

W. Abramowicz (Ed.): BIS 2007, LNCS 4439, pp. 464–477, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model-Driven Architecture for Mobile Applications*

Jürgen Dunkel and Ralf Bruns

Hannover University of Applied Sciences and Arts, Department of Computer Science,
Ricklinger Stadtweg 120, 30459 Hannover, Germany

{dunkel,bruns}@fh-hannover.de

Abstract. Although significant improvements in the development of business
applications for mobile devices have been made in recent years, the software de-
velopment in this area is still not as mature as it is for desktop computers. There-
fore, declarative and code generation approaches should be preferred instead of
manually coding. In the BAMOS project an architecture has been designed and
implemented for the generic and flexible development of mobile applications.
The architecture is based on the declarative description of the available services.
In this paper we present a model-driven approach for generating almost the com-
plete source code of mobile services. By applying model-driven development
within the proposed approach, a new service can be conveniently modeled with a
graphical modeling tool and the graphical models are then used to generate the
corresponding XML descriptions of the mobile user interface and the workflow
specification. In order to use such a service no specific source code has to be
implemented on the mobile device.

Keywords: model-driven architecture (MDA), mobile applications, XForms,
meta models, code generation.

1 Introduction

Nowadays mobile devices, e.g. mobile phones, personal digital assistants (PDA) or
smart phones, are ubiquitous and accompany theirs users almost every time and eve-
rywhere. Their capability of connecting to local area networks via Bluetooth or Wire-
less LAN potentially enables new types of mobile applications expanding the limits of
present ones. So far, mobile devices do not fully exploit the whole potential of these
networks. They are mostly employed only for communication or personal information
management purposes.

While moving with a mobile device, the user enters a large number of different lo-
cal networks; each might offer different localization-specific services. Examples for
such location-based services [HaRo04] are the timetable and location plan of the next
bus stop, the recent programs of the local cinemas, or a car reservation service of the
car rental agencies nearby.

Today, the software development for mobile devices is cumbersome and not as ma-
ture as for desktop computers. Therefore, declarative and code generation approaches

* This work was supported by AGIP (Arbeitsgruppe Innovative Projekte beim Ministerium für

Wissenschaft und Kultur des Landes Niedersachsen) under Research Grant F.A.-Nr.2004.612.

 Model-Driven Architecture for Mobile Applications 465

should be preferred instead of manually coding. In the BAMOS project (Base Archi-
tecture for MObile applications in Spontaneous networks) [SPBD05], an architecture
has been designed and implemented for the flexible development of mobile applica-
tions. The BAMOS architecture can serve as a powerful base for code generation ap-
proaches. Using the BAMOS platform a mobile device can dynamically connect to a
local network and use all the available services offered there. To make this approach
successful the development of mobile services should be as easy as possible. In this
paper we present a model-driven approach for generating nearly the complete source
code of mobile BAMOS services. Furthermore, on the mobile devices no line of code
has to be implemented when the BAMOS platform is used.

The paper is organized as follows: in section 2 we outline the architectural ap-
proach of the BAMOS platform which provides the destination platform for our
model-driven development. Subsequently, section 3 motivates the usage of a model-
driven architecture and derives a meta model for a domain specific language (DSL).
An example is presented that illustrates the proposed approach. Finally, section 4
summaries the most significant features of the approach and provides some directions
of future research.

2 Architectural Approach

An indispensable prerequisite for applying model-driven development is a powerful
architectural base providing the destination platform for code generation. The
BAMOS platform enables the development of mobile applications by providing two
software components. The first component is an Adhoc Client that – similar to a Web
browser – enables the mobile device to access information services in spontaneous
networks. The second component is a Service Broker that – similar to a Web Server –
serves as an interface between the Adhoc Client and the services available in the net-
work.

With the BAMOS platform a mobile device can use different services in diverse
local networks. The Adhoc Client is a generic software component that does not re-
quire any information about the specific services. It loads the declarative descriptions
of the services at run-time and generates a service-specific graphical user interface.
The core concept underlying this generic approach is the declarative description of the
process flow as well as of the graphical user interface.

2.1 BAMOS Components

The BAMOS platform serves as the implementation base for the generation of mobile
applications. It consists of three main components. Figure 1 illustrates the architecture
and the relationship between the different architectural components.

The Service Provider offers services to other systems. To access these services on
a mobile device some prerequisites have to be fulfilled:

− The implemented services must be accessible for remote programs. For example
they may be implemented as a Web Service that can be invoked over the Internet.

466 J. Dunkel and R. Bruns

Fig. 1. BAMOS components

− In BAMOS all services must be described in a declarative manner to permit their
usage on a mobile device. Each service description defines the mobile user inter-
faces and the corresponding control flow (more details are discussed in section 2.2.).

− The service providers have to register their service descriptions at the Service
Broker.

The Service Broker mainly acts as a mediator between Service Providers and Adhoc
Clients. It can be described by the following characteristics:

− It is integrated into two different networks: on the one hand in a local wireless
network (e.g. Bluetooth) for connecting with the mobile devices, on the other hand
in a wired network (local area network or Internet) for accessing the services pro-
vided by the Service Providers.

− It delegates the client service requests to the appropriate Service Provider and for-
wards the response to the Adhoc Client.

− It holds a service directory where all available services must have been registered.
The directory contains the declarative descriptions of all available services. Ser-
vices can be published and searched in the directory.

The Adhoc Client is a software component that is running on a mobile device. The
device can enter and leave a local wireless network. In this case, the Adhoc Client
acts as part of a wireless adhoc network. It provides the following features:

− When entering a local wireless network, it connects spontaneously to the Service
Broker (using Bluetooth or WLAN).

− It loads the declarative service descriptions from the Service Broker for generating
a user interface on the mobile device. Afterwards the user can enter data on the
mobile device that is sent as a service request to the Service Broker. The Broker
delegates the request to the Service Provider offering the requested service.

The presented BAMOS architecture allows an Adhoc Client to use different kinds of
services, e.g. services that are generally available like Web Services. This architetural

 Model-Driven Architecture for Mobile Applications 467

concept is independent of particular data transfer technologies in adhoc networks. The
communication between Service Broker and Service Provider exploits common net-
work technologies; this aspect is not further considered in this paper. The origin of the
services is transparent to the Adhoc Client because the Service Broker is its only
communication partner.

2.2 Service Descriptions

The description of a service must specify the mobile user interface of the service as
well as the sequence of steps necessary in order to perform the complete service. To
use a service on a mobile device normally a sequence of different screens is neces-
sary: for selecting the desired service, for entering the input data and for presenting
the output information returned by the service. The mobile user interface can be char-
acterized by two different aspects:

(a) The layout of each screen on the mobile device.
(b) The workflow determining the sequence of screens on the mobile device.

(a) Specification of Mobile User Interfaces by XForms
Although the Adhoc Client is domain-independent, it should be able to interact with
domain-specific services. Thus, in order to cooperate with such a service the client re-
quires a description of the mobile user interface. This user interface description is
provided by the Service Broker and can be accessed by the client. With XForms a
W3C standard has been chosen as the mobile user interface description language. The
main advantage of XForms is its close correlation to MIDP, the core technology used
to implement graphical user interfaces on mobile clients. MIDP has been chosen as
the implementation technology for the Adhoc Client.

The original intention of XForms was to build the next generation of forms in the
World Wide Web. XForms is a XML-based language, issued as an open standard by
W3C, with several improvements compared to traditional HTML forms [XFor06].

MIDP (Mobile Information Device Profile) is a J2ME profile suitable for the de-
velopment of simple, but structured mobile user interfaces [Sun06]. MIDP user inter-
faces show significant similarities to traditional HTML forms: elements like input
fields, radio buttons or lists offer very similar input capabilities. In addition, the pos-
sibilities for human-computer interaction are very often restricted to the submission of
the entered input data – also similar to HTML forms. Thus, MIDP elements can be di-
rectly mapped to XForms and, consequently, XForms has been chosen for describing
the mobile user interface.

Structure of XForms
One of the main concepts of XForms is the clear separation of model and view. An
XForms document consists of two parts: The model part contains the data of the form,
which can be displayed and altered. In the example shown in figure 2, the model con-
tains the first name and surname of a person. The submission element holds the in-
formation about the action that shall be executed on the model data. In addition to the
model part, the second part of an XForms document specifies the visual presentation
of the model data as well as the possibilities for user interaction. Similar to HTML
forms, XForms offers several input and output elements. Every presentation element

468 J. Dunkel and R. Bruns

refers to a model element by means of a ref attribute. In the example, two input fields
enable the presentation and alteration of the first name and surname of the person.
The submit element specifies the presentation component for presenting the submis-
sion specified in the model, typically a button. If the submit button is pressed, all
input fields are mapped to the elements in the model and the model is processed ac-
cording to the action specified in the submission element. In the context of the
WWW, the browser would transfer the model to a web server. In the context of
BAMOS, the model is transferred to the Service Broker, e.g. via Bluetooth.

Fig. 2. XForms example

Figure 3 displays the message exchanges between the Adhoc Client on the mobile
device and the Service Broker. XForms serves as the message format in every
BAMOS interaction. (1) The Service Broker holds the XForms description of the mo-
bile user interface and instantiates a specific XForms document for the requested
interaction. (2) This XForms document is transferred via a wireless network to the
mobile device where (3) the Adhoc Client renders the mobile user interface according
to the information in the received XForms. (4) After an XForms submit the corre-
sponding XForms model data is transferred back to the Service Broker where it is
processed, usually by invoking an offered service. (5) The XForms for the subsequent
interaction step is determined, an instance of it is generated and the output data of the
service call is included in it. (6) This new XForms document is send to the mobile de-
vice and the interaction process can proceed.

 Model-Driven Architecture for Mobile Applications 469

Fig. 3. Message exchanges between Adhoc Client and Service Broker

(b) Workflow Specification
In addition to the declarative description of the mobile user interface by XForms, the
Service Broker has to determine the sequence of the dialogue steps necessary to exe-
cute a service, i.e. which XForms document has to be displayed next in response to a
submit, and to invoke the requested service operation on the Service Provider. The
core concept of the Service Broker is a process control component that can interpret
the declarative service descriptions stored in the service registry.

In order to describe the process flow a simple XML-based workflow language has
been designed. The concept of this language is based on the concept of a service in
BAMOS and its parts. Figure 4 illustrates in detail the components of a service in
BAMOS.

A BAMOS service consists of the sequence of interactions, which must all be per-
formed in a predefined order to complete the service. A service can be a very simple
one with a limited scope, e.g. querying information. Yet, it can also be a complex,
composite service that is implemented by invoking other services, e.g. weather fore-
cast service and timetable service for the public transport.

Every interaction step is implemented by a screen (a XForms template) displayed
to the user on the mobile device. This template usually contains information reflecting
the actual processing status of the previous interactions. The user can enter or alter
data in the template and can issue a submission. Through a submission the input data
is transferred as parameter to the service operation that is invoked. The output of this
service operation serves as the initial input for the subsequent interaction, i.e. the next

Fig. 4. Service composition and interactions

470 J. Dunkel and R. Bruns

screen. Within the current interaction the next interaction step has to be determined.
Due to the user input different conditional interactions can follow a finished one.

The presented concept of a BAMOS service is modeled by an XML workflow lan-
guage. Figure 5 shows an example of the XML description of the interactions consti-
tuting a service.

Fig. 5. Service interactions specified in XML workflow language

The element service is the root element and contains several interaction elements.
Every interaction element contains information about the corresponding XForms tem-
plate (in the xform element) and about the service operation to be called with the
mapping of the input and output attributes (specified in the element method).

The elements next and nextdefault define the subsequent interaction and determine
the sequence of the interactions constituting a service.

3 Model-Driven Development

As discussed above, an XML-based specification of the mobile user interface and the
workflow description enables the development of mobile applications in a very ge-
neric and flexible manner. In order to make a new service available in BAMOS, the
descriptions of its mobile user interface as well as its workflow specification have to

 Model-Driven Architecture for Mobile Applications 471

be defined in XML format. Only the service itself has to be implemented by the Ser-
vice Provider in any programming language and wrapped by a Web Service.

To make the BAMOS concept successful the development of services should be as
easy as possible. The entire effort for implementing services is already moderate but
writing XForms screen descriptions and especially XML workflow descriptions for a
service is too error-prone and time consuming. XML code is intended for the usage of
software programs and cumbersome for humans as the short examples in the previous
section illustrate. Model-driven development [Schm06], [AtKu03], [SVBH06] pro-
vides an approach to cope with these problems. It is based on the systematical use of
models as primary artifacts in the software engineering process. By applying model-
driven development within the BAMOS approach, a new service can be conveniently
modeled with a graphical modeling tool and the graphical models are then used to
generate the corresponding XML descriptions of the mobile user interface and the
workflow specification.

The prerequisite for code generation is a semantically rich model. Because general-
purpose modeling languages like UML [UML03] do not provide enough information
for code generation a Domain Specific Language (DSL) is required that contains the
necessary details for the automatic code generation. A DSL describes the elements of
a certain modeling language and therefore can be considered as a meta model. Trans-
formation engines and generators allow to analyze DSL models and to create artifacts
such as other models, source code or XML deployment descriptors.

Fig. 6. Model-Driven Development steps

Figure 6 outlines the approach. First the DSL (or meta model) must be formally de-
fined. This can be achieved by means of a model describing a meta model, i.e. a meta
metamodel (step 1). Then the DSL can be used for domain-specific modeling (DSM);
in this stage the mobile services are being modeled (step 2). Then the DSM model is
finally used for generating the code; in this stage the XForms and the workflow de-
scription of the BAMOS platform are created (step 3). The four levels of description
correspond to the four meta levels of the OMG Model-Driven Architecture: M0 -
data, M1 - models, M2 - metamodels, M3 - meta metamodels [MOF04]. Each step is
described in some more detail in the following subsections.

472 J. Dunkel and R. Bruns

3.1 Specifying a Domain Specific Language (DSL)

General-purpose modeling languages for designing, specifying and visualizing soft-
ware systems are not sufficient for code generation. They lack domain-specific model
elements and concepts that specify the details required for generating the code. In our
case the domain is about mobile applications based on the BAMOS framework. For
example, a domain-specific model element could specify that a class attribute should
appear as a choice box on a mobile device screen.

To let the code generators make use of the domain-specific model elements they
must be defined in a consistent and formal way. Modeling languages can be formally
defined by meta-modeling languages as Meta Object Facility (MOF) of OMG
[MOF04] or Eclipse Encore [BSME03]. In a meta-modeling language the key con-
cepts in a domain, their corresponding relationships, semantics and constraints can be
precisely specified.

Domain-specific languages are mostly based on extensions of the Unified Model-
ing Language (UML) the de-facto standard for modeling languages. A pragmatic
approach for defining a DSL are UML profiles [UML03] which use the built-in ex-
tensibility mechanisms of UML: stereotypes, tagged values and constraints. Figure 7
shows the meta model of a DSL for mobile applications based on BAMOS. The in-
troduced new modeling elements inherit from the MOF-concepts MOF::Class and
MOF::Attribute.

Fig. 7. The meta model of the BAMOS DSL (in parts)

The DSL defines two meta classes (inheriting from MOF::Class): a Service class
describes mobile services and a Screen class describes screens on a mobile device.
Furthermore, different types of attributes are defined for these classes (inheriting from
MOF::Attribute). Special meta attributes for the Screen classes are used to define ele-
ments of the graphical mobile user interface: e.g. input defines an input field, select a
radio button and submit a command button. For the Service class the implClass and
the method attributes define the name of the method and the class of the Service

 Model-Driven Architecture for Mobile Applications 473

Broker which delegates a service invocation. The precise dependencies between the
new model elements are defined by OCL constraints.

The sequence of interactions, i.e. the workflow between different mobile device
screens can be specified by UML activity diagrams. Depending on the user input the
Service Broker selects different interactions with corresponding XForms screens. Ac-
tivity diagram guards are used for annotating transitions and specifying the appropri-
ate interaction. An example is given in figure 8: depending on the value of attribute
selectedService in screen1 the control flow will be directed to screen2 or to screen3.

Fig. 8. UML activity diagrams for specifying the control flow

3.2 Domain-Specific Modeling (DSM)

Mobile services can be easily modeled using the DSL defined in the previous subsec-
tion. First the screens on the mobile device and the corresponding services must be
specified. This can be achieved by a class diagram using stereotypes defined by the
BAMOS DSL of figure 7. An example is presented in figure 9: the Service class My-
Service defines a service, which contains all the methods that are needed in the inter-
actions of MyService. The Screen class weatherService defines an XForms screen,

Fig. 9. Service and Screen class in the DSM

474 J. Dunkel and R. Bruns

which is presented on a mobile phone as illustrated in Figure 9 to let the user enter a
city and a time for the weather forecast. The attribute enterCity with stereotype
<<input>> defines an input field to specify the city a weather forecast is requested
for. The attribute timeOfDay with stereotype <<select1>> is presented as a radio but-
ton for choosing one of the initial attribute values (morning, afternoon, night).

In a second step, the control flow must be defined by an activity diagram as shown
in figure 10. Depending on the choice made in the mobile user interface an appropri-
ate sequence of screens is sent to the mobile device. The right side of figure 10 shows
the corresponding initial screen to choose one of the two available services.

Fig. 10. Activity diagram specifying the control flow

3.3 Code Generation

In a final code generating step the DSM model must be transformed into code arti-
facts. Transformation engines and generators first analyze a certain DSM model and
then synthesize various types of artifacts, such as source code, simulation inputs,
XML deployment descriptions, or alternative model representations. To make DSM
models processable by code generators the OMG standard interchange format XMI
(XML Metadata Interchange) [XMI06] can be used. A XMI model representation can
be imported by transformation engines. Each engine usually provides its own proprie-
tary transformation languages for code generation, e.g. Java ServerPages, XPand.
Currently the OMG is working on a standard called QVT.

In our domain the XForms and the workflow specification documents of the
BAMOS platform are generated. Figure 11 shows the XForms code of the weath-
erService screen according to the model described in figure 9.

The corresponding part of the generated workflow description document is pre-
sented in figure 12. It contains the definition of the MyService service specifying its
implementation class MyService and a corresponding XForms file MyService.xml.
The next decisionpath element determines the sequence of interactions: if a user
selects weatherService in the radio button choice of the MyService XForms screen,

 Model-Driven Architecture for Mobile Applications 475

the cotrol flow is directed to the weatherService interaction, otherwise the public-
TransportService interaction is chosen.

The weatherService interaction refers to the file weatherService.xml containing the
XForms code of figure 11 and to the method getWeather of the Service class MySer-
vice. The two parameters of the method (id=0 and id=1) correspond to the values of
the elements in the XForms screen (i.e. input fields city and time, see figure 11 and
figure 9).

Fig. 11. Example of the generated XForms code for the weatherService screen

476 J. Dunkel and R. Bruns

Fig. 12. Part of the generated workflow description file

4 Conclusion

In this paper, we have described a model-driven approach to generate applications for
mobile devices. Model-driven architecture (MDA) provides a higher level of abstrtion
for developing software: it allows modeling software systems instead of program-
ming. Only a few domain-specific functionalities remain for manual implementation.
The indispensable prerequisite for an MDA approach is a powerful architectural base
providing the destination platform for code generation and the development of a Do-
main Specific Language (DSL).

We introduced the BAMOS platform which allows the specification of complex
mobile application using XML files to generate XForms screens for mobile devices.

The presented model-driven approach avoids the error-prone coding of XML files.
Altogether, MDA shortens significantly the development time and improves software
quality. Because UML models are the main artifacts instead of XML code, mainte-
nance and reuse of model elements is made easier.

 Model-Driven Architecture for Mobile Applications 477

One drawback of the approach is that many different tools must be used and inte-
grated. Actually, most UML modeling tools do not satisfactorily support meta model-
ing and the code generating tools are still proprietary and not yet stable.

References

[AtKu03] Atkinson, C., Kuhne, T., Model-driven development: a metamodelling foundation,
IEEE Software, IEEE Computer Society, vol. 20, pp. 36-41, 2003.

[BSME03] Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T. J., Eclipse Model-
ing Framework: A Developer's Guide: Addison Wesley, 2003.

[DeKV00] Deursen, A. V., Klint, P., Visser, J., "Domain-specific languages: An annotated
bibliography," ACM SIGPLAN Notices, vol. 35, pp. 26-36, 2000.

[HaRo04] Hadig, T.,Roth, J.: Accessing Location and Proximity Information in a Decentral-
ized Environment, International Conference on E-Business und Telecommunica-
tion Networks, Setúbal, Portugal, 2004, pp. 88-95

[Herr03] Herrington Jack. Code generation in action. Manning Ed. 2003.
[MDA06] OMG. MDA. http://www.omg.org/mda
[Sun06] Sun: Mobile Information Device Profile MIDP) http://java.sun.com/products/midp/
[MOF04] MOF, "Meta Object Facility 2.0 Core Specification" 2004, DocId: ptc/03-10-04.
[oAW06] openArchitectueWare: http://www.openarchitectureware.org/
[Schm06] Schmidt, D.C. (February 2006). Model-Driven Engineering. IEEE Computer 39 (2).

Retrieved on 2006-05-16.
[SVBH06] Stahl, T, Völter, M., Bettin, J., Haase, A., Helsen S., Model-Driven Software De-

velopment: Technology, Engineering, Management: Wiley, 2006.
[SPBD05] Schmiedel, M., Pawlowski, O., Bruns, R., Dunkel, J., Nitze, F., Mobile Services in

Adhoc Networks, in: Proc. of Net.ObjectDays 2005, Erfurt, Germany, 2005, pp.
167-178.

[UML03] UML2.0, "UML 2.0 Superstructure Specification, Final Adopted Specification,
available at www.omg.org," 2003

[Wile01] Wile, D. S., Supporting the DSL Spectrum, Journal of Computing and Information
Technology, vol. 9, pp. 263-287, 2001.

[XFor06] W3C, The Forms Working Group: http://www.w3.org/MarkUp/Forms/
[XMI06] OMG/XMI XML Model Interchange (XMI) 2.0. Adopted Specification. Formal/03-

05-02, 2003.

	Introduction
	Architectural Approach
	BAMOS Components
	Service Descriptions

	Model-Driven Development
	Specifying a Domain Specific Language (DSL)
	Domain-Specific Modeling (DSM)
	Code Generation

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

