂fk

∂xk

)
dΩ . (4.16b)

Starting from Eq. (4.16a), using the transformation from δ
δbi

(
∂U
∂xk

)
to

∂
∂xk

(
δU
δbi

)
, [32], based on equation

δ

δbi

(
∂U

∂xk

)
=

∂

∂xk

(
δU

δbi

)
+
∂U

∂ξm

δ

δbi

(
∂ξm

∂xk

)
(4.17)

where ξj are structured grid metrics and by integrating by parts, δF
δbi

is ex-
pressed as follows

δF

δbi
=

1
2

∫
Sw

(p− ptar)2
δ(dS)
δbi

−
∫

Ω

ΨT ∂fk

∂ξm

δ

δbi

(
∂ξm

∂xk

)
dΩ

+
∫

Sw

(Ψk+1p− ΨT fk)
δ(nkdS)
δbi

. (4.18)

Adjoint variables are computed by solving the field adjoint equations

∂Ψ

∂t
−Ak

T ∂Ψ

∂xk
= 0 (4.19)

with appropriate boundary conditions along the solid walls

(p− ptar) + Ψk+1nk = 0 (4.20)

and the inlet/outlet boundary

δUT

δbi
(AT

n Ψ ) = 0 (4.21)
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An = Aknk and nk are the outward normal to the boundary, unit vector
components. It is important to note that Eq. (4.18) includes a field integral
of grid metric sensitivities δ

δbi

(
∂ξm

∂xk

)
, the computation of which increases

the CPU cost and becomes a source of inaccuracies. The standard way to
compute grid metric sensitivities is through finite differences (after pertur-
bating one design variable at a time, modifying the contour and remeshing).
If Eq. (4.16a) or

δFaug

δbi
=
δF

δbi
+

∫
Ω

ΨT ∂

∂xk

(
∂fk

∂bi

)
dΩ (4.22)

is used instead, the adjoint equations and boundary conditions remain exactly
the same (Eqs. (4.19), (4.20) and (4.21)) but the gradient expression becomes

δF

δbi
=

1
2

∫
Sw

(p− ptar)2
δ(dS)
δbi

−
∫

Sw

∂U

∂xk

T

An
T Ψ

δxk

δbi
dS

+
∫

Sw

(Ψk+1p− ΨT fk)
δ(nkdS)
δbi

(4.23)

which differs from Eq. (4.18) since Eq. (4.23) is free of field integrals. Thus,
the gradient values are computed with less computational cost and greater
accuracy. In addition, Eq. (4.23) is more general and can be used with either
structured or unstructured grids.

Proof of Eq. (4.23):

The integration by parts of the second term on the right-hand side (r.h.s.) of
Eq. (4.22) gives∫

Ω

ΨT ∂

∂xk

(
∂fk

∂bi

)
dΩ = −

∫
Ω

∂UT

∂bi

(
AT

k

∂Ψ

∂xk

)
dΩ

+
∫

Si,o,w

ΨT ∂fk

∂bn
nkdS . (4.24)

Employing the no-penetration condition, the second integral on the r.h.s of
Eq. (4.24) is written as∫

Sw

ΨT ∂fk

∂bi
nkdS =

∫
Sw

ΨT δfk

δbi
nkdS −

∫
Sw

ΨT ∂fk

∂xm

δxm

δbi
nkdS

=
∫

Sw

Ψk+1nk
δp

δbi
dS +

∫
Sw

(Ψk+1p− ΨT fk)
δ(nkdS)
δbi

−
∫

Sw

∂U

∂xk

T

An
T Ψ

δxk

δbi
dS . (4.25)
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The gradient of Faug with respect to the design variables is finally given by

δFaug

δbi
=

1
2

∫
Sw

(p− ptar)2
δ(dS)
δbi

+
∫

Sw

(p− ptar)
δp

δbi
dS︸ ︷︷ ︸

BCW

−
∫

Ω

(
δUT

δbi
− ∂U

∂xm

T δxm

δbi

)(
AT

k

∂Ψ

∂xk

)
dΩ

︸ ︷︷ ︸
FAE

−
∫

Sw

∂U

∂xk

T

An
T Ψ

δxk

δbi
dS +

∫
Sw

Ψk+1nk
δp

δbi
dS︸ ︷︷ ︸

BCW

+
∫

Sw

(Ψk+1p−ΨT fk)
δ(nkdS)
δbi

+
∫

Si,o

δUT

δbi
(AT

n Ψ )dS︸ ︷︷ ︸
BCIO

. (4.26)

In Eq. (4.26), the field integral marked with FAE, which depends on the flow
variable sensitivities, is eliminated giving rise to the field adjoint equations,
Eq. (4.19). Terms marked with BCW and BCIO are also eliminated by
satisfying the adjoint boundary conditions (Eqs. (4.20) and (4.21)). The re-
maining terms determine the sensitivity derivatives of the objective function
with respect to the design variables, Eq. (4.23).

4.4 Inverse Design Using the Navier-Stokes Equations

In real flows, the inverse design of optimal aerodynamic shapes is based on
the Navier-Stokes equations

∂U

∂t
+
∂f inv

k

∂xk
− ∂fvis

k

∂xk
= 0 (4.27)

where fvis
k =

[
0 , τT

k , umτkm + qk
]T is the vector of viscous fluxes, τ k are

the viscous stresses and qk = k ∂T
∂xk

are the thermal heat flux components.
Using the same objective function, the extra work to be done to develop the

direct approach for the computation of δF
δbi

is to account for the sensitivities
of the viscous stresses, too. Using the continuous adjoint approach, based on
the partial derivatives of the Navier-Stokes equations with respect to bi, the
sensitivity derivatives of F are finally given by [53]
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δF

δbi
=

1
2

∫
Sw

(p− ptar)2
δ(dS)
δbi

+
∫

Sw

(Ψk+1p− ΨT fk)
δ(nkdS)
δbi

−
∫

Sw

ΨT

(
∂f inv

k

∂xm
− ∂fvis

k

∂xm

)
δxm

δbi
nkdS

+
∫

Sw

Ψk+1

nk
τkmδ(nknm)dS +

∫
Sw

ΨΛqk
δ(nkdS)
δbi

−
∫

Sw

∂uk

∂xl

[
μ

(
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm

)
+ λδkm

∂Ψn+1

∂xn

]
δxl

δbi
nmdS (4.28)

(Λ= 4 in 2D and Λ= 5 in 3D). In viscous flows, Ψ should satisfy the field
adjoint equations

∂Ψ

∂t
−AT

k

∂Ψ

∂xk
−M−T K = 0 (4.29)

where M is the transformation matrix from the non-conservative to the con-
servative flow variables and K corresponds to the adjoint viscous stresses,
where

K1=−T
ρ

∂

∂xk

(
k
∂ΨΛ

∂xk

)
KΛ=

T

p

∂

∂xk

(
k
∂ΨΛ

∂xk

)

Kk+1=
∂

∂xm

[
μ

(
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm

)
+λδkm

∂Ψl+1

∂xl

]

+
∂

∂xm

[
μ

(
um

∂ΨΛ

∂xk
+uk

∂ΨΛ

∂xm

)
+λδkmul

∂ΨΛ

∂xl

]
−τkm

∂ΨΛ

∂xm
. (4.30)

Along the solid walls, the boundary conditions for the adjoint variables which
correspond to the velocity components read

Ψk+1 = −(p− ptar)nk , k = 1, ..., Λ . (4.31)

The boundary condition for ΨΛ, which corresponds to the energy equation,
is either homogeneous Dirichlet (constant wall temperature) or Neumann
(adiabatic walls). The inlet/outlet adjoint boundary conditions are still given
by Eq. (4.21), neglecting locally the spatial derivatives of flow variables.

4.5 Viscous Losses Minimization in Internal Flows

In this section, the continuous adjoint approach is adapted to shape opti-
mization problems in internal flows where the minimization of viscous losses
is targeted. Viscous losses can be expressed as either total pressure drop or
entropy generation. Both are discussed in this section. Concerning the two
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alternative formulations, a distinguishing feature stems from the (field or
boundary) integral used to define the objective function.

4.5.1 Minimization of Total Pressure Losses

In contrast to inverse design problems, F is defined by integrals along the
inlet and outlet boundaries of the domain, (Si, So) instead of the parame-
terized wall boundary. Consequently, F and bi are “non-collocated”. For this
reason, the way inlet/outlet boundary conditions for the adjoint variables are
imposed is described below [54].

The total pressure losses functional is defined as

F =
∫

Si,o

ptdS =
∫

Si

ptdS −
∫

So

ptdS (4.32)

and its gradient is simply given by

δF

δbn
=

∫
Si

δpt

δbi
dS −

∫
So

δpt

δbi
dS (4.33)

since the inlet and exit boundaries remain fixed. Using the adjoint approach,
the gradient of the objective function can be expressed as follows

δF

δbi
=−

∫
Sw

(
ΨT fk

) δ(nkdS)
δbi

+
∫

Sw

ΨΛqm
δ(nmdS)
δbi

−
∫

Sw

∂uk

∂xl

[
μ

(
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm

)
+λδkm

∂Ψn+1

∂xn

]
δxl

δbi
nmdS

−
∫

Sw

ΨT

(
∂f inv

k

∂xm
− ∂fvis

k

∂xm

)
δxm

δbi
nkdS . (4.34)

The field adjoint equations are given by Eq. (4.29) and are similar to the
ones used in viscous inverse designs. The solid wall conditions for the Ψ
components that correspond to the velocity components are homogeneous
Dirichlet. Dirichlet or Neumann conditions are imposed for ΨΛ, depending
on the wall condition on temperature.

The adjoint boundary conditions over the outlet of the flow domain are
imposed by solving

[
(PΛ̄)T Ψ

]T
+

(
∂pt

∂V

)T

L = 0 (4.35)

for the characteristic flow variables directed outwards. ∂pt

∂V is the derivative of
the total pressure with respect to the nonconservative variables V , P is the
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matrix with the right eigenvectors of the conservative Jacobian matrix Aknk,
L is the matrix with the right eigenvectors of the nonconservative Jacobian
matrix and Λ̄ is the diagonal matrix with the eigenvalues of the Jacobian
matrix. The boundary condition at the inlet of the flow domain is imposed
by solving [

(PΛ̄)T Ψ
]T

= 0 (4.36)

since pt is constant at the inlet.

4.5.2 Minimization of Entropy Generation

From a practical point of view, it makes no difference to use either total
pressure losses or entropy generation as a measure of viscous losses in internal
flows. From the mathematical point of view, however, the use of entropy
generation has the additional feature that the objective function is a field
integral. Thus, F is defined as

F =
∫

Ω

ρuk
∂s

∂xk
dΩ =

∫
Ω

1
T
τkm

∂uk

∂xm
dΩ . (4.37)

The gradient of F can be computed using the direct approach, by expressing
the sensitivities of the finite volume dΩ as, [53],

δ(dΩ)
δbi

=
∂

∂xk

(
δxk

δbi

)
dΩ . (4.38)

The integral that includes ∂
∂xk

(
δxk

δbi

)
is integrated by parts and the gradient

of F is, finally, given by

δF

δbi
= −

∫
Ω

1
T 2
τkm

∂uk

∂xm

∂T

∂bi
dΩ − 2

∫
Ω

∂

∂xm

(
1
T
τkm

)
∂uk

∂bi
dΩ

− 2
∫

Sw

1
T
τkm

∂um

∂xl
nk
δxl

δbi
dS +

∫
Sw

1
T
τkm

∂uk

∂xm

δxl

δbi
nldS (4.39)

where ∂T
∂bi

and ∂uk

∂bi
are computed using Eq. (4.14) (direct approach), with

fk = f inv
k −fvis

k . The adjoint approach, through Eq. (4.38) and integrations
by parts, gives the final expression of δF

δbi
as follows
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δF

δbi
=−

∫
Sw

(
ΨT fk

) δ(nkdS)
δbi

−
∫

Sw

ΨT

(
∂f inv

k

∂xl
− ∂fvis

k

∂xl

)
δxl

δbi
nkdS

+
∫

Sw

ΨΛqm
δ(nmdS)
δbi

−
∫

Sw

∂uk

∂xl

[
μ

(
∂Ψm+1

∂xk
+
∂Ψk+1

∂xm

)
+λδkm

∂Ψq+1

∂xq

]
δxl

δbi
nmdS

−2
∫

Sw

τkm
∂um

∂xl
nk
δxl

δbi
dS+

∫
Sw

1
T
τkm

∂uk

∂xm

δxl

δbi
nldS (4.40)

where Ψ satisfies the field adjoint equations

∂Ψ

∂t
−AT

k

∂Ψ

∂xk
−M−T K −M−T L = 0 . (4.41)

The vector of source terms L is defined as

L1=− 1
T 2
τkm

∂uk

∂xm

p

ρ2(γ − 1)
, Lk+1=2

∂

∂xm

(μ
T
τkm

)
, LΛ=−ρ

p
L1 .(4.42)

The boundary conditions over the solid wall are the same to those used for
the total pressure losses minimization; at the inlet and outlet boundaries,
Eq. (4.21) is imposed.

From Eq. (4.40), it can be stated that the gradient of F does not depend
on field integrals, even if F is, in fact, a field integral retaining thus, the
advantages of better accuracy and lower computational cost.

4.6 Computation of the Hessian Matrix

Starting from either the direct or the adjoint approach to compute first deriva-
tives, the use of the direct or adjoint approach anew leads to the computation
of the Hessian matrix. Consequently, four approaches to compute the exact
Hessian matrices have been developed. These approaches (either discrete or
continuous) differ with respect to their CPU cost.

Once the N(N+1)
2 distinct values of the symmetrical Hessian matrix as

well as the gradient of the objective function have been computed, the design
variables are updated using the (exact) Newton algorithm

d2Fλ

dbidbj
dbλi = −dF

λ

dbj
(4.43a)

bλ+1
i = bλi + dbλi , i = 1, ..., N (4.43b)

where λ is the optimization cycle counter.
Considering that the adjoint approach is much less time-consuming than

the direct approach for the gradient computation, one may think that the
exclusive use of adjoints would be advantageous for the computation of the
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Hessian as well. However, if first-order sensitivity derivatives are computed
using the adjoint approach, N pairs of additional systems of direct or adjoint
equations must be solved for the computation of the Hessian matrix. So, the
total cost to compute all quantities needed by Eq. (4.43) is equal to that of
1+2N equivalent flow solutions.

The high cost of the previous approaches is due to the fact that the adjoint
approach is used for the first derivative and therefore, dU

dbi
values are not

available; as it will become clear below, these quantities are necessary in
order to proceed to the computation of the Hessian matrix. For this reason,
the direct approach to compute the gradient of F must be employed. Given
this decision, one should investigate the expected gain from the subsequent
use of the adjoint approach to compute the Hessian (direct-adjoint approach)
compared to the direct-direct approach, where the computation of the Hessian
is based on the repeated application of the direct approach. It can be shown
(this development is omitted) that the direct-direct approach requires N +
N(N+1)

2 equivalent flow solutions at each optimization cycle. On the other
hand, the direct-adjoint approach, in which second derivatives are computed
using the adjoint approach, is the less time-consuming one since it requires
the solution of 1+N equivalent flow problems. Note that the previous figures
must be augmented by one, so as to account for the cost of solving the flow
equations and computing the value of F .

4.6.1 Discrete Direct-adjoint Approach for the Hessian

Starting from Eq. (4.1), the second derivative of F is given by

d2F

dbidbj
=

∂2F

∂bi∂bj
+

∂2F

∂bi∂Uk

dUk

dbj
+

∂2F

∂Uk∂bj

dUk

dbi

+
∂2F

∂Uk∂Um

dUk

dbi

dUm

dbj
+
∂F

∂Uk

d2Uk

dbidbj
. (4.44)

Equation (4.44) can be used to compute d2F
dbidbj

provided that dU
dbi

(N quanti-

ties) and d2U
dbidbj

(N(N+1)
2 quantities) can also be computed. The first deriva-

tives of U are computed at the cost of N equivalent flow solutions, Eq. (4.2),
according to the so-called direct approach. For the additional N(N+1)

2 quan-
tities (second derivatives of U), from Eq. (4.2), we get

d2Rn

dbidbj
=
∂2Rn

∂bi∂bj
+

∂2Rn

∂bi∂Uk

dUk

dbj
+

∂2Rn

∂Uk∂bj

dUk

dbi

+
∂2Rn

∂Uk∂Um

dUk

dbi

dUm

dbj
+
∂Rn

∂Uk

d2Uk

dbidbj
=0 . (4.45)
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Equations (4.45) can be solved to provide d2U
dbidbj

at the cost of N(N+1)
2 equiv-

alent flow solutions. Instead, one may form the second derivative of the (new)
augmented objective function F̂ by introducing (new) adjoint variables Ψ̂n,
as follows

d2F̂

dbidbj
=

d2F

dbidbj
+ Ψ̂n

d2Rn

dbidbj
. (4.46)

Substituting Eqs. (4.44) and (4.45) in Eq. (4.46) and rearranging the terms
we obtain

d2F̂

dbidbj
=

∂2F

∂bi∂bj
+Ψ̂n

∂2Rn

∂bi∂bj
+

∂2F

∂Uk∂Um

dUk

dbi

dUm

dbj
+Ψ̂n

∂2Rn

∂Uk∂Um

dUk

dbi

dUm

dbj

+
∂2F

∂bi∂Uk

dUk

dbj
+Ψ̂n

∂2Rn

∂bi∂Uk

dUk

dbj
+

∂2F

∂Uk∂bj

dUk

dbi
+Ψ̂n

∂2Rn

∂Uk∂bj

dUk

dbi

+
(
∂F

∂Uk
+Ψ̂n

∂Rn

∂Uk

)
d2Uk

dbidbj
. (4.47)

The term depending on the second derivatives of the flow variables (last term)
is eliminated by satisfying the adjoint equations

∂F

∂Uk
+ Ψ̂n

∂Rn

∂Uk
= 0 (4.48)

at the cost of only one equivalent flow solution. The Hessian matrix is finally
expressed as follows

d2F̂

dbidbj
=

∂2F

∂bi∂bj
+Ψ̂n

∂2Rn

∂bi∂bj
+
(

∂2F

∂Uk∂Um
+Ψ̂n

∂2Rn

∂Uk∂Um

)
dUk

dbi

dUm

dbj

+
(

∂2F

∂bi∂Uk
+Ψ̂n

∂2Rn

∂bi∂Uk

)
dUk

dbj

+
(

∂2F

∂Uk∂bj
+Ψ̂n

∂2Rn

∂Uk∂bj

)
dUk

dbi
. (4.49)

Thus, using the so-called direct-adjoint approach, the total CPU cost for a
Newton optimization cycle, Eqs. (4.43), is equal to 1+N+1 equivalent flow
solutions (including the solution of the flow equations).

4.6.2 Continuous Direct-adjoint Approach for the
Hessian (Inverse Design)

In the continuous approach, the gradient of F is given by Eq. (4.12). Starting
from Eq. (4.12), the second derivative of F is expressed as follows
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δ2F

δbiδbj
=
∫

Sw

δp

δbi

δp

δbj
dS+

∫
Sw

(p−ptar)
δ2p

δbiδbj
dS+

∫
Sw

(p−ptar)
δp

δbi

δ(dS)
δbj

+
∫

Sw

(p−ptar)
δp

δbj

δ(dS)
δbi

+
1
2

∫
Sw

(p−ptar)2
δ2(dS)
δbiδbj

. (4.50)

As in discrete adjoint, the use of Eq. (4.50) requires the knowledge of δU
δbi

and
δ2U

δbiδbj
in terms of which δp

δbi
and δ2p

δbiδbj
can be expressed. First derivatives can

be computed according to the direct (continuous) approach. Second deriva-
tives can be computed by solving the equations resulting from the second
derivatives of the flow equations (N(N+1)

2 equations),

∂

∂xk

(
Ak

∂2U

∂bi∂bj

)
= 0 (4.51)

with the usual assumption that the derivatives of the Jacobian matrices can
be eliminated. Instead of solving Eqs. (4.51), the direct-adjoint approach re-
quires the solution of the field adjoint Eqs. (4.19), together with the boundary
conditions (4.20) and (4.21). The Hessian matrix is finally computed as

δ2Faug

δbiδbj
=
∫

Sw

δp

δbi

δp

δbj
dS+

∫
Sw

(p−ptar)
δp
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δ(dS)
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∫

Sw
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δ(dS)
δbi

+
1
2

∫
Sw
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δ2(dS)
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+
∫

Sw

(Ψk+1p− ΨT fk)
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dS

+
∫

Sw

(
Ψk+1

δp

δbi
−ΨT δfk

δbi

)
δnk

δbj
dS+

∫
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(
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dS

−
∫

Sw
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(
∂2U

∂bi∂xl

δxl

δbj
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∂2U
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δbi
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−
∫

Sw

ΨTAknk

(
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∂xl∂xm

δxl

δbi

δxm

δbj
+
∂U

∂xl

δ2xl

δbiδbj

)
dS . (4.52)

As with the discrete approach, the computational cost of the continuous
direct-adjoint approach is equal to 1+N+1 equivalent flow solutions.

4.7 Applications

4.7.1 Gradient and Hessian-based Inverse Design of a
2D Duct

The inverse design of a 2D duct, using the Euler equations as state equations,
is first presented. The flow conditions are: α1 = 0◦ and M2 = 0.4. The upper
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Fig. 4.1 Inverse design of a 2D duct. Mach number distribution over the duct flow domain

wall of the duct is straight and the shape of the symmetrical bump which
is located in the middle of the lower side is parameterized using 5 control
points. Among them, only the normal-to-the-wall components are allowed to
vary. The targeted shape of the duct and the corresponding Mach number
contours are illustrated in Fig. 4.1.

Both gradient and Hessian-based optimization algorithms are used and
compared with each other in terms of CPU cost and quality of the predicted
optimal solutions. The gradient of F with respect to the design variables
is computed using the metrics-free continuous adjoint approach, the direct
approach and the conventional adjoint approach. In the results section, this
last term is used to denote the adjoint approach which leads to the gradient
expression of Eq. (4.18), including a field integral of grid metrics and finite
differences. All of them are compared in Fig. 4.2(a). From this comparison, it
is clear that there is practically no difference in the accuracy of the gradient
between these approaches although the CPU cost of the direct approach and
finite differences is much higher (N=5 equivalent flow solutions per cycle)
than that of the adjoint approaches (a single equivalent flow solution). Also,
the CPU cost of the conventional adjoint approach is higher than that of the
metrics-free one by the 2N additional calls to the grid generation software
(central finite differences).

The Hessian matrix values are computed using the direct-adjoint approach
and compared with finite differences, Fig. 4.2(b). Both present the same ac-
curacy but the direct-adjoint approach is less costly. Furthermore, there is
no need to make the distinction between continuous and discrete approaches
since both of them lead to almost identical results.

Using the gradient computed by any of the previous methods, several
gradient-based optimization algorithms are used and compared, Fig. 4.3, top-
left, showing the superiority of the quasi-Newton (BFGS) algorithm over the
other algorithms. At the top-right of Fig. 4.3, the BFGS algorithm is also
compared with the (exact) Newton method. The Newton method which is
based on the exact Hessian requires a considerably smaller number of cycles
to reach the target pressure distribution, almost at machine accuracy. Either
BFGS or Newton method are supported by the steepest descent algorithm
which is applied during the first ten cycles. At the bottom of Fig. 4.3, BFGS
and Newton methods are also compared in terms of required equivalent flow
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Fig. 4.2 Inverse design of a 2D duct (a) objective function gradient values computed
using the metrics-free and the conventional adjoint approach, the direct approach and
finite differences (b) Hessian matrix values using the direct-adjoint approach and finite

differences. The first five values correspond to the first row of d2F
dbidbj

and so forth (5

columns× 5 rows = 25 values)

solutions which are a direct measure of CPU cost. It is clear that the exact
Newton approach converges faster to the optimal solution, at least with this
particular number of design variables.

The change in the gradient vector values is shown in Fig. 4.4(a), in semi-
log scale. Gradient values are zeroed upon convergence. In Fig. 4.4(b), it is
shown that the Hessian matrix values change slightly from cycle to cycle and
the greater change occurs during the first optimization cycles.

In Fig. 4.5(a), the initial, reference and optimal bump shapes are com-
pared. The shape computed via the Newton method is shown, although there
are practically no apparent differences between optimal solutions obtained by
any of the two methods. The corresponding pressure distributions are also
compared in the same figure, right. The slow convergence of steepest descent
and conjugate gradient algorithms results (after approximately 200 cycles)
into computations which were not run to convergence; so there are some dis-
crepancies between the optimal and target distributions (not evident, in the
scale of the figures shown herein).

4.7.2 Losses Minimization of a 2D Compressor
Cascade

The next application example is concerned with the minimization of vis-
cous losses of the flow in a 2D compressor cascade through the redesign of
the airfoil shape. The Navier Stokes equations are solved together with the
Spalart-Allmaras turbulence model for the computation of the total pressure
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Fig. 4.3 Inverse design of a 2D duct (a) convergence rates of the three gradient-based
algorithms (steepest descent, conjugate gradient and quasi-Newton) (b) convergence of
Newton and quasi-Newton algorithms in terms of optimization cycles c convergence of
Newton and quasi-Newton algorithms in terms of required equivalent flow solutions

losses used as objective function and the corresponding adjoint equations are
solved for the computation of the gradient. The sensitivity of the turbulent
viscosity is not taken into account in the adjoint formulation. Geometrical
constraints are imposed in order to prevent the blade shape from becoming
too thin. The gradient of the constraint is added to the gradient of F , using
the augmented Lagrange multipliers method [10].

Each blade side is parameterized with 13 control points using Bézier-
Bernstein polynomials [19]. Only the blade-to-blade coordinates of the con-
trol points are allowed to vary. The first three control points (determining
the curvature of the leading edge) and the last one are kept constant on both
sides. The H-type structured grid, chosen after a grid-independency study,
has 400×200=80, 000 nodes. The flow conditions are: α1 =44◦, M2,is =0.45
and the chord-based Reynolds number is Rec = 8×105. The grid together
with the Mach number distribution over the optimal cascade airfoil is shown
in Fig. 4.6.

The convergence history of F (total pressure losses) is shown in Fig. 4.7(a).
In Fig. 4.7(b), the convergence history of the sum of violated constraints is
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Fig. 4.4 Inverse design of a 2D duct (a) change in the objective function gradient values
(absolute values) during the optimization (b) corresponding change in Hessian matrix
values
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Fig. 4.5 Inverse design of a 2D duct (a) comparison of the initial, optimal and reference
airfoil contours (not in scale) (b) comparison of the initial, optimal and target pressure
distributions

also shown. This curve quantifies the difference (absolute value) in the actual
blade airfoil thickness, at specific chord-wise positions, from the correspond-
ing minimum allowed ones. The latter are defined to be equal to the 90% of
an existing (reference) airfoil. If any of these local constraints are violated,
a penalty value is added to the total penalty value. So, zero penalty values
correspond to a non-violated thickness constraint. During the first five cycles,
losses are reduced almost by 1.5%, while none of the thickness constraints are
violated. The reduction rate in total pressure losses decreased during the sub-
sequent cycles and oscillations became apparent due to occasional constraint
violations. Upon convergence (for which around 40 cycles are needed), the
thickness constraints are not violated any more or are just slightly violated.

The reduction rate of the gradient values for all design variables are shown
in Fig. 4.8. The objective function gradient with respect to the suction side
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(a) (b)

Fig. 4.6 Total pressure losses minimization in a 2D compressor cascade. Structured com-

putational grid and Mach number distribution over the optimal compressor cascade
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Fig. 4.7 Total pressure losses minimization in a 2D compressor cascade (a) convergence
rate of total pressure losses and (b) sum of violated geometrical constraints (total penalty
value)

control points (first nine values) are greater than the corresponding gradient
components for the pressure side points (remaining nine values). Note, also,
that the gradient values at the optimal solution are not zeroed due to the
thickness constraint imposition.

The initial and optimal set of design variables and the corresponding blade
airfoil contours are shown in Fig. 4.9. It is evident that, due to their greater
(positive) gradient values, the suction side control points move towards the
pressure side and tend to reduce the blade thickness. Once the airfoil becomes
too thin, penalization due to the constraint violation is activated. So the
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Fig. 4.8 Total pressure losses minimization in a 2D compressor cascade (a) convergence
history of the objective function gradient values and (b) gradient values for the initial and
optimal cascade airfoils
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Fig. 4.9 Total pressure losses minimization in a 2D compressor cascade (a) initial and
optimal set of Bézier control points and (b) the corresponding cascade airfoil contours

corrected gradient values “push” both suction and pressure side control points
away from each other.

Improvements in aerodynamic characteristics are shown in Figs. 4.10 and
4.11 where the initial and optimal pressure and friction coefficients are shown.
A close-up view of the flow developed close to the trailing edge over the suc-
tion side is shown. Both figures show that separation on the optimal blade air-
foil is kept minimum or even disappears. The static pressure plateau and the
negative friction coefficient values are significantly reduced. The improvement
of separation is also shown in Fig. 4.12 where the Mach number distribution
is shown for the initial and optimal configuration.

Similar results can be obtained using the entropy generation instead of
the total pressure loss as objective function [52, 53]. These are omitted in the
interest of space.
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Fig. 4.10 Total pressure losses minimization in a 2D compressor cascade (a) pressure
coefficient distribution for the initial and optimal cascade airfoil and (b) focus on the
separation region
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Fig. 4.11 Total pressure losses minimization in a 2D compressor cascade (a) friction
coefficient distribution for the initial and optimal cascade airfoil and (b) focus on the
separation region

4.8 Conclusions

Discrete and continuous adjoint approaches for use in aerodynamic shape
optimization problems were presented. These can be used to compute the
gradient of objective functions in inviscid or viscous flows. Different objec-
tive functions (the standard one, used in inverse shape design problems, or
others, which are appropriate when the target is the minimization of entropy
generation or total pressure losses in internal flows), were handled. An im-
proved formulation of the adjoint problem avoids the computation of field
integrals containing metrics and other geometrical sensitivities and reduces
the overall computational cost. The extension of the adjoint formulation for
the computation of the Hessian matrix of a functional was then presented in
both discrete and continuous forms. The application of the Newton method
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(a)

(b)

Fig. 4.12 Total pressure losses minimization in a 2D compressor cascade (a) Mach number
distribution at the separated region for the initial and (b) optimal cascade

can lead to fast design optimization cycles when the exact Hessian matrix
elements are known. Applications of the adjoint-based computed gradient
vector and Hessian matrix were shown, demonstrating that in either case,
the benefit from the adjoint approach to the optimization of aerodynamic
shapes was noticeable.
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Chapter 5

Efficient Deterministic Approaches for
Aerodynamic Shape Optimization

Nicolas R. Gauger

Abstract Because detailed aerodynamic shape optimizations still suffer from
high computational costs, efficient optimization strategies are required. Re-
garding the deterministic optimization methods, the adjoint approach is seen
as a promising alternative to the classical finite difference approach. With
the adjoint approach, the sensitivities needed for the aerodynamic shape op-
timization can be efficiently obtained using the adjoint flow equations. Here,
one is independent of the number of design variables with respect to the
numerical costs for determining the sensitivities. Another advantage of the
adjoint approach is that one obtains accurate sensitivities and gets rid of the
laborious tuning of the denominator step sizes for the finite differences.

Differentiation between continuous and discrete adjoint approaches is
noted. In the continuous case, one formulates the optimality condition first,
then derives the adjoint problem and finally does the discretization of the so
obtained adjoint flow equations. In the discrete case, one takes the discretized
flow equations for the derivation of the discrete adjoint problem. This can be
automated by so-called algorithmic differentiation (AD) tools.

The different adjoint approaches will be explained for single disciplinary
aerodynamic shape optimization first and then their extension to multidis-
ciplinary design optimization (MDO) problems will be discussed for aero-
structure cases. Finally, we will discuss the so-called one-shot methods. Here,
one breaks open the simulation loop for optimization.
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Nomenclature

(x, y) ∈ IR2 cartesian coordinates M∞ Mach number
(ξ, η) ∈ [0, 1]2 body fitted coordinates )∞ ... at free stream
D ⊂ IR2 flow field domain γ ratio of specific heats
∂D = B ∪ C flow field boundary Cref cord length
B = {(ξ, 1)} farfield Cp pressure coefficient
C = {(ξ, 0)} solid wall CD drag coefficient

n =
(
nx

ny

)
⊥ D

outward pointing
normal unit vector CL lift coefficient

α angle of attack Cm
pitching moment
coefficient

ρ density (xm, ym)
pitching moment’s
reference point

v =
(
u
v

)
velocity I cost function

p pressure −d(I) adjoint boundary con-
dition’s RHS on C

E specific total energy X ∈ IRn vector of design
variables

H total enthalpy Z displacement field

5.1 Introduction

In aerodynamic shape optimization, the task of computing sensitivities is es-
sential for the application of gradient-based optimization strategies. Gradient
computations for a given cost function I(X), for a design vector X out of a
defined design space, can generally be done with several methods.

One way is the finite difference method (FD), which approximates the com-
ponents of the gradient by difference quotients of the cost function evaluated
for the initial aerodynamic shape as well as the shapes generated by perturba-
tions of the design variables, for a given step size in the design space. Hence,
the computational effort for the gradient approximation using finite differ-
ences is proportional to the number of design variables. Therefore, problems
with this method occur if the computation of the cost function is extremely
expensive or if there are many design variables. Again, the finite differences
are just approximations and therefore one has to take care of the accuracy.
As we will see in Sect. 5.4, step size tuning requires a lot of effort as well.

An alternative are the so-called adjoint methods that include two kinds of
approach: continuous and discrete adjoint approaches.

In the continuous case one formulates the optimality condition first, then
derives the adjoint problem and finally does the discretization of the so ob-
tained adjoint flow equations. The continuous adjoint method was first used
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in aerodynamic shape optimization by Jameson in his works on potential
equations [19] and later also for the Euler [21] as well as Navier-Stokes [20]
equations. Its main advantage over the finite differences is the significant in-
crease in speed since the corresponding numerical effort is independent of the
number of design variables. However, the implementation of the continuous
adjoint approach may be time-consuming and error-prone.

On the other hand, in the discrete case, one takes the discretized flow
equations for the derivation of the discrete adjoint problem (see e.g., [3, 12]).
This can be automated by so-called algorithmic, or automatic, differentiation
(AD) tools.

AD is a comparatively new field of mathematical sciences. This technique
is based on the observation that various elemental operations (like +,−,×)
build up the cost function as their concatenation. Therefore, applying the
chain rule to this concatenation results in an automated differentiation of the
cost function. Depending on the starting point of the differentiation process –
either at the beginning or at the end of the respective chain of concatenations
– one distinguishes between the forward mode and the reverse mode of AD.
Using the reverse mode of AD, gradients can be computed very accurately at
a computational cost that is independent of the number of design variables.
This is the reason why this method is also called a discrete adjoint method.

At DLR, a few attempts have been made in AD computations. One at-
tempt is the differentiation of the DLR TAUij code by ADOL-C [14], which
is presented in this chapter as part of a differentiated optimization chain.

In the next sections, the different adjoint approaches will be explained
for single disciplinary aerodynamic shape optimization first and then their
extension to multidisciplinary design optimization (MDO) problems will be
discussed for aero-structure cases.

Finally, we will discuss the so-called one-shot methods. Here one breaks
open the simulation loop for optimization.

To start out, we explain how one can parameterize aerodynamic shapes
by the use of deformation techniques.

5.2 Parameterization by Deformation

In aerodynamic shape optimization, a geometry is either given by a parame-
terization or can be changed by parameterized deformation. This means that
based on these parameters, a shape can be built up or deformed by a design
vector. Furthermore, the obtained shape has some aerodynamic properties
like the drag coefficient or pressure distribution. Therefore, the task of the
aerodynamic shape optimization is to optimize this design vector and its
dependent shape for some aerodynamic cost function.

When optimizing, there must be some chain to calculate the cost function
value at a given parameterization. This can be done by deforming a static
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design vector + initial grids

⇓
surface deformation

⇓
computational grid deformation

⇓
flow computation

⇓
cost function value

Fig. 5.1 Cost function computation

initial shape or surface mesh and its dependent computational grid based on
the parameterization and afterwards evaluating the cost function. A schema
of the procedure is illustrated in Fig. 5.1.

5.2.1 Surface Deformation

The basic idea for deforming the surface of an airfoil is to compute func-
tions and then add their values to the upper and lower side of the surface.
Therefore, every design parameter is used to scale a specific function which
is afterwards added to the shape.

Several kinds of functions are considered for the deformation. The first are
the Hicks-Henne functions which are defined as

ha,b : [0, 1] → [0, 1] : ha,b(x) =
(

sin(πx
log 0,5
log a )

)b

.

These functions are positive, defined and mapped in the interval [0, 1] where
their peak is at position a. Furthermore, they are analytically smooth at zero
and one.

The used parameterization operates with Hicks-Henne functions with a
fixed b of 3.0 and a varies from 3

n+5 to n+3
n+5 where n is the number of design

parameters.
The second kind of functions considered is transformed cosine functions.

These cosine functions are defined for q ∈ [0, 1] as cq(x) : [0, 1] → [0, 1] where

cq(x) =
{1

2 (1 − cos(x
q π)) for x ≤ 2q

0 for x > 2q

}
for q ≤ 1

2

and

cq(x) =
{

0 for x < 2q − 1
1
2 (1 − cos(x−2q+1

1−q π)) for x ≥ 2q − 1

}
for q >

1
2

.
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(a) (b)

Fig. 5.2 Hicks-Henne functions for (a) b = 3 and a = 0.3−0.7 and (b) transformed cosine
functions for q = 0.3 − 0.7 (right)

These functions have the positive property that their impact on the sur-
face deformation is local because their support is 2 min(q, 1 − q). The used
parameterization operates with these functions where q varies from 3

n+5 to
n+3
n+5 .

In principle, one can use each kind of functions for surface deformations.
The extension to 3D is straightforward by adding, e.g., 3D spline functions
to the surface.

5.2.2 Grid Deformation

After having deformed the surface, there is a need to deform the computa-
tional grid as well. This deformation should be related to the changes of the
surface. Within the following work, this is done via the volume spline method
by Hounjet et al. (see [18]). This method is a general interpolation approach
for n interpolation points (xi, yi, zi) and their values fi(1 ≤ i ≤ n) which is
given by

f(x, y, z) = α1 +α2x+α3y+α4z+
n∑

i=1

βi

√
(x− xi)2 + (y − yi)2 + (z − zi)2.

(5.1)
The coefficients αi and βi can be determined by the condition that the

interpolation f should be exact at its n interpolation points

f(xi, yi, zi) = fi (1 ≤ i ≤ n)
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and the four additional conditions
n∑

i=1

βi = 0

n∑
i=1

βi xi = 0

n∑
i=1

βi yi = 0

n∑
i=1

βi zi = 0

which can be physically interpreted as equilibrium equations.
This results in solving the following linear system of equations⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
f1
f2
...
fn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 . . . 1
0 0 0 0 x1 x2 . . . xn

0 0 0 0 y1 y2 . . . yn

0 0 0 0 z1 z2 . . . zn

1 x1 y1 z1 0 ε12 . . . ε1n

1 x2 y2 z2 ε21 0 . . . ε2n

...
...

...
...

...
... . . .

...
1 xn yn zn εn2 εn2 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1

α2

α3

α4

β1

β2

...
βn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where εij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 is the Euclidean distance
between the interpolation points (xi, yi, zi) and (xj , yj, zj).

After solving this system of equations the interpolation is ready to be used
with the given formula (5.1) for arbitrary points (x, y, z).

This general interpolation method is now applied to the differences of the
original and deformed surface dx, dy, dz. These functions are each interpo-
lated with the differences of the surfaces as interpolation points. Afterwards,
dx, dy, dz are applied to the computational grid and therefore yield a grid
deformation.

Therefore, let (xold,i, yold,i, zold,i) be the old and (xnew,i, ynew,i, znew,i) be
the new surface points (1 ≤ i ≤ n). Then the functions dx, dy, dz can be
interpolated with the interpolation point values

dxi = xnew,i − xold,i ,

dyi = ynew,i − yold,i ,

dzi = znew,i − zold,i

at (xold,i, yold,i, zold,i). These obtained functions dx, dy, dz can then be com-
puted at arbitrary points. Now let (aold,j, bold,j , cold,j) be the old computa-
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tional grid points and (anew,j , bnew,j , cnew,j) their corresponding new points
(1 ≤ j ≤ m). Finally, the grid deformation is given by

anew,j = aold,j + dx(aold,j , bold,j, cold,j) ,
bnew,j = bold,j + dy(aold,j , bold,j, cold,j) ,
cnew,j = cold,j + dz(aold,j, bold,j, cold,j) .

Instead of deforming the computational grid there is also the possibility
to generate a new grid at each optimization step. But this adds costs to the
computation overhead because grid generation is expensive. Therefore, the
present work uses the above explained volume spline interpolation method
to deform the grid and save computation time.

5.3 Sensitivity-based Aerodynamic Shape Optimization

For convenience reasons, the following analysis is restricted to the 2D Eu-
ler equations. Let X ∈ IRn denote the vector of design variables. Then X

determines the airfoil C(X) and its physics w(X), where w =

⎛
⎜⎜⎝

ρ
ρu
ρv
ρE

⎞
⎟⎟⎠ is

the vector of the conserved variables. w is assumed to be the solution of the
quasi-unsteady Euler equations

∂w

∂t
+
∂f

∂x
+
∂g

∂y
= 0 in D (5.2)

where n�v = 0 on C = C(X), with f =

⎛
⎜⎜⎝

ρu
ρu2 + p
ρuv
ρuH

⎞
⎟⎟⎠ and g =

⎛
⎜⎜⎝

ρv
ρvu

ρv2 + p
ρvH

⎞
⎟⎟⎠.

On the far-field, free stream conditions are assumed. For a perfect gas

p = (γ − 1)ρ(E − 1
2

(u2 + v2)) (5.3)

holds for the pressure, and finally Cp, CD, CL and Cm are defined as

Cp :=
2(p− p∞)
γM2∞p∞

, (5.4)

CD :=
1
Cref

∫
C

Cp(nx cosα+ ny sinα)dl , (5.5)
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CL :=
1
Cref

∫
C

Cp(ny cosα− nx sinα)dl , (5.6)

Cm :=
1
C2

ref

∫
C

Cp(ny(x− xm) − nx(y − ym)) dl . (5.7)

If the geometry is now perturbed from C(X) to C(X + δX), then via the
solution of

∂(w + δw)
∂t

+
∂(f + δf)

∂x
+
∂(g + δg)

∂y
= 0

⇔ ∂(δw)
∂t

+
∂(δf)
∂x

+
∂(δg)
∂y

= 0 in D (5.8)

where
n�v = 0 on C = C(X + δX) , (5.9)

the associated variation of pressure is as follows

δCp =
2δp

γM2∞p∞
≈ 2(p(X + δX) − p(X))

γM2∞p∞
. (5.10)

Finally via
δnx ≈ nx(X + δX) − nx(X) (5.11)

and
δny ≈ ny(X + δX) − ny(X) (5.12)

the variations of CD, CL and Cm are obtained as

δCD =
2

γM2∞p∞Cref

∫
C

δp(nx cosα+ ny sinα) dl

+
1
Cref

∫
C

Cp(δnx cosα+ δny sinα) dl , (5.13)

δCL =
2

γM2∞p∞Cref

∫
C

δp(ny cosα− nx sinα) dl

+
1
Cref

∫
C

Cp(δny cosα− δnx sinα) dl , (5.14)

δCm =
2

γM2∞p∞C2
ref

∫
C

δp(ny(x − xm) − nx(y − ym)) dl

+
1
C2

ref

∫
C

Cpδ(ny(x− xm) − nx(y − ym)) dl . (5.15)

Proceeding as described above for the n perturbations δiX in each of the n
components of the design vector X , the gradient of the cost function I (e.g.,
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drag, lift or pitching moment coefficients) is obtained as ∇XI = (δiI)i=1,...,n

after n+ 1 flow calculations.
The easiest gradient-based optimization strategy is the steepest descent

method. There, a recursive line search in the direction −∇X(k)I, starting
from the point X(k), leads to an optimal geometry

X(k+1) = X(k) − ε(k)∇X(k)I (5.16)

with respect to the cost function I in that direction. This is repeated until
the norm of the gradient of the cost function becomes zero.

In addition to the gradient of the cost function, one can determine gra-
dients of constraints in the same way, e.g., for the task of drag reduction
by constant lift. Furthermore, one can make use of second order sensitivity
informations, or at least their approximations, in order to speed up the op-
timization process. Often, the so-called constrained SQP methods are used
with the BFGS-updates (BFGS - named after Broyden, Fletcher, Goldfarb
and Shanno). The abbreviation SQP stands for sequentially quadratic pro-
gramming (quadratic - second order sensitivities). A good survey of several
possible deterministic optimization strategies is provided in the book by No-
cedal and Wright [25].

But one can see that the numerical costs for the determination of the
gradient of the cost function or constraints are directly proportional to the
number of design variables. This finite difference or brute force approach be-
comes more and more inefficient as the number of design variables increases.

5.4 Sensitivity Computations

In aerodynamic shape optimization, the task of computing sensitivities is very
important in order to have the possibility to use gradient based optimization
strategies. Gradient computations for a given cost function I(X) for a design
vector X out of a defined design space can generally be done with several
methods.

5.4.1 Finite Difference Method

The first is the finite difference (FD) method which approximates the gradient
as follows

∂I

∂xi
(X) ≈ I(X + hei) − I(X)

h
(1 ≤ i ≤ n) (5.17)

where n is the number of design parameters, ei the ith unit vector, and h is
the scalar step size. Problems with this method occur if the computation of
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the cost function is extremely expensive. As can be seen in the approximation
(5.17), this cost function has to be calculated once at point X and further
n times at (X + hei) for 1 ≤ i ≤ n. This results in (n + 1) cost function
evaluations which can take a long time. Another problem may occur if the
step size h is not accurately chosen. This is based on the fact that

I(X + hei) = I(X) +
∂I

∂xi
(X)h+

∂2I

∂2xi
(X)h2 +O(h3)

which can be transformed into

∂I

∂xi
(X) =

I(X + hei) − I(X)
h

− ∂2I

∂2xi
(X)h+O(h2) . (5.18)

If the chosen h is too large, the first order term on the right side of Eq. (5.18)
would have a large impact on the quality of the approximation in (5.17).
This means on the one hand that the h chosen has to be relatively small.
On the other hand, the h chosen can not be arbitrarily small because of
numerical stability. This is based on the division in the approximation term
(5.17) which will be error intensive if h is too small and therefore results in
numerical noise. Therefore, the step length h has to be manually tuned with
respect to the cost function, parameterization and used geometry.

5.4.2 Continuous Adjoint Formulation

The second method to compute sensitivities is the continuous adjoint ap-
proach. Again, just for convenience reasons, the following analysis is restricted
to the 2D Euler equations. In order to determine the gradient of the cost func-
tion independently of the design variables with respect to the numerical costs,

one can use the following continuous adjoint formulation. Let ψ =

⎛
⎜⎜⎝
ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠

denote the vector of the adjoint variables. Instead of solving n+ 1 times the
quasi-unsteady Euler equations to get the gradient, the Euler equations are

solved just once in order to get the transposed Jacobians
(

∂f
∂w

)�
,
(

∂g
∂w

)�

and then the quasi-unsteady continuous adjoint Euler equations

−∂ψ
∂t

−
(
∂f

∂w

)�
∂ψ

∂x
−

(
∂g

∂w

)�
∂ψ

∂y
= 0 in D (5.19)

where
nxψ2 + nyψ3 = −d(I) on C = C(X) (5.20)
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and
δxξ, . . . , δyη = 0, δw = 0 on B = B(X) (5.21)

are also solved just once.
The right hand side −d(I) of the wall boundary condition of the quasi-

unsteady adjoint Euler equations is dependent on the cost function I. The
adjoint far-field boundary condition just states that the geometrical position
of the far-field is fixed and free stream conditions apply there.

Finally, the components of the gradient ∇XI = (δiI)i=1,...,n can now be
determined via an integration just over the adjoint solution and the metric
sensitivities δxξ, . . . , δyη and

δI = −
∫

C

p(−ψ2δyξ + ψ3δxξ) dl +K(I)

−
∫

D

ψ�
ξ (δyηf − δxηg) + ψ�

η (−δyξf + δxξg) dA (5.22)

is obtained where K(I) is again a term dependent on the cost function I.
For the gradient of the drag, the following right hand side adjoint boundary

on C is used

d(CD) =
2

γM2∞p∞Cref
(nx cosα+ ny sinα) (5.23)

and to get the corresponding gradient, K(I) is

K(CD) =
1
Cref

∫
C

Cp(δnx cosα+ δny sinα) dl (5.24)

for the gradient of the lift

d(CL) =
2

γM2∞p∞Cref
(ny cosα− nx sinα) (5.25)

and
K(CL) =

1
Cref

∫
C

Cp(δny cosα− δnx sinα) dl (5.26)

are used, and for the gradient of the pitching moment

d(Cm) =
2

γM2∞p∞C2
ref

(ny(x− xm) − nx(y − ym)) (5.27)

and
K(Cm) =

1
C2

ref

∫
C

Cpδ(ny(x− xm) − nx(y − ym)) dl (5.28)

are used. For more details see [7] or [8].
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Table 5.1 An evaluation trace of the simple example

v−1 = x1 = 1.5
v0 = x2 = 0.5
v1 = v−1/v0 = 1.5/0.5 = 3.0000
v2 = sin(v1) = sin(3.0) = 0.1411
v3 = v1 + v2 = 3.0 + 0.1411 = 3.1411
y = v3 = 3.1411

5.4.3 Algorithmic Differentiation (AD)

A third method is a discrete approach which is usually called algorithmic or
automatic differentiation and depends on a specific implementation of the
cost function. This implementation consists of various elemental operations
(like +,−,×) which build up the cost function as their concatenation. There-
fore, applying the chain rule to this concatenation results in a differentiation
of the cost function (after having dealt with possible inconsistencies and other
problems which are beyond the scope of this chapter, see [13] for detailed in-
formation).

To give the reader a feeling of the principal ideas of AD, we will introduce
the two basic concepts with the help of a simple example. Let f be a cost
function which depends on two input parameters x1 and x2 which is given
by

f(x1, x2) = sin(x1/x2) + x1/x2 .

We now wish to compute the value of y = f(1.5, 0.5) and its derivative by
AD. Then a possible evaluation trace is given in Table 5.1.

The first possibility to apply the chain rule is to differentiate every single
operation in the order of the evaluation trace. Let us suppose we want to
differentiate the output variable y with respect to x1. Then we associate
with every variable vi of the evaluation trace another variable v̇i = ∂vi/∂x1.
Applying the chain rule to each line in the evaluation trace, in order, leads
to a numeric value of ẏ which is the wanted sensitivity of y with respect
to x1. Clearly, v̇−1 = ∂v−1/∂x1 = 1.0 and v̇0 = ∂v0/∂x1 = 0.0. Augmenting
the evaluation trace of Table 5.1 gives the derived trace in Table 5.2. The
total floating-point operation count of the added lines to evaluate ∂y/∂x1 is
a small multiple of that for the underlying code to evaluate y.

Exactly the same code can be used to evaluate ∂y/∂x2 as well; the only
change is to set ẋ1 = 0.0 and ẋ2 = 1.0 at the beginning.

The second possibility is to apply the chain rule in reverse order and is
hence called the reverse mode. This concept can be seen as a discrete adjoint
approach. Therefore, we associate for every vi another variable vi = ∂y/∂vi

called the adjoint variable. By definition y = 1.0 and since the only ways in
which v1 can affect y are via the definitions v2 = sin(v1) and v3 = v1 + v2
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Table 5.2 Forward differentiated evaluation trace

v−1 = x1 = 1.5
v̇−1 = ẋ1 = 1.0

v0 = x2 = 0.5
v̇0 = ẋ2 = 0.0
v1 = v−1/v0 = 1.5/0.5 = 3.0000
v̇1 = v̇−1/v0 − v−1v̇0/v0/v0

= (v̇−1 − v1v̇0)/v0 = (1.0 − 3.0 × 0.0)/0.5 = 2.0000
v2 = sin(v1) = sin(3.0) = 0.1411
v̇2 = cos(v1)v̇1 = (−0.99) × 2.0 = −1.9800
v3 = v1 + v2 = 3.0 + 0.1411 = 3.1411
v̇3 = v̇1 + v̇2 = 2.0 − 1.98 = 0.0200
y = v3 = 3.1411
ẏ = v̇3 = 0.0200

it is

v1 =
∂y

∂v1
=

∂y

∂v3

∂v3
∂v1

(5.29)

= v3
∂(v1 + v2)

∂v1

= v3
∂v1
∂v1

+ v3
∂v2
∂v1

(5.30)

= v3(1 +
∂(sin v1)
∂v1

)

= v3 + v3 cos(v1) . (5.31)

This can also be evaluated by the iterative equations

v1 = v3

v2 = v3

v1 = v1 + v2 cos(v1) .

Thus applying the chain rule to every line in the evaluation trace of Ta-
ble 5.1, we obtain the reverse differentiated code in Table 5.3. Note that the
adjoint statements are lined up vertically underneath the original statements
that spawned them.

Note also that line 7 of Table 5.3 belongs to the expansion of Eq. (5.29),
lines 8 and 9 to the expansion of Eq. (5.30) and line 10 to the expansion of
Eq. (5.31).

As with the forward propagation method, the floating-point operation
count of the added lines is a small multiple of that for the underlying code
to evaluate y. But this time the complete gradient has been computed.
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The main advantage of the AD method over the above two mentioned
methods is that gradients can be computed with the best possible accuracy.
In forward mode the gradient computation speed is dependent on the number
of design variables which can be expensive if the evaluation trace for the cost
function is long. In reverse mode the gradient computation is independent on
any input and therefore is very efficient when numerous design variables are
needed.

There are mainly two possible implementations of AD methods. The first
is the so-called source to source which means that the primal evaluation trace
is transferred into a differentiated evaluation trace. The second is based on
operator overloading which only yields an executable.

However, the problem in reverse mode for both implementation strategies
is that primal computation informations have to be recomputed and/or stored
to compute backwards again. A fair amount of memory is thus essential for
the chosen approach.

For more information on multiple output and input variables including
vector valued functions, please refer to [13].

5.5 Adjoint Flow Solvers

5.5.1 Continuous Adjoint Flow Solvers

Within the MEGAFLOW project [22], an adjoint solver following the con-
tinuous adjoint formulation has been developed and widely validated for the
block-structured flow solver FLOWer [7, 8]. The adjoint solver, which was
implemented by hand, can deal with the boundary conditions for drag, lift

Table 5.3 Reverse differentiated evaluation trace

1 v−1 = x1 = 1.5
2 v0 = x2 = 0.5
3 v1 = v−1/v0 = 1.5/0.5 = 3.0
4 v2 = sin(v1) = sin(3.0) = 0.1411
5 v3 = v1 + v2 = 3.0 + 0.1411 = 3.1411
6 y = v3 = 3.1411
7 v3 = y = 1.0

8 v1 = v3 = 1.0
9 v2 = v3 = 1.0
10 v1 = v1 + v2 cos(v1) = 1.0 + 1.0 cos(3.0) = 0.01
11 v0 = −v1v1/v0 = −0.01 × 3.0/0.5 = −0.06
12 v−1 = v1/v0 = 0.01/0.5 = 0.02
13 x2 = v0 = −0.06
14 x1 = v−1 = 0.02
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Fig. 5.3 Gradient of the drag computed for 20 B-spline variables by finite differences
with TAU and by the continuous adjoint approach with FLOWer and TAU (RAE 2822,
M∞ = 0.73 and α = 2.0◦)

and pitching-moment sensitivities. The adjoint option of the FLOWer code
has been validated for several 2D, as well as 3D optimization problems [2, 9]
controlled by the (adjoint) Euler equations. Within MEGADESIGN the ro-
bustness and efficiency of the adjoint solver will be improved, especially for
the Navier-Stokes equations. In case of Navier-Stokes applications, currently
the turbulence model is frozen in the adjoint mode. It has been planned that
AD be used to create adjoint turbulence models, which will then be linked
to the hand coded adjoint solver.

Furthermore, it has been planned that the adjoint solver implemented in
FLOWer, be transferred to the unstructured Navier-Stokes solver TAU. Here,
the implementation work is already completed and validated for the inviscid
adjoint solver [28] (see also Fig. 5.3).

5.5.2 Discrete Adjoint Flow Solvers

In addition to the continuous one, a discrete adjoint flow solver has been
developed by hand within the unstructured Navier-Stokes solver TAU [1, 3].
The implementation consists of the explicit construction of the exact Ja-
cobian of the spatial discretization with respect to the unknown variables
allowing the adjoint equations to be formulated and solved. Different spa-
tial discretizations available in TAU have been differentiated, including the
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Spalart-Allmaras-Edwards one-equation, and the Wilcox k–ω two-equation
turbulence models.

For both solvers, FLOWer as well as TAU, first activities are launched for
the automated generation of discrete adjoint solvers by the use of AD tools.
For the FLOWer code, the AD tool TAF [11] is used while ADOL-C [14] is
used for the TAU code.

5.6 Automatic Differentiation Applied to an Entire
Design Chain

For the optimizations presented in this section, we used the following tools
covering the four steps of the design chain:

For the surface deformation, the tool defgeo has been used. This tool has
been implemented in order to compute deformations based on Hicks-Henne
as well as cosine functions.

The grid deformation within our optimization chain is done by a tool
named meshdefo. This tool uses a public domain linear equations solver to
compute the above mentioned coefficients of the interpolation.

DLR flow solver TAUij is used to compute the flow around the deformed
airfoil. TAUij is a quasi 2D version of TAUijk [17], which again is based on
a cell centered developer version of the DLR TAU code [29]. TAUij solves
the quasi 2D Euler equations. For the spatial discretization, the MAPS+
[26] scheme is used. To achieve second order accuracy, gradients are used to
reconstruct the values of variables at the cell faces. A slip wall and a far-field
boundary condition are applied. For time integration, a Runge-Kutta scheme
is used. To accelerate the convergence, local time stepping, explicit residual
smoothing and a multigrid method are used. The code TAUij is written in
C and comprises approximately 6,000 lines of code distributed over several
files.

To compute the difference vectors of the original to the transformed shape
geometry, another program named difgeo had to be implemented.

The chain to compute the cost function value is illustrated in Fig. 5.4.
This entire optimization chain has been differentiated by the use of ADOL-
C, which operates in reverse (adjoint) mode [10, 27]. This differentiated chain
can be written as

∂CD

∂X
=
∂CD

∂m
· ∂m
∂dx

· ∂dx
∂x

· ∂x
∂X

.

Note that the first term on the right side corresponds to the differentiation of
TAUij, the second term to the differentiation of meshdefo, the third term to
the differentiation of difgeo and the last term to the differentiation of defgeo.
Since difgeo computes only the differences dx = x−xs and xs is a static initial
surface, its corresponding factor becomes the unit matrix and therefore
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design vector (X) initial surface (xs)
↘ ↙

defgeo initial surface (xs)

↓ (x) ↙
difgeo initial computational grid (ms)

↓ (dx) ↙
meshdefo

↓ (m)

TAUij

↓ (CD)

Fig. 5.4 Chain to compute the cost function value

∂CD

∂X
=
∂CD

∂m
· ∂m
∂dx

· ∂x
∂X

. (5.32)

The optimization strategy in the following computations is a steepest de-
scent method which was implemented as an optimizer into the optimization
framework Synaps Pointer Pro. This framework has the possibility to read
in user-defined gradients. Therefore, the gradients are calculated by separate
routines and are then submitted to the optimizer.

5.6.1 Test Case Definition

As test case for the validation and application of AD generated adjoint sensi-
tivity calculations an RAE 2822 airfoil is chosen with a Mach number of 0.73
and an angle of attack of 2◦. The drag coefficient for this test case has been
optimized with both parameterizations, Hicks-Henne and cosine function pa-
rameterizations (see Sect. 5.2.1). In both optimizations, 20 design parameters
have been used. The computational grid has 161 × 33 grid points.

5.6.2 Finite Differences

To compute the finite differences in order to have a validation framework
for the AD sensitivities, the first task was to tune the stepsize h for the
approximation

∂I

∂xi
(X) ≈ I(X + hei) − I(X)

h
(1 ≤ i ≤ n) (5.33)
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(a)

(b)

Fig. 5.5 Quotients of (a) Hicks-Henne and (b) cosine functions parameterization for pa-
rameters 6, 10 and 15 and varying stepsizes

as mentioned in Sect. 5.4. Therefore, the quotients of both parameteriza-
tions have been calculated for varying stepsizes with respect to all n = 20
parameters.

As can be seen in Fig. 5.5, a good choice for the stepsize h is 10−3 for
both parameterizations. Another possibility which has not been used is to
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Fig. 5.6 Optimization history of FD and AD for (a) Hicks-Henne and (b) cosine functions
parameterization

tune the stepsize for each parameter separately, which means selecting n
stepsizes hi for every approximation in (5.33). With this possibility, a more
accurate result might be achieved for the original airfoil, but based on the
fact that this tuning cannot be done for every optimization step due to the
high computational effort, it might cause worse optimization results at the
end. Therefore, a stepsize of 10−3 has been used for all gradient computations
within the optimizations for both parameterizations.

In Fig. 5.6, the optimization history for both parameterizations can be
seen. In case of the Hicks-Henne functions parameterization, the optimization
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(a)

(b)

Fig. 5.7 Pressure distribution of the original test case and the optimum of FD and AD
for (a) Hicks-Henne and (b) cosine functions parameterization

converges after nine gradient computations which are marked by a filled out
square. The optimization with cosine functions converges after 13 gradient
computations. The pressure distribution for both optimizations is drawn in
Fig. 5.7 and the optimal geometries can be found in Fig. 5.8.

As one can see, the strong shock of the original baseline geometry nearly
vanished in both cases and one ends up with more than 50% decrease in
drag. In contrast to the optimum with the help of Hicks-Henne functions, the
optimum with cosine functions parameterization shows slight oscillations in
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(a)

(b)

Fig. 5.8 Surface geometry of the original test case and the optimum of FD and AD for
(a) Hicks-Henne and (b) cosine functions parameterization

the pressure distribution, which is due to the fact that cosine functions only
have local impacts on the surface deformation whereas Hicks-Henne functions
have global impacts.
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(a)

(b)

Fig. 5.9 Comparison between FD and AD gradients on RAE 2822 with (a) Hicks-Henne
and (b) cosine functions parameterization

5.6.3 Automatic Differentiation

In Fig. 5.9, one can see the comparisons between the FD and AD gradients for
the original RAE 2822 airfoil with Hicks-Henne and cosine functions param-
eterization. This validates the AD approach and shows also that the chosen
stepsize for the FD gradient is accurate enough.

As with the finite difference method the optimizations have also been
done with the AD approach. The optimization histories, the pressure distri-



5 Efficient Deterministic Approaches for Aerodynamic Shape Optimization 133

butions and the surface geometries of the optimum with AD are also shown
in Figs. 5.6, 5.7 and 5.8, respectively. This clearly validates the AD approach.

5.7 Adjoint Approch for Aero-Structure Coupling

The use of successively performed single disciplinary optimizations in case of
a multidisciplinary optimization problem is not only inefficient but in some
cases has been shown to lead to faulty, non-optimal designs [24]. Although
multidisciplinary optimization is possible with classical approaches for sen-
sitivity evaluation by means of finite differences, this method is extremely
expensive in terms of calculation time, requiring the reiterated solution of
the coupled problem for every design variable.

A new approach that allows the evaluation of the gradient with low com-
putational cost takes advantage of the adjoint formulation of the multidisci-
plinary optimization problem [23, 24]. Therefore, the FLOWer adjoint option
has been coupled with the structure solver MSC Nastran for an efficient cou-
pled aero-structure adjoint solver. The implementation and validation of this
approach are described in detail in [4, 5, 6].

5.7.1 Adjoint Formulation for Aero-Structure
Coupling

The derivation of the adjoint equations in case of a multidisciplinary problem
is similar to what has been carried out for the pure aerodynamic case, with the
difference that we will end up with a dual adjoint variable for each set of state
variables of the problem. An adjoint formulation is possible for any problem
involving the calculation of the gradient of a function of one or more sets of
variables obeying one or more constraint equations. We will restrict ourselves
to the case of two sets: one that represents the flow variables, the other
representing the structure nodal displacement. As already seen I(X,w,Z)
denotes the cost function of the optimization problem, dependent now also
on the displacement field Z, which is the solution of the structural problem.
Then, the gradient takes the form

dI

dX
=

∂I

∂X
+
∂I

∂w

∂w

∂X
+
∂I

∂Z

∂Z

∂X
(5.34)

or, in terms of differentials

δI =
∂I

∂X
δX +

∂I

∂w
δw +

∂I

∂Z
δZ . (5.35)
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Fig. 5.10 Plot of residual (log scale) of flow equation during coupled computation (multi-
grid is used): AMP wing, M∞ = 0.78, α = 2.83◦, 2-block structured grid of about 140,000
nodes each

Fig. 5.11 Plot of residual (log scale) of adjoint flow equation during coupled computation:
AMP wing, M∞ = 0.78, α = 2.83◦, 2-block structured grid of about 140,000 nodes each.
Each 100 iterations, the boundary conditions of the adjoint flow solver are updated

The fields (w,Z) are the solution of the system of partial differential equations

R(X,w,Z) = 0 (5.36)

S(X,w,Z) = 0 (5.37)
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Fig. 5.12 Wing structure model

Fig. 5.13 Validation of the aero-structural coupled adjoint with finite differences (AMP
wing, M∞ = 0.78 and α = 2.83◦)

being (5.36) the flow and (5.37) the structural equations. We take the first
variation of the PDEs. This yields

δR =
∂R

∂X
δX +

∂R

∂w
δw +

∂R

∂Z
δZ = 0 , (5.38)

δS =
∂S

∂X
δX +

∂S

∂w
δw +

∂S

∂Z
δZ = 0 . (5.39)

We multiply Eqs. (5.38) and (5.39) with the Lagrange multipliers ψ and φ
respectively and add the result to the expression for the differential increment
of I in terms of the differentials of the independent set (X,w,Z), obtaining
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Fig. 5.14 Optimization history (a) for the drag reduction by constant lift while taking
into account the static deformation and (b) for the range maximization (bottom picture)
of the AMP wing (M∞ = 0.78, α = 2.83◦). For both optimizations free-form deformation
is considered, 240 design variables are used for parameterization and the optimization
strategy relies on feasible directions

δI =
(
∂I

∂X
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)
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∂w
+ φT ∂S

∂w

)
δw +

(
∂I

∂Z
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∂Z
+ φT ∂S

∂Z

)
δZ .(5.40)
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Fig. 5.15 Pressure distribution for the baseline AMP wing shape and for the optimal
wing shapes for drag minimization and range maximization (M∞ = 0.78, α = 2.83◦)

Since we want to avoid recalculation of the (w,Z) fields, we cancel the
terms in δw and δZ from δI by imposing the fields φ and ψ, to be the
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solution of the equations(
∂I

∂w
+ ψT ∂R

∂w
+ φT ∂S

∂w

)
= 0 , (5.41)

(
∂I

∂Z
+ ψT ∂R

∂Z
+ φT ∂S

∂Z

)
= 0 . (5.42)

These are the adjoint equations for the problem of coupled aeroelasticity.
After their solution, the gradient can be recovered from the expression

δI =
(
∂I

∂X
+ ψT ∂R

∂X
+ φT ∂S

∂X

)
δX . (5.43)

We can assume the cost function to be a functional in the form

I(X,w,Z) =
∫
V

i(X,w,Z)dV (5.44)

with
i(X,w,Z) =

Cp

Cref
(nx cosα+ ny sinα)δ(η) (5.45)

where δ(η) is the Dirac delta function. The equation η = 0 defines the airfoil
shape in the body fitted coordinates (ξ, η). For the Dirac delta function under
integration the following equation holds∫

δ(η)f(η)dη =f(0) . (5.46)

In the context of Eq. (5.44), it reduces the volume integral to a surface
integral. We suppose that the fluid obeys the Euler equations, which in body
fitted coordinates take the form

∂F

∂ξ
+
∂G

∂η
= 0 , (5.47)

where the transformed F,G are appropriate combinations of f and g, e.g.,

F = J
∂ξ

∂x
f + J

∂ξ

∂y
g = J

⎡
⎢⎢⎣

ρU

ρuU + ∂ξ
∂xp

ρvU + ∂ξ
∂yp

ρHU

⎤
⎥⎥⎦ . (5.48)

Since our cost function I is of the form shown in Eq. (5.44), as first step we
have to formulate Eqs. (5.41) and (5.42) in an appropriate way, using the
following property
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δI(X,w,Z) =
∫
V

δi(X,w,Z)dV

=
∫
V

(
∂i(X,w,Z)

∂X
δX +

∂i(X,w,Z)
∂w

δw +
∂i(X,w,Z)

∂Z
δZ

)
dV .(5.49)

The derivation is identical to what has already been seen, and gives the
adjoint equations ∫

V

(
∂i

∂w
+ ψT ∂R

∂w
+ φT ∂S

∂w

)
dV = 0 , (5.50)

∫
V

(
∂i

∂Z
+ ψT ∂R

∂Z
+ φT ∂S

∂Z

)
dV = 0 . (5.51)

For the gradient we get

δI(X,w,Z) =∫
V

(
∂i(X,w,Z)

∂X
δX + ψT ∂R(X,w,Z)

∂X
δX + φT ∂S(X,w,Z)

∂X
δX

)
dV (5.52)

It can be shown that Eq. (5.50) is equivalent to the equation

∫
V

((
∂ψ

∂ξ

)T
∂F

∂w
+

(
∂ψ

∂η

)T
∂G

∂w

)
dV = 0 (5.53)

and the boundary condition (in the case of the drag)

ψ2nx + ψ3ny + nx cos(α) + ny sin(α) − nTφ = 0 . (5.54)

Note that the structural adjoint variables appear only in the boundary condi-
tion (5.54), while the adjoint flow equation (5.53) is unchanged. This implies
that in order to implement the coupling, only the boundary condition treat-
ment in the FLOWer code has to be modified. Equation (5.42) represents
the structural adjoint equation and its boundary conditions. The structural
equation reads in the case of linear elasticity

S(X,w,Z) = K · Z − a = 0 (5.55)

where K is the symmetric stiffness matrix and a is the aerodynamic force.
The derivative ∂S

∂Z in (5.42) can thus be replaced by K and the product φTK
by Kφ. In this way, the same solver can be used for the structural direct and
adjoint equation, with different boundary conditions, given by the first and
second term in Eq. (5.42). The first term is reduced to a surface integral by
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the presence of the Dirac delta function, giving a vector defined by

Vi =
∂
∫
S

I(X,w,Z)dS

∂Zi
(5.56)

that is the derivative of the cost function with respect to a structural degree
of freedom. The second term, namely∫

V

(
ψT ∂R

∂Z

)
dV (5.57)

represents the integral of the scalar product of the adjoint field ψ and the
partial derivative of the flow operator R(X,w,Z) with respect to a struc-
tural degree of freedom, thus keeping the flow field and the design variables
constant. It is evaluated by making use of the finite volume formulation im-
plemented in FLOWer. A similar term appears in the expression for gradient
(5.52), which explicitly becomes

dI

dX
=

∂I

∂X
+

∫
V

(
ψT ∂R

∂X

)
dV +

∫
V

(
φT ∂S

∂X

)
dV . (5.58)

We already know how to evaluate the first two terms. The third term reduces
to the surface integral of the adjoint field φ multiplied by the term

∂S

∂X
=
∂K

∂X
Z − ∂a

∂X
. (5.59)

Of the two terms on the right hand side, the first has been neglected, which is
equivalent to assuming that shape deformations do not act on the structural
mesh and thus on the stiffness matrix.

5.7.2 Implementation

In order to solve the coupled equations of the aero-structural system, a se-
quential staggered method has been implemented, where forces are trans-
ferred from the flow mesh to the structure mesh and give the nodal loads,
and deflections are transferred back from the structure mesh to the flow mesh
which is consequently deformed. The flow around the body described by the
Euler equation is solved by the DLR solver FLOWer, while the structural
problem is solved by MSC Nastran. The transfer of information between the
two meshes is managed by a module developed in-house based on B-spline
volume interpolation. Typically, 20 exchanges of information between the
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two codes are more than enough to reach a converged aeroelastic solution as
shown in Fig. 5.10.

The same staggered scheme has been used to solve the systems of the cou-
pled adjoint equations, with the difference that now only adjoint deflections
are interpolated from the structural mesh to the flow mesh, in order to eval-
uate the boundary condition (5.54) for the new adjoint flow computation.
Boundary conditions coming from the coupling are exchanged and updated
for every 100 steps of the adjoint flow solver as shown in Fig. 5.11.

5.7.3 Validation and Application

The validation of both the theory and the implementation of the adjoint
formulation for the aeroelastic system has been achieved by comparison with
the FD method.

As test case for the validation, the AMP wing has been chosen (Fig. 5.12).
The structure has been modeled with a simplified model of 126 nodes, all
lying on the wing surface, connected by 422 tria/quad shell and 198 beam
elements. Such a model, unlike its fluid counterpart, is not state of the art, but
is sufficient to demonstrate the features of the method. In order to underline
the effect of aeroelasticity, the thickness of the beam elements of the wing
has been tuned to reach a deflection of about 10% of the wing span at the
wing tip.

Making use of the FD method, the gradient of the drag with respect to
the shape parameters has been calculated, this time including the effect of
aeroelastic interaction. This means that after a deformation of the jig shape
(undeflected shape), an aeroelastic coupling was called and a stationary state
was reached as already shown in Fig. 5.10. This operation was repeated for
every design parameter.
On the other hand, after the solution of the coupled adjoint equations, both
the flow and structural adjoint fields have been used to reconstruct the gra-
dient according to Eq. (5.58). The comparison of both methods is shown in
Fig. 5.13, together with the gradient obtained when neglecting the aeroelastic
coupling (rigid).

Finally, Figs. 5.14 and 5.15 illustrate the application of the coupled aero-
structural adjoint approach to the drag reduction of the AMP wing by con-
stant lift while taking into account the static deformation of this wing caused
by the aerodynamic forces. Additionally, the Breguet formula of aircraft range
is considered where in addition to the lift to drag ratio, the weight of the wing
is taken into account as well.
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Fig. 5.16 Convergence history of state and costate (RAE 2822, M∞ = 0.73 and α = 2.0◦)

5.8 One-shot Methods

The algorithmic approach of the so-called one-shot methods is based on an
embedding of optimization strategies within the iterations of the respective
flow solver. A continuous reduced SQP method is developed to solve the opti-
mization problem in one joint pseudo-timestepping iteration for all variables
(flow state, adjoint and wing design variables) [15, 16]. In this way, we look
for the steady states of the pseudo-time embedded non-stationary system
of state, costate (or adjoint state) and design equations. The preconditioner
used corresponds to Karush-Kuhn-Tucker matrices, which are used in an ap-
proximate reduced SQP method.

A first demonstration of the capability of the one-shot method is given for
the drag reduction of the RAE 2822 airfoil in inviscid flow with M∞ = 0.73
and α = 2.0◦. Figure 5.16 presents the convergence history of the optimiza-
tion iterations. The optimization is started with the initial solution of the
state and costate equations obtained after 500 steps with Runge-Kutta time
integration. The convergence of the optimization is achieved after 3,700 op-
timization iterations. After convergence is achieved for optimization, we per-
form another 600 time iterations for state and costate solvers to reduce the
residual of these two variables further to get more accurate values of surface
pressure and force coefficients. Figure 5.17 shows the inexact and exact drag
reduction during the optimization iterations. Inexact here means that the
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Fig. 5.17 Convergence history of design (inexact/exact drag), RAE 2822, M∞ = 0.73
and α = 2.0◦
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Fig. 5.18 Initial and optimized pressure distribution (RAE 2822, M∞ = 0.73 and α =
2.0◦)

drag is evaluated for the less converged state and costate variables used in
the design loop. Afterwards, on the trace of modified shapes generated dur-
ing the one-shot approach, the drag was recomputed up to an accuracy of 7
digits and compared with the inexact one. The final drag reduction after the
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optimization is about 68% and the shock completely vanished (Fig. 5.18) as
expected for inviscid cases. Figure 5.18 presents the comparison of the initial
and final surface pressure distributions achieved with the one-shot approach
(present) and with the conventional gradient based adjoint approach (steep-
est descent).

Altogether, the numerical cost of the one-shot optimization is of the magni-
tude of just 4 flow simulations, which is a dramatic reduction in computation
time compared to the conventional approach.

Acknowledgements The author thanks his colleagues at DLR, in particular A. Fazzolari,
J. Brezillon and M. Widhalm, as well as the MEGADESIGN partners V. Schulz and S.
Hazra from University of Trier for their contributions to this chapter. Furthermore, the

author thanks A. Walther and C. Moldenhauer from TU Dresden for their support and
contributions w.r.t. algorithmic differentiation.

References

1. Brezillon, J., Dwight, R.: Discrete adjoint of the Navier-Stokes equations for aerody-
namic shape optimization. In: Proceedings of EUROGEN05 (2005)

2. Brezillon, J., Gauger, N.R.: 2D and 3D aerodynamic shape optimization using the
adjoint approach. Aerospace Science and Technology 8(8), 715–727 (2004)

3. Dwight, R.: Efficiency improvments of RANS-based analysis and optimization using
implicit and adjoint methods on unstructured grids. Ph.D. thesis, DLR-Report No.
DLR-FB–2006-11 (ISSN 1434-8454) (2006)

4. Fazzolari, A.: An aero-structure adjoint formulation for efficient multidisciplinary wing
optimization. Ph.D. thesis, TU Braunschweig, Germany (2006)

5. Fazzolari, A., Gauger, N.R., Brezillon, J.: An aero-structure adjoint formulation for
efficient multidisciplinary wing optimization. In: Proceedings of EUROGEN05 (2005)

6. Fazzolari, A., Gauger, N.R., Brezillon, J.: Efficient aerodynamic shape optimization
in mdo context. Journal of Computational and Applied Mathematics 203, 548–560
(2007)

7. Gauger, N.R.: Aerodynamic shape optimization using the adjoint Euler equations. In:
Proceedings of the GAMM Workshop on Discrete Modelling and Discrete Algorithms
in Continuum Mechanics, pp. 87–96. Logos Verlag, Berlin (2001)

8. Gauger, N.R.: Das Adjungiertenverfahren in der aerodynamischen Formoptimierung.
Ph.D. thesis, DLR-Report No. DLR-FB–2003-05 (ISSN 1434-8454) (2003)

9. Gauger, N.R., Brezillon, J.: Aerodynamic shape optimization using adjoint method.
Journal of the Aeronautical Society of India 54(3), 247–254 (2002)

10. Gauger, N.R., Walther, A., Moldenhauer, C., Widhalm, M.: Automatic differentiation
of an entire design chain for aerodynamic shape optimization. In: Notes on Numerical
Fluid Mechanics and Multidisciplinary Design (to appear), vol. 96. Springer Verlag
(2007)

11. Giering, R., Kaminski, T., Slawig, T.: Applying TAF to a Navier-Stokes solver that
simulates an Euler flow around an airfoil. Future Generation Computer Systems 21(8)
(2005)

12. Giles, M.B., Duta, M.C., Müller, J.D., Pierce, N.A.: Algorithm developments for dis-
crete adjoint methods. AIAA Journal 41(2), 198–205 (2003)



5 Efficient Deterministic Approaches for Aerodynamic Shape Optimization 145

13. Griewank, A.: Evaluating Derivatives, Principles and Techniques of Algorithmic Dif-
ferentiation. Society for Industrial and Applied Mathematics, Philadelphia (2000)

14. Griewank, A., Juedes, D., Mitev, H., Utke, J., Vogel, O., Walther, A.: ADOL-C: A
package for the automatic differentiation of algorithms written in C/C++. Tech. rep.,
Technical University of Dresden, Institute of Scientific Computing and Institute of
Geometry (1999)

15. Hazra, S.B., Schulz, V.: Simultaneous pseudo-timestepping for PDE-model based op-
timization problems. Bit Numerical Mathematics 44(3), 457–472 (2004)

16. Hazra, S.B., Schulz, V., Brezillon, J., Gauger, N.R.: Aerodynamic shape optimization
using simultaneous pseudo-timestepping. Journal of Computational Physics 204(1),
46–64 (2005)

17. Heinrich, R.: Implementation and usage of structured algorithms within an unstruc-
tured CFD-code. In: Notes on Numerical Fluid Mechanics and Multidisciplinary De-
sign, vol. 92. Springer Verlag (2006)

18. Hounjet, M.H.L., Prananta, B.B., Zwaan, R.: A thin layer Navier Stokes solver and
its application for aeroelastic analysis of an airfoil in transonic flow. Netherlands,
DLR-Publication (1995)

19. Jameson, A.: Aerodynamic design via control theory. Journal of Scientific Computing
3, 233–260 (1988)

20. Jameson, A., Martinelli, L., Pierce, N.A.: Optimum aerodynamic design using the
navier-stokes equations. Theoretical and Computational Fluid Dynamics 10, 213–237
(1998)

21. Jameson, A., Reuther, J.: Control theory based on airfoil design using the Euler equa-
tions. AIAA Proceedings 94-4272-CP (1994)

22. Kroll, N., Rossow, C.C., Schwamborn, D., Becker, K., Heller, G.: MEGAFLOW - A
numerical flow simulation tool for transport aircraft design (2002)

23. Martins, J.R., Alonso, J.J., Reuther, J.J.: Complete configuration aero-structural op-
timization using a coupled sensitivity analysis method. AIAA Paper 2002-5402 (2002)

24. Martins, J.R., Alonso, J.J., Reuther, J.J.: High-fidelity aero-structural design opti-
mization of a supersonic business jet. AIAA Paper 2002-1483 (2002)

25. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations
Research. Springer (1999)

26. Rossow, C.C.: A flux splitting scheme for compressible and incompressible flows. Jour-
nal of Computational Physics 164, 104–122 (2000)

27. Schlenkrich, S., Walther, A., Gauger, N.R., Heinrich, R.: Differentiating fixed point
iterations with ADOL-C: Gradient calculation for fluid dynamics. In: Proceedings of
the International Conference on High Performance Scientific Computing (2006)

28. Widhalm, M., Gauger, N.R., Brezillon, J.: Implementation of a continuous adjoint
solver in TAU. DLR-Report (in press) (2007)

29. Widhalm, M., Rossow, C.C.: Improvement of upwind schemes with the least square
method in the DLR TAU code. In: Notes on Numerical Fluid Mechanics, vol. 87, pp.
398–406. Springer Verlag (2004)



Chapter 6

Numerical Optimization for Advanced
Turbomachinery Design

René A. Van den Braembussche

Abstract The multilevel-multidisciplinary-multipoint optimization system
developed at the von Kármán Institute and its applications to turboma-
chinery design is presented. To speed up the convergence to the optimum
geometry, the method combines an Artificial Neural Network, a Design Of
Experiment technique and a Genetic Algorithm. The different components
are described, the main requirements are outlined and the basic method is
illustrated by the design of an axial turbine blade.

A procedure for multipoint optimization, aiming for optimal performance
at more than one operating point, is outlined and applied to the optimization
of a low solidity diffuser.

The extension to a multidisciplinary optimization, by combining a Navier-
Stokes solver with a Finite Element Analysis, allows an efficient search for
a compromise between the sometimes conflicting demands of high efficiency
and respect of mechanical constraints. It is shown that a significant reduction
of the stresses is possible with only a small penalty on the performance and
that this approach may lead to geometries that would normally be excluded
when using less sophisticated methods.

6.1 Introduction

Computational Fluid Dynamics (CFD) has seen a very important develop-
ment over the last 30 years. Navier-Stokes (NS) solvers have reached a high
level of reliability at affordable cost. They are now routinely used to ana-

René A. Van den Braembussche
von Kármán Institute for Fluid Dynamics,
Turbomachinery and Propulsion Department,
Waterloose steenweg, 72, 1640 Sint-Genesius-Rode, Belgium
(e-mail: vdb@vki.ac.be)

147
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Fig. 6.1 2D view of the 3D flow at the exit of a turbine stage

lyze the fluid flows in the same way Finite Element Analysis (FEA) is used
for stress predictions. They provide detailed information about the 3D flow
around existing blade shapes and constitute an attractive alternative for de-
tailed flow measurements. Complex flow phenomena can now be studied in
what is called “Numerical Laboratories”. Although this has resulted in a
drastic decrease of the number of prototype testing, there are still two prob-
lems that prevent a more efficient use of CFD in the turbomachinery design
process.

The first one results from the difficulty to analyze 3D flows on 2D screens or
drawings. 2D vector plots are only a poor representation of the reality. They
can be very misleading as they may suggest that the flow is penetrating the
solid walls (Fig. 6.1). Synthetic environments, also called virtual reality, are
very promising in this respect. These techniques are not only applicable to
mere computer games but will become part of everyday reality for engineers
in the next decade [16]. Designers will walk inside blade rows and diffusers to
inspect the complex 3D flow structures by tracing the streamlines and to find
out what geometrical changes may be needed to improve the performance.

The second problem relates to the abundance of information provided by
the NS calculation. The output of an NS solver contains all the information
needed to improve the performance. However, it does not provide any infor-
mation on what modifications are needed to reach that goal. Three velocity
components, the pressure and the temperature in typically 10,000 points (2D
flows) or in more than 1,000,000 points (3D flows) are more than what the
human brain is able to grasp and fully exploit in new designs. Most of the
available information remains unused as the designer will often calculate a
global parameter to find out if one geometry performs better than another.
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The traditional design procedures in which standard 2D blade sections
are selected and scaled up or down to adapt them to the different operating
conditions are no longer acceptable. The designer is now faced with the de-
velopment of new and better performing 2D and 3D blade shapes [10]. He
needs new tools to use the available information in a more efficient way than
with the traditional trial and error procedure in which the systematic testing
of blade shapes has only been replaced by NS calculations. Those manual
designs are very time consuming and the outcome depends on the expertise
of the designer. This may become problematic since experienced designers
are replaced by young engineers, who may have expertise in CFD but limited
experience in turbomachinery design. Moreover, they can hardly be expert in
all disciplines that interfere with a design (aerodynamics, mechanics, manu-
facturing etc.). Hence there is a need for automated and computerized design
systems.

The main goal when designing turbines or compressors is to achieve light,
compact and highly efficient systems while reducing the cost and the dura-
tion of the design cycle. Existing computerized design systems are often too
expensive in terms of computational effort. Too many design processes have
been concluded not because the target has been obtained, but because the
deadline has come up. New design systems should therefore aim to be fast
and affordable.

Turbomachines often operate outside the nominal or design conditions.
Compressors for air-conditioning applications must be able to operate effi-
ciently in all seasons, i.e., at different mass flows but constant pressure ratio.
Low Solidity Diffusers (LSDs) are specially designed to increase the perfor-
mance at a large variety of inlet flow conditions. Optimizing those geometries
for one operating point is only part of the job. Multipoint design systems are
needed to find a global optimum, i.e., maximizing the performance at all
operating points to minimize the lifetime operating cost of the device.

Optimum performance is of no use if the mechanical integrity of the tur-
bomachine cannot be guaranteed. This requires a stress and/or heat transfer
analysis to verify that the stress constraints are not violated. Lower mate-
rial and manufacturing costs are also important design criteria. Designing
turbomachines is therefore a complex multidisciplinary exercise.

Inverse design methods define the geometry corresponding to a prescribed
pressure or velocity distribution. However specifying the input of such a
method, that satisfies mechanical and geometrical constraints and results in
high performance in all operating points, is not an easy task. This is particu-
larly difficult for 3D flows where secondary flow phenomena play a dominant
role. A lot of insight is required to foresee the mechanical and geometrical
consequences of a velocity variation. Adjustment of the target pressure dis-
tribution during the optimization process may be needed [7, 20].

Optimization systems searching for the geometry that best satisfies more
global requirements in terms of performance, mechanical constraints or any
other design criterion are a valuable alternative and have experienced a lot of



150 René A. Van den Braembussche

attention in recent years. In what follows one will describe the fast, multipoint
and multidisciplinary optimization method, developed at the von Kármán
Institute, and its application to different turbomachinery designs.

6.2 Optimization Methods

Optimization methods attempt to determine the design variablesXi(i = 1, n)
that minimize an objective function OF (U(Xi), Xi) where U(Xi) is the solu-
tion of the flow equations R(U(Xi), Xi) = 0 and subject to nA performance
constraints Aj(U(Xi), Xi) ≤ 0 (j = 1, nA) and nG geometrical constraints
Gk(Xi) ≤ 0 (k = 1, nG).

Specifying as Objective Function (OF ) the difference between a prescribed
and calculated pressure distribution results in an inverse design method. Aim-
ing for the improvement of the overall performance leads to a global optimiza-
tion technique.

Numerical optimization procedures consist of the following components,
described in more detail in the following paragraphs:

• a choice of independent design parameters and the definition of the ad-
dressable part of the design space.

• definition of an OF quantifying the performance. Any standard analysis
tool can be used to calculate the components such as lift, drag, efficiency,
mass flow, manufacturing cost or a combination of all of them.

• a search mechanism to find the optimum combination of the design pa-
rameters, i.e., the one corresponding to the minimum of the OF .

6.2.1 Search Mechanisms

There are two main groups of search mechanisms:

• Analytical ones calculate the required geometry changes in a deterministic
way from the output of the performance evaluation. A common one is
the steepest descent method approaching the area of minimum OF by
following the path with the largest negative gradient on the OF surface
(Fig. 6.2). This approach requires the calculation of the direction of the
largest gradient of the OF and the step length. A comprehensive overview
of gradient based optimization techniques is given by Vanderplaats [17].

• Zero-order or stochastic procedures require only function evaluations.
They make a random or systematic sweep of the design space or use evolu-
tionary theories such as Genetic Algorithms (GA) or Simulated Annealing
(SA).
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Fig. 6.2 Gradient method (- - -) and zero-order sweep of the design space (o)

To minimize the OF , most numerical algorithms require a large number of
performance evaluations and are often very expensive in terms of computer
resources. Zero order methods may require even more evaluations than gra-
dient methods but the latter may get stuck in a local minimum. The method
presented here uses a zero order search mechanism based on an evolutionary
theory.

6.2.1.1 Zero-order Search

A systematic sweep of the design space, defining v values between the min-
imum and maximum limits of each of the n design parameters, requires vn

function evaluations. Figure 6.2 illustrates how such a sweep, calculating the
OF for 3 different values of X1 and X2, provides a very good estimation of
where the optimum is located with only 9 function evaluations. The risk of
converging to a local minimum is low and such a systematic sweep is a valid
alternative for analytical search methods for small values of n. However it
requires more than 14 × 106 evaluations for n = 15.

Evolutionary strategies such as GA and SA can accelerate the procedure
by replacing the systematic sweep with a more intelligent selection of new
geometries using the information obtained during previous calculations in a
stochastic way.

SA is derived from the annealing of solids [1]. At a given temperature, the
state of the system varies randomly. It is immediately accepted if the new
state has a lower energy level. If however, the variation results in a higher
state, it is only accepted with a probability Pr that is a function of the
temperature.
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Fig. 6.3 GA operating principle

Pr = exp
(Eopt − Eact)

T

As the temperature decreases, the probability of accepting a higher state
becomes lower. In a SA algorithm, the design parameters characterize the
state of the system whereas the OF characterizes the energy level.

6.2.1.2 Genetic Algorithm (GA)

The method presented here uses a GA to find the optimum. This is a numer-
ical technique that simulates Darwin’s evolutionary theory stating that the
fittest survives [4]. According to this theory, an individual (a geometry) with
favorable genetic characteristics (design variables) is most likely to produce
better offsprings. Selecting them as parent, increases the probability that the
individuals of next generation will perform better than the previous one.

The operational principle of a standard GA is shown in Fig. 6.3. Pairs of
individuals (parents) are selected from an initially random population of N
geometries, each represented by a binary coded string of length l. Genetic
material is subsequently exchanged between them (crossover) and altered
within the offspring (mutation). It is followed by an evaluation of each new
individual. This process is used to create the N individuals of the next gen-
eration. Such a procedure is repeated for t generations and it is assumed that
the best individual of the last generation is the optimum.

Quality of the GA optimizer is measured by:

• the required computational effort, i.e., the number of performance evalu-
ations that are needed to find that optimum (GA efficiency).

• the value of the optimum (GA effectiveness).

The GA software used in the VKI design system is the one developed
by David L. Carroll [5]. The optimum parameter setting has been defined
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by means of a systematic study on two typical design cases: one geometry
defined by 7 parameters and one defined by 27 parameters [8]. Conclusions
are based on the solution quality q, i.e., the degree to where the GA optimum
approaches the real one within a given effort (5,000 function evaluations). It
is defined by:

q =
OFAV −OFGA

OFAV −OFmin
· 100%

where OFAV is the average of the OF over the complete design space.
OFmin is the global minimum value of the OF obtained from a systematic

(numerically very expensive) scanning of the whole design space.
OFGA is the minimum value of the OF obtained from the GA optimization.
A q value of 100% indicates that the global minimum has been found. The

function evaluations for the numerical experiments are made by means of an
approximation of the NS solver based on Artificial Neural Networks (ANN,
explained in Sect. 6.3.1).

Optimum substring length

In a standard binary-coded GA, the n real-valued design parameters Xi,
defining a geometry, are jointly represented by one binary string:

1101...0 1001...1 0011...0 0101...1... ... ... 
X X X X1 2 3 n

The substring length, denoted by l (number of bits per variable), deter-
mines the total number of values (2l ) that each design parameter can take.

The minimum substring length li for the ith design variable depends on
the lower and upper bound respectively Xmin

i and Xmax
i , as well as on the

desired resolution (εi) for this variable:

li = log2

Xmin
i −Xmax

i

εi

Very short substrings (l < 3) result in a too low resolution and the GA may
not be able to accurately locate the minimum. Longer substrings (3 < l < 10)
enable a higher resolution but cause a larger search space, making it difficult
to find the complete optimal binary string. Systematic testing shows that
l = 8 is the optimum substring length, independent of the number of unknown
parameters.
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Fig. 6.4 Dependence of GA solution quality on population size for the 27 parameter test
case

Selection scheme

Different selection schemes have been proposed. One is the roulette: a system
in which the chance that an individual is selected increases proportional with
1/OF . This scheme favors the best individuals as parents. It is elitist and
has larger chances to get stuck in a local optimum.

In the tournament selection, “s” individuals are chosen randomly from
the population and the individual with the highest fitness (lowest OF ) is
selected as parent. The same process is repeated to find the second parent.
The parameter s is called the tournament size and can take values between
1 and N (population size). Larger values of s give more chances to the best
samples to be selected and to create offsprings. It favors a rapid, although
perhaps premature, convergence to a local optimum. Very small values of
s result in a more random selection of parents. Tests have shown that a
standard value of s = 2 gives the best results.

Population size

Fixing the total number of function evaluations at 5,000, the number of gen-
erations t is a consequence of the population size N (N × t = 5, 000). Fig-
ure 6.4 shows the solution quality at the end of the GA run in function of the
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population size. The solution quality is maximum for N = 11 to 20. Small
populations (N < 10) converge prematurely to suboptimal solutions, due to a
lack of high performing samples in the initial population. Larger populations
(N > 25) have a sluggish convergence to the optimal geometry because less
generations are allowed.

Crossover probability

In a single-point crossover operator, both parent strings are cut at a random
place and the right-side portions of both strings are swapped with the prob-
ability pc (Fig. 6.3). In case of uniform crossover, the value of pc defines the
probability that crossover is applied per bit of the complete parent string.
High values of pc increase mixing of string parts but at the same time, in-
crease the disruption of good string parts. Low values limit the search to
combinations of samples in the existing design space. Experiments confirm
that a single point crossover with probability pc = 0.5 is optimal.

Mutation probability

The mutation operator creates new individuals by changing in the offspring
strings a “1” to a “0” or vice versa. The mutation probability pm is defined
as the probability that a bit of a string is flipped. Systematic numerical
experiments confirm that the optimum setting for the mutation probability
is pm = 1/(N × l) for all optimizations. This corresponds to changing on
average one bit at every generation.

Figure 6.5 shows how an optimization of the GA parameter settings can
lead to an improved and smoother GA convergence.

Creep mutation and Gray coding

Changing one digit in a binary code may result in a large variation of the
corresponding digital value: i.e., the small difference between 0111 and 1111
corresponds to a doubling of the digital value. Small variations of the digital
value may require a large number of binary digits to be changed: i.e., 0111
and 1000 are adjacent digital values but all four digits are different. This dis-
continuous relation between the digital value and binary string may confuse
the GA optimizer. Creep mutation tries to avoid this by limiting the change
of the real value to a binary step length [5]. Gray coding uses an algorithm in
which similar binary strings correspond to adjacent digital values. In contrast
to what could be expected, no acceleration of convergence was obtained with
either one of these approaches.
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6.2.2 Objective Function

The OF measures how far a geometry satisfies the aero-requirements and if
the performance goals that have been set forward are reached.

High aero-performance is not the only objective of an optimization. A
good design must also provide good off-design performance (multipoint op-
timization) and respect the mechanical and manufacturing constraints (mul-
tidisciplinary optimization). Some constraints must be satisfied without any
compromise (i.e., maximum stress level). They result in an inequality and a
more detailed discussion is given in Sect. 6.6.2. Others tolerate some margin
(i.e., cost or weight) that can be corrected for after the design is finished (i.e.,
by adjusting the blade length to achieve the required mass flow). A possi-
ble alternative for these inequalities is to add penalty terms to the OF that
increase when the constraints are violated [13].

The following lists some contributions to the global OF that are common
for the different applications. Each term is multiplied by a weight factor to
adjust its relative importance in the optimization procedure.

OF2D = wη · Pperf + wa · PaeroBC + wm · Pmech + wM · PMach

+wd · Pdischarge + wG · PGeom + wS · PSide
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Pmass

ṁreq

Fig. 6.6 Variation of penalty function for incorrect mass flow

Pperf is the penalty for non-optimum performance and increases with de-
creasing efficiency (η)

Pperf = max [|ηreq − η| , 0.0]

Minimizing this term corresponds to maximizing the efficiency. The re-
quired efficiency ηreq is set to an unachievable value (for instance 1.0) so
that this penalty never goes to zero. The argument is that, after all other
requirements are met, the efficiency should still be maximized.
PAeroBC is the penalty for violating the aerodynamic boundary conditions.

The purpose of this penalty is to enforce the boundary conditions and require-
ments at the inlet and outlet of the computational domain that cannot be
imposed such as: the outlet flow angle (β2), the mass flow or pressure ratio,
etc. The penalties for not respecting the boundary conditions start increasing
when the actual values differ from the target values by more than a prede-
fined tolerance. Following penalty for incorrect mass flow increases when the
mass flow differs more than 2% from the required value (Fig. 6.6):

Pmass =
(

max
[ |ṁact − ṁreq|

ṁreq
− 0.02 , 0.

])2

Pmech is the penalty for not respecting the mechanical constraints. The
latter must be satisfied without compromise because exceeding the maximum
stress level cannot be tolerated as it may destroy the device. A rigorous
respect of the minimum stress limits requires a Finite Element stress Analysis
(FEA) and will be discussed in detail in Sect. 6.6. The computational effort
can be drastically reduced if one can replace the mechanical constraints by
simpler geometrical ones that are much easier to verify.

The large stresses in the blade root section of radial impellers are a complex
function of the blade curvature and lean. The subsequent deformations can
reduce the tip clearance to zero which may lead to the destruction of the
optimized geometry. Traditional design systems limit the lean (Fig. 6.7) to a
maximum value based on experience and simple stress models.

Prescribing the radial variation of the cross section area of a fan blade or
low-pressure (LP) turbine blade is a common way to control the centrifu-
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(a) (b)

Fig. 6.7 Definition of (a) lean and (b) rake in radial impellers

gal stresses. The parameters of primary importance in controlling the blade
bending due to the static and dynamic load in an axial compressor or turbine
blade are: minimum and maximum moment of inertia (Imin) and (Imax) of
the cross sections and the direction κ of its maximum value.
PMach is the penalty for a non-optimum Mach number distribution. An-

alyzing the Mach number distribution may help to rank blades that have
nearly the same loss coefficient. NS solvers are not always reliable in terms
of transition modeling and erroneous penalty function may occur when the
transition point is incorrectly located. Transition criteria based on the Mach
number distribution may help to relieve this uncertainty.

One is also not interested in designing blades that have very good per-
formance at design point but for which the flow is likely to separate (with
large increase in losses) at slightly off-design conditions. A rigorous way of
verifying the operating range is discussed in Sect. 6.5. A simpler approach
accounts for the changes in the Mach number distribution that can be ex-
pected at off-design. It increases the chances for good performance of the
blade over a wide range of operating conditions without the cost of extra NS
computations.

The Mach number penalties that have been formulated for turbine blade
optimizations are presented in Sect. 6.4. They tend to achieve a continu-
ous flow acceleration with minimum deceleration. Mach number penalties for
radial compressor impellers are presented in Sect. 6.6.
Pdischarge can be used to penalize the spanwise distortion of the flow at the

exit. It results from the idea that a more uniform exit flow has a favorable
effect on the downstream diffuser or blade row and hence, on the stage effi-
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ciency. The distortion penalty quantifies the difference between the average
flow angle at 20% (hub) and 80% (shroud) span with the one at midspan

Pdist =
∣∣∣∣1 − 2.αmidspan

αhub + αshroud

∣∣∣∣
The penalty for flow skewness is proportional to the difference between

the flow angle, or any other flow quantity, at 20% and 80% span, non dimen-
sionalized by the average value

Pskew =
2.(αhub − αshroud)
αhub + αshroud

PGeom is the penalty for violating the geometrical constraints. They either
are related to the mechanical integrity or assure dimensional agreement with
other components.
PSide is the penalty for violating the side constraints. Depending on the

application, the weight, manufacturing and maintenance cost may be impor-
tant issues and some geometries can be favored by formulating an appropriate
penalty.

The penalties and weight factors are specific for each design. An appro-
priate choice of the weights can be based on overall design criteria such as
energy savings, total lifetime cost, etc. Plotting the different contributions to
the OF as a Pareto front in the fitness space (Fig. 6.8) facilitates a trade-off
between different counteracting goals. This is particularly useful for problems
with only 2 or 3 groups of OF where the Pareto front can easily be visualized.
However it is much more cumbersome in higher order problems or when the
Pareto front is not convex.

6.2.3 Parameterization

The number of coordinates needed for the complete definition of an arbitrary
geometry is infinite and a direct calculation of all of them by a numerical op-
timization procedure is not feasible. A reduction of the number of variables
by an adequate parameterization of the geometry is required. It is important
that the parameterization does not exclude any physically-acceptable geom-
etry. A blade shape that can not be generated can of course not be found by
the optimizer, even if it would be the optimum one. The parameterization
should be sufficiently simple to limit the number of variables that need to
be defined. The use of Bézier curves or B-splines to describe the geometry
is recommended. This assures smoothness of the surface and facilitates the
transfer of the data to Computer-Aided Design and Manufacturing (CAD-
CAM) systems. Different parameterizations will be explained in Sects. 6.4
to 6.6.
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Fig. 6.8 Convex Pareto front

6.3 Two-level Optimization

The system presented here (Fig. 6.9) is developed at the von Kármán Institute
[13] and makes use of a GA to minimize the OF . A GA requires a large
number of function evaluations. Using an expensive NS solver for all function
evaluations is in most cases, prohibitive in terms of computer effort.

One way to reduce the computational effort is by working on different levels
of sophistication. Fast but approximate prediction methods can be used to
find a near optimum geometry, which is then further verified and refined
by a more accurate but also more expensive analysis. Approximations of
the NS solver and FEA, called meta-functions, are used for the first level
optimization. The more accurate but expensive NS and FEA are used only
to verify the accuracy of the meta-function predictions.

Meta-functions not only need to be fast but must also be accurate. The
GA can only converge to the real optimum if it receives accurate information
about the impact of a geometry change on the performance. Different type
of meta-functions have been proposed. The main problem is the risk that
the discrepancies between the predictions by the meta-function and the NS
results drive the optimizer to a false optimum. Euler and NS solutions on
coarse grids are sometimes proposed as meta-functions. They are fast but
inaccurate and using them for performance predictions may drive the GA to
a non-optimum combination of design parameters. Any further control by an
accurate NS solver will reveal the inherent inaccuracy of the fast calculation
methods but there is no mechanism to correct for it.



6 Numerical Optimization for Advanced Turbomachinery Design 161

Fig. 6.9 Flowchart of optimization system

The meta-function used in the present method is an Artificial Neural Net-
work (ANN). This interpolator uses the information contained in the database
to correlate the performance to the geometry, similar to what is done by an
NS solver. However, an ANN is a very fast predictor and allows the evaluation
of the numerous geometries generated by the GA with much less effort than
an NS solver. Unfortunately, a verification by means of a more accurate but
time consuming NS solver indicates that such a fast prediction is not always
very accurate. The results (geometry and performance) of this verification are
added to the database and a new optimization cycle is started. It is expected
that the new learning on an extended database will result in a more accurate
ANN. This procedure is repeated until the ANN predictions are in agreement
with the NS calculations, i.e., once the GA optimization has been made with
an accurate performance predictor. In this way, there will be no discrepancy
between the optimum found by a GA, driven by the meta-function or by the
results of NS analyses. However, the number of time-consuming NS analy-
ses is much smaller than what would have been required by a GA and NS
combination.

The TRAF3D NS solver [3] is used to predict the aerodynamic perfor-
mance. Similar grids with the same number of cells are used for all compu-
tations to guarantee a comparable accuracy for all the predictions.
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Fig. 6.10 Architecture of a three-layer ANN

6.3.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are used to predict the performance of a
new geometry by means of the information contained in the database. This
requires the learning of the relation between the n input data (geometry
parameters) of a process (NS solver) and the m outputs of the process (mass
flow, efficiency, local pressures and temperatures, velocities, etc.). The use
of an exact ANN predictor could reduce the effort to one design cycle by
the GA. Hence, improving the accuracy of the ANN will shorten the design
process.

An ANN (Fig. 6.10) is composed of n, k,m elementary processing units
called neurons or nodes. These nodes are organized in layers and joined with
connections (synapses) of different intensity, called the connection weight (W )
to form a parallel architecture. Each node performs two operations: the first
one is the summation of all the incoming signals and a bias bi, the second
one is the transformation of the signal by using a transfer function (FT ). For
the first layer this corresponds to:

a1(i) = FT1

⎛
⎝ n∑

j=1

W1(i, j).n(j) + b1(i)

⎞
⎠

A network is generally composed of several layers: an input layer, zero,
one or more hidden layers and one output layer. The coefficients are defined
by a learning procedure relating the output to the input data.

The main purpose of ANN is not to reproduce the existing database with
maximum accuracy but to predict the performance of new geometries it has
not seen before, i.e., to generalize. A well-trained ANN may show a less
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Fig. 6.11 Comparison between well trained —– and over-trained - - - - ANN
(x database samples, o new geometries)

accurate reproduction of the database samples but predicts more realistic
values for new geometries. This is illustrated in Fig. 6.11 comparing an over-
trained ANN function with a well trained one. The first one reproduces the
database samples exactly but the large oscillations of the function between
the database values result in unrealistic predictions of the function at the
intermediate locations.

Three conditions are necessary, although not sufficient, for a good gener-
alization.

The first one is that the inputs to the ANN contain sufficient information
pertaining to the target, so that one can define a mathematical function
relating correctly outputs to inputs with the desired degree of accuracy. Hence
the designer should select design parameters that are relevant, i.e., that have
an influence on performance.

The second one is that the function to be learned (relating inputs to the
outputs) is smooth. Small changes in the input should produce a small change
in the outputs. Most physical problems are well defined in this respect. How-
ever, the appearance of large separation zones or large changes in shock posi-
tion and strength for small geometrical changes may result in discontinuous
changes of the output and complicate the problem.

The third one requires that the training set is sufficiently large and con-
tains representative samples of all cases that one wants to generalize (the
“population” in statistical terminology). It is difficult to define the minimum
size of the training set that is required. Experience has shown that there is no
advantage in creating a very large database because the design system itself
will generate new geometries until the ANN achieves the required accuracy.

The standard back-propagation technique is the most widely used algo-
rithm for ANN training. The available samples are normally subdivided into
“training”, “test” and “validation” sets. Each of them has its own purpose.

• the training set contains the samples used for the training; that is to define
the parameters (weights and bias).

• the test set contains the samples used to assess the generalization capacity
of a fully-specified ANN with given weights and architecture.
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• the validation set, if used, contains the samples used to tune the ANN
architecture (not the weights), for example to choose the number of hidden
unit layers and nodes.

6.3.2 Database

The main purpose of the database is to provide input to the ANN, i.e.,
information about the relation between the geometry and performance. The
more general and complete this information, the more accurate the ANN
can be and the closer the results of the GA optimization will be to the real
optimum. Hence, a good database may considerably speed up the convergence
to the optimum.

Making a database is an expensive operation because it requires a large
number of 3D NS calculations. One therefore aims for the smallest possible
database containing the maximum amount of information about the available
design space. This means a maximum of relevant information with minimum
redundancy so that the impact of every design parameter is included but only
once.

Any information missing in the database may result in an erroneous ANN
that could drive the GA towards a non optimum geometry. This will slow
down the convergence but will not lead to an incorrect final result since
the NS analysis of that geometry will provide the missing information when
added to the database.

A more risky situation is the one where an incomplete database results in
an erroneous extrapolation by the ANN, predicting a low performance (large
OF ) in that part of the design space where in reality the OF is low. As a
consequence, the corresponding geometry will never be selected by the GA
and no information will be generated to correct this error. This is an addi-
tional argument to assure that the initial database covers the whole design
space.

Design Of Experiment (DOE) refers to the process of planning an exper-
iment so that the appropriate data, when analyzed by statistical methods,
result in valid and objective conclusions. It is used in the optimization process
to select the most significant geometries to be stored in the database. The
theory of DOE is explained in many excellent textbooks [11]. The advantages
of using DOE, to construct the database for the optimization program, have
been evaluated in detail by Kostrewa et al. [9].

Factorial designs make a systematic scan of the design space. The common
one is where each of the n design parameters has only two values correspond-
ing to the “high” or “low” level of the design variable. A complete coverage
of such a design requires 2n observations and is called full factorial DOE.
Fractional factorial DOE requires 2n−p analyses where p defines the fraction
of lower order combinations that are not analyzed. A typical initial database
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Fig. 6.12 Global error of ANN as a function of Database samples

contains a total of 26 = 64 samples. The following evaluates the loss of infor-
mation for a test function with 6 variables.

R = 1−0.001(A−D)3 +0.002(C+E)(F −B)−0.06(A−F )2(F +C)(E+A)

The results of the ANN predictions, trained on the databases defined by
DOE, are compared to those of databases in which the variables are randomly
generated between the prescribed boundaries.

The full factorial design requires 26 = 64 runs to estimate all possible
parameter combinations. The loss of information with fractional designs is
measured by:

Global error =
26∑

i=1

exact value − predicted value
exact value

· 100

Comparing the error obtained by means of the DOE technique and by
means of randomly selected samples (Fig. 6.12), clearly shows that for the
same number of NS results in the database, the DOE based predictions are
consistently more accurate than the ones based on the randomly generated
samples.

Randomly generated databases are all different and so is the accuracy of
the ANN predictions. The four randomly generated cases with 8 samples in
the database, show an error that varies between 105 (8b), equal to the one
obtained with the DOE defined database, up to an error that is almost 3
times larger (8a).
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Only 2-level designs (every variable can take two values) and one central-
point run (every value is at the center of the allowed range) are considered
for the database used in following examples. The high and low value of each
design variable are located at 75% and 25% of the parameter range, respec-
tively. The central point is the mid value (50%). The range is defined by the
designer based on his experience about feasible geometries and mechanical
constraints.

6.4 Single Point Optimization of Turbine Blade

The optimizing design procedure has been successfully tested on a large num-
ber of designs and will be illustrated here by the design of a 2D highly loaded
axial turbine blade section.

6.4.1 2D Blade Geometry Definition

The geometry definition, described here, makes use of Bézier curves to define
the camber line and the blade suction and pressure side relative to the camber
line.

The camber line is defined by 3 control points (Fig. 6.13.a). The first one
coincides with the leading edge. The second one is at the trailing edge. Its
position relative to the leading edge is defined by the stagger angle (γ) and
axial chord length Lref. A third control point is located at the intersection
between the tangent to the camber at leading and trailing edge. It is defined
by the angles β1m and β2m with the axial direction.

The suction side is defined by a Bézier curve starting at the leading edge
and ending at the tangent to a circle of radius Rte, defining the trailing edge
thickness. The camber line is divided in a number of intervals which can be of
equal or variable length using a stretching factor (Fig. 6.13.b). The lengths
Tss(1), Tss(2), Tss(3), Tss(4), Tss(5), Tss(6) and Tss(7) measured in the
direction perpendicular to the camber line determine the position of the 7
Bézier control points of the suction side.

The first Bézier control point coincides with the leading edge (start of
the camber line) (Fig. 6.14.a) and the third point is the one defined by the
parameter Tss(1). The second Bézier control point is defined by imposing
that the suction side starts perpendicularly to the camber line at the leading
edge and that the suction side curvature radius at the leading edge equals
Rle. This condition defines the length Tss(0).
δte is the wedge angle between suction and pressure side at the trailing

edge (Fig. 6.14.b). A Bézier control point is defined as the intersection of the
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Fig. 6.13 Geometry model: (a) definition of the camber line and (b) the suction side

tangent at the trailing edge circle and the line perpendicular to the camber
line at point 8.

The pressure side is defined in a way similar to the suction side. Imposing
the same Rle as on the suction side assures a continuous curvature at the
leading edge. Figure 6.15 demonstrates the capabilities of the method to
represent the large variety of blades encountered in axial turbines.
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Fig. 6.14 Geometry model: (a) detailed view of the leading edge (b) and trailing edge

Fig. 6.15 Typical turbine blade sections generated by a 17-parameter model

6.4.2 Penalty for Non-optimum Mach Number
Distribution PMach

The characteristics of the optimum Mach number M distribution for 2D
turbine blades are well known and allow the definition of penalties for a non
optimum Mach number distribution. These penalties can also be derived from
experimental correlations.
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Fig. 6.16 Parametric representation of the Mach number distribution

The OF used in a turbine blade optimization [15] increases when there is
a high probability of early transition, laminar or turbulent separation or poor
off-design performances. It is a sum of penalties based on the Mach number
in 20 points on each side of the blade (Fig. 6.16). The values may be defined
from an NS calculation or predicted by the ANN.

• Penalty on the local slope of the Mach number distribution: a minimum
positive slope of the Mach number distribution is required on the front
part of the suction side in order to avoid deterioration of the performance
at off-design incidence angle.

• Penalty on the second derivative of the Mach number distribution: the op-
timization process may result in a wavy Mach number distribution because
of local changes in curvature radius of the blade surface. This may have
a small impact on blade losses if the boundary layer is already turbulent
but can deteriorate the off-design performances of the blade. One therefore
penalizes the Mach number distribution for which the second derivative
changes sign, i.e., with an inflection point in the suction side Mach number
distribution.

• Penalty on the deceleration: it is important to limit the deceleration on the
front part of the blade pressure side in order to avoid separation at negative
incidence angles. This penalty is proportional to the difference between the
first maximum Mach number found on the pressure side (starting from the
stagnation point) and the minimum Mach number along the pressure side.
It is also well known that the deceleration on the second half of the suction
side has an important influence on the losses and in case of low Reynolds
number may lead to flow separation.
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Table 6.1 Imposed parameters

βflow
1 (deg.) 18.0

M is
2 0.90

Re 5.8 × 105

γ = Cp/Cv 1.4
Tu (%) 4
Lref (m) 0.0520
Pitch/Lref 1.0393
TE thick. (m) 1.2 × 10−3

Table 6.2 Mechanical and aerodynamical requirements

Imposed After
Min. Max. 18 modif.

Surface (m2) 5.20 × 10−4 6.80 × 10−4 5.36 × 10−4

Imin(m4) 7.50 × 10−9 1.20 × 10−8 7.45 × 10−9

Imax(m4) 1.25 × 10−7 2.20 × 10−7 1.28 × 10−7

κImax (deg.) -50.0 -30.0 -37.5

βflow
2 (deg.) -57.8 -57.8 -57.62

Loss coef. (%) 0.0 0.0 1.90

6.4.3 Design of a Transonic Turbine Blade

The method is illustrated by the redesign of a transonic turbine blade with
an outlet isentropic Mach number of 0.9. The design requirements imposed
for this example are displayed in Tables 6.1 and 6.2.

The best blade of the initial database is used as starting geometry. The
Mach number distribution has a shock at mid-chord (Fig. 6.17.a). The small
constant velocity region on the suction side close to the leading edge and the
low velocity on the pressure side close to the leading edge indicate that the
incidence angle on the initial blade is too large. After the first modification
(one GA and NS verification), this incidence angle has been partially reduced
by decreasing the stagger angle (Fig. 6.17.b). The shock intensity is also
smaller but the suction side Mach number distribution is still wavy. The
shock completely disappeared after 13 design iterations. The stagger angle
has decreased in order to adapt the blade geometry to the prescribed inlet
flow angle. The smooth shock-free Mach number distribution is reflected in
the low loss coefficient.

Figure 6.18 compares the value of the OF predicted by the ANN with the
one predicted by the NS solver during the design process. The value of the
OF computed by the approximate model decreases until iteration 13 after
which only very small improvements are found. The value predicted by the NS
solver shows large discrepancies between both predictions at iteration 2, 5 and
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Fig. 6.17 Variation of (a) Mach number and (b) blade geometry during convergence

9. It indicates that during the first design iterations, the ANN predictions
are not very accurate because the database does not sufficiently cover the
relevant design space. However this shortcoming is remediated by adding
new geometries to the database. Since these blades are close to the desired
operating point they provide very valuable information and the ANN becomes
more and more accurate. Starting from iteration 13, the ANN predictions
are very reliable. This illustrates the self-learning capacity of the proposed
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Fig. 6.18 Convergence history

Table 6.3 Inlet conditions at the 3 operating points

Low ṁ Medium ṁ Large ṁ

α(deg) 68. 60. 54.
P◦

2(Pa) 218395. 213447. 187666.
P3/P◦

2 0.9157 0.9276 0.9430
T ◦
2 (K) 365.4 360.3 350.4

procedure. The whole procedure could have been stopped after 15 iterations
but has been continued to verify good convergence.

6.5 Multipoint Optimization of a Low Solidity Diffuser

The radial compressor vaned diffusers provide a higher pressure recovery and
efficiency than vaneless ones but the operating range is limited by stall, at
positive incidence, and diffuser throat choking, at negative incidence. Low
Solidity Diffusers (LSD) are characterized by a small number of short vanes
and do not show a well defined throat section. They intend to stabilize the
flow at low mass flow (avoiding diffuser stall) without limiting the maximum
mass flow by choking. The solidity (chord/pitch) is typically on the order of
1 or less (Fig. 6.19). A multipoint optimization is mandatory for the LSD
design because a wide operating range is the major purpose of these devices.

The optimization of the LSD [12] is done for the 3 operating points listed in
Table 6.3. Inlet conditions are different for each operating point and defined
by the impeller exit flow at the corresponding mass flows.
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Fig. 6.19 Low Solidity Diffusor

The blade geometry is defined by a NACA 65 thickness distribution su-
perposed on a camber line defined by a 4-parameter Bézier curve. A 5th

design parameter is the scale factor for the thickness distribution (between
0.7 and 1.3). The 6th parameter is the number of blades (between 6 and 12).

The performance criteria are the static pressure rise and total pressure
loss, non-dimensionalized by the diffuser inlet dynamic pressure

Cp =
P̄3 − P̄2

P̄ ◦
2 − P̄2

, ω =
P̄ ◦

2 − P̄ ◦
3

P̄ ◦
2 − P̄2

Making the database is quite costly because it requires an NS analysis of
each geometry at three operating points. The initial database is therefore
limited to only 10 geometries requiring 30 NS calculations on a grid with
400,000 cells.

One wants to maximize what the diffuser is supposed to do: i.e., to increase
the static pressure with minimum total pressure losses. The latter is the
difference between the real pressure rise and the isentropic one.

Cp+ ω = Cpisentropic

The maximum value Cpisentropic depends on the inlet conditions and dif-
fuser geometry.

The best results have been obtained with the following OF
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low ṁ medium ṁ

high ṁ

Fig. 6.20 Midspan velocity vector of optimized diffuser

OF = (1 − (wlow · Cplow + wmed · Cpmed + whigh · Cphigh))

+wlow · ωlow + wmed · ωmed + whigh · ωhigh

wlow = 0.25 , wmed = 0.5 , whigh = 0.25

Using three different ANN, dedicated to the performance prediction at the
three operating points, improves the convergence.

The velocity vectors at midspan, shown in Fig. 6.20, indicate attached flow
at all three operating points and hence stable operation at low mass flow as
well as a large pressure rise at high mass flow.
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Fig. 6.21 Multidisciplinary optimization flow chart

6.6 Multidisciplinary Optimization

Mechanical constraints such as maximum stress and deformation have a direct
impact on the turbomachinery integrity and must therefore be rigorously
respected. Some of them can be guaranteed by a simple limitation of a design
parameter and do not require any further analysis. Bird ingestion resistance
may be accounted for by specifying a minimum leading edge radius (Rle) for
fan blades. Corrosion may define the minimum trailing edge radius (Rte) and
blade thickness.

However most of the mechanically unacceptable geometries result from a
combination of different design parameters and cannot be avoided by restrict-
ing the individual parameters. A rigorous approach is the verification of the
stress level by an FEA of the N × t geometries generated by the GA. This
is possible by extending the two-level design method to more than one disci-
pline [18]. The GA, searching for the optimum geometry, gets its input from
the FEA as well as from the NS flow analysis (Fig. 6.21). The same type of
extension can also be made to verify the constraints related to aero-acoustics
or weight limitations.

The multidisciplinary optimization method requires the following exten-
sions: stress predictions by the ANN, FEA stress analysis in parallel with
the NS calculations, an extension of the OF to account for mechanical tar-
gets and the specification of additional design parameters that allow stress
reductions. The main advantages of this approach (Fig. 6.21) are:

• The existence of only one “master” geometry, i.e., the one defined by
the geometrical parameters used in the GA optimizer. This eliminates
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possible approximations and errors when transmitting the geometry from
one discipline to another.

• The existence of a global OF accounting for all design criteria. This allows
a more direct convergence to the optimum geometry without iterations
between the aerodynamically optimum geometry and the mechanically
acceptable one.

• The possibility to do parallel calculations. The different analyses can be
made in parallel if each discipline is independent, i.e., if stress calculations
do not need the pressure distribution on the vanes and flow calculations
are not influenced by geometrical deformations.

The multidisciplinary optimization method is illustrated by the design
of a 20 mm diameter radial compressor for a micro-gas turbine rotating at
500, 000 rpm [18]. The corresponding tip speed of 523.6 m/s results in very
high centrifugal stresses. Titanium TI-6AL-4V has been selected for its high
yield stress over mass density ratio (σyield/ρ). The characteristics used in
the calculation are: Elasticity modulus = 113.8×109 Pa, Poisson modulus =
0.342 and mass density = 4.42 × 103 kg/m3.

6.6.1 3D Geometry Definition

The hub and shroud meridional contour of radial impellers are defined by
third-order Bézier curves, between the leading edge and trailing edge section
(Fig. 6.22) [2, 6]. They are fully defined by the control points (X0,R0) to
(X3,R3) at hub and shroud. The axial length (X3-X0) and outlet radius R3
are prescribed. They are the result of a preliminary 1D design where one can
also account for the off-design operation.

The radius R1 should be larger than R0 at the shroud because otherwise,
the unshrouded impeller cannot be mounted. One imposes that X2 is smaller
than or equal to X3 at hub and shroud in order to avoid that the impeller exit
bends forward. Restricting the possible variations of the design parameters
to realistic values also accelerates the convergence.

Second-order curves are used for the upstream and downstream extensions.
The points A and B at hub and shroud are automatically adjusted to obtain
a smooth transition between the impeller and the radial inlet section. The
6 unknowns that need to be defined during the optimization process are
indicated by arrows in Fig. 6.22.

The blade camber line β distribution at hub and shroud are defined by
cubic Bézier curves in Bernstein polynomial form

β = β0(1 − u)3 + β1(1 − u)2u+ β2(1 − u)u2 + β3u
3
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β0 is the blade camberline angle at the leading edge hub or shroud (u = 0)
and β3 is the blade trailing edge camber angle (u = 1). Similar curves are
defined for the splitter vane β distributions.

The coordinates θ of the blade camber line are computed by integrating
the β distribution along hub and shroud (Fig. 6.23):

dθ =
dm tanβ

R

The leading and trailing edge blade angles β0 and β3 can vary over ±5◦

around a first estimate of the optimum value. Values of β1 and β2 are not
constrained but the values of θ3, obtained by integrating β along hub and
shroud, should not be too different at the training edge, i.e., the trailing edge
rake angle (Fig. 6.7) should be less than 45◦.

The splitter trailing edge blade angles are equal to the full blade values at
hub and shroud. This results in 14 design variables for the full and splitter
blade camber line definition.

The impeller blade definition is completed by a parameterized thickness
distribution (Fig. 6.24). Blade thickness distributions at hub and shroud are
function of one parameter: the thickness LE of the ellipse defining the leading
edge. Trailing edge thickness TE is related to LE. The blade thickness is fixed
at the shroud (LE=TE=0.3 mm). The parameter defining the blade thickness
at the hub can vary between 0.3 and 0.6 mm. The same value is used for the
main and splitter blades. This increases the number of design parameters
by 1.

The streamwise position of the splitter blade leading edge is also a design
parameter. It is defined as a percentage of the main blade camber length and

Fig. 6.22 Parameterization of meridional contour. Meridional contour defined by Bézier
control points
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Fig. 6.23 Definition of θ distribution

Fig. 6.24 Parameterized thickness distribution perpendicular to the blade camber line
(not to scale)

can vary between 20% and 35% at hub and shroud (2 extra design parame-
ters).

The number of blades could also be a design parameter to be optimized,
but has been fixed to 7 for manufacturing reasons. This brings the total
number of design parameters that need to be defined by the optimizer to 23.

6.6.2 Multidisciplinary Objective Function

The OF driving the multidisciplinary optimization increases with decreasing
aero performance and when the aero and mechanical requirements are not
met

OF = wm · Pmech + wη · Pperf + wm · Pmass + wM · PMach

The first penalty concerns the mechanical stresses. Limiting the maximum
stress results in an inequality and geometries that do not satisfy this condition
should be eliminated. However, this information about undesired geometries
can also be used to guide the optimization algorithm towards acceptable
ones. This is achieved by adding to the OF an extra term that increases
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Pmech

σmax

σallowable

Fig. 6.25 Penalty function for not respecting stress limits

when the stress exceeds the prescribed maximum allowable value. Adding
those geometries to the database makes this information available to the
ANN which in turn informs the GA about what part of the design space is
unacceptable in terms of stress level. Those geometries will therefore not be
proposed for further investigation by the NS and FEA.

The penalty increases linearly when a prescribed value σallowable is ex-
ceeded and is zero when the inequality σmax < σallowable is true (Fig. 6.25)

Pmech = max
[
σmax − σallowable

σallowable
, 0

]
This weak formulation of the stress constraint does not guarantee that

the proposed geometry satisfies the stress limit in a strict way. It can not be
excluded that an increase of the stress penalty is compensated by an equiva-
lent decrease of another penalty term. However this risk can be minimized by
increasing the weight factor of the stress penalty. The final selection of the
optimum geometry is anyway made by the designer, on the basis of the NS
and FEA results of all geometries produced by the optimization algorithm.

The second penalty term concerns the efficiency and has been already
explained in Sect. 6.2.2

The third penalty verifies the mass flow and has now two contributions.
The first one, explained in Sect. 6.2.2, increases when the total mass flow
differs from the required one by more than a prescribed value. The second
one penalizes the difference in mass flow on both sides of the splitter blade

Pmassdiff =
(
ṁupper − ṁlower

ṁupper + ṁlower

)2

Having the same mass flow in every flow channel will result in a more
uniform impeller exit flow and favors a more uniform distribution of blade
loading.

The penalty on the Mach number is different from the one used for turbine
blades (Sect. 6.4.2) and has two contributions. The first one penalizes negative
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Fig. 6.26 Penalty function for negative loading and loading unbalance in a compressor
with splitter vanes

loading and is proportional to the area between the suction and pressure side
when the pressure side Mach number is higher than the suction side one
(Fig. 6.26). Areas of negative loading are penalized because they result in
extra friction losses without contribution to the pressure rise

Pnegativeloading =
∫ 1

0

max(Mps(s) −Mss(s), 0.0) · ds

The second contribution to the Mach penalty increases with the load un-
balance between main blade and splitter blade. This penalty compares the
area between the suction and pressure side Mach number distribution of main
blade Abl and splitter blade Asp, corrected for the difference in blade length
(Fig. 6.26):

Pload unbalance =
(
Abl −Asp

Abl +Asp

)2

6.6.3 Design Conditions and Results

The computational domain starts at constant radius in the radial inlet and
ends in the parallel vaneless diffuser at R/R2 = 1.5 (Fig. 6.22). Part of the
hub surface at the inlet (for R < 4 mm) rotates because it connects the
compressor shaft to the electric generator. The total inlet temperature is
293 K and the total inlet pressure is 1.013 × 105 Pa.
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Table 6.4 List of penalty parameters and weight factors

stress penalty weight 24.0 mass flow difference weight 20.0
efficiency required 82.5 Mach negative loading weight hub 15.0
efficiency penalty weight 40. Mach negative loading weight shroud 24.0
mass flow required 20.0 g/s Mach loading unbalance weight 1.0
mass flow penalty weight 18.0 Mach loading unbalance weight 1.5

The disk thickness at the compressor rim is 1 mm. It is connected to a
8 mm diameter shaft with a fillet of 2 mm radius, all made of one piece. A
fillet radius of 0.25 mm is applied at the blade hub to limit the local stress
concentrations. The unshrouded impeller has a tip clearance of 0.1 mm, which
is 10% of the exit blade height. This is typical for these small impellers and
one of the reasons for the moderate efficiencies.

The weights in the OF depend on the application and allow emphasis on
performance or on mechanical integrity. They have been determined from
the knowledge gained in previous optimizations and are listed in Table 6.4.
Taking into account the difference in weight factors, an efficiency drop of 1%
is as penalizing as an excess in stress limit of 40/24 = 1.66% (or 6.66 MPa).

The optimization starts from a “baseline” impeller which is the result of
a simple aerodynamic optimization without stress analysis. Although this
geometry has a good efficiency, it cannot be used because an FEA predicts
von Mises stresses in excess of 750 MPa. It serves as a reference for further
optimizations.

The TRAF3D solver [3] with an extension to calculate impellers with split-
ters is used to predict the aerodynamic performance of the radial impellers.
Structured H-grids with 2 × 216 × 48 × 52 (1,090,000 cells) are used for all
computations to guarantee a comparable accuracy for all the samples stored
in the database. All computations are non-adiabatic with wall temperature
fixed at 400 K, as found in a previous study on the heat transfer from the
turbine to the compressor [19].

The commercial code SAMCEF [14] is used for the stress calculation.
Quadratic tetrahedral elements are used as a compromise between element
quality and automatic meshing. Similar grids with 250,000 nodes and 160,000
elements are used for all samples. The grid is refined in areas of stress con-
centrations. Periodic boundary conditions are applied, such that only a 1/7th

part of the geometry needs to be analyzed. The maximum allowable stress
is a function of the material temperature. A large safety margin, to account
for vibrations and possible local temperature peaks, results in a maximum
allowable value of 400 MPa.

Eight individual ANNs are used: one to predict the efficiency, two to pre-
dict the mass flow in the channels on each side of the splitter, 4 ANNs predict
the Mach number distribution respectively at hub and shroud of the full and
splitter blades and one predicts the maximum stress in the geometry. This
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Fig. 6.27 Convergence history of the optimization

split into dedicated ANNs enhances the accuracy by which important values
such as efficiency and maximum stress can be predicted.

A 2n−p factorial design is used where n is 23 while p is fixed at 17. This
results in a total of 26 = 64 samples in the initial database. An initial database
contains only 53 geometries since 13 geometries defined by the DOE technique
could not be analyzed due to geometrical constraints (intersection between
the main blade and the splitter blade). Two additional geometries have been
added, namely the baseline geometry and the central case. The latter is a
geometry with all parameters at 50% of their range.

Figure 6.27 shows the convergence history of the optimization. The “aero
penalty” (based only on NS predictions of the efficiency, the Mach number
distribution and mass flow), the “stress penalty” (based on the result of
the FEA analyses) and the “total penalty” are all compared to the ones
predicted by the ANNs. One observes a decrease in the discrepancy between
both prediction methods with iteration number. This is the consequence of
an increasing number of samples in the database, resulting in more accurate
ANNs.
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Fig. 6.28 Aero penalty versus stress penalty for baseline, database and optimized geome-
tries

Only 10 iterations are needed to obtain a very good agreement for the
aero penalty. The ANN predicted stress penalty is zero for every geometry
proposed by the GA. However it takes more than 15 iterations before the
FEA confirms that the proposed geometries do not violate the mechanical
constraints.

The good agreement in both stress and aero penalties over the last 18
iterations indicates that the ANN predictions are reliable. It means that the
same optimum geometry would have been obtained if the GA optimization
had been based on the more sophisticated NS and FEA analyses. Hence no
further improvement can be expected and the optimization procedure can be
stopped after 35 iterations.

The aero penalty is plotted versus the stress penalty in Fig. 6.28. The
database geometries show a good spread. Geometries created during the op-
timization process are all in the region of low penalties. Most of them outper-
form the geometries of the database. Only a few geometries have penalties
of the same order as the database samples. Those geometries are the ones
created during the first 10 iterations when the ANN is still inaccurate.

Figure 6.29 is a zoom on the low penalty region of Fig. 6.28. A large
number of geometries have zero stress penalties but with a different aero
penalty. The geometries corresponding to iteration 17, 49 and 25 have the
lowest aero penalty and satisfy the stress constraints. Details are listed in
Table 6.5. Iteration 2 has the highest efficiency (60.4%) but has a high aero
penalty due to negative loading and loading unbalance. This geometry is also
added to Table 6.5.
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Fig. 6.29 Zoom on the low penalty region of Fig. 6.28

Table 6.5 Comparison between baseline and optimized impellers

Baseline Iter. 2 Iter. 17 Iter. 25 Iter. 49

ηTS (%) 62.34 60.42 60.31 60.06 59.68
Paero 13.24 14.86 9.14 9.05 9.14
Ploadunbalance 0.06 3.84 0.26 0.04 0.00
σvonMises (MPa) 749. 440 389 367 396
Blade lean (◦) -7.8 -11.8 -8.6 -7.3 -15.0
ṁ (g/s) 25.9 19.6 20.2 20.2 20.1
Power (kW) 3.19 2.52 2.61 2.62 2.62
Spec.Pow. (W.s/kg) 1123.2 128.6 129.2 129.7 130.3

From all the geometries created during the optimization, iteration 25 per-
forms best. It has an efficiency a little lower than iteration 17 but less loading
unbalance and the stresses are 33 MPa below the limit. In spite of its high
efficiency, the baseline impeller shows a high aero penalty because of a very
high mass flow.

The influence of the stress penalty on the optimization is clear by com-
paring the values of the baseline impeller with the ones of iteration 25. The
reduction of the maximum stress level with 370 MPa is at the cost of a 2.3%
decrease of efficiency.

Figures 6.30 and 6.31 show the von Mises stresses in the baseline geometry
and the one of iteration 25, respectively. The drastic reduction in stress of
the optimized impeller is due to:
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Fig. 6.30 von Mises stresses due to centrifugal loading in the baseline

Fig. 6.31 von Mises stresses due to centrifugal loading in iteration 25

• the reduced blade height at the leading edge, resulting in lower centrifugal
forces at the leading edge hub;

• the increase of blade thickness at the hub;
• the modified blade curvature.

The latter two result in a decrease of the bending stresses.
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Fig. 6.32 Blade lean versus stress and efficiency for database and optimization geometries

The blade lean is positive in the direction of rotation (Fig. 6.7). It re-
sults from the integration of the β distribution at hub and shroud when the
trailing edge rake is limited to 45.0◦. It is often limited to a small arbitrary
value for stress reasons. Iteration 49 on Table 6.5 shows that it can be as low
as −15.0◦ without exceeding the maximum stress limit. Figure 6.32 confirms
that minimum stresses are observed around −15.0◦. Several geometries with
good efficiency are found for lean angles between −40.0◦ to −5.0◦. The de-
creasing efficiency for lean angles larger than −5.0◦ suggests that a limited
negative lean may have a favorable effect on performance.

Figure 6.33 shows the impact of the leading edge blade height on the stress
and efficiency. The radius at the LE shroud (see Fig. 6.22) can vary between
6.5 and 7.5 mm, resulting in a blade height of 4.25 and 5.25 mm, respectively.
Values at 4.5 mm and 5.0 mm are database samples.

Shortening the blades lowers the stresses but the database samples suggest
a small drop in efficiency. This explains the difficulty in maintaining a high
efficiency when reducing the stress. However, the optimized geometries have
shorter vanes and show a high efficiency. This indicates that the efficiency also
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Fig. 6.33 Blade leading edge height versus stress and efficiency

depends on an optimum choice of other parameters. Although they have a
less pronounced influence on stress and efficiency, a correct definition of their
value is needed to reach the optimum. This illustrates the strongly coupled
nature of the design problem and the need for an optimization tool.

6.7 Conclusions

It has been shown how a two-level optimization technique, an adequate pa-
rameter selection for the GA, the use of DOE for the definition of the database
and an optimized learning technique for the ANN can considerably decrease
the computational effort required by evolutionary theories. The proposed pro-
cedure is a self-learning system that makes full use of the expertise gained
during previous designs.

The automated design method can be used with any flow solver and does
not require the definition of a target pressure or Mach number distribution.



188 René A. Van den Braembussche

The Mach number-based criteria included in the Objective Function help
enforce the convergence to the optimum and improve the off-design perfor-
mance.

The reduction in computer effort makes the design of customized profiles
and the multipoint optimizations affordable, as illustrated by the design of a
transonic turbine blade and a Low Solidity Diffuser.

The use of a pseudo Objective Function to account for the mechanical
and other constraints is presented, and the advantages and disadvantages are
discussed. It is shown that the method is able to find the optimum combi-
nation of design parameters allowing a drastic reduction of the stresses with
minimum penalty on efficiency.

The optimization algorithm provides the designer more insight into the
multidisciplinary design problem. The main parameters that allow a reduc-
tion of the stresses are identified during the optimization process. This op-
timum combination may result in unexpected geometries that would not be
accepted when using simplified stress criteria.

It has been shown how the use of computerized design techniques is a
powerful tool to cope with the increasing complexity of advanced turboma-
chinery component design. However, the outcome of this valuable support
still depends on the input of the designer in terms of a careful selection of
design parameters, a clear definition of objectives and constraints as well as
validation of results.
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Chapter 7

CFD-based Optimization for
Automotive Aerodynamics

Laurent Dumas

Abstract The car drag reduction problem is a major topic in the automo-
tive industry because of its close link with fuel consumption reduction. Until
recently, a computational approach of this problem was unattainable because
of its complexity and its computational cost. A first attempt in this direction
has been presented by the present author as part of a collaborative work with
the French car manufacturer Peugeot Citroën PSA [4]. This article described
the drag minimization of a simplified 3D car shape with a global optimization
method that coupled a Genetic Algorithm (GA) and a second-order Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method. The present chapter is intended
to give a more detailed version of this work as well as its recent improve-
ments. An overview of the main characteristics of automotive aerodynamics
and a detailed presentation of the car drag reduction problem are respectively
proposed in Sects. 7.1 and 7.2. Section 7.3 is devoted to the description of
various fast and global optimization methods that are then applied to the
drag minimization of a simplified car shape discussed in Sect. 7.4. Finally
in Sect. 7.5, the chapter ends by proposing the applicability of CFD-based
optimization in the field of airplane engines.

Laurent Dumas
Université Pierre et Marie Curie
Laboratoire Jacques-Louis Lions
4, place Jussieu, 75230 Paris Cedex 05, France
(e-mail: laurent.dumas@upmc.fr)
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7.1 Introducing Automotive Aerodynamics

7.1.1 A Major Concern for Car Manufacturers

In the past, the external shape of cars has evolved particularly for safety rea-
sons, comfort improvement and also aesthetic considerations. Consequences
of these guidelines on car aerodynamics were not of major concern for many
years. However, this situation changed in the 70’s with the emergence of the
oil crisis. To promote energy conservation, studies were carried out and it
was discovered that the amount of the aerodynamic drag in the fuel con-
sumption ranges between 30% during an urban cycle and 75% at a 120 km/h
cruise speed. Since then, decreasing the drag force acting on road vehicles
and thus their fuel consumption, became a major concern for car manufac-
turers. Growing ecological concerns within the last decade further make this
a critically relevant issue in the automotive research centers.

The process of drag creation and the way to control it was first discovered
experimentally. In particular, it was found that the major amount of drag was
due to the emergence of flow separation at the rear surface of cars. Unfortu-
nately, unlike in aeronautics where it can be largely excluded from the body
surface, this aerodynamic phenomenon is an inherent problem for ground
vehicles and can not be avoided. Moreover, the associated three-dimensional
flow in the wake behind a car exhibits a complex 3D behavior and is very
difficult to control because of its unsteadiness and its sensitivity to the car
geometry.

The pioneering experiments of Morel and Ahmed done in the late 70’s on
simplified geometries also called bluff bodies, are now described in Sects. 7.1.2
to 7.1.4.

7.1.2 Experiments on Bluff Bodies

Two major experiments have been done on bluff bodies, the first one by
Morel in 1978 [18] and the second by Ahmed in 1984 [1]. The objective was
to study the flow behavior around cars with a particular type of rear shape
called hatchback or fastback. These experiments are even now used as a
reference in many numerical studies [8, 10, 12, 13, 16].

The bluff body used by Ahmed, similar to the one used by Morel, is illus-
trated in Fig. 7.1. It has the same proportions as a realistic car but with sharp
edges. More precisely, the ratio of length/width/height is equal to 3.33/1.5/1.
In both cases, the rear base is interchangeable by modifying the slant angle
denoted here as α. The Reynolds numbers are taken equal to 1.4 × 106 and
4.29 × 106 in the Morel and Ahmed experiments, respectively.
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Fig. 7.1 The Ahmed bluff body

7.1.3 Wake Flow Behind a Bluff Body

The most difficult flow region to predict is located at the wake of the car where
recirculation and separation occur. It is also the region which is responsible
for most of the car drag (see Sect. 7.1.4).

In a time-averaged sense, two distinct regimes depending on the slant angle
α, called Regime I and II, have been observed in the experiments done by
Morel and Ahmed. The value of the critical angle αc between both regimes is
approximately equal to 30 degrees in each experiment but can slightly change
depending on the Reynolds number and the exact geometry.

• Regime I (αc < α < 90◦): In this case, the flow exhibits a full 3D behavior
with a separation area including the whole slant and base area. The recir-
culation zones, coming from the four parts of the car (roof, floor and the
two base sides) gather and form a pair of horseshoe vortices situated one
above another in a separation bulb (see zones A and B in Fig. 7.2). Vor-
tices, coming off the slant side edges are also present (zone C in Fig. 7.2).

• Regime II (0 < α < αc): For low values of α, the flow remains two-
dimensional and separates only at the rear base. Two counter-rotating
vortices appear from the roof and the floor similar to what happens around
airfoils. When α increases up to αc, the flow becomes three-dimensional
because of the appearance of two longitudinal vortices issued from the side
walls of the car.

The critical value of αc corresponds to an unstable configuration associated
with a peak in the drag coefficient (see Sect. 7.1.4). In this case, a slight
change can generate a high modification of the wake flow. For these reasons,
it is essential to avoid such angle value in the design of real cars.
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Fig. 7.2 Wake flow behavior behind Ahmed’s bluff body

7.1.4 Drag Variation with the Slant Angle

A dimensionless coefficient, called drag coefficient and related to the drag
force acting on the bluff body, is defined as follows:

Cd =
Fd

1
2ρV

2∞S
. (7.1)

In this expression, ρ represents the air density, V∞ is the freestream ve-
locity, S is the cross section area and Fd is the total drag force acting on the
car projected on the longitudinal direction. Note that the drag force Fd can
be decomposed into a sum of a viscous drag force and a pressure drag force.

A first striking result observed by Morel is that the slant surface and
the rear base are responsible for more than 90% of the pressure drag force.
Moreover, the latter represents more than 70% of the total drag force. These
observations have been confirmed by the Ahmed experiment where only 15%
to 25% of the drag is due to the viscous drag. Such results can be explained
by the analysis of the wake flow discussed in Sect. 7.1.3, that is, the large
separation area will induce the major part of the total drag force.
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Fig. 7.3 Drag measured for the Morel (left) and Ahmed (right) bluff-body for various
slant angles

The variations of the drag coefficient for the Morel and the Ahmed bluff
body with respect to the slant angle α are displayed in Fig. 7.3.

Both graphs exhibit the same variations, in particular with a peak value
at a critical angle αc near 30 degrees, already introduced in the previous
subsection. The shape of the curve can also be explained by referring to the
wake flow behind the car: for small values of α for which the flow is two-
dimensional, the drag is directly linked to the dimensions of the separated
area. Then, when the flow becomes three dimensional, the separation bulb
that appears absorbs a growing amount of the flow energy, thus leading to
a large increase of the drag coefficient until α reaches αc. Above this value,
the airflow no longer feeds the vortex systems. Consequently, the static and
total pressure experience a sudden rise at the base thus drastically reducing
the drag coefficient almost to its value at a zero slant angle.

7.2 The Drag Reduction Problem

After the description in the previous section of the main features of auto-
motive aerodynamics, the car drag reduction problem is now stated for real
cars in Sect. 7.2.1. The numerical modelization of this problem in view of an
automatic drag minimization is then presented in Sect. 7.2.2.
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Table 7.1 Examples of drag coefficient of old or modern cars

Car Cd

Ford T (1908) 0.8
Hummer H2 (2003) 0.57
Citroen SM (1970) 0.33
Peugeot 407 (2004) 0.29
Tatra T77 (1935) 0.212

Fig. 7.4 Side and front view of Tatra T77 (1935, Cd = 0.212). With permission of Tatra
Auto Klub, Slovakia

7.2.1 Drag Reduction in the Automotive Industry

The dimensionless drag coefficient Cd defined in Eq. (7.1), is the main coef-
ficient for measuring the aerodynamic performance of a given car. Examples
of values of Cd for past or existing cars are presented in Table 7.1.

It can be seen from this table that the drag coefficient of cars has been
decreasing during the last century even though other considerations like com-
fort or aesthetics have also been taken into account to popularize a high drag
model (see Hummer H2) or abandon a low drag model (see Tatra T77).

The last model of Tatra T77 had a remarkable low drag value of 0.212.
A schematic side and front view of this car is illustrated in Fig. 7.4. The
short forebody compared to the extended tailored rear shape conforms to
the experimental observations stated in the previous section, saying that the
separation zone at the slant and base area, largely reduced here, is responsible
for the major part of Cd.

For a standard car, Table 7.2 displays the repartition of the relative con-
tribution of various elements on the total drag.

It shows in particular that 70% of the drag coefficient depends on the exter-
nal shape. Such a large value justifies the interest of a numerical modelization
of the problem in order to find numerically innovative external shapes that
will largely reduce the drag coefficient.
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Table 7.2 Drag repartition on a realistic car

Position percent of Cd

Upper surface 40%
Lower surface 30%
Wheels 15%
Cooling 10%
Others 5%

7.2.2 Numerical Modelization

7.2.2.1 The Navier-Stokes Equations

The incompressible Navier-Stokes equations govern the flow around the car
shape. Denote Sc the car surface, G the ground surface and Ω a large volume
around Sc and above G, then using the Einstein notation, the Navier-Stokes
equations are written as follows:

• Incompressibility:
∂ui

∂xi
= 0 on Ω (7.2)

• Momentum (1 ≤ j ≤ 3):

∂uj

∂t
+
∂uiuj

∂xi
= −1

ρ

∂p

∂xj
+

∂

∂xi

[
ν

(
∂ui

∂xj
+
∂uj

∂xi

)]
on Ω (7.3)

where uj(t, x), p(t, x) and ρ are respectively the flow velocity, pressure and
density. The boundary conditions for the velocity are of Dirichlet type:

ui = 0 on Sc ∪G and ui = V∞ on ∂Ω \ (Sc ∪G) . (7.4)

As the Reynolds number is very high in real configurations, usually more
than 106, a turbulence model must be added. This model must be of reduced
computational cost in view of the large number of simulations, more than
100, that need to be done during the optimization process. This explains
why the Large-Eddy Simulation (LES) model can not be used here (see [8]
and references herein for an example of the application of LES for a single
computation around the Ahmed bluff-body).

A Reynolds-Averaged Navier-Stokes (RANS) turbulence model which con-
sists of averaging the previous equations (7.2) and (7.3), is chosen here. De-
noting ūi the averaged velocity, a closure principle for the term uiuj has to
be defined. The most popular way to do it leads to the well known k–ε model.
In this model, the averaged equations (7.3) are rewritten as:
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Fig. 7.5 Numerical flow field around a realistic car (Peugeot 206)

∂ūj

∂t
+
∂ūiūj

∂xi
= −1

ρ

∂p̄

∂xj
+

∂

∂xi

[
(ν + νt)

(
∂ūi

∂xj
+
∂ūj

∂xi

)
− 2

3
δi,jk

]
on Ω

(7.5)
where νt is called the eddy viscosity and is related to the turbulent kinetic
energy k and its rate of dissipation ε by

νt = Cμ
k2

ε
. (7.6)

In this expression, Cμ is a constant and the new variables k and ε are obtained
from a set of two equations [17].

In the present configuration, it has been observed that the second-order
closure model called Reynolds Stress Model (RSM) with an adequate wall
function gives better results than the k–ε method [16]. This model will be
preferred in the forthcoming simulations despite the small computational
overcost on the order of 40% A first example of such flow computations
around a realistic car is given in Fig. 7.5.

7.2.2.2 The Cost Function to Minimize

The cost function that will have to be minimized is the drag coefficient already
introduced in (7.1). It can be rewritten in the following way after separating
the pressure part and the viscous part:

Cd =

∫∫
Sc

(
p− p∞

)
ndσ

1
2ρV

2∞S
+

∫∫
Sc

τ · νdσ
1
2ρV

2∞S
(7.7)
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where n is the normal vector, τ the viscous stress tensor and ν is the pro-
jection of the velocity vector to the element of shape dσ.

The optimization will thus consist to reduce this drag coefficient by chang-
ing the car shape Sc and particularly its rear shape. Of course, two types of
constraints will have to be added: geometric type (on volume, total length or
cross section) and aerodynamic type (by fixing other aerodynamic moments
for instance).

The numerical computation of the drag coefficient being very costly and
very sensitive to the rear geometry explains why the numerical approach
of the drag reduction problem has been for so long unattainable. The next
section that presents fast and global optimization methods tries to make it
possible.

7.3 Fast and Global Optimization Methods

There exists many methods for minimizing a cost function J defined from a
set O ⊂ IRn to IR+. Among them, the family of evolutionary algorithms, in-
cluding the well known methods of Genetic Algorithms (GAs) and Evolution
Strategies (ES) whose main principles are recalled in the next subsection, has
the major advantage to seek for a global minimum. Unfortunately, in view of
the drag reduction problem that will be considered in Sect. 7.4, this type of
method needs to be improved because of the large number of cost function
evaluations that is needed. The hybrid optimization methods presented in
Sect. 7.3.2 greatly reduce this time cost by coupling an evolutionary algo-
rithm with a deterministic descent method. Another way to speed up the
convergence of an evolutionary algorithm is described in Sect. 7.3.3 and aims
at doing fast but approximated evaluations during the optimization process.
All these methods are validated in Sect. 7.3.4 on classical analytic test func-
tions.

7.3.1 Evolutionary Algorithms

The family of evolutionary algorithms gathers all stochastic methods that
have the ability to seek for a global minimum of an arbitrary cost function.
Among them, the population-based methods of GAs and ES are widely used
in many applications and will serve as the core tool in the “real world” ap-
plications presented in Sects. 7.4 and 7.5, respectively. Their main principles
are recalled in the next two paragraphs.
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7.3.1.1 Genetic Algorithms (GA)

GAs are global optimization methods directly inspired from the Darwinian
theory of evolution of species [11]. They require following the evolution of
a certain number Np of possible solutions, also called population. A fitness
value is associated to each element (or individual) xi ∈ O of the population
that is inversely proportional to J(xi) in case of a minimization problem. The
population is regenerated Ng times by using three stochastic principles called
selection, crossover and mutation, that mimic the biological law of “survival
of the fittest”.

The GA that will be used in the drag reduction problem in Sect. 7.4 acts
in the following way: at each generation, Np/2 couples are selected by using
a roulette wheel process with respective parts based on the fitness rank of
each individual in the population. To each selected couple, the crossover and
mutation principles are then successively applied with a respective probabil-
ity pc and pm. The crossover of two elements consists in creating two new
elements by doing a barycentric combination of them with random and in-
dependent coefficients in each coordinate. The mutation principle consists of
replacing a member of the population by a new one randomly chosen in its
neighborhood. A one-elitism principle is added in order to be sure to keep in
the population the best element of the previous generation.

Thus, the algorithm can be written as:

• Choice of an initial population P1 = {x1
i ∈ O, 1 ≤ i ≤ Np}

• ng = 1. Repeat until ng = Ng

• Evaluate {J(xng

i ), 1 ≤ i ≤ Np} and m = min{J(xng

i ), 1 ≤ i ≤ Np}
• 1-elitism: if ng ≥ 2 & J(Xng−1) < m then x

ng

i = Xng−1 for a random i
• for k from 1 to Np/2
• Selection of (xng

α , x
ng

β ) with a roulette wheel process
• with probability pc: replace (xng

α , x
ng

β ) by (yng
α , y

ng

β ) by crossover
• with probability pm: replace (yng

α , y
ng

β ) by (zng
α , z

ng

β ) by mutation
• end for
• ng = ng + 1.
• Generate the new population Png .
• Call Xng the best element.

7.3.1.2 Evolution Strategies (ES)

Evolution Strategies (ES) have been first introduced by H.P. Schwefel in
the 60’s [2]. As it is the case for GAs, it requires following the evolution of a
population of potential solutions through the same three stochastic principles,
selection, recombination and mutation. However, unlike the GAs, the major
process is the mutation process and the selection is made deterministic.



7 CFD-based Optimization for Automotive Aerodynamics 201

The Evolution Strategy that will be used in the application of Sect. 7.5 is
based on the (μ+λ) selection principle and on the 1/5th rule for the mutation
strength. An intermediate recombination with two parents is also included.
The algorithm is thus written as:

• Choice of an initial population of μ parents: P1 = {x1
i ∈ O, 1 ≤ i ≤ μ}

• ng = 1. Repeat until ng = Ng

• Creation of a population of λ ≥ μ offsprings Ong by:
• Recombination: yng

i = 1
2 (xng

α + x
ng

β )
• Normal mutation: zng

i = y
ng

i + N (0, σ)
• Update of the mutation strength σ with the 1/5th rule
• Evaluate {J(zng

i ), zng

i ∈ Ong}.
• ng = ng + 1.
• Selection of the best μ new parents in the population Png ∪Ong .
• Call Xng the best element.

7.3.2 Adaptive Hybrid Methods (AHM)

In order to improve the convergence of evolutionary algorithms for time-
consuming applications like the drag reduction problem presented in Sect. 7.4,
the idea of coupling a population-based algorithm with a deterministic local
search, for instance a descent method, has been explored for many years (see
e.g., [20]). However, the obtained gain can be very different from one function
to another, depending on the level of adaptivity of the coupling and the way
it is done.

The method presented here called Adaptive Hybrid Method (AHM) whose
general principles are summarized in Fig. 7.6, tries to remedy these drawbacks
by answering in a fully adaptive way the three fundamental questions in the
construction of a hybrid method: when to shift from global to local, when
to return to global and to which elements apply a local search. This method
includes some criteria introduced in [7], and defines new ones as the reduced
clustering strategy.

Note that this adaptive coupling can be implemented with any type of
population-based global search methods (GA, ES, etc.) and any type of de-
terministic local search methods (steepest descent, BFGS, etc.).

From global to local

The shift from a global search to a local search is useful when the exploration
ability of the global search is no longer efficient. With this aim, a statistical
coefficient associated to the cost function repartition values is introduced. It
is equal to the ratio of the mean evaluation of the current population to its
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Fig. 7.6 General principle of the AHM

corresponding standard deviation computed with its variance:

CV =
m

σ
=

mean{J(x), x ∈ Png}√
var{J(x), x ∈ Png}

(7.8)

and is named coefficient of variation CV . A local search will be utilized when
this ratio increases within two consecutive generations of the evolutionary
algorithm (either GA or ES).

From local to global

The local search is aimed at locally decreasing the cost function more effi-
ciently than the random mutation. However, this gain must be counterbal-
anced after each evaluation with a characteristic gain of the global method.
More precisely, the local search will continue here while:

Glocal > Gglobal
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where Glocal is equal to the gain when passing from a point to the next one in
the steepest descent algorithm and Gglobal is the gain of the last global phase
evaluated with the decrease of m in formula (7.8). Both gains are scaled with
the number of evaluations of the cost function needed to achieve them.

Reduced clustering

In order to spread as much as possible the local search in the whole domain,
the population is divided into a certain number of sub-populations called
clusters. To do so, a very classical and fast algorithm is used where each
cluster is constructed such that all its associated elements are closer to its
center of mass than to any other. After this preliminary step called clustering,
the local search is applied to the best element (with respect to J) of each
cluster.

A careful study of the appropriate number of clusters had never been done
yet even though it appears to be rather important for the algorithm perfor-
mance. To overcome the difficulty of choosing this number, a new method
called reduced clustering has been proposed in [3] where the number of clus-
ters is progressively decreased during the optimization process. It corresponds
to the natural idea that the whole process will progressively focus on a re-
duced number of local minima. To do so, a deterministic rule of arithmetic
decrease plus an adaptive strategy including the aggregation of too near clus-
ters has been considered here and exhibits better results than any case with
a fixed number of clusters as shown in Sect. 7.3.4.

7.3.3 Genetic Algorithms with Approximated
Evaluations (AGA)

Another idea to speed up the convergence of an evolutionary algorithm when
the computational time of the cost function x �→ J(x) is high, is to take
benefit of the large and growing data base of exact evaluations by making fast
and approximated evaluations x �→ J̃(x) leading to what is called surrogate
or meta-models (see [9, 14, 15, 19]). In the present work, the chosen strategy
is required to perform exact evaluations only for all the best fitted elements of
the population (in the sense of J̃) and for one randomly chosen element. The
new algorithm, called AGA is thus deduced from the algorithm of Sect. 7.3.1
by changing the evaluation phase into the following:

• if ng = 1 then make exact evaluations {J(xng

i ), 1 ≤ i ≤ Np}
• elseif ng ≥ 2
• for i from 1 to Np

• Make approximated evaluations J̃(xng

i ).
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• if J̃(xng

i ) < J(Xng−1) then make an exact evaluation of J(xng

i )
• end for
• for a random i: make an exact evaluation of J(xng

i )
• end elseif

The interpolation method chosen here comes from the field of neural net-
works and is called Radial Basis Function (RBF) interpolation [9]. Suppose
that the function J is known on N points {Ti, 1 ≤ i ≤ N}, the idea is to
approximate J at a new point x by making a linear combination of radial
functions of the type:

J̃(x) =
nc∑
i=1

ψiΦ(||x − T̂i||) (7.9)

where:

• {T̂i, 1 ≤ i ≤ nc} ⊂ {Ti, 1 ≤ i ≤ N} is the set of the nc ≤ N nearest
points to x for the euclidian norm ||.||, on which an exact evaluation of J
is known.

• Φ is a radial basis function chosen in the following set:

Φ1(u) = exp(−u
2

r2
),

Φ2(u) =
√
u2 + r2,

Φ3(u) =
1√

u2 + r2
,

Φ4(u) = exp(−u
r

),

for which the parameter r > 0 is called the attenuation parameter.

The scalar coefficients (ψi)1≤i≤nc are obtained by solving the least square
problem of size N × nc:

minimize err(x) =
N∑

i=1

(J(Ti) − J̃(Ti))2 + λ

nc∑
j=1

ψ2
j

where λ > 0 is called the regularization parameter.
In order to attenuate or even remove the dependence of this model to its

attached parameters, a secondary global optimization procedure (a classical
GA) has been over-added in order to determine for each x, the best values
(with respect to err(x)) of the parameters nc, r ∈ [0.01, 10], λ ∈ [0, 10] and
Φ ∈ {Φ1, Φ2, Φ3, Φ4}. As this new step introduces a second level of global
optimization, it is only reserved to cases where the time evaluation of x �→
J(x) is many orders of magnitude higher than the time evaluation of x �→
J̃(x), as in the car drag reduction problem.
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Fig. 7.7 The Rastrigin function Rast2

7.3.4 Validation on Analytic Test Functions

Before applying them on real world applicative problems, all the previous
global optimization algorithms have been tested and compared on various
analytic test functions and among them the well-known Rastrigin function
with n parameters:

Rastn(x) =
n∑

i=1

(
x2

i − cos(2πxi)
)

+ n (7.10)

defined on O = [−5, 5]n, for which there exists many local minima and only
a global minimum located at xm = (0, ..., 0) and equal to 0 (see Fig. 7.7).

7.3.4.1 AHMs vs. Evolutionary Algorithms

A rather exhaustive comparison has been made between the classical evolu-
tionary algorithm ES and the AHM introduced in Sect. 7.3.2. The statistical
results are summarized in Table 7.3 for the Rastrigin function with 6 param-
eters. In this table, the success rate represents the rate of runs which were
able to locate the correct attraction basin of the global minimum after a
given number of evaluations of the cost function (respectively 500, 1000 and
2000). Note that any gradient evaluation counts for n evaluations of the cost
function as it is the case in a finite-difference approximation.
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Table 7.3 Comparison of ES and AHM for the Rastrigin function Rast6

Method Mean best (success rate) same after same after
500 evaluations 1000 evaluations 2000 evaluations

ES 6.47(0%) 3.46(0.5%) 0.46(80.5%)
AHM, 4 clust. 4.97(2.5%) 1.86(6%) 0.47(63.5%)
AHM, 8 clust. 3.54(7%) 1.77(11%) 0.34(67%)
AHM 3.52(10.5%) 1.51(17%) 0.34(68%)

As can be seen from this table, any AHM overperforms the ES at the
early stage of the process in both performance criteria. Moreover, during this
phase, the strategy of reduced clustering (last line in Table 7.3) significantly
improves the results of a hybrid algorithm with a fixed number of clusters.
When a large number of evaluations are done, the pure ES takes a slight
advantage on the number of successes (but not on the mean best value) in
this special case compared to any AHM.

These results can be summarized by saying that a hybrid algorithm will
hasten convergence by enhancing the best elements in the population but on
the other hand, such strategy can sometimes lead to a premature convergence.
However, such drawback may not be too critical in a real applicative situation
as it has only been observed with very special functions with a huge number
of local minima like the Rastrigin function. Moreover, the main performance
criterion of an algorithm for industrial purposes is its ability to achieve the
best decrease of the cost function for a given amount of computational time.

7.3.4.2 AGA vs. GAs

Another statistical study has also been realized on the Rastrigin function
with 3 parameters in order to compare the GA in Sect. 7.3.1 and the so-
called AGA in Sect. 7.3.3. In order to achieve a quasi-certain convergence,
the population number is fixed equal to Np = 30 whereas the crossover and
mutation probability are set to pc = 0.3 and pm = 0.9.

In this case, the average gain of an AGA compared to a classical GA is
nearly equal to 4. It means that on average, the number of exact evaluations
to achieve a given convergence level has been divided by a factor of 4.

In view of their promising results, both global optimization methods AHM
and AGA are now used in the next two sections for solving realistic optimiza-
tion problems.
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Fig. 7.8 3D car shape parametrized by its three rear angles α, β and γ

7.4 Car Drag Reduction with Numerical Optimization

In this section, the main results obtained on a car drag reduction problem
are presented. All of them have been done in collaboration with two research
engineers from Peugeot Citroën PSA, V. Herbert and F. Muyl, and have
already been published in various journals [4, 5, 6].

7.4.1 Description of the Test Case

In order to test the fast and global optimization methods presented in
Sect. 7.3 on a realistic car drag reduction problem, a simplified car geometry
has been extensively studied. It comprises minimizing the drag coefficient,
also called Cd and defined in Eq. (7.7), of a simplified car shape with respect
to the three geometrical angles defining its rear shape (see Fig. 7.8): the slant
angle (α), the boat-tail angle (β) and the ramp angle (γ). The forebody of
the vehicle is fixed and closely resembles the shape of an existing vehicle,
namely the Xsara Picasso from Citroën. The objective is thus to find the
best rear shape that will reduce the total drag coefficient of the car, ignoring
any aesthetic considerations. As it has been previously seen in Sect. 7.1 on
the Ahmed bluff body, it is expected that modifying the rear shape will lead
to a very important drag reduction.

7.4.2 Details of the Numerical Simulation

An automatic optimization loop has been implemented and is summarized
in Fig. 7.9. This loop includes the following steps:



208 Laurent Dumas

Fig. 7.9 General principles of the automatic optimization loop

(i) Car shape generation and meshing

In view of the experimental results obtained from using low drag car shapes
presented in section 2, the three rear angles are sought in the following in-
tervals (in degrees):

(α, β, γ) ∈ [15, 25] × [5, 15] × [15, 25] .

For any given geometry, the 3D-mesh around the car shape is generated with
the commercial grid generator Gambit. It contains a total of approximately 6
million cells that include both tetrahedrons and prisms. In order to simulate
accurately the flow field behind the car which is responsible for the major
part of the drag coefficient, the mesh is particularly refined in this region.

(ii) CFD simulation

The commercial CFD code Fluent is used for the computation of the flow field
around the car. The Reynolds number based on the body length (3.95 m) and
the velocity at infinity (40 m/s) is taken equal to 4.3 × 106 as in the Ahmed
experiment [1]. The 7-equation RSM turbulence model is chosen as it gives
better results in this case than the classical k–ε model (see [16]). The com-
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Fig. 7.10 Convergence history

putation is performed until a stationary state is observed for the main aero-
dynamic coefficients. This requires approximately 14 hours computational
(CPU) time on a single-processor machine. In order to achieve a reasonable
computational time, parallel evaluations on a cluster of workstations have
been done.

(iii) Optimization method

Two different global optimization methods have been compared on this prob-
lem. The first one is a classical GA with a population number Np equal to
20, a crossover and a mutation coefficient equaling to 0.9 and 0.6, respec-
tively. The second method is similar to GA but with fast and approximated
evaluations as presented in Sect. 7.3.3 (AGA). Note that the hybrid meth-
ods introduced in Sect. 7.3.2 have also been tested on this problem but are
not presented here since AGA performs better. In contrast to these three
global optimization methods, it is worth mentioning that a pure determinis-
tic method like BFGS fails to find the global drag minimum at all (see [5] for
a further comparison of all these methods).

7.4.3 Numerical Results

The convergence history of both optimization methods GA and AGA for the
present drag reduction problem is depicted in Fig. 7.10. This figure shows
in particular that both methods have nearly reached the same drag value,
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Table 7.4 Four examples of characteristic shapes

shape slant angle (α) boat-tail angle (β) ramp angle (γ) Cd

(a) 21.1 24.1 14.0 0.1902
(b) 15.5 15.7 5.6 0.1448
(c) 16.9 17.7 11.3 0.1238
(d) 18.7 19.1 9.0 0.1140
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Fig. 7.11 Pressure and viscous part of drag for shapes (a) to (d)

namely 0.114, but with a different number of cost function evaluations. More
precisely, the AGA algorithm has permitted to reduce the exact evaluation
number by a factor of 2 compared to a classical GA, leading to the same
proportional time saving.

The optimal angles obtained by both global optimization methods are
nearly equal to (α, β, γ) = (18.7, 19.1, 9.0). These values have been exper-
imentally validated in the Peugeot wind tunnel to be associated with the
lowest drag value that can be reached with this particular forebody.

In order to understand in depth the complex phenomena involved in the
variations of the drag coefficient, four characteristic shapes are presented in
Table 7.4 and carefully studied.

The first shape (a) corresponds to a high-drag configuration whereas
shapes (b), (c) and (d) correspond to low-drag configurations with an increas-
ing value of slant and boat-tail angles. More precisely, shape (c) corresponds
to the best shape obtained after the first generation of the GA whereas shape
(d) is the best shape obtained in the whole range of admissible angles. Com-
pared to shape (a), note that the value of the drag coefficient of shape (d) is
almost divided by a factor of two which confirms the high dependence of Cd

on the rear shape.
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shapes (a) to (d)

Figure 7.11 displays for the four chosen configurations, the relative part of
the pressure drag and the viscous drag in the value of the drag coefficient Cd.
It is worth noticing that the pressure drag represents the major contribution
to the total drag and also that the viscous drag remains almost constant for all
cases. In particular, a higher pressure at the rear of the car will automatically
reduce the drag. To see more precisely the topology and the pressure values
at the wake flow, Fig. 7.12 depicts for shapes (a) to (d) the isosurface of
null longitudinal velocity colored with the pressure coefficient. The latter
corresponds to a dimensionless pressure value and is given by:

Cp =
p− p∞
1
2ρV

2∞
. (7.11)

It can be seen in particular on shapes (a) and (b) that respectively, either
too high or too low slant and boat-tail angles will not generate a sufficient
pressure level at the rear of the vehicle, thus increasing the pressure drag.
On the contrary, intermediate and similar values of these two angles, coupled
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Fig. 7.13 Blades in the fan (left) and the high pressure compressor module (right)

with a low ramp angle as it is in the case for shapes (c) and (d), will improve
the recompression at the car base. Note also that the optimal shape (d) is
associated to a very narrow and regular recirculation bulb.

All these observations thus corroborate the qualitative trends well-known
to car engineers since the experiments done by Morel [18] and Ahmed [1].
The numerical automatic tool presented here is now validated and appears
to be very promising for car manufacturers to realistically design low drag
car shapes in the near future.

7.5 Another Possible Application of CFD-O:
Airplane Engines

In this section, another application of CFD-based optimization is given in the
field of airplane engines. All the results presented here have been obtained
in collaboration with two research engineers from Snecma-Moteurs (part of
Safran group), B. Druez and N. Lecerf, and will be presented in more detail
in [3].

7.5.1 General Description of the Optimization Case

In a turboreactor, the blades, which represent a big amount of an engine
price (nearly 35%), are designed to create and control the aerodynamic flow
through the engine (see Fig. 7.13).

The objective here is to optimize the design of the blades in the high pres-
sure compressor module in order to minimize the mechanical efforts applied
on them. Actually, it represents only a first step in the field of blade optimiza-
tion since the main goal of a high pressure compressor designer is to increase
the isentropic efficiency of the compressor. Nevertheless, this goal can not be
achieved regardless of other engine features. Among them is the stall margin.
This aerodynamic instability phenomenon consists in the stall of the flow
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Fig. 7.14 Design parameters of a 3D blade

around the blades. This leads to backward flow inside the compressor and
can result in engine shutdown, overtemperature in the low pressure turbine,
high level of vibration or blade-out. To prevent such events, the designer will
have to increase the compressor pressure ratio for low mass flow rates.

7.5.2 Details of the Computation

A 3D blade can be broken down into a set of several 2D airfoils profiles. The
different airfoils are linked to the original blade through the stacking law (see
Fig. 7.14). Each airfoil can then be described by a set of design parameters
which reflect physical phenomenon that can be seized by the human designer.
Figure 7.14 shows some common design parameters of the 2D profiles such as
chord (c), maximum thickness value (e), upstream and downstream skeleton
angles (β1 and β2), and stagger angle (γ). In the presented case, these pa-
rameters are kept fixed whereas the parameters to optimize, on the number
of six, are all associated to the stacking law.

In order to minimize the mechanical efforts on the blade, the associated
function to minimize is equal to the maximal value on 2D profiles of the von
Mises constraints. Such a problem is highly non-linear, has a large number
of constraints, many local minima and is also time consuming. A global, fast
and robust method is thus needed.

7.5.3 Obtained Results

The AHM method presented in Sect. 7.3.2 has been used here to solve the
blade optimization problem described above. Note in particular that con-
straints are handled with a penalization term whereas the gradients are ap-
proximated by finite differences.
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Table 7.5 Convergence results on the blade optimization problem

Algorithm number of evaluations best obtained value

Evolutionary algorithm 460 163.5
AHM 480 158.6

The results are compared in Table 7.5 with those obtained with a classical
evolutionary algorithm, here a simulated annealing. It can be seen that for the
same simulation time (approximately 80 hours CPU), the AHM overperforms
the simulated annealing. Indeed, even if the relative decrease obtained on the
cost function appears to be small (3% approximately), it actually represents
a significant improvement for the blade design.

7.6 Conclusion

In order to reduce fuel consumption, the minimization of the drag coefficient
of cars has become a major research topic for car manufacturers. The develop-
ment of fast and global optimization methods based either on hybridization of
evolutionary algorithms with a local search process or on the use of surrogate
models, has allowed only recently a first numerical and automatic approach
for the drag reduction problem.

The results obtained from a simplified geometry called Ahmed bluff body
are presented here. They confirm the experimental analysis saying that the
drag coefficient is very sensitive to the rear geometry of the car due to the
presence of separation and recirculation zones in this region, and thus can be
largely reduced by shape optimization.

After this experimental validation, the numerical tool is now ready to be
used by car designers for improving the drag coefficient of future car models.
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Chapter 8

Multi-objective Optimization for
Problems Involving Convective Heat
Transfer

Marco Manzan, Enrico Nobile, Stefano Pieri and Francesco Pinto

Abstract In this chapter, focused on Computational Fluid Dynamics (CFD)-
based optimization for problems involving convective heat transfer, we present
our approach for the multi-objective shape optimization of periodic wavy
channels, representative of the repeating module of many heat exchangers.

The first problem is of fundamental nature and considers the geometric
parametrization and shape optimization of two- and three-dimensional peri-
odic wavy channels. The geometry of the channel is parametrized either by
means of linear-piecewise profiles or by non-uniform rational B-splines. The
second case, of industrial interest, illustrates the development and applica-
tion of an automatic method for the design of gas turbine recuperators.

After a literature review of shape optimization in heat transfer, we describe
in detail both aforementioned problems in terms of physical assumptions and
mathematical formulation. In the numerical methods section we indicate the
CFD codes used and describe the implementation of periodic boundary con-
ditions. Thereafter in the geometry parametrization section, we illustrate the
different types of numerical geometry representation used in the two prob-
lems, and the corresponding definition of the design variables whose variation
leads to different shapes of the computational domain.

After a comprehensive classification and description of optimization meth-
ods and algorithms, we present the results obtained for the two different
cases. For both problems the objectives considered are the maximization of
heat transfer rate and the minimization of friction factor, with the additional
objective of minimization of heat transfer surface for the recuperator module.
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Since there is no single optimum to be found, we use a multi-objective genetic
algorithm and the so-called Pareto dominance concept.

The results obtained are very encouraging, and the procedure described
can be applied, in principle, to even more complex convective problems.

8.1 Introduction

The common approach when solving thermofluid problems numerically is to
first prescribe the geometry, boundary conditions, and thermophysical prop-
erties and then solve the governing equations for velocity, pressure, temper-
ature, turbulent kinetic energy, etc. Problems of this type are referred to
here as analysis problems. In design practice, the engineer usually tries dif-
ferent geometries, chooses other materials with different properties, and so
on until satisfactory performance is obtained. Such cut-and-try method relies
on the experience and skill of the designer to obtain any improvement but
optimal performance is rarely achieved. Furthermore, this simple approach
becomes impractical when the number of design variables is large, when there
is more than one objective, and when there are several constraints to be sat-
isfied. Therefore, in such cases, it is convenient, if not mandatory, to adopt
an optimization strategy. However, the integration of numerical optimiza-
tion techniques as part of the design process is still not very common today,
particularly for complex heat transfer problems. In order to proceed in a sys-
tematic way, a basic requirement in shape optimization is to define the shape
of the system to be optimized in terms of (known) functions and (unknown)
parameters. This task is typically accomplished by means of a parametric
computer-aided design (CAD) system, and by making use of an optimization
procedure, automatic variations of the parameters associated with the geo-
metric model lead to the creation of a variety of feasible shapes, which are
then subjected to numerical analysis.

The aim of this article is to describe a general strategy for automatic,
multi-objective shape optimization of heat exchanger modules. This repre-
sents a truly multi-objective optimization problem, since it is desired, from a
design point of view, to maximize the heat transfer rate in order to, for exam-
ple, reduce the volume of the equipment and to minimize the friction losses
which are proportional to the pumping power required. These two goals are
clearly conflicting, and therefore no single optimum can be found. For this
reason we use a Multi-Objective Genetic Algorithm (MOGA), and the so-
called Pareto dominance which allows us to obtain a design set rather than
a single design.

Optimization of two-dimensional wavy channels is obtained by means of
an unstructured finite-element (FE) solver, for a fluid of Prandtl number
Pr = 0.7, representative of air, assuming fully developed velocity and tem-
perature fields, and steady laminar conditions. The geometry of the channels



8 Multi-objective Optimization in Convective Heat Transfer 219

is parametrized by means of Non-Uniform Rational B-Splines (NURBS) and
their control points represent the design variables. An alternative and simpler
geometry is described by means of piecewise-linear profiles. An extension to
3D is made by considering channels obtained by extrusion at different angles
of the 2D channels.

A similar strategy has been adopted for the multi-objective optimization of
the periodic module of Cross-Corrugated (CC) compact recuperators. How-
ever, in this case, several widespread industrial codes are linked sequentially
to obtain an automatic procedure for the recuperator design and optimiza-
tion. The software tools used are CATIA for the geometric parametriza-
tion, ANSYS ICEM-CFD for the grid generation, and ANSYS-CFX for pre-
processing, solution and post-processing. This study is focused on the de-
velopment and validation of an automated calculation methodology for the
thermo-fluid dynamic aspects of a recuperator design. Such a methodology
correlates all the phases throughout the design process, i.e., the different me-
chanical, thermal and fluid dynamic aspects according to the concept of Multi
Disciplinary Optimization (MDO). The final objective is to find optimum
configurations for highly effective as well as tightly compact recuperators.

The described optimization procedure is robust and efficient, and the re-
sults obtained are very encouraging. In particular, we show that our approach
is effective in performing genuine multi-objective shape optimizations that
can deal with local minima and does not require knowledge of function gra-
dients. There are no fundamental reasons, apart from computational costs
and modeling accuracy, which prevent the application of the methodology to
more complex geometries and more complex physics such as, for example,
unsteady or turbulent flow regimes.

8.2 Literature Review

We limit our attention to optimization in heat transfer, and more specifically
to shape optimization for heat transfer problems.

Gradient-based methods seem to be the most common approach for op-
timization of heat transfer. For example, Prasad and Kane [42] performed
a three-dimensional design sensitivity analysis using a boundary element
method. A two dimensional shape optimization for the Joule heating of solid
bodies is described by Meric [28]. The sensitivity analysis was performed us-
ing the adjoint variable method and the material derivative technique, with
a FE discretization of the non linear primary problem and the linear adjoint
problem. Cheng and Wu [6], and Lan et al. [25], considered the direct design
of shape for two-dimensional conductive bodies. In their approach the prob-
lem was discretized using a boundary-fitted Finite Volume method, coupled
with a direct sensitivity analysis for minimization of the objective function.
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More recently, Morimoto et al. [29] used the adjoint method to optimize
counter-flow heat exchangers with oblique wavy walls.

Evaluation of the objective function in many engineering problems is costly
and thus makes the optimization task prohibitively expensive. This is the
case, for example, when using large scale CFD models [36]. A common ap-
proach in these situations is to construct, from a selected number of ini-
tial designs, a surrogate of the objective function, to be used for subsequent
optimization. This strategy has been followed, among others, by Kim and
Kim [23], who performed the optimization of a two-dimensional channel with
periodic ribs using a response surface method, the latter representing an
analytical surface which either interpolate or approximate the initial set of
designs. The particular technique used by Kim and Kim, the D-optimal de-
sign, offers the opportunity to construct the response surface method with
a small number of design points with considerable savings in computational
resources. A CFD-based optimization of a plate-fin heat sink, i.e., minimiza-
tion of pressure loss under a required temperature rise, has been recently
described by Park and Moon [35]. The optimization has been performed
with three geometric design variables using a progressive quadratic response
surface method (PQRSM).

Traditional optimization algorithms based on sensitivity analysis have a
series of drawbacks which make them not always reliable for engineering
problems. The most important and relevant to the problem considered in
this paper, is the risk of getting trapped in local minimum since the optimum
obtained from these methods becomes a global one only if the objective and
constraints are differentiable and convex functions.

Recently, new algorithms were used to overcome the difficulties arising
from traditional optimization methods. They are known as genetic algorithms
(GA), and they mimic the evolution of living organisms in nature. Their ap-
plicability is broad and for a general introduction and a review of applications,
the reader can refer to [4] and [43], respectively. For heat transfer problems,
Queipo et al. [44] used a GA to optimize the cooling of electronic components
while the optimization of a two-dimensional polynomial fin profile was con-
sidered by Fabbri [15] where a GA was applied to an FE representation of the
conduction problem. The same author later used GA for optimization, i.e.,
maximization of the heat transfer rate, of the shape and spacing of the fins of
a heat sink cooled by laminar flow [16]. The optimization of two-dimensional
corrugated channels under laminar steady conditions was also considered by
Fabbri in [17]. In this latter paper, the channel consisted of flat-insulated
wall and a corrugated one described by a fifth order polynomial. The ob-
jective was to maximize the Nusselt number for a given volume (material)
of the thermally active wall or for a given pressure drop. An application of
GA for the optimization (minimization of overall thermal resistance) of a
stacked micro-channel heat sink is described by Wei and Joshi [54], while the
application of GA for the inverse geometric problem of detection of subsur-
face cavities, using thermographic techniques, has been reported by Divo et
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al. [13]. In this case, the inverse problem has been solved as a single-objective
optimization problem. Finally, a very recent application of evolution strategy
(ES), for the shape optimization of thermoelectric bodies exchanging heat
by convection and radiation, has been reported by Bia�lecki el al. [3]. Like
GAs, ES belong to the general category of Evolutionary Algorithms [4], but
differ from the former mainly in the use of real-valued vectors of variables
instead of bit-strings. Moreover, in contrast to GA which relies heavily on
recombination to explore the design (search) space, ES use mutation as the
main search operator. An interesting result from this study was the presence
of very different shapes having practically the same value of the objective
function. As shown in the results section, we also found a similar trend, i.e.,
two families of shapes characterized by the same performance figures.

This short review of the available literature is followed by some remarks.
The first is that in the majority of cases, the authors have used in-house
and/or problem specific methods – solvers and in particular optimization
algorithms – that, while capable of guaranteeing high accuracy and compu-
tational efficiency, however lack generality and robustness. Hence, they could
hardly be applied to the complex optimization tasks found in industrial ap-
plications. In fact, this type of problems are frequently computationally de-
manding, are affected by noise, and are characterized by several conflicting
objectives as well as numerous constraints.

The second remark is relative to the fact that in all cited works, the prob-
lem was to optimize a single performance metric. In other words, it was
considered a single-objective optimization problem.

When there were several objectives such as in [23] and [29], these objec-
tives were incorporated into a single function using suitable weighting factors,
thereby reducing the problem into one of single-objective optimization again.
This approach, however, has several drawbacks, the first being that weights
must be provided a priori, which can influence the solution to a large degree.
Moreover, if the objectives are inherently very different such as in cost and
thermal efficiency, it can be difficult to define a single all-inclusive objective
function. Finally, the user should even take care of normalization, and this is
not always a simple task since the range of variation of each objective may
be unknown. True multi-objective optimization techniques overcome these
problems by keeping the objectives separate during the optimization process,
bearing in mind that there will frequently be no single optimum in cases
with opposing objectives, since any solution will be a compromise. This is
the case for the problem considered in this paper, where the two objectives,
maximization of heat transfer rate and minimization of pressure losses, are
clearly conflicting. We will show how to identify the solutions which lie on the
trade-off curve known as the Pareto Frontier (named after the Italian-French
economist, Vilfredo Pareto). These solutions, also known as non-inferior,
non-dominated or efficient solutions, all have the characteristic that none of
the objectives can be improved without prejudicing another. The advantage
of the use of the Pareto dominance concept is that, as it will be shown in
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the result section, all shape-design alternatives become visible at once for
the design engineer, and the set of optimized solutions is obtained in one
optimization run, in contrast to classical single-objective methods.

The use of the Pareto dominance concept has been illustrated, for heat
transfer optimization problems, by Park et al. [33, 34]. In both studies, there
were two variables to be minimized: the pressure drop and the thermal resis-
tance of a plate exchangers [34], and of a heat-sink [33]. However, the multi-
objective optimization problems were treated as a single objective problem,
using weight coefficients. By performing a series of optimizations with varying
weighting factors, the authors obtained an approximate Pareto front.

8.3 Problem Statement

The problems considered in this work are: I – the multi-objective shape op-
timization of two-dimensional (2D) and three-dimensional (3D) convective
wavy channels; II – the multi-objective optimization of Cross-Corrugated
channels. The former is of fundamental nature and is of interest for heat
exchangers and other heat transfer devices. The second problem has a prac-
tical significance since it represents the building block of many gas turbine
recuperators [26].

For both problems, the study is limited to a single module at fully devel-
oped flow and heat transfer conditions. In such a circumstance, channels of
periodic cross section form can be considered periodic in the flow and thermal
fields as well. Therefore, the computational domain of interest becomes a sin-
gle periodic module of the entire geometry as depicted in Figs. 8.1 and 8.2 for
the 2D and 3D channels, respectively. CC heat exchanger is formed by stack-
ing undulated plates at different inclination angles as reported in Fig. 8.3(a).
The geometry obtained is presented in Fig. 8.3(b) while the repeating module
is depicted in Fig. 8.3(c). It can be noticed that, unlike other authors, both
hot and cold fluid domains are included [26, 27].

We have limited the study to the steady, laminar flow regime which is
found in many practical circumstances. The Reynolds number chosen for the
simulation is Re = 200 for both two-dimensional channel and CC module
which corresponds to the typical value found in microturbine recuperators,
while the Prandtl number is assumed as Pr = 0.7, representative of air and
other gases. For computational convenience, a lower value of the Reynolds
number, Re = 100, has been selected for the 3D wavy-channels.
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Fig. 8.1 Periodic module of the two-dimensional wavy channel

Fig. 8.2 Periodic module of the three-dimensional wavy channel

8.3.1 Governing Equations

The flow is assumed to be incompressible, Newtonian, and of constant ther-
mophysical properties. Moreover, we refer to a stationary and laminar forced
convection with negligible viscous dissipation and buoyancy contribution. In
these conditions, continuity, Navier-Stokes, and energy equations are written
as follows:

∇ · u = 0 (8.1)
∇ · (ρuu) = ∇ · (μ∇u) −∇p (8.2)

∇ · (ρcpuT ) = ∇ · (λ∇T ) . (8.3)
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(b)

(c)

(a)

Fig. 8.3 Computational domain for the CC heat exchanger: a undulated plates to be
stacked; b final geometry of CC channel; c periodic module

Before describing the boundary conditions, it is useful to focus on the
meaning of the pressure term along with the mean flow direction, x, of the
channel. Omitting any discussion about the entrance and exit regions of the
channel, in the fully developed regime zone the velocity profiles can be con-
sidered periodic (of the same period as the channel). On the other hand,
the effect of the pressure field is to allow the fluid flow, acting against fric-
tion forces due to the viscous behavior of the mean. The dissipative work is
negligible and its contribution is not included in the energy equation, yet a
pressure drop is present along the streamwise direction. The pressure field
can be split into two contributions [49]:

1. a linear decaying, which counteracts friction forces;
2. a periodic term related to the detailed local motion.

It follows that the pressure assumes the following expression:

p(x, y, z) = −β · x+ p̃(x, y, z) (8.4)

where p̃(x, y, z) is the periodic part of the pressure. Therefore, the momentum
equation in the x direction can be rewritten as:

∇ · (ρuu) = ∇ · (μ∇u) − ∂p̃

∂x
+ β (8.5)

where β becomes a volume force term whose value, influencing the Reynolds
number obtained, will be adjusted in the solution procedure.

8.3.2 Fluid Dynamic Boundary Conditions

The condition of periodic velocity profiles can be expressed in the inlet and
outlet boundaries, as illustrated in Fig. 8.1 for the 2D wavy-channel, as fol-
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lows:
uin = uout (8.6)

and, in general:
u(x, y, z) = u(x+ L, y, z) (8.7)

where L is the length of the repeating module. After the split of the total
pressure, the newly introduced periodic pressure, p̃, can be handled as the
velocity field:

p̃in = p̃out (8.8)

and, in general:
p̃(x, y, z) = p̃(x+ L, y, z) . (8.9)

Finally, standard no-slip conditions are imposed at the walls.

8.3.3 Temperature Boundary Conditions

The temperature field in a heat exchanger or in a regenerator is not periodic
since it changes continuously along the channel in the mean flow direction.
However, a region of fully developed thermal condition can be identified and
appropriate boundary conditions can be imposed for a single module. The
thermal boundary conditions are different for the two cases presented in this
work so they are treated separately. For the wavy channel case a constant-
temperature boundary condition is used as representative of e.g., automotive
radiators with negligible wall thermal resistance at high liquid flow rates. On
the other hand, the CC channel is used in gas-gas recuperators where the
wall temperature is not uniform. For this case, a flux boundary condition has
been developed.

8.3.3.1 Wavy Channel

Shah and London [49] discuss fully developed flow in parallel plates for many
wall-boundary condition cases. By fully developed thermal field, it is meant
that the Nusselt number is constant along the flow.

As in Patankar et al. [37], the concept of the thermally developed regime
is generalized to the periodic thermally developed one. The condition for a
constant cross-sectional channel writes as follows:

∂θp

∂x
= 0 (8.10)

where θp is the local non-dimensional temperature
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θp(x, y) =
T (x, y) − Tw

Tb(x) − Tw
(8.11)

and Tb(x) is the streamwise varying bulk temperature. In the case of periodic
wavy channel, a weak condition, between two sections a period length apart,
can be imposed:

θp(x, y) = θp(x+ L, y) . (8.12)

The use of the periodic temperature field, defined in Eq. (8.11), leads to a vol-
ume force term, in the energy equation, which depends on the x streamwise
coordinate. So, another equation must be introduced [37], but this is cum-
bersome to implement on the triangular unstructured grids that COMSOL,
the FE package employed for wavy channels, uses. For this reason, another
strategy has been used to tackle the problem.

A fixed arbitrary reference value has been adopted to make the tempera-
ture non-dimensional. The value chosen, for convenience, is the bulk temper-
ature at the inlet boundary. So the periodicity condition, Eq. (8.12), changes
into:

θ(xin, y) = θ(xout, y) · σ (8.13)

where

θ(x, y) =
T (x, y) − Tw

Tb,in − Tw
(8.14)

and σ is the ratio between the inlet and outlet temperature differences:

σ =
Tb,in − Tw

Tb,out − Tw
. (8.15)

In place of the adjoint equation introduced by Patankar [37], an iterative
numerical procedure based on an energy balance has been introduced to
reach fully developed conditions. This will be explained in Sect. 8.4.

8.3.3.2 CC Channel

In gas microturbine regenerators, the hot and cold streams are in counter-
current flow arrangement and are characterized by similar heat flow capac-
ities. With these conditions the heat transferred between the fluids remains
almost constant from repetitive module to module, so temperature and pres-
sure can be treated in a similar way. The temperature is expressed as the
sum of a periodic and a linear component driven by the gradient in the mean
flow direction γ:

T (x, y, z) = γ x+ T̃ (x, y, z) (8.16)

T̃ (x, y, z) = T̃ (x+ L, y, z) . (8.17)
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wall

periodicity

periodicity periodicity

(a) (b) (c)

Fig. 8.4 Periodicity conditions for the CC heat exchanger: (a) assembled domain period-
icity; (b) hot domain periodicity; (c) cold domain periodicity

Equation (8.16) can be substituted into the energy equation, Eq. (8.3), to
obtain the transport equation for the periodic component:

∇ ·
(
ρ cpu T̃

)
= ∇ ·

(
λ∇T̃

)
+ γ u ρ cp . (8.18)

Equation (8.18) can be solved with appropriate boundary conditions as in [51]
where a uniform wall flux was imposed and to satisfy the energy balance, the
temperature gradient was computed as:

γ =
φ

ṁ cpL
(8.19)

where L is the length of the periodic module in the mean flow direction,
and φ is the overall heat flux specified at the walls. While the uniform flux
is a practical solution for imposing a thermal boundary condition, it does
not correctly describe the heat transfer in a recuperator module. Indeed the
fluid flows in the furrows of the CC ducts with complicated three-dimensional
patterns, strongly affecting the local heat transfer rates.

In this work the elementary periodic module is doubled to take into account
both hot and cold fluids as shown in Fig. 8.3, while the periodicity conditions
for both fluids are reported in Fig. 8.4. Equation (8.18) is applied to both
domains and no boundary condition has to be imposed on the interface wall.
A similar approach has been used by Morimoto et al. [29] to solve the heat
transfer in a periodic channel, but with a different geometry. To satisfy the
global energy balance the same flux has been applied to the hot and cold
domains:

φh = −φc (8.20)

using Eq. (8.19) to compute the last term of Eq. (8.18). Temperatures of
the hot and cold domains are automatically adjusted during the iterative
computation to satisfy automatically the overall energy balance:

φ = U AΔT (8.21)

where ΔT is the temperature difference between hot and cold fluids:
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ΔT = (Tbi)h − (Tbo)c = (Tbo)h − (Tbi)c (8.22)

U is the global heat transfer coefficient, and A is a reference heat transfer
surface, that has been taken as twice the projection of the interface wall on
the horizontal plane, A = 2 · Ah. This choice allows the comparison of heat
transfer coefficients for different surface geometries.

8.4 Numerical Methods

The numerical solution of the 2D and 3D wavy channel case was carried out by
means of the COMSOL software package [9]. Full details of the methodology
have been previously published elsewhere [30] and are summarized hereafter.
For the numerical simulation of the CC heat exchanger module, the ANSYS-
CFX CFD package has been employed. Hexahedral structured grids have
been generated by means of the ICEM-CFD grid generation package.

8.4.1 Fluid Dynamic Iterative Solution

For the wavy and CC channels the fluid dynamic equations are solved in a
similar way. As shown in Eq. (8.5), a forcing term β appears, due to the pres-
sure splitting introduced in Eq. (8.4). Since the Reynolds number is a given
constant of the problem, the non-dimensional mean velocity in the channel
must be unitary. It is, therefore, necessary to find the correct value of β that
ensures this condition. Other authors [31] have used proportional-integrative
iterative controls to reach the correct value of the pressure gradient, starting
from a trial value. At first, a similar approach has been attempted, but it
proved to be not very efficient in converging to the correct value of β, and
this can be a limiting factor for CPU-intensive optimization studies.

By the definition of the friction factor f as the non-dimensional surface
shear stress [49], it is easy to show by applying the second Newton’s law that:

f = β
Dh

1
2ρU

2
av

. (8.23)

Recall that, for internal flows in laminar regime, the friction factor is propor-
tional to the inverse of the Reynolds number. From the definition of Re, it
follows that:

β ∝ Uav . (8.24)

This relation is not strictly valid in channels with varying cross section, but
nevertheless it is expected a proportionality law such as:
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β ∝ Um
av (8.25)

to hold, with a value of the exponent m close to 1. In these conditions,
evaluating the flow field with a test value for β, taking into account that
the desired average velocity is unitary, and updating iteratively the pressure
gradient as follows:

βn+1 =
βn

Uav,n
(8.26)

it is expected to reach the exact value of β in few steps. This has been verified
during this study, where only 3 to 6 steps are required to reach a value of β
which gives an error on Re below 0.1%.

8.4.2 Thermal Field Iterative Solution

The thermal field solution for the two cases reported here is quite different
since for the wavy channel a uniform temperature boundary condition has
been adopted while for the CC channel a constant flux has been considered.
Therefore, the algorithms used in the two cases will be described indepen-
dently.

8.4.2.1 Wavy Channels

After the velocity field has been obtained, the thermal field is computed with
an iterative approach. This is based on the fact that the heat flux at the wall
has to be balanced by the enthalpy difference between inlet and outlet. The
task is to find a value of σ, Eq. (8.15), that ensures this balance:

ṁcp (Tb,in − Tb,out) =
∫

w

−k∂T
∂n

ds . (8.27)

Assembling the dimensional terms and remembering Eq. (8.15), one is left
with

1 − 1
σ

=
2

Re Pr

∫
w

− ∂θ

∂n
ds . (8.28)

It can be recognized that there is a relation between σ and the heat flux
at the wall and in particular, an incorrect value of σ leads to a generation
term on the outlet boundary which has no physical meaning. So, starting
from a tentative value of σ and updating it iteratively by means of (8.28), it
converges towards the correct solution.

Once the correct thermal field has been calculated, the mean Nusselt num-
ber, Nu, is obtained as:
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Nu =
1

2L

∫
w

Nuxds (8.29)

Nux =
hxDh

k
(8.30)

where Nux and hx are, respectively, the local values of the Nusselt number
and heat transfer coefficient. From an energy balance, again in dimensional
form, at a generic section of the channel, one has:

ṁ cp dTb = −hx(Tb − Tw)ds . (8.31)

Multiplying each side by (μkDh), expressing the mass flow in its components
and integrating, one finally obtains

Nu = lnσ
Dh

4L
Re Pr . (8.32)

A grid independence study was performed for different geometric configu-
rations of the channel (designs) in order to ensure the accuracy of the results
presented.

8.4.2.2 Cross-Corrugated Channels

A first simulation of the CC channel, with a grid similar to those used in
this optimization study, has been conducted for comparison with literature
data and the results are presented elsewhere [26]. The geometry considered
is similar to the base one used for the optimization. The channel has been
generated using sinusoidal profiles as in [10] with values of W/a = 12, channel
height b = 2a and inclination angle θ = 90◦. The meaning of W , a, and b is
given in Sect. 8.5.2. The generated structured grid is composed by 155× 103

hexahedral elements, selected as a trade-off between accuracy and computa-
tional costs. Computations with refined grids up to 371 × 103 elements have
been carried out to check for grid independence. It has been verified that
the coarsest mesh used in this work gives an estimated error of 1% for the
Nusselt number, and 0.4% for the friction factor.

Most literature results were obtained using uniform temperature bound-
ary conditions for the energy equation. Thus, this same condition has also
been implemented in ANSYS-CFX [27]. Nevertheless, in the present work,
the optimization has been carried out using the constant flux boundary con-
dition, since it better describes the real working conditions for a microturbine
recuperator.

The functionalities of industrial codes may be extended by means of script
functions or user-written routines. To implement the constant flux condition
in ANSYS-CFX, the flexibility of the Ansys CCL (CFX Command Language)
has been exploited. The value of the pressure gradient β of Eq. (8.5) has
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been added as a source term to the momentum equation and updated using
Eq. (8.26) by means of CCL expression to obtain the desired velocity. To
solve the thermal field, Eq. (8.19) is computed at each time step using a CCL
expression, and the gradient γ is introduced in the last term of Eq. (8.18) to
compute the source term of the energy equation for both hot and cold fluid
streams.

The average Nusselt number can be easily obtained by inspecting Eq. (8.21).
The global heat transfer coefficient, neglecting wall resistance, can be written
as

U =
(

1
h̄h

+
1
h̄c

)−1

(8.33)

where h̄h and h̄c are the mean heat transfer coefficients for the hot and cold
side, respectively. Since the fluids, the flow heat capacities and the geometry
for the hot and cold ducts are equal, a unique mean heat transfer coefficient
can be introduced h̄h ≡ h̄c ≡ h, and Eq. (8.21) can be simplified as:

φ =
h

2
·A ·ΔT (8.34)

from which the mean Nusselt number can be obtained as:

Nu =
φ Dh

ΔT Ah k
(8.35)

whereDh = 2b is the hydraulic diameter of the channel [26]. The local Nusselt
number can be derived from (8.35) as:

Nu =
2 φ′′(x) Dh

ΔT k
(8.36)

where φ′′(x) is the local specific heat flux at the wall.

8.5 Geometry Parametrization

Different geometry parametrizations have been used for the wavy channels
and the CC module and are described next.

8.5.1 Wavy Channels

The shape of two-dimensional convective channel is represented either by
linear-piecewise profiles, or by NURBS. The two different geometric profiles,
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Fig. 8.5 Periodic channels and geometrical parametrization. (a) Linear piecewise channel;
(b) NURBS channel; (c) Linear piecewise parametrization; (d) NURBS parametrization
and control points

the linear-piecewise and the NURBS, are depicted in Figs. 8.5(a) and 8.5(b),
respectively.

8.5.1.1 2D Linear Piecewise Parametrization

The linear piecewise wall profile of the channel is characterized by a small
number of design variables or Degrees Of Freedom (DOFs). Their exact mean-
ing will be described in Sect. 8.6. Here it is sufficient to say that they repre-
sent the independent variables that may be adjusted, during the optimization
process to achieve the desired goal(s). The variables introduced in this wall
parametrization are presented in Fig. 8.5(c) and summarized in Table 8.1.
There are four DOFs requested for describing the wall profile. Realized by
defining a set of points and connecting them with straight lines, the profile is
constructed only for convenience in order to have the edge of the corrugation
centered on the wall.
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Table 8.1 Variables defining the linear piecewise channel

Variable Symbols Range

module length L [0.8; 2.0]
corrugation height h [0.0; 0.5]
forward edge angle ϕin [10◦; 60◦]
backward edge angle ϕout [10◦; 60◦]
translation of upper wall transl [−0.5L; 0.5L]

Table 8.2 Control points for the NURBS-profile and parameters required

Point x y DOFs

1 0 0 0
2 (L − Lwave)/2 0 0
3 x2 + Δx23 0 1
4 x5 + ρ54 cos ϑ54 y5 + ρ54 sin ϑ54 2
5 x1 + Δx5 y1 + Δy5 2
6 x5 + ρ56 cos ϑ56 y5 + ρ56 sin ϑ56 2
7 x8 − Δx87 0 1
8 x2 + Lwave 0 1
9 L 0 1

8.5.1.2 2D NURBS Parametrization

In order to generate the NURBS channel during the optimization process,
let’s start by defining first the wall profile. As a good compromise between the
number of DOFs and the geometrical complexity, a 9 control-point periodic
cubic NURBS has been chosen, to ensure the periodicity of the channel itself.
A large number of DOFs allows to describe minutely the profile, but if this
number is excessive, it would make the optimization process quite difficult
and expensive. For this reason, it has been also decided to fix to a unitary
value the curve’s weights. This, together with the uniform knots distribution
we adopted, makes our NURBS curve practically equivalent to a B-Spline
curve [18, 38].

As depicted in Fig. 8.5(d), both the first and the last three aligned control
points are needed to maintain the entrance and the exit of the profile parallel
to the x direction. The remaining ones give freedom to the wavy section. The
parameters required for the definition of the lower profile are explained in
Table 8.2 and numbered as in Fig. 8.5(d). The symbol Δ means the difference
between the coordinates of two points while ρij is the module and ϑij the
phase of a polar-coordinate system centered on the point i. The phase is
positive counterclockwise with respect to the positive direction of the x axis.
The profile is again constructed, for convenience, in order to have the wavy
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part centered on the wall. Therefore, the value of parameter x2 is equal to
(L− Lwave)/2. The number of DOFs is now 10.

8.5.1.3 Channel Construction

In Figs. 8.5(a) and 8.5(b) both types of channel are depicted, i.e., linear piece-
wise channel and NURBS channel, and they are constructed in the same way.
Once the lower wall profile has been obtained, the upper one, as illustrated
in Fig. 8.1, is made first by a simple translation in y-direction of the former
in order to obtain the height of the channel, followed by a translation in
x-direction. This guarantees the realistic desire to construct the channels of
e.g., a finned heat exchanger, by simple juxtaposition of identical wavy plates.
This action introduces in both cases another DOF which defines the x trans-
lation of the upper profile, variable transl in Tables 8.1 and 8.4. In order
to avoid linear-dependent channels, the translation range is bounded to one
half-period in both the positive and negative x-direction. The y-translation is
instead fixed: in this way the average height of the channel is set to 0.5, that
is half of the non-dimensional hydraulic diameter (Dh). Finally the periodic
duct module is cut by two straight lines, representing the inlet and the outlet
section, as sketched in Fig. 8.1. Overall, we are left with 5 DOFs for the linear
piecewise model, and 11 DOFs for the NURBS channel.

8.5.1.4 Three-dimensional Extension

Once the two-dimensional results have been obtained, it has been tried to
encourage further mixing in the flow, and therefore an augmentation of the
heat transfer rate by forcing a non-zero value of the z-component of the ve-
locity vector [47]. Three-dimensional analysis has been performed by simple
extrusion from two-dimensional modules. For this purpose, the best two-
dimensional optimized channels in terms of low friction factor and high Nus-
selt number have been selected first, and one new additional variable was
introduced such as the extrusion angle. The constructing procedure is de-
scribed in Fig. 8.2. Due to the exploratory nature of this study, the extrusion
length is fixed to the same value as the channel height.

8.5.2 CC Module

The CAD package CATIA [11] has been utilized to describe the heat trans-
fer surface geometry, thanks to its key feature of allowing the generation of
parametric drawings. In Fig. 8.6, the parameters required to describe the ge-
ometry of a CC surface are presented. Points P1, P2, P3 and P4 define the
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Fig. 8.6 Geometric parametrization for the CC module using Catia

Bézier curves, which give the shape of both extruded virtual profiles forming
the flow channel. The half-height of the channel is controlled by parameter
a, while its width is defined by parameter W . The corrugation angle between
upper and lower plates is given by θ. By changing the parameter values,
various different geometries can be easily produced.

The geometry generated for a set of the parameters can be exported and
subsequently loaded by the software ANSYS ICEM-CFD [2], which generates
the grid. In this work, because of their superior accuracy for Finite Volume
discretization, only structured hexahedral grids have been used, but alterna-
tive possibilities exist for more complicated geometries. The generated grid
is imported into the pre-processor cfx5pre of ANSYS CFX [1] where fluid
characteristics and boundary conditions are automatically defined. The case
file exported by the cfx5pre module is processed by the cfx5solve that solves
fluid and thermal equations. Finally the results are post-processed by the
cfx5post code to obtain the non-dimensional synthetic data for performance
evaluation.

8.6 Optimization Methods

In design, construction, and maintenance of any engineering system, tech-
nological and managerial decisions have to be taken at several stages. The
objective of such a decision process is either to maximize the desired benefit
or to minimize the required effort in terms of time, money, materials, energy,
environmental impact, etc. Such a process can be abstracted from the engi-
neering field and applied to whatsoever situation in which human choice is
present.

A decision-making environment can be linked to the concept of system.
A system is an entity, a set of logical or physical connections that gives
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determinate outputs, when it undergoes through certain inputs. Whoever
wants to look into a system, she/he has to, first of all, build a model of it:
the simplest possible representation, yet bearing the most important features
of the system itself. By means of its model, a system can be studied and
improved using mathematical tools, whenever a quantitative relation between
inputs and outputs can be established. Thus, a system can be seen as a black
box acting on inputs to produce outputs, as in the following relation:

O =

⎧⎨
⎩
O1

...
Om

⎫⎬
⎭ = f(X) = f

⎧⎨
⎩
X1

...
Xn

⎫⎬
⎭ (8.37)

where O is a set of outputs and f is a generic relation linking outputs to
inputs set X.

Optimization is the act of obtaining the best solution under given circum-
stances, as Rao states in [45]. From a system point of view, this means one is
searching a maximum, or respectively a minimum, for function f , depending
on the desired goal. Without loss of generality, noting that the maximum of
f coincides with the minimum of its opposite −f , an optimization problem
can be taken as either a minimization or a maximization one.

The existence of optimization methods can be traced back to the begin-
ning of differential calculus that allows minimization of functionals, in both
unconstrained and constrained domains. But, in real problems, the function f
is unlikely to be a simple analytical expression, in which case the study of the
function by classical mathematical analysis is sufficient. It is rather a usually
unknown relation that might lack continuity, derivativeness, or connected-
ness. Differential calculus, therefore, is of little help in such circumstances.

When a relation is unknown, a trial and error methodology is the oldest
practice, and no further contributions to optimization techniques has been
provided until the advent of digital computers, which have made implementa-
tion of optimization procedures a feasible task. From an optimization point of
view inputs and outputs in Eq. (8.37) can be renamed after their conceptual
meanings. Inputs are usually known in literature as design variables, while
outputs, being the goal of an optimization process, are known as objective
functions or simply objectives. In many practical problems, design variables
cannot be chosen arbitrarily, but they have to satisfy specified requirements.
These are called design constraints. Even the objectives could undergo re-
strictions. They are called functional constraints. In addition to Eq. (8.37),
these two kind of constraints can be formally expressed as:

g (X) ≤ 0 (8.38)

m (f (X)) ≤ 0 (8.39)

where g and m are two general applications. Equality relations are easily
obtained replacing the symbol “≤” with “=”. Optimization problems can be
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classified in several ways that depend on different aspects of the problems
themselves. In [45], the following classifications are highlighted.

A first classification can be based on:

1. Existence of constraints. As stressed earlier, problems can be classified
constrained or unconstrained. Constraint handling is not a trivial task for
most optimization techniques.

2. Nature of design variables. f can be a function of a primitive set of vari-
ables depending on further parameters, thus becoming trajectory optimiza-
tion problems [24].

3. Physical structure of the problem. Depending on the structure of the prob-
lem, optimal control theory can be applied, where a global cost functional
is minimized to obtain the desired solution.

4. Nature of the relations involved. When known or at least well guessed, the
nature of the equations governing the model of the system under study
can address the choice to the most efficient among a set of optimization
methods. Linear, quadratic geometric and nonlinear programming are ex-
amples.

5. Permissible values of design variables. Design variables can be real value
or discrete.

6. Deterministic nature of the variables. The deterministic or stochastic na-
ture of the parameters is a criterion to classify optimization problems.
In particular, the concept of Robust Design or Robust Optimization has
recently gained popularity [32].

7. Separability of the functions. A problem is considered separable if f func-
tions can be considered a combination of functions of single design vari-
ables f1(X1), f2(X2), . . . , f2(Xn) and f becomes:

f(X) =
n∑

i=1

fi(Xi) .

The advantage of such a feature is that in nonlinear problems, nonlinear-
ities are mathematically independent [22].

8. Number of objective functions. Depending on the number of objective func-
tions, the problem can be single- or multi-objective. This is an outstanding
distinction, since in multi-objective optimizations, objectives are usually
conflicting. No single optimum exists, but rather a set of designs the deci-
sion maker has to choose from. This is one of the motivations that have led
to the birth of Evolutionary Multi-Objective Optimization (EMOO) [8].

Depending on the characteristics of optimization problems, many techniques
have been developed to solve them. These can be roughly divided into two
categories.

1. Traditional mathematical programming techniques. They require a certain
knowledge of the relation between objectives and design variables, and
they are usually best suited for single-objective optimizations.
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2. Evolutionary Algorithms (EA). They are heuristic methods that use some
mechanisms inspired by biological evolution: reproduction, mutation, re-
combination, natural selection and survival of the fittest. Their most im-
portant feature is the applicability to almost all types of problems, be-
cause they do not make any assumption about the system under study as
classical techniques do. They can be used when relation f is a completely
unknown function. In their multi-objective version, Multi-Objective Evolu-
tionary Algorithms (MOEA), being part of the recently cited research area
known as evolutionary multi-objective optimization (EMOO), are shown
to be capable of dealing with truly multi-objective optimizations [7].

Differential calculus is the first example of traditional programming tech-
niques, but there is a widely developed literature [45] on the subject. Linear
programming, quadratic programming and nonlinear programming are just
some of the examples. To perform the optimization processes described in
this chapter, evolutionary techniques have been used that are available in
the modeFRONTIER c© optimization program [14]. modeFRONTIER c©, used
throughout, is a state-of-the-art optimization package that includes most in-
struments relevant to data analysis and single- and multi-objective optimiza-
tions.

8.6.1 Design of Experiment

Heuristic evolutionary techniques do not make any assumption on the rela-
tion between objectives and design variables, thus providing an analogy with
experimental dataset analysis. A good initial sampling, which allows an ini-
tial guess on the relations between inputs and outputs, is of great relevance
in reducing optimization effort and improving results [40].

Design Of Experiments (DOE) is a methodology applicable to the design of
all information-gathering activities where variation of decisional parameters
(design variables) is present. It is a technique aimed at gaining the most
possible knowledge within a given dataset. The first statistician to consider
a formal mathematical methodology for the design of experiments was Sir
Ronald A. Fisher, in 1920.

Before the advent of DOE methodology, the traditional approach was the
so-called One Factor At a Time (OFAT). Each factor (design variable) which
would influence the system used to be moved within its interval, while keep-
ing the others constant. In as much as it would require a usually large number
of evaluations, such a process could be quite time consuming. By contrast,
Fischer’s approach was to consider all variables simultaneously, varying more
than one at a time, so as to obtain the most relevant information with min-
imum effort. It is a powerful tool for designing and analyzing data: it elim-
inates redundant observations, thus reducing time and resources in experi-
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ments, and giving a clearer understanding of the influence of design variables.
Three main aspects must be considered when choosing a DOE:

1. The number of design variables (i.e., domain space dimension);
2. The effort of a single experiment;
3. The expected complexity of the objective function.

The modeFRONTIER package includes several algorithms for the DOE se-
lection [14]. In this work, we have mainly used full factorial and Sobol ones.

Full Factorial

Full factorial (FF) algorithm sample each variable span for n values called
levels and evaluates every possible combination. The number of total exper-
iments is

N =
k∏

i=1

ni (8.40)

where ni is the number of levels for the i-th variable and k is the number of
design variables. Full factorial provides a very good sampling of the variables
domain space, giving complete information on the influence of each parame-
ter on the system. The higher the number of levels, the better the informa-
tion. However, this algorithm bears an important drawback, namely that the
number of samples increase exponentially with the number of variables. This
makes the use of FF unaffordable in many practical circumstances.

Sobol

Sobol algorithm creates sequences of n points that fill the n-dimensional space
more uniformly than a random sequence does. These types of sequences are
called quasi-random sequences. This term is misleading since there is nothing
random in this algorithm. The data in this type of sequence are chosen as to
avoid each other, filling in a uniform way the design space. This is illustrated
in Fig. 8.7(b).

8.7 Optimization Algorithms

Optimization algorithms investigate the behavior of a system, seeking for
design variable combinations that give optimal performances. In terms of
objective function values, an optimal performance means the attainment of
extrema. Extrema are points in which the value of the function is either min-
imum or maximum. Generally speaking, a function might present more than
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(a) random sampling (b) Sobol sampling

Fig. 8.7 Random sampling vs. Sobol (quasi-random) sampling

local maximum

global maximum

Fig. 8.8 Multiple extrema points

one extreme point, called local extrema, see Fig. 8.8. It is of great impor-
tance for an algorithm to be capable of finding the global extremum of an
objective with the minimum effort. There are three main characteristics that
distinguish and classify the efficiency of an optimization algorithm:

• Robustness. Robustness is the capability of reaching a global optimum
point without being stuck in local extrema, or blocked for lack of useful
data. This is the most important feature in measuring the efficiency of an
optimization technique. The more an algorithm is robust, the higher the
chance to reach a global optimum or sub-optimum, i.e., a point close to
the global optimum.

• Accuracy. Accuracy is the ability of an algorithm to reach the actual
extrema, either global or local, around its proximity. Usually, accuracy
and robustness are conflicting attributes, so that robust algorithms are
not accurate and vice versa.

• Convergence rate. Convergence rate is a measure of the effort an al-
gorithm has to carry on to reach its goal. Again, robust algorithms are
usually slow. However, fast but not robust ones might not reach the goal
at all.

In this work, evolutionary techniques have been used that are usually ro-
bust but neither accurate nor fast. However, as already stressed, their most
important attribute as well as reason for their popularity is the applicability
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Fig. 8.9 Pareto front for a two-objective optimization

to almost any single- or multi-objective optimization problem of whichever
complexity. In EA heuristic processes, most of the current research aims at
proving actual convergence [7, 46]. Nevertheless, the wide literature on suc-
cessful applications of evolutionary optimizations sets EMOO as a promising
field [54].

Pareto Optimality

As soon as there are many, possibly conflicting, objectives, it is rarely the case
that there is a single design variables combination that simultaneously opti-
mizes all the objective functions in a multi-objective optimization problem.
Rather, there usually exists a whole set of possible solutions of equivalent
quality. This can be the case with heat exchangers and in particular of their
building modules studied in this chapter: the desired objectives might be
to maximize heat transfer rate per unit volume, to minimize the pumping
power, to minimize cost and weight, and to minimize the performance degra-
dation due to fouling. These goals are clearly conflicting and, therefore, there
is no single optimum to be found. For this reason, the so-called Pareto domi-
nance or Pareto optimality concept must be used, according to which design
a dominates design b if and only if:

(∀i fi(a) ≥ fi(b)) ∩ (∃ j : fj(a) > fj(b)) (8.41)

where fi is the i-th objective function, and for simplicity it is assumed that
we are considering the maximization of the n objectives. Expression (8.41)
means that at least in one purpose design a is better than design b, while in
the others they might be equal. Let us consider, as an example, a problem
where it is desired to maximize two objective functions f1 and f2. Each design
evaluation, during the optimization, produces an [f1, f2] couple, and all these
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Fig. 8.10 Evolutionary operators of a GA

data can be represented graphically as in Fig. 8.9. The relations (8.41) allows
the determination of a design set – those joined by a dashed line – which is
called Pareto front or Pareto optimal set and whose dimension is equal to
n− 1. In this example n = 2, and the front is a line.

8.7.1 Genetic Algorithm

Genetic algorithm (GA) is the most popular type of EA. The basic idea
underlying the method comes from the behavior of living organisms in nature.
An initial set of individuals, called initial population, undergoes a natural
selection process. So each individual can be seen as a DNA string. Parental
populations give birth to offsprings. GAs work on individuals as coded bit
strings, thus they need discrete variable intervals. The new generations are
created following a series of genetic rules:

• Selection. Selection operator randomly shifts a defined number of indi-
viduals to the next generation, keeping them unchanged. The probability
for an individual to undergo a process of selection is weighed on the fitness1

value of each design. The better the fitness, the higher the probability to
be selected for the new population.

1 fitness is the measure of how a design variable set fits the goal of an optimization. Its
quantitative definition depends on the chosen algorithm.
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P (X i) =
F (Xi)∑n

j=1 F (Xj)

where P (Xi) is the probability of selection for the i-th individual with
fitness F (X i) of the n-sized population.

• Mutation. Mutation operator consists of the random substitution of some
bits (nucleotides) in the numeric string representing an individual. The role
of mutation is to enhance the probability of exploring untouched areas
of the design space avoiding premature convergence. Mutation generally
involves less than 10% of the individuals.

• Crossover. Crossover is a genetic recombination between two individuals,
whose strings are randomly cut and re-assembled.

The version of GA in modeFRONTIER c© implements a fourth operator called
directional crossover. It assumes that a direction of improvement can be de-
tected comparing the fitness values of two reference individuals. This operator
usually speeds up the convergence process, though it reduces robustness.

Directional cross over works as follows:

1. Select an individual i;
2. Select reference individuals i1 and i2;
3. Create the new individual as:

Xinew = Xi + s · sign(Fi − Fi1 )(X i −Xi1) + t · sign(Fi − Fi2 )(Xi −Xi2 )

where s and t are two random parameters. The genetic operator behavior is
illustrated in Fig. 8.10. Each operator can be applied with a certain proba-
bility. Different combinations of operator probabilities may lead to different
levels of robustness, accuracy and convergence rate.

8.7.2 Multi-objective Approaches

When there is a single-objective function, the definition of a metric for evalu-
ating design fitness is straightforward. Pareto optimal set reduces to a single
point and the best design is a global extreme. On the other hand, the in-
troduction of multiple objectives tangles things a bit. It has been already
stressed that in multi-objective optimization, there exists a set of solutions
that present equal quality or effectiveness. These are the non-dominated de-
signs as defined in Eq. (8.41). The problem arises as to how to compare and
judge designs in order to get a scalar evaluation scale for their fitness.

MOEA approaches can be roughly divided into three categories: Aggregat-
ing Functions, Population-based Approaches, and Pareto-based Approaches.
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8.7.2.1 Aggregating Functions

The most straightforward approach in handling multiple objectives is the use
of an arithmetical combination of all the objectives. Thus, the resulting single
function can be studied with any of the single-objective algorithms either
evolutionary or classical. Aggregating approaches are the oldest mathematical
programming methods found in literature [45].

Applied to EA, the aggregate function approach does not require any
change to the basic search mechanism. Therefore, it is efficient, simple, and
of easy implementation. It can be successfully used on simple multi-objective
optimizations that present continuous convex Pareto fronts. An example of
this approach is a linear sum of weights of the form:

min

(
m∑

i=1

wifi(X)

)

where the weight wi represent the relative importance of the m-th objective
function. The weighting coefficients are usually assumed to sum at 1:

m∑
i=1

wi = 1 .

Aggregate function may be linear as in the previous example or nonlinear.
Both types of function have been used with evolutionary algorithms but,
generally speaking, aggregating methods have some limitations in generating
complex Pareto fronts, though nonlinear aggregating function do not neces-
sarily present such limitations [8]. Aggregating functions are widely used in
Multi-Criteria Decision Analysis (MCDA) or Multi-Criteria Decision Mak-
ing (MCDM) [5]. MCDA is a discipline aimed at supporting decision makers
who are faced with making numerous and conflicting evaluations. MCDM is
frequently used by EA users for a posteriori analysis of optimization results,
but the discipline can be applied in a much more sophisticated way for a
priori analysis. MCDM is briefly introduced in Sect. 8.7.3.

8.7.2.2 Population-based Approaches

In these techniques the population of an EA is used to diversify the search,
but the concept of Pareto dominance is not directly incorporated into the
selection process.

The first approach of this kind is the Vector Evaluation Genetic Algo-
rithm (VEGA) introduced by Schaffer [48]. At each generation this algo-
rithm performs the selection operation based on the objective switching rule,
i.e., selection is done for each objective separately, filling equal portions of
mating pool (the new generation) [12]. Afterwards, the mating pool is shuf-
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fled, and crossover and mutation are performed as in basic GAs. Solutions
proposed by VEGA are locally non-dominated, but not necessarily globally
non-dominated. This comes from the selection operator which looks for op-
timal individuals for a single objective at a time. This problem is known as
speciation. Groups of individuals with good performances within each objec-
tive function are created, but non-dominated intermediate solutions are not
preserved.

8.7.2.3 Pareto-based Approaches

Recognizing the drawbacks of VEGA, Goldberg [20] proposed a way of tack-
ling multi-objective problems that would become the standard in MOEA for
several years.

Pareto-based approaches can be historically divided into two generations.
The first is characterized by fitness sharing and niching combined with the
concept of Pareto ranking. Keeping in mind the definition of non-dominated
individual, the rank of a design corresponds to the number of individuals
by which it is dominated. Pareto front element has a rank equal to 1. The
most representative algorithms of the first generation are Nondominated Sort-
ing Genetic Algorithm (NSGA), proposed by Srinivas and Deb [50], Niched-
Pareto Genetic Algorithm (NPGA) by Horn et al. [21], and Multi-Objective
Genetic Algorithm by Fonseca and Fleming [19].

The second generation of MOEAs was born with the introduction of
elitism. Elitism refers to the use of an external population to keep track
of non-dominated individuals. In such a way, viable solutions are never dis-
regarded in generating offsprings.

The second generations of multi-objective algorithms based on GA are:

1. MOGA-II. MOGA-II uses the concept of Pareto ranking. Considering a
population of n individuals, if at generation t, individual xi is dominated
by p(t)

i designs of the current generation, its rank is given by:

rank(xi, t) = 1 + p
(t)
i .

All non-dominated individuals are ranked 1. Fitness assignment is per-
formed by:

a) Sort population according to rank;
b) Assign fitness to individuals by interpolating from the best to the worst;
c) Average the fitness of individuals with the same rank. In this way, the

global fitness of the population remains constant, giving quite a selective
pressure on better individuals.

The modeFRONTIER c© version of MOGA-II includes the following smart
elitism operator [39]:
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a) MOGA-II starts with an initial population P of size n and an empty
elite set E = ∅

b) For each generation, compute P ′ = P ∪ E
c) If cardinality of P ′ is greater than cardinality of P , reduce P ′ randomly

removing exceeding points
d) Generate P ′′ by applying MOGA algorithm to P ′

e) Calculate P ′′ fitness and copy non-dominated designs to E
f) Purge E from duplicated and dominated designs
g) If cardinality of E is greater than cardinality of P randomly shrink the

set
h) Update P with P ′′ and return to step (b)

2. NSGA-II. NSGA-II employs a fast non-dominated sorting procedure and
uses the crowding distance (which is an estimate of the density of solutions
in the objective space) as a diversity preservation mechanism. Moreover,
NSGA-II has an implementation of the crossover operator that allows the
use of both continuous and discrete variables. The NSGA-II does not use
an external memory as MOGA does. Its elitist mechanism consists of com-
bining the best parents with the best offspring obtained.

8.7.3 Multi-Criteria Decision Making (MCDM)

As already stated, it is impossible to find out a unique best solution in a
multi-objective optimization process, but rather a whole group of designs
that dominate the others: the Pareto front or Pareto optimal set. All Pareto
optimal solutions can be regarded as equally desirable in a mathematical
sense. But from an engineering point of view, the goal is a single solution to
be put into practice at the end of an optimization. Hence, the need for a de-
cision maker (DM) who is able to identify the most preferred one among the
solutions. The decision maker is a person who is able to express preference
information related to the conflicting objectives. Ranking between alterna-
tives is a common and difficult task, especially when several solutions are
available or when many objectives or decision makers are involved.

Decisions have taken over a limited set of good alternatives mainly due
to the experience and competence of the single DM. Therefore, the decision
stage can be described as subjective and qualitative rather than objective and
quantitative. Multi-Criteria Decision Making (MCDM) refers to the solving
of decision problems involving multiple and conflicting goals, coming up with
a final solution that represents a good compromise that is acceptable to the
entire team. As already underlined, when dealing with a multi-objective opti-
mization, the decision making stage can be done in three different ways [53]:
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• Decision-making and then search (a priori approach). The prefer-
ences for each objective are set by the decision-makers and then, one or
various solutions satisfying these preferences have to be found.

• Search and then decision-making (a posteriori approach). Var-
ious solutions are found and then, the decision-makers select the most
adequate. The solutions chosen should represent a trade-off between the
various objectives.

• Interactive search and decision-making. The decision-makers inter-
vene during the search in order to guide it towards promising solutions by
adjusting the preferences in the process.

modeFRONTIER c© implementation of MCDM allows the user to classify
all the available alternatives through pair-wise comparisons on attributes
and designs. Moreover, modeFRONTIER helps decision makers to verify the
coherence of relationships. Thus it is an a posteriori or interactive oriented
tool.

To be coherent, a set of relationships should be both rational and transi-
tive. To be rational means that if the decision maker thinks that solution A
is better than solution B, then solution B is worse than solution A. To be
transitive means that if the decision maker says that A is better than B and
B is better than C, then solution A should be always considered better than
solution C. In this way, the tool allows the correct grouping of outputs into a
single utility function that is coherent with the preferences expressed by the
user. Four algorithms are implemented in modeFRONTIER:

• Linear MCDM. When the number of decision variables is small;
• GA MCDM. This algorithm does not perform an exact search so it can

be used even when the number of decision attributes is large;
• Hurwicz criterion. Used for the uncertain decision problems;
• Savage criterion. Used for the uncertain decision problems where both

the decision states and their likelihoods are unknown.

8.7.4 Optimization Process

The parameters that influence the performances of a heat exchanger, and in
particular of the single repeating module under study, are its overall heat
transfer coefficient and the pumping power required to supply a desired mass
flow. In a dimensionless perspective, these two parameters are represented by
the friction factor and the Nusselt number, respectively. Both quantities are
function of the geometric variables:

[f,Nu] = g(X) (8.42)

where vector X is constituted by the degrees of freedom of the chosen
parametrization, either linear piecewise, Bézier or NURBS. As stated before,
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Fig. 8.11 Optimization work-flow

there is an ample variety of numerical techniques to perform optimization
tasks. EAs are the most robust ones, and have been used in this optimization
process. In particular, MOGA-II algorithm, has been employed.

The optimization process, sketched in Fig. 8.11, follows these tasks:

• Automatically the optimization software generates a set of numbers, i.e.,
the geometrical design variables, representing the shape of a channel
(called individual).

• These variables are written in an input file, which is sent to the CFD
solver. This, in turn, computes the flow and thermal fields, and from these,
it evaluates the friction factor and the Nusselt number, which represent
the objective functions.

• The numerical values of the objective functions are sent back to the opti-
mizer, which generates another set of geometrical parameters.
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Fig. 8.12 Pareto front for the 2D linear piecewise optimization process

The results are expressed in terms of the ratios Nu/Nu0 and f/f0, where
Nu0 and f0 are the Nusselt number and the friction factor for a parallel plate
channel, taken as reference geometry.

8.8 Results and Discussion

8.8.1 Linear Piecewise Optimization

The first analysis has been conducted on the linear piecewise geometry type.
The variables are small in number and clearly related to the shape of the
channel: the depth of the asperity, the forward side angle, the backward side
angle, the length of the channel and the translation of the upper wall.

The Full Factorial algorithm [14] with three levels has been used (DOE)
to sample the design space. This method gives the best homogeneous distri-
bution of the samples. The number of Full Factorial samples is 243 and the
parameters ranges are given in Table 8.1. In a GA optimization, the size of
the population within the design space affects the convergence ratio. After
having performed the numerical simulation on this set, its Pareto front has
been chosen as the initial population of multi-objective optimization with GA.
This preliminary Pareto front is a good selection in order to limit the number
of starting channels. The optimization has been performed with MOGA-II
along 30 generations of 20 individuals each: so the total number of designs
evaluated is 600. The results are sketched in Fig. 8.12 where the Pareto front
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Table 8.3 Values of the design variables for the selected linear piecewise channels

ID i ID ii ID iii ID iv ID v

L 2.00 1.64 1.54 1.58 1.47
h 0.400 0.400 0.383 0.400 0.400

ϕin 60.00◦ 59.04◦ 60◦ 59.04◦ 60.00◦
ϕout 60.00◦ 56.04◦ 50.16◦ 51.24◦ 49.32◦

transl 0.066 0.102 0.202 0.236 0.298

is highlighted. Due to the simplicity of the parametrization, the dominant
set can probably be taken as the limit performance of this kind of geometry.
In fact, further optimization process has not given appreciable improvements
on design objectives.

From the analysis of the shape of the channels along the Pareto front,
sketched for convenience in the same figure, no sensible fluctuation is evident
for variables like ϕin and h, which remain close to 60◦ and 0.4, respectively.
What makes the difference is the translation of the upper profile, responsible
for the development of the separation bubble induced by the corrugation. In
Table 8.3, the values of the design variables required for the definition of the
channels, marked in Fig. 8.12 for illustrative purpose, are presented.

8.8.2 NURBS Optimization

As already stated, the increased number of degrees of freedom causes a more
expensive optimization task. In contrast with linear piecewise optimization,
the Full Factorial algorithm has not been used as first exploration of the
design space. Since there are 11 degrees of freedom, the number of individ-
uals to be computed would have risen to 311, that means 177, 147, with a
three-level Full Factorial. The Sobol algorithm [14] has been chosen to define
an initial population of 50 individuals. The optimization algorithm chosen
was again MOGA-II. The optimization has started allowing great freedom to
the design variables, and no constraint has been imposed. In Table 8.4, the
summary of design variable ranges and the number of steps (basis), which
notches them to discrete form, are presented. The choice of the variables and
their range might dramatically affect the convergence rate to a good solution.
In our case, the generation of input strings leading to incoherent geometries
has to be avoided as much as possible. One strategy is to scale the x-direction
Cartesian variables to the length of the channel L. Therefore, all parameters
are proportional to each other. Figure 8.13(a) shows the Pareto front after
this first optimization stage. Five channels, representative of different com-
bination of the two objectives, are highlighted. From Fig. 8.13(a), it is clear
that all the individuals selected have in common the presence of closing bends
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Fig. 8.13 Pareto front comparison between different optimization processes for the 2D
NURBS channels: (a) first MOGA; (b) first MOGA with constraint; see also Fig. 8.14

in wall profile. The same happens for almost all the other channels. Taking
into account the industrial feasibility, though only from a methodological
point of view, these channels would be very difficult to realize, for example,
in a forming process. Therefore, a sort of fabricability check has been im-
plemented, and its aim was to discard those geometries whose wall profile



252 Marco Manzan, Enrico Nobile, Stefano Pieri and Francesco Pinto

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

2

4

6

8

10

Nu/Nu0

f/f0

D a
D e

D d

D c

D f
D b

Fig. 8.14 Pareto front comparison between different optimization processes for the 2D
NURBS channels: last Pareto front; see also Fig. 8.13

Table 8.4 Ranges of the variables for the first NURBS optimization

Parameter Range Basis

L [1.00; 2.50] 1001
Lwave [0.15 L; 0.85 L] 1001
Δx23 [0.01 L; 0.20 L] 1001

ρ54 [0.05; 1.20] 1001
ϑ54 [70◦; 300◦] 501
Δx5 [0.30 L; 0.75 L] 1001
Δy5 [0.00; 0.50] 1001
ρ56 [0.05; 1.10] 1001
ϑ56 [−120◦; 150◦] 501
Δ87 [0.01 L; 0.80 L] 1001

transl [−0.500 L; 0.500 L] 1001

could not be obtained by moulding. This constraint can be summarized as
follows. During the construction procedure, after the lower wall profile has
been drawn, it is brushed along x direction by straight lines which progres-
sively change their slope ([−45◦; +45◦] with respect to y axis), Fig. 8.15. The
channel is declared feasible if and only if, there exists at least one direction
at which all the lines encounter the wall profile no more than once. The sim-
ulation has been restarted with the same parameters, but introducing the
fabricability check just described. Results are depicted in Fig. 8.13(b). The
presence of such a constraint makes the optimization process closer to the
channel shapes more common in practice. Its observation reveals the decreas-
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X x

X y

Fig. 8.15 Fabricability check

ing performances of the second set, as it comes out from a comparison between
Figs. 8.13(a) and 8.13(b). As already anticipated the MOGA algorithm is well
suited for truly multi-objective problems. It is robust, albeit somehow slow
for increasing number of objective functions or design variables.

Once a high quality Pareto front has been obtained, one can choose slightly
different strategies in order to improve the fitness of the channels. One way
is to transform the multi-objective problem into a single-objective one by
means of a weighted function, involving objectives. The mono-objective opti-
mization, performed using MOGA-II and Simplex [45] algorithms, makes the
process faster. Having two starting objectives, imposing different relations
between designs, a different weight distribution on f and Nu could be given
and a different ranking to each alternative would be assigned. Using MCDM,
two kind of utility functions were created: the first privileges the increase of
Nusselt number, whereas the other is more focused toward the reduction of
the friction factor. In this way, the results summarized in Fig. 8.14 have been
obtained after evaluating 2,500 designs.

In the same figure two sequences of three channels, each one having al-
most the same performance metrics, are marked. They represent different
arrangements of geometries in the Pareto front. After the NURBS optimiza-
tion process it has been recognized that two different families of channel
shapes belong to the part of the Pareto front characterized by high values of
f and Nu, and they are shuffled.

Although various kind of corrugations are present, the main difference
between the two types, the one called S for short (ID a, ID c, ID e), the
other L for long (ID b, ID d, ID f), is the length of the module. The average
length of S-channels is 1, while for L-channels it is 2, so the ratio between
length of channels S and channels L is 0.5. This is an important feature of the
optimization because it shows the non-univocity of the solution, i.e., similar
performances can be reached by very different geometries [41]. In Fig. 8.16,
the design database has been filtered and divided into two categories. Pareto
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Fig. 8.16 Two distinct Pareto front for the different type of geometries
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Fig. 8.17 Overlapping the solutions, leading to a single Pareto front

dominance applied to both subsets of design shows there are clearly two
fronts made of completely different geometries that overlap. From Fig. 8.17,
it is clear that the unfiltered front is mainly made by long geometries with
superpositions of short channels. Figure 8.14 shows two examples of this
phenomenon. It should be noted that at low values of f and Nu, the shape
of designs is close to parallel plate channel, so the different length does not
affect the form of the wave.

The six channels marked in Fig. 8.14 are shown in Fig. 8.18, together with
the streamlines and non-dimensional temperature field. They are scaled with
the same average height in order to be directly compared. In Table 8.5, the
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Table 8.5 Control points for the selected NURBS-based channels

ID a ID b ID c

(x1, y1) (0, 0) (0, 0) (0, 0)
(x2, y2) (0.160, 0) (0.354, 0) (0.179, 0)
(x3, y3) (0.207, 0) (0.457, 0) (0.252, 0)
(x4, y4) (0.190, 0.220) (1.183, 0.251) (0.409, 0.161)
(x5, y5) (0.410, 0.199) (0.196, 0.267) (0.612, 0.207)
(x6, y6) (1.348, 0.198) (0.893,−0.234 (0.965, 0.224)
(x7, y7) (0.768, 0) (1.830, 0) (0.580, 0)
(x8, y8) (0.554, 0) (1.950, 0) (0.843, 0)
(x9, y9) (0.870, 0) (2.304, 0) (1.023, 0)
transl 0.290 −1.039 −0.204

ID d ID e ID f

(x1, y1) (0, 0) (0, 0) (0, 0)
(x2, y2) (0.341, 0) (0.113, 0) (0.347, 0)
(x3, y3) (0.487, 0) (0.171, 0) (0.480, 0)
(x4, y4) (1.149, 0.248) (−0.105, 0.249) (1.068, 0.209)
(x5, y5) (1.152, 0.268) (0.208, 0.279) (1.111, 0.262)
(x6, y6) (0.827,−0.362) (0.551,−0436) (0.696,−0.440)
(x7, y7) (1.853, 0) (0.685, 0) (1.890, 0)
(x8, y8) (1.880, 0) (0.909, 0) (1.916, 0)
(x9, y9) (2.221, 0) (1.023, 0) (2.263, 0)
transl −0.920 −0.268 −0.994

values of control points and of upper wall translation for the six channels are
listed.

8.8.3 Linear Piecewise versus NURBS

In Fig. 8.20, the results sets obtained by the linear piecewise and NURBS
optimization are compared. The ones marked by stars, represent channels
with linear piecewise wall profile. The others marked by squares, represent
channels with smooth NURBS wall profile. The higher geometrical complex-
ity and computational costs of NURBS channels is well counterbalanced by
the significant performance improvement over the simpler channels with lin-
ear piecewise walls. The greater number of variables makes the convergence
slower and an asymptotic limit of the front was not reached during the opti-
mization of NURBS profile channel.
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Channel (a) f = 0.417 Nu = 9.90

Channel (b) f = 0.427 Nu = 9.96

Channel (c) f = 0.436 Nu = 10.04

Fig. 8.18 Selected NURBS-based channels: fluid-dynamic (left) and thermal (right) fields.
These three channels correspond to designs marked in Fig. 8.14; see also Fig. 8.19

8.8.4 Three-dimensional Analysis

This part of the work is a proof-of-concept in 3D applications. A true op-
timization has not been performed on NURBS channels but, due to time
limitation and computing resources available, a parametric analysis has been
done in order to verify the applicability of the method to 3D problems. For
the same reasons, the Reynolds number has been reduced from 200 to 100,
in order to guarantee an adequate level of numerical accuracy. Therefore, the
2D Pareto fronts have been recomputed at this reduced value of the Reynolds
number, in order to compare the performances of the 2D channels with the
3D ones. These have been obtained, as indicated in Fig. 8.2, by extrusion,
at different angles, of selected 2D channels. In Figs. 8.21(a) and 8.21(b), the
results obtained are presented. In particular, the results for the simpler chan-
nels with linear piecewise walls are shown in Fig. 8.21(a), while the objective
functions for the NURBS-based channels are shown in Fig. 8.21(b). From the
figures it is evident that, for both type of channels, the Nusselt number in
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Channel (d) f = 0.539 Nu = 10.87

Channel (e) f = 0.577 Nu = 10.92

Channel (f) f = 0.587 Nu = 11.13

Fig. 8.19 Selected NURBS-based channels: fluid-dynamic (left) and thermal (right) fields.
These three channels correspond to designs marked in Fig. 8.14; see also Fig. 8.18

Table 8.6 Variation of friction factor and Nusselt number versus extrusion angle for one
design

f/f0 Nu/Nu0 Extrusion angle

3.807 1.307 0◦
3.932 1.366 20◦
3.937 1.508 30◦
3.909 1.530 40◦

general tends to increase, without a sensible increment in the friction factor,
for the 3D channels when the extrusion gives rise to a 3D flow pattern.

This trend is due to the presence of secondary motions that enhance the
heat transfer at the walls. In Table 8.6, the results for one of the NURBS
profile extrusions are reported, and the positive effect of secondary motions
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Fig. 8.20 Pareto front comparison between linear piecewise and NURBS-based channels

and longitudinal steady vortices on the heat transfer rate is again clear. For
illustrative purposes, the secondary flow pattern for two channels obtained
with a 20◦ and 40◦ extrusion respectively, are depicted in Fig. 8.22.

Finally, a MOGA optimization has been started on extruded linear piece-
wise channels for a short number of generations. The Pareto front of this
optimization is compared in Fig. 8.23 with the 2D linear piecewise and 2D
NURBS fronts. Though the 3D linear piecewise front is rather sparse because
of a small number of individuals processed, the heat transfer augmentation
due to secondary motions is clearly visible.

8.8.5 CC Module

Again with MOGA-II, an original design was used for the DOE when op-
timization was first attempted. The design had sinusoidal wall profile (de-
sign 0), characterized by a corrugation angle θ = 60◦, and 35 designs have
been chosen with Sobol method. The value of the angle θ has been chosen,
following Stasiek et al. [52], as a good compromise in terms of heat trans-
fer rate and friction factor. The six design variables were, with reference to
Fig. 8.6, P1, P2, P3, P4, W and θ. The three objectives to be minimized
were the pressure gradient β, the temperature difference between the two
fluids ΔT and the heat transfer surface area. The first objective has been
selected to reduce the pressure drop across the regenerator. The second one
drives the heat transfer performance of the regenerator. For instance, based
on inspection of Eq. (8.35), a lower ΔT leads to a higher mean Nusselt num-
ber. The last objective has been selected to reduce the overall cost of the
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Fig. 8.21 Pareto front comparison: (a) linear piecewise profile; (b) NURBS profile

material. All three objectives were constrained to be smaller or at least equal
to those for the reference design 0. This preliminary attempt, however, was
quite unsuccessful, with most of the computed designs considered unfeasible
(outside the constraints domain).
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(a) (b)

Fig. 8.22 Example of secondary vortices for the 3D NURBS channels: (a) extrusion angle
of 20◦; (b) extrusion angle of 40◦
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Fig. 8.23 Pareto fronts: 2D-3D linear piecewise and 2D smooth NURBS profile

Therefore, a second, simpler optimization has been carried out using 5 de-
sign variables, by fixing W . Moreover the objective ΔT has been transformed
to a constraint, in order to simplify the optimization and to favour module
geometries with lower surface area and lower pressure drop. The optimization
has been carried out for 332 designs. At this point the process was practi-
cally converged. The Pareto front of this optimization is reported in Fig. 8.24
where it can be seen that the designs with the same inclination angle θ are
rather perfectly aligned. A decrease of the inclination angle leads to lower
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Fig. 8.24 Pareto fronts for the CC channel: ♦ feasible designs, + unfeasible designs, ◦
Pareto front, (a) Pareto fronts, (b) design numbers

pressure drop and surface area as shown in Fig. 8.24(b) while maintaining
the same heat transfer characteristics. This trend is maintained up to an an-
gle of 42◦, while for lower values the same heat transfer characteristics could
not be maintained. These correspond to unfeasible results, since the value of
the mean Nusselt number is lower than that of the original design 0.

Among the designs that belong to the Pareto front, the design 134 has
been chosen for illustrative purposes. In fact it has less than 19% pressure
gradient β, and a surface area 2% lower than that of the original one while
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Fig. 8.25 (a) Original design 0, with θ = 60◦; (b) optimized design 134, with θ = 42◦

(a) (b)

Fig. 8.26 (a) Heat flux on the wall for the original design; (b) heat flux on the wall for
the optimized design

maintaining the same ΔT. These results have been duly verified by running
grid-independence tests at several grid resolutions, up to 5 × 105 cells. The
newly optimized geometry has a sharper shape of the walls and a lower value
of the corrugation angle, i.e., θ = 42◦, which means a major length of the
repeating module. The original and optimized profiles are given in Fig. 8.25,
while the local Nusselt number distribution on the interface wall, for the
original and optimized design, are presented in Fig. 8.26.

8.9 Concluding Remarks

In this chapter, we have described our approach for the multi-objective shape
optimization of convective periodic channels, which represent a fundamental
building block of many heat exchangers. The optimization is performed for a
fluid of Prandtl number 0.7, representative of air and other gases, assuming
fully developed velocity and temperature fields, and steady laminar condi-
tions.

We considered first the optimization of two-dimensional channels, de-
scribed either by linear piecewise corrugated walls, or by wavy NURBS-
based profiles. It has been observed that simpler linear piecewise channels,
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though easier to optimize, cannot provide the same performances obtained by
NURBS channels. It has been shown that, as in similar studies, very differ-
ent channel shapes offer almost the same flow and heat transfer performance,
i.e., non-uniqueness of the shape optimization problem. The 3D channels have
been obtained by extrusion at variable angles of linear piecewise and NURBS
channels. The former has been optimized while for the latter, a parametric
analysis has been done. In both cases, the presence of secondary motions,
and in particular steady longitudinal vortices, leads to a significant increase
of the heat transfer rate in comparison with the 2D channels.

The optimization of the CC periodic module has been carried out con-
sidering both hot and cold fluid streams, without the necessity of imposing
artificial constant-temperature or constant-flux boundary conditions. In this
case, a major effort was the proper linking of the different software packages
and additional utilities. The first results are very encouraging since one of
the optimized geometries leads to almost the same heat transfer performance
of the original design, but with a significant pressure drop reduction of about
20% and without increase of the heat transfer surface.

The procedure described has been proven robust and efficient, and in prin-
ciple, could be applied to even more complex problems.
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Chapter 9

CFD-based Optimization for a
Complete Industrial Process:
Papermaking

Jari Hämäläinen, Taija Hämäläinen, Elina Madetoja and Henri
Ruotsalainen

Abstract Development of tailored software tools based on coupling of Com-
putational Fluid Dynamics (CFD) with optimization is presented in this pa-
per. In papermaking, industrial applications deal with fluid dynamics at the
wet-end of a paper machine as well as in the entire papermaking process.

First, the CFD tools being developed for optimal shape design and opti-
mal control problems at the wet-end (where the paper web is formed) are
presented. Different levels of complexity of CFD modeling and a dimension
reduction technique are considered in this paper. The reduced CFD model
used is validated with a complete model.

In addition, optimization of the whole papermaking process being mod-
eled with different modeling techniques is considered. Our approach is based
on interactive multi-objective optimization because the papermaking pro-
cess as well as the produced paper require multiple criteria to be optimized
simultaneously. Typically, the objectives are conflicting which means that
compromises need to be done. This is illustrated with numerical examples.

Finally, a completely new design of decision support tools based on multi-
objective optimization and multiphysical modeling of large industrial systems
is discussed.

9.1 Introduction

Optimal shape design is the best-known example of model-based optimiza-
tion in which the model is described as a system of partial differential equa-
tions. In a sense, optimal shape design is an inverse problem, that is, the
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shape of a domain is not known a-priori. Instead, a shape is sought such that
the cost function is minimized (or maximized), and the state equation and
possible constraints are fulfilled. The cost function, also known as the objec-
tive function, measures the quality of the shape. Typically, it is formulated
such that its minimum (or maximum) value corresponds to the best possible
shape (optimal shape). The state equation is a model describing the physical
phenomenon to be studied, as in the case of the Navier-Stokes equations,
for example. The constraints ensure that the optimal shape is reasonable,
for instance, by setting limits to total material usage in solid mechanical
problems, minimum and maximum material thicknesses. Optimal control is
a special case of shape optimization. Instead of the shape of the domain, the
boundary data, for example, are now a-priori unknown. A typical optimal
control problem related to CFD is the search for an optimal velocity profile
at an inlet or optimal heat flux through a wall.

Optimal shape design is said to have originated with Hadamard in 1910
[9], who first supplied a formula for a partial differential equation in order
to evaluate the change due to a boundary modification of the domain. The
first engineering applications were in solid mechanics. CFD emerged through
potential flows, Euler equations, and finally viscous Navier-Stokes equations
including turbulence models. For further information, see [18, 29, 32] and the
bibliographical studies cited there.

In traditional optimal shape design or optimal control problems, there is
only one objective (also known as cost function) to be optimized. However,
everyday engineering problems typically involve several conflicting objectives
that should be achieved simultaneously. A single objective function can be
derived from multiple functions, as a weighted sum, for example, but then the
practical relevance of the cost function values may be lost. Instead, it is more
reasonable to handle multiple objectives as they arise naturally from engineer-
ing problems, by using methods of multi-objective optimization [26, 34]. The
importance of multi-objective optimization becomes even more significant
when dealing with large industrial processes and taking into account con-
secutive unit-processes, raw material, energy consumption, and end-product
quality and price, each of which have their own objectives. Applications of
multi-objective optimization are not only necessary to handle engineering
problems, but will play an important role also in decision support systems in
the future.

Computing capacity is always limited which leads to compromises between
accuracy, scope and computing time as illustrated in Fig. 9.1. Naturally, there
is a need for detailed small-scale modeling such as Direct Numerical Simu-
lation (DNS) which requires high performance computing even without any
optimization. But the detailed models cannot be coupled with optimization
if total computational (CPU) time is to be kept reasonable. When a new
product is being designed, a relatively long CPU time, days or even weeks,
is considered acceptable. Therefore, the optimal shape design can be used
based on a complex CFD model. But when a fast response, in seconds or
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Fig. 9.1 Compromise between accuracy and extent of CFD when coupled with optimiza-
tion

minutes, is required, the cost function evaluation has to be carried out ex-
tremely quickly. This is possible only with the use of reduced CFD models.
Moreover, when the scope extends to a large system consisting of numer-
ous unit-process models coupled with multi-objective optimization, models
need to be reduced even further. Such is the case when modeling the entire
papermaking process. Evidently, CFD and different CFD based optimiza-
tion applications involve varying demands for accuracy, complexity and CPU
time.

CFD-based optimization tools developed for the paper industry are dis-
cussed in this paper. Applications vary from headbox optimal shape design
(Sect. 9.2) and optimal control (Sect. 9.3) to multi-objective optimization
(Sect. 9.4) and decision support systems (Sect. 9.5) designed for the whole
paper machine, all having basis in reduced CFD models. In this paper, one
such model, the depth-averaged Navier-Stokes equations, has been validated
in a contracting channel.

9.2 Optimal Shape Design of the Tapered Header

A traditional design problem in the paper machine headbox is the tapering of
the header that allows even outlet flow rate distribution across the full width
of the paper machine [1, 24, 35]. The headbox is the first part of the paper
machine from where the fiber-water mixture starts the papermaking process
by going through the header as the first flow passage (Fig. 9.2). The fiber-
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Fig. 9.3 Cross-directional flows inside a headbox due to uneven flow distribution coming
from the tapered header

water mixture coming from a pump is turned 90◦ into the machine direction
and distributed inside the header as illustrated in Fig. 9.3. An uneven flow
rate distribution may cause an uneven basis weight profile in the paper web
produced. Inside the headbox, a non-optimal header may also be a potential
source of cross-directional flows which in turn causes misaligned fibers in the
paper since fibers approximately follow the velocity vectors at the outlet jet
of the headbox. Optimization is utilized to minimize these disturbances.

The design of the tapered header has been identified as an optimal shape
design problem. A cost function describes how even the flow rate distribution
after the header should be and design variables define the location of the back
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Fig. 9.4 Initial and optimized back wall of the tapered header

wall of the header. The first numerical experiments in header optimization
were reported in the early 1990’s [10, 11].

Modeling of the headbox flows includes certain special features. First, the
tube bundles (see Figs. 9.2 and 9.3) consist of hundreds of small tubes. They
cannot be included in detail in CFD but are taken into account as an ef-
fective porous medium. A three-dimensional (3D) CFD model would also be
too time-consuming for optimization. Hence, specific two-dimensional (2D)
models have been developed for the headbox applications [12]. The header
model is derived from a 3D, incompressible, k–ε turbulence model by averag-
ing the equations in the vertical direction, which results in a non-standard 2D
flow model. A similar approach has also been studied in [33] for open-channel
problems.

In addition to model reductions, optimization methods also have a signif-
icant influence on computing efficiency. In general, gradient-based methods
have proven to be more efficient than gradient-free methods for the optimiza-
tion problems introduced in this paper. The most critical step in gradient-
based optimization algorithms is the evaluation of the cost function gradient.
Finite difference approximation is easy to obtain, even for complex models,
but on the other hand, it is inefficient. The so-called adjoint state technique
has also been studied for the tapered header [13] but only for laminar or
algebraic turbulence models. Evaluation of the cost function gradient can be
avoided by using genetic algorithms [4, 14]. Nevertheless, at least in paper-
making applications, gradient-based methods are much faster than genetic
algorithms, even when the gradient is approximated by finite differences. In
genetic algorithms, a large set of uninteresting solutions has to be calculated
in order to find the interesting ones.

The designing software tool for optimization of the tapered header was
introduced in the industry in 1995. The design procedure takes place only
once a week, and thus, a CPU time of several hours is acceptable. It is also
justified to utilize a two-equation turbulence model, together with finite dif-
ference approximation of the cost function gradient, instead of a fast solver
based on an algebraic turbulence model and the adjoint state technique.

Optimal shape design of the header has been utilized in the design process
by the industry for a decade [15]. One example of the initial and optimized
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shape of the header, and its resulting outflow velocity profile, is illustrated
in Figs. 9.4 and 9.5, respectively. As can be seen, the optimized velocity
profile is notably even across the width of the machine, except for some
minor boundary layer effects at the edges.

In design processes, relatively complex and computationally expensive
models can be coupled with optimization, as shown in this example. In the
header optimization tool, a 2D turbulence model has been used, but when
faster response times are required, more reduced models are needed. An ex-
ample of such a control problem is presented in the next section.

9.3 Optimal Control of the Fiber Orientation in the
Slice Channel

9.3.1 On Modeling Fiber Orientation

Modeling of fiber suspension flows involves numerous challenges. Wood fibers
are non-spherical particles with a length-to-diameter aspect ratio typically of
the order of 100. Having approximately the same density as water, they tend
to align with the velocity direction but, because of their flexibility, they also
form accumulations called “fiber flocs”. Moreover, fibers interact with the
carrying phase and turbulence as well. Thus, we face conflicting modeling
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challenges: the CFD model should be as simple as possible when coupled
with optimization, despite that the complete 3D turbulence model is insuffi-
ciently accurate to predict all detailed fluid flow phenomena occurring in the
headbox. Therefore, the basic phenomena affecting fiber orientation need to
be studied by developing elaborated fluid flow models while separate reduced
models are used in the following optimization.

When designing the header (Sect. 9.2), several hours of CPU time is ac-
ceptable. But when developing tools for the engineers whose task is to go
round the paper mills and optimize the papermaking process, a much faster
CFD-based optimization tool is required. To fulfill these demands, a sim-
ulator called Headbox Optimization Control Simulator (HOCS) Fiber [16]
has been developed. It solves an optimal control problem in the order of one
minute. Efficiency is obtained by a reduced CFD model, that is, a laminar
depth-averaged Navier-Stokes equation, and by using adjoint state technique
in a gradient-based optimization algorithm. However, simplifying the flow
field simulation is insufficient, as we also need to reduce the fiber orientation
model.

Fiber orientation angle is not merely a scalar depending on fluid veloc-
ity. To be precise, in any location (or small volume) there are large numbers
of fibers oriented more or less randomly in different directions, and hence
forming a distribution of fiber orientation angles. Modeling of the fiber orien-
tation probability distribution (FOPD) leads to a four-dimensional equation
for a 3D geometry, and to a three-dimensional equation for a 2D geometry.
The detailed modeling of FOPD in the headbox and its free jet is considered
in [17]. However, when seeking for the optimal fiber orientation profile over
the width of a real paper machine, there are significant model reductions to
be carried out. Consequently, the fiber orientation is considered simply as
a misalignment angle with respect to the machine direction (MD), having
a profile in the cross-machine direction (CD). In other words, in the HOCS
Fiber simulator, only the expected value of the FOPD model is considered
in each CD position. It is also assumed that the orientation angle is fully
determined by the velocity components in MD and CD.

9.3.2 HOCS Fiber – A Trouble Shooting Tool

The last component in the headbox is the slice channel (see Figs. 9.2 and
9.3). The channel outflow is controlled by the height of the outlet boundary,
called the slice opening.

The HOCS Fiber [16] makes basically two CFD-model based optimiza-
tions. Step 1 solves a diagnostics problem in order to identify what defects
in the headbox cause the fiber orientation misalignment. Hence, the mea-
sured orientation angle profile determines the cost function, and the inlet
flow speed is used as the control variable. After that, Step 2 searches for an
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Fig. 9.6 Measured, estimated (Step 1) and optimized (Step 2) fiber orientation profiles

optimal control for the slice opening profile in order to obtain an even fiber
orientation angle, that is, with angles equal to zero. When the optimal slice
opening profile is found, it can be fed into actual slice opening control system
of the paper machine.

Nowadays, the HOCS Fiber simulator is installed on the papermaking en-
gineer’s laptop, and hence the necessary control corrections can be calculated
and implemented at the paper mill. Despite the model reductions, the accu-
racy of the HOCS Fiber has been confirmed: typically, for the first paper
machine start-up, only one slice opening tuning proposed by the software is
needed. HOCS Fiber has been successfully used at dozens of paper mills and
one example of a real trouble shooting case is given in Fig. 9.6. As seen in
the figure, the fiber orientation angle is much better after optimization than
the original one measured at the mill. The original fiber orientation profile
may cause problems in printing machines, but the optimized profile fulfills
all the market requirements.

9.3.3 Depth-averaged Navier-Stokes Equations

In order to be able to optimize the fiber orientation for trouble shooting
purposes, certain model simplifications have to be carried out. First of all,
the FOPD model cannot be used. Instead, the expected value of the FOPD
is assumed to be determined by the mean velocity field. Furthermore, instead
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of using the 3D geometry of the headbox slice channel, the depth-averaged
Navier-Stokes equations are used. These equations are introduced next.

Let the velocity vector U = (u, v, w) and the static pressure p be a solution
of the 3D Navier-Stokes equations. The depth-averaged pressure P and the
velocity components U and V are defined as averaged values in the vertical
direction over the depth of the slice channel as follows

U (x, z) =
1

D (x, z)

D(x,z)∫
0

u (x, y, z) dy

V (x, z) =
1

D (x, z)

D(x,z)∫
0

v (x, y, z) dy

P (x, z) =
1

D (x, z)

D(x,z)∫
0

p (x, y, z) dy

(9.1)

where D = (x, z) is the depth of the slice channel depending on a position
(x, z). Then, by integrating the 3D continuity equation over the depth and by
using the definitions (9.1), the following depth-averaged continuity equation
is obtained

∇ · (DV ) = 0 (9.2)

where V = (U, V ) is the reduced 2D velocity vector. The depth-averaged
momentum equation is derived similarly, and it is

− 1
D

∇ · (2μDε (V )
)

+ ρC (m)V · ∇ (DV )

+
[

4 (m+ 1)μ
D2

]
V + ∇P = 0

(9.3)

where
C (m) =

2m+ 2
2m+ 1

, m ≥ 2 (9.4)

is a coefficient associated with the velocity profile in the depth direction. For
example, m = 2 corresponds to a parabolic velocity profile, and m = 7 to
a turbulent plug flow profile. See also [33] for depth-averaging of the k–ε
turbulence model.
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Fig. 9.7 The coordinate frame of the full 3D model

9.3.4 Validation of the Depth-averaged Navier-Stokes
Equations

The reduced model, that is, the depth-averaged Navier-Stokes equations, has
been validated by comparing the results to a complete CFD model which
includes the headbox slice channel and its free jet in 3D. The coordinate
frame of the model is shown in the sketch in Fig. 9.7. The x-axis follows the
main flow direction, while the z-axis lies in the span-wise direction. The 3D
CFD model utilized has been validated using wind tunnel experiments [31].

The fiber orientation angle profile is mostly determined by the CD velocity
component, because variations in the MD velocity are only of the order of
one per mille. Thus, the CD velocity is the most important component in
the validation. The CD velocity profiles at the slice opening for Step 1 are
presented in Fig. 9.8 (Step 1 is the diagnostics step determining flow rate
profiles inside the headbox which creates the measured fiber orientation pro-
file). The whole CD velocity field is presented in Fig. 9.9 to illustrate how the
cross-directional flows develop in the slice channel. As can be seen in Fig. 9.8,
the prediction given by HOCS Fiber agrees well with the result calculated
using the whole 3D model, even though the reduced model does not take into
account the effect of the jet.

After the diagnostics step, the fiber orientation is optimized. The CD pro-
files obtained from Step 2 are presented in Fig. 9.10. As can be seen, the
difference between the reduced and the full model is now slightly bigger than
in Step 1, but both models predict very small CD velocities resulting in op-
timal fiber orientation angle profile.
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Fig. 9.8 Comparison of CD velocity for the diagnostics (Step 1) between HOCS Fiber
and the three-dimensional CFD model

Fig. 9.9 CD velocity field (Step 1) in the slice channel predicted by the 3D model

The validation shows that the depth-averaged equations are sufficiently
accurate for use in solving industrial fiber orientation trouble-shooting prob-
lems. The reduced 2D model is solved by using a stabilized, upwinding Petrov-
Galerkin finite element method [3, 5]. One CFD solution takes only a few
seconds on a laptop computer for a typical finite element mesh consisting
of 5,000 elements. The CPU time is only 1/1000 compared to the full 3D
model (2-3 million elements, turbulence model and free jet). HOCS Fiber
can perform both optimization steps, that is, both the diagnostics and op-
timal control steps, in a couple of minutes. If the full 3D model had been
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Fig. 9.10 Comparison of CD velocity for the optimal control (Step 2) between HOCS
Fiber and the 3D CFD model

coupled with optimization by using finite difference approximation for the
cost function gradient, this would lead to computing times of days or weeks,
which is unreasonable. As illustrated in Fig. 9.1, compromises need to be
made and CFD models need to be reduced when developing tools for control
purposes.

9.4 Multi-objective Optimization of Papermaking

As presented in the previous sections, the unit-processes of the paper machine
have been individually modeled and optimized for more than ten years. Nowa-
days, focus has extended to handle larger ensembles including the whole pa-
permaking process. This poses a real challenge since a paper machine consists
of a number of consecutive sub-ensembles as shown in Fig. 9.11. There are four
main parts essential in the papermaking process: the headbox, wire section,
press section and the drying section. Thus, the model of the whole process
represents the combination of different unit-process models as a chain where
the output of one unit-process is an input for the following unit-processes.
In order to decrease the CPU time used, the elaborateness and the accuracy
of the CFD models often have to be significantly reduced. Sometimes, the
CFD model might even need to be replaced with a statistical or stochas-
tic model. Thus, when handling multiphysical or multidisciplinary problems,
more efficient simulation and optimization procedures are needed.
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Fig. 9.11 Layout of a paper machine. The process starts from the headbox, then continues
from right to left and ends-up as a finished paper on the roll. Courtesy of Metso Paper,
Inc.

In the papermaking process there are always several requirements for the
end product that should be fulfilled simultaneously. These targets are of-
ten conflicting. For example, by accelerating the machine speed in order to
increase the amount of production, the probability of web breaks may be
increased resulting in more downtime, which in turn, reduces the amount
of production. Moreover, better runnability could be obtained by producing
stronger paper from more expensive raw material, but this affects economy.
Hence, numerous criteria need to be taken into account at the same time.
However, when combining multiple objectives it is difficult to steer the op-
timization to the best solution. That is why we utilize multi-objective opti-
mization.

9.4.1 Multi-objective Optimization

In general, a multi-objective optimization problem can be defined as fol-
lows [26]:

min {f1(xxx), f2(xxx), . . . , fnf (xxx)}
subject to xxx ∈ S

(9.5)

where xxx is a vector of decision variables from the feasible set S ⊂ R
n defined

by box, linear and nonlinear constraints. We denote a vector of objective
functions, a so-called objective vector, by fff(xxx) = (f1(xxx), f2(xxx), . . . , fnf(xxx))T .
Furthermore, we define the image of the feasible set by fff(S) = Z and call
it a feasible objective set. The optimization problem (9.5) is formulated as a
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minimization problem, but if some objective function fi is to be maximized,
it is equivalent to considering minimization of −fi.

In multi-objective optimization, optimality is understood in the sense of
Pareto optimality [4]. A decision vector xxx′ ∈ S is Pareto optimal if there
does not exist another decision vector xxx ∈ S such that fi(xxx) ≤ fi(xxx′) for
all i = 1, . . . , nf and fj(xxx) < fj(xxx′) for at least one index j. The Pareto
optimal solutions constitute a Pareto optimal set. From a mathematical point
of view, all of them are equally good and they can be regarded as equally valid
compromise solutions of the problem considered. Because vectors cannot be
ordered completely, there exists no trivial mathematical tool in order to find
the best solution in the Pareto optimal set and thus additional information
is necessary. In our approach an expert of the problem known as a decision
maker, participates in solution process by giving preferences regarding the
best or most satisfying solution to be called the final one.

The methods developed for multi-objective optimization can be divided
into four classes according to the role of the decision maker [26]. First, there
are methods where no decision maker is available and where the final solution
is some neutral compromise solution. The three other classes are a priori, a
posteriori and interactive methods, where the decision maker participates in
the solution process before, after, or iteratively during the process, respec-
tively.

As mentioned the decision maker can participate in the solution process in
one way or the other, and determine which one of the Pareto optimal solutions
is the most desirable to be the final solution. It is often useful for the decision
maker to know the ranges of objective function values in the Pareto optimal
set. An ideal objective vector zzz∗ ∈ R

nf gives lower bounds for the objective
functions in the Pareto optimal set and it is obtained by minimizing each
objective function individually subject to the constraints. A vector strictly
better than zzz∗ can be called a utopian objective vector denoted by zzz∗∗, that
is, we set z∗∗i = z∗i − ε for i = 1, . . . , nf , where ε is a small positive scalar.
A nadir objective vector zzznad giving upper bounds of objective functions in
the Pareto optimal set can be difficult to calculate, and, thus, its values are
usually only approximated by using pay-off tables, for example. For more,
see [26] and references therein.

Often multi-objective optimization problems are solved using scalarizing
functions that form subproblems, as we call them. In the scalarization proce-
dure, the original multi-objective optimization problem is formed as a single
objective subproblem that can be solved with appropriate single objective
optimizers. In literature, many different scalarizing functions have been pre-
sented, see e.g., [27, 28].
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9.4.2 Modeling and Optimizing the Complete
Papermaking Process

Although accurate simulation of the entire paper machine is still far ahead,
a virtual papermaking line, as we call it, has been developed [20, 22]. It can
be used for papermaking simulation as well as for tailored multi-objective
optimization. The virtual papermaking line combines dissimilar unit-process
models from different disciplines that include mathematical formulas ranging
from simple algebraic equations to CFD models. It also includes models for
moisture and heat transfer, and for paper quality properties. Simplifications
of computationally expensive models are used, for instance, in water removal
which means that an accurate multi-phase flow model of the dewatering phe-
nomenon is replaced with a statistical model based on data produced by the
accurate model. The latter models are especially useful in optimization, when
tens, hundreds or even thousands of simulation model evaluations are needed.

We define the virtual papermaking line model as follows⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1(ppp1, qqq1) = 0
A2(ppp2, qqq1, qqq2) = 0
...
Anm(pppnm, qqq1, . . . , qqqnm) = 0

(9.6)

where Ai for all i = 1, . . . , nm stand for the unit-process models, pppi ∈ R
li

denotes a vector of the inputs, and qqqi ∈ R
ki is a vector of the outputs (model

states) for the i-th unit-process model Ai. We assume here that all the unit-
process models and their outputs are continuously differentiable or if there is
nonsmoothness involved, we assume at least H-differentiability [7].

Based on (9.6) multi-objective optimization problems related to paper-
making process can be determined. Instead of the problem formulation (9.5)
we use the following model-based optimization problem formulation

Optimize
xxx

{f1(xxx,qqq1, . . . , qqqnm), . . . , fnf(xxx,qqq1, . . . , qqqnm)}

subject to

{
(9.6)
xxx ∈ S

(9.7)

where xxx ∈ S is a vector of the continuous decision variables (also called
control or design variables) which is a selected set of the unit-process model
inputs ppp = (ppp1, . . . , pppnm)T . The feasible set S is defined by the box constraints
of the decision variables and the linear and non-linear constraint functions
similarly to (9.5). In (9.7), we ignore those input parameters that are not cho-
sen as decision variables, because they are constants during the optimization
process. By f1(xxx,qqq1, . . . , qqqnm), . . . , fnf (xxx,qqq1, . . . , qqqnm) we denote the objec-
tives which are to be optimized, i.e., minimized or maximized. Similarly to



282 J. Hämäläinen, T. Hämäläinen, E. Madetoja, H. Ruotsalainen

the unit-process models and their outputs, we make an assumption that the
objectives are continuously differentiable or H-differentiable [7]. One should
note that in (9.7) the objectives fi, i = 1, . . . , nf depend on the decision
variables and also, the unit-process model outputs. That is, the virtual pa-
permaking line model (9.6) has to be solved every time the objectives are
evaluated.

Next we discuss two features related to model-based optimization problems
such as (9.7). These features are gradient evaluations and reliability of the
used modeling approaches.

Optimization methods utilizing gradient information of the objectives
(gradient-based optimizers) have often been found computationally efficient
in engineering applications. However, gradient information needs to be calcu-
lated when using these methods. The finite difference approaches are widely
used techniques for gradient evaluations, but a large number of decision vari-
ables increases the number of the function evaluations making the approach
computationally time-consuming. Instead, more sophisticated techniques can
be used. We present briefly a technique based on chain rule approach and
implicit differentiation schema. For that we assume that objectives and unit-
process models as well as model outputs are continuously differentiable or at
least H-differentiable [7] in nonsmooth cases. Then gradient of fi with respect
to the vector xxx is

∂fi(xxx,qqq1, . . . , qqqnm) = ∂xxxfi(xxx,qqq1, . . . , qqqnm)+
nm∑
j=1

∂qqqj
fi(xxx,qqq1, . . . , qqqnm)∂xxxqqqj(xxx,qqq1, . . . , qqqj−1)

(9.8)

where differentials ∂xxxfi(xxx,qqq1, . . . , qqqnm) and ∂qqqj
fi(xxx,qqq1, . . . , qqqnm), for all i =

1, . . . , nf and j = 1, . . . , nm are assumed to be known and

∂xxxqqqj(xxx,qqq1, . . . , qqqj−1) = −∂qqqj
Aj(xxx,qqq1, . . . , qqqj)−1

(
∂xxxAj(xxx,qqq1, . . . , qqqj)+

j−1∑
k=1

∂qqqk
Aj(xxx,qqq1, . . . , qqqj)∂xxxqqqk(xxx,qqq1, . . . , qqqk−1)

)
, j = 1, . . . , nm .

(9.9)

In this way, gradient calculations can be done model-wise and gradients of
objective functions can be put together after all the unit-processes have been
solved. Thus, different modeling approaches can be easily combined together
into the virtual papermaking line model. For more details on this technique,
we refer to [21].

The virtual papermaking line (9.6) consists of unit-process models from
different disciplines. When statistical or stochastic techniques are used, the
unit-process models are based on experimental data and on conditions pre-
vailing during data collection. That is, the models can give reliable results
only if there has been enough varying modeling data. Furthermore, ranges
of the modeling data should not be exceeded, which can cause problems
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Fig. 9.12 Example of output and its confidence interval

when unit-process models are coupled together. In order to use the statistical
unit-process models in simulation or optimization, some kind of reliability or
uncertainty information related to the models is needed in addition to the pri-
mary model output. Moreover, the uncertainties regarding the models need to
be brought into the optimization model. In this way, the optimization method
used can take them into account and reliability of the results can be guar-
anteed. There are numerous optimization approaches that are able to utilize
uncertainty information such as optimization under uncertainty [6, 19, 25],
stochastic programming [2] and robust optimization [8, 30] among others.

Figure 9.12 illustrates on a simple example how model uncertainty may
affect reliability of the optimization results. In this example for simplicity, we
assume that the primary output is a function of only one input parameter.
As seen, the output has two minima, which have very different confidence
intervals denoted by dotted lines in the figure. The confidence interval gives
limits in which the output value has a 99% probability, for example. The
left minimum has a wider confidence interval than the right one, that is,
the model gives more reliable solution at the right minimum. Hence, from
the output value point of view, the solution candidates do not differ, but the
latter minimum can be considered as more reliable. Therefore, systematic and
efficient control of reliability is a crucial point in industrial optimizations.

Nowadays, we can define the multi-objective optimization problem related
to papermaking such that it is able to make use of related unit-process un-
certainties [23]. Then, we formulate objectives also for uncertainties and min-
imize them while optimizing the papermaking targets. Thus, the idea is to
formulate the originally stochastic optimization problem in such a way that
it can be solved efficiently as a deterministic problem using a gradient-based
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optimization algorithm. This kind of approach has been used in the following
kind of paper quality optimization examples where the statistical modeling
techniques have been involved [23].

9.4.3 Numerical Examples

Next we present two numerical examples, where the virtual papermaking line
was utilized. Both examples were solved using appropriate gradient-based op-
timizer and gradients were evaluated with the help of the technique described
above.

9.4.3.1 Example 1

This example illustrates the advantages of multi-objective optimization com-
pared with trial-and-error simulation. We studied here a conflict between two
paper quality properties, formation and tensile strength ratio. Formation is
a small scale weight variation of a paper sheet and tensile strength ratio is
the machine-directional tensile strength divided by the cross-directional one.
Both of these properties were to be minimized, but because they were in con-
flict they could not reach their optimum at the same time. These conflicting
targets were simulated using the above presented virtual papermaking line
combining dissimilar unit-process models from different disciplines. The vir-
tual papermaking line used included the CFD models, and there were also
models for moisture and heat transfer, and naturally statistical models for
paper quality properties were involved.

By doing trial-and-error simulations, a number of solutions were obtained
as can be seen on the left-hand side of Table 9.1. These solution were obtained
by using typical machine control values, which were determined using so-
called engineering knowledge. That is, a person with expertise in papermaking
provided the control variable values used in simulation. Based on his/her
knowledge, she/he tried to find a solution which would fulfill the preferences.
As can be seen in Table 9.1, the person made some simulations and obtained
different kinds of solutions, but she/he could not be sure if any of these
solutions was optimal. Trial-and-error simulations could have continued for
as long as the expert had time or a satisfactory solution was obtained.

Instead we used a multi-objective optimization method to search the opti-
mal control variable values. In this way, much better solutions were found be-
cause the method obtained only Pareto optimal solutions. Figure 9.13 shows
all the solutions obtained (simulated and optimized). A few Pareto opti-
mal solutions are presented in Table 9.1 on the right-hand side. As one can
see, all the solutions were better than the solutions obtained by simulation.
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Table 9.1 Simulated vs. optimized solutions

Simulated Optimized

Formation Tensile strength Formation Tensile strength
(g/m2) ratio (g/m2) ratio

0.388 2.731 0.449 2.000
0.439 2.496 0.300 2.233
0.497 2.414 0.366 2.002
0.563 2.414 0.318 2.037
0.563 2.630
0.540 2.532
0.518 2.234
0.586 2.235
0.479 2.233
0.442 2.233
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Fig. 9.13 Optimized and simulated conflicting paper quality properties

Thus, there was no need for the time-consuming trial-and-error simulations.
Also the number of solutions needed to be generated in optimization before
finding the most satisfying compromise was small compared with the sim-
ulations. Since all the solutions found in optimization were mathematically
equally good Pareto optimal solutions, the papermaking expert’s knowledge
could be used in a case-specific way when selecting the most satisfying final
solution.
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Table 9.2 Six optimal compromise solutions

Tensile strength Formation Basis weight Dry solids
ratio (g/m2) (g/m2) content (%)

Desired values 3.00 0.30 . . . 0.35 54.00 92.00

Compr.1 2.80 0.43 54.03 92.48
Compr.2 3.00 0.40 54.00 92.14
Compr.3 2.34 0.39 54.33 92.30
Compr.4 4.91 0.35 54.35 92.27
Compr.5 3.90 0.38 53.74 92.27
Compr.6 3.38 0.41 53.92 92.12

9.4.3.2 Example 2

A more complicated optimization example of papermaking targets was stud-
ied next. In this example, there were four conflicting process and quality
targets: tensile strength ratio, formation, basis weight and dry solids content.
Basis weight describes the mass of the paper per square meter, and dry solids
content is measured from finished paper. All four papermaking targets were
given the desired values and the deviation from these desired values were
to be minimized. Table 9.2 presents the desired values of the optimization
targets.

We used a multi-objective optimization method combined with virtual
papermaking line to search the optimal solution, i.e., those control variable
values that correspond to the optimal process and quality target values. Six
Pareto-optimal compromise solutions were calculated and they are shown in
Table 9.2. When comparing the solutions, it was apparent that the chosen
targets were really conflicting, and hence all the targets could not reach the
optimum simultaneously. For example, in Compromise 2, we obtained the
best values for tensile strength ratio and basis weight (in bold face in Ta-
ble 9.2), but, at the same time, formation and dry solids content were not so
good. In addition, we can see that formation attained its best value in Com-
promise 4 and dry solids content was the best in Compromise 6, but, in these
solutions, tensile strength ratio and basis weight were unfavorable. Neverthe-
less, all the solutions found were mathematically equally good Pareto optimal
solutions, and the most satisfying final solution could be selected from these
solutions using the papermaking expert’s knowledge.

9.5 Towards Decision Support Systems

The virtual papermaking line integrates mathematical modeling with multi-
objective optimization, and thus provides a basis for the development of an
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intelligent decision support system [20]. As we can see from presented exam-
ples, handling even a few conflicting targets at the same time is too complex
for the human mind and therefore multi-objective optimization methods are
needed. Furthermore, when the papermaking process can be controlled as a
whole, relationships between the targets can be seen clearer. By means of such
a system, a papermaking expert can take into account not only the individ-
ual requirements of the paper to be produced, but, at the same time, all the
related aspects beginning from choice of raw materials and control of wood
fiber pre-processing to as far as market situation and customer demands –
all the facts affecting decision making in real life.

This kind of virtual papermaking line and decision support system de-
mands a lot of convenience from the models used. When the main focus has
extended to handle larger systems, even the whole papermaking process, the
number of models as a chain and sub-ensembles gets bigger. This poses a
real challenge since the CPU times cannot be extended too much. The CFD-
models are usually time-consuming and that is why it is important to develop
new computationally effective ways to model phenomena occurring in the sys-
tems such as virtual papermaking line. The accuracy of the CFD-models has
to be reduced in order to shorten the computing time or the CFD-model
might even sometimes need to be replaced with a statistical or stochastic
model, for instance.

A flexible decision support tool is required for different types of usage
and different users: from research and development engineers to managers of
a paper mill. Moreover, the system must include interactive interfaces with
automation and control softwares as well as direct connections to on-line mea-
surements. This trend sets new challenges for modeling and optimization. At
its best, the decision support system is able to provide new knowledge on the
physical and economical mechanisms affecting papermaking, and ultimately
leads to considerable financial benefits.

9.6 Conclusions

Depending on the requirements of the software tool to be developed, the
choice of appropriate modeling approach is essential. This means making
compromises between accuracy and extent of CFD, especially when coupled
with optimization. In phenomenological research the road leads towards more
detailed and accurate modeling, such as DNS, but when the aim is to control
larger ensembles, there is a need for decision support systems.

In this chapter some examples of coupling optimization with CFD in the
field of papermaking have been presented. They are chosen to represent dif-
ferent categories of modeling extent and accuracy. Decision support systems
are coming in the near future, but optimal shape design and optimal control
are possible today, and in fact, are in everyday use in the industry. All the
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examples presented here are from the paper industry but, nevertheless, inde-
pendent of the industrial sector (motor, or aircraft industries, for example),
CFD-related optimization problems set the same challenges everywhere. As
a matter of fact, the industrial application in question is described by a state
equation, that is, the CFD model. All the other aspects are common includ-
ing optimization methods, needs for model reductions, and handling multiple
criteria.
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