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Abstract. The recent explosion in availability of gene and protein ex-
pression data for cancer detection has necessitated the development of
sophisticated machine learning tools for high dimensional data analy-
sis. Previous attempts at gene expression analysis have typically used a
linear dimensionality reduction method such as Principal Components
Analysis (PCA). Linear dimensionality reduction methods do not how-
ever account for the inherent nonlinearity within the data. The motiva-
tion behind this work is to demonstrate that nonlinear dimensionality
reduction methods are more adept at capturing the nonlinearity within
the data compared to linear methods, and hence would result in better
classification and potentially aid in the visualization and identification
of new data classes. Consequently, in this paper, we empirically compare
the performance of 3 commonly used linear versus 3 nonlinear dimen-
sionality reduction techniques from the perspective of (a) distinguishing
objects belonging to cancer and non-cancer classes and (b) new class
discovery in high dimensional gene and protein expression studies for
different types of cancer. Quantitative evaluation using a support vec-
tor machine and a decision tree classifier revealed statistically significant
improvement in classification accuracy by using nonlinear dimensionality
reduction methods compared to linear methods.

Keywords: dimensionality reduction, bioinformatics, gene expression,
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sional scaling, graph embedding, Isomap, locally linear embedding.

1 Introduction

The information found in gene and protein expression studies provides a means
for identifying patients with cancer and hence these studies have emerged as
promising techniques for cancer detection [1,2]. A typical gene expression dataset,
however, contains information from thousands of genes (features), which are likely
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to be significantly greater than the number of patients from whom the data was
collected. The relatively small number of patient samples compared to the very
large size of the feature space results in the so-called ‘curse of dimensionality’
problem from a data analysis perspective [3]. Many of the genes within the ex-
pression studies may be non-informative or redundant and hence may not con-
tribute very much from a classification perspective [4]. Two common approaches
to making the data amenable to classification are (i) feature selection and (ii)
dimensionality reduction (DR).

Feature selection refers to the elimination of genes determined as either being
highly correlated with other genes or non-informative with respect to distinguish-
ing the data classes [4]. It serves as a direct method for reducing inherent data
dimensionality prior to classification by acquiring an optimal subset of genes to
maximally separate the data classes. However, since a typical gene microarray
records thousands of gene expressions, each associated with a particular gene,
the cost of finding an optimal subset from several million possible combinations
becomes a near intractable problem.

The alternative, dimensionality reduction (DR), is advantageous because all
of the original data is simply transformed from the original high dimensional
feature space to a space of eigenvectors, capable of describing the data in far
fewer dimensions. The largest eigenvectors represent the direction along which
the greatest variability in the dataset occurs. Advantages of DR over feature
selection include (i) representation of data structure in far fewer dimensions and
(ii) the visualization of individual data classes and possibly subclasses within
the high dimensional data.

The most popular method for DR is Principal Components Analysis (PCA).
PCA finds orthogonal eigenvectors which account for the greatest amount of
variability in the data. However, its basic intuitions lie under the assumption
that the data is linear. These embedded eigenvectors represent low dimensional
projections of linear relationships between data points in high dimensional space.
Dai et al. [5] and Shi et al. [2] have independently tested the efficacy of PCA in
improving the classification of gene expression datasets. Recently, methods such
as Graph Embedding [6], Isometric mapping (Isomap) [7], and Locally Linear
Embedding [8] have been developed to reduce the dimensionality of nonlinear
data under the assumption that the underlying distribution is nonlinear. The
structure of nonlinear data can be thought of as a high order curve or manifold
where the geodesic distance between two points on the manifold is greater than
their Euclidean distance would suggest. Nonlinear methods attempt to map data
along this nonlinear manifold by assuming only neighboring points to be similar
enough to be mapped linearly with minimal error. The nonlinear manifold can
then be reconstructed based on these locally linear assumptions, providing the
groundwork for a nonlinear mapping based on the true distances between any
two data points. In general however, the choice of DR methods for the analy-
sis of medical data has been relatively arbitrary. Although there is widespread
evidence [2,9,10] to suggest that medical data such as genomic and proteomic
expression studies are nonlinear, surprisingly few researchers have attempted
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nonlinear DR methods for this purpose. Shi and Chen [2] have evaluated the use
of LLE in comparison with PCA for improving classification in leukemia, lym-
phoma and colon gene expression datasets. Dawson et al. [9] explored the utility
of Isomap in comparison with PCA and linear multidimensional scaling (MDS) in
oligonucleotide datasets, and Nilsson et al. [10] independently compared Isomap
with MDS to reveal structures in microarray data related to biological phenom-
ena. Madabhushi et al. [6] demonstrated the use of graph embedding to detect
the presence of new tissue classes on high dimensional prostate MRI studies.
While significant work in comparing classifier performance on cancer studies
has been done [4,11], no serious quantitative comparisons involving multiple DR
algorithms have been done in the context of maximizing classification accuracy.

The primary motivation of this paper is twofold. Firstly, by quantitatively
comparing the performance of multiple linear and nonlinear DR methods, we
can determine the appropriate technique to precede classification in high dimen-
sional gene and protein expression studies. Secondly, we wish to demonstrate that
nonlinear DR methods are superior compared to linear methods both from the
perspective of classification and from the perspective of identifying and visualiz-
ing new classes within the data. In this work, we consider genomic and proteomic
expression datasets from 7 separate studies corresponding to prostate, lung and
ovarian cancers, as well as leukemia and lymphoma. Three different linear meth-
ods (PCA, linear discriminant analysis (LDA) [3], linear MDS [10]) and three
nonlinear DR methods (graph embedding [6], Isomap [7], and LLE [8]) are ap-
plied to each of the datasets. The low dimensional embedding vectors, obtained
from each DR method and for each dataset, are then supplied to a support vector
machine classifier and a decision tree classifier. The accuracy of each classifier in
distinguishing between cancer and non-cancer classes is thus used to gauge the
efficacy of each of the DR methods. In addition to classification, we also quanti-
tatively compare each of the DR methods in terms of their ability to detect new
sub-classes within the data.

The organization of the rest of this paper is as follows. In Section 2, we will
give a brief overview of the DR methods considered in this work. In Section 3
we describe our experimental design. Our qualitative and quantitative results
in comparing the different DR methods are presented in Section 4. Finally, we
present our concluding remarks in Section 5.

2 Description of Dimensionality Reduction Methods

In this section we briefly describe the 3 linear (PCA, MDS, LDA) and 3 nonlinear
DR methods (Graph Embedding, Isomap, LLE) considered in this study.

2.1 Linear Dimensionality Reduction Methods

Principal Components Analysis (PCA): PCA has been widely documented
as an effective means for analyzing high dimensional data [5]. Briefly, PCA ap-
plies a linear transformation to the data that allows the variance within the
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data to be expressed in terms of orthogonal eigenvectors. The eigenvectors that
contain the most variance in the data represent the principal components.

Linear Discriminant Analysis (LDA): LDA [3] takes into account class
labels to find intra-class correlations in the dataset. Assuming there is a linear
hyperplane that can maximize separation between the two classes, LDA projects
features that maximally account for this inter-class difference. While LDA has
been useful as both a DR method and a classifier, it is limited in handling sparse
data in which a Gaussian distribution of data points does not exist [3].

Classical Multidimensional Scaling (MDS): MDS [10] is implemented as
a linear method that uses Euclidean distances between each pair of points as
a basis for a low dimensional data arrangement. From these input distances,
MDS finds optimal positions for the data points in an arbitrary d-dimensional
space by minimizing least square error. Thus, the relative Euclidean distances
between points in low-dimensional embedding space are preserved. Note that
classical MDS differs from nonlinear variants of MDS such as nonmetric MDS,
which do not preserve input Euclidean distances.

2.2 Nonlinear Dimensionality Reduction Methods

Graph Embedding (GE): The GE algorithm [6] performs a series of normal-
ized cuts on the data to partition it into clusters of data points. These cuts are
made where minimal similarities exist (decided using a similarity matrix of pair-
wise Euclidean distances). In this manner, similarity can be discerned by inter-
and intra-cluster distances, where points within a cluster are deemed similar and
points belonging to separate clusters are deemed dissimilar. Separating points
by GE allows for the separation of objects within complex nonlinear structures,
where objects cannot otherwise be discriminated by linear DR methods.

Isometric Mapping (Isomap (ISO)): The Isomap algorithm [7] is essen-
tially one that optimizes classical MDS for the nonlinear case. Isomap finds the
nonlinear manifold on which the data is expected to lie through the use of a
neighborhood map, which assumes linearity only between its k nearest neigh-
bors defined by the user. By connecting each point only to its nearest neighbors,
a path representing the geodesic distances between two points can be approxi-
mated by finding the shortest path through the neighborhood mapping. These
new geodesic distances represent the true distances between points and serve as
input into classical MDS, where a more accurate low dimensional representation
can be constructed.

Locally Linear Embedding (LLE): LLE [8] attempts to create a low dimen-
sional representation of the global structure through the preservation of the local
structure by assuming only nearby points to be linear. Local linearity is achieved
by weighting only the k-nearest neighbors of each data point. A total of d new
embedding vectors are then reconstructed by these linear weights and by mini-
mizing the embedding cost function in the new d-dimensional coordinate system.



174 G. Lee, C. Rodriguez, and A. Madabhushi

3 Experimental Design

In this Section, we first briefly describe the datasets considered in this study along
with a description of the parameter settings for the DR methods (Section 3.1),
followed by a brief description of the classifiers considered (Section 3.2) and our
model for performing a quantitative comparison of the different DR methods
(Section 3.3).

3.1 Description of Datasets and Parameter Settings

To evaluate the different DR methods, we chose 7 publicly available datasets
corresponding to high dimensional protein and gene expression studies1. The
size of the datasets ranged from 34 to 253 patient samples and comprised from
between 4026 to 15154 genes. Table 1 lists all the datasets on which we tested
our DR methods. Note that for each dataset considered, the number of samples
is significantly smaller than the dimensionality of the feature space. For the
ALL-AML Leukemia dataset, two classes were considered: Acute Lymphoblastic
Leukemia (ALL) and Acute Myeloid Leukemia (AML). For the DLBCL-Harvard
dataset, the 2 classes considered were Diffuse large B-cell Lymphoma (DLBCL)
and Follicular Lymphoma (FL). Lastly, the Lung Cancer dataset contains two
types of lung cancer (mesothelioma (MPM) and adenocarcinoma (ADCA)).

Table 1. Gene expression and proteomic spectra datasets considered in this study

Dataset Samples Genes Class Description Source

(1) ALL-AML Leukemia 34 7129 20 ALL, 14 AML Golub et al. [12]
(2) DLBCL-Harvard 77 6817 58 DLBCL,19 FL Shipp et al. [13]
(3) Lung Cancer 148 12533 15 MPM, 134 ADCA Gordon et al. [14]
(4) Lung Cancer-Michigan 96 7129 86 Tumor, 10 Normal Beer et al. [15]
(5) Ovarian Cancer 253 15154 162 Tumor, 91 Normal Petricoin et al. [16]
(6) Prostate Cancer 34 12600 25 Tumor, 9 Normal Singh et al. [17]
(7) Types of Diffuse Large 47 4026 24 Germinal, Alizadeh et al. [18]

B-cell Lymphoma 23 Activated

For each of the datasets Dj , 1 ≤ j ≤ 7, we applied each of 6 DR methods
M , where M ∈ {PCA, LDA, MDS, GE, ISO, LLE}. For each method M and
dataset Dj, we obtained a set Sd

Dj ,M ≥
{

E1
Dj ,M , E2

Dj ,M , ..., Ed
Dj ,M

}
of d dom-

inant eigenvectors. The number of principal eigenvectors d used to classify the
objects c ∈ Dj were varied from 2 to 8 in order to find the optimal d-dimensional
space in which the 2 classes were most easily separable.

1 The datasets were obtained from the Biomedical Kent-Ridge Repositories at
http://sdmc.lit.org.sg/GEDatasets/Datasets and http://sdmc.i2r.a-star.edu.sg/rp
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3.2 Classifiers

To perform our classification, we input a set Sd
Dj ,M of eigenvectors to the fol-

lowing 2 machine learning classifier methods: Support Vector Machines (SVMs)
and C4.5 Decision Trees. Both require the use of a training set to construct a
prediction model for new data. SVMs project the input data to a higher dimen-
sional space to find a hyperplane that gives the greatest separation between the
data classes. This hyperplane along with 2 parallel support vectors serve as a
boundary in which a prediction can be made for new data. Decision Trees cre-
ate a predictor wherein new samples are categorized based on several conditional
statements. For each condition, the algorithm associates a certain likelihood that
a sample falls into a particular category and refines the class hypothesis before
a final decision is made.

Since the classifiers were being used to evaluate the DR methods’ ability to
separate 2 classes, a simple linear kernel was chosen for SVM. The linear kernel
draws a d-dimensional hyperplane to act as a decision boundary between the
two separated classes. To train the 2 classifiers, we set aside 1/3 of the samples
in each dataset Dj, 1 ≤ j ≤ 7, for 3-fold cross validation. Using the best samples
from cross validation, we determined the parameter settings for both classifiers.
After the model parameters were learned, the same parameter values for SVM
and C4.5 were used to test the remaining 2/3 objects in each Dj .

3.3 Quantitative Evaluation of DR Methods

The accuracy of the SVM and C4.5 classifiers on 7 datasets Dj, 1 ≤ j ≤ 7
was quantitatively evaluated using the class labels provided in the gene ex-
pression studies. We define accuracy as the ratio of the number of objects
c ∈ Dj , 1 ≤ j ≤ 7, correctly labeled by the classifier to the total number of tested
objects in each Dj . We denote the classification accuracy of SVMs on dataset
Sd

Dj ,M by SVM(Sd
Dj ,M ) and the corresponding accuracy of the C4.5 Decision

Trees by C4.5(Sd
Dj,M ). To determine whether the classifier results from the non-

linear and linear DR methods were significantly different, we performed a paired
student t -test wherein we compared SVM(Sd

Dj ,M ) for M ∈ {PCA, LDA, MDS}
versus SVM(Sd

Dj ,M ) for M ∈ {GE, ISO, LLE} across all Dj. The t -test was
similarly repeated for C4.5(Sd

Dj,M ). The difference between SVM(Sd
Dj ,M ) or

C4.5(Sd
Dj,M ) for each pair of methods (1 linear and 1 nonlinear) was deemed

to be statistically significant if p ≤ 0.05. The linear and nonlinear DR methods
were also semi-quantitatively compared (i) using 2-D embedding plots to evalu-
ate their ability to distinguish between the cancer and non-cancer clusters and
(ii) to potentially identify and visualize the presence of new sub-classes. In order
to visualize the embedding of the data in the low dimensional space obtained
via the DR methods, we plotted the dominant eigenvectors obtained for each M
for each object c ∈ Dj against each other (e.g. E2

Dj ,M versus E3
Dj ,M ).
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4 Results and Discussion

In Section 4.1 we present the results of quantitative comparison of the different
DR methods in terms of their classification accuracy obtained from the SVM and
C4.5 classifiers. In Section 4.2 we present quantitative graphical plots comparing
the ability of the DR methods to separate the data classes and also in identifying
and visualizing the presence of new classes.
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Fig. 1. (a) Average C4.5(Sd
Dj ,M ) for d = 6 and (b) SVM(Sd

Dj,M ) for d = 5 for each
of 6 datasets following DR by PCA, LDA, MDS, GE, ISO, and LLE. Note that for
both classifiers, the nonlinear methods consistently outperform the linear methods.

4.1 Quantitative Evaluation of DR Methods Via Classifier Accuracy

In Figure 1(a), we show the average accuracy results obtained with the C4.5
classifier, C4.5(Sd

Dj,M ) for 1 ≤ j ≤ 6. We obtained our best results for d =
5 for SVMs and d = 6 for C4.5 Decision Trees. From Figure 1(a), it is clear
that embeddings from nonlinear DR methods (GE, ISO, LLE) lead to better
overall accuracy than with linear DR methods (PCA, LDA, MDS). Isomap
and LLE overall were the most accurate while LDA performed the worst. In

Table 2. C4.5(Sd
Dj ,M ) for each of 7 datasets following DR by PCA, LDA, MDS, GE,

ISO, and LLE for d = 6

Dataset PCA LDA MDS GE ISO LLE

(1) ALL-AML Leukemia 62.5 41.7 62.5 91.7 95.0 95.0
(2) DLBCL-Harvard 69.2 40.4 84.6 86.5 96.9 96.9
(3) Lung Cancer 67.7 84.6 70.8 98.5 100.0 100.0
(4) Lung Cancer-Michigan 67.7 84.6 69.2 98.5 100.0 100.0
(5) Ovarian Tumor 55.6 59.2 61.5 59.2 59.8 63.3
(6) Prostate Cancer 100.0 47.8 87.0 82.6 100.0 100.0
(7) Types of Diffuse Large 93.8 59.4 90.6 93.8 95.0 95.0

B-cell Lymphoma
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Table 3. p-values obtained by a paired student t-test of SVM(Sd
Dj,M ) across 7 data

dimensions d ∈ {2, ...8} comparing linear versus nonlinear DR methods for 1 ≤ j ≤ 7.
Note that the numbers listed in the first column refer to the datasets given in Table 1.

GE GE GE ISO ISO ISO LLE LLE LLE

Dataset vs vs vs vs vs vs vs vs vs
PCA LDA MDS PCA LDA MDS PCA LDA MDS

(1) .068 8x10−5 .057 7x10−5 6x10−8 .002 7x10−5 6x10−8 .002
(2) .373 3x10−4 .925 .012 6x10−5 .014 .012 6x10−5 .014
(3) .361 .852 .691 .003 .009 4x10−4 .002 .006 4x10−4

(4) .706 .063 1.000 .004 3x10−8 .015 .005 2x10−16 .011
(5) .478 .063 .412 .008 .004 .003 .002 .003 2x10−4

(6) .156 .001 .045 2x10−5 4x10−8 .012 8x10−5 3x10−8 .019
(7) .005 10−4 .074 8x10−5 7x10−6 .001 8x10−5 7x10−6 .001
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Fig. 2. Embedding plots were obtained by graphing the 2 dominant eigenvectors
against each other for (a) PCA, (b) LDA, (c) GE, and (d) LLE for the Lung Cancer-
Michigan dataset. Note that while linear methods, PCA and LDA, are unable to dis-
tinguish between the 2 classes, the nonlinear methods, GE and LLE, are able to not
only clearly distinguish between the 2 groups but also permit visualization of 2 possible
normal class sub-clusters (indicated by superposed ellipses in (c) and (d)).
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Fig. 3. Embedding plots were obtained by graphing the 2 dominant eigenvectors
against each other for (a) PCA, (b) MDS, (c) Isomap, and (d) LLE for the Ovar-
ian Cancer dataset. As in Figure 3, we can appreciate that nonlinear methods, Isomap
and LLE, are able to distinguish between the 2 classes and also permit visualization of
a possible normal class sub-cluster (indicated by superposed ellipses in (c) and (d)).

Table 2, we show C4.5(Sd
Dj,M ), for 1 ≤ j ≤ 7, for all 6 DR methods, for d =

6. Our results indicate an improvement in accuracy for the nonlinear DR over
linear DR methods. In Table 3 are listed p-values for the paired student t -tests
obtained for SVM(Sd

Dj ,M ) across 7 data dimensions (d ∈ {2, ..., 8}) for each
paired comparison of a linear and non-linear DR method. Hence we compared
the following pairs of methods: PCA/GE, LDA/GE, MDS/GE, PCA/Isomap,
LDA/Isomap, MDS/Isomap, PCA/LLE, LDA/LLE, MDS/LLE for each of the
7 datasets considered. As the results in Table 3 indicate, differences in classifica-
tion accuracy for pairs PCA/GE and MDS/GE were not statistically significant
(p ≥ 0.05) while all corresponding paired comparisons involving LLE and Isomap
were statistically significantly more accurate compared to linear DR methods.

The results in Figure 1 and Tables 2 and 3 clearly suggest that nonlinear DR
methods result in higher statistically significant accuracy compared to linear
DR methods, as determined by 2 separate classifiers. Additionally, Isomap and
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Fig. 4. Embedding plots were obtained by graphing 2 dominant eigenvectors against
each other for 5 different types of Acute Lymphoblastic Leukemia. In Figure 4(a), an
embedding plot for linear LDA is compared with Figure 4(b), an embedding plot of
nonlinear LLE. Note that the linear method fails to distinguish the ALL sub-classes
in the reduced eigenspace, while the LLE plot clearly reveals the presence of 5 distinct
clusters (indicated by superposed ellipses).

LLE were found to generate the most useful embeddings resulting in highest
classification accuracy.

4.2 Semi-quantitative Evaluation of Dimensionality Reduction
Methods Via Class Separation and Novel Class Detection

We evaluated the efficacy of nonlinear DR methods in identifying new data
classes and intermediate cancer types. This was done by visual inspection of
2-D cluster plots obtained by plotting E1

Dj ,M versus E2
Dj ,M for each of the 6

DR methods. The results of the 2-D embedding plots for the Lung Cancer-
Michigan and Ovarian Cancer datasets are shown in Figures 2 and 3 respectively.
In Figure 2, two distinct sub-classes can be distinguished in the normal class
(indicated by superposed ellipses) for GE (Figure 2(c)) and LLE (Figure 2(d))
as well as a clear, distinct separation between the cancer and non-cancer classes.
For the linear embeddings obtained via PCA and LDA (shown in Figures 2(a)
and (b) respectively), there appears to be significant overlap between cancer and
non-cancer classes. The poor class separation is reflected in the poor classification
accuracy obtained with both the SVM and C4.5 Decision Tree classifiers in
Figure 1 and Table 2.

In Figure 3, we have shown the comparison of embedding plots for linear
PCA (Figure 3(a)) and MDS (Figure 3(b)) against nonlinear methods, Isomap
(Figure 3(c)) andLLE(Figure 3(d)), on theOvarianCancer dataset. InFigures 3(c)
and (d), one can appreciate a sub-cluster of normal samples (indicated by super-
posed ellipses), possibly suggesting pre-malignant cases. More importantly, the
fact that this unusual clustering is present in both nonlinear DR algorithms
strongly suggests the validity of the identified sub-clusters and the utility of



180 G. Lee, C. Rodriguez, and A. Madabhushi

nonlinear DR methods in visualizing biological relationships between samples and
in new class discovery.

Since we were unable to quantitatively evaluate the validity of the sub-clusters
detected by the nonlinear DR methods in Figures 2 and 3, we also compared
linear and nonlinear methods on a multiclass dataset. Our aim is to demonstrate
that nonlinear DR methods are more capable of detecting subtypes of Acute
Lymphoblastic Leukemia (ALL) [19]. Figures 4(a) and (b) show plots comparing
LDA and LLE in clustering 5 subtypes of ALL. As shown in 4(a), LDA does
not provide any inter-class distinction while the embedding provided by LLE in
4(b) enables easy separation between the multiple sub-classes in ALL.

5 Concluding Remarks

In this paper we presented the results of quantitatively comparing the perfor-
mance of 6 different DR methods (3 linear, 3 nonlinear) from the perspective
of classification and the identification of new object classes in high dimensional
gene and protein expression datasets for prostate, lung, and ovarian cancers, as
well as for leukemias and lymphomas. The eigenvectors obtained from each of
the different DR methods were supplied to two different classifiers (SVMs and
Decision Trees) to distinguish between data classes within 7 different gene and
protein expression studies. Classification accuracy with both SVMs and C4.5 De-
cision Trees were found to be consistently higher when using features obtained
by nonlinear DR methods compared to linear methods. Among the nonlinear
methods, LLE gave the highest overall accuracy. In addition to distinguishing
between known classes, we were also able to identify the presence of several
potential sub-clusters via nonlinear DR techniques. For most datasets, all the
nonlinear DR methods outperformed the corresponding linear methods, differ-
ences being statistically significant in most cases. In future work we intend to
quantitatively evaluate the validity of our results on several addition datasets.
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