
Chapter 11

First implementation results and open
issues on the Poincaré-TEN data
structure

Friso Penninga and Peter van Oosterom

Abstract

Modeling 3D geo-information has often been based on either simple exten-
sions of 2D geo-information modeling principles without considering the ad-
ditional 3D aspects related to correctness of representations or on 3D CAD
based solutions applied to geo-information. Our approach is based from the
scratch on modeling 3D geo-information based on the mathematically well-
defined Poincaré-TEN data structure. The feasibility of this approach still
has to be verified in practice. In this paper, the first experiences of loading a
reasonable sized data set, comprised of about 1,800 buildings represented by
nearly 170,000 tetrahedrons (including the ’air’ and ’earth’), are discussed.
Though the Poincaré-TEN data structure is feasible, the experience gained
during the implementation raises new research topics: physical storage in one
(tetrahedron only) or two tables (tetrahedron and node), effective clustering
and indexing improvements, more compact representations without losing too
much performance, etc.

11.1 Introduction

11.1.1 Motivation

This paper presents the first implementation results of the Poincaré-TEN
data structure, as presented earlier in [1]. This structure is developed within
a research project 3D Topography and a prototype is being developed within
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Oracle Spatial. The theoretical strengths of this concept (a compact topolog-
ical DBMS approach based on a solid mathematical foundation) were demon-
strated in previous papers [1, 2, 3]. Despite these strengths, the applicability
of the new approach depends heavily on whether the approach is feasible
in terms of storage requirements and performance. Therefore, implementing
and testing these new ideas is essential. The first implementation results will
provide insight to the number of TEN elements and provide some prelimi-
nary ideas on storage requirements (as future optimization steps will affect
these requirements). At the same time implementing the approach raises new
design questions and these open problems will be presented.

11.1.2 Related research

Research in the field of 3D GIS has been performed over the last two decades.
Zlatanova et al. [4] gave an overview of the most relevant developments during
this period. Related to the topics discussed in this paper, Carlson [5] can
be seen as the starting point as he introduced a simplicial complex-based
approach of 3D subsurface structures. However, this approach was limited
to the use of 0-, 1- and 2-simplexes in 3D space. Extending this into higher
dimensions (as indicated by Frank and Kuhn [6]) is mentioned as a possibility.
The explicit use of 3D manifolds to model 3D features is explored by Pigot
[7, 8] and Pilouk [9] introduces the TEtrahedral irregular Network (TEN),
in which the 3-simplex is used as a building block. However, in their work,
a rigid mathematical foundation is missing. As far as can be deducted from
their descriptions, the 3D simplices are explicitly represented by 2D simplices,
specifically, triangles (which are in turn represented by edges and nodes). A
topological data model based on 2D simplicial complexes (in 2D space) is
introduced [10] and implemented in the PANDA system [11], an early object-
oriented database. In applications polyhedrons are often used as 3D primitive
[12, 13].

11.1.3 Overview of paper

Before describing the first implementation results and open issues, we will first
describe the core characteristics of the previously introduced Poincaré-TEN
approach in Section 11.2. After, the approach will be applied to modeling 3D
Topography in Section 11.3, while Section 11.4 summarizes the implementa-
tion details. The preliminary implementation results with the 1,800 building
data set are described in Section 11.5. This paper ends with discussing the
current implementation and related open issues in Section 11.6.
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11.2 The Poincaré-TEN approach

In this section, first three aspects of our Poincaré-TEN approach are further
explained, before the full concept of the approach is used as the foundation
for 3D topography modeling:

• It models the world as a full decomposition of 3D space
• The world is modelled in a Tetrahedronized Irregular Network (TEN)
• The TEN is modelled based on Poincaré simplicial homology

11.2.1 Characteristic 1: Full Decomposition of Space

As the Poincaré-TEN approach is developed with 3D topographic data in
mind, two fundamental observations are of great importance [14]:

• Physical objects have by definition a volume. In reality, there are no point,
line or polygon objects, only point, line or polygon representations exist
(at a certain level of abstraction/generalization). The ISO 19101 Geo-
graphic information - Reference model [15] defines features as ’abstrac-
tions of real world phenomena’. In most current modeling approaches,
the abstraction (read ’simplification’) is in the choice of a representation
of lower dimension. However, as the proposed method uses a tetrahedral
network (or mesh), the simplification is already in the subdivision into
easy-to-handle parts (i.e. it is a finite element method!).

• The real world can be considered a volume partition: a set of nonoverlap-
ping volumes that form a closed (i.e. no gaps within the domain) modelled
space. As a consequence, objects like ’earth’ or ’air’ are explicitly part of
the real world and thus have to be modelled.

Although volume features are the basic elements in the model, planar fea-
tures might still be very useful, as they mark the boundary (or transition)
between two volume features. This approach allows for the existence of planar
features, but only as ’derived features’. In terms of UML class diagrams, these
planar features are modelled as association classes. For instance, the ’earth
surface’ is the result of the association between ’earth’ and ’non-earth’. Such
features might be labeled (for instance as ’grassland’ or ’road surface’ with
additional attributes), but they do not represent or describe the volume ob-
ject. For example, a road is represented by a volume (despite the appearance
of planar features like the road surface), with neighboring volumes that might
represent air, earth or other adjacent features.

The explicit inclusion of earth and air features is not very common, since
these features are usually considered empty space in between topographic fea-
tures. Based on following two arguments, we decided to deviate from common
practice. First, air and earth features are often also the subject of analyses.
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One can think of applications like modeling noise propagation or air pollu-
tion. Second, by introducing earth and air features future extensions of the
model will be enabled (beyond Topography). Space that is currently labeled
as air can be subdivided into air traffic or telecommunication corridors, while
earth might be subclassified into geographic layers or polluted regions.

11.2.2 Characteristic 2: using a TEN

Despite initial ideas on a hybrid data model (an integrated TIN/TEN model,
based on a pragmatic approach to model in 2,5D as much as possible and to
switch to a full 3D model in exceptional cases only), the decision was made
[14] to model all topographic features in a TEN. The preference for these
simplex-based data structures is based on certain qualities of simplexes (a
simplex can be defined as the simplest geometry in a dimension, regarded as
the number of points required to describe the geometry):

• Well defined: a n-simplex is bounded by n + 1 (n - 1)-simplexes. E.g. a
2-simplex (triangle) is bounded by 3 1-simplexes (edges)

• Flatness of faces: every face can be described by three points
• A n-simplex is convex (which simplifies amongst others point-in-polygon

tests)

Due to the use of simplexes, a 1:n relationship between features and their
representations is introduced. The actual usability of the Poincaré-TEN ap-
proach depends on the actual size of this n and will be discussed later in this
paper.

11.2.3 Characteristic 3: applying Poincaré simplicial
homology

The new volumetric approach uses tetrahedrons to model real world features.
Tetrahedrons consist of nodes, edges and triangles. All four data types are
simplexes: the simplest geometry in each dimension, in which simple refers to
minimizing the number of points required to define the shape. A more formal
definition [16] of a n-simplex Sn is: a n-simplex Sn is the smallest convex set
in Euclidian space IRmcontaining n + 1 points v0, . . . ,vn that do not lie in a
hyperplane of dimension less than n. As the n-dimensional simplex is defined
by n+1 nodes, it has the following notation: Sn =< v0, . . . ,vn >. The boundary
of a n-simplex is defined by the following sum of n−1 dimensional simplexes
[17] (the hat symbol indicates omitting the specific node):
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∂Sn =
n

∑
i=0

(−1)i < v0, . . . , v̂i, . . . ,vn >

This results in the following boundaries (also see Figure 11.1):

S1 =< v0,v1 > ∂S1 =< v1 >−< v0 >
S2 =< v0,v1,v2 > ∂S2 =< v1,v2 >−< v0,v2 > + < v0,v1 >
S3 =< v0,v1,v2,v3 > ∂S3 =< v1,v2,v3 >−< v0,v2,v3 >

+ < v0,v1,v3 >−< v0,v1,v2 >

Fig. 11.1 Simplexes and their boundaries (From [16])

All simplexes are ordered. As a simplex Sn is defined by n+1 vertices, (n+
1)! permutations exist. All even permutations of an ordered simplex Sn =<
v0, . . . ,vn > have the same orientation, all odd permutations have opposite
orientation. So edge S1 =< v0,v1 > has boundary ∂S1 =< v1 >−< v0 >. The
other permutation S1 = − < v0,v1 >=< v1,v0 > has boundary ∂S1 =< v0 >
−< v1 >, which is the opposite direction. As a consequence operators like the
dual of a simplex, that is the simplex with the opposite orientation, become
very simple: it only requires a single permutation.

The direction of all oriented boundaries of a given simplex obtained with
the above boundary operator formula is the same. In 3D this results in the
favorable characteristic that with S3 either all normal vectors of the bound-
ary triangles point inwards or all normal vectors point outwards. This is a
direct result of the boundary operator definition, as it is defined in such a
manner that ∂ 2Sn is the zero homomorphism, i.e. the boundary of the bound-
ary equals zero (summing-up the positive and negative parts). For example,
consider ∂ 2S3, a tetrahedron. The boundary of this tetrahedron consists of
four triangles, and the boundaries of these triangles consist of edges. Each of
the six edges of S3 appears twice, as each edge bounds two triangles. Since the
zero homomorphism states that the sum of these edges equals zero, this is the
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case if and only if the edges in these six pairs have opposite signs. The edges
of two neighboring triangles have opposite signs if and only if the triangles
have similar orientation, i.e. either both are oriented outwards or both are
oriented inwards. This characteristic is important in deriving the boundary
of a simplicial complex (construction of multiple simplexes). If this identical
orientation is assured for all boundary triangles of tetrahedrons (which can
be achieved by a single permutation when necessary), deriving the bound-
ary triangulation of a feature will reduce to adding up boundary triangles of
all related tetrahedrons, as internal triangles will cancel out in pairs due to
opposite orientation. Figure 11.2 shows an example in which all boundaries
of the tetrahedrons are added to obtain the boundary triangulation of the
building.

Fig. 11.2 Deriving the boundary triangulation from the TEN
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11.3 Poincaré-TEN approach to modeling 3D
Topography

11.3.1 Conceptual model

Usually [8, 9], tetrahedrons are defined by four triangles, triangles by three
edges and edges by two nodes. Geometry is stored at node level. As a result,
reconstructing geometry, for instance a tetrahedron, becomes a relatively la-
borious operation. In simplicial homology, simplexes of all dimensions are
defined by their vertices only, while relationships between other simplexes
can be derived by applying the boundary operator. Due to the availability
of this operator, there is no need for explicit storage of these relationships.
This concept is illustrated in the UML class diagram in Figure 11.3. Tetra-
hedrons, triangles and edges are defined by an ordered list of nodes. The
mutual relationships between tetrahedrons, triangles and nodes (the bound-
ary/coboundary relationships) are derived and signed (i.e. oriented).

Figure 11.3 shows the concept of full space decomposition. The real world
consists of volume features and features of lower dimension are modelled as
association classes. As a result, instances of these classes are lifetime depen-
dent on the relationship between two volume features.

11.3.2 Extending simplex notation: vertex encoding

In the Poincaré-TEN approach to 3D topographic data modeling, simplexes
are defined by their vertices. Identical to the simplex notation from simplicial
homology, where for instance a tetrahedron is noted as S3 =< v0,v1,v2,v3 >,
simplex identifiers are constructed by concatenating the vertex ID’s. In do-
ing so, unique identifiers exist that contain orientation information as well,
since the order of vertices determines the orientation. In an earlier paper [1],
we suggested the use of x, y and z coordinate concatenation as node ID.
Since geometry is the only attribute of a vertex, adding a unique identifier
to each point and building an index on top of this table will cause a substan-
tial increase in data storage. The geometry itself will be a unique identifier.
Concatenating the coordinate pairs into one long identifier code and sorting
the resulting list, will result in a very basic spatial index. In a way this ap-
proach can be seen as building and storing an index, while the original table
is deleted.

Figure 11.4 [1] illustrates this idea of vertex encoding in a simplicial
complex-based approach. A house is tetrahedronized and the resulting tetra-
hedrons are coded as the concatenation of their four vertices’ coordinates.
Each row in the tetrahedron encoding can be interpreted as x1y1z1x2y2z2x3y3z3x4y4z4.
For reasons of simplicity, only two positions are used for each coordinate ele-
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Fig. 11.3 UML class diagram of the simplicial complex-based approach
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ment. Therefore, the last row (100000000600100600100608) should be inter-
pret as the tetrahedron defined by the vertices (10,00,00),(00,06,00),(10,06,00)
and (10,06,08), which is the tetrahedron at the bottom right of the house.

Fig. 11.4 Describing tetrahedrons by their encoded vertices

11.4 Current implementation

To provide greater insight into the proposed new approach, the basic struc-
ture is implemented within the Oracle DBMS. This section will summarize
the current status of the implementation, but one has to realize that this
is still a work in progress. At this moment, the required tetrahedronization
algorithms are not implemented within the DBMS, so TetGen [18] is used
to perform an external batch tetrahedronisation. The input is a Piecewise
Linear Complex (PLC), see Figure 11.5. A PLC [19] is a set of vertices, seg-
ments and facets, where a facet is a polygonal region. Each facet may be
non-convex and hcontain holes, segments and vertices, but it should not be a
curved surface. A facet can represent any planar straight line graph (PSLG),
which is a popular input model used by many two-dimensional mesh algo-
rithms. A PSLG is [20] a graph embedding of a planar graph (i.e. a graph
without graph edge crossings), in which only straight line segments are used
to connect the graph vertices.

Compared to a polyhedron, a PLC is a more flexible format. If one looks at
the shaded facet in Figure 11.5, one can see that this facet cannot be described
by a polygon because there are loose and dangling line segments. However, in
our application, situations like these will be rare or not appear at all. Based
on an input PLC, TetGen creates a constrained Delaunay tetrahedronisation.
This tetrahedronization is loaded into the database and then converted into
the Poincaré-TEN format. Figure 11.6 shows this concept with a small test
dataset, from the input PLC (top), via the tetrahedronization (mid) to the
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Fig. 11.5 A Piecewise Linear Complex (PLC), input for the tetrahedronization al-
gorithm (From [21])

output in which only the constrained triangles (the feature boundary faces)
are drawn (bottom).

The tetrahedron table is the only table in the implementation. It consists
of a single column (NVARCHAR2) in which the encoded tetrahedrons are de-
scribed in the form x1y1z1x2y2z2x3y3z3x4y4z4id (based on fixed length character
strings). Note that besides the geometry, an unique identifier is added, which
refers to a volume feature that is (partly) represented by the tetrahedron. The
tetrahedrons are not signed, but are assumed to be a positive permutation,
meaning that all normal vectors on boundary triangles are oriented outwards.
This is checked and ensured during the initial loading proces. A consistent
orientation is required to ensure that each boundary triangle appears twice:
once with positive and once with negative orientation. The orientation sim-
plifies determination of left/right and inside/outside relations. Based on the
encoded tetrahedrons the boundary triangles can be derived by applying the
boundary operator:

create or replace procedure deriveboundarytriangles(
(...)
a := (SUBSTR(tetcode,1,3*codelength));
b := (SUBSTR(tetcode,1+3*codelength,3*codelength));
c := (SUBSTR(tetcode,1+6*codelength,3*codelength));
d := (SUBSTR(tetcode,1+9*codelength,3*codelength));
id := (SUBSTR(tetcode,1+12*codelength));
ordertriangle(codelength,’+’||b||c||d||id, tricode1);
ordertriangle(codelength,’-’||a||c||d||id, tricode2);
ordertriangle(codelength,’+’||a||b||d||id, tricode3);
ordertriangle(codelength,’-’||a||b||c||id, tricode4);
(...)

Note that the triangles inherit the object id from the tetrahedron, i.e. each
triangle has a reference to the volume feature represented by the tetrahedron
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Fig. 11.6 Input PLC (top), the resulting tetrahedronization (mid) and as output
the constrained triangles (i.e. the feature boundaries)(bottom)

of which the triangle is part of the (internal) boundary. The reason for this
will be introduced in the next section. Also, it can be seen that each boundary
triangle is ordered by the ordertriangle procedure. The objective of this
procedure is to gain control over which permutation is used. A triangle has six
(= 3!) permutations, but it is important that the same permutation is used
both in the positive and negative orientations, as they will not cancel out
in pairs otherwise. The ordertriangle procedure always rewrites a triangle
< a,b,c > such that a < b < c holds, which is an arbitrary criterion.

Based on a slightly altered version of the deriveboundarytriangles op-
erator the triangle view is created. The resulting view contains all trian-
gles (coded by their geometry and inherited object id’s) and their cobound-
aries (the coboundary of a n-dimensional simplex Sn is the set of all (n+1)-
dimensional simplexes Sn+1 of which the simplex Sn is part of their boundaries
∂Sn+1). In this case, the coboundary is a tetrahedron, of which the triangle
is part of the boundary. This coboundary will prove useful in deriving topo-
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logical relationships later in this section. The resulting view will contain four
times the number of tetrahedrons and every triangle appears twice: once with
a positive and once with a negative sign (and not in a permutated form, due
to the ordertriangle procedure). However, it must be realized that this is
just a view and no actual storage takes place:

create or replace view triangle as
select deriveboundarytriangle1(tetcode) tricode,
tetcode fromtetcode from tetrahedron
UNION ALL
select deriveboundarytriangle2(tetcode) tricode,
tetcode fromtetcode from tetrahedron
UNION ALL
select deriveboundarytriangle3(tetcode) tricode,
tetcode fromtetcode from tetrahedron
UNION ALL
select deriveboundarytriangle4(tetcode) tricode,
tetcode fromtetcode from tetrahedron;

Features in the model are represented by a set of tetrahedrons. To ensure
that these tetrahedrons represent the correct geometry, the outer boundary
is triangulated and these triangles are used as constraints. This implies that
these triangles will remain present as long as the feature is part of the model
(i.e. they are not deleted in a update proces). To achieve this, the incremental
tetrahedronization algorithm needs to keep track of these constrained trian-
gles. In contrast with what one might expect, it is not necessary to store
these constraints explicitly, as they can be derived. This derivation is based
on the fact that although every triangle (in a geometric sense) appears two
times (with opposite orientation) in the triangle view, not every triangle code
appears twice. As stated before, the triangle code inherits the object id from
the tetrahedron (its coboundary). This implies that for internal triangles (i.e.
within an object) the triangle and its dual will have (apart from the sign)
the exact same triangle code (geometry + object id), but in case of boundary
triangles (i.e. constrained triangles) this code will differ due to the different
inherited object id’s. A view with constrained triangles can be derived:

create or replace view constrainedtriangle as
select t1.tricode tricode from triangle t1
where not exists (select t2.tricode from triangle t2

where t1.tricode = t2.tricode*-1);

Other views might be defined to simplify operations, for instance, a view with
triangles stored by their geometry alone or a view without duals.

Similar to deriving the triangle views, views with edges, constrained edges
and nodes can be constructed. Note that the views with edges contain no
duals, i.e. edges are described only by their geometry:

create or replace view edge as
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select distinct deriveabsboundaryedge1(tricode) edcode
from triangle
UNION
select distinct deriveabsboundaryedge2(tricode) edcode
from triangle
UNION
select distinct deriveabsboundaryedge3(tricode) edcode
from triangle;

create or replace view constrainededge as
select distinct deriveabsboundaryedge1(tricode) edcode
from constrainedtriangle
UNION
select distinct deriveabsboundaryedge2(tricode) edcode
from constrainedtriangle
UNION
select distinct deriveabsboundaryedge3(tricode) edcode
from constrainedtriangle;

create or replace view node as
select distinct deriveboundarynode1(edcode) nodecode
from edge
UNION
select distinct deriveboundarynode2(edcode) nodecode
from edge;

In the current implementation edges are undirected and do not inherit object
id’s, as no application for this has been identified. However, strict application
of the boundary operator results in directed triangles. With the tetrahedron
table and triangle, edge and node views, the data structure is accessible at
different levels. Due to encoding of the vertices, both geometry and topology
are present at every level, thus enabling switching to the most appropriate
approach for every operation.

11.5 Preliminary implementation results

The very small dataset from Figure 11.6 is now replaced by a larger dataset.
It consists of 1796 buildings in the northern part of Rotterdam (see Figure
11.7) and covers an area of about seven square kilometres. At this moment
other topographic features like the earth surface, roads, tunnels etc. are still
missing due to lacking appropriate 3D data. Complex situations like multiple
land use and highway interchanges are lacking as well. However, this dataset
will provide more insight into the number of elements of a TEN.
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Fig. 11.7 Rotterdam test data set: 1796 buildings

11.5.1 An alternative model

Until now, simplex codes are obtained by concatenating the node coordi-
nates, like x1y1z1x2y2z2x3y3z3x4y4z4. This approach is based on the idea that
a node table only contains geometry and that adding an identifier would
be a bit redundant, since the geometry is already an unique identifier. Nev-
ertheless, one can question whether this approach actually reduces storage
requirements, since each node is part of multiple tetrahedrons (the Rotter-
dam tetrahedronization shows an average of about fifteen tetrahedrons per
node; see next subsection). Due to this result, the concatenated coordinate
pair is used multiple times. As long as a node identifier requires consider-
ably less storage space compared to this concatenated geometry, switching
to a tetrahedron-node approach might be feasible. An additional node table
containing a node identifier is required to create shorter simplex codes like
nid1nid2nid3nid4.

With this idea in mind tetrahedronization of the Rotterdam data set was
performed. Since TetGen output consists of a comparable structure with both
a tetrahedron and a node table, incorporating TetGen results in the Poincaré-
TEN structure was easier in the tetrahedron-node version. Since obtaining
a working implementation was strongly favored over minimizing storage re-
quirements or optimizing performance at this point, the tetrahedron-node im-
plementation was used. As a result, two tables with tetrahedrons and nodes
are stored. All simplexes are identified by a concatenation/permutation of
node id’s instead of concatenated coordinate pairs. All pro’s and con’s re-



11 Implementing the Poincaré-TEN data structure 191

garding the choice between a tetrahedron-only and a tetrahedron-node im-
plementation will be discussed into more detail in Section 11.6.2.

11.5.2 Preliminary results on storage requirements

The Rotterdam data set is first converted into the input format for TetGen,
the tetrahedronization software. This input format requires a list of nodes
with geometry, a list of faces (described by their nodes) and a list of points
inside each object to identify the object. Real volumetric 3D data is rare,
so one has to convert data or integrate multiple sources. Modifying this into
the topological format in which faces are described by their nodes is usu-
ally a very time-consuming task. The input dataset consists of 26,656 nodes,
16,928 faces and 1,796 points to identify the 1,796 buildings. Tetrahedroniz-
ing this input set with TetGen results in a TEN, consisting of 30,877 nodes,
54,566 constrained triangles and 167,598 tetrahedrons. One should note that
the tetrahedronization results in one network, i.e. the space in between the
buildings is tetrahedronized as well! The increase in the number of nodes is
caused by the addition of Steiner points; additional points required to either
enable tetrahedronization or improve tetrahedronization quality (in terms of
avoiding ill-shaped triangles and tetrahedrons to avoid numerical instability).

The tetrahedronization results are loaded into the Poincaré-TEN struc-
ture. The tetrahedron table consists of 167.598 tetrahedrons. Based on these
tetrahedron table, views are created with triangles, constrained triangles,
edges and nodes by repeatedly applying the boundary operator. Since the
Poincaré-TEN structure contains duals of all triangles as well, the num-
bers differ from the initial tetrahedronization. From the 167,598 tetrahedrons
670,392 (4 x number of tetrahedrons) triangles are derived, of which 109,120
are constrained triangles. This number slightly differs from multiplying the
original 54.566 constrained triangles by two (because of inclusion of the dual),
since the outer boundary of the TEN consists of twelve triangles without a
dual. The edge view provides information for the 198,480 edges. Note that
these edges are described by their nodes alone, so without inherited object
id, dual or sign, i.e. each geometry is unique.

As stated before, the current implementation is very straightforward. Obtain-
ing a working implementation was strongly favored over minimizing storage
requirements or optimizing performance. However, improving these aspects is
one of the most important tasks for the upcoming period. Nevertheless, stor-
age requirements of the current approach are compared to requirements of
a polyhedron approach. The polyhedrons are described in Oracle as a solid,
defined by a set of polygonal faces, each described by their vertices. The
TEN approach slightly differs from previously described implementations, as
it consists of both a tetrahedron and a node table.
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The Poincaré-TEN approach requires 1.44 and 19.65 MB, respectively,
for the node and tetrahedron table, while the polyhedron tables requires 4.39
MB. This means that the current (absolutely not optimized!) implementation
requires about 4.8 times more storage space. However, as will be discussed in
Section 11.6.4, the feasibility of our approach should be assessed both based
on storage requirements as well as performance. A simple storage reduction
can be obtained by using bit string instead of character string represention
of the coordinates. Not only will this save storage space (estimated between
a factor 2 to 3), but it would also increase performance and no ascii to binary
conversions are necessary when using the coordinates.

11.6 Discussion of open issues

The prototype implementations show that the Poincaré-TEN approach is
indeed feasible and can be used for well defined representation, but is still
usable in basic GIS functions: selection of relevant objects and their visual-
ization. Further, basic analysis is very well possible: both using topology (e.g.
find the neighbors of a given feature) and geometry (e.g. compute volume of
a given feature by summing tetrahedron volumes). Finding neighbors of a
given feature can be implemented by querying the constrained triangle view
to find all boundary triangles with a specific feature identifier. Through a
view with triangle duals, the neighboring features can be identified quickly.
An alternative approach would be to traverse the TEN tetrahedron by tetra-
hedron and test for feature identifier changes. A function to find neighboring
tetrahedrons can be defined:

create or replace function getneighbourtet1(
(...)
select fromtetcode into neighbourtet from triangle
where removeobjectid(tricode)= -1 *removeobjectid(tricode);

(...)

or the volume of a tetrahedron can be calculated using the Cayley-Menger
determinant [22] (with di j as length of edge < vi,v j > ):

288V 2 =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 d2

01 d2
02 d2

03
1 d2

10 0 d2
12 d2

13
1 d2

20 d2
21 0 d2

23
1 d2

30 d2
31 d2

32 0

∣∣∣∣∣∣∣∣∣∣
Although these capabilities have been established, ongoing research is at-

tempting to provide answers to a number of some open issues. These issues
will be described in the final subsections of this paper.
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11.6.1 Open issue 0. Spatial clustering and indexing

The large real world data set will require spatial organization of the data to
enable the efficient implementation of spatial queries such as the rectangle
(or box) selections. Spatial organization includes spatial clustering (things
close in reality are also close in computer memory, which is tricky given the
one dimensional nature of computer memory) and spatial indexing (given
the spatial selection predicate, the addresses of the relevant objects can be
found efficiently). If the current coding of the tetrahedrons (first x, then y,
then z) is replaced by bitwise interleaving, the tetrahedron code itself may be
used for spatial clustering (similar to the Morton code) and used for spatial
indexing without using additional structures (such as quad-tree or r-tree,
also requiring significant storage space and maintenance during updates) [23].
Only the coboundary references of the triangles might need functional indexes
to improve performance.

11.6.2 Open issue 1. Minimizing redundancy:
tetrahedron only vs. tetrahedron-node

In this paper, two variants of the implementation have been described. If a
separate node table is used, with compact node id’s, then the issue of realizing
spatial clustering and indexing is relevant for both tables. As there is no
direct geometry in the tetrahedron table, the bitwise interleaving approach
of the coordinates cannot be used (and probably a more explicit technique
has to be applied). At this time, no comparative results are available, but one
can expect the tetrahedron-node variant to be cheaper in terms of storage
than the tetrahedron-only approach. However, reducing data storage might
deteriorate performance, as additional operations are necessary to perform
geometrical operations on top of simplexes. If one thinks, for instance, of
the operation that checks whether a tetrahedron is oriented positively or
negatively, one needs the node coordinates to calculate a normal vector on
one of the triangles and calculate the angle between this normal vector and
a vector from a triangle opposute to the fourth node to determine whether
the normal points inwards or outwards. To perform this operation in the
tetrahedron-node implementation, one has to search the node table first to
obtain the node geometries.
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11.6.3 Open issue 2. Dealing with storage
requirements: storing all coordinates vs. storing
differences

Assuming that one opts for the tetrahedron only approach, storage require-
ments can be reduced by avoiding storage of the full coordinates. Since the
four nodes are relatively close to each other, one might choose to store the co-
ordinates of one node and only give difference vectors to the other three nodes:
x1y1z1x2y2z2x3y3z3x4y4z4 would change into xyzδx1δy1δ z1δx2δy2δ z2δx3δy3δ z3.
Similar to the choice between the tetrahedron only and the tetrahedron-node
implementation, reducing data storage will come at a price. Again additional
operators are required to reconstruct the four node geometries when neces-
sary. However, if these can be implemented efficiently (and there is no reason
why this can not be done), they could be used in a view translating the com-
pact physical storage representation in a more verbose full representation
(but as this is only a view, it is not stored so it does not matter that this size
is larger). Also, the bitwise interleaving approach to provide spatial clustering
and indexing may still work well with this approach (as it is sufficient to do
only bitwise interleaving of the first coordinate).

11.6.4 Open issue 3. How to assess feasibility of the
Poincaré-TEN approach

In the implementation of the theory, as indicated in this paper (first proto-
type and also the open issues described above for further improvement), care
has to be taken so that the storage requirements are not excessive (compared
to other approaches) as this would make the approach less feasible (stor-
age requirements should be linear in the number of features represented). In
general, bulky storage requires more time to retrieve data from the disk, as
compared to compact storage. However, if very expensive computations are
needed (e.g. joins which are not well supported), then bad response times
could occur. It is important to implement the typical basic functionality ef-
fectively (both w.r.t. storage and time performance). At this moment, there
seems to be no basic functions that cannot be implemented time efficiently
(when proper clustering/indexing is applied). However, this assumption still
has to be proven.
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11.6.5 Open issue 4. Correct insertion of 3D objects:
snapping to the earth surface

3D data sets are required to load into the current implementation. Although
research efforts are made to increase availability of such datasets [24], depen-
dence of the availability of such data sets seriously limits applicability of the
data structure at this time. Therefore, additional functionality is required to
switch from importing 3D data sets into importing 3D data from different
sources. One can imagine that creation of a 3D topographic model starts with
the creation of the earth surface, followed by inclusion of 3D buildings. In gen-
eral, buildings are built on top of the earth surface. As the earth surface and
building data originates from different sources, these objects are not likely to
fit together perfectly. To cope with such situation, one needs a snap-to-earth-
surface operator. Such an operator will project the buildings footprint onto
the terrain and determine the distance between terrain and buildings under-
side. If this distance is smaller than a certain pre-set tolerance, the building
will be placed on the terrain by applying a vertical displacement, thus en-
suring a tight fit. Two options exist for this, as one can either adjust the
buildings underside to fit the terrain or adjust the terrain to fit the (usually
flat) underside of the building. The snapping operator can also be utilized for
inclusion of infrastructural objects and land coverage objects.

11.6.6 Open issue 5. Incremental updating of existing
structure in DBMS

The current implementation lacks any tetrahedronization algorithms. At this
time, TetGen software is used and the resulting output is loaded into the
database and subsequently converted into the Poincaré-TEN structure. With
the intended application of 3D Topography in mind, bulk loading is useful for
the initial model build, but updates should be handled incrementally. A the-
oretical framework of incremental updates in a TEN structure is presented in
[2, 25]. However, these ideas still need further implementation and develop-
ment. It will be most effective to devise incremental update procedures that
act as local as possible, with the risk that quality parameters like the Delau-
nay criterion or shortest-to-longest edge ratios are temporarily not met. This
could be compensated by a cleaning function that performs a local rebuild
or even a full retetrahedronization. Obviously, such an operation needs to be
performed every now and then, but not after every update, thus speeding up
the update process.
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[17] Poincaré, H.: Complément á l’Analysis Situs. Rendiconti del Circolo
Matematico di Palermo 13 (1899) 285–343

[18] http://tetgen.berlios.de/: (2007)
[19] Miller, G.L., Talmor, D., Teng, S.H., Walkington, N., Wang, H.: Con-

trol Volume Meshes using Sphere Packing: Generation, Refinement and
Coarsening. In: 5th International Meshing Roundtable, Sandia National
Laboratories (1996) 47–62

[20] http://mathworld.wolfram.com/PlanarStraightLineGraph.html: (2007)
[21] Si, H.: TetGen, A Quality Tetrahedral Mesh Generator and Three-

Dimensional Delaunay Triangulator. User’s Manual. Technical re-
port, Weierstrass Institute for Applied Analysis and Stochastics, Berlin,
Germany (2006) Available at http://tetgen.berlios.de/files/tetgen-
manual.pdf.

[22] Colins, K.D.: Cayley-Menger Determinant. From Mathworld –
A Wolfram Web Resource. http://mathworld.wolfram.com/Cayley-
MengerDeterminant.html (2003)

[23] van Oosterom, P., Vijlbrief, T.: The Spatial Location Code. In Kraak,
M.J., Molenaar, M., eds.: Advances in GIS research II; proceedings of the
seventh International Symposium on Spatial Data Handling - SDH’96,
Taylor and Francis (1996)

[24] Oude Elberink, S., Vosselman, G.: Adding the Third Dimension to a
Topographic Database Using Airborne Laser Scanner Data. In: Pho-
togrammetric Computer Vision 2006. IAPRS, Bonn, Germany. (2006)

[25] Penninga, F., van Oosterom, P.: Editing Features in a TEN-based
DBMS approach for 3D Topographic Data modeling. Technical Report
GISt Report No. 43, Delft University of Technology (2006) Available at
http://www.gdmc.nl/publications/reports/GISt43.pdf.


