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Modelling and Managing Topology in 3D
Geoinformation Systems1

Andreas Thomsen, Martin Breunig, Edgar Butwilowski, and Björn Broscheit

Abstract

Modelling and managing topology in 3D GIS is a non-trivial task. The tradi-
tional approaches for modelling topological data in 2D GIS cannot be easily
extended into higher dimensions. In fact, the topology of real 3D models is
much more complex than that of the 2D and 2.5D models used in classical
GIS; in consequence there is a great number of different 3D spatial mod-
els ranging from constructive solid geometry to boundary representations.
The choice of a particular representation is generally driven by the require-
ments of a given application. Nevertheless, from a data management point
of view, it would be useful to provide a general topological model handling
2D, 2.5D and 3D models in a uniform way. In this paper we describe con-
cepts and the realisation of a general approach to modelling and managing
topology in a 3D GIS based on oriented d-Generalised Maps and the closely
related cell-tuple structures. As an example of the applicability of the ap-
proach, the combination of a group of buildings from a 3D city model with
the corresponding part of a 2D city is presented. Finally, an outlook to on-
going research is given in the context of topological abstraction for objects
represented in multi-representation databases.
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14.1 Introduction

Topology and GIS belong together since the development of GIS. Already
first GIS like GRASS and Arc/Info provided a topological data model stor-
ing relationships between points, lines, and areas of an area network. These
traditional approaches for modelling topology in in 2D GIS were implemented
by explicit links between geometric objects, e.g. from a line segment to its
neighbouring left and right area. The more topologogical relationships the
user required, the more complex the topological model became.

Unfortunately, there are no straightforward extensions into 3D space of the
2D topological data models used in traditional GIS. Instead, there is a num-
ber of different 3D spatial models ranging from constructive solid geometry
to boundary representations, the choice of a particular representation being
driven by the requirements of a particular application - from architecture and
urbanism to numerical modelling, engineering and underground mining.

In a 3D Geoinformation System, objects of different dimension d ≤ 3 are
processed. The geometry of a geoscientific object in 3D GIS can be composed
of sets of points, curves, surfaces and volumes, respectively. In a topology
model of a 3D GIS, the components of the objects can be interpreted e.g. as
a mesh of nodes, edges, faces and solids that describes both the interior struc-
ture of the geoscientific objects and their mutual neighbourhood relationships
in 3D space.

To describe topology uniformely in 3D solid modeling [1] and 3D GIS
[2], a general framework for topological data models has to be provided that
abstracts from the dimension of the objects. Furthermore, it should be usable
as a data integration platform for 2D, 3D and time-dependent 3D (sometimes
termed ”4D”) topology.

In this paper, we investigate how oriented G-Maps and cell-tuple struc-
tures can be used to handle the topology of a digital spatial model in a more
generic way, in order to support 2- and 3-dimensional and spatio-temporal
models. For many 3D geo-applications not only the modelling, but also the
management of topology in database management systems is relevant. In-
spired by the work of GeoToolKit [3], that provides a geometric 3D library,
we here present topological data structures and operations needed in 3D GIS.

After a short overview on related work, we recall Lienhardt’s d-G-Map in
section 3, and discuss basic topological operations in section 4. An object-
relational representation based on Brisson’s cell-tuple structures is introduced
in section 5. The integration of triangular meshes is discussed in section
6, while the application to time-dependent topology is briefly presented in
section 7. We conclude with an application example in section 8, and an
outlook on future work.
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14.2 Related work

Whereas basic relationships of point set topology, and in particular Egen-
hofer’s nine intersection model have become standard in GIS, and lend them-
selves to a 3D generalisation [4, 5], 3D discrete topological structures stem-
ming from algebraic topology have not gained comparable popularity, despite
considerable development during the last decades. While [6] discussed the ap-
plication of simplicial complexes to spatial databases, general approaches to
representing topology in the context of 3D modelling have been examined by
[7] and by other authors. [8] developed d-dimensional cell-tuple structures,
and in parallel [9] developed d-dimensional Generalised Maps (d-G-Maps), to
represent and manage the topological properties of cellular partitions of d-
dimensional manifolds (d-CPM), cf. also [10]. [11] has shown that 3-G-Maps
have comparable space and time behaviour as the DCEL and radial edge
structures, but can be used for a wider range of applications, allowing a more
concise and robust code. [12] used G-Maps to model architectural complexes
in a hierarchy of multi-partitions. G-Maps and cell-tuple structures have been
used to represent the topology of land-use changes [13], and are currently ap-
plied in the geoscientific 3D modelling software GOCAD2 [14, 10], and in
the topological modelling and visualisation tool Moka[15]. [16] give a concise
overview of 2D and 3D topological models and propose the translation into
geometric primitives for the integration of 2D and 3D topological models with
3D GIS based on relational databases. Recently, [17] describe the integration
of 2D and 3D cadastral objects in a representation by regular polytopes based
on pseudo-rational numbers. [18] presents the combination of 3D simplicial
networks with Poincarié Algebra in a TEN-based spatial DBMS. Relations of
our work with the work of [19], which has not been available at short notice,
will be examined in our future work.

14.3 A general approach to modelling topology in 3D
GIS

In the following, we use oriented d-CPM as a topological model for 3D GIS.
d-CPM can be considered as a generalisation of simplicial complexes, but lack
the algebraic properties of the latter. However, if a d-CPM is represented by a
d-G-Map, the involution operations of the latter provide the cellular complex
with the combinatorial structure of an abstract simplicial complex, where
the cells and cell-tuples play the role of abstract nodes and abstract sim-
plexes, while the involution operators define the neighbourhood relationships
between the abstract simplexes [9]. Note that the abstract nodes n, e, f , s of
a 3-G-Map belong to 4 classes distinguished by different dimensions, whereas

2 GOCAD is a registered trademark of Earth Decision Co.
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all nodes of a simplicial complex belong to the same finite set of vertices in
space.

According to [9], a d-dimensional Generalized Map (d-G-Map) is a d+2-
tuple G = (D,α0, . . . ,αd), consisting of a finite set D of objects called “darts”,
and d +1 permutations αi, i = 0, . . . ,d that verify the following two conditions:

the αi are involutions, i.e. they verify for all x,

αi (αi (x)) = x, (14.1)

and for all i, j with 0≤ i < i+2≤ j ≤ d, αiα j is an involution, i.e.

αi (α j (αi (α j (x)))) = x, (14.2)

which implies αiα j = α jαi.
The G-Maps are embedded in space by a mapping that to each dart asso-

ciates a unique combination (n,e, f [,s]) of a node n, an edge e, a face f , and
in 3D a solid s.

The condition that a d-G-Map always represents a d-dimensional manifold
ensures that to any cell-tuple, there exists at most one partner that differs
from it only by one exchange operation αi .

A d-G-Map can be represented as a graph with cell-tuples as nodes (darts),
and edges defined by the involution operations (Figure 14.1).

Fig. 14.1 Representation of an oriented 3-G-Map as graph with symmetries deter-
mined by the combinatorial character of the involutions.
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By assumption, the cellular complexes are orientable, and the correspond-
ing G-Maps are oriented. This implies that there are two classes of darts or
cell-tuples of the same cardinality, but carrying different polarity. Different
from [9], we exclude the possibility that an involution attaches a cell-tuple
to itself ( f (x) = x), e.g. at the boundary of the cellular complex. Thus we
ensure that involution operations always link pairs of cell-tuples of opposite
sign. Instead, following [8], we introduce a special non-standard cell, the out-
side, or universe, which in general needs not be simply connected and may
comprise holes and islands, and provide the universe also with cell-tuples and
involutions on the boundary. This approach increases the number of objects
to be handled. However, it simplifies some operations and algorithms.

14.4 Topological operations on oriented d-G-Maps and
cell-tuple structures

In the following, we briefly present some topological operations on oriented
G-Maps, a more extensive discussion can be found e.g. in [11, 20].

14.4.1 Orbits

Orbits are defined as subsets that can be reached by any combination of invo-
lution operations of a given subset of α0, . . . ,αd , starting from a given dart or
cell-tuple cT0. They are noted orbitd(cT0,αi, . . . ,α j), or shorter orbitd

i... j(cT0).
Orbits that comprise all indices 0, ...,d with the exception of k leave the k-th
cell of cell-tuple cT0 fixed and can be interpreted as the subset of all cell-
tuples containing the same cell of dimension k as cT0. Such orbits can also be
noted as orbitd(cT0, � k). Orbits of this type provide another way to describe
cells of dimension k. While most types of orbits are implemented by single
or double programming loops of fixed or variable size, [11] implements or-
bits of type orbit2

012(), orbit3
012(), orbit3

123(), and orbit3
0123() recursively using a

stack. Whereas loop implementations of orbits yield continuous closed paths
in the G-Map graph, recursively implemented orbits in certain situations
may produce discontinuities (”jumps”). Orbits of type orbit2

012(), orbit3
0123()

produce the complete connected component containing cT0. Besides orbits,
other loops, i.e. closed paths in the G-Map graph may be defined by an appli-
cation or by a user. Orbits and loops are the main methods for the navigation
on the G-Map graph. They are also indispensable for the implementation of
some of the topological operations discussed below.
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14.4.2 Topological operations on cells

Two classes of topological operations can be distinguished: Euler operations
that conserve the Euler-Poincaré characteristic and thus the global connec-
tivity properties of a G-Map ([1, 11]), and non-Euler operations that alter
the connectivity of the structure. Examples of Euler operations are the sub-
division of a cell of any dimension k > 0 by a newly created separating cell
of dimension k− 1, e.g. the division of a face f by a new edge e, and the
corresponding inverse operations, under certain conditions ensuring the con-
sistency of the resulting G-Map. An example of a Non-Euler operation is the
attachment and subsequent sewing [11] of two previously disconnected cells,
and the inverse operation. These operations constitute the most important
methods for the building, transformation and in particular generalisation of
d-G-Maps.

14.5 Data management for topological cell-tuple
structures

In the following, we discuss some aspects of a different realisation of an
oriented d-G-Map, namely as a cell-tuple structure in an object-relational
database. This representation aims at providing a general topological access
structure in 2D and 3D to existing GIS based on object-relational databases
(ORDBMS). Whereas in the graph representation the main attention is given
to the involutions αi, the relational representation uses Brisson’s [8] cell-tuples
as a realisation of the darts, while involutions are implemented using foreign
keys and exchange operations. It is an interesting question, to what extent
the functionality of orbits can be replaced by subset queries, join operations,
and sorting, i.e. by standard operations of a relational DBMS.

14.5.1 Implementation of the topological data
structures as database representation

The topological data structure presented here shall manage the topology of
complex spatial objects in 2 and 3 dimensions. It is based on Lienhardt’s [9]
d-Generalized Maps and on Brisson’s [8] closely related cell-tuple structures.

A d-G-Map can be represented in the relational model as follows (Figure
14.2): the set of cell-tuples is stored in tabular form, e.g. by two relations
cT pos(node id,edge id, f ace id [,solid id] ,′+′,n inv,e inv, f inv [,s inv])
cT neg(node id,edge id, f ace id [,solid id] ,′ −′,n inv,e inv, f inv [,s inv]),
and the involution operations are modelled as symmetric 1:1 relationships
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Fig. 14.2 Representation of a 3-G-Map as relation with nodes Ni, edges Ei, faces Fi,
solids Si, and involutions αi

defined by the switch operations [8], linking e.g.
cT pos(node id, . . . ,′+′,n inv, . . . ,) to cT neg(n inv, . . . ,′ −′,node id, . . . ,).

In a cell-tuple, the combination of cell identifiers, augmented by the pos-
itive or negative sign, (node id,edge id, f ace is [,solid id] ,sign) is used as a
unique cell-tuple key, while the identifiers of the cells to be exchanged by
the involutions are stored as data. The data access by cell-tuple keys is en-
hanced by sorted indexes or hash indexes. The involutions are implemented
in two steps: first, from a given cell-tuple entry, create a new cell-tuple key
by exchanging exactly one cell id. Second, use this key to retrieve the corre-
sponding complete entry from the database.

The implementation of a d-G-Map is thus realised as a network of cell-
tuples that is made persistent by relations of an Object-Relational Database
Management System (ORDBMS). With the goal of a topological component
for multi-representation databases [20], we implemented 2-G-Maps and 3-G-
Maps with the ORDBMS PostgreSQL3 [21] in combination with the open
source GIS PostGIS4 [22]. In our future work, we intend to implement the
graph representation of a G-Map as a topological access structure for our
object-oriented 3D/4D Geo-DBMS GeoDB3D [25, 26]. GeoDB3d uses sim-

3 PostgreSQL ©1996-2005 by the PostgreSQL Global Development Group ©1994
by the Regents of the University of California is released under the BSD license
4 PostGIS has been developed by Refractions Research and is released under the
GNU General Public License
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plicial complexes to represent geometry, and is based on the DBMS Object-
Store5.

14.5.2 Implementation of topological database
operations

As the general topological data model is to be integrated into existent spa-
tial ORDBMS, we focus on a clear translation of the G-Map into the rela-
tional model, and on the integration of the topological operations with the
SQL-commands of a database server. In our view, optimization efforts should
rather make use of RDBMS functionality, like sorting, indexing, clustering
and caching, than perform the topological operations in client memory.

Orbits of the form orbitd
0...�k...d (cT0) comprise all celltuples that share with

cT0 a cell of dimension k. The corresponding cell-tuple subset can be retrieved
by an appropriate relational query, though not in the same arrangement. For
orbit2

012 () and orbit3
0123 (), a corresponding relational query would yield all cell-

tuples, regardless whether from the same connected component or not. For
many purposes, this may be sufficient, but for the implementation of the two
last-mentioned orbits, and for applications that require an identical arrange-
ment, we can either explicitly model the orbit using the involution operations,
or rearrange the subset on the client side after retrieval. Implementing orbit
re-arrangement as an additional functionality of the server would be the best
option, if this is supported by the ORDBMS. Loops can be implemented as-
sociating each cell-tuple with a selector variable that defines the involution
to be performed next.

14.5.3 Example implementation of a database
operation

A Basic Euler operation.

As an example of a basic topological operation, in a 2-G-Map comprising
nodes n . . ., edges e . . . and faces f . . ., consider the insertion of a new node n
that splits an edge e(n0,n1, f0, f1) between nodes n0, n1 and faces f0, f1 into
two edges e0 (n0,n) and e1 (n,n1) (Figure 14.3). At node n, four cell-tuples are
inserted:

• (n,e0, f0,−,n0,e1, f1),
• (n,e0, f1,+,n0,e1, f0),
• (n,e1, f0,−,n1,e0, f1),

5 ObjectStore is a registered trademark of Progress Software Co.
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• (n,e1, f1,+,n1,e0, f0).

Eight cell-tuples at nodes n0 and n1 are transformed:

• (n0,e, f0,+,n1,ea, f1)→ (n0,e0, f0,+,n,ea, f1),
• (n0,e, f1,−,n1,eb, f0)→ (n0,e0, f1,−,n,eb, f0),
• (n1,e, f0,−,n0,ec, f1)→ (n1,e1, f0,−,n,ec, f1),
• (n1,e, f1,+,n0,ed , f0)→ (n1,e1, f1,+,n,ed , f0).
• (n0,ea, f0,−, . . . ,e, f1)→ (n0,ea, f0,−, . . . ,e0, f1),
• (n0,eb, f1,+, . . . ,e, f0)→ (n0,eb, f1,+, . . . ,e0, f0),
• (n1,ec, f0,+, . . . ,e, f1)→ (n1,ec, f0,+, . . . ,e1, f1),
• (n1,ed , f1,−, . . . ,e, f0)(n1,ed , f1,−, . . . ,e1, f0).

The translation into SQL is straightforward:

BEGIN TRANSACTION
INSERT INTO celltuples VALUE (n,e0,f0,-,n0,e1,f1);
INSERT INTO celltuples VALUE (n,e0,f1,+,n0,e1,f0);
INSERT INTO celltuples VALUE (n,e1,f1,-,n1,e0,f0);
INSERT INTO celltuples VALUE (n,e0,f0,+,n0,e1,f1);
UPDATE celltuples
CASE
WHEN edge=e AND node=n0 THEN SET edge=e0 SET node_inv=n
WHEN edge=e AND node=n1 THEN SET edge=e1 SET node_inv=n
WHEN edge_inv=e AND node=n0 THEN SET edge_inv=e0
WHEN edge_inv=e AND node=n1 THEN SET edge_inv=e1
END
WHERE edge= e OR edge_inv= e;
COMMIT;

Fig. 14.3 A simple Euler operation: splitting an edge by the insertion of a node
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While this example is particularly simple, corresponding operations on
cells of higher dimension, e.g. in a 3-G-Map the splitting of a face by the
introduction of a separating edge initially follow a similar pattern. However,
after the ”sewing” i.e. adaptation of the αi transitions at the new separating
edge, additional operations are necessary to modify the links of all cell-tuples
that refer the divided face. These operations are supported by two orbit2

01
about the two newly created faces. For the splitting of a 3D solid by a new
2D face, a ”loop” is required that defines the location where the new face
is incident with the boundary of the existing solid to be split. Typically, a
database client would provide a set of basic operations for the management,
navigation and retrieval of topological information. These operations should
be combined into short programs or scripts that fulfil more complex tasks.

14.5.4 Integrity checks for the relational
representation of d-G-Maps

A spatial database has no a-priori knowledge about the way a newly intro-
duced dataset has been constructed, nor on the order of update operations
executed by a user or by a client application. It is therefore necessary to pro-
vide it with a set of tools to check the integrity of a stored G-Map at any
time. In a relational representation of a G-Map, join operations can serve to
implement some basic integrity checks. A possible test for α0 verifying con-
dition (1) is the following operation which for a consistent G-Map returns
zero:

SELECT COUNT(*)
FROM cT_pos, cT_neg
WHERE (cT_neg.node_id = cT_pos.node_inv)
AND NOT (cT_pos.node_id = cT_neg.node_inv);

Condition (2) on α0, α2 is checked e.g. by the following SQL query in-
volving a triple join, that must return zero, if the G-Map is consistent with
condition (2):

SELECT COUNT(*)
FROM cT_pos as cT_p1, cT_neg as cT_n1,

cT_pos as cT_P2, cT_neg as cT_n2
WHERE (cT_n1.node_id = cT_p1.node_inv)
AND (cT_p2.face_id = cT_n1.face_inv)
AND (cT_n2.node_id= cT_p2.node_inv)
AND NOT (cT_p1.face_id = cT_n2.face_inv);
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14.6 Mesh representation of geometry

By merging adjacent d-cells, hierarchies of G-Maps can be built, that consist
of a sequence of nested subsets of cell-tuples and their involutions. The αi
transitions at a higher level correspond to a sequence of transitions at the
lower, more detailed level. Such a nested hierarchy of G-Maps [11] can be
used to integrate a more detailed geometric representation into the topolog-
ical model. Suppose that the geometry of flat or curved surface patches is
represented by triangle nets, which may have been generated by any mod-
elling method, and are described by a set of vertices (v j,x j,y j,z j) and a set
of triangle elements (tri,vi0 ,vi1 ,vi2 ,ni1 ,ni2 ,ni3), where tri is an identifier of the
triangle element, vi0 , ...,vi2 reference its vertices, and ni0 , ...,ni2 reference the
neighbour triangles (Figure 14.4).

Fig. 14.4 Representation of a face by a triangle mesh. Within each triangle element
tri, celltuples and switch transitions are generated automatically (small darts). The
cell-tuples of the complete face are situated at selected ”corner” vertices Nj of the
mesh, while involutions follow the mesh boundaries Ek

The corresponding G-Map representation of topology of a mesh element
comprises six cell-tuples (vik ,edgel , tri,sign), where the values edgel still have
to be determined. It is possible to generate a new numbering of edges and
a new cell-tuple representation, and to store it as a separate object, but
this would greatly increase the size of the model, without adding any new
information. In order to save space, we therefore suggest to generate the
six cell-tuples of a triangle element on the fly when required, using an edge
numbering scheme that can be reproduced as long as the triangle mesh is
not altered: If an edge is situated at the triangle mesh boundary, we identify
the edge by the triangle identifier tri and by its relative position within the



240 Thomsen, Breunig, Butwilowski, Broscheit

triangle, the latter being a number p < 3. For an interior edge separating
two triangles tri and tr j, we choose the smaller of the two numbers, e.g. tr j,
and the corresponding relative position p j. Clearly two bits are sufficient to
store the local position, and the edge identifiers may be represented e.g. by
tr j ∗ 3 + p j. By restricting the admissible number of triangles, we can store
triangle identifiers, vertex identifiers and edge numbers in fixed length fields,
e.g. as long integers, and reproduce the corresponding cell-tuples at any time:
for a given triangle tr and its three neighbours tr0, tr1 and tr2, determine first
which neighbours have lower id, and second, the relative position pe of the
corresponding edge e within, then compose tr or trk and pe into the edge
number eid; finally, return the six cell-tuples, where the signs ’+’ and ’-’ are
only given as an example:

(vi0 ,eid2 , tri,+)(vi1 ,eid1 , tr2)
(vi1 ,eid2 , tri,−)(vi0 ,eid0 , tr2)
(vi1 ,eid0 , tri,+)(vi2 ,eid2 , tr0)
(vi2 ,eid0 , tri,−)(vi1 ,eid1 , tr0)
(vi2 ,eid1 , tri,+)(vi0 ,eid0 , tr1)
(vi0 ,eid1 , tri,−)(vi2 ,eid2 , tr1)

As long as the triangle mesh topology is not altered, these cell-tuples can be
reproduced at any time.

Thus, at the lowest, most detailed level of the hierarchy, the cell-tuple
structure is represented implicitly by the triangle net. By a similar argument,
any mesh consisting of elements with a bounded number of vertices can be
integrated at the cost of a small number of bits for each element, e.g. a
quadrangular mesh for boundary representation, or a tetrahedral mesh for
solid modelling. Combined with a corresponding interpolation method, e.g.
linear or bilinear interpolation for each mesh cell, at the lowest level topology
and geometry representation can be integrated with the G-Map hierarchy.

14.7 Time-dependent topology

The objects of a city model, or of any other 3D GIS possess a ”life span”, i.e.
a temporal interval of existence, that in turn can be decomposed into several
intervals during which their structure is constant. As the G-Map represen-
tation of topology is a discrete structure, we consider intervals of constant
topology as the smallest temporal units, separated by time instants at which
the topology changes. Geometry and thematic properties, however may vary
within these intervals, and using appropriate interpolation methods continu-
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ous variation of geometry and thematic properties at interval boundaries can
be modelled.

We define a time-dependent d-G-Map as an application φ that to any tem-
poral instant t of a temporal interval T attaches a d-G-Map
φ (t) = G(D(t),α0(t), . . . ,αd(t)). At each time instant t, φ(t) must verify
the conditions (1) and (2) mentioned above. Given a sequence t0,T1, ..., ti−
1,Ti, ..., tn of time interval composing a ”life span” [t0, ..., tn], we require φ(t)
to be constant on each interval Ti. We do not in general impose continuity
at the temporal interval boundaries ti, but in some cases, a smoothness cri-
terion at the transition between consecutive time intervals may be required.
This can be achieved e.g. by associating with the time instant ti the common
refinement of the topologies associated with time intervals Ti and Ti+1 meet-
ing at ti. As a time instant or time inteval is attached to any component of
a time-dependent G-Map, we may search, for a given cell-tuple or a given
transition, to find a minimal subdivision of its ”life-span”. This can result
in a bundle of a large number of different temporal interval sequences that
may be more difficult to manage than their common subdivision. For the
modelling of time-dependent d-G-Maps, we therefore propose a compromise
between both approaches, by identifying larger groups of spatiotemporal ele-
ments, the so-called spatiotemporal components, that consist of the cartesian
product of a temporal sequence with a constant subset of the time-dependent
cellular complex. With each spatio-temporal component, a single sequence of
time intervals is associated, thus reducing significantly the amount of stor-
age required, while simplifying the management. This approach results in
a hierarchical decomposition of the spatio-temporal G-Map into a number
of component G-Maps, each of which is constant over its temporal interval
of definition. The retrieval of a spatio-temporal cell then proceeds in two
steps: first identify the temporal segment and the attached spatio-temporal
component, and second, locate the cell within the ST-component.

14.8 Application example: combination of a 2D map
with part of a 3D city model

In an ongoing application study, the first results of which are documented
in [23], we examine the combination of 2D topology from a cadastral map
of the city centre of Osnabrück with freely available 3D city model data of
Osnabrück ([24] into a topological model of the environment of Osnabrück
palace 14.5).

We used PostgreSQL ([21] as database platform, java6 and pl/java [27]
as programming languages, and the program Moka [15] as visualisation and
editing tool. The cell-tuple structure, the involution operations, orbits and

6 Java is a registered trademark of Sun Microsystems, Inc.



242 Thomsen, Breunig, Butwilowski, Broscheit

loops, as well basic Euler non-Euler operations on cellular complexes as de-
scribed in [20] have been implemented. A certain gain in execution speed
was achieved by server-side implementation as stored procedures [23], other
optimisation attempts are still under way.

The application example consists of several connected buildings enclosing
a courtyard, which is linked to streets and to a park by seven archways - a
configuration which cannot be modelled without true 3D topology (14.5).

Fig. 14.5 Topological representation (sketch): 3-G-Map of Osnabrück Palace with
the 2D city map. Small pins symbolize a subset of the cell-tuples

From a database point of view, the goal is to provide topological and mixed
database queries supported by a topological access structure. The queries
contain adjacency queries and other useful queries for way finding, e.g.
Can I pass through the courtyard on my way from the street to the park?.

The use of G-Maps respectively of cell-tuple structures leads to a clear
method:

1. Select a rectangular working area in the 2D cadastral map, and a set of
buildings from the city model.

2. Correct the location of the vertices using digital elevation data.
3. Extract the topology of the 2D cadastral map as a 2-G-Map.
4. Convert the 2-G-Map of the working area into a 3-G-map:

a. Extend the relational representation by addition of two columns.
b. Duplicate the set of cell-tuples, inverting the orientation such that a

”lower” and an ”upper” side can be distinguished.
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c. Add four nodes, eight edges and five faces, and introduce a solid - the
”underground”, resulting in a ”sandbox” that carries the oroginal 2D
map as upper surface.

5. Construct a 3-G-Map from the data of the 3D city model, which in fact
is composed of 2D patches in 3D space:

a. Extract simply connected surface patches, and represent them as
faces, edges and nodes in the database.

b. Build a 3-G-Map by composing the faces into boundaries of volume
cells representing the topology of individual building parts.

c. Transform the 3-G-Map by merging the common boundaries of adja-
cent building parts, representing the topology of the 3D city map.

6. Combine the models by defining faces on top of the ”sandbox” corre-
sponding to the ground faces of the solids composing the city model.

a. Edit the two topology models to define the faces, edges and nodes to
be matched

b. Correct of vertex positions if necessary.
c. Sew the cells of the two models at the contacts.

Most of these steps are either trivial or can easily be automated. The
constructions of the topologies of the 2D map (step 3.) and of the 3D city
model (step 5.), however are not simple. As the 2D cadastral map data are
stored as polygons in a shape file, a spatial join on vertex and arc locations
has to be used to establish the contacts between faces. The construction
of a topologically consistent 3D model from the city model data involves
considerable user interaction. In fact, the city model, derived from satellite
data, consists of 2D surface patches suitable for a ”virtual reality” visual
representation, but is neither consistent nor complete, and does not comprise
volume cells. Therefore available floor plans, elevations and vertical sections
of the buildings, which belong to Osnabrück university, have to be consulted
to control the construction of the 3D model.

After the two models are merged into one, further editing of the cells can be
used to e.g. cut out cellars, windows, doors and archways, or to create interior
walls and intermediate ceilings, in order to yield a more realistic consistent
topological 3D model integrating indoor and outdoor spaces (Figure 14.6).

Topological database queries such as determining the neighbouring build-
ings of the palace can be directly answered using the topological 3-G-Map
structure.

14.9 Conclusion and outlook

In this paper we have described a general approach for modelling and man-
aging the topology of objects in a 3D GIS - based on oriented d-Generalised
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Fig. 14.6 Screen snapshot during editing session with Moka [15]: Introduction of
archways, and correction of vertex position nconsistencies. Edges are represented by
straight lines, though the corresponding arcs may be curves or polylines

Maps. The topological data model and its realisation in a database manage-
ment system have been presented in detail. The realisation of the approach
in an Object-Relational Database Management System (ORDBMS) has been
presented. An application example as part of the Osnabrück city map com-
bined with a 3D model of Osnabrück Palace showed the applicability of the
approach.

In our future work we will also deal with topological operations on objects
with different levels of detail (LOD) based on hierarchical d-G-Maps. This
approach shall be implemented in a Multi-Representation Database and eval-
uated with cartographic data of our project partners at Hannover University.
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Diplomarbeit, Fachgebiet Geographie, Universität Osnabrück, (2007).

[24] FRIDA: Free data from the city of Osnabrueck.
http://frida.intevation.org/ueber-frida.html (2007).

[25] Breunig, M., Bär W. and Thomsen, A.: Usage of Spatial Data Stores for
Geo-Services. 7th AGILE Conf. Geographic Information Science, (2004)
687–696.

[26] Bär, W.: Verwaltung geowissenschaftlicher 3D Daten in mobilen Daten-
banksystemen PhD Thesis, dept. of Mathematics/Computer Science,
University of Osnabrück (2007).
http://elib.ub.uni-osnabrueck.de/cgi-bin/diss/user/catalog?search=
sqn&sqn=693

[27] pl/java: http://wiki.tada.se/display/pljava/Home


