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Abstract. The large amount of available information on the Web makes it hard
for users to locate resources about particular topics of interest. Traditional search
tools, e.g., search engines, do not always successfully cope with this problem,
that is, helping users to seek the right information. In the personalized search
domain, focused crawlers are receiving increasing attention, as a well-founded
alternative to search the Web. Unlike a standard crawler, which traverses the Web
downloading all the documents it comes across, a focused crawler is developed
to retrieve documents related to a given topic of interest, reducing the network
and computational resources. This chapter presents an overview of the focused
crawling domain and, in particular, of the approaches that include a sort of adap-
tivity. That feature makes it possible to change the system behavior according to
the particular environment and its relationships with the given input parameters
during the search.

7.1 Introduction

Traditional search engines allow users to submit a query suggesting, as output, an or-
dered list of pages ranked according to a particular matching algorithm. The under-
lying Information Retrieval model’s goal is to allow users to find those documents
that will best help them meet information needs and make it easier to accomplish their
information-seeking activities. The query can be considered the user’s textual descrip-
tion of the particular information request. If the engine works in the Web domain, a
software system usually named crawler traverses it, collecting HTML pages or other
kinds of resources [69, 83]. It exploits the hyperlink structure in order to find all the
destination anchors (or targets) reachable from a given starting set of pages through the
outgoing links. The crawler also keeps the snapshot and the internal index of the search
engines up-to-date, periodically recrawling and updating the pages with fresh images.

General-purpose search engines employ crawlers to collect pages covering different
topics. At query time, the engine retrieves subsets of pages that are more likely to be
related to the user current needs expressed by means of sets of keywords. Models of the
user needs are usually not employed, therefore the search results are not personalized
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Fig. 7.1. A taxonomy of approaches to build specialized search engines, as shown in [80].

for the user. Basically, two users, with different interests, knowledge and preferences,
obtain the same results after having submitted the same query.

A first step toward a better search tool is developing specialized search engines,
which provide tailored information on particular topics or categories for focused groups
of people or individual users. The heavy constraints of a general-purpose search engine,
i.e., indexing billions of pages and processing thousands of queries per second, are no
longer required for these kinds of tools. New techniques can be included to represent
Web pages and to match these representations against the interests of users, e.g., al-
gorithms based on Natural Language Processing (NLP), usually avoided due to the
computational resources needed.

There are several approaches to build specialized search engines [80], as shown in
Fig. 7.1. Query modification and re-ranking exploit traditional search tools, filtering
their content by augmenting user queries with keywords, or re-ordering the results,
removing irrelevant resources. These techniques are widely discussed in Chapter 6 of
this book [61]. Specialized search engines are also based on focused indexes, which
contain only the documents related to the given topics of interest. To retrieve and index
those documents, it is possible to meta-search specialized databases, or perform an
autonomous search at query time. The most interesting technique is to perform focused
crawling on the Web. It concerns the development of particular crawlers able to seek out
and collect subsets of Web pages that satisfy some specific requirements. In particular,
if the goal is to collect pages related to a given topic chosen by the user, the crawlers
are usually named focused or topical [20, 17] (see Fig. 7.2). Focused crawlers are also
employed in different domains from specialized IR-based search engines, but usually
related to the retrieval and monitoring of useful hypertextual information, as shown later
on in this chapter.

The focused crawling approach entails several advantages in comparison with the
other approaches employed in specialized search engines. Performing an autonomous
search at query time considerably delays the retrieval of result lists. Meta-searching pro-
vides results from existing general-purpose indexes that often contain outdated versions
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Fig. 7.2. Focused crawling attempts to find out and download only pages related to given topics
(b), while standard crawlers employs traditional strategies (a), e.g., breadth-first search or further
techniques to balance the network traffic on Web servers.

of the available documents. Due to the reduced storage requirements, focused crawling
can employ techniques to crawl part of the deep Web (dynamically generated Web pages
not accessible by search engines, see Sect. 7.2) or to keep the stored information fresh
updating it frequently.

User queries, which usually consist of 2-3 keywords for traditional search engines
[51, 77, 7], can be enriched by further information, such as subsets of taxonomy classes
judged interesting by users, e.g. categories in the Open Directory Project1

(ODP) or Yahoo! Directory2, or by means of relevance feedback [75], see also
Chapter 2 [42] and 6 [61] of this book for details. Better representations of the user
needs help the focused crawlers to find out interesting pages, obtaining more accurate
results.

If a focused crawler includes learning methods to adapt its behavior to the partic-
ular environment and its relationships with the given input parameters, e.g. the set of
retrieved pages and the user-defined topic, the crawler is named adaptive. Non-adaptive
crawlers are usually based on classifiers whose learning phase ends before the search-
ing process starts. Even though some of them employ hypertextual algorithms, such
as HITS - which lead to better results, making more information available - the adapt-
ability is actually not manifest. Sometimes adaptive crawlers provide a sort of feedback
mechanism where useful information is extracted from the analyzed documents, and the
internal classifier updated consequently [18]. Other approaches can explicitly model the
set of pages around the topical ones. Such models capture important features that appear
in valuable pages, and describe the content of the pages that are frequently associated
with relevant ones. The searching process may benefit from those models, obtaining
better overall crawl performance [72, 32, 1].

1 www.dmoz.org
2 www.yahoo.com
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Adaptive focused crawlers are key elements in personalizing the human-computer
interaction. Traditional non-adaptive focused crawlers are suitable for communities of
users with shared interests and goals that do not change with time. In this case, it is easy
to recognize the requested topics and start a focused crawl to retrieve resources from
the Web. The adaptive crawler’s advantage is the ability to learn and be responsive to
potential alterations of the representations of user needs. This could happen when users
do not know exactly what they are looking for, or if they decide to refine the query dur-
ing the execution if the results are not deemed interesting. Therefore, adaptive focused
crawlers are more suitable for personalized search systems that include a better model
of the information needs, which keeps track of user’s interests, goals, preferences, etc..
As a consequence, adaptive crawlers are usually trained for single users and not for
communities of people.

A further advantage of adaptive crawlers is the sensitivity to potential alterations
in the environment. Web pages are constantly being updated, as well as the related
hyperlink structure. Therefore, a focused crawler should be able to monitor any change
in order to look for new and interesting information.

The related domains that can really benefit from the focused crawling are the so-
called vertical portals and studies on Web evolution. The former domain is related to
Web sites that provide information on a relatively narrow range of goods and services
for communities of users. Retrieving valuable, reliable and up-to-date information re-
sources for the user is a typical purpose of these portals, as well as offering personalized
electronic newspapers [10], personal shopping agents [34] or conference monitoring
services [48]. Research activities on the study of the evolution of Web hypertextual en-
vironment [54, 66] usually requires a constant monitoring of specific portions of Web
and of related changes during a given time interval, e.g., bursty communities of blogs
[49]. Both domains could really benefit from employing focused crawling systems to
retrieve information that meets the given input constraints, discovering properties that
combine the topical content of pages and the linkage relationship between them.

The remainder of the chapter is structured as follows: research on the WWW and
issues related to crawlers’ development are discussed in Sect. 7.2. Section 7.3 includes
references to focused crawlers where the adaptivity feature is not always explicitly in-
cluded. Section 7.3.1 briefly introduces the topical locality phenomenon, used by fo-
cused crawlers to look for pages related a given topic. Section 7.4 converges on the
adaptive focused crawling approaches explicitly based on AI agent or multi-agent sys-
tems, and particularly on genetic algorithms and Ant-paradigm based approaches. Sec-
tion 7.5 presents an overview of further focused crawling approaches that aim at ex-
tracting important features from the crawled pages in order to adapt the search behavior.
Finally, Sect. 7.6 gives a brief account on the methodologies chosen so far to evaluate
focused crawlers.

7.2 Crawlers and the World Wide Web

Analyzing a general search engine’s architecture, as pictured in Fig 7.3, it is possible
to recognize some sub-systems. An internal repository stores a copy of the retrieved
documents, which will be used to extract links and convert the plain text into an ad hoc
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Fig. 7.3. A general overview of a search engine architecture [2].

representation, called Inverted Index, used to provide quick responses for a given query.
This index makes it possible to build lists of documents containing a specific keyword
in a very short time. The global result list is drawn simply by merging all these sublists,
and by ranking each resource with a given weighting algorithm.

The crawler is a very important module of a search engine. It is a high-performance
system, expected to download hundreds of millions of pages over several weeks, min-
imizing the time spent for crash recoveries. Therefore, its design presents many chal-
lenges, such as I/O and network efficiency, robustness and manageability [15, 45, 64,
76, 33]. Moreover, it is meant to ensure a politeness policy that sets an interval between
two connections to the same Web server, in order to avoid excessive traffic that could
cause network congestions or software crashes.

Due to the peculiar characteristics of the Web domain, its vastness, heterogeneity
and owing to the authors quickly changing the page contents, many different research
fields focusing on the characteristics of this environment have been drawing a lot of in-
terest over the past years. Some of these works are important to understand and develop
focused crawlers, for this reason we report some references in the following sections.

7.2.1 Growth and Size of the Web

Estimating the size of the Web is a tough task. Central repositories of the Web content
are missing, therefore it is impossible to draw statistics of the size and growth. A recent
study revealed that at the beginning of 2005, the part of the Web considered potentially
indexable by major engines was at least 11.5 billion pages [43]. Previous studies came
to the conclusion that the size of the Web doubled in less than two years [52, 53].
A further consideration that has been widely accepted is that the network speed has
improved less than storage capacities, from the single user to big organizations.

Other works try to estimate how often the Web pages change during a given period.
For example, after having monitored a corpus of more than 0.7 million pages on a daily
basis for four months, it has been estimated that 40% of the page set changed within
a week, and 23% of the pages that fell into the .com domain changed daily [26]. An
extended analysis on 150 million pages can be found in [36].
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In order to keep results as fresh as possible, the search engines’ local copies of
remote Web pages must be kept up-to-date. It is possible to develop refresh policies that
guarantee a low consumption of computational and network resources by estimating the
change frequency of individual pages. Such estimation techniques are usually based on
analysis and models that predict the change frequency of pages, monitoring how often
it is updated over a given period and the last date of change [23, 24, 26]. Freshness
of the index and the size of the indexable Web are two interrelated parameters to take
under consideration when developing and tuning crawlers. A crawl may last for weeks,
so at some point crawlers should begin revisiting previously retrieved pages, to check
for changes. This strategy means that some pages could never be retrieved.

An attempt to automatically notify the search engine when particular pages change
or a new page is added to a Web site is Google Sitemaps3. The webmaster has to keep
up-to-date a simple XML file that lists the pages on the Web site and how often they
change. Pushing this information from the Web site to search engines reduces the time
they spend to find resources and adapts the re-crawling process optimizing the network
resources. This approach is particularly suitable for large Web sites of dynamically
generated pages, where the XML report can be periodically drawn up by the system.

Distributed Web crawling is another important research area that aims to develop
infrastructures where single computational units collaborate and distribute the crawling
in order to speed up the download and let the whole system tolerate possible crashes
[76, 11]. An important subtopic of Web crawling architectures is that of paralleliza-
tion policies. They regard the assignment of different sets of URLs to single crawling
processes in order to maximize the download rate, avoiding multiple downloads of the
same resources and minimizing the overhead from parallelization [25].

Nevertheless, after taking into consideration the estimate results on the size and the
growth of the Web, it is becoming a common opinion that crawling the Web is not trivial
because it is growing faster than our search engine technology. The frequent update of
some Web pages, which forces the crawler to re-download a great amount of data in a
short time is not the only matter.

7.2.2 Reaching the Web: Hypertextual Connectivity and Deep Web

Bailey et al. named dark matter all the information that a search engine is not able
to access [3]. The possible reasons range from the simple robot exclusion protocol4 (a
simple textual file stored on the Web server used by page authors to avoid undesired
visits by the search engines’ crawlers), to the lack of connectivity in the link graph [16].

Figure 7.4 shows a diagram where 200 million pages and 1.5 billions of links in a
1999 crawl were analyzed discovering four distinct page sets. The Strongly Connected
Component (SCC) is the larger component, accounting for 27%, consisting of pages
that can reach one another along directed links. The second and third sets are called IN
and OUT, each accounting for 21% approximately, and consist of pages that can reach
the SCC but cannot be reached from it, or that are accessible from the SCC but do not
link back to it respectively. The rest of the pages, a further 29%, cannot be reached and

3 http://www.google.com/webmasters/sitemaps/
4 http://www.robotstxt.org/
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Fig. 7.4. A study on the Web’s hypertextual connectivity shows three large sets, where from the
IN set a user can reach a page in OUT passing through SCC. The complete bow-tie diagram can
be found in [16].

do not reach SCC. It is obvious how some parts of the Web are not easily reachable. If
the crawler starts its navigation from the OUT set, it can reach just a fifth of whole Web.

Another important restriction that reduces the part of the Web available for crawlers
is due to the existence of dynamic page generators. For example, commercial Web sites
usually offer a text box where the user can submit a query in order to retrieve a list of
products. This phenomenon appears each time a page is generated by user interaction
with a Web server, an interaction which is more than a simple click of a link. Usually the
pages are built by querying an internal database where the information is stored. Deep
Web is used to indicate the set of all those pages, but sometimes the meaning of the deep
Web is expanded to include non-textual files, such as audio, movies, etc., for which a
traditional search engine would have problems assigning a content representation. It has
been estimated that public information on the deep Web is currently up to 550 times
larger than the normally accessible Web [8]. Crawlers can collect those product pages
in two different ways: generating and submitting a set of keywords capable of retrieving
most of the dynamically generated pages [71, 30, 67], and simulating the user’s surfing
behavior through agents [50].

Studies on search engine coverage confirm how the indexes contain only a small
fraction of the Web. In January 2005, among the top 4 search engines, the best was
Google, reaching more than 76% of the indexable Web, while Ask/Teoma reached ap-
proximately 58% approximately [43]. A previous study [53] assigned less than 40% of
the indexable Web to the best search engine. According to most of the search engine
experts, dynamically-generated Web pages and the related techniques used to uncover
that information during the crawls are currently ignored by search engines, keeping
them from being part of the query results. In other words, most of the huge amount of
information on the Web is not accessible to the user through search engines.

The vastness of the Web, and in particular of the Deep Web, which is not indexed by
traditional search tools, and the low freshness and coverage of search engines suggest
how different kind of crawlers have the chance to increase the performance and the ac-
curacy of the search results. Before analyzing focused crawlers in detail, we shall briefly
introduce some of the strategies evaluated on the Web domain to partially overcome the
aforesaid issues.
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Fig. 7.5. The backlink count metric assigns an importance to a page p based on the number of
Web pages pointing to it.

7.2.3 Crawling Strategies

Assuming that a search engine is unable to keep its index fresh due to the extent and
growth of the Web, research is focusing on the best strategies to prioritize the down-
loads. In other words, the crawlers can retrieve only a fraction of the Web pages within
a given period, so it becomes important to download the most important pages first, that
is, the pages that satisfy most of the queries submitted by users.

The implementation of a crawler includes a queue of URLs to be retrieved, fed
during the surfing with URLs extracted from pages, the URL QUEUE in Fig. 7.3. The
download strategy used by the crawler affects the queue ordering, moving ahead the
resources to be crawled first. In abstract terms, the strategy assigns a score to each
resource that denotes an estimate of the importance for the current crawl. Of course, at
any given moment that score is based only on the information gathered by the crawler
until then, that is, the part of the Web that has been crawled.

Cho et al. [27] compared three ordering metrics on a corpus of 179,000 pages col-
lected from an university Web site. The metrics are: Breadth-first search, Backlink count
and PageRank. The first metric coincides with the well-known search algorithm. If the
Web is represented by a graph of pages and a hyperlink structure of edges, the neighbors
of a starting edge are considered before analyzing the neighbors of the visited edges,
and so forth. Obviously, the edges are never visited twice.

The backlink count metric assigns an importance to each page to be downloaded as
a function of the number of the crawled pages that point to it, see Fig. 7.5. Intuitively, if
many Web authors decide to put a link to a given site, that site should be judged more
important than one that is seldom referenced. This simple metric derives from bibliom-
etry research, that is, the analysis of the citation graph of scholarly articles, and from
social network studies. The same research influenced HITS [47] and PageRank [68],
two iterative algorithms employed in the Web domain to assign relevance measures to
each resource, taking into account the hyperlink structures among pages. In huge col-
lections of documents, query results are often too numerous to be analyzed by users,
therefore it becomes important to accurately rank the most important pages. HITS and
PageRank try to cope with these problems exploiting the presence of the link structure
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between documents to unearth the new information used during the ranking process. A
better description of these algorithms is available in Chapter 5 of this book [62].

The evaluation in [27] shows that PageRank outperforms the backlink ordering if
the goal is to crawl the pages with the highest in-degree, that is, the most popular.
The authors show that backlink is more biased by the choice of the starting points,
usually reaching locally interesting pages instead of globally interesting ones, focusing
more on single clusters. Its behavior does not improve as the crawl proceeds and more
information becomes available. If the goal is to crawl pages with content matching a
given topic, breadth-first search ensures better performance. It is possible to explain
such a result by observing how pages usually point to other pages that share the same
topic.

The assets of the breadth-first search are discussed also in [65] where an extended
corpus of 328 million of pages has been examined. This strategy is able to discover the
highest quality pages assessed by means of the PageRank metric. The authors speculate
that there are usually many hosts pointing to high quality pages, and for this reason,
regardless of the host or page from which the crawl originates, they can be found sooner
during the search.

7.3 Focused Crawling

This section provides an overview of the most important references to focused crawling
systems. Even though some of them do not include any adaptivity form, it is useful to
analyze the proposed techniques and algorithms before introducing other approaches.

One of the features that characterizes a focused crawler is the way it exploits hyper-
textual information. Traditional crawlers convert a Web page into plain text extracting
the contained links, which will be used to crawl other pages. Focused crawlers exploit
additional information from Web pages, such as anchors or text surrounding the links.
This information is used to predict the benefit of downloading a given page. Because
we do not know anything about the page’s content, this prediction avoids to waste CPU
and network resources to analyze irrelevant documents.

Basically, all the focused crawlers are based on the topical locality phenomenon.
According to this phenomenon, Web pages on a given topic are usually clustered to-
gether, with many links that connect one page to another. Once a good page is found,
the crawler can analyze its cluster to retrieve pages on the same topic.

A brief description of the topical locality phenomenon and how the hypertextual
information is exploited by crawlers in the search activity opens this section.

7.3.1 Exploiting the Hypertextual Information

The Web consists of hypertextual resources, typically Web pages, connected by means
of links. Traditional IR content-based approaches take into consideration the textual
information inside each page in order to assign representations and match them with the
user needs. The hyper information [56], that is, the information related to a given page
that takes into account also the Web structure it is part of, is usually ignored. Besides
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Fig. 7.6. Some phenomena occurring in the hypertextual Web environment: A page is signifi-
cantly more likely to be topically related to the pages which point to it, (a), and sibling pages are
more similar when the links from the parent are located closer together (c) than far away (b).

improving the performance of traditional search engines [15], the information extracted
from the link structure is also employed by focused crawlers to navigate among pages
in order to find interesting pages. The topical locality phenomenon, the anchors and
two hypertextual algorithms, HITS and PageRank, are without doubt important topics
to examine in this context.

Topical Locality and Anchors. An important phenomenon that lays the foundations
of almost all the focused crawlers is Topical locality. Davison makes a deep empirical
evaluation along with a study on the proximal cues or residues extracted from links
[29], while Menczer extends the study, also considering the link-cluster conjecture, that
is, pages about the same topic clustered together [57]. Topical locality occurs each time
a page is linked to others with related content, usually because Web authors put a link
to another page, to allow users to see further related information or services.

Focused crawlers exploit this phenomenon crawling clusters of pages each time
they find an interesting one. A cluster consists of pages that can be reached by the
current page, extracting its links. The crawl usually stops when pages not correlated
with selected topics are discovered.

Empirical evaluations acknowledged that this phenomenon is largely common on
the Web (see also [28]). A page is much more likely to be topically related to the pages
which point to it, as opposed to other pages selected at random or other pages that
surround it. Further results show how sibling pages, namely those that share a page
that points to both of them, are more similar when the links from the parent are closer
together [29], as shown in Fig. 7.6.

The notion of proximal cues or residues corresponds to the imperfect information
at intermediate locations exploited by users to decide what paths to follow in order to
reach a target piece of information [37, 70]. In the Web environment, text snippets5,
anchor text or icons are usually the imperfect information related to a certain distant
content.
5 Snippets usually correspond with the short textual description that search engines associate

with each query results.
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Davison [29] shows how anchor text is often very informative about the contents of
documents pointed to by the corresponding URL, therefore it may be useful in discrim-
inating unseen child pages. That phenomenon has been exploited for several tasks, such
as inferring user information needs [41, 22], document summarization [31] and query
translation [55].

Some search engines associate the text of a link with the page the link points to
[15], including a partial representation of the linked page in the index, even though that
page has not been crawled, nor indexed yet, and despite it does not contain any textual
information to be indexed, e.g., Macromedia Flash-based homepages. Moreover, the
chance to include text usually written by different authors often provides more accurate
descriptions of Web pages and increases the retrieval performance; for details see the
related vocabulary problem [38].

HITS and PageRank. The wide research activity on citation analysis started by
Garfield in the 1950s is the foundation of two famous hypertextual algorithms, PageR-
ank [68] and HITS [47]. They all aim to assign measures of relevance relying only on
the structure of links extracted from sets of Web pages, ignoring the textual content.
Their effectiveness has been proved when coupled with traditional IR systems, e.g.,
[15]. They are employed in more than one crawling algorithm to assign a hypertextual-
based rank to the resources to be crawled, and finding new Seed sets, i.e., initial pages
where the search starts [27, 20, 74].

In general terms, when a huge collection of hypertextual documents needs to be
analyzed to retrieve a small set of resources that satisfy a given query, the ranking
becomes a very important process. The user usually scans a small number of documents.
In a large study on queries submitted to a search engine, it has been noticed that 28.6%
of users examine only one page of results, and 19% look at two pages only, therefore
half of the users do not check more than 20 URLs [78]. If there are many documents
that satisfy a query, the system may assign the same rank to the first results. For this
reason, further relevance measures that take into account the popularity, the prestige or
the authority of a page must be included in the ranking process.

These kinds of hypertextual algorithms can be successfully employed in focused
crawling systems. One of the goals of this type of crawler is to optimize the computation
resource to analyze a few pages, ignoring the part of the Web that is not interesting
or hardly relevant for the user. Moreover, unlike general-purpose search engines, the
number of retrieved pages per query is not an important parameter. Short result lists of
highly ranked documents are undoubtedly better than long lists of documents that force
the users to sift through them in order to find the most valuable information.

A description of the two link analysis algorithms, HITS and PageRank, is to be
found in Chapter 5 of this book [62].

7.3.2 An Overview of the Focused Crawling Approaches

Although one of the first focused crawlers dates back to 1994, we had to wait many
years before seeing other approaches in the literature. It is worth mentioning the Fish-
search algorithm [14, 13] because of its key principle that enhances the traditional
crawling algorithms.
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The algorithm takes as input one or more starting URLs and the user’s query. The
starting pages could be collected from the first results of search engines or user’s book-
marks, and correspond to the seed URLs. The crawler’s queue of pages to be down-
loaded becomes a priority list initialized with the seed URLs. At each step, the first
URL is popped from the queue and downloaded. When a text page becomes available,
it is analyzed by a scoring component, evaluating whether it is relevant or irrelevant with
respect to the search query. Based on that score, a heuristic decides whether to pursue
the exploration in the related direction or not. If it is not relevant, its links will be ig-
nored by further downloads. See Fig. 7.2 as an example of a focused crawl compared
with a crawl based on a breadth-first search.

In the Fish search, whenever a document is fetched, it is scanned for links. A depth
value is assigned to each linked page. If the parent is relevant, the depth of the children is
set to some predefined value. Otherwise, the depth is set to be one less than the parent’s
depth. When the depth reaches zero, the direction is dropped and none of its children
are inserted into the queue.

It is possible to limit the search to either a fixed period of time or to the retrieval of a
certain number of relevant pages. Although the authors provided a number of heuristics
to optimize the search, Web server operators noted that Fish-search is not far from an
exhaustive search. If all users were to employ a fish-search for every search, the overall
bandwidth demand would impose a heavy burden on Web servers.

Further details of the Fish algorithm plus the Shark-search description, which uses
a better measure of relevance to draw the similarity between documents and the given
query and several other improvements, can be found in [14, 13, 44].

This section also includes other important non-adaptive focused crawling ap-
proaches proposed in the literature. A first approach exploits Web taxonomies, such
as ODP or Yahoo!, and the HITS algorithm to predict the importance of the pages to
be crawled. Tunneling and Contextual crawling aim at discovering important features
to understand where the topical pages are located, following the paths they belong to.
Finally, a further approach targets the Semantic Web environment.

Taxonomies and Distillation. A popular focused crawler approach is proposed by
Chakrabarti et al. [20, 19]. This focused crawling system makes use of two hypertext
mining programs that guide the crawl: a classifier that evaluates the relevance of hy-
pertext documents regarding the chosen topics, and a distiller that identifies hypertext
nodes that are considered great access points to many relevant pages through a few
links, by means of the HITS algorithm.

After having collected a set of interesting pages, the user selects the best matching
nodes in the category tree of a classifier trained on a given taxonomy, e.g., Yahoo!.
The hierarchy helps filtering the correct pages during the crawl. Basically, after having
retrieved a document, an algorithm finds the leaf node of that tree with the highest
probability of similarity. If some ancestor of these nodes has been marked as interesting
(see Fig. 7.7), the URLs found in the document will be crawled in future, otherwise the
crawl is pruned at the document or a low priority is assigned to them.

Tunneling. Focused crawlers heavily rely on the topical locality phenomenon dis-
cussed in Sect.7.3.1. A page about a given topic is more likely to point to other pages
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Fig. 7.7. A link contained in a page on Maserati cars is visited if the user has selected the
Maserati topic, or one of its ancestors in the taxonomy, such as Sport, during the training of
the classifier.

about the same topic. Even though very useful and effective during the crawl, such a
phenomenon might generate some drawbacks. Sometimes, pages of the same topic do
not point directly one anther and therefore it is necessary to go through several off-topic
pages to get to the next relevant one. Bergmark et al. [9] suggest to allow the crawl to
follow a limited number of bad pages in order to reach the good ones, naming this
technique tunneling.

The authors use the terms nugget and dud to indicate pages correlated with at least
one of the given topic collections judged interesting, and the pages that do not match
any of the collections; 500,000 pages were downloaded and analyzed in order to find
patterns of document-collection correlations along link paths. The idea is to statistically
estimate an adaptive cutoff for the tunneling strategy, that is, how far the crawler is
allowed to go when starting from an interesting page. Once the cutoff is reached, the
crawl in that direction is halted.

The evaluation results show how a focused crawl with adaptive cutoff downloads
resources at a higher rate, therefore, exploring the Web faster than a fixed cutoff crawler.
At the same time, the adaptive version can limit the amount of irrelevant material it has
to crawl through. Briefly, the tunneling technique seems to improve the effectiveness of
searching by recognizing and pruning paths which look hopeless.

Contextual Crawling. Diligenti et al. [32] try a different approach address the very
problem of assigning the right importance to different documents along a crawl path
following a different approach. Given a set of interesting documents, by querying some
search engines they are able to build a representation of the pages that occur within a
certain link distance of those documents. In particular, the Web is backcrawled; the an-
alyzed pages are the ones that point to the set of interesting documents. All the retrieved
information is stored in a structure named context graph which maintains for each page
the related distance, defined as the minimum number of links necessary to traverse in
order to reach a page in the initial set.

The context graph is passed to a set of Naı̈ve Bayes classifiers that identify the cat-
egories according to the expected link distance from the page to the target documents.
In this way, given a generic document, the crawler predicts how many steps away from
a target document it is likely to be. Of course, documents that are expected to lead more
quickly to the interesting documents are crawled sooner. The only relevant drawback
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of the context-focused crawling approach is the need for search engines providing the
reverse link information needed to build the context graph.

Semantic Web. A further focused crawling approach [35] is related to the Semantic
Web6, the current effort to enhance the traditional Web presentation languages such as
HTML and help grasp the meaning of data, and let autonomous agents understand and
interact with information sources. Ontologies are one of the basic elements needed to
describe static domain knowledge in terms of common domain structures to be reused
by different systems. Basically, the crawling approach aims to define a relevance mea-
sure to map a Web page content with an existing ontology provided by users. Textual
matches against the ontology’s lexicon and taxonomic relationships between super and
sub-concepts for calculating accurate relevance scores are undoubtedly the core ele-
ments of that approach. The comparison between standard focused crawling approaches
and simple keyword matching shows relevant improvements in global performance.

7.4 Agent-Based Adaptive Focused Crawling

In recent years, the research community has tried to propose new original approaches
in order to build focused crawlers. Some of them speculate on the Web and the analogy
with huge environments where single autonomous units live and keep moving, looking
for interesting resources. From this point of view, the AI field has developed a wide
range of architectures, models and algorithms providing a solid foundation where it has
been possible to build interesting prototypes. This section provides information on two
algorithms, a genetic-based one and an ant paradigm-based one, including the related
focused crawling techniques.

7.4.1 Genetic-Based Crawling

One of the most renowned adaptive focused crawlers is InfoSpiders, also known as
ARACHNID (Adaptive Retrieval Agents Choosing Heuristic Neighborhoods for Infor-
mation Discovery) [58] based on genetic algorithms. Even though the prototype is de-
veloped using reinforcement learning [81], which will be discussed in Sect. 7.5.2, we
decided to discuss it in this section because it is also based on an agent-based approach.

Genetic algorithms have been introduced in order to find approximate solutions to
hard-to-solve combinatorial optimization problems. Those kinds of algorithms are in-
spired by evolutionary biology studies. Basically, a population of chromosomes en-
coded by means of a particular data structure evolves towards a potential solution
through a set of genetic operators, such as inheritance, mutation, crossover, etc.. The
chromosomes that get closer to best solutions have more chances to live and reproduce,
while the ones that are ill-suited for the environment die out. The initial set of chro-
mosomes is usually generated randomly and for this reason the first solutions are more
likely to be rather poor.

6 http://www.w3.org/2001/sw/
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Fig. 7.8. An Infospiders’s genotype (a) composed of a set of keywords K and weights W of
a neural network used to evaluate a link, that is, the anchor text plus the surrounding words,
contained in a Web page (b).

The random mutations between two chromosomes is an important feature of these al-
gorithms in preventing solution sets from converging to sub-optimal or local solutions.
For the same reason, even pairs of organisms that do not receive high fitness, namely,
not close to good solutions, have a chance to breed.

As in a real environment, if a lot of changes occur all of a sudden, many individuals
of the population risk dying out. On the contrary, if those changes take place gradually,
the species can gradually evolve along with it. The whole evolution process is repeated
until a solution that is judged fairly close to the optimal solution is found.

In InfoSpiders an evolving population of intelligent agents browses the Web driven
by user queries, imitating the humans during their browsing activities. The agents are
able to assess the relevance of resources with a given query and to reason autonomously
about future actions regarding the next pages to be retrieved, with little or no interaction
among them.

Each agent is built on top of a genotype (shown in Fig. 7.8), basically a set of
chromosomes, which determines its searching behavior. The same genotype takes part
in the offspring generation process. The first component of an agent’s genotype is a
parameter β that represents the extent to which an agent trusts the textual description
about the outgoing links contained in a given page. The other two components are: a set
of keywords K initialized with the query terms and a vector of real-valued weights W ,
initialized randomly with uniform distribution. The latter component corresponds to the
information stored in a feed-forward neural network used for judging what keywords in
the first set best discriminate the documents relevant to users. Basically, for each link
in a page, an agent extracts the set of keywords that appear around it and that are also
included in the genotype set. The set is the input to the neural network. The function
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in(), within the network, weights each word, counting their occurrences and calculating
their positions on the anchor text. More importance is given to terms that are closer to
the link.

The adaptivity is both supervised and unsupervised. If the user has previously sub-
mitted a relevance feedback on the document chosen by the agent, the related content is
used to evaluate the retrieved documents (supervised learning). Otherwise, the relevance
assessments are employed for training the neural network’s weights W , comparing the
outcome of the agent’s behavior with the initial query terms corresponding to the pro-
file of user interests. The network’s weights are updated through the backpropagation of
error [73] according to the agents’ actions, e.g., irrelevant pages are retrieved, in order
to alter the subsequent behavior of the agent.

Two functions, benefit() and cost() are employed to determine the energy gain re-
lated to a link selection. The former gets high values if the keywords K are contained
in the visited document, while the cost function is correlated to resources used during
the retrieving of documents, e.g., network load or document size. The whole crawling
process is summarized in Algorithm 1.

Algorithm 1. Pseudo-code of the InfoSpiders algorithm.
{initialize each agent’s genotype, energy and starting page}
PAGES ← maximum number of pages to visit
while number of visited pages < PAGES do

while for each agent a do
{pick and visit an out-link from the current agent’s page}
{update the energy estimating benefit()− cost()}
{update the genotype as a function of the current benefit}
if agent’s energy > THRESHOLD then
{apply the genetic operators to produce offspring}

else
{kill the agent}

end if
end while

end while

The second form of adaptivity to the environment is achieved by mutations and
crossovers among agents. They guarantee the inclusion of relevant resources, they
spawn new offspring and adapt agents to the environment. Each single agent learns
and exploits important local features of the environment. The multi-agent system as a
whole captures more general features, which represent resources that are relevant to
users.

The keyword vector K is subjected to mutation during the reproduction of the agent
population. A stochastic approach takes into consideration both local context, selecting
a word that describes documents that led to the energy increase, and global context,
selecting words from documents where the user has submitted relevance feedback. Ac-
cording to the authors, that form of keyword evolution, operated through local selection,
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mutation and crossover, implements a kind of selective query expansion. The neural net
is mutated by adding some random noise to the set of weights W .

Basically, a value corresponding to the agent’s energy is assigned at the beginning
of the search, and it is updated according to the relevance of the pages visited by that
agent. Both neural networks and genetic algorithms select terms from those documents
that are considered relevant. They are also responsible for using agents’ experience to
modify the behavior of the agents, and for identifying new links leading to the energy
increase. The energy determines which agents are selected for reproduction and the
ones to be killed amidst the population.

The agent architecture based on a set of computational units facilitates a multi-
process scalable implementation that can be adapted to the current resources, in terms
of available network bandwidth and CPU.

Chen et al. [21] compared a genetic-based focused crawler, called Itsy Bitsy spider,
with a Best-first search approach, where a function assigns a score to each outgoing link
from the collection of retrieved pages, corresponding to the priority to visit the link. The
links with the highest score are the ones the crawler visits first.

Starting from a set of pages related to the current user information needs, the
genetic-based crawler extracts words and links from that set. By means of a particu-
lar similarity measure among sets, it is possible to compare two different search space
states and evaluate the outcome of a system’s action, that is, the download of a particular
link. The similarity measure is the same one used as a priority function in the best-first
search approach.

The mutation operator is implemented performing a search on the YAHOO! database
in order to suggest new, promising unknown pages for further explorations. The
crossover operates on sets of pages connected to the seed set. The probability to per-
form one of the two operators during the crawl is a system’s parameter. In this way,
depending on whether the user prefers to locally crawl a part of the Web or aims at
the whole Web, the probability to use the mutation operator gets lower or higher values
with respect to crossover.

During the evaluation, the genetic approach does not outperform the best first
search. The recall values of the former are significantly higher than the best first search,
but precision is not statistically different. Nevertheless the mutation operator includes
resources that would be hardly retrievable through conventional search processes. This
kind of generation of new configurations is also considered in the Yang and Chen’s
crawler [82], where a hybrid version of simulated annealing is employed instead of ge-
netic algorithms. Simulated annealing is a generalization of the Monte Carlo method for
combinatorial problems inspired by the annealing process of liquids and metals [60]. A
further evaluation, where an improved version of InfoSpiders is compared against the
best-first search is discussed in [59].

It should be pointed out that the agent architecture and the adaptive representation
of InfoSpiders, consisting of a set of computation units with single genotypes, differ
considerably from the Itsy Bitsy spider approach. The neural network and the other
components of the genotype make it possible for a single agent to autonomously deter-
mine and adapt effectively its behavior according to both the local context of the search
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and the personal preferences of the user. That feature is basically missing in the Itsy
Bitsy spider.

Balabanović [6, 5] combines the collaborative and content-based approaches in a
single multi-agent recommender system named Fab. Collection agents search the Web
according to profiles representing their current topics. The users are grouped into clus-
ters according to the similarity of their profiles, which do not usually correspond to
the collection agents’ profile. The topic of a set of search agents can be of interest to
many users, while one user can be interested in many topics. The retrieved pages are
forwarded to those users whose profiles they match beyond some threshold. If a page is
highly rated by one user, it is passed to the users with similar profiles (user’s cluster).

Collection agents are based on topical locality, and perform a best-first search of
the Web. An agent follows the links in a given page if it is pertinent to the given topic.
Other kinds of agents construct queries to be submitted to various search engines and
randomly collect links from human-suggested cool Web sites.

The population of collection agents evolves by adapting to the population of users.
The agents that retrieve pages rarely seen or that receive low feedback scores by users
are killed. If the agent is able to retrieve good pages, it is given the chance to reproduce
itself. Hence, the population dynamically adapts to the user requests, to the environment
and to the available computing resources.

7.4.2 Ant-Based Crawling

Research on ant foraging behaviors inspired a different approach for building focused
crawlers. In [39, 40] an adaptive and scalable Web search system is described, based on
a multi-agent reactive architecture, stemming from a model of social insect collective
behavior [12]. That model has been created by biologists and ethologists to understand
how blind animals, such as ants, are able to find out the shortest ways from their nest
to feeding sources and back. This phenomenon can be easily explained, since ants can
release a hormonal substance to mark the ground, the pheromone, leaving a trail along
the followed path. This pheromone allows other ants to follow such trails, reinforcing
the released substance with their own.

Intuitively, the first ants returning to their nest from the feeding sources are those
which have chosen the shortest paths. The back-and-forth trip (from the nest to the
source and back) allows them to release pheromone on the path twice. The following
ants leaving the nest are attracted by this chemical substance. If they have to select a
path, they will prefer the one which has been frequently covered by the other ants that
followed it previously. This is the reason why they will direct themselves towards the
shortest paths, which are the first to be marked (see Fig. 7.9).

The decision-making of each computational unit is realized through a set of simple
behaviors, which allows the agents to wander from one document to another, choos-
ing the most promising paths, i.e., those leading to resources relevant for users. The
outcome of the agent exploration is indirectly handed out to other agents, which can
exploit it to improve future explorations. This form of social ability ensures the indis-
pensable adaptivity needed to to work in complex and dynamic environments, such as
the Web.
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Fig. 7.9. If two paths lead to an interesting page, the first agents that reach that page are the
ones that have followed the shortest path 〈b1, b2〉, and therefore they are the first to release the
pheromone that attracts the following agents to the same path.

Aside from the topical locality phenomenon (Sect. 7.3.1), a further observation widely
discussed in [63] is taken into consideration: to reach the current page, Web page au-
thors suppose that surfers have followed a special path and, therefore, have visited
and read certain pages too. Therefore, the contents of Web pages are often not self-
contained: they do not always contain all the information required to completely under-
stand and explain what they deal with. In order to satisfy user information needs, the
sequences of connected pages should be considered as a virtual information unit that
could be suggested to users [46]. For this reason, during an exploration, the pages on
the path through which a surfer reaches the page under examination, i.e., the current
context of the exploration, are not to be ignored [9].

Each agent corresponds to a virtual ant that has the chance to move from the hyper-
textual resource where it is currently located urli, to another urlj , if there is a link in
urli that points to urlj . At the end of each exploration, the pheromone trail is released
on the agent’s route, that is, sequence of URLs of the followed path. When the agent is
located in a certain resource, it can match the related content with the user’s needs, and
measure the amount of pheromone on the paths corresponding to the outgoing links.

The pheromone trails allows ants to make better local decisions with limited local
knowledge both on environment and group behavior. The ants employ them to commu-
nicate the exploration results one another: the more interesting resources an ant finds,
the more pheromone trail it leaves on the followed path. As long as a path carries rel-
evant resources, the corresponding trail will be reinforced and the number of attracted
ants will increase.

The system execution is divided into cycles; in each one of them, the ants make a
sequence of moves among hypertextual resources. The maximum number of allowable
moves depend proportionally on the value of the current cycle, that is, maxmoves =
k · currentcycle where k is a constant. At the end of a cycle, the ants update the
pheromone intensity values of the followed path as a function of the retrieved resource
scores.

This increases the number of the allowed movements and, consequently, the number
of the visited resources, as the number of cycles increases too. During the first cycles,
the trails are not so meaningful, due to the small set of crawled resources, so the ex-
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Fig. 7.10. When an agent selects a link to follow, it draws the transition probabilities Pij of all
the out-going links i → 1, i → 2, . . . , i → n from the current page pi, i.e., ∀j : (i, j) ∈ E,
according with the pheromone trails τij , as in Eq. 7.1.

ploration is basically characterized by a random behavior. But after a certain number of
cycles, the paths that permit to find interesting resources will be privileged with a major
intensity of pheromone, therefore, a great number of ants will have the chance to follow
them. In other words, the process is characterized by a positive feedback loop where
the probability to follow a particular path depends on the number of ants that followed
it during the previous cycles.

It is possible to describe the operations that the ant-agents perform with these task
accomplishing behaviors:

1. at the end of the cycle, the agent updates the pheromone trails of the followed path
and places itself in one of the start resources

2. if an ant trail exists, the agent decides to follow it with a probability which is func-
tion of the respective pheromone intensity

3. if the agent does not have any available information, it moves randomly

Intelligent behavior emerges from the interaction of these simple behaviors, and from
the interaction that agents establish with their environment. The resources from which
the exploration starts can be collected from the first results of a search engine, or the
user’s bookmarks, and correspond to the seed URLs.

To select a particular link to be followed, a generic ant located on the resource urli
at the cycle t, draws the transition probability value Pij(t) for every link contained in
urli that connects urli to urlj . The Pij(t) is considered by the formula:

Pij(t) =
τij(t)∑

l:(i,l)∈E τil(t)
(7.1)

where τij(t) corresponds to the pheromone trail between urli and urlj , and (i, l) ∈ E
indicates the presence of a link from urli to urll (see Fig. 7.10).
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To keep the ants from following circular paths, and to encourage page exploration,
each ant stores a list L containing the visited URLs. A probability related to the path
from urli to urlj , if the urlj belongs to L, is 0. At the end of every cycle, the list is
emptied out.

When the limit of moves per cycle is reached, the ants start the trail updating pro-
cess. The updating rule for the pheromone variation of the k-ant corresponds to the
mean of the visited resource scores:

∆τ (k) =

∑|p(k)|
j=1 score(p(k)[j])

|p(k)| (7.2)

where p(k) is the ordered set of pages visited by the k-ant, p(k)[i] is the i-th element of
p(k), and score(p) is the function that, for each page p, returns the similarity measure
with the current information needs: a [0, 1] value, where 1 is the highest similarity.

The process is completed with the τ value updates. The τij trail of the generic path
from urli to urlj at the cycle t+1 is affected by the ant’s pheromone updating process,
through the computed ∆τ (k) values:

τij(t + 1) = ρ · τij(t) +
M∑

k=1

∆τ (k) (7.3)

where ρ is the trail evaporation coefficient. It must be set to a positive value less than 1
to avoid unlimited accumulation of substance caused by the repeated positive feedback.
The summation widens to a subset of the N ants living in the environment. In order to
avoid the implementation of the third accomplishing behavior, at the beginning of the
execution, all the τij(0) values are set to a small constant τ0. Algorithm 2 shows each
step of the crawling process.

Algorithm 2. Pseudo-code of the Ant-based crawler.
{initialize each agent’s starting page}
PAGES ← maximum number of pages to visit
cycle← 1
t← 1
while number of visited pages < PAGES do

while for each agent a do
for move = 0 to cycle do
{calculate the probabilities Pij(t) of the out-going links as in Eq. 7.1}
{select the next page to visit for the agent a}

end for
end while
{update all the pheromone trails}
{initialize each agent’s starting page}
cycle← cycle + 1
t← t + 1

end while
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The developed architecture and, in particular, the trail updating process, permit to take
into consideration two empirical observations: Web pages on a given topic are more
likely to link to those on the same topic, and the content of Web pages is often not self-
contained. It is easy to notice how the pheromone attraction bears the ants’ exploration
toward pages linked to the most interesting ones. Moreover, if a path leads to a page
that is not deemed very interesting, the probabilities to follow its outgoing links could
be relevant just the same, because the pheromone trail on a link is function of all the
pages’ scores in the path. In this way, the context of a page, that is the content of the
pages from which it is possible to reach a page, is also inspected.

As for the adaptability, there is a twofold instance: the first concerns the opportunity
for users to refine queries during the execution when the results are not so satisfactory
or, in general, when users do not know how to input a query to express what they want.
The second form regards the possibility of analyzed hypertextual resource changes due
to environment instability. Of course, this adaptability does not directly concern the user
and variations of his/her needs, but it is related to the environment’s dynamics. These
two types of adaptivity are possible because at every cycle the value of pheromone
intensities τij(t) is updated according to the visited resource scores.

Once the query, or the content of the visited resources changes, the similarity mea-
sure changes affects the ∆τij(t) variation which influences, in its turn, τij(t) (see the
pheromone updating process), that is, the results of past explorations. Moreover, as
cycles go by, the current values of pheromone intensities tend to become ideal, i.e.
function of the current environmental status, with the pheromone evaporation effects.

For instance, given a particular path P , in case of a negative variation of the ∆τk
ij(t)

values (due to, for instance, a change of the user query), where the path from urli to
urlj belongs to P , the trails τij(t + 1) are subjected to a feedback which is reduced if
it is compared to the one in the former cycles. For this reason, a smaller number of ants
will be attracted, therefore, the ∆τk

ij(t + 2) increments are still further reduced, and so
forth. In other words, each change in the environment causes a feedback consequently
modifying the system behavior in order to adapt itself to the new conditions.

The major drawback of this approach is that agents need to start the crawl from the
same set of pages at the end of each cycle. As the crawl widens, many pages are re-
crawled many times before discovering new resources on the frontier, wasting network
and computational resources. Periodically updating the seed set with new pages is a
possible way to tackle this problem.

The proposed architecture is a reactive one, where the system’s rational behavior
emerges from the interaction and the cooperation of an agent population; therefore, it
must be attempted to completely understand the relationship between local and global
behavior. In particular, it is useful to be aware of the changes of the global behavior in
function of some parameter variations, such as the initial values and the decay of the
pheromone intensities, or the number of agents employed. For this purpose, the agents’
behavior has to be analyzed, i.e. how agents choose paths in function of interesting
resource positions, to see if they behave properly under all the possible circumstances.
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7.5 Machine Learning-Based Adaptive Focused Crawling

In the last section, two approaches based on genetic algorithms and animal foraging
models have been described. Other adaptive focused crawling approaches exploit dif-
ferent techniques in order to represent and recognize features that can drive the search
toward the interesting resources. In this section, some of these approaches based on
machine learning are briefly introduced.

7.5.1 Intelligent Crawling Statistical Model

Aggarwal et al. [1] introduce an interesting adaptive crawling framework, called Intel-
ligent Crawling. It aims to statistically learn the characteristics of the Web’s linkage
structure while performing the search. In particular, given an unseen page, a set of cus-
tomizable features named predicates (e.g., the content of the pages which are known to
link to the unseen URL, or tokens in the unseen page’s URL), are taken into considera-
tion. Those features are analyzed in order to understand how they are connected to the
probability that the related unseen page satisfies the information needs.

The feature set and the linkage structure of that portion of the Web which has al-
ready been crawled are the input of the statistical model. At the beginning of the search,
no statistical information is available and each single feature gets the same importance,
therefore the crawler virtually behaves randomly. As soon as an interesting page is
downloaded, its features are analyzed in order to find any possible correlation. For ex-
ample, if the fraction of pages about music composer Bach is 0.3%, and it is found that
10% of the pages that point to them contain the word Bach in their content, following
the terminology in [1], we may as well assert that:

P (C|E) > P (C) (7.4)

the particular knowledge E about a candidate URL, e.g., the 10% of pages that contain
the word Bach, increases the prior probability P(C) that a given Web page will be re-
lated to user needs. In order to understand if a given feature, namely, knowledge E, is
favorable to probability P (C), the interest ratio function is defined:

I(C,E) =
P (C|E)
P (C)

=
P (C ∩ E)
P (C)P (E)

(7.5)

An approximation of P (C ∩ E) and P (E) can be obtained using the information that
the crawler has retrieved so far, as well as P (C), fraction of retrieved pages that satisfy
the user defined predicate. The interest ratio gets values greater than 1 if a feature E is
favorable to the probability that the unseen page satisfies the user needs. Otherwise, if
event E is unfavorable, the interest ratio will be within the range (0, 1).

For example, the interest ratio for the event corresponding to the word Bach oc-
curring in the in-linking page is 0.1/0.03 = 3.33. Once those ratios identify the best
features to be taken into consideration, the crawler uses them to decide the candidate
pages that are more likely to satisfy the user’s needs.

The interesting point of this framework is that it does not need any collection of
topical examples for training. At the beginning, users specify their needs by means of
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some predicates, e.g., the page content or the title must contain a given set of keywords,
and the crawler adapts its behavior learning correlations among the given features. Nev-
ertheless, choosing the right set of predicates and/or adding new predicates besides the
ones proposed by authors might not be an easy task to accomplish.

7.5.2 Reinforcement Learning-Based Approaches

The idea of using textual information contained in pages that point to the ones to be
evaluated during the download is exploited also by Chakrabarti et al. [18]. Their work
starts from a traditional focused crawler [20], where a classifier evaluates the relevance
of a hypertextual document with respect to the chosen topics. The training of the clas-
sifier is done at the beginning of the crawl, where the user selects the best matching
nodes in the category tree of a hierarchical classifier. The enhancement of the crawler
concerns the inclusion of a second classifier called apprentice, which assigns priorities
to unvisited URLs in the crawl frontier. In order to draw these priorities, the classifier
extracts some features from a particular representation of structured documents, named
Document Object Model (DOM)7, of the pages that point to unvisited URLs.

The original focused crawler’s classifier, whose role was to assign a similarity mea-
sure to crawled pages given some user needs, now trains instances for the apprentice.
Basically, for each retrieved page v, the apprentice is trained on information from the
original classifier and on some features around the link extracted from crawled pages
that point to v. Those predictions are then used to calculate if it is worth traversing a
particular URL, and therefore order the queue of URLs to be visited. The evaluation
shows how the false positives decrease significantly between 30% and 90%.

In [72] reinforcement learning techniques are employed to map what actions have
generated a benefit during the crawling. That map becomes important each time the
system decides the next action to undertake, evaluating the future reward expected from
executing it.

The interesting documents found in the environment are the rewards, while follow-
ing a particular link corresponds to an action. The authors make some simplifying as-
sumptions concerning the representation of an environment state, that is, the remaining
set of interesting documents to be found, and the set of links that have been discovered,
in order to deal with the problem. Basically, the idea is to learn during the crawl the
text in the neighborhood of hyperlinks that are most likely to point to relevant pages.
For this reason, each link is replaced with the surrounding words, so it is possible to
generalize across different hyperlinks by comparing the related text. A collection of
Naı̈ve Bayes text classifiers perform the mapping by casting this regression problem as
classification.
7 The Document Object Model is an interface that allows programs and scripts to dynamically

access and process the document’s content and structure, see http://www.w3.org/DOM/
for details.
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7.6 Evaluation Methodologies

Defining an evaluation methodology for a standard crawler does not require a great ef-
fort. Once a subset of the Web is available, it is possible to run an instance of the crawl
on a workstation and monitor the most important parameters to measure its effective-
ness, such as: computation time to complete the crawl, or the number of downloaded
resources per time unit. Since the Web corpus is fixed, different crawling strategies and
the related results can be directly compared. Some technical issues must be addressed
in order to construct a collection that is a good sample of the Web [4]. Many important
elements should be considered when defining an evaluation methodology regarding a
focused crawling system. In this section, we briefly mention some of these elements,
referring to literature for a deeper analysis.

One of the first evaluation parameters to take into consideration is the soundness
of the retrieved documents. The traditional crawlers’ goal is to download as many re-
sources as possible, whereas a focused crawler should be able to filter out the docu-
ments that are not deemed related to the given topics of interest. All the research in the
information retrieval domain can help us define measures of soundness for the retrieved
results, but some of them, such as precision and recall, become meaningless in the Web
domain.

In order to evaluate the retrieval effectiveness, precision Pr corresponds to the frac-
tion of top r ranked documents that are relevant to the query over the total number of
retrieved documents, interesting and not:

Pr =
found

found + false alarm
(7.6)

while recall Rr is the proportion of the total number of relevant documents retrieved in
the top r over the total number of relevant documents available in the environment:

Rr =
found

found + miss
(7.7)

see also the diagram in Fig. 7.11.
As pointed out in [20], the recall indicator is hard to measure because it is impossible

to clearly derive the total number of relevant documents present on the Web.
The Information Retrieval community has identified many approaches based on

very large collections to provide objective testbeds for evaluations. A standard collec-
tion guarantees the reliability propriety, essential to obtain the same results when tests
are repeated under the same initial conditions and the chance to compare the results
among different systems. Moreover, it is possible to clearly point out the sets of relevant
documents and therefore calculate the traditional IR evaluation measures. Nevertheless,
focused crawlers should access the Web directly, to avoid that during the search some
paths be ignored because of some pages not being included in the collection. For this
reason, standard collections are rarely employed for evaluations of focused crawlers,
and it is almost impossible to make comparisons from results obtained by the different
algorithms.

In order to evaluate the goodness of the retrieved resources, many evaluations use
the same measures employed in the focused crawler’s algorithms. For example, the
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Fig. 7.11. The Web and the two sets, retrieved and relevant documents, which sometimes do not
correspond. Precision and recall aim at measuring this deviation.

classifiers’ outcome in [20], the VSM-based similarity measures in [39], and the impor-
tance metrics in [27] are employed both to guide the search of crawlers and to evaluate
the relevance of the retrieved resources. That approach may appear improper, but ac-
tually the measures are defined without considering the document set to be evaluated,
therefore, the results do not affect the definition of evaluation measures.

A further evaluation measure often employed during the evaluation is the percentage
of important pages retrieved over the progress of the crawl. The goal is to select relevant
pages only, avoiding to spend time crawling the uninteresting regions of the Web. If the
percentage is high, the crawler is able to save its computational resources and retrieve
a good page set. Chakrabarti et al. [20] consider the average quality measures of the
retrieved pages for different time slices of the crawl. In this way, it is possible to see if
crawlers get lost during the search or if they are able to constantly keep the crawl over
the relevant documents.

The time spent for crawling and analyzing the documents is another important el-
ement to measure. A focused crawler usually collects thousands of URLs per hour. Of
course, computational resources, such as the available network bandwidth, memory and
CPU, required for the processing, affect the crawl time. Some algorithms, such as HITS,
based on the link graph, need plenty of time to draw their relevance measures, especially
for complex graphs. Focused crawlers based on these algorithms, e.g., [27, 20, 74], are
expected to reduce the rate of page downloads as the crawl goes on.

In [79] an extended analysis of the literature about focused crawling suggests a
general framework for crawler evaluation research. That framework considers impor-
tant issues, such as the choice of seed pages where the crawls start. Of course, if seed
pages are related to the topic of the crawl, the search for related pages is much easier
because of the topical locality phenomenon (see Sect.7.3.1). The framework also pro-
vides a mechanism to control the level of difficulty of the crawl task by means of the
hypertextual structure among pages.

At present, focused crawling evaluations that also include adaptivity analysis are not
available. One of the reasons could be the difficulty to measure the reaction of crawlers
to user needs refinements, or alterations of sub-sets of Web pages. How long does it take
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to adapt the crawl to a user relevance feedback and provide new interesting documents?
How many environment alterations are tolerable before the crawling performance falls
below a given threshold? Standard methodologies to assess those features, thus allowing
to compare results, are yet to be developed.

7.7 Conclusions

Focused crawling has become an interesting alternative to the current Web search tools.
It concerns the development of particular crawlers able to seek out and collect subsets
of Web pages related to given topics. Many domains may benefit from this research,
such as vertical portals and personalized search systems, which provide interesting in-
formation to communities of users. Some of the most interesting approaches have been
described, along with important hypertextual algorithms, such as HITS and PageRank.

Particular attention has been given to adaptive focused crawlers, where learning
methods are able to adapt the system behavior to a particular environment and input
parameters during the search. Evaluation results show how the whole searching process
may benefit from those techniques, enhancing the crawling performance. Adaptivity is
a must if search systems are to be personalized according to user needs, in particular if
such needs change during the human-computer interaction.

Besides new crawling strategies that take into consideration peculiar characteristics
of the Web, such as topical locality, we can expect future research to head in several
directions. Some techniques used to look into the dark matter (hidden Web), and Natural
Language Processing (NLP) analysis can help understand the content of Web pages and
identify user needs. In this way, the effectiveness of crawlers can be improved both in
terms of precision and recall.

Extending the focused crawlers’ range to consider resources available on the Se-
mantic Web is a further research topic, which will gain importance as this new technol-
ogy that allows data to be shared and reused across applications becomes more popular
in the Web community. Current prototypes of focused crawlers do not consider the
reuse of past experience - namely, what crawlers have discovered and analyzed from
past crawls - in new explorations of the Web. The chance to exploit such data in the
crawling process could help retrieving information more quickly, reducing the network
and computational resources.
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