
Complex Events in Business Processes

Alistair Barros1, Gero Decker2, and Alexander Grosskopf1

1 SAP Research Centre Brisbane, Australia
{alistair.barros,alexander.grosskopf}@sap.com

2 Hasso-Plattner-Institute, Potsdam, Germany
gero.decker@hpi.uni-potsdam.de

Abstract. Flow-oriented process modeling languages have a long tra-
dition in the area of Business Process Management and are widely used
for capturing activities with their behavioral and data dependencies. In-
dividual events were introduced for triggering process instantiation and
activities. However, real-world business cases drive the need for also cov-
ering complex event patterns as they are known in the field of Complex
Event Processing. Therefore, this paper puts forward a catalog of re-
quirements for handling complex events in process models, which can be
used as reference framework for assessing process definition languages
and systems. An assessment of BPEL and BPMN is provided.

1 Introduction

In order to flexibly adapt changing business requirements, companies are in need
of IT systems that allow rapid reconfiguration. Business Process Management
(BPM) puts process models into the center of attention capturing the activities
that have to be carried out as well as their behavioral and data dependencies.
The functionality of the available IT systems is invoked by process execution
engines, which turns process models into central configuration artifacts for the
enterprise systems.

Over the past years different process definition languages have been proposed.
They tackle different levels of detail ranging from high-level models for business
analysts to executable process models. Prominent examples are e.g. the Business
Process Modeling Notation (BPMN [2]), UML 2.0 Activity Diagrams ([1]) and
the Business Process Execution Language (BPEL [3]). All of these languages
incorporate the notion of events for triggering process instantiation or steps
within a process instance. Events in the form of message exchanges or timeouts
are very common in executable languages. In the case of higher-level modeling
languages there is the possibility to also consider coarser grained business events,
such as “goods have arrived”.

Events are a way to loosely interconnect different process instances: Events
produced in one process instance are consumed by one or several other process
instances. Furthermore, composite events, i.e. the combination of different inter-
related events, must be handled in process models, too. As activities can normally
be decomposed into flows of sub-activities, we also need the possibility to handle

W. Abramowicz (Ed.): BIS 2007, LNCS 4439, pp. 29–40, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



30 A. Barros, G. Decker, and A. Grosskopf

different levels of events in process models. As an example the high-level event
“goods have arrived” might be decomposed into a number of “line item has been
stored in warehouse” events.

Process definition languages have been benchmarked for their suitability re-
garding common scenarios in processes. However, a benchmark regarding the
eventing capabilities of process definition languages is still missing. Therefore,
this paper puts forward requirements derived from real-world business cases.

The remainder of this paper is structured as follows: Section 2 highlights
related work before section 3 recapitulates on how events are consumed in busi-
ness processes. In section 4 a catalog of patterns for composite events in business
processes is presented and assessments for BPEL and BPMN are given. Finally,
section 5 concludes and gives an outlook to future work.

2 Related Work

The field of Complex Event Processing (CEP) comes with a set of languages
and architectures for describing and efficiently executing complex event rules. A
good reference for CEP is the book by Luckham [6], where he also introduces
Rapide, an event pattern language. A framework for detecting complex event
patterns can be found e.g. in [7]. Considerable work on event pattern languages
can also be found in the field of active databases. In [5] the event algebra Snoop
is introduced and compared with other event languages.

It is argued that process definition languages could be superseded by event
pattern languages. However, flow-oriented languages, i.e. languages where the
flow relation between activities is at the center of attention, have a long tradi-
tion in the field of Business Process Management and their suitability has been
studied extensively [11,8]. The fact that the most commonly used formalism
in the field of business processes, namely Petri nets ([10]), is also flow-oriented
underlines the importance of the flow-oriented paradigm.

Seeing message exchanges between process instances as the main event type
in service-oriented architectures, the Correlation Patterns introduced in [4] de-
scribe the relationship between these communication events and the structure
of process instances. The relationship between individual patterns in this paper
to respective Correlation Patterns will be given in section 4.

3 Event Consumption in Business Processes

As already mentioned in the introduction, state-of-the-art process definition lan-
guages include the notion of events. E.g. in BPEL invoke, receive and onMessage

activities specify production and consumption of message events. An initial
receive and onMessage activity with the attribute createInstance set to yes de-
fines a WSDL port type / operation combination that is relevant for the instan-
tiation of BPEL processes: As soon as a message of that particular combination
arrives, a process instance is created.



Complex Events in Business Processes 31

We can find three typical steps for the consumption of events in process in-
stances (depicted in Figure 1): i) A subscription to events (e.g. incoming mes-
sages) is initiated. ii) An event occurs (e.g. a message arrives). iii) The event
is matched by a subscription. This determines that the event will be consumed
by a particular process instance. Either it is consumed by an already existing
process instance or a new instance is created as result of that event.

subscription

event
occurrence

event matching 
& consumption

causal ordering

Fig. 1. Event handling in process instances: three steps

As a forth step we could also consider unsubscription. If an event is not awaited
any longer the subscription is taken back. A typical scenario could be that at
a given moment in the process a message of one out of a set of different types
could be consumed. In this case, there is a subscription for every type and as
soon as one message arrives no message of the other types is waited for.

We know that the consumption of an event cannot happen before the occur-
rence of that event nor before a subscription. These causal ordering constraints
are also depicted in Figure 1. However, we leave open at this stage, whether the
subscription has to precede the event occurrence. The architectural implication
for allowing subscriptions after the actual event occurrence, is that the system
has to store the event for later consumption. Such an architecture might not be
desired since it is hard to tell how long an event should be stored.

The enlisted steps can also be found in BPEL. Subscriptions for those mes-
sages that lead to process instantiation are initiated at deployment-time of a
process definition. Subscriptions for those messages that are consumed by a run-
ning process instance are normally initiated as soon as the respective receive

or onMessage activity is reached. Normally, the next two steps happen at once
in the case of BPEL: as soon as a message has been matched it is routed to
a process instance. However, the specification leaves it open to the process en-
gine implementers if also messages can be consumed by a receive or onMessage

activity that have arrived before that activity was reached.
BPEL only considers individual events: It is checked on a per-message basis if

a message matches a registered subscription (based on the port type, operation
and correlation sets) and only one message is consumed in a receive or onMessage
activity. This is different to what is supported in event rules in the field of
Complex Event Processing. Event rules specify patterns of events that have to
be matched. E.g. it is required that five corresponding messages of type customer
complaint are present within a given timeframe for a given event rule to fire.
Event rules enable hierarchical event architectures: Several low level events are
matched in event rules producing higher-level events. In business scenarios at
least two different levels of events should be present. At a low level we find



32 A. Barros, G. Decker, and A. Grosskopf

Do weekly 
cleanup

Start timer event

Intermediate message event

Every Friday 
6pm

Cancel 
request

Weekly 
report

All systems 
shut down

Prepare 
report

Intermediate event

End message event

Fig. 2. Event consumption and production in BPMN

individual events, e.g. the arrival of a container detected by an RFID station,
whereas on a higher level business events such as “sufficient containers available
for shipment” are considered within process models. Unfortunately, such event
hierarchies are not present in BPEL, only one level of events is considered. A
remedy could be using event aggregation components as a separate architectural
component in addition to a process execution engine. However, a seamless way
of modeling processes and event aggregation is necessary in order to provide a
consistent view to the process experts.

BPMN does not have the capability to express different levels of events, ei-
ther. However, it allows more event types than BPEL: In addition to messages,
timeouts and exceptions that are also present in BPEL, BPMN also comes with
rule events and it even allows to extend the language with custom defined event
types. Since BPMN is basically a graphical notation without defined execution
semantics, it is unclear how and when subscription for events is handled in
BPMN. Anyway the BPMN assumes that all messages are persistent. Thus they
are kept until a process instance is ready to consume them. As it is the case for
BPEL, BPMN distinguishes start events and intermediate events as two kinds of
event consumption: start events lead to process instantiation and intermediate
events are consumed by a running process instance. BPMN also allows to specify
message consumption and production through send and receive activities.

The BPMN specification does not explicitly state how often an event can be
consumed by process instances. But as the specification intends to map BPMN
to BPEL, we assume that every event is only consumed once like in BPEL.

4 Patterns for Composite Events

This section introduces a set of patterns as reference framework for assessing pro-
cess definition languages regarding their support for composite events in business
processes. We have seen that both event consumption and production are present
in process languages. The patterns enlisted in this section only focus on the con-
sumption side. Each of the patterns comes with a short description, examples
and an assessment of BPEL and BPMN.



Complex Events in Business Processes 33

4.1 Co-occurrence Patterns

This set of patterns describes scenarios where several events have to be consid-
ered in order to decide whether a pattern matches or not.

1. Event Conjunction. Two or more events have to have occurred in order to
be matched. The order of occurrence is irrelevant. This pattern is similar to the
Atomic Consumption pattern from [4].

Examples. (a) As part of the management of a shipment delivery to transient
storage nodes, when the number of carriers collectively yielding the minimal
outbound shipment has arrived, an event is raised to alert the relevant carriers
to confirm delivery pick-up.

(b) If goods have been delivered which were previously canceled, a delivery
exception event is raised.

Assessment of BPEL. Only one event is consumed at a time in BPEL pro-
cesses. A workaround for some scenarios can be that e.g. several receive activities
are placed within a flow constructs (i.e. in parallel). For process instantiation
scenarios a pick representing the alternative occurrence sequences could be used.
In this solution, we run into the problem that the instance is created as soon
as the first message arrives. Event Conjunction demands atomicity: Only in
the presence of all demanded events, an action in the process should be taken.
Therefore, there is no direct support for this pattern in BPEL.

Assessment of BPMN. The situation for BPMN is similar to that of BPEL.
Atomic consumption of several events is not possible in BPMN processes. There-
fore, no support for this pattern, either. Similar workarounds like in BPEL are
possible, though.

2. Event Cardinality. A specified number of events of the same type that
are all subject to the same constraints have to have occurred in order to be
matched. Event Cardinality is a special case of Event Conjunction. There are
two flavors of Event Cardinality: (i) a fixed number is specified (ii) a range
of numbers is specified. In the latter case a set of events can be matched as
soon as the minimum number of events are present. However, if more events
are available at the moment of matching, all available events are matched (as
a maximum number the upper limit of the range). The fixed number and the
range of numbers might be known at design-time or only at runtime.

Examples. (a) GSM stations send status report events. Some events indicate
errors due to minor technical malfunctions. If more than a threshold number of
errors are reported, an event is raised for trouble-shooting.

(b) Requests for purchase of small items are not processed immediately but are
batched, and subsequently trigger ordering when a certain number of purchase
requests is reached.

Assessment of BPEL. There is no support for this pattern in BPEL since we
find the same problem like in the case of Event Conjunction: only one event is
consumed at a time. Similar workarounds would be needed to implement event
cardinality (e.g. using while constructs) but the constraint of atomic matching
can not be fulfilled.



34 A. Barros, G. Decker, and A. Grosskopf

Assessment of BPMN. In analogy to the case of BPEL, there is no support
for this pattern in BPMN.

3. Event Disjunction. There are alternatives of events that have to have oc-
curred in order to be matched. The Workflow Pattern “Deferred Choice” ([9]) is
a special case of this pattern, where alternative individual events are waited for.

Examples. (a) The shipment planning process is started either automatically
at a scheduled time before or at an earlier time determined by the shipment
scheduler (e.g. in case of additional stock variances).

(b) The ordering process of an online video-on-demand marketplace uses one
of several payment instruments obtained from a customer’s profile. When the
one of these clears credit check, the transaction phase of ordering can proceed.

Assessment of BPEL. The pick construct in BPEL allows to define alternative
event types. The first matching event is consumed and the process resumes. This
semantics implements the Deferred Choice pattern. We conclude that there is
direct support for Event Disjunction in BPEL.

Assessment of BPMN. The event-based gateway has similar semantics like
the pick construct in BPEL. Moreover, BPMN has a multiple event type. It can
be triggered by alternative events and used for process instantiation scenarios.
Hence, there is also direct support in BPMN.

4. Inhibiting Event. An event can only be matched in the absence of another
specified event. This inhibiting event is not consumed.

Examples. (a) A fraud alert is raised if an invoice paid event was detected
without a corresponding invoice approved event.

(b) A passenger’s seat allocation on a flight is flagged if the passenger cannot
be located through the search/alert passenger process and the departure gate
of the flight is closed. Commencement of seat cancellation triggers retrieval of
the passenger’s baggage, although the passenger may still be allowed to board
the flight if the baggage has not yet been retrieved. Baggage retrieval signifies
completion of seat cancellation and the passenger is not allowed to board the
flight from that point.

Assessment of BPEL. Matching of messages to subscriptions is done on a
per-message basis in BPEL. I.e. no other messages are considered when deciding
whether it matches or not. This leads to the situation that there is no direct
support for the Inhibiting Event pattern in BPEL. However, in some cases the
notion of cancellation can emulate an inhibiting event: in a certain scope of
the process, incoming messages are dealt with by event handlers throwing an
exception which in turns causes the scope to be canceled. This does not work for
the case of process instantiation. The inhibiting event should cause an instance
not to be created.

Assessment of BPMN. Like in the case of BPEL, there is no direct support
for this pattern in BPMN. However, we can also think of workarounds using
intermediate events that are attached to activities. A running activity would
then be canceled as soon as the specified event occurs.



Complex Events in Business Processes 35

4.2 Time Relation Patterns

These patterns describe common time-related constraints for event patterns.
The moment an event occurs might be relevant for deciding whether a pattern
matches a certain group of events.

5. Event – Event Time Relation. Two events can only be matched if their
occurrence happens within or outside a given timeframe. A special case is where
the event of one type always has to have occurred before the other. This pattern
only appears as additional constraint for Event Conjunction.

Examples. (a) For a supermarket chain, suppliers of certain categories of stock
are responsible for replenishing stock to predefined thresholds, monitored by
suppliers. If an event is raised that line-item sub-category falls within a cer-
tain threshold and has order notification from the supplier for replenishment
within a certain time since the threshold was reached, the replenishment process
terminates without exception.

(b) Customers in an online video-on-demand marketplace are served by media
content brokers. A broker who cannot fulfill a request may forward it to other
brokers. Forwarded requests need to be fulfilled within a certain time of the
request issued by the customer, otherwise the request is no longer current.

(c) Buy and sell events arising from the stock market of a customer portfolios
are automatically correlated within a certain time of their occurrence by an
investment management process, otherwise they are ignored.

Assessment of BPEL. Since this pattern always requires the presence of
an Event Conjunction there is no support for this pattern in BPEL. Possible
workarounds could include the usage of timeouts, i.e. onAlarm events: As soon as
the first message is consumed, the timer is started. If the timeout occurs before
the arrival and consumption of the second event, cancellation takes place. Such
a workaround only works if only those messages are consumed that arrived af-
ter the corresponding receive activity was reached. In the other cases it is not
known how much earlier the first message arrived before reaching the receive

activity.
Assessment of BPMN. In analogy to BPEL there is no support for this pat-

tern in BPMN. A similar workaround could be used: an intermediate timer event
is attached to an activity containing the second intermediate event.

6. Event – Subscription Time Relation. An event can only be matched
if it occurs within a given timeframe relative to the moment of subscription,
e.g. an event must occur within 5 minutes after the moment of subscription.
Alternatively it is specified that it occurs outside a given timeframe relative to
the moment of subscription, e.g. an event must have occurred at least 10 days
before the moment of subscription. This pattern is only relevant for cases where
events are to be consumed by already running process instances.

Examples. (a) A company assessment process determines business properties.
When it reaches the point of stock prize evaluation it consumes all stock prize
updates of the last 2 months for that company to calculate average growth and
variance.



36 A. Barros, G. Decker, and A. Grosskopf

(b) A process supporting tax return applications accepts input for the ap-
plication up until the point where a final version of the tax return is prepared.
Thus, any information relating to tax returns such as exemptions or investments
can be asynchronously consumed during the process.

Assessment of BPEL. It is not specified when the subscription to a message
is initiated in BPEL. We only know that the latest moment of subscription is
when the receive or onMessage activity is reached. If we use a pick construct
in combination with an onMessage and onAlarm, we can define a duration how
long the engine should maximally wait for the message starting at the moment
of reaching the onAlarm activity. This covers the case where the message should
arrive within a given time after the subscription. All other cases are not directly
supported in BPEL. We conclude that there is partial support for this pattern.

Assessment of BPMN. The event-based gateway in BPMN directly corre-
sponds to the pick construct in BPEL. Therefore, we also find partial support
for this pattern in BPMN.

7. Event – Consumption Time Relation. An event can only be matched if it
occurs at least a certain time before the moment of consumption. Alternatively
it is specified that it occurs at most a certain time before consumption. This
pattern is especially important for process instantiation scenarios.

Examples. (a) Ad-hoc stock requests which occur between regular replenish-
ment cycles are processed together for allocation to existing shipments of the
next cycle.

(b) Within a certain time of stock pick-up for the next shipment time, the
relevant carriers are expected to report pick-up and commencement of deliv-
ery. Outstanding carriers are contacted for determination of whether alternative
transportation should be triggered.

Assessment of BPEL. There is no support for this pattern in BPEL.
Assessment of BPMN. There is no support for this pattern in BPMN.

8. Event – Absolute Time Relation. An event can only be matched if it
occurs before or after an absolute point in time.

Examples. (a) Incoming calls into a service hotline during business hours are
handled by the local support center. Calls outside business hours are directed to
global support centers.

(b) A scheduled upgrade of a system is set for a specific time. Warning are
sent out to users that log in within that specific time frame.

(c) During fixed times on weekdays, processes are triggered for major roads
with interchangeable lanes (for left/right side) to have their lane allocations set.

Assessment of BPEL. The onAlarm construct in BPEL has both a duration
semantics (the timeout occurs after a certain time period has passed) and a
deadline semantics (the timeout occurs as soon as a certain deadline is reached).
The latter can be used to easily express one flavor of the pattern: A pick construct
in combination with an onMessage and an onAlarm can implement cases where
the message has to arrive before a given deadline. Since this implementation



Complex Events in Business Processes 37

does not cover the situation where a message has to arrive after a given point in
time, we opt for partial support for this pattern.

Assessment of BPMN. In analogy to BPEL we can use a combination of an
event-based gateway with an intermediate event and an intermediate timer event.
The other flavor of the pattern is not directly supported, either. Therefore, we
also have partial support for this pattern in BPMN.

4.3 Data Dependency Patterns

For the following set of patterns we assume that events carry additional data.
For instance, incoming messages carry message content and a “goods have ar-
rived” event carries information about the supplier and the corresponding order.
The patterns describe how data dependencies constrain the matching of events.

9. Event – Event Data Dependency. Two events can only be matched if
their data is in a specified relation. This pattern only appears as additional
constraint for Event Conjunction. It is similar to Key-based and Property-based
Correlation in [4].

Examples. (a) An incoming order confirmation or order rejection event is
matched with the outgoing order request event with the same OrderID.

(b) An investigation for provision of land tenure (e.g. land planned for a
school site) involves complex searches for related tenure applications and future
land actions planned, based on geographic locality (e.g. railway line planned or
environmental regulations in the locality) and “neighborhood” parcels of land
within a geographic locality (shopping center planned in the same block). Keys
for data correlation accordingly vary.

Assessment of BPEL. Since this pattern always requires the presence of an
Event Conjunction there is no support for this pattern in BPEL. In general, cor-
relation sets can be defined for constraining the messages matched for a running
process instance. However, since only a combination of two or more events should
be matched that fulfill the data constraint, it would be invalid to accept a first
message independently of the data constraint. Therefore, receiving any message
of a desired port type / operation and then using this message for initializing
the correlation set which in turn is used for matching the second one, cannot be
a valid workaround.

Assessment of BPMN. Unlike BPEL, BPMN does not provide any support
for correlation. Therefore, data dependencies between two events cannot be ex-
pressed in BPMN.

10. Event – Process Instance Data Dependency. An event can only be
matched if its data is in a specified relation to the control data of the subscribing
process instance.

Examples. (a) A Customer Payment Details event is consumed by the process
that reference the same Customer within its process context.

(b) A reply to an asynchronous request is routed to the process instance that
holds correlation data within its process context matching the event data.



38 A. Barros, G. Decker, and A. Grosskopf

(c) An Order Cancellation affects the process instance that holds the correct
Order identifier in its context.

Assessment of BPEL. Correlation sets are a means to restrict subscriptions to
messages with specific content. E.g. a customer ID can be included in a message
and only those messages are accepted that belong to a particular customer. We
conclude that there is direct support for this pattern in BPEL.

Assessment of BPMN. BPMN simply lacks the notion of correlation and there-
fore does not support this pattern.

11. Event – Environment Data Dependency. An event can only be matched
if its data is in a specified relation to data that can be accessed by different
process instances. This pattern is especially important for process instantiation.

Examples. (a) Email requests from premium customers start premium han-
dling processes, other start normal handling processes.

(b) A shipper processes shipment request events only if they come from known
business partners.

(c) Only invoices referencing a valid order start an approval process.
Assessment of BPEL. Whether a message triggers process instantiation is only

decided based on the port type / operation combination. BPEL does not allow
to further constrain such consumption using correlation information. Therefore,
there is no direct support for the pattern in BPEL. A workaround could be that
messages first trigger process instantiation and are then checked for their content.
If the content does not fulfill the constraint the process instance is terminated.

Assessment of BPMN. It is not possible to constrain the consumption of events
based on data attached to them. Therefore, there is no support for this pattern,
either.

4.4 Consumption Patterns

The Consumption Patterns describe how often an event can be consumed.

12. Consume Once. An event can only be consumed at most once by one out
of all process instances.

Examples. (a) An order request event is to be processed exactly once.
(b) Activation for a newly provided credit card event is required only once.
(c) An event notifying the breakdown of a carrier should be consumed once

by a specific breakdown-service agent.
Assessment of BPEL. Every incoming message is routed to at most one pro-

cess instance and is consumed by at most one receive or onMessage activity.
Hence, there is direct support for this pattern.

Assessment of BPMN. In the previous section we mentioned the assumption
that every event is consumed by at most one BPMN process instance. This re-
sults in direct support for this pattern.

13. Consume Multiple Times. An event is consumed several times (possi-
bly within the same process instance). This pattern is similar to the Multiple
Consumption pattern from [4].



Complex Events in Business Processes 39

Examples. (a) Events signifying share buy/sell recommendations are con-
sumed many times by an investment monitoring process for different customer
portfolios.

(b) A traffic monitoring system provides traffic updates for its subscriber
carriers involved in delivering goods.

(c) Changes to a shipments are broadcasted to its stakeholders including dif-
ferent carriers, storage nodes, final consignments and stock-to-shelf dispatchers.

Assessment of BPEL. In the case of BPEL, every message is consumed at
most once. Therefore, BPEL does not support this pattern.

Assessment of BPMN. Due to our assumption that every event is consumed
by at most one BPMN process instance, we conclude that there is no support
for this pattern in BPMN.

5 Conclusion and Outlook

This paper has introduced a set of patterns describing common eventing sce-
narios in business processes. In analogy to other sets of patterns in the field of
Business Process Management, they can be used to evaluate process definition
languages and systems. Table 1 summarizes the assessment of BPEL and BPMN
that we carried out in section 4. Direct support for a pattern is denoted as “+”,
partial support as “+/–” and no support as “–”. It turns out that BPEL and
BPMN support similar patterns, while a wide range of patterns are not sup-
ported by both languages. This underlines the initial assumption that only very
basic eventing scenarios can be captured. We argued that modeling process logic
and describing complex event patterns should not occur independently of each
other since both aspects are essential for process experts to capture the overall
process context. As a result, we see the need to closely integrate event pat-
tern descriptions into executable process definition languages such as BPEL and
higher-level modeling languages such as BPMN.

Table 1. Composite Event Pattern support in BPEL and BPMN

Composite Event Patterns BPEL BPMN
1. Event Conjunction – –
2. Event Cardinality – –
3. Event Disjunction + +
4. Inhibiting Event – –
5. Event – Event Time Relation – –
6. Event – Subscription Time Relation +/– +/–
7. Event – Consumption Time Relation – –
8. Event – Absolute Time Relation +/– +/–
9. Event – Event Data Dependency – –
10. Event – Process Instance Data Dependency + –
11. Event – Environment Data Dependency – –
12. Consume Once + +
13. Consume Multiple Times – –



40 A. Barros, G. Decker, and A. Grosskopf

Future will especially focus on integrating more sophisticated eventing mech-
anisms into BPMN. As part of that, graphical representations for event patterns
will be proposed.

References

1. UML 2.0 Superstructure Specification. Technical report, Object Management
Group (OMG), August 2005.

2. Business Process Modeling Notation (BPMN) Specification, Final Adopted Spec-
ification. Technical report, Object Management Group (OMG), February 2006.
http://www.bpmn.org/.

3. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, version 1.1. Technical report, OASIS, May
2003. http://www-106.ibm.com/developerworks/webservices/library/ws-bpel.

4. A. Barros, G. Decker, M. Dumas, and F. Weber. Correlation Patterns in Service-
Oriented Architectures. In Proceedings of the 9th International Conference on
Fundamental Approaches to Software Engineering (FASE), Braga, Portugal, March
2007.

5. S. Chakravarthy and D. Mishra. Snoop: An expressive event specification language
for active databases. Data Knowledge Engineering, 14(1):1–26, 1994.

6. D. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, 2001.

7. P. R. Pietzuch, B. Shand, and J. Bacon. A Framework for Event Composition
in Distributed Systems. In Proceedings of the 4th International Conference on
Middleware (MW’03), Rio de Janeiro, Brazil, 2003.

8. N. Russell, W. M. van der Aalst, A. ter Hofstede, and P. Wohed. On the Suitability
of UML 2.0 Activity Diagrams for Business Process Modelling. In Proceedings 3rd
Asia-Pacific Conference on Conceptual Modelling (APCCM 2006), volume 53 of
CRPIT, pages 95–104, Hobart, Australia, 2006.

9. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

10. W. v. d. van der Aalst and K. v. van Hee. Workflow Management: Models, Methods,
and Systems (Cooperative Information Systems). The MIT Press, January 2002.

11. P. Wohed, W. M. van der Aalst, M. Dumas, A. ter Hofstede, and N. Russell.
On the Suitability of BPMN for Business Process Modelling. In Proceedings 4th
International Conference on Business Process Management (BPM 2006), LNCS,
Vienna, Austria, 2006. Springer Verlag.


	Introduction
	Related Work
	Event Consumption in Business Processes
	Patterns for Composite Events
	Co-occurrence Patterns
	Time Relation Patterns
	Data Dependency Patterns
	Consumption Patterns

	Conclusion and Outlook

