

Lecture Notes in Bioinformatics 4463
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Ion Măndoiu Alexander Zelikovsky (Eds.)

Bioinformatics
Research
and Applications

Third International Symposium, ISBRA 2007
Atlanta, GA, USA, May 7-10, 2007
Proceedings

13

Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Ion Măndoiu
University of Connecticut
Computer Science and Engineering Department
Storrs, CT 06269-2155, USA
E-mail: ion@engr.uconn.edu

Alexander Zelikovsky
Georgia State University
Department of Computer Science
Atlanta, GA 30303-3086, USA
E-mail: alexz@cs.gsu.edu

Library of Congress Control Number: 2007925296

CR Subject Classification (1998): J.3, H.2.8, F.1, F.2.2, G.3

LNCS Sublibrary: SL 8 – Bioinformatics

ISSN 0302-9743
ISBN-10 3-540-72030-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72030-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12050161 06/3180 5 4 3 2 1 0

Preface

The 2007 International Symposium on Bioinformatics Research and Applica-
tions (ISBRA 2007), was held on May 7–10, 2007 at Georgia State University
in Atlanta, Georgia. The ISBRA symposium provides a forum for the exchange
of ideas and results among researchers, developers, and practitioners working on
all aspects of bioinformatics and computational biology and their applications.
ISBRA is the successor of the International Workshop on Bioinformatics Re-
search and Applications (IWBRA), held May 22–25, 2005 in Atlanta, GA and
May 28–31, 2006 in Reading, UK, in conjunction with the International Confer-
ence on Computational Science.

This year, 146 papers were submitted in response to the call for papers. Fol-
lowing a rigorous review process, the Program Committee selected 55 papers
for publication in the proceedings and oral presentations at the symposium.
The topics of selected papers covered a wide range of topics, including clustering
and classification, gene expression analysis, gene networks, genome analysis, mo-
tif finding, pathways, protein structure prediction, protein domain interactions,
phylogenetics, and software tools.

In addition to contributed talks, the ISBRA 2007 technical program included
several tutorials and poster sessions, and features invited keynote talks by three
distinguished speakers. Ming Li from University of Waterloo spoke on modern
homology search, Laura L. Elnitski from the National Human Genome Research
Institute spoke on bidirectional promoters in the human genome, and Mark
Borodovsky from Georgia Institute of Technology spoke on ab initio gene finding.

We would like to thank all authors for submitting papers and presenting their
work at the symposium. We would also like to thank the Program Committee
members and external reviewers for volunteering their time and expertise to
review and select symposium papers. We would like to extend special thanks
to the Organizing, Publications, Finance, Publicity, and Posters Chairs, all of
whom are listed on the following page, for their tremendous efforts in making
ISBRA 2007 a great success. Last but not least, we would like to thank the
General Chairs, Dan Gusfield and Yi Pan, for their leadership and guidance.

We hope you will find the technical program interesting and thought provok-
ing. Enjoy!

May 2007 Ion Măndoiu
Alexander Zelikovsky

Conference Organization

General Chairs

Dan Gusfield, University of California, Davis, USA
Yi Pan, Georgia State University, USA

Program Chairs

Ion Măndoiu, University of Connecticut, USA
Alexander Zelikovsky, Georgia State University, USA

Organizing Chairs

Robert Harrison, Georgia State University, USA
Yanqing Zhang, Georgia State University, USA

Publications Chair

Raj Sunderraman, Georgia State University, USA

Finance Chairs

Anu Bourgeois, Georgia State University, USA
Akshaye Dhawan, Georgia State University, USA

Publicity Chairs

Kim King, Georgia State University, USA
Yingshu Li, Georgia State University, USA

Poster Chairs

Gulsah Altun, Georgia State University, USA
Dumitru Brinza, Georgia State University, USA

VIII Organization

Program Committee

Gabriela Alexe
IBM Research, USA

Yonatan Aumann
Bar Ilan University, Israel

Danny Barash
Ben-Gurion University, Israel

Anne Bergeron
Université du Québec à Montréal,

Canada

Piotr Berman
Penn State, USA

Paola Bonizzoni
Università degli Studi di Milano-Bicocca,

Italy

Mark Borodovsky
Georgia Institute of Technology, USA

Anu Bourgeois
Georgia State University, USA

Daniel Brown
University of Waterloo, Canada

Liming Cai
University of Georgia, USA

Jake Yue Chen
IUPUI, USA

Luonan Chen
Osaka Sangyo University, Japan

Yixin Chen
Washington University, USA

Peter Damaschke
Chalmers University, Sweden

Bhaskar Dasgupta
University of Illinois at Chicago, USA

Sorin Draghici
Wayne State University, USA

Jun-Tao Guo
University of Georgia, USA

Robert Harrison
Georgia State University, USA

Jieyue He
Southeast University, China

Xiaohua Hu
Drexel University, USA

Hae-Jin Hu
Georgia State University, USA

Chun-Hsi Huang
University of Connecticut, USA

Ming-Yang Kao
Northwestern University, USA

Marek Karpinski
University of Bonn, Germany

John Kececioglu
University of Arizona, USA

Ed Keedwell
University of Exeter, UK

Guojun Li
University of Georgia, USA

Yiming Li
National Chiao Tung University,

Taiwan

Yingshu Li
Georgia State University, USA

Jianzhong Li
Harbin Institute of Technology,

China

Organization IX

Yixue Li
Shanghai Center for Bioinformation

Technology, China

Guohui Lin
University of Alberta, Canada

Xiaohui Liu
Brunel University, UK

Shiyong Lu
Wayne State University, USA

Jingchu Luo
Peking University, China

Osamu Maruyama
Kyushu University, Japan

Kayvan Najarian
UNC at Charlotte, USA

Giri Narasimhan
Florida International University, USA

Craig Nelson
University of Connecticut, USA

Laxmi Parida
IBM T.J. Watson Research Center,

USA

Mihai Pop
University of Maryland, USA

Alex Pothen
Old Dominion University, USA

Teresa Przytycka
NCBI, USA

Sven Rahmann
Universita̋t Bielefeld, Germany

Sanguthevar Rajasekaran
University of Connecticut, USA

David Sankoff
University of Ottawa, Canada

Russell Schwartz
Carnegie Mellon University, USA

Hagit Shatkay
Queen’s University, Canada

Jens Stoye
Universita̋t Bielefeld, Germany

Raj Sunderraman
Georgia State University, USA

Sing-Hoi Sze
Texas A&M University, USA

El-Ghazali Talbi
Université des Sciences &

Technologies de Lille, France

Esko Ukkonen
University of Helsinki, Finland

Ugo Vaccaro
Universitá di Salerno, Italy

Gwenn Volkert
Kent State University, USA

Jianxin Wang
Central South University, China

Zidong Wang
Brunel University, UK

Limsoon Wong
NUS, Singapore

Weili Wu
University of Texas at Dallas, USA

Fang Xiang Wu
University of Saskatchewan,

Canada

X Organization

Hongwei Wu
University of Georgia, USA

Dong Xu
University of Missouri, USA

Jack Y. Yang
Harvard University, USA

Mary Qu Yang
National Human Genome Research

Institute, USA

Yanqing Zhang
Georgia State University, USA

Xuegong Zhang
Tsinghua University, China

Kaizhong Zhang
University of West Ontario, Canada

Si-qing Zheng
University of Texas at Dallas, USA

Wei-Mou Zheng
Chinese Academy of Sciences, China

Wei Zhong
University of South Carolina, Upstate,

USA

Ying Zhu
Georgia State University, USA

External Reviewers

José Augusto Amgarten Quitzau
Irina Astrovskaya
Sudha Balla
Jan Baumbach
Dumitru Brinza
Cedric Chauve
Shihyen Chen
Jaime Davila
Gianluca Della Vedova
Ping Deng
Riccardo Dondi
Lam Fumei
Stefan Gremalschi
Yuanchen He
Inke Hildebrandt
Katharina Jahn
Teemu Kivioja
Deepak Kumar
Phil Lee
Weiming Li
Cui Lin
Chunmei Liu
Jingping Liu

Zhiping Liu
Yi Lu
Praveen Madiraju
Tom Milledge
Julia Mixtacki
Kimmo Palin
Graziano Pesole
Mihail Popescu
Pasi Rastas
Raffaella Rizzi
Baozhen Shan
Mingjun Song
Yinglei Song
Thao Tran
Rui-Sheng Wang
Robert Warren
Roland Wittler
Matthias Wolf
Zikai Wu
Lei Xin
Zhongnan Zhang
Zhongyuan Zhang
Xingming Zhao

Table of Contents

GFBA: A Biclustering Algorithm for Discovering Value-Coherent
Biclusters . 1

Xubo Fei, Shiyong Lu, Horia F. Pop, and Lily R. Liang

Significance Analysis of Time-Course Gene Expression Profiles 13
Fang-Xiang Wu

Data-Driven Smoothness Enhanced Variance Ratio Test to
Unearth Responsive Genes in 0-Time Normalized Time-Course
Microarray Data . 25

Juntao Li, Jianhua Liu, and R. Krishna Murthy Karuturi

Efficiently Finding the Most Parsimonious Phylogenetic Tree Via
Linear Programming . 37

Srinath Sridhar, Fumei Lam, Guy E. Blelloch, R. Ravi, and
Russell Schwartz

A Multi-Stack Based Phylogenetic Tree Building Method 49
Róbert Busa-Fekete, András Kocsor, and Csaba Bagyinka

A New Linear-Time Heuristic Algorithm for Computing the Parsimony
Score of Phylogenetic Networks: Theoretical Bounds and Empirical
Performance . 61

Guohua Jin, Luay Nakhleh, Sagi Snir, and Tamir Tuller

A Bootstrap Correspondence Analysis for Factorial Microarray
Experiments with Replications . 73

Qihua Tan, Jesper Dahlgaard, Basem M. Abdallah, Werner Vach,
Moustapha Kassem, and Torben A. Kruse

Clustering Algorithms Optimizer: A Framework for Large Datasets 85
Roy Varshavsky, David Horn, and Michal Linial

Ranking Function Based on Higher Order Statistics (RF-HOS) for
Two-Sample Microarray Experiments . 97

Jahangheer Shaik and Mohammed Yeasin

Searching for Recombinant Donors in a Phylogenetic Network of Serial
Samples . 109

Patricia Buendia and Giri Narasimhan

Algorithm for Haplotype Inferring Via Galled-Tree Networks with
Simple Galls . 121

Arvind Gupta, Ján Maňuch, Ladislav Stacho, and Xiaohong Zhao

XII Table of Contents

Estimating Bacterial Diversity from Environmental DNA: A Maximum
Likelihood Approach . 133

Frederick Cohan, Danny Krizanc, and Yun Lu

Invited Talk: Modern Homology Search . 145
Ming Li

Statistical Absolute Evaluation of Gene Ontology Terms with Gene
Expression Data . 146

Pramod K. Gupta, Ryo Yoshida, Seiya Imoto, Rui Yamaguchi, and
Satoru Miyano

Discovering Relations Among GO-Annotated Clusters by Graph Kernel
Methods . 158

Italo Zoppis, Daniele Merico, Marco Antoniotti, Bud Mishra, and
Giancarlo Mauri

An Empirical Comparison of Dimensionality Reduction Methods for
Classifying Gene and Protein Expression Datasets . 170

George Lee, Carlos Rodriguez, and Anant Madabhushi

NEURONgrid: A Toolkit for Generating Parameter-Space Maps Using
NEURON in a Grid Environment . 182

Robert J. Calin-Jageman, Chao Xie, Yi Pan, Art Vandenberg, and
Paul S. Katz

An Adaptive Resolution Tree Visualization of Large Influenza Virus
Sequence Datasets . 192

Leonid Zaslavsky, Yiming Bao, and Tatiana A. Tatusova

Wavelet Image Interpolation (WII): A Wavelet-Based Approach to
Enhancement of Digital Mammography Images . 203

Gordana Derado, F. DuBois Bowman, Rajan Patel,
Mary Newell, and Brani Vidakovic

High Level Programming Environment System for Protein Structure
Data . 215

Yanchao Wang, Rajshekhar Sunderraman, and Piyaphol Phoungphol

Finding Minimal Sets of Informative Genes in Microarray Data 227
Kung-Hua Chang, Yong Kyun Kwon, and D. Stott Parker

Noise-Based Feature Perturbation as a Selection Method for Microarray
Data . 237

Li Chen, Dmitry B. Goldgof, Lawrence O. Hall, and
Steven A. Eschrich

Efficient Generation of Biologically Relevant Enriched Gene Sets 248
Igor Trajkovski and Nada Lavrač

Table of Contents XIII

Space and Time Efficient Algorithms to Discover Endogenous RNAi
Patterns in Complete Genome Data . 260

Sudha Balla and Sanguthevar Rajasekaran

A Fast Approximate Covariance-Model-Based Database Search Method
for Non-coding RNA . 270

Scott F. Smith

Extensions of Naive Bayes and Their Applications to Bioinformatics 282
Raja Loganantharaj

The Solution Space of Sorting by Reversals . 293
Maŕılia D.V. Braga, Marie-France Sagot, Celine Scornavacca, and
Eric Tannier

A Fast and Exact Algorithm for the Perfect Reversal Median
Problem . 305

Matthias Bernt, Daniel Merkle, and Martin Middendorf

Genomic Signatures from DNA Word Graphs . 317
Lenwood S. Heath and Amrita Pati

Enhancing Motif Refinement by Incorporating Comparative Genomics
Data . 329

Erliang Zeng and Giri Narasimhan

Mining Discriminative Distance Context of Transcription Factor
Binding Sites on ChIP Enriched Regions . 338

Hyunmin Kim, Katherina J. Kechris, and Lawrence Hunter

Enhanced Prediction of Cleavage in Bovine Precursor Sequences 350
Allison N. Tegge, Sandra L. Rodriguez-Zas, J.V. Sweedler, and
Bruce R. Southey

Invited Talk: A Computational Study of Bidirectional Promoters in the
Human Genome . 361

Mary Qu Yang and Laura L. Elnitski

The Identification of Antisense Gene Pairs Through Available
Software . 372

Mark J. Lawson and Liqing Zhang

Inferring Weak Adaptations and Selection Biases in Proteins from
Composition and Substitution Matrices . 382

Steinar Thorvaldsen, Elinor Ytterstad, and Tor Fl̊a

Markov Model Variants for Appraisal of Coding Potential in Plant
DNA . 394

Michael E. Sparks, Volker Brendel, and Karin S. Dorman

XIV Table of Contents

Predicting Palmitoylation Sites Using a Regularised Bio-basis Function
Neural Network . 406

Zheng Rong Yang

A Novel Kernel-Based Approach for Predicting Binding Peptides for
HLA Class II Molecules . 418

Hao Yu, Minlie Huang, Xiaoyan Zhu, and Yabin Guo

A Database for Prediction of Unique Peptide Motifs as Linear
Epitopes . 430

Margaret Dah-Tsyr Chang, Hao-Teng Chang, Rong-Yuan Huang,
Wen-Shyong Tzou, Chih-Hong Liu, Wei-Jun Zhung,
Hsien-Wei Wang, Chun-Tien Chang, and Tun-Wen Pai

A Novel Greedy Algorithm for the Minimum Common String Partition
Problem . 441

Dan He

An Efficient Algorithm for Finding Gene-Specific Probes for DNA
Microarrays . 453

Mun-Ho Choi, In-Seon Jeong, Seung-Ho Kang, and Hyeong-Seok Lim

Multiple Sequence Local Alignment Using Monte Carlo EM
Algorithm . 465

Chengpeng Bi

Cancer Class Discovery Using Non-negative Matrix Factorization Based
on Alternating Non-negativity-Constrained Least Squares 477

Hyunsoo Kim and Haesun Park

A Support Vector Machine Ensemble for Cancer Classification Using
Gene Expression Data . 488

Chen Liao and Shutao Li

Combining SVM Classifiers Using Genetic Fuzzy Systems Based on
AUC for Gene Expression Data Analysis . 496

Xiujuan Chen, Yichuan Zhao, Yan-Qing Zhang, and Robert Harrison

A BP-SCFG Based Approach for RNA Secondary Structure Prediction
with Consecutive Bases Dependency and Their Relative Positions
Information . 506

Dandan Song and Zhidong Deng

Delta: A Toolset for the Structural Analysis of Biological Sequences on
a 3D Triangular Lattice . 518

Minghui Jiang, Martin Mayne, and Joel Gillespie

Statistical Estimate for the Size of the Protein Structural Vocabulary . . . 530
Xuezheng Fu, Bernard Chen, Yi Pan, and Robert W. Harrison

Table of Contents XV

Coclustering Based Parcellation of Human Brain Cortex Using
Diffusion Tensor MRI . 539

Cui Lin, Shiyong Lu, Danqing Wu, Jing Hua, and Otto Muzik

An Algorithm for Hierarchical Classification of Genes of Prokaryotic
Genomes . 551

Hongwei Wu, Fenglou Mao, Victor Olman, and Ying Xu

Using Multi Level Nearest Neighbor Classifiers for G-Protein Coupled
Receptor Sub-families Prediction . 564

Mudassir Fayyaz, Asifullah Khan, Adnan Mujahid, and Alex Kavokin

Invited Talk: Ab Initio Gene Finding Engines: What Is Under the
Hood . 577

Mark Borodovsky

Reconstruction of 3D Structures from Protein Contact Maps 578
Marco Vassura, Luciano Margara, Filippo Medri, Pietro di Lena,
Piero Fariselli, and Rita Casadio

A Feature Selection Algorithm Based on Graph Theory and Random
Forests for Protein Secondary Structure Prediction 590

Gulsah Altun, Hae-Jin Hu, Stefan Gremalschi,
Robert W. Harrison, and Yi Pan

DNA Sites Buried in Nucleosome Become Accessible at Room
Temperature: A Discrete-Event-Simulation Based Modeling
Approach . 601

Amin R. Mazloom, Kalyan Basu, Subhrangsu S. Mandal,
Mehran Sorourian, and Sajal Das

Comparative Analysis of Gene-Coexpression Networks Across
Species . 615

Shiquan Wu and Jing Li

Comparative Pathway Prediction Via Unified Graph Modeling of
Genomic Structure Information . 627

Jizhen Zhao, Dongsheng Che, and Liming Cai

Extending the Calculus of Looping Sequences to Model Protein
Interaction at the Domain Level . 638

Roberto Barbuti, Andrea Maggiolo–Schettini, and Paolo Milazzo

Author Index . 651

GFBA: A Biclustering Algorithm for Discovering
Value-Coherent Biclusters�

Xubo Fei1, Shiyong Lu1, Horia F. Pop2, and Lily R. Liang3

1 Dept. of Computer Science, Wayne State University, USA
{xubo,shiyong}@wayne.edu

2 Dept. of Computer Science, Babes-Bolyai University, Romania
hfpop@cs.ubbcluj.ro

3 Dept. of Computer Science and IT, University of the District of Columbia, USA
lliang@udc.edu

Abstract. Clustering has been one of the most popular approaches used in gene
expression data analysis. A clustering method is typically used to partition genes
according to their similarity of expression under different conditions. However,
it is often the case that some genes behave similarly only on a subset of con-
ditions and their behavior is uncorrelated over the rest of the conditions. As
traditional clustering methods will fail to identify such gene groups, the biclus-
tering paradigm is introduced recently to overcome this limitation. In contrast to
traditional clustering, a biclustering method produces biclusters, each of which
identifies a set of genes and a set of conditions under which these genes behave
similarly. The boundary of a bicluster is usually fuzzy in practice as genes and
conditions can belong to multiple biclusters at the same time but with differ-
ent membership degrees. However, to the best of our knowledge, a method that
can discover fuzzy value-coherent biclusters is still missing. In this paper, (i) we
propose a new fuzzy bicluster model for value-coherent biclusters; (ii) based on
this model, we define an objective function whose minimum will characterize
good fuzzy value-coherent biclusters; and (iii) we propose a genetic algorithm
based method, Genetic Fuzzy Biclustering Algorithm (GFBA), to identify fuzzy
value-coherent biclusters. Our experiments show that GFBA is very efficient in
converging to the global optimum.

1 Introduction

Clustering has been one of the most popular approaches used in gene expression data
analysis. It is used to group genes according to their expression under multiple con-
ditions or to group conditions based on the expression of a number of genes. When a
clustering method is used for grouping genes, it typically partitions genes according
to their similarity of expression under all conditions. However, it is often the case that
some genes behave similarly only on a subset of conditions and their behavior is un-
correlated over the rest of the conditions. Therefore, traditional clustering methods will
fail to identify such gene groups.

� This work was partially supported by the Agricultural Experiment Station at the University of
the District of Columbia (Project No.: DC-0LIANG; Accession No.: 0203877).

I. Măndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 X. Fei et al.

Consider the gene expression data matrix shown in Table 1. If we consider all con-
ditions, genes 1, 2, and 4 do not seem to behave similarly since their expression values
are uncorrelated under condition 2 - while genes 1 and 2 have an increased expression
value from condition 1 to condition 2, the expression of gene 4 drops from condition 1
to condition 2. However, these genes behave similarly under conditions 1, 3, and 4 since
all their expression values increase from condition 1 to condition 3 and increase again
under condition 4. A traditional clustering method will fail to recognize such a cluster
since the method requires the three genes to behave similarly under all conditions which
is not the case.

Table 1. A sample gene expression data matrix and a hidden bicluster

cond. 1 cond. 2 cond. 3 cond. 4

gene1 0.0 5.0 1.0 2.0

gene2 1.0 20.0 2.0 3.0

gene3 10.0 10.0 20.0 6.0

gene4 2.0 0.0 3.0 4.0

To overcome the limitation of traditional clustering, the biclustering paradigm [1]
was introduced recently and several biclustering methods have been developed under
this paradigm; see [2] for a recent survey of existing bicluster models and methods.
In contrast to traditional clustering, a biclustering method produces biclusters, each of
which identifies a set of genes and a set of conditions under which these genes behave
similarly. For example, an appropriate biclustering method will recognize highlighted
hidden bicluster from Table 1.

However, in practice, the boundary of a bicluster is usually fuzzy for three reasons: (i)
the microarray dataset might be noisy and incomplete, (ii) the similarity measurement
between genes is continuous and there is no clear cutoff value for group membership,
and (iii) a gene might behave similarly to gene A under a set of conditions and behave
similarly to another gene B under another set of conditions. Therefore, there is a great
need for a fuzzy biclustering method, which produces biclusters in which genes and
conditions can belong to a cluster partially and to multiple biclusters at the same time
with different membership degrees.

The main contributions of this paper are:

1. We propose a new fuzzy bicluster model for value-coherent biclusters.
2. Based on this model, we define an objective function whose minimum will charac-

terize good fuzzy value-coherent biclusters and facilitate the tradeoff between the
number of genes, the number of conditions, and the quality of returned biclusters.

3. We propose a genetic algorithm based method, Genetic Fuzzy Biclustering Algo-
rithm (GFBA), to identify fuzzy value-coherent biclusters. Our experiments show
that GFBA is efficient in its converging to the global optimum and produces biclus-
ters with higher quality than existing methods.

GFBA: A Biclustering Algorithm for Discovering Value-Coherent Biclusters 3

Organization. The rest of this paper is organized as follows. In section 2, We introduce
the related work on biclustering. In section 3, we formally define a new fuzzy bicluster
model and objective function. In section 4, we propose GFBA for discovering biclusters.
Experimental results and comparison are analyzed in section 5 and section 6 concludes
the paper.

2 Related Work

A recent survey by Madeira and Oliveira [2] identifies four major classes of biclus-
ters: 1) biclusters with constant values, 2) biclusters with constant values on rows or
columns, 3) biclusters with coherent values, and 4) biclusters with coherent evolutions.

The first class of biclusters are submatrixes where all values are equal. However, in
real datasets, constant biclusters are usually masked by noise. Therefore, a merit func-
tion is needed to quantify the quality of constant biclusters. Hartigan [3] defines the
variance of a bicluster as such a merit function and proposes a partition-based algo-
rithm to discover constant biclsuters. Given a user specified parameter K, the algorithm
partitions the original matrix into K biclusters and then calculates the variance for each
bicluster. Based on the above variance, Tibshirani et al. [4] propose a permutation-based
method to induce the optimal number of biclsuters, K . In addition to using the variance
defined by Hartigan [3], Cho et al. [5] also use the total squared residue to quantify
the homogeneity of a bicluster. Therefore, their framework can find not only constant
biclusters, but also value-coherent biclusters (class 3).

The second class of biclusters are submatrixes with constant values on rows or
columns. Getz et al. [6] propose to apply a normalization procedure first to the input
matrix before their coupled two-way clustering method is performed. The normaliza-
tion procedure transforms a row-constant or column-constant bicluster into a constant
bicluster (on both rows and columns). To discover row-constant biclusters hidden in
noisy data, Califano et al. [7] propose an approach to discover biclusters that for each
row, the difference between two extreme values is within some user specified value
δ. The same approach can be applied to the discovery of column-constant biclusters.
Sheng et al. [8] propose a Bayesian based approach and use either the row-column ori-
entation or column-row orientation to discover column-constant or row-constant biclus-
ters. Finally, Segal et al. [9] introduce a probabilistic model based approach to discover
column-constant biclusters, which are more general than the previous approaches.

The third class of biclusters are submatrixes with coherent values on both rows
and columns. Cheng and Church [1] define the mean squared residue score to quan-
tify the incoherence of a bicluster and propose a greedy algorithm to discover biclus-
ters with scores lower than some threshold. Yang et al. [10] generalize the definition
of δ-bicluster to deal with null values and use the FLexible Overlapped biClustering
(FLOC) algorithm to discover a set of biclusters simultaneously. The Coupled Two-
Way Clustering (CTWC) proposed by Getz el al. [6] and the Interrelated Two-Way
Clustering (ITWC) proposed by Tang et al. [11] are two iterative algorithms based on
a combination of the results of one-way clustering on both dimensions. Lazzeroni and
Oven [12] introduce the plaid model where the value of an element in the data matrix is
viewed as a sum of layers which take into account the interactions between biclusters.

4 X. Fei et al.

Bleuler et al. [13] propose a EA (evolutionary algorithm) framework that embeds a
greedy strategy. Chakraborty et al. [14] use genetic algorithm to eliminate the threshold
of the maximum allowable dissimilarity in a bicluster.

The fourth class of biclusters are submatrixes that have coherent evolutions across the
rows and/or columns of the data matrix regardless of their exact values. Ben-Dor et al.
[15] define a bicluster as an order-preserving submatrix (OPSM) in which the sequence
of values in every row is strictly increasing. Liu and Wang [16] generalize the OPSM
model by allowing grouping so that columns with insignificant value differences will
be considered to have the same ranking and assigned to the same group.

The fuzzy sets theory, developed by Zadeh [17], allows an object to partially belong
to one cluster and can belong to more than one clusters at the same time with different
membership degrees. As opposed to traditional clustering techniques, fuzzy cluster-
ing does not require exclusive membership of data items to a particular class which is
advantageous, in that it accommodates uncertainty and imprecision. The most famous
fuzzy clustering technique is fuzzy C-means (FCM) algorithm [18] and many other ana-
lytic fuzzy clustering approaches are derived from it. A noise clustering (NC) algorithm
has been proposed to overcome sensitivity of the FCM algorithms to noisy data [19].
R. Krishnapuram et al.[20] introduce an approach called Possibilistic C Means (PCM)
algorithm to overcome the relative membership problem of the FCM.

3 Our Proposed Fuzzy Value-Coherent Bicluster Model and Its
Objective Function

In this section, we first give an overview of the value coherent bicluster model pro-
posed by Cheng and Church [1], and then based on this model, we develop our fuzzy
value-coherent bicluster model. Through out the whole paper, we will use the notations
summarized in Table 2. These notations will be defined later.

Table 2. Notations used in this paper

aij the entry in row i and column j

aiJ the mean of row i of a bicluster

aIj the mean of column j of a bicluster

aIJ the mean of a whole bicluster AIJ

Rij the residue of aij in a bicluster

QiJ the row sum squared residue of row i

QIj the column sum squared residue of column j

fI(i) the fuzzy membership value for row i

fJ (j) the fuzzy membership value for column j

H(I, J) the (fuzzy) mean squared residue for bicluster AIJ

GFBA: A Biclustering Algorithm for Discovering Value-Coherent Biclusters 5

3.1 The Value-Coherent Bicluster Model

Consider a gene expression dataset represented by a M by N matrix A, in which rows
represent genes, columns represent conditions, and aij represents the expression of gene
i under condition j. Let G = {g1, · · · , gM} and C = {c1, · · · , cn} be the sets of genes
and conditions in A, respectively. Let I ⊆ G and J ⊆ C, we use AIJ to denote the
submatrix formed by extracting from A all rows and columns in I and J . A (crisp)
bicluster is a submatrix of A.

Cheng and Church [1] define a value-coherent bicluster model based on an additive
model in which each entry aij is obtained by the sum of the background effect μ, row
i’s effect αi, and column j’s effect βj :

aij = μ + αi + βj (1)

These effects are defined as μ = aIJ , αi = aiJ − aIJ , and βj = aIj − aIJ , where
aiJ , aIj , and aIJ are the means of row i, column j, and the whole bicluster AIJ ,

respectively, which are defined as follows: aiJ =
∑

j∈J aij

|J| , aIj =
∑

i∈I aij

|I| , aIJ =
∑

i∈I

∑
j∈J aij

|I|·|J| . | I | and | J | denote the cardinalities of sets I and J , respectively. As a
result, each aij satisfies the following equation.

aij = aiJ + aIj − aIJ (2)

A bicluster AIJ is fully value-coherent if all entries in AIJ satisfy Equation (2).
However, given an arbitrary submatrix AIJ , it might not be a fully value-coherent

bicluster. To quantify the value coherence of a bicluster, the notion of residue is intro-
duced to calculate the difference between the observed value of aij and the expected
value of aij if AIJ was a fully value-coherent bicluster.

Rij = aij − aiJ − aIj + aIJ (3)

Finally, the incoherence of the whole bicluster Aij is defined as the mean squared
residue of the bicluster as follows.

H(I, J) =

∑
i∈I

∑
j∈J R2

ij

|I| · |J | (4)

Problem Statement. Under this model, a formal statement of the value-coherent bi-
clustering problem is as follows: given a gene expression data matrix A and a user
provided value δ, return all biclusters AIJ with H(I, J) ≤ δ.

3.2 Our Proposed Fuzzy Value-Coherent Bicluster Model

In this section, we extend the above value-coherent bicluster model to a fuzzy model.
In contrast to a crisp bicluster, which either contains a gene or a condition completely
or does not contain it at all, a fuzzy bicluster can contain a gene or a condition partially.

More formally, given a gene expression dataset represented by a M by N matrix A
with gene set G and condition set C. Let I be a fuzzy set defined over G with a fuzzy

6 X. Fei et al.

membership function fI where 0 ≤ fI(i) ≤ 1 for 1 ≤ i ≤ M . Similarly, let J be a
fuzzy set defined over G with a fuzzy membership function fJ where 0 ≤ fJ(j) ≤ 1
for 1 ≤ j ≤ N . We use AIJ to denote a fuzzy bicluster that is formed by associating
each gene i with a membership value fI(i) and each condition j with a membership
value fJ(j) to reflect the degrees that they belong to the fuzzy bicluster. Therefore, a
crisp bicluster a is special case of a fuzzy bicluster. The cardinalities of fuzzy sets I and
J are represented as |I| and |J | such that |I| =

∑M
i=1 fI(i) and |J | =

∑N
j=1 fJ(j).

Let aiJ =
∑N

j=1 fJ (j)m·aij
∑

N
j=1 fJ (j)m , aIj =

∑M
i=1 fI(i)m·aij
∑

M
i=1 fI(i)m , and aIJ =

∑M
i=1

∑N
j=1 fI(i)m·fJ (j)m·aij

∑
M
i=1

∑
N
j=1 fI(i)m·fJ (j)m

be the means of row i, column j, and the whole bicluster AIJ , respectively, m is a user
defined value called fuzziness parameter, which is used to adjust the power of fI(i) or
fJ(j). The larger the value of m is, the greater the power of fI(i). We define the residue
of an entry aij as:

Rij = aij − aiJ − aIj + aIJ (5)

We then define the incoherence of the whole fuzzy bicluster AIJ as the mean squared
residue of the bicluster.

H(I, J) =

∑M
i=1

∑N
j=1 fI(i)m · fJ(j)m · R2

ij

|I| · |J | (6)

The reader can verify that if we restrict each fuzzy membership value to be 0 or 1 then
Equation (6) is reduced to Equation (4). Therefore, our model is a fuzzy generalization
of the basic value-coherent bicluster model.

In addition, we define the row sum squared residue QiJ =
∑N

j=1 fJ(j)m · R2
ij and

the column sum squared residue QIj =
∑M

i=1 fI(i)m ·R2
ij to indicate the contributions

of gene i and condition j to the total incoherence, respectively:

3.3 Our Proposed Objective Function

Suppose a user is interested in returning the fuzzy bicluster AIJ with |I| = ξI and
|J | = ξJ where ξI and ξJ are two user provided fixed values such that H(I, J) is
minimized. The following theorem states one necessary condition for the minimization
of H(I, J). This condition can be used in an iterative procedure to update I and J’s
membership functions to achieve the minimization of H(I, J).

Theorem 1. Given fixed values m ∈ (1, ∞), ξI > 0, and ξJ > 0, H(I, J) with
constraints |I| = ξI and |J | = ξJ is globally minimal only if :

fI(i) = ξI ·
1

Q
1/(m−1)
iJ

∑I
i=1

1
Q

1/(m−1)
iJ

(7)

fJ(j) = ξJ ·
1

Q
1/(m−1)
Ij

∑J
j=1

1
Q

1/(m−1)
Ij

(8)

Proof. see [21].

GFBA: A Biclustering Algorithm for Discovering Value-Coherent Biclusters 7

The condition stated in the above theorem can be used to discover biclusters with a
given size. To discover biclusters with arbitrary sizes, if one uses the mean squared
residue as the objective function, our experiments show that most discovered biclusters
will have small sizes (volumes), this is very undesirable since larger biclusters should
be more interesting to a biologist as they tend to be more significant. This phenomenon
can easily be explained by the definition of the mean squared residue – the larger a
bicluster is, the closer its mean squared residue is to the mean squared residue of the
whole matrix. Thus smaller biclusters tend to have extreme mean square residues, while
larger biclusters tend to have mean square residues that are in the middle.

To solve this problem, inspired by PCM [20], we propose the following objective
function.

Hm(I, J) = H(I, J)

+
ΣM

i=1η · H(I, J) · (1 − fI(i))m

M − |I|

+
ΣN

j=1ξ · H(I, J) · (1 − fJ(j))m

N − |J | (9)

where the first term is used to control the quality of a bicluster by minimizing its inco-
herence, the second and third terms are used to promote a bicluster with more genes and
more conditions. η and ξ are parameters provided to satisfy different requirements on
the incoherence and the sizes of the biclusters. If biologists need biclusters with more
genes, they can use greater η value; if they need biclusters with more genes they can
increase ξ values. On the other side if they require higher quality they can use smaller
values. H(I, J) is the mean squared residue score which is used to adjust the weight of
compensation.

Theorem 2. Given fixed value m ∈ (1, ∞), Hm(I, J) is globally minimal only if:

fI(i) =
1

1 + (QiJ ·(M−|I|)
|I||J|·η·H(I,J))

1/(m−1)
(10)

fJ(j) =
1

1 + (QIj ·(N−|J|)
|I||J|·ξ·H(I,J))

1/(m−1)
(11)

Proof. see [21].

It is obvious from (10) and (11) that fI(i) and fJ(j) lie in the desired range. The genes
and conditions that produce large residues will be reassigned with low membership de-
grees while those co-expressed genes and conditions can get high membership degrees
as we expect.

4 Our Proposed GFBA Algorithm

4.1 An Overview of GFBA

Equations (10) and (11) provide an efficient and stable optimization method to mini-
mize the objective function in (9). Unfortunately, it is dependent on initial conditions

8 X. Fei et al.

and might end in a local optimum. In order to ensure the algorithm to converge to a
global optimal solution, we propose a genetic algorithm (GA) based fuzzy bicluster-
ing algorithm, called GFBA whose pseudocode is outlined in Figure 1, in which g is
the number of generations, p is the number of biclusters in each population, mp is the
probability of mutation, r is the fraction of the population to be replaced by crossover in
each population, cp is the fraction of the population to be replaced by crossover in each
population, z is the number of biclusters in each population, and m is the fuzziness pa-
rameter. It is different from the normal genetic algorithm in that we have an additional
step called BiclusterOptimization to speed up the convergence process. Psudocode of
BiclusterOptimization is shown in Figure 2.

1.Algorithm GFBA
2.Input: g,p,mp,r,cp,z,m;
3.Output: Biclusters
4.Begin
5. Initialization()
6. For i =0 to Z − 1
7. Selection()
8. Crossover()
9. Mutation()
10. BiclusterOptimization()
11. End For
12.End Algorithm

Fig. 1. Pseudocode of GFBA

1.Algorithm BiclusterOptimization
2.Input: < I, J >;
3.Output: < I ′, J ′ >;
4.Begin
5. I1 = I, J1 = J

6. While ||Ik+1 − Ik|| + ||Jk+1 − Jk|| < ε
7. Calculate H(I, J) using (6)
8. Update Ik+1 using (10)
9. Update Jk+1 using (11)
10. End While
11. I ′ = Ik+1, J ′ = Jk+1

12.End Algorithm

Fig. 2. Pseudocode of BiclusterOptimization

4.2 Solution Encoding and Fitness Function Definition

As in GA, GFBA maintains a population of coded solutions. A natural way of coding
a bicluster is to consider two chromosomes of length M and N representing the genes
and conditions. In this case, each allele corresponds to the fuzzy membership degree
of a gene or condition. Thus in GFBA, each solution is encoded with a pair of vectors
Sz = (I, J) where I = {I1, · · · , IM}(0 < Ii < 1) and J = {J1, · · · , JN}(0 <
Jj < 1). Then we define the fitness function as: F (Sz) = 1

Hm(Sz) in which Hm(Sz)
can be calculated by (9). We choose the inverse of Hm(Sz) as the fitness value because
our goal is to minimize the objective function shown in Equation (9) and thus those
biclusters with lower values will be given higher probabilities to survive.

4.3 Operators

Initialization: The genetic algorithm begins with an initial population. In our experi-
ment, the initial population is randomly generated, that is, all the membership degrees
are initialized with random numbers between 0 and 1.

Selection: We use Roulette Wheel Selection (RWS), the most commonly used form
of GA selection, for the selection operator. When using RWS, a certain number of

GFBA: A Biclustering Algorithm for Discovering Value-Coherent Biclusters 9

biclusters (1 − cp) · z of the next generation are selected probabilistically, where the
probability of selecting a bicluster Sz is given by

Pr(Sz) =
Fitness(Sz)

ΣZ
z=1Fitness(Sz)

(12)

With RWS, each solution will have a probability to survive by being assigned with a
positive fitness value. A solution with a smaller Hm has a greater fitness value and
hence has a higher probability to survive. On the other side, weaker solutions also have
a chance to survive the selection process. This is an advantage, as though a solution
may be weak, it may still contain some useful components.

Crossover and Mutation: Then cp · z/2 pairs of parents are chosen probabilistically
from the current population and the crossover operator will produce two new offsprings
for each pair of parents using one point crossover technique on genes and conditions
separately. Now the new generation contains the desired number of members and the
mutation will increase or decrease the membership degree of each gene and conditions
with a small probability of mutation mp.

Bicluster Optimization: Although the ordinary GA algorithm with above operators
may converge and discover biclusters, it will take a lot of time since the initial assign-
ments are random and subsequent evolution process are blind and probabilistic. To solve
this problem, We try to leverage the advantage of efficiency and robustness of FCM
and proposed BiclusterOptimization function Fig.2. BiclusterOptimization function is
a simply Picard iteration through necessary condition ||Ik+1−Ik||+||Jk+1 −Jk|| < ε.
In each generation we use it to update the membership degrees of the genes and condi-
tions resulting from a new generation.

4.4 Interpretation of Fuzzy Biclustering Results

In contrast to traditional biclustering algorithms, our GFBA produces a set of fuzzy
biclusters, each of which includes a subset of genes and conditions along with their
membership values. For example, given the matrix in Table 3, our algorithm will return
the following fuzzy bicluster that is presented by two vectors: Gene(0.99, 0.99, 0.99,
0.99, 0.13) and Con(0.99, 0,99, 0.99, 0.99, 0.81). Each vector indicates the degree of
possibility for each gene/condition belonging to the bicluster.

Table 3. A sample gene expression data matrix

cond.1 cond.2 cond.3 cond.4 cond.5

gene1 2.0 3.0 6.0 1.0 10.0

gene2 3.0 4.0 7.0 2.0 11.0

gene3 5.0 6.0 9.0 4.0 12.0

gene4 6.0 7.0 10.0 5.0 13.0

gene5 40.0 40.0 40.0 40.0 40.0

10 X. Fei et al.

Fuzzy biclusters provide richer information than regular biclusters as fuzzy biclusters
associate with each gene/condition a membership value. However, humans are more fa-
miliar with the analysis and reasoning of regular biclusters that are not fuzzy, to accom-
modate this, our GFBA algorithm provides an optional step to select the most powerful
genes and conditions from a fuzzy bicluster. More specifically, given a fuzzy bicluster
AIJ and a user specified threshold δ, we can interpret AIJ as a regular bicluster AI′J′

as follows.
I ′ = {i|fI(i) >= α} (13)

J ′ = {j|fJ(j) >= α} (14)

Following the above example, if we choose α = 0.8, then the interpretation of the
resulting fuzzy bicluster is a regular bicluster that contains genes 1-4 and conditions
1-5 since the membership value of gene 5 is smaller than 0.8 but the membership value
for condition 5 is more than 0.8.

5 Experimental Results

We conducted experiments using GFBA on the same gene expression data sets as used
by Y. Cheng and G.M. Church [1]. The yeast Saccharomyces cerevisiae cell cycle ex-
pression dataset contains 2,884 genes and 17 conditions. These genes were selected
according to Tavazoie et al. (1999). The gene expression values were transformed by
scaling and logarithm x− > 100log(105x). So the values were mapped into the range
0 and 600 and missing values were represented by -1 in the yeast dataset.

The human lymphoma dataset contains 4026 genes and 96 conditions. The human
data was downloaded from the website for supplementary information for the article
by Alizadeh et al. (2000). The expression levels were reported as log ratios and af-
ter a scaling by a factor of 100, the data values are in the range between -750 and
650, with 47,639 missing values. The matrices introduced above were obtained from
http://arep.med.harvard.edu/biclustering

Fuzziness parameter m is important which determines the degree of fuzziness. In
general, the larger m is, the “fuzzier” are the membership assignments. Doulaye Dem-
bele. and Philippe Kastner [22] applied traditional FCM on microarray data using yeast
and human dataset and found 2 is not a good choice for microarray data. In our ex-
periment we found 1.6 is an appropriate fuzziness parameter for fuzzy biclustering on
microarray data. Parameters η and ξ in Eq.22 do not necessary needed as input since we
can randomly choose different values for different solutions thus we can find biclusters
with different sizes. Parameter ε is used in the procedure BiclusterOptimization as a
termination criterion between 0 and 1. In our experiment we choose 0.2.

There are also some parameters used for genetic framework: cp the fraction of the
population to be replaced by crossover in each population is 0.7; z the number of bi-
clusters in each population is 300; mp probability of mutation is 0.01; g the number of
generations is optional, the higher the better. In our experiment we choose 40. Figure 3
shows Four sample biclusters discovered from yeast expression and human lymphoma
expression dataset. The numbers of genes and conditions in each are reported in the
format of (residue value, number of genes, number of conditions) as follows: for yeast

http://arep.med.harvard.edu/biclustering

GFBA: A Biclustering Algorithm for Discovering Value-Coherent Biclusters 11

(a) Yeast (b) Human lymphoma

Fig. 3. Sample biclusters discovered by our GFBA algorithm

expression dataset (194.5, 687, 10), (81.9, 143, 6), (95.9, 105, 11), (135.8, 232, 12); for
human lymphoma expression dataset (423.4, 120, 6), (539.9, 51, 16), (778.4, 240, 25),
(541.8, 14, 39).

Our fuzzy bicluter model is a natural extension of δ-Bicluster [1] and our objective
function is a complementarity of fuzzy mean squared residue. It is difficult to compare
the quality of different algorithms. Cheng and Church’s algorithm is very efficient in
finding biclusters with small residues while our algorithm show advantages in fuzziness
and flexible and are more capable in discovering large biclusters with relatively small
residue. Our objective function can well quantify the quality of biclusters but we can
not use it to compare with other algorithm since we are the only ones to use it. Here
we use a bicluster quality measure 1

n ·
∑n

i=1
Residuei

V olumei
proposed by A. Chakraborty

and H. Maka [14] by calculating the average residue/volume ratio of biclusters. Here
n is the number of biclusters returned by an algorithm. Although this metric is better
than the mean squared residue, for the control of quality, it is not desirable. This is
because a small change of the threshold might affect the number of returned biclusters
dramatically, either too many or too few will be returned. However it can be a fair
measurement for comparison. On Yeast Dataset, the mean bicluster quality value of our
algorithm is 0.02878 while Cheng and Church’s algorithm is 1.39978 and Chakraborty’s
Genetic algorithm 0.05132. On Lymphoma Dataset, our algorithm is 0.109 while Cheng
and Church’s algorithm is 0.8156 and Chakraborty’s Genetic algorithm 0.1247. More
detailed results are available at [21].

6 Conclusions and Future Work

In this paper, we proposed an innovative fuzzy bicluster model, in which biclusters
can be represented by the degree of possibilities that the genes and conditions belong to
these biclusters. Based on this model, we defined an objective function whose minimum
will characterize good fuzzy value-coherent biclusters and proposed a genetic algorithm
based optimization method. Our experiments showed that our method is very efficient
in converging to the global optimum. Future work includes the investigation of methods
for discovering other classes of fuzzy biclusters and the applications of these methods
to gene expression data analysis.

12 X. Fei et al.

References

1. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. of the 8th International
Conference on Intelligent Systems for Molecular Biology. (2000) 93–103

2. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey.
IEEE/ACM Transactions on Computational Biology and Bioinformatics 1 (2004) 24–45

3. Hartigan, J.: Direct clustering of a data matrix. Journal of American Statistical Association
67(337) (1972) 123–129

4. Tibshirani, R., Hastie, T., Eisen, M., Ross, D., Botstein, D., Brown, P.: Clustering methods
for the analysis of DNA microarray data. Technical report, Dept. of Health Research and
Policy, Dept. of Genetics, and Dept. of Biochemistry, Stanford Univ. (1999)

5. Cho, H., Dhillon, I., Guan, Y., Sra, S.: Minimum sum-squared residue coclustering of gene
expression data. In: Proc. of Fourth SIAM Intl Conf. Data Mining. (2004)

6. Getz, G., Levine, E., Domany, E.: Coupled two-way clustering analysis of gene microarray
data. In: Proc. of the Natural Academy of Sciences USA. (2000) 12079–12084

7. Califano, A., Stolovitzky, G., Tu, Y.: Analysis of gene expression microarays for phenotype
classification. In: Proc. of Intl Conf. Computacional Molecular Biology. (2000) 75–85

8. Sheng, Q., Moreau, Y., Moor, B.D.: Biclustering microarray data by gibbs sampling. Bioin-
formatics 19 (2003) ii196–ii205

9. Segal, E., Taskar, B., Gasch, A., Friedman, N., Koller, D.: Rich probabilistic models for gene
expression. Bioinformatics 17 (2001) S243–S252

10. Yang, J., Wang, W., Wang, H., Yu, P.: Enhanced biclustering on expression data. In: Proc. of
3rd IEEE Conference on Bioinformatics and Bioengineering. (2003) 321–327

11. Tang, C., Zhang, L., Ramanathan, M.: Interrelated two way clustering: an unsupervised ap-
proach for gene expression data analysis. In: Proc. of the 2nd IEEE International Symposium
on Bioinformatics and Bioengineering. (2001) 41–48

12. Lazzeroni, L., Owen, A.: Plaid models for gene expression data. Technical report, Stanford
Univ. (2000)

13. Bleuler, S., Prelic, A., Zitzler, E.: An EA framework for biclustering of gene expression data.
In: Proc. of Congress on Evolutionary Computation CEC2004. Volume 1. (2004) 166–173

14. Chakraborty, A., Maka, H.: Biclustering of gene expression data using genetic algorithm.
In: Proc. of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology. (2005) 1–8

15. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression
data: The order- preserving submatrix problem. In: Proc. of the Sixth Int Conf. Computa-
tional Biology. (2002) 49–57

16. Liu, J., Wang, W.: OP-Cluster: Clustering by tendency in high dimensional space. In: Proc.
of Third IEEE Intl Conf. Data Mining. (2003) 187–194

17. Zadeh, L.: Fuzzy sets. Information and Control 8 (1965) 338–353
18. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New

York (1981)
19. Dave, R.N.: Characterization and detection of noise in clustering. Pattern Recognition Letters

12(11) (1991) 657–664
20. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Transactions

on Fuzzy Systems 1(2) (1993) 98–110
21. Fei, X., Lu, S., Pop, H.F., Liang, L.: GFBA: A genetic fuzzy biclustering algorithm for

discovering value-coherent biclusters, TR-DB-102006-FLPL. Technical report, Dept. of
Computer Science, Wayne State Univ. (August 2006) http://paris.cs.wayne.edu/
˜aw6056/paper.pdf.

22. Dembele, D., Kastner, P.: Fuzzy c-means method for clustering microarray data. 19(8)
(2003) 973–980

http://paris.cs.wayne.edu/~aw6056/paper.pdf
http://paris.cs.wayne.edu/~aw6056/paper.pdf

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 13–24, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Significance Analysis of Time-Course
Gene Expression Profiles

Fang-Xiang Wu

Department of Mechanical Engineering and Division of Biomedical Engineering,
University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

fangxiang.wu@usask.ca

Abstract. This paper proposes a statistical method for significance analysis of
time-course gene expression profiles, called SATgene. The SATgene models
time-dependent gene expression profiles by autoregressive equations plus
Gaussian noises, and time-independent gene expression profiles by constant
numbers plus Gaussian noises. The statistical F-testing for regression analysis is
used to calculate the confidence probability (significance level) that a time-
course gene expression profile is not time-independent. The user can use this
confidence probability to select significantly expressed genes from a time-
course gene expression dataset. Both one synthetic dataset and one biological
dataset were employed to evaluate the performance of the SATgene, compared
to traditional gene selection methods: the pairwise R-fold change method and
the standard deviation method. The results show that the SATgene outperforms
the traditional methods.

Keywords: time-course gene expression, time-dependence, autoregressive
model, F-testing.

1 Introduction

With advances in the measurement technology for gene expression and in genome
sequencing, it has become possible to simultaneously measure the expression level of
thousands of genes in a cell. Time-course gene expression data is obtained from
sampled cells at a series of time points over a biological development process, for
example, the response of human fibroblasts to serum [1], the response of yeast cells to
environmental conditions [2], or the cell division cycle processes [3,4,5]. Such time-
course gene expression data provides a dynamic snapshot of most (if not all) of the
genes related to the biological development process and may lead to a better
understanding of cellular functions. In addition, there is another kind of gene expression
data (called non-time course gene expression data) which is acquired for cells from
varying conditions (categories), for example, normal cells and tumor cells [6].

In general, the process of acquiring gene expression data are divided three steps [7]:
(1) microarray fabrication, (2) sample preparation and array hybridization, and (3)
image analysis and numerical data acquisition (called raw data). Numerical gene
expression data is usually collected in a data matrix, where each row is the expression
profile of a single gene over a variety of conditions (or time points), and each column
is the expression values of all genes under a single condition. It is impractical to use

ă

14 F.-X. Wu

raw gene expression data without any pre-processing before further analysis such as
cluster analysis, regulatory network analysis [8, 9]. Some basic pre-processing methods
include [7]: log2 transformation, normalization of rows or columns of the data matrix.

Although genes that form the microarray are carefully selected at the stage of
microarray fabrication, selecting genes according to their expression data is still critical
to get the significant results of any further analysis. Expression data for tens of
thousands of genes can be obtained from one single DNA microarray at a time, but not
all of these genes are closely related to the biological development process being studied
or are of interest. In addition, gene expression data are often contaminated by various
noises or “noisy” genes [10]. In general, the most important (or interesting) genes are
those which significantly expressed over different conditions. Either excluding genes of
interest or including “noisy” genes could degrade the significance of any analysis
results. The challenge is how to distinguish genes of interest from a whole set of
contaminated gene expression data.

Much attention has paid to select the most interesting genes from non-time-course
gene expression data over past years. For gene expression data obtained from a pair of
conditions (e.g., normal versus abnormal, or control versus treatment) with multiple
replicates, one of the widely used methods in early years is called the R-fold change
method [11, 12]. The “R-fold change” method determines a gene to be significantly
differentially expressed if the ratio of expression values under two different conditions is
greater than R or less than 1/R, where R is a user-preset positive number. However,
experimental results [13] showed that R-fold change method could yield an unacceptably
high false discovery rate of 73-84% with the values of R between 2 and 4. A re-sampling
(bootstrapping) method called SAM [13] was developed to evaluate the statistical
significance of gene expression differences under two different conditions with multiple
replicates, which significantly improve the false discovery rate, compared to the R-fold
change method. Recent work [14] can be viewed as an extension of the SAM.

Two traditional methods are often applied to selecting significantly expressed
genes from multi-conditional expression data, such as various stages of a disease
process (cancer), growth conditions or tissue or cell types, and time-course gene
expression data. One method is an extension of the R-fold change method called the
pairwise R-fold change method [15]. A gene is called significantly differentially
expressed if a number of pairwise R-fold changes are observed in its expression
profile. Computational results [13] showed that the pairwise R-fold change method
could also yield a high false discovery rate of 64-71% even if the values of R is
between 1.2 and 2.0, and the number of pairwise R-fold changes is 12 out of 16 pairs
of conditions. For the log-ratio gene expression data [1, 3, 5, 7], the pairwise R-fold
change method is reduced to count the number of time points at which the absolute of
gene expression values is larger than a given cut-off value. Another widely used
method (here called the standard deviation method) judges a gene to be significantly
differentially expressed if the standard deviation of its expression profile is greater
than a given cut-off value [1, 7]. In addition, the SAM’s developers pointed [13] that
the SAM could be generalized to apply to multi-conditional gene expression data.

Although the traditional methods in [1, 7, 13, 15] could be applied to selecting
significantly expressed genes from time-course expression profiles, they did not take
the time-dependence of such data into account. For example, arbitrarily permuting
time points does not change the results of selection using these traditional methods.

 Significance Analysis of Time-Course Gene Expression Profiles 15

This means that the important information about dynamics in time-course gene
expression data is ignored. This study introduces for significance analysis of time-
course gene expression profile, called SATgene, which can be used to select the
significantly expressed genes from time-course gene expression data. The idea behind
this method follows: a true time-course (time-dependent) gene expression profile can
be viewed as observations of a dynamic cellular system at a series of time points
while a false time-course (time-independent) gene expression profile is a group of
random (noisy) observations. If there are two models for true and false time-course
gene expression profiles, respectively, distinguishing the significantly expressed
genes from noisy ones is reduced to model a selection issue.

This study models a true time-course gene expression profile by an autoregressive
model of order p plus Gaussian random noises. There are three reasons why the

autoregressive models are used to describe time-course gene expression profiles. Firstly,
a living cell can be viewed a dynamic systems which can generally be described by a
nonlinear Markov chain model [16]),,(11 −= tt xxfx L , where tx is observation values

of the system at time point t . An autoregressive model is a good linear approximation
of a nonlinear Markov chain model. Secondly, the autoregressive models have recently
been used to model time-course gene expression profiles for the purpose of cluster
analysis [17, 18]. The results have showed that the autoregressive models are suitable
for modeling time-course gene expression data. Finally, this study models a false time-
course gene expression profile by a constant number plus Gaussian random noises,
which can be viewed as an autoregressive model of order p with some constraints on

the coefficients. Thus the standard hypothesis testing for the linear regression model is
applicable to determine the statistical significance of the time-dependence.

2 Methods

2.1 Time-Dependent Model

Let },,,,{ 1 Mm xxxx KK= be a time series of observation values at equally-spaced

time points from a dynamic system. If the model of the dynamic system is known, one
could directly check if the time series x is the true observations of the system or just
noises. Unfortunately, the model of the dynamic system which produces the time
series of observation values is often unknown or is too complicated to be used. In this
case, one could model the dynamic system with the observed data from it. One of
widely used methods to model time series data is autoregressive analysis [19] which
we will adopt to analyze the time dependence of gene expression profiles in this
paper. Assume that the value of the time series at time point m depend on the
previous p (m≤) values, then the time-dependent relationships can be modelled by

an autoregressive model of order p , denoted)(pAR , which is a linear function of the

values of previous p observations plus a term representing error. More formally, an
autoregressive model of order p may be written as,

mpmpmmm xxxx εββββ +++++= −−− L22110 , Mpm ,,1K+= (1)

16 F.-X. Wu

where iβ),,1 0(p,i L= are the autoregressive coefficients, and mε (Mpm ,,1L+=)

represent random errors. This study assumes that the errors have a normal distribution

independent of time with the mean of 0 and the variance of 2σ . The system of
equations (1) can be rewritten in the matrix form as:

 εβ += XY (2)

where,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= +

+

M

p

p

x

x

x

Y
M

2

1

,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−

+

1

12

1

1

1

1

MpM

p

p

xx

xx

xx

X

L

LOLL

L

L

,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

pβ

β
β

β
M
2

0

, and

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= +

+

M

p

p

ε

ε
ε

ε
M

2

1

The likelihood function for model (2) is

⎥⎦
⎤

⎢⎣
⎡ −−= −− 2

2
2/)(22

2

1
exp)2(),(β

σ
πσσβ XYL pM (3)

If the rank (X) = 1+p holds, it has proved [20] that the maximum likelihood

estimates of β and 2σ are

 YXXX TT 1)(ˆ −=β (4)

and

)/(ˆˆ
2

2 pMXY −−= βσ (5)

respectively. The maximum values of the likelihood is given by

2/)(2/)(22)ˆ2()ˆ,ˆ(pMpM eL −−−−= σπσβ (6)

In model (2), the matrix X has 1+p columns and pM − rows. Thus a necessary

condition for rank (X) = 1+p is 1+>− ppM or 2/)1(−< Mp .

2.2 Time-Independent Model

For a group of observation values which are not produced by the dynamic systems
under consideration, but noisy (random) data, one can simply model them by a
constant number plus random errors. Let },,,,{ 1 Mm xxxx KK= be a series of time-

independent (random) observations. In agreement with model (2), the last (pM −)

observations can be modelled by

 mmx εβ += 0 , Mpm ,L= (7)

where 0β is a constant number and mε (Mpm ,,L=) are the random errors which

are subject to a normal distribution independent of time with mean 0 and variance
2σ . The likelihood function for model (7) is

 Significance Analysis of Time-Course Gene Expression Profiles 17

⎥
⎦

⎤
⎢
⎣

⎡
−−= ∑

+=

−−
M

pm
m

pM xL
1

2
02

2/)(22
0)(

2

1
exp)2(),(β

σ
πσσβ (8)

The maximum likelihood estimates of 0β and 2σ are

 ∑
+=−

=
M

pm
mx

pM 1
0

1β̂ (9)

and

2

1
0

2)ˆ(
)(

1
ˆ ∑

+=
−

−
=

M

pm
mc x

pM
βσ (10)

respectively. The maximum values of the likelihood is given by

 2/)(2/)(22)ˆ2()ˆ,ˆ(pMpM
ccc eL −−−−= σπσβ (11)

where cβ̂ is a (p+1)-dimensional vector whose first components is 0β̂ and others are

zeros.

2.3 Hypothesis Testing

Actually, the time-independent model (7) is also an autoregressive model with the
order of zero and can be viewed as model (1) with constraints 0=iβ),,1(pi L= .

These constraints can be rewritten in matrix form

 0=βA (12)

where

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000

0100

0010

L

LLLLL

L

L

A

The likelihood ratio of model (7) to model (1) is given by

2/)(

2

2

2

2

ˆ

ˆ

)ˆ,ˆ(

)ˆ,ˆ(
pM

c

cc

L

L
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==Λ

σ
σ

σβ
σβ

 (13)

As model (7) can be viewed as a regression model (1) with the constraints (8), and the

maximum likelihood method is used to obtained 2σ̂ and 2ˆ cσ , the inequality ≤2σ̂ 2ˆ cσ

comes true. According to the likelihood principle [20], if Λ is too small, model (1) is
preferable, i.e. the series },,,,{ 1 Mm xxxx KK= is more likely time-dependent than

time-independent. Although Λ is not a convenient test statistic, it has proved [20] that

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=−Λ−−= −− 1

ˆ

ˆ12
)1(

12
2

2
)/(2

σ
σ cpM

p

pM

p

pM
F (14)

18 F.-X. Wu

has an)12(, −− pMpF distribution when model (7) is true for a series of observation. When

F is too large, the model (7) is rejected, i.e., observation series },,,,{ 1 Mm xxxx KK=

is time-dependent. Form formulae (14), one can calculate the confidence probability
(significant level) that a series of observation is not time-independent. As the
regression degree in model (1) is unknown, the significant levels are calculated by
formulae (14) for all values d ()2/)1(1 −≤≤ Md . The proposed SATgene calls a

gene to be significantly expressed (time-dependent) if one of these confident levels
calculated from its expression profile is larger than a user-preset value.

3 Evaluation

Many factors could affect gene expression profiles during data collection process.
Genes related to a process may not be sufficiently expressed, and thus their
expression profile may not appear time-dependent. Hence, biological data can only
provide anecdotal evidence. This study employs both a synthetic dataset and a
biological dataset to investigate the performance of the proposed SATgene, compared
with the traditional methods: the standard deviation method and the pairwise R-fold
change method.

3.1 Datasets

Synthetic dataset (SYN): A synthetic dataset is generated by the sine function
modeling cyclic behaviour of genes expression employed by Schliep [7] and Yeung,
et al. [21]. Let ijx be the simulated expression (log-ratio) values of gene i at time

point j in the dataset and be modeled by

 ijiij djix εφα *),(++= (15)

where iα represents the average expression level of gene i , and which could be set

to zeros if one assumes to shift the mean of each gene expression profile to zero.
)12)1(2sin(),(iwjji −−= πφ

represents cyclic behaviour of
gene expression. Each cycle is
assumed to span 14 time points.

iw represents a phase shift for

gene i , which is chosen accor-
ding to the uniform distribution
on interval]2 ,0[π . The random

variable ijε represents the obse-

rvation noise of gene i on array
(or at time point) j , which is chosen according to the standard normal distribution. d

is a constant number and equal to 0.5 for creating time-dependent gene expression
profiles. Using model (15), a time-dependent observation dataset (TDD) was created,

Table 1. Statistics of the synthetic dataset

 TDD TID
Maximum value 2.4738 3.1398
Minimum value -2.5675 -3.1060
Average value 0.0098 0.0019
Maximum std 1.2455 1.4374
Minimum std 0.5020 0.4363
Average std 0.8672 0.8614

 Significance Analysis of Time-Course Gene Expression Profiles 19

which contains 300 gene expression profiles with 14 equally-spaced time points. The
model (15) with),(jiφ =0 and 9.0=d was used as the model for creating a time-

independent (noisy) observation dataset (TID) which contains 300 random series with
14 time points. Considering that the sine function),(jiφ also contributes the standard

deviation to gene expression profiles in TDD, the value of 9.0=d was chosen for
creating profiles in TID so that the averages of standard deviation of profiles in both
TDD and TID are approximately equal. TDD and TID were made up the synthetic
dataset SYN. Some statistics of the synthetic dataset is listed in Table 1, where the
rows through 2nd to 4th are maximum, minimum, average of gene expression values in
TDD and TID, respectively, and the rows through 5th to 7th are maximum, minimum,
average of the standard deviation of gene expression profiles. These corresponding
statistics for TDD and TID are much close, in particular, the averages of the standard
deviation of profiles. Figure 1 (a) and (b) plot profiles of synthetic gene expression in
TDD and TID, respectively. One can see that profiles in TDD and TID look similar.

0 5 10 15
-4

-2

0

2

4

time

E
xp

re
ss

io
n

 l
ev

el

0 5 10 15
-4

-2

0

2

4

time

E
xp

re
ss

io
n

 l
ev

el

(a) (b)

Fig. 1. Profiles of synthetic gene expression: (a) for TDD (b) for TID

Bacterial cell cycle (BAC): This dataset contains gene expression measurements
during the bacterial cell cycle division process for about 3000 predicted open reading
frames, representing about 90% of all bacterium Caulobacter crescentus genes [5].
The measurements were taken at 11 equally-space time points over 150 minutes.
The dataset is publicly available from the website http://caulobacter.stanford.edu/
CellCycle. Clones with missing data were excluded in this study. The resultant dataset
contains the expression profile of 1594 genes, out of which, 58 genes were previously
characterized to be cell cycle-regulated [5].

3.2 Benchmarking Results on SYN

The synthetic dataset YSN created above is used to make a benchmark of the
SATgene while the pairwise R-fold fold change methods [15], and the standard
deviation method [1, 7] is used to supply a base line. The performance of all three
methods is evaluated with two parameters widely accepted and used in the course of
method evaluation: sensitivity and specificity [22]. Sensitivity is the ratio of the

20 F.-X. Wu

number of profiles correctly determined to be time-dependent over the number of all
true time-dependent profiles, while the specificity is defined as the ratio of the
number of profiles correctly determined to be time-dependent over the total number
of profiles determined to be time-dependent. The definition for sensitivity is:

FNTP

TP
ySensitivit

+
= (16)

and that for specificity

FPTP

TP
ySpecificit

+
= (17)

respectively, where TP denotes the number of true positives (profiles in TDD
determined to be time-dependent by a method), FN denotes the number of false
negatives (profiles in TDD determined to be time-independent by a method), and FP
denotes the number of false positives (profiles in TID determined to be time-
dependent by a method). In general, specificity is small while sensitivity is large, and
vice versa. A good method is expected to have both a high specificity and a high
sensitivity at a point.

0.2 0.4 0.6 0.8
0.4

0.6

0.8

Sensitivity

S
p

ec
if

ic
it

y

np=2

np=3
np=4

np=5

0.2 0.4 0.6 0.8
0.4

0.6

0.8

Sensitivity

S
p

ec
if

ic
it

y

SATgene

STDE
P R-fold

(a) (b)

Fig. 2. Plots of specificity with respect to sensitivity for three methods: (a) for the pairwise R-
fold change methods with np =2, 3, 4, 5; (b) for the SATgene, the standard deviation (STDE)

method, and the pairwise R-fold (P R-fold) change method with np =5

Let np be the number of time points at which the absolute of expression values is

larger than a given cut-off value. Given a value of np , specificity and sensitivity are

calculated over a variety of cut-off values for the pairwise R-fold change method.
Figure 2(a) depicts the plots of specificity with respect to sensitivity for the pairwise
R-fold change method with the various values of np. It is intuitive that the more

expression values in a gene expression profile are larger than a given cut-off value,
the more significantly expressed the corresponding gene is. Therefore, with increase
of np, the pairwise R-fold change method should perform better. However, when the

values of np is too large, there are no profiles that have np values larger than a given

 Significance Analysis of Time-Course Gene Expression Profiles 21

cut-off value, and thus the pairwise R-fold change method makes no sense. In this
study, the maximum number of np is 5 for dataset SYN. Figure 2(a) shows the

performances of the pairwise R-fold change methods over various values of np are

comparable in terms of sensitivity and specificity on dataset SYN. The fact that the
curves in Figure 2(a) are closed to the straight line 5.0=yspecificit indicates that

when the pairwise R-fold change methods are applied to select the time-dependent
gene expression profiles, almost half of profiles in the resultant dataset are random
profiles. Therefore the pairwise R-fold change methods can not significantly
distinguish time-dependent gene expression profiles from time-independent (random)
ones.

Figure 2(b) depicts the plots of specificity with respect to sensitivity for the
proposed SATgene, the standard deviation method, and the pairwise R-fold change
method (represented by the case of 5=np). Specificity and sensitivity for the

SATgene are calculated over a variety of significance levels calculated by formulae
(14). With increase of significance levels, the sensitivity decreases while the
specificity increases. Specificity and sensitivity for the standard deviation method are
calculated over a variety of standard deviation cut-off values. Obviously the SATgene
is the best one while the standard deviation method is the poorest one. For example, at
the sensitivity of 20%, the specificity is about 95% for the SATgene, and is much
larger than 45% for the standard deviation method and 50% for the pairwise R-fold
change method. In an acceptable sensitivity of 80%, the specificity is about 80% for
the SATgene, but about 50% for both the standard deviation method and the pairwise
R-fold change method. The fact that the curve for the standard deviation method in
Figure 2(b) is below the line 5.0=yspecificit indicates that when the standard

deviation method is applied to select time-dependent gene expression profiles, more
than half of profiles in the resultant dataset are random profiles.

3.3 Results on Biological Data BAC

In this dataset, there is no a priori information for all gene expression profiles
whether they are time-dependent or not, but 58 genes in this dataset were previously
characterized to be cell cycle-regulated [5]. The expression profiles of these genes
should be time-dependent if the whole procedure for data acquisition is ideal.
Unfortunately, this procedure is often contaminated by various noises in reality [10].
However, this study employs expression profiles of these 58 genes as control
(reference) ones to compare the performance of the SATgene, the standard deviation
method, and the pairwise R-fold change method with 4,3,2=np .

Table 2. The number of control genes with respect to the confidence probability

Confidence
level (%)

50 70 85 90 95 96 97 98 99 99.5 99.7 99.9

of control
genes

55 54 52 50 49 48 47 45 39 29 25 12

22 F.-X. Wu

All these methods except for the SATgene do not provide the confidence
probability that a gene expression profile is not a random profile. The number of
control genes with respect to the confidence probability from the SATgene is listed in
Table 2. One can see that the number of control genes decreases with increase of the
confidence probability.

Figure 3 plots the number of time-dependent genes in BAC with respect to the
number of time-dependent control genes determined by various methods. From
Figure 3(a), the pairwise R-fold change methods with various values of np

determined the almost same numbers of time-dependent genes in BAC, given the
same number of control genes determined. Comparing with Table 2, one can conclude
that the performances of the pairwise R-fold change methods with various values of
np are comparable in term of the number of genes determined to be time-dependent

with respect to the significance level (especially for higher significance level portion).
This result is in agreement with that for dataset SYN.

20 30 40 50
0

500

1000

of control genes

o

f
al

l
g

en
es np=2

np=3
np=4

20 30 40 50
0

500

1000

of control genes

o

f
al

l
g

en
es

SATgene

STDE

P R-fold

 (a) (b)

Fig. 3. Plots of the number of time-dependent genes in BAC with respect to the number of
time-dependent control genes determined by various methods: (a) for the pairwise R-fold
change method with np =2, 3, 4; (b) for the SATgene, the standard deviation method (STDE),

and the pairwise R-fold (P R-fold) change method with np =2

Figure 3 (b) compares the SATgene with the standard deviation method and the
pairwise R-fold change method (represented by the case of np =2). Obviously the

SATgene can find more time-dependent profiles than other two traditional methods
while the standard deviation method find the least time-dependent profiles, given the
same number of control genes found respectively by these methods. Compared with
Table 2, although at the lower confidence level the SATgene and the pairwise R-fold
change method are comparable, at higher confidence level the SATgene is clearly
better than the pairwise R-fold change method. Over all confidence levels, the
standard deviation method is always poorer than the SATgene. Again these results for
dataset BAC are in agreement with those for dataset SYN.

 Significance Analysis of Time-Course Gene Expression Profiles 23

4 Conclusion

This paper presents a simple statistical approach to analyze the significance of
time-course gene expression profiles and thus select significantly expressed genes
from time-course gene expression datasets. The most important feature of the
proposed method is that it takes into consideration the inherent time dependence
(dynamics) of time-course gene expression patterns. In addition, the presented method
is intuitively understandable. Computational experiments on both a synthetic dataset
and a biological dataset show that the proposed SATgene significantly improve the
traditional methods such as the standard deviation method and the pairwise R-fold
change methods.

Time-course gene expression data could provide important information about the
biological process from which data is observed, and thus may lead to a better
understanding of gene regulatory relationships and further gene regulatory networks.
However, traditional gene selection methods may inefficiently use or misuse the
information contained in this kind of data. With the superior performance of SATgene
over the traditional methods, some directions of future work are to infer gene
regulatory relationships and gene regulatory networks with the resultant dataset
selected by the SATgene.

Acknowledgment. This research is supported by Natural Sciences and Engineering
Research Council of Canada (NSERC).

References

1. Iyer, V. R., et al.: The transcript-ional program in the response of human fibroblasts to
serum. Science 283(1999) 83-87

2. Gasch, A. P., et al.: Genomic expression programs in the response of yeast cells to
environmental changes. Molecular Biology of the Cell 11(2000) 4241-4257

3. Spellman, P. T., et al.: Comprehensive identification of cell cycle-regulated genes of the
Yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the
Cell 9 (1998) 3273-3297

4. Whitfield M. L., et al.: Identification of genes periodically expressed in the human cell
cycle and their expression in tumors. Molecular Biology of the Cell 13(2002) 1977-2000

5. Laub, M. T., et al: Global analysis of the genetic network controlling a bacteria cell cycle.
Science 290(2000) 2144-2148

6. Golub, T. R., et al.: Molecular classification of cancer: class discovery and class prediction
by gene expression monitoring. Science 286(1999) 531-537

7. Eisen, M. B., et al: Cluster Analysis and Display of Genome-Wide Expression Patterns.
Proc Natl. Acad. Sci. USA 95 (1998) 14863-14868

8. Bar-Joseph. Z.: Analyzing time series gene expression data. Bioinformatics 20 (2004)
2493-2503

9. Schliep, A., et al.: Analyzing gene expression time-course. IEEE/ACM Trans. on
Computational Biology and Bioinformatics 2(2005) 179-193

10. Baldi, P. and Hatfield, G. W.: DNA Microarrays and Gene Expression: From Experiments
to Data Analysis and Modeling, Cambridge University Press (2002)

24 F.-X. Wu

11. Alizadeh, A. A., et al.: Distinct types of diffuse large B-cell Lymphoma identified by gene
expression profiling. Nature, 403 (2000) 503-511.

12. Claverie, J. M.: Computational methods for the identification of differential and
coordinated gene expression. Human Molecular Genetic 8(1999) 1821–1832

13. Tusher, V. G., et al.: Significance analysis of microarrays applied to the ionizing radiation
response. Proc. Natl. Acad. Sci. USA 98 (2001) 5116-5121

14. Smyth, G. K., Michaud, J., and Scott, H. S.: Use of within-array replicate spots for
assessing differential expression in microarray experiments. Bioinformatics 21(2005)
2067-2075

15. Ly D. H., et al.: Mitotic misregulation and human aging. Science 287(2000) 2486-2492
16. Melnik, R. V. N.: Dynamic system evolution and Markov chain approximation. Discrete

Dynamics in Nature and Society 2(1998) 7-39
17. Ramoni, M. F., et al.: Cluster analysis of gene expression dynamics. Proc. Natl. Acad.

Sci. USA 99 (2002) 9121-912.
18. Wu F. X, Zhang W. J., and Kusalik A. J.: Dynamic model-based clustering for time-course

gene expression data. Journal of Bioinformatics and Computational Biology 3 (2005)
821-836

19. Harvey, A. C.: Time Series Models, Cambridge: MIT Press (1993)
20. Seber, G. A. F and Lee, A. J.: Linear Regression Analysis, 2nd Edition. Hoboken, N. J.:

Wiley Interscience (2003)
21. Yeung K. Y.: (2001) Model-Based clustering and data transformations for gene expression

data. Bioinformatics 17(2001) 977-987
22. Baldi, P. and Brunak, S: Bioinformatics: The Machine Learning Approach, 2nd Edition,

Cambridge: The MIT Press (2001)

Data-Driven Smoothness Enhanced Variance

Ratio Test to Unearth Responsive Genes
in 0-Time Normalized Time-Course

Microarray Data

Juntao Li, Jianhua Liu, and R. Krishna Murthy Karuturi�

Genome Institute of Singapore, 60 Biopolis ST, Republic of Singapore
{lij9,liujh,karuturikm}@gis.a-star.edu.sg

http://www.gis.a-star.edu.sg

Abstract. Discovering responsive or differentially expressed genes in
time-course microarray studies is an important step before further inter-
pretation is carried out. The statistical challenge in this task is due to
high prevalence of situations in which the following settings are true: (1)
none or insufficiently fewer repeats; (2) 0-time or starting point reference;
and, (3) undefined or unknown pattern of response. One simple and effec-
tive criterion that comes for rescue is smoothness criterion which assumes
that a responsive gene exhibits a smooth pattern of response whereas a
non-responsive gene exhibits a non-smooth response. Smoothness of re-
sponse may be gauranteed if the expression is sufficiently sampled and
it can be measured in terms of first order or serial autocorrelation of
gene expression time-course using Durbin-Watson (DW) test. But, the
DW-test ignores variance of the response which also plays an impor-
tant role in the discovery of responsive genes while variance alone is not
appropriate because of nonuniform noise variance across genes. Hence,
we propose a novel Data-driven Smoothness Enhanced Variance Ratio
Test (dSEVRaT) which effectively combines smoothness and variance of
gene expression time-course. We demonstrate that dSEVRaT does sig-
nificantly better than DW-test as well as other tests on both simulated
data and real data. Further, we demonstrate that dSEVRaT can address
both 0-time normalized data and the other data equally well.

1 Introduction

Time-course gene expression studies provide valuable information on the dy-
namics of cellular response to a stimulus from transcription point of view. It
is important in the study of evolution of molecular response of the cells to a
stimulus and the associated gene regulatory networks [1]. Discovering respon-
sive or differentially expressed genes in such studies is the first and foremost
important step before further analysis and interpretation of the data are carried
out. Several methods have been proposed for this purpose which can broadly
� Corresponding author.

I. Măndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 25–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

26 J. Li, J. Liu, and R.K.M. Karuturi

be classified as (1) clustering methods; (2) neighborhood methods; (3) pattern
based methods; (4) model based methods; and, (5) summarization methods.

Clustering methods [10,11] have been widely used to identify responsive genes.
These methods depend on the principle of co-regulation i.e. coregulated genes
show similar expression profiles and cluster together. Among various clusters
produced by a clustering method, the researcher chooses clusters of interest and
interprets the genes belonged to them as responsive genes. These methods are
prone to higher error rates because of the lack of gene specific quantification of
responsiveness.

Neighborhood methods [3][4][7] are similar to clustering methods except that
they quantify each gene’s significance based on the number of similarly expressed
genes called neighbors they have in the expression space. Friendly neighbors algo-
rithm [3] was used to identify responsive genes for single class case and DiffFNs
[4] & MARD [7] are devised for multi-class differential response case. Similar
to clustering methods, these methods also rely mostly on the neighborhood of
the gene to assess its significance and genes with smaller neighborhood may be
rejected as unresponsive genes. This may not be suitable in several cases.

Pattern based methods [22][6][18][14] are especially useful if the pattern of re-
sponse is pre-defined. These patterns may be parametric or nonparametric. For
example, a cosine pattern or fitt [6] or periodic splines [14] is used to identify
responsive genes in cell cycle experiments [22][20] and a definition of nonpara-
metric up-down patterns may be used in other experiments [18]. These methods
require prior definition of the pattern [6][14][18] and may require long time-course
and/or sufficient number repeats at each time point [18].

Model based methods [23][21][15][17][25] are similar to pattern based methods
except that pattern of response is not required to be defined apriori. Instead,
they fitt linear [21][15][17] model or polynomial model or splines model [23][25]
to the gene’s expression response. The main problem with these methods is that
they require repeats at each time point. In the absence of sufficient number
of repeats, their performance degrades. These are especially useful to identify
multiclass differentially responsive genes with well repeated experiments.

Summarization methods [24][19][5] aim to summarize certain characteristic
relevant to responsiveness such as signed area under response curve and slope
of the response curve as in SAM [24], autocorrelation of response as in PEM
and DW tests [19][5]. These methods are simple and effective, yet make very
weak assumptions on responsiveness and can tolerate the lack of sufficient num-
ber of repeats. But, their performance is sensitive to 0-time or starting point
normalization; in 0-time normalization, the expression at the first time-point of
the time-course which signifies the expression before stimulus or treatment is
substracted from the expression at all time points of the gene. This is common
in several microarray experiments [11][9][26].

In this paper we address the problem of discovering significantly responsive
genes in the following difficult setting: (1) none or insufficiently few repeats; (2)
0-time or starting point reference; (3)undefined or unknown pattern of response;
and, (4) sufficiently sampled time-course. Accurate discovery of responsive genes

Data-Driven Smoothness Enhanced Variance Ratio Test 27

is greatly hampered by insufficiently few or no repeats owing to the cost of
microarrays or technical difficulties of obtaining appropriate amount of samples
for replicate experiments. The absence of parallel reference time-course using
unstimulated or untreated samples is common which requires the use of response
just prior to the stimulation or initial observation or 0-time point or starting
point of the time-course as reference for the entire time-course for each gene. Due
to no replicates and high variance of noise at the reference measurement, this
normalization may introduce spurious average level for the time-course which
increases error rates of the responsive gene prediction. This can be illustrated as
follows: Let the expression of a gene gi at time Tt be Eit for t ∈ {0, 1, 2, ..., n}, i ∈
{1, 2, ..., N}; Eit is a random variable with mean mit (true expression of gi at Tt)
and variance σ2

i . Then, after 0-time normalization, Eit becomes Ẽit = Eit −Ei0.
If gi is not responsive, then mit is same as mi0 and the expected value of the
mean of the time-course will also be mi0. But, because of 0-time normalization,
expected value of Ẽit will be Ei0−mi0 which may not be 0 and the expected value
of the mean of the time-course may also be non-zero i.e. n−1

n (Ei0 − m0). This
may lead to, though variable from gene to gene, gross misinterpretation of the
data. The unknown pattern of response coupled with these two factors poses an
important statistical challenge in identifying responsive genes in these datasets.
Further, a lot of unreplicated time-course microarray datasets are available in
the public repositories whose analysis provide good information in the future
studies.

If the time-course is sufficiently long, which is true in several time-course
studies, we can use smoothness or autocorrelation criterion. Smoothness crite-
rion assumes that a responsive gene exhibits a smooth or autocorrelated
pattern of response whereas a non-responsive gene exhibits a non-smooth or
non-autocorrelated response about average response. Smoothness can be mea-
sured in terms of first order or serial autocorrelation of the signal using Durbin-
Watson (DW) test. But, the DW-statistic ignores variance of the response which
also plays an important role in the discovery of responsive genes while variance
alone is not effective since the noise variance is not uniform across genes. To ad-
dress this problem, we propose a novel test called Data-driven Smoothness En-
hanced Variance Ratio Test (dSEVRaT) which efficiently combines smoothness
and variance of signal. We demonstrate that dSEVRaT does significantly better
than DW as well as other tests on both simulated data and the real data. Fur-
ther, we demonstrate that dSEVRaT can address both 0-time normalized data
and the other data equally well. dSEVRaT, like its predecessors DW and PEM
tests, assumes the sampling of expression is sufficient so as to satisfy smoothness
and error is symmetric with mean zero (0). These two assumptions are weak
enough and hence satisfied in most of the practical time-course datasets.

The remaining part of the paper is organized as follows: Section 2 presents the
basic definition of dSEVRaT and its variation to include data dependent param-
eters suitable for microarray data analysis. Section 3 presents the comparative
performance of dSEVRaT with that of PEM and DW on simulated data as well
as the real data. Section 4 provides discussion and future directions.

28 J. Li, J. Liu, and R.K.M. Karuturi

2 Data-Driven Smoothness Enhanced Variance Ratio
Test (dSEVRaT)

Let the expression of a gene gi at time point Tt is denoted by Eit. Let ΔEit =
Eit − Eit−1, difference between expression at time Tt and T(t−1). Let the V (Ei)
and V (ΔEi) denote the variances of Ei = {Ei1, Ei2, ..., Ein} and ΔEi =
{ΔEi2, ΔEi3, ..., ΔEin} respectively. Then the variance ratio statistic (V RaT)
for gi is defined as

V RaTi =
2V (Ei)
V (ΔEi)

V RaTi measures the first order autocorrelation or serial correlation of the
time series Ei and it asymptotically converges to twice the inverse of Durbin-
Watson statistic on Ei −μi where μi is average of Ei. The proof of this is simple
and straightforward.

V RaTi does not account for the variance of the signal Ei which plays an
important role in the selection of responsive genes. But, variance alone can not
effectively discriminate responsive genes from that of unresponsive genes because
of different noise variances in the expression measurements of different genes.
Hence, we enhance V (Ei) in V RaTi-dependent manner since V RaTi is invariant
of scaling and it is indication of smoothness. The smoothness enhanced V RaTi

(SEV RaTi) is defined as

SEV RaTi =
2V Yi(Ei)
V (ΔEi)

where Yi = f(V RaTi)

We call f(.) as smoothness enhancer function which has to satisfy the following
so called enhancer constraints: (1) Continuity constraint i.e. f(x) is differentiable
for all x > 0−; (2) Basal constraint i.e. f(.) ≥ 1; and (3) Non-decreasing f(.)
i.e. ∀a, b ≥ 0, a ≤ b =⇒ f(a) ≤ f(b) or df(x)/dx ≥ 0, ∀x ≥ 0.

The enhancer constraints make sure that the amount of enhancement is
non-decreasing with V RaTi and SEV RaTi ≥ V RaTi under the assumption
of V (Ei) > 1. Several forms of f(.) are possible in practice. For the purpose of
this paper, we define f(.) as

Yi = f(V RaTi) = 1 + V RaTi

The above definition satisfies the enhancer constraints since V RaTi ≥ 0.

2.1 Data-Driven SEVRaT (dSEVRaT)

SEV RaTi is the statistic defining the responsiveness of gi independent of the
other genes in the dataset. But, in reality, we have two difficulties: (1) the as-
sumption V (Ei) > 1 may be violated for a responsive gene gi; and (2) some
weak signals may turn out to be extremely smooth (as in differential expression
analysis of non-time course expression data) leading to higher false discovery rate

Data-Driven Smoothness Enhanced Variance Ratio Test 29

owing to huge multiple hypothesis testing in microarray analysis. We provide
the following solutions for these problems:

Relative Variance Preserving Normalization: Several responsive genes in
a dataset (or experiment) may have V (Ei) ≤ 1 which leads to the attenuation
of variance instead of its enhancement. Hence it reduces the true positive rate
or recall. To circumvent this problem, we propose to scale all genes’ expression
measurements by the K(< 100)% of the standard deviation of the least varying
gene in the dataset which gaurantees the validity of the first assumption. This
normalization does not change the relative variance of any pair of genes and
hence the relative ranking by V (Ei) or V RaTi which is very important for this
analysis and final ranking of the genes. This justifies the name.

Fudge factor in SEVRaT: A typical problem in microarray analysis, espe-
cially with insufficient number of samples which is common, is the presence of
several data dependent low varying unresponsive genes which can mislead the
traditional statistical tests. This problem was addressed in the design of SAM
(Significance Analysis of Microarrays) procedure [24] by incorporating the S0
called fudge factor to offset lowly varying genes relatively more compared to the
highly varying genes. The same idea has been adopted in several other proce-
dures later on [19][12]. We also adopt the same idea for our SEVRaT to offset
the low varying and extremely smooth genes as compared to the high variance
genes. So we add fudge factor S0 to the denominator of SEVRaT, V (ΔEi); S0 is
user defined parameter, we propose it to be ninety fifth percentile of all V (ΔEi).

Thus, incorporating the above data dependent parameters in to SEV RaTi

leads to the so called Data-driven SEV RaTi (dSEV RaTi) defined as

dSEV RaTi =
2

(
V (Ei)
Vmin

)Y ∗
i

(
V (ΔEi)+S0

Vmin

)

where Vmin =
(

K

100

) (
MIN

i V (Ei)
)

and S0 is fudge factor

Y ∗
i = f(V RaT ∗

i) where V RaT ∗
i =

2V (Ei)
V (ΔEi) + So

2.2 Testing for Statistical Significance

False discovery rate [2][13] and local false discovery rate [13] are used as mea-
sures of statistical significance of the selected genes. They are assessed using
label permutation procedure as in [24]. False discovery rate of gi is calculated
as a product of estimated proportion of non-differentilly expressed or unrespon-
sive genes in the dataset and fraction of genes in the label permuted data have
dSEVRaT more than dSEV RaTi. Local false discovery rate of gi is calculated
as a product of estimated proportion of unresponsive genes and fraction of genes
in the label permuted data has dSEV RaT ∈ [dSEV RaTi − δ, dSEV RaTi + δ],

30 J. Li, J. Liu, and R.K.M. Karuturi

where δ is bandwidth of dSEVRaT density estimation. Proportion of unrespon-
sive genes is estimated as half of the fraction of genes in the original data have
dSEVRaT within 25th percentile to 75th percentile of the dSEVRaT obtained
from label permuted data.

3 Results

We compared our proposed test, dSEVRaT, against other standard methods
using both simulated data and real data. The simulated data is meant to show
how dSEVRaT can outperform other methods without requiring 0-time normal-
ization. The evaluation on real data shows the practical utility of dSEVRaT. We
compared dSEVRaT against PEM and Durbin-Watson test (DW). The genes
were ranked according to the statistic produced by each of these methods; ROC
[16] (a plot of true positive rate vs false positive rate) and the corresponding
AUC (Area Under ROC Curve) were calculated, higher the AUC better the per-
formance. We have not shown the results of SAM-Slope, SAM-Area and EDGE
since [19] has shown that PEM outperformed all these standard methods. Our
experiments show that dSEVRaT outperforms PEM.

3.1 Simulated Data

We have carried out simulation experiment to understand the performance vari-
ation of dSEVRaT, PEM and DW for varying number of samples and varying
amount of Signal-to-noise ratio. For this purpose, we have simulated a data of
10000 genes with 1000 (10%) being responsive and the remaining 9000 (90%)
being unresponsive. The unresponsive genes’ time-course is sum of unstimulated
expression (mi) and noise components (εit) i.e the function εit + mi. εit and mi

are sampled from normal distribution with 0 mean and variance σ2. The respon-
sive genes’ time-course Eits are sum of signal (St), unstimulated expression (mi)
and noise (εit) components i.e. the function St+mi+εit. St belongs to one of the
four representative patterns of response as shown in figure 1: (1) linear; (2) step;
(3) half sin; and, (4) quasi sin. We have simulated 250 genes with each of these
patterns amounting to 1000 responsive genes in total. Linear pattern signifies
gradual monotonous change of expression after stimulation; step pattern signifies
sudden change of expression; half sin pattern signifies pulsive or peaked response
and the quasi sin pattern signifies the change of early response to later response.
We studied for n ∈ {7,12} and S/N ratio ∈ {1,2}. After having simulated the
data, each gene was 0-time normalized before applying the shown methods. The
performance of various methods, in terms of AUCs, are summarized in table 1.
It shows that dSEVRaT out performs both DW and PEM on all 0-time normal-
ized data irrespective of n and S/N ratio. It further reveals that S/N ratio has
higher impact on the performance than n.

3.2 Environmental Response Data

Yeast environmental stress response data was generated by Gasch et al [11] and
Derisi et al [9] on nearly 6000 genes of yeast as a part of understanding the way

Data-Driven Smoothness Enhanced Variance Ratio Test 31

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Linear Pattern

Time

Ex
pr

es
sio

n

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Step Pattern

Time

Ex
pr

es
sio

n

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Half SIN Pattern

Time

Ex
pr

es
sio

n

0 2 4 6 8 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

Quasi SIN Pattern

Time

Ex
pr

es
sio

n

Fig. 1. Time-course gene expression response patterns used for simulatation studies

Table 1. Performance of dSEVRaT, PEM and DW in terms of AUC on simulated data.
Each column shows performance on one data generated for one simulation parameters’
setting. Relative performance of PEM is lower to that of DW for all parameter settings.
But, dSEVRaT performs consistently better than both PEM and DW for all parameter
settings. The Median column summarizes the median performance of all methods over
all datasets; dSEVRaT is the best.

Method n=7, S/N=1 n=7, S/N=2 n=12, S/N=1 n=12, S/N=2 Median

dSEVRaT 0.635 0.844 0.659 0.877 0.752
DW 0.619 0.787 0.657 0.846 0.722

PEM 0.577 0.720 0.604 0.768 0.662

yeast adopts or reacts to various stresses present in its environment. We have
selected 10 datasets published by Gasch et al which contain minimum 7 time
points, excluding 0-time point: (1) two nearly identical experiments (10 and 12
time points) on Stationary phase; (2) Menadione exposure with 9 time points; (3)
Nitrogen source depletion with 10 time points; (4) Heat shock from 25oC to 37oC
response sampled for 8 time points; (5) Hydrogen peroxide treatment consists of
10 time points; (6) Hyper-osmotic shock response sampled for 7 time points; (7)
Diamide treatment response sampled at 8 time points; (8) Diauxic shift study,
consisting of 7 time points; and (9) DTT exposure response, consisting of 8 time
points; This dataset is a good benchmark to test our dSEVRaT against PEM
and DW because of several datasets with varying number of sampling points
and shapes of response from dataset to dataset and the availability of good

32 J. Li, J. Liu, and R.K.M. Karuturi

AUC

0.4 0.6 0.8

dSEVRaT

DW

PEM

Diamide Diauxic shift

0.4 0.6 0.8

DTT

dSEVRaT

DW

PEM

Heat shock Hydrogen peroxide Hyper−osmotic shock

dSEVRaT

DW

PEM

Menadione Nitrogen depletion Overall−Median

dSEVRaT

DW

PEM

Stationary phase, expr. 1

0.4 0.6 0.8

Stationary phase, expr. 2

Fig. 2. Barcharts of performance of dSEVRaT, PEM and DW in terms of AUC on
yeast environmental stress response data. Each panel shows performance on one stress
data. Relative performance of PEM compared to DW changes from data to data.
But, dSEVRaT performs consistently better than both PEM and DW on all datasets
except on Stationary phase datasets. dSEVRaT is outperforming all methods on all
datasets. The Overall-Median panel summarizes the median performance of all meth-
ods; dSEVRaT is the best again.

number of highly potential true positives. This dataset is a good example of
0-time normalized data.

dSEVRaT, PEM and DW were applied on these 10 datasets individually
and their performance was evaluated based on a true positive set of 270 genes
available at the website of Chen et al [8]. This is intersection of environmental
stress response genes obtained by co-regulation study by Gasch et al [11] and
the yeast orthologs of pombe stress response genes published by Chen et al.
Barcharts in figure 2 show the performance of dSEVRaT and the other methods;

Data-Driven Smoothness Enhanced Variance Ratio Test 33

dSEVRaT outperforms both PEM and DW on all datasets except on stationary
phase and hydrogen peroxide datasets. This shows the efficacy of the strategy
used in the design of dSEVRaT. The slightly worse performance of dSEVRaT
on these datasets is due to their step response with step taking place between
0th and 1st time-points.

3.3 Yeast Cell Cycle Data

The yeast cell cycle datasets used in the discovery of cell cycle regulated genes
(Spellman et al. [22]) have been obtained by four cell synchronization experi-
ments: (1) alpha factor, (2) CDC15, (3) CDC28 and (4) Elu. This is an example
of non 0-time normalized data. We used the 104 genes used as true cell cycled
regulated genes by Spellman et al as our true positive set the remaining as false
positive set. In addition to PEM and DW, we also include Fourier Transform
(FT) method for comparison [22][6] since FT is exclusively suitable for this task.
Performance of dSEVRaT, PEM, DW and FT are shown in table 2. dSEVRaT
performs better than DW and PEM on all datasets except on CDC15 dataset
in which PEM does better. As expected, FT is consistently better than all these
autocorrelation based methods. This is due to the generality of these autocor-
relation methods and specialization of FT to identify cell cycle regulated genes.
Yet, the performance of dSEVRaT is not far below that of FT and it performed
better than DW and PEM.

Table 2. Performance of dSEVRaT, PEM and DW in terms of AUC on yeast cell cycle
data from Spellman et al. Each column shows performance on one synchroniation data.
PEM has consistently performed better than DW on all datasets. dSEVRaT performs
better than PEM on all datasets except on CDC15. But, as expected, FT is the best
method because FT especially looks for periodically expressed genes while dSEVRaT,
PEM and DW look for smoothly varying genes which are not exclusively periodic. The
Median column summarizes the median performance of all methods; dSEVRaT is the
best among dSEVRaT, PEM and DW, it is not far below from FT.

Method CDC28 Alpha CDC15 Elu Median

dSEVRaT 0.793 0.879 0.770 0.772 0.783
DW 0.703 0.826 0.763 0.749 0.756

PEM 0.747 0.862 0.781 0.761 0.771

FT 0.859 0.917 0.811 0.8 0.835

4 Discussion

We have shown the effect of 0-time normalization on the data and the conse-
quent interpretation. From our analysis, it is clear that 0-time normalization
introduces spurious level of average in the expression time-course of each gene,
though its quantity may change from gene to gene. This is a dominant problem
in the case of data with no repeats or insufficient repeats. To circumvent this
problem, we proposed a test, called dSEVRaT, based on relative variance of the

34 J. Li, J. Liu, and R.K.M. Karuturi

signal against its serial or first order autocorrelation. In this statistic, we en-
hance the variance factor in smoothness dependent manner which plays a major
role in improving the performance without resorting to 0-time normalization.
This helps us in avoiding the stray effects of 0-time normalization. Apart from
0-time normalization, this data-dependent enhancement of variance improves
performance even in the cases where 0-time normalization is not required as in
cell cycle data. We enhanced it by using two data dependent parameters: (1)
minimum variance Vmin; and, (2) fudge factor S0.

We have carried out a simulation experiment to study the effect of number of
samples (n) and the signal-to-noise ratio (S/N) on the performance of dSEVRaT,
DW and PEM. It revealed that the performance improvement mainly comes from
S/N improvement as compared to n. But, for all sets of parameter settings, we
have shown that dSEVRaT outperformed DW as well as PEM. Whereas DW
outperformed PEM owing to the fact that DW has not used 0-time normalization
whereas PEM did. Our experiments on environmental stress response data has
shown that dSEVRaT outperformed both DW and PEM tests where PEM out-
performed the contemporarily popular methods such as SAM and EDGE both in
terms of median performance as well as individual performance. The experiments
on cell cycle data have shown that dSEVRaT outperformed all other methods
except Fourier Transform method; this is acceptable because Fourier Transform
method is the best suited method to identify cell cycle regulated genes. This
performance of dSEVRaT is contributed mainly by smoothness enhancement
and further improvement was made with fudge factor. dSEVRaT can also be
applied even on data with repeats by simply averaging the repeats. Differen-
tially responsive genes in case of multi-treatment aligned time-course data (i.e.
one time-course for each treatment at comparable time-points) can be achieved
either by taking the ratio of the two dSEVRaT statistics treatment and con-
trol/reference or applying dSEVRaT on the time-course obtained by taking the
differences of treatment and control at each time-point.

The main limitation of dSEVRaT, autocorrelation based tests in general,
is that it requires the sampling of expression has to be sufficient so that the
smoothness of the undelying inherent response is reflected in the data. In other
words, it requires a reasonable number of time points such as more than five.

Further, this method is limited by exploiting only the first order autocorre-
lation. We are currently working on generalized dSEV RaT of order k, denoted
as dSEV RaT k, which exploits k-th order autocorrelation. Unlike in model error
analysis [5], we have to combine dSEV RaT k of all orders appropriately to arrive
at the final test since k may be different for different genes.

Acknowledgements

We thank Joshy George, Yudi Pawitan, Xu Han, Rehena Sultana, Vladamir
Kuznetsov and Edison Liu for their valuable suggestions during this work. This
research was supported by Genome Institute of Singapore.

Data-Driven Smoothness Enhanced Variance Ratio Test 35

References

1. Mukesh B, Giusy DG, and Diego dB: Inference of gene regulatory networks and
compound mode of action from time course gene expression profiles, Bioinformat-
ics, 22(7):815-822 (2006).

2. Benjamini Y and Hochberg Y: Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. Roy. Stat. Soc. B. 1995; 57: 289-300.

3. Karuturi RKM and Vinsensius BV: Friendly NeighborsMethod for Unsupervised
Determination of Gene Significance in Time-courseMicroarray Data, IEEE Sym-
posium on Bioinformatics and Bioengineering, (2004).

4. Karuturi RKM, Silvia W, Wing-Kin S and Lance DM: Differential Friendly Neigh-
bors Algorithm for Differential Relationships Based Gene Selection and Classifi-
cation using Microarray Data, The 2007 Intl Conf on Data Mining (DMIN’06),
(2006).

5. Durbin, J and Watson, GS: Testing for Serial Correlation in Least Squares Regres-
sion I & II, Biometrika, 37:409-428 (1950) & 38:159-179 (1951).

6. Karuturi RKM and Liu JH: Improved Fourier Transform Method for Unsupervised
Cell-cycle Regulated Gene Prediction, IEEE Computational Systems Bioinformat-
ics (2004).

7. Chao C, Xiaotu M, Xiting Y, Fengzhu S and Lei ML: MARD: a new method to de-
tect differential gene expression in treatment-control time courses, Bioinformatics,
22(21):2650-2657 (2006).

8. Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones
N, and Bhler J: Global transcriptional responses of fission yeast to environmental
stress, Mol. Biol. Cell 2003; 14: 214- 229.

9. DeRisi JL, Iyer VR, and Brown PO: Exploring the metabolic and genetic control
of gene expression on a genomic scale. Science 1997; 278: 680-686.

10. Eisen MB, Spellman PT, Brown PO, and Botstein D: Cluster analysis and display
of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 1998; 95: 14863-
14868.

11. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein
D, and Brown PO: Genomic expression programs in the response of yeast cells to
environmental changes. Mol. Biol. Cell 2000; 11: 4241-4257.

12. Callegaro A, Basso D and Bicciato S: A locally adaptive statistical procedure
(LAP) to identify differentially expressed chromosomal regions, Bioinformatics
22(21):2658-2666 (2006).

13. Efron B., Tibshirani R., Storey J.D. and Tusher V.: Empirical Bayes analysis of a
microarray experiment, J. Am. Stat. Assoc., 96:11511160(2001).

14. Luan Y and Li H: Model-based methods for identifying periodically expressed genes
based on time course microarray gene expression data, Bioinformatics, 20(3):332-
339 (2004)

15. Ana C, Maria JN, Alberto F and Manuel T: maSigPro: a method to identify
significantly differential expression profiles in time-course microarray experiments,
Bioinformatics, 22(9):1096-1102 (2006).

16. McNeil BJ and Hanley JA: Statistical approaches to the analysis of receiver oper-
ating characteristic (ROC) curves. Med. Decis. Mak. 1984; 4: 137-150.

17. Park T, Yi S, Lee S, Lee SY, Yoo D, Ahn J, and Lee Y: Statistical tests for
identifying differentially expressed genes in time-course microarray experiments.
Bioinformatics 2003; 19: 694-703.

36 J. Li, J. Liu, and R.K.M. Karuturi

18. Peddada SD, Lobenhofer EK, Li L, Afshari CA, Weinberg CR, and Umbach DM:
Gene selection and clustering for time-course and dose-response microarray exper-
iments using order-restricted inference, Bioinformatics 2003; 19: 834-841.

19. Xu H, Wing-Kin S and Lin F: Pem: A General Statistical Approach for Identify-
ing Differentially Expressed Genes in Time-course CDNA Microarray Experiment
without Replicate, IEEE Symposium on Computational Systems Bioinformatics,
(2006).

20. Xu P, Karuturi RKM, Lance DM, Kui L, Yonghui J, Pinar K, Long W, Lim-Soon
W, Edison TL, Mohan KB and Jianhua L: Identification of Cell Cycle-regulated
Genes in Fission Yeast, 16:1026-1042 (2005).

21. Smyth GK: Linear models and empirical bayes methods for assessing differen-
tial expression in microarray experiments. Statistical applications in genetics and
molecular biology 2004; 3: article 3.

22. Spellman PT, Sherlock G, Zhang MO, Iyer VR, Anders K, Eisen MB, Brown
PO, Botstein D, and Futcher B: Comprehensive identification of cell-cycleregulated
genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol.
Cell 1998; 9: 3273-3297.

23. Storey JD, Xiao W, Leek JT, Tompkins RG, and Davis RW: Significance analysis
of time course microarray experiments. Proc. Natl Acad. Sci. USA, 102:12837-
12842(2005).

24. Tusher V, Tibshirani R, and Chu G: Significance analysis of microarrays applied
to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98:5116-5121 (2001).

25. Xu XL, Olson JM, and Zhao LP: A regression-based method to identify differ-
entially expressed genes in microarray time course studies and its application in
an inducible Huntington.s disease transgenic model. Human Molecular Genetics,
1977-1985 (2002).

26. Jing T, Li Z, Xia J, Kevin KY, Karuturi RKM, and Qiang Y: Apoptosis Signal-
regulating Kinase 1 Is a Direct Target of E2F1 and Contributes to Histone Deacety-
lase Inhibitorinduced Apoptosis through Positive Feedback Regulation of E2F1
Apoptotic Activity, Journal of Biological Chemistry, 281(15):10508-10515 (2006).

Efficiently Finding the Most Parsimonious
Phylogenetic Tree Via Linear Programming

Srinath Sridhar1, Fumei Lam2, Guy E. Blelloch1, R. Ravi2,
and Russell Schwartz3

1 Computer Science Department, Carnegie Mellon University
{guyb,srinath}@cs.cmu.edu

2 Tepper School of Business, Carnegie Mellon University
lam@math.mit.edu, ravi@cmu.edu

3 Department of Biological Sciences, Carnegie Mellon University
russells@andrew.cmu.edu

Abstract. Reconstruction of phylogenetic trees is a fundamental prob-
lem in computational biology. While excellent heuristic methods are
available for many variants of this problem, new advances in phylogeny
inference will be required if we are to be able to continue to make ef-
fective use of the rapidly growing stores of variation data now being
gathered. In this paper, we introduce an integer linear programming for-
mulation to find the most parsimonious phylogenetic tree from a set of
binary variation data. The method uses a flow-based formulation that
could use exponential numbers of variables and constraints in the worst
case. The method has, however, proved extremely efficient in practice on
datasets that are well beyond the reach of the available provably efficient
methods. The program solves several large mtDNA and Y-chromosome
instances within a few seconds, giving provably optimal results in times
competitive with fast heuristics than cannot guarantee optimality.

1 Introduction

Phylogeny construction, or the inference of evolutionary trees from some form
of population variation data, is one of the oldest and most intensively studied
problems in computational biology, yet it remains far from solved. The problem
has become particularly acute for the special case of intraspecies phylogenetics,
or tokogenetics, in which we wish to build evolutionary trees among individuals
in a single species. In part, the persistence of the problem reflects its basic
computational difficulty. The problem in most reasonable variants is formally
NP hard [15] and thus has no known efficient solution. The continuing relevance
of phylogeny inference algorithms also stems from the fact that the data sets
to be solved have been getting increasingly large in both population sizes and
numbers of variations examined. The genomic era has led to the identification
of vast numbers of variant sites for human populations [21,30], as well as various
other complex eukaryotic organisms [29,11,10]. Large-scale resequencing efforts
are now under way to use such sites to study population histories with precision

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 37–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

38 S. Sridhar et al.

never previously possible [9]. Even more vast data sets are available for microbial
and viral genomes. As a result, methods that were adequate even a few years
ago may no longer be suitable today.

In this work, we focus on the inference of intraspecies phylogenies on binary
genetic variation data, which is of particular practical importance because of
the large amount of binary SNP data now available. The binary intraspecies
phylogeny problem has traditionally been modeled by the minimum Steiner tree
problem on binary sequences, a classic NP hard problem [15]. Some special
cases of the problem are efficiently solvable, most notably the case of perfect
phylogenies, in which each variant site mutates only once within the optimal
tree [1,16,22]. However, real data will not, in general, conform to the perfect phy-
logeny assumption. The standard in practice is the use of sophisticated heuristics
that will always produce a tree but cannot guarantee optimality (e.g. [3,12,27]).
Some theoretical advances have recently been made in the efficient solution of
near-perfect phylogenies, those that deviate only by a fixed amount from the
assumption of perfection [6,13,31,32]. These methods can provide provably effi-
cient solutions in many instances, but still struggle with some moderate-size data
sets in practice. As a result, some recent attention has turned to integer linear
programming (ILP) methods [17]. ILPs provide provably optimal solutions and
while they do not provide guaranteed run-time bounds, they may have practical
run times far better than those of the provably efficient methods.

In the present work, we develop an ILP formulation to solve the most par-
simonious phylogenetic tree problem on binary sequences. This method finds
provably optimal trees from real binary sequence data, much like the prior theo-
retical methods and unlike the prevailing heuristic methods. Practical run time
is, however, substantially lower than that of the existing provably efficient theo-
retical methods, allowing us to tackle larger and more difficult datasets. Below,
we formalize the problem solved, present our methods, and establish their prac-
tical value on a selection of real variation data sets. These methods provide a
platform for more extensive empirical studies of variation patterns on genomic
scales than were previously possible. They may also help lay the groundwork
for more sophisticated optimization methods that are likely to be needed in the
future.

2 Preliminaries

We will assume that the input to the problem is a haplotype matrix H where each
row corresponds to a haploid sequence of a taxon and each column corresponds
to a binary marker such as a Single Nucleotide Polymorphism (SNP). The input
H can therefore be viewed as an n × m binary matrix.

Definition 1. A phylogeny T for input I is a tree where each vertex represents
a binary string in {0, 1}m and all the input sequences are represented in T .
The length of T is the sum of the Hamming distances between all the adjacent
vertices. The problem of constructing the most parsimonious (optimal) phylogeny
is to find the phylogeny T ∗ such that length(T ∗) is minimized.

Efficiently Finding the Most Parsimonious Phylogenetic Tree 39

Definition 2. A phylogeny T for input I with m varying sites is q-near-perfect
(or q-imperfect) if length(T) = m + q.

The problem of reconstructing phylogenies is closely related to the Steiner Tree
Problem, a well studied problem in combinatorial optimization (for a survey and
applications, see [8,20]). Given a graph G = (V,E) and a set of terminals in
V , the problem is to find the smallest subgraph of G such that there is a path
between any pair of terminals.

The problem can be related to the phylogeny construction problem as follows.
Let graph G be the m-cube defined on vertices V = {0, 1}m and edges E =
{(u, v) ∈ V × V :

∑
i |ui − vi| = 1}. The vertices are binary strings of length

m and an edge connects two vertices if and only if their Hamming distance
is 1. Let VT ⊆ V be the set of species corresponding to the rows of input
matrix H. The maximum parsimony problem is then equivalent to the minimum
Steiner tree problem on underlying graph G with terminal vertices VT . Even
in this restricted setting, the Steiner tree problem has been shown to be NP-
complete [14]. However, the phylogeny reconstruction problem when the optimal
phylogeny is q-near-perfect can be solved in time polynomial in n and m when
q = O(log(poly(n,m))) [32]. If q is very large, though, such algorithms do not
perform well. Moreover, these algorithms use a sub-routine that solves the Steiner
tree problem on m-cubes when the dimensions are small. Therefore, improving
the existing solutions for the general problem will also improve the running time
for the restricted cases.

3 Preprocessing

We now describe a set of preprocessing steps that can substantially reduce the
size of the input data without affecting the final output.

3.1 Reducing the Set of Possible Steiner Vertices

The complexity of solving the Steiner tree problem in general graphs is a con-
sequence of the exponentially many possible subsets that can be chosen as the
final set of Steiner vertices in the most parsimonious phylogeny. Therefore, an
important component of any computational solution to the Steiner tree problem
is to eliminate vertices that cannot be present in any optimal tree. We describe
an approach that has been used to eliminate such vertices when the underlying
graph is the m-cube. For input matrix H and column c of H, the split c(0)|c(1)
defined by c is a partition of the taxa into two sets, where c(0) is the set of taxa
with value 0 in column c and c(1) is the set of taxa with value 1 in column c.
This forms a partition of the taxa since c(0) ∪ c(1) is the set of all taxa and
c(0) ∩ c(1) is empty. Each of c(0) and c(1) is called a block of c. Buneman used
the blocks of binary taxa to introduce a graph, now called the Buneman graph
B(H), which captures structural properties of the optimal phylogeny [7]. We will
explain the generalization of this graph due to Barthélemy [4,28]. Each vertex of
the Buneman graph is an m-tuple of blocks [c1(i1), c2(i2), . . . cm(im)] (ij = 0 or

40 S. Sridhar et al.

function findBuneman(VT)

1. let λ ← VT ; let v ∈ λ
2. bunemanNeighbor(λ, v)

function bunemanNeighbor(λ, v)

1. for all j ∈ {1, . . . , m}
(a) let v′ ← v; v′

j ← cj(1 − ij)
(b) if v′ is Buneman and v′ /∈ λ then

i. λ ← λ ∪ {v′}
ii. bunemanNeighbor(λ, v′)

Fig. 1. Finding the Buneman graph in polynomial time

1 for each 1 ≤ j ≤ m), with one block for each column and such that each pair of
blocks has nonempty intersection (cj(ij)∩ck(ik) �= ∅ for all 1 ≤ j, k ≤ m). There
is an edge between two vertices in B(H) if and only if they differ in exactly one
block. Buneman graphs are very useful because of the following theorem.

Theorem 1. [3,28] For input matrix H, let T ∗
H denote the optimal phylogeny

on H and let B(H) denote the Buneman graph on H. If matrix H has binary
values, then every optimal phylogeny T ∗

H is a subgraph of B(H).

Using the above theorem, our problem is now reduced to constructing the Bune-
man graph on input H and solving our problem on underlying graph B(H).
Ideally we would like to find the Buneman graph in time O(poly(k)) where k is
the number of vertices in the Buneman graph. Note that this is output-sensitive.
We first state the following theorem, which we will use to show the Buneman
graph can be generated efficiently.

Theorem 2. [28] The Buneman graph B(H) is connected for any input matrix
H in which all columns contain both states 0, 1 and all pairs of columns are
distinct.

To generate the graph B(H), let i1, i2, . . . im be the first taxon in H. Then
v = [c1(i1), c2(i2), . . . cm(im)] is a vertex of B(H). Now, there are several ways to
generate the graph B(H). The pseudo-code in Figure 1 begins with VT the set of
vertices of the B(H) corresponding to H. The algorithm then iteratively selects a
vertex v and enumerates all the neighbors. For each vertex, the algorithm checks
if it obeys the conditions of the Buneman graph, if so it is added to λ and we
recurse.

Lemma 1. The algorithm in Figure 1 finds the Buneman graph B(H) for the
given input in time O(km) where k is the number of vertices in B(H).

Proof. The algorithm begins with a vertex v ∈ B(H) and determines B(H) in
the depth-first search order. By Theorem 2, the algorithm will visit all vertices

Efficiently Finding the Most Parsimonious Phylogenetic Tree 41

in B(H). Step 1a iterates over all m possible neighbors of vertex v in the m-cube
which takes time O(m). For each vertex v ∈ B(H) function bunemanNeighbor is
called using v exactly once. Therefore if there are k vertices in B(H), then the
time spent to discover all of B(H) is O(km). Note that instead of using depth-
first search, we could use breadth-first search or any other traversal order. 	

3.2 Decomposition into Smaller Problems

In addition to allowing us to reduce the set of possible Steiner vertices, we
show how Theorem 1 also allows us to decompose the problem into independent
subproblems.

Definition 3. [2] A pair of columns i, j conflict if the matrix H restricted to i, j
contains all four gametes (0, 0), (0, 1), (1, 0) and (1, 1). Equivalently, the columns
conflict if the projection of H onto dimensions i, j contains all four points of the
square.

For input I, the structure of the conflicts of I provides important information
for building optimal phylogenies for I. For example, it is well known that a
perfect phylogeny exists if and only if no pair of columns conflict [16,28]. In
order to represent the conflicts of H, we construct the conflict graph G, where
the vertices of G are columns of H and the edges of G correspond to pairs
of conflicting columns [18]. The following theorem has been stated previously
without proof [18]. For the sake of completeness, we provide an explicit proof
in the full paper using Theorem 1 and ideas from Gusfield and Bansal [18]. We
denote the matrix H restricted to set of columns C as C(H).

Theorem 3. Let χ denote the set of non-trivial connected components of con-
flict graph G and let Visol denote the set of isolated vertices of G. Then any
optimal Steiner tree on H is a union of optimal Steiner trees on the separate
components of G and length(T ∗

H) = |Visol| +
∑

C∈χ length(T ∗
C(H)).

Our decomposition preprocessing step proceeds as follows. We first construct the
conflict graph G for input matrix H and identify the set of connected components
of G. We ignore the columns corresponding to the isolated vertices Visol since
they each contribute exactly one edge to the final phylogeny. Then the columns
corresponding to each connected component c of χ can be used independently
to solve for the most parsimonious phylogeny. Our problem is now reduced to
input matrices H consisting of a single non-trivial connected component.

3.3 Merging Rows and Columns

We now transform the input matrix H to possibly reduce its size. We can remove
rows of H until all the rows are distinct since this does not change the phylogeny.
Furthermore, we can remove all the columns of H that do not contain both
states 0 and 1 since such columns will not affect the size or the topology of the
phylogeny. Finally, we will assign weights wi to column i; wi is initialized to

42 S. Sridhar et al.

1 for all i. We iteratively perform the following operation: identify columns i
and j that are identical (up to relabeling 0, 1), set wi := wi + wj and remove
column j from the matrix. Notice that in the final matrix H, all pair-wise rows
are distinct, all pair-wise columns are distinct (even after relabeling 0, 1), every
column contains both 0, 1 and all the columns have weights wi ≥ 1. From now,
the input to the problem consists of the matrix H along with vector w containing
the weights for the columns of H. We can now redefine the length of a phylogeny
using a weighted Hamming distance as follows.

Definition 4. The length of phylogeny T (V,E) is
length(T) =

∑
(u,v)∈E

∑
i∈D(u,v) wi, where D(u, v) is the set of indices where

u, v differ.

It is straight-forward to prove the correctness of the pre-processing step.

Lemma 2. The length of the optimal phylogeny on the pre-processed input is
the same as that of the original input.

4 ILP Formulation

A common approach for studying the minimum Steiner tree problem is to use
integer and linear programming methods. For convenience, we will consider the
more general problem of finding a minimum Steiner tree for directed weighted
graphs G (we represent an undirected graph as a directed graph by replacing
each edge by two directed edges). The input to the minimum directed Steiner
tree problem is a directed graph, a set of terminals T and a specified root vertex
r ∈ T . The minimum Steiner tree is the minimum cost subgraph containing a
directed path from r to every other terminal in T .

For a subgraph S of graph G, we associate a vector xS ∈ R
E , where edge

variable xS
e takes value 1 if e appears in the subgraph S and 0 otherwise. A

subset of vertices U ⊂ V is proper if it is nonempty and does not contain all
vertices. For U ⊂ V , let δ+(U) denote the set of edges (u, v) with u ∈ U , v �∈ U
and for a subset of edges F ⊆ E, let x(F) =

∑
e∈F xe. Finally, edge-weights are

given by we ∈ RE .
The problem of finding a minimum directed Steiner tree rooted at r has

previously been examined with an ILP based on graph cuts [5,24,35]:

min
∑

u,v wu,vxu,v (1)

subject to x(δ+(U)) ≥ 1 ∀ proper U ⊂ V with r ∈ U , T ∩ U �= ∅ (2)
xu,v ∈ {0, 1} for all (u, v) ∈ E. (3)

Constraints (2) impose that r has a directed path to all terminal vertices T . Note
that in our phylogenetic tree reconstruction problem, the underlying graph for
the problem is the Buneman graph and any input taxon can be chosen as the root
vertex r. Since the Buneman graph may have an exponential number of vertices
and edges with respect to the size of the input matrix H, the running time for
solving this integer program may be doubly-exponential in m in the worst case.

Efficiently Finding the Most Parsimonious Phylogenetic Tree 43

We develop an alternative formulation based on multicommodity flows [35]. In
this formulation, one unit of flow is sent from the root vertex to every terminal
vertex. Every terminal vertex except the root acts as a sink for one unit of flow
and the Steiner vertices have perfect flow conservation. We use two types of
binary variables f t

u,v and su,v for each edge (u, v) ∈ E. The variables f t
u,v are

real valued and represent the amount of flow along edge (u, v) whose destination
is terminal t. Variables su,v are binary variables denoting the presence or absence
of edge (u, v). The program is then the following:

min
∑

u,v wu,vsu,v (4)

subject to
∑

v f t
u,v =

∑
v f t

v,u for all u �∈ T, t ∈ T (5)
∑

v f t
v,t = 1,

∑
v f t

t,v = 0,
∑

v f t
r,v = 1 for all t ∈ T (6)

0 ≤ f t
u,v ≤ su,v for all t ∈ T (7)

su,v ∈ {0, 1} for all (u, v) ∈ E. (8)

Constraints (5) impose the condition of flow conservation on the Steiner ver-
tices. Constraints (6) impose the inflow/outflow constraints on terminals in T .
Finally, constraints (7) impose the condition that there is positive flow on an
edge only if the edge is selected. By the max-flow min-cut theorem, the projection
of the solution onto the variables s satisfy constraints (2) [24]. The results will
thus satisfy the following theorem:

Theorem 4. All integer variables of the above linear program are binary and
the solution to the ILP gives a most parsimonious phylogenetic tree.

5 Empirical Results

We applied the ILP to several sets of variation data chosen to span a range of
data characteristics and computational difficulties. We used only non-recombining
data (Y chromosome, mtDNA, and bacterial DNA) because imperfection in non-
recombining data is most likely to be explained by recurrent mutations. We used
two Y chromosome data sets: a set of all human Y chromosome data from the
HapMap [21] and a set of predominantly chimpanzee primate data [33]. Several dif-
ferent samples of mitochondrial DNA(mtDNA) were also included [34,26,23,19].
Finally, we analyzed a single bacterial sample [25].

The pre-processing and ILP formulation was performed in C++ and solved
using the Concert callable library of CPLEX 10.0. In each case, the ILP was
able to find an optimal tree on the data after preprocessing. We also used the
pars program of phylip which attempts to heuristically find the most parsi-
monious phylogeny. pars was run with default parameters. Empirical tests were
conducted on a 2.4 GHz Pentium 4 computer with 1G RAM, running Linux. We
attempted to use the penny program of phylip, which finds provably optimal
solution by branch-and-bound, but it terminated in under 20 minutes only for
the smallest mitochondrial data set and was aborted by us after 20 minutes for
all other tests.

44 S. Sridhar et al.

Fig. 2. Imperfection of the most parsimonious phylogeny for overlapping windows
across the complete mitochondrial genome. The x-axis shows the sites in their order
along the genomic axis. The y-axis shows the imperfection for the window centered on
the corresponding site. The hyper variable D-loop region (1 . . . 577 and 16028 . . . 16569)
shows significantly larger imperfection.

0

38

1

41

1

43

1

55

1

7

1

59

1

95

1

24

1

12

3

122

2

23

1

2

3

1

4

5

1

6

1

9

2

11

2

50

1

60

1

28

1

22

2

10

1

8

3

15

1

16

2

46

1

14

44

1

13

1

131

1

51

1

17

1

32

1 1

1

1

39

1

49

1

106

1

164

1

88

1

1

25

1

19

2

1

27

1

53

1

26

1

52

1

57

2

21

1

66

1

168

1

74

1

120

1

18

1

250

1

156

1

199

1

29

1

31

1

20

2

274

1

30

1

0

1

1

4

1

3

2

2

1

10

1

11

1

12

1

13

2

5

6

1

7

1

9

8

1

15

1

1 1

Fig. 3. Examples of trees of varying levels of difficulty. (a) Human mitochondrial data
from Wirth et al. [34] (b) Human Y chromosome from HapMap [21].

We first used the mitochondrial data as a basic validation of the correctness
of the methods and the reasonableness of the maximum parsimony criterion on
these data. The HVS-I and HVS-II segments of the mitochondrial D-loop region

Efficiently Finding the Most Parsimonious Phylogenetic Tree 45

Table 1. Empirical run-time results on a selection of non-recombining datasets

input time(secs)

Data Set before after length our ILP pars

human chrY [21] 150 × 49 14 × 15 16 0.02 2.55

bacterial [25] 17 × 1510 12 × 89 96 0.08 0.06

mtDNA chimp [33] 24 × 1041 19 × 61 63 0.08 2.63

y chimp [33] 15 × 98 15 × 98 99 0.02 0.03

human mtDNA [34] 40 × 52 32 × 52 73 13.39 11.24

human mtDNA [19] 395 × 830 34 × 39 53 53.4 712.95

human mtDNA [26] 13 × 390 13 × 42 48 0.02 0.41

human mtDNA [23] 33 × 405 27 × 39 43 0.09 0.59

have exceptionally high mutation rates [34], providing a good test case of the
ability of our algorithm to distinguish regions we would expect to have perfect
or near-perfect phylogenies from those expected to have highly imperfect phy-
logenies. Figure 2 shows a scan of 201-site long windows across the complete
16569-site mtDNA genome. Since the mtDNA is circular, the windows wrap
around over the ends in the genome order. The y-axis corresponds to imper-
fection, which is the number of recurrent mutations in the most parsimonious
phylogeny. The figure does indeed show substantially larger phylogenies within
the high mutation rate D-loop region (1 . . . 577 and 16028 . . . 16569) than in the
low mutation rate coding regions, confirming the relevance of a parsimony metric
for such data sets.

We then ran the methods on a collection of data sets to assess efficiency of the
methods. Figure 3 provides two examples of most parsimonious phylogenies for
data sets at opposite extremes of difficulty: an mtDNA sample [34] with imper-
fection 21 (Fig. 3(a)) and the human Y chromosome sample, with imperfection 1
(Fig. 3(b)). Table 1 presents the empirical run-time data for all of the datasets.
The columns ‘input before’ and ‘input after’ correspond to the size of the original
input and that after preprocessing. Run times vary over several orders of magni-
tude and appear largely insensitive to the actual sizes of the data sets. Rather,
the major determinant of run time appears to be a dataset’s imperfection, i.e.,
the difference between the optimal length and the number of variant sites. It has
recently been shown that the phylogeny problem under various assumptions is
fixed parameter tractable in imperfection [6,13,31,32] possibly suggesting why
it is a critical factor in run time determination. The pars program of phylip,
despite providing no guarantees of optimality, does indeed find optimal phylo-
genies in all of the above instances. It is, however, slower than the ILP in most
of these cases.

6 Conclusion

We have developed an ILP formulation for optimally solving for the most par-
simonious phylogeny using binary genome variation data. The method fills an

46 S. Sridhar et al.

important practical need for fast methods for generating provably optimal trees
from large SNP variation datasets. This need is not served well by the heuris-
tic methods that are currently the standard for tree-building, which generally
work well in practice but cannot provide guarantees of optimality. More recent
theoretical methods that find provably optimal trees within defined run-time
bounds are inefficient in practice without a fast sub-routine to solve the general
problem on smaller instances. The ILP approach allows extremely fast solutions
of the easy cases while still yielding run-times competitive with a widely used
fast heuristic for hard instances. Methods such as ours are likely to be increas-
ingly important as data sets accumulate on larger population groups and larger
numbers of variant sites.

Acknowledgments

We thank Daniel Gusfield for helpful discussions and for motivating our use of
LP for problems in phylogenetics. This work was supported by U.S. National
Science Foundation grants IIS-0612099, CCR-0105548, and CCR-0122581 (The
ALADDIN project).

References

1. R. Agarwala and D. Fernandez-Baca. A polynomial-time algorithm for the perfect
phylogeny problem when the number of character states is fixed. SIAM Journal
on Computing, 23:1216–1224, 1994.

2. V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phy-
logeny: A direct approach. Journal of Computational Biology, 10:323–340, 2003.

3. H. J. Bandelt, P. Forster, B. C. Sykes, and M. B. Richards. Mitochondrial portraits
of human populations using median networks. Genetics, 141:743–753, 1989.

4. J. Barthélemy. From copair hypergraphs to median graphs with latent vertices.
Discrete Math, 76:9–28, 1989.

5. J. E. Beasley. An algorithm for the Steiner problem in graphs. Networks, 14:147–
159, 1984.

6. G. E. Blelloch, K. Dhamdhere, E. Halperin, R. Ravi, R. Schwartz, and S. Sridhar.
Fixed parameter tractability of binary near-perfect phylogenetic tree reconstruc-
tion. International Colloquium on Automata, Languages and Programming, 2006.

7. P. Buneman. The recovery of trees from measures of dissimilarity. Mathematics in
the Archeological and Historical Sciences, F. Hodson et al., Eds., pages 387–395,
1971.

8. X. Cheng and D. Z. Du (Eds.). Steiner Trees in Industry. Springer, 2002.
9. The ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Ele-

ments) Project. Science, 306(5696):636–640, 2004.
10. Lindblad-Toh et al. Genome sequence, comparative analysis and haplotype struc-

ture of the domestic dog. Nature, 438(7069):803–819, 2005.
11. Lindblad-Toh K et al. Large-scale discovery and genotyping of single-nucleotide

polymorphisms in the mouse. Nature Genetics, pages 381–386, 2000.
12. J. Felsenstein. PHYLIP (Phylogeny Inference Package) version 3.6. distributed by

the author, Department of Genome Sciences, University of Washington, Seattle,
2005.

Efficiently Finding the Most Parsimonious Phylogenetic Tree 47

13. D. Fernandez-Baca and J. Lagergren. A polynomial-time algorithm for near-perfect
phylogeny. SIAM Journal on Computing, 32:1115–1127, 2003.

14. L. R. Foulds and R. L. Graham. The Steiner problem in phylogeny is NP-complete.
Advances in Applied Mathematics, 3, 1982.

15. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979.

16. D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:19–
28, 1991.

17. D. Gusfield. Haplotyping by pure parsimony. Combinatorial Pattern Matching,
2003.

18. D. Gusfield and V. Bansal. A fundamental decomposition theory for phylogenetic
networks and incompatible characters. Research in Computational Molecular Bi-
ology, 2005.

19. A. Helgason, G. Palsson, H. S. Pedersen, E. Angulalik, E. D. Gunnarsdottir, B. Yn-
gvadottir, and K. Stefansson. mtDNA variation in Inuit populations of Greenland
and Canada: migration history and population structure. American Journal of
Physical Anthropology, 130:123–134, 2006.

20. F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem, volume 53.
Annals of Discrete Mathematics, 1992.

21. The International HapMap Consortium. The International HapMap Project.
www.hapmap.org. Nature, 426:789–796, 2005.

22. S. Kannan and T. Warnow. A fast algorithm for the computation and enumeration
of perfect phylogenies. SIAM Journal on Computing, 26:1749–1763, 1997.

23. C. M. Jr. Lewis, R.Y. Tito, B. Lizarraga, and A. C Stone. Land, language, and loci:
mtDNA in Native Americans and the genetic history of Peru. American Journal
of Physical Anthropology, 127:351–360, 2005.

24. N. Maculan. The Steiner problem in graphs. Annals of Discrete Mathematics,
31:185–212, 1987.

25. M. Merimaa, M. Liivak, E. Heinaru, J. Truu, and A. Heinaru. Functional co-
adaption of phenol hydroxylase and catechol 2,3-dioxygenase genes in bacteria
possessing different phenol and p-cresol degradation pathways. Eighth Symposium
on Bacterial Genetics and Ecology, 31:185–212, 2005.

26. Sharma S, Saha A, Rai E, Bhat A, and Bamezai R. Human mtDNA hypervariable
regions, HVR I and II, hint at deep common maternal founder and subsequent
maternal gene flow in Indian population groups. American Journal of Human
Genetics, 50:497–506, 2005.

27. N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.

28. C. Semple and M. Steel. Phylogenetics. Oxford University Press, 2003.
29. The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of

the chimpanzee genome and comparison with the human genome. Nature,
437(7055):69–87, 2005.

30. Elizabeth M. Smigielski, Karl Sirotkin, Minghong Ward, and Stephen T. Sherry.
dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Research,
28(1):352–355, 2000.

31. S. Sridhar, G. E. Blelloch, R. Ravi, and R. Schwartz. Optimal imperfect phylogeny
reconstruction and haplotyping. Computational Systems Bioinformatics, 2006.

32. S. Sridhar, K. Dhamdhere, G. E. Blelloch, E. Halperin, R. Ravi, and R. Schwartz.
Simple reconstruction of binary near-perfect phylogenetic trees. International
Workshop on Bioinformatics Research and Applications, 2006.

48 S. Sridhar et al.

33. A. C. Stone, R. C. Griffiths, S. L. Zegura, and M. F. Hammer. High levels of
Y-chromosome nucleotide diversity in the genus Pan. Proceedings of the National
Academy of Sciences USA, pages 43–48, 2002.

34. Thierry Wirth, Xiaoyan Wang, Bodo Linz, Richard P. Novick, J. Koji Lum, Martin
Blaser, Giovanna Morelli, Daniel Falush, and Mark Achtman. Distinguishing hu-
man ethnic groups by means of sequences from Helicobacter pylori: Lessons from
Ladakh. Proceedings of the National Academy of Sciences USA, 101(14):4746–4751,
2004.

35. R. T. Wong. A dual ascent approach for Steiner tree problems on a directed graph.
Mathematical Programming, 28:271–287, 1984.

A Multi-Stack Based Phylogenetic Tree Building

Method

Róbert Busa-Fekete1, András Kocsor1, and Csaba Bagyinka2

1 Research Group on Artificial Intelligence of the Hungarian Academy of Sciences
and University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary

{busarobi,kocsor}@inf.u-szeged.hu
2 Institute of Biophysics, Biological Research Center of the Hung. Acad. Sci.

H-6701 Szeged, P. O. 521., Hungary
csaba@nucleus.szbk.u-szeged.hu

Abstract. Here we introduce a new Multi-Stack (MS) based phylo-
genetic tree building method. The Multi-Stack approach organizes the
candidate subtrees (i.e. those having same number of leaves) into lim-
ited priority queues, always selecting the K-best subtrees, according to
their distance estimation error. Using the K-best subtrees our method
iteratively applies a novel subtree joining strategy to generate candi-
date higher level subtrees from the existing low-level ones. This new
MS method uses the Constrained Least Squares Criteria (CLSC) which
guarantees the non-negativity of the edge weights.

The method was evaluated on real-life datasets as well as on artificial
data. Our empirical study consists of three very different biological do-
mains, and the artificial tests were carried out by applying a proper model
population generator which evolves the sequences according to the pre-
determined branching pattern of a randomly generated model tree. The
MS method was compared with the Unweighted Pair Group Method (UP-
GMA), Neighbor-Joining (NJ), Maximum Likelihood (ML) and Fitch-
Margoliash (FM) methods in terms of Branch Score Distance (BSD) and
Distance Estimation Error (DEE). The results show clearly that the MS
method can achieve improvements in building phylogenetic trees.

Keywords: Phylogenetics – tree estimation – Multi-Stack – tree-joining
operator.

1 Introduction

The reliable reconstruction of a tree topology from a set of homologous sequence
data is one of the most important goals in system biology. A major family of
the phylogenetic tree building methods is the distance-based or distance matrix
methods. The general idea behind them is to calculate a measure for the distance
between each pair of taxa, and then find a tree that predicts the observed set of
distances as closely as possible. There are quite a few heuristic distance-based
algorithms with a fixed criterion available for estimating phylogeny, and their
strengths and weaknesses are familiar to everyone in the field. The distance-based

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 49–60, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

50 R. Busa-Fekete, A. Kocsor, and C. Bagyinka

methods, like the Unweighted Pair-Group Method using Arithmetic averages
(UPGMA) [1] and Neighbor-Joining (NJ) [2], work similarly: they iteratively
form clusters, always choosing the best possibility based on a given criterion.
We can call these methods greedy in a certain sense, because they always work
on the current best candidate subtrees. The NJ method produces additive trees,
while UPGMA assumes that the evolutionary process can be represented by an
ultrametric tree. These restrictions may then interfere with the correct estima-
tion of the evolutionary process.

The chief aim of this paper is to develop a good distance-based method that
closely approximates to the true tree for any available evolutionary (not just for
ultrametric or additive) distance. To achieve this we apply a special form of the
Least Square Criteria (LSC) to phylogenetic trees [4]. The LSC will guarantee a
minimal deviation between the evolutionary distances and the leaf distances in
the phylogenetic tree. It is fortunate that the LSC weighting for a phylogenetic
tree can be computed in O

(
n2

)
time. The original LSC was introduced by Fitch

and Margoliash, and nowadays several forms of it are in use in the literature,
like the Weighted LSC [5], Unweighted and Generalized LSC [6]. We applied the
constrained version of LSC (CLSC) here to evaluate phylogenetic trees because
the weights of the edges have to be non-negative. The solution of the problem
retains its simplicity because the Constrained LSC can easily be handled by the
Levenberg-Marquardt method [7].

Since finding the least squares tree (whether it is constrained or not) is an NP-
complete problem [8], a polynomial-time algorithm to solve it is unlikely to exist.
Many meta-heuristics have been applied in phylogenetic tree-building. We now
propose a novel heuristic, based on the so-called Multi-Stack (MS) construction
[10]. The MS heuristic organizes the candidate subtrees having the same number
of leaves into a priority queue according to their distance estimation error, and
generates newer candidate trees by joining the existing trees via a novel tree
joining strategy. It may happen however that there are many trees within a
priority queue that have a non-disjunct set of leaves, and it is not possible to
join them. The Closest-Neighbourhood Tree Joining (CNTJ) strategy introduced
here always provides a tree topology based on all of the subtrees, swapping their
common taxa with their closest neighbour. Our method was tested on artificial
as well as on real-life datasets.

2 Background

2.1 Phylogenetic Trees

A tree is a connected acyclic graph. First we denote the vertex set and the edge
set of a tree T by V (T) and E (T), respectively. Furthermore, let us denote the
non-negative weights of the edges by w : E (T) → R≥0. A weighted tree assigns a
distance for each pair of leaves (which can be calculated by summing the weight
of the edges on the path between them) that is called the leaf distance of T ,
and will be denoted by DT . A phylogenetic tree is represented as a leaf-labelled
weighted binary tree. The labels of the leaves of phylogenetic tree T correspond to

A Multi-Stack Based Phylogenetic Tree Building Method 51

the set of taxa TT . The inner nodes represent the hypothetical ancestors, and the
weighting of the phylogenetic tree represents the evolutionary distance defined by
T . If we regard T as a rooted tree, then there is only one internal node of degree
2; the degrees of the other internal nodes are 3. Here we will only deal with rooted
phylogenetic trees. The subset of the descendants of an internal node is called
a cluster, and the internal nodes are the most recent common ancestors of the
monophyletic group or cluster. Thus the internal nodes of a phylogenetic tree and
clusters are equivalent concepts. This way each phylogenetic tree corresponds to
a set of compatible clusters C (i.e. for all A, B ∈ C either A ⊆ B, or B ⊆ A, or
A ∩ B = ∅). This construction is also called a Linnean Hierarchy. Here we will
denote the clusters of T by T C.

The Robinson-Foulds (RF) distance or symmetric difference for rooted trees
[11] is based on this approach as well. Because the RF distance of two rooted
phylogenetic trees T1 and T2 is the cardinality of the symmetric difference of
their cluster sets, T C

1 �T C
2 =

(
T C

1 \ T C
2
)
∪

(
T C

2 \ T C
1
)
. There is also an extension

of the RF distance introduced by Kuhner and Felsenstein [12], and it is known
as the Branch Score Distance (BSD).

2.2 Constrained Least Squares Criterion

There are many criteria in use for phylogenetic trees that can be applied to the dis-
tance data, like Minimum Evolution Length and Least Squares (LSC) Criterion.
There are many forms of Least Squares Criteria available, and all of them require
the optimization of a quadratic function. Before we formally describe these cri-
teria, let us denote the path-edge incidence or topology matrix of a phylogenetic
tree T by PT . The matrix PT is a binary matrix whose columns correspond to the
edges of T , while the rows correspond to the paths between the leaves of T . This
representation of a tree requires a space of O

(
n3

)
because it has n − 1 columns

and
(
n
2

)
rows, even though it has just a few non-zero elements. Hence it is worth

exploiting the sparsity of the topology matrix for an efficient implementation.
Next, we will denote a distance matrix by D defined on the taxon set of T .

We can rewrite D using its vector form d (i.e. turning the upper triangular of D
into a vector). The arrangement according to the topology matrix PT determines
an unambiguous ordering among the

(
n
2

)
entries of the vector d. Introducing the

necessary notations, we can write, in a simple way, the Unweighted Least Square
Criteria (LSC) for a given T phylogenetic tree. The edge weighting of a tree T
satisfies the LSC criteria if it satisfies the following optimisation task:

min
x∈Rn−1

‖ (PT x − d) ‖ (1)

where the elements of x may have any real value, including zero or negative
values. The solution of the problem defined by Eq. (1) results in an optimal
edge weighting for a phylogenetic tree T and a minimal Frobenius norm for
‖DT − D‖F . This means that the deviation between the calculated weighting
DT and D is minimal. The problem can be solved in O

(
n2

)
time for a given

phylogenetic tree [5]. We also require that a weighting always be positive because

52 R. Busa-Fekete, A. Kocsor, and C. Bagyinka

a negative evolutionary distance has no physical sense. That is why we will
restrict ourselves here to the following minimization problem:

min
x∈Rn−1

‖ (PT x − d) ‖ (2)

s.t. 0 ≤ x

The Constrained Least Squares Criteria (CLSC) defined above results in a non-
negative weighting for a phylogenetic tree T . CLSC also retains the property of
the original LSC that it can be solved in O

(
n2

)
time, because the algorithm in-

troduced by Bryant & Waddell [5] can handle the Levenberg-Marquardt method
as well. Here ‖DT − D‖F is the distance estimation error (DEE), and

‖DT − D‖F(
n
2

)

is the normalized distance estimation error (NDEE) of the phylogenetic tree and
will be denoted by eT .

3 Materials and Methods

3.1 Multi-Stack Approach

To solve problems which have enormous solution spaces we need to apply an
efficient search technique. That is why we decided to adopt a heuristic approach
for phylogenetic tree-building which is also used in speech recognition [13]. To
describe the method we first have to give a definition. A stack is a structure
for keeping candidate solutions in. Furthermore, we use limited-sized stacks: if
there are too many candidates in a stack, we prune the ones with the highest
fitness value. In the MS algorithm we assign a separate stack to the trees having
the same number of leaves and store the K-best candidate subtrees in the stack
according to their DEEs. In the initial step the algorithm generates the lower
level subtrees only, and then it pops each pair of candidate subtree from the
stacks, joins them in every possible way, and afterwards puts the new candidate
subtrees into the stack according their leaf numbers associated with their new
DEE. Applying this heuristic to phylogenetic tree building, we obtain an iterative
tree-building procedure.

The pseudocode of the MS algorithm is presented in Table 1, where the Qn

elements denote the limited priority queue which contains at most K trees, and
each tree has exactly n leaves in it. The initial step of the method includes the
exploration of all tree topologies with at most three leaves. This step makes sense
because there are only n +

(
n
2

)
+

(
n
3

)
phylogenetic trees when |T | = n, so during

this initial step we can explore the whole space of trees. In the next steps MS
generates the possible subtrees, and it always keeps the best K subtrees based
on their distance estimation error.

The complexity of the MS method naturally depends on the variable K be-
cause we are exploring an n2K2 tree topology. Since CLSC requires a quadratic

A Multi-Stack Based Phylogenetic Tree Building Method 53

Table 1. The Multi-Stack algorithm

Input: D distance matrix, K size of priority queues

1 Initial step: fill up Q1, Q2 and Q3

2 for i = 3 : n
3 for j = 1 : min(n − i, i)
5 Generate all of the trees joining the

elements of Qi and Qj

6 Add them to the
priority queue Qi+j according their DEE

7 endfor
8 endfor
9 return to first element of QK

n

Output: Rooted phylogenetic tree T with n leaves

time complexity (O
(
n2

)
), it becomes the most time-consuming step of the MS.

Due to this features the MS tree building method has a time complexity of
O

(
K2n4

)
overall. This computation also includes the time requirements of the

joining step which will be introduced in the next section.

3.2 Closest Neighborhood Tree Joining Operator

With the Multi-Stack tree building approach it may happen that we want to join
two candidate trees that have some common taxa. The simplest idea is the naive
approach: let us replace the common taxon set of the candidate trees that inter-
feres the tree joining in every possible way with those taxa that do not occur in the
taxon set of candidate trees. After we have carried out and evaluated all possible
replacements, let us choose the best replacement. But it can be easily seen that
this will lead to a very high computational burden, because the number of possi-
ble replacement grows exponentially with the number of the common taxon set.
Instead here we suggest a tree joining strategy as a way of avoiding this problem.

We need to join two candidate subtrees T1, T2 having n1 and n2 leaves respec-
tively, and we need to determine a strategy for the elimination of the duplicated
taxa of the candidate trees: |TT1 ∩ TT2 | = k. From the solution of this problem
we also require that the distance estimation errors eT1 and eT2 with respect to
the applied distance matrix D remain or grow as little as possible. Thus the
goal here is to determine a strategy for the replacement of common taxa that
produce the least variation in the tree estimation errors of the candidate trees
in question.

For the formal description let us denote the cost of the replacement for a
taxon t ∈ TT by c(t, t

′
), where t

′ ∈ T − TT . This leads to a change in the eT

value after the replacement, which can be a negative real number as well. We
can readily determine an upper bound for this cost, because using the weights
of T before the replacement, the following proposition always hold.

Proposition 1. Let T be a phylogenetic tree with a taxon set TT ⊂ T , and
let eT be its distance estimation error. A distance on T will be denoted by D,

54 R. Busa-Fekete, A. Kocsor, and C. Bagyinka

and the leaf distance will be denoted by DT . Now let t ∈ TT and t
′ ∈ T − TT

be two taxons. Then the following inequality will hold for the c(t, t
′
) cost of the

replacement:

c(t, t
′
) ≤

∑

t′′∈TT

bt′′ (t, t) − bt′′ (t
′
, t) (3)

where b1
t′′ (t1, t2) =

∣
∣
∣D(t1, t

′′
) − DT (t2, t

′′
)
∣
∣
∣

Proof. If we use the CLSC for T , then we get an optimal edge weighting w using
the taxon set TT and distance matrix D. Equation 3 corresponds to the rows in
Equation 2, that is, it is represents the path between t and T − t. Thus if we
replace this taxon, the change of the optima will vary according to the magnitude
when we use the weighting w. So Equation 3 will hold apart from the choice of
t

′ ∈ T .

Summarizing the above points, Proposition 1 allows us to determine an upper
bound for a replacement of a taxon. That is why we suggest here that the
common taxon set |TT1 ∩ TT2 | should be replaced iteratively, taxon by taxon,
always choosing the pair of taxons that have the lowest bound in accordance
with Proposition 1.

3.3 Distances and Similarities

Evolutionary distances. The global alignment of protein sequences can be
performed using the well-known Needlemann-Wunsch [14] algorithm with the
BLOSUM70 [15] matrix. The simplest evolutionary distance between a pair of
aligned sequences is usually measured by the number of sites where a substitu-
tion occurs. Many models have been proposed to describe the true evolutionary
process. There are many corrections of this measure which try to fine tune the
evolutionary rate. Some of them were used here when we performed our tests on
different real-life datasets. These include the Gamma, Poisson and Jukes-Cantor
corrections [16].

Compression-based similarity measures. The information theoretical dis-
tance functions are based on a comparison of how many information sequences
there are relative to each other. This approach originated from Kolmogorov-
complexity theory. The Conditional Kolmogorov complexity K (X |Y) is defined
as the length of the shortest program computing X on an input Y [19]. The Kol-
mogorov complexity K (X) of a sequence X is a shorthand notation for K (X |λ),
where λ is an empty sequence. The corresponding distance function uses the rel-
ative decrease in complexity or conditional complexity as a measure of sequence
similarity, that is

d (X, Y) =
max{K (X |Y) , K (Y |X)}

K (Y X)
(4)

Kolmogorov complexity is a non-computable notion, so in practical applica-
tions it is approximated by the length of a compressed sequence calculated with

A Multi-Stack Based Phylogenetic Tree Building Method 55

a compression algorithms like LZW [20] or Sequitur [21]. The formula for calcu-
lating compression-based similarity measures (CBM) using the length values of
compressed sequences can be derived from Equation 4. It takes the form

dCBM (X, Y) =
C (XY) − min{C (X) , C (Y)}

max{C (X) , C (Y)} (5)

where C (.) denotes the length of a compressed sequence, compressed by a par-
ticular compressor C. We will focus on two well-known compressor algorithm in
our experiments, namely LZW [20] and Sequitur [21].

3.4 Generation of Model Populations

Since the correct phylogeny for a set of taxa is usually unknown, we first carried
out our tests on randomly generated model populations having 10−20−30−40
members. For each population 100 independent and identically-distributed and
and non ultrametric model trees were generated from the tree-space. In order to
calculate the leaves of these trees, pseudo random sequences of 600 amino acids
were used as ancestor sequences. The sequence was then assumed to evolve
according to the predetermined branching pattern of the randomly generated
model tree. The edge lengths of the generated tree correspond to the expected
number of amino acid substitutions per site. We varied this value between 0−0.1,
and the number of amino acid substitutions at each site was assumed to have
a Poisson distribution [17,18], were also used to mimic the mutations. Using
this rate we carried out point mutations according to the BLOSUM70 matrix.
Hundred different set of sequences (model populations) were generated for each
(10-20-30-40) member number.

3.5 Description of Real-Life Datasets

We utilized three different datasets of various size to compare and test the meth-
ods. Primates consist of mitochondrial DNA, while hydrogenases and myoglobins
are distinct protein families, hence they are very suitable objects for statistically
testing different tree building and distance (similarity) calculating procedures.

The set of primates is quite small (12 sequences), and it was borrowed from
Ovchinnikov et al. [22]. This dataset contains the mitochondrial DNA of two
Neanderthals, the modern human species and other vertebrates. The second
set we used for testing is a typical set of sequences of myoglobins. It contains
27 proteins from different organisms. The third set is the group of 75 [NiFe]
hydrogenases. Hydrogenases are metalloenzymes that catalyze the reaction H2 �
2H+ + 2e−. They can be found in bacteria, archae and cyanobacteria. The [Ni-
Fe] hydrogenases are usually placed into 4 different taxonomic groups [23]. In
the rest of the paper these datasets will be called primates, myoglobins and
hydrogenases respectively.

56 R. Busa-Fekete, A. Kocsor, and C. Bagyinka

4 Experiments

4.1 Evaluation of the Model Populations

The evolutionary distances (Poisson distance and CBM similarity measure with
the Sequitur compressor method [21]) were calculated for the model populations,
and phylogenetic trees were built over these model populations using four dif-
ferent tree-building methods: Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) [1], Neighbour-Joining (NJ) [2], Maximum Likelihood method
for proteins (ML) [24] and the Fitch-Margoliash (FM) [4] method, all of which
were implemented in the Phylip package [25], and our newly developed Multi-
Stack method (MS). The parameter K for the MS method was set to 20 for the
populations having 10 and 20 members (leaves) and to 40 for the populations
with 30 and 40 members (leaves).

The BSD distance between the randomly-generated model tree and the built
phylogenetic tree along with the distance estimation error (DEE) were calculated
after building the phylogenetic tree. The test was repeated 100 times on 100 simi-
lar model populations and the average of BSD distance and DEE was calculated.
The results of this are summarized in Table 2. It is striking that the MS method
is superior to all other methods tested. Both the BSD and the DEE values are
smaller in every case when the MS method was applied. The UPGMA approach
in contrast proved to be the least efficient method in reconstructing phylogenetic
trees. The performances of the NJ and the FM method are quite similar, and the
means of the BSD distance are equal to each other in many test cases. The mean
of the Normalized DEE and BSD distances for NJ and FM only lags behind the
results of the MS method by a small amount when the leaf number is set to 40.

Table 2. The performance of the test on randomly generated model trees. The values
in bold show the minimal value in each row.

No Length of ancestor = 600
leaves UPGMA NJ FM MS ML

Poisson-Poisson
DEE(*103)

10
20
30
40

60.83
41.10
30.45
24.86

24.69
16.62
11.85
9.37

25.13
16.58
11.97
9.35

7.39 (K = 20)
10.33 (K = 20)
6.85 (K = 40)
5.12 (K = 40)

55.6
37.5
29.9
21.6

Poisson-Sequitur
DEE(*103)

10
20
30
40

122.55
70.58
48.45
37.32

34.79
16.58
10.31
6.16

35.90
16.32
10.39
6.06

17.49 (K = 20)
11.05 (K = 20)
6.61 (K = 40)
5.50 (K = 40)

191.4
101.3
67.8
69.1

Poisson-Poisson
BSD distance

10
20
30
40

0.32
0.50
0.63
0.73

0.21
0.33
0.41
0.48

0.22
0.34
0.41
0.48

0.20 (K = 20)
0.28 (K = 20)
0.32 (K = 40)
0.38 (K = 40)

0.28
0.33
0.56
0.62

Poisson-Sequitur
BSD distance

10
20
30
40

0.49
0.79
0.95
1.15

0.27
0.44
0.54
0.63

0.29
0.44
0.54
0.62

0.29 (K = 20)
0.32 (K = 20)
0.35 (K = 40)
0.39 (K = 40)

0.34
0.39
0.59
0.62

A Multi-Stack Based Phylogenetic Tree Building Method 57

4.2 Real-Life Datasets

The newly developed MS method was tested on real-life datasets as well. To eval-
uate the trees we used the distance estimation error values (DEE). The properties
of the MS method were investigated and the results were again compared with
other tree building algorithms. In this case we applied them on six evolution-
ary distances (similarities) (Jukes-Cantor, Gamma, Poisson, LZW, Sequitur and
alignment score).

The only tunable parameter for the MS method is K (the size of the limited
priority queue). When evaluating our MS trees we always chose the best tree in
the last stack, i.e. the one which had the lowest DEE value. It is interesting to see
the “goodness” of different trees in the last stack i.e. how much the “best tree”
was better than the others. We set the value of parameter K to 30 and plotted
the DEE value of the trees in the last stack (Figure 1) for primates, myoglobins
and hydrogenases. The DEE for the trees grew slightly at the beginning of the
stack, but the first few trees were almost as good. There was a pronounced
jump after this nearly constant level. The position of the jump depends on the
evolutionary distance used, but correlates with the number of leaves on the tree
when the number of leaves is small (< 30). For hydrogenases the jump was
around K = 30. In order to investigate the effect of the K parameter on the
“goodness” of trees we also built trees for each dataset using different K values.
The DEE value of the best tree (which has the smallest DEE) in the last queue
was plotted against the K in Figure 2 for different phylogenetic distances and
datasets. As can be seen, the DEE decreased while the limits of the priority
queues rose to 60. Moreover there is threshold (about 30 − 40), after which the
DEE of the best trees remains practically constant.

As a rule of thumb these points give us a good estimation of what the param-
eter setting for K should be. According to this rule, K should be around the
number of leaves if it is smaller than 30. For bigger trees K = 40 seems to be
a good estimate. Applying this rule we built trees with different tree building
methods using various distances on the three real-life datasets. The results are
summarized in Table 3. It is evident that DEE in most cases is the smallest for
our new MS based tree building method. The performance of the UPGMA was
not as good as the others when compared with the model populations, but the

Fig. 1. The normalized DEE of the MS trees in the last priority queue (K = 30)

58 R. Busa-Fekete, A. Kocsor, and C. Bagyinka

Fig. 2. The dependence of the normalized DEE of the best tree in the priority queue
on the parameter K

Table 3. The normalized distance estimation error of different tree building methods
using distinct similarity measures on the datasets. The values in bold show the minimal
value in each row. Normalized distance estimation errors were multiplied by 1000. The
value K for MS was set to 30 for primates and Myoglobins and 40 for hydrogenases.
In this table UP means the UPGMA method, and A-S the Alignment-Score.

Primates (N = 12) Myoglobins (N = 27) Hydrogenases (N = 75)
UP NJ FM MS UP NJ FM MS UP NJ FM MS

JC 96.22 60.42 49.93 45.17 88.35 62.77 62.12 19.70 40.80 11.69 10.58 15.17
Gamma 112.87 76.36 63.08 17.62 174.56 90.69 81.43 30.80 56.44 18.29 16.97 37.48
Poisson 93.85 53.99 47.97 37.06 115.63 57.34 59.53 32.58 37.86 10.33 8.76 12.36
LZW 68.95 12.31 12.31 1.68 33.10 8.63 62.97 5.60 15.33 2.91 1.85 0.50
Sequ. 30.49 30.49 30.49 11.89 69.20 23.10 48.76 10.99 22.86 2.13 2.14 0.52
A-S 88.25 78.32 65.59 13.71 65.66 18.21 48.05 7.03 26.71 4.07 5.32 1.27

Fig. 3. The BSD distance of the trees with the myoglobin dataset

A Multi-Stack Based Phylogenetic Tree Building Method 59

Normalized DEE for the FM and NJ methods are very similar here. Interestingly
these two methods (NJ, FM) outperform the MS method in terms of a Normal-
ized DEE when we used alignment-based evolutionary distances. Otherwise the
MS method achieved better results. We also compared the methods in terms
of their BSD values. In Figure 3 the labels along the axis represent the tree
building methods and the evolutionary distance/similarity measure we applied
and are separated by a hyphen. Comparing the tree topologies of different trees
that employ the BSD, we see that the performance of the MS method is very
similar for all datasets (note the plateau in Figure 3). It is also apparent from
the evaluations that distance-based methods (UPGMA, NJ and FM) produce
trees with very similar topologies (note the wide valley in the middle of the dia-
grams). The topology of the trees built by the MS method are different for these
trees (notice the higher regions of the diagram in Figure 3). The MS method,
however, produced similar topologies regardless of the evolution distance used
for tree building, but we can still say that the MS trees brought an improvement
in the Normalized DEE for the trees as Table 3 quite clearly indicates.

5 Conclusion

In this paper we have presented a novel distance-based and iterative tree building
algorithm for analysing the lineage of taxa in structural biology and then com-
pared it with other tree building methods using a new phylogenetic benchmark.
Next we showed for simulated, model datasets and for three distinct real-life
datasets that it is an efficient tool for building phylogenetic trees. The new
method is superior on distance estimation and produces robust trees as the tests
on model trees shows. The “goodness” of the resultant trees, however, strongly
depends on the parameter K. As it follows from the nature of the method, if K
is big enough the MS method approximates the exhaustive search. On choosing
a proper K value, MS successfully and quickly searches in a previously unex-
plored region of the possible tree topologies, hence it produces slightly different
topologies than those with the algorithms used previously. This allows us to gain
a deeper insight into protein and DNA evolution, relationships and lineage, and
we hope that the MS method and the phylogenetic benchmarking we introduced
here will become widely used tools for tackling phylogenetic problems.

References

1. Rohlf F. J. (1963) Classification of Aedes by numerical taxonomic methods
(Diptera: Culicidae). Ann Entomol Soc Am 56:798804.

2. Saitou N., Nei M. (1987) The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol Biol Evol. Jul;4(4):406-25.

3. Atteson K. (1999): The performance of neighbor-joining methods of phylogenetic
reconstruction. Algorithmica, 25.

4. Fitch, W. M., and E. Margoliash. (1967): Construction of phylogenetic trees. Sci-
ence 155:279284.

60 R. Busa-Fekete, A. Kocsor, and C. Bagyinka

5. Bryant D. and Waddell P. (1998): Rapid Evaluation of Least-Squares and
Minimum-Evolution Criteria on Phylogenetic Trees. Mol. Biol. Evol. 15(10):1346-
1359.

6. Cavalli-Sforza, L., and Edwards. A. (1967): Phylogenetic analysis models and es-
timation procedures. Evolution 32: 550570.

7. Levenberg-Marquardt nonlinear least squares algorithms in C/C++ http://www.
ics.forth.gr/~lourakis/levmar/

8. Day, W.H.E. (1986): Computational complexity of inferring phylogenies from dis-
similarity matrices. Bulletin of Mathematical Biology 49:461-467.

9. Goloboff, P., A. (1999): Analysing large data sets in reasonable times: Solutions
for composite optima. Cladistics 15:415-428, 1999.

10. Bahl L.R., Gopalakrishnan P.S. and Mercer R.L. (1993): Search Issues in Large
Vocabulary Speech Recognition, Proceedings of the 1993 IEEE Workshop on Au-
tomatic Speech Recognition, Snowbird, UT.

11. Robinson, D.F., Foulds, L.R. (1981): Comparison of phylogenetic trees. Math.
Biosci. 53, 131–147.

12. Kuhner M. K., Felsenstein J. (1995): A simulation comparison of phylogeny algo-
rithms under equal and unequal evolutionary rates. Mol Biol Evol May;12(3):525.

13. Gosztolya G., Kocsor A. (2003): Improving the Multi-stack Decoding Algorithm
in a Segment-Based Speech Recognizer. IEA/AIE 2003: 744-749

14. Needleman, S. B., Wunsch, C. D. (1970): A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48:443-453.

15. Henikoff S., Henikoff JG. (1992): Amino acid substitution matrices from protein
blocks. Proc. Natl. Acad. Sci. USA. 15;89(22):10915-9.

16. Jukes T. H., Cantor C. R. (1969): Evolution of protein molecules, pp. 21132 in
Mammalian Protein Metabolism, edited by H. N. MUNRO. Academic Press, New
York.

17. Zuckerland, E., and L. Pauling, (1965): Molecular disease, evolution, and genetic
heterogeneity, pp. 189225 in Horizons in Biochemistry, edited by M. KASHA and
B. PULLMAN. Academic Press, New York.

18. Dickerson, R. E. (1971): The structures of cytochrome c and the rates of molecular
evolution. J. Mol. Evol. 1:26-45.

19. Cilibrasi R., Vitányi P. (2004): Clustering by compression, IEEE Transactions on
Infomation Theory.

20. Ziv J., Lempel A. (1977): A universal algorithm for sequential data compression,
IEEE Trans. on Inf. Th. IT-23 337-343.

21. Nevill-Manning C. G., Witten I. H. (1997): Compression and explanation using
hierarchical grammars. Computer Journal, 40(2/3):103-116.

22. Ovchinnikov I., et al. (2000). Molecular analysis of Neanderthal DNA from the
northern Caucasus, Nature 404(6777):490-493.

23. Vignais P. M., Billoud B., Meyer J. (2001): Classification and phylogeny of hydro-
genases. FEMS Microbiology Reviews 25 455-501.

24. Felsenstein, J. (1981): Evolutionary trees from DNA sequences: a maximum likeli-
hood approach. J. Mol. Evol. 17:368376.

25. Phylip program package http://evolution.genetics.washington.edu

http://www.ics.forth.gr/~lourakis/levmar/
http://www.ics.forth.gr/~lourakis/levmar/
http://evolution.genetics.washington.edu

A New Linear-Time Heuristic Algorithm for Computing
the Parsimony Score of Phylogenetic Networks:

Theoretical Bounds and Empirical Performance�

Guohua Jin1, Luay Nakhleh1, Sagi Snir2, and Tamir Tuller3

1 Department of Computer Science, Rice University, Houston, TX 77005, USA
{jin,nakhleh}@cs.rice.edu

2 Department of Mathematics, University of California, Berkeley, CA 94720, USA
ssagi@math.berkeley.edu

3 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
tamirtul@post.tau.ac.il

Abstract. Phylogenies play a major role in representing the interrelationships
among biological entities. Many methods for reconstructing and studying such
phylogenies have been proposed, almost all of which assume that the underly-
ing history of a given set of species can be represented by a binary tree. Al-
though many biological processes can be effectively modeled and summarized in
this fashion, others cannot: recombination, hybrid speciation, and horizontal gene
transfer result in networks, rather than trees, of relationships.

In a series of papers, we have extended the maximum parsimony (MP) crite-
rion to phylogenetic networks, demonstrated its appropriateness, and established
the intractability of the problem of scoring the parsimony of a phylogenetic net-
work. In this work we show the hardness of approximation for the general case
of the problem, devise a very fast (linear-time) heuristic algorithm for it, and im-
plement it on simulated as well as biological data.

1 Introduction

Phylogenetic networks are a special class of directed acyclic graphs (DAGs) that mod-
els evolutionary histories when trees are inappropriate, such as in the cases of horizontal
gene transfer (HGT) and hybrid speciation [26, 30, 27]. Fig. 1(a) illustrates a phyloge-
netic network on four species with a single HGT event. In horizontal gene transfer
(HGT), genetic material is transferred from one lineage to another, as in Fig. 1(a). In an
evolutionary scenario involving horizontal transfer, certain sites (specified by a specific
substring within the DNA sequence of the species into which the horizontally trans-
ferred DNA was inserted) are inherited through horizontal transfer from another species
(as in Figure 1(c)), while all others are inherited from the parent (as in Figure 1(b)).
Thus, each site evolves down one of the trees induced by (or, contained in) the network.
Similar scenarios arise in the cases of other reticulate evolution events (such as hybrid
speciation and interspecific recombination).

� The authors appear in alphabetical order.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 61–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

62 G. Jin et al.

HGT plays a major role in bacterial genome diversification (e.g., see [7, 8, 19, 20]),
and is a significant mechanism by which bacteria develop resistance to antibiotics (e.g.,
see [9]). Therefore, in order to reconstruct and analyze evolutionary histories of these
groups of species, as well as to reconstruct the prokaryotic branch of the Tree of Life,
developing accurate criteria for reconstructing and evaluating phylogenetic networks
and efficient algorithms for inference based on these criteria is imperative. A large
number of publications have been introduced in recent years about various aspects of
phylogenetic networks; e.g., see [12, 30, 32, 11, 17, 18, 1, 31] for a sample of such
papers in the last two years, and [26, 27] for detailed surveys.

A B C D

X Y

A B C D A B C D

(a) (b) (c)

Fig. 1. (a) A phylogenetic network with a single HGT event from X to Y . (b) The underlying
organismal (species) tree. (c) The tree of a horizontally transferred gene.

In this work, we consider the maximum parsimony (MP) criterion, which has been in
wide use for phylogenetic tree inference and evaluation. Roughly speaking, inference
based on this criterion seeks the tree that minimizes the amount of evolution (in terms of
number of mutations). In 1990, Jotun Hein proposed using this criterion for inferring the
evolution of sequences subject to recombination. Recently, Nakhleh et. al. formulated
the parsimony criterion for evaluating and inferring general phylogenetic networks [31],
and we have recently demonstrated its appropriateness on both simulated and biological
datasets [21, 22]. Applying the parsimony criterion for phylogenetic networks involves
solving the big and the small parsimony problems, referred to as the FTMPPN and
PSPN problems, respectively, in [31]. In [21] the small problem (scoring the parsimony
of a given network) was proved to be NP-hard and a heuristic algorithm was devised. A
recent work by Nguyen et. al. [33] provided a hardness result for a related, yet different,
version of the small parsimony problem.

In this paper we devise a very fast (linear-time) heuristic algorithm, with very good
empirical performance, for the PSPN problem. Further, we show that for a restricted,
yet realistic, class of phylogenetic networks, our algorithm gives a polynomial time
3-approximation for the problem. Moreover, we show that although the theoretical ap-
proximation ratio is not very promising, the algorithm does give very good results in
practice compared to the exact algorithm.

2 Parsimony of Phylogenetic Networks

Preliminaries and Definitions Let T = (V, E) be a tree, where V and E are the tree
nodes and tree edges, respectively, and let L(T) denote its leaf set. Further, let X be

Fast Heuristic for Computing the Parsimony of Phylogenetic Networks 63

a set of taxa (species). Then, T is a phylogenetic tree over X if there is a bijection
between X and L(T). Henceforth, we will identify the taxa set with the leaves they are
mapped to, and let [n] = {1, .., n} denote the set of leaf-labels. A tree T is said to be
rooted if the set of edges E is directed and there is a single distinguished internal vertex
r with in-degree 0. We denote by Tv the subtree rooted at v induced by the tree edges.
A function λ : [n] → {0, 1, .., Σ − 1} is called a state assignment function over the
alphabet Σ for T . We say that function λ̂ : V (T) → {0, 1, .., Σ − 1} is an extension
of λ on T if it agrees with λ on the leaves of T . In a similar way, we define a function
λk : [n] �−→ {0, 1, .., Σ − 1}k (in applications of the methodology, k corresponds to
the sequence length) and an extension λ̂k : V (T) �−→ {0, 1, .., Σ − 1}k. The latter
function is called a labeling of T . We write λ̂k(v) = s to denote that sequence s is the
label of the vertex v. The ith site is an n-tuple where the jth coordinate is the state of
the ith site of species (leaf) j.

Given a labeling λ̂k, let de(λ̂k) denote the Hamming distance between the two se-
quences labeling the two endpoints of the edge e ∈ E(T).

A phylogenetic network N = N(T) = (V ′, E′) over the taxa set X is derived from
T = (V, E) by adding a set H of edges to T , where each edge h ∈ H is added as
follows: (1) split an edge e ∈ E by adding new node, ve; (2) split an edge e′ ∈ E by
adding new node, ve′ ; (3) finally, add a directed reticulation edge from ve to ve′ . It is
important to note that the resulting network must be acyclic [30].

We extend the notion of Tv to networks as follows. For a network N and a node
v ∈ V (N), let Nv be the graph induced by all the nodes reachable from v. Finally,
we denote by T (N) the set of all trees contained inside network N . Each such tree is
obtained by the following two steps: (1) for each node of in-degree 2, remove one of
the incoming edges, and then (2) for every node x of in-degree and out-degree 1, whose
parent is u and child is v, remove node x and its two adjacent edges, and add a new
edge from u to v.

Further, Phylogenetic networks must satisfy additional temporal constraints [30].
First, N should be acyclic (genetic material flows only forward in time). Second, N
should satisfy additional temporal constraints, so as to reflect the biological fact that
the donor and recipient of a horizontally transferred gene must co-exist in time. Since
at the scale of evolution HGT events are instantaneous in time, a reticulation edge be-
tween two points dictates that they correspond to the same chronological time. This
in turn implies that if x and y are the two endpoints of an HGT edge and their time-
stamp is t, then there cannot be an HGT edge between a node z at time t′ < t and a
node w at time t′′ > t. Note that this condition is not guaranteed by the acyclicity con-
dition1. See [30] for a formal description of the temporal constraints on phylogenetic
networks.

2.1 Parsimony of Phylogenetic Networks

We begin by reviewing the parsimony criterion for phylogenetic trees.

1 It is important to note that, while acyclicity must be satisfied by all phylogenetic networks, the
other temporal constraints may be violated, due to extinction or incomplete taxon sampling,
for example.

64 G. Jin et al.

Problem 1. Parsimony Score of Phylogenetic Trees (PSPT)

Input: A 3-tuple (S, T, λk), where T is a phylogenetic tree and λk is the labeling
of L(T) by the sequences in S.
Output: The extension λ̂k that minimizes the expression

∑
e∈E(T) de(λ̂k).

We define the parsimony score for (S, T, λk), pars(S, T, λk), as the value of this
sum, and pars(S, T, λk, i) as the value of this sum for site i only. In other words,
pars(S, T, λk) =

∑
1≤i≤k pars(S, T, λk, i). It is easy to see that the optimal value is

obtained by optimal solutions for every site 1 ≤ i ≤ k. Problem 1 has a polynomial
time dynamic programming type algorithm originally devised by Fitch [10] and later
extended by Sankoff [36]. The algorithm finds an optimal assignment (i.e., λ̂k) for each
site separately.

Since Fitch’s algorithm is a basic building block in this paper, we hereby describe it.
As mentioned above, the input to the problem is a tree T and a single character C = λ1.
The algorithm finds the optimal assignment to internal nodes of T , in two phases: (1)
assigning values to internal nodes in a bottom-up fashion, and (2) eliminating the values
determined in the previous phase in a top-down fashion. Specifically, phase (1) proceeds
as follows: for a node v with children v1 and v2 whose values A(v1) and A(v2) have
been determined,

A(v) =
{

A(v1) ∩ A(v2) if A(v1) ∩ A(v2) �= ∅
A(v1) ∪ A(v2) otherwise.

Phase (2) proceeds as follows: for a node v whose parent f(v) has already been pro-
cessed:

B(v) =
{

σ ∈ A(v) ∩ A(f(v)) if A(v) ∩ A(f(v)) �= ∅
σ ∈ A(v) otherwise.

The algorithm above applies only to binary trees. Nonetheless, a straightforward exten-
sion to arbitrary k-degree trees can be easily achieved. We now prove a lemma that will
be useful later.

Lemma 1. Let T be a tree and C a single character over the alphabet Σ. Let x be the
number of internal nodes v s.t. |A(v)| > 1 by applying Fitch’s algorithm on (T, C).
Then x is less than twice S∗—the parsimony score of T over C.

Proof. We prove the lemma by induction on l, the length of the path from root r to the
closest leaf. Obviously, we are interested only in cases where |A(r)| > 1 in the first
phase. For l = 1, T is a cherry2 with two leaves v1 and v2 with A(v1) ∩ A(v2) = ∅
and the lemma follows. Assume correctness for l = k and we prove for l = k + 1. We
divide the proof into two cases:

– A(v1) ∩ A(v2) = ∅: There must be additional mutation from v and the lemma
follows.

2 A cherry is a rooted tree with three nodes: the root, and two leaves which are children of the
root.

Fast Heuristic for Computing the Parsimony of Phylogenetic Networks 65

– |A(v1)| > 1 and |A(v2)| > 1 : In this case there might be no mutation from v to
either of his children (e.g. A(v1) = {A, C, G} and A(v2) = {A, G}). Let x1 and
x2 be the number of nodes w in Tv1 and in Tv2 resp. with |A(w)| > 1, and S∗

1 and
S∗

2 the optimal scores for Tv1 and Tv2 resp. It is clear that S∗ = S∗
1 + S∗

2 , however
by the assumption, x = x1 + x2 + 1 < x1 + 1 + x2 + 1 ≤ 2(S∗

1 + S∗
2) and the

assumption follows.

Problem 1 was extended to phylogenetic networks in [14, 15, 31], and its quality as a
criterion for reconstructing and evaluating networks was established on both synthetic
and biological data in a series of papers [31, 21, 22].

Definition 1. Parsimony Score of Phylogenetic Networks (PSPN)

Input: A 3-tuple (S, N, λk), where N is a phylogenetic network and λk is the
labeling of L(N) by the sequences in S.
Output: The extension λ̂k that minimizes the expression

∑

1≤i≤k

[
minT∈T (N)pars(S, T, λk, i)

]
.

3 Hardness of Approximation of the PSPN Problem

In [23], we proved that the PSPN problem is NP-hard by a reduction from the max-2-sat
problem. By [13], there is a constant ζ such that there is no polynomial time algorithm
for max-2-sat with performance ratio better than ζ, i. e. there are P1 and P2 such that
gap − max − 2sat[P1, P2]3 is NP-hard (see [16] for the definition of gap problems).
Thus by the reduction in [23] there is a constant ζ

′
such that there is no polynomial time

algorithm for PSPN , and gap − PSPN [4 ∗ |C| − P2 + |U |, 4 ∗ |C| − P1 + |U |] is
NP-hard.

Corollary 1. There is a constant ζ′ such that there is no polynomial time algorithm for
PSPN with performance ratio better than ζ′.

Corollary 2. The PSPN problem is hard to approximate even for networks of bounded
degrees, where each node has at most 20 children.

This result follows from the fact that the gap − max − 3sat problem, when every
variable appears 5 times, is hard.

It is important to note that our reduction in [23] generates networks with no more
than one HGT between any pair of edges. Thus the hardness of approximation results
hold also for such networks. In the next section we provide an approximation algorithm
for a network with up to one 4 HGT between each pair of edges.

3 In a gap − max − 2sat[A,B] problem, where A < B, a YES-instance is a formula in which
at least B clauses are satisfiable, and a NO-instance is a formula in which at most A clauses
are satisfiable. If the number of satisfiable clauses is strictly greater than A and strictly smaller
than B, then either answer (YES or NO) can be given.

4 The algorithm can be generalized to the case where the number of HGTs between each pair of
edges is bounded by some constant c > 1. This will increase the approximation ratio.

66 G. Jin et al.

4 A Linear-Time Algorithm

Our linear time algorithm builds on the improved heuristic of [21] for the PSPN prob-
lem, outlined in Fig. 2. The algorithm is based on the fact that there always exists a
lowest reticulation edge in a phylogenetic network that satisfies the temporal constraints
described in [30]. A reticulation edge e = (u → v) is called a lowest reticulation edge
(or just a lowest edge) if there is no reticulation edge (other than e) adjacent to any node
in either Tu or Tv.

ExactPSPN(N=(V’,E’))

1. If N is not a tree
(a) Find a lowest reticulation edge e = (u → v) in N ;
(b) Let e′ be the edge between v and its ancestral node on the tree edge;
(c) By Fitch’s algorithm, compute the optimal assignment A of u and

v;
(d) If A(u) ∩ A(v) = ∅ then

return (V ′, E′ \ e);
(e) else if A(u) ⊆ A(v) then

return (V ′, E′ \ e′);
(f) else

i. opt = pars(ExactPSPN(V ′, E′ \ e));
ii. A(u) ← A(v); // update v′s values

opt′ = pars(ExactPSPN(V ′, E′ \ e′));
iii. if opt′ < opt return (V ′, E′ \ e′); else return (V ′, E′ \ e).

2. else return Fitch(N).

Fig. 2. The improved heuristic algorithm

Linear-PSPN(N = (V, E))

1. If N is not a tree
(a) Find a lowest reticulation edge e = (u → v) in N ;
(b) Let e′ be the edge between v and its ancestral node on the tree edge;
(c) By Fitch’s algorithm compute the optimal bottom up assignment A

to Tu and Tv , A(Tu) and A(Tv);
(d) If A(u) ∩ A(v) = ∅ then

λ̂1 = Linear-PSPN(V,E \ e);
(e) else

λ̂1 = Linear-PSPN(V,E \ e′);
(f) return λ̂1.

2. Continue first phase of Fitch on the tree N without changing internal
labels that have already determined.

3. Perform second phase of Fitch on the tree N.
4. Return the resultant fully labelled tree.

Fig. 3. The Linear-PSPN algorithm

Fast Heuristic for Computing the Parsimony of Phylogenetic Networks 67

The algorithm in Fig. 2 checks in each step a lowest reticulation edge of the network.
It calculates A(u) and A(v) by Fitch’s algorithm. In a case where ¬((A(u)

⋂
A(v) =

∅) ∨ (A(u) ⊆ A(v))) the algorithm considers recursively (and separately) both the
reticulation edge and the (alternative) tree edge (i.e. the network with and the network
without (u → v)) . The running time of the algorithm is exponential with the number
of such cases.

Our new linear-time algorithm is similar to the exact heuristic algorithm described
in Fig. 2 in its recursive style and the search for a lowest reticulation edge at every invo-
cation. However, in contrast, whenever we are unsure of a mutation along that edge, we
just take it. Formally, we remove the exponential component from the exact algorithm
PSPN and perform step (1e) in any case the condition at step (1d) is not satisfied. The
algorithm, Linear-PSPN(N), is outlined in Fig. 3.

Claim. Let E(N) be the set of reticulation and tree edges in N . Then the algorithm
terminates and runs in time O(E(N)).

4.1 A 3-Approximation Ratio

An algorithm A for a minimization problem P with optimal solution opt(P) (or just
opt for short), is a polynomial time α-approximation algorithm if A runs in polynomial
time and the score of the solution returned by A, A(P), satisfies

A(P) ≤ α · opt(P).

We now show that if the number of reticulation edges emanating from a tree edge is
at most one, Linear-PSPN yields a 3-approximation algorithm. The analysis relies on
Lemma 1 above.

The technique we use is based on the local ratio technique which is useful for ap-
proximating optimization covering problems such as vertex cover, dominating set, min-
imum spanning tree, feedback vertex set and more [4, 2, 3]. The technique recursively
solves local sub-problems until a solution is found. The way the local sub-problems are
solved determines the approximation ratio. In general, we decompose the network into
two networks and show that two separate optimal solutions to the networks are a lower
bound to an optimal solution to the complete network.

Theorem 1. If the maximum number of reticulation edges emanating from a tree edge
is 1, then the approximation ratio of Linear − PSPN is 3.

Proof. We start with a central observation to give a lower bound on the optimal score
of a given network.

Observation 1. Let e = (u → v) be a lowest reticulation edge in a network N . Let
N ′ = N \ Tv be the network obtained by pruning Tv from N (including the edges
leading to v). Then opt(N) ≥ opt(N ′) + opt(Tv).

Proof. Simply take the tree T with the assignment to internal nodes A(T) yielding
opt(N) as an upper bound on opt(N ′) + opt(Tv).

Corollary 3. If we find an α approximation to both opt(N ′) and opt(Tv), we find an α
approximation to N .

68 G. Jin et al.

We now show how the 3-ratio is obtained. At any local step, we remove a subtree that
was solved optimally and contains no reticulation edges (or contains only such edges
that did not incur a mutation). This subtree is connected to the rest of the network by a
(u → v) reticulation edge with A(v) ⊂ A(u). Let Tv be the tree removed from the rest
of the network. Such a reticulation edge might incur an additional mutation. However,
note that |A(u)| > 1. Now, since there is no reticulation edge entering Tu that can
reduce the number of mutations, there exists an optimal solution with Tu as a subgraph.
By Lemma 1 the number of mutations in Tu is at least half the number of nodes u′ with
|A(u′)| > 1. By our assumption, every edge entering such a node u′ gives rise to at
most one extra mutation. We simply change that extra mutation on u′ and the theorem
follows. The rest of the network is solved recursively.

5 Experimental Results

We implemented the approximation algorithm and evaluated both its accuracy and ex-
ecution time through experiments on both simulated and biological datasets. We per-
formed experiments on a 2.4 GHz Intel Pentium 4 PC. Accuracy of the approximation
algorithm was measured as the difference of the parsimony scores computed by the
approximation algorithm and the exact algorithm normalized by the parsimony score
computed by the exact algorithm, presented as percentage. Execution times of both the
approximation algorithm and the exact algorithm were measured and speedups of the
approximation algorithm over the exact algorithm were reported.

Simulated Datasets. For the simulated datasets, we first used the r8s tool [35] to
generate a random birth-death phylogenetic tree on 20 taxa. The r8s tool generates
molecular clock trees; we deviated the tree from this hypothesis by multiplying each
edge in the tree by a number randomly drawn from an exponential distribution. The
resulting tree was taken as the species tree. The expected evolutionary diameter (longest
path between any two leaves in the tree) was 0.2. A model phylogenetic network was
generated by adding 5 HGT edges to the model tree.

Based on the model network, we used the Seq-gen tool [34] to evolve 26 datasets of
DNA sequences of length 1500 down the “species” tree and DNA sequences of length
500 down the other tree contained inside the network (the one that exhibits all HGT
events). Both sequence datasets were evolved under the K2P+γ model of evolution,
with shape parameter 1 [25]. Finally, we concatenated the two datasets.

Biological Datasets. We have included experimental results on three biological datasets
we previously studied [22]. The first biological dataset is the rubisco gene rbcL of a
group of 46 plastids, cyanobacteria, and proteobacteria, which was analyzed by Del-
wiche and Palmer [6]. This dataset consists of 46 aligned amino acid sequences (each of
length 532), 40 of which are from Form I of rubisco and the other 6 are from Form II of
rubisco. The first 21 and the last 14 sites of the sequence alignment were excluded from
the analysis, as recommended by the authors. The species tree for the dataset was cre-
ated based on information from the ribosomal database project (http://rdp.life.uiuc.edu)
and the work of [6]. The second dataset consists of the ribosomal protein rpl12e of
a group of 14 Archaeal organisms, which was analyzed by Matte-Tailliez et al. [28].

Fast Heuristic for Computing the Parsimony of Phylogenetic Networks 69

This dataset consists of 14 aligned amino acid sequences, each of length 89 sites. The
authors constructed the species tree using Maximum Likelihood, once on the concate-
nation of 57 ribosomal proteins (7,175 sites), and another on the concatenation of SSU
and LSU rRNA (3,933 sites). The two trees are identical, except for the resolution of
the Pyrococcus three-species group; we used the tree based on the ribosomal proteins.
The third dataset consists of the ribosomal protein gene rps11 of a group of 47 flower-
ing plants, which was analyzed by Bergthorsson et al. [5]. This data set consists of 47
aligned DNA sequences, each with 456 sites. The authors analyzed the 3’ end of the
sequences separately; this part of the sequences contains 237 sites. The species tree was
reconstructed based on various sources, including the work of [29] and [24].

5.1 Results and Analysis

We evaluated the performance of the algorithms in terms of accuracy and speedup.
Since the running time of the exact algorithm for computing the parsimony score of
a phylogenetic network is affected by the number of trees that it considers inside the
network, we also plotted the average numbers of trees that the exact algorithm consid-
ers, so that we understand the gains in speed for the approximation algorithm, which
considers exactly one tree in all cases.

Fig. 4 shows the results of the 26 simulated datasets for networks with up to 6 HGT
edges. The results were collected from 1000 sampled valid networks for each case of the
multiple gene transfers. HGTs in each network are distributed differently. Overall, the
approximation algorithm is very accurate with the statistical mean being about 1% dif-
ferent in the parsimony scores computed, compared with the exact algorithm. All parsi-
mony scores computed by the approximation algorithm were within 3.5% of the optimal
scores. For the networks with less then 5 HGTs, the approximation algorithm achieves
about the same accuracy of the exact algorithm in most of the networks. The figure also
shows that the approximation algorithm is up to 70% faster than the exact algorithm,
with statistical mean around 32%. The improved execution time of the approximation
algorithm came from the fewer number of trees created for computing parsimony score.
Fig. 4 also shows the average number of trees that the exact algorithm considers. The
average number of trees created increases as the number of HGTs increases. For net-
works with 6 HGTs (simulated dataset), the average number of trees can be up to 2.

For the rubisco gene rbcL dataset, We tested networks with up to 8 HGTs. In each
case of the multiple gene transfers, we selected 500 valid networks with HGTs being
placed differently. As the results in Fig. 4 show, the approximation algorithm is almost
as accurate as the exact algorithm (within 0.5%; see the small boxes or the lower quartile
for 7-HGT case at the bottom). Very few outliers exist across different numbers of
HGTs. On the other hand, the approximation algorithm performs very efficiently. It
performs up to a factor of 7 faster than the exact algorithm. The statistical mean of the
improvement increases as the number of HGTs increases, with an exception in the case
of 8 HGTs, where the sampled networks are probably not distributed well enough.

Similar trends are observed with the other two biological datasets, as shown in Fig. 4.
The figures show that the statistical mean of the difference in accuracy is almost 0 in
all cases, which indicates that the approximation algorithm computes almost identical
scores as the exact algorithm, in most cases. The speedup factors, and their correlations

70 G. Jin et al.

Accuracy Speedup Avg. # Trees

The simulated dataset

1 2 3 4 5 6
0

1

2

3

A
cc

ur
ac

y
(%

)

Number of HGT edges
1 2 3 4 5 6

1

1.2

1.4

1.6

S
pe

ed
up

Number of HGT edges
1 2 3 4 5 6

1

1.5

2

2.5

Number of HGT edges

A
ve

ra
ge

 n
um

be
r

of
 tr

ee
s

The rbcL dataset

1 2 3 4 5 6 7 8
0

1

2

3

4

A
cc

ur
ac

y
(%

)

Number of HGT edges
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

S
pe

ed
up

Number of HGT edges
0 2 4 6 8

0

2

4

6

8

10

Number of HGT edges

A
ve

ra
ge

 n
um

be
r

of
 tr

ee
s

The rpl12e dataset

1 2 3 4 5 6
0

0.5

1

1.5

2

A
cc

ur
ac

y
(%

)

Number of HGT edges
1 2 3 4 5 6

0.6

0.8

1

1.2

1.4

S
pe

ed
up

Number of HGT edges
1 2 3 4 5 6

1

1.2

1.4

1.6

1.8

Number of HGT edges

A
ve

ra
ge

 n
um

be
r

of
 tr

ee
s

The rps11 dataset

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y
(%

)

Number of HGT edges
1 2 3 4 5 6 7

0.8

0.9

1

1.1

1.2

1.3

1.4

S
pe

ed
up

Number of HGT edges
0 2 4 6 8

1

1.1

1.2

1.3

1.4

Number of HGT edges

A
ve

ra
ge

 n
um

be
r

of
 tr

ee
s

Fig. 4. Results for the four datasets. Accuracy is computed as((MPapprox −
MPexact)/MPexact), and shown as percentage. Speedup is computed as the execution
time of the exact algorithm divided by the that of the approximation algorithm. The right column
shows the average number of trees created for computing parsimony by the exact algorithm.

to the numbers of trees the exact algorithm considers, are also shown, and they show
improvements up to a factor of 1.5. We expect that for larger datasets the gains in
performance (speedup) will be even more pronounced. If one hopes to detect HGT
events in large prokaryotic groups, for example, such a speedup is essential.

Fast Heuristic for Computing the Parsimony of Phylogenetic Networks 71

Acknowledgments

This work was supported in part by the Rice Terascale Cluster funded by NSF under grant
EIA-0216467 and a partnership between Rice University, Intel, and HP. Luay Nakhleh
was supported in part by the Department of Energy grant DE-FG02-06ER25734, the
National Science Foundation grant CCF-0622037, and the George R. Brown School of
Engineering Roy E. Campbell Faculty Development Award. Tamir Tuller was supported
by the Edmond J. Safra Bioinformatics program at Tel Aviv University.

References

[1] V. Bafna and V. Bansal. Improved recombination lower bounds for haplotype data. In
Proceedings of the Ninth Annual International Conference on Computational Molecular
Biology, pages 569–584, 2005.

[2] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undirected feed-
back vertex set problem. SIAM J. on Discrete Mathematics, 12:289–297, 1999.

[3] R. Bar-Yehuda. One for the price of two: A unified approach for approximating covering
problems. Algorithmica, 27:131–144, 2000.

[4] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex
cover problem. Annals of Discrete Mathematics, 25:27–46, 1985.

[5] U. Bergthorsson, K.L. Adams, B. Thomason, and J.D. Palmer. Widespread horizontal trans-
fer of mitochondrial genes in flowering plants. Nature, 424:197–201, 2003.

[6] C.F. Delwiche and J.D. Palmer. Rampant horizontal transfer and duplication of rubisco
genes in eubacteria and plastids. Mol. Biol. Evol, 13(6), 1996.

[7] W.F. Doolittle, Y. Boucher, C.L. Nesbo, C.J. Douady, J.O. Andersson, and A.J. Roger. How
big is the iceberg of which organellar genes in nuclear genomes are but the tip? Phil. Trans.
R. Soc. Lond. B. Biol. Sci., 358:39–57, 2003.

[8] J.A. Eisen. Assessing evolutionary relationships among microbes from whole-genome
analysis. Curr. Opin. Microbiol., 3:475–480, 2000.

[9] I.T. Paulsen et al. Role of mobile DNA in the evolution of Vacomycin-resistant Enterococ-
cus faecalis. Science, 299(5615):2071–2074, 2003.

[10] W. Fitch. Toward defining the course of evolution: minimum change for a specified tree
topology. Syst. Zool, 20:406–416, 1971.

[11] D. Gusfield and V. Bansal. A fundamental decomposition theory for phylogenetic networks
and incompatible characters. In Proceedings of the Ninth Annual International Conference
on Computational Molecular Biology, pages 217–232, 2005.

[12] M. Hallett, J. Lagergren, and A. Tofigh. Simultaneous identification of duplications and
lateral transfers. In Proceedings of the Eighth Annual International Conference on Com-
putational Molecular Biology, pages 347–356, 2004.

[13] J. Hastad. Some optimal inapproximability results. STOC97, pages 1–10, 1997.
[14] J. Hein. Reconstructing evolution of sequences subject to recombination using parsimony.

Mathematical Biosciences, 98:185–200, 1990.
[15] J. Hein. A heuristic method to reconstruct the history of sequences subject to recombina-

tion. Journal of Molecular Evolution, 36:396–405, 1993.
[16] D.S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing Com-

pany, 1997.
[17] D.H. Huson, T. Klopper, P.J. Lockhart, and M. Steel. Reconstruction of reticulate net-

works from gene trees. In Proceedings of the Ninth Annual International Conference on
Computational Molecular Biology, pages 233–249, 2005.

72 G. Jin et al.

[18] T.N.D. Huynh, J. Jansson, N.B. Nguyen, and W.K. Sung. Constructing a smallest refining
galled phylogenetic network. In Proceedings of the Ninth Annual International Conference
on Computational Molecular Biology, pages 265–280, 2005.

[19] R. Jain, M.C. Rivera, J.E. Moore, and J.A. Lake. Horizontal gene transfer in microbial
genome evolution. Theoretical Population Biology, 61(4):489–495, 2002.

[20] R. Jain, M.C. Rivera, J.E. Moore, and J.A. Lake. Horizontal gene transfer accelerates
genome innovation and evolution. Molecular Biology and Evolution, 20(10):1598–1602,
2003.

[21] G. Jin, L. Nakhleh, S. Snir, and T. Tuller. Efficient parsimony-based methods for phyloge-
netic network reconstruction. Bioinformatics, 23:e123–e128, 2006.

[22] G. Jin, L. Nakhleh, S. Snir, and T. Tuller. Inferring phylogenetic networks by the maximum
parsimony criterion: A case study. Molecular Biology and Evolution, 24(1):324–337, 2007.

[23] G. Jin, L. Nakhleh, S. Snir, and T. Tuller. On approximating the parsimony score of phylo-
genetic networks. Under review, 2007.

[24] W.S. Judd and R.G. Olmstead. A survey of tricolpate (eudicot) phylogenetic relationships.
American Journal of Botany, 91:1627–1644, 2004.

[25] M. Kimura. A simple method for estimating evolutionary rates of base substitutions through
comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16:111–120,
1980.

[26] C.R. Linder, B.M.E. Moret, L. Nakhleh, and T. Warnow. Network (reticulate) evolution:
biology, models, and algorithms. In The Ninth Pacific Symposium on Biocomputing (PSB),
2004. A tutorial.

[27] V. Makarenkov, D. Kevorkov, and P. Legendre. Phylogenetic network reconstruction ap-
proaches. Applied Mycology and Biotechnology (Genes, Genomics and Bioinformatics), 6,
2005. To appear.

[28] O. Matte-Tailliez, C. Brochier, P. Forterre, and H. Philippe. Archaeal phylogeny based on
ribosomal proteins. Molecular Biology and Evolution, 19(5):631–639, 2002.

[29] F.A. Michelangeli, J.I. Davis, and D.Wm. Stevenson. Phylogenetic relationships among
Poaceae and related families as inferred from morphology, inversions in the plastid genome,
and sequence data from mitochondrial and plastid genomes. American Journal of Botany,
90:93–106, 2003.

[30] B.M.E. Moret, L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun, and
R. Timme. Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 1(1):13–23, 2004.

[31] L. Nakhleh, G. Jin, F. Zhao, and J. Mellor-Crummey. Reconstructing phylogenetic net-
works using maximum parsimony. Proceedings of the 2005 IEEE Computational Systems
Bioinformatics Conference (CSB2005), pages 93–102, August 2005.

[32] L. Nakhleh, T. Warnow, and C.R. Linder. Reconstructing reticulate evolution in species:
theory and practice. In Proceedings of the Eighth Annual International Conference on
Computational Molecular Biology, pages 337–346, 2004.

[33] C.T. Nguyen, N.B. Nguyen, W.K. Sung, and L. Zhang. Reconstructing recombination
network from sequence data: The small parsimony problem. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (TCBB), 2006.

[34] A. Rambaut and N.C. Grassly. Seq-gen: An application for the Monte Carlo simulation
of DNA sequence evolution along phylogenetic trees. Comp. Appl. Biosci., 13:235–238,
1997.

[35] M. Sanderson. r8s software package. Available from http://loco.ucdavis.edu/r8s/r8s.html.
[36] D. Sankoff. Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics,

28:35–42, 1975.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 73–84, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Bootstrap Correspondence Analysis for Factorial
Microarray Experiments with Replications

Qihua Tan1,2,*, Jesper Dahlgaard3, Basem M. Abdallah4, Werner Vach5,
Moustapha Kassem4, and Torben A. Kruse1

1 Department of Biochemistry, Pharmacology and Genetics, Odense
University Hospital, Sdr. Boulevard 29, DK-5000, Odense C, Denmark

qihua.tan@ouh.fyns-amt.dk
2 Epidemiology Unit, Institute of Public Health, University of Southern Denmark

3 Department of Hematology, Aarhus University Hospital, Aalborg, Denmark
4 Department of Endocrinology, Odense University Hospital, Denmark
5 Department of Statistics, University of Southern Denmark, Denmark

Abstract. Characterized by simultaneous measurement of the effects of
experimental factors and their interactions, the economic and efficient factorial
design is well accepted in microarray studies. To date, the only statistical
method for analyzing microarray data obtained using factorial design has been
the analysis of variance (ANOVA) model which is a gene by gene approach and
relies on multiple assumptions. We introduce a multivariate approach, the
bootstrap correspondence analysis (BCA), to identify and validate genes that
are significantly regulated in factorial microarray experiments and show the
advantages over the traditional method. Applications of our method to two
microarray experiments using factorial have detected genes that are up or down-
regulated due to the main experimental factors or as a result of interactions.
Model comparison showed that although both BCA and ANOVA capture the
main regulatory profiles in the data, our multivariate approach is more efficient
in identifying genes with biological and functional significances.

1 Introduction

As a high-throughput technique, microarray capable of simultaneously measuring
mRNA levels for thousands of genes is becoming an increasingly important tool for
researchers in biomedical science. At the same time, interpreting the large amount
of data produced in microarray experiments imposes a major challenge to
bioinformaticians (Lander, 1999). Among the major issues in data analysis is
identifying genes that are regulated in a biological process (for example cell cycle,
treatment response, disease development) in high dimensional microarray
experiments. This is especially challenging for microarray studies using complex
experiment designs due to the intricate relationships both between and within the
multiple genetic and experimental factors including interactions which can not be
predefined.

* Corresponding author.

ă

74 Q. Tan et al.

Factorial experiment design (FED), characterized by simultaneous measurement of
the effects of multiple experimental factors (the main effects) and their interactions, is an
economic yet efficient complex design popular in use in biomedical studies (Shaw et al.,
2002). The nice features of FED have also made it well accepted in microarray
experiments (Wildsmith et al., 2001; Yang and Speed, 2002; Churchill, 2002; Glonek
and Solomon, 2004). At the same time, statistical methods that take into account the
experimental complexity are demanding for dealing with data produced in factorial
microarray experiments. Kerr et al. (2000) and Pavlidis (2003) applied the analysis of
variance model (ANOVA) to factorial microarray data using the parametric linear
regression approach assuming (1) normality in the log intensity of gene expressions and
(2) linear relationship between log intensity and the effects of main experimental factors
as well as their interactions. In their approaches, each gene is analyzed separately and
statistical procedures applied to correct for multiple testing. As usual, multiple replicates
are required to ensure model identifiability.

The singular value decomposition (SVD) (Alter et al., 2000) and SVD-based multi-
variate statistical methods, for example, principal components analysis (Holter et al.,
2000; Wall et al. 2003) and correspondence analysis (CA) (Fellenberg et al., 2001;
Tan et al., 2004; Baty et al. 2006) have been applied in analyzing multidimensional
microarray data. Although such exploratory methods can be used for dimension
reduction and for pattern discovery through data visualization, validity of the clusters or
identified genes has rarely been examined. In another development, computer intensive
resampling methods such as bootstrap (Efron, 1979) are expanding their uses in
microarray studies (Kerr et al, 2000; Kerr and Churchill, 2001; Ghosh, 2002; Tan et al.
2004) due to their non-parametric nature. Recently, the bootstrap resampling method
has been applied in constructing confidence intervals and in making statistical
inferences (Efron, 1981; Bhamre et al. 2000; Wood, 2005). By bootstrapping the gene
contributions on the reduced dimensions, we introduce a novel bootstrap
correspondence analysis (BCA) by combining the bootstrap resampling method with
CA to identify and validate differentially expressed genes in factorial microarray
experiments. Application of our new approach is illustrated by analyzing two factorial
microarray datasets from stem cell and breast cancer studies. Results from our analysis
will be compared with that from ANOVA to show the advantages of our approach over
the traditional method.

2 Methods

2.1 Correspondence Analysis

In microarray experiments using a factorial design, we are actually facing a
sophisticated situation where we are interested not only in the effects of the multiple
factors but also in the effects of their interactions. The idea of applying CA to FED
data is that main effects of the multiple factors together with their interactions which
dominate the variance in the data can be captured by the reduced dimensions in the
transformed data space.

Suppose in a factorial microarray experiment, there are two experimental factors A
and B with p levels in A and q levels in B. Then there will be pxq hybridizations each

 A BCA for Factorial Microarray Experiments with Replications 75

representing an interactive variable (Clausen, 1988) or combination of experimental
factors in the design. If, after gene filtering, we have a total of n genes, the data can be
summarized by a large nx(pxq) matrix with n stands for the number of rows (genes)
and pxq for the number of columns (hybridizations or interactive variables). To carry
out CA, we divide each entry in the matrix by the total of the matrix so that the sum
of all the entries in the resulted matrix equals 1. We denote the new matrix by P and

its elements by ijkp (i stands for the genes from 1 to n, j for the levels of factor A

from 1 to p and likewise, k for the levels of factor B from 1 to q). In matrix P, the sum

of row i, ∑∑=
j k

ijki pp . , is the mass of row i and the sum of the column

representing the interactive variable AjBk, ∑=
i

ijkjk np. , is the mass of that column.

With the row and column masses, we derive a new matrix C with elements
'' /)(ijkijkijkijk pppc −= where jkiijk ppp ..

' = is the expected value for each

element in matrix P. By submitting matrix C to SVD, we get 'VUC Λ= where U is

the eigenvectors of 'CC , V is the eigenvectors of CC ' , Λ is a diagonal matrix

containing the ranked eigenvalues of C, lλ (l=1, 2, ….pxq). Since the total inertia

∑
l

l
2λ equals the sum of 2

ijkc in C, the major variance in the original data is captured

by the dimensions corresponding to the top elements in Λ.
One big advantage of CA is that, we can simultaneous project genes and interactive

variables into a new space with the projection of gene i on axis l calculated as

./ iillil pug λ= where ilu is the i-th row and the l-th column in U, and similarly

the projection of AjBk along axis l is jkjklljkl pvh ./λ= where jklv is the element

in the l-th column in V that corresponds to AjBk. In practice, a biplot (Gabriel and
Odoroff, 1990) is used to display the projections. The biplot is very useful for
visualizing and inspecting the relationships between and within the genes and the
interactive variables. In the biplot, genes projected to a cluster of interactive variables
associated with one experimental factor are up-regulated due to that factor.
Especially, genes projected to a single or standing-alone interactive variable are
highly expressed as a result of interaction between the corresponding main factors. As
the inertia along the l-th axis can be decomposed into components for each gene,

i.e. ∑=
i

ilil gp 2
.

2λ , we can calculate the proportion of the inertia of the l-th axis

explained by the i-th gene as, 22
. / liliil gpac λ= which is the absolute contribution

of the i-th gene to the l-th axis. The sum of ilac for a group of selected genes stands

for the proportion of the total variance explained by these particular genes. If all the n
genes are randomly distributed along the axis, the null contribution (random mean) by
each gene would be expected as n/1 . The random mean contribution will be used for
significance inferences for the observed gene contribution in the next section.

76 Q. Tan et al.

2.2 Non-parametric Bootstrapping

Although genes with large contribution are highly regulated by the experimental
factors and their interactions represented by the top dimensions in CA, directly
picking up genes with large contribution ignores variability in each of the estimated
contributions and is thus unreliable. Ghosh (2002) introduced a resampling method to
SVD analysis of time-course data to bootstrap the variability of the modes that
characterize the time-course patterns in microarray data. Here we combine non-
parametric bootstrap with CA to assess the distribution of the estimated gene
contributions to the leading dimensions that feature the effects of main factors as well
as the effects arising from their interactions and make statistical inference based on
these distributions. When there are w replicates available, we randomly pick up with
replacement w arrays for each interactive variable to form a bootstrap sample of gene
expression values which is of the same size as the original sample. The bootstrap
distributions of the contributions on a dimension by each gene are obtained by
repeating the bootstrapping for B times. Based on the distributions, we obtain the
bootstrap p-value for comparing the estimated contributions with the random mean as

∑
=

≤≡
B

t
ot BacacIp

1

/)(where I(·) is an indicator function, act is the absolute

contribution estimated for each gene in bootstrap sample t and aco is the mean random
contribution. Here the p-value is obtained by comparing the bootstrap distribution of
the estimated contribution by each gene to the random mean with a null hypothesis
that the mean of the estimated gene contribution is not higher than the random mean
(aco). Note that since we are restrictively resampling the replicate arrays for each
interactive variable, the functional dependency among the genes are preserved in the
bootstrap samples.

2.3 The Analysis of Variance Model

We also analyze the same data using the existing parametric approach, i.e. ANOVA
model, with aim at comparing the performances of the two methods. In the analysis,
we fit the expression level of a gene (E) as a linear function of the cell line effect (C),
vitamin D treatment effect (D) and their interaction (C⋅D) (Pavlidis, 2003), i.e. we fit

εμ +⋅+++= DCDCE

where μ is the mean expression level of the gene, ε is the random error. In this model,
in addition to the linear assumption, the main as well as the interaction effects are
assumed to be independent; the random error or the residual ε is normally distributed
which is to say that E has a normal distribution. Note that for each of the genes, the
model independently tests the main effects and their interaction.

2.4 Functional Analysis of Significant Genes

We apply the EASE software (http://david.niaid.nih.gov/david/ease.htm) to func-
tionally classify and to conduct category over-representation analysis (COA) of the
differentially expressed genes. EASE calculates the one-tailed Fisher’s exact

 A BCA for Factorial Microarray Experiments with Replications 77

probability for over-representation of a functional category by using the Gaussian
hypergeometric probability distribution of randomly sampling a given number of
genes and observing a specific number belonging to the classification (Hosack et al.
2003). COA is applied to significant genes identified from BCA and ANOVA with
aim at comparing their performances in producing meaningful results with biological
significances.

3 Applications

3.1 Stem Cell Data

We use data from a microarray experiment (using Affymetrix HG-U133A 2.0 chips
each containing 22,000 genes) on stem cells conducted in our lab. In the experiment,
two lines of human mesenchymal stem cells (hMSC), telomerase-immortalized
hMSC (hMSC-TERT) and hMSC-TERT stably transduced with the full length human
delta-like 1 (Dlk1)/Pref-cDNA (hMSC-dlk1), were treated with vitamin D to examine
the effects of Dlk1, vitamin D and their interaction on hMSC growth and differentia-
tion and to look for genes that are differentially expressed in the experiment. The
experiment was done using a 2x2 factorial design. Twelve hybridizations in total were
conducted with each of the four interactive variables in triplicates: hMSC-TERT
untreated by vitamin D or tert-control (designated as tC), hMSC-TERT treated with
vitamin D (tD), hMSC-dlk1 untreated with vitamin D or dlk-control (dC), hMSC-dlk1
treated with vitamin D (dD). The data can be requested by contacting: babdallah@
health.sdu.dk. The raw data (at probe level) were normalized using the invariant-set
normalization method and the intensities for the probes in each probe-set summarized
using the model-based gene expression indexes (Li and Wong, 2001a,b) by applying
the free dChip software for Affymetrix arrays (http://www.biostat.harvard.edu/
complab/dchip). Finally, genes are filtered by dropping those whose expressions
failed to vary across the hybridizations or arrays (standard deviation/mean<0.2) and
whose expression index is less than 20 in any of the arrays which resulted in 3,381
genes for subsequent analyses.

The biplots from the correspondence analysis of our stem cell data is shown in
Figure 1 where projections of both the genes and the four combinatory or interactive
variables (between cell lines and vitamin D treatments, the suffix number indicates
replicate) along the first dimension or axis are plotted against that along the second
(Figure 1A) and along the third dimension against the fourth (Figure 1B). In Figure 1A
the first axis, which accounts for 57.92% of the total variance, separates the two cell
lines. It is interesting to see that both tC and tD are projected to the left panel and
closely coordinated near the first axis while both dC and dD are projected to the right
but with a large distance spanning them. It is easy to find that the second axis
(accounting for 24.24% of the total variance) mainly represents the effect of vitamin D
treatment in the hMSC-dlk1 cell line. The overall information carried by Figure 1A is
that (1) there are genes that are differentially regulated in the two lines (main effect);
(2) vitamin D treatment has only trivial effect in the hMSC-TERT cell line; (3) vitamin

78 Q. Tan et al.

D treatment effect is mainly observed in the hMSC-dlk1 cell line (a cell line specific
effect or interaction). Unlike Figure 1A, inspection on Figure 1B does not reveal any
biological significance. This is understandable because the third and fourth axes
explain only 5.99% and 4.94% of the total variance. Since the variance in the data is
overwhelmingly dominated by the first and the second axes, Figure 1 reveals that
significance in the experiment is represented firstly by genes differentially expressed in
the two cell lines, and secondly by genes regulated in response to vitamin D treatment
in the hMSC-dlk1 cell line. In addition, note that our gene filtering procedure has left a
hole in the cloud of genes in the center of Figure 1A.

Fig. 1. Biplots showing the projections by both genes and the interactive variables (samples) on
the first against that on the second axes (1A) and the third against the fourth axes (1B)

We use the described bootstrap procedure to obtain the empirical distributions of
gene contribution on the first two axes and to make significance inferences by
comparing with the mean random contribution (1/3,381=0.0003). By setting B to
100,000, we find highly significant genes (p<0.00001) that contribute to the first (352
genes) and the second (221 genes) axes. These genes explain 56.07% and 42.5% of
the total variance along each of the two axes. Figure 2 is a heatmap displaying the
expression profiles for genes highly significantly contributing to the first (2A) and the
second (2B) axes. Obviously Figure 2A has genes showing differential expressions in
the two cell lines. Consistent with Figure 1, the upper gene cluster in Figure 2A
(indicated by U) are strikingly highly expressed in the hMSC-dlk controls. Figure 2B
is mainly characterized by genes up-regulated in the vitamin D treated hMSC-dlk
cells (upper gene cluster, U), in the hMSC-dlk controls (middle gene cluster, M) and
genes down-regulated in the vitamin D treated hMSC-dlk cells (lower gene cluster,
L), all of which representing interaction effects. From Figure 2B, we can also see that
transcriptional activities in the hMSC-TERT cell line are unaffected by vitamin D
treatment (right panel of Figure 2B) as indicated by Figure 1A.

 A BCA for Factorial Microarray Experiments with Replications 79

Fig. 2. Heatmaps showing the differential gene expression profiles for the BCA selected
significant genes regulated by the cell line effect (2A) and by vitamin D treatment (2B)

We continue our analysis on the same data but using the ANOVA model as
described in the method section. The analysis detected highly significant genes
(p<0.00001) that are differentially expressed between the two cell lines (572 genes),
between vitamin D treated and untreated groups (127 genes) and as a result of
interaction (77 genes). The selected 572 significant genes showing cell line effect
contribute to 53.13% and 25.26% of the total variances along the first two axes in
BCA. The 127 genes regulated by vitamin D treatment contribute to 10.13% and
17.93%, and the 77 genes exhibiting interaction effect contribute to 9.16% and 10.3%
of the total variance over the first two axes respectively. Overall, differentially
expressed genes in the two cell lines identified by the ANOVA model mainly
contribute to the first axis and significant vitamin D regulated genes to the second
axis. The 77 interaction regulated genes contribute to the first and the second axes
nearly equally but with only a small amount. Note that, there are 62 out of the 127
vitamin D affected genes (49%) and 40 out of the 77 interaction affected genes (52%)
overlap with the genes showing cell line effect in ANOVA. Also among the 77
interaction regulated genes, 51 overlap with the 127 vitamin D affected genes (66%).

80 Q. Tan et al.

In contrast, among the 352 and the 221 genes that significantly contribute to the first
two axes in BCA, only 49 overlapped.

Finally we conduct a functional analysis of the top significant genes differentially
regulated in the two cell lines using EASE. To do that, we select 100 significant genes
with highest contribution to the first axis in BCA and 100 genes with highest
significance (p<0.0000001) on the cell line effect in ANOVA. There are 39 genes
overlap in the two gene lists. For these genes, EASE identified 69 functional
categories for the genes from BCA and 84 categories for genes from ANOVA
indicating a higher functional diversity in the ANOVA gene list. COA found a total of
13 functional categories with p<0.05 in the BCA gene list while only one significant
category (receptor binding, p=0.007) in the ANOVA gene list. In Table 1, we show
the Bonferroni corrected p-values for the 13 functional categories. The results indicate
that significant genes detected by BCA are biologically more informative and
meaningful than that found by ANOVA.

Table 1. Functional analysis of top 100 significant genes showing cell line effect discovered by
BCA and ANOVA

Bonferroni corrected p-value Functional category of genes
BCA ANOVA

Response to external stimulus 8.63e-006 9.11e-001
Cellular process 2.40e-004 8.28e-001
Receptor binding 9.35e-004 6.46e-003
Cell communication 3.10e-003 1
Response to chemical substance 4.01e-003 1
Inflammatory response 8.85e-003 1
Innate immune response 1.13e-002 1
Response to pest/pathogen/parasite 1.15e-002 1
Response to abiotic stimulus 1.15e-002 1
Response to biotic stimulus 1.60e-002 1
Response to wounding 1.63e-002 1
Cytokine activity 1.85e-002 5.85e-002
Signal transduction 4.18e-002 1

3.2 Breast Cancer Data

As an independent example, we further apply our approach to a breast cancer
dataset using the factorial design. The data was analyzed by Scholtens et al.
(2004) using linear modeling. The data we use here is provided by factDesign
which is a R package for analyzing factorial experiment data in Bioconductor
(http://www.bioconductor.org). The experiment was aimed at assessing the effect of
estrogen on gene expression in ER+ breast cancer cells over time. The four
combinations of the two experimental factors (estrogen: exposed and unexposed;
time: 10 and 48 hours) represents a typical 2x2 factorial experiment design. The data
available from factDesign contains expression measurements for 500 genes in 8
samples (2 replicates in each of the combinations). Here we apply BCA to the same
data to look for genes affected by the main and the interaction effects. In Figure 3, we
show that the data is characterized by the main effects of time (T for 48 and t for 10
hours) presented by the first axis and estrogen (E for exposed and e for unexposed) by

 A BCA for Factorial Microarray Experiments with Replications 81

Fig. 3. Biplot showing the CA analysis of estrogen data. The data is characterized by the main
effects of time (T for 48 and t for 10 hours) presented by the first axis and estrogen (E for
exposed and e for unexposed) by the second axis (the number indicates replicates).

Table 2. Comparison of EASE scores for the two 27 gene sets identified by BCA and ANOVA

EASE score Bonferroni corrected p-
value

Functional category of
genes

BCA ANOVA BCA ANOVA
Nucleus 1.00e-003 5.01e-001 2.51e-001 1
Nucleobase\, nucleoside\,
nucleotide and nucleic
acid metabolism

2.77e-003 4.58e-001 6.92e-001 1

Obsolete cellular
component

8.07e-003 4.05e-001 1 1

Transcription from Pol II
promoter

8.69e-003 4.13e-001 1 1

Chromosome 9.45e-003 2.31e-001 1 1

the second axis (the number indicates replicates) with the first two axes accounting
for 78.61% of the total variance in the data. It is interesting to see that, Figure 3 also
shows that there are genes specifically regulated in the estrogen unexposed samples at
10 hours (down-right panel) and at 48 hours (down-left panel) which are interaction
effects between time and estrogen exposure. Data analysis using factDesign in its
manual identified 27 genes that are differentially regulated by estrogen after both 10
and 48 hours. By applying BCA (B=1,000), we identified 31 genes as showing
estrogen effect (p<0.05). For comparison purpose, we pick up the top 27 genes with
estrogen effect from BCA (equivalent to p<0.02). Of the 27 selected genes by each
method, nearly half overlap (13 genes). The 27 genes selected by BCA and by
factDesign are submitted to EASE for functional analysis. The results are shown in
Table 2 where no functional category is significant after Bonferroni correction for

82 Q. Tan et al.

genes selected by factDesign while 2 categories from BCA genes are still significant
or nearly significant. Table 2 also presents the EASE score which can be regarded as
an uncorrected p-value. Again, the results indicate that BCA genes are more
significantly presented into functional categories than genes selected by factDesign.

4 Discussion

We have presented a bootstrap correspondence analysis for analyzing high-
dimensional microarray data produced in factorial experiments. Application to stem
cell and breast cancer data using FED has shown that the method is capable of
capturing both the main effects as well as the interaction effects. Our comparative
study shows that BCA produces more meaningful results (or gene list) that can be
interpreted to significant biological schemes (functional categories) than the
traditional ANOVA model. Our approach is characterized by the following features:

1. As a non-parametric method, it is free from the assumptions in the parametric
ANOVA model (i.e. normality of gene expression and linear relationship between the
level of gene expression and the covariates). Furthermore, our non-parametric
bootstrap procedure does not rely on any parametric distribution in making
significance inferences.

2. As a multivariate approach, correspondence analysis simultaneously casts and
coordinates the genes and the samples onto new dimensions and calculates their
contributions. This operating characteristic is again in contrast with the traditional
ANOVA model which analyzes each gene separately and ignores the integrated and
complex nature in functional genomics. Moreover, in our bootstrap resampling
procedure, the inherent functional dependency among the genes is kept intact. As a
result, more biologically interpretable results are produced by BCA as compared with
ANOVA (Tables 1 and 2).

3. As an unsupervised approach, our method identifies genes significantly
contributing to the top dimensions which dominate the variances in the data. As the
observed variances can be ascribed to experimental factors as well as their
interactions, important genes can be captured by BCA based on their contributions to
the major dimensions. This is further in contrast with and advantageous over the
supervised parametric ANOVA model because, in reality, a black-and-white assertion
may not always hold in describing a biological phenomenon. The very high
proportion of overlapping significant genes between the factors (including interaction)
is a good example. Such a situation also inflates the multiple testing problem which is
a big issue in microarray data analysis.

4. As a data visualization method, correspondence analysis graphically displays the
intricate relationship between the genes and the experimental factors (Fellenberg et al.
2001) through the use of a biplot. As such, the combination of bootstrap method with
CA allows investigators to integrate data visualization with significance inferences and
to focus on important interactive variables with more efficiency. For example, from
Figure 1, one can clearly see that vitamin D treatment only affects gene expression

 A BCA for Factorial Microarray Experiments with Replications 83

in the hMSC-dlk1 cell line and has no effect in the hMSC-TERT cell line. The cell
line effect on gene expression is mainly dominated by genes differentially expressed
between the hMSC-TERT cells and the vitamin D treated hMSC-dlk1 cells.
Meanwhile, the vitamin D treatment effect is purely characterized by the differential
gene expression in the hMSC-dlk1 cell line conditional on vitamin D treatment. In
this case, forcing the model to estimate a pure cell line or treatment effect is
inappropriate. Such biased modeling can be responsible for the high overlapping
proportion in the lists of significant genes identified by ANOVA and for their low
representation in functional analysis (Table 1).

5. As a dimension reduction approach, extending BCA to high order FED
microarray data is just straight forwards without sacrificing too much for the
increased number of parameters as in the ANOVA model. Also, the same procedure
can be applied to other types of microarray experiment design, for example, the case-
control or time-course studies, to look for important genes that are of biological
significances.

Acknowledgements

This work was jointly supported by the Danish Biotechnology Instrument Center
(DABIC) under the biotechnological research program of the Danish Research
Agency; the Clinical Institute at OUH; and the Danish Center for Stem Cell Research.

References

Alter O., Brown P.O., Botstein D. (2000) Singular value decomposition for genome-wide
expression data processing and modeling. Proc Natl Acad Sci U S A., 97, 10101-10106.

Bhamre S., Nuzzo R.L., Whitin J.C., Olshen R.A. Cohen H.J. (2000) Intracellular reduction of
selenite into glutathione peroxidase. Evidence for involvement of NADPH and not
glutathione as the reductant. Molecular and Cellular Biochemistry, 211, 9-17.

Baty F., Facompre M., Wiegand J., Schwager J., Brutsche M.H. (2006) Analysis with respect to
instrumental variables for the exploration of microarray data structure. BMC Bioinformatics,
7, 422.

Churchill G.A. (2002) Fundamentals of experimental design for cDNA microarrays. Nat
Genet., 32, S490-S495.

Clausen S.E. (1988) Applied correspondence analysis: An introduction. Sage publications.
Efron B. (1979) Bootstrap methods: Another look at the jackknife. Ann. Statist. 7, 1-26.
Efron B. (1981) Nonparametric estimates of standard error: The Jackknife, the Bootstrap and

Other Methods. Biometrika, 68, 589-599.
Fellenberg K., Hauser N.C., Brors B., Neutzner A., Hoheisel J.D., Vingron M. (2001)

Correspondence analysis applied to microarray data. Proc Natl Acad Sci U S A., 98, 10781-
10786.

Gabriel K.R., Odoroff C.L. (1990) Biplots in biomedical research. Stat Med., 9, 469-485.
Ghosh D. (2002) Resampling methods for variance estimation of singular value decomposition

analyses from microarray experiments. Funct Integr Genomics., 2, 92-97.
Glonek G.F., Solomon P.J. (2004) Factorial and time course designs for cDNA microarray

experiments. Biostatistics, 5, 89-111.

84 Q. Tan et al.

Holter N.S., Mitra M., Maritan A., Cieplak M., Banavar J.R., Fedoroff N.V. (2000)
Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc
Natl Acad Sci U S A., 97, 8409-8414.

Hosack D.A., Dennis Jr G., Sherman B.T., Lane H.C., Lempicki R.A. (2003) Identifying
biological themes within lists of genes with EASE. Genome Biology, 4, R70.

Kerr M.K., Martin M., Churchill G.A. (2000) Analysis of variance for gene expression
microarray data. J Comput Biol., 7, 819-837.

Kerr M.K., Churchill G.A. (2001) Bootstrapping cluster analysis: assessing the reliability of
conclusions from microarray experiments. Proc Natl Acad Sci U S A., 98, 8961-8965.

Lander E.S. (1999) Array of hope. Nat Genet. 21, S3-S4.
Li C., Wong W.H. (2001a) Model-based analysis of oligonucleotide arrays: model validation,

design issues and standard error application. Genome Biology, 2, research0032.1-0032.11
Li C., Wong W.H. (2001b) Model-based analysis of oligonucleotide arrays: expression index

computation and outlier detection. Proc Natl Acad Sci U S A. 98, 31-36.
Pavlidis P. (2003) Using ANOVA for gene selection from microarray studies of the nervous

system. Methods., 31, 282-289.
Scholtens D., Miron A., Merchant F.M., Miller A., Miron P.L., Iglehart D., Gentleman R.

(2004) Analyzing factorial designed microarray experiments. Journal of Multivariate
Analysis, 90, 19-43.

Shaw R., Festing M.F., Peers I., Furlong L. (2002) Use of factorial designs to optimize animal
experiments and reduce animal use. ILAR J., 43, 223-232.

Tan Q., Brusgaard K., Kruse T.A., Oakeley E., Hemmings B., Beck-Nielsen H., Hansen L.,
Gaster M. (2004) Correspondence analysis of microarray time-course data in case–control
design, Journal of Biomedical Informatics, 37, 358-365.

Wall M.E., Rechtsteiner A., Rocha L.M. (2003) Singular value decomposition and principle
component analysis. In A Practical Approach to Microarray Data Analysis (D.P. Berrar, W.
Dubitzky, M. Granzow, eds.) Kluwer: Norwell, MA. pp.91-109.

Wildsmith S.E., Archer G.E., Winkley A.J., Lane P.W., Bugelski P.J. (2001) Maximization of
signal derived from cDNA microarrays. Biotechniques, 30, 202-208.

Wood M. (2005) Bootstrapped confidence intervals as an approach to statistical inference.
Organizational Research Methods, 8, 454-470.

Yang Y.H., Speed T. (2002) Design issues for cDNA microarray experiments. Nat Rev Genet.,
3, 579-588.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 85–96, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Clustering Algorithms Optimizer: A Framework for
Large Datasets

Roy Varshavsky1,*, David Horn2, and Michal Linial3

1 School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
royke@cs.huji.ac.il

2 School of Physics and Astronomy, Tel Aviv University, Israel
3 Deptartment of Biological Chemistry, Institute of Life Sciences, The Hebrew University of

Jerusalem, Israel

Abstract. Clustering algorithms are employed in many bioinformatics tasks,
including categorization of protein sequences and analysis of gene-expression
data. Although these algorithms are routinely applied, many of them suffer from
the following limitations: (i) relying on predetermined parameters tuning, such
as a-priori knowledge regarding the number of clusters; (ii) involving
nondeterministic procedures that yield inconsistent outcomes. Thus, a
framework that addresses these shortcomings is desirable. We provide a data-
driven framework that includes two interrelated steps. The first one is SVD-
based dimension reduction and the second is an automated tuning of the
algorithm’s parameter(s). The dimension reduction step is efficiently adjusted
for very large datasets. The optimal parameter setting is identified according to
the internal evaluation criterion known as Bayesian Information Criterion
(BIC). This framework can incorporate most clustering algorithms and improve
their performance. In this study we illustrate the effectiveness of this platform
by incorporating the standard K-Means and the Quantum Clustering algorithms.
The implementations are applied to several gene-expression benchmarks with
significant success.

Abbreviations and Keywords: Bayesian Information Criterion (BIC), Quantum
Clustering (QC), Optimal K-Means (OKM), Optimal Quantum Clustering
(OQC), Principal Component Analysis (PCA), Singular Value Decomposition
(SVD).

1 Introduction1

In the field of genomics and proteomics, as well as in many other disciplines,
categorization is a fundamental challenge. Categorization is defined as systematically
arranging elements (data-points) into specific groups. Clustering, being an unsupervised
learning problem, may be regarded as a special case of categorization with unknown

* Corresponding author.
1 Availability and Supplementary material: The framework has been implemented in

MATLAB (Version 6.5), and is freely available at http://adios.tau.ac.il/compact/framework

ă

86 R. Varshavsky, D. Horn, and M. Linial

labels (for further details see [1, 2]). Some algorithms such as CLICK [2], CTWC [3, 4]
and CAST [5] were primarily developed for large sets of biological data while others
were adopted from other fields (e.g., K-Means, Fuzzy C-means [6], Agglomerative
Hierarchical Clustering, Self Organized Maps). One of the algorithms that we will
expand on is Quantum Clustering (QC), the effectiveness of which has been
demonstrated on gene-expression data [7, 8].

In large scale gene-expression tasks, clustering algorithms are useful for diagnosis
of different samples (e.g., differentiating sick and healthy tissues, associating tissues
with subtypes of a disease) as well as revealing functional classes of genes among the
thousands often used in experimental settings [9].

Methods for collecting expression levels on a genome-wide level have been rapidly
improving, leading to increased amounts of data to be analyzed. Additionally, much
of the biological data is represented in high dimensions. Some clustering algorithms
do not perform well when applied to large high-dimensional datasets. In particular,
several model-based algorithms that are shown to be very efficient on limited size
datasets [10], are found unfeasible when large scale datasets arc introduced (for
computational complexity discussion see [11] and supplementary). The hope is that
efficient preprocessing will address the task of computational feasibility while
efficiently remove noise, thus allowing exposure of meaningful features of the data.

It would be presumptuous to propose one preprocessing protocol that works for all
kinds of data. Different preprocessing methods are based on averaging and variance
standardization, excluding genes with low variance between conditions [2], PCA,
Fourier transforms [12], and more.

One fundamental preprocessing direction is dimension reduction. Ding et al. claim
that the dimension should be correlated with the expected number of clusters [13].
However, this may not hold for real biological data, since this argument is based on a
model in which data are generated by independent Gaussian distributions. Moreover,
in many cases the number of clusters is unknown.

Several efforts to develop efficient and accurate filtering schemes and compression
tools have been proposed [14, 15]. A routine scheme for gene-expression data (including
commercial analysis tools provided by various platforms) is to filter elements in a
supervised manner. For example, genes whose variance is below a certain threshold for
different experimental conditions are discarded. Obviously, such filtering is often biased
and misses a genuine property of the data.

In addition to preprocessing, clustering algorithms usually require selecting a set of
parameters, thus turning each application into a set of subjective choices. If no prior
knowledge is available, assessing the correct number of clusters (e.g., as required by
the K-Means algorithm), is almost impossible. This choice is avoided by hierarchical
algorithms that propose some O(N) possible partitions2 of varying sizes, and the
decision on the best partition is user determined.

Several of the most successful algorithms in the field of gene-expression do not
explicitly accept the number of clusters K as an input; however this number is directly
derived from their parameters. Amongst them are (i) the CAST algorithm [5], in
which the affinity threshold determines the number of clusters, (ii) the CLICK

2 In the paper N refers to the number of elements in the data, and K denotes the number of

clusters.

 Clustering Algorithms Optimizer: A Framework for Large Datasets 87

algorithm [2], in which the homogeneity value determines K by controlling the
kernels and the definition of singletons. (iii) The CTWC algorithm [4] where some
parameters (such as stability threshold and minimal group size) determine K, and (iv)
QC [7] where the Parzen window size (σ) determines the number of clusters.

Moreover, algorithms such as K-Means, Fuzzy C-Means and others, being
nondeterministic, are inconsistent as they depend on starting points and other
stochastic factors. Some methods such as averaging clustering results, following a
majority rule, or applying other heuristics [16] have been suggested.

Since different results may be obtained by the numerous clustering algorithms that
exist, evaluation of this variety is an essential step of the analysis [17, 18], and a
reliable method is required. In this study we present a framework to overcome the
pitfalls described above by (i) a generic method for preprocessing and (ii) a measure
based on an internal criterion that can be incorporated in any clustering algorithm.

2 Methods

Our proposed framework includes two interrelated steps: preprocessing and parameter
tuning. We outline the rationale of the method and describe its implementation on two
different kinds of clustering algorithms.

2.1 Preprocessing

Singular Value Decomposition (SVD) serves as a good and efficient preprocessing
step and is useful for dimension reduction [8, 12, 19].

SVD represents any real matrix X as a product X=UΣVT, where U and V are
orthonormal matrices and Σ is a diagonal matrix whose eigenvalues si (singular
values) appear in decreasing order. The columns of U and V define two independent
vector spaces. This decomposition is unique (up to overall phases) and holds for any
real matrix of size m by n. The number of non-zero entries in Σ equals the rank of X.
A common application of SVD is dimension reduction: this is performed by replacing
Σ with a truncated version where only a small number (r) of leading singular values is
retained and the rest are replaced by zeros. The resulting reconstructed matrix X’
(X’=UΣ’VT), is the best least-mean-squares approximation of X obtainable by any
matrix of rank r.

We focus our attention on the matrices U and V. In a problem where X is a matrix
of m genes by n samples, U and V form representations of gene and sample spaces
respectively. It is within these spaces, now reduced to rank r that we look for cluster
structures [8].

How does one choose the rank r of the truncated space? The singular values si have
the meaning of standard deviations. Defining the relative variance Vi of component i
(see Fig 1A and supplementary), one may come up with several principles for
truncation.

2 2

1

/
N

i i j
j

V s s
=

= ∑ (1)

88 R. Varshavsky, D. Horn, and M. Linial

Wall [12] suggested the following guidelines: (1) ignore components beyond the point
where the cumulative relative variance becomes larger than a certain threshold (e.g.
85%), (2) ignore components with relative variance below a certain threshold (e.g.
1%), or (3) stop when a sudden decrease is observed in the relative variance graph.
We suggest using SVD- entropy [19] as a guide for choosing among the possibilities.

E varies between 0 and 1. E = 0 corresponds to an ultra ordered dataset that can be
explained by a single eigenvector (problem of rank 1) and E = 1 stands for a
disordered matrix in which the spectrum is uniformly distributed. We find that in
gene-expression datasets, entropy values are higher than 0.5, reflecting a disordered
distribution. If E is very low, a sudden decrease in the spectrum is a good indicator for
the best r values. Otherwise we prefer criteria (1) and (2).

Truncation to dimension r is equivalent to projecting the vectors of our problem
(e.g. the genes or samples vectors) onto an r-dimensional subspace. The vectors, as
defined in this subspace, have different norms. It is preferable to renormalize the
vectors, i.e. project them onto the unit hyper-sphere in r-space. This approach
considers similarity between vectors in the truncated space in terms of the cosine of
the angle between them, and is consistent with the standard application of Latent
Semantic Analysis (LSA) [20]. It is worth mentioning that, although we suggest using
SVD, other truncation methods may be used (e.g., Fourier transforms, PCA).

2.2 Parameter Tuning

The validity and reliability of clustering algorithms may be questioned on two
grounds: (1) subjectivity, i.e. using supervised criteria in the parameter setting and (2)
inconsistency, i.e. obtaining different results upon repeated application of
nondeterministic algorithms.

In order to reduce these pitfalls to a minimum, we suggest using an internal
criterion. The criterion we choose to adopt is the Bayesian Information Criterion
(BIC). Fraley and Raftery [21] developed it in a model-based analysis that assumed
the data to be generated by a mixture of underlying normal probability distributions.
The parameters of the underlying distributions were set by an EM algorithm. The BIC
criterion is used to evaluate the number of clusters and the quality of the suggested
clustering. BIC is defined as follows:

ˆ2 (,) log() 2log (|)M MBIC l x m N p x M const≡ Θ − ≈ +
(3)

where lM(x,Θ) is the mixture log likelihood (of the data x and the predicted model Θ),
which is maximized under the constraint that mM (a function of the number of
independent parameters3), is minimized. It is assumed that a higher BIC score reflects
better clustering quality. Recently, Teschendorff et al. have applied an EM algorithm
to find a partition that maximizes the BIC criterion [10]. Here we do not optimize the

3 We choose mM=dim*K* (K+dim), where dim is the number of dimensions and K is the

number of clusters.

1

1
() log()

log()

N

i i
i

E Data V V
N =

= − ∑

(2)

 Clustering Algorithms Optimizer: A Framework for Large Datasets 89

BIC score. Trusting the clustering algorithms we just use this score, in a way befitting
the algorithms, to find the best clustering parameters.

3 Implementation

We demonstrate our method on two fundamentally different clustering algorithms.
They differ in some fundamental aspects thus testing the generality of our framework.

Optimized K-Means (OKM)
K-Means is a very popular, fast and intuitive algorithm. This naïve algorithm has two
known drawbacks: First, it requires the number of clusters as an input, and thus is
limited to scenarios where external knowledge is available. Secondly, the algorithm is
nondeterministic, and is thus inconsistent.

The OKM implementation applies the K-Means algorithm 50 times for each
number of clusters (K=1 to 20 in our examples) and computes the BIC score for each
application. The application that leads to the maximal BIC score is considered to be
the optimal solution.

Optimized QC (OQC)
The QC algorithm [7] uses the Schrödinger equation to provide an effective clustering
description of the data. It requires one parameter, σ, a Parzen window width. This
parameter controls the number of clusters that are identified by the algorithm with
larger values of σ yielding fewer clusters. Different σ may also yield the same number
of clusters but different clustering assignments (see Fig. 2B). Contrary to K-Means
this algorithm is deterministic, has less constraints than K-means (since noise is
integrated within the model), and does not assume spherical properties of the clusters.
Recently, a variation of the algorithm's convergence, using the mean-shift approach,
was suggested [22]. Here we employ the standard implementation [7].

OQC consists of applying QC once for a set of σ values (50 values in the range of
0.1 to 0.9, in our examples), and computes the BIC score for each σ. The maximal
BIC is considered as the optimal solution.

4 Results

Here we describe our results on three gene-expression datasets that are well known
benchmarks. In the first [23] and the second [24] examples, samples were clustered (2
and 4 clusters, respectively) while in the third dataset [25] clustering was performed
on the genes. All three cases have assignments that were manually curated. The
assignments serve to estimate the performance of the clustering algorithms, using the
Jaccard score which reflects the ‘intersection over union' between the algorithm's
clustering assignments and the expected classification4:

 11

11 01 10

n
Jaccard

n n n
=

+ +

(4)

4 We refer to supplementary material for further explanation.

90 R. Varshavsky, D. Horn, and M. Linial

4.1 The Colon Dataset of Alon et al. (1999)

In the dataset of [23], 62 gene-expression samples were taken from colon cancer
patients. 40 of them were taken from sick tissues, and 22 from healthy tissues. Each
sample contains the expression of 7479 genes. We follow [23, 24] who chose 2000
genes with the highest confidence in the measured expression levels.

In order to emphasize the influence of preprocessing on the clustering results, we
compare SVD (see methods) with Principal Components Analysis (PCA)5. Fig 1A
displays the singular values of the [2000x62] matrix.

The compression guidelines (see methods), suggests that only 2 or 3 components
may be needed for a good description of the data (the relatively low entropy: 0.28, see
equation 2). This yields compression rates of 1x10-3 and 1.5x10-3, respectively.

Fig. 1. A. (left) Singular values of the colon dataset (dashed line denotes the 'cut' decision). B.
(right) Jaccard scores of the KM on raw data (left bar) and different preprocessing options.

As shown in Fig. 1A, preprocessing procedure influences the clustering quality.
We conclude that this step deserves substantial attention. Moreover, when selecting
the correct compression method (SVD in 3 dimensions), the clustering results are
improved, as reflected by the increase in the Jaccard score (from 0.52 to 0.6).

The optimal results are obtained for SVD reduction to 3 dimensions. At this stage,
the data are compressed to 62 vectors on a 3 dimensional unit sphere. Fig. 2A displays
the OKM results (50 executions for 2-20 putative clusters) for different choices of K.
For each K the maximal BIC of all 50 trials was chosen. The overall maximal BIC
value is obtained for K=2. Note that the farther the number of clusters is from the
correct solution, the larger is the dispersion of the corresponding BIC values.
Comparing the internal (BIC) and external (Jaccard) criteria, one finds that the K=2
assignments were also the closest to the experts opinion. This testifies to the
usefulness of BIC as an indicator of the proper clustering of the data.

5 Matlab code: princomp(zscore(X'X)).

 Clustering Algorithms Optimizer: A Framework for Large Datasets 91

Fig. 2. A. (left) BIC Values when applying OKM (SVD reduced to 3 dimensions) on the colon
dataset. B. (right) The number of clusters obtained in the colon dataset as a function of the σ
input parameter of the QC algorithm.

Next we apply OQC to the compressed colon dataset. Recall that QC is a
deterministic algorithm, thus, a single application is required for each σ value. Fig. 2B
displays the number of clusters when varying σ. Note that different σ values may lead
to the same number of clusters but different assignments, hence BIC may vary when
the number of clusters remains constant.

Fig. 3. A. (left) Comparison of the internal (BIC) and external (Jaccard) criteria for the colon
dataset (OQC). B. (right) Comparison of the standard and optimized versions of the KM and
QC algorithms.

Both BIC and Jaccard scores display the same behavior in the neighborhood of their
maximal values (Fig. 3A). The maximal BIC was obtained for σ=0.55, where QC
leads to 2 clusters. The corresponding Jaccard score for this σ is 0.715.

Since both OKM and OQC share the same preprocessing step, their clustering
results can be compared. The maximal BIC value achieved by OQC is higher than the
one achieved by OKM (-95 and -300, respectively). Similarly, the Jaccard score of the

92 R. Varshavsky, D. Horn, and M. Linial

OQC is higher than the one of OKM (0.715 and 0.678, respectively). Fig. 3B
compares these results with what the same algorithms obtain on the original datasets
without preprocessing (0.52 and 0.4 for KM and QC, respectively). The results are
even more impressive when compared to other state-of-the-art algorithms (Table1).

Table 1. Jaccard scores of various algorithms when applied to the Alon dataset

Method Jaccard
K-Means (raw data, 50 repeats) 0.52 (0.1)
OKM (Preprocessing & BIC) 0.678
QC (raw data) 0.4
OQC (Preprocessing & BIC) 0.715
CLICK [2] 0.64
CAST [2,5] 0.682
CTWC ([4], and6) 0.508

4.2 The Leukemia Dataset of Golub et al., 1999

The dataset of Golub et al. has served as a benchmark for several clustering methods
[2, 4 and 24]. The experiment sampled 72 leukemia patients with two types of
leukemia, ALL and AML. The ALL set is further divided into T-cell leukemia and
B-cell leukemia and the AML set is divided into patients who have undergone
treatment and those who did not. For each patient, an Affymetrix GeneChip measured
the expression of 7129 genes. The clustering task is to find the four cancer groups
within the 72 patients in a [7129x72] gene expression matrix. We select the first five
eigenvectors, achieving a compression rate of 7x10-4 (from [7129x72] to [5x72]).

BIC is maximized for K=2 in OKM, as is the Jaccard score (Fig. 4A). Hence we
conclude that OKM can identify only the two major groups in the data and cannot
detect a partition into four groups. This finding is consistent with the CAST and
CLICK algorithms that have also failed to identify the subtypes [2]

Since QC cannot be applied to the raw dataset, preprocessing is of essence. OQC
proves to be very effective. As displayed in Fig. 4B, the correlation between the BIC
and the Jaccard scores is quite high around the maximum of both curves. Moreover,
the maximum BIC is at σ =0.548, which dictates partitioning into 4 clusters, similar to
what would be expected from the data. The corresponding Jaccard score for this σ is
0.69 (Fig. 4B). 4 clusters are predicted by QC throughout the range 0.47<σ<0.56.

4.3 The Yeast Dataset of Spellman et al. (1998)

The dataset of [25] presents a somewhat more challenging task than the previous
examples, since we examine our method on clustering of genes. Spellman et al.
identified 798 genes as cell cycle regulated and assigned them to 5 different stages of
the yeast cell cycle (M/G1, G1, S, G2 and M). Expression levels of these genes were
recorded at 72 time points, yielding a [798x72] matrix.

6 http://www.weizmann.ac.il/physics/complex/compphys/ctwc/

 Clustering Algorithms Optimizer: A Framework for Large Datasets 93

-4600

-3800

-3000

-2200

-1400

-600

1 2 3 4 5 6 7 8 9 101112131415161718192021
Number of Clusters

B
IC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

J
a

c
c
a

rd

Max BIC
Jaccard

-500

-400

-300

-200

-100

0

0.484 0.516 0.548 0.58 0.612 0.644

Sigma

B
IC

0.3

0.4

0.5

0.6

0.7

0.8

J
a
c
c
a
r
d

BIC
Jaccard

Fig. 4. A. (left) BIC and Jaccard scores of the Golub dataset (OKM), B. (right)Comparison of
internal (BIC) and external (Jaccard) criteria of the leukemia dataset (OQC)

Contrary to the first examples, the distribution of relative variances is gradual and
the entropy is significantly higher (0.705, see supplement). This result is consistent
with the argument that high entropy reflects data that were preprocessed, since genes
were intentionally selected by their functional annotation. We selected the first four
leading eigenvectors (note the dashed line in the figure) achieving a compression rate
of 5x10-2 (from [798x72] to [798x4]).

The external expert [25] suggests that there are 5 groups of cell cycle related genes.
When applying the OKM protocol to the compressed dataset a maximized BIC is
observed at 6 clusters. Comparing to the standard application of K-Means, the OKM
shows no improvement: both applications yield Jaccard scores of 0.4.

Application of OQC to the compressed dataset yields a somewhat different result
than that of OKM. BIC is maximized at σ=0.5, where 4 clusters are identified. Taking
a closer look at the OQC clusters suggests that the S and G2 stages are joined by QC
into one cluster. Here the correlation between the BIC and Jaccard scores is not
perfect (see supplementary). Nevertheless, the Jaccard score it yields is relatively high
(0.5 comparing to 0.4 in many other algorithms, see supplement table).

5 Conclusion

We present a general ‘clustering improver’ scheme. This unsupervised, data-driven
two-step clustering framework uses intrinsic properties of the dataset to determine the
SVD-based compression. After dimension reduction, several iterations of a clustering
algorithm are applied, each with a different parameter. They are then compared with
each other by the BIC criterion. The parameter that yields the best BIC score is
chosen and is declared to be the optimal one. This generic framework is also
computationally efficient: it processes these large-scale datasets on a standard PC in
less than a minute (e.g., 50 runs of each of the different number of clusters in OKM).

Preprocessing of experimental data is an essential step. The raw data often come in
a large-scale, un-normalized and noisy representation. These distractions have to be
treated. Nevertheless, due to the diversity of the experiments one cannot provide a
universal preprocessing method. In our study, we emphasize the importance of

94 R. Varshavsky, D. Horn, and M. Linial

compression, and present some examples of the variations that different preprocessing
methods can yield. We recommend SVD-based compression, which provides a
normalized, filtered and ultra-compressed representation of the data. We also suggest
guidelines regarding the extent of the compression.

The second step of our methodology is parameter tuning, which is based on the BIC
score. Choosing this score has two advantages: (1) being an internal measurement, it
allows an unbiased, automated method with no external intervention, and (2) its
capability to be computed after the algorithm has terminated its application allows this
independent criterion to be ‘plugged in’ to any clustering algorithm.

BIC is useful for finding the best solution amongst many local maxima, for
both deterministic and nondeterministic clustering algorithms. Some heuristics are
proposed in order to overcome the inconsistency problem of nondeterministic
algorithms. In cases where many applications of the same algorithm lead to suboptimal
solutions and only a few suggest good solutions, BIC maximization represents
considerable improvement over other methods such as majority voting. Even if BIC
does not point to the best clustering solution, it chooses one that is close to the best. It
can therefore assist in narrowing down the search for best parameters.

Our methodology is especially well adapted to algorithms that assume spherical
distribution (e.g., K-Means) of clusters, but it can be applied to algorithms that do not
assume such a distribution. Surprisingly, it performs very well for methods that do not
subsume spherical clustering such as QC and SOM (not shown). The optimized
algorithms described here outperform the published results of CTWC, CLICK and
CAST. We assume the same methodology to the latter algorithms could improve their
performance even further.

Nevertheless, we identify some limitations. First, as we have not suggested any
modification in any clustering algorithm per se, the improvement is bounded to the
algorithm’s best performance. If the solution space does not describe the underlying
structure of the dataset, we cannot obtain a high quality solution.

Second, the BIC score assumes a specific hyper-elliptic organization of clusters.
When, as in the yeast dataset, clusters have different distributions, BIC has less
descriptive strength. In such cases BIC may not fit the properties of the dataset. Third,
the BIC value, computed by the EM method, usually cannot converge when the number
of dimensions surpasses some threshold (of the order of 10). An efficient preprocessing
is therefore a prerequisite for the BIC to be computed.

Finally, since BIC fits a model to a specific data distribution, it cannot be used to
compare models of different datasets. For the same reasons it cannot be used to
choose among different preprocessing methods or truncated dimensions.

Different clustering algorithms are currently included in analysis suites that are
applied by experimentalists to gene expression data. A standard practice is to apply
several algorithms with a few configurations and choose among them on the basis of
some known classification. Our framework may serve as a platform for systematic
comparison between different clustering algorithms. In all comparisons, analysis is
applied to an identical experimental benchmark. The large variation in performance of
each algorithm supports the notion that there is no 'one-size-fits-all' method. This
study attempts to reduce the subjectivity in data interpretation by providing a platform
for comparisons that can be adopted by any algorithm.

 Clustering Algorithms Optimizer: A Framework for Large Datasets 95

Acknowledgements. We thank Noam Kaplan, Alon Kaufman and Menachem Fromer
for critical reading the manuscript. R.V. has been awarded a fellowship by the
Sudarsky Center for Computational Biology. This work is partially supported by EU
Framework VI, DIAMONDS consortium.

References

1. Jain AK, Dubes RC: Algorithms for Clustering Data. Englewood Cliffs, NJ: Prentice Hall;
1988.

2. Sharan R, Shamir R: CLICK: A Clustering Algorithm with Applications to Gene
Expression Analysis. In: 2000: AAAI Press, Menlo Park, CA; 2000: 307–316.

3. Blatt M, Wiseman S, Domany E: Superparamagnetic Clustering of Data. Physical Review
Letters 1996, 76:3251–3254.

4. Getz G, Levine E, Domany E: Coupled two-way clustering analysis of gene microarray
data. PNAS 2000, 97(22):12079-12084.

5. Ben-Dor A, Shamir R, Yakhini Z: Clustering Gene Expression Patterns. Journal of
Computational Biology 1999, 6(3-4):281-297.

6. Dembele D, Kastner P: Fuzzy C-means method for clustering microarray data.
Bioinformatics 2003, 19(8):973-980.

7. Horn D, Gottlieb A: Algorithm for data clustering in pattern recognition problems based
on quantum mechanics. Physical Review Letters 2002, 88(1).

8. Horn D, Axel I: Novel clustering algorithm for microarray expression data in a truncated
SVD space. Bioinformatics 2003, 19(9):1110-1115.

9. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-
wide expression patterns. PNAS 1998, 95(25):14863-14868.

10. Teschendorff AE, Wang Y, Barbosa-Morais NL, Brenton JD, Caldas C: A variational
Bayesian mixture modelling framework for cluster analysis of gene-expression data.
Bioinformatics 2005, 21(13):3025-3033.

11. Zhong S, Ghosh J: A unified framework for model-based clustering. Journal of Machine
Learning Research 2003, 4(964287):1001-1037.

12. Wall M, Rechtsteiner A, Rocha L: Singular Value Decomposition and Principal
Component Analysis. In: A Practical Approach to Microarray Data Analysis. Edited by
Berrar D, Dubitzky W, Granzow M: Kluwer; 2003: 91-109.

13. Ding C, He X, Zha H, Simon H: Adaptive dimension reduction for clustering high
dimensional data. In: IEEE International Conference on Data Mining: 2002; 2002: 107-
114.

14. Xing EP, Karp RM: CLIFF: clustering of high-dimensional microarray data via iterative
feature filtering using normalized cuts. Bioinformatics 2001, 17(90001):S306-315.

15. Plagianakos VP, Tasoulis DK, M.N. V: Hybrid dimension reduction approach for gene
expression data classification. In: International Joint Conference on Neural Networks
2005, Post-Conference Workshop on Computational Intelligence Approaches for the
Analysis of Bioinformatics: 2005.

16. Zhong W, Altun G, Harrison R, Tai PC, Pan Y: Improved K-means Clustering Algorithm
for Exploring Local Protein Sequence Motifs Representing Common Structural Property.
In: IEEE Transactions on NanoBioscience: 2005; 2005: 255-265.

17. Handl J, Knowles J, Kell DB: Computational cluster validation in post-genomic data
analysis. Bioinformatics 2005, 21(15):3201-3212.

96 R. Varshavsky, D. Horn, and M. Linial

18. Varshavsky R, Linial M, Horn D: COMPACT: A Comparative Package for Clustering
Assessment. In: Lecture Notes in Computer Science. 3759 ed: Springer-Verlag; 2005: 159-
167.

19. Alter O, Brown PO, Botstein D: Singular value decomposition for genome-wide
expression data processing and modeling. PNAS 2000, 97(18):10101-10106.

20. Landauer TK, Foltz P. W., Laham D: Introduction to Latent Semantic Analysis. Discourse
Processes 1998, 25:259-284.

21. Fraley C, Raftery AE: How many clusters? Which clustering method? - Answers via
Model-Based Cluster Analysis. In: Computer Journal. vol. 41; 1998: 578-588.

22. Barash, D. and D. Comaniciu. Meanshift clustering for DNA microarray analysis. In
Computational Systems Bioinformatics Conference (CSB) 2004: IEEE.

23. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ: Broad patterns
of gene expression revealed by clustering analysis of tumor and normal colon tissues
probed by oligonucleotide arrays. PNAS 1999, 96(12):6745-6750.

24. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh
ML, Downing JR, Caligiuri MA et al: Molecular Classification of Cancer: Class
Discovery and Class Prediction by Gene Expression Monitoring. Science 1999,
286(5439):531-537.

25. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO,
Botstein D, Futcher B: Comprehensive Identification of Cell Cycle-regulated Genes of
the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Mol Biol Cell 1998,
9(12):3273-3297.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 97–108, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Ranking Function Based on Higher Order Statistics
(RF-HOS) for Two-Sample Microarray Experiments

Jahangheer Shaik and Mohammed Yeasin

Computer vision, pattern and image analysis lab(www.cvpia.org)
Electrical and Computer Engineering

University of Memphis
Memphis TN-38152

jshaik@memphis.edu, myeasin@memphis.edu

Abstract. This paper proposes a novel ranking function, called RFHOS by
incorporating higher order cumulants into the ranking function for finding
differentially expressed genes. Traditional ranking functions assume a data dis-
tribution (e.g., Normal) and use only first two cumulants for statistical signifi-
cance analysis. Ranking functions based on second order statistics are often
inadequate in ranking small sampled data (e.g., Microarray data). Also, rela-
tively small number of samples in the data makes it hard to estimate the pa-
rameters accurately causing inaccuracies in ranking of the genes. The proposed
ranking function is based on higher order statistics (RFHOS) that account for
both the amplitude and the phase information by incorporating the HOS. The
incorporation of HOS deviates from implicit symmetry assumed for Gaussian
distribution. In this paper the performance of the RFHOS is compared against
other well known ranking functions designed for ranking the genes in two sam-
ple microarray experiments.

Keywords: Two-sample microarray data, Higher order statistics, Differentially
expressed genes.

1 Introduction

DNA microarrays became one of the most popular biotechnologies that allow the
monitoring of expression levels of thousands of genes simultaneously. Several differ-
ent platforms (for example, Affymetrix [1], Agilent [2] etc.) have been developed to
assist researchers understand the difference in expression of genes in different cells
and tissues. Microarray experiments produce expression profiles measured under
some experimental conditions and are normally labeled on the basis of external in-
formation such as, clinical identification of tissue samples or expression of genes with
respect to time [3]. Accurate information about over-expression or under-expression
of genes when comparing diseased tissues with normal tissues provides significant
clues in understanding the mechanism of the disease. The ability to simultaneously
profile the differential expression of large number of genes is the essential first step to
succeed in the field of drug target discovery, molecular diagnostics, functional ge-
nomics and pharmacogenomics [4]. It is anticipated that these discoveries will lead to
new therapeutic and diagnostic tools.

ă

98 J. Shaik and M. Yeasin

Despite all the possibilities and advantages in conducting large scale experiments,
microarray technologies have some inherent problems, including dimensionality of the
data samples, noise, and variabilities in the measurements. There are only small subset
of genes that are considered to be relevant and the rest of the genes form noise and
mask the underlying phenomenon. A number of computational problems arise when
performing statistical significance analysis on two-sample microarray data. Some of
the problems may include (but not limited to) [5, 6]: i) small sample size when com-
pared to features; ii) inadequate understanding of the underlying model distribution and
iii) experimental/technical noise.

One of the main objectives of knowledge discovery from microarray data is the se-
lection of genes that are differentially expressed in different known classes of tissues.
The state-of-the art methods for finding differentially expressed genes (DEGs) assume
the data to follow a certain distribution (for eg. Normal). When the data characteristics
deviate from the assumed distribution, the proposed methods do not yield expected re-
sults. Several studies have been performed in understanding and modeling the distribu-
tion of microarray data [7-13]. An inference may be drawn based on various studies
that microarrays follow a wide variety of data distributions. Lonstedt and speed et. al.
report the log normal distribution for the microarray data [11]. Purdom et al propose a
second law of errors distribution (asymmetric Laplace distribution) which has heavy
tails fits microarray data better than normal distribution [12]. Huber et al propose a
skewed distribution based on 3 parameter lognormal distribution [9]. Chen et al pro-
pose a normal distribution for the microarray data [8]. Brody et al propose a lorentzian
like distribution for the microarray data [7]. Several other references may be found to
other model distributions.

A careful analysis of most of these data distributions reveals deviation from nor-
mality assumption. But, the ranking functions employed to find the DEGs in microar-
rays do not adequately consider these variations into account. This paper proposes a
ranking function based on higher order statistics which consider the deviations from
normality for ranking the marker genes from two sample microarray experiments. The
higher order statistics considered are skewness and kurtosis. Skewness accounts for
any non-symmetric properties of two-sample microarray data distribution. Kurtosis
accounts for heavy or light tails of the data distribution. By incorporating higher order
statistics it is possible to take care of these minor variations in the data. Another prob-
lem that is crucial while ranking the genes is the lack of large enough samples to
estimate the parameters of the underlying distribution. As the number of samples
increase, it is known that the data slowly approximates the normal distribution (c.f.
central limit theorem [14]). Therefore, the number of samples plays an important role
in determination of high ranked genes in the microarray data. This paper proposes
inclusion of higher order statistics in the adaptive ranking function to address the
aforementioned problems.

The paper is organized as follows. Section II presents the brief state-of-the art to
provide the context of the work. The mathematical formulation behind ranking func-
tion based on higher order statistics (RFHOS) is presented in the Section III. The em-
pirical analyses on artificial and real datasets are presented in the Section IV. Follow-
ing this, discussions are presented in the Section V and finally, Section VI concludes
the paper with a brief conclusion and future directions.

 Ranking Function Based on Higher Order Statistics 99

2 Research Context

A plethora of mathematical techniques have been developed for finding DEGs in mi-
croarray data [3, 15-17]. The performances of various methods for finding DEGs are
hard to quantify and compare as they yield significantly different results on the same
dataset. This problem can be attributed to the assumptions behind the currently used
ranking functions as well as to the unique characteristics of microarray data. Also,
very few empirical studies were conducted to compare the performance, and identify
the shortcomings of such ranking functions in finding the DEGs [18, 19].

The early computational methods reported in
the literature for finding DEGs are based on fold
changes [20]. These methods, however, do not
take into consideration the sample variance of the
data. As shown in the Fig. 1, all the three possible
cases have same mean but their similarity de-
pends on the variance of the data which cannot be
captured using fold change. For example, the two
classes shown in the Fig. 1 (a) are very similar
(high overlap), ones shown in Fig. 1(b) are mod-
erately similar and the ones shown in the Fig. 1(c)
are very dissimilar. They all have same mean but
different variances. The higher the variances,
more similar are the classes and vice versa. Any
simple mean based approaches such as fold
change method will rank all of them in the same
category, which is very likely to be incorrect. The alternative is to use 2 sample t-test
[21], which approximates the variance as a function of variances from two cases [22]
as shown in Eq. 1. Since the microarray datasets have small number of samples, the
sample variance may not be an indicative of actual variance. To address this problem,
Thomas et al. [23] proposed a method that uses normalization constants for sample
variances to obtain pooled variance. In [24], Tusher et al. have pointed out that small
sample variance values yield false alarms for DEGs. They introduced an additive con-
stant to the variance to reduce the false detection rate. This parameter estimation was
proposed in [19] as 90th percentile of the sum of gene specific global standard errors.
Mukherjee et al. [16] proposed the notion of reproducibility to minimize expected loss
in determination of test statistics. Three parameters were introduced in the ranking
function and were determined using Monte Carlo simulation. Recently, Shaik et al.
[17] demonstrated that such ranking functions are susceptible to failure for a number
of reasons. To improve the robustness a combined ranking method was proposed to
achieve consistent ranking.

All the above mentioned methods inherently assume the distribution of the data to
be Gaussian. However, for most practical situations this is not true. The Gaussian as-
sumption implicitly implies the distribution is symmetric and may be approximated
by 1st and 2nd order statistics which contain only amplitude information. However,
it is not true for most practical cases. It may be seen that there is some skewness asso-
ciated with the distributions. This skewness plays an important role in the determina-
tion of similarity as illustrated in the Fig. 2. The Fig. 2(a) shows the case where left

Fig. 1. Schematic diagram illustrat-
ing similarity between the Gaussian
distributions with different variances

100 J. Shaik and M. Yeasin

probability density function (pdf) is positively skewed and right pdf is negatively
skewed. This causes higher over lap among the pdfs and hence the two classes have
highest similarity. On the contrary, Fig. 2(g) shows the case where left pdf is nega-
tively skewed and right pdf is positively skewed. This causes low overlap among the
pdfs resulting in lowest similarity. Rest of the cases in the Fig. 2 may be explained in
similar manner. Please note that all of these cases as shown in Fig. 2 (a) to (h) have
the same variance and mean estimates. This shows that the similarity/dis-similarity
among the different sample cases cannot be captured using variance alone. The skew-
ness plays an important role in the determination of (dis)similarity. In addition to that,
the third order statistics contain the phase information of the signal [25]. The phase
information coupled with the amplitude information may yield better results.

Fig. 2. Schematic diagram illustrating the impact of skewness in computing the (dis)similarity
measures

Kurtosis, commonly referred to as the fourth cumulant is a measure of peakness. It is

also a measure of independence between the data distributions [26]. Higher the
kurtosis, more independent (dis-
similar) the distributions are and
vice versa. It provides interesting
insight into the variance estimate.
The kurtosis of distribution implies
that much of the variance is due to
infrequent extreme deviations as
opposed to frequent modest devia-
tions. Fig. 3 shows the influence of
kurtosis on the similarity which
cannot be captured using the sec-
ond order statistics alone. It can be
inferred from the Fig. 3(a) that
high kurtosis may mean less

Fig. 3. Schematic diagram illustrating the impact of
Kurtosis in computing the (dis)similarity measures

 Ranking Function Based on Higher Order Statistics 101

similarity (low over lap) and low kurtosis may mean high similarity (high over lap)as
shown in Fig. 3(b).

3 Mathematical Formulation

Let ‘)(kmnxD + ’ be the data matrix with ‘n’ genes (along the rows) and ‘m’ samples

under one condition (say tumor class) and ‘k’ samples under the other condition (say
non-tumor class). For a two sample microarray data, the sample variance is given by
[27],

k

S

m

S
S

2
2

2
1 += , (1)

where,
1S is the standard deviation of samples in class 1 and

2S is the standard devia-

tion of samples in class 2.
The Adaptive ranking function is given by [16],

.
*

),,(
32

1
321 θθ

θθθθ
+

+
=

S

d
R (2)

Here, ‘d’ is the difference of means between the two sample distributions, ‘S’ is the
sample variance and θ s are the parameters that scale the second order statistics.

The Second order statistics as shown in Eq. 2 do not perform adequately for the
skewed and heavy tailed distributions. The higher ordered statistics such as skewness
and kurtosis are incorporated into the ranking function to make the ranking more ro-
bust.

Let ‘Sk1’ be the skewness of the left distributed data and let ‘Sk2’ be the skewness
of the right distributed data then the total skewness is given by,

21 SkSkSk ±±= . (3)

If the left distributed data is negatively skewed then
1Sk =

1Sk− , if the data is posi-

tively skewed then
1Sk =

1Sk+ and if the distribution is not skewed then
1Sk =0. If the

right distributed data is negatively skewed then
2Sk =

2Sk+ , if the data is positively

skewed then
2Sk =

2Sk− and if the distribution is not skewed then
2Sk =0.

Let ‘ 1ku ’ be the kurtosis of the left distributed data, let 2ku be the kurtosis of the

right distributed data then total kurtosis is given by,

21

11

kuku
ku += (1ku , 2ku 0≠). (4)

If 1ku =0,
2

1
ku

ku = , if 2ku =0,
1

1

ku
ku = and if 1ku = 2ku =0 then ku =0,

i.e., to say higher the kurtosis, less is the overlap and hence higher is the dis-similarity
between the two sample distributions.

102 J. Shaik and M. Yeasin

The higher order statistics are incorporated into the ranking function as given by
Eq. 5

3254

1

)(θθθθ
θ

+++
+

=
KuSkS

d
Rp

. (5)

Here, θ s are the parameters that scale the sample statistics incorporated into the rank-
ing function and ‘d’ is the difference of means between the two sample distributions.

The values ‘Sk’ and ‘Ku’ supplement the value of ‘S’as shown in Eq. 5. The boot-
strapping procedure from [27] is employed on the original dataset

)(kmnxD +
 and j <

min(m,k) samples are randomly selected from both cases and pooled to form the data
‘D1nx2j’ (‘j’ samples from each condition). The process is repeated to construct an-
other dataset ‘D2nx2j’. The ranking function of the Eq. 5 is applied independently on
these two datasets to obtain the scores of the marker genes describing their differential
expression. These scores are ranked and sorted from highest to lowest resulting in R1

and R2 in Eq. 6. Since these two datasets are the subset of the original dataset
‘

)(kmnxD +
’, they must produce similar ranking. The optimized set of parameters which

result in high consistency (Eq. 7) between the rankings is obtained using Monte Carlo
simulation [27]. Since it is adequate to test the consistency using a few high ranked
genes ‘h’, h =100 is employed in this paper. The first ‘h’ high ranked genes are ob-
tained from these two rankings resulting in two sets given by,

):1(11 hRS = and):1(22 hRS = (6)

and the consistency between the rankings is obtained by comparing these two sets is
given by,

21 SSC ∩= . (7)

Please note that ‘h’ in Eq. 6 is not indicative of number of significantly DEGs ex-
pected from the algorithm. The ranking function proposed in Eq. 5 is expected to pro-
vide better estimate of
rankings as it incorpo-
rates the skewness and
kurtosis aspects into the
ranking function. The
effectiveness of the
proposed ranking func-
tion is studied in this
paper for different dis-
tributions by comparing
it with other well known ranking functions. The affect of varying sample size on the
ranking function is also studied.

4 Empirical Analyses

The efficacy of RF-HOS is illustrated using several artificial microarray datasets follow-
ing two different distributions and two real microarray datasets viz. Gastric cancer and
leukemia datasets [28, 29]. The performance of RFHOS is compared with other well

Table1. Parameters used for generating artificial microarray datasets

 Normal tissues (condi-
tion1)

Abnormal tissues
(condition 2)

mean 0 0 Non-
DEGs variance Gamma distribution with mean 2, variance 2

mean 0 Normal distribution
mean 3, variance 1

DEGs

variance Gamma distribution
with mean 2, variance 2

Gamma distribution
with mean 2, vari-
ance 2

 Ranking Function Based on Higher Order Statistics 103

known ranking functions. The influence of sample size on the performance of ranking
functions is first studied using a lognormal model. Next, the performance of well known
ranking functions is studied using an asymmetric Laplace distribution for sample size of
12. Further, the RF-HOS is applied on two real microarray datasets to find the DEGs.
The validation of these results is performed by comparing with the results of the author.

A. Simulated Case Study 1. Lognormal Model for Artificial Microarray Datasets
A lognormal distribution model is used to generate artificial microarray datasets as
proposed by [11]. The artificial microarray datasets are generated based on a multi-
variate lognormal model. For non-DEGs,
the means under both conditions are set
to zero. For DEGs, the means under one
condition are set to zero and for other
condition are drawn from normal with
mean 3 and variance 1. Unequal vari-
ances following a gamma distribution are
used for DEGs as proposed in [11, 16].
The parameters used for generating the
artificial microarray datasets are shown
in table 1. The artificial dataset is cre-
ated to have 2050 genes with ‘s’ samples
under each of the two conditions. Here,
‘s’ = 5, 8, 12, 15, 18 and 20 samples re-
spectively for each case as shown in Fig. 5. The first 50 genes are rendered differen-
tially expressed and the rest 2000 are rendered non-DEGs. This process enables class
labels for genes (DEGs or non-DEGs) for each generated artificial microarray dataset
which can be used as ground truth to verify the outputs of the different algorithms
used in this study. To obtain the significantly DEGs, the following procedure is

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

First 300 high ranked genes

S
co

re
s

ob
ta

in
ed

 b
y

ra
nk

in
g

fu
nc

tio
n Estimation of significantly DEGs

Fig. 4. Plot illustrating number of DEGs to
be considered

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

False Positive Fraction

T
ru

e
P

os
iti

ve
 F

ra
ct

io
n

Comparison of Different ranking functions

t-statistics

w elch t-stats

regression

SAM

Adaptive

RFHOS

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

False Positive Fraction

T
ru

e
P

os
iti

ve
 F

ra
ct

io
n

Comparison of Different ranking functions

t-statistics

welch t-stats

regression

SAM

Adaptive

RFHOS

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

False Positive Fraction

T
ru

e
P

os
iti

ve
 F

ra
ct

io
n

Comparison of Different ranking functions

t-statistics

welch t-stats

regression

SAM

Adaptive

RFHOS

 Case (a) Sample size 5 Case (b) Sample size 8 Case (c) Sample size 12

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

False Positive Fraction

T
ru

e
P

os
iti

ve
 F

ra
ct

io
n

Comparison of Different ranking functions

t-statistics

welch t-stats

regression

SAM

Adaptiv e

RFHOS

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

False Positive Fraction

T
ru

e
P

os
iti

ve
 F

ra
ct

io
n

Comparison of Different ranking functions

t-statistics

welch t-stats

regression

SAM

Adaptiv e

RFHOS

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

False Positive Fraction

T
ru

e
P

os
iti

ve
 F

ra
ct

io
n

Comparison of Different ranking functions

t-statistics

welch t-stats

regression

SAM

Adaptiv e

RFHOS

 Case (d) Sample size 15 Case (e) Sample size 18 Case (f) Sample size 20

Fig. 5. Reciever Operating Characteristic (ROC) Curves Showing the Performance of Dif-
ferent Ranking Algorithms for artificially generated data set 2

104 J. Shaik and M. Yeasin

applied. The ranking function of Eq. (5) is first employed to obtain the scores of
marker genes indicative of their differential expression. The procedure is repeated 25
times and the cumulative sum of scores for each gene is obtained. The scores of genes
are normalized and plotted as a 2D map. The Fig. 4 shows the result obtained for one
artificially generated dataset. The plot shows the normalized cumulative scores of first
300 high scored genes (out of 2050 genes). Since it is artificially generated data, it is
known that first 50 are highly differentially expressed which is reflected in the plot.
The estimate of significantly DEGs may be obtained as shown in Fig. 4 by drawing a
decision boundary even without any prior knowledge of the number of DEGs.

The performance of different algorithms on set 1 for varying sample size is shown
in Fig. 5. The true positive fraction (TPF) is obtained by finding the number of DEGs
estimated by the ranking algorithm which are consistent with the ground truth and
false positive fraction (FPF) is calculated by finding the number of DEGs not consis-
tent with the ground truth. As shown in Fig. 5, RFHOS outperforms other algorithms
in determining DEGs from the microarray data. For low sample size as shown by
Figs. 5 case (a) and case (b), RFHOS and Adaptive ranking perform better than other
ranking algorithms. Please note that performance of RFHOS is better than that of
Adaptive ranking algorithm. As the sample size increases, the performance of differ-
ent algorithms becomes similar as shown by the Figs. 5 case (e) and case (f). This
may be because as the number of samples increase, the data tends to be more and
more Gaussian as given by central limit theorem [14] and hence the higher order mo-
ments tend to become insignificant. It is evident from Fig. 5 that RFHOS performs
better compared to other ranking algorithms used in the analyses.

B. Simulated Case Study 2: Asymmetric Laplace Distribution Model for
Artificial Microarray Datasets
The artificial microarray datasets are created using the same procedure employed for
lognormal distribution but by using an Asymmetric Laplace distribution as proposed
by [12]. The mean and variance of the DEGs and Non-DEGs are approximated simi-
lar to the distributions in table 1. The sample size was set to 12. The performance of
various well known ranking functions is tested using this data. Fig. 6 shows the ROC
curves obtained for asymmetric Laplace distribution. The TPF and FPF are estimated
as described in case study 1. As shown in Fig. 6, the RF HOS outperformed other
ranking functions in finding DEGs from microarray data.

C. Leukemia Dataset
Gene expressions of approximately 6817 genes are used to classify two types of acute
Leukemia viz. acute lymphoid leukemia (ALL) and acute myeloid leukemia (AML).
The data consists of 47 (38 B-cell and 9 T-cell) cases of ALL and 25 cases of AML.
The data is divided into a training class containing 38 samples and a test class con-
taining 34 samples of tissues. The class labels for training class are available from the
author [29]. The pre-processing proposed by the author resulted in 3571 genes, the
rest of the genes are considered insignificant and hence eliminated. The data is further
separated into training and test classes. Using the training data, the RF-HOS algo-
rithm is applied to identify the genes that maximally differentiate between the two
classes (ALL and AML). The RFHOS algorithm identified 48 genes out of 3571
genes to be highly differentially expressed (c.f. Sec IV-A). The list of 48 genes may
be found at the link http://jshaik.com/LeuRankRFHOS.pdf.

 Ranking Function Based on Higher Order Statistics 105

To validate the DEGs, often a heat map is used in the reported literature [30]. The
heat map provides qualitative visual depiction of patterns and is rendered not
useful for complex datasets with multiple
classes (more than 2). In this paper, a 3D
star coordinate projection (3D SCP)[31]
algorithm is used for validation. Fig. 7
shows the visualization of 38 training
samples using 48 DEGs as features. As
shown in Fig. 7, the 48 dimensional data
is represented in 3 dimensions using the
3D SCP algorithm. Fig. 7 (a) shows the re-
sults using 3D SCP for training cases. The
ALL cases are shown as ‘red dots’
and AML cases are shown as ‘green
stars’ (original class labels are used).
As shown by
Fig. 7, the dif-
ferent classes of
tissues are pro-
jected to distinct
locations in 3D
space with clear
boundary bet-
ween them. The
48 DEGs found
using unified al-
gorithm may thus
be visually vali-
dated to be dif-
ferentially expressed for the training class. Next, the same set of DEGs are used to pro-
ject the entire data (training samples + testing samples) as shown in Fig. 7(b). As
shown in Fig. 7(b), majority of the tissues separated into two distinct classes. The
visualization results as shown in Fig. 7(b) are consistent with the class labels from the
author [29].

D. Gastric Cancer Dataset
The objective of this experiment is to
identify genes distinguishing primary
gastric cancers and metastatic gastric
cancers from neoplastic gastric cancers
which are otherwise morphologically
indistinguishable. Approximately 30300
genes are used to study expression
patterns of 90 primary gastric cancers,
14 metastatic gastric cancers and 22
neoplastic gastric cancers. The pre-
processing steps mentioned in [28] are

-2
-1

0
1

-5

0

5
-2

-1

0

1

X

3D star Projection of training case using DEGs of ALL and AML groups

Y

Z

ALL

AML

 -3
-2

-1
0

-1

0

1
-4

-2

0

2

X

3D star Projection of whole data using DEGs of ALL and AML groups

Y

Z

ALL

AML

 (a) (b)

Fig. 7. 3D SCP projection of ALL and AML cases a) Training data and b)
training and testing data

-0.5
0

0.5
1

0

2

4
-1

0

1

2

X

3D star Projection of all tissues using DEGs

Y

Z

Primary/Metastatic

Neoplastic

Fig. 8. 3D SCP of different tissues from Gastric
cancer data

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Fraction

T
ru

e
P

os
iti

ve
 F

ra
ct

io
n

Comparison of Different ranking functions

t-statistics
w elch t-stats
regression
SAM
Adaptive
RFHOS

Fig. 6. Performance comparison of different
ranking methods for Asymmetric Laplace
distribution

106 J. Shaik and M. Yeasin

used resulting in 5200 genes for further study. The RFHOS algorithm is applied to
find DEGs from neoplastic gastric cancers and other (primary/metastatic) gastric can-
cers. The ranked list of the genes may be accessed through the link http://jshaik.com/
GastricRFHOScomm.pdf . Out of these genes, the first 82 were found to be signifi-
cantly differentially expressed (c.f. sec IV-A). These 82 genes are compared with the
list of genes found to be significant by the author [28]. All the 82 genes were present
in the list of the genes found to be significant by the author.

The 3D SCP visualization algorithm [31] is used to see if the DEGs indeed separate
different tissue cases. Fig. 8 shows the projection of the tissues (primary/metastatic Vs
neoplastic) using the 82 significantly DEGs. The primary/metastatic tissues are repre-
sented by ‘red dots’ and neoplastic tissues are represented by ‘green stars’. The tissues
belonging to different classes are projected to different locations in 3D space as shown
in Fig. 8 with clear boundary with them. The study using 3D SCP shows:

• The DEGs when used as features separated different tissue cases clearly as
shown in Fig. 8.

• The metastatic cancers are indistinguishable from those of primary gastric can-
cers using these DEGs. This results concur with the initial observation by the
author [28] that most of metastatic tumors arose from the primary tumors and
hence are highly similar.

5 Discussions

The knowledge discovery from the microarray data consists of several objectives and
one of the objectives is to find DEGs from the microarray data. Many methods are
proposed to address this problem by taking into consideration the unique characteris-
tics of the microarray data. Almost all of these methods assume the distribution to be
Gaussian. It may be seen that by making such an assumption, some information is lost.
It is argued that by incorporating higher order moments such as skewness and kurtosis,
many problems in computing the similarity/dis-similarity may be addressed in a mean-
ingful manner. These measures cannot be ignored by Gaussianity assumption because
for Gaussian, higher order moments are zero. The proposed RFHOS incorporates the
higher order cumulants into the ranking function. The moments are scaled by inde-
pendent parameters estimated using Monte Carlo simulation (c.f. Sec- III). The per-
formance of ranking functions for varying sample size is studied in this paper. It is
seen from Fig. 5 (e and f) that as the number of samples increase, different ranking
functions perform similarly. It is to be noted that as the number of samples increase,
the data distribution approximates Gaussian and higher order moments tend to become
zero. The application of RFHOS algorithm on Leukemia dataset [29] and Gastric can-
cer dataset [28] revealed potential genes that may be involved in carcinogenesis.

6 Conclusion

This paper presents a novel ranking function, called RFHOS that judiciously blends
the higher order statistics into adaptive ranking function. Two well known models for

 Ranking Function Based on Higher Order Statistics 107

microarray data viz. lognormal [11] and asymmetric Laplace distribution [12] are
used to generate artificial microarray datasets. These artificial datasets with ground
truth are used for the quantitative analysis of performance using the proposed RFHOS
ranking function. To further illustrate the efficacy of the proposed algorithm empirical
analyses were conducted on real microarray data to find the DEG’s. In addition, the
performance of the proposed algorithm is compared with other well known ranking
algorithms. Empirical analyses on several datasets showed that the addition of higher
order cumulants play an important role in determination of similarity/dis-similarity of
the genes. It was observed that a RFHOS out performed other ranking functions con-
sidered for the analyses. The performance of ranking function for varying sample size
is also evaluated using lognormal model of artificially generated microarray data. It is
observed that as the sample size increases the performance of different ranking func-
tions becomes similar. It is also seen that RFHOS performed better in finding DEGs
from the real microarray data. The RFHOS ranking function is applied on Leukemia
and Gastric cancer microarray datasets. The validation of the DEGs found is made in
two steps. First, the DEGs are compared with the DEGs obtained by the authors[28,
29]. The 3D SCP algorithm is used next to visualize the tissues using DEGs obtained.

Acknowledgement. The authors acknowledge the Herff Fellowship and faculty start-
up grants from the University of Memphis for partially funding of this research.

References

[1] P. A. Stephen, "Affymetrix, http://www.affymetrix.com/index.affx." Santa Clara, Cali-
fornia, 1992-2007.

[2] B. Hewlett and D. Packard, "Agilent Technologies, http://www.home.agilent.com/agilent/
home.jspx." Santa Clara, California, 1999-2007.

[3] I. Guyon, "An Introduction of Variable and Feature Selection," Journal of Machine Lear-
ning Research, vol. 3, pp. 1157-1182, 2003.

[4] J. M. Ray and W. G. Hearl, "Methods for Evaluating Differential Gene Expression in Tis-
sues and Cells," Drug Development, pp. 50-55, 2005.

[5] J. Shaik and M. Yeasin, "A Progressive Framework for Two-Way Clustering Using
Adaptive Subspace Iteration for Functionally Classifying Genes," Proceedings of IEEE
IJCNN'06, Vancouver, Canada., pp. 5287-5292, 2006.

[6] J. Shaik and M. Yeasin, "Performance Evaluation of Subspace-based Algorithm in Selec-
ting differentially Expressed Genes and Classification of Tissue Types from Microarray
Data," Proceedings of IEEE IJCNN'06, Vancouver, Canada., pp. 5279-5286, 2006.

[7] J. P. Brody, B. A. Williams, B. J. Wold, and S. R. Quake, "Significance and Statistical Errors
in the Analysis of DNa microarray Data," Proc Natl Acad Sci, vol. 99, pp. 12975-12978, 2002.

[8] Y. Chen, E. R. Dougherty, and M. L. Bittner, "Ratio based decisions and quantitative analy-
sis of cDNA microarray images," Journal of Biomedical optics, vol. 2, pp. 364-374, 1997.

[9] W. Huber, A. V. Heydebreck, H. Sultmann, A. Poustka, and M. Vingron, "Variance Sta-
bilization Applied to Microarray Data Calibration and to Quantification of Differential
Expression," Bioinformatics, vol. 18, pp. s96-104, 2002.

[10] T. Konishi, "Three Parameter Lognormal Distribution Ubiquitously Found in cDNA Microa-
rray data and Its Application to Parametric Data Treatment," Bioinformatics, vol. 5, 2004.

[11] I. Lonnstedt and T. Speed, "Replicated Microarray Data," Statistica Sinica, vol. 12, pp.
31-46, 2002.

108 J. Shaik and M. Yeasin

[12] E. Purdom and S. Holmes, "Error Distribution for Gene Expression Data," Statistical Ap-
plications in Genetics and Molecular Biology, vol. 4, 2005.

[13] D. M. Rocke and B. Durbin, "Approximate Variance-stabilizing Transformations for Ge-
ne Expression Microarray Data," Bioinformatics, vol. 19, pp. 966-972, 2003.

[14] R. O. Duda, P. E.Hart, and D. G.Stork, Pattern Classification, 2nd ed: John Wiley and
Sons Inc, 2000.

[15] G. Getz, E. Levine, and E. Domany, "Coupled two-way clustering of gene microarray da-
ta," Proceedings of National Academy of Science, USA, vol. 97, pp. 12079-12084, 2000.

[16] S. Mukherjee, S. J. Roberts, and M. J. Laan, "Data-adaptive Test Statistics for Microarray
Data," Bioinformatics, vol. 21, pp. 108-114, 2005.

[17] J. Shaik and M. Yeasin, "Adaptive Ranking and Selection of Differentially Expressed
Genes from Microarray Data," WSEAS transactions on Biology and Biomedicine, vol. 3,
pp. 125-133, 2006.

[18] W. Pan, "A Comparative Review of Statistical Methods for Discovering Differentially
Expressed Genes in Replicated Microarray Experiments," Bioinformatics, vol. 18, pp.
546-554, 2002.

[19] I. B. Jeffery, D. G. Higgins, and A. C. Culhane, "Comparison and Evaluation of Methods
for Generating Differentially Expressed Gene lists from MicroArray Data," BMC Bioin-
formatics, vol. 7, pp. 359-375, 2006.

[20] D. M. Mutch, A. Berger, R. Mansourian, A. Rytz, and M. A. Roberts, "The Limit Fold
Change Model: A Practical Approach for Selecting Differentially Expressed Genes from
Microarray Data," BMC Bioinformatics, vol. 21, pp. 3-17, 2002.

[21] H. Sahai and M. M. Ojeda, Analysis of Variance for Random Models: Theory, Methods,
Applications and Data Analysis: Birkhauser, 2004.

[22] G. Casella and R. L. Berger, Statistical Inference, 2 ed: Duxbury Press, 2001.
[23] J. G. Thomas, J. M. Olson, S. J. Tapscott, and L. P. Zhao, "An Efficient and Robust Sta-

tistical Modeling Approach to Discover Differentially Expressed Genes using Genomic
Expression Profiles," Genome Research, vol. 11, pp. 1227-1236, 2001.

[24] V. G. Tusher, R. Tibshirani, and G. Chu, "Significance Analysis of Microarrays Applied
to The Ionizing Radiation Response," PNAS, vol. 98, pp. 5116-5121, 2001.

[25] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4
ed. New Delhi: Tata McGraw Hill, 2002.

[26] A. Hyvarinen and E. Oja, "Independent Component Analysis: Algorithms and Applica-
tions," Neural Networks, vol. 13, pp. 411-430, 2000.

[27] D. Stekel, Microarray Bioinformatics, 1 ed. Cambridge: Cambridge University Press, 2003.
[28] X. Chen, S. Y. Leung, S. T. Yeuen, K. M. Chu, J. Ji, R. Li, A. S. Y. Chan, S. Law, O. G.

Troyanskaya, J. Wong, S. So, D. Botstein, and P. O. Brown, "Variation in Gene Expres-
sion Patterns in Human Gastric Cancers," Mol Bio Cell, vol. 14, pp. 3208-3215, 2003.

[29] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Co-
ller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander,
"Molecular classification of cancer: class discovery and class prediction by gene expres-
sion monitoring," Science, vol. 286, pp. 531-537, 1999.

[30] U. Alon, N. Barkai, D. A. Notterman, K.Gish, S. Ybarra, D. Mack, and A. J. Levine,
"Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays," Proc. Natl. Acad. Sci. USA, vol. 96, pp.
6745-6750, 1999.

[31] J. Shaik and M. Yeasin, "Visualization of High Dimensional Data using an Automated
3D Star Co-ordinate System," Proceedings of IEEE IJCNN'06, Vancouver, Canada., pp.
2318-2325, 2006.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 109–120, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Searching for Recombinant Donors in a Phylogenetic
Network of Serial Samples

Patricia Buendia and Giri Narasimhan

Bioinformatics Research Group (BioRG), School of Computing and Information Science,
Florida International University, Miami, FL 33199, USA

{pbuen001,giri}@cis.fiu.edu

Abstract. Determining the evolutionary history of a sampled sequence can
become quite complex when multiple recombination events are part of its past.
With at least five new recombination detection methods published in the last
year, the growing list of over 40 methods suggests that this field is generating a
lot of interest. In previous studies comparing recombination detection methods,
the evaluation procedures did not measure how many recombinant sequences,
breakpoints and donors were correctly identified. In this paper we will present
the algorithm RecIdentify that scans a phylogenetic network and uses its edge
lengths and topology to identify the parental/donor sequences and breakpoint
positions for each query sequence. RecIdentify findings can be used to evaluate
the output of recombination detection programs. RecIdentify may also assist in
understanding how network size and complexity may shape recombination
signals in a set of DNA sequences. The results may prove useful in the
phylogenetic study of serially-sampled viral data with recombination events.

1 Introduction

Modeling and detection of recombination is receiving increased attention, as is
evidenced by the long list compiled at a website [1]. Recombination plays an
important role in the evolution of genes and genomes; more importantly, it has a
deleterious effects on the accuracy of phylogenetic reconstruction [2, 3]. Some
programs only determine the presence or absence of recombination, without trying to
infer recombination breakpoints [4]. Such a yes/no answer might be sufficient to
decide which sequences to remove from a data set that will be used to infer a
phylogenetic tree, thus justifying the evaluation process in many comparison studies
of recombination detection methods [5-7]. The more sophisticated programs however,
attempt to detect recombinant signals and donors for a “query” sequence [8-10].

Recombination has been largely ignored in the study of evolution due to the lack of
practical methods that infer and reconstruct recombinant networks. Another reason is
rooted in the belief that recombination may be disregarded when using certain genes,
such as mitochondrial genes or genes from the Y-chromosome, which were thought
not to recombine. However, a recent study has shaken these assumptions [11]. The
study made use of the automated recombination detection methods of the package
RDP2 [7, 10] to find evidence of the presence of recombination in mitochondrial
DNA data sets used in published papers.

ă

110 P. Buendia and G. Narasimhan

Detecting recombinants in a set of input sequences is a complex problem, and the
performance of existing methods with regard to the accuracy of identification of
recombinants, donors and breakpoint positions is not known. In this paper, we
consider the simpler problem of identifying the recombinants when the input is a
recombinant network of serially-sampled sequences. We show that this seemingly
simpler problem is non-trivial. We point out that an efficient solution to such a
problem will result in a tool that would be extremely useful for performing
experiments with recombination detection.

In this paper, we discuss a new approach, RecIdentify, which seeks to determine the
donor sequences and breakpoint positions of a set of serially-sampled sequences, whose
relationships are specified by a given phylogenetic network. We discuss the conflicts
that arise when such networks are large and contain multiple recombination events. The
networks for our experiments were generated by the software Serial NetEvolve 1.0 [12],
which attempts to emulate the evolution of rapidly recombining viruses such as HIV.
The results also shed light on the effects of multiple recombination events on
recombination detection of sequences from fast evolving pathogens. Hence, the
temporal nature of the data will clearly influence the strategy used by the algorithm.
While the observations made here also apply to contemporaneous data, it is the temporal
distribution of the data that will best explain the prevalence or absence of recombination
signals in a given sequence.

2 Methods

Algorithm RecIdentify reads in a recombinant network of nodes, some of which are
sampled. For each sampled sequence, referred to as the query sequence, it identifies
donor nodes from an earlier sampling period.

Input. A recombinant network with edge lengths representing the evolutionary
history of a set of serially-sampled nucleotide sequences (sequences are not part of
input), along with sampling information.
Output. Identification of recombinants, breakpoints, and donor sequences from
earlier sampling times, for each sampled sequence. A donor sequence is the closest
ancestral sequence for some part (or the entire length) of a sampled descendant
sequence.

The algorithm RecIdentify is composed of two phases.

Phase 1. In a preliminary bottom-up traversal of the network, for each node (both
sampled and unsampled), the closest sampled descendants for each sampling time are
computed and stored in a list, DescendantsInfo.
Phase 2. Subsequently, the sequence at each sampled node is classified as being
recombinant or not and its donor sequence(s) and breakpoints are identified.

2.1 Notations and Definitions

The Network. A recombinant phylogenetic network of serial samples is a directed
acyclic graph/network, in which nodes are associated with nucleotide sequences and
sampling times (numerical values) and edges are associated with length values. The

 Searching for Recombinant Donors in a Phylogenetic Network of Serial Samples 111

direction of every edge is from parent node to child node. As defined below, the
nodes in the network may be sampled or unsampled, with either tree nodes or
recombinant nodes. When no recombination events are present, the network contains
only tree nodes and is a binary tree. Figure 1 shows an example of a recombinant
network.

Fig. 1. Recombinant network of serially-sampled data with 4 recombination events. Sampled
nodes are represented by filled circles, unsampled nodes by open circles. Each node is labeled
in alphabetical order in the reverse of the order in which the node is processed during phase 1.
Each sampled node is identified by a sequence name that starts with a numerical prefix
indicating the sampling time point (3, 6, or 9), followed by a dot and an identifying uppercase
letter. Recombinant nodes are shown with two thick edges leading into them. The numbers
above them indicate the corresponding breakpoint position.

Network properties

 A network node may be sampled or unsampled, and is associated with a
nucleotide sequence. All sequences are assumed to have the same length.

 Sampled nodes are assigned to a sampling time and are identified by an ID
whose prefix indicates the sampling time point.

 A tree node has only one parent node and at most two children.
 A recombinant node is a node at which a recombination event takes place. It has

a left and a right parent node and a corresponding breakpoint position. A
recombinant node represents the evolutionary event of recombination, in which
one part of the sequence (i.e., left of the breakpoint) is inherited from one parent
(referred to as the left parent), and the other part (i.e., right of the breakpoint) is
inherited from the other parent (referred to as the right parent).

 A recombinant sequence is a sequence associated with a node (either tree or
recombinant node) resulting from one or more recombination events in its
history.

 A leaf node is a node with no children nodes.

112 P. Buendia and G. Narasimhan

 Edge Distance: The distance value associated with an edge of the network
represents the amount of evolutionary divergence between the two incident
nodes.

A phylogenetic network is completely specified by its topology and the set of all edge
lengths.

Network paths. Assume that node x is one of the parents of recombinant node y in
the network. Then, depending on the location of the breakpoint, node x is a donor for
only part of the sequence at node y. Thus every edge in the network from a parent to a
child is associated with a portion of the sequence for which the parent is a donor.
Extending this notion, we define a path from node v to w in the network to be a
sequence of nodes (or edges) along with a specified portion of the sequence (given by
a range, i.e., a start point and an end point, in the sequence). More precisely,

path(v,w,s) = (P, s)

is an ordered pair with a sequence of vertices P = ‹n1,..np› (with the first and last
entries of the sequence being v and w, respectively), and an interval range s =
[start,end] indicating a start and end point of the sequence linking the nodes v and w.

The nucleotides under consideration are given by the interval range s = [start,end]
often flanked by breakpoints on one or both sides. If the given recombinant network
has no recombinant nodes, i.e., the given network is a tree, every path is associated
with the entire sequence. In a recombinant network, there may be more than one
sequence of nodes from a node v to node w, and each must be associated with a
disjoint interval range, i.e., portion of the sequence.

Examples. In Figure 1, path(a,w,[0,700]) = (‹a,b,f,3.O,w›, [0,700]) and path
(a,w,[701,sLen]) = (‹a,p,u,3.V,w›, [701,sLen]) are two distinct paths from a to w
covering disjoint interval ranges of the sequences. Note that the breakpoint is between
the 700-th nucleotide and the following one, and sLen is the length of all the
sequences. Also note that paths are not directed.

Donor and Recipient lists. As mentioned before, a sampled node with recombinant
nodes among its ancestors may have any number of donors. The DonorList can be
used to store the donor information of any given node. The list contains only one
network node if only one donor has been identified for the entire sequence. If
different nodes have been identified as donor nodes for different parts of the
sequence, then the donor list is an ordered list of donors along with the corresponding
breakpoints. The RecipientList, to be used in Phase I of the algorithm, is structured
exactly like the DonorList, and is used to store a list of recipients for any given node.
For node x, it stores a list of all (recipient) nodes for which x could be a donor.

RDL notation. In order to write down the donor or recipient list, we introduce the
RDL notation in this paper, written as follows:

[S1|B1|S2|B2|…|Bn-1|Sn].

If it denotes a donors list of node x, it expresses the recombinant history of node x as
an ordered list of n sampled donor sequences and n-1 breakpoints. S1 and Sn are the
leftmost and rightmost sampled donor nodes, while Si is the ith sampled donor node.
We introduce the concept of a NULL node, which is represented by a dash “-”. It is
used to indicate that no donor has (yet) been found for some portion of a sequence.

 Searching for Recombinant Donors in a Phylogenetic Network of Serial Samples 113

Examples. During phase 2 (described later) when searching for the donor list of node
9.M in Figure 1, the algorithm traverses upward to the root. When it is at node j,
based on the information collected from the subnetwork reachable from node i, the
donor is: [—|700|6.K], implying that no donor has yet been found for the first 700
nucleotides. However, when node b is reached, based on the information collected
from the subnetwork reachable from node b, the donor list of node 9.M contains the
complete information: [3.E|700|6.K].

2.2 Selection Criteria

Ancestor Criterion. A key requirement that our method imposes is that for any given
sequence, all potential donor sequences must have been sampled at an earlier
sampling time point.

Distance Criteria. A node v is said to be closer to node u than to node w for a
segment of the sequence s = [start,end], if distance(v,u,s,c) <c distance(v,w,s,c), where
distance(v,u,s,c) is the length of the shortest path between nodes v and u calculated
for sequence segment s using distance measure c. In order to compute distances
between the sampled data, three different distance measures may be used:

 Path length measure: a distance measure based on path lengths,
 Topology distance measure: a distance measure based on number of edges

on the path, and
 Combined distance measure: a measure that combines the path length and

topology measures.

The three measures were chosen by taking into consideration the different approaches
used in existing recombination detection methods [10, 13, 14].

A sequence at node v is identified as a donor sequence of the query sequence at

node q if distance(v,q,s,c) = min
, wvWw ≠∈

{distance(w,q,s,c)}, where W is the set of all

sampled nodes from sampling times prior to tq, the sampling time of q.

Path length measure. Let Len(e) be the length value associated with edge e. The
distance between nodes v and q under the path length criterion is given by

distance(v,q,s,lengths) = ∑
∈),,(

)(
sqvpathe

i

i

eLen .

This is thus the path length measure used in traditional graph theory literature. As
mentioned before, the directions of the edges on the path are ignored.

Topology distance measure. The distance between sequences at nodes v and q under
this measure is given by distance(v,q,s,nodes), the minimum number of edges on any
path between nodes q and v.

Combined distance measure. This is simply a weighted combination of the distances
according to the edge distance measure and the topology distance measure. More
formally, the combined distance is given by: distance(v,q,s,combined) =
distance(v,q,s,nodes)*nodePenalty + distance(v,q,s, lengths). Here nodePenalty is a
penalty imposed on the number of edges on the path.

114 P. Buendia and G. Narasimhan

Donor Identification. In each of the above definitions of the distance measures, the
donor sequence for the query sequence at node q is defined as the sequence associated
with the node v that has the smallest distance(v,q,s,c) value among all nodes v, where
c is one of the three distance measure criteria. In each case, ties are broken by using
an alternative distance criterion. If ties persist, a candidate donor is selected
arbitrarily.

Examples. Each of the three distance measures may identify different donor
sequences. In Figure 1, using the topology distance measure, sequence 6.K will be
identified as a recombinant with two donors for two different portions of the
sequence; in RDL notation: [3.E|700|3.O]. Note that the node 9.M is from a later time
period and cannot be considered as a donor node. The edge distance measure,
however, will only identify one donor sequence, [3.E], as it has a smaller edge
distance from the right-hand donor (node j) than the sequence at node 3.O. Depending
on the nodePenalty value, the combined distance measure could identify the same
donor as that with the other two distance measures, or an entirely different donor.

2.3 The DescendantsInfo List

For the following discussion, let c be one of the three distance measures defined
above. With respect to a specific node x and a sequence segment s, we say that v <c w
if x is closer to v than to w according to a distance measure c, i.e., distance(x,v,s,c) <
distance(x,w,s,c). We also define the relation ≤s as follows. We say that v ≤s w if v
was sampled no later than w. Finally, we say that node v dominates node w, if v <c w
and v ≤s w. In other words, v dominates w with respect to node x, if v is closer to x
and was sampled no later than w.

The DescendantsInfo list is an ordered list associated with each node, with one entry
for each sampling time. It is sorted by sampling times, and for each sampling time, it
contains, for each segment of the sequence, the closest sampled descendants of the
node. More precisely, for node x, each element in its associated DescendantsInfo is a
RecipientList structure and contains the closest sampled descendant node for each
segment (i.e., between two successive breakpoints) of the sequence of x. Besides the
identity of the closest node, it also stores the distance to the closest node using the path
length measure and the topology distance measure. (Note that the combined distance
measure is not stored since it can be computed from the other two measures.)

Example. In Figure 1, the DescendantsInfo list for node g is [6.S|200|-|700|6.K] for
sampling period 6 and [9.M] for sampling period 9.

The elements of the DescendantsInfo lists will be used to compute the donor lists
containing the recombination history of any query sequence in Phase 2. Thus, if
unsampled node x has two children v and w, then the DescendantsInfo list associated
with node v contains potential donors of query nodes in the subnetwork rooted at w,
and vice versa.

The Dominance rule. For tree networks, we know that the RecipientsList has only
one node. The DescendantsInfo structure can be further simplified using a simple
rule, i.e., the dominance rule for two sampled nodes v and w with respect to an
ancestor node x and a sequence segment s, which is stated as follows:

 Searching for Recombinant Donors in a Phylogenetic Network of Serial Samples 115

if (v <c w) then
 if (v ≤s w) then discard w,
else retain w, but after v.

In other words, the dominance rule discards all dominated nodes from the
DescendantsInfo list of x and orders the rest by increasing distance from x, such that
the DescendantsInfo list of every node in a tree network is sorted in the order of
increasing distances and decreasing sampling times. Note that if a node x is sampled,
its DescendantsInfo list contains only one item and that is itself.

2.4 Phase 1: Storing Candidate Donor Nodes in the DescendantsInfo List

In phase 1, the DescendantsInfo list at each node in the network is computed in a
bottom-up manner using a simple Depth-First Search (DFS) traversal. The objective
of phase 1 is to compute, for each node v, a list of closest sampled descendants from
each sampling time. This information will be made use of in Phase 2 in the following
manner. If a node v is a sibling node of some node in the path from a node x to the
root, then all nodes in the DescendantsInfo list of v that were sampled prior to x, are
potential donors of x. The DescendantsInfo list of a node v is computed by a process
of “merging” the DescendantsInfo lists of its children as described below in detail.

Merging procedure. During the DFS traversal, the DescendantsInfo list of an
unsampled leaf node is initialized to NULL and that of a sampled leaf node is
initialized to contain only one RecipientList, which in turn has only one entry, i.e.,
itself. For all other nodes, the DescendantsInfo list is computed by merging the
DescendantsInfo of the left and right children of the node. Before discussing the
general case, we discuss two special cases of merging.

• Case 1 (Merging at a recombinant parent node). Assume that the current node is
a recombinant parent node with only one child. Furthermore, assume without loss
of generality, that the parent is a right recombinant donor with breakpoint B. Then
the merging process will add a NULL node to the left of B in every RecipientList
of the DescendantsInfo structure of that node, while the portion of the
RecipientList for which the recombinant parent is the donor (i.e., to the right of
breakpoint B) will be copied over.

• Case 2 (Merging at nodes with nonrecombinant children). If a node has two
non-recombinant children, then the DescendantsInfo structure of that node can be
considerably simplified by applying the dominance rule.

• Case 3 (Merging recombinant RecipientLists). The general case of the merging
process merges the two DescendantsInfo structures (from the two children), each
of which is a list of RecipientList structures (one for each sampling time). The
merging process merges the RecipientList structures for the same sampling period
with the new breakpoint list being the union of the breakpoint lists of the individual
RecipientLists. For each resulting segment (i.e., between successive breakpoints)
of the sequence, the merge process looks at the two donors, v and w, from each list
and if v <c w, it retains v, the closer of the two. In the end, if the closest sequence is
the same to the left and right of a particular breakpoint, then the breakpoint is
removed and the list is shortened.

116 P. Buendia and G. Narasimhan

Examples. In Figure 1, node j is a recombinant parent with only one child. Thus,
Case 1 is applied resulting in the RecipientList [-|700|6.K]. Case 2 can be applied at
node l. Here the 9.M <c 9.N when c is the path length criterion. 9.M =c 9.N when
using the topology criterion, however, in this case, the path length measure is applied
to break the tie. The general case 3 is applied at node g, where the RecipientLists
denoted by [6.S|200|-] and [-|700|6.K] are merged resulting in a list denoted by
[6.S|200|-|700|6.K]. Note the NULL node in the mid section of the sequence.

Special Cases. It is worth noting that in a recombinant network, not every sampled
ancestor of a recombinant node is a donor, because it is very much dependent on the
location of the breakpoints. The proposed algorithm does take care of this unusual
scenario. For example, in Figure 1, the DescendantsInfo list of node 3.V is empty
although it appears to be an ancestor of a sampled node 6.X.

2.5 Phase 2: Identification of Donor Nodes

During this search phase the closest donor sequences have to be determined for each
sampled query sequence. The resulting DonorList structure is returned as the answer.
When searching for the donors of a query sequence, the DonorList is initialized to the
empty list. Then the network is traversed along all paths from the query node to the
root. At every node, the DonorList is “merged” with entries from the DescendantsInfo
of their sibling nodes (if any) if these entries are at a closer distance than the current
answer stored in DonorList. Note that the merging process described in the previous
section is now being reused in this phase. The search traverses a simple path if no
recombination events are encountered along the way; otherwise the search process
splits up. Whenever two of these paths meet, the DonorLists are merged again. If we
assume that the network has a unique root, then all the paths will meet and the process
will stop. The process will also stop when the distance traveled in the network
exceeds the distance of the best answer stored in DonorList, or when a node along the
path is a sampled node itself.

Special Cases. During Phase 2 the donor sequences for each “query” sequence is
determined. A complex network structure may obscure recombination signals and
lead to ambiguous and incorrect results. Recombinant sequences may be identified as

Fig. 2. Examples of ambiguous sequence identification

 Searching for Recombinant Donors in a Phylogenetic Network of Serial Samples 117

non-recombinants, while non-recombinants may get identified as recombinants.
Figures 2(a) and (b) show examples of both these cases. In both figures, the sampled
query node is marked with the label Q. In Figure 2(a), no recombination event is
present in the path from Q to the root. It may nevertheless be identified as a
recombinant sequence with DonorList of [A|200|B|700|C], since two closest sampled
sequences from a previous sampling period (nodes A and C) are descendants of
recombinant parents. In contrast, in Figure 3 (b), Q will not be identified as a
recombinant sequence since the closest sampled node (node B) is not a recombinant.

2.6 Time Complexity

Phase 1. The merge process at each node merges t pairs of lists, where t is the number
of sampling times. Each list can, in the worst case, have as many breakpoints r as the
number of recombination events in the network. If n is the number of nodes in the
network, then DFS-traversal of the network, which performs O(n) merges runs in time
O(trn). Note that the number of edges in the network is linear in n (since each node
has at most two edges leaving or entering). Also, note that because of recombination
events, the number of nodes in the network can be arbitrarily larger than the number
of leaves or number of sampled nodes in the network. In the best case scenario, n = s,
all nodes are sampled nodes. Time complexity is O(n) because "every" sampled node
contains itself and only itself in its DescendantsInfo list, therefore t=1 and r=1.

Phase 2. GetClosestDonor procedure is called for each sampled node that is not from
the first sampling time point. In the worst case, this could take O(trn) for each
sampled sequence and O(trsn) overall. However, this time can be improved, when
during the search the result per sampling time is stored at each visited node in the
path. The search will stop whenever it encounters a node that contains the result for a
path that has already been searched previously. Since, with this improvement, the
processing (i.e., merging) has to be performed at most once at each node, the time
complexity as in Phase 1, is O(trn). Again in the best case, n=s, and the time
complexity is O(n) because the donor will be found after 1 step. The donor is the
sampled parent node.

3 Experimental Results and Discussion

Given a set of aligned, serially-sampled sequences and a simulated network that
describes the phylogenetic relationships between the sequences, we asked the
following questions in this paper: how to classify the sequences as being recombinant
or non-recombinant, and how to identify donors and breakpoint positions, while using
an approach that is compatible with the methodologies of published recombination
detection tools. We have proposed a special algorithm, RecIdentify, to carry out these
tasks. The resulting implementation can be conveniently used to evaluate the
performance of recombination detection methods. We sought to determine the kind of
recombination events that complicated the determination of the history of a sequence
and how this complication affects the recombination detection process.

Testing procedure. Our findings show that the identification of recombinant
sequences is greatly influenced by the choice of distance criteria, with a possible

118 P. Buendia and G. Narasimhan

strong effect on the number of false positives detected by recombination detection
programs. The program Serial NetEvolve 1.0 [12] creates a randomly generated
coalescent network of serially sampled sequence data, and outputs its structure and
the alignment of the sampled sequences. Sequences from both internal and terminal
nodes may be present. Sequences are assigned to different sampling time points. The
network output of Serial NetEvolve may be analyzed with RecIdentify and the results
compared to the results obtained by recombination detection methods that analyze
only the set of aligned sequences. A comprehensive comparison study of this kind
would consist of comparing the donors and breakpoint matches in addition to
computing the number of true positives and false positives and other performance
measures computed using these values. While such a testing procedure is outside the
scope of this current paper, it lays the groundwork for new comprehensive
comparison studies.

Distance and topology approaches. For each (query) sequence the algorithm
RecIdentify determines if the sequence has one or more donor sequences among the
sampled data. Breakpoint positions are also determined for recombinant sequences.
The identification process is dependent on the chosen distance criteria, which in turn
is inspired by the two main classes of recombination detection methods [10, 13].
Table 1 shows the results of applying the path length (PLen), topology (Top),
topology with tie-breaker (Top+TB), and combined (Com) distance criteria to 6
groups of 100 data sets. The data sets were generated with the program Serial
NetEvolve [12] using 6 different recombination rates, namely 1x10-8, 2x10-8, and
3x10-8 corresponding to the low recombination rates, and 4x10-8, 5x10-8, and 6x10-8 to
the high recombination rates.

Table 1. RecIdentify results for different distance criterias

 % recombinants % rec donor matches % non-rec donor matches
Rec. rate low high low high low high

Criteria Top
Top
+TB

Com Top
Top
+TB

Com Top
Top
+TB

Com Top
Top
+TB

Com

PLen 19% 39% 49% 60% 79% 42% 53% 72% 73% 79% 89% 74% 80% 89%
Top 19% 39% 75% 58% 73% 52% 92% 81% 94% 83%
Top+TB 18% 37% 75% 69% 87% 87%
Com 19% 38%

The different distance measures (with or without tie-breaker) tend to agree in the
number of recombinants found (% recombinants) for low and high recombination
rates. Adding the tie-breaker to the topology measure reduces the number of
sequences identified as recombinants, while adding it to the path length measure does
not affect the measure in any way, as path lengths were never found to be equal. The
path length and topology measures, however, return results that agree by only 49%
and 42% in the choice of donor sequences for recombinant sequences (matrix of %
rec donor matches) and by only 73% and 74% for non-recombinant sequences (matrix
of % non-rec donor matches) as seen in Table 1.

Effects of complex phylogenetic network structures. A phylogenetic network that
describes the evolutionary history of a set of recombinant taxa may obscure the actual

 Searching for Recombinant Donors in a Phylogenetic Network of Serial Samples 119

historical evidence if too many recombination events are dispersed throughout the
network. The cases discussed in the Methods section make it clear that the
identification of donors in a given recombinant network is nontrivial and requires a
careful algorithm that recognizes the evolutionary implications built into such a
structure. Some of the more remarkable cases are summarized below:

• Recombinant sequence may be identified as a non-recombinant. This happens
when a sequence at a recombinant node has unsampled parental nodes and the
closest sampled donor is an ancestor of both unsampled parents (see Figure 2(b)).

• Non-recombinant sequences may be identified as recombinant. This occurs
when a non-recombinant query sequence has different sequences identified as
donors for different parts of the sequence, but no recombination event took place
on the path from the root to the query node. (See Figure 2(a) for an example.)

• The closest sampled nodes may not always be donor candidates of a query
sequence. If the path from the closest sampled node to the query sequence contains
more than one recombination event, the query sequence may not have inherited any
part of the sequence from the sampled node. (See Special Cases in Section 2.5)

Analysis of serially-sampled data from recombining, fast-evolving pathogens.
Recombining RNA viruses are known for their immense evolutionary potential. Using
RecIdentify to analyze networks generated by Serial NetEvolve may offer a better
understanding of the evolution of such viruses, by revealing the effects that a
recombinant history of a set of serially sampled viral sequences has on recombination
detection and on traditional phylogenetic analysis of such data.

4 Conclusion

We present an algorithm that classifies sequences from a phylogenetic network of
serial samples into two categories: recombinant or non-recombinant. For a
recombinant sequence the donor sequences and breakpoint positions are also
identified. The goal of the identification procedure is to use the results to achieve an
evaluation of recombination detection methods that is more comprehensive than in
previous studies [5-7].

The different cases that are encountered in a complex recombinant network during
the identification of donors require an algorithm that recognizes the evolutionary
implications built into such a structure. We show how a complex recombinant history
may obscure the phylogenetic signals of the data if only a few sequences are
available/sampled. Navigating the network in search of recombinant donors for a
query sequence involves setting up criteria for deciding when a taxon is to be called a
donor. The most influential criterion is related to the distances between sequences in
the network. The distance criteria chosen in the RecIdentify algorithm were inspired
by the two main classes of recombination detection methods, those based on sequence
comparison (genetic distance) and those based on phylogenetic network topology. It
is evident from the findings related to the choice of distance criteria that the selection
of recombinant donors hinges greatly on the underlying distance measure used. Future
work comparing recombination detection methods with respect to their choice of
distance measure will reveal the magnitude of its effect on the detection process.

120 P. Buendia and G. Narasimhan

Acknowledgements

The work of P.B. was supported by MBRS-RISE Fellowship (NIH/NIGMS R25
GM61347). The work of G.N. was supported in part by NIH Grants P01 DA15027-01
and NIH/NIGMS S06 GM008205.

References

1. Fan, J. and D. Robertson. Links to recombinant sequence analysis/detection programs,
http://bioinf.man.ac.uk/recombination/programs.shtml. 2006

2. Posada, D. and K. Crandall. The effect of recombination on the accuracy of phylogeny
reconstruction. Journal of Molecular Evolution, 2002. 2002(54): p. 396–402.

3. Schierup, M. and J. Hein. Consequences of recombination on traditional phylogenetic
analysis. Genetics, 2000. 156: p. 879–891.

4. Worobey, M. A novel approach to detecting and measuring recombination: new insights
into evolution in viruses, bacteria, and mitochondria. Molecular Biology and Evolution,
2001. 18: p. 1425-1434.

5. Posada, D. and K.A. Crandall. Evaluation of methods for detecting recombination from
DNA sequences: computer simulations. Proc. Natl. Acad. Sci. USA, 2001. 98(24): p.
13757-62.

6. Wiuf, C., T. Christensen, and J. Hein. A simulation study of the reliability of recombination
detection methods. Molecular Biology and Evolution, 2001. 18(1929–1939).

7. Martin, D.P. et al. A modified bootscan algorithm for automated identification of
recombinant sequences and recombination breakpoints. AIDS Research and Human
Retroviruses, 2005. 21: p. 98-102.

8. Lole, K.S. et al. Full-length human immunodeficiency virus type 1 genomes from subtype
C-infected seroconverters in India, with evidence of intersubtype recombination. Journal of
Virology, 1999. 73(1): p. 152-60.

9. Strimmer, K. et al. A novel exploratory method for visual recombination detection.
Genome Biology, 2003.

10. Martin, D.P., C. Williamson, and D. Posada. RDP2: recombination detection and analysis
from sequence alignments. Bioinformatics, 2005. 21(2): p. 260-262.

11. Tsaousis, A.D. et al. Widespread recombination in published animal mtDNA sequences.
Molecular Biology and Evolution, 2005. 22(4): p. 925-933.

12. Buendia, P. and G. Narasimhan. Serial NetEvolve: A flexible utility for generating
serially-sampled sequences along a tree or recombinant network. Bioinformatics, 2006.
22(18): p. 2313-2314.

13. Salminen, M. et al. Identification of recombination breakpoints in HIV-1 by bootscanning.
AIDS Research and Human Retroviruses, 1995. 11: p. 1423–1425.

14. Siepel, A. and B. Korber. Scanning the Database for Recombinant HIV-1 Genomes.
Human Retroviruses and AIDS Compendium Part III, 1995. p. 35-60

Algorithm for Haplotype Inferring Via

Galled-Tree Networks with Simple Galls

(Extended Abstract)

Arvind Gupta, Ján Maňuch, Ladislav Stacho, and Xiaohong Zhao

School of Computing Science and Department of Mathematics
Simon Fraser University, Burnaby, BC, V5A 1S6, Canada

{arvind,jmanuch,lstacho,xzhao2}@sfu.ca

Abstract. The problem of determining haplotypes from genotypes has
gained considerable prominence in the research community. Here the
focus is on determining sets of SNP values on individual chromosomes
since such information captures the genetic causes of diseases. Present
algorithmic tools for haplotyping make effective use of phylogenetic trees.
Here the underlying assumption is that recombinations are not present,
an assumption based on experimental results. However these results do
not fully exclude recombinations and models are needed that incorporate
this extra degree of complication. Recently, Gusfield studied the two
cases: haplotyping via imperfect phylogenies with a single homoplasy and
via galled-tree networks with one gall. In earlier work we characterized
the existence of the galled-tree networks. Building on this, we present
a polynomial algorithm for haplotyping via galled-tree networks with
simple galls (having two mutations). In the end, we give the experimental
results comparing our algorithm with PHASE on simulated data.

1 Introduction

With the great progress of the Human Genome project, recent research has
focused on the problem of determining certain genome variants, SNPs, on indi-
vidual chromosomes (haplotypes). Such information captures genetic variations
and is already playing a central role in helping to determine the genetic causes
of diseases and in designing effective pharmaceutical responses to these diseases
([4,18]). Experimentation allows for cost-effective determination of genotype in-
formation (the combined information of the two haplotypes for an individual
across both matching chromosomes) and so the problem reduces to determin-
ing haplotypes from genotypes, the haplotyping problem. Each SNP (single
nucleotide polymorphism) can take two different values over all individuals.
Therefore, haplotypes can be represented with binary data, e.g., 0 represent-
ing the most common SNP value and 1 the other value. For genotypes, we use
a 0 (respectively, 1) to represent that both sites are 0’s (respectively, 1’s), and a
2 to represent that the sites have different values (one is 0 and the other 1).

While in-vitro techniques can be used for haplotyping, the cost is prohibitive
[17] and there is strong interest in the development of algorithmic tools (see

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 121–132, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

122 A. Gupta et al.

[2,8,12] for survey of the problem). The first heuristic algorithm for haplotyping
problem was introduced by Clark in [3]. Gusfield [7] developed the first such
exact algorithms and based these on an underlying assumption of perfect phy-
logeny tree on SNP sequences. In particular, each SNP site mutates at most
once and there are no recombinations allowed. This is based on experimental
results showing that many chromosomes are blocky and nucleotides on each
block tends to inherit together ([4,18]). As such these experiments do not ex-
clude recombinations within a block and models were needed that allow for a
few recombinations.

A phylogenetic network is a generalization of phylogenetic trees that allows
recombinations. The problem of building a phylogenetic network with minimum
number of recombinations for a set of taxa is very hard. It is intractable even for
taxa with binary characters. Hein is among the first to give heuristic algorithms
for building phylogenetic networks ([13,14,19]). Recently, an exact polynomial
algorithm ([9]) was developed for a simplified model – the galled-tree network
([23,9]). The problem of utilizing galled-tree network model to explain evolution-
ary history for the original haplotypes that form genotypes was introduced by
Gusfield et al. at 2003 ([10]). The problem seems very hard, and even restricted
version of the problem is interesting to explore. Song et al. ([20]) designed a prac-
tical algorithm for haplotyping via galled-tree networks with one gall, as well as
a polynomial algorithm for haplotyping via imperfect phylogenies with a single
homoplasy. In earlier work ([6]) we considered the problem of characterizing the
existence of galled-tree networks. In this paper we build on this, and present a
polynomial time algorithm (with complexity O(n2 + nm2)) for haplotyping via
galled-tree networks with galls having exactly two mutations. We require the
genotype matrices to satisfy a natural condition which is implied, for example,
by presence of at least one 1 in every column. The examination of real biological
genotype data and some simulation data suggests that this condition is usually
satisfied. Note that the problem of inferring haplotypes using galled-tree net-
work generalizes the haplotyping problem via perfect phylogeny. Also note that
in general the problem is very likely to be intractable [5].

Due to space limitation the proofs of correctness of Phases 4.1 and 4.2,
Lemmas 2, 3 and 4 will appear in the full version of this paper.

1.1 Definitions of Phylogenetic and Galled-Tree Networks

In this paper, we consider only trees and networks with all-zero roots.
A phylogenetic network is a generalization of phylogenetic trees. A phyloge-

netic tree is built by starting with a root and repetitively adding new vertices and
connecting them by mutation edges to existing vertices. Along each mutation
edge the state of specified character is changed. It is assumed that each character
changes at most once (the “infinite sites assumption”). To build a phylogenetic
network, another operation is also allowed: add a new vertex and connect it to
two existing vertices by recombination edges. The label of this vertex is a com-
bination of labels of its two parents, prefix of one parent concatenated with the
suffix of the other parent. Each recombination vertex defines a recombination

Algorithm for Haplotype Inferring Via Galled-Tree Networks 123

cycle by tracing the first common ancestor of its parents. If a recombination
cycle does not share edges with any other recombination cycle, it is called a gall.
A network which has only galls is called a galled-tree network. For the formal
definitions and examples see [6,11].

Given an n×m binary matrix A, we say that a phylogenetic network N with
m characters explains A if each row of A is a label of some vertex in N .

Let S be a subset of characters. The matrix A[S] is the sub-matrix of A
restricted to the columns in S. By M [S]− x, we denote the sub-matrix of M [S]
from which we remove all rows whose strings are identical to x.

We say that the characters c1 and c2 conflict in a haplotype matrix M if
M [c1, c2] contains all three pairs [0, 1], [1, 0] and [1, 1]. Note that in perfect
phylogeny no two characters can conflict (four-gamete test). We assume the
character set is linearly ordered, say {1, 2, . . . , m}. The conflict graph GM has
the vertex set correspond to the character set and for every two characters c1
and c2, (c1, c2) is an (undirected) edge of GM if they conflict. The following
characterization of the existence of galled-tree network was obtained in [6].

Theorem 1. ([6]) Given a haplotype matrix M , M can be explained by a galled-
tree network if and only if every nontrivial component (having at least two ver-
tices) K of the conflict graph GM satisfies the following conditions:

(1) K is bipartite with partitions L and R such that all characters in L are
smaller than all characters in R (the ordered component property); and

(2) there exists a row x �= 0|K| such that M [K]−x has no conflicting characters.

2 Inferring Haplotypes Via Galled-Tree Network

In this section we introduce both the perfect phylogeny haplotyping (PPH) prob-
lem and galled-tree network haplotyping (GTNH) problem.

Given a genotype n × m matrix A, find a 2n × m haplotype matrix B with
values in {0, 1}, where rows 2i − 1 and 2i of B represent haplotypes for the
genotype in row i of A. We say that B is inferred from A if and only if for every
character c ∈ {1, . . . , m},
– if A(i, c) ∈ {0, 1}, then B(2i − 1, c) = B(2i, c) = A(i, c); and
– if A(i, c) = 2, B(2i − 1, c) �= B(2i, c).

Let XA = {xr{c1,c2}; A(r, c1) = A(r, c2) = 2} be the set of Boolean variables. For
brevity, we will abuse notation and refer to variable xr{c1,c2} by xrc1c2 . The value
of the variable xrc1c2 determines the way how the pair of 2’s in the row r and
columns c1 and c2 is resolved. Define assignment IB : XA → {0, 1} as follows.

Let IB(xrc1c2) = 0 if the pair is resolved equally in B, i.e,
(
2 2

) →
(

0 0
1 1

)

; and

IB(xrc1c2) = 1 if the pair is resolved unequally in B, i.e,
(
2 2

) →
(

0 1
1 0

)

. Note

that specifying the assignment IB is equivalent to specifying the matrix B (up
to swapping rows 2i − 1 and 2i, for any i ∈ {1, . . . , n}).

124 A. Gupta et al.

Given a genotype matrix A, we say that A can be explained by phylogenetic
tree/galled-tree network if there exist a haplotype matrix B inferred from A such
that B can be explained by a phylogenetic tree/galled-tree network.

Problem 1. (Perfect phylogeny haplotype (PPH) problem/Galled-tree network
haplotype (GTNH) problem) Given a genotype matrix A, decide if A can be
explained by a phylogenetic tree/galled-tree network.

Given a genotype matrix A, for every x, y ∈ {0, 1}, we say that a pair of columns
c1, c2 induces [x, y] in A, if A[c1, c2] contains at least one of the pairs [x, y], [2, y]
and [x, 2]. We can define a conflict graph for genotype matrix A similarly as for
haplotype matrices by relaxing the notion of conflict. In particular, character c1
and c2 conflict if they induce [0, 1], [1, 0] and [1, 1] in A.

Using the characterization for the PPH problem by Bafna et al.[1], we have
the following lemma about the relationship between the conflict graph of B and
the assignment IB .

Lemma 1. Given a genotype matrix A, infer a matrix B. For every xrc1c2 ,
xrc1c3 , xrc2c3 ∈ XA, IB(xrc1c2) + IB(xrc1c3) + IB(xrc2c3) = 0. In addition, char-
acters c1, c2 conflict in B if and only if at least one of the following is true:

(C0) c1, c2 induce all three pairs: [1, 1], [0, 1] and [1, 0] in A;
(C1) IB(xrc1c2) �= IB(xr′c1c2) for some xrc1c2 , xr′c1c2 ∈ XA;
(C2) c1, c2 induce [1, 1] in A, and there is xrc1c2 ∈ XA such that IB(xrc1c2) = 1;
(C3) c1, c2 induce [0, 1] and [1, 0], and there is xrc1c2 ∈ XA with IB(xrc1c2) = 0.

3 Special Instances of GTNH Problem

The GTNH problem seems to be very hard, hence we consider special instances
of this problem. We will restrict the problem on genotype matrices which satisfy
a structural condition called the weak property: Given a genotype matrix A,
we say that A has the weak property if every pair of characters containing [2, 2]
induces either both [0, 1] and [1, 0], or [1, 1]. For any two columns ci, cj, let
indicator indij be 1 if ci, cj induce [0, 1] and [1, 0], and 0, otherwise. Note that
in the second case, they have to induce [1, 1].

Let us state two observations about the weak property. First, a genotype
matrix with the weak property has the following useful feature: if B and B′

are two haplotype matrices inferred from A such that IB(xrc1c2) �= IB′(xrc1c2),
for some xrc1c2 ∈ XA, then c1 and c2 conflict either in B or in B′. Second,
note that the weak property is equivalent to the following condition: “every
column containing 2 must also contain 1” (under assumption that A does not
contain any rows with only one 2 which are easy to eliminate from the matrix
without affecting the solutions to the problem). Hence, this property is not very
restricting. Indeed, the data set presented in [4] and most of the simulation data
sets which we randomly generated genotypes from Hudson’s simulation program
[15] satisfy the weak property.

Algorithm for Haplotype Inferring Via Galled-Tree Networks 125

In [5] we reduced the GTNH problem for matrices with the weak diagonal prop-
erty (different from the weak property) to a covering problem of special hyper-
graphs. If this covering problem is polynomial, it would imply polynomiality of
this instance of GTNH problem. However, we showed the covering problem is NP-
complete. In this paper, we further simplify the problem by requiring that the so-
lution is a galled-tree network with galls containing two mutation edges. We will
call such networks simple GTN and the problem of deciding whether a genotype
matrix can be explained by a simple GTN, the SGTNH problem. We will show
that the SGTNH problem is polynomial for matrices with the weak property.

Theorem 1 gives a simple characterization of haplotype matrices which can
be explained by a simple galled-tree network. Base on this we can observe that
given a haplotype matrix B, B can be explained by a simple galled-tree network
if and only if every non-trivial component of the conflict graph of B has two
vertices (B contains only isolated edges). Furthermore, given a genotype matrix
A, if A can be explained by a simple galled-tree network then the conflict graph
of A contains only isolated edges.

Hence, from now on we will assume that the conflict graph of A has only
isolated edges (otherwise, the algorithm reports fail). Let us call such a matrix
simple. A haplotype matrix B explainable by an SGTN inferred from a genotype
matrix A will be called a solution.

4 The Algorithm

Our algorithm has three phases. In the first phase, it will produce a genotype
matrix A′ from A (by replacing some rows with 2’s with rows inferred from them)
such that A′ can be explained by a SGTN if and only if A does, and each row of
A′ has either zero, three or four 2’s. In the second phase, we will further replace
more rows with 2’s so that a new genotype matrix A′′ satisfies a special condition
(SC) (described later). In the last phase, the algorithm will infer B from A′′ (if
possible) using a reduction to a hypergraph covering problem. Finally, a solution
for A′′ can be easily transformed to a solution for A.

4.1 Phase 1: Eliminating Rows with Less Than Three or More
Than Four 2’s.

1. Replace every row r with one 2 (two 2’s) with the 2 × m matrix R inferred
from r (such that IR(xrc1c2) = indij).

2. For every row r with 2’s in columns c1, c2, . . . , ck, where k ≥ 5:
(a) For every 5-tuple ci, . . . , ci+4, where i = 1, . . . , k − 4, replace row r in

A[ci, . . . , ci+4] with all (16) possible inferrings of r[ci, . . . , ci+4] to obtain
16 matrices Ai

1, . . . , A
i
16.

(b) Find the matrix Ai
ji

whose conflict graph has only isolated edges. It can
be proved that at most one of our matrices has this property. If there
is no such matrix, the original inferring problem has no solution: report
fail. Otherwise, the matrix Ai

ji
determines unique values of IB(xrcpcq)

in every solution B, for every p, q ∈ {i, . . . , i + 4}.

126 A. Gupta et al.

(c) If the values of IB(xrcpcq) for p, q ∈ {1, . . . , k} are determined consis-
tently over all 5-tuples considered, replace r by two rows inferred from r
according to these values. Otherwise, there is no solution: report fail.

4.2 Phase 2: Eliminating of Some Triples of 2’s.

We may assume that matrix A has zero, three or four 2’s in every row. In this
phase, we will resolve rows with three or four 2’s, if there is a unique way of
doing that. The following procedure converts matrix A′ to matrix A′′ with zero,
three or four 2’s in every row such that (SC): for every triple of 2’s in one row,
say in columns c1, c2, c3, the sum of indicators of c1, c2, c3 is 1 and the conflict
graph of A′′ has no edges between c1, c2, c3.

Procedure

1. For every row with four 2’s, say in columns C = {c1, c2, c3, c4}, such that at
least one triple from C has the sum of indicators 0 or at least one pair from
C conflicts in A′, replace r by two rows inferred from r which do not violate
any condition. Note that it can be proved that this inferring is unique.

2. For every row with three 2’s, say in columns C = {c1, c2, c3}, such that the
sum of indicators of C equals to 0 or at least one pair from C conflict in
A′, replace r by two rows inferred from r which do not violate any condition.
Again, this inferring is unique.

4.3 Phase 3: Reducing to a Hypergraph Covering Problem

To complete the algorithm, we will characterize conflict graphs of all haplotype
matrices inferred from the genotype matrix A′′ in terms of a hypergraph cover-
ings. Then we will use this characterization to reduce the SGTNH problem to a
hypergraph covering problem. We will also provide a polynomial algorithm for
the hypergraph covering problem. Let us start with the definition of a genotype
hypergraph.

Given an n × m genotype matrix A with the weak property, the genotype
hypergraph HA of A has the set of characters {1, . . . , m} as a vertex set, and
for every row r of A containing 2’s, say in columns c1, . . . , ck (k = 3, 4), there
is a hyperedge er = {c1, . . . , ck}. Furthermore, for every two columns c and
c′ inducing [0, 1], [1, 0] and [1, 1] in A (conflicting in A), there is a hyperedge
{c, c′} in HA. The hypergraph HA does not contain any other hyperedges. A
hyperedge with k vertices will be also called a k-edge. Note that HA has O(n)
k-edges, k = 3, 4 and O(m) 2-edges. We say that a graph G on the vertex set
V (HA) covers a hypergraph HA with hyperedges of cardinality 2, 3, 4, if G can
be obtained as follows:

– for every 2-edge {c1, c2} of HA, add the edge (c1, c2) to G;
– for every 3-edge {c1, c2, c3} of HA, add exactly one of the edges (c1, c2),

(c2, c3) and (c1, c3) to G;
– for every 4-edge {c1, c2, c3, c4} of HA, add exactly two disjoint edges (d1, d2)

and (d3, d4) such that {d1, d2, d3, d4} = {c1, c2, c3, c4} to G.

Algorithm for Haplotype Inferring Via Galled-Tree Networks 127

Note that any graph covering the hypergraph HA contains all edges of the
conflict graph GA. Consider the following hypergraph covering problem.

Problem 2 (Hypergraph Covering (HC) Problem). Given a hypergraph H with
2, 3, 4-edges, determine whether there is a graph G that covers H and all its
components have at most 2 vertices.

We have the following characterization of solutions to the SGTNH problem.

Lemma 2. Let A be a simple genotype matrix, which satisfies the weak property,
the (SC) property, and has zero, three, or four 2’s in each row. A haplotype
matrix B is a solution to the SGTNH problem for A if and only if GB is a
solution to the HC problem for genotype hypergraph HA.

4.4 Solving Hypergraph Covering Problem

Now, it suffices to show that the HC problem can be solved in polynomial time.
The following lemma describes the easiest case which can be solved by first
identifying and covering cycles, and then greedily remaining 3-edges.

Lemma 3. If the hypergraph H contains only 3-edges and any two of them are
either disjoint or share exactly one vertex, then the HC problem for H can be
solved in time O(n2).

We say that two 3-edges are doubly incident if they share two vertices. A set S of
3-edges is doubly connected if for any pair e and e′ in S, there exists a sequence
of consecutively doubly incident 3-edges from S starting with e and ending with
e′. A doubly connected component is a maximal doubly connected set. Note that
the remaining 3-edges in H can be uniquely partitioned into doubly connected
components. We have the following observation.

Observation 1. Let H be a hypergraph with only 3-edges and C any doubly
connected component of H. Covering of any 3-edge of C inductively forces cov-
erings of remaining 3-edges of C which will either lead to a contradiction or
unique solution for C.

Three pairwise doubly incident 3-edges are called a doubly incident 3-edge-cycle,
cf. Figure 1(a). Figure 1(b) shows a hypergraph with a unique solution (depicted
with bold 2-edges) which plays an important role in the following lemma which
characterizes solutions for doubly connected components.

Lemma 4. Let H be a hypergraph with only 3-edges without doubly incident 3-
edge-cycles such that every pair of vertices belongs to at most two 3-edges. If C
contains the hypergraph depicted in Figure 1(b) then there is either no way or a
unique way how to cover C. Otherwise, C is a 3-edge-chain.

Now, we are ready to attack the HC problem in the general case.

Theorem 2. The HC problem can be solved in O(n(n + m)) time.

128 A. Gupta et al.

e3

e1 e2

(a) (b)

Fig. 1. (a) Doubly incident 3-edge-cycle; (b) Forcing configuration of four doubly con-
nected 3-edges

Proof. We give a polynomial algorithm for constructing a covering graph G with
components of order at most 2 from an input hypergraph H . Initially, let G be
the empty graph on vertices of H . First, we remove all 2-edges from H and place
them to G. The algorithm will deal with the hyperedges of H one by one using
a set of rules. Each processed hyperedge is removed from H and either

(T1) some pairs of vertices contained in the hyperedge are placed as edges to G
so that the conditions of Definition 4.3 are satisfied, or

(T2) the choice for pairs of vertices from this hyperedge is postponed and binded
to decision on the choice for another hyperedge still in H , or

(T3) an auxiliary hyperedge is added to H and the choice for pairs from the
original hyperedge is binded to decision on the choice for this new hyper-
edge.

The first happens only if there is a unique choice for covering the processed hy-
peredge. Hence, in the moment when G contains two incident edges, it follows
that there is no solution to the HC problem on H . It will be obvious from the
algorithm that after applying all possible rules (in given order) either all hyper-
edges are processed, or all unprocessed edges are 3-edges, any two unprocessed
hyperedges share at most one vertex and no unprocessed hyperedge and edge
of G share a vertex. Hence, we can then apply the algorithm of Lemma 3 on
the modified H (containing only unprocessed edges). Union of G and a solution
from the algorithm of Lemma 3 gives a solution to the HC problem.

The set of rules:
1. If there is an hyperedge e contained in another hyperedge f , we proceed as in
the case (T2). From now on, we can assume that no hyperedge is contained in
another.
2. If there is a pair of vertices u, v contained in at least three 3-edges, then
remove all of them from H and add the edge (u, v) to G, cf. Figure 2.
3. If H contains doubly incident 3-edge-cycle, cf. Figure 1(a), remove 3-edges of
the cycle from H and add a new 4-edge into H consisting of the four vertices of
the cycle. It is easy to see that this does not influence the solution.

u v

Fig. 2. The pair u, w contained in at least three 3-edges

Algorithm for Haplotype Inferring Via Galled-Tree Networks 129

4. For each 4-edge that intersect with other hyperedges in H or edge in G, its
covering is uniquely determined or there is no covering for it and the algorithm
fails. Consult Figure 3 for all possible cases. After applying the above rules
as many times as possible, the only 4-edges left in H are isolated from other
hyperedges and also from edges in G. Hence, for each of them, we can arbitrarily
pick covering pairs of edges and remove it from H . Thus, we can assume there
are no 4-edges left in H .

(a) (b) (c)

(d) (e) (f)

Fig. 3. An 4-edge intersecting other hyperedges. The thick edges show the covering if
it exists. In cases (a), (c) and (f) there is no solution.

5. If a 3-edge intersects a 2-edge in G in a single vertex, remove the 3-edge from
H and add the edge formed by the remaining two vertices of the 3-edge to G.
Apply this rule whenever a new edge is added to G.
6. Consider a doubly connected component C. By Lemma 4, either there is a
unique or no way of covering C, or C is a 3-edge chain. In the former case, remove
C from H and add 2-edges of the solution for C to G or return fail. Assume
the second case. If there is a 3-edge not in C containing an interval vertex of C,
this 3-edge is uniquely covered. Hence, remove it from H and add the pair of its
other two vertices as an edge to G. Now, all 3-edge chains can share only their
end vertices.

If a component C is a 3-edge-chain of even length,there is a solution s for C
which does not contain the end vertices, cf. Figure 4(a). Covering C in this way

(a)

u v

w

(b)

Fig. 4. (a) An example of smaller solution to a 3-edge-chain of even length. (b) Re-
placement of a 3-edge-chain of odd length by a new 3-edge.

130 A. Gupta et al.

will not affect the existence of the solution for H , since if there is a solution to
H which contains the other solution for C then by replacing it with s results in
a new solution which in addition has smaller number of edges. Hence, assume
all doubly connected components are 3-edge-chains of odd length.

If there are two vertices which are end vertices of at least three 3-edge-chains,
there is no solution. If there are two vertices which are end vertices of exactly
two 3-edge-chains,there are only two solution for their union and each of them
contains the two vertices. Hence, we can arbitrarily pick one of the solutions and
add it to G and remove both 3-edge-chains from H .

Finally, we proceed as in case (T3): replace every 3-edge-chain by a 3-edge
having the two end vertices u, v of the 3-edge-chain and one new vertex w, cf.
Figure 4(b). The solution for the 3-edge-chain is binded to the new 3-edge as
follows: if the edge (u, v) is picked to cover the 3-edge, then cover the 3-edge-
chain in any of the two possible ways; if the edge (u, w) is picked, cover the
3-edge-chain by the solution that contains u; and similarly for the edge (v, w).

To analyze the running time of the algorithm, let us look at individual steps.
Steps 1.–3. runs in time O(n2), 4. and 6. in O(n), and 5. in time O(nm). The
algorithm of Lemma 3 takes time O(n2) and finally, resolution of binded hyper-
edges can be done in O(n) time.

Note that the solution constructed by the above algorithm has the minimum
number of edges, hence the corresponding galled-tree network has the minimum
number of recombinations.

Complexity Analysis: The preprocessing which includes: determining values
of indicators, listing of 2’s in each row and computing the conflict graph of
A, takes time O(nm2). Phase 1 takes time O(nm), Phase 2 O(n) and Phase 3
(solving HC problem) O(n2+nm). Thus, the algorithm runs in time O(n2+nm2).

4.5 Experimental Results

We implemented the algorithm and performed the following experiments on sim-
ulation data. We compared our algorithm’s performance with PHASE v2 [22,21].
The results show that our algorithm seems promising for the corresponding hap-
lotyping problem.

In particular, the data is prepared in three steps. First, binary matrices, each
having a perfect phylogeny tree, are generated using Hudson’s [15] simulation
program with recombination rate being 0. Then, for each matrix’s perfect phy-
logeny tree, we randomly replace nodes on it with simple galls by adding new
columns to matrices with each newly added column introducing a conflict be-
tween itself and an existing column in the matrix (thus, adding recombinations).
Last, for each haplotype in the matrix, we randomly repeat it for 2 to 6 times
and pair haplotypes to generate genotype matrices.

We infer haplotypes from the generated genotype matrices that have weak
property using our algorithm and compare our algorithm’s performance with
PHASE base on three standards [22]: the error rate: the proportion of geno-
types having more than two 2’s whose haplotypes are incorrectly inferred; the

Algorithm for Haplotype Inferring Via Galled-Tree Networks 131

Table 1. Comparison of accuracy between our algorithm (SGTN) and PHASE on the
five sets of matrices. The first row of the table lists the size of the matrices that were
generated using Hudson program. The second row lists the average size of each group
of matrices after applying our random algorithm and removed the duplated columns.
Each rate is normalized by the number of genotype matrices in that set.

20*20 30*20 30*40 100*50 100*100
30*14 45*16 75*20 199*33 199*49

SGTN PHASE SGTN PHASE SGTN PHASE SGTN PHASE SGTN PHASE

error rate 0.005 0.008 0.012 0.013 0.002 0.000 0.007 0.002 0.002 0.001
discrepancy 0.09 0.13 0.250 0.283 0.070 0.000 0.545 0.149 0.198 0.126

switch accuracy 0.995 0.992 0.988 0.987 1 1 0.993 0.998 0.998 0.999
time 0.54s 14.2s 0.49s 26.8s 0.43s 28.57s 0.83s 204s 2.95s 368.36s

discrepancy rate: the sum of frequency differences for each individual haplotypes
(simulated or true ones); and the switch accuracy ([16]) of the inferred haplo-
types is defined as (h−w−1)/(h−1), where h is the number of 2’s in a genotype
g and w is the number of wrongly inferred 2’s for g. Using Hudson’s simulation
algorithm and applying our random procedure to generate genotypes, we gen-
erated five sets of 100 matrices. The experimental results are shown in Table 1.
The results show that our algorithm have comparable accuracy with PHASE
while runs tens to hundreds times faster.

References

1. V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phy-
logeny: A direct approach. Journal of Computational Biology, 10(3-4):323–340,
2003.

2. P. Bonizzoni, G. D. Vedova, R. Dondi, and J. Li. The haplotyping problem: An
overview of computational models and solutions. Journal of Computer Science and
Technology, 18:675–688, 2003.

3. A. Clark. Inference of haplotypes from PCR-amplified samples of dipoid popula-
tions. Molecular Biology and Evolution, 7:111–122, 1990.

4. M. Daly, J. Rioux, S. Schaffner, T. Hudson, and E. Lander. High-resolution hap-
lotype structure in the human genome. Nature Genetics, 29(2):229–232, 2001.

5. A. Gupta, J. Maňuch, L. Stacho, and X. Zhao. On intractability of haplotype
inferring via galled-tree networks. (manuscript).

6. A. Gupta, J. Maňuch, L. Stacho, and X. Zhao. Characterization of the existence
of galled-tree networks. J. Bioinfo. and Comp. Biol., 4(6):1309–1328, 2006.

7. D. Gusfield. Haplotyping as perfect phylogeny: conceptual framework and effi-
cient solutions. In RECOMB ’02: Proc. of 6th annual international conference on
Computational biology, pages 166–175. ACM Press, 2002.

8. D. Gusfield. An overview of combinatorial methods for haplotype inference. In
Computational Methods for SNPs and Haplotype Inference, volume 2983 of Lecture
Notes in Computer Science, pages 9–25. Springer Berlin/Verlag, 2004.

9. D. Gusfield. Optimal, efficient reconstruction of root-unknown phylogenetic net-
works with constrained and structured recombination. J. Comput. Syst. Sci.,
70(3):381–398, 2005.

132 A. Gupta et al.

10. D. Gusfield, S. Eddhu, and C. Langley. Efficient reconstruction of phylogenetic
networks with constrained recombination. In Proceedings of the 2003 IEEE CSB
Bioinformatics Conference, pages 363–374, 2003.

11. D. Gusfield, S. Eddhu, and C. Langley. Optimal, efficient reconstruction of phylo-
genetic networks with constrained recombination. Journal of Bioinformatics and
Computational Biology, 2(1):173–213, 2004.

12. B. V. Halldórsson, V. Bafna, N. Edwards, R. Lipert, S. Yooseph, and S. Istrail. A
survey of computational methods for determining haplotypes. In Computational
Methods for SNPs and Haplotype Inference, volume 2983 of Lecture Notes in Com-
puter Science, pages 26–47. Springer Berlin / Verlag, 2004.

13. J. Hein. Reconstructing evolution of sequences subject to recombination using
parsimony. Mathematical Biosciences, 98:185–200, 1990.

14. J. Hein. A heuristic method to reconstruct the history of sequences subject to
recombination. Journal of Molecular Evolution, 36:396–405, 1993.

15. R. R. Hudson. Generating samples under a Wright-Fisher neutral model of genetic
variation. Bioinformatics, 18(2):337–338, 2002.

16. S. Lin, D. Cutler, M. Zwick, and A. Chakravarti. Haplotype inference in random
population samples. American Journal of Human Genetics, 71:1129–1137, 2002.

17. R. D. Mitra, V. L. Butty, J. Shendure, B. R. Williams, D. E. Housman, and G. M.
Church. Digital genotyping and haplotyping with polymerase colonies. In Proceed-
ings of the Nationlal Academy of Sciences of the United States of America, volume
100, pages 5926–5931, 2003.

18. N. Patil, A. Berno, D. Hinds, W. Barrett, J. Doshi, C. Hacker, C. Kautzer, D. Lee,
C. Marjoribanks, D. McDonough, B. Nguyen, M. Norris, J. Sheehan, N. Shen,
D. Stern, R. Stokowski, D. Thomas, M. Trulson, K. Vyas, K. Frazer, S. Fodor, and
D. Cox. Blocks of limited haplotype diversity revealed by high-resolution scanning
of human chromosome 21. Science, 294(5547):1719–1723, 2001.

19. Y. Song and J. Hein. On the minimum number of recombination events in the
evolutionary history of DNA sequences. Journal of Mathematical Biology, 48:160–
186, 2003.

20. Y. S. Song, Y. Wu, and D. Gusfield. Algorithms for imperfect phylogeny haplo-
typing (IPPH) with a single homoplasy or recombination event. In R. Casadio
and G. Myers, editors, WABI, volume 3692 of Lecture Notes in Computer Science,
pages 152–164. Springer, 2005.

21. M. Stephens and P. Donnelly. A comparison of bayesian methods for haplotype
reconstruction from population genotype data. American Journal of Human Ge-
netics, 73:1162–9, 2003.

22. M. Stephens, N. Smith, and P. Donnelly. A new statistical method for haplo-
type reconstruction from population data. American Journal of Human Genetics,
68:978–989, 2001.

23. L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks with recombina-
tion. Journal of Computational Biology, 8(1):69–78, 2001.

Estimating Bacterial Diversity from

Environmental DNA:
A Maximum Likelihood Approach

Frederick Cohan1, Danny Krizanc2, and Yun Lu2

1 Department of Biology,
Wesleyan University, Middletown, CT, 06459

fcohan@wesleyan.edu
2 Department of Mathematics and Computer Science,

Wesleyan University, Middletown, CT, 06459
dkrizanc@wesleyan.edu, ylu@wesleyan.edu

Abstract. The ability to measure bacterial diversity is a prerequisite
for the systematic study of bacterial biogeography and ecology. In this
paper we describe a method of estimating diversity from an environ-
mental sample of DNA and apply it to data taken from samples from
the Sargasso Sea. Our approach combines the coverage depth method of
Venter et al. [2] and the contig spectrum approach of Angly et al. [4],
but uses maximum likelihood to recover the diversity rather than using
hand-fit models as in [2]. We assume four species abundance distribu-
tions, then maximize the likelihood of fitting the coverage depth at dif-
ferent positions of the consensus sequence provided in the Sargasso Sea
sample. The resulting estimates match well with those obtained using
less mathematically rigorous approaches.

1 Introduction

The extent of prokaryote diversity has been hotly debated and rightly so. But
measuring prokaryote diversity is not a trivial task [1]. There are two general
approaches to estimate microbial diversity that have been applied in the past:
nonparametric methods, which use detection probabilities to estimate diversity;
and parametric methods, which use species abundance models to estimate di-
versity. Each approach has its particular strengths and limitations as well as
different requirements for the input data [5].

Nonparametric methods use detection probabilities to estimate diversity. In
contrast to parametric approaches, these approaches estimate OTU (operational
taxonomic units) richness (the number of species in a community) from small
sample sizes without assuming a particular OTU abundance model [14]. Such
approaches consider the proportion of OTUs that have been observed before to
those observed only once. The probability of detecting an OTU more than once
will be higher in samples from less diverse communities. One disadvantage of
nonparametric approaches is that they rely on estimates of the relative abun-
dance of OTUs. Many studies have revealed that sampling biases can accompany

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 133–144, 2007.
c© S ringer-Verlag Berlin Heidelberg 2007

ă

134 F. Cohan, D. Krizanc, and Y. Lu

genetic surveys of microbial diversity ([19], [20] and [21]). Another disadvantage
is that they only provide a lower bound of OTU diversity. These methods do not
account for very rare classes of OTUs, thus for bacterial communities, nonpara-
metric estimators will tend to underestimate OTU diversity.

Parametric methods use species abundance models to estimate diversity. These
models include the lognormal [7] and Poisson lognormal [8] among others [9]. The
advantage of this method is that one can use the model to estimate diversity using
relatively small samples of individuals from a given environment. However, there
are several impediments to using parametric approaches to estimate microbial di-
versity. One limit is that there are no large data sets of microbial diversity data to
support the use of any of the many competing abundance models. Another limit
is that even if a compelling argument can be made in favor of a particular model,
the models still require large data sets to evaluate the distribution parameters
unless simplifying assumptions are made.

In this paper, we use a parametric method that combines the coverage depth
method of Venter et al. [2] and the contig spectrum approach of Angly et al. [4],
but uses maximum likelihood to recover the diversity rather than using hand-
fit models as in the case of [2]. We use our method to estimate the number of
bacterial species represented in a sample of DNA drawn from water from the
Sargasso Sea. We assume four possible abundance distributions for our data,
then try to recover the true diversity by maximizing the likelihood of fitting the
coverage depth at every position of the consensus sequence of an environmental
DNA sample.

1.1 Venter’s Coverage Depth Method

A method based upon coverage depth was introduced by Venter et al. [2]. The
method is applied to the results of whole metagenome shotgun sequencing of an
environmental sample of DNA. For a single genome analysis, assembly coverage
depth should be approximated by a Poisson distribution; for multiple genome
analysis, assembly coverage depth should be approximated by a mixture of Pois-
son distributions. The empirical distribution of coverage depth at every position
in the full set of assemblies was computed, then compared with hand-constructed
mixtures of Poisson distributions. An excellent fit can be obtained; and to the
extent that a limited range of mixtures give acceptable fits, this model may be
used to estimate the diversity of the bacteria represented in the DNA extracted.
However, there are obvious challenges to genome assembly in the environmental
context. Additionally, the method is based on hand fitting the observed depth of
coverage to a theoretical model of assembly progress for a sample corresponding
to a mixture of organisms at different abundances, and is therefore ad hoc and
likely less reliable.

1.2 PHACCS Methods

A method based upon the contig spectrum was introduced by Angly et al. [4]
for estimating diversity in viral communities. They call it PHACCS (PHAge

Estimating Bacterial Diversity from Environmental DNA 135

Communities from Contig Spectrum). PHACCS uses a modified version of the
Lander-Waterman model to predict a contig spectrum from assumed population
parameters [4]. Since there are several genotypes in this modified model, an
assumption about their underlying distribution within the community in terms
of abundance has to be made. A number of distributions have been suggested
including the power law, logarithmic, exponential, broken stick, niche preemption
and lognomal distributions. However, predictions by PHACCS are dependent on
the quality of the contig spectrum input. As a general rule, the higher the contig
degree is, the better the estimations are, since the model fitting is done over a
larger number of points. Additionally, the present implementation of the Lander-
Waterman model assumes that all DNA fragments and all the genotypes have
the same size. For these reasons, PHACCS estimates as well as ours should be
only considered approximations.

2 A Maximum Likelihood Approach

We introduce our method, which essentially combines the coverage depth method
and the contig spectrum method assuming a variety of abundance distributions.
We calculate the likelihood of fitting the coverage depth at every position of
the sequence, then recover the diversity of the sample by maximizing the log-
likelihood. We use the following notation:

– S: Size of all reads sequenced from the sample
– N : Size of all the genomes in the sample
– T : Total number of genomes in the sample
– g: Average length of a genome in the sample
– k: Number of abundance levels
– ai: the i-th abundance level (i = 1, 2, 3...)
– ci: Average coverage given by the species with abundance ai

– pi: the proportion of the species with abundance ai to all the species in the
sample

– mi: Number of different species with abundance ai

– Kj: Coverage depth observed at position j of the assembly consensus se-
quence (j = 1, 2, ..., J)

– nl: Number of positions on the assembly consensus sequence with coverage
depth Kl (l = 0, 1, ..., L)

– J : Total number of positions on the assembly consensus sequence
– L: Total number of different coverage depth levels observed
– M : Total number of different genomes in the sample

Let x denote the fraction S
N . We have the following relations by definition:

J =
k∑

i=1

mi ∗ g = g ∗
k∑

i=1

mi (1)

and
T =

N

g
. (2)

136 F. Cohan, D. Krizanc, and Y. Lu

The relation among T , ai and mi can be expressed by the equation

T =
k∑

i=1

ai ∗ mi. (3)

The diversity M is

M =
k∑

i=1

mi. (4)

Since the choice of abundance distribution is very important in estimating
the diversity, we will deal with the problem separately by assuming four mod-
els of the possible abundance distributions for our sample: discrete distribution
with a fixed number of abundance levels, power law distribution, broken stick
distribution and log-normal distribution.

2.1 Model A: Discrete Distribution

Assuming discrete distribution of abundance with a fixed number of abundance
levels, sequencing of an environmental sample with more than one species should
result in the sequence coverage depth reflecting a mixture of Poisson distribu-
tions. Let Kj be the coverage depth at the j-position of the assembly sequence
and P (Kj) be the probability of coverage depth Kj on the consensus sequence.
Then the expected number of positions on the consensus sequence with coverage
depth Kj is L ∗ P (Kj) = M ∗ g ∗ P (Kj). Let P (Kj , ai) be the probability of
coverage depth Kj on the consensus sequence given by the species with abun-
dance ai. Then the expected number of positions on the consensus sequence with
coverage depth Kj is given by

∑k
i=1 mi ∗ g ∗ P (Kj, ai). Hence we have

M ∗ g ∗ P (Kj) =
k∑

i=1

mi ∗ g ∗ P (Kj, ai). (5)

By the definition of pi, we have

pi =
mi

∑k
i=1 mi

=
mi

M
(6)

and
k∑

i=1

pi = 1. (7)

Dividing both sides of (5) by M ∗ g, we have

P (Kj) =
k∑

i=1

(
mi

M
) ∗ P (Kj , ai) =

k∑

i=1

pi ∗ P (Kj, ai). (8)

Estimating Bacterial Diversity from Environmental DNA 137

Assuming that the coverage depth Kj given by the species with abundance
ai satisfies the Poisson distribution, we have

P (Kj , ai) =
e−yyKj

Kj!
(9)

where y is the average coverage given by the species with abundance ai.
We assume that y = ci where ci is the total size of fragments from species

with abundance ai divided by the genome length of the species. Then ci is given
by

ci =
(ai∗g

N) ∗ S

g
= (

S

N
) ∗ ai = x ∗ ai. (10)

Then (8) can be rewritten as

P (Kj) =
k∑

i=1

pi ∗ (
e−x∗ai(x ∗ ai)

Kj

Kj!
). (11)

Hence the likelihood of fitting the coverage depth at every position of the
consensus sequence is given by

P =
J∏

j=1

P (Kj). (12)

Suppose there are nl positions with the same coverage Kl for 0 ≤ l ≤ L. Then
we can express (12) as

P =
L∏

l=0

P (Kl)
nl =

L∏

l=0

[
k∑

i=1

pi ∗ (
e−x∗ai(x ∗ ai)

Kl

Kl!
)]

nl

(13)

where the ai’s and pi’s are the parameters.
Now we can maximize the likelihood P with respect to the parameters ai and

pi where ai > 0, 0 < pi < 1 for i = 1, 2, ..., k − 1 and pk = 1 −
∑k−1

i=1 pi. Hence
mi (the number of species with abundance ai) can be solved using the equations
(3) and (6)

mi =
(pi ∗ T)

∑k
i=1(pi ∗ ai)

. (14)

Thus the diversity M is

M =
k∑

i=1

mi =
k∑

i=1

(pi ∗ T)
∑k

i=1(pi ∗ ai)
. (15)

Since P is extremely small, for practical reasons, we maximize the logarithm
of the likelihood instead of the likelihood. The formula for Log[P] is

Log[P] =
L∑

l=0

[nl ∗ Log(
k∑

i=1

pi ∗ e−x∗ai(x ∗ ai)
Kl

Kl!
)] (16)

where the ai’s and pi’s are the parameters.

138 F. Cohan, D. Krizanc, and Y. Lu

2.2 Model B: Power Law Distribution

This model assumes the power law distribution of abundance. In this case, the
diversity M itself is a parameter of the likelihood, so we obtain the diversity
directly by maximizing the likelihood (or log-likelihood).

Let ai denote the abundance level of the species i, then the formula for the
power law distribution is

ai = a ∗ i−b (17)

for 1 ≤ i ≤ M .
The parameter a represents the abundance of the most abundant genotype;

b is a parameter related to the evenness (the relative abundance of individuals
within a species) and M is the number of different genotypes in the community,
which is the diversity we want to estimate.

A similar calculation to the above yields

Log[P] =
L∑

l=0

[nl ∗ Log
M∑

i=1

(
1
M

∗ e−x∗a∗i−b

(x ∗ a ∗ i−b)Kj

Kj !
)] (18)

where the a, b and M are the parameters.

2.3 Model C: Broken Stick Distribution

This model assumes the broken stick distribution of abundance. Let ai denote the
abundance level of the species i, then the formula for the broken stick distribution
is

ai =
T

M

M∑

q=i

1
q

(19)

for 1 ≤ i ≤ M where T is the total number of genomes in the sample.
A similar calculation to the above yields

Log[P] =
L∑

l=0

[nl ∗ Log

M∑

i=1

(
1
M

∗
e−x∗ T

M

∑ M
q=i

1
q (x ∗ T

M

∑M
q=i

1
q)

Kj

Kj !
)] (20)

where M is the only parameter.

2.4 Model D: Log-Normal Distribution

The model assumes the Log-normal distribution of abundance. Let ai denote the
abundance level of the species i, then the formula for the lognormal distribution
is

ai =
emiσ

∑M
j=1 emjσ

(21)

where mi = M√
2π

(e−ti
2/2 − e−ti+12/2).

Estimating Bacterial Diversity from Environmental DNA 139

Here t1 = −∞, ti+1 =
√

2erf−1[2
M +erf(ti√

2
)] and tM+1 = +∞ for 1 ≤ i ≤ M

where erf is the error function (erf(x) = 2√
π

∫ x

0 e−t2 dt) and erf−1 its inverse.
A similar calculation to the above yields

Log[P] =
L∑

l=0

[nl ∗ Log(
M∑

i=1

(
1
M

∗
e
−x∗ emiσ

∑M
j=1 e

mjσ

(x ∗ emiσ
∑

M
j=1 emj σ)

Kj

Kj !
))] (22)

where σ, M are the parameters.

3 Sargasso Sea Data

We tested our models on data obtained from Sargasso Sea water samples. The
cell counts imply approximately one billion cells per liter, while the relative
abundance of the most common organism ranged from 3% to 12% of the total.
The total sequences from samples were pooled and assembled to provide a single
master assembly. The empirical distribution of coverage depth at every position
in the full set of assemblies was computed.

Fig. 1. Fraction of consensus sequence fl with coverage depth Kl

The total size of the reads in Sargasso Sea water sample is

S = 1.66 ∗ 106 ∗ 818 = 1.36 ∗ 109. (23)

and the total number of base pairs N in the samples is

N = 2 ∗ 1011 ∗ (170 + 340 + 250 + 170) ∗ 2 ∗ 106/200 = 1.86 ∗ 1018 (24)

with average genome size g = 2 ∗ 106bp/genome.
Hence the total number of genomes T is

T =
N

(2 ∗ 106)
= 9.3 ∗ 1011. (25)

140 F. Cohan, D. Krizanc, and Y. Lu

Let x be the fraction of S to N , then

x =
S

N
= 7.31 ∗ 10−10. (26)

Fig. 1 shows the fraction of the consensus sequence fl as the y-axis and the
coverage depth Kl as the x-axis. (Data provided by A. Halpern of the Venter
Institute.)

4 Our Results

We assume the four species abundance distributions: models A through D, then
maximize the likelihood of fitting the coverage depth at different positions of
the consensus sequence provided in the Sargasso Sea Sample. Table 1 lists the
corresponding results.

Table 1. Estimates assuming different distribution model for Sargasso Sea data

Model Abundance Levels M MaxLog[P]

Model A one 909.4 −1.2994 ∗ 109

two 924.0 −0.9984 ∗ 109

three 997.3 −0.9983 ∗ 109

four 951.0 −0.9797 ∗ 109

Model B 3504.0 −0.9888 ∗ 109

Model C 871.0 −1.0996 ∗ 109

Model D 917.0 −1.0287 ∗ 109

Model A
We assume that the abundance distribution is a discrete distribution with a
fixed number of abundance levels. We estimate the diversity by assuming dif-
ferent discrete abundance levels. If we assume two abundance levels, then by
calculating the log-likelihood with 100 ≤ M ≤ 20, 000, we generate Fig. 2 with
the log-likelihood Log[P] as the y-axis and the diversity M as the x-axis, after
approximately M = 924.0, the value of Log[P] is decreasing.

Model B
We assume that the abundance distribution is the power law distribution. In
general, we don’t know the abundance of the most abundant genotype, but we
can still estimate the diversity by making a one parameter as well as b and M .
By calculating the log-likelihood with 100 ≤ M ≤ 20, 000, we generate Fig. 3
with the log-likelihood Log[P] as the y-axis and the diversity M as the x-axis.
After approximately M = 3504, the value of Log[P] decreases slowly.

Model C
We assume that the abundance distribution is the broken stick distribution. By
calculating the log-likelihood with 100 ≤ M ≤ 20, 000, we generate Fig. 4 with

Estimating Bacterial Diversity from Environmental DNA 141

100 1000 10000

-2.0x10
9

-1.8x10
9

-1.6x10
9

-1.4x10
9

-1.2x10
9

-1.0x10
9

L
o

g
[P

]

Diversity M [Logscale]

M= 924.0, Log[P]
max

=-9.9837e8,

 p1=0.9867, p2=0.0133

a1=7.6387e8, a2=1.8943e10

Fig. 2. Log[P] at different diversity M

100 1000 10000

-2.8x10
9

-2.6x10
9

-2.4x10
9

-2.2x10
9

-2.0x10
9

-1.8x10
9

-1.6x10
9

-1.4x10
9

-1.2x10
9

-1.0x10
9

L
o

g
[P

]

Diversity M [Logscale]

M= 3504, Log[P]
max

= -9.888e8

a= 5.1765e+10, b= 0.6005

Fig. 3. Log[P] at different diversity with a = 5.0469 ∗ 1010 and b = 0.6001

100 1000 10000

-2.4x10
9

-2.2x10
9

-2.0x10
9

-1.8x10
9

-1.6x10
9

-1.4x10
9

-1.2x10
9

-1.0x10
9

L
o

g
[P

]

Diversity M [Logscale]

M= 871 Log[P]
max

= -1.0996e+9

Fig. 4. Log[P] at different diversity M

142 F. Cohan, D. Krizanc, and Y. Lu

100 1000 10000

-2.4x109

-2.2x109

-2.0x109

-1.8x109

-1.6x109

-1.4x109

-1.2x109

-1.0x109

Lo
g[

P
]

Diversity M [Logscale]

M= 917, Log[P]
max

= -1.0287e+9, σ = 1.00

Fig. 5. Log[P] at different diversity M

the log-likelihood Log[P] as the y-axis and the diversity M as the x-axis. Log[P]
approaches its maximum when M = 871.

Model D
We assume the abundance distribution is the lognormal distribution. By cal-
culating the log-likelihood assuming σ = 1.0, we generate the Fig. 5 with the
log-likelihood Log[P] as the y-axis and the diversity M as the x-axis. Log[P]
approaches its maximum when M = 917.

5 Discussion

Our method is based on the method of coverage depth described in [2] and
the method of contig spectrum in [4]. But unlike [2], we apply a mathematical
tool of maximum likelihood estimation to maximize the likelihood of fitting the
coverage depth at every position of the assembly sequence.

We assume four different abundance distributions: the discrete distribution
with a fixed number of abundance levels, the power law distribution, broken
stick distribution and lognormal distribution. We gave the general formulas for
different cases, and developed the corresponding programs for the tests on the
Sargasso Sea data. The results on the Sargasso Sea data are within the range
of the estimated diversity in [2] (1000 − 47733). We estimated the diversity to
be approximately 900 when assuming three distributions: discrete abundance
distribution, the broken stick distribution and the lognormal distribution; the
diversity is estimated at approximately 3500 if the abundance distribution is the
power law distribution.

We note that as in [4] our estimates are sensitive to the quality of the data
provided and especially to the assembly parameters used to determine the cover-
age. While three out of the four distributions suggest a value close to the low end
of the range estimated in [2], it has been suggested that the power law distribu-
tion is the best fit to observed diversity levels in phage data [4]. For this reason,
we believe the 900 figure is best interpreted as a lower bound on the number

Estimating Bacterial Diversity from Environmental DNA 143

of species present in the sample and the power law estimate is the most accu-
rate. We plan on experimenting with more data sets in order to further evaluate
this discrepancy. We also intend to work with other suggested distributions such
as the logarithmic distribution, exponential distribution, and niche preemption
distribution.

Acknowledgments. The authors would like to acknowledge Karin Remington
and Aaron Halpern from the Venter Institute for responding to our emails and
providing us with the Sargasso Sea data.

References

1. T.P. Curtis, W.T.Sloan: Exploring Microbial Diversity - A Vast Below, Science,
2005, 309: 1331–1333.

2. J.C. Venter et al.: Environmental Genome Shotgun Sequencing of the Sargasso
Sea, Science, 2004, 304: 66–74.

3. Supporting Online Material:
URL: www.sciencemag.org/cgi/content/full/1093857/DC1.

4. F. Angly et al.: PHACCS, an Online Tool for Estimating the Structure and Di-
versity of Uncultured Viral Communities Using Metagenomic Information, BMC
Bioinformatics, 2005, 6: 41. URL: www.biomedcentral.com/147-2105/6/41

5. B.J.M. Bohannan, J. Hughes: New Approaches to Analyzing Microbial Biodiversity
Data, Current Opinion in Microbiology, 2003, 6: 282–287.

6. G. Myers: Whole-Genome DNA Seqencing, Computing in Science and Engineering,
May-June 1999: 33–43.

7. F.W. Preston: The Commonness and Rarity of Species, Ecology, 1948, 29: 254–283.
8. M.G. Bulmer: On Fitting the Poisson Lognormal Distribution to Species Abun-

dance Data, Biometrics, 1974, 30: 101–110.
9. S. Hubbell: The Unified Neutral Theroy of Biodiversity and Biogeography, Prince-

ton, New Jersey: Princeton University Press; 2001
10. T.P. Curtis, W.T. Sloan, J.W. Scannell: Estimating Prokaryotic Diversity and Its

Limits, Proc Natl Acad Sci USA, 2002, 99: 10494–10499.
11. J. Dunbar, S. Barns, L. Ticknor, C. Kuske: Empirical and Theoretical Bacterial

Diversity in Four Arizona Soils, Appl Environ Microbiol, 2002, 68: 3035–3045.
12. J. Zhou et al.: Spatial and Rescource Factors Influencing High Microbial Diversity

in Soil, Appl Environ Microbiol, 2002, 68: 326–334.
13. I. Kroes, P.W. Lepp, D. Relman: Bacterial Diversity Within the Human Subgin-

gival Crevice, Proc Natl Acad Sci USA, 1999, 96: 14547–14552.
14. J.B. Hughes et al.: Counting the Uncountable: Statistical Approaches to Estimating

Microbial Diversity, Appl Environ Microbiol, 2001, 67: 4399–4406.
15. G. Seber: The Estimation of Animal Abundance and Related Parameters, London:

Griffin; 1973.
16. C. Krebs: Ecological Methodology, New York: Harper and Row; 1989.
17. A. Chao: Estimating the Population Size for Capture-recapture Data with Unequal

Catchability, Biometrics, 1987, 43: 783–791.
18. M. Breitbart et al.: Genomic Analysis of Uncultured Marine Viral Communities,

Proc Natl Acad Sci USA, 2002, 99: 14250–14255.
19. A. Reysenbach et al.: Differential Amplification of rRNA Genes by Polymerase

Chain Reaction, Appl Environ Microbiol, 1992, 58: 3417–3418.

144 F. Cohan, D. Krizanc, and Y. Lu

20. M. Suzuki, S. Giovannoni: Bias caused by Template Annealing in the Amplification
of Mixutures of 16S rRNA Genes by PCR, Appl Environ Microbiol, 1996, 62: 625–
630.

21. A. Speksnijder et al.: Microvariation Artefacts Introduced by PCR and Cloning
of Closely Related 16S rRNA Gene Sequences, Appl Environ Microbiol, 2001, 67:
469–472.

22. G. Jasons, M. Wolinsky, J. Dunbar: Computational Improvements Reveal Great
Bacterial Diversity and Hign Metal Toxicity in Soil, Science, 2005, 309: 1387–1390.

23. P.G. Falkowski, C. de Vargas: Shotgun Sequencing in the Sea:a Blast from the
Past? Science, 2004, 304: 58–60.

24. J.M. Travis, D.R. Larsen: Meaures of Diversity, Natural Resource biometrics, 1995.

Invited Talk:

Modern Homology Search

Ming Li

School of Computer Science
University of Waterloo

Waterloo, Ont. N2L 3G1
Canada

mli@cs.uwaterloo.ca

Homology search, finding similar parts between two sequences, is the most fun-
damental task in bioinformatics. A large fraction of the world’s supercomputing
time is consumed by homology search.

Traditional homology search technology is a heuristic science. Given a gene
sequence, the search is either too slow (dynamic programming) or not sensitive
enough. When it does return something, the results are simply some fragments
of alignments.

We will talk about a new mathematical theory of optimized spaced seeds that
achieves high sensitivity and high speed simulataneously for homology search,
first introduced in [1], and how to achieve Smith-Waterman sensitivity with
BLAST speed [2]. This methodology is now implemented in most modern ho-
mology search software.

The spaced seeds have other appliations too. We will briefly discuss how to
use spaced seeds to do multiple sequence alignment [4].

We will also discuss another idea of integrating an HMM into our homol-
ogy search strategy that returns structured gene matches, instead of random
fragment matches [3].

This is joint work with Bin Ma, John Tromp, X.F. Cui, B. Brejova, T. Vinar,
D. Shasha H. Lin, and Z.F. Zhang.

References

1. B. Ma, J. Tromp, and M. Li. PatternHunter: Faster and more sensitive homology
search. Bioinformatics, 18:3(2002), 440-445.

2. M. Li, B. Ma, D. Kisman and J. Tromp. PatternHunter II: highly sensitive and fast
homology search. J. Bioinformatics and Computational Biology, 2:3(2004), 417–440.

3. X.F. Cui, T. Vinar, B. Brejova, D. Shasha, and M. Li. Homology search for genes,
manuscript, 2007.

4. Z.F. Zhang, H. Lin, and M. Li. MANGO: a new approach to multiple sequence
alignment. Manuscript, 2007.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, p. 145, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

Statistical Absolute Evaluation of Gene

Ontology Terms with Gene Expression Data

Pramod K. Gupta�, Ryo Yoshida�,��, Seiya Imoto��,
Rui Yamaguchi, and Satoru Miyano

Human Genome Center, Institute of Medical Science, University of Tokyo,
4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan

yoshidar@ims.u-tokyo.ac.jp, imoto@ims.u-tokyo.ac.jp

Abstract. We propose a new testing procedure for the automatic onto-
logical analysis of gene expression data. The objective of the ontological
analysis is to retrieve some functional annotations, e.g. Gene Ontology
terms, relevant to underlying cellular mechanisms behind the gene ex-
pression profiles, and currently, a large number of tools have been de-
veloped for this purpose. The most existing tools implement the same
approach that exploits rank statistics of the genes which are ordered by
the strength of statistical evidences, e.g. p-values computed by testing
hypotheses at the individual gene level. However, such an approach often
causes the serious false discovery. Particularly, one of the most crucial
drawbacks is that the rank-based approaches wrongly judge the ontology
term as statistically significant although all of the genes annotated by
the ontology term are irrelevant to the underlying cellular mechanisms.
In this paper, we first point out some drawbacks of the rank-based ap-
proaches from the statistical point of view, and then, propose a new
testing procedure in order to overcome the drawbacks. The method that
we propose has the theoretical basis on the statistical meta-analysis, and
the hypothesis to be tested is suitably stated for the problem of the on-
tological analysis. We perform Monte Carlo experiments for highlighting
the disadvantages of the rank-based approach and the advantages of the
proposed method. Finally, we demonstrate the applicability of the pro-
posed method along with the ontological analysis of the gene expression
data of human diabetes.

Keywords: Gene Ontology, Gene Expression Data, Statistical Meta-
Analysis, Fisher’s Exact Test.

1 Introduction

One of the most common interests for analysis of gene expression data is to de-
tect genes which show the changes in their expression levels between two or more
classes of cells, e.g. between cancer and normal cells. A wide variety of statis-
tical tests, e.g. t-test, F -test, have been used for identifying genes differentially
� These authors contributed equally to this work.

�� Corresponding author.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 146–157, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

Statistical Absolute Evaluation of Gene Ontology Terms 147

expressed between the potential cellular classes. After repeating the test across
the overall genes, a strength of the statistical evidence, e.g. p-value, is assigned
to each gene.

In most cases, the subsequent analysis of gene expression data is to convert the
statistical evidences of differentially expressed genes into a better understanding
of the underlying cellular mechanism. To this end, a large number of researchers
have proposed the automatic ontological analyses of gene expression data using
Gene Ontology (GO) [1]. The objective is to retrieve the GO terms which are
relevant to the underlying cellular mechanisms behind gene expression data.
Whereas a large number of tools have been developed for this purpose, the most
existing tools implement the same approach that exploits rank information of
genes which are ordered by strength of the statistical evidences.

GO::TermFinder [2] is one of the most commonly used tools to evaluate GO
enrichment in a set of genes which are usually created by performing the gene
selection under an acceptable level of significance. The method evaluates GO
enrichment with the hypergeometric distribution or its approximation by the
binomial distribution, and automatically lists the significant GO terms with the
computed p-values. A large number of the existing ontological analyses imple-
ment such an approach, e.g. BinGO [3], GeneMerge [4]. One drawback of this
approach is that the outcome of retrieving the significant GO terms is largely
affected by the threshold rule that user selects. Commonly, constructing an ap-
propriate threshold rule for a given multiple testing outcome is very difficult,
and it is very risky to draw a conclusion solely based on the testing outcome.

Alternatively, Al-Shahrour et al. [5,6] developed a novel testing method to
find the relevant GO terms based on the rank statistics of all genes which are
ordered by the statistical evidences, and the web-based software referred to as
FatiGO. Unlike GO::TermFinder, FatiGO does not require to draw a subset of
all genes. FatiGO evaluates a GO term by repeating the test of independence
in 2×2 contingency tables in which the all genes are categorized by the GO
term annotations and the rank statistics. However, the application of FatiGO
often leads to the serious false discovery. Particularly, the method wrongly judges
the GO term as significant although all genes annotated by the GO term are
unrelated to the underlying cellular mechanisms, i.e. no genes are differentially
expressed. Such a drawback is closely related to the fact that rank statistics offer
just a relative position of a gene among the entire gene list. This aspect will be
fully discussed in this paper.

In order to overcome the drawbacks of the existing methods, we developed a
new testing procedure. The proposed method has the theoretical basis on the
statistical meta-analysis. It provides us a natural way of incorporating statistical
evidences of the genes annotated by a GO term into a total evidence, i.e. the
integrated p-value. One distinct feature of our method is to exploit strength
of the statistical evidences of genes for evaluating significance of the GO term
whereas the most existing methods ignore them by using only the rank statistics
of genes. We point out the disadvantages of the rank-based methods and show
how the proposed testing procedure overcomes them along with the Monte Carlo

148 P.K. Gupta et al.

experiments. We also demonstrate the proposed method with the application to
ontological analysis of the gene expression data of human diabetes [7].

2 Ontological Analysis of Gene Expression Data

2.1 Proposed Method

We present a statistical test to evaluate significance of GO terms with the ob-
served gene expression data. Suppose that we test the null hypothesis H

(i)
0 for

the ith gene where the total number of genes is denoted by d (i = 1, · · · , d).
For example, to identify differentially expressed genes between case and control
samples, one may apply t-test under the null hypothesis H

(i)
0 : μ

(i)
0 = μ

(i)
1 for

i = 1, · · · , d. Here μ
(i)
0 and μ

(i)
1 denote group means of the control and the case

samples for the ith gene. Applying the testing procedure repeatedly across the d
genes, one obtains the rank statistics of all d genes which are sorted by increasing
order of the computed p-values.

Our objective is to retrieve the GO term annotations which are relevant to the
underlying gene regulation mechanism on the basis of the statistical evidences.
In sequel, the proposed method will be described along with the ontological
analysis. However, we remark here that it can be applicable for retrieving more
generic biological knowledge.

Let us denote a set of genes, which are classified in a GO term, by F . The
problem of evaluating the significance of F is stated by the statistical test with
the null hypothesis H0 and the alternative H1 as follows:

H0 : H
(i)
0 is true for all i ∈ F ,

H1 : H
(i)
0 is false for one or more i ∈ F .

For instance, to understand functional gene regulations, one aims to retrieve GO
terms in which more genes indicating the false H

(i)
0 are involved.

In order to evaluate this test, we present a testing procedure which exploits a
technique of the statistical meta-analysis, known as the normal inversion method.
Let pi denote the p-values of the ith gene. The testing procedure for a F is then
described as follows:

a) Transform pi to the random deviate zi according to

zi = Φ−1(1 − pi), i ∈ F ,

where Φ−1 stands for the inverse function of the standard normal cumulative
distribution function.

b) Compute z-score by

z =
∑

i∈F
zi

/√
|F|,

where |F| denotes the number of genes labelled by the GO term F .

Statistical Absolute Evaluation of Gene Ontology Terms 149

c) Compute an integrated p-value of the GO annotation F , denoted by pF , by
the reverse transformation of z-score as

pF = 1 − Φ(z).

The basic theory of statistics indicates that each zi is independently and identi-
cally distributed according to the standard normal distribution if and only if the
individual null hypothesis H

(i)
0 is true. Moreover, under the assumption that the

null hypotheses for all of the genes in F are true (H0 is true), and independent to
each other, the integrated z-score also follows the standard normal distribution.
Based on these statistical properties, the integrated p-value captures the GO
enrichment in the following way: Whereas the null p-values in F are uniformly
distributed over [0, 1], the alternative p-values are clustered around the region
close to zero. This property can be formally stated if a set of tests is statistically
unbiased. Hence, as the proportion of the alternative genes in F becomes larger,
the computed z-score is shifted towards a higher value. Correspondingly, the
integrated p-value becomes smaller.

2.2 Existing Methods

Recently, a large number of GO mining tools have been developed for identi-
fying the relevant functional annotations on the basis of statistical evidences
[2,3,5,6]. The most existing methods are classified into two approaches; (i) the
test based on 2 × 2 contingency table (ii) the test based on the hypergeometric
distribution. In below, we briefly summarize these two methods and point out
their disadvantages.

GO::TermFinder. GO::TermFinder is currently one of the most commonly
used GO mining tools to retrieve over-represented GO terms in a list of genes.
The user is required to select n significant genes from all d genes by selecting
an appropriate threshold value for the computed p-values. If m genes out of the
selected n genes are annotated by a GO term F , the method calculates the prob-
ability that m or more genes annotated by F are sampled in n genes by chance,
under the assumption that the d genes contain h(= |F|) genes annotated by F .
The test follows the hypergeometric distribution (or the binomial distribution
which is a large sample approximation of the hypergeometric distribution), and
the p-value of F is computed by

pF =
∑

t:t≥m

(
h
t

)(
d − h
n − t

)

(
d
n

) .

Among others, BinGO [3], GeneMerge [4], are categorized into this approach.
We point out here some disadvantages of GO::TermFinder. Firstly, the com-

puted p-value of the GO term, i.e. pF , is largely affected by the threshold rule

150 P.K. Gupta et al.

that one applies. For example, suppose that we perform a conservative test-
ing procedure which typically exchanges the number of false negatives instead
of holding down the false positive outcomes. In such a case, it follows that a
certain number of truly over-represented functional annotations are undiscov-
ered. Moreover, even though the method provides us an indication about an
over-represented GO term with the p-value scoring, it is very risky to draw a
conclusion solely based on the p-value. Because the statistical sense of the p-value
returned by GO::TermFinder is unclear, it should be regarded as a suggestion,
and interpreted in the light of other biological evidence.

FatiGO. Al-Shahrour et al. [5,6] proposed a threshold-free GO mining method
which exploits the rank information of all genes which are ordered according to
strength of the statistical evidences. The order of genes can be determined with
a variety of statistical evidences, for example, p-values, values of test statistics.
The method originally assumed that the statistical evidences are collected in the
analysis of differentially expressed genes.

Let {(1), · · · , (d)} be a list of ordered genes. The method is then summarized
as follows:

1. Determine a set of J thresholds for the genes, denoted by ik for k = 1, · · · , J ,
where each threshold value takes a positive integer value in {1, · · · , d}. Then,
repeat the following procedure for k = 1, · · · , J .

– Divide the d genes into the two groups, Uk and Lk, where the genes in
Uk (Lk) are selected such that ranks of any genes in Uk (Lk) are equal
or greater (less) than ik.

– Compute frequencies of the genes annotated by F among Uk and Lk

where the frequencies are denoted by mk and lk, respectively.
– Perform the Fisher exact test with the 2×2 contingency table in order to

test the independence of the stratification by (Uk, Lk) and (F , Fc) where
Fc denotes the complementary of F . This process returns the p-value
pk
F for the kth partition.

2. Based on the pk
F , k = 1, · · · , J , given in the above steps, the GO term F is

judged as significant if and only if at least one pk
F is less than a significance

level.

In order to show some disadvantages of this method, we elucidate here the
fact that the testing procedure implicitly performs the two-group comparison as
follows:

H0 : H
(i)
0 is true for all i ∈ F and Fc

H1 : {H
(i)
0 is false for F} ∩ { H

(i)
0 is true for Fc}, (1)

or inversely, {H
(i)
0 is true for F} ∩ { H

(i)
0 is false for Fc}.

This hypothesis states whether the outcomes of the individual null hypotheses,
H

(i)
0 s, are identical or not under the stratification by the F . The testing pro-

cedure is supported by the fact that if the null hypothesis H0 is true, then the

Statistical Absolute Evaluation of Gene Ontology Terms 151

probability that each gene takes any particular rank is equal to 1/d for all genes.
Accordingly, the genes are uniformly distributed over the 2 × 2 contingency ta-
ble regardless of any partitions of the gene list. In this way, if one or more pk

F ,
k = 1, · · · , J , take extremely small values, it can be concluded that the GO term
annotation is over- or under-represented in the gene list.

Although the method allows us to avoid ambiguity in threshold process of
genes, it still has the crucial disadvantage that can not distinguish over- and
under-representation of GO annotation. Such a drawback is closely related to
the fact that the hypothesis shown in (1) states two-group comparison. As an
illustration, let us consider a situation where all genes in a GO term F have large
p-values while many genes in some of the other GO terms, which are merged
into Fc, exhibit the small p-values as a consequence of the true GO enrichments.
Then, the test statistic mk/|Uk| − lk/|Lk| takes a large value, and consequently,
the Fisher exact test returns the small p-values regardless to any partitions of
the gene list. This drawback will be demonstrated more clearly along with the
Monte Carlo simulations in the next section.

While the aim of the test is to evaluate the enrichment of a particular GO
term F , the method evaluates its significance by comparing with the comple-
mentary Fc. On the other hand, the proposed testing procedure can overcome
the drawbacks of the existing methods. By definition, the proposed method does
not state the complementary set Fc in its hypothesis. Regarding this aspect, we
refer it as the absolute statistical evaluation.

3 Numerical Experiments

3.1 Monte Carlo Simulation

We show the Monte Carlo experiments to illustrate the differences between the
proposed method and FatiGO. The synthetic data consist of the two subtypes
of samples, denoted by group 1 and group 2, and were generated as follows:

a) The sample size of each group is set to n and the total number of genes is
denoted by d.

b) Among d genes, the first d1 genes are differentially expressed between the
two groups where the samples in groups 1 and 2 follow N(−1, 1) and N(1, 1),
respectively. We denote these genes by S+.

c) The next d2 genes are expressed by following N(0, 1) across the both groups.
We denote them by S−.

d) The remaining genes are differentially expressed between the two groups
as follows: half of the genes is expressed according to N(0, 1) and N(1, 1),
and rest of the genes follows N(1, 1) and N(0, 1) for group 1 and group 2,
respectively.

The goal of the ontological analysis in this experiment is to retrieve the GO
term S+ which are relevant to the existing group structure, and identify irrel-
evance of the S−. We first conducted the Monte Carlo experiment under the

152 P.K. Gupta et al.

condition (d, d1, d2) = (10000, 100, 20) and applied the two-tail t-test across the
10,000 genes. The computed t-statistics and the rank of genes in S− and S+ are
shown by the gray and the black lines in Figure 1, respectively.

By following Al-Shahrour et al. [6], we set threshold values for FatiGO based
on the t-statistic. In particular, we placed 50 threshold values at the evenly
spaced 50 points which lie in a region from 1% to 99% points of the computed
t-statistics. Figure 1 shows the p-values which were computed by applying the
Fisher exact test across the 50 thresholds. FatiGO assigned a small p-value,
0.000475, to S− whereas the proposed method judged S− as insignificant (p-
value = 0.618). Obviously, the result of FatiGO is inappropriate for the onto-
logical analysis, and this numerical experiment illustrated its serious drawback.
Definitely, the proposed method could identify irrelevance of the S−.

0 2000 4000 6000 8000 10000
Rank

−10 −5
t-statistic

−10 −5

0
0.

4
0.

8

threshold

p−
va

lu
e

0 5

0 5

(a)

(b)

(c)

Fig. 1. Summary of the Monte Carlo experiment under (d, d1, d2) = (10000, 100, 20):
(a) Ranks of the genes which are placed in the order of the computed t-statistics. The
genes in S+ and S− are depicted by the black and the gray lines, respectively. (b) The
t-statistics of the genes. (c) The p-values which were computed by the Fisher exact test
with respect to 50 thresholds.

Next, we generated the synthetic data 100 times under the experimental
parameters (d, d1, d2) = (10000, 100, 10) and (d, d1, d2) = (10000, 100, 20), re-
spectively. We then implemented FatiGO and the proposed method, repeatedly.
Table 1 summarizes results of these repeated experiments. While the both meth-
ods could identify the relevance of S+ across the every 100 experiments under the
acceptance level of significance 5%, FatiGO failed to find the irrelevance of S−

for the most experiments. Table 1 also shows the averaged p-values of S− over

Statistical Absolute Evaluation of Gene Ontology Terms 153

the 100 experiments. Regarding FatiGO, the averaged p-value of (d, d1, d2) =
(10000, 100, 20) is fairly small than that of (d, d1, d2) = (10000, 100, 10). The re-
sults may suggest that as the number of genes in an irrelevant GO term (F = S−)
becomes larger, FatiGO tends to yield more false positive outcomes.

Table 1. The results of Monte Carlo experiments

FatiGO The proposed method

d1 = 100, d2 = 10
S+ ≥ 0.05 0 0

< 0.05 100 100
mean(p-value) 4.06 × 10−60 0#

S− ≥ 0.05 5 97
< 0.05 95 3

mean(p-value) 0.0126 0.565

d1 = 100, d2 = 20
S+ ≥ 0.05 0 0

< 0.05 100 100
mean(p-value) 3.56 × 10−64 0#

S− ≥ 0.05 0 93
< 0.05 100 7

mean(p-value) 0.00107 0.485

This is an extremely small positive value. This results in the loss
of significant digits by the numerical limitation.

3.2 Ontological Analysis of Gene Expression Data of Human
Diabetes

We show here the ontological analysis of the gene expression data of human dia-
betic muscles [7] which were also analyzed by Al-Shahrour et al. [6] for illustrat-
ing FatiGO. The gene expression data consist of 43 samples in total, categorized
into three diagnostic subgroups i.e. normal tolerance to glucose (NTG), impaired
tolerance to glucose (IGT) and type 2 diabetes mellitus (DM2).

By following Al-Shahrour et al. [6], we first merged IGT and DM2 into one
group, and then, apply two-tail t-test for NTG and the merged group to compute
the t-statistic and p-value for each gene. We placed the 50 thresholds at the
evenly spaced 50 points which lie in the region from 1% to 99% points of the
computed t-statistics. We exploited Bioconductor [8] for collecting 2,592 GO
terms for the molecular function and removed the genes that do not have any
GO term before performing FatiGO. During this pre-screening, 17,011 genes were
remained. It should be noted here that such gene screenings are not required for
the proposed method.

Under the acceptable level of significance at 5%, the 188 and 712 molecular
functions were identified by the proposed method and FatiGO, respectively. The
both methods commonly identified the 167 molecular functions, while the 545
and 21 molecular functions were solely identified by FatiGO and the proposed
method, respectively.

154 P.K. Gupta et al.

Table 2. List of the 40 most significant GO terms (molecular function) which were
identified by the proposed method

GO term p-value #genes

hydrogen ion transporter activity 5.77E-08 178
monovalent inorganic cation transporter activity 6.64E-07 194
primary active transporter activity 2.92E-06 241
catalytic activity 3.78E-05 6038
carrier activity 8.08E-05 542
hydrogen-transporting ATP synthase activity, rotational mechanism 0.000107771 59
ion binding 0.000140149 4194
metal ion binding 0.000140149 4194
structural molecule activity 0.000168792 1018
cytoskeletal protein binding 0.000266417 573
cation-transporting ATPase activity 0.000270143 93
protein binding 0.000303568 6648
hydrogen-transporting ATPase activity, rotational mechanism 0.000389933 62
transferase activity 0.00044835 2103
cation binding 0.000469253 3854
lyase activity 0.000515608 206
RNA polymerase subunit kinase activity 0.000550495 2
DNA binding 0.000619234 2633
TPR domain binding 0.000627427 2
FATZ 1 binding 0.000774179 4
FATZ binding 0.000774179 4
ZASP binding 0.000774179 4
apoptogenic cytochrome c release channel activity 0.000800809 1
guanylate cyclase inhibitor activity 0.000871592 1
actin binding 0.001088743 401
ion transporter activity 0.001161264 851
cation transporter activity 0.001445382 690
NADH dehydrogenase activity 0.001452807 42
transition metal ion binding 0.001571201 2689
NADH dehydrogenase (quinone) activity 0.001726004 41
NADH dehydrogenase (ubiquinone) activity 0.001726004 41
voltage-gated ion-selective channel activity 0.001893134 6
farnesyl-diphosphate farnesyltransferase activity 0.002107711 2
5S rRNA binding 0.002224114 4
glucose-6-phosphatase activity 0.002399207 2
structural constituent of ribosome 0.002400416 257
acetylcholine binding 0.002461352 29
voltage-gated anion channel porin activity 0.002548535 5
oxidoreductase activity, acting on NADH or NADPH 0.002677663 48
zinc ion binding 0.002797571 2180

To estimate the potential false discoveries of FatiGO, we focused on the com-
puted t-statistics of genes annotated by the 712 significant GO terms of FatiGO.
These 712 GO terms contained the statistically-suspected 75 molecular func-
tions (approximately 10% of 712) which were selected such that the t-statistics
of the genes in each GO term lie in the region from −1.5 to +1.5. This estimate

Statistical Absolute Evaluation of Gene Ontology Terms 155

suggests that a large proportion of the GO terms identified by FatiGO is possibly
a consequence of the false positive outcomes. Obviously, the proposed method
is irrelevant to such misidentification.

The propose method indicated the relevance of some interesting GO annota-
tions to different pathways of diabetes processes. The top 40 of the significant
GO terms are listed in Table 2 with the computed p-values. Current biology has
reported the links between diabetes with some of the identified functional an-
notations, e.g. lyase activity [9,10], farnesyl-diphosphate farnesyltransferase ac-
tivity [11], acetylcholine binding [12,13,14], glucose-6-phosphatase activity [15],
hydrogen-transporting ATPase activity [16], cation-transporting ATPase [17].
For example, Rojas et al. [16] focused on hydrogen ATPase activity in diabetes
cells and hypothesized that hydrogen ATPase is suppressed in microvascular
endothelial cells from diabetic rats. By using vitro angiogenesis assays, they
concluded that the hydrogen ion flux were slower in cells from diabetic than
normal mode, and were suppressed by hydrogen transporting ATPase inhibitors.
Besides, Gautier-Stein et al. [15] studied transcriptional regulation of the glucose-
6-phosphatase genes in liver. Glucose-6-phosphatase (Glc6Pase) is the key en-
zyme of gluconeogenesis in the liver. They suggested that glucose production by
the liver contributes to hyperglycemia in type 2 diabetes. We observed from the
t-tests that the genes annotated by this GO terms were highly expressed in IGT
(type 1) and DM2 (type 2) than the those in the control samples, significantly.

4 Concluding Remarks

We proposed a new testing method for the ontological analysis of gene expres-
sion data. The method was developed within the framework of the statistical
meta-analysis that provides a natural way of combining the p-values computed
by testing individual genes. One of the key points in this paper is to elucidate the
serious drawback of the rank-based testing methods which have been commonly
used for the ontological analysis. We demonstrated the crucial drawbacks of these
methods not only by elaborating their statistical theory, but also by some numer-
ical examples. We also showed that the proposed method successfully overcomes
the drawback and provides appropriate evaluations for the GO terms.

Throughout this paper, the proposed testing procedure was described on a
situation where one aims to retrieve functional annotations relevant to the dif-
ferentially expressed genes between different phenotypes. However, it should be
remarked that the method can be applicable for more generic problems, because
the testing theory is independent to the type of the test for individual genes.
For example, the individual test of genes can be replaced by the ANOVA, which
is conventionally used in multi-class testing of gene expressions, without loss
of generality. This general versatility of the proposed method indicates the di-
rection to more advanced statistical analysis of the functional annotations, e.g.
pathway-level analysis with time course gene expression data and knock-out gene
expression profiles.

156 P.K. Gupta et al.

References

1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-
Traver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M.,
Rubin, G.M., Sherlock, G.: Gene Ontology: Tool for the Unification of Biology.
Nat. Genet. 25 (2000) 25–29

2. Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., Sherlock, G.:
GO::TermFinder–Open Source Software for Accessing Gene Ontology Information
and Finding Significantly Enriched Gene Ontology Terms Associated with a List
of Genes. Bioinformatics 20(18) (2004) 3710–3715

3. Maere, S., Heymans, K., Kuiper, M.: BiNGO: A Cytoscape Plugin to Assess Over-
representation of Gene Ontology Categories in Biological Networks. Bioinformatics
21(16) (2005) 3448–3449

4. Castillo-Davis, C.I., Hartl, D.L.: GeneMerge: Post-Genomic Analysis, Data Mining,
and Hypothesis Testing. Bioinformatics 19(7) (2003) 891–892

5. Al-Shahrour, F., Diaz-Uriarte, R., Dopazo, J.: FatiGO: A Web Tool for Finding
Significant Associations of Gene Ontology Terms with Groups of Genes. Bioinfor-
matics 20(4) (2004) 578–580

6. Al-Shahrour, F., Diaz-Uriarte, R., Dopazo, J.: Discovering Molecular Functions
Significantly Related to Phenotypes by Combining Gene Expression Data and Bi-
ological Information. Bioinformatics 21(13) (2005) 2988–2993

7. Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar,
J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E. et al.: PGC-1α-
Responsive Genes Involved in Oxidative Phosphorylation are Coordinately Down-
regulated in Human Diabetes. Nat. Genet. 34 (2003) 267–273

8. Bioconductor http://www.bioconductor.org
9. Volvenkin, S.V., Popov, V.N., Eprintsev, A.T.: Subcellular Localization and Prop-

erties of Glyoxylate Cycle Enzymes in the Liver of Rats with Alloxan Diabetes.
Biochemistry (Mosc) 64(9) (1999) 994–999

10. Obrosova, I.G., Efimov, A.S., Velikii, N.N., Zimatkina, T.I., Moiseenok, A.G.: En-
zyme Systems of the Substrate and Cofactor Supply of Hyperlipogenesis in Non-
Insulin-Dependent Diabetes. Biull. Eksp. Biol. Med. 105(5) (1988) 549–552

11. Peltola, P., Pihlajamaki, J., Koutnikova, H., Ruotsalainen, E., Salmenniemi, U.,
Vauhkonen, I., Kainulainen, S., Gylling, H., Miettinen, T.A., Auwerx, J., Laakso,
M.: Visceral Obesity is Associated with High Levels of Serum Squalene. Obesity
(Silver Spring) 14(7) (2006) 1155–1163

12. Minami, A., Ishimura, N., Harada, N., Sakamoto, S., Niwa, Y., Nakaya, Y.: Exer-
cise Training Improves Acetylcholine-Induced Endothelium-Dependent Hyperpo-
larization in Type 2 Diabetic Rats, Otsuka Long-Evans Tokushima Fatty Rats.
Atherosclerosis 162(1) (2002) 85–92

13. Yu, P.K., Yu, D.Y., Cringle, S.J., Su, E.N.: Tetrahydrobiopterin Reverses the Im-
pairment of Acetylcholine-Induced Vasodilatation in Diabetic Ocular Microvascu-
lature. J. Ocul. Pharmacol. Ther. 17(2) (2001) 123–129

14. Nakamura, I., Takahashi, C., Miyagawa, I.: The Alterations of Norepinephrine
and Acetylcholine Concentrations in Immature Rat Urinary Bladder Caused by
Streptozotocin-Induced Diabetes. J. Urol. 148(2 Pt 1) (1992) 423–426

15. Gautier-Stein, A., Zitoun, C., Lalli, E., Mithieux, G., Rajas, F.: Transcrip-
tional Regulation of the Glucose-6-Phosphatase Gene by cAMP/vasoactive In-
testinal Peptide in the Intestine. Role of HNF4alpha, CREM, HNF1alpha, and
C/EBPalpha. J. Biol. Chem. 281(42) (2006) 31268–31278

Statistical Absolute Evaluation of Gene Ontology Terms 157

16. Rojas, J.D., Sennoune, S.R., Martinez, G.M., Bakunts, K., Meininger, C.J., Wu,
G., Wesson, D.E., Seftor, E.A., Hendrix, M.J., Martinez-Zaguilan, R.: Plasmalem-
mal Vacuolar H+-ATPase is Decreased in Microvascular Endothelial Cells from a
Diabetic Model. J. Cell Physiol. 201(2) (2004) 190–200

17. Iannello, S., Milazzo, P., Belfiore, F.: Animal and Human Tissue Na,K-ATPase
in Obesity and Diabetes: A New Proposed Enzyme Regulation. Am. J. Med. Sci.
333(1) (2007) 1–9

18. Richardson, M.D., Kilts, J.D., Kwatra, M.M.: Increased Expression of Gi-Coupled
Muscarinic Acetylcholine Receptor and Gi in Atrium of Elderly Diabetic Subjects.
Diabetes 53(9) (2004) 2392–2396

Discovering Relations Among GO-Annotated

Clusters by Graph Kernel Methods�

Italo Zoppis1, Daniele Merico1, Marco Antoniotti1, Bud Mishra2,
and Giancarlo Mauri1

1 Dipartimento di Informatica, Sistemistica e Comunicazione
Universitá degli Studi di Milano Bicocca

Via Bicocca degli Arcimboldi 8, U7, I-20126 Milano, Italy
2 Bioinformatics Group, Courant Institute of Mathematical Sciences
New York University, 715 Broadway, New York, NY, 10003, USA

Abstract. The biological interpretation of large-scale gene expression
data is one of the challenges in current bioinformatics. The state-of-the-
art approach is to perform clustering and then compute a functional
characterization via enrichments by Gene Ontology terms [1]. To better
assist the interpretation of results, it may be useful to establish connec-
tions among different clusters. This machine learning step is sometimes
termed cluster meta-analysis, and several approaches have already been
proposed; in particular, they usually rely on enrichments based on flat
lists of GO terms. However, GO terms are organized in taxonomical
graphs, whose structure should be taken into account when performing
enrichment studies. To tackle this problem, we propose a kernel approach
that can exploit such structured graphical nature. Finally, we compare
our approach against a specific flat list method by analyzing the cdc15-
subset of the well known Spellman’s Yeast Cell Cycle dataset [2].

1 Introduction

The biological interpretation of large-scale gene expression data is one of the
challenges in bioinformatics [3]. The state-of-the-art approach is to perform clus-
tering, in order to group together genes with similar expression profiles across
experiments; then, in order to provide a functional characterization [4], enrich-
ments of Gene Ontology [1] terms are computed for each cluster. In fact, it is
expected that groups of genes which perform a common function also behave in
a coordinated fashion. In addition, since different processes may contribute to
a common function, they could be associated to the same cluster (for instance,
both DNA repair and cell cycle arrest genes are both induced after DNA dam-
age). To further assist the result interpretation, it may be useful to establish
connections between different clusters; that is especially useful if they refer to
different tissues, or if they have been produced according to different experimen-
tal techniques. This machine learning task can be termed cluster meta-analysis,

� This work has been supported by EC “Marie Curie” grant MIRG-CT-2005-031140.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 158–169, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

Discovering Relations Among GO-Annotated Clusters 159

and several approaches have already been proposed even if they usually rely on
comparing enrichments built out of flat lists of GO terms [5]. However, Gene On-
tology terms are not mutually independent, but organized according to a graph
of taxonomical relations, and thus a flat list comparison approach may fail to
exploit this specific structured nature.

A particularly interesting problem of cluster meta-analysis arises when study-
ing time series expression data coming from microarray experiments (as in [6,7]).
In this case, clustering the entire profiles may not allow some temporally local-
ized relationships among genes to be detected. It may happen indeed that some
processes are associated (that is, their genes behave in a coordinate fashion)
only within a limited sequence of time-steps. Splitting microarray gene expres-
sion time series into shorter time-windows which can be clustered in separated
groups has been proposed in [8,9,10] and implemented in the GOALIE system
[11]. The GOALIE system provides a number of visualizers for navigating the set
of relationships induced by the GO enrichments of the clustering of the time-
windows. In order to compare these time-windows clusters, which are obtained
in a manner very similar to the one implemented in GOALIE, it is necessary to
take into account the different graph structures of their GO enrichments (GO
window graph), we propose to use a kernel measure of similarity. Because of
their theoretical potential as well as wide-range of applicability, kernel methods
[12,13] have proven to be among the currently most successful learning algo-
rithms. These methods work by embedding the data into a new features space
and then looking for relations between the data in that space. In this way com-
plex relations can be simplified and then used, for example, for classification,
regression, clustering, etc.

The paper is organized as follows: in Section 2 we give a brief overview of
the Kernel Methods. In Section 3, we more formally address the underlying
biological problem and apply a valid kernel function to measure the similarities
among the objects of our model. In Section 4, we discuss the numerical results
of our evaluation experiments and finally in Section 5 we conclude and discuss
some directions for future work.

2 Kernel Functions and Graph Kernel

Kernel methods have been successful in solving different problems in machine
learning. The idea behind these approaches is to map implicitly the input data
(i.e. training set) into a new feature (Hilbert) space F in order to find there
some suitable hypothesis: in this way complex relations in the input space can
be simplified and more easily discovered. The feature map Φ in question is defined
by a kernel function k which allows to compute the inner product in F using
only objects of the input space, hence without carrying out the map Φ. This is
sometimes referred as the kernel trick.

Definition 1 (Kernel function). A kernel is a function K : X × X → IR
capable of representing through Φ : X → F the inner product of F i.e.

K(x, y) =< Φ(x), Φ(y) > (1)

160 I. Zoppis et al.

To assure that such equivalence exists a kernel must satisfy Mercer’s Theorem.
Hence, under certain conditions (for instance semi-definiteness of K), by fixing
a kernel one can assure the existence of a mapping Φ and a Hilbert space F
for which (1) holds. These functions can be interpreted as similarity measures of
data objects into a (generally non linearly related) feature space, therefore, given
K one can always induce a (non Euclidean) distance d : X × X → IR such that:

d2(x, y) = K(x, x) + K(y, y) − 2K(x, y) (2)

While working with spaces whose objects are more structured, one may choose
one of the many suitable kernels that exploit the underlying structure; e.g., for
the set G of undirected labeled graphs1 a suitable measure for the similarity
between G1 and G2 counts the number of matching labeled random walks. These
measures were proposed by different authors (see for instance [14,15,16,17]).
Given a match, being obtained by comparing the label values associated to a
pair of nodes (or edges), the (kernel) similarity between two random walks is
then the product of the similarity values corresponding to the nodes and edges
encountered along the walk. The kernel value of two graphs is then the sum over
the kernel values of all pair of walks within these two graphs:

kgraph(G1, G2) =
∑

walk1∈G1

∑

walk2∈G2

kwalk(walk1, walk2) (3)

An elegant approach to construct such a similarity measure uses the direct
product graph [15]:

Definition 2 (Direct product of two labeled graphs). Given two labeled
graphs G1 = (V, E), G2 = (W, F) the direct product is denoted by G1 × G2. The
vertex set V× and edge set E× of this direct product are respectively defined as:

V×(G1 × G2) = {(v1, w1) ∈ V × W : label(v1) = label(w1)} (4)
E×(G1 × G2) = {((v1, w1), (v2, w2)) ∈ V 2

×(G1 × G2) :
(v1, v2) ∈ E

∧ (w1, w2) ∈ F

∧ label(v1, v2) = label(w1, w2)}

The nodes and edges G1 × G2 have the same labels as the corresponding nodes
and edges in G1 and G2. Based on this definition the Random Walk Kernel is
then defined as follows.

1 Here we use the following notation: a graph G = (V, E) consists of a finite set of n
vertices V denoted by {v1, v2, . . . , vn}, and a set of directed (possibly, weighted)
edges E ⊆ V × V . A walk w on G is a sequence of indices (w1, w2, . . . , wt+1)
where (vwi , vwi+1) ∈ E for all 1 ≤ i ≤ t. A random walk is a walk where
IP(wi+1|w1, . . . , wi) = IP(wi+1|wi) = Awi,wi+1 , i.e., the probability at wi of pick-
ing wi+1 is directly proportional to the weight of the edge (vwi , vwi+1).

Discovering Relations Among GO-Annotated Clusters 161

Definition 3 (Random Walk Kernel)

k×(G1, G2) =
|V×|∑

i,j=1

[∞∑

n=0

λnAn
×

]

i,j

(5)

where A× is the adjacency matrix of the product graph:

[A×]i,j =
{

1 if (vi, vj) ∈ E×
0 otherwise (6)

Therefore the sum in (5) converges for a suitable choice of λ0, λ1, λ2 . . . [15]. In
this paper, as in [18], we compute the random walk kernel only for walks up to
a predetermined length.

3 Method

Groups of genes may behave in a coordinate manner, but over a period of time,
such coordination may be confined within some limited interval. Therefore, the
usual clustering of the entire profiles, while useful (as exploited in [6,7]) may not
allow some relationships among genes to be detected. To overcome this problem,
it has already been suggested to split the time-series into shorter, partially-
overlapping time-windows [8,9,10]. In this section we design GO Window Graphs,
a kind of graphs where each node represents the functional enrichment of a
cluster of genes in a specific time-window, and then we provide patterns of
relations across time, by assembling the adjacent cluster pairs possessing minimal
dissimilarity. Apart from the time-windows breakdown, our approach is in the
vein of other works, such as [19,20].

3.1 GO Graph Model

In more details, our analysis is conducted on the sets Si = {Ci,u : u = 1, . . . , N}
of N gene clusters obtained at step i ∈ {1, . . . , M} by splitting each time series
in M time-window intervals. For each of these clusters we compute a labeled GO
graph by attributing for each node v its GO term value (accessed as labelGO(v))
and its enrichment (log) p-value (accessed as labelp(v)).

3.2 A Kernel for GO Window Graphs

The graph kernel defined in section 2 is designed for discrete attributes; in that
case two labeled nodes match whenever they share the same label values (i.e.
their attribute). In our case labels are almost never completely identical since
they contain the (log) p-values of the enrichment computations. More precisely,
we apply the distance (2) induced from a specific kernel function that measures
(dis)similarity between the associated functional processes, in order to determine
a relationship L ⊆ S1×S2×...×SM which can be used to link similar GO Window
Graphs (i.e. clusters). One such suitable function can be constructed

162 I. Zoppis et al.

– by considering in (4) a match between two vertex v1 and v2 if labelGO(v1) =
labelGO(v2), and

– by modifying as in [18] the adjacency matrix (6).

We have the following:

Definition 4. Given two graphs G1 = (V, E) and G2 = (W, F) and two walks
walk1 = (v1, v2, . . . , vn) ∈ G1 and walk2 = (v1, v2, . . . , vn) ∈ G2, with vi ∈ V ,
wi ∈ W . The walk kernel is defined as

kwalk(walk1, walk2) = kstep((vi, vj), (wi, wj)) (7)

for each i and j.

The random kernel is still the sum over all kernel on pairs of walk as in [18] and
it can be computed with following adjacency:

[A×]((vi,wi),(vj ,wj)) =
{

kstep((vi, vj), (wi, wj)) if ((vi, vj), (wi, wj)) ∈ E×
0 otherwise (8)

with E× = E×(G1 × G2) and (vi, vj) ∈ E and (wi, wj) ∈ F .
Our step kernel has a simpler formulation having the goal of comparing only

the (log) p-values of the original node, the destination nodes and their respective
GO terms. More formally:

Definition 5 (Step kernel for GO graphs). For i = 1, . . . , n − 1, the step
kernel is defined as

kstep((vi, vj), (wi, wj)) (9)
= knodepv(vi, wi) ∗ knodeterm(vi, wi) ∗ knodepv(vj , wj) ∗ knodeterm(vj , wj)

where for knodepv we use the Brownian bridge kernel [21]

knodepv(x, x′) = max(0, c − |labelp(x) − labelp(x′)|) (10)

and for the kernel knodeterm on the GO terms, a Dirac function Kernel:

knodeterm(x, x′) =
{

1 if labelGO(x) = labelGO(x′)
0 otherwise. (11)

Now, by defining U =
⋃

i Si and by following the same proof scheme of [18], we
can show that

k(Ci,u, Ci+1,v) =
|V×|∑

j=1

∞∑

n=0

λnAn
× (12)

is still a valid kernel on U × U . Thus, we have the following lemma.

Lemma 1. Let k be defined as in (12). Then it is a positive definite kernel
function.

Discovering Relations Among GO-Annotated Clusters 163

Proof. The node kernel is a Brownian bridge kernel that is known to be positive
definite [21]. Since pointwise multiplication preserves positive definiteness, step
kernel is consequently positive definite. By fixing now k̃j

walk, for all these pairs
of walks of length j only and zero otherwise [16] we have that k̃j

walk is a tensor
product of step kernels for walks which is zero extended to the whole set of pair
of walks, hence is positive definite. Again, Kwalk is a sum over all k̃j

walk and
is valid as well. The modified random walk kernel follows being a convolution
kernel proven to be positive definite. Hence (12) can measure the similarity
among objects in U and specifically can perform the similarity for each x ∈ Si

and y ∈ Si+1.

Since each kernel induces a distance (2), here we take di : U × U → IR:

d(Ci,u, Ci+1,v)2 = k(Ci,u, Ci,u) + k(Ci+1,v, Ci+1,v) − 2k(Ci,u, Ci+1,v) (13)

Therefore it becomes quite natural to link the cluster Ci,u at time i with the
cluster Ci+1,v at time i + 1 on the base of the minimal distance value i.e.

Ci,u ∼ Ci+1,viff d(Ci,u, Ci+1,v) = min
Ci,m∈Si,Ci+1,n∈Si+1

d(Ci,m, Ci+1,n) (14)

4 Numerical Results

The purpose of the following analysis is mainly to compare the results of our
application against a specific flat list approach. The n-tuples in L ⊆ S1×S2×...×
SM are expected to contain clusters with functional homogeneity among each
other and maximum separation of functional annotations across clusters of other
n-tuples. Therefore we conducted numerical evaluations to assess two quality
indexes: (I) maximum density with minimum diversity within a cluster and (II)
maximum separation between clusters. This reflects one of the main approaches
in quality validation tests for a clustering technique. In general, DNA microarray
expression data-sets are grouped with the expectation that genes with similar
functional features group together. In order to fulfill this expectation, we have
applied the indexes for cohesiveness from [22] while performing the clustering
at each “window-time interval”. We briefly report all these indexes to provide a
better understanding of our results.

The probability of selecting a gene associated to a functional group (identified
by a certain GO term) i within a cluster r can be estimated knowing the total
number of genes in r i.e. pir = ni

nr
and

∑
pir = 1. One can model the functional

cohesiveness within a cluster using Shannon’s information theory. Higher value
of cohesiveness of a cluster is measured by a high degree of certainty that the
genes in a cluster belongs to a functional group. Hence, the cohesiveness of a
cluster is its information content:

CC = −
k∑

i=1

pir log2(pir) (15)

164 I. Zoppis et al.

In our application the relation L ⊆ S1×S2×...×SM is discovered step by step
by evaluating the kernel-induced distance between pair of clusters Ci,u, Ci+1,v

for each time-window interval i. That is, discharging the interval steps we can
consider this distance as a way to group together genes of the respective clusters
in the pair, where these genes share the same functional processes in an ideal
case. It seems, indeed quite natural to consider the cluster cohesiveness index
CC (15) when a cluster is defined as Ci,u ∪ Ci+1,v. Therefore, the total cluster
cohesiveness can be defined as

TCC = −
r=m∑

r=1

k∑

i=1

pir log2(pir) (16)

The functional separation across different clusters can be measured by esti-
mating the probability bir of selecting a gene of functional group i in cluster r
among all genes belonging to the functional group i, i.e. bir = nir

Ni
where nir is

the total number of genes of functional group i in cluster r, Ni the total number
of genes in the behavioral group i and

∑
bir = 1. The information content of

a functional group i in all the clusters reflects the specificity of the functional
group and thereby indicates the separation property, more formally:

GC = −
m∑

r=1

bir log2(bir), (17)

while the total cluster separation can be defined as

TGC = −
k∑

i=1

m∑

r=1

bir log2(bir) (18)

For a simple flat list approach we first removed from each cluster those terms
whose p-values was below a detection threshold and then applied as in (13) the
Jaccard distance index:

J(X, Y) = 1 − |X ∩ Y |
|X ∪ Y | (19)

for each X and Y ∈
⋃

i Si.

4.1 Preliminary Analysis of the Yeast Cell Cycle Data-Set

The Spellman’s Yeast Cell Cycle data-set [2] includes three main experiments:
cdc15, alpha-factor, elutriation (where the names correspond to the three dif-
ferent methods employed for cell synchronization). We have analyzed only the
cdc15 subset, which is 18 time-points long.

GO annotations of S. cerevisae genes have been downloaded from the SGD
database (http://www.yeastgenome.org). The GO DAG has been derived from
R package GO 1.14.1. Functional Enrichment p-values have been calculated ac-
cording to the hypergeometric distribution approximating Fisher’s exact test (a

Discovering Relations Among GO-Annotated Clusters 165

Table 1. The comparison of the cluster cohesiveness and separation indexes for con-
nected clusters between time windows 1 and 2, and between time windows 2 and 3.
The Kernel induced distance produces better results, although it is more expensive to
compute.

Jaccard 1-2 2-3 Total

TCC 253.99 333.65 587.64
TGC 2134.9 2513.4 4648.30

Kernel 1-2 2-3 Total

TCC 276.41 303.45 579.86
TGC 2298.3 2341.3 4639.6

standard in existing resources, such as [23,24,25]). GO terms annotating less
than 4 genes of all genes from the experiment (“universe-set”) have been ex-
cluded from the analysis. The p-value of GO terms with less than 5 genes in
sample has been arbitrarily set to 1 (not relevant at all).

The cdc15 data-set was divided into 5 time-windows, with 5 time-steps each,
with one overlapping time point. We have computed 15 clusters for each of the
first three time-windows using a standard k-means algorithm. Then we identified
the “most similar” pairs of adjacent clusters according to (i) the Kernel induced
distance and (ii) Jaccard coefficient.

Then, we have merged associated pairs clusters, obtaining new clusters. For
these, we have computed cluster cohesiveness and separation indexes, TCC and
TGC, which have been already described elsewhere in the paper. These display
a superior performance for the Kernel induced distance over the Jaccard coeffi-
cient. Table 1 shows some of these comparisons between the Jaccard coefficient
and the Kernel induced distance according to TCC and TGC.

In addition, we also ran two qualitative benchmarks to test our Kernel and
Jaccard performance. We have traced connections between clusters according to:

– the absolute value of the intersection between the sets of genes,
– a manual curation.

For each connection found by Jaccard and Kernel, we specified whether it had
been found or not according to the other methods.

Again, the superiority of the Kernel approach is generally confirmed, although
a substantial disparity occurs between time window 1 to 2 and time window 2
to 3 couplings, with the second one displaying a greater performance difference.

5 Biological Results

The division of the Spellman Yeast Cell Cycle Data into windows of 5 time-
points, yields time windows roughly corresponding to two phases each:

– window 1 (1-5): G1, S (and partially G2)
– window 2 (5-9): G2, M (and partially G1)
– window 3 (9-13): G1, S

166 I. Zoppis et al.

Fig. 1. Transcriptional profiles of cell cycle marker genes in [2] data, cdc15 subset.
CLN3p is required for M→G1 transition, and it also indirectly activates the SBF com-
plex. Swi4p is part of the transcription-regulating complex SBF, which binds its targets
in early G1, but it is active only in late G1, and is a key player for G1→S transition
(together with MBF, whose components are not reported); Clb6p is responsible for an
initial inactivation (through nuclear export) of SBF and MBF during S-phase; POL2
has been assumed as a rough predictor of DNA-replication activity under S-phase;
Clb1/2p are responsible for switching off SBF and MBF in G2 phase, and therefore are
key players of S→G2 transition. Comparing the peaking areas of Clbp6p and POL2,
and the depression areas of Clbp1/2p, it is evident that G1 and S phases are “com-
pressed” in the initial time-steps.

Table 2. c8w1 enrichment reports these terms, ranked by their p-value

translation and ribosome subgroup
4.70e-13 cytosolic large ribosomal subunit (sensu Eukaryota)
4.30e-11 translation
7.43e-11 structural constituent of ribosome
5.40e-07 cytosolic small ribosomal subunit (sensu Eukaryota)
1.22e-06 translational elongation
1.04e-4 ribosomal small subunit assembly and maintenance
2.60e-3 ribosome

cell wall, plasma membrane and vescicular compartments sub-group
1.04e-04 vacuolar transport
1.77e-03 endoplasmic reticulum
2.70e-03 transporter activity
3.40e-03 integral to membrane

The discrepancy of window 1 and 2 w.r.t. holding exactly two phases is probably
due to synchronization, which alters the regularity in the very initial time-points
(see Figure 1 for details).

The demonstration of this statement is provided by the chart in Figure 1,
showing the normalized expression levels of a few marker genes.

To provide an example of the results yielded by our method, we consider
the maximal-similarity connections found among three adjacent clusters, respec-
tively belonging to time-window 1, 2 and 3 (they will be termed c8w1, c10w2,
c13w3 in Tables (2), (3), and (4)).

Therefore, a robust core of terms can be identified: (1) protein synthesis by
the cytoplasmic ribosome, (2) glycolysis and glyconeogenesis, and (3) cell wall,
plasma membrane and vescicular compartment.

Discovering Relations Among GO-Annotated Clusters 167

Table 3. c10w2 enrichment reports these terms

translation and ribosome subgroup
1.33e-07 translational elongation
9.58e-06 ribosome
1.13e-05 cytosolic large ribosomal subunit (sensu Eukaryota)
1.25e-05 cytosolic small ribosomal subunit (sensu Eukaryota)
2.61e-05 translation
4.70e-05 structural constituent of ribosome
2.97e-03 translational initiation
glycolysis and glyconeogensis subgroup
2.62e-08 glycolysis
1.19e-06 gluconeogenesis
cell wall, plasma membrane and vescicular compartments subgroup
3.46e-08 membrane
7.93e-05 transporter activity
3.80e-04 cell wall (sensu Fungi)
7.86e-04 transport
2.46e-03 endoplasmic reticulum
3.00e-03 plasma membrane

Table 4. c13w3 enrichment reports these terms

translation and ribosome subgroup
1.25e-05 translational elongation
2.54e-04 ribosome

glycolysis and glyconeogensis sub-group
4.121e-06 glycolysis
7.36e-06 gluconeogenesis
3.14e-05 hexose transport

cell wall, plasma membrane and vescicular compartments subgroup
1.89e-05 integral to plasma membrane
2.51e-05 transporter activity
3.14e-04 cell wall (sensu Fungi)
4.71e-04 plasma membrane
6.69e-04 membrane
3.79e-03 integral to membrane

Actually, c8w1 does not include glycolysis and glyconeogenesis genes, which
happen to be in a different cluster (c11w1); however, if we compare the profiles of
c11w1 and c8w1, we can see that they are quite correlated, displaying a slightly
increasing profile, although c11w1 is much more noisy; we probably observe
this discrepancy because clustering has not been optimized employing functional
annotation maximization as the objective for optimal k-means selection. We
intend to include this feature in an enhanced version of our method.

The relative stability of functional annotations in these clusters suggests that
regulation of basal metabolism and protein synthesis is coupled in the same
fashion through all the cell cycle, without any detectable de-coupling event.
Please note that these connections were not successfully found employing the
alternative method based on Jaccard coefficient.

6 Conclusion

We have presented an application of graph kernel methods to group clusters of
gene expression measurements organized over a time line. Our main contribution

168 I. Zoppis et al.

is an initial kernel similarity function that considers the taxonomical graph struc-
ture nature of GO terms in the context of an enrichment procedure that takes
into account the temporal distribution of biological processes. The preliminary
experimental results on the Spellman’s Yeast Cell Cycle data-set encourage the
use of this application of graph kernels versus a simple flat list approach based
on the Jaccard distance index.

Our next concern will be to address the use of different kernel functions and
dissimilarity indexes to extend the range of applicability of our approach.

References

1. Gene Ontology Consortium: The Gene Ontology (GO) project in 2006. Nucleic
Acid Research (Database issue) 34 (2006) D322–D326

2. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B.,
Brown, P.O., Botstein, D., Futcher, B.: Comprehensive Identification of Cell Cycle-
Regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridiza-
tion. Molecular Biology of the Cell 9 (1998) 3273–3297

3. Li, X., Quigg, R.J.: An Integrated Strategy for the Optimization of Microarray
Data Interpretation. Gene Expression 4-6 (2005) 223–230

4. Khatri, P., Draghici, S.: Ontological analysis of gene expression data: current tools,
limitations and open problems. Bioinformatics 21 (2005)

5. Doherty, J.M., Carmichael, L.K., Mills, J.C.: GOurmet: a tool for Quantitative
Comparison and Visualization of Gene Expression Profiles Based on Gene Ontology
(GO) Distributions. BMC Bioinformatics 7(151) (March 2006)

6. Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20(16)
(2004) 2493–2503

7. Ernst, J., Bar-Joseph, Z.: STEM: a tool for the analysis of short time series ex-
pression data. BMC Bioinformatics 7(191) (2006)

8. Antoniotti, M., Ramakrishnan, N., Kumar, D., Spivak, M., Mishra, B.: Remem-
brance of Experiments Past: Analyzing Time Course Datasets to Discover Complex
Temporal Invariants. Technical Report CIMS TR2005-858, Bioinformatics Group,
Courant Institute of Mathematical Sciences, New York University (February 2005)

9. Ramakrishnan, N., Antoniotti, M., Mishra, B.: Reconstructing Formal Temporal
Models of Cellular Events using the GO Process Ontology. In: Bio-Ontologies SIG
Meeting, ISMB, Detroit MI, U.S.A. (2005)

10. Kleinberg, S., Antoniotti, M., Tadepalli, S., Ramakrishnan, N., Mishra, B.: Re-
membrance of Experiments Past: A Redescription Based Tool for Discovery in
Complex Systems. In: Proceedings of the International Conference on Complex
Systems, Boston, MA, U.S.A. (June 2006)

11. Antoniotti,M.: GOALIE site. http://bioinformatics.nyu.edu/Projects/GOALIE/
(2004-2007)

12. Ben-Hur, A., Noble, W.S.: Kernel methods for predicting protein-protein interac-
tions. Bioinformatics 21 (2005)

13. Schölkopf, B., Tsuda, K., Vert, J.P.: Kernel Methods in Computational Biology.
MIT Press (2004)

14. Cortes, C., Haffner, P., Mohri, M.: Positive Definite Rational Kernels. In: Pro-
ceedings of the 16th Annual Conference on Learning Theory, Springer-Verlag (2003)
41–56

Discovering Relations Among GO-Annotated Clusters 169

15. Gärtner, P., Flach, P., Wrobel, S.: On Graph Kernels: Hardness Results and Effi-
cient Alternatives. In: COLT/Kernel. Volume 2777 of Lecture Notes in Artificial
Intelligence., Springer-Verlag (2003) 129–143

16. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized Kernels between Labelled
Graphs. In: Proceedings of ICML. (2003)

17. Kondor, R.S., Lafferty, J.: Diffusion Kernels on Graphs and Other Discrete Struc-
tures. In: Proceedings of ICML. (2002)

18. Borgwardt, K.M., Cheng, S.O., Schönauer: Protein Function Prediction via Graph
Kernel. Bioinformatics 21 (2005)

19. Joslyn, C.A., Mniszewski, S.M., Fulmer, A., Heaton, A.: The Gene Ontology Cat-
egorizer. Bioinformatics 20 (2004)

20. Lord, P.W., Stevens, R., Brass, A., Goble, C.A.: Investigating semantic similar-
ity measures across the Gene Ontology: the relationship between sequence and
annotation. Bioinformatics 19(10) (2003)

21. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press (2002)
22. Loganantharaj, R., Cheepala, S., Clifford, J.: Metric for Measuring the Effective-

ness of Clustering of DNA Microarray Expression. BMC Bioinformatics 7 (2006)
23. Al-Shahrour, F., Diaz-Uriarte, R., Dopazo, J.: FatiGO: a web tool for finding sig-

nificant associations of Gene Ontology terms with groups of genes. Bioinformatics
20 (2004) 578–580

24. Beißbarth, T., Speed, T.P.: GOstat: find statistically overrepresented Gene On-
tologies within a group of genes. Bioinformatics 20(9) (2004) 1464–1465

25. Robinson, P.N., Wollstein, A., Bohme, U., Beattie, B.: Ontologizing gene-
expression microarray dat: characterizing clusters with Gene Ontology. Bioinfor-
matics 20(6) (2004) 979–981

An Empirical Comparison of Dimensionality

Reduction Methods for Classifying Gene and
Protein Expression Datasets

George Lee1, Carlos Rodriguez2, and Anant Madabhushi1

1 Rutgers, The State University of New Jersey,
Department of Biomedical Engineering,

Piscataway, NJ 08854 USA
anantm@rci.rutgers.edu

2 University of Puerto Rico
Mayagez, PR 00681-9000

Abstract. The recent explosion in availability of gene and protein ex-
pression data for cancer detection has necessitated the development of
sophisticated machine learning tools for high dimensional data analy-
sis. Previous attempts at gene expression analysis have typically used a
linear dimensionality reduction method such as Principal Components
Analysis (PCA). Linear dimensionality reduction methods do not how-
ever account for the inherent nonlinearity within the data. The motiva-
tion behind this work is to demonstrate that nonlinear dimensionality
reduction methods are more adept at capturing the nonlinearity within
the data compared to linear methods, and hence would result in better
classification and potentially aid in the visualization and identification
of new data classes. Consequently, in this paper, we empirically compare
the performance of 3 commonly used linear versus 3 nonlinear dimen-
sionality reduction techniques from the perspective of (a) distinguishing
objects belonging to cancer and non-cancer classes and (b) new class
discovery in high dimensional gene and protein expression studies for
different types of cancer. Quantitative evaluation using a support vec-
tor machine and a decision tree classifier revealed statistically significant
improvement in classification accuracy by using nonlinear dimensionality
reduction methods compared to linear methods.

Keywords: dimensionality reduction, bioinformatics, gene expression,
proteomics, classification, prostate cancer, lung cancer, ovarian cancer,
principal component analysis, linear discriminant analysis, multidimen-
sional scaling, graph embedding, Isomap, locally linear embedding.

1 Introduction

The information found in gene and protein expression studies provides a means
for identifying patients with cancer and hence these studies have emerged as
promising techniques for cancer detection [1,2]. A typical gene expression dataset,
however, contains information from thousands of genes (features), which are likely

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 170–181, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

An Empirical Comparison of Dimensionality Reduction Methods 171

to be significantly greater than the number of patients from whom the data was
collected. The relatively small number of patient samples compared to the very
large size of the feature space results in the so-called ‘curse of dimensionality’
problem from a data analysis perspective [3]. Many of the genes within the ex-
pression studies may be non-informative or redundant and hence may not con-
tribute very much from a classification perspective [4]. Two common approaches
to making the data amenable to classification are (i) feature selection and (ii)
dimensionality reduction (DR).

Feature selection refers to the elimination of genes determined as either being
highly correlated with other genes or non-informative with respect to distinguish-
ing the data classes [4]. It serves as a direct method for reducing inherent data
dimensionality prior to classification by acquiring an optimal subset of genes to
maximally separate the data classes. However, since a typical gene microarray
records thousands of gene expressions, each associated with a particular gene,
the cost of finding an optimal subset from several million possible combinations
becomes a near intractable problem.

The alternative, dimensionality reduction (DR), is advantageous because all
of the original data is simply transformed from the original high dimensional
feature space to a space of eigenvectors, capable of describing the data in far
fewer dimensions. The largest eigenvectors represent the direction along which
the greatest variability in the dataset occurs. Advantages of DR over feature
selection include (i) representation of data structure in far fewer dimensions and
(ii) the visualization of individual data classes and possibly subclasses within
the high dimensional data.

The most popular method for DR is Principal Components Analysis (PCA).
PCA finds orthogonal eigenvectors which account for the greatest amount of
variability in the data. However, its basic intuitions lie under the assumption
that the data is linear. These embedded eigenvectors represent low dimensional
projections of linear relationships between data points in high dimensional space.
Dai et al. [5] and Shi et al. [2] have independently tested the efficacy of PCA in
improving the classification of gene expression datasets. Recently, methods such
as Graph Embedding [6], Isometric mapping (Isomap) [7], and Locally Linear
Embedding [8] have been developed to reduce the dimensionality of nonlinear
data under the assumption that the underlying distribution is nonlinear. The
structure of nonlinear data can be thought of as a high order curve or manifold
where the geodesic distance between two points on the manifold is greater than
their Euclidean distance would suggest. Nonlinear methods attempt to map data
along this nonlinear manifold by assuming only neighboring points to be similar
enough to be mapped linearly with minimal error. The nonlinear manifold can
then be reconstructed based on these locally linear assumptions, providing the
groundwork for a nonlinear mapping based on the true distances between any
two data points. In general however, the choice of DR methods for the analy-
sis of medical data has been relatively arbitrary. Although there is widespread
evidence [2,9,10] to suggest that medical data such as genomic and proteomic
expression studies are nonlinear, surprisingly few researchers have attempted

172 G. Lee, C. Rodriguez, and A. Madabhushi

nonlinear DR methods for this purpose. Shi and Chen [2] have evaluated the use
of LLE in comparison with PCA for improving classification in leukemia, lym-
phoma and colon gene expression datasets. Dawson et al. [9] explored the utility
of Isomap in comparison with PCA and linear multidimensional scaling (MDS) in
oligonucleotide datasets, and Nilsson et al. [10] independently compared Isomap
with MDS to reveal structures in microarray data related to biological phenom-
ena. Madabhushi et al. [6] demonstrated the use of graph embedding to detect
the presence of new tissue classes on high dimensional prostate MRI studies.
While significant work in comparing classifier performance on cancer studies
has been done [4,11], no serious quantitative comparisons involving multiple DR
algorithms have been done in the context of maximizing classification accuracy.

The primary motivation of this paper is twofold. Firstly, by quantitatively
comparing the performance of multiple linear and nonlinear DR methods, we
can determine the appropriate technique to precede classification in high dimen-
sional gene and protein expression studies. Secondly, we wish to demonstrate that
nonlinear DR methods are superior compared to linear methods both from the
perspective of classification and from the perspective of identifying and visualiz-
ing new classes within the data. In this work, we consider genomic and proteomic
expression datasets from 7 separate studies corresponding to prostate, lung and
ovarian cancers, as well as leukemia and lymphoma. Three different linear meth-
ods (PCA, linear discriminant analysis (LDA) [3], linear MDS [10]) and three
nonlinear DR methods (graph embedding [6], Isomap [7], and LLE [8]) are ap-
plied to each of the datasets. The low dimensional embedding vectors, obtained
from each DR method and for each dataset, are then supplied to a support vector
machine classifier and a decision tree classifier. The accuracy of each classifier in
distinguishing between cancer and non-cancer classes is thus used to gauge the
efficacy of each of the DR methods. In addition to classification, we also quanti-
tatively compare each of the DR methods in terms of their ability to detect new
sub-classes within the data.

The organization of the rest of this paper is as follows. In Section 2, we will
give a brief overview of the DR methods considered in this work. In Section 3
we describe our experimental design. Our qualitative and quantitative results
in comparing the different DR methods are presented in Section 4. Finally, we
present our concluding remarks in Section 5.

2 Description of Dimensionality Reduction Methods

In this section we briefly describe the 3 linear (PCA, MDS, LDA) and 3 nonlinear
DR methods (Graph Embedding, Isomap, LLE) considered in this study.

2.1 Linear Dimensionality Reduction Methods

Principal Components Analysis (PCA): PCA has been widely documented
as an effective means for analyzing high dimensional data [5]. Briefly, PCA ap-
plies a linear transformation to the data that allows the variance within the

An Empirical Comparison of Dimensionality Reduction Methods 173

data to be expressed in terms of orthogonal eigenvectors. The eigenvectors that
contain the most variance in the data represent the principal components.

Linear Discriminant Analysis (LDA): LDA [3] takes into account class
labels to find intra-class correlations in the dataset. Assuming there is a linear
hyperplane that can maximize separation between the two classes, LDA projects
features that maximally account for this inter-class difference. While LDA has
been useful as both a DR method and a classifier, it is limited in handling sparse
data in which a Gaussian distribution of data points does not exist [3].

Classical Multidimensional Scaling (MDS): MDS [10] is implemented as
a linear method that uses Euclidean distances between each pair of points as
a basis for a low dimensional data arrangement. From these input distances,
MDS finds optimal positions for the data points in an arbitrary d-dimensional
space by minimizing least square error. Thus, the relative Euclidean distances
between points in low-dimensional embedding space are preserved. Note that
classical MDS differs from nonlinear variants of MDS such as nonmetric MDS,
which do not preserve input Euclidean distances.

2.2 Nonlinear Dimensionality Reduction Methods

Graph Embedding (GE): The GE algorithm [6] performs a series of normal-
ized cuts on the data to partition it into clusters of data points. These cuts are
made where minimal similarities exist (decided using a similarity matrix of pair-
wise Euclidean distances). In this manner, similarity can be discerned by inter-
and intra-cluster distances, where points within a cluster are deemed similar and
points belonging to separate clusters are deemed dissimilar. Separating points
by GE allows for the separation of objects within complex nonlinear structures,
where objects cannot otherwise be discriminated by linear DR methods.

Isometric Mapping (Isomap (ISO)): The Isomap algorithm [7] is essen-
tially one that optimizes classical MDS for the nonlinear case. Isomap finds the
nonlinear manifold on which the data is expected to lie through the use of a
neighborhood map, which assumes linearity only between its k nearest neigh-
bors defined by the user. By connecting each point only to its nearest neighbors,
a path representing the geodesic distances between two points can be approxi-
mated by finding the shortest path through the neighborhood mapping. These
new geodesic distances represent the true distances between points and serve as
input into classical MDS, where a more accurate low dimensional representation
can be constructed.

Locally Linear Embedding (LLE): LLE [8] attempts to create a low dimen-
sional representation of the global structure through the preservation of the local
structure by assuming only nearby points to be linear. Local linearity is achieved
by weighting only the k-nearest neighbors of each data point. A total of d new
embedding vectors are then reconstructed by these linear weights and by mini-
mizing the embedding cost function in the new d-dimensional coordinate system.

174 G. Lee, C. Rodriguez, and A. Madabhushi

3 Experimental Design

In this Section, we first briefly describe the datasets considered in this study along
with a description of the parameter settings for the DR methods (Section 3.1),
followed by a brief description of the classifiers considered (Section 3.2) and our
model for performing a quantitative comparison of the different DR methods
(Section 3.3).

3.1 Description of Datasets and Parameter Settings

To evaluate the different DR methods, we chose 7 publicly available datasets
corresponding to high dimensional protein and gene expression studies1. The
size of the datasets ranged from 34 to 253 patient samples and comprised from
between 4026 to 15154 genes. Table 1 lists all the datasets on which we tested
our DR methods. Note that for each dataset considered, the number of samples
is significantly smaller than the dimensionality of the feature space. For the
ALL-AML Leukemia dataset, two classes were considered: Acute Lymphoblastic
Leukemia (ALL) and Acute Myeloid Leukemia (AML). For the DLBCL-Harvard
dataset, the 2 classes considered were Diffuse large B-cell Lymphoma (DLBCL)
and Follicular Lymphoma (FL). Lastly, the Lung Cancer dataset contains two
types of lung cancer (mesothelioma (MPM) and adenocarcinoma (ADCA)).

Table 1. Gene expression and proteomic spectra datasets considered in this study

Dataset Samples Genes Class Description Source

(1) ALL-AML Leukemia 34 7129 20 ALL, 14 AML Golub et al. [12]
(2) DLBCL-Harvard 77 6817 58 DLBCL,19 FL Shipp et al. [13]
(3) Lung Cancer 148 12533 15 MPM, 134 ADCA Gordon et al. [14]
(4) Lung Cancer-Michigan 96 7129 86 Tumor, 10 Normal Beer et al. [15]
(5) Ovarian Cancer 253 15154 162 Tumor, 91 Normal Petricoin et al. [16]
(6) Prostate Cancer 34 12600 25 Tumor, 9 Normal Singh et al. [17]
(7) Types of Diffuse Large 47 4026 24 Germinal, Alizadeh et al. [18]

B-cell Lymphoma 23 Activated

For each of the datasets Dj , 1 ≤ j ≤ 7, we applied each of 6 DR methods
M , where M ∈ {PCA, LDA, MDS, GE, ISO, LLE}. For each method M and
dataset Dj, we obtained a set Sd

Dj ,M ≥
{

E1
Dj ,M , E2

Dj ,M , ..., Ed
Dj ,M

}
of d dom-

inant eigenvectors. The number of principal eigenvectors d used to classify the
objects c ∈ Dj were varied from 2 to 8 in order to find the optimal d-dimensional
space in which the 2 classes were most easily separable.

1 The datasets were obtained from the Biomedical Kent-Ridge Repositories at
http://sdmc.lit.org.sg/GEDatasets/Datasets and http://sdmc.i2r.a-star.edu.sg/rp

An Empirical Comparison of Dimensionality Reduction Methods 175

3.2 Classifiers

To perform our classification, we input a set Sd
Dj ,M of eigenvectors to the fol-

lowing 2 machine learning classifier methods: Support Vector Machines (SVMs)
and C4.5 Decision Trees. Both require the use of a training set to construct a
prediction model for new data. SVMs project the input data to a higher dimen-
sional space to find a hyperplane that gives the greatest separation between the
data classes. This hyperplane along with 2 parallel support vectors serve as a
boundary in which a prediction can be made for new data. Decision Trees cre-
ate a predictor wherein new samples are categorized based on several conditional
statements. For each condition, the algorithm associates a certain likelihood that
a sample falls into a particular category and refines the class hypothesis before
a final decision is made.

Since the classifiers were being used to evaluate the DR methods’ ability to
separate 2 classes, a simple linear kernel was chosen for SVM. The linear kernel
draws a d-dimensional hyperplane to act as a decision boundary between the
two separated classes. To train the 2 classifiers, we set aside 1/3 of the samples
in each dataset Dj, 1 ≤ j ≤ 7, for 3-fold cross validation. Using the best samples
from cross validation, we determined the parameter settings for both classifiers.
After the model parameters were learned, the same parameter values for SVM
and C4.5 were used to test the remaining 2/3 objects in each Dj .

3.3 Quantitative Evaluation of DR Methods

The accuracy of the SVM and C4.5 classifiers on 7 datasets Dj, 1 ≤ j ≤ 7
was quantitatively evaluated using the class labels provided in the gene ex-
pression studies. We define accuracy as the ratio of the number of objects
c ∈ Dj , 1 ≤ j ≤ 7, correctly labeled by the classifier to the total number of tested
objects in each Dj . We denote the classification accuracy of SVMs on dataset
Sd

Dj ,M by SVM(Sd
Dj ,M) and the corresponding accuracy of the C4.5 Decision

Trees by C4.5(Sd
Dj,M). To determine whether the classifier results from the non-

linear and linear DR methods were significantly different, we performed a paired
student t -test wherein we compared SVM(Sd

Dj ,M) for M ∈ {PCA, LDA, MDS}
versus SVM(Sd

Dj ,M) for M ∈ {GE, ISO, LLE} across all Dj. The t -test was
similarly repeated for C4.5(Sd

Dj,M). The difference between SVM(Sd
Dj ,M) or

C4.5(Sd
Dj,M) for each pair of methods (1 linear and 1 nonlinear) was deemed

to be statistically significant if p ≤ 0.05. The linear and nonlinear DR methods
were also semi-quantitatively compared (i) using 2-D embedding plots to evalu-
ate their ability to distinguish between the cancer and non-cancer clusters and
(ii) to potentially identify and visualize the presence of new sub-classes. In order
to visualize the embedding of the data in the low dimensional space obtained
via the DR methods, we plotted the dominant eigenvectors obtained for each M
for each object c ∈ Dj against each other (e.g. E2

Dj ,M versus E3
Dj ,M).

176 G. Lee, C. Rodriguez, and A. Madabhushi

4 Results and Discussion

In Section 4.1 we present the results of quantitative comparison of the different
DR methods in terms of their classification accuracy obtained from the SVM and
C4.5 classifiers. In Section 4.2 we present quantitative graphical plots comparing
the ability of the DR methods to separate the data classes and also in identifying
and visualizing the presence of new classes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PCA LDA MDS GE ISOMAP LLE

A
cc

ur
ac

y

0.4

0.5

0.6

0.7

0.8

0.9

1

PCA LDA MDS GE ISOMAP LLE

A
cc

ur
ac

y

Prostate Cancer
Lung Cancer
ALL−AML Leukemia
DLBCL
Lung Cancer−Michigan
DLBCL−Harvard

(a) (b)

Fig. 1. (a) Average C4.5(Sd
Dj ,M) for d = 6 and (b) SVM(Sd

Dj,M) for d = 5 for each
of 6 datasets following DR by PCA, LDA, MDS, GE, ISO, and LLE. Note that for
both classifiers, the nonlinear methods consistently outperform the linear methods.

4.1 Quantitative Evaluation of DR Methods Via Classifier Accuracy

In Figure 1(a), we show the average accuracy results obtained with the C4.5
classifier, C4.5(Sd

Dj,M) for 1 ≤ j ≤ 6. We obtained our best results for d =
5 for SVMs and d = 6 for C4.5 Decision Trees. From Figure 1(a), it is clear
that embeddings from nonlinear DR methods (GE, ISO, LLE) lead to better
overall accuracy than with linear DR methods (PCA, LDA, MDS). Isomap
and LLE overall were the most accurate while LDA performed the worst. In

Table 2. C4.5(Sd
Dj ,M) for each of 7 datasets following DR by PCA, LDA, MDS, GE,

ISO, and LLE for d = 6

Dataset PCA LDA MDS GE ISO LLE

(1) ALL-AML Leukemia 62.5 41.7 62.5 91.7 95.0 95.0
(2) DLBCL-Harvard 69.2 40.4 84.6 86.5 96.9 96.9
(3) Lung Cancer 67.7 84.6 70.8 98.5 100.0 100.0
(4) Lung Cancer-Michigan 67.7 84.6 69.2 98.5 100.0 100.0
(5) Ovarian Tumor 55.6 59.2 61.5 59.2 59.8 63.3
(6) Prostate Cancer 100.0 47.8 87.0 82.6 100.0 100.0
(7) Types of Diffuse Large 93.8 59.4 90.6 93.8 95.0 95.0

B-cell Lymphoma

An Empirical Comparison of Dimensionality Reduction Methods 177

Table 3. p-values obtained by a paired student t-test of SVM(Sd
Dj,M) across 7 data

dimensions d ∈ {2, ...8} comparing linear versus nonlinear DR methods for 1 ≤ j ≤ 7.
Note that the numbers listed in the first column refer to the datasets given in Table 1.

GE GE GE ISO ISO ISO LLE LLE LLE

Dataset vs vs vs vs vs vs vs vs vs
PCA LDA MDS PCA LDA MDS PCA LDA MDS

(1) .068 8x10−5 .057 7x10−5 6x10−8 .002 7x10−5 6x10−8 .002
(2) .373 3x10−4 .925 .012 6x10−5 .014 .012 6x10−5 .014
(3) .361 .852 .691 .003 .009 4x10−4 .002 .006 4x10−4

(4) .706 .063 1.000 .004 3x10−8 .015 .005 2x10−16 .011
(5) .478 .063 .412 .008 .004 .003 .002 .003 2x10−4

(6) .156 .001 .045 2x10−5 4x10−8 .012 8x10−5 3x10−8 .019
(7) .005 10−4 .074 8x10−5 7x10−6 .001 8x10−5 7x10−6 .001

0.085 0.09 0.095 0.1 0.105 0.11 0.115
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

Tumor
Normal

−0.2 −0.15 −0.1 −0.05 0 0.05
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

1st Embedding Component

2n
d

E
m

be
dd

in
g

C
om

po
ne

nt

Tumor
Normal

(a) (b)

−6 −4 −2 0 2 4 6

x 10
−5

−6

−4

−2

0

2

4

6

8

10
x 10

−5

1st Embedding Component

2n
d

E
m

be
dd

in
g

C
om

po
ne

nt

Tumor
Normal

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

1st Embedding Component

2n
d

E
m

be
dd

in
g

C
om

po
ne

nt

Tumor
Normal

(c) (d)

Fig. 2. Embedding plots were obtained by graphing the 2 dominant eigenvectors
against each other for (a) PCA, (b) LDA, (c) GE, and (d) LLE for the Lung Cancer-
Michigan dataset. Note that while linear methods, PCA and LDA, are unable to dis-
tinguish between the 2 classes, the nonlinear methods, GE and LLE, are able to not
only clearly distinguish between the 2 groups but also permit visualization of 2 possible
normal class sub-clusters (indicated by superposed ellipses in (c) and (d)).

178 G. Lee, C. Rodriguez, and A. Madabhushi

−0.15 −0.1 −0.05 0 0.05 0.1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

Tumor
Normal

−40 −30 −20 −10 0 10 20 30
−40

−30

−20

−10

0

10

20

30

1st Embedding Component

2n
d

E
m

be
dd

in
g

C
om

po
ne

nt

Tumor
Normal

(a) (b)

−150 −100 −50 0 50 100
−150

−100

−50

0

50

100

150

1st Embedding Component

2n
d

E
m

be
dd

in
g

C
om

po
ne

nt

Tumor
Normal

−3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3rd Embedding Component

4t
h

E
m

be
dd

in
g

C
om

po
ne

nt

Tumor
Normal

(c) (d)

Fig. 3. Embedding plots were obtained by graphing the 2 dominant eigenvectors
against each other for (a) PCA, (b) MDS, (c) Isomap, and (d) LLE for the Ovar-
ian Cancer dataset. As in Figure 3, we can appreciate that nonlinear methods, Isomap
and LLE, are able to distinguish between the 2 classes and also permit visualization of
a possible normal class sub-cluster (indicated by superposed ellipses in (c) and (d)).

Table 2, we show C4.5(Sd
Dj,M), for 1 ≤ j ≤ 7, for all 6 DR methods, for d =

6. Our results indicate an improvement in accuracy for the nonlinear DR over
linear DR methods. In Table 3 are listed p-values for the paired student t -tests
obtained for SVM(Sd

Dj ,M) across 7 data dimensions (d ∈ {2, ..., 8}) for each
paired comparison of a linear and non-linear DR method. Hence we compared
the following pairs of methods: PCA/GE, LDA/GE, MDS/GE, PCA/Isomap,
LDA/Isomap, MDS/Isomap, PCA/LLE, LDA/LLE, MDS/LLE for each of the
7 datasets considered. As the results in Table 3 indicate, differences in classifica-
tion accuracy for pairs PCA/GE and MDS/GE were not statistically significant
(p ≥ 0.05) while all corresponding paired comparisons involving LLE and Isomap
were statistically significantly more accurate compared to linear DR methods.

The results in Figure 1 and Tables 2 and 3 clearly suggest that nonlinear DR
methods result in higher statistically significant accuracy compared to linear
DR methods, as determined by 2 separate classifiers. Additionally, Isomap and

An Empirical Comparison of Dimensionality Reduction Methods 179

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

1st Embedding Component

2n
d

E
m

be
dd

in
g

C
om

po
ne

nt

BCR-ABL

E2A-PBX1

Hyperdiploid>50
MLL

T-ALL

-4 -3 -2 -1 0 1 2
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

3rd Embedding Component

4t
h

E
m

be
dd

in
g

C
om

po
ne

nt

BCR-ABL

E2A-PBX1

Hyperdiploid>50
MLL

T-ALL

-4 -3 -2 -1 0 1 2
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

3rd Embedding Component

4t
h

E
m

be
dd

in
g

C
om

po
ne

nt

BCR-ABL

E2A-PBX1

Hyperdiploid>50
MLL

T-ALL

(a) (b)

Fig. 4. Embedding plots were obtained by graphing 2 dominant eigenvectors against
each other for 5 different types of Acute Lymphoblastic Leukemia. In Figure 4(a), an
embedding plot for linear LDA is compared with Figure 4(b), an embedding plot of
nonlinear LLE. Note that the linear method fails to distinguish the ALL sub-classes
in the reduced eigenspace, while the LLE plot clearly reveals the presence of 5 distinct
clusters (indicated by superposed ellipses).

LLE were found to generate the most useful embeddings resulting in highest
classification accuracy.

4.2 Semi-quantitative Evaluation of Dimensionality Reduction
Methods Via Class Separation and Novel Class Detection

We evaluated the efficacy of nonlinear DR methods in identifying new data
classes and intermediate cancer types. This was done by visual inspection of
2-D cluster plots obtained by plotting E1

Dj ,M versus E2
Dj ,M for each of the 6

DR methods. The results of the 2-D embedding plots for the Lung Cancer-
Michigan and Ovarian Cancer datasets are shown in Figures 2 and 3 respectively.
In Figure 2, two distinct sub-classes can be distinguished in the normal class
(indicated by superposed ellipses) for GE (Figure 2(c)) and LLE (Figure 2(d))
as well as a clear, distinct separation between the cancer and non-cancer classes.
For the linear embeddings obtained via PCA and LDA (shown in Figures 2(a)
and (b) respectively), there appears to be significant overlap between cancer and
non-cancer classes. The poor class separation is reflected in the poor classification
accuracy obtained with both the SVM and C4.5 Decision Tree classifiers in
Figure 1 and Table 2.

In Figure 3, we have shown the comparison of embedding plots for linear
PCA (Figure 3(a)) and MDS (Figure 3(b)) against nonlinear methods, Isomap
(Figure 3(c)) andLLE(Figure 3(d)), on theOvarianCancer dataset. InFigures 3(c)
and (d), one can appreciate a sub-cluster of normal samples (indicated by super-
posed ellipses), possibly suggesting pre-malignant cases. More importantly, the
fact that this unusual clustering is present in both nonlinear DR algorithms
strongly suggests the validity of the identified sub-clusters and the utility of

180 G. Lee, C. Rodriguez, and A. Madabhushi

nonlinear DR methods in visualizing biological relationships between samples and
in new class discovery.

Since we were unable to quantitatively evaluate the validity of the sub-clusters
detected by the nonlinear DR methods in Figures 2 and 3, we also compared
linear and nonlinear methods on a multiclass dataset. Our aim is to demonstrate
that nonlinear DR methods are more capable of detecting subtypes of Acute
Lymphoblastic Leukemia (ALL) [19]. Figures 4(a) and (b) show plots comparing
LDA and LLE in clustering 5 subtypes of ALL. As shown in 4(a), LDA does
not provide any inter-class distinction while the embedding provided by LLE in
4(b) enables easy separation between the multiple sub-classes in ALL.

5 Concluding Remarks

In this paper we presented the results of quantitatively comparing the perfor-
mance of 6 different DR methods (3 linear, 3 nonlinear) from the perspective
of classification and the identification of new object classes in high dimensional
gene and protein expression datasets for prostate, lung, and ovarian cancers, as
well as for leukemias and lymphomas. The eigenvectors obtained from each of
the different DR methods were supplied to two different classifiers (SVMs and
Decision Trees) to distinguish between data classes within 7 different gene and
protein expression studies. Classification accuracy with both SVMs and C4.5 De-
cision Trees were found to be consistently higher when using features obtained
by nonlinear DR methods compared to linear methods. Among the nonlinear
methods, LLE gave the highest overall accuracy. In addition to distinguishing
between known classes, we were also able to identify the presence of several
potential sub-clusters via nonlinear DR techniques. For most datasets, all the
nonlinear DR methods outperformed the corresponding linear methods, differ-
ences being statistically significant in most cases. In future work we intend to
quantitatively evaluate the validity of our results on several addition datasets.

Acknowledgments. This work was made possible due to grants from the Coul-
ter foundation (WHCF 4-29349, WHCF 4-29368), the Busch Biomedical Award
and the Technology Commercialization Fund at Rutgers University.

References

1. Peng Y. A novel ensemble machine learning for robust microarray data classifica-
tion. Comput Biol Med. 2006, vol.36[6], pp.553-73.

2. Shi C. and Chen L. Feature Dimension Reduction for Microarray Data Analysis
Using Locally Linear Embedding. APBC 2005. pp.211-217.

3. Ye J et al. Using Uncorrelated Discriminant Analysis for Tissue Classification
with Gene Expression Data. IEEE/ACM Trans. Comput. Biology Bioinform. 2004,
vol.1[6], pp.181-190.

4. Tan AC and Gilbert D. Ensemble machine learning on gene expression data for
cancer classification. Applied Bioinformatics. 2003, pp.65-83.

An Empirical Comparison of Dimensionality Reduction Methods 181

5. Dai J et al. Dimension Reduction for Classification with Gene Expression Microar-
ray Data. Statistical Applications in Genetics and Mol Biol. 2006, vol.5[1], pp.1-15

6. Madabhushi A et al. Graph Embedding to Improve Supervised Classification and
Novel Class Detection: Application to Prostate Cancer. MICCAI 2005. pp.729-737.

7. Tenenbaum JB et al. A Global Geometric Framework for Nonlinear Dimensionality
Reduction. Science. 2000, vol.290, pp.2319-2322.

8. Roweis ST and Saul LK. Nonlinear Dimensionality Reduction by Local Linear
Embedding. Science. 2000, vol.290, pp.2323-2326.

9. Dawson K et al. Sample phenotype clusters in high-density oligonucleotide mi-
croarray data sets are revealed using Isomap, a nonlinear algorithm. BMC Bioin-
formatics. 2005, vol.6, pp.195.

10. Nilsson J et al. Approximate geodesic distances reveal biologically relevant struc-
tures in microarray data. Bioinformatics. 2004, vol.20, pp.874-880.

11. Madabhushi A et al. Comparing Classification Performance of Feature Ensembles:
Detecting Prostate Cancer from High Resolution MRI, Computer Vision Methods
in Medical Image Analysis (In conjunction with ECCV). 2006, LNCS 4241, pp.
25-36.

12. Golub TR et al. Molecular classification of cancer: class discovery and class pre-
diction by gene expression monitoring. Science. 1999, vol.286, pp.531-537.

13. Shipp MA et al. Diffuse large B-cell lymphoma outcome prediction by gene-
expression profiling and supervised machine learning. Nat Med. 2002, vol.8, pp.
68-74.

14. Gordon GJ et al. Translation of microarray data into clinically relevant cancer
diagnostic tests using gene expression ratios in lung cancer and mesothelioma.
Cancer Res. 2002, vol.62, pp.4963-4967.

15. Beer D et al. Gene-expression Profiles Predict Survival of Patients with Lung Ade-
nocarcinoma. Nature Medicine. 2002, vol.8[8], pp.816-823.

16. Petricoin EF et al. Use of proteomic patterns in serum to identify ovarian cancer.
The Lancet. 2002, vol.359[9306], pp.572-577

17. Singh D et al. Gene expression correlates of clinical prostate cancer behavior. Can-
cer Cell. 2002, vol.1, pp.203-209.

18. Alizadeh AA et al. Distinct types of diffuse large B-cell lymphoma identified by
gene expression profiling. Nature. 2000, vol.403, pp.503-511.

19. Yeoh EJ, et al. Classification, Subtype Discovery, and Prediction of Outcome in
Pediatric Acute Lymphoblastic Leukemia by Gene Expression Profiling. Cancer
Cell. 2002, vol.1[2], pp.133-143.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 182–191, 2007.
© Springer-Verlag Berlin Heidelberg 2007

NEURONgrid: A Toolkit for Generating Parameter-
Space Maps Using NEURON in a Grid Environment

Robert J. Calin-Jageman1,*, Chao Xie2,*, Yi Pan2, Art Vandenberg3,
 and Paul S. Katz1

1 Department of Biology
2 Department of Computer Science

3 Information Systems and Technology
Georgia State University, Atlanta, GA 30303, USA

rcalinjageman@gsu.edu

Abstract. Neuroscience research increasingly involves the exploration of
computational models of neurons and neural networks. To ensure systematic
model exploration, it is often desirable to conduct a parameter-space analysis in
which the behavior of the model is catalogued over a very large range of
parameter permutations. Here we report the development and testing of a tool-
kit called NEURONgrid for conducting this type of analysis in a grid
environment using NEURON (Hines & Carnevale, 1997, 2001), a popular and
powerful simulation platform for the neurosciences. NEURONgrid provides
helper classes within NEURON for manipulating parameters, a package of
NEURON for running in a grid environment, and a management client that
enables neuroscientists to submit a parameter-space analysis, monitor progress,
and download results. NEURONgrid provides a user-friendly means for
conducting intensive model exploration within the neurosciences. It is available
for download at http://neurongrid.homeip.net.

1 Introduction

Computational modeling has become an important technique within the neurosciences
(Stern and Travis, 2006). Neuroscientists now regularly construct models of neurons
and neural networks to integrate experimental data, test hypotheses, and generate
novel predictions. Although considerable effort is spent in developing and tuning
these models, the end goal is exploration—varying conditions and inputs to
understand the model’s behavior and how it might relate to the real system. Recently,
there has been a drive to make model exploration more systematic by generating
detailed parameter space maps (Foster et al., 1993; Goldman et al., 2001; Prinz et al.,
2003, 2004). In this approach, the behavior of a model is catalogued across a
relatively large set of parameter permutations. The resulting data set represents a
high-dimensional parameter-space map, which is useful for tuning models to new data
sets, analyzing the influence of different parameters, and assessing the uniqueness of
different solution sets (see below).

* Co first-authors.

ă

 NEURONgrid: A Toolkit for Generating Parameter-Space Maps Using NEURON 183

Although parameter-space mapping is a useful approach to model exploration, it is
a combinatorial task that requires extensive computational power for expansive
mapping of a parameter-space. Currently, only two published solutions are available
for computational neuroscientists. Prinz et al. (2003) wrote customized code for
distributing a neural network simulation on a Beowulf cluster. However, this solution
only scales to the size of the cluster and requires significant development effort.
Another approach, NeuronPM (Calin-Jageman & Katz, 2006), produces a screen-
saver cluster in which the screen-saver client embeds NEURON (Hines & Carnevale,
1997, 2001), a common simulation environment for neurons and neural networks.
This second approach reduces development time by utilizing an existing simulation
platform that can run existing models without modification. However, the screen-
saver client in NeuronPM lacks a scripted install/configuration routine, cannot be
updated automatically, and is not capable of encrypted communication with the
server. This approach is thus most suitable for installation on local intranets of
relatively modest size (e.g. university computer lab).

To overcome the deficiencies of the existing approaches, we have developed a
toolkit, called NEURONgrid, for generating parameter-space maps with NEURON in
the GridMP environment (United Devices, 2003). NEURONgrid includes helper
classes in NEURON for varying parameters in existing models, a custom package of
NEURON for use within GridMP, and a user-friendly management client the can
submit large parameter sweeps, monitor progress, and download result sets.
NEURONgrid provides a stable, rapid, and scalable solution for parameter-space
mapping that will work with existing NEURON models. Below we describe a) the
benefits of parameter-space mapping, b) the GridMP platform and its utility for this
type of analysis, c) the components of NEURONgrid, and d) the results of a test case.
NEURONgrid is open source and available at http://neurongrid.homeip.net

2 Uses of Parameter-Space Maps in Neuroscience

Model neurons and neural networks commonly involve tens to hundreds of
parameters. Thus, probing any significant part of a model’s parameter space will
necessarily involve millions of simulations runs. Given the extreme computational
cost, it is worth considering in more detail why this type of analysis is desirable.

Tuning models. One of the hardest tasks in computational neuroscience is identifying
a parameter set for a model that will produce a desired behavior. A parameter-space
map can provide a useful reference set for tuning a model (Prinz et al., 2003). In this
approach, the parameter-space map becomes a kind of look-up table for selecting
model configurations and/or seeding tuning algorithms. This may be of limited utility
for models with an unwieldy number of parameters (Achard & De Schutter, 2006),
but it has proven useful for identifying useful parameter sets for both individual
neurons and neural networks (Prinz et al., 2004).

Stability analysis. When a model neuron or network exhibits an interesting behavior,
it is important to examine the range of conditions under which the behavior can be
maintained. A parameter-space map can identify the necessary and sufficient
conditions for maintaining a behavior. Moreover, it can identify the sensitivity of the
behavior to different model parameters and their multivariate interactions (e.g.

184 R.J. Calin-Jageman et al.

Foster et al., 1993; Goldman et al., 2001; Achard & De Schutter, 2006). This can
provide fundamental insight into the mechanisms underlying the behavior of interest.
It may also prove useful for simplifying complex models, as only a subset of total
model parameters are likely to exert significant control on model behavior (Tobin et
al., 2006) and some neural processes can have redundant effects (Calin-Jageman &
Fischer, 2003).

Range of model behaviors. Neurons and neural networks often exhibit multiple output
modes. For example, some neurons can switch between tonic spiking and bursting
(e.g. Beurrier et al., 2000). Parameter-space mapping provides a technique for
sampling the output modes of a model and elucidating the inputs that can switch
between the modes (Calin-Jageman et al., 2006).

3 GridMP Environment

Parameter-space mapping is computationally intensive, but it requires only the
simplest form of parallelization—each point in the parameter space is mapped as an
independent run of the simulation without any need for resource or data sharing
across runs. Thus, simple ‘task-farming’ (Gonzalez-Velez, 2005) is a very relevant
paradigm for speeding the creation of a parameter-space map. In this respect, the
Grid MetaProcessor (GridMP) environment is ideal as it uses cycle harvesting to
distribute tasks among many autonomous computers (United Devices, Austin, TX).
Further, GridMP provides full encryption of code and data (input and output). This
section provides an overview of the GridMP platform architecture by discussing data
flow and the major GridMP platform components (United Devices, 2003).

Figure 1 shows the major components in the GridMP platform and identifies which
components communicate with each other.

Fig. 1. The GridMP platform components and data flow

The workflow in the GridMP platform is described as follows:

1. The system administrator starts the GridMP platform Service Manager.
2. Devices (computers in the GridMP domain) connect to the Realm Service for

authentication and to receive credentials.

 NEURONgrid: A Toolkit for Generating Parameter-Space Maps Using NEURON 185

3. Devices contact the Dispatch Service and work, if available, is assigned to
each device.

4. The MP Agent running on each device downloads any required files from the
File Service and begins processing the work.

5. While processing the work, MP Agents report usage statistics to the Poll
Service.

6. When the work is finished, the MP Agents upload Results to the File Service
and request more work from the Dispatch Service.

7. The MP Database is a repository of system state and metadata for GridMP.

Figure 2 shows the MP Services, the components with which they communicate,
and the communication protocol(s) each component uses.

Fig. 2. Communication and transport protocols between platform components

The GridMP platform is comprised by the following components, MP database,
MP agent, service manager, realm service, poll service, dispatch service, file service,
and program loader.

The MP Database is the main storage repository of common information for the
GridMP platform. The MP Database stores system state and metadata; the File
Service server stores Job and Application data.

The MP Agent is a lightweight program that runs on a device and manages Job
processing. The MP Agent is responsible for processing work (Program Module
executable data), and for automatically returning Result files to the GridMP platform.

The primary function of the Service Manager is to ensure that all required services
needed for the proper functioning of the GridMP platform are always up and running.
If any are found to have failed or unexpectedly stopped, the Service Manager restarts
the failed service.

186 R.J. Calin-Jageman et al.

The Realm Service manages all MP Agent authentication and MP Agent resource
access. MP Agents communicate with the Realm Service to register and authenticate
themselves. An MP Agent cannot perform any operation until it has authenticated
itself with the Realm Service.

The MP Poll Service collects periodic status reports from MP Agents and
communicates commands to the MP Agent from other services.

The Dispatch Service schedules Workunits to devices based on device capabilities
and availability, and receives Result status from those devices. Devices that are idle in
the GridMP platform connect to the Dispatch Service to receive new Workunits. The
Dispatch Service selects and sends a Workunit to each connecting device.

The Dispatch Service includes a workload scheduler that schedules Workunits to
devices based on Job and device preferences and attributes. When a Workunit is
dispatched, all metadata about it is also sent. The files containing actual data are
uploaded or downloaded through the File Service.

The File Service is a secure (SSL-encrypted) file transmission service for
downloading and uploading data to and from MP Agents during Job execution. The
File Service relies on an underlying file system. MP Agents can also use the GridMP
platform URL mechanism to download data from a list of specified URLs.

The Program Loader is a mandatory loader that loads executable code into
memory for execution, and provides automatic encryption and compression for the
executables.

4 Toolkit

For a simulation environment, we selected NEURON (Hines & Carnevale, 1997,
2001). NEURON is robust, open source, cross-platform, extensible, and popular. It
provides a C-like scripting library with built-in classes for specifying and running
model neurons and networks. New modeling formalisms can be incorporated using a
model description language. A graphical interface is also available and is sufficient
for complete model development and testing. Versions are available for Linux,
Windows, and OS X, and models are completely portable across these systems.
Attesting to the popularity of NEURON within the neurosciences, the most recent
annual meeting of the Society for Neuroscience (http://www.sfn.org/) featured over
50 presentations of research conducted with NEURON.

We developed NEURONgrid as a toolkit to enable NEURON to generate parameter-
space maps within the GridMP environment. This involved the development of classes
in NEURON for manipulating parameter values, packaging NEURON to run on a
GridMP client, and developing a management client to enable neuroscientists to quickly
deploy a parameter-space analysis.

4.1 Helper Classes for Parameter Manipulation

We wrote a set of helper classes using the NEURON scripting language to provide a
standard interface for manipulating parameters. A parameter is defined with the name
of the real model variable and a list or function for varying that variable’s values. To
set up a parameter-space analysis, users create a simple text file that defines each

 NEURONgrid: A Toolkit for Generating Parameter-Space Maps Using NEURON 187

parameter to be varied. A control class provides all the functionality required to
execute the parameter-space search. This class loads the existing NEURON model,
reads the parameter list, and retrieves work assignments from the GridMP manager.
Work assignments are delivered as a decimal code representing a point in parameter
space and an integer value for the number of points in space to explore before
returning results. The control class sets the model to the corresponding point in
parameter space, runs the simulation, collects results, and then moves the model
forward to the next point in the search. These control classes enable a parameter-
space analysis of an existing NEURON model by simply defining a text file of
parameters—no further modification or setup is needed.

4.2 NEURON Package for GridMP

Executables that run on the GridMP platform must use GridMP platform tools,
software, and protocols to perform file management and task execution. We used the
buildmodule tool from the GridMP development toolkit to create a program module
for NEURON suitable to run on grid clients. This tool bundles the target program
with a program Loader and Module Definition File (MDF), creating a Program
Module Executable. The Program Loader creates the execution environment for the
executable. The MDF describes how to run the executable and describes the available
data packages and their encoding. Prior to building the package, we stripped out
extraneous files (documentation and demos) from the standard NEURON installation.
This ensured a clean and compact Program Module for running NEURON on grid
clients.

We also needed a way to detect the status of NEURON running on a grid client.
We thus developed a small monitor program and bundled it inside the program
module. The monitor program polls the status of the NEURON program. When the
desired set of simulation runs has completed, the monitor program notifies the
GridMP server.

4.3 Management Client

Finally, we developed a management client to enable neuroscientists to submit large
parameter sweeps, monitor progress, and download result sets. The management
client was developed in Visual C#. It interacts with GridMP via webservices.

The management client is meant to run locally on the machine of the neuroscientist
creating the parameter-space analysis. The client enables the neuroscientist to identify
a model directory containing a complete NEURON model, supporting files, and a text
file with parameter definitions. The management client splits the analysis up into
distinct workunits, each consisting of a starting point in the parameter space and the
number of adjacent points to map. The model is then uploaded and the batch of
workunits is submitted to the MP server.

After deployment, the client monitors the status of the submitted jobs on the
GridMP server. It reports back the percentage of completed workunits and refreshes
automatically every minute. When the parameter-space map is complete, the
management client collects results from all workunits and downloads them to the

188 R.J. Calin-Jageman et al.

local machine for analysis. Each results file is automatically numbered to correspond
to its workunit, making it easy to script an import routine for database or analysis
software.

5 Test Case

5.1 Experimental Setup

To test NEURONgrid, we replicated a large-scale parameter space analysis conducted
by Calin-Jageman et al. (2006). The analysis was performed on a four neuron model
of the Tritonia swim neural network (Frost et al., 1997). This model network uses a
hybrid integrate-and-fire scheme that incorporates some realistic ionic conductances
(Getting, 1989). In the real neural system, the network is largely quiescent but
produces bouts of rhythmic neural activity when the organism senses a predator.
Calin-Jageman et al. (2006) conducted a parameter-space analysis of this model to
understand the determinants of the quiescent and rhythmic states of the network. In
their analysis, the weights of 9 synaptic connections were varied, each taking on 5
different values. Thus, their analysis included 59 (~1.9 million) runs, each simulating
a 90s time period with a 1ms time step.

Running this simulation with NEURONgrid required no modification of the
existing NEURON model. We simply defined the analysis in a text file and uploaded
the model files using the management client. We then used the management client to
deploy the analysis on a GridMP environment at Georgia State University. This grid
consisted of 573 nodes around the GSU campus connected on a 100MB Ethernet.
Within the grid, there were 329 Windows-based clients. As we have not yet packaged
OSX and Linux versions of NEURON, only these 329 machines were available.

To test the performance of NeuronGrid, we deployed a test parameter-space
analysis with different work-pool sizes, ranging from a single machine to 300
machines. Runs were completed in triplicate and the performance values averaged.
This was done to smooth out small fluctuations in run-time due to heterogeneity in the
quality of available clients. For most runs, we did not complete the entire analysis of
~1.9 million runs, but selected a subsection (1-3%) of the parameter-space and scaled
performance results accordingly. We did, however, test several complete runs of the
parameter-space utilizing the full client pool.

5.2 Results

We found that running the analysis on a single computer would have required ~63.9
days of continuous processing time. Distributing this task into a pool of 64 work
units, however, required ~1 day of processing time. Thus, we observed that runtime
decreased roughly as a factor of the size of the work pool. In the log-log plot of work
time versus pool size shown in Figure 3, this appears as a straight line with a negative
slope.

For each pool size tested, we calculated the parallel speedup (run time on a single
machine divided by the run time for that pool size). This data is shown in Figure 4
and shows an approximately linear speedup with the size of the work pool. For

 NEURONgrid: A Toolkit for Generating Parameter-Space Maps Using NEURON 189

Log Work Pool Size

1 10 100

L
o

g
 T

o
ta

l R
u

n
ti

m
e

(h
o

u
rs

)

0.1

1

10

100

Fig. 3. Average runtime (hours) required for NEURONgrid to complete the sample parameter-
space analysis plotted by the size of the work pool deployed. Units shown in log scale.

Work Pool Size

50 100 150 200 250 300

P
ar

al
le

l S
p

ee
d

u
p

50

100

150

200

Fig. 4. Average speedup on the sample parameter-space analyis by the size of the work pool
deployed. Speedup was calculated as the ratio of single-unit runtime to the runtime for that
work-pool size. For reference, the solid line shows a unitary line (slope of 1) representing the
ideal maximum speedup.

reference, a unit line is also shown (solid) representing the ideal maximum speedup.
It can be seen that NEURONgrid deviates from this ideal as the work pool size
increases over 32 units. Moreover, performance begins to plateau with work pool
sizes over 100 units. The initial deviation is due two factors. First, there was
substantial heterogeneity amongst the grid clients. The single-computer run used to

190 R.J. Calin-Jageman et al.

calculate speedup represents the fastest-performing clients. As work pool size
expands and clients of lesser power are utilized, performance fails to reach ideal
speedup. A related factor is that increased work pools increase the chances of a grid
client falling offline (reboot, network error, etc).

The plateau in performance comes as the client pool saturates. Although the GSU
grid had 329 grid clients available, this plateau becomes evident with a work pool size
as small as 100 units. This is because the default behavior of GridMP is to assign each
work unit to multiple clients. It may be possible to enhance performance by
decreasing assignment redundancy, but this would also lead to more assignment
failures. Thus, the net gain may be negligible.

We confirmed these results with several complete runs of the sample parameter-
space analysis. As predicted by our partial runs, we were able to generate a complete
data set of 1.9 million runs in less than 0.6 days (<14 hours). This yielded 360MB of
summary data for download with the management client. For comparison, NeuronPM
completed the same analysis in 4 days with a client pool of 16 computers. This
indicates similar speedup for both systems. NeuronPM, however, would be difficult
to maintain with a client-pool size over 30. Thus, GridMP offers the opportunity for
significantly better performance because of its ability to scale to many hundreds of
clients.

The rapid speed of parameter-space mapping in a grid environment suggests that this
type of analysis can become more typical within the neurosciences. Moreover,
significantly larger sections of parameter space could be mapped, especially with access
to larger grid systems, such as the World Community Grid (http://www.
worldcommunitygrid.org/) with hundred of thousands of systems.

6 Discussion and Future Work

Computational modeling is growing increasingly prominent within the neurosciences.
As the use of modeling grows, so does the need for effective tools for exploring and
analyzing these models. The toolkit, NEURONgrid, which we have developed,
provides a user-friendly means for generating large-scale parameter-space maps in a
grid environment. Although a handful of other solutions are available for this type of
effort, NEURONgrid offers a number of advantages. First, it is built around the
established NEURON simulation platform, and existing models can be adapted for
the grid with little or no modification. Second, it utilizes the GridMP environment,
which is scalable, secure, and available in many university contexts and commercial
environments. Finally, it is user-friendly. The helper classes in NEURON and
management client should enable neuroscientists to easily develop and deploy very
complex parameter-space analyses with a minimum of effort. The 2007 meeting of
the Computational Neuroscience Society will feature a special workshop on utilizing
parallel computing with NEURON (http://www.neuron.yale.edu). This attests to the
growing popularity of this approach and the continued need to develop tools for
supporting such large-scale analyses.

Future work will be done packaging NEURON for Linux and OS X clients in
GridMP, enabling the full client pool to be utilized. In addition, we are exploring
ways to archive simulation results in a database for sharing and long-term reference.

 NEURONgrid: A Toolkit for Generating Parameter-Space Maps Using NEURON 191

References

Achard, P., & De Schutter, E. (2006). Complex parameter landscape for a complex neuron
model. PLoS Computational Biology, 2(7): e94.

Beurrier, C., Bioulac, B. & Hammond, C. (2000). Slowly inactivating sodium current (I(NaP))
underlies single-spike activity in rat subthalamic neurons. Journal of Neurophysiology, 83,
1951-1957.

Calin-Jageman, R.J. & Fischer, T.M. (2003). Synaptic augmentation contributes to environment-
driven regulation of the Aplysia siphon-withdrawal reflex. Journal of Neuroscience, 23: 11611-
11620

Calin-Jageman, R.J., Frost, W.N. & Katz, P.S. (2006). Neuromodulatory control of rhythmic
neural activity in the Tritonia swim CPG: a large-scale computational analysis. Annual
Meeting of the Society for Neuroscience, 32: 350.1.

Calin-Jageman, R.J. & Katz, P.S. (2006). A distributed computing tool for generating neural
simulation databases. Neural computation. 18: 2923-2927.

Foster, W.R., Ungar, L.H. & Schwaber, J.S. (1993). Significance of conductances in Hodgkin-
Huxley models. Journal of Neurophysiology, 70, 2502-2518.

Frost, W.N., Lieb, J.R., Tunstall, M.J., Mensh, B. & Katz, P.S. (1997). Integrate-and-fire
simulations of two molluscan neural circuits. In: Neurons, networks and motor behavior,
Stein, P. ed., MIT Press. Cambridge. pp. 173-179.

Getting, P.A. (1989). A network oscillator underlying swimming in Tritonia. In: Neuronal
and Cellular Oscillators, edited by J. W. Jacklet, New York:Marcel Dekker, Inc, p. 215-
236.

Goldman, M.S., Golowasch, J., Marder, E. & Abbott, L.F. (2001). Global structure, robustness,
and modulation of neuronal models. Journal of Neuroscience, 21: 5229-5238.

Gonzalez-Velez, H. (2005). An adaptive skeletal task farm for grids. In Euro-Par 2005 Parallel
Processing, Lecture Notes in Computer Science 3648, 401-410.

Hines, M.L. & Carnevale, N.T. (1997). The NEURON simulation environment. Neural
Computation, 9:1179-1209.

Hines, M.L. & Carnevale, N.T. (2001). NEURON: a tool for neuroscientists. Neuroscientist 7:
123-135.

Prinz, A.A., Billimoria, C.P. & Marder, E. (2003). Alternative to hand-tuning conductance-
based models: construction and analysis of databases of model neurons. Journal of
Neurophysiology, 90:, 3998-4015.

Prinz, A.A., Bucher, D. & Marder, E. (2004). Similar network activity from disparate circuit
parameters. Nature Neuroscience, 7: 1345-1352.

Stern, P. & Travis, J. (2006). Of bytes and brains. Science, 314: 75.
Tobin, A-E., Van Hooser, S.D. & Calabrese, R.L. (2006). Creation and reduction of a

morphologically detailed model of a leech heart interneuron. Journal of Neurophysiology,
96: 2107-2120.

United Devices (2003). GridMP Platform: architecture overview. Online at www.ud.com/
resources/files/br_gridmp.pdf

An Adaptive Resolution Tree Visualization

of Large Influenza Virus Sequence Datasets

Leonid Zaslavsky, Yiming Bao, and Tatiana A. Tatusova

National Center for Biotechnology Information,
National Library of Medicine, National Institutes of Health,

8600 Rockville Pike, Bethesda, MD 20894, USA
{zaslavsk,bao,tatiana}@ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov

Abstract. Rapid growth of the amount of influenza genome sequence
data requires enhancing exploratory analysis tools. Results of the pre-
liminary analysis should be represented in an easy-to-comprehend form
and allow convenient manipulation of the data.

We developed an adaptive approach to visualization of large sequence
datasets on the web. A dataset is presented in an aggregated tree form
with special representation of sub-scale details. The representation is
calculated from the full phylogenetic tree and the amount of available
screen space. Metadata, such as distribution over seasons or geographic
locations, are aggregated/refined consistently with the tree. The user can
interactively request further refinement or aggregation for different parts
of the tree.

The technique is implemented in Javascript on client site. It is a part
of the new AJAX-based implementation of the NCBI Influenza Virus
Resource.

Keywords: visualization, adaptive, sequence, tree, phylogenetic, virus,
influenza, JavaScript, AJAX.

1 Introduction

The number of influenza virus sequences in the public database more than dou-
bled from the beginning of 2005, thanks to collaborative genome sequencing
efforts by the National Institute of Allergy and Infectious Diseases ([1], [2]), St.
Jude Children’s Research Hospital, the Centers for Disease Control and Pre-
vention, and many others. This requires more sophisticated preliminary analy-
sis tools to be provided to users. Datasets should be represented in an easily
comprehensible and adjustable visual form that provides a convenient way of
manipulating the data.

The visualization approaches used in several releases of the NCBI Influenza
Virus Resource ([3],[4]) were based on sequence-level representation of the data.
They provided a convenient interface for viewing the entire dataset and manipu-
lating individual sequences: viewing multiple sequence alignments and trees built

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 192–202, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

An Adaptive Resolution Tree Visualization 193

Fig. 1. Multiple sequence alignment

using different algorithms [5] (typical web visualizations of a multiple sequence
alignment and a phylogenetic tree are shown in Figures 1, 2). However, the ap-
proach based on manipulating individual sequences is not very useful for large
datasets. For example, detailed schematic representation of a huge dataset with
a fine level of detail, with all information included regardless of relevance, is very
difficult to comprehend ([6], [7]). There are many influenza virus sequences that
are identical or highly similar to each other. Most of the time, it is not necessary
to show all such sequences in the analysis. Also, operating the data manually
sequence-by-sequence is highly inefficient and time-consuming for the user. In
addition, the user needs guidance to scan through a complex set of data provided
not only at the level of individual sequences but also groups of sequences, depend-
ing on the task. It is preferable to structure the dataset and provide meaningful
aggregated representations with the ability to adapt the aggregation level.

Several systems have been developed to support interactive browsing of large
trees with the ability to focus ([8], [9], [10], [11]). The issues of scalability, perfor-
mance and robustness of tree visualization have been also addressed [12]. In addi-
tion, innovative approaches to visualization of geographic information have been
developed [13]. Modern cartographical systems widely used in mobile devices
provide adaptively-coarsened visual representations of maps. Such representa-
tion changes in real time to provide the best visualization suiting a specific task
(driving, flying). In each of these cases, the information helpful for performing

194 L. Zaslavsky, Y. Bao, and T.A. Tatusova

Fig. 2. An full-resolution tree built for 380 HA protein sequences for Influenza A
H3N2 viruses extracted from human hosts during a 20-year period (1968-1998), using
the neighbor-joining method. The top of the tree is enlarged in the small window.

the task is provided. The knowledge is represented in an easy-to-comprehend
form and the amount of information is limited in a way that a human (driver)
can process it and make a reasonable decision in real time.

We propose an adaptive approach to visualize the dataset in an aggregated
form adapted to the user’s screen, allowing the user to interactively refine or
aggregate visualization of different parts of the dataset, depending on the task
and need for details. The essential parts of our technique are:

An Adaptive Resolution Tree Visualization 195

– Representation of a large tree by a smaller tree having aggregated groups as
terminal nodes;

– Placing a specially constructed tree to show the structure of each aggregated
group at the sub-scale resolution level.

– Creating metadata description for each aggregated group from the original
metadata.

Sub-scale resolution representation. When a tree for aggregated group is cal-
culated, it can be shown as a phylogenetic tree with groups shown as named
terminal nodes. However, this representation can be refined within the same
screen space. Since the height of the font used in annotation is usually several
pixels (typically, 10-12 px), available vertical space can be used to show, in some
form, the structure of the subtree corresponding to the aggregated group.

An example of aggregated tree is shown in Figure 3 (the dataset is the same
as in Figure 2).

Initial tree visualization, built from the full tree taking into account avail-
able screen space, can be changed by the user interactively through requesting
refinement for some aggregated groups and further aggregating subtrees that
are not of interest to the user. The user can also change the tree annotation

Fig. 3. An aggregated tree built for 380 HA protein sequences for Influenza A H3N2
viruses extracted from human hosts during 20-year period 1968-1998 (the full tree was
calculated using the neighbor-joining method). The dataset is the same as in Figure 2.

196 L. Zaslavsky, Y. Bao, and T.A. Tatusova

by indicating special interest for particular influenza, subtypes, years, seasons
or geographic locations. This will cause sequences of interest to be recolored at
the sequence-level representation, and annotation of aggregated groups to be
changed and recolored, to reflect information requested by the user.

While full tree is built on the server, its adaptive visualization is built and
can be interactively changed on the client-machine using a JavaScript imple-
mentation. It is embedded in the new version of our analysis tools based on the
AJAX technology [14]. Since we specifically aim work within a browser on client
machine, we are limited to graphic functionality available in HTML1.

2 Methods

Data Structures. The tree is implemented using an array of nodes, with each
node containing array indexes of its parent node and children. We defined the
following Javascript objects:

Tree - object containing an array of Node objects as its nodes property, root
index in the node array as its rootId property, and some auxiliary
objects. In the process of adaptive aggregation, object SubtreeInfo is
added.

Node - an object having the following properties:

parentId - an index of the parent node in the array nodes, or
-1 for root;

children - an array containing indices of children nodes in
nodes array;

branchLength - length of the branch going to the parent node;
metadata - node metadata (name, subtype, date of extraction,

country, etc.);
presentation - information on visual representation;
status - an integer value, initially equal to 0. Value 1 is set of

of corresponding subtree should be represented
in the aggregated form.

Object SubtreeInfo has the following fields:

lengthMin - minimal distance from the root of the subtree to a leaf;
lengthMax - maximal distance from a leaf of the subtree to a leaf;
diam - diameter of the subtree.

Distances used in calculations of lengthMin, lengthMin, and lengthMin are tree
distances, i.e. lengths of shortest paths.

Calculating subtree information for original tree. SubtreeInfo objects,
containing minimal and maximal distances from the subtree root to a leaf and

1 Non-linear two-dimensional transformations requiring rich graphical functionality
are the core of the approaches like [10].

An Adaptive Resolution Tree Visualization 197

diameter of the subtree are calculated for tree nodes in a bottom-to-top manner
using formulas:

lmin
i = min{lj + lmin

j |j ∈ Ωi}; (1)

lmax
i = max{lj + lmax

j |j ∈ Ωi}; (2)

di = max (max{dj|j ∈ Ωi}, max{dj + dk + lj + jk|j, k ∈ Ωi, j �= k}) ; (3)

where

Ωi is the subtree having node i as its root,
li is the branch length from node i to its parent,
lmin
i is minimal tree distance from node i to a leaf in subtree Ωi,
lmax
i is maximal tree distance from node i to a leaf in subtree Ωi,
di is diameter of subtree Ωi.

Building an aggregated tree. In order to control visualization, integer status
variable Tree.nodes[i].status is assigned to each node i of the full tree. It
has the following meaning:

If status = 0, the node is treated as a usual tree node.
If status = 1, the node is treated as an aggregated group:

- The name of the aggregated group is created and shown;
- The aggregated group is shown graphically using sub-scale visualization.

In the beginning, we assign root status to 1, i.e. consider the tree as aggregated
in one group. We start disaggregate nodes, from the child of the root that has
largest diameter of the corresponding subtree, and disaggregate while screen
space allows (Technically, desegregating node i means setting its status to 0 and
setting status of its children to 1).

To control the order of node disaggregation, we use auxiliary array Θ, where
indices of the candidate nodes for disaggregation sorted by non-increasing diam-
eters are placed:

dik
≥ dim for any k < m, 0 ≤ k, m < |Θ| (4)

Technically, array Θ is included in the Tree object as Tree.leafArray.nodeIds.
It is easy to see that

di0 = max{dik
| 0 ≤ k < |Θ|} (5)

i.e., the node in the front of the array has the maximal diameter of the subtree.
The disaggregation algorithm is described as follows. The number of groups

in the aggregated tree is denoted as N , the maximal allowed number of groups
as Nmax, and the set of children of node i as Λi.

198 L. Zaslavsky, Y. Bao, and T.A. Tatusova

Algorithm 1.
Set root status to 1;
Include root in Θ;
Set N to 1.
While(|Θ| > 0 and N + max(|Λi0 | − 1, 0) ≤ Nmax){

Set status of node i0 to 0;
Delete i0 from Θ;
If(Λi0 �= ∅){

For (all k ∈ Λi0){
Include k in Θ;
Set status of node k to 1;

}
Set N ← N + |Λi0 | − 1.

}
}

The new indices k are included in Θ with order preserved2 (4).

Drawing sub-scale resolution representation. We represent a subtree on
sub-resolution level (e.g., in the space approximately equal to the font height)
as follows:

– Start from a tree containing only one element, corresponding to the root of
the sub-tree and perform several steps of disaggregation;

– Represent each non-resolved subtree by two leaves: closest to the root and
most distant (see Fig. 4).

Figure 5 illustrates transformation of a subtree in its sub-scale resolution
representation. The algorithm for building a subscale-resolution tree is similar
to Algorithm 1.

Aggregating Metadata. When aggregated groups of sequences are created,
we can create abstracted description of the group to annotate the tree. We can
summarize the group using the following descriptive characteristics:

– type;
– subtype,
– year of extraction;
– season of extraction;
– geographical location (country, continent).

However, abstracting or summarizing less formal descriptions, such as strain
name, seems to be more challenging.

2 In our current implementation, a binary search is performed to find insertion posi-
tion and JavaScript method Array::splice is used for inserting an element in the
JavaScript array.

An Adaptive Resolution Tree Visualization 199

Fig. 4. Representation of of an unresolved subtree by a tree with two leaves, showing
the leaf closest to the root and the leaf most distant from the root, in the original
subtree

Fig. 5. A subtree (top) and its sub-scale resolution representation (bottom)

JavaScript Implementation. The JavaScript library implementing the adap-
tive visualization of the tree consists of two layers. The first contains objects
and methods to calculate the tree for aggregated groups and trees for sub-level
resolution, as well as metadata. The second contains objects and methods for
actual rendering; it creates and changes HTML objects and places them to DOM

200 L. Zaslavsky, Y. Bao, and T.A. Tatusova

tree. Separation of the logical and rendering levels facilitates easy change of
rendering when necessary, the logic and data flow are completely abstracted
from rendering technology.

Currently, we implement tree rendering using HTML 〈div〉 objects. In the
future, however, we may decide to take a different approach to web rendering
using standard non-proprietary tools. One potential candidate is the new HTML
element 〈canvas〉 [15], and another one is Scalable Vector Graphics (SVG) [16].
However, neither 〈canvas〉 element, nor SVG, have become widely used standard
tools providing implementation-independent output yet3,4.

While implementation of adaptive tree visualization purely within HTML
using JavaScript allows manipulation of the tree on the client machine, and this
approach has obvious advantages, it also has a drawback: the implementation of
the tree using HTML elements does not allow saving the tree as an image and
quality of printing depends solely on the browser functionality. In the future,
we plan to provide an image for the tree: the selection made by the user within
the web tool will be transferred to the server and an image in one of standard
formats will be created and sent to the client.

Test Results. We applied developed methodology to typical influenza virus
sequence datasets. An aggregated tree obtained for dataset containing 380 HA
protein sequences for Influenza A H3N2 viruses extracted from human hosts dur-
ing 20-year period 1968-1998, is shown in Figure 3 (for comparison, see Figure 2
showing the same dataset with a traditional sequence-level resolution).

3 Discussion

Adaptive aggregative visualization of datasets with the possibility to refine and
coarse different parts of the representation interactively on the web is a promising
approach to a convenient preliminary analysis of large datasets. It allows the
user to view and manipulate the data hierarchically, doing each operation at the
appropriate resolution level. We implemented this approach for tree visualization
and demonstrated its efficiency and usefulness.

It is highly desirable to apply hierarchical visualization and adaptive resolu-
tion to other types of data representation. One of the immediate areas requiring
our attention is multiple sequence alignment visualization. While we provide a
convenient multiple alignment view in the current system (such as shown in
Figure 1), the user would not be able to comprehend data at sequence level for

3 New HTML5 element 〈canvas〉 is a part of the proposed HTML5 standard, but it is
not yet implemented as a native object in all browsers. Moreover, its current limited
implementation in selected browsers does not allow to include text [15].

4 SVG requires either a native implementation within a browser or a plug-in. Partial
native implementations are available in selected browsers [17]. Several plug-in im-
plementations are available. However, Adobe Systems, the provider of Adobe SVG
Viewer, stated that they will discontinue support for Adobe SVG Viewer by the end
of 2007 [18].

<div>
<canvas>
<canvas>
<canvas>

An Adaptive Resolution Tree Visualization 201

large datasets consisting of hundreds or even thousands of sequences. A different
alignment representation, that allows to adjust the resolution and focus, seems
to be helpful.

Acknowledgements

This research was supported by the Intramural Research Program of the NIH,
National Library of Medicine.

The NCBI Influenza Virus Resource is developed and being continuously im-
proved as a part of a collaborative effort, the Influenza Genome Sequencing
Project led by NIAID ([19], [1], [2]). The authors are thankful to David J.
Lipman, Yury Voronov, Boris Fedorov, Stacy Ciufo and Sergey Ponomarev for
productive discussions.

References

1. Fauci, A.S.: Race against time. Nature 435(7041) (May 2005) 423–424
2. Ghedin, E., Sengamalay, N.A., Shumway, M., Zaborsky, J., Feldblyum, T., Subbu,

V., Spiro, D.J., Sitz, J., Koo, H., Bolotov, P., Dernovoy, D., Tatusova, T., Bao,
Y., St George, K., Taylor, J., Lipman, D.J., Fraser, C.M., Taubenberger, J.K.,
Salzberg, S.L.: Large-scale sequencing of human influenza reveals the dynamic
nature of viral genome evolution. Nature 437(7062) (October 2005) 1162–1166

3. The National Center for Biotechnology Information (NIH/NLM/NCBI): The In-
fluenza Virus Resource. http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html

4. Bao, Y., Bolotov, P., Dernovoy, D., Kiryutin, B., Zaslavsky, L., Tatusova, T.A.,
Ostell, J., Lipman, D.J.: NCBI Influenza Virus Resource. Manuscript in prepara-
tion. National Center for Biotechnology Information (2006)

5. Felsenstein, J.: Inferring Phylogenies. 1 edn. Cambridge UniversityPress (September
2003)

6. Mather, G.: Foundations of Perception. 1 edn. Psychology Press (January 2006)
7. Baron, J.: Thinking and Deciding. 3 edn. Cambridge University Press (December

2000)
8. Card S. K., N.D.: Degree-of-interest trees: A component of an attention-reactive

user interface. In: Proc. Advanced Visual Interfaces (AVI). (2002) 231–245
9. Fekete J.-D., P.C.: Interactive information visualization of a million items. In:

Proc. InfoVis. (2002) 117–124
10. Lamping J., Rao R., P.P.: Focus+content technique based on hyperbolic geometry

for viewing large hierarchies. In: Proc. CHI’95. (1995) 401–408
11. Rost U., B.B.E.: Treewiz: interactive exploration of huge trees. Bioinformatics

18(1) (2002) 109–114
12. Beermann, D., Munznerz, T., Humphreysy, G.: Scalable, robust visualization of

very large trees. In K.W. Brodlie, D.J. Duke, K.I.J., ed.: EUROGRAPHICS -
IEEE VGTC Symposium on Visualization. (2005) 1–8

13. MacEachren, A.M.: How Maps Work: Representation, Visualization, and Design.
2nd revised edn. The Guilford Press (June 2004)

14. Zakas, N.C., McPeak, J., Fawcett, J.: Professional Ajax. 1 edn. Wrox (February
2006)

http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html

202 L. Zaslavsky, Y. Bao, and T.A. Tatusova

15. Mozilla Foundation: Resources related to the new HTML5 〈canvas〉 element.
http://developer.mozilla.org/en/docs/Category:HTML:Canvas

16. The World Wide Web Consortium (W3C): Scalable vector graphics (svg): Xml
graphics for the web. http://www.w3.org/Graphics/SVG/

17. Mozilla Foundation: Mozilla svg project. http://www.mozilla.org/projects/svg/
18. AdobeSystems:AdobeSVGViewer.http://www .adobe .com/svg/viewer/install/
19. The National Institute of Allergy and Infectious Diseases (NIAID): NIAID Laun-

ches Influenza Genome Sequencing Project. Press Release. http://www3.niaid.
nih.gov/news/newsreleases/2004/flugenome.htm (November 2004)

<canvas>
http://developer.mozilla.org/en/docs/Category:HTML:Canvas
http://www.w3.org/Graphics/SVG/
http://www.adobe.com/svg/viewer/install/
http://www3.niaid.nih.gov/news/newsreleases/2004/flugenome.htm
http://www3.niaid.nih.gov/news/newsreleases/2004/flugenome.htm

Wavelet Image Interpolation (WII): A

Wavelet-Based Approach to Enhancement of
Digital Mammography Images

Gordana Derado1, F. DuBois Bowman1, Rajan Patel1,2, Mary Newell3,
and Brani Vidakovic1,4

1 Department of Biostatistics, Emory University, Atlanta, GA
2 Amgen Inc., Thousand Oaks, CA

3 Department of Radiology, Emory University, Atlanta, GA
4 Georgia Institute of Technology, Atlanta, GA

Abstract. Cancer detection using mammography focuses, in part, on
characteristics of tiny microcalcifications, including the number, size, and
spatial arrangement of the microcalcifications, as well as morphological
features of individual microcalcifications. We have developed state-of-the-
art wavelet-based methods to enhance the resolution of microcalcifica-
tions visible on digital mammograms, aimed at improving the specificity
of breast cancer diagnoses. In our research, we develop, refine, and evalu-
ate a Wavelet Image Interpolation (WII) procedure and create accompa-
nying software to implement it. WII involves the application of an inverse
wavelet transformation to a coarse or degraded image and constructed
detail coefficients to produce an enhanced higher resolution image. The
construction of detail coefficients is supervised by the observed image and
innate regular scaling assessed by a statistical model. We found that our
proposed procedure is efficient and useful in capturing relevant clinical
information in the context of digital mammographic imaging. Our pro-
posed methodology was tested by an experienced radiologist using 40 im-
ages from the University of South Florida Digital Database for Screening
Mammography (DDSM).

1 Introduction

In the United States, breast cancer is the second leading cause of death in women.
One out of eight women will develop breast cancer in her lifetime. Studies have
indicated that early detection and treatment improve the chances of survival for
breast cancer patients (Curpen et al. [6], Smart et al. [20]). At present, mam-
mography is the only proven method that can reduce breast cancer mortality
through early detection. Attempts to increase the specificity of mammmographic
diagnoses, and therefore to reduce the number of unnecessary biopsies, are based
on the evaluation of the number, size, and spatial arrangement of microcalcifi-
cations (Millis et al. [18]) as well as morphological features of single microcalci-
fications (Egan et al. [8]). We propose the development and application of novel

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 203–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

204 G. Derado et al.

wavelet-based methods for improving cancer diagnoses by enhancing key features
of microcalcifications in digital mammograms.

Although there are several findings on a mammogram image that are crit-
ical for a cancer diagnosis (masses, architectural distortions, asymmetry), our
research focuses on microcalcifications. About half of the cancers detected by
mammography appear as a cluster of microcalcifications. Microcalcifications are
the most common mammographic sign of ductal carcinoma in situ (DCIS), which
is an early stage cancer confined to the breast ducts. Almost 90% of DCIS cases
are associated with microcalcifications.

In addition to specific arrangement or distribution, the irregularity of micro-
calcification shapes is an important attribute. “Pleomorphic” or “heterogeneous”
are synonyms for an irregular shape or variability of shapes which can indicate
DCIS. Such microcalcifications are usually more conspicuous than the amor-
phous forms (Coakley and van Doorn [5]). Another malignant form includes
fine, linear or fine, linear, branching calcifications. These are thin, irregular cal-
cifications that appear linear, but are discontinuous and under 0.5 mm in width.
Their appearance suggests filling of the lumen of a duct involved irregularly by
breast cancer.

The main goal of this research was to generate a procedure for enhancing the
digital mammographic images, based on wavelet transform methods.

1.1 Brief Overview of the Discrete Wavelet Transformation (DWT)

Let y be a data-vector of dimension (size) n. For simplicity, we choose n to be
a power of 2, say 2J .

Suppose that we apply a wavelet transform to the vector y yielding a trans-
formed vector d that has the same length as y. This linear and orthogonal
transform can be fully described by an n × n orthogonal matrix W. In practice,
one performs the DWT without exhibiting the matrix W explicitly, but by using
fast filtering algorithms. The filtering procedures are based on so-called quadra-
ture mirror filters which are uniquely determined by the wavelet of choice and
fast Mallat’s algorithm (Mallat [15]). The wavelet decomposition of the vector
y can be written as

d = (H�y, GH�−1y, . . . , GH2y, GHy, Gy). (1)

where � is any fixed number between 1 and J = log2 n, and the operators H and
G are defined coordinate-wise by

(Ha)k =
∑

m∈Z

hm−2kam, and (Ga)k =
∑

m∈Z

gm−2kam, k ∈ Z

where g and h are high- and low-pass filters corresponding to the wavelet of choice.
Components of g and h are connected via the quadrature mirror relationship gn =
(−1)nh1−n. For all commonly used wavelet bases, the taps of filters g and h are
readily available in the literature or in standard wavelet software packages.

The elements of d are called wavelet coefficients. The sub-vectors described
in (1) correspond to detail levels in a levelwise organized decomposition. For

Wavelet Image Interpolation (WII) 205

instance, the vector Gy contains n/2 coefficients representing the finest level of
detail.

In general, jth detail level in the wavelet decomposition of y contains 2j

elements, and is given as

GHJ−j−1y = (dj,0, dj,1, . . . , dj,2j−1). (2)

Wavelet transformations of 2-D objects (images) are performed by applying uni-
variate transformations on the rows and on the columns of the 2-D object. One
step of the decomposing algorithm is described next. Consider a digital image
A, which is in fact a matrix comprised of pixel values. A wavelet decomposition
begins by applying the wavelet low pass filter H and high pass filter G to the
rows of the matrix A. This step produces two matrices HrA and GrA, both of
dimension 2n × 2n−1 (the subscripts r suggest that the filters are applied on
rows). Next, the filters H and G are applied to the columns of the matrices HrA
and GrA obtained from step one, producing matrices HcHrA, GcHrA, HcGrA
and GcGrA, each of dimension 2n−1 × 2n−1. The matrix HcHrA is an average or
smooth representation of the original image, while the matrices GcHrA, HcGrA
and GcGrA contain details lost by degrading A to HcHrA. The transform is fur-
ther carried out by repeating the process on the average matrix HcHrA in place
of A. In the rest of the paper we denote HcHrA simply by HH, HcGrA by HG
and the other matrices correspondingly.

1.2 Previous Work

Many computerized methods for detecting clustered microcalcifications based
on wavelets have been proposed. Yoshida et al. [25] used a combined difference-
image technique and a wavelet transform to detect subtle microcalcifications.
First, the difference-image technique is used to increase the signal-to-noise ratio
of microcalcifications, and then the wavelet-based scheme is applied to detect
the subtle microcalcifications missed by the first step. To extract small-scale
structures, wavelet transform (WT) uses a fine “probe” that is represented by a
small wave.

Lado et al. [13] employed a computerized scheme for detecting “both indi-
vidual microcalcifications in regions of interest (ROIs) and clustered microcal-
cifications over the complete mammograms, based on the application of two
different wavelet transform techniques”(one-dimensional and two-dimensional
WT). Wang et al. [24], proposed an approach for detecting microcalcifications
in digital mammograms employing wavelet-based subband image decomposition.
In Anastasio et al. [2], the wavelet transform is employed as a preprocessing step
whose goal is to enhance the microcalcifications and suppress the background
structure in the mammogram. A parallel-genetic algorithm is used in performing
the optimization of the CAD procedure.

Strickland et al. [21] developed a 2-stage method based on wavelet transforms
for the detection and segmentation of calcifications. The first stage is based on
an nondecimated wavelet transform.

206 G. Derado et al.

In the second stage, detected pixel sites in GG and HG + GH are dilated and
then weighted before computing the inverse wavelet transform (here GG, HG and
GH denote the detail components in the second level of decomposition). Bruce
and Adhami [3] apply the discrete wavelet transform mod-max method to the
problem of mammographic mass classification. This method was used to extract
multiresolution features that quantify the mass shapes. They showed that when
utilizing a statistical classification system with Euclidian distance measures in
determining class membership, the use of multiresolution features significantly
increases the classification accuracy. Ferrari et al. [9] presented a method for the
identification of pectoral muscle in MLO (mediolateral oblique) mammograms
based on the multiresolution technique using Gabor wavelets. Chang et al. [4]
developed an enhancement algorithm relying on multiscale wavelet analysis, and
extracted oriented information at each scale of analysis was investigated. Another
approach to image enhancement of digital mammography images was introduced
by Seršić and Lončarić [19]. It consists of three steps: low-frequency tissue den-
sity component removal, noise filtering, and microcalcification enhancement. An
overview of automatic methods for detection of microcalcifications was given in
a recent publication by Thangavel et al. [22]. To our knowledge, none of the
previous methods utilized the scaling property of the mammography images to
obtain the subpixel enhancement.

2 Description of the Data

The collection of images we analyzed was obtained from the University of South
Florida’s Digital Database for Screening Mammography (DDSM)(Heat et al.
[10]). (See http://marathon.csee.usf.edu/Mammography/Database.html).

The DDSM is described in detail in Heat et al. [11]. Images containing sus-
picious areas have associated pixel-level “ground truth” information about the
locations and types of suspicious regions. We selected a set of cases(studies) from
the DDSM from volumes 6 and 7. Each case contains four mammograms (two
for each breast, the craniocaudal (CC) and mediolateral oblique (MLO) projec-
tions) from a screening exam. We analyzed the data from 10 benign cases and 8
malignant cases, each containing calcifications.

The images were scanned on either a HOWTEK 960 or HOWTEK Multi-
RAD 850 digitizer with a sample rate of 43.5 microns per second at 12 bits per
pixel. They were stored in a format using lossless JPEG compression. However,
even with the compression, each image file is quite large because the films were
scanned with resolution between 42 and 100 microns. The source code for the
program used to compress, as well as the program used to uncompress the images
are available to download from the web site.

3 Methodology

Wavelets have been applied for image enhancement since the early 1990’s, and
some of the prime applications are in digital mammography (Aldroubi and

Wavelet Image Interpolation (WII) 207

Unser [1], Heinlein et al. [12], Lemaur et al. [14], McLeod et al. [16], Wang
and Karayiannis [24], etc.) Most wavelet-based approaches involve thresholding,
a procedure that eliminates background noise. Wavelets are also applied to gen-
erate “difference” images in which nonessential background is eliminated. The
method proposed in this paper is novel and involves inverse wavelet transforms
of low-resolution images. In what follows, we present a conceptual description
of the WII procedure and demonstrate the utility of this approach for digital
mammography.

Our approach consists of several steps. First, an image enhancement method
is used to detect the regions of interest on each image. The area(s) with ROIs
are then cropped from the original image. (From now on we will refer to those
cropped images as the “original images.”) To confirm that the correct regions
were identified, we compared our ROIs with the information available from the
DDSM where abnormalities were marked by experienced radiologists. After de-
tecting the regions of interest on images from our data set, a three-level wavelet
decomposition was applied to each image. In order to construct informative de-
tail spaces, the WII procedure is combined with a linear regression approach,
based on pixel intensity scaling, after which thresholding is applied on the re-
sulting images. Finally, the 2-D inverse wavelet transform was applied using the
original image as the smooth part and the estimated informative details to obtain
a higher resolution enhanced image of microcalcifications.

We now describe each of these steps in more detail.

3.1 Detection of Regions of Interest (ROI)

We first consider an algorithm similar to that presented in Seršić and Lončarić
[19], which aims to detect microcalcifications between 0.1mm and 1mm in di-
ameter. Thus, in an original digital mammogram of 50μm × 50μm resolution, a
microcalcification may appear to be 2 to 20 pixels wide. A 5-level redundant 2D
wavelet decomposition on the original mammogram yields detail coefficients with
a spatial resolution from 0.1mm×0.1mm to 1.6mm×1.6mm, thus encompassing
the range of microcalcification size considered.

Wavelet coefficient images corresponding to the first level detail coefficients
seem to consist primarily of spatially white noise, in the absence of microcalcifica-
tions between 0.05mm and 0.1mm in diameter. However, in the detail coefficients
of levels 2−5, the mammogram signal becomes apparent and microcalcifications
begin to visually emerge from the background noise. The approximation coeffi-
cients at the 5th level contain the low frequency mammogram information such
as tissue density and breast shape information.

Several different wavelet families are considered for the ROI detection algo-
rithm, but 2D polyharmonic B-spline wavelets with quincunx subsampling (see
Van de Ville et al. [23]) are utilized due to their symmetry and lack of directional
(horizontal, vertical, and diagonal) bias in the detection of microcalcifications.
A significant difference between the algorithm presented here and that given in
[19] is the use of a 2-D non-separable polyharmonic wavelet basis which intro-
duces no directional bias due to the quincunx based subsampling scheme. The

208 G. Derado et al.

algorithm presented by [19] utilizes recursive 1-D decompositions that favor hor-
izontal, vertical, and diagonal directions, which may bias the structure of the
microcalcifications.

3.2 Wavelet Image Interpolation Procedure

The proposed WII procedure is conceptually simple. If the forward wavelet trans-
form, described previously, degrades an image by decomposition into a smooth
part and the details, then the inverse wavelet transform performed on a de-
graded image will interpolate the image and reveal a higher degree of details.
Operationally, the procedure proceeds as follows:

1. One starts with an empty image (all entries 0) and performs k wavelet decom-
position steps. Of course, the transform is linear and the resulting smooth
and detail sub-matrices are all zero-matrices.

2. The degraded image from a digital mammogram is inserted into the position
of the smooth matrix containing zeros. This step requires that the degraded
input image and the original smooth part have equal dimensions. The detail
matrices from step 1 retain the 0 values in all entries.

3. Back-transform the object by k steps.

This process increases the resolution of the degraded, pixelized image and
contains 4k times the number of pixels in the original input For example, a
three-step transform produces an enhanced image with 64 times the number of
pixels in the original degraded image. The main contribution of our algorithm
is building detail spaces based on degraded image and general scaling properties
of natural images.

3.3 Imputing Details

In the WII procedure described above, the three detail matrices, accompanying
the pixelized image located in the smooth part, consist entirely of zero. It is nat-
ural to propose the utilization of detail spaces to further enhance the information
in the interpolated image. Several avenues are possible, including template de-
tails, background details, wavelet-bootstrap by resampling the details, etc. Our
proposal is to utilize the self-similarity of wavelet decompositions in building
informative detail spaces.

Most of the natural images scale and this scaling can be assessed in the wavelet
domain. Informally, scaling means that the “energy” (squared wavelet coeffi-
cients) cascades when the resolution of wavelet decomposition changes. This is
particularly true for some medical images (tissue, bones, cancer, etc). This scal-
ing was described and utilized in statistical inference by many researchers, see
Aldrubi and Unser [1] and the references therein.

When an image possesses regular scaling this means that the logarithms of
average energies in the detail spaces decay linearly when the resolution of scale
increases. The standard 2-D wavelet transform has three detail components,
namely horizontal, vertical, and diagonal, and all are characterized by their
intrinsic scaling.

Wavelet Image Interpolation (WII) 209

In the standard multiresolution hierarchy of images, the representation space
Aj is decomposed as

Aj = Aj−1 + Hj−1 + Vj−1 + Dj−1,

where the Aj−1 is the coarser representation and Hj−1, Vj−1, Dj−1 are spaces of
horizontal, vertical, and diagonal details. This representation is nested, and the
coarse representation space Aj−1 can be further split in the same fashion. As-
sume that the direction (horizontal, vertical or diagonal) of detail spaces is fixed.
Suppose that dj;k1,k2 is the wavelet coefficient at scale j at the location (k1, k2)
and that Ej is the average of d2

j;k1,k2
for all (k1, k2), i.e., Ej = 1

N

∑
(k1,k2) d2

j;k1,k2
,

where N is total number of coefficients at this particular detail space. By con-
vention, j is a dyadic index corresponding to the base 2 logarithm of the scale.
The scale decreases (resolution increases) with increasing indices j. Then,

log Ej = β0 + β1 × j, (3)

with the slope β1 characterizing regular scaling. The parameters β0 and β1 in
(3) are estimated from the wavelet decomposition by the least-squares linear
regression on pairs (j, log Ej) for a properly selected range of scale indices j, j0 ≤
j ≤ j1.

We utilize the intrinsic scaling in natural images to construct informative
detail spaces. The algorithm is detailed below.

Algorithm description. The procedure begins with a three-level wavelet decom-
position of the original coarse image. We denote the components of the first level
decomposition by A1, H1, V1, and D1, and the components of level 2 and level
3 decomposition correspondingly.

Data sets were transformed to the wavelet domain utilizing the Daubechies
4 wavelet. To estimate the detail components, we then apply the following re-
gression steps on the components (here illustrated only for horizontal detail
components):

H2
1 = β

(1)
0 + β

(1)
1 H2

2 e and H2
2 = β

(2)
0 + β

(2)
1 H2

3 e,

where the components are reshaped into vectors and H2
2 e and H2

3 e denote
H

(2)
2 and H

(2)
3 vectors upsampled using the WII method. As we pointed out, the

constant β1 < 0 is connected to the global Hurst exponent; it describes intrinsic
self-similarity of the image. The intercept β0 depends on the total energy of the
image and does not affect scaling. In our analysis, we actually found that the
non-intercept model is appropriate.

Next, Ĥ1 and Ĥ2 are estimated as

Ĥ1 = [β̂(1)
0 + β̂

(1)
1 H2

2 e]1/2 and Ĥ2 = [β̂(2)
0 + β̂

(2)
1 H2

3 e]1/2.

The sign of the generated detail coefficients is assigned to be the same as
the sign in the observed coefficients in the degraded image. From the scaling
property, the scaling coefficient k equals

210 G. Derado et al.

k =
log Ej−1 − log Ej

j − (j − 1)
= log

Ej−1

Ej
. (4)

We then calculate the scaling coefficient k and use it to estimate the horizontal
detail component H0 as follows

k = log
(¯̂

H
2

1

¯̂
H

2

2 e

)

⇒ k = log
(

H̄2
0

¯̂
H

2

1 e

)

.

From this, we approximate H0 as

H2
0 = ek · Ĥ2

1 e i.e. H0 = [ek · Ĥ2
1 e]1/2.

The generated object is “rich” in coefficients; to reduce dimension we apply the
threshold, setting small detail coefficients to 0. We choose universal threshold
(Donoho and Johnstone [7]) and note that other shrinkage strategies are possible.

The threshold λ =
√

2 logN ·σ is applied on the estimated wavelet coefficients.
As an estimator of σ, we use the median absolute deviation (MAD) from the
median:

σ̂ =
1

0.6745
· MAD[d(f)] = 1.4828 · median[|d̃(f) − median(d̃(f)|],

where d̃(f) is the vector of finest detail coefficients associated to the multireso-
lution subspaces H, V, and D.

This procedure is repeated for the other two detail components (the vertical
and the diagonal). Once we have the estimated detail components, we apply the
inverse wavelet transform with our original coarse image as the smooth part and
estimated detail components as details, to obtain a higher resolution enhanced
image.

4 Results

The data analyzed in our study are from the University of South Florida’s Digital
Database for Screening Mammography (DDSM) [10]. (For more information see
Section 2). We analyzed 8 malignant and 10 benign cases. Each case consists
of four images, however in most cases microcalcifications were only found in
one breast, hence we only analyzed the two corresponding images. In addition,
some cases had multiple microcalcification sites, which resulted in 40 images we
analyzed altogether. First, the ROI detection method described in Section 3.1
was applied to each of the images. ROIs were cropped to smaller images, which
contained calcifications of approximately 0.05-1mm in dimension (in terms of
pixels: 20 × 20 to 50 × 50 pixels). Our main algorithm explained in 3.3 can be
applied to 2n×2m pixels size images, it will here be illustrated on 64×64 images.

Figure 1 shows the result of applying the WII algorithm on an image of a
malignant case. We notice a significant improvement from level 0 to level 1 and

Wavelet Image Interpolation (WII) 211

ca a 1131 right mlo, level 0

10 20 30

5

10

15

20

25

level 1

10 20 30 40 50

10

20

30

40

level 2

20 40 60 80 100

20

40

60

80

level 3

50 100 150 200

50

100

150

Fig. 1. Results of applying WII method on an image of a malignant calcification

Original

10 20 30 40 50 60

10

20

30

40

50

60

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 2. Results of applying WII algorithm on an image of a malignant calcification(s);
left: original image, right: enhanced image

212 G. Derado et al.

Original

10 20 30 40 50 60

10

20

30

40

50

60

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 3. Results of applying WII algorithm on an image of a benign calcification(s); left:
original image, right: enhanced image

from level 1 to level 2, while there is only a very slight difference between levels 2
and 3. The images on Figure 1 were obtained by imputing zeros into the details
components of the WII algorithm, with the original image as the smooth part.

Figure 2(left) shows another malignant case image (original image) with a
cluster of microcalcifications. Figure 2(right) shows the result of our image en-
hancement algorithm, described in 3.3, applied on the image in Figure 2(left).
We used the gray scale representations of the images since it follows the conven-
tion among the radiologists and was preferred by the clinical radiologist on our
research team who made the clinical assessments of the images.

Figure 3(left) shows an image of a benign case (original image). Figure 3(right)
shows the result of the image enhancement algorithm, applied on the image in
Figure 3(left).

5 Conclusion

Motivated by the ubiquitous presence of regular scaling in medical images, we
propose a regression-based approach to extrapolate on the wavelet coefficients
of an image to be enhanced. The observed image and its extrapolated details are
then transformed by an inverse wavelet transform and the image of higher resolu-
tion is obtained. This process corresponds to a wavelet-based image interpolation
that is improved by information about regular scaling in detail coefficients.

We found that our proposed procedure is efficient and useful in capturing
relevant clinical information in the context of digital mammographic imaging.
Our assessments were made by evaluations of the 18 knowns preformed by the
clinical radiologist on our research team. We emphasize that at this point, the
study is more of a feasibility type, than a stringent test of efficacy.

Wavelet Image Interpolation (WII) 213

The improved visualization of calcium morphology is expected to translate
to greater specificity in assigning degree of suspicion and need-for-biopsy for
calcifications noted in mammography. More study with additional observers is
planned to confirm what looks to be a novel helpful technology.

We envision several avenues for future algorithm enhancement. We plan to (i)
develop new shrinkage strategies to explore alternatives to the traditional univer-
sal thresholding, (ii) to identify the wavelet that yields optimal performance for
our application, and (iii) to formalize and to expand the evaluation phase with
several radiologists involved in a blind repeated measures study design involving
an extensive number of cases. We also plan to contrast the WII approach to
other approaches based on quantitative or qualitative measures using the same
images and the same team of observers.

Acknowledgement. This research was supported by a Georgia Cancer Coali-
tion grant (GCC-141).

References

1. Aldroubi, A. and Unser, M. A. (1996). Wavelets in Medicine and Biology., CRC
Press, Boca Raton FL, 616 p.

2. Anastasio, M., Yoshida, H., Nishikawa, R., Giger, M., and Dio, K. (1998). Global
Optimization of Wavelet-Based Computer-Aided Diagnosis (CAD) Scheme for the
Detection of Clustered Microcalcifications in Digital Mammograms”, Kurt Ross-
mann Laboratories for Radiologic Image Research, Research Report.

3. Bruce, L. M. and Adhami, R. R. (1996). “Classifying Mammographic Mass Shapes
Using the Wavelet Transform Modulus-Maxima Method”, IEEE Transactions on
Medical Imaging, pp. 1170–1177, 18 (12).

4. Chang, C-M. and Laine, A. (1996). Coherence of Multiscale Features for Enhance-
ment of Digital Mammograms”, IEEE Transactions on Information Technology in
Biomedicine, 3, 32–46.

5. Coakley, K. and van Doorn T. (1995). Invariant moment shape description of mi-
crocalcifications in digital mammograms. Australas Phys Eng Sci Med. 18 (2),
114–118.

6. Curpen, B. N., Sickles, E. A., and Sollitto R. A. (1995). The comparative value
of mammographic screening for women 40-49 years old versus women 50-59 years
old. AJR, 164, 1099–1103.

7. Donoho, D. L. and Johnstone, I. M. (1994). “Ideal spatial adaptation via wavelet
shrinkage”, Biometrika, 91:425-455.

8. Egan, R., Sweeney, M., and Sewell, C. (1980). Intramammary calcifications without
an associated mass in benign and malignant diseases, Radiology, 137, 1–7.

9. Ferrari, R. J. Rangayyan, R. M., Desautels, J. E. L., Borges, R. A. and Frere, A. F.
(2004). Automatic Identification of the Pectoral Muscle in Mammograms”, IEEE
TRansactions on Medical Imaging, 23 (2), 232–245.

10. Heath, M., Bowyer, K.W., Kopans, D. et al. (1998). Current status of the Digital
Database for Screening Mammography, Digital Mammography, pp 457–460, Kluwer
Academic Publishers.

214 G. Derado et al.

11. Heath, M., Bowyer, K., Kopans, D., Moore R., and Kegelmeyer P. Jr. (2000).
The Digital Database for Screening Mammography, in The Proceedings of the 5th
International Workshop on Digital Mammography (Toronto, Canada, June 2000),
Medical Physics Publishing (Madison, WI), ISBN 1-930524-00-5.

12. Heinlein P., Drexl J., and Schneider W. (2003). Integrated wavelets for enhance-
ment of microcalcifications in digital mammography. IEEE Trans. Med. Imag. 22
(3), 402–413.

13. Lado, M. J., Tahoces, P. G., Méndez, P. G., Souto, M. and Vidal, J. J. (1999).
A Wavelet-based Algorithm for Detecting Clustered Microcalcifications in Digital
Mammograms, Med. Phys., 26 (7), 1294–1305.

14. Lemaur, K., Drouiche, J., and DeConinck, (2003). Highly Regular Wavelets for the
Detection of Clustered Microcalcifications in Mammograms, IEEE Trans. Med.
Imag., 22(3), 393–401.

15. Mallat, S. (1989). A theory for multiresolution signal decomposition: The wavelet
representation. IEEE Trans. Pattern Anal. Machine Intell., 11, 674–693.

16. McLeod G., Parkin G. J. S., and Cowen A. R. (1996). Automatic detection of
clustered micro-calcifications using Wavelets, In: , Eds. Doi K, pages 311–316,
Publisher: Elsevier Science BV (Amsterdam).

17. Menges, V., Wellauer, J., Engeler, V., and Stadelmann, R. (1973). Correlation of
numerically detected microcalcifications on the mammogram and in this manner
diagnosed carcinomas and mastopathies, (in German), Radiologe. 13 (11), 468–476.

18. Millis, R., Davis, A., Stacey, M., Phil, M. (1976). The detection and significance
of calcifications in the breast: A radiologic pathologic study, Br. J. Radiol.

19. Seršić, D. and Lončarić, S. (1998). Enhancement of Mammographic Images for
Detection of Microcalcifications, Proceedings of the IX European Signal Processing
Conference, Vol. 2, pp. 693-696, Island of Rhodos, Greece.

20. Smart, C. R., Hendrick, R. E., Rutledge J. H., and Smith, R. A. (1995). Benefit
of mammography screening in women ages 40 to 49 years: current evidence from
randomized controlled trials, Cancer, 75, 1619–1626.

21. Strickland, R. N. and Hahn, H. I. (1996). Wavelet Transform for Detecting Micro-
calcifications in Mammograms, IEEE Transactions on Medical Imaging, Vol. 15,
No.2, 218–229.

22. Thangavel, K., Karnan, M., Sivakumar, R. and Mohideen, A. K. (2005). Automatic
Detection of Microcalcifications in Mammograms - A Review, ICGST International
Journal on Graphics, Vision and Image Processing, GVIP.

23. Van de Ville D., Blu T., Unser M. (2005). Isotropic Polyharmonic B-splines: Scal-
ing Functions and Wavelets, IEEE Transactions on Image Processing, 14(11), pp.
1798–1813.

24. Wang T. C. and Karayiannis N. B. (1998). Detection of microcalcifications in
digital mammograms using wavelets, IEEE Trans Med Imaging. 17(4), 498–509.

25. Yoshida, H, Doi, K., Nishikawa, R. M., Ginger, M. L., and Schmidt, R. A. (1996).
An Improved Computer-Assisted Scheme Using Wavelet Transform for Detecting
Clustered Mirocalcifications in Digital images, Acad Radiol, 3, pp. 621–627.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 215–226, 2007.
© Springer-Verlag Berlin Heidelberg 2007

High Level Programming Environment System for
Protein Structure Data

Yanchao Wang, Rajshekhar Sunderraman, and Piyaphol Phoungphol

Computer Science Department, Georgia State University, Atlanta, GA 30303, U.S.A
ywang17@student.gsu.edu, raj@cs.gsu.edu,

pphoungphol1@student.gsu.edu

Abstract. In this paper, we present an application system that extends the
Object-Oriented Database (OODB) system by adding domain-specific layers to
manage protein structure data. Protein-QL, a domain-specific query language,
and Protein-OODB layers are added above the OODB. We have implemented
this system for protein domain, but we can easily extend it into other biological
domains to build a bio-OODBMS. We define protein’s primary, secondary, and
tertiary structures as internal data types to simplify queries in Protein-QL in
such a way that the domain scientists can easily master the query language and
formulate data requests. We use EyeDB as the base OODB to communicate
with Protein-OODB. Our system uses Java RMI to return results back to the
clients so that transactions can be conveniently executed by the clients.

Keywords: Protein Structure Data, Domain Specific Querying, Object-oriented
Databases.

1 Introduction

In recent years, protein data have been growing in a very rapid rate due to more and
more advanced experimental techniques. As a consequence, storing, organizing, and
analyzing huge amounts of protein data in a clear and efficient way is becoming a
challenging issue that most protein scientists have to face and solve. Presently, there
are a variety of traditional database management systems to manage biological data
such as flat files, relational databases, and so on. However, they have limitations.

Flat files usually manage data by using simple text files with rigid formats. The
simple tools associated with manipulating these flat files can be easily mastered, but
provide little flexibility in dealing with large and complex data sets such as protein
structure data. For example, the file has to be processed line by line till the section of
the file containing the required data. In addition, flat files do not support complex data
types, an important requirement while managing complicated biological data.

Relational databases, on the other hand, are mature and are successfully applied in
many areas. One of the major reasons for its success is that the relational data model
is much simpler than others. However this advantage becomes a big issue in life
science database applications because of the lack of support for complex data types.

Although the developers of these traditional databases design and provide
biologists special tools to manage biological data, they need to develop new tools or

ă

216 Y. Wang, R. Sunderraman, and P. Phoungphol

recode previously developed software often to meet the fast changing data formats
and data types. This process requires the biologists to learn new query languages and
master new tools and software. Therefore, designing an efficient database
management solution for biological data is becoming an urgent task for most
biologists and computer scientists.

Since the object-oriented nature of life science data perfectly matches the
architecture of object-oriented databases, biologists and computer scientists are
switching their attention to object-oriented databases (OODB). Although OODB has
above advantage over traditional databases, there are still a lot of problems that need
to be solved in order to apply OODB methodologies to manage biological data. One
major problem is that the database management systems (DBMS) of OODBs are
designed for general-purpose applications and they do not have any built-in data types
(ex. protein and nucleic acid) for biological research. They also do not have built-in
biological domain-specific functional operations.

In this paper, we present the design and implementation of a system with built-in
data types and domain specific functional operators that extend the object-oriented
database (OODB) system. Two additional layers, Protein-QL and Protein-OODB are
added above an object-oriented database management system (EyeDB). This system
is implemented specifically for protein domain, but it is a first step to build a general
bio-OODBMS for biological applications. This new system has three components: a
client API, a Middleware (including a RMI server, a protein domain specific language
Protein-QL and a Protein-OODB), and an object-oriented database management
system, EyeDB. Protein-QL provides convenience for protein scientists to store,
retrieve, and modify data, and defines some basic operations. Protein-OODB solves
some protein data source problems and is used to connect Protein-QL and EyeDB
layers. Four internal data types: protein and its three structures, primary, secondary,
and tertiary are defined to simplify the queries in Protein-QL. Domain scientists can
easily formulate complex requests for data without much learning. Overall, this
application system is for a certain biological domain, but it is easy to extend into other
biological domains.

The rest of the paper is organized as follows: Section 2 describes the architecture
of the high level programming environment system for protein structure data. The
details on using the system are described in Section 3. Conclusion and future work are
presented in Section 4.

2 High Level Programming System for Protein Structure Data

The architecture of a high level programming environment for protein structure data
called Protein-OODBMS is presented in this section. It is a three-layer architecture
that consists of the following components: a client API, Middleware (including a RMI
server, a query language for protein structures (Protein-QL), and an object-oriented
database for protein structures (Protein-OODB)), and an object-oriented database
EyeDB layer. Figure 1 illustrates this architecture.

The clients can use this system to send domain specific requests and manage the
database. The client writes simple domain specific queries according to Protein-QL

 High Level Programming Environment System for Protein Structure Data 217

syntax and sends them to the server. The server receives the queries and communicates
with Protein-QL using RMI and validates query syntax. Then, the query interpreter
converts the query into EyeDB OQL queries. Finally, EyeDB sends the results back to
the server. This system provides clients convenient access and is easily mastered.

Server
using RMI

Protein-
OODB

Protein-
QL

Middleware

EyeDB
Client
API

Fig. 1. The architecture of high level programming system for protein structure data

2.1 Client Application

The system provides a variety of client interfaces. Fig. 2 shows the main screen of the
client application.

Fig. 2. The Client Application

Clients who know Protein-QL syntax can use this system without knowing every
detail. The advantages are: (1) Java Client API can easily be viewed and mastered by
protein domain scientists who have basic knowledge of Java language without much
computer background. Clients are able to formulate Protein-QL queries and have
them sent to the server for execution, (2) PQL*Plus Client interaction allows clients
to send protein-QL queries directly to Protein-QL without any Java code, (3)
Visualization Client is a Protein Explorer tool that allows clients to view protein data
structure and functions, and (4) Data Browser provides clients to view protein data in
PDB format or object format.

218 Y. Wang, R. Sunderraman, and P. Phoungphol

2.2 Middleware Layer

The middleware layer includes a RMI server, a query language for protein structures
(Protein-QL), and an object-oriented database for protein structures (Protein-OODB).

Protein-QL
Using Protein-QL, clients can perform basic operations to store, retrieve, and modify
protein data and these operations can be executed on basic data types as well as protein
data types. Protein-QL defines a list of operators in protein terms, which enables domain
scientists to query information in their own language without much syntactical restriction.
For example, clients can use the expression get-Primary(proteinName) to view
the primary structure of protein named “proteinName”. Our system also provides
other operators such as nearest neighbors, cluster of protein, sequences of protein, etc.

The system is implemented based on the features of EyeDB [2] to store complex
protein data as objects. EyeDB provides Object Query Language (OQL) to serve the
client requests. The Protein-QL interpreter converts Protein-QL queries to OQL
queries. Protein-QL not only provides basic operators for EYEDB such as +, -, *, /
and % but also supports domain specific operators on protein data types Primary,
Secondary, Tertiary and Protein that are defined as internal data types. Thus
biologists can easily request the information with these domain specific terms. The
following are EyeDB definitions for the internal data types:

class Protein {string proteinName; string types; string
functions; string remark; set<words *> domainOfPrimaryStru;
Primary * primary; Secondary * secondary; Tertiary * tertiary;
constraint<unique> on proteinName; constraint<notnull> on
proteinName; index on proteinName;};

struct words {string name;};

class Primary {string proteinName; array<PrimaryPartition *>
primary;};

class PrimaryPartition {string name; int serNum; string
chainName; long elementNo; string seq;};

class Secondary {string proteinName; array<SecondaryPartition *>
secondary;};

class SecondaryPartition {string name; int serNum; string ID;
int numStrands; string initResName; string initChainID; int
initSeqNum; string endResName; string endChainID; int
endSeqNum; int sense; string curAtom; string curResName; string
curChainID; int curResSeq; string prevAtom; string prevResName;
string prevChainID; int prevResSeq; string comments; int length;
};

class Tertiary {string proteinName; array<TertiaryPartition *>
tertiary;};

class TertiaryPartition {string name; int serNum; string
atom1; string resName; string chained; int resSeq; double x;
double y; double z; double possib; double pos;string atom2;};

 High Level Programming Environment System for Protein Structure Data 219

We now present some query examples in Protein-QL:

Example 1: Get the protein named “HIV-1” (Abbreviation “HIV-1 Protease”).

 (Protein)(Protein.proteinName = “HIV-1”);

Then the interpreter generates object query in EyeDB:

select p from p in Protein where p.proteinName=“HIV-1”;

The result is shown in Fig. 3.

Fig. 3. The result for example 1

The PDB format result may be obtained using the service PDBFormat
(proteinName).

Example 2: Get the secondary structure of protein named “HIV-1”.

 (Protein.secondary)(Protein.proteinName= “HIV-1”);

Our interpreter will generate object query in EyeDB:

select p.secondary from p in Protein where p.proteinName
= “HIV-1”;

The result is shown in the Fig. 4.
The result may also be viewed in PDB format using PDBSecondary service.

Example 3: Delete a protein object whose name is “HIV-1”

 delete (Protein)(Protein.proteinName = “HIV-1”);

The interpreter generates object query in EyeDB:

select Protein.proteinName="HIV-1";
=5738.5.854641:oid
delete 5738.5.854641:oid;
= 5738.5.854641:oid

The result is: = 5738.5.854641:oid.

220 Y. Wang, R. Sunderraman, and P. Phoungphol

Fig. 4. The result for example 2

Protein-OODB
With advancement in the development of the new laboratory instruments and
experimental techniques we have seen an explosion in protein data. These protein data
may come from different computational techniques, experiments, and interpretation of
primary data and the data sources themselves may include a variety of different
information that may result in heterogeneous protein data sources. Therefore, our
system provides the following ways to solve these heterogeneity problems: (a) We
use the most confident data sources by identifying the confidence of data sources to
solve multiple sources problems, (b) We provide a data dictionary [11] (sometimes
called a controlled vocabulary) to list synonyms, homonyms, common misspellings,
and abbreviations such that system can search them quickly in Table 1. Our data
dictionary defines some domain specific concepts, terms, and interpretation, which

Table 1. Data Dictionary

Synonym

Homonym

Common
Misspelling

Abbreviation

Same Object with
Different Name

HIV-1/
Human immunodeficiency

virus 1/
Human Immunodeficiency

Virus Type 1/
HIV-I/

Immunodeficiency Virus
Type 1, Human

H1V-1

HIV-1

…… …… …… …… ……

 High Level Programming Environment System for Protein Structure Data 221

Table 2. The operations and interpretation of some query operators in Protein-QL

Operator Interpretation

sequence(String pn) //pn is ProteinName
sequence: {s | s is the sequence of protein pn’s primary
structure—amino acid sequence}

oneLetterCode(String pn)
oneLetterCode: {olc | olc is 1-letter code of protein pn’s primary
structure}

lengthOfSequence(String pn)
lengthOfSequence: {l | l is the length of protein pn’s primary
structure}

subSequence(String pn, int start, int end)
subSequence: {sub | sub is the subsequence of pn from position
start to position end in p’s primary structure}

location (String pn, string sub)
location: {pos | sub is the subsequence in three letter of pn, pos is
the first location of sub occurring in pn’s primary structure}

locationOneLetter(String pn, String sub)
locationOneLetter : {pos | sub is the subsequence in one letter of
pn, pos is the first location of sub occurring in pn’s primary
structure}

noOfSub(String pn, String sub)
noOfSub : {n | sub is the subsequence of pn, n is the number of
sub in pn’s primary structure}

noOfSubOneLetter(String pn, String
sub)

noOfSubOneLetter : {n | sub is the subsequence in one letter of
pn, n is the number of sub in pn’s primary structure}

globalAlignment(String pn1, String pn2)
globalAlignment: {ga | ga is the global alignment using
Needleman-Wunsch method in pn1, pn2’s primary structure}

mostSimilarity(String pn)
mostSimilarity: {ms | ms is the most similar protein of pn
according to Needleman-Wunsch global alignment}

getPrimary (String pn) getPrimary: {ps | ps is pn’s primary structure}

noOfHelix(String pn)
noOfHelix: {n | n is the number of helix in pn’s secondary
structure}

lengthOfHelix(String pn, int helix)
lengthOfHelix: {l | l is the length of helix of protein pn’s
secondary structure}

lengthOfEachHelix(String pn)
lengthOfEachHelix: {l(List) | l are the length of all helix of
protein pn’s secondary structure}

noOfChain(String pn)
noOfChain: {n | n is the number of chains in pn’s secondary
structure}

noOfStrand(String pn, String chain)
noOfStrand: {n | n is the number of strands of chain in pn’s
secondary structure}

noOfStrandEachChain(String pn)
noOfStrandEachChain: {n(List) | n are the number of strands of
all chains in pn’s secondary structure}

senseOfEachStrand(String pn)
senseOfEachStrand: {sense(List) | sense are the senses of all
strands with respect to previous strand in the sheet in pn’s
secondary structure}

getSecondary(String pn) getSecondary: {ps | ps is pn’s secondary structure}

center3D(String pn) center3D: {d | d is the center coordinate of pn}

nearestNeighbor3D(String pn)
nearestNeighbor3D: {p1 | p1 has the shortest distance among
neighbors of pn in tertiary structure}

cluster(String pn,double d)
cluster: {p1(List) | the distance between pn in tertiary structure
and p1 is equal to or less than d}

getTertiary(String pn) getTertiray: {ps | ps is pn’s tertiary structure}

getProtein(String pn)
getProtein: {protein | protein is pn’s all information that is stored
in databases}

222 Y. Wang, R. Sunderraman, and P. Phoungphol

make databases easier and more efficient to search without any guessing work. It also
can solve the problem that the same object has different names in life sciences, and
(c) We develop a schedule table to store the queries needing very long time to
execute. These queries and their results are updated with latest data to keep them up-
to-date. Clients can get them from local memory to save time. We define data
dictionary as follows:

class DataDictionary{string proteinName;
set<words *> synonym; set<words *> homonyms;
set<words *> cmp; //Common Misspelling
set<words *> abbreviation;
set<words *> sodn; //Same Object with Different Name
};

2.3 Protein Structure Data Operators

As we know, protein data is very large and clients often need only parts of the data.
So, our protein-OODB layer provides operators based on the protein domain, which
clients can conveniently and easily use in the queries without any extra learning.
Some operators are shown in the Table 2; Users can easily add more operators and
functions in the future.

These operators can be used in Protein-QL as the following examples illustrate.

Example 4: Get the sequence of protein named “HIV-1”.

 sequence(“HIV-1”);

The result is shown in following Fig. 5.

Fig. 5. The result for sequence(“HIV-1”)

Example 5: Get the number of helix of protein named “HIV-1”.

noOfHelix(“HIV-1”);

The result: 2.

 High Level Programming Environment System for Protein Structure Data 223

Example 6: Get the nearest neighbor of protein named “HIV-1”.

nearestNeighbor3D(“HIV-1”);

The result: Protein{5738.5.854641:oid }={proteinName=……}

3 Details on Using System

The Java clients only need to know Protein-QL syntax, service name, input para-
meters and output. The details of implementation do not affect the usage of clients. In
the implementation, the system developed algorithm to create an alignment from a
number of sequences such that the system does not need to extract the data for each
protein from the database to increase performance (because less data has to be read
from and written to the database) and reduce storage needs. We also designed
algorithm to calculate center of protein and store them in the file, therefore, the
system only needs to calculate center one time for each protein. The Java Client
interface is shown in Fig. 6.

Fig. 6. Java Client Interface

Fig. 7 shows the Protein-QL*Plus interface. Protein-QL*Plus can use above ser-
vices to get results from our database. Clients only need to input Protein-QL queries
according to Protein-QL syntax.

224 Y. Wang, R. Sunderraman, and P. Phoungphol

Fig. 7. Protein-QL Plus Interface

Fig. 8. Data Browser API

Fig. 9. Visualization Interface connected to RCSB PDB

 High Level Programming Environment System for Protein Structure Data 225

We also provide a data browser interface that allows domain scientist to easily
view all aspects of the protein structure data. The data browser interface is shown in
Fig. 8.

Finally, we also provide a visualization interface that can link users to PDB 3D
view of protein. The interface is shown in Fig. 9.

4 Conclusions and Future Work

This paper describes an application system that is protein domain specific and
implemented by adding some new features (such as internal protein data types) to
existing OODB--EyeDB. This system has three components: a client interface, a
middleware (including a server, Protein-QL, and a Protein-OODB), and an EyeDB
database backend. Protein-QL provides convenience for users to store, retrieve,
and modify data. The system defines four protein internal data types to simplify
the queries so that the users can easily understand and send requests. The system
also defines some basic and domain specific operations. Protein-OODB solves
some protein data source problems and is used to connect Protein-QL and EyeDB
layers. This application paper presents a general idea to develop a new system for
a certain biological domain. It is very easy to extend this system into other
domains.

In the future, we propose to add data curation module ([9]) to enable domain
scientists to detect and fix errors and inconsistencies in the protein structure data. The
data curation system is tied to a data input system that takes protein structure data in
PDB format as input and through a series of semi-automated steps converts the data
into object-oriented data to be store din EyeDB. In addition, we propose to extend the
system to include data from other related domain such as genome data.

References

1. Yanchao Wang, Rajshekhar Sunderraman and Hao Tian. A Domain Specific Data
Management Architecture for Protein Structure Data. The 28th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, 2006.

2. E. Viara, E. Barillot, and G. Vaysseix. The EyeDB OODBMS, International Database
Engineering and Applications Symposium, Montreal, IEEE Publications, Pages 390-402.

3. Dan E. Krane, and Michael L. Raymer. Fundamental Concepts of Bioinformatics. 2003
Pearson Education, Inc., publishing as Benjamin Cummings.

4. David W. Mount, Bioinformatics. Sequence and Genome Analysis. 2001 by Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, New York.

5. C. Branden. Introduction to Protein Structure. Published by Garden Publishing, Inc.
6. Ingvar Eidhammer, Inge Jonassen, William R. Taylor. Protein Bioinformatics: An

Algorithm Approach to Sequence and Structure Analysis. Pub by John Wiley & Sons.
7. R. Esser, J.W. Janneck. A Framework for Defining Domain-Specific Visual Languages. In

Workshop on Domain Specific Visual Languages, in conjunction with ACM Conference
on OOPSLA-2001.

226 Y. Wang, R. Sunderraman, and P. Phoungphol

8. E. F. Codd. A relational model of data for large shared data banks. Commun. ACM (1970),
Vol. 13, page 377–387.

9. Yanchao Wang, Rajshekhar Sunderraman. PDB Data Curation. The 28th Annual
International Conference of the IEEE EMBS, 2006.

10. http://www.whatislife.com/reader/protein/protein.html
11. http://www.boxesandarrows.com/archives/what_is_a_controlled_vocabulary.php

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 227–236, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Finding Minimal Sets of Informative Genes in
Microarray Data

Kung-Hua Chang, Yong Kyun Kwon, and D. Stott Parker

Department of Computer Science, University of California, Los Angeles,
Los Angeles, CA 90095-1596, USA

{kunghua,kwon624,stott}@cs.ucla.edu

Abstract. For a microarray dataset with attached phenotype information –
which gives expression levels of various genes and a phenotype classification
for each of a set of samples – an important problem is to find informative genes.
These genes have high information content as attributes for classification,
minimizing the expected number of tests needed to identify a phenotype. This
study investigates the use of a heuristic method for finding complete sets of
informative genes (sets that are sufficient for constructing a maximally
discriminating classifier) that are as small as possible. These minimal sets of
informative genes can be very useful in developing an appreciation for the data.
Our method uses branch-and-bound depth-first search. Experimental results
suggest that our method is effective in finding minimal gene sets, and the
resulting classifiers have good performance in terms of classification accuracy.

1 Introduction

Microarray analysis usually involves thousands or tens of thousands of genes. An
important goal is to select informative genes that can subsequently be used as
biomarkers. An example would be cancer microarray datasets, where the extracted
biomarkers could be used in detecting cancer or finding the root cause of cancer. Such
a dataset can be viewed as table whose columns represent genes, and whose rows
represent samples with an associated phenotype classification (cancer status).

A natural problem in this area is to find genes that are informative – i.e., useful in
classification, providing lots of information toward identifying the phenotype class.
Many methods have been used to extract informative genes from microarray datasets.
One kind of method is a greedy method that uses some statistical evaluation of each
gene, such as t-test [3], signal-to-noise ratio [6], or SAM [11]. An advantage of this
kind of method is that the computational cost is low. A drawback is that greedy
methods always select redundant genes because they only evaluate individual genes,
without considering correlations between genes.

In this paper we consider the problem of finding minimal sets of informative genes
that are complete, i.e., which can be used in constructing a classifier for the input
data. Since searching all possible sets of genes is generally infeasible, a heuristic
strategy can be used to partially search combinations of genes and evaluate their
performance.

ă

228 K.-H. Chang, Y.K. Kwon, and D.S. Parker

One example of heuristic search methods is genetic algorithms [8]. A genetic
algorithm starts with an initial set of “genetic parameters” defining a search
configuration (candidate solution) that are used in the process of mutation and
crossover in order to produce new sets of parameters that pass a pre-defined fitness
function. The algorithm terminates when there is no improvement over several
generations [8]. Advantages of heuristic search methods include that they generally
do not select many redundant genes, and this could lead to finding the optimal gene
subset. Drawbacks include that they are sensitive to noise, prone to overfitting, and
computationally expensive.

We next describe a heuristic search method that uses branch-and-bound depth-first
search approach to extract minimal sets of informative genes from microarray data.
The general idea of our algorithm is to avoid selecting redundant genes. We perform
experiments on 7 publicly available cancer microarray datasets and compare our
results with results in [8].

2 Heuristic Branch-and-Bound Depth First Search

Suppose we have a classification learning problem L = {(Xi, Yi) | i = 1, 2, …, N } that
has N training instances. Xi is the vector of attributes for the i-th training instance,
while Yi ∈ {1, 2, …, C} is the class label for the i-th training instance.

Definition 1. Suppose Xij is the j-th attribute of the i-th training instance, so that we
can write Xi = {Xij | j = 1, 2, …, M }. The distribution of the training instance for
the j-th attribute can be computed as in (1):

Dij = 1 if class value Yi is discriminated by attribute Xj , 0 otherwise. (1)

That is, Dj is a bit vector of 0s and 1s that contains the classification ability of the j-th
attribute for the N training instances. Thus the i-th entry in Dj is 1 if the j-th attribute
can correctly discriminate the class label Yi from other class labels, and 0 if it cannot.

Definition 2. Define ACC(Dj) as the classification accuracy of the j-th attribute,
giving the number of 1s in Dj. If necessary we reorder the column vectors Dj in D in
decreasing order of ACC(Dj), so that attributes with better classification accuracy on
the N training instances appear first in D.

Definition 3. Set Dmax as the element-wise maximum (equivalently: least upper
bound, element-wise “or”) of the Dj, j = 1, 2, …, M – so that Dmax is a bit vector that
represents the maximal classification ability of any deterministic classifier obtained
by combining the individual classification abilities of all attributes, as in (2):

Dmax = “UNION”(D) = D1 ∪ D2 ∪ … ∪ DM (2)

Our algorithm starts with an empty set Q. It then considers each Dj (in descending
order of classification accuracy) as the root of a search tree, includes Dj in Q, and
performs the depth-first search in Algorithm 2. This search then starts by recursively
choosing the Dk that most increases classification accuracy, as in (3):

 Finding Minimal Sets of Informative Genes in Microarray Data 229

choose Dk where k ∈ argmaxj (ACC(Q ∪ { Dj })) (j = 1, 2, …, M). (3)

Thus, Dk is chosen so as to eliminate as many 0s in Q as possible, providing the
greatest improvement in classification accuracy. The algorithm then includes Dk in Q,
and continues recursively. Whenever “UNION”(Q) = Dmax, signaling the end of
search, the algorithm records the classification accuracy ACC(Q) on the training and
test sets and then backtracks.

Algorithm 1 root_node_selection : Select Root Node From D After Sort
1: sort the vectors Dj in decreasing order of ACC(Dj)
2: π = ACC(Dmax) − ACC(MAXACC(D))
3: ε = 1/M ∑j ACC(Dj)
4: for j = 1 to M do
5: Q ← { Dj }
6: BBDFS(Q, π, ε)

Algorithm 2 BBDFS(Q, π, ε): Branch-and-Bound Depth-First Search
1: if total number of solutions > T:
2: Stop
3: if “UNION”(Q) = Dmax :
4: Train classifier using the attributes whose vectors appear in the set Q
5: Classify training and test set with this classifier and compute ACC(Q)
6: if ACC(Q) < ε:
7: terminate BBDFS [and return to root_node_selection]
8: else return
9:

10: Qc ← { Dk | k ∈ argmaxj ACC(Q ∪ { Dj }) }
11: if ACC(Q ∪ { MAXACC(Qc) }) − ACC(Q) < π :
12: L = n
13: else L = number of vectors in Qc
14: for each of the first L vectors Dj in Qc do
15: BBDFS(Q ∪ Dj, π, ε)

Fig. 1. Algorithms 1 and 2

The algorithm may not terminate, even with our greedy heuristic. So, in order to

improve performance we use a branch-and-bound method to prune nodes and
branches, and also limit the total number of solutions to a given parameter T.

Definition 4. Define a branching threshold π = ACC(Dmax) − ACC(MAXACC(D))
where MAXACC(D) is the vector Dj that has maximum ACC(Dj) value.

During expansion of Dk, if ACC(Q ∪ { MAXACC(Qc) }) − ACC(Q) < π, we limit the
expansion of nodes to the first n nodes, where Qc is the queue of promising attributes

230 K.-H. Chang, Y.K. Kwon, and D.S. Parker

Dj computed in Algorithm 2 and n is another parameter. In other words, if
the increase in accuracy gained from adding attribute k is less than the predefined
branching threshold π, we only expand the first n nodes. Since we sort the vectors in
D in decreasing order of ACC(Dj), the first n nodes (attributes) have better
classification ability.

Definition 5. Define a pruning threshold ε as the average classification ability of each
attribute as in (4):

ε = ∑
M

j
jDACC

M
)(

1
 (4)

If Q = Dmax and ACC(Q) < ε, then we abandon the current expansion and jump to the
next root node selection process. That is, if the classification accuracy of the current
attribute subset is less than the average classification accuracy of each individual
attribute, we abandon the whole attribute subset and start from the next root node
expansion. For more detail please refer to Algorithms 1 and 2 in Figure 1.

3 Experimental Setup and Results

3.1 Preprocessing Steps

We use the same preprocessing steps as in [8]. Since the downloaded raw microarray
data may have abnormal values, we apply the minimum (θmin) and maximum (θmax)
values as thresholds. If the value is less than θmin, we replace the value with θmin. If
the value is greater than θmax, we replace the value with θmax. If there are missing
values present, we use the k-nearest-neighbor method to fill in these missing values.
We then use a variation filter to exclude genes g that violate max(g) – min(g) > Δ and
max(g)/min(g) > Ω, where max(g) and min(g) are the maximum and minimum gene
expression values of g across samples, and θmin,θmax, Δ and Ω are parameters that
depend on the input data. In the experiments, we linearly scaled all expression values
in the range [0, 1], calculating the scaled value g′ as:

g′ = (g – min(g)) / (max(g) – min(g)). (5)

The classifier we chose was the support vector machine (SVM), and in particular
chose the implementation of LIBSVM [5]. The kernel we used was the linear kernel
with default parameters. The only variations we considered were between use of C-
support vector classification (C-SVC) and ν-support vector classification (ν-SVC).
We used ν-SVC for the Brain Cancer, Prostate Cancer, Central Nervous System, and
Colon Cancer datasets, and used C-SVC for the Lung Carcinoma, ALL-MLL
Leukemia, and MLL Leukemia datasets (described below). The parameters for our
BBDFS algorithm were T = 100000, n = 30. That is, we only chose the first 100000
attribute subsets, and expanded only the first 30 nodes in the queue Qc whenever the
branching threshold π was not satisfied.

 Finding Minimal Sets of Informative Genes in Microarray Data 231

3.2 Datasets

Lung Carcinoma. The lung carcinoma data set [4] has 12600 genes in 203 samples.
The 203 samples consist of 139 lung adenocarcinomas (AD), 21 squamous (SQ) cell
carcinoma cases, 20 pulmonary carcinoid (COID) tumors and 6 small cell lung
cancers (SCLC), as well as 17 normal lung (NL) samples. Negative gene expressions
are replaced by zero. Our variation filter used a standard deviation threshold of 50
expression units, and 3312 genes were selected from 12600 genes. Then we rescaled
the data and divided it randomly into mutually exclusive training sets consisting of
102 samples and test sets of 101 samples [8]. This dataset is a 5-class classification
problem.

Brain Cancer. The brain cancer data set [7] contains 12625 genes and 50 gliomas
samples: 28 glioblastomas and 22 anaplastic oligodendrogliomas divided into two
subsets of classic and non-classic gliomas. The classic subset contains 14
glioblastomas and 7 anaplastic oligodendrogliomas with classic histology, and it is
used as a training set to predict the classes of clinically common, histologically non-
classic samples consisting of 14 glioblastomas and 15 anaplastic oligodendrogliomas
samples [8]. After preprocessing withθmin = 20, θmax = 16000, ∆ = 100 and Ω = 3, only
4434 genes were left. Then we linearly scaled the values [8]. This dataset is a 2-class
classification problem.

Prostate Cancer. The prostate cancer dataset [10] contains gene expressions profiles
derived from 52 prostate tumors and 50 non-tumor prostate (normal) samples with
approximately 12,600 genes and ESTs. Raw expression values were preprocessed
with θmin = 10, θmax = 16000, ∆ = 50 and Ω = 5. After preprocessing, only 5966 genes
were left, and these were then normalized. Due to unavailability of the independent
data set, we divided the initial set into mutually exclusive training and test sets, each
containing 50% of the total samples [8]. This dataset is a 2-class classification
problem.

Central Nervous System (CNS). The central nervous system dataset [9] contains
7129 genes with 60 patients; 21 out of the 60 are survivors, while 39 out of 60
patients are not. Raw expression values were preprocessed with θmin = 20, θmax =
16000, ∆ = 500 and Ω = 5. After preprocessing, 4739 genes are left and then
normalized. Since there is no independent test set, we divided the initial set into
mutually exclusive training and test set, containing 50% of the total samples. This is a
2-class classification problem.

Colon Tumor. The colon tumor dataset [1] contains 2000 genes selected from 6500
genes with 62 samples from colon-cancer patients; 40 out of 62 tumor biopsies are
from tumors, and 20 out of 62 biopsies are from healthy parts of the colon of the same
patient. Since the raw expression values have been preprocessed by [1], we kept all
2000 genes and then normalized them. Since there is no independent test set, we
divided the initial set into mutually exclusive training and testing sets, each containing
50% of the total samples. This dataset is a 2-class classification problem.

232 K.-H. Chang, Y.K. Kwon, and D.S. Parker

ALL-AML Leukemia. The ALL-AML leukemia dataset [6] contains 7129 genes.
The training set contains 38 bone marrow samples with 27 ALL and 11 AML, while
the independent test set contains 34 bone marrow samples with 20 ALL and 14 AML.
Raw expression values are preprocessed with θmin = 1, θmax = 16000, ∆ = 500 and Ω =
5. After preprocessing, 3927 genes were left, and these were then normalized. This is
a 2-class classification problem.

MLL Leukemia. The MLL leukemia dataset [2] contains 12582 genes. The training
set contains 57 Leukemia samples with 20 ALL, 17 MLL, and 20 AML, while the
independent test set contains 15 Leukemia samples with 4 ALL, 3 MLL, and 8 AML.
Raw expression values are preprocessed with θmin = 100, θmax = 16000, ∆ = 500 and Ω
= 5. After preprocessing, 8685 genes were left, and these were then normalized. This
dataset is a 3-class problem.

3.3 Experimental Results

Table 1 gives baseline results by using LIBSVM on the training set with all genes and
classifying the test set from the above datasets. Table 2 gives the results returned by
using LIBSVM with the gene subsets returned by BBDFS algorithm. Detailed
experimental results are available at http://www.cs.ucla.edu/~kunghua/ISBRA2007/.

Table 1. Classification accuracy using all genes on 7 microarray datasets

Data Set Training accuracy Test accuracy # Genes
Lung Carcinoma 100.00% 93.07% 3312
Brain Cancer 100.00% 62.07% 4434
Prostate Cancer 96.08% 78.43% 5966
CNS 100.00% 62.96% 4739
Colon Cancer 100.00% 70.97% 2000
ALL-MLL 100.00% 88.24% 3927
MLL 100.00% 100.00% 8685

By comparing tables 1 and 2, we see that the BBDFS algorithm is superior not only
in finding very small gene subsets, but also in improving classification accuracy. The
only exception is the MLL Leukemia dataset, but the results are very close. These
results also suggest that many genes in the datasets provide no help in classification,
since very small sets of genes can achieve comparable results. Table 3 shows the gene
subsets for the best classification results for the above datasets.

The experimental results also suggest that there may be multiple gene subsets that
achieve the best classification accuracy. For example, the MLL Leukemia dataset has
more than 100 gene subsets that can achieve maximal classification accuracy.

We also compare our experimental results with the previously published results in
[8]. In order to make fair comparisons with [8], we tried to re-produce their
experiments by applying both their selected genes and their parameters (RBF kernel
with C=32, and g=0.0078125) in LIBSVM on our training and test sets. The results
are summarized in Table 4.

 Finding Minimal Sets of Informative Genes in Microarray Data 233

Table 2. Classification accuracy after applying BBDFS on 7 microarray datasets

Data Set Best training
Accuracy

Best Test
Accuracy

Maximum # of
Selected Genes

Lung
Carcinoma

100%
(Test Accuracy =

99.01%)
Genes = 5

99.01%
(Training Accuracy =

100%)
Genes = 5

6
Training Accuracy =

100%
Test Accuracy =

97.03%

Brain
Cancer

100%
(Test Accuracy =

86.21%)
Genes = 2

93.10%
(Training Accuracy =

85.71%)
Genes = 2

2
Training Accuracy =

100%
Test Accuracy =

86.21%

Prostate
Cancer

100%
(Test Accuracy =

92.16%)
Genes = 3

96.08%
(Training Accuracy =

96.08%)
Genes = 3

3
Training Accuracy =

100%
Test Accuracy =

92.16%

CNS 100%
(Test Accuracy =

66.67%)
Genes = 3

88.89%
(Training Accuracy =

84.85%)
#Genes = 3

3
Training Accuracy =

100%
Test Accuracy =

66.67%

Colon
Cancer

100%
(Test Accuracy =

87.10%)
Genes = 2

93.55%
(Training Accuracy =

93.55%)
Genes = 3

3
Training Accuracy =

100%
Test Accuracy =

87.10%

ALL-MLL
Leukemia

100%
(Test Accuracy =

100%)
Genes = 4

100%
(Training Accuracy =

100%)
Genes = 4

4
Training Accuracy =

100%
Test Accuracy =

100%

MLL
Leukemia

96.49%
(Test Accuracy =

100%)
Genes = 3

100%
(Training Accuracy =

96.49%)
Genes = 3

4
Training Accuracy =

96.49%
Test Accuracy =100%

234 K.-H. Chang, Y.K. Kwon, and D.S. Parker

Table 3. Best gene subsets found by BBDFS for all 7 datasets

Datasets Gene Subset
Lung Carcinoma 41325_at 36133_at

41231_f_at 41491_s_at 32562_at
Brain Cancer 38421_at 40272_at
Prostate Cancer 36607_at 40282_s_at 37639_at
CNS L47125_s_at S71824_at U62801_at
Colon Cancer H51524 Z50753
ALL-MLL Leukemia M20919_at M62783_at

M19645_at M28209_at
MLL Leukemia 36002_at 33412_at 33439_at

Table 4. Experimental results reported in [8] for lung carcinoma, brain, and prostate cancer
datasets using genetic algorithms

Data Set Best Training
Accuracy

Best Test Accuracy Minimum Number of
Selected Genes

Lung
Carcinoma

100.0%
(Test Accuracy =

69.31%)
Genes = 40

69.31%
(Training Accuracy =

100.0%)
Genes = 40

40
Training Accuracy =

100.0%
Test Accuracy =

69.31%

Brain Cancer 100%
(Test Accuracy =

68.97%)
Genes = 13

68.97%
(Training Accuracy =

100%)
Genes = 13

3
Training Accuracy =

100%
Test Accuracy =

58.62%

Prostate
Cancer

100%
(Test Accuracy =

92.16%)
Genes = 24

96.08%
(Training Accuracy =

98.04%)
Genes = 30

6
Training Accuracy =

98.04%
Test Accuracy =

88.24%

These comparisons suggest that our BBDFS method obtains comparable results for
the prostate cancer dataset, and BBDFS obtains much better results for both the lung
carcinoma and brain cancer datasets. Note that the results here are quite different from
the ones in [8], which we could not reproduce. They reported a classification result of
100% training and 90.48% test accuracy, while we could only reproduce 100%
training and 68.97% test accuracy in Brain Cancer dataset.

4 Conclusion and Future Work

We have presented a new method for finding minimal sets of informative genes in
microarray data. It is essentially a feature selection method that finds minimal sets of

 Finding Minimal Sets of Informative Genes in Microarray Data 235

significant features using branch-and-bound depth-first search (BBDFS). Based on the
successful test results shown here, it appears BBDFS can select very small gene
subsets with good classification accuracy, and we believe the method can be helpful
with microarray data that has a number of phenotype classifications (multiple classes).

There are potential advantages of algorithms like BBDFS in the analysis of genes
potentially related to cancer. Current methods in extracting informative genes often
return tens or hundreds of genes, and it can be extremely laborious to analyze each of
these. Since our algorithm returns very small sets of genes (on the order of 6 here,
with good classification accuracy), this analysis can be more focused and possibly
significantly limited.

One drawback of the BBDFS algorithm is in overhead cost, since it evaluates the
informativeness (classification ability) of each individual attribute. Another drawback
is that if the number of training instances is very large (> 10000, say), the algorithm
may become computationally costly because it evaluates attributes by using all
training instances. Fortunately, real microarray datasets often involve only hundreds
of training instances, so this may not be a drawback for many applications.

Some future work will involve the analysis of the gene subsets found by the
BBDFS algorithm. It is important to investigate the biological meaning of gene
subsets found by the algorithm. Another future direction will be in generalization of
BBDFS to be a more general feature selection method. This will involve designing
ways to evaluate attributes that do not use all training instances.

Acknowledgments. We wish to acknowledge Brain Cancer for motivating this work.
D.S. Parker was supported by NIH grants 1P20MH065166, 1U54RR021813, and the
UCLA Center for Computational Biology (CCB).

References

1. Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., and Levine A.J.,
"Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and
Normal Colon Tissues Probed by Oligonucleotide Arrays", Proceedings of National
Academy of Sciences, 96:6745-6750, 1999

2. Armstrong S.A., Staunton J.E., Silverman L.B., Pieters R., den Boer M.L., Minden M.D.,
Sallan S.E., Lander E.S., Golub T.R., and Korsmeyer S.J., "MLL Translocations Specify A
Distinct Gene Expression Profile that Distinguishes A Unique Leukemia", Nature
Genetics, 30:41-47, January 2002.

3. Bø, T., and Jonassen, I., New feature subset selection procedures for classification of
expression profiles. Genome Biology, 3(4):research0017.1–0017.11, 2002.

4. Bhattacharjee A et al, "Classification of Human Lung Carcinomas by mRNA Expression
Profiling Reveals Distinct Adenocarcinoma Subclasses", Proceedings of National
Academy of Sciences, volume 98, pages 13790–13795, 2001.

5. Chang C.-C., and Lin, C.-J., "LIBSVM : A Library for Support Vector Machines", 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

6. Golub, T.R., et al. Molecular classifications of cancer: Class discovery and class prediction
7. by gene expression monitoring. Science, 286(5439):531–7, 1999.

236 K.-H. Chang, Y.K. Kwon, and D.S. Parker

8. Nutt C.L et al, “Gene Expression-Based Classification of Malignant Gliomas Correlates
better with Survival than Histological Classification”, Cancer Research, 63(7):1602–1607,
2003.

9. Paul, T.K., and Iba, H., Extraction of Informative Genes from Microarray Data,
Proceedings of the Genetic and Evolutionary Computation Conference, Washington DC,
USA, pp 453-460, 2005.

10. Pomeroy S.L et al, "Prediction of Central Nervous System Embryonal Tumour Outcome
Based on Gene Expression", Letters to Nature, Nature, 415:436-442, January 2002.

11. Singh D et al, “Gene Expression Correlates of Clinical Prostate Cancer Behavior”, Cancer
Cell, 1(2):203-9, March 2002.

12. Tusher, V.G., Tibshirani, R., and Chu, G., Significance analysis of microarrays applied to
the ionizing radiation response. PNAS, 98:5116–5121, 2001.

Noise-Based Feature Perturbation as a Selection

Method for Microarray Data

Li Chen1, Dmitry B. Goldgof1, Lawrence O. Hall1, and Steven A. Eschrich2

1 Department of Computer Science and Engineering
University of South Florida

{lchen2,goldgof,hall}@csee.usf.edu
2 Department of Interdisciplinary Oncology

H. Lee Moffitt Cancer Cancer & Research Institute
Univeristy of South Florida

Tampa, FL 33620, USA
EschriS@moffitt.usf.edu

Abstract. DNA microarrays can monitor the expression levels of thou-
sands of genes simultaneously, providing the opportunity for the
identification of genes that are differentially expressed across different
conditions. Microarray datasets are generally limited to a small number
of samples with a large number of gene expressions, therefore feature
selection becomes a very important aspect of the microarray classifi-
cation problem. In this paper, a new feature selection method, feature
perturbation by adding noise, is proposed to improve the performance
of classification. The experimental results on a benchmark colon cancer
dataset indicate that the proposed method can result in more accurate
class predictions using a smaller set of features when compared to the
SVM-RFE feature selection method.

Keywords: Feature perturbation, microarray gene expression data, gene
selection, classification.

1 Introduction

Microarray technology makes it possible to measure thousands of gene expres-
sions simultaneously. One of the major goals of microarray data analysis is the
detection of differentially expressed genes across two kinds of tissue samples or
samples obtained under two experimental conditions in this high-dimensional
gene space. Due to the characteristics of microarray datasets, which usually
have a small number of samples and a large number of gene expressions, fea-
ture selection methods are quite important to enable microarray classification. A
large number of feature selection methods have been proposed to identify subsets
of features, thereby reducing the probability of overfitting. In general, classifier-
based gene selection can be performed using filter or wrapper approaches. Recent
studies have demonstrated that wrapper methods often give satisfactory classi-
fication accuracy [1][2] since they evaluate a subset of features based on the

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 237–247, 2007.
c© S ringer-Verlag Berlin Heidelberg 2007

ă

238 L. Chen et al.

performance of a specific classifier. For example, Guyon et al. introduced a re-
cursive feature elimination (RFE) scheme, in which features were eliminated suc-
cessively according to their influence on a support vector machine (SVM) based
evaluation criterion [3]. Some extended wrapper methods have been proposed
based on SVMs [4]. In [5], a wrapper feature selection method was proposed
which organized the feature combinations in a tree structure and the learning
algorithm was used for evaluation and intelligently searching the tree structure
to find the optimal subset of features for classification.

In the context of microarray data analysis, different feature selection meth-
ods have their own advantages and disadvantages. For example, the SVM-RFE
method in [3] has been shown to be an effective gene selection method, however
the classifier used in the feature selection procedure in this method is restricted
to an SVM. The wrapper feature selection method [5] does the best search in the
feature space for classification but the search procedure is very time consuming.
In this paper, we propose a new feature selection method, feature perturbation
by adding noise, to improve the performance of classification. This method is
more general than the SVM-RFE method since it can be applied to any clas-
sifier. By using an adaptive feature elimination strategy, the running time can
be dramatically shortened which makes the algorithm practical. Experimental
results on the benchmark colon cancer dataset show that the proposed method
can achieve higher prediction accuracy with a lower number of features (genes)
when compared to the SVM-RFE method.

2 Method

2.1 Feature Perturbation

Feature selection methods are generally applied to all features to eliminate some
of the original features and retain a minimum subset of features that yield good
classification performance. The feature perturbation method proposed in this pa-
per is a classifier-based, top-down feature eliminating method. The assumption of
the feature perturbation method is quite straightforward: irrelevant features will
have little influence on classification performance when perturbed by noise. Cor-
respondingly, classification performance should be significantly impacted when
important features are perturbed by noise. As a result, irrelevant features with
little effect on classification under noise are removed and the subset of important
features for classification will be retained.

Fig. 1 shows a flowchart of the feature perturbation method. The feature
perturbation method starts with a set of training samples X with all features S
as the surviving features. The method is an iterative procedure and the features
are recursively eliminated. Each iteration consists of three stages. The first stage
is training the classifier on the training samples X , based on the current surviving
features S. Any classifier can be used to build the classification model. The
second stage is called feature ranking, which computes the ranking criteria for
the S features. The change of classification performance on the training samples
before and after adding noise to each feature is defined as the ranking criterion

Noise-Based Feature Perturbation as a Selection Method 239

for this feature. Feature elimination removes the feature set R, which contains
the features with the lowest ranks from S. For computational reasons, it will be
more efficient to remove several features at a time rather than one. The whole
procedure will be repeated until all features are removed. As a result, a ranked
feature list will be generated and one can evaluate the selected feature set on
the test samples using the resultant classification model.

Start

Train the classifier on X with features S
Calculate the training accuracy Acc

Initialization:
S: subset of surviving features

 S := all features
X: training samples

Feature Ranking:
 For each feature i in S

1. Add noise to this feature for all
samples in X, get a new dataset X

2. Predict X , get accuracy Acci

3. Compute the ranking criteria
ri = Acc-Acci

Feature Elimination:
 Rank the features in S by ri

R: feature set with k lowest ri

S := S - R

S is empty?

End

Yes

No

Fig. 1. Flow chart of feature perturbation method

From the flowchart in Fig. 1 we can see that the most important aspect of
the feature perturbation method is the feature ranking procedure. Assume that
the active feature set is S and the training sample set is X . The performance of
the classifier built on the current dataset is evaluated by the training accuracy
represented by Acc. For each feature i in S, noise will be randomly generated and

240 L. Chen et al.

added to this feature for each of the samples in X , to generate a new dataset X ′.
Class predictions using the new dataset, where the feature i was perturbed by
noise, will give us a prediction accuracy denoted as Acci. The ranking criterion
for feature i can be calculated as the difference between Acc and Acci.

In the feature ranking procedure, noise is added to each feature to measure the
importance of the features for classification. Here the problem is how to decide
the characteristics of the noise. Intuitively, noise should be dependent on each
particular feature if we assume that the features are independent of each other.
However, it is not necessary for the noise to follow a certain distribution since
the noise is only used for perturbing the features. In the following experiments,
we use a uniform distribution to randomly sample noise. For each feature i the
noise follows a uniform distribution with the parameters related to this feature,
which can be represented by following Eq. 1:

Noisei ∼ Uniform(−c ∗ sdi, c ∗ sdi) . (1)

where, sd i is the standard deviation of feature i across all training samples,
and c is a constant factor which determines the noise level. Large amounts of
noise were required to get the appropriate perturbation of the features in our
experiments. This procedure was repeated 5 times in each iteration to get an
average ranking criteria for each feature since the noise is randomly generated
in the experiments.

Given the characteristics of microarry datasets which usually have small num-
ber of samples and a large number of gene expressions, the feature elimination
procedure will be time consuming if features are eliminated one by one. Based on
the assumption that there are only a few relatively important features for clas-
sification and most of the features are irrelevant, we used an adaptive feature
elimination strategy in which the number of features removed is determined by
the current number of surviving features. For example, half the features can be
removed at a time rather than just one when there are likely to be a large number
of irrelevant features. When the number of features is less than some threshold,
one can eliminate the features individually to get more accurate results.

2.2 Feature Perturbation Method vs. SVM-RFE Method

An alternative algorithm for feature selection is the SVM-RFE method [3]. This
approach eliminates the features successively according to their influence on
the training SVM model. Fig. 2 shows the flowchart of the SVM-RFE method.
Compared to the flowchart of the feature perturbation method in Fig. 1, we can
see similarities except for the first two stages in each iteration. In the first stage
of SVM-RFE, a SVM-based training model C is built on the training samples X
and current surviving features S. In the SVM-RFE feature ranking, the weight
vector W is computed based on the training model and the ranking criteria for
each feature i is determined by the corresponding weight w i for this feature.

Noise-Based Feature Perturbation as a Selection Method 241

Start

Build SVM classifier C on X with features
S

Initialization:
S: subset of surviving features

S := all features
X: training samples

Feature Ranking:

Compute weight vector W of C
For each feature i in S

Compute the ranking criteria
ri = (wi)

2

Feature Elimination:
Rank the features in S by ri

R: feature set with k lowest ri

S := S - R

S is empty?

End

Yes

No

Fig. 2. Flow chart of SVM-RFE method

One distinct advantage of the feature perturbation method is that it is appli-
cable to any classifier for feature selection and evaluation, while SVM-RFE is a
method based only on support vector machines. Therefore, the feature pertur-
bation method is more general than SVM-RFE. The computational complexity
of the feature perturbation method in each feature elimination procedure is
O(d2 ∗ n), while SVM-RFE requires O(d ∗ n) evaluation. Here, d is the number
of active features and n is the number of training samples. The feature per-
turbation method is expected to be slower than the SVM-RFE method but we
can use the adaptive feature elimination approach to speed up the computation
time. The last characteristic of the feature perturbation method is randomness
in selecting the features since the noise is randomly generated and added.

242 L. Chen et al.

3 Experimental Results

3.1 Data and Parameters

We present results on a well-known benchmark microarray dataset in colon can-
cer which can be obtained from the website http://microarray.princeton.edu/
onc-ology/affydata/. The colon cancer data consists of 62 tissue samples includ-
ing 22 normal and 40 colon cancer tissues. Each sample has 2000 gene expression
values. We use tenfold cross validation to evaluate prediction accuracy between
the feature perturbation method and SVM-RFE method. Although the feature
perturbation method is applicable to any classifier, support vector machines are
used in our experiments in order to compare with the SVM-RFE method. The
SVM used as the classifier is a modified version of libSVM [6]. Because no sub-
stantial difference in performance was observed in our preliminary classification
using SVM with different kernels, a linear kernel with parameter C = 1 was used
in the following experiments to reduce both training time and the probability
of overfitting. The sequential minimal optimization (SMO) algorithm was the
optimization algorithm used.

Since the samples are unequally distributed amongst both classes, weighted
accuracy will yield a better estimate of how well the classifier performs than
total accuracy [7]. Weighted accuracy is defined in Eq. 2:

Weighted Accuracy =
(

TP

TP + FN
+

TN

FP + TN

)

/2 . (2)

where TP, FP, TN, and FN are the number of true positives, false positives, true
negatives, and false negatives, respectively in a confusion matrix in the context
of prediction with colon cancer, as shown in Table 1.

Table 1. Confusion matrix

Predicted Cancer Predicted Normal tissue

Actual Cancer True Positive (TP) False Negative (FN)

Actural Normal tissue False Positive (FP) True Negative (TN)

In the following experiments, all the results will be reported using weighted
accuracy.

All the programs were implemented using the C language on a personal com-
puter with a 2.8 GHZ CPU and 1 GB of RAM.

3.2 Experiments and Results

We have observed that 1522 of the 2000 features have p-values>0.05 in the
t-test, which validates our assumption that most of the features (genes) are un-
informative for classification. Therefore we apply the following adaptive feature
elimination strategy to speed up the run time for both the feature perturbation
and the SVM-RFE method in the experiments. Starting from 2000 features, half

Noise-Based Feature Perturbation as a Selection Method 243

of the features were removed each time when the number of features was greater
than 200, after that, features were removed one by one until none remain. As
a result, the evaluation will be performed for the feature sets with the size of
2000, 1000, 500, 250, 125, 124, ..., 1.

The procedure for the experiments was the following. First, as a baseline
experiment, the SVM-RFE method was applied to the dataset using the original
feature elimination strategy and the adaptive strategy to see if there was a
significant difference between them. The dataset was randomly stratified into
training and test datasets using a tenfold cross validation approach. The SVM-
RFE method was utilized on the training set to recursively eliminate the features
and test accuracies were predicted on the test set using the classifier built on
the training data with selected features. This was done 10 times, once for each
left out fold, and an average accuracy over the ten folds is reported. The whole
procedure was repeated five times with different randomly chosen stratified sets
of data in order to get more reliable results. The results reported are the average
values of the five experiments.

Fig. 3 shows the comparison of average weighted accuracies of the SVM-RFE
method using the two different feature elimination strategies across different
numbers of features. In this figure, RFE-1 represents the original feature elimi-
nation approach where the features were recursively removed one by one. RFE-M
represents the adaptive feature elimination approach. It can be seen from the
results that there is very little difference in the performance for these two fea-
ture elimination approaches (p-value = 0.054 using the wilcoxon test). Note
that the adaptive feature elimination approach has lower accuracies with less
features than the original one, which indicates that some important features
may be removed at the beginning using this approach. However the adaptive
feature elimination approach is much faster than the original approach. The
average running time across the five individual experiments for RFE-1 was ap-
proximately 150 minutes. On the other hand, the average running time across
the five individual experiments for RFE-M was approximately 60 minutes. The
experiment indicates that we can use the proposed feature elimination approach
to speed up the running time while maintaining comparable performance.

The results reported in Fig. 3 are the average values of five individual cross-
validation trials. Fig. 4 is a graph of the weighted accuracies for the best and
worst cases in these five individual trials in the SVM-RFE-1 method with the
original feature elimination approach. For the best one, the weighted accuracy
increases slightly when the number of features decreases, but it drops dramati-
cally in the worst trial. Therefore, the average weighted accuracies are steadily
lower than the initial ones with 2000 features and they vary smoothly across
different number of features after taking the average.

Next, for the feature perturbation method, we tried different parameter val-
ues for c in Eq. 1 to see if it could significantly impact on the performance. c
was chosen as 1, 2, and 3 respectively. Due to the limitation of running time,
only the adaptive feature elimination approach was used in the algorithm. The
dataset was randomly stratified as training and test datasets for a tenfold cross

244 L. Chen et al.

Average Weighted Accuracy in SVM-RFE Method

55%

60%

65%

70%

75%

80%

85%

90%

20
00 12

3
11

7
11

1
10

5 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 3

Number of Features

A
cc

u
ra

cy

RFE-1

RFE-M

Fig. 3. Comparison of average weighted accuracies of SVM-RFE with different feature
elimination approaches at different number of features

Weighted Accuracy in SVM-RFE-1 Method
Best trial vs. Worst trial

55%

60%

65%

70%

75%

80%

85%

90%

20
00 12

2
11

5
10

8
10

1 94 87 80 73 66 59 52 45 38 31 24 17 10 3

Number of Features

A
cc

u
ra

cy

Best trial

Worst trial

Fig. 4. Weighted accuracies of SVM-RFE in the best and worst trials

validation. The feature perturbation method was implemented on the training
dataset to recursively eliminate the features, where the noise was randomly gen-
erated from the uniform distribution with the parameter c. The SVM classifier
was built each time with the current active features and the test dataset with
the corresponding active features was predicted to yield the test accuracy. This
was done 10 times, once for each left out fold, and and average weighted accu-
racy over the tenfold was reported. The whole procedure is repeated five times
with the same five different randomly chosen stratified sets of data as in the

Noise-Based Feature Perturbation as a Selection Method 245

Average Weighted Accuracy in Feature Perturbation Method

55%

60%

65%

70%

75%

80%

85%

90%

20
00 12

3
11

7
11

1
10

5 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 3

Number of Features

A
cc

u
ra

cy c = 3

c = 2

c = 1

Fig. 5. Average weighted accuracy for feature perturbation method with different pa-
rameter values of c at different number of features

Average Weighted Accuracy
Feature Perturbation Method vs. SVM-RFE

55%

60%

65%

70%

75%

80%

85%

90%

20
00 12

2
11

5
10

8
10

1 94 87 80 73 66 59 52 45 38 31 24 17 10 3

Number of Features

A
cc

u
ra

cy

FPR c = 2

SVM-RFE-M

Fig. 6. Comparison of average weighted accuracy between feature perturbation method
and SVM-RFE at different number of features

SVM-RFE method in order to get more reliable results. The results reported are
the average values of the five experiments for each value of c.

Fig. 5 is a graph of the average weighted accuracies of the feature perturbation
method with different parameter c at different number of features. The figure
shows that in all cases where c equals 1, 2, and 3, the accuracy is stable or drops
slightly with a large number of features and then it decreases dramatically when
only a few features are retained. Specifically, the overall performance when c = 2

246 L. Chen et al.

Table 2. Statistical test of performance improvement

Method 1 Method 2 Wilcoxon test p-value

FPR (c=1) SVM-RFE < 2.2e − 16
FPR (c=2) SVM-RFE < 2.2e − 16
FPR (c=3) SVM-RFE < 2.2e − 16

is better than the cases when c = 1 or c = 3. The average weighted accuracy
was above 80% for c = 2 when using 15 features, as compared to 75.93% for c
= 3 and 77.34% for c = 1. The best average weighted accuracy can be achieved
at 86.07% with 34 features when c = 2. The average running time across five
individual experiments for the feature perturbation method with the adaptive
feature elimination approach was approximately 800 minutes, which is more than
10x slower than the SVM-RFE method.

Fig. 6 shows the comparison of the average weighted accuracies of the feature
perturbation method and the SVM-RFE method. The adaptive feature elimi-
nation approach was used to remove the features recursively. For the feature
perturbation method, we chose the optimal parameter value of c as 2. As can
be seen in this figure, the feature perturbation method outperformed SVM-RFE
significantly in detecting differentially expressed genes for classifying the colon
cancer dataset with the most number of features. The performance of the SVM-
RFE method is only better than the feature perturbation method when the
number of features (genes) is less than 5, where accuracy drops off dramatically
in both approaches.

For a better comparison of the two different feature selection methods, statis-
tical tests were applied to measure the significance of improvements in predic-
tion accuracy. The feature perturbation method with different parameter values
of c was compared to the SVM-RFE method. As the normality test fails, the
Wilcoxon test [8] was used to test the significance of differences across numbers
of features. Listed in Table 2 are the p-values of the Wilcoxon test, comparing
the feature perturbation method (FPR) and SVM-RFE. The p-values indicate
there is a significant improvement in accuracy using the feature perturbation
method, as compared to the SVM-RFE method.

4 Conclusion

This paper presents a noise-based feature perturbation method as a selection
method for microarray data. We began with the hypothesis that truly informa-
tive genes will cause a classifier to fail when peturbed by noise. We have described
a recursive elimination procedure to remove features that change overall classi-
fication accuracy the least when modified by noise. This procedure is similar in
form to the SVM-RFE method however it is not constrained to the use of sup-
port vector machines. The implementation details and computational complexity
were described.

Noise-Based Feature Perturbation as a Selection Method 247

The noise-based feature peturbation method was compared to the SVM-FRE
method through a series of experiments on the prediction of colon cancer vs.
normal colon tissue. Experimental results showed that the feature perturbation
method can achieve higher prediction accuracies with fewer number of features
than the SVM-RFE method. However, several issues in the feature perturbation
method need further investigation. The introduction of noise is based on the
variability of the feature, however more work is required in identifying the op-
timal factor (the c parameter) to use. Additional strategies for speedup within
the implementation will also be important to address.

Acknowledgments. This research was supported by the Department of De-
fense, National Functional Genomics Center project, under award number DAMD
17-02-2-0051. Views and opinions of, and endorsements by, the author(s) do not
reflect those of the US Army or the Department of Defense.

References

1. Inza, I., Larranaga, P., Blanco, R., Cerrolaza, A.J.: Filter versus wrapper gene se-
lection approaches in DNA microarray domains. Artifical Intelligence Medicine, 31
(2004) 91-103

2. Xiong, H., Swamy, M.N.S., Ahmad, M.O.: Optimziing the Kernel in the Empirical
Feature Space. IEEE trans. Neural Networks 16 (2001) 460-474

3. Guyon, I., Weston, J., Barnihill S., Vapnik, V.: Gene Selection for Cancer Classifi-
cation using Support Vector Machines. Machine Learning, 46 (2002) 389–422

4. Rakotomamonjy, A.: Variable Selection using SVM-based Criteria. Journal of Ma-
chine Learning Research. Vol 3. (2003) 1357–1370

5. Kohavi, R., John, G.H.: Wrappers for Feature Subset Selection. Artificial Intelligence
Archive,97 (1997) 273–324

6. Chang, C.C., Lin, C.J.: A Library for Support Vector Machines, libsvm.
http://www.csie.ntu.edu.tw/-cjlin/libsvm.

7. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kauffman Publishers. 2000

8. Lehmann, E.L.: Nonparametrics:Statistical Methods Based on Ranks. Francisco,
CA: Holden-Day. 1975

Efficient Generation of Biologically Relevant

Enriched Gene Sets

Igor Trajkovski and Nada Lavrač

Department of Knowledge Technologies, Jozef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

{igor.trajkovski,nada.lavrac}@ijs.si

Abstract. Gene set enrichment analysis is a microarray data analysis
method that uses predefined gene sets and ranks of genes to identify
significant biological changes in microarray data sets. In this paper we
present a novel method integrating gene interaction information with
Gene Ontology (GO) for the construction of new interesting enriched
gene sets. The experimental results show that the introduced method
improves over traditional methods that compute the enrichment of a
single GO terms, i.e. that it is capable to find new statistically relevant
descriptions of the biology governing the experiments not detectable by
the existing methods.

1 Introduction

High-throughput technologies such as DNA microarrays and proteomics are
revolutionizing biology and medicine. Global gene expression profiling using mi-
croarrays monitors changes in the expression of thousands of genes simultane-
ously. The large amounts of data acquired must then be reduced or “translated”
to a smaller set of genes representing meaningful biological differences between
control and test systems and validated in an experimental or clinical setting.

In a typical experiment, mRNA expression profiles are generated for thousands
of genes from a collection of samples belonging to one of two classes - for example,
tumors that are sensitive vs. those resistant to a drug. The genes can be ordered
in a ranked list L, according to the difference of expression between the classes.
The challenge is to extract the meaning from this list.

A common approach involves focusing on a handful of genes at the top of L
(genes showing the largest difference in its expression between the classes), to
extract the underlying biology responsible for the phenotypic differences. This
approach has a few major limitations:

– After correcting for multiple hypotheses testing, no individual gene may
meet the threshold for statistical significance, because the relevant biolog-
ical differences are small relative to the noise inherent to the microarray
technology.

– The opposite situation, one may be left with a long list of statistically sig-
nificant genes without any common biological function.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 248–259, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

Efficient Generation of Biologically Relevant Enriched Gene Sets 249

– Single-gene analysis may miss important effects on pathways. Cellular pro-
cesses often affect sets of genes acting jointly. An increase of 20% in all
genes encoding members of a biological process may dramatically alter the
execution of that process, and its impact on other processes, than a 10-fold
increase in a single gene.

– It is not a rare case when different groups studying the same biological
system, report a list of statistically significant genes from the two studies
that have a significantly small overlap.

To overcome these analytical challenges, recently method was developed,
called Gene Set Enrichment Analysis (GSEA) [1], that evaluates microarray
data at the level of gene sets. Biologically interesting sets of genes, for exam-
ple genes that belong to a pathway or genes known to have the same biological
function, are good examples of such gene sets. The most popular choice for gene
sets are genes annotated with some GO term. The goal of GSEA is to determine
whether members of a gene set S tend to occur toward the top of the list L, in
which case the gene set is correlated with the phenotypic class distinction.

In this work we propose a method for generating new gene sets that have
relevant biological interpretations, by combining the existing gene sets, and by
inclusion of gene-gene interaction information available from the public gene
annotation databases. The experimental results show that our method can find
descriptions of interesting enriched gene sets, that traditional methods are unable
to discover. We applied the proposed method to three gene expression data
sets with the following respective sets of sample classes: (i) acute lymphoblastic
leukemia (ALL) vs. acute myeloid leukemia (AML), (ii) seven subtypes of ALL,
and (iii) fourteen different types of cancers. Significant number of discovered gene
sets have description which highlights the underlying biology that is responsible
for distinguishing one class from the other classes.

The paper is organized as follows. In Section 2 we give background informa-
tion about Gene Ontology and differentially expressed genes. Section 3 provides
details of the Gene Set Enrichment Analysis. Section 4 presents the idea of our
approach, and the steps taken in the construction of interesting gene sets. Sec-
tion 5 presents the results of the experiments. In Section 6 we draw some final
conclusions.

2 Background

2.1 Gene Ontologies

One of the most important tools for the representation and processing of informa-
tion about gene products and functions is the Gene Ontology (GO)1. It provides
a controlled vocabulary for the description of cellular components, molecular
functions, and biological processes.

1 http://www.geneontology.org

250 I. Trajkovski and N. Lavrač

As of December 2006, GO contains 1864 cellular component, 7513 molecular
function and 12549 biological process terms. Terms are organized in parent-
child hierarchies (see Fig. 1), indicating either that one term is more specific
than another (is a) or that the entity denoted by one term is part of the entity
denoted by another (part of). Typically, such associations (or “annotations”) are
first of all established electronically and later validated by a process of manual
verification which requires the annotator to have expertise both in the biology
of the genes and gene products and in the structure and content of GO. GO, in
spite of its name, is not an ontology in the sense accepted by computer scientists,
in that it does not deal with axioms and formalized definitions associated to
terms. It is rather a taxonomy, or, as the GO Consortium puts it, a “controlled
vocabulary” providing a practically useful framework for keeping track of the
biological annotations applied to gene products.

Fig. 1. This figure shows a part of GO providing the annotations concerning amine
metabolism

2.2 Differentially Expressed Genes

Differentially expressed genes are genes that are expressed differently (relative.
to the reference) between the conditions of interest. In the context of finding
differentially expressed genes, the null hypothesis for each gene is that it is
not differentially expressed between two conditions, usually against the two-
sided alternative hypothesis that the gene is up- or down regulated. The most
commonly used statistical test in this setting has been the two-sample t-test [3]
[4], although other statistics such as the signal-to-noise ratios [2], or Pearson’s
correlation [5], have often been used.

Let T (g, c) denote the t-test score of gene g for a target class c, which is
computed by the following procedure: [μ1(g), σ1(g)] and [μ2(g), σ2(g)] denote
the means and standard deviations of the logarithm of the expression levels of
gene g for the samples in class c and samples in C \ c, respectively. Also, let N1
= |c| and N2 = |C \ c|. T (g, c) is computed by the following formula:

T (g, c) =
μ1(g) − μ2(g)
√

σ1(g)
N1

+ σ2(g)
N2

(1)

Efficient Generation of Biologically Relevant Enriched Gene Sets 251

which reflects the difference between the classes relative to the standard deviation
within the classes. Large values of |T (g, c)| indicate a strong correlation between
the gene expression and the class distinction, while the sign of T (g, c) being
positive or negative corresponds to g being more highly expressed in class c or
in other classes.

3 Gene Set Enrichment Analysis (GSEA)

GSEA considers experiments with gene expression profiles from samples belong-
ing to two classes. First, genes are ranked based on the correlation between their
expression and the class distinction by using any suitable metric, for instance
computed by signal-to-noise ratios or Pearson’s correlation. In our experiments
we ranked the genes according to their t-score value.

Given a predefined set of genes S (e.g. genes involved in some specific biolog-
ical process) and ranked gene list L, the goal of GSEA is to determine whether
the members of S are randomly distributed throughout L or primarily found at
the top of the list.

There are two major steps in the GSEA method:

1. Calculation of an Enrichment Score. Enrichment score (ES) reflects the
degree to which a set S is overrepresented at the top of the ranked list L.
The score is calculated by walking down the list L, increasing a running-sum
statistic when encountering a gene in S and decreasing it when gene is not
in S. The magnitude of the increment depends on the size of S and the total
number of genes N . The enrichment score is the maximum deviation from
zero encountered in the random walk. If L = (g1, g2, ...,gN) is a ranked list
of genes, according to their t-score, enrichment score ES is calculated as:

Hit(S, i) =
∑

gj∈S

1≤j≤i

1
|S| Miss(S, i) =

∑

gj∈S

1≤j≤i

1
N − |S|

ES(S) = max
1≤i≤N

|Hit(S, i) − Miss(S, i)| (2)

Fig. 2. ‘Spectral lines’ show the position of gene set members on the ranked gene list

252 I. Trajkovski and N. Lavrač

2. Estimation of Significance Level of ES. The statistical significance of
the ES is computed by using an empirical phenotype-based permutation
test procedure that preserves the complex correlation structure of the gene
expression data. Specifically, one permutes the phenotype labels and recom-
putes the ES of the gene set for the permuted data, which generates a null
distribution for the ES. The empirical, p-value of the observed ES is then
calculated relative to this null distribution. Importantly, the permutation
of class labels preserves gene-gene correlations and, thus, provides a more
biologically reasonable assessment of significance than would be obtained by
permuting genes.

4 Generation of New Gene Sets

Methods that test for enrichment of GO terms have been proposed by [6], [7],
[8] and [9]. A comparative study of commonly used tools for analyzing GO
term enrichment was presented by [10]. [11] presented two novel algorithms that
improve GO term scoring using the underlying GO graph topology.

None of the papers includes the gene interaction information, and none of
them presents a method for the construction of novel gene sets, but rather they
just calculate the enrichment of an a-priory given list of gene sets.

Fig. 3. Data flow of the proposed method for generation of enriched gene sets

First, let us mention some properties of the gene annotations with GO terms:

– one gene can be annotated with several GO terms,
– a GO term may have thousands of genes annotated to it,
– if a gene is annotated with a GO term A then it is annotated with all

ancestors of A.

From this information, we can conclude that each GO term defines one gene set,
that one gene can be member of several gene sets, and that some gene sets are
subsets of other gene sets.

Second, let Func, Proc and Comp denote the sets of gene sets that are defined
by the GO terms that are a subterm of the term “molecular function”, “biological
process” and “cellular component”, respectively.

Our method relies on two ideas, that are used in the construction of new gene
sets:

Efficient Generation of Biologically Relevant Enriched Gene Sets 253

– Inclusion of gene interaction information. There are cases when some
abrupted processes are not detectable by the enrichment score, one reason
can be that the genes had a slight increase/decrease in their expression, but
had a much larger effect on the interacting genes. Therefore we think that
it is reasonable to construct gene set whose members interact with another
gene set. Gene-gene interaction information is provided for pairs of genes
for which there is an evidence that their expression levels are correlated,
determined by analysis of microarray data or other experimental methods.

Formally: if G1 ∈ Func (or Proc, Comp, respectively), then G2 = {g2|g2 is a
gene, and g2 interacts with g1 ∈ G1 } was added to Func (or Proc, Comp).

– Intersection of gene sets. There are cases where two or three given
gene sets are not significantly enriched, but their intersection is significantly
enriched.

Formally: if G1 ∈ Func,G2 ∈ Proc and G3 ∈ Comp, then G4 = G1
⋂

G2
⋂

G3
is a new defined gene set.

For example, it can happen that gene set defined by the molecular func-
tion F is not enriched, because a lot of genes in different parts of the cell
execute it and one can not expect that all of them will be over/under ex-
pressed, but if genes with that function in some specific part of the cell Cpart

are abnormally active, then it can be elegantly captured by the following gene
set:

Func(F)
⋂

Comp(Cpart).

Note that all genes are annotated with the top three GO terms: “molecular
function”, “biological process” and “cellular component”, which means that
top three GO terms contain all the genes.

The newly defined gene sets are interpreted very intuitively. For example, the
gene set defined as intersection of a “functional” term A and “process” term B:

function(A), process(B) ≡ Func(A)
⋂

Proc(B)

is interpreted as: Genes that are part of the process B and have function A,
or:

int(process(A)) ≡ {g2|g2 is a gene, and g2 interacts with g1 ∈ Proc(A)}

is interpreted as: Genes that interact with genes that are members of process A,
or:

int(process(A),component(B)) ≡ int(Proc(A))
⋂

int(Comp(B))

is interpreted as: Genes that interact with genes that are members of process A,
and genes that operate in cellular component B.

254 I. Trajkovski and N. Lavrač

The number of the newly defined gene sets is huge. In December 2006, |Func|
= 7513, |Proc| = 12549 and |Comp| = 1846. After the inclusion of the gene
interaction information, the size of these sets is doubled. Then the number of
newly generated gene sets is:

23 × |Func| × |Proc| × |Comp| ≈ 1.4 × 1012

For each of these sets we need to compute its enrichment score, ES, that takes
linear time in the number of genes (≈ 2 × 104), we get ≈ 3 × 1016 floating op-
erations. If we want to statistically validate founded enriched gene sets, usually
with 1000 permutation tests, we get ≈ 1020 operations, that is well above the
average performance of today PC’s. Therefore we need to efficiently search the
space of newly generated gene sets for possible enriched gene sets.

The first idea for improvement is that we are not interested in generating all
possible gene sets, but only those that are potentially enriched, and have some
minimum number of genes at the top of the list, for example 5 in the first 100,
or 10 in the first 300 genes of the list (this was the constraint used in our experi-
ments). That is a weak constraint concerning the biological interpretation of the
results, because we are not really interested in the gene sets that do not have
this number of genes at the top of the list, but it is a hard constraint concerning
the pruning of the search space of all gene sets. By having this constraint we can
use the GO topology to efficiently generate all gene sets that satisfy it.

GO is a directed acyclic graph, the root of the graph is the most general term,
which means that if one term (gene set) does not satisfy our constraint, than all
its descendants will also not satisfy it, because they cover a subset of the genes
covered by the given term. In this way we can significantly prune the search
space of possible enriched gene sets. Therefor, we first try to construct gene sets
from the top nodes of the GO, and if we fail we do not refine the last added
term that did not satisfy our constraint.

After the construction of the gene sets that satisfy our constraint, we calcu-
late their ES value, and statistically validate this values using the permutation
testing.

In the original version of Kolmogorov-Smirnov test, used by GSEA, the ES
statistic used equal weights at every step, which yielded high scores for sets clus-
tered near the middle of the ranked list. These sets do not represent biologically
relevant correlation with the phenotype. We addressed this issue by weighting
the steps according to each genes correlation with a phenotype. Like in the orig-
inal version we first rank the N genes to form L = (g1, g2, . . . , gN) according
to their t-score, t(gj) = tj, of their expression profiles with class c. Then the
running sum Hit is computed by following formula:

Hit(S, i) =
∑

gj∈S

1≤j≤i

|tj |∑
gj∈S |tj |

The other running sum, Miss, and ES statistic were calculated with the original
formulas.

Efficient Generation of Biologically Relevant Enriched Gene Sets 255

5 Experiments

We applied the proposed methodology to three classification problems from gene
expression data, with the aim to describe the most important biological processes
that are responsible for class differentiation.

The first problem was introduced in [2] and aims at distinguishing between
samples of ALL and AML from gene expression profiles. The second problem was
described in [12] and aims at distinguishing different subtypes of ALL (6 recog-
nized subtypes plus a separate class ‘other’ containing the remaining samples).
The third problem was defined in [13]. Here one tries to distinguish among 14
classes of cancers from gene expression profiles. Gene annotations and interaction
data was downloaded from Entrez database ftp://ftp.ncbi.nlm.nih.gov/gene/.

Note that this paper does not address the learning task of discriminating
between the classes. Instead, for the given target class we aim at finding relevant
enriched gene sets that can capture the underlying biology characteristic for that
class.

Table 1. Some of the enriched gene sets in the first dataset, with p-value ≤ 0.001

Class Gene Set ES

ALL 1. int(Func(’zinc ion binding’), Comp(’chromosomal part’), 0.60
Proc(’interphase of mitotic cell cycle’))

2. Proc(’DNA metabolism’) 0.59
3. int(Func(’RNA polymerase II transcription factor activity’), 0.56

Proc(’ubiquitin cycle’),
Comp(’intracellular non-membrane-bound organelle’))

4. int(Func(’ATP binding’), Comp(’chromosomal part’), 0.55
Proc(’DNA replication’))

AML 1. int(Func(’metal ion binding’), Comp(’cell surface’), 0.54
Proc(’response to pest, pathogen or parasite’))

2. int(Comp(’lysosome’)) 0.53
3. Proc(’inflammatory response’) 0.51
4. int(Proc(’inflammatory response’), Comp(’cell surface’)) 0.51

5.1 Experimental Results

To illustrate the straightforward interpretability of the enriched gene sets found
by our approach, we provide the best-scoring gene sets for some of the target
classes in the mentioned three classification problems (see Table 1, 3 and 4).
We should mention that enriched gene sets that include too general GO terms
(i.e. “biological function”, “protein binding”, “cellular physiological process”,
“cytoplasm”, etc.), were removed from the result list.

For comparison of enrichment of the found gene sets with the gene sets defined
by a single GO term, in Table 2 we list the most enriched gene sets defined by
a single GO term, for the first dataset. We can see that ES of the single GO
terms is much smaller then the ES of the newly constructed gene sets, and most

256 I. Trajkovski and N. Lavrač

Table 2. Summary of GSEA results for the first dataset, with p-value ≤ 0.005. Gene
sets constructed from a single GO term.

Class Gene Set ES

ALL 1. Proc(’DNA metabolism’) 0.59
2. Comp(’intracellular non-membrane-bound organelle’) 0.35
3. Proc(’development’) 0.22
4. Comp(’cytoplasmic part’) 0.22
4. Proc(’transport’) 0.22

AML 1. Proc(’inflammatory response’) 0.51
2. Proc(’response to chemical stimulus’) 0.41
3. Proc(’proteolysis’) 0.38
4. Proc(’cell communication’) 0.33

Table 3. Some of the enriched gene sets in the second data set, with p-value ≤ 0.001

CLASS Gene Set ES

BRC 1. Proc(’cell adhesion’),Comp(’integral to membrane’) 0.56
2. int(Func(’zinc ion binding’), 0.54

Proc(’cell surface receptor linked signal transd.’),
Comp(’endoplasmic reticulum’))

3. int(Func(’metal ion binding’), 0.53
Proc(’cell migration’),Comp(’membrane’))

E2A 1. int(Func(’calc. ion bind.’), Proc(’protein kinase casc.’), 0.57
Comp(’intracellular membrane-bound organelle’))

2. Proc(’cell adhesion’),Comp(’membrane’) 0.57
3. int(Func(’ATP binding’), Comp(’integral to membrane’), 0.55

Proc(’reg. of transcr. from RNA poly. II promoter’))
MLL 1. int(Func(’protein kinase activity’), Comp(’mem. fraction’), 0.63

Proc(’transmem.rec.protein.tyros.kinase.sig.path.’))
2. int(Func(’SH3/SH2 adaptor activity’), Proc(’apoptosis’), 0.61

Comp(’cytoskeleton’))
T ALL 1. int(Func(’protein-tyrosine kinase activity’), 0.92

Proc(’positive regulation of T cell proliferation’),
Comp(’immunological synapse’))

2. Proc(’antigen presentation’), Comp(’integral to membrane’) 0.88
TEL 1. int(Proc(’cell adhesion’), Comp(’cell junction’)) 0.65

2. int(Proc(’synaptic transmission’), Comp(’cytoskeleton’)) 0.57

importantly, the found gene sets are constructed from not enriched GO terms.
Similar results we got for the other two datasets.

5.2 Statistical Validation

The following procedure calculated the significance of an observed ES by com-
paring it with the set of scores ESNULL computed with randomly assigned
phenotypes:

Efficient Generation of Biologically Relevant Enriched Gene Sets 257

1. Randomly assign the original phenotype labels to samples, reorder genes
according to their t-score values, and re-compute ES(S).

2. Repeat step 1 for 1,000 permutations, and create a histogram of the corre-
sponding maximum enrichment scores ESNULL.

3. Estimate the p-value for the ES value of the gene set S from ESNULL by
using the histogram computed at step 2. If there was not a case where random
labeling of the examples give bigger ES value, then p-value < 0.001.

We use class labeled permutation because it preserves gene-gene correlations and,
thus, provides a more biologically reasonable assessment of significance than would
be obtained by permuting genes. Importantly, the permutation of class labels pre-
serves gene-gene correlations and, thus, provides a more biologically reasonable
assessment of significance than would be obtained by permuting genes.

Table 4. Some of the enriched gene sets in the third data set, with p-value ≤ 0.001

CLASS Gene Set ES

BREAST 1. Func(’RNA binding’) 1.03
2. int(Func(’zinc ion binding’),Comp(’nuclear part’)) 0.79
3. int(Func(’RNA.polym.II.trans.fact.act.’),Comp(’nucleus’), 0.76

Proc(’reg. of transcr. from RNA poly. II promoter’))
CNS 1. Func(’struc.const.of.ribosome’),Proc(’protein biosynth.’) 2.06

2. int(Func(’actin binding’),Comp(’cytoskeletal part’)) 1.33
COLO. 1. int(Comp(’extracellular matrix (sensu Metazoa)’)) 0.62
LYMPH. 1. int(Func(’transmem.rec.activ.’),Comp(’int.to.plasma.mem.’) 1.78

Proc(’posit.reg. of I-kappaB kinase/NF-kappaB casc.’))
MELAN. 1. int(Func(’transcription cofactor activity’), 1.20

Proc(’muscle development’), Comp(’nucleus’))
MET 1. int(Proc(’MAPKKK cascade’),Comp(’membrane’)) 0.45
OVARY 1. int(Func(’zinc ion binding’),Comp(’membrane fraction’) 0.45

Proc(’phosphorylation’))
2. int(Func(’zinc ion binding’),Comp(’integral to membrane’) 0.42

Proc(’cell growth’))
PANCR. 1. Proc(’proteolysis’) 0.51

2. Comp(’ribonucleoprotein complex’) 0.50
PROST. 1. int(Func(’androgen receptor binding’),Comp(’nucleus’), 0.50

Proc(’reg. of transcr. from RNA poly. II promoter’))
2. Comp(’cytoskeletal part’) 0.49

RENAL 1. int(Proc(’insulin receptor signaling pathway’), 0.43
Comp(’intracellular membrane-bound organelle’))

2. int(Func(’protein-tyr. kinase activ.’),Comp(’cyto. part’) 0.43
Proc(’regulation of cell growth’))

6 Conclusion

We addressed the problem of finding enriched functional groups of genes based
on gene expression data. We proposed a novel method for integrating the gene

258 I. Trajkovski and N. Lavrač

interaction information into the construction of new interesting relevant gene
sets. The experimental results show that the introduced method improves over
existing methods, and we base our conclusion on the following facts:

– ES of the newly constructed sets are higher then the ES of any single GO
terms.

– Newly constructed sets are composed of non-enriched GO terms, which
means that we are extracting additional biological knowledge that can not
be found by single GO term GSEA.

– This method is generalization of the traditional methods. If we turn-off gene-
gene interactions and combination of GO terms, we will get classical single
GO term GSEA.

We believe that the strength of the proposed method will be even bigger through
the expected increase in both the quality and quantity of gene annotations and
gene-gene interaction information in the near future.

Acknowledgment

This research was supported by the Slovenian Ministry of Higher Education,
Science and Technology.

References

1. Subramanian A., et al. (2005) Gene set enrichment analysis: A knowledgebased
approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci.
of the U.S.A., 102(43):15545-15550.

2. Golub T. R., Slonim D. K., Tamayo P., Huard C., Gaasenbeek M. et al. (1999).
Molecular classification of cancer: Class discovery and class prediction by gene
expression monitoring. Science, 286:5439, 531-537.

3. Snedecor G. W. and Cochran W. G. (1989) Statistical Methods, Eighth Edition,
Iowa State University Press.

4. Tsai C. A., Chen Y. J. and Chen J. J. (2003) Testing for differentially expressed
genes with microarray data. Nucleic Acids Res 31, e52.

5. Troyanskaya O. G., et al. (2002) Nonparametric methods for identifying differen-
tially expressed genes in microarray data. Bioinformatics 18(11):1454-61.

6. Draghici S., , et al. (2003) Global functional profiling of gene expression. Genomics,
81:98-104.

7. Zeeberg B. R., et al. (2003) GoMiner: a resource for biological interpretation of
genomic and proteomic data. Genome Biology, 4(4):R28.

8. Al-Shahrour F., et al. (2004) FatiGO: a web tool for finding significant associations
of Gene Ontology terms with groups of genes. Bioinformatics, 20:578-580.

9. Beissbarth T. and Speed T. (2004) GOstat: Find statistically overrepresented Gene
Ontologies within a group of genes. Bioinformatics, 1(1):1-2.

Efficient Generation of Biologically Relevant Enriched Gene Sets 259

10. Khatri P. and Draghici S. (2005) Ontological analysis of gene expression data:
current tools, limitations, and open problems. Bioinformatics, 21(18):3587-3595.

11. Alexa A., et al. (2006) Improved Scoring of Functional Groups from Gene Expres-
sion Data by Decorrelating GO Graph Structure. Bioinformatics, 22(13):1600-1607.

12. Ross M. E., et al. (2003) Classification of pediatric acute lymphoblastic leukemia
by gene expression profile. BLOOD, pp. 2951-2959.

13. Ramaswamy S., et al. (2001) Multiclass cancer diagnosis using tumor gene expres-
sion signatures. Proc. Natl. Acad. Sci. of the U.S.A. 18;98(26):15149-54.

Space and Time Efficient Algorithms to Discover

Endogenous RNAi Patterns in Complete
Genome Data

Sudha Balla and Sanguthevar Rajasekaran

University of Connecticut, Storrs CT 06269-2155, USA

Abstract. RNAi, short for RNA Interference, a phenomenon of inhibit-
ing the expression of genes, is widely adopted in laboratories for the
study of pathways and determination of gene function. Recent studies
have shown that RNAi could be used as an approach to treat diseases like
cancers and some genetic disorders in which the down-regulation of a pro-
tein could prevent or stop progression of the disease. In [7], the problem of
detecting endogenous dsRNA control elements and their corresponding
mRNA target, i.e., the gene under RNAi control by degradation, in com-
plete genomes of species using a suffix tree data structure is discussed.
While the algorithm identifies triple repeats in the genome sequence in
linear time, its very high memory requirement (12 GB for the C. elegans
genome of size 100 Mbp) becomes a bottleneck for processing genomes
of higher order. In this paper, we give algorithms that are space and
time efficient in practice than the suffix tree based algorithm. Our algo-
rithms are based on simple array data structures and adopt basic sorting
techniques to identify the desired patterns in a given genome sequence.
We achieve a speedup of 23 and reduction in memory requirement by
a factor of 12 for the C. elegans genome, over the suffix tree approach,
making the processing of higher order genomes possible for detecting
such endogenous controls and targets for RNAi by degradation.

1 Introduction

RNA Interference or RNAi ([5]) is a phenomenon that inhibits the expression
of target genes by the introduction of double-stranded RNA (dsRNA) molecules
into the cells of organisms. RNAi has become a widely adopted technique in
laboratories to study pathways and determine gene functions in various species.
Recent studies show that it could be adopted as a therapy to treat diseases
like cancers and genetic disorders in which the mutant gene responsible for the
initiation and progression of such disorders is targeted and suppressed [3]. The
dsRNA molecules, either synthetic (in vitro) or those synthesized in vivo as a
hairpin loop, are cut into fragments 21-23 nt long (short-interference RNA or
siRNA) by a Dicer enzyme present in the cell. These siRNAs associate them-
selves to RNA Induced Silencing Complex (RISC) and eventually become single
stranded. Then, the RISC identifies the substring of the target mRNA that is
anti sense to one of the two strands of the siRNA attached to it, binds to the

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 260–269, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

Space and Time Efficient Algorithms 261

mRNA and cleaves it into two near the center of the siRNA strand. The cell
identifies the split mRNA as unwanted material and destroys it. Thus, the pro-
tein that would be translated from the mRNA will not be produced and the
silencing of the gene responsible for the production of the protein is achieved.
This process is called RNAi by degradation. RNAi by inhibition is another pro-
cess where micro RNAs (miRNA) approximately 22 nt long bind to sites within
the 3’ UnTranslated Region (UTR) of the target mRNA and prevent its trans-
lation into the corresponding protein ([8]). For a detailed treatment of RNAi
please refer to [1]. In RNAi by inhibition, perfect matching between the miRNA
and the mRNA target site is not necessary but for RNAi by degradation, an
exact matching is necessary between the siRNA strand and the substring of the
target mRNA. In [7], the problem of detecting endogenous dsRNA control ele-
ments and their corresponding mRNA target for RNAi by degradation in genome
sequences is discussed. In this case, the dsRNA control element is a Stem-Loop-
Stem (hpRNA) structure formed in vivo by the occurrence of two substrings
20-25 nt long, complementary to one another within a small distance along the
genome sequence and a third occurrence, which is part of the target gene, that is
either one of the above two occurrences that is anywhere in the genome(Figure 1).
The first phase is of detecting all such triple repeats in a genome sequence and
an algorithm based on a suffix tree data structure is given to detect triplets of
at least 20 nt length in [7].

The suffix tree approach is very ideal for applications where several patterns
will be searched for matches in a sequence after its suffix tree is built. However,

Fig. 1. Endogenous RNAi by Degradation Process

262 S. Balla and S. Rajasekaran

for the above mentioned goal of identifying triplets in a genome sequence, where
the lengths of all the triplets are within a very small range, say 20-25 nt, suffix
trees may not be appropriate. One of the reasons is that the length of the genome
sequence is very large and hence paging could become a very serious issue if the
entire tree does not reside in the main memory. This is evident from [7] where
the authors report a memory requirement of 12 GB for a genome (C. elegans)
of size 100 Mb. The time required to process is mentioned as 4 hours on a single
processor.

In this paper, we propose two algorithms, CaTScan1 and CaTScan2 (for
Control And Target Scan), that are based on simple array data structures and
adopt basic sorting techniques to identify the triplets. Implementation results
of both the algorithms show better performance in practice in space as well as
time when compared to the suffix tree algorithm. We have run our algorithms
on a PowerEdge 2600 Linux server with 4 GB of RAM and dual 2.8 GHz Intel
Xeon CPUs. We have employed only one of these CPUs to process the C. elegans
genome to identify triplets of length 21 nt. CaTScan1 takes about eight minutes
and no more than 2.5 GB of memory, while CaTScan2 takes about eleven min-
utes and no more than 1 GB of memory. Thus our algorithms achieve a speedup
of 30 and 23 respectively, while reducing the memory requirement by a factor of
4.8 and 12 respectively, over the suffix tree approach.

2 Problem Description

In [7], the first step in the problem of detecting endogenous dsRNA control
elements and their corresponding mRNA target for RNAi by degradation involves
identifying triple repeats in a given genome sequence. Two of these repeats should
be of length 20-25 nt each, be complementary to one another, and occur within
a small distance along the genome sequence. A third occurrence, which is a part
of the target gene, must be either one of the above two occurrences and can be
anywhere in the genome. Formally, the problem is stated as follows:

The Triple Repeat Identification Problem (TRIP): Input are a sequence S =
s1s2...sn from an alphabet Σ, and integers l and d. For each element of Σ, a
member of this alphabet is defined to be its complement. If L is an l-mer (i.e.,
a substring of length of l) of S, let Lrc stand for the reverse complement of L.
The goal is to output every l-mer, L, of S if Lrc occurs within a distance d of L
in S, and either L or Lrc occurs one more time in S.

A brief description of the suffix tree based algorithm is as follows: A suffix
tree is built for the given genome sequence S and its reverse complement Src. A
pre-order traversal is performed on the tree to calculate the lengths of possible
substrings. A post-order traversal of the tree is performed in order to calculate
the number of occurrences of each such substring in the genome. From these
two data, the occurrences of substrings of length at least 20 nt that satisfy the
conditions of being a triple repeat are identified. The construction of the tree
and each of the two traversals take O(n) time where |S| = n.

Space and Time Efficient Algorithms 263

Exact matching using a suffix tree as the data structure can be done with
a preprocessing time of O(n) for a sequence of length n and a search time of
O(l) for each pattern of length l thereafter. But, sometimes suffix trees become
impractical because of the following vital implementation bottlenecks: (1) If
an array of size Θ(|Σ|) is used at each node of the tree, although it achieves
constant-time access, the space required will be Θ(|Σ|n); (2) To avoid this, if a
linked-list is used at each node, the time taken to search at each node will be
O(|Σ|); and (3) For very large values of n as in the case of a genome sequence,
where the tree would not fit in the memory, paging could become a very serious
issue as a suffix tree does not possess good locality properties. For a detailed
discussion of suffix trees refer to [6].

Our approach involves creating a collection of all the l-mers and their cor-
responding reverse complements in the genome sequence, sorting them lexico-
graphically and scanning through the sorted collection to identify the triplets
of interest. There are many ways to sort such a collection. For instance, it can
be sorted using any comparison-based algorithm such as quick sort, merge sort,
etc. Another way is to employ radix sort. In our problem, if we represent every
l-mer in the collection as an integer value, we know that the values of elements
in the collection lie strictly in the range [0, |Σ|l], (i.e.) every element in the
collection is a (log2 |Σ|)l-bit number. Radix sort sorts the elements with respect
to some number of bits at a time starting from the LSBs. For example, these
elements can be sorted with respect to w bits at a time, where w is the word
length of the computer. In this case, the elements in the collection can be sorted
in (log2 |Σ|)l/w phases.

3 New Algorithms for TRIP

The genome sequence S is from the alphabet Σ = {a, c, t, g}. In this alphabet
g is the complement of c and a is the complement of t. We map the elements
of Σ into integers as follows: a = 0, c = 1, t = 2 and g = 3. Thus we need two
bits to represent each member of Σ and an l-mer can be represented by a 2l-bit
number.

Algorithm CaTScan1 adopts the radix sorting approach as follows. Let C
be a collection of elements of the form e = (p, o, v), holding the positional (p),
orientational (o) and value (v) information of l-mers in S. For every l-mer li
starting at position i, 1 ≤ i ≤ (n − l + 1), in S, ef

i = (pf
i , of

i , vf
i) and erc

i =
(prc

i , orc
i , vrc

i) are the two elements representing itself and its reverse complement
respectively in C, such that, pf

i = prc
i = i, of

i = 0, orc
i = 1, vf

i = 2l-bit number
of li and vrc

i = 2l-bit number of lrc
i . Elements of C are sorted with respect to the

integer values of their corresponding l-mers using radix sort. Algorithms that
adopt a similar strategy for identifying motifs in a given set of sequences can
be found in ([9] and [10]). A scan of the sorted collection C will be sufficient to
identify the desired triplets and output them.

Analysis of the above algorithm is straight forward and simple. The collection
C could be built in time O(n + l) as follows: The values of both vf

i and vrc
i ,

264 S. Balla and S. Rajasekaran

1 ≤ i ≤ (n − l + 1) of every l-mer in the input sequence S are generated
simultaneously. The integer values for the first l-mer, vf

1 and vrc
1 are calculated

in l-steps, while the integer values for vf
i and vrc

i for all l-mers, 1 < i ≤ (n−l+1)
are calculated in constant time per l-mer as follows.

if(i = 1) {
vf

i = 0;
vrc

i = 0;
for position = 1 to l do {

vf
i <<= 2;

vf
i + = S[position];

vrc
i + = ((S[position] + 2)mod4) ∗ 4(position−1);

}
}
else{

vf
i = vf

i−1;
vf

i − = (S[i − 1] ∗ 4(l−1));
vf

i <<= 2;
vf

i + = S[i + l − 1];
vrc

i = vrc
i−1;

vrc
i >>= 2;

vrc
i + = ((S[i + l − 1] + 2)mod4) ∗ 4(l−1);

}
There are O(n) elements in C and hence the sorting and the scanning steps

take time O(nl/w) and O(n) time respectively, where w is the word length of
the computer. The space complexity of the algorithm is O(nl) as each element of
C are two integers for pi and vi (a 2l-bit integer) and a bit value (0 or 1) for oi.
Therefore, algorithm CaTScan1 runs in time O(nl/w) using O(nl) space. This
algorithm has been implemented and the experimental results are discussed in
the next section.

For very large genomes, the memory required by CaTScan1 could become a
bottleneck as it involves holding the values of each vf

i and vrc
i , two 2l-bit integers

in memory in addition to position i and and its two orientations 0 and 1. In an
effort to further reduce the memory requirement of CaTScan1, we propose here
another algorithm CaTScan2 that adopts a two phase approach to identify the
patterns of interest.

Algorithm CaTScan2 employs a combination of MSBs first and LSBs first
integer sorting. Let k be any integer, 1 ≤ k ≤ l. In the first phase, we partition
the l-mers and their corresponding reverse complements of S into 4k parts (as
|Σ| = 4), with respect to the value of the first k symbols. In particular, two
l-mers will be in the same part if their first k symbols are the same. One way of
partitioning is as follows. Let A[1 : 4k] be an array of linked lists. Scan through S
once. For each position i in S, we can think of sisi+1...si+k−1 as a 2k-bit integer.
Let vf

i be this integer and vrc
i the value of the reverse complement. We add the

tuple (i, 0) to the list A[vf
i] and (i, 1) to the list A[vrc

i].

Space and Time Efficient Algorithms 265

Now we have at most 4k independent sorting subproblems (one for each list
of the array A). Each list of A can also be sorted in a similar way. Consider
any list A[q]. We can sort elements of A[q] with respect to their next k symbols,
and so on. When the size of a list is small (< 4k, for instance), it can be easily
sorted using any algorithm. The memory used by this algorithm is O(n) and
is not a function of l. In particular, space is reused in solving the independent
subproblems.

Alternatively, after the above first phase we can go through each list of A and
perform a sorting (with respect to the last (l − k) symbols of the corresponding
l-mers) using LSBs first sorting, for example. The advantage of the first phase
is very clear. There are nearly 2n l-mers and their reverse complements in S.
Assume that each symbol of S is picked uniformly randomly from the alphabet
Σ. Also assume that the l-mers are independent (which is clearly false since
the l-mers could be overlapping). An analysis making this assumption has been
proved to hold well in practice (see e.g., [2]). Then the expected size of each list
of A is 2n/4k. Using Chernoff bounds we can show that the size of each list is
no more than (1 + ε)2n/4k with high probability, for any fixed ε > 0.

If cln is the amount of memory employed by algorithm CaTScan1, then with
CaTScan2, the space occupied by A is no more than 16n (considering that each i
is a 32-bit integer; there are n positions on S and 2n entries in the linked lists of
A; each entry in the linked list is an i and a reference to the next element in the
list, thus requiring 4 ∗ 2n ∗ 2 = 16n bytes space). The space used to process each
list of A is no more than cl(1 + ε)2n/4k with high probability and can be reused
for the different lists of A. As a result, the memory used by the new algorithm
is 16n + cl(1 + ε)2n/4k with high probability (where the probability is over the
space of all possible inputs). An example value for k is 6.

Also, the memory requirement of CaTScan2 could further be reduced (to
nearly 8n + cl(1 + ε)2n/4k) if the lists of A are realized as an array of 4k arrays
whose initial size is calculated by an additional pre-scan of the sequence S. We
have implemented algorithm CaTScan2 using this methodology and provide its
performance details in the following section.

The analysis of algorithm CaTScan2 is as follows: The pre-scan of the genome
sequence to calculate the size of each of the 4k arrays takes O(n + k) time. The
partitioning phase takes O(n+k) time. The sorting phase of each of the 4k arrays
with respect to (l−k) symbols of the l-mers takes O(nj(l−k))+O(nj(l−k)/w)

time, where nj is the size of partition j, 1 ≤ j ≤ 4k. Note that
∑4k

j=1 nj = (2n−
l+1). Therefore, the time complexity of algorithm CaTScan2 is O(4k +n(l−k)).

4 Experimental Results

We have implemented Algorithms CaTScan1 and CaTScan2 described above
as C programs and tested their performance on the genome of C. elegans as
was performed by [7] and on the genome of Drosophila melanogaster. As it can
be seen, our prime effort here is focused only on the first phase of identifying
RNAi control and target candidates in genome data. We propose here alternative

266 S. Balla and S. Rajasekaran

approaches to that based on the suffix tree data structure that are both time and
space efficient in practice. Therefore, we do not adopt any additional filtering
approaches like those discussed in [7] to further narrow down toward candidates
of higher biological significance. There are various research efforts that have
focused on identifying the characteristics of the siRNA that achieve RNAi by
degradation (see e.g., [3] and [4]). We do not consider any such rules to identify
the triple repeats in this research.

The algorithms were run on a PowerEdge 2600 Linux server with 4 GB of
RAM and dual 2.8 GHz Intel Xeon CPUs - only one of which is used by both
the sequential algorithms. Our program CaTScan1 identified the triplets in the
C. elegans genome in 495.27 seconds (just above eight minutes) for the input
parameters of l = 21 (considered ideal for siRNAs) and d = 1000, using only 2.5
GB of memory. Algorithm CaTScan2 identified the triplets in 663.32 seconds
(11 minutes) for the input parameters of l = 21 and d = 1000, using only 1 GB
of memory. Thus our algorithms reflect a speedup of 30 and 23, and reduction in
memory requirement by a factor of 4.8 and 12 respectively, over the suffix tree
approach. Table 1 shows the performance of CaTScan1 and CaTScan2 on the
genomes C. elegans and D. melanogaster respectively.

Further Speedup Strategy: The current version of the algorithms identify
triple repeats of a given length l. Therefore, to identify patterns of lengths in a
specified range [lmin, lmax], as would be desired in the case of RNAi control and
target identification, there are (lmax − lmin + 1) separate runs required. Each
row of Table 1 corresponds to such a separate run of the algorithms. But, a
sorted collection Cq of elements for length q, is also sorted for length (q − 1),
whose values correspond to the 2(q − 1) MSBs in the collection. Thus, dropping
the two LSBs of the elements of Cq would give the sorted collection C(q−1), for
length (q−1). Note that for Algorithm CaTScan1, as Cq holds elements that are
representatives of forward and reverse complement of q-mers in S, an additional
modification is necessary. While dropping the two LSBs of forward elements of
Cq would correspond to forward elements of C(q−1), such an operation on the
reverse complement elements of Cq would correspond to reverse complement
elements of C(q−1) starting at one position to the right of the respective q-
mers. Therefore, for all the elements in C(q−1) whose orientation bit is 1, their
positional information is incremented by 1. The only two elements that will be
missing in C(q−1) are ef

(n−(q−1)+1), the forward element of the last (q−1)-mer in S

and erc
1 , reverse complement element of the first (q−1)-mer in S. The positions of

these two elements can be found using a binary search on C(q−1). Therefore, once
the collection Clmax is sorted and the triplet lmax-mers identified, the patterns of
lower lengths in the range [lmin, lmax] could be identified by generating Clmax →
C(lmax−1) → C(lmax−2)...Clmin , saving the several creation and sorting steps of
collection C required in the case of multiple runs. For Algorithm CaTScan2,
the partition step is performed once to form A. Let Almax

j , 1 ≤ j ≤ 4k, be
the array of partitions whose elements are sorted with respect to lmax-mers in
S. After scanning Almax , to identify triplet lmax-mers, A(lmax−1) is obtained by

Space and Time Efficient Algorithms 267

Table 1. Performance of CaTScan1 & CaTScan2 (d = 1000)

Genome Size Length CaTScan1 CaTScan2
(Mbp) (l) Time(sec) Time(sec)

C. elegans 100 20 475.09 623.25
21 495.27 663.32
22 527.24 651.28
23 542.22 797.29
24 559.00 893.83

D. melanogaster 118 20 586.62 697.36
21 637.45 832.30
22 627.76 779.54
23 708.94 950.96
24 688.99 1002.00

Fig. 2. Comparison of Memory Requirements

incrementing by 1, the positional information of elements in the partitions whose
orientation bit is 1, and inserting (1, 1) and ((n − (q − 1) + 1), 0), the positional
and the orientational information of the reverse complement value of the first
and the forward value of the last (q − 1)-mer in S, using a binary search in the
partition corresponding to their 2k-bit MSBs.

The runtime of algorithm CaTScan1 to identify triplets of lengths in a spec-
ified range [lmin, lmax] through separate runs for each length is O(nlmax/w +
n(lmax − 1)/w + ... + nlmin/w) = O((lmax + (lmax − 1) + ... + lmin)n/w).
By the above mentioned speedup strategy, the runtime will be O(nlmax/w) +
[(lmax − lmin)(n+ logn)]. Similarly, the runtime of algorithm CaTScan2 to iden-
tify triplets of lengths in a specified range [lmin, lmax] through separate runs for
each length is O([lmax −lmin +1]4k +n[lmax−k]+n[(lmax−1)−k]+ ...+n[lmin −
k]) = O([lmax − lmin +1]4k +n[lmax +(lmax −1)+ ...+ lmin−(lmax − lmin +1)k]).

268 S. Balla and S. Rajasekaran

With the speedup strategy, the runtime will be O([lmax − lmin +1]4k +n(lmax −
k) + [(lmax − lmin)(n + logn)]). We are currently incorporating these speedup
techniques in our programs.

We consider the reduction in memory required to process a given genome
data to be the vital contribution of our work. Figure 2 shows a comparison of
memory requirement of our algorithms with that of the Suffix tree algorithm
(the memory requirement of the Suffix Tree Algorithm for the D. melanogaster
genome is not available, hence a scaled value is shown). We believe that the
reduction in memory requirement by a factor of 12 would make the processing
of higher order genomes possible for detecting such endogenous controls and
targets for RNAi by degradation. The estimated memory requirement of our
algorithm for the human genome is approx. 30 GB. We are currently researching
on developing a parallel algorithm that could identify such patterns of interest
in higher order genomes.

5 Conclusion

In this paper we have discussed the Triple Repeat Identification Problem that
has application in endogenous RNAi control and target discovery in genome
sequences and proposed space and time efficient algorithms for the same. We
have shown that one of our algorithms, when run on the C. elegans genome
sequence, is 23 times faster and uses 1/12-th the memory compared to the known
suffix tree approach of [7]. We hope that when we complete the implementation
of our parallel algorithm, it would enable scanning genomes of higher order to
discover such endogenous patterns of interest.

Acknowledgment

This research was supported in part by the NSF Grant ITR-0326155. We thank
Ion I. Mandoiu for introducing the problem to us.

References

1. Agrawal, N., Dasaradhi, P.V.N.,Mohmmed, A., Malhotra, P., Bhatnagar, R.K.,
Mukherjee, S.K.: RNA Interference: Biology, Mechanism, and Applications. Mi-
crobiology and Molecular Biology Reviews (2003) 657-685

2. Buhler, J. and Tompa, M.: Finding motifs using random projections. Proc. Fifth
Annual International Conference on Computational Molecular Biology (RECOMB)
(2001)

3. Caplen, N.J., Mousses, S.: Short Interfering RNA (siRNA)-Mediated RNA Inter-
ference (RNAi) in Human Cells. Ann. N. Y. Acad. Sci. 1002 (2003) 56–62

4. Chalk, A.M., Wahlestedt, C., Sonnhammer, E.L.L.: Improved and automated pre-
diction of effective siRNA. Biochemical and Biophysical Research Communications
319 (2004) 264-274

Space and Time Efficient Algorithms 269

5. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C.: Po-
tent and specific genetic interference by double-stranded RNA in Caenorhabditis
elegans. Nature 391 (1998) 806–811

6. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press (1997)

7. Horesh, Y., Amir, A., Michaeli, S., Unger, R.: A rapid method for detection of
putative RNAi target genes in genomic data. Bioinformatics 19(2) (2003) ii73–
ii80

8. Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, M.W.,
Burge, C.B., Bartel, D.P.: The microRNAs of Caenorhabditis elegans. Genes and
Development 17 (2003) 991-1008

9. Rajasekaran, S., Balla, S., Huang, C.-H., Thapar, V., Gryk, M., Maciejewski, M.,
Schiller, M.: High-performance Exact Algorithms for Motif Search. Journal of Clin-
ical Monitoring and Computing (Springer) 19(4-5) (2005) pp 319–328

10. Rajasekaran, S., Balla, S., Huang, C.-H.: Exact Algorithms for Planted Motif Prob-
lems. Journal of Computational Biology 12(8) (2005) 1117–1128

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 270–281, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Fast Approximate Covariance-Model-Based Database
Search Method for Non-coding RNA

Scott F. Smith

Boise State University, Dept. of Electrical and Computer Engineering,
1910 University Ave., Boise, Idaho 83725-2075, USA

SFSmith@BoiseState.edu

Abstract. A covariance-model-based search method for non-coding RNA genes
is proposed which is much faster than dynamic programming, but which is
shown to be very effective in experimental tests. The method incorporates
secondary structure information in the entire first pass of the database, unlike
the usual primary-sequence-only pre-filters applied when using dynamic
programming. An iterative alignment refining algorithm which starts at an
ungapped alignment and successively selects alignment breakpoints gives only
an approximation to the optimal alignment, but appears to be sufficient for gene
localization.

Keywords: Non-coding RNA, functional RNA, covariance models, database
search, gene finding, dynamic programming.

1 Introduction

Non-coding RNA (ncRNA) are biological macromolecules that are transcribed from
DNA, but do not need to be further translated into protein to accomplish their
biological function. They are single-stranded and form their functional three-
dimensional shape as a result of which sequence positions are intra-molecularly base
paired with which other positions. Normally, similar base pairing patterns (secondary
structures) are sufficient to identify two ncRNA molecules as having similar function,
although primary sequence similarity may add additional information to identify
homologs. Models using primary sequence alone are usually not powerful enough for
ncRNA search.

The annotation of genome sequences with gene locations is done much differently
depending on whether the functional molecule of the gene is protein or RNA.
Typically, protein-coding genes are determined in a two-step process, where putative
gene locations are first found without regard to specific protein family [1] and then
these putative genes are classified by family [2, 3]. Such a two-step process is not
currently feasible for non-coding RNA (also called functional RNA) because no
known statistical method is able to adequately classify chromosomal sequence regions
into those with generic non-coding RNA genes versus those without generic ncRNA
genes [4]. Gene finding programs for ncRNA therefore depend on searching sequence
databases using a model of a particular ncRNA family.

ă

 A Fast Approximate Covariance-Model-Based Database Search Method 271

One of the most successful ncRNA gene search models is the covariance model
(CM) [5, 6]. The name derives from the inclusion of secondary structure information
in the model, in which the individual nucleotides are allowed to vary considerably as
long as base-paired nucleotides co-vary in a manor that maintains the likelihood of
base pairing. The major drawback of using a CM for database search with optimal
dynamic-programming methods is that the computational resources required are
enormous. The solution to this problem is normally to resort to primary-sequence-
based pre-filters such as BLAST [7] or HMMs to greatly reduce the amount of
database presented to the CM search algorithm. The problem with using BLAST is
that there is no guarantee that sufficient primary-sequence homology exists such that
true ncRNA gene locations are not discarded. Using the methodology of Weinberg
and Ruzzo [8], HMM parameters and score thresholds can be determined that
guarantee no database regions are discarded which the CM algorithm will
subsequently label as a gene, but the computational requirements of this method are
still quite large.

An alternative approach is presented here, where the secondary structure informa-
tion in the CM is used right from the initial scan of the database. An approximate
refinement method for the alignment of the database to the sequence and structure of
the model is used to quickly find potential score improvements. It should be pointed
out that the resulting alignments are only useful for determining high-scoring portions
of genomic data and that full dynamic programming alignment should be undertaken
on the high-scoring locations if the alignment itself is of interest for further study.
The search begins from the observation that there is often at least some significantly
large range within the database sequence which is ungapped with respect to the
consensus sequence of the CM and that this ungapped range may contain entire base-
paired structures. The database search is initially an ungapped scan of the database
using the covariance model with insertion and deletion states removed. A very loose
score threshold is then applied and alignment improvement is done on those database
positions with scores exceeding the loose threshold. The refinement method involves
iteratively determining breakpoints in the model and searching over insertions and
deletions only at the current breakpoint. Once no improvement is found at the current
breakpoint, the process is halted.

In experimental investigations of ncRNA genes in the C. elegans [9] complete
genome, it is found that an ungapped scan alone sometimes turns up false positives as
defined by the Rfam [10] ncRNA families database. However, the alignment
improvement method cleanly partitions true family members from false positives. It
is also noted that identification of false positives is made easier in that false positives
with high initial ungapped scan scores typically show no improvement during
refinement, whereas true family members often improve.

A quick overview of using CMs for database search is given in Section 2. The
search method being proposed is detailed in Section 3. Experimental results for a
number of ncRNA families are given in Section 4 using the C. elegans genome as
database. Section 5 gives some concluding comments.

272 S.F. Smith

2 Covariance Models for Non-coding RNA Database Search

A covariance model is estimated from a group of nucleotide sequences which have
been determined to form a family of ncRNA genes. This model may then be used to
search nucleotide databases for new instances of the family or to align a sequence
with the family model for further study. The task of interest here is the former, where
all that is required is for the method to return locations within the nucleotide database
that hold instances of the ncRNA family with a high level of confidence. In this work
the CM structure and parameter values will be taken as given and the object is to
efficiently determine the database locations using the given CM for a family.

The basis for the CM structure is a secondary-structure-annotated consensus
sequence for the family. The ncRNA molecule is single-stranded with intra-molecular
base paring. Each position in the consensus sequence is labeled as an unpaired or a
base-paired position. The base-paired positions are further labeled as having the other
position of its pair either to the right (3'-direction) or left (5'-direction). The CM
structure does not allow pseudoknots, so this secondary-structure labeling is
unambiguous. If the true structure does in fact contain a pseudoknot, then some of the
base-paired positions must be labeled as if they were unpaired, which results is some
loss of information in the model and some loss of database search power.

2.1 From Structure-Annotated Consensus Sequence to a Covariance Model
Structure Tree

Each unpaired consensus sequence position is assigned to a node in the CM structure
and each pair of base-paired positions is assigned one node. If there were no base
pairs, then the nodes could be arranged in a single chain mirroring the consensus
sequence order and the model would degenerate into a profile hidden Markov model.
In order to allow base pairs, a base-pair node (P node) builds on the structure between
the two base-pair positions, unlike in a profile HMM where each node always builds
on the structure to its left. To build unpaired structure around a P node, the CM needs
both L nodes and R nodes which build one position to the left and right respectively.
The profile HMM can therefore be viewed as a CM containing only R nodes. Finally,
to join sections of model containing non-nested pairs, a bifurcation node (B node) is
required. As with a profile HMM the CM also contains start nodes (S nodes) and end
nodes (E nodes), although the functions of these nodes is reversed as a CM is
evaluated from E nodes toward S nodes (the opposite of an HMM).

Figure 1 shows an example annotated consensus sequence and the CM node tree it
generates. The dash symbol indicates a position labeled as not base paired, a < symbol
indicates the left-hand position of a pair, and the > symbol is the right-hand position.
The B node is needed since a stem of three base pairs on the left is not nested within
the stem of two base pairs on the right (or vice versa). Each branch has an S node at
the top and either a B node or an E node at the bottom. The consensus sequence can
be read from the node tree by starting at the top (the root start node) and reading
counter-clockwise around the tree. Whenever there is a choice about using an L or R
node for an unpaired position, the L node is used such that CM trees are unique given
a consensus secondary structure.

 A Fast Approximate Covariance-Model-Based Database Search Method 273

The nucleotide labels (A, C, G, or U) on the tree represent only the most probable
nucleotide at the given position. The CM has parameters representing the probabilities
of each nucleotide (or nucleotide pair) emitted by each node. For the single-emission
L and R nodes, there are four probabilities and for P nodes, there are sixteen
probabilities. These probabilities are normally given as log likelihood ratios where
base-2 logarithms are used. The resulting model scores can then be calculated by
addition (using the assumption of independence) and an increase of one unit in the
score may be interpreted as an increase in probability by a factor of two.

Fig. 1. Structure-Annotated Consensus Sequence and Associated CM Node Tree

So far, the model described is similar to an ungapped position-specific scoring
matrix. The main difference is that the scoring for paired nodes is taken
simultaneously. A full CM also includes internal state structure for each model node
which allows the deletion of the consensus position or the insertion of an arbitrary
number of database symbols between consensus positions. This is similar to the
inclusion of deletion and insertion states at each node of a profile HMM in addition to
the consensus match state of each node. This internal state structure is somewhat
more complicated in a CM, particularly in the P nodes where either the left or the
right or both consensus positions may be deleted. Position-specific insertion initiation,

274 S.F. Smith

insertion continuation, deletion initiation, and deletion continuation penalties are
implemented as in the profile HMM through the transition scores between the states.
All of the emission and transition score parameters are estimated from the secondary-
structure-annotated multiple alignment of the member sequences of the ncRNA
family. Pseudocounts are normally included to avoid any log likelihood scores of
minus infinity.

2.2 Searching a Database with a Covariance Model

The traditional method of using a CM to search a database is to employ dynamic
programming. Scoring starts at the E states (in the E nodes) and progresses toward
the root S state (in the root S node). The score is taken as 0 at the E states with each E
state representing a null sequence. Scores are calculated at a state for each possible
position in the database and each possible number of database symbols leading up to
that position. To make the calculation feasible, a maximum length cutoff is used for
the state score calculations. This cutoff must be at least as long as the longest new
family member that is expected to be found in the database (a number that is hard to
know in advance). The maximum score taken over all lengths for a given database
position at the root start state is the overall score of the model at that database
position. It should be clear that these calculations require large amounts of computing
resources. Some ncRNA families with long consensus sequences can take years of
processing on a single modern processor to cover a giga-base of data [8]. Since there
are currently more than five hundred Rfam families and sequencing projects
underway are expected to produce many more giga-bases of genomic data [11], this
situation is clearly unacceptable.

The solution used to generate Rfam is to use BLAST with a very loose threshold to
discard portions of the database that do not have much primary-sequence homology at
all with the CM consensus sequence. The use of the secondary structure information
in the CM is limited to sequences that have enough primary-sequence homology to
pass the initial scan. Since functional RNA molecules have much more conserved
secondary structure than primary sequence, a major advantage of using the CM in the
first place can be lost. It is not clear exactly how loose the threshold should be. If
chosen to high, true family members will not be found. If chosen too low, the amount
of database discarded will be small and computation times long. The alternative
method of Weinberg and Ruzzo [8] eliminates this uncertainty, but HMM searching is
much slower than BLAST and the amount of database not discarded can still be large
enough for the dynamic-programming CM search to still be slow.

3 Fast Search Method

If one takes at look at the family multiple alignments in Rfam, it is apparent that there
is almost always a range of nucleotides in every family member that forms an
ungapped alignment with the consensus sequence and that these ranges often contain
both halves of a stem (nested base pairs). This implies that there should be some
signal present in the scores of ungapped local alignments of the consensus sequence
of a family with the database. To the extent that there are no gaps between base pairs,
the sixteen-valued pair-wise match scores should add even more to the signal

 A Fast Approximate Covariance-Model-Based Database Search Method 275

produced. Those portions of the alignment that do not match due to gaps will
contribute noise. The net result should be a tendency for true ncRNA family genes to
generate higher scores with ungapped alignment than random sequences.

As shown in the experimental section that follows, the signal-to-noise ratio of the
ungapped scan alone is not enough to exclude false positives. However, an

Fig. 2. Absolute Score Differentials by Breakpoint and Score Contributions by Position for a
U2 Gene on Chromosome I (forward strand) at Start of First Round of Alignment Improvement

276 S.F. Smith

approximate alignment improvement procedure that iteratively chooses breakpoints in
the consensus sequence and tries a range of insertion and deletion lengths at the
breakpoint appears to increase the signal-to-noise ratio enough to be useful. In
particular, the breakpoint in a somewhat-higher-than-average-scoring ungapped
alignment is chosen by finding the consensus sequence location that maximizes the
absolute difference in partial scores to its left versus its right. The breakpoint is
therefore the position that maximizes

abs(Σi li - Σj rj), (1)

where li is a score contribution of the alignment of consensus position i to the left of
the breakpoint and rj is a similar contribution for a position j to the right. If the left
sum is greater than the right sum at the breakpoint, the alignment to the left should be
retained and the portion to the right realigned (and vice versa). This realignment
takes of the form of a shift of the entire consensus sequence to one side of the
breakpoint. If this refinement of the alignment increases the score, a new breakpoint
is chosen and the procedure repeated until no improvement is seen.

Figure 2 shows the first round of this alignment improvement scheme for a true
member of the U2 ncRNA family on the forward strand of chromosome I in C
elegans. The top plot shows the absolute value of the score differential as given by
Equation 1. The maximum value at consensus sequence position 67 shows that the
breakpoint will be chosen there. It is not possible to tell from the figure, but the sum
to the left of position 67 is greater than the sum to the right (by about 65). A series of
possible insertions or deletions will be tried at position 67 (up to ten insertion and up
to ten deletions are used in the results section below). The bottom plot in Figure 2
shows the score contributions at each consensus location. It can be seen that there is a
well-aligned segment between positions 30 and 67. Since the poorly aligned segment
to the right is much larger, it contributes more to the left/right score mismatch and is
attacked first. If the score improves by realigning to the right of 67, then the portion
to the left of 30 is likely to be realigned in a later round.

4 Experimental Results

The scores generated by the proposed database search method for several ncRNA
families applied to the complete C. elegans genome are analyzed. The U2 family is
investigated in detail and the results for the other families summarized. The families
were chosen because they are relatively abundant in C. elegans (7 - 60 genes).
However, the most abundant ncRNA gene (for tRNA) was not run because it has so
many instances (as many as 279 per chromosome) that it is hard to analyze.

Table 1 shows the eighteen members of the U2 family (part of the major
spliceosome). There are six chromosomes (I, II, III, IV, V, and X) and the U2 gene
can be either on the forward strand or the reverse complement strand, resulting in
twelve database sequences to process. The chromosome sequences are those of
WormBase Release WS160 and the ncRNA families and covariance models all come
from Rfam 7.0. The length of the six chromosomes are 15.1, 15.3, 13.8, 17.5, 20.9,

 A Fast Approximate Covariance-Model-Based Database Search Method 277

and 17.7 Mbp, for a total of 100.3 Mbp. Since both forward and reverse complement
are needed, a total of about 200 million bases are processed.

The results of the processing are presented in Table 2, both in per-chromosome and
whole genome form. If the ungapped score exceeded -70, then the alignment at the
location was refined using the breakpoint method described in Section 3. The scores
of the true U2 genes (as defined by Rfam) are shown both before (Init) and after
(Imp) the alignment improvement scheme. No true genes were missed since the
lowest first-pass score was -44.59 and the cutoff was -70. In all cases, the breakpoint
method generated a higher score than the original ungapped scan.

Table 1. The Eighteen U2 ncRNA Genes (Rfam RF00004) in C. elegans

Chromosome EMBL Clone / Clone Start Chromosome Start

I (BX284601) Z93391.1/20231, Z81504.2/2509,
Z81553.1/6257, Z81553.1/7099

11657554, 12153034,
12293797, 12296458

I Reverse
Complement

AL031636.1/4082, Z981504.2/7291,
Z81105.2/12802, Z81553.1/8918,
AL009246.1/8935

11636405, 12157816,
12181962, 12296458,
12332995

II (BX284602)* Z81495.1/26606, Z82076.1/18363 13852675, 13951308

II Reverse
Complement

AL032648.1/23803, Z81495.1/3313,
Z81495.1/9940, Z82076.1/16099

13717643, 13829382,
13836009, 13949044

III None on either strand

IV R.C. (BX284604) AF045635.1/5423, Z99281.1/127762 624275, 14765001

V R.C. (BX284605) Z92830.1/35793 16228471

X None on either strand
*Rfam lists a third U2 gene on the forward strand of Chr. II at 13944168. However, this gene is not
listed in EMBL (as all the others are) and it is not found by the search program (as all others are).

The highest-scoring false positive U2 gene is also shown in Table 2 for each
chromosome. The location generating the initial highest score and that generating the
highest score after alignment improvement may or may not be the same. The number
of false positives over the -70 initial score threshold which underwent the score
improvement process is given. It turns out that very few of the false positives actually
increased in score as a result of the alignment improvement procedure. This is hinted
at by the fact that the initial and improved highest false scores are often the same.

The final column of the table lists the score margin. This is the difference between
the lowest scoring true positive and the highest scoring false positive. This margin is
seen to increase in all cases implying that the separation between true and false
positives have become better. In the overall results at the bottom of the table, it can
be noted that the margin is negative before refinement. The negative margin means
that using a score threshold that gets all true positives will also accept at least one
false positive. In fact, it is clear from the table that at least three false positives would
be accepted (with scores -37.16, -39.56, and -44.36). The use of ungapped scanning
alone is not sufficient to separate true from false.

It should be pointed out that the scores here have no meaning in an absolute sense
because state transition values have not been used. An ungapped parse of a sequence

278 S.F. Smith

to the covariance model will depend on the emission scores plus a constant equal to
the sum of the transition scores from one match state to the next. This constant can be
absorbed into the score thresholds. Differences in scores (such as margins) are
unaffected.

Table 2. Scores of U2 in C. elegans Using Fast CM Search Method

Xsome

Initial and Improved Scores
(True Genes)

Highest
False Gene

Number
False

Margin

I

Init: -41.89, -40.01, -40.63, -40.63
Imp: -24.48, -18.30, -22.64, -22.64

Init: -51.95
Imp: -51.95

25

10.06
27.47

I R.C.

Init: -39.57, -40.01, -40.63, -40.63, -40.63
Imp: -22.15, -18.30, -22.63, -23.22, -22.64

Init: -53.34
Imp: -40.32

40

12.71
17.10

II

Init: -40.63, -39.63
Imp: -22.63, -22.63

Init: -49.01
Imp: -44.52

26

8.38
21.89

II R.C.

Init: -40.09, -40.63, -40.63, -39.63
Imp: -22.63, -22.63, -22.63, -22.63

Init: -53.41
Imp: -53.41

29

12.78
30.78

III

None

Init: -51.79
Imp: -51.79

22

N/A

III R.C.

None

Init: -46.44
Imp: -46.44

31

N/A

IV

None

Init: -44.36
Imp: -36.32

39

N/A

IV R.C.

Init: -44.59, -36.74
Imp: -21.39, -18.47

Init: -55.97
Imp: -55.97

28

11.38
34.58

V

None

Init: -51.87
Imp: -51.61

31

N/A

V R.C.

Init: -43.06
Imp: -7.41

Init: -53.27
Imp: -53.27

38

10.21
45.86

X

None

Init: -39.56
Imp: -39.56

30

N/A

X R.C.

None

Init: -37.16
Imp: -37.16

19

N/A

Overall

Init: -44.59 (Chr. IV R.C. - AF045635.1)
Imp: -24.48 (Chr. I - Z93391.1)

Init: -37.16
Imp: -37.16

328

-7.43
12.68

False genes are those positions generating a score greater than -70 and which are not identified in
Rfam as a U2 gene.

The results for several other families (U5, Histone3, 5S_rRNA, and K_chan_RES)
along with the overall results from U2 (Table 2) are summarized in Table 3. The
number of positions in the consensus sequence of the CM is shown along with the
total number of true genes from Rfam on all six chromosomes of C. elegans (both
forward and reverse strands). The lowest score for a true ncRNA gene is shown both
before and after alignment improvement, where the before and after scores are not
necessarily for the same gene. The highest false score found anywhere in the genome
is reported both before and after alignment improvement as well as the number of

 A Fast Approximate Covariance-Model-Based Database Search Method 279

false genes for which a attempt at alignment improvement was made. The score
threshold used to determine if improvement was to be attempted at a position is
shown, which is always chosen well below the lowest initial true score and low
enough to capture several hundred false genes. Finally, the margin is calculated as
the difference between the lowest true score and the highest false score for both initial
scan and after improvement.

In all cases, the alignment improvement operation did not lower the margin. Since
this operation used much less computation time than the initial scan, there is little
reason not to include it. The summary results show no change between initial and
improved scores for 5S_rRNA and K_chan_RES, however, some of the scores other
than the lowest true and highest false did in fact change in these cases. In the
Histone3 case, very few true scores actually changed, with the lowest true score being
one of the exceptions. A look at the multiple alignments for Histone3 family members
(across all species, not just C. elegans) shows very little insertion or deletion
behavior, so there is very little room to improve alignments with respect to the initial
ungapped scan, since the true alignment is usually already ungapped.

Table 3. Scores of ncRNA Family Genes in C. elegans Using Fast CM Search Method Over
Whole Genome

ncRNA
Family

Consensus
Length

Numb. in
C. elegans

Lowest
True Score

Highest
False Score

Num.
False

Thresh.

Margin

U5

117

12

Init: 17.31
Imp: 31.39

Init: 19.38
Imp: 26.70

493

0
Init: 2.07
Imp: 4.69

Histone3

26

60

Init: 25.75
Imp: 28.07

Init: 25.78
Imp: 25.78

461

15

Init: -0.03
Imp: 2.29

5S_
rRNA

119

13

Init: -0.09
Imp: -0.09

Init: -36.66
Imp: -36.66

439

-70

Init: 36.57
Imp: 36.57

K_chan
_RES

114

7

Init: 25.81
Imp: 25.81

Init: 11.17
Imp: 11.17

932

-50

Init: 14.64
Imp: 14.64

U2

191

18

Init: -44.59
Imp: -24.48

Init: -37.16
Imp: -37.16

328

-70

Init: -7.43
Imp: 12.68

It is not entirely straightforward to determine from Rfam the complete set of
ncRNA genes of a particular family in an organism. Using the "genomes" tab on the
Sanger Institute Rfam mirror site [12] leads to tables of all ncRNA genes in each
family by C. elegans chromosome. Forward strand versus reverse strand genes can be
identified by whether the location range is increasing or decreasing in the tables. If
one instead goes to the full multiple alignments for a particular family and selects
only those sequences labeled "Cae.ele.", a different set of genes is often found. These
two sets of genes are normally almost, but often not quite, identical. In cases where
the two lists differed, other sources such as EMBL [11] were consulted for ncRNA
gene annotation. Table 4 is supplied with the actual numbers of genes taken as true
genes on the forward and reverse strand of each chromosome for each family to aid in
replication of results.

280 S.F. Smith

Table 4. Number of ncRNA Family Genes by Chromosome in C. elegans (forward strand on
left of slash / reverse strand on right)

ncRNA Family I II III IV V X
U5 1/0 0/0 0/0 7/4 0/0 0/0

Histone3 1/1 6/7 0/0 11/10 11/11 1/1

5S_rRNA 0/0 0/0 0/0 0/0 11/2 0/0

K_chan_RES 0/0 1/2 0/0 0/1 1/1 1/0

U2 4/5 2/4 0/0 0/2 0/1 0/0

The CPU time used to run the initial ungapped scan of the 15.1 Mbp chromosome I
forward strand for the U2 family was 393 seconds on a 2.8MHz Pentium IV when
written in MATLAB. The alignment improvement time was much less than one
second for 346 improvement attempts. Initial scan times for the U5, Histone3,
5S_rRNA, and K_chan_RES models on forward Chr. I were 340, 264, 357, and 346
seconds respectively. A program that did nothing except read in the database file and
convert the database symbols A, C, G, and T into index numbers 1, 2, 3, and 4 used to
access model score values took 238 seconds for Chr. I, so a large amount of the time
is overhead not involved in the actual scoring calculation. These times would be
expected to improve significantly if the program was converted to C and optimized
for speed.

Weinberg and Ruzzo [8] list run time results for the U5 covariance model using the
same processor (2.8MHz Pentium IV). With the HMM lossless pre-filter followed by
standard dynamic-programming CM search, a run time of 8.9 days was required to
process a 8 giga-base database. Using dynamic-programming CM search on the entire
8 giga-base database, an estimated 1081 days would be required. The fast method
presented here is predicted to take 340*8000/15.1 = 180,132 seconds, or 2.1 days.
The factor of more than four improvement in speed in likely a gross underestimate on
what can be accomplished using more efficient coding.

5 Conclusion

A fast method for ncRNA gene search using covariance model parameter files has
been presented. On a limited test set of five ncRNA gene families tested against the
C. elegans genome, the method appears to estimate the score of the optimal dynamic
programming CM search method well enough to return essentially the same results
with significantly less use of computational resources.

The current form of the code used to generate experimental results needs to be
significantly upgraded before large-scale testing can take place. Some hand
conversion of structural information in the covariance model parameter files is still
required. This needs to be automated before testing of all know family models (over
500 to date) can be tried against a given genome. Also conversion from MATLAB to
a more efficient language needs to take place before processing larger genomes such
as that of human.

 A Fast Approximate Covariance-Model-Based Database Search Method 281

It has also been noted by the author that there is position-specific information
about the likelihood of insertions or deletions in the CM parameter file that could be
combined with the breakpoint estimator used here to potentially improve breakpoint
estimation. Finally, more investigation of the best choice of score threshold for
passing database positions from the initial ungapped scan on to the alignment
improvement stage need to be undertaken.

Acknowledgments. The project described was supported in part by NIH Grant
Number P20 RR016454 from the INBRE Program of the National Center for
Research Resources.

References

1. Burge, C., Karlin, S.: Prediction of Complete Gene Structures in Human Genomic DNA.
J. Mol. Biol. 268 (1997) 78–94

2. Eddy, S.: Profile Hidden Markov Models. Bioinformatics 14 (1998) 755–763
3. Finn, R., Mistry, J., Schuster-Böckler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T.,

Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S., Sonnhammer, E., Bateman,
A.: Pfam: Clans, Web Tools and Services. Nucleic Acids Res. 34 (2006) D247–D251

4. Rivas, E., Eddy, S.: Secondary Structure Alone is Generally not Statistically Significant
for Detection of Noncoding RNAs. Bioinformatics 16 (2000) 583–605

5. Eddy, S., Durbin, R.: RNA Sequence Analysis Using Covariance Models. Nucleic Acids
Res. 22 (1994) 2079–2088

6. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis.
Cambridge University Press, Cambridge UK (1998)

7. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic Local Alignment Search
Tool. J. Mol. Biol. 215 (1990) 403–410

8. Weinberg, Z., Ruzzo, W.: Faster Genome Annotation of Non-coding RNA Families
Without Loss of Accuracy. Int. Conf. Res. Comp. Mol. Bio. (2004) 243–251

9. WormBase: http://www.wormbase.org
10. 10. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S., Bateman, A.:

Rfam: Annotating Non-coding RNAs in Complete Genomes. Nucleic Acids Res. 33
(2005) D121–D124

11. Ensembl: http://www.ensembl.org
12. Rfam: http://www.sanger.ac.uk/Software/Rfam/

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 282–292, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Extensions of Naive Bayes and Their Applications to
Bioinformatics

Raja Loganantharaj

Bioinformatics Research Lab, University of Louisiana, Lafayette LA 70504
logan@cacs.louisiana.edu

Abstract. In this paper we will study the naïve Bayes, one of the popular
machine learning algorithms, and improve its accuracy without seriously
affecting its computational efficiency. Naïve Bayes assumes positional
independence, which makes the computation of the joint probability value
easier at the expense of the accuracy or the underlying reality. In addition, the
prior probabilities of positive and negative instances are computed from the
training instances, which often do not accurately reflect the real prior
probabilities. In this paper we address these two issues. We have developed
algorithms that automatically perturb the computed prior probabilities and
search around the neighborhood to maximize a given objective function. To
improve the prediction accuracy we introduce limited dependency on the
underlying pattern. We have demonstrated the importance of these extensions
by applying them to solve the problem in discriminating a TATA box from
putative TATA boxes found in promoter regions of plant genome. The best
prediction accuracy of a naïve Bayes with 10 fold cross validation was 69%
while the second extension gave the prediction accuracy of 79% which is better
than the best solution from an artificial neural network prediction.

Keywords: machine learning, computational efficiency, improved performance.

1 Introduction

Naïve Bayes has been successfully used in Bioinformatics for classifying and
predicting [1-3] and as well as for fusing information [4]. Naïve Bayes is
computationally efficient and practically very useful since it assumes that the output
is dependent only on the current state (Markov assumption). The convenience and the
efficiency come by sacrificing the underlying reality. In addition, the prior
probabilities of classes are computed from the training set in many application
programs including the popular data mining tool WEKA [5]. Such computation does
not accurately reflect the real prior probabilities since the training data usually does
not have a representative mixture of positive and negative instances so as to reflect
reality. In this paper we address those two issues.

Obtaining prior probability of an event or an object is a non-trivial task and
statisticians have studied the problem in details [6]. The prior probability may be
assigned using one of the following methods: non-informative prior, subjective-expert
judgment prior, and Monte Carlo priors. Each of these methods has their pros and

ă

 Extensions of Naive Bayes and Their Applications to Bioinformatics 283

cons and Monte Carlo priors seem to be unbiased, but it require considerable amount
of computation for the simulation. We take a data-dependent approach that
automatically perturb the computed prior probabilities and search around the
neighborhood to maximize a given expected utility. We provide the details of this
approach in section 2.

In this paper we investigate relaxing Markov order 0 assumption of naïve Bayes to
improve the prediction accuracy without increasing the computational cost. By
making the outcome dependant on the partial pattern, i.e. Markov order 1 to r, we can
improve the prediction accuracy.

We have demonstrated these extensions to solve the problem of discriminating a
TATA box from putative TATA boxes found in promoter regions of plant genome.

This paper is organized as follows. A formulation of the problem is described in
section 2 along with the proposed extensions one and two for the naïve Bayes to
improve its prediction ability. In section 3 we introduce the application domain and
apply these extensions to solve the problem and show the results. In section 4, we
summarize the contribution and discuss the results.

2 Formulation

A learning algorithm creates decision boundaries among the classes of the labeled
training instances so that it can classify an unlabelled instance correctly. Suppose
there are r different classes in the training set, and each labeled training instance has k
features. Once a Bayesian net is trained with the training set, it computes the
probability of each class for a given instance and classifies the unknown instance to a
class that has the highest probability given the features of the instance. If P(Cm|
e1,e2,..,ek) represents the probability of the class Cm for the given set of features
e1,e2,..,ek, the Bayesian network classify the instance to be belonging to Cn if P(Cn|
e1,e2,..,ek) is the maximum among P(Cm| e1,e2,..,ek) for all m from 1 to r.

P(Cm| e1,e2,..,ek)

= P(Cm , e1,e2,..,ek)/P(e1,e2,..,ek) Using Bayesian theorem
 Using chain rule, we will get

= P(e1|e2,..,ek,Cm). P(e2|e3,..,ek,Cm)… P(ek| Cm). P(Cm)/P(e1,e2,..,ek) 1

The computation is simplified by assuming positional independence, that is
P(en|en+1,..,ek,Cm) = P(en|Cm). Using positional independence (naïve Bayes assumption)
P(Cm| e1,e2,..,ek) becomes

 C. P(Cm).∏ P(en|Cm) for n=1 to k where C = 1/P(e1,e2,..,ek) 2
 Notice that P(en|Cm) and P(Cm) are pre-computed from the training set for n

from 1 to k and m from 1 to r.

2.1 First Improvement

The outcome of the naïve Bayes classifier is also influenced by the prior probabilities
of the classes in the training set as illustrated in formula 2. Obtaining the correct prior
probabilities of these classes is a non-trivial task. Naïve Bayes computes these prior
probabilities from the instances of the training set which usually does not reflect the

284 R. Loganantharaj

correct mixture of positive and negative instances. To solve this problem, we perturb
the computed prior probabilities of these classes so as to maximize some desirable
objective function of a prediction algorithm. One such objective function is to
maximize either the prediction accuracy or the separation between true positive and
false positive, or some combination of both. Suppose we consider a binary classifier
which consists of two classes representing positive and negative instances in a
training set. Let Tot_p and Tot_n respectively represent total positive and total
negative instances in the training set. Suppose a predictive algorithm correctly
predicts Pred_tp of positive instances and Pred_tn of negative instances. The
following metrics are defined as follows:

Table 1. Definition of terms

True positive (TP) = Pred_tp/Tot_p
True negative (TN) = Pred_tn/Tot_n
False positive (FP) = 1- Pred_tn/Tot_n

Prediction accuracy (PA) = (Pred_tp+Pred_tn)/(Tot_p+Tot_n)
Separation between TP -FP = TP+TN -1

Combined utility = λ PA + (1- λ)(TP – FP) where λ ∈ [0..1]

Since the computed value of prior probability is not accurate, it is reasonable to
perturb the prior probability around the computed value so as to maximize the
objective function. Researchers have used either prediction accuracy or the maximum
separation between true positive and false positive as an objective function to measure
the effectiveness and to compare different prediction algorithms. We will use the
combined utility in Table 1 as our objective function with λ set to some fixed value,
for example at 0.75. We will demonstrate this approach by applying this to a problem
in bioinformatics.

2.2 Second Improvement

Let us recall the Bayesian formulation of classification

P(Cm| e1,e2,..,ek)
= P(e1|e2,..,ek,Cm). P(e2|e3,..,ek,Cm)… P(ek| Cm). P(Cm)/P(e1,e2,..,ek)

In naive Bayes, positional independence is used, that is P(eg|eg+1,..,ek,Cm) is
assumed to be equal to P(eg|Cm) which reduces the accuracy of the overall
prediction algorithm. Since the probability is dependent only on the current class
independent of the neighboring instances, is called Markov order 0 assumption. We
are proposing an approach that improves the accuracy without increasing
computational cost, but somewhat increased in space to maintain the probability
table. We use limited dependency that can vary from 0 through k where dependency
0 is the naïve Bayes. We will show the corresponding formula for the limited
dependency assumption.

 Extensions of Naive Bayes and Their Applications to Bioinformatics 285

P(Cm| e1,e2,..,ek)
= P(e1|e2,..,ek,Cm). P(e2|e3,..,ek,Cm)… P(ek| Cm). P(Cm)/P(e1,e2,..,ek)
With Markov order 1 it becomes
= P(e1|e2,Cm). P(e2|e3,Cm)… P(ek-1| ek , Cm). P(ek| Cm). P(Cm)/P(e1,e2,..,ek)
= C. P(Cm). P(ek| Cm)∏ P(en| en+1,Cm) for n=1 to k-1 where C = 1/P(e1,e2,..,ek)

This can be generalized to Markov order g.
P(Cm| e1,e2,..,ek)

= C. P(Cm). P(ek| Cm). P(ek-1| ek Cm)… P(ek-g+1| ek-g+2,.. ek Cm)∏ P(en| en+1, en+2,.., en+gCm)
for n=1 to k-g where C = 1/P(e1,e2,..,ek)

Let us describe some implementation details. Suppose each element en takes d
different values. To maintain g dependency, it will take table of size d*(g+1)
compared to a table size d for naïve Bayes. We will illustrate the improved accuracy
of this extension in the next section.

3 Application of These Extensions

To understand a regulatory mechanism, it is important to detect all the binding sites in
a promoter region. Several approaches for finding binding sites in a promoter region
have been proposed in literature and Tompa et al. [8] have recently studied several
tools and found that no single tool performed well on all the data sets they have
tested. In this work, our emphasis is to compare the proposed extensions with respect
to naïve Bayes. A TATA box is a common transcription binding site occurs in
upstream of a core promoter region [9]. It is usually detected by matching the profile
5’-TATAWAW-3’ where W is either A or T. Unfortunately there are several
substrings in the neighborhood of a TATA box fit to the profile which make the
problem of recognizing the real TATA box from putative TATA boxes hard.

Our previous work [10, 11] on discriminating TATA box from putative TATA
boxes has revealed that the neighborhood around a TATA box carries the information
required to distinguish TATA box from putative TATA boxes.

Among many methods, a position specific weighted matrix (PSWM) has been used
very successfully to detect a motif in a sequence knowing the profiles of the motif.
We, therefore, use a PSWM to detect all the putative TATA boxes from a given set of
promoter sequences. The problem of discriminating a TATA box from a set of
putative TATA boxes becomes a problem of a binary classification. A machine
learning algorithm can be applied to learn the patterns from the known set of TATA
and non TATA boxes, and then be used to classify an unknown putative TATA box
into a TATA or a non TATA box.

We have downloaded promoter sequences of plant genome from PlantProm DB
(http://mendel.cs.rhul.ac.uk/mendel.php?topic=plantprom) [12], an annotated non-
redundant collection of proximal promoter sequences for RNA polymerase II with
experimentally determined transcription start site(s) (TSS) from various plant species.
The current release of PlantProm DB contains 305 entries, of which 71 are monocot,
220 are dicot and 14 are other plants. Each promoter sequence is of length 250 bp
from -200 to 50 with transcription start site (TSS) located at 1.

We started the experiment with the detection of all TATA boxes in TATA
promoters using PSWM. The putative TATA box found in the promoters region

286 R. Loganantharaj

between -40bp to -10bp from the TSS is indeed the active TATA box. We have
collected the substrings of length 15bp in the downstream and in the upstream from
the core TATA box (TATAWAW) and these strings form the positive instances. We
have scanned the promoter regions from -200bp to -40bp for TATA box and the
substrings flanking these putative TATA boxes become the negative instances. The
probability of finding a TATA box by chance in a genomic sequence is (1/4)7, that is,
one can find a TATA box in every sequence of length 16,384 bp by chance. We found
abundance of putative TATA boxes in the promoter region, about 2 or 3 within 160bp
length. Since negative instances were well over 2 times of that of positive instances,
we have created 3 data sets by randomly selecting equal number of positive and
negative instances from the pool of the original positive and negative instances.

To find the relationship between the length of the surrounding TATA box and its
influence on discriminating TATA from putative TATA boxes, we have collected
positive and negative instances of the data for substrings of length 6, 9, 12 and 15.

3.1 Application of Extension 1

As had been illustrated in section 2, the prior probabilities of classes also influence
the outcome. The prior probabilities of classes are computed from the training set. To
minimize the bias on the computed prior probability from training instances, we
perturb the value so as to maximize some objective function, which is some
combination of prediction accuracy and the separation between the true positive and
false positive, which is denoted by λ PA + (1- λ)(TP – FP) where λ ∈ [0..1].

We have created a training set corresponding to the flanking sub sequences to 174
tata boxes and 459 putative tata boxes. The negative instances are 2.64 times of the
positive instances. We use 10 fold cross validation, that is, the data set was randomly
divided into 10 equal parts and the algorithm was trained with all but one partition,

Table 2. Performance of applying extension one to naïve Bayes. The average of running 10
fold cross validation for 5 times.

 Offset 6 Offset 9 Offset 12 Offset 15
PA 0.717 0.724 0.735 0.737
TP 0.539 0.595 0.620 0.630
FP 0.216 0.227 0.222 0.222
λ PA + (1- λ)(TP – FP) 0.618 0.636 0.650 0.655

Table 3. Performance of applying naïve Bayes. The average of running 10 fold cross validation
running 5 times.

Offset 6 Offset 9 Offset 12 Offset 15
PA 0.735 0.738 0.753 0.739
TP 0.360 0.413 0.468 0.474
FP 0.122 0.138 0.139 0.160
λ PA + (1- λ)(TP – FP) 0.611 0.622 0.647 0.633

 Extensions of Naive Bayes and Their Applications to Bioinformatics 287

which was used for testing. The training and testing were repeated 10 times so that
each partition was tested exactly once. It has been empirically shown [7] that 10 fold
cross validation gets the best estimation of error. During training, the prior
probability is perturbed to maximize the objective function with λ set to 0.75 and then
the model is used to predict the classes in the test set. The results in table show the
average of running 10 fold validation 5 times. For comparison we ran 10 fold cross
validation of naïve Bayes 5 times and the results are shown in table 3.

The graphs in Figure 1 show the comparison of naïve Bayes with and without
extension. The naïve Bayes without the extension performed slightly better that that
of with the extension, but there is a significant difference between their true positive
rates. When we compare the false positive rate in table 1 and 2, we notice that false
positive rate was lower with the large number of negative training instances in naïve
Bayes due to bias towards negative instances. On the other hand, the extension
improved the true positive. Further, we can observe that the objective function that
combines the prediction accuracy and the difference between the true positive and
false negative is more or less same for both naïve Bayes with and without extension.

Comparison of the performance of naive Bayes and its
Extension

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

6 9 12 15

Offsets

Performance

pa-ext1
pa
tp-ext1
utility-ext1
tp
utility

Fig. 1. Comparing the performance with and without the extension

3.2 Application of Extension 2

We test the effectiveness of limited dependency in improving the prediction accuracy
as well as maximizing the difference between the true positive and false positive. We
have developed the algorithm and have implemented it in Perl to train and test the
limited dependency Bayes extension. For testing, we have used 10 fold cross
validation.

288 R. Loganantharaj

We have three data sets each has equal number of positive and negative instances.
We ran 10 fold cross validation 5 times for each data set and computed the prediction
accuracy, true positive false positive by taking the average of the 5 runs. For the
combined outcome of prediction accuracy with the difference between true positive
and false positive we have used λ=0.75. The results are shown in Tables 4 through 6.
A graphical comparison of prediction accuracy with different Markov order is shown
in Figure 2 from the data in Table 4.

For comparing the results with that of using artificial neural network, we have used
Weka [5]. In our previous work [13] we compared the prediction performance of
different algorithms for their effectiveness of discriminating putative TATA boxes
from TATA boxes and these algorithms include Naïve Bayes, artificial neural
network, random forest, Decision tree C4.5 and Support Vector Machine. We found
that the artificial neural network outperformed the rest of the algorithms and the best
results occurred at the offset 12. It has the highest prediction accuracy of 78% with

Table 4. Prediction accuracy variation with offset and partial dependency

Markov order Offset 6 Offset 9 Offset 12 Offset 15
1 63.91% 65.57% 65.54% 68.72%
2 67.41% 72.70% 74.98% 76.65%
3 72.28% 79.10% 79.56% 79.92%
4 77.07% 75.88% 77.34% 79.20%
5 77.41% 76.19% 77.62% 77.51%

Table 5. The variation of performance metrics with offset and dependency. Here the column
Diff denote for the (true positive – false positive).

Offset 6 Offset 9 Offset 12 Offset 15 Markov
order

TP TN Diff TP TN Diff TP TN Diff TP TN Diff
1 60.6 67.2 27.8 63.3 67.9 31.1 63.8 67.3 31.1 67.1 70.3 37.4
2 65.2 69.6 34.8 71.0 74.4 45.4 74.6 75.3 50.0 78.2 75.1 53.3
3 70.7 73.9 44.6 79.4 78.8 58.2 84.0 75.1 59.1 87.6 72.2 59.8
4 75.1 79.0 54.1 72.6 79.2 51.8 77.9 76.8 54.7 82.0 76.4 58.4
5 73.1 81.7 54.8 72.3 80.1 52.4 76.0 79.3 55.2 76.4 78.6 55.0

Table 6. The variation of utility with λ=0.75 with Offset and dependency

Markov Order offset6 offset9 offset12 offset15
1 54.89% 56.97% 56.92% 60.90%
2 59.27% 65.88% 68.73% 70.81%
3 65.35% 73.87% 74.45% 74.90%
4 71.34% 69.85% 71.67% 73.99%
5 71.77% 70.23% 72.03% 71.89%

the true positive rate of 73% and false positive rate of 17% while the naïve bayes has
the prediction accuracy of 65.5% and true positive rate of 63.8%. The limited
dependency extension of naïve bayes has outperformed even the best performance of

 Extensions of Naive Bayes and Their Applications to Bioinformatics 289

Artificial netral network; the extension with dependency 2 has the best average
performance of 79.9% with the true positive rate of 87.6%.

The graphs in Figure 2 show the prediction accuracy for different Markov order 0
to 4 with order 0 reduces to naïve Bayes without any extension. We can notice a big
improvement in prediction accuracy even with a single level of dependency. For this
particular problem, order 2 seems to have the best prediction accuracy compared with
other dependency levels. The order level 3 and 4 behave very similar. In our previous
work, we have compared the prediction performance of several machine learning
algorithms including artificial neural networks, random forests, decision trees and
naïve Bayes and for the comparison we reproduce the results in Figure 3. Further, this
extension with order 2 has outperformed that of many other machine learning
algorithms.

Performance Comparison

45%

50%

55%

60%

65%

70%

75%

80%

85%

3 6 9 12 15 18Offset
Prediction accuracy with different Markov order

P
re

di
ct

io
n

A
cc

ur
ac

y

pa_order 0
pa_order 1
pa_order 2
pa_order 3
pa_order 4

Fig. 2. Comparison of prediction accuracy for different Markov order

The predication accuracy is one of the performance matrices used to compare the
performance of machine learning algorithm. The other important metric of per-
formance measurement is the difference between the true positive and the false
positive. We have defined an objective function that combine the prediction accuracy
with the difference between the true positive and the false positive. We show in
Figure 3 the variation of the objective function, combined utility, with the Markov
order. The performance on the combined utility with dependency 2 has outperformed
that of other extensions similar to what it has done with other performance metrics.

290 R. Loganantharaj

Comparison of Effective Performance

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Offset (6,9,12,15)

P
er

fo
rm

an
ce

a0
a1
a2
a3
a4

Fig. 3. Objective fn 0.75(PA)+0.25(TP-FN) for different Markov Order

4 Summary and Conclusion

Naïve Bayes, a crude approximation to Bayesian network, has been used very
successfully as a classifier to solve many problems spanning from bioinformatics to
text mining. Naïve Bayes assumes positional independence, which makes the
computation of the joint probability vale easier at the expense of the accuracy or the
underlying reality. Further, Naïve Bayes compute the prior probability of the classes
from the instances in the training set, which usually does not reflect the correct prior
probability of classes and thus bias the decision of the classifier. In this paper we have
addressed these two problems and have proposed methods and algorithms to improve
the prediction problem of naïve Bayes.

To compare the performance of the proposed extensions and to compare with other
algorithms, we use prediction accuracy and as well as a combination of prediction
accuracy with the difference between true positive and false positive. We have
proposed a method in section 2 to improve the computation of prior probability of
classes and to avoid possible bias on classification due to the instances of training set.
The method is based on perturbing prior probability around pre computed value so as
to maximize the objective function, which was the combination of 0.75 of prediction
accuracy and 0.25 of the differences between true positive and false positive. The
0.75 and 0.25 combinations are arbitrary and we have used these values for
illustration purpose. Once the best value of the prior probability was found, the value
was used to classify the test along with other trained conditional probability. To find
the effectiveness of this extension, we have applied it to solve a problem that we have
worked before, discriminating TATA box from putative TATA box. The results are
shown in Tables 2 and 3 and in Figure 1. In this experiment we have used 10 fold
cross validation on a data set with 174 positive instances and 459 negative instances.

 Extensions of Naive Bayes and Their Applications to Bioinformatics 291

If we look at the comparison of the prediction accuracy of naïve Bayes with and
without the extension in Figure 1, they looked very much similar and in fact the naïve
Bayes seems to have a better performance, which can be explained due to increased
value of true negative sacrificing true positive. Also notice that the difference between
true positive and false positive remains more or less same with naïve Bayes with and
without extension.

To improve the prediction accuracy we introduce limited dependency in the
neighborhood. The order of dependency varies from 0 to k where k is the length of the
neighbor hood. As the number of dependency increases the prediction accuracy may
start increasing and then start dropping due to data over fitting. Empirically we have
shown that the prediction accuracy with Markov order 2 achieves the best
performance. The best prediction accuracy of a naïve Bayes with 10 fold cross
validation was 69% while the extension gave the prediction accuracy of 79% which is
better than the best solution by an artificial neural network. The extension achieves
the improved prediction accuracy without the increase in computational cost and it is
relatively easy to implement compared to many other sophisticated machine learning
algorithms such as artificial neural network. When applying this extension to solve a
new problem, find the appropriate level of dependency that has the best prediction
accuracy and use the level of dependency for testing purposes.

In summary we have introduced two extensions to naïve Bayes to improve its
predictability without increasing the computational cost. Empirically we have shown
that the second extension has outperformed other best known machine learning
algorithms. To make very firm conclusion of the effectiveness of these extensions, we
need to apply this methods to many other problems and empirically show the
performance improvements.

References

1. Cao J, Panetta R, Yue S, Steyaert A, Young-Bellido M, Ahmad S: A naive Bayes model
to predict coupling between seven transmembrane domain receptors and G-proteins.
Bioinformatics 2003, 19(2):234-240.

2. Ferrari LD, Aitken S: Mining housekeeping genes with a Naive Bayes classifier. BMC
Genomics 2006, 7(277).

3. Sandberg R, Winberg G, Bränden C-I, Kaske A, Ernberg I, Cöster J: Capturing Whole-
Genome Characteristics in Short Sequences Using a Naïve Bayesian Classifier.
Genome Research 2001, 11(8):1404-1409.

4. Wu J, Mellor JC, DeLisi C: Deciphering protein network organization using
phylogenetic profile groups. Genome Inform 2005, 16(1):142-149.

5. Weka. In.; 2006: Data Mining Software in Java, http://www.cs.waikato.ac.nz/ml/weka/.
6. Jaynes ET: Prior Probabilities. IEEE Trans on Systems Science and Cybernetics 1968,

Sec-4(3):227-241.
7. Witten IH, Frank E: Data mining: practical machine learning tools and techniques,

second edn. San Francisco, Calif.: Morgan Kaufmann; 2005.
8. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu

Y, Kent WJ et al: Assessing computational tools for the discovery of transcription
factor binding sites. Nat Biotechnol 2005, 23(1):137-144.

292 R. Loganantharaj

9. Butler JEF, Kadonaga JT: The RNA polymerase II core promoter: a key component in
the regulation of gene expression. Genes Development 2002, 16:2583-2592.

10. Loganantharaj R, Karim ME, Lakhotia A: Recognizing TATA promoters based on
discriminating frequency analysis of neighborhood tuples. In: Biot-04: First
Biotechnology and Bioinformatics Symposium: A Community and Academic Forum: 2004,
September; Colorado Springs, Colorado; 2004, September.

11. Loganantharaj R: Discriminating TATA-box from putative TATA box in plant
genome. International Journal of Bioinformatics Research and Applications 2006,
2(1):36-51.

12. Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV:
PlantProm: a database of plant promoter sequences. Nucleic Acids Res 2003,
31(1):114-117.

13. Logananatharaj R: Comparing the Performance of Several Popular Machine Learning
Algorithms. In: Biotechnology and Bioinformatics Symposium: October, 20-21 2006;
Provo, Utah; 2006.

The Solution Space of Sorting by Reversals

Maŕılia D.V. Braga1, Marie-France Sagot1, Celine Scornavacca2,
and Eric Tannier1

1 INRIA Rhône-Alpes, Laboratoire de Biométrie et Biologie Évolutive (UMR 5558),
CNRS, Univ. Lyon 1

43 bd 11 Nov, 69622, Villeurbanne Cedex, France
marilia@biomserv.univ-lyon1.fr,

{Marie-France.Sagot,Eric.Tannier}@inrialpes.fr
2 Laboratoire d’Informatique, de Robotique et de Microélectronique

de Montpellier, 34392 Montpellier Cedex 5 - France
Celine.Scornavacca@lirmm.fr

Abstract. In comparative genomics, algorithms that sort permutations
by reversals are often used to propose evolutionary scenarios of large
scale genomic mutations between species. One of the main problems of
such methods is that they give one solution while the number of optimal
solutions is huge, with no criteria to discriminate among them. Bergeron
et al. [4] started to give some structure to the set of optimal solutions,
in order to be able to deliver more presentable results than only one so-
lution or a complete list of all solutions. The structure is a way to group
solutions into equivalence classes, and to identify in each class one par-
ticular representative. However, no algorithm exists so far to compute
this set of representatives except through the enumeration of all solu-
tions, which takes too much time even for small permutations. Bergeron
et al. [4] state as an open problem the design of such an algorithm. We
propose in this paper an answer to this problem, that is, an algorithm
which gives one representative for each class of solutions and counts the
number of solutions in each class, with a better theoretical and practical
complexity than the complete enumeration method. We give several bio-
logical examples where the result is more relevant than a unique optimal
solution or the list of all solutions1.

1 Introduction

The combinatorics of genome rearrangements is a very prolific domain of com-
putational biology. It consists in, given a set of actual genomes, inferring the
large-scale evolutionary mutations that explain the differences in the organisa-
tion of those genomes. For a general survey of the algorithmic aspects of genome
rearrangements, see [13].

One of the most used mathematical models for representing and manipulating
such genome rearrangements is given by signed permutations, where the elements
1 An implementation of the algorithm is available online, as part of the BaobabLuna

package, at www.geocities.com/mdvbraga/baobabLuna.html

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 293–304, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

www.geocities.com/mdvbraga/baobabLuna.html

294 M.D.V. Braga et al.

are unique homologous markers, and reversals as the main events that may alter
the order of the markers along the genomes. The combinatorial problem consists
then in giving a shortest sequence of reversals that transforms one permutation
into another. The problem of sorting signed permutations by reversals has been
the subject of a huge literature (among others, [2,5,17,12,8,11]), but all algorithms
propose one optimal solution, whereas the solutions can be very numerous. This
kind of delivery may be useless for biological purposes, and the algorithms are
therefore mainly useful to compute a distance between genomes.

One study by Siepel [14] resulted in a method to enumerate all solutions. This
is however almost as useless as providing only one solution, because often the
solutions are so many that the whole set can not be presented (when it can be
computed). A few studies tried to decrease the size of the set of optimal solutions
by introducing some biological constraints, such as favouring small inversions [1],
or inversions that do not cut some clusters of co-localised genes [8,3]. The number
of solutions is decreased, but the whole set of solutions is never handled.

Bergeron et al. [4] then provided a way to group the solutions into equivalence
classes. However, no algorithmic study was performed, and in particular the prob-
lem of giving one element in each class without enumerating all the solutions was
mentioned open. In this paper, we introduce a solution to this problem. Our solu-
tion gives one representative element per class of solutions, and counts the number
of solutions in each class. The complete enumeration of the solutions is not needed,
and the theoretical complexity, as well as the practical execution time are lower
than in any other current method for the enumeration of the solutions.

The paper is organised as follows. We present the usual model for dealing with
gene order and orientation in Section 2. In Section 3, we describe the algorithm.
Section 4 is dedicated to practical experiments on simulated and biological data,
and on an analysis of the performances of our implementation.

2 Sorting by Reversals and Its Solution Space

Signed permutations. Genome rearrangements such as reversals may change the
order of some segments in a genome, and also the DNA strand the segment is on.
We identify homologous genomic markers with the integers 1, . . . , n, with a plus
or minus sign to indicate the strand they lie on. The order and orientation of
genomic markers of one species in relation to another is represented by a signed
permutation of size n, that is, by a permutation of the set {1, . . . , n}, where each
number is, in addition, given a sign ’+’ or ’-’ (the sign ’+’ is usually omitted).
The identity permutation (1, . . . , n) is denoted by Id.

A subset of numbers ρ ⊆ {1, . . . , n} is said to be an interval if there exist
i, j ∈ {1, . . . , n}, 1 ≤ i ≤ j ≤ n, such that ρ = {|πi|, . . . , |πj |}. Two intervals are
said to overlap if they intersect but none is contained in the other.
Sorting by reversals. Given a permutation π and an interval ρ, we can apply a
reversal on π, that is, the operation which reverses the order and flips the signs
of the elements of ρ: if ρ = {|πi|, . . . , |πj |},

π · ρ = (π1, . . . , πi−1, −πj, . . . , −πi, πj+1, . . . , πn+1).

The Solution Space of Sorting by Reversals 295

Due to this, an interval ρ can also be used to denote a reversal. We may always
represent an interval or reversal ρ as the sorted set of its values.

If ρ1, . . . , ρk is a sequence of intervals or reversals, we say that it sorts a
permutation π if π ·ρ1 · · · ρk = Id. The length of a shortest sequence of reversals
sorting a permutation π is called the reversal distance of π, and is denoted
by d(π). A shortest sequence of reversals sorting π is called an optimal sorting
sequence. For example, if the permutation π is (4, −3, −1, 2), one optimal sorting
sequence is {1}, {1, 2}, {4}, {1, 2, 3, 4}.

Computing the reversal distance and finding an optimal sorting sequence has
been the topic of a huge literature. The first polynomial algorithm appeared
in [12], while the fastest algorithm to compute the distance was given in [2],
and the one to find an optimal sequence can be retrieved from a compilation
of [5,11,17].

However, all these studies give one sequence among possibly many. For exam-
ple, for the permutation (−12, 11, −10, 6, 13, −5, 2, 7, 8,−9, 3, 4, 1), the number
of solutions is 8278540, and it can be useless when attempting a biological in-
terpretation to know only one among them.

The set of all solutions may be retrieved thanks to an algorithm by Siepel [14],
that, given a permutation, computes all the reversals that are the first step of
an optimal sequence, but in the aforementioned example, listing the 8278540
sequences is almost as useless as giving only one of them.

Traces. More interesting for our study is the representation of the set of solu-
tions that is given in [4]. Recall a reversal is written as a subset of {1, . . . , n},
where the elements are ordered increasingly, so that they can be compared by
a lexicographic order. Identifying a sequence of reversals with a word on the al-
phabet A of reversals, the authors of [4] define an equivalence relation on these
words: if ρ and θ are reversals (intervals) and do not overlap, then the words ρθ
and θρ are equivalent. We say that ρ and θ commute. Under this relation, any
two words containing ρθ as a subword are equivalent to the same word, replacing
the subword ρθ by θρ.

For example, if the permutation π is (4, −3, −1, 2), consider the solution given
by the sequence of reversals {1}{1, 2}{4}{1, 2, 3, 4}. Here, {4} and {1, 2} com-
mute, so {1}{1, 2}{4}{1, 2, 3, 4} is equivalent to {1}{4}{1, 2}{1, 2, 3, 4}, and as
every pair of reversals also commute, every permutation of these four reversals
is a solution.

Now if the solution {1, 3, 4}{2, 4}{2, 3}{3} is considered, then it is equivalent
to {1, 3, 4}{2, 4}{3}{2, 3}, {1, 3, 4}{3}{2, 4}{2, 3} and {3}{1, 3, 4}{2, 4}{2, 3} by
commutation of {3} with all the other reversals, which do not commute among
themselves.

An equivalence class of optimal sequences of reversals over this equivalence
relation is called a trace. The concept of traces is well studied in combinatorics,
see for example [7]. It is particularly relevant in our study because of the following
result proven in [4].

296 M.D.V. Braga et al.

Proposition 1. [4] Let π be a signed permutation. The set of all optimal
sequences of reversals sorting π is a union of traces.

As a consequence, if the set of solutions is too big to be enumerated, the set of
traces may be a more relevant result for the problem of sorting by reversals. It
remains to find a good way to represent the traces in a compact manner.

Normal form of a trace. A trace T is thus a set of equivalent words over an al-
phabet A. An element s of T is said to be in normal form if it can be decomposed
into subwords s = u1| . . . |um such that:

– every pair of elements of a subword ui commute;
– for every element ρ of a subword ui (i > 1), there is at least one element θ

of the subword ui−1 such that ρ and θ do not commute;
– every subword ui is a nonempty increasing word under the lexicographic

order induced by A

A theorem by Cartier and Foata (cited in [4]) states that, for any trace, there
is a unique word that is in the normal form. We may therefore represent a trace
by its element in the normal form.

For example, the permutation (4, −3, −1, 2) has two traces of optimal se-
quences, one is {1}{1, 2}{1, 2, 3, 4}{4}, and the other is {1, 3, 4}{3}|{2, 4}|{2, 3}.
In this example, giving the two normal forms of the traces allows to describe the
whole set of 28 solutions in a compact way.

The algorithmics of traces. Bergeron et al. [4] provide no algorithmic insight for
this way of representing the solutions of sorting by reversals. They state as an
open problem the complexity of giving one element in each trace. The best algo-
rithm so far to enumerate the traces is therefore to do a complete enumeration
of all the solutions, and from each solution, to compute the associated trace and
add it to the list of found traces if it is not already in.

We give in this paper an algorithm that enumerates the normal form of all
the traces of solutions given a signed permutation, and counts the number of
solutions in each trace, without enumerating all the solutions.

3 The Algorithm and Its Complexity

It will be useful to describe first the only available algorithm that is up to now
able to enumerate all the traces of the solution space of sorting by reversals, and
to examine its theoretical complexity. We then present our algorithm, and make
a comparison between the two.

3.1 The Enumeration of the Solutions

A sequence of reversals s = ρ1ρ2 . . . ρi is called an optimal i-sequence if d(π ·
ρ1 · · · ρi) = d(π)− i. Note that if i = d(π), then s is an optimal sorting sequence.

The Solution Space of Sorting by Reversals 297

The set of all optimal 1-sequences of a permutation can be computed with
the help of an algorithm by Siepel [14]. It has time complexity O(n3), and the
number of possible optimal 1-sequences is bounded by n(n+1)

2 ≤ n2.
The set of all optimal i-sequences can then be computed from the set of (i−1)-

sequences by iterating the same algorithm for finding all 1-sequences. The set
of i-sequences has therefore size at most O(n2i), and the algorithm has time
complexity at most O(n3 ∗

∑i
k=1 n2k). In this way, we can enumerate the set of

all optimal sorting sequences in time O(n2n+3).
There remains to construct the normal form of the trace for each sorting

sequence, and then to group the sorting sequences by trace.
For any optimal i-sequence s of reversals, and under the equivalence relation

deduced from the commutation of reversals, is defined the trace that contains s,
that we call an i-trace.

Given an optimal sorting sequence s = ρ1ρ2 . . . ρd for a permutation π with
reversal distance d, the normal form of the trace T that contains s is constructed
by iterating an integer i from 1 to d and, at each step i, adding the element ρi,
represented as the sorted set of its values, to the normal form of the (i−1)-trace
containing ρ1 . . . ρi−1 (the initial 0-trace is an empty trace). This procedure is
described by Algorithm 1.

Algorithm 1. Adding an element to a normal form of a trace
Require: An (i − 1)-trace u1|u2| . . . |uk and the next element ρi

Ensure: The normal form of the i-trace containing the element u1u2 . . . ukρi

Let j be the maximum index such that uj contains an element that does not commute
with ρi, or 0 if such a uj does not exist
if j = k then

Add a new subword uk+1 ← ρi

else
Add ρi to the subword uj+1, according to the lexicographic order

end if

As the reversal distance and the interval size are bounded by n, the procedure
has complexity O(n2 log n), considering that each reversal or interval has to be
sorted and comparing reversals may be done in O(n).

The constructed solution is compared to a list of already constructed normal
forms of traces, so that one trace is not written several times. This may take
O(n log N) operations, where N is the number of represented traces. As N is
bounded by the number of solutions, we have n logN ≤ n log(n2n) = 2n2 log n.

Eventually, the total time complexity for enumerating all the normal forms of
the traces is bounded by O(n2n+3) + O(n2n(n2 log n + 2n2 log n)) = O(n2n+3).

This upper bound on the theoretical complexity does not give hope that this
method can be applied to big permutations. We shall actually see in practice
that it is intractable for permutations π above around d(π) = 10.

298 M.D.V. Braga et al.

This method is implemented, for example, in the GRAPPA software2, and it
is the only one that, among all available applications about sorting by reversals,
is able to give more than one unique solution.

3.2 The Enumeration of the Traces

A k-trace T ′ is a prefix of an i-trace T (k ≤ i) if T ′ contains a k-sequence which is
a prefix of an i-sequence of T . It is equivalent [7] to saying that each k-sequence
of T ′ is a prefix of an i-sequence of T .

The idea of the algorithm to enumerate the traces is almost naturally con-
tained in this notion. It is easy to remark that every prefix of size k of an optimal
i-sequence is in a k-trace of optimal k-sequences. So instead of enumerating all
the i-sequences and then computing and comparing the traces, it is therefore
more valuable to enumerate and compare directly all the i-traces.

We have seen in Algorithm 1 a way to construct the normal form of an (i+1)-
trace from the one of an i-trace. We may use this method to construct all i-traces
simultaneously in an incremental way, without computing all the solutions. With
no additive cost, we also compute the number of sequences in each i-trace.

The method is detailed in Algorithm 2.

Theorem 1. At the end of Algorithm 2, T contains, for every trace T of so-
lutions for sorting π, one element of T (the normal form) and the number of
solutions in T .

Proof
The proof is by induction. We prove that at the end of the step i of the main
loop of Algorithm 2, the set T contains all the normal forms and the size of the
i-traces of optimal sequences for π.

For i = 1, each 1-trace is generated by the algorithm of Siepel [14] and the
size of a 1-trace is 1.

For an arbitrary 2 ≤ i ≤ d(π), by hypothesis, T contains all the normal forms
and the size of the optimal (i − 1)-traces. Every i-trace has a prefix in this set,
since a prefix of size i−1 of an optimal i-sequence is an optimal (i−1)-sequence.
So every i-trace is found from an (i − 1)-trace by the algorithm of Siepel [14].

Now it remains to prove that the cardinality of an i-trace T is the sum of
the cardinalities of its (i − 1)-prefixes, so that the right size of all traces are
computed. Let ρ1, . . . , ρk be the reversals that are in the last position of at least
one element in T . Let xj be the number of elements of T which have ρj as their
last position. Then the number of elements of T is

∑
j xj . Now, for all j, as ρj

is the last reversal of an optimal i-sequence x1 . . . xi−1ρj of T , x1 . . . xi−1 is an
optimal (i − 1)-sequence of reversals, so it belongs to an (i − 1)-trace T ′ of size
xj . So by the induction hypothesis, the size of the trace T is the sum of the sizes

2 http://www.cs.unm.edu/∼moret/GRAPPA/. We re-implemented the algorithm in
Java in order to include it in the package BaobabLuna, that implements all the
methods that we describe here, in order to compare the running times on the same
basis.

http://www.cs.unm.edu/~moret/GRAPPA/

The Solution Space of Sorting by Reversals 299

Algorithm 2. Enumerating all the traces of a signed permutation
Require: A signed permutation π
Ensure: The normal form and size (norm(T), size(T)) of each trace T of optimal

sequences of reversals for sorting π

d ← reversal distance of π
S ← {ρ | ρ is an optimal 1-sequence for π}/* Algorithm of Siepel [14] */
T ← ∅
for each reversal ρ ∈ S do

norm(T) ← ρ /* T is a 1-trace */
size(T) ← 1
Insert {(norm(T), size(T))} in T

end for
for each integer i from 2 to d do

Tnext ← ∅ /* contains the normal forms of all the i-traces */
for each (norm(T), size(T)) in T /* T is a (i − 1)-trace */ do

Let πT be the resulting permutation after applying the (i−1)-sequence norm(T)
to π
S ← {ρ | ρ is an optimal 1-sequence for πT }/* Algorithm of Siepel [14] */
for each reversal ρ ∈ S do

norm(T+ρ) ← norm(T) + ρ /* Algorithm 1 */
size(T+ρ) ← size(T)
if there is (norm(T+), size(T+)) ∈ Tnext such that norm(T+) = norm(T+ρ)
then

size(T+) ← size(T+ρ) + size(T+)
else

Insert (norm(T+ρ), size(t+ρ)) in Tnext

end if
end for

end for
T ← Tnext

end for
return T /* T is the final set of d-traces */

of all (i−1)-prefixes of T , and the algorithm provides this size, since it generates
all prefixes. �

3.3 Theoretical Complexity

The complexity of the algorithm depends on the number
∑d(π)

i=1 n(i), where n(i)
is the number of i-traces of optimal i-sequences. As every i-trace is a prefix of
a d-trace, where d = d(π), this number is bounded by the number of d-traces
times the number of prefixes of each trace.

To give an estimation of the number of prefixes of a trace, we need to adopt
a representation of the traces as partially ordered sets (posets). It is possible
to represent a trace T that contains an optimal sequence ρ1 . . . ρn by a partial
ordering of the set PT = {(ρi, ki)}i, where ρi is an element of A appearing in

300 M.D.V. Braga et al.

ρ1 . . . ρn and ki is the number of occurrences of ρi in the subword ρ1 . . . ρi. The
relation <T is defined as the transitive closure of the relation � itself defined by
(ρi, ki) � (ρj , kj) if and only if i < j and ρi and ρj do not commute.

In other words, (ρi, ki) <T (ρj , kj) if and only if the kth
i ρi is always before

the kth
j ρj in the elements of T (see [7]).

For example, T = {1, 3, 4}{3}|{2, 4}|{2, 3} is a trace of optimal sequences
for the permutation (4, −3, −1, 2). The elements of PT are ({1, 3, 4}, 1), ({3}, 1)
({2, 4}, 1) and ({2, 3}, 1), and the relations are ({1, 3, 4}, 1) <T ({2, 4}, 1),
({2, 4}, 1) <T ({2, 3}, 1) and ({1, 3, 4}, 1) <T ({2, 3}, 1). The poset is represented
in Figure 1.

({2,4},1)({1,3,4},1)

({3},1)

({2,3},1)

Fig. 1. The poset constructed from the normal form T = {1, 3, 4}{3}|{2, 4}|{2, 3}. All
the linear extensions of this poset are the optimal sequences of reversals belonging to
the trace represented by T .

The set PT with the relation <T is a partially ordered set (poset). A linear
extension of a poset is a total order <tot which verifies ρ <T θ ⇒ ρ <tot θ. The
set of all linear extensions of PT , <T is exactly the set of elements of the trace
T (see [7]). We may therefore identify the trace T and the poset PT , <T , and
simply speak about the poset T .

The height of a trace (or poset) is the cardinality of the maximum set of
elements of PT that is totally ordered by the relation <T . It is also the number
of subwords ui in the normal form of a trace.

The width of a trace (or poset) is a maximum cardinality set of elements of
PT that are not comparable by the relation <T . It is at least (but in general not
equal to) the maximum size of a subword ui in the normal form of a trace. The
width of a poset can be computed in polynomial time thanks to a reduction of
Fulkerson [10] to a bipartite matching problem.

The representation of a trace as a poset allows to use the parameters of the
poset in the computations of the complexity of the algorithms, and it is also a nice
way to present the solution of sorting by reversals. Indeed, a poset corresponds
to a set of reversals that may have occurred during evolution and that could
therefore help explain the difference between the organisation of two genomes.
It indicates what we know and what we do not know about the order in which
these potential reversals occurred. Instead of giving a list of sequences, or a
unique sequence representing an equivalence class, the poset therefore gives one
possible solution, with uncertainties as concerns the exact shape of the solution.

The Solution Space of Sorting by Reversals 301

An ideal of a poset PT , <T is a subset U of PT such that if ρ ∈ U and θ <T ρ,
then θ ∈ U .

It is very easy to see that ideals of posets and prefixes of traces correspond to
the same notions, and that in particular, the number of prefixes of a trace T is
exactly the number of ideals of the poset PT , <T .

The advantage of this notation is that the number of ideals of a poset can be
estimated. It is bounded by nk, where n is the size of PT and k is the width of
the poset [15].

The number of i-traces that we generate is therefore bounded by Nnkmax ,
where N is the number of d-traces and kmax is the maximum width of a d-trace.

Given this estimation, we may give a bound for the complexity of our algo-
rithm. Indeed, for every i-trace, 1 ≤ i ≤ d − 1, we apply an O(n3) algorithm
to find all the 1-sequences. For all these 1-sequences (there are at most n2 of
them), we then apply Algorithm 1 to construct the normal form of the following
(i + 1)-trace, and compare the constructed normal form to the current list of
normal forms of (i + 1)-traces.

This gives a final complexity of O(Nnkmax(n3 + n2(n2 + n log Nnkmax))) =
O(Nnkmax+4).

Observe that computing the number of linear extensions of a poset is #P -
complete [6], and the best known algorithms run in O(nk), where n is the size of
the poset and k is its width [16]. Our algorithm counts the number of elements in
each d-trace, that is the number of linear extensions of the associated posets. Our
time complexity thus nearly reaches the best known complexity for the counting
part.

If in general the width of a poset may be as large as its number of elements,
we have made some experiments on simulated permutations (see Figure 2) which
show that in practice, this parameter is often lower, which explains the speed-up
of our algorithm compared to a total enumeration procedure.

permutation with n=20 and d=12;
41515 traces and 16955181 sol

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10 11 12

 width

n
u

m
b

er
 o

f
o

cc
u

re
n

ce
s

o
f

w
id

th

permutation with n=20 and d=10;
1042 traces and 131596 sol

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

width

n
u

m
b

er
 o

f
o

cc
u

re
n

ce
s

o
f

w
id

th

permutation with n=20 and d=8;
8 traces and 8848 sol

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

width

n
u

m
b

er
 o

f
o

cc
u

rr
en

ce
s

o
f

w
id

th

Fig. 2. Distribution of the width of posets on random permutations

302 M.D.V. Braga et al.

4 Experimental Results and Applications

We implemented our algorithm and tested it on randomly simulated permuta-
tions, as well as on biological data3. Some results are recorded in Figure 3. These
numbers may be useful to give an idea of the quantities that we are dealing with,
numbers of solutions and number of traces.

Even if we are quickly limited in the size of permutations that are possible to
treat, there is a solid gain in relation to the existing methods. Observe that the
main limit concerns the amount of memory that needs to be used, more than
the time.

5 Conclusions, Limitations and Perspectives

We devised an algorithm that gives a representation of all the solutions of sorting
signed permutations by reversals, without enumerating each solution. It is the
first algorithm that achieves this, to our knowledge, and it performs better than
the complete enumeration on all the data on which we tested it.

PERMUTATION Ns Nt Enum. sol. Enum. + traces BaobabLUNA
rat/human chr X

n =16 2419750 418 � 10 min � 13 min � 10 s

d=10

mouse/human chr X

n =16 3362310 218 � 12 min � 18 min � 10 s

d=10

random

n =17 57019369 18255 � 4 h � 4.5 h � 5 min

d=11

random

n =18 327905046 34317 � 24 h � 43 h � 18 min

d=12

Chr X/Chr Y human

n =30 207600628 115512 > 24 h > 48 h � 28 min

d=12

Fig. 3. Computation results. Columns from left to right contain: 1- the origin of the
permutation, its number of elements and reversal distance; 2- the number of solutions
of sorting this permutation by reversals; 3- the number of traces; 4- the execution time
of an algorithm that enumerates all the solutions; 5- the execution time of the same
program, adding the computation of all the traces from the solutions; 6- the execution
time of the enumeration of the traces, according to Algorithm 2.

3 The first two permutations, that model the organisation of the X chromosomes
of human, mouse and rat, are taken from [3]; the permutation Chr X/Chr Y human,
modelling the comparison of the human X and Y chromosomes, is a simplified version
of a set of markers coming from an ongoing study at the LBBE laboratory, University
of Lyon 1, France.

The Solution Space of Sorting by Reversals 303

The implementation of the algorithm is online, integrated to a package for the
manipulation of signed permutations.

Although this program is faster than the previously published methods, it
is still limited (mainly because of memory) to small permutations, with d(π)
inferior to 20, on a personal computer that has 1Gb random access memory4. It
is sufficient for some biological applications, as we show it here on the data from
X chromosomes of mammalian species, or on the comparison of the human X and
Y chromosomes (see Figure 3). For many datasets however, it is still insufficient
because of the size of the output.

Indeed, if the solution space is dramatically reduced when dealing with traces
of solutions, it is often still too big to be handled by biologists on large permu-
tations. The algorithmic limit coincides therefore with the limit of the utility
of the solution. Probably another structure remains to be invented in order to
solve a similar problem for large permutations.

References

1. Ajana Y., Lefebvre J.F., Tillier E., El-Mabrouk N., “Exploring the set of all min-
imal sequences of reversals - An application to test the replication-directed re-
versal hypothesis”. Second International Workshop, Algorithms in Bioinformatics
(WABI’02), LNCS 2452, R. Guigo and D. Gusfield eds., pp. 300-315, September
2002.

2. Bader, D.A., Moret, B.M.E., and Yan, M., “A linear-time algorithm for computing
inversion distances between signed permutations with an experimental study”, J.
Comput. Biol. 8, 5 (2001), 483-491.

3. Berard S., Bergeron A., Chauve C. and Paul C. “Perfect sorting by reversals is not
always difficult”, to appear in IEEE transactions on cioinformatics and computa-
tional biology, 2006.

4. Bergeron A., Chauve C., Hartmann T., St-Onge K., “On the properties of sequences
of reversals that sort a signed permutation”. JOBIM 2002, 99-108.

5. Bergeron A., Mixtacki J. and Stoye J., “The inversion distance problem”, in Mathe-
matics of evolution and phylogeny (O. Gascuel Ed.) Oxford University Press, 2005.

6. Brightwell G. and Winkler P., “Counting linear extensions is #P-complete”, STOC
’91: Proceedings of the twenty-third annual ACM symposium on Theory of comput-
ing, 1991, ACM Press.

7. Diekert V. Rozenberg G. (eds) The book of traces, World Scientific, 1995.

8. Diekmann Y., Sagot M.F. and Tannier E., “Evolution under reversals: parsimony
and preservation of common intervals”, to appear in IEEE/ACM transactions in
computational biology and bioinformatics, 2006 (A preliminary version appeared in
COCOON 2005, Lecture Notes in Computer Science 3595, 42-51, 2005).

9. Dilworth R.P., “A Decomposition Theorem for Partially Ordered Sets”, Annuals
of Mathematics 51 (1950) pp. 161-166.

10. Fulkerson D.R., “Note on Dilworth’s decomposition theorem for partially ordered
sets”, Proc. Amer. Math. Soc. 7 (1956), 701–702

4 This extensive use of memory is due to the fact that, in order to create the i−traces,
we have to store all the (i − 1)−traces.

304 M.D.V. Braga et al.

11. Han Y, “Improving the Efficiency of Sorting by Reversals”, Proceedings of The 2006
International Conference on Bioinformatics and Computational Biology, CSREA
Press, Las Vegas, Nevada, USA, 2006.

12. Hannenhalli S. and Pevzner P. , “Transforming cabbage into turnip (polynomial
algorithm for sorting signed permutations by reversals)”, Journal of the ACM,
46:1– 27, 1999.

13. Li Z., Wang L. and Zhang K., “Algorithmic approaches for genome rearrangement:
a review”, IEEE transactions on systems, man and cybernetics, 36:636–648, 2006.

14. Siepel A. “An algorithm to enumerate sorting reversals for signed permutations”.
J Comput Biol 10:575-597, 2003.

15. Steiner G., “An algorithm to generate the ideals of a partial order” Operations
Research Letters, 5(6):317 – 320, 1986.

16. Steiner G., “Polynomial algorithms to count linear extensions in certain posets”.
Congressus Numerantium, 75, 71-90, 1990

17. Tannier E., Bergeron A. and Sagot M.-F., “Advances on Sorting by Reversals”, to
appear in Discrete Applied Mathematics, 2006 (A preliminary version appeared in
CPM 2004, Lecture Notes in Computer Science 3595, 42-51).

A Fast and Exact Algorithm for the
Perfect Reversal Median Problem

Matthias Bernt, Daniel Merkle, and Martin Middendorf�

Department of Computer Science, University of Leipzig, Germany
{bernt,merkle,middendorf}@informatik.uni-leipzig.de

Abstract. We study the problem of finding for the gene orders of three taxa a po-
tential ancestral gene order such that the corresponding rearrangement scenario
has a minimal number of reversals where each of the reversals has to preserve the
common intervals of the given input gene orders. Common intervals identify sets
of genes that occur consecutively in all input gene orders. The problem of find-
ing such an ancestral gene order is called the perfect reversal median problem
(pRMP). A tree based data structure for the representation of the common inter-
vals of all input gene orders is used for the design and realization of a fast and
exact algorithm — called TCIP — for solving the pRMP. It is known that for two
given gene orders the minimum number of reversals to transfer one gene order
into the other can be computed in polynomial time, whereas the corresponding
problem with the restriction that common intervals should not be destroyed by
the reversals is already NP-hard. Nevertheless, we show empirically on biolog-
ical and artificial data that TCIP for the pRMP is usually even faster than the
fastest exact algorithm (Caprara’s median solver) for the reversal median prob-
lem (RMP), i.e., the corresponding problem in which the common intervals are
not considered.

1 Introduction

The phylogenetic relationship between species is often analyzed by means of rearrange-
ment scenarios for the gene orders of the species. A rearrangement scenario describes
how the gene orders can be transferred into each other by a given set of possible re-
arrangement operations. A very commonly used rearrangement operation is the rever-
sal of a part of the genome. A median for three given signed input permutations is a
gene order, such that the sum of the reversal distances (i.e., the minimal number of re-
versals needed to transform one gene order to another) to the three input gene orders
is minimal. For inferring phylogenetic trees based on gene orders solving this reversal
median problem (RMP) is a basic operation used in several algorithms ([12,17,18,10]).
It is known that certain gene groups are preserved during evolution. Since it is difficult
to determine functionally what a gene group is it has been proposed to consider com-
mon combinatorial structures between gene orders as gene groups. Conserved intervals

� This work was supported by the German Research Foundation (DFG) through the project
“Deep Metazoan Phylogeny” within SPP 1174.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 305–316, 2007.
© Springer-Verlag Berlin Heidelberg 2007

ă

306 M. Bernt, D. Merkle, and M. Middendorf

([6]), or — as used in this paper — common intervals ([21,16]) are considered in evolu-
tionary scenarios ([3,8] and [1,9]). Unfortunately, even computing the perfect reversal
distance, i.e. the minimum number of reversals that preserve all common intervals be-
tween two given gene orders is an NP-complete problem ([14]). Without the restriction
that common intervals should be preserved the problem (and computing a correspond-
ing minimum length sequence of reversals) is polynomial time solvable ([15,5] and
[20]). But finding a median for three given gene orders is NP-hard ([13]). There are ex-
act ([13,19]) and heuristic ([12,10,7]) median solvers available. In the inspiring paper
of Bérad et al. ([2]), it was shown that parsimonious preserving sorting scenarios can be
computed in polynomial time for many instances. This results are based on the strong
interval tree, which is a tree data structure for representing the set of common intervals
of a set of gene orders. The strong interval tree can be computed in linear time for a
constant number of input gene orders. In this paper we use strong interval trees for the
computation of perfect reversal median scenarios.

Basic definitions are given in Section 2. How the perfect RMP is solved with algo-
rithm TCIP is described in Section 3. Empirical results on biological mtDNA data and
on random data are presented in Section 4. Conclusions are given in Section 5.

2 Basic Definitions

A permutation of size n is a permutation of the elements in {1,2, . . . ,n}. A signed
permutation of size n is a permutation of size n where every element has an addi-
tional sign (“+” or “−”) that defines its orientation (“+” is usually omitted). A reversal
ρ(i , j), 1 ≤ i ≤ j ≤ n applied to a signed permutation π of size n transforms it into
π◦ρ = (π1, . . . ,πi−1,−π j , . . . ,−πi ,π j+1, . . . ,πn). A sorting scenario for two signed per-
mutations π and σ is a sequence of reversals ρ1, . . . ,ρd that transforms π into σ. If d
is minimal the sequence is called parsimonious and d is the reversal distance d(π,σ)
between π and σ.

An interval of a permutation π is a set of consecutive elements of the permutation
π. Let Π be a set of signed permutations of size n. A common interval ([21,16]) of Π
is a subset of {1,2, . . . ,n} that is an interval in all π ∈ Π. Each singleton and the set of
all elements are called trivial common intervals. Let C (Π) be the set of all common
intervals of Π. Two common intervals c and c ′ overlap if c ∩ c ′ �= �, c �⊂ c ′, and c ′ �⊂ c.
If two intervals do not overlap they commute. A common interval is called a strong
common interval, if it does not overlap with any other common interval. The set of
all strong common intervals can be computed in O(kn) for k signed permutations of
length n [4]. A strong interval tree is a tree of the strong common intervals of Π. The
root node is the interval containing all elements and the leaves are the singletons, inner
nodes and edges of inner nodes are defined by the minimal inclusion relation of the
intervals. A reversal is said to be preserving if it does not destroy any common interval
(i.e., a reversal is not preserving, if there exists a common interval, such that it does not
exists after applying the reversal). The perfect reversal distance dp (π,σ) between two
signed permutations π and σ is the minimum number of preserving reversals necessary
to transform π into σ.

The reversal median problem (RMP) is to find for given signed permutations Π =
{π1,π2, . . . ,πk }, a signed permutationμ which has a minimal sum of reversal distances to

A Fast and Exact Algorithm for the Perfect Reversal Median Problem 307

the given signed permutations, i.e., the score
∑k

i=1 d(πi ,μ) has to be minimal. A median
scenario is defined as the reversal sequences from each of the input permutations to the
median, such that the total number of reversals is minimal. A sequence of permutations
that is traversed from an input permutation πi towards the median is called the i -th
trace. For the perfect RMP (pRMP), similar to the definition of the perfect distance
measure, only preserving reversals are allowed, i.e., no reversal is allowed to break one
of the common intervals of the three signed input permutations, and for the median μ

it holds C (Π) = C (Π∪ {μ}). Note the slight difference to the problem as defined in [9],
where for the computation of the perfect distance only the pairwise common intervals
of the input permutations and the median was taken into account (and not the common
intervals of all three input sequences). A modification of the RMP is the oriented RMP
(oRMP) which is to find a median such that for a given tuple of signs (s1, s2, . . . , sk)
the value

∑k
i=1 d(πi , si ◦μ) has to be minimal (if s = +, then s ◦π = π, if s = −, then

s ◦π=−π, i.e., the complete signed permutation is inverted).

3 Solving the Perfect Reversal Median Problem

In this section a generalization of strong interval trees as introduced in [2] for pairs of
permutations is defined. The structure of this generalized strong interval tree strongly
influences the amount of computation time needed to solve the pRMP. Methods are
presented for solving the pRMP based on the different properties of this tree. These
methods are used in the proposed algorithm for the pRMP.

3.1 Definitions and The Median Parity Theorem

Similar to [2] we define quotient permutations as follows: Let π be a permutation. A
partition I = {I1, . . . , Ik } of the elements of π into common intervals is a congruence
relation. The quotient permutation associated with I denoted P|I is defined as fol-
lows: (i precedes j in P|I) iff (Ii precedes I j). A quotient permutation P|I defined by
the children of a node in the strong interval tree of a permutation is increasing (resp.
decreasing) linear, if P|I is the identity (resp. the inverse of the identity). Otherwise a
quotient permutation is prime. Using the definition of quotient permutations, the prop-
erty linear or prime is assigned to the nodes of strong interval trees as follows. When
using input permutationsπ1, . . . ,πk in each node of the strong interval tree k−1 quotient
permutations (relative to π1) are induced. Each quotient permutation is either prime or
linear (increasing or decreasing). If all k −1 quotient permutations are linear, the node
is said to be linear. Let Π = {π1, . . . ,πk } be the given input permutations. W.l.o.g. we
rename all elements in the signed permutations such that π1 is the identity permutation.
A tuple s = (s1, . . . , sk), where si ∈ {+,−}, is called a k-sign. The inverted tuple of s, i.e.
the tuple for which each sign is inverted, is denoted as s. A k-signed strong interval tree
T k

S (Π) assigns k-signs to the nodes of the interval tree, such that

i.) each leaf gets the k-sign according to the signs of the corresponding elements of
the input permutations,

ii.) the l-th entry in the k-sign of a linear node is + (resp. −) if the quotient permutation
of the node in πl (relative to π1) is increasing (resp. decreasing),

iii.) a prime node inherits the sign of the parent if the parent is linear.

308 M. Bernt, D. Merkle, and M. Middendorf

For a node I its k-sign is denoted s(I). A k-signed strong interval tree is called unam-
biguous, if the parent of every prime node is linear, and ambiguous otherwise. Examples
for 3-signed strong interval trees are given in the following subsections.

From the following propositions the first one is a slightly modified version from [2].
The other two are easy to see and the technical proofs are omitted.

Proposition 1. A (median) scenario is preserving iff each of the reversals is either a
node of the strong interval tree or the union of children of a prime node of the strong
interval tree.

Proposition 2. Let Π be the set of input permutations of a pRMP, μ be a median of
Π, and S be a preserving reversal median scenario for transforming the permutations
in Π to μ. Then on each trace the elements that correspond to the children of a prime
node are reordered by S, such that they are all in the same order at the end of the trace.
Furthermore, the reversals in S change the k-signs of linear and prime nodes, such that
for each node I in the tree all signs of its k-sign are either positive or negative, i.e.,
either ∀i : si (I) =+ or ∀i : si (I) =−.

Proposition 3. Let I be a node in a strong interval tree. Let ρi
1, . . . ,ρi

m be the sequence
of m reversals applied on the i -th trace. For all reversals, for which ρ j ∩I =� or ρ j ⊂ I
holds, the k-sign s(I) of node I is not changed. Each reversal with I ⊆ ρ j inverts the
i -th sign of s(I).

Theorem 1. (The Median Parity Theorem) Let I be a node of the strong interval tree
T 3

s (Π) of signed permutations Π = {π1,π2,π3}. If node I has a linear parent J , with
s(I) �= s(J) and s(I) �= s(J), then there exists a reversal of I on one of the traces, which
leads to either s(I) = s(J) or s(I) = s(J). This reversal belongs to any perfect median
scenario of Π.

Proof. Let S be a perfect median scenario and let I be a node in the strong interval
tree for which s(I) �= s(J) and s(I) �= s(J) holds and an inversion of I does not occur in
the perfect scenario. By Proposition 1 and 3 s(I) �= s(J) and s(I) �= s(J) still holds after
applying all reversals from S, as a reversal that inverts a sign in s(I) also inverts the
corresponding sign in s(J). Therefore, s(I) = s(J) or s(I) = s(J) is not achievable by S.
Thus by Proposition 2 S can not be a perfect median scenario. From this contradiction
follows immediately that a reversal of I must occur in any perfect scenario. Because
s(I) = s(J) or s(I) = s(J) can always be achieved by applying the reversal of I on exactly
one trace only, this reversal has to occur in any perfect (parsimonious) median scenario.
(Note, that the possibility of applying the reversal of I on two traces would not be
parsimonious.) �
The Median Parity Theorem can be easily generalized to more than three permutations.
For an even number of permutations in Π the set of reversals to be applied on the traces
may be not unique. In the case of an odd number of input permutation there is always a
unique set of reversals.

In the following we explain how the pRMP can be solved in the case of strong in-
terval trees that are i) unambiguous and have no prime node, ii) unambiguous and have
prime nodes, and iii) ambiguous. Our algorithm T C I P (Tree Common Interval Preserv-
ing) uses all the methods that are explained in the following subsections. Due to space
limitations a presentation of the pseudo code is omitted.

A Fast and Exact Algorithm for the Perfect Reversal Median Problem 309

3.2 Unambiguous Trees Without Prime Nodes

If no prime node occurs in the strong interval tree a perfect median scenario and the
only existing median is directly defined by the tree. Suppose the 3-signs of a node I
and its parent are s = (s1, s2, s3), respectively sp = (s1

p , s2
p , s3

p). As the signs of each node
have to become equal Theorem 1 implies that:

1. if the number of sign differences is 1, i.e. s2 �= s2
p or s3 �= s3

p , then the corresponding
(second or third) trace is extended by inverting I . This leads to s = sp .

2. if the number of sign differences is 2, i.e. s2 �= s2
p and s3 �= s3

p , then the first trace is
extended by inverting I . This leads to s = sp .

Note, that three sign differences can not occur as s1 = + for all linear nodes, because
π1 is the identity permutation. We illustrate the case of no prime nodes with a small
example.

Example 1. Let π1 = (1 2 3), π2 = (1 2 3), and π3 = (3 1 2) be the three input permuta-
tions (i is an abbreviation for −i). The only non-trivial strong common interval for these
permutations is C = {{1,2}}. The 3-signed strong interval tree is depicted in Figure 1(a).
There are two differences between the signs of node {2} and its parent (s({2})= (+,−,−)
and s({1,2}) = (+,+,+)). This induces the reversal of {2} in π1. The nodes {1,2} and {3}
have one different sign compared to their parents, leading to the reversals of {1,2} in π3

and the reversal of {3} in π2. The root node has signs (+,+,−), so π3 has to be inverted
completely. The traces of the parsimonious median scenario with these 4 reversals and
the median (1 2 3) are: π1

� (1 2 3), π2
� (1 2 3), and π3

� (3 2 1) � (1 2 3) where �

indicates a reversal operation.

Note, that the perfect median scenario as well as the median can be computed in linear
time for strong interval trees that are unambiguous and have no prime node.

3.3 Unambiguous Trees with Prime Nodes

In this subsection we assume that each prime node has a linear parent. The basic idea is
to compute for each prime node a parsimonious scenario for the median problem that is
induced by the three quotient permutations of the prime node. As a prime node with a
linear parent inherits the k-sign from its parent, it is clear which instance of the oRMP
has to be solved, i.e., the sign vector for the oRMP is known. Note, that the oRMP
for a given sign vector (s1, . . . , sk) and signed permutations π1, . . . ,πk , i.e., minimizing
∑k

i=1 d(πi , si ◦μ), can be solved as a standard median problem where
∑k

i=1 d(si ◦πi ,μ) is
minimized. Hence, an oRMP can be solved with a standard RMP solver, e.g., Caprara’s
exact median solver [13].

Example 2. Let π1 = (1 2 3 4 5 6 7 8 9 10), π2 = (1 2 3 4 6 9 7 5 8 10), and π3 =
(1 2 9 8 7 6 5 4 3 10) be the three input permutations. The non-trivial strong common in-
tervals for {π1,π2,π3} are C = {{3,4,5,6,7,8,9}, {5, 6, 7, 8, 9}}. The 3-signed strong inter-
val tree is depicted in Figure 1(b). The only prime node inherits the 3-sign (+,+,−) from
the linear parent, and the three quotient permutations are Γ1 = (1 2 3 4 5), Γ2 = (2 5 3 1 4),
and Γ3 = (5 4 3 2 1). Solving the oRMP for 3-sign (+,+,-) — or equivalently solving the
RMP for Γ1,Γ2, and −Γ3 — leads to the only median μp = (1 2 3 4 5) with a subtree

310 M. Bernt, D. Merkle, and M. Middendorf

1 2 3

1 2

1 2 3

+
+
+

+
−
−

+
−
−

+
+
+

+
+
−

(a)

+
+
+

+
+
−

+
+
−

+
+
−

+
+
+

+
+

−
+
+

+
+
+

2 3 4 5 6 7 8 9 101

5 6 7 8 9

3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

+
+
+ −

+
−
− −

−

+ +
+
−

+
+
−

(b)

Fig. 1. Unambiguous strong interval trees; tree for Example 1 in the text (no prime nodes, left);
tree for Example 2 in the text (one prime node, right); linear nodes are depicted without rounded
corners, prime nodes with round corners; signs indicate the 3-sign of a node

median score of 4. Note, that in general there may be more than one median, but all of
them have the same score. One parsimonious scenario for this oRMP is defined by the

following traces: Γ1 3
� μp , Γ2 531

� (2 1 3 5 4)
21
� (1 2 3 5 4)

54
� μp , and Γ3 = −μp . The

reversals in the oRMP scenario directly correspond to reversals in the pRMP scenario.
The overall perfect reversal scenario leading to μ = (1 2 3 4 5 6 7 8 9 10) is then de-

fined by the following traces: i) π1 7
� μ (corresponding to Γ1 3

� μp in the oRMP), ii)

π2 3 reversals
� μ (derived from the 3 reversals of Γ2

�μp in the oRMP), and iii) the reversals

induced by the sign differences of linear nodes: π3 10
� (1 2 9 8 7 6 5 4 3 10)

9...3
� μ. The

perfect median scenario has a score of 6.

Note, that solving the pRMP with separate prime nodes can be accomplished by solving
for each prime node one RMP. Although there may be several prime nodes, the number
of elements per prime node is usually much smaller than the original permutation length.
This may lead to a computation time reduction compared to solving the original RMP.

3.4 Ambiguous Trees

Similar to perfect sorting scenarios, the most difficult case for the pRMP occurs when
there exist connected prime nodes in the strong interval tree. The induced separate con-
nected prime node subtrees can be solved separately. In the following we first explain a
brute force approach and suggest some improvements afterwards. For each prime node
with a prime node parent the 3-sign is unknown. Hence, we have to assume each pos-
sible 3-sign for such prime nodes. The 3-sign of a prime node defines the signs of the
corresponding elements in the parent node. Therefore we have to solve i) all instances
of the oRMP for the prime child nodes and ii) all possible oRMPs in the parent node,
where the signs of the elements are changed according to the signs of the corresponding
prime children. I.e. each possible combination of sign assignments for the correspond-
ing elements in the parent node has to considered. This leads to a number of different
oRMP instances to be solved, that is growing exponentially with the number of prime
node children of a prime node. Note, that the different oRMP instances can be solved
for each prime node independently. After all instances are solved, we have to assume
each possible 3-sign assignment combinations for all prime nodes without a 3-sign and
use the pre-computed median solutions in order to determine the minimal score for a

A Fast and Exact Algorithm for the Perfect Reversal Median Problem 311

prime node subtree. The root node is an exception as the root may only have the 3-sign
(+,+,+) or (−,−,−).

The minimal number of reversals induced by a prime node subtree can not be com-
puted for each prime node separately, but all possible combinations of 3-sign assign-
ments to the prime nodes of the subtree have to be taken into account. The reason is
the following: Let P ′ be a prime node with a prime node parent P . An optimal 3-sign
assignment for P ′ (i.e., a 3-sign for P ′ that leads to a minimal score for the solution of
the oRMPs) induces a certain sign assignment for the elements in the parent node P . An
exact oRMP solution for P with the element signs that are defined by the exact oRMP
solution of P ′ may now lead to a score, that is larger than the score that would have
been achieved when using other sign assignments for the corresponding element in P .
Therefore, the minimal score for such a prime node component can only be computed
by iterating over all possible sign assignments.

The number of oRMP instances that have to be solved in a prime node is 8e , where e
is the number of edges to other prime nodes: each of the 8 possible 3-signs has to be
considered, and all of the 8 sign assignments corresponding to the e − 1 prime node
children have to be considered. This number can be reduced easily to 4e , as solving an
oRMP with three reverted input permutations leads to the reversed median (in the root
only the 3-sign (+,+,+) has to be considered). The 8 possible sign assignments for the
elements can be easily reduced to 4 by a simple renaming procedure. After all oRMPs
are solved, all possible combinations of 3-sign assignments have to be considered for
each prime node subtree. Hence, the overall number of combinations to be considered
for one subtree is 4v−1, where v is the number of nodes in the subtree. For subtrees with
a small degree for the nodes usually the possible combinations of 3-sign assignments
is the limiting factor, whereas for subtrees where the node degree(s) is/are large, the
number of oRMPs to be solved is the limiting factor. Note again, that computing the
score for one combination takes only constant time, whereas solving an oRMP instance
is done with an exponential computation time algorithm (but is usually very fast to
compute for short gene orders, e.g., for mtDNAs). The case of solving the pRMP for
ambiguous trees is illustrated in the following example:

Example 3. Let π1 = (1 2 3 4 5 6 7 8 9 10), π2 = (2 1 10 9 6 4 5 3 8 7), and π3 =
(1 10 9 2 5 4 3 8 7 6) be the three input permutations. The non-trivial strong common
intervals for these gene orders are C={{3,4,5,6,7,8}, {3,4,5}, {4, 5}, {7, 8}, {9,10}}. There
are two prime nodes in this tree, namely P1 = {3,4,5,6,7,8}, and the root node P2 =
{1, . . . ,10}. The 3-signed strong interval tree is depicted in Figure 2(a). The three quotient
permutations (corresponding to π1,π2, and π3) of prime node P1 are (1 2 3), (2 1 3),
and (1 3 2). The three quotient permutations of prime node P2 are (1 2 ±3 4), (2 1 4 ±
3), and (1 4 2 ± 3). For each of the possible 3-sign assignments of P1 the RMP is
solved, the score s(p1) and the medians are given in Table 1. The assumed 3-sign for
P1 defines the sign of element 3 in P2. The solutions of the RMP of node P2 when
element 3 is signed according to the 3-sign of P1 are also given in Table 1. In the
case of this small example each 3-sign for P1 leads to an overall score s(P1,P2) =
9 for the subtree induced by the prime nodes (Note that in general different scores
can be achieved for different 3-sign combinations). The computation of one median by
applying the permutations implied by oRMP solutions and reversals resulting from sign

312 M. Bernt, D. Merkle, and M. Middendorf

−
+
+ −

− −
+ +

+
−
+
+

+
+
−

+
+
+

−
−
+

−
+
+

−
−
+

+
+
+

−
−
+

−
−
+

+
+
+

−
−
+9 10

1 2 3 4 5 6 7 8 9 10

3 4 5 6 7 8

4 5
3 4 5

431 2 5 6 7

7 8

8 9 10
(a)

321

10987654321

10921 3456 78
−2 −1 −3

9 2 6 5 4 3 8 7101
1 −4 −2 3

10921 6 5 4 3 8 7
4321

P2

P1

9 2 6 5 4 3 8 7101μ =

π1 =

(b)

Fig. 2. The ambiguous strong interval tree for Example 3 in the text (left); computation of the
perfect median beginning with π1 (also for Example 3); from top to bottom: the permutations
induced by the oRMP medians of prime nodes P1 and P2 are applied, and finally two reversals
due to sign differences of the linear nodes {7} and {8} are applied, resulting in a median μ; small
numbers above the boxes represent the indices of the corresponding quotient permutation of the
prime nodes (resp. the prime node median)

Table 1. Median computation for prime nodes P1 and P2 in Example 3; given are the 3-sign
assignments of P1 (first column), the median score s(P1) in node P1, the median score s(P2)
when signs for element 3 are chosen corresponding to the 3-sign in the first column, and the
overall score for prime nodes P1 and P2

3-sign of P1 s(P1) medians (P1) s(P2) medians (P2) s(P1,P2)

(+,+,+) 4 { (2 1 3) } 5 { (1 4 2 3) } 9
(+,+,-) 3 { (2 1 3) } 6 { (1 4 2 3),(1 4 2 3),(1 4 3 2),(2 1 4 3) } 9
(+,-,+) 4 { (1 3 2),(3 1 2)} 5 { (1 4 3 2) } 9
(+,-,-) 4 { (2 1 3) } 5 { (1 4 2 3),(2 1 4 3) } 9

differences between linear nodes starting from π1 is shown in Figure 2(b). Note that the
traces can be easily computed with known algorithms (e.g. [20]). The median for the
pRMP was determined by solving 4 oRMPs of size 3 for P1 and 4 oRMPs of length
4 for P2. 4 combinations of 3-sign assignments had to be tested (comp. Table 1). The
interval tree has 3 linear nodes with parents having a different 3-sign ({7}, {8}, and {4,5}),
therefore the overall score is 12. There are 5 exact solutions of this pRMP, which can
be found when all medians of P1 and P2 are combined.

When computing evolutionary scenarios the input permutations might be circular
(i.e. each circular shift of a gene order is assumed to be equal) or linear (not circular).
Furthermore the permutations can be directed, (i.e., π �= −π) or undirected (i.e., π=−π).
So far we only considered the linear directed case. The circular undirected case can be
derived easily from the linear directed case as follows: Let π1,π2, and π3 be three
circular undirected gene orders with a perfect median scenario S. Then, by applying
inversion and circular shift, there exist three gene orders �i =πi ,1 ≤ i ≤ 3, such that the
first element of �i ,1 ≤ i ≤ 3 is 1. Note, that in a circular scenario we can replace each
reversal by its circular complement without changing the score or the resulting median.
Hence, for �i =πi ,1 ≤ i ≤ 3 there exists a (circular undirected) perfect scenario S ′ such
that no reversal has a start index larger than its end index and such that the score of S
equals the score of S ′. As element 1 never has to change its position in this scenario, S ′

A Fast and Exact Algorithm for the Perfect Reversal Median Problem 313

is also a perfect median scenario under the assumption that �i ,1 ≤ i ≤ 3 are linear and
directed. Therefore, we can solve the circular undirected case by shifting and inverting
the input permutations as explained.

For linear undirected input permutations the handling of the root node has to be
changed: i.) linear root nodes can be left unchanged, since the relative orientation of
the three permutations does not matter, ii.) for prime root nodes all possible 3-sign
assignments have to be tested (instead of only (+,+,+)) and the assignments which
lead to a minimal score have to be chosen.

4 Results

As test instances for the pRMP random test data sets as well as biological data sets have
been used. The random test instances were generated as follows. Starting with the iden-
tity permutation d random reversals were applied to generate a random permutation.
Three permutations generate a triple instance.

As biological data the mitochondrial genome orders from [11] which were marked
as complete are used. From this data set all gene orders were removed which did not
have the standard set of 37 mitochondrial genes (13 protein coding-, 2 rRNA-, and 22
tRNA- genes). With the help of taxonomy information in the mitochondrial database
and manual inspection of the phylogenetic tree given from the NCBI the species were
grouped into taxa to get subsets of reasonable size. The following groups of Deuteros-
tomia were used: The Chordata (Cho) and their sub groups Actinopterygii (Act), and
Sarcopterygii (Sar), as well as the remaining Deuterostomia Hyperotreti, Cephalochor-
data, Echinodermata, and Hemichordata (HCEH). In the Protostomia we have grouped
the Arthropoda (Art) and their sub groups Crustacea (Cru), Hexapoda (Hex), and the
remaining Protostomia Annelida, Pogonophora, Brachiopoda, and Mollusca (APBM).
Finally, the Nematoda and the Platyhelminthes (NP) form a group. Note, that nearly all
mitochondrial gene orders of the species in the last group have no gene atp8, hence here
we have used a reduced set of 36 genes. The group of all species (All) excludes the NP
group. The number of unique gene orders for each group can be found in Table 2 (#).
For the analysis all

(n
3

)
possible triples of the groups were used.

4.1 Properties of Strong Interval Trees

In this subsection properties of strong interval trees, which are crucial for the runtime
of the pRMP solver, will be given. For the random data sets 1000 test instances have
been created for each of the following combinations of sequence length n = 100 and
number of random reversals d applied to the identity: d ∈ {1,2,5,10,25}. In Table 2 (resp.
Table 3) results are presented for the biological (resp. random) data sets. For random
as well as biological data sets there are many instances which have only linear nodes.
For the three Chordate groups (Act, Sar, Cho) the majority of the interval trees have no
prime nodes (59-74%), also in the Hexapoda there are many instances which have only
linear nodes (29%). For random data sets only triples generated with few reversals have
no prime nodes. Usually the trees have only a very small number of prime nodes. The
maximal number of prime nodes in all test runs is 4 and the average is always ≤ 1.12.
When more than one prime node occurs, they are usually separated and the size of the

314 M. Bernt, D. Merkle, and M. Middendorf

Table 2. Properties of strong common interval trees for the mtDNA data set; #: number of unique
gene orders; p: percentage of triple instances for which the tree has at least one prime node; q:
number of prime nodes; c: number of prime node subtrees; r : number of oRMPs to be solved; t :
number of 3-sign combinations to be tested; l : maximal number of children of the prime nodes;
for columns q, . . . , l only instances are taken into account, for which at least one prime node exists;
if two values are given in a column, the first is the average over all instances and the second value
(in parentheses) is the maximal value

p q c r t l
Act 27 0.26 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 11.93 (22)
Sar 28 0.41 1.06 (2) 1.06 (2) 1.06 (8) 1.06 (4) 4.43 (10)

Cho 47 0.40 1.03 (2) 1.03 (2) 1.03 (8) 1.03 (4) 7.44 (23)
HCEH 11 0.99 1.10 (2) 1.07 (2) 1.33 (8) 1.18 (4) 23.87 (30)

Cru 18 0.91 1.09 (2) 1.02 (2) 1.51 (8) 1.23 (4) 20.26 (35)
Hex 15 0.71 1.08 (3) 1.07 (3) 1.10 (8) 1.08 (4) 15.88 (32)
Art 42 0.92 1.12 (4) 1.09 (3) 1.28 (24) 1.17 (16) 19.14 (35)

APBM 16 1.00 1.01 (2) 1.01 (2) 1.02 (8) 1.01 (4) 32.35 (36)
NP 9 0.99 1.05 (3) 1.05 (3) 1.05 (3) 1.05 (3) 32.65 (35)
All 115 0.95 1.04 (4) 1.03 (3) 1.07 (24) 1.05 (16) 26.73 (36)

Table 3. Properties of strong common interval trees for random data sets; notation see Table 2;
d : number of reversals applied for generating data set; length of the permutations: n = 100

d p q c r t l
1 0.67 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 3.76 (5)
2 0.98 1.10 (3) 1.09 (3) 1.18 (8) 1.13 (4) 7.53 (11)
5 1.00 1.05 (3) 1.04 (3) 1.14 (24) 1.09 (16) 22.63 (29)

10 1.00 1.01 (2) 1.01 (2) 1.03 (8) 1.02 (4) 42.96 (51)
25 1.00 1.00 (2) 1.00 (2) 1.03 (8) 1.01 (4) 76.44 (88)

subtrees induced by the prime nodes is small. Therefore the number of oRMPs to be
solved and the number of combinations that have to be tested is small. The worst case
in terms of the number of oRMPs to be solved and combinations to be tested is the
case of 3 prime nodes which are all in one induced subtree (this occurred 8 times in the
All data set). In this case 24 oRMPs had to be solved and 16 combinations had to be
tested. Furthermore for gene orders with relative small evolutionary distances (e.g. the
Chordates or the Arthropods in the biological data set or small values for d in the random
data set) the size of the solved oRMPs is small compared to the original RMP (i.e. the
length of the signed permutations). When d ≤ 10 was used the maximal length of a prime
node over all instances was 51. Summarizing, the strong interval tree analysis indicates
that pRMP medians seems to be computable with reasonable computation time.

4.2 Computing RMP Medians

In this subsection we present computation times for computing all exact pRMP me-
dians. For the random data sets 100 test instances have been created for each of the
following combinations of sequence lengths n and number of random reversals d
applied to the identity: (n,d) ∈ {(10,1), . . . , (10,5),(30,1), . . . , (30,10),(50,2),(50,4), . . . ,

A Fast and Exact Algorithm for the Perfect Reversal Median Problem 315

runtimes (s)

TCIP
Caprara

n=10 n=30 n=50 n=100

10
−4

10
−2

1
10

2
runtimes (s)

TCIP
Caprara

Act Sar Cho HCEH Cru Hex Art APBM NP

10
−3

10
−1

10
1

10
3

10
5

Fig. 3. Comparison of computation times: TCIP solving pRMP, Caprara’s algorithm solving
RMP (values given in seconds); depicted are the boxplots for random data sets of length
n ∈ {10,30,50,100} (left) and different biological data sets (right)

(50,12),(100,5),(100,10), . . . , (100,30)}. In Figure 3 boxplots are given for the compu-
tation times for the perfect median computations of i) the different subgroups for the
mtDNA data sets, and ii) the random data sets with sequence length n∈{10,30,50,100}.
All test runs were done on PCs with AMD Opteron 2.0 GHz processors.

It can be clearly seen, that computing all pRMP medians with TCIP is usually faster
then computing all RMP medians with Caprara’s median solver. On average TCIP was
25.43 times faster on the biological data sets, for the Sarcopterygii data set TCIP was
even 260.82 times faster compared to Caprara’s RMP solver (which is known to be
very fast compared to other approaches). The only exception is the NP data set where
Caprara’s median solver is about 1.25 times faster. Note again, that Caprara’s median
solver does not solve the pRMP but the RMP. Nevertheless, we compared the compu-
tation times to show the good performance of TCIP. In [9] an algorithm called ECIP
was presented, which also solves the pRMP. ECIP was compared to a simply modified
version of Caprara’s median solver and shown to be faster than the latter. As ECIP and
Caprara’s modified median solver were not able to solve all problem instances presented
here in reasonable time, we have not included their computation times. Algorithm TCIP
is much faster than ECIP, often achieving speedups of 102 – 103 for the instances pre-
sented in this paper. We verified the correctness also by comparing the results of all
algorithms. Algorithm TCIP is freely available from the authors.

5 Conclusion

Based on strong interval trees we introduced a new algorithm called TCIP for solving
the perfect reversal median problem (pRMP), i.e., no reversal in the median scenario is
allowed to break one of the common intervals of the three signed input permutations. It
was shown that the hardness of the problem strongly depends on the structure of the strong
interval tree. Solving a pRMP instance is usually accomplished by solving several smaller
RMP instances. For data sets of mitochondrial gene orders and for randomly generated
data sets it was shown, that perfect scenarios can be computed even faster than standard
scenarios, although even computing the perfect distance is an NP-complete problem.
In our future work we will include TCIP in algorithm amGRP [10], a state-of-the-art
algorithm for computing phylogenetic trees based on frequently solving the RMP.

316 M. Bernt, D. Merkle, and M. Middendorf

References

1. S. Bérard, A. Bergeron, and C. Chauve. Conservation of combinatorial structures in evolution
scenarios. In Comparative Genomics, RECOMB 2004 International Workshop, RCG 2004,
number 3388 in LNBI, pages 1–15, 2004.

2. S. Bérard, A. Bergeron, C. Chauve, and C. Paul. Perfect sorting by reversals is not always
difficult. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(1):4–16,
2007.

3. A. Bergeron, M. Blanchette, A. Chateau, and C. Chauve. Reconstructing ancestral gene
orders using conserved intervals. In Proc. WABI, number 3240 in LNCS, pages 14–25, 2004.

4. A. Bergeron, C. Chauve, F. de Montgolfier, and M.Raffinot. Computing common intervals
of K permutations, with applications to modular decomposition of graphs. In Proc. ESA,
number 3669 in LNCS, pages 779–790. Springer-Verlag, Berlin, 2005.

5. A. Bergeron, J. Mixtacki, and J. Stoye. Reversal distance without hurdles and fortresses. In
Proc. CPM, number 3109 in LNCS, pages 388–399. Springer Verlag, 2004.

6. A. Bergeron and J. Stoye. On the similarity of sets of permutations and its applications to
genome comparison. J. Comp. Biol., 13(7):1345–1354, 2006.

7. M. Bernt, D. Merkle, and M. Middendorf. A parallel algorithm for solving the reversal
median problem. In Proc. Parallel Processing and Applied Mathematics - Bio-Computing
Workshop (PBC’5), number 3911 in LNCS, pages 1089–1096, 2005.

8. M. Bernt, D. Merkle, and M. Middendorf. Genome rearrangement based on reversals that
preserve conserved intervals. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 3(3):275–288, 2006.

9. M. Bernt, D. Merkle, and M. Middendorf. The reversal median problem, common intervals,
and mitochondrial gene orders. In Computational Life Sciences II - Proc. 2nd International
Symposium CompLife, number LNCS in 4216, pages 52–63, 2006.

10. M. Bernt, D. Merkle, and M. Middendorf. Using median sets for inferring phylogenetic trees.
Bioinformatics, 23(2):e129–e135, 2007.

11. J.L. Boore. Mitochondrial gene arrangement database, 2006. http://evogen.jgi.doe.gov/.
12. G. Bourque and P. A. Pevzner. Genome-scale evolution: Reconstructing gene orders in the

ancestral species. Genome Res., 12(1):26–36, 2002.
13. A. Caprara. The reversal median problem. INFORMS Journal on Computing, 15(1):93–113,

2003.
14. M. Figeac and J. Varré. Sorting by reversals with common intervals. In Proc. WABI, number

3240 in LNBI, pages 26–37, 2004.
15. S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: polynomial algorithm for

sorting signed permutations by reversals. In Proceedings of the twenty-seventh annual ACM
symposium on Theory of computing, pages 178–189. ACM Press, 1995.

16. S. Heber and J. Stoye. Finding all common intervals of k permutations. In Proc. CPM,
number 2089 in LNCS, pages 207–218, 2001.

17. B. Moret, A. Siepel, J. Tang, and T. Liu. Inversion medians outperform breakpoint medians
in phylogeny reconstruction from gene-order data. In Proc. WABI, number LNCS in 2452,
pages 521–536, 2002.

18. B. Moret, J. Tang, and T. Warnow. Reconstructing phylogenies from gene-content and gene-
order data. Mathematics of Evolution and Phylogeny, 2005.

19. A. Siepel and B. Moret. Finding an optimal inversion median: Experimental results. In Proc.
WABI, number 2149 in LNCS, pages 189–203, 2001.

20. E. Tannier, A. Bergeron, and M.-F. Sagot. Advances in sorting by reversals. accepted at
Discrete Applied Mathematics, 2005.

21. T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two permuta-
tions. Algorithmica, 2(26):290 – 309, 2000.

Genomic Signatures from DNA Word Graphs

Lenwood S. Heath and Amrita Pati

Department of Computer Science, Virginia Tech, Blacksburg, VA 24061-0106
{heath,apati}@vt.edu

Abstract. Genomes have both deterministic and random aspects, with
the underlying DNA sequences exhibiting features at numerous scales,
from codons and cis-elements through genes and on to regions of con-
served or divergent gene order. The DNA Words program aims to identify
mathematical structures that characterize genomes at multiple scales.
The focus of this work is the fine structure of genomic sequences, the
manner in which short nucleotide sequences fit together to comprise the
genome as an abstract sequence, within a graph-theoretic setting. A DNA
word graph is a generalization of a de Bruijn graph that records the oc-
currence counts of node and edges in a genomic sequence. A DNA word
graph can be derived from a genomic sequence generated by a finite
Markov chain or a subsequence of a sequenced genome. Both theoreti-
cally and empirically, DNA word graphs give rise to genomic signatures.
Several genomic signatures are derived from the structure of a DNA word
graph, including an information-rich and visually appealing genomic bar
code. Application of genomic signatures to several genomes demonstrate
their practical value in identifying and distinguishing genomic sequences.

1 Introduction

The genome G of an organism is a set of long nucleotide sequences modeled,
within a formal language framework, as strings over ΣDNA = {A, C, G, T}, the
DNA alphabet. While G itself is a unique mathematical structure for the organ-
ism, a genome is typically quite large (e.g., billions of bases) and differs slightly
from one individual of a species to another. Fix a genomic sequence H that is a
substring of some string in G. Intuitively, a genomic signature for an organism is
a mathematical structure θ(H) derived from H , which, ideally, can be efficiently
computed, is significantly smaller to represent than H , and, if H is sufficiently
representative of G, can uniquely identify the original organism. The intent is
that the signature of other large substrings from G be highly similar to θ(H)
and distinguishable from signatures of other organisms. A genomic signature is
judged along two, typically antagonistic, dimensions: (1) the amount of com-
pression achieved by θ(H), and (2) its effectiveness in identifying the genome.

Karlin and Burge [1] were among the first to use the term genomic signature.
They define the dinucleotide odds ratio or relative abundance, which is the 16
functions defined for dinucleotides XY by

ρXY (H) =
fXY (H)

fX(H)fY (H)
,

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 317–328, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

318 L.S. Heath and A. Pati

where fx(H) is the frequency of string x as a substring in H . They observe
that ρ values are similar throughout a genome and may reflect the net response
of the genome to selection pressures. They compare dinucleotide odds ratios
for a number of organisms and demonstrate their capability of distinguishing
organisms. Karlin et al. [2] observe that dinucleotide odds ratios typically range
from 0.78 to 1.23. They define the delta distance between strings x and y to be

δ(x, y) =
1000
16

∑

dinucleotide
XY

|ρXY (x) − ρXY (y)|.

Jernigan and Baran [3] demonstrate that the delta distance between strings
sampled from a genome is preserved over a wide range of string lengths |x| and
|y|. For bacterial species, Coenye and Vandamme [4] correlate delta distance with
16S rDNA sequence similarity and DNA-DNA hybridization values. They find
a strong negative correlation between δ and 16S rDNA similarity among groups
of species with low δ and high 16S rDNA similarity. They also demonstrate an
overall high negative correlation between δ and DNA-DNA hybridization values.
Deschavanne et al. [5] construct images from oligonucleotide frequencies. For 57
prokaryotic genomes, Sandberg et al. [6] compare G+C content, oligonucleotide
frequency, and codon bias. Dufraigne et al. [7] and van Passel et al. [8] employ
oligonucleotide frequencies to identify regions of horizontal gene transfer (HGT)
in prokaryotes. Carbone et al. [9] correlate the ecological niches of 80 Eubacteria
and 16 Archaea to codon bias used as a genomic signature.

As part of our DNA Words program investigating mathematical invariants
derived from genomes, we examine the finest scale in graph-theoretic terms, em-
ploying a generalization of de Bruijn graphs. One frequently exploited
observation is that a string over ΣDNA defines a walk in a suitably defined
de Bruijn graph. Closely related is the correspondence of such a string to an
Eulerian tour in a suitably defined multigraph. Applications include DNA phys-
ical mapping, DNA sequence assembly, and multiple sequence alignment prob-
lems [10,11,12,13,14]. In Section 2, we formalize the mathematical basis for
graph-theoretic genomic signatures and, in Section 3, prove that, under rea-
sonable probabilistic assumptions, these signatures characterize a genomic se-
quence with high probability and distinguish it from those of other organisms.
We present empirical studies that support the theoretical results in Section 4
and conclude in Section 5.

2 Preliminaries

An alphabet is a finite, non-empty set of symbols; the DNA alphabet is ΣDNA =
{A, C, G, T}. A string or word x over ΣDNA is a finite sequence x = σ1σ2 · · · σw

of symbols from ΣDNA; its length |x| is w. A single chromosome in a genome
is typically written as the string of nucleotides on one DNA strand. A genomic
sequence is a chromosomal sequence or any substring of it. G is the set of all
chromosomal sequences from an organism. Nucleotide frequencies vary among

Genomic Signatures from DNA Word Graphs 319

organisms, while, as Fickett et al. [15] observe, the frequencies of A’s and T’s
(and hence of G’s and C’s) are approximately constant within a single genome.
If x and y are strings, then occ (x, y) is the count of occurrences of x in y.

Fix a word length w ≥ 1. Let l = 4w. The order-w state space is Sw = Σw
DNA,

the set consisting of the l words of length w. The order-w de Bruijn graph
DBw = (Sw , E) is the directed graph, where (xi, xj) ∈ E when xiσ = ιxj , for
some σ, ι ∈ ΣDNA; such an edge is labeled σ [16]. Fig. 1 illustrates the order-2
de Bruijn graph.

Let H ∈ Σ∗
DNA have length |H | = n; we think of H as a long genomic

sequence that traces a walk in DBw. The vertex count of xi in H is vc (xi, H) =
occ (xi, H), while the edge count of edge (xi, xj) ∈ E in H , where xiσ = γxj ,
is ec ((xi, xj), H) = occ (xiσ, H). The order-w DNA word graph DNAw (H) is
DBw together with labels vc (xi, H) for each xi ∈ Sw and ec ((xi, xj), H) for
each (xi, xj) ∈ E. For xi, xj ∈ Sw, the frequency of xj after xi in H is

Freq ((xi, xj), H) =

⎧
⎨

⎩

0 if (xi, xj) �∈ E or vc (xi, H) = 0;
ec ((xi, xj), H)

vc (xi, H)
otherwise.

For 1 ≤ i ≤ l, let xi be the ith element of Sw in lexicographic order. The order-
w word count vector χw

H of H is the l-vector having components occ (xi, H), in
lexicographic order.

We consider Markov chains with state space Sw and having nonzero transition
probabilities only for edges in DBw; such a Markov chain is called an order-
w de Bruijn chain (DBC). Let DC be an order-w DBC with l × l transition
probability matrix P = (pij); here, pij is the probability of a one-step transition
from state xi to state xj [17]. P is sparse, with at most 4 nonzero entries per row.
The order-w DBC DCw(H) for genomic sequence H has transition probabilities
pij = Freq ((xi, xj), H). Experimental results suggest that genomic sequences
are sufficiently large and diverse in their composition to sample all words in Sw

for reasonably small w ∈ [1, 5]. Hence, the DBCs generating such sequences are
irreducible. Genomic sequences are also adequately random to assume that the
DBCs generating them are aperiodic and recurrent non-null. Throughout, we
assume that all DBC are ergodic and hence that there is a unique stationary
distribution π = (πi) on Sw satisfying πP = π [17]. This assumption does not
hold for a genomic sequence that consists of systematic repeats of a small subset
of words from Sw.

For a genome G and a genomic sequence H taken from G, a genomic signature
for H is a function θ that maps H to a mathematical structure θ(H). Ideally,
θ(H) is able to identify sufficiently large substrings that come from G and to
distinguish H from genomic sequences of other genomes. To be useful, θ(H)
must be efficiently computable. Of course, a representation of G itself satisfies
the requirements, but offers no advantage in space.

Fixing word length w ≥ 1, we obtain DNAw (H), with associated vc (xi, H)
and ec ((xi, xj), H). We define several candidate signatures. The simplest is the
vertex count vector θcv(w) = (vc (xi, H))l

i=1, requiring space Θ(4w lg n).

320 L.S. Heath and A. Pati

GA

TG

AA AC

ATAG

CA CC

CG CT

GG

GC

GT

TA TC

TT

Supernode A Supernode C

Supernode G Supernode T

Fig. 1. Representation of the de Bruijn graph DB2 in terms of supernodes
and superedges. Each supernode consists of the 4 nodes with the same 1-symbol
prefix in their labels and is closed by a dotted boundary. An edge from a node to
a supernode represents a set of edges from the node to all nodes in the supernode.
For example, the edge from node AC to supernode C represents the set of edges
{(AC, CA), (AC, CC), (AC, CG), (AC, CT)}.

Additional signatures come from interplay between the graph structure DBw

and the count vectors. Let ψ ≥ 0 be an integer threshold. Let E≤ψ = {(i, j) ∈
E | ec ((i, j), H) ≤ ψ}, be the set of edges with counts at most ψ. Then edge
deletion is the process of deleting edges in E≤ψ from DBw, while varying ψ from
0 to Ξ = max{ec ((i, j), H) | (i, j) ∈ E} and deleting edges with tied counts
in arbitrary order. The ψ-edge deletion of DBw is DBw(ψ) = (Sw , E − E≤ψ).
As ψ increases from 0 to Ξ, the number of connected components in DBw(ψ)
increases from 1 to l, while the number of isolated vertices increases from 0 to l.
The vertex deletion order θvdo is the permutation of Sw giving the order in which
vertices become isolated during edge deletion. Let ψi be the smallest integer such
that DBw(ψi) has precisely i connected components. The component-based edge
deletion vector θced is the l-vector whose ith component is the number of edge
deletions required to go from i−1 to i components. The vertex-based edge deletion
vector θved is the l-vector whose ith component is the number of edge deletions
required to go from i − 1 to i isolated vertices. The ordered vertex-based edge
deletion vector θoed is the l-vector whose ith component is the total number of
edge deletions required to isolate the vertex xi, where xi is the ith element of Sw

in lexicographic order. For two vector-based signatures θ1 and θ2, let d (θ1, θ2),
be the L1 metric in l-dimensional real space.

3 Theory and Methods

We imagine every biological sequence to be generated by a formal model that
can be approximated by a DBC. In this section, we build a theoretical framework
to analyze distances between genomic signatures in terms of the parameters of
the DBC generating them.

Genomic Signatures from DNA Word Graphs 321

Let DC be an ergodic, order-w DBC. Let H be a sequence generated by DC,
where |H | = n. If xi, xj ∈ Sw, the probability of transition from state xi to state
xj is given by pi,j , and the stationary probability for xi is πi.

Let x = σ1σ2 . . . σw ∈ Σw
DNA. A period of x is an integer i, where 1 ≤ i ≤ w,

such that x[1 . . . i] = x[w − i + 1 . . . w]. Two occurrences H [i . . . i + w − 1] and
H [j . . . j + w − 1] of x in H overlap if i ≤ j ≤ i + w − 1 or j ≤ i ≤ j +
w − 1. An x-clump in H is a maximal subsequence of one or more consecutive
overlapping occurrences of x. For example, 2 is a period of x = AACAA, and
AACAACAACAACAA is a clump with 4 occurrences of x. Waterman [18] notes
that the count of a rare DNA word in H is a function of the number of x-clumps
in H , which approximately follows a Poisson distribution [18], with parameter λβ

(derived below). Let x be a DNA word with shortest period d. Then a declumping
event with respect to x is defined as the event of not observing the string x′ =
x[1 . . . d]. Suppose the probability of occurrence of x′ is px. Then the probability
of a declumping event is given by qx = 1 − px. The number of occurrences of x
within a clump is approximately geometric with mean 1/px [18].

Lemma 1. Let Xx be the random variable that is the number of occurrences of
word x in genomic sequence H. Then the probability generating function of Xx

is

fXx(t) = exp
(

λx(t − 1)(1 − px)
1 − qxt

)

.

Proof. Let Z be the random variable that is the number of x-clumps in H , and
let Ci be the number of occurrences of x in the ith clump. Hence,

Xx =
Z∑

i=1

Ci.

Since Z has (approximately) a Poisson distribution with parameter λx, the prob-
ability generating function for Z is

fZ(t) =
∞∑

k=0

e−λx
(λxt)k

k!
= eλx(t−1).

The probability generating function for each Ci is

fC(t) = px

∞∑

k=0

(qxt)k =
px

1 − qxt
.

Hence the probability generating function for Xx is

fXx(t) = fZ(fC(t)) = exp
(

λx

(
px

1 − qxt
− 1

))

= exp
(

λx(t − 1)(1 − p)
1 − qxt

)

. �

Lemma 2. E [Xx] =
λxqx

px
and Var [Xx] =

λxqx

px

(

2 +
qx

px

)

.

322 L.S. Heath and A. Pati

Proof. By results in [17], E [Xx] = f ′
Xx

(1) and Var [Xx] = f
′′

Xx
(1) + f

′

Xx
(1) −

(f
′

Xx
(1))2. The lemma follows by calculation. �

Lemma 3. Let H be a genomic sequence of length n, and let χw
H be its word

count vector. Fix threshold τ > 0. Then

Pr [d (χ,E [χ]) ≥ lτ] ≤
∏

x∈Sw

nπx

τ2

(

2 +
qx

px

)

.

Proof. Let χw
H = (X1, X2, . . .Xl). Since E [Xx] = nπx = (λxqx)/px, we have

λx = (nπxpx)/qx. The distance between χ and E [χ] is d (χ,E [χ]) =
∑

x∈Sw

|Xx −

E [Xx] |. By Chebyshev’s bound and Lemma 2, we obtain

Pr [|Xx − E [Xx] | ≥ τ] ≤ Var [Xx]
τ2 =

λxqx

pxτ2

(

2 +
qx

px

)

=
nπx

τ2

(

2 +
qx

px

)

.

The lemma follows from the resulting inequality:

Pr [d (χ,E [χ]) ≥ lτ] ≤
∏

x∈Sw

Pr [|x − E [x] | ≥ τ] . �

Theorems 1 and 2 address the ability of word count vectors to identify and
distinguish DBCs.

Theorem 1. Let DC be an order s DBC. Let H1 and H2 be two genomic se-
quences of length n generated independently by DC. Let χ1 and χ2 be their re-
spective order-w word count vectors. Then,

Pr
[
d (χ1, χ2)) ≥ 2lτ

√
n
]

≤ 2e

τ2l
.

Proof. The component-wise expected values in χ1 and χ2 are the same. Their
expected difference is therefore the 0 vector. Therefore,

d (χ1 − E [χ1] , χ2 − E [χ2]) = d (χ1, χ2) .

Furthermore using T =
√

nτ we obtain,

Pr [d (χ1,E [χ1]) ≥ lT] = Pr [d (χ2,E [χ2]) ≥ lT] .

Using the above equations and Lemma 3, we obtain

Pr [d (χ1 − E [χ1] , χ2 − E [χ2]) ≥ 2lT] = Pr [d (χ1, χ2) ≥ 2lT] .

Pr [d (χ1, χ2) ≥ 2lT] ≤ Pr [d (χ1,E [χ1]) ≥ lT] + Pr [d (χ2,E [χ2]) ≥ lT]

= 2
∏

x∈Sw

nπx

T 2

(

2 +
qx

px

)

.

Genomic Signatures from DNA Word Graphs 323

If x′ = x[1 . . . d], where d is the smallest period of x, |x| ≥ |x′|. Therefore,

px ≥ πx and
qx

px
≤ 1 − πx

πx
, which yields

Pr [d (χ1, χ2) ≥ 2lT] ≤ 2
τ2l

∏

x∈Sw

(1 + πx).

From the Arithmetic-Geometric Inequality [19], we obtain

∏

x∈Sw

(1 + πx) ≤
(∑

x∈Sw(1 + πx)
l

)l

=
(

1 +
1
l

)l

From the above results we have

Pr
[
d (χ1, χ2) ≥ 2lτ

√
n
]

≤ 2
τ2l

(

1 +
1
l

)l

.

As l → ∞ the theorem follows. �

Let H1 and H2 be genomic sequences of length n, generated independently by
DBCs DC1 and DC2 of orders s1 and s2, respectively. Let χ1 = χH1

1 and χ1 = χH2
2

be their order-w word count vectors. This assumption formalizes the separation
of genomic sequences obtained from different organisms.
Assumption 1. There exists a non-negative real number γ ∈ (0, 1] such that

Pr
[
d (E [χ1] ,E [χ2]) ≥ 3lτ

√
n
]

≥ γ.

Then, the distance d (χ1, χ2) can distinguish DC1 and DC2.
Theorem 2. let Xx,1 and Xx,2 denote the counts of x in H1 and H2, respec-
tively. Assuming that H1 and H2 are both generated by Markov chains DC′

1 and
DC′

2 of order w, let πx,1 and πx,2 denote the stationary probabilities of state x
in DC′

1 and DC′
2, respectively. If there exists a constant γ as in Assumption 1

then,

Pr
[
d (χ1, χ2) ≥ lτ

√
n
]

≥ γ −
∏

x∈Sw

1
τ2 (2πx,1 + 1) −

∏

x∈Sw

1
τ2 (2πx,2 + 1).

Proof. Treating d (χ1, χ2), d (χ1,E [χ1]), d (χ2,E [χ2]), and d (E [χ1] ,E [χ2]) as
distances d, d1, d2, and d3, respectively, in 1-dimensional space and using T =
τ
√

n we obtain,
d3 ≤ d + d1 + d2

Pr [d3 ≥ 3lT] ≤ Pr [d ≥ lT] + Pr [d1 ≥ lT] + Pr [d2 ≥ lT] .

From Assumption 1, Lemma 3, and πx ≤ px we obtain,

γ ≤ Pr [d (χ1, χ2) ≥ lT] +
∏

x∈Sw

nπx,1

T 2

(

2 +
qx,1

px,1

)

+
∏

x∈Sw

nπx,2

T 2

(

2 +
qx,2

px,2

)

,

Pr
[
d (χ1, χ2) ≥ lτ

√
n
]

≥ γ −
∏

x∈Sw

1
τ2 (2πx,1 + 1) −

∏

x∈Sw

1
τ2 (2πx,2 + 1).

The theorem follows. �

324 L.S. Heath and A. Pati

By Theorem 2, the probability that the distance between the word count vectors
of sequences generated by different DBCs exceeds lτ

√
n, increases with τ . Se-

quences assumed to be generated by two different DBC with sufficiently different
stationary distributions would have a high probability of being separated by a
large distance.

4 Results and Discussion

To evaluate our genomic signatures, we employed chromosomal sequences from
the following organisms: Arabidopsis thaliana (AT), Borrelia burgdorferi (BB),
Caenorhabditis elegans (CE), Chlamydophila pneumoniae (CP), Chlamydia mur-
idarum (CM), Escherichia coli (EC), Homo sapiens (HS), and Saccharomyces
cerevisiae(SC).

We computed the vertex count vector θcv(3), the vertex deletion order vector
θvdo(3), the vertex-based edge deletion vector θved(3), the component-based edge
deletion vector θced(3), and the ordered vertex-based edge deletion vector θoed(3)
signatures for SC chromosomes 4,5, and 8, CE chromosomes 1,3, and 4, and
AT chromosomes 1,2, and 3, followed by all pairwise Pearson correlation coeffi-
cients between signature vectors for each type of signature. Figure 2(a) illustrates
that despite Theorem 2, even the nucleotide compositional differences between
diverse species such as SC, CE, and AT are not captured by the traditional
method of using multi(tri, here)-nucleotide frequencies. Correlation coefficients
between θcv(3) signatures of chromosomes of the same species are very close to
those between θcv(3) signatures of chromosomes of different species. Nucleotide
frequencies for dimers, tetramers, and pentamers display similar characteristics
(results not shown). For the same set of genomic sequences, the θved(3) and
θced(3) signatures display much greater discriminatory power (Fig. 2) than the
θvdo(3) and θcv(3) signatures.

To test the efficiency of the θced and θved signatures in identifying target
genomes from smaller unknown genomic sequences, we randomly sampled 1 Mb
sequences from the existing genomic sequences. We computed signatures from
these sequences and matched them to existing genomic signatures. In most cases,
the signature derived from a random sequence sampled from a genomic sequence
of an organism O displayed highest positive correlation with genomic signatures
derived from chromosomes of O. However, this behavior was not conserved across
all samples. Varying the word length at which the signatures were computed did
not alter this behavior significantly. To identify the organism from which a se-
quence originates more accurately, we combined the properties of θvdo and θved to
compute the ordered vertex-based edge deletion vector θoed. The θoed signature
precisely predicts the organism corresponding to a short DNA sequence (1 Mb)
using a database of previously computed θoed’s for various organisms. Empirical
results suggest that θoed performs best at order 5 for bacterial genomes.

To demonstrate the efficiency of the θoed signature we tested its performance
using 5 chromosomal sequences from 4 species of the Rhizobiaceae family. The
species with their Entrez refseq numbers are: Agrobacterium tumefaciens str.

Genomic Signatures from DNA Word Graphs 325

0.9998

0.9
97

1

0.9997

0.99820.9
99

3

0.9987 0.9
97

9

0.9991

0.9996

0.986 − 0.988 0.914 − 0.942

0.905 −
0.931

VIV

VIII

III

III

III

IV

I

SC

CEAT

0.927 − 0.935

0.944

VIV

VIII

III

III

III

IV

I

SC

CE

0.997

0.9
97

0.998

0.954

0.8
30

0.904

0.994

0.9
91

0.993

0.931 −

0.951 − 0.957

AT

(a) (b)

0.430 − 0.645

0.718

VIV

VIII

III

III

III

IV

I

SC

CE

0.970

0.9
28

0.947

0.956

0.8
80

0.937

0.937

0.9
37

0.938

0.591 −

0.380 − 0.499

AT

0.434 − 0.647

0.731

VIV

VIII

III

III

III

IV

I

SC

CE

0.9
23

0.947

0.957

0.8
81

0.941

0.949

0.9
36

0.941

0.658 −

0.405 − 0.568

0.974

AT

(c) (d)

Fig. 2. Correlation graphs of Pearson correlation coefficients between order-3 (a) θcvs,
(b) θvdos, (c) θveds, (d) θceds. Text in the circles indicates chromosome numbers. Edges
between any two enclosed subgraphs are labeled with the range of correlations on all 9
edges between the subgraphs. p-values of all the correlation coefficients given are below
10−3. Lengths of the chromosomes used above are as follows: AT I: 30 M, AT II: 19
M, AT III: 15 M, CE I: 15 M, CE III: 14 M, CE IV: 17 M, SC IV: 1.5 M, SC V: 0.5
M, SC VIII: 0.5 M.

C58 (2 chromosomes, NC 003062 and NC 003063), Rhizobium etli CFN 42
(NC 007761), Rhizobium leguminosarum bv. viciae 3841 (NC 008380), and
Sinorhizobium meliloti 1021 (NC 003047). 1 Mb segments were randomly sam-
pled from each of these sequences, their θoeds were computed, and matched to
the database of θoeds. At order 5, all random segements correctly matched up to
their respective target genomes demonstrating that the θoed signature is sensi-
tive enough to differentiate between species within a family. The efficiencies of
identification of correct matches were 60%, 80%, and 100% at orders 3, 4, and
5, respectively. The θoed signature is computable in O(n+4w+1 log(4w+1)) time,
where n is the input sequence length and w is the order at which the signature
is computed.

Figure 3 illustrates θved(3) and θced(3) signatures for the four eukaryotes and
the four prokaryotes. Although θved(3) and θced(3) appear similar, one cannot

326 L.S. Heath and A. Pati

(a) (b)

(c) (d)

(e) (f)

Fig. 3. θved(3)s for (a) four prokaryotes and (b) four eukaryotes. θced(3)s for (c) four
prokaryotes and (d) four eukaryotes. θoed(3)s for (e) four prokaryotes and (f) four
eukaryotes. Numbers denote chromosomes. The above is a grayscale representation.
Colors play a vital role in these signatures. Each shaded-bar represents a specific com-
ponent in the signature. Figures (e) and (f) illustrate that the θoed(3) bar code of each
species is unique and sufficiently different from the θoed(3) bar codes of other species.

conclude that an increase of one in the number of isolated vertices precisely
coincides with an increase of one in the number of connected components during
edge deletion. As the DNA word graph fragments, in the early stage it is natural
that the number of components grows at a rate greater than or equal to the
number of isolated vertices. However, in the later stages, the graph is sufficiently
fragmented so that an increase in the number of connected components of the
graph coincides with the isolation of a vertex.

Genomic Signatures from DNA Word Graphs 327

5 Conclusion

The genomic signatures introduced in this paper are systematically derived from
the structure of DNA word graphs obtained from genomic sequences. Moreover,
distances between such signatures can be characterized within a probabilistic
framework in terms of the parameters of the underlying DBC assumed to gen-
erate the sequences. For each organism, both eukaryotic and prokaryotic, it is
possible to derive a θoed-bar code from a sufficiently long genomic sequence of
that organism that uniquely identifies the organism among competing genomic
sequences. When sufficient sequence for an organism is present in a biological
sample, the target organism for the sample can be retrieved by querying an al-
ready existing database of signatures. All order-w signatures discussed in this
paper are compact and computable in Θ(4w lg n) time and space. The amount
of sequence needed to create an order-w signature representative of its species
is exponential in w.

In practice, DNA sequences that need to be matched to a target organism can
be much smaller than 1 Mb. We have found that each genomic sequence has a
separate set of specifications for order and sample sequence size for best results
(work in progress). We continue to investigate bounds on the minimum amount
of sequence required to achieve an effective θoed signature and on alternate sig-
natures for high order w that sample counts for a few length-w strings instead
of requiring counts for all 4w strings.

Acknowledgments

We thank two anonymous reviewers for their useful comments and suggestions.

References

1. Karlin, S., Burge, C.: Dinucleotide relative abundance extremes — A genomic
signature. Trends in Genetics 11(7) (1995) 283–290

2. Karlin, S., Mrazek, J., Campbell, A.M.: Compositional biases of bacterial genomes
and evolutionary implications. Journal of Bacteriology 179(12) (1997) 3899–913

3. Jernigan, R.W., Baran, R.H.: Pervasive properties of the genomic signature. BMC
Genomics 3 (2002) 9 pages

4. Coenye, T., Vandamme, P.: Use of the genomic signature in bacterial classification
and identification. Systematic and Applied Microbiology 27(2) (2004) 175–185

5. Deschavanne, P.J., Giron, A., Vilain, J., Fagot, G., Fertil, B.: Genomic signature:
Characterization and classification of species assessed by chaos game representation
of sequences. Molecular Biology and Evolution 16(10) (1999) 1391–1399

6. Sandberg, R., Branden, C.I., Ernberg, I., Coster, J.: Quantifying the species-
specificity in genomics signatures, synonymous codon choice, amino acid usage,
and G+C content. Gene 311 (2003) 35–42

7. Dufraigne, C., Fertil, B., Lespinats, S., Giron, A., Deschavanne, P.: Detection and
characterization of horizontal transfers in prokaryotes using genomic signature.
Nucleic Acids Research 33(1) (2005) 12 pages

328 L.S. Heath and A. Pati

8. van Passel, M.W.J., Bart, A., Thygesen, H.H., Luyf, A.C.M., van Kampen, A.H.C.,
van der Ende, A.: An acquisition account of genomic islands based on genome
signature comparisons. BMC Genomics 6 (2005) 10 pages

9. Carbone, A., Kepes, F., Zinovyev, A.: Codon bias signatures, organization of
micro-organisms in codon space, and lifestyle. Molecular Biology and Evolution
22(3) (2005) 547–561

10. Pevzner, P.A.: DNA physical mapping and alternating Eulerian cycles in colored
graphs. Algorithmica 13(1-2) (1995) 77–105

11. Pevzner, P.A., Tang, H.X., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proceedings of The National Academy of Sciences of The
United States Of America 98(17) (2001) 9748–9753

12. Zhang, Y., Waterman, M.S.: An Eulerian path approach to global multiple align-
ment for DNA sequences. Journal of Computational Biology 10(6) (2003) 803–819

13. Raphael, B., Zhi, D.G., Tang, H.X., Pevzner, P.: A novel method for multiple
alignment of sequences with repeated and shuffled elements. Genome Research
14(11) (2004) 2336–2346

14. Zhang, Y., Waterman, M.S.: An Eulerian path approach to local multiple alignment
for DNA sequences. Proceedings of The National Academy of Sciences of The
United States Of America 102(5) (2005) 1285–1290

15. Fickett, J.W., Torney, D.C., Wolf, D.R.: Base compositional structure of genomes.
Genomics 13(4) (1992) 1056–1064

16. Rosenberg, A.L., Heath, L.S.: Graph separators, with applications. Frontiers of
Computer Science. Kluwer Academic/Plenum Publishers (2000)

17. Feller, W.: An Introduction to Probability Theory and Its Applications. Third
edn. Volume I. John Wiley & Sons Inc., New York (1968)

18. Waterman, M.: Introduction to Computational Biology. First edn. Academic Press
Inc., Boston, MA (1995)

19. Cauchy, A.L.: Cours d’analyse de l’École Royale Polytechnique. Première par-
tie. Instrumenta Rationis. Sources for the History of Logic in the Modern Age,
VII. Cooperativa Libraria Universitaria Editrice Bologna, Bologna (1992) Analyse
algébrique. [Algebraic analysis], Reprint of the 1821 edition, Edited and with an
introduction by Umberto Bottazzini.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 329–337, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Enhancing Motif Refinement by Incorporating
Comparative Genomics Data

Erliang Zeng and Giri Narasimhan

Bioinformatics Research Group (BioRG), School of Computing and Information Sciences,
Florida International University, Miami, Florida, 33199, USA

{ezeng001,giri}@cis.fiu.edu

Abstract. Transcription factor binding sites (TFBS) are often located in the
upstream regions of genes and transcription factors (TFs) cause transcription
regulation by binding at these locations. Predicting these binding sites is a
difficult problem, and traditional methods have a high degree of false positives in
their predictions. Comparative genomics data can help to improve motif
predictions. In this paper, a new strategy is presented, which refines motif by
taking the comparative genomics data into account. Tested with the help of both
simulation data and biological data, we show that our method makes improved
predictions. We also propose a new metric to score a motif profile. This score is
biologically motivated and helps the algorithm in its predictions.

1 Introduction

Transcription, the process to produce messenger RNA (mRNA) from DNA, is a key step
in the “Central Dogma” of life. Transcription regulation is a complex process and a lot of
proteins are involved. A protein that regulates transcription by binding to short DNA
sequences located in the upstream region of a gene is called a transcription factor (TF);
the short DNA sequences are referred as transcription factor binding sites (TFBS) or
regulatory elements. Typically, a single TF regulates a large set of genes. The
transcription regulation of a single gene may be the effect of a single TF or the combined
effect of multiple TFs. The upstream region of each gene regulated by the same TF must
have at least one binding site specific to that particular TF. All the binding sites for the
same TF share a high similarity but need not be identical. The bioinformatics problem is
to find these sites and to describe them in an efficient way.

A motif is a sequence signature that provides a description of a TFBS. The possible
ways to represent a motif include a consensus sequence, a frequency matrix, a
position-specific scoring matrix (PSSM), or a position weight matrix (PWM) [1, 2].
Based on the motif representation used, the algorithms to predict TFBSs fall into two
categories: those based on a consensus sequence representation and those based on a
matrix representation. Since a matrix representation is considerably more general and
more descriptive than its consensus sequence counterpart, we only consider algorithms
based on matrix representations in this paper. Examples of such algorithms include
AlignACE [3], MEME [4], Bioprospector [5], MDscan [6], YMF [7], Weeder [8], and

ă

330 E. Zeng and G. Narasimhan

many more. Different searching strategies were applied is these algorithms. Each
algorithm has a motif scoring function that it attempt to optimize. Several popular
scoring functions include IC (information content) [9], MAP (maximum a posteriori
probability) score [6], Group Specificity Score [3], LLBG (least likely under the
background model) [10], and Bayesian scoring function [11]. The basic idea behind all
these algorithms is to look for sequence signatures in the upstream region of a given
gene set that are statistically overrepresented as compared to a reference set of genes or
to the genome background.

Although all the algorithms described above have their successful applications, they
are far from perfect [12-14]. The common problem is that each algorithm reports a lot
of motifs and it is very hard to verify all of them. It is very likely that a large fraction of
these predictions are false positives. The first goal is to reduce the false positives in the
predictions, and the second goal is to rank the motifs in a biologically meaningful way.

Comparative genomics data is a relatively new source of data which can help to
improve the motif prediction. It is well known that motifs that are conserved in
orthologous sequences are more likely to be functional. So motif conservation across
related genomes can be used to measure biological significance. The degree of
conservation of the binding sites among the evolutionarily-related multiple genomes is a
crude surrogate for the significance of a motif. It is clear that the increasing number of
whole genome sequences of evolutionarily-related organisms can provide additional
support to the predictions of binding sites [15-18]. The “phylogenetic footprinting”
strategy has be used to find motifs that are conserved across related organisms [19].
However, any motif that is unique for a particular species will not be detected by this
method. Furthermore, not all genes have orthologs in all related organisms. Another
approach is to treat the orthologous sequences in the same way as sequences that are not
phylogenetically related, that is, simply pool the co-regulated genes and their orthologous
counterpart before applying computational methods. Obviously, the orthology
information is under-utilized in such an approach. Several subtle approaches such as
EMnEM [20] (EM-based), PhyloCon [21] (Greedy algorithm), PhyME [22] (EM-based),
PhyloGibbs [23] (based on Gibbs Sampling) were developed recently to resolve this
problem while taking the phylogenetic relationships into account. However, phylogenetic
relationships are notoriously difficult to infer and are often unreliable. Furthermore, most
of them need the input sequences to be preprocessed to obtain alignments, which again
are potentially unreliable. Inaccurate alignments (or phylogenies) hurt the ability to make
accurate predictions.

Unlike the de novo motif detection approaches, the method described in this paper
refines any given motif by incorporating comparative genomics data. It first searches
sequences for candidate sites. And then filters out those that are not the instances of the
motif. Recently, Comin et al. reported a subtle motif discovery method using a similar
two-step strategy [24]. The differences are twofold. First, we incorporate comparative
genomics data, and second, we use profiles instead of consensus sequences to represent
the motifs.

It is important to note that our method can refine a motif starting from one or more
known (perhaps imprecisely specified) binding sites. This makes sense in many cases
where biological experiments may have reported partial information wet lab

 Enhancing Motif Refinement by Incorporating Comparative Genomics Data 331

experiments from laboratories are often very focused and it is common that only few
genes and even fewer binding sites are identified by such studies. A good starting point
for most motif detection methods is the results of gene expression studies, which can
help to identify co-expressed (and, therefore, potentially co-regulated) sets of genes.
Then using the method described in this paper, and starting from one or two
experimentally verified binding sites, we can predict the rest of the relevant binding
sites of the genes in the pathway and also output a refined profile for the motif.

2 Methods

2.1 Enhanced Motif Refinement (EMR Algorithm)

One simple approach to integrate comparative genomics data into existing motif-finding
methods is to filter out motifs not conserved across related organisms. However, this
approach is too simplistic and only considers comparative genomic data in a limited way.
Our proposed method considers comparative genomics data in a dual manner.
Comparative genomics data is used not merely to filter out motifs, but also to filter out
individual sites that are not instances of the motif. Success of ab initio methods is often
dictated by the signal-to-noise ratio of the input sequences, which is often rather low.
Thus, filtering out the individual sites that are not instances of the motif is necessary and
meaningful because these sites determine the profile of the motif.

Our algorithm is described below in Figure 1. The algorithm takes as input any motif
discovered in a given genome Γ1 using any motif detection method. Using one or more
additional genomes Γ2, the algorithm returns an enhanced motif.

The motif scoring function optimized in the EMR algorithm is the MAP (maximum
a posteriori probability) score.

Input: a) Motif PWM M1, motif length l, and associated gene set G1 from genome Γ1,
 b) upstream sequences of the ORFs in G1,
 c) Additional genome(s) Γ2,.and the orthology map for all the genomes, and
 d) upstream sequences of the ORFs in G2, the orthologs of G1 in Γ2.
Output: Refined motif PWM Mr
Algorithm:
1. Scan the upstream sequences of gene set G2 in genome Γ2 with motif M1 for

instances.
2. Add all instances found in Γ2 to M1 and update motif, if doing so increases motif

score.
3. Scan the upstream sequences of gene set G1 with the updated motif.
4. Again, add instances of motif found in G1 and update motif, if doing so increases

motif score.
5. Remove instances of motif and update motif, if doing so increases motif score.
6. Return updated motif.

Fig. 1. EMR Algorithm

332 E. Zeng and G. Narasimhan

The EMR algorithm uses two main subroutines. One uses the motif described as a
PWM and finds all instances of it in a given set of sequences. This is achieved by
sliding a window of length l and scoring the windows with the PWM, and checking if
the score is above an appropriate threshold. Given a sequence S, denoted by s1s2…sl, the
following quantity given by

(|)
ln

(|)
s

P S M
W

P S B
=

measures the ratio of P(S|M), the probability of generating S under model M, to P(S|B),
the corresponding probability under a background model. Thus if wij is the entry of
PWM corresponding to base r at position i, then

1

()ij

l

s

i

W w
=

=∑ .

We denote by wir the entry of base r at position i in the PWM, where base r is the ith
base of the motif consensus sequence c. And we define

1

ir

l

c

i

W w
=

=∑ .

Obviously, Wc is the weight of consensus sequence of the motif, and is the largest
weight among all segments. Now we define a ratio Rsc between Ws and Wc as similarity
of segment S to motif M.

s
sc

c

W
R

W
=

Another implementation related issue is how to choose a motif scoring function.
Many scoring functions have been used in previous motif discovery methods. Motif
discovery methods attempt to optimize an appropriate scoring function. A widely used
scoring function is the MAP (maximum a posteriori probability) score, which is a
combination of the negative entropy of the PWM and the rareness of the PWM with
respect to the background [6].

4

0

1 1

log() 1
(log log(()))

l
m

ij ij
mi j alls

x
MAP w w P s

l x= =

= −∑∑ ∑ ,

where l is the width of the motif, xm is the number of sites used to construct the motif,
Wij is the entry of base j at position i in the PWM and P0(s) is the probability of
generating the candidate site s from the background model. MAP score maintains a
good balance well between motif specificity and motif diversity and seems to improve
the performance of motif finding algorithm [6]. Therefore it was used in this paper.

 Enhancing Motif Refinement by Incorporating Comparative Genomics Data 333

2.2 Motif Ranking

The advantage of EMR algorithm is that it refines the motif predictions resulting from
any of the current algorithms. Previous research has shown that different motif
discovery methods often complement each other [25]. That is, many motif discovery
algorithms often find motifs that are missed by other algorithms. Motif finding
algorithms search for motifs that maximize different metrics. As a result, motifs judged
significant by one algorithm may not be ranked as highly by the others. Scoring
functions like the MAP score are good for optimization methods, but are not necessarily
good for ranking motifs.

In this paper, we consider metrics (and develop new ones) that are better suited for
methods that use comparative genomics data. The hypothesis of these methods is that
motifs which are conserved in orthologous sequences are more likely to be functional,
i.e., biologically significant. The straightforward conservation score was defined as the
average number of orthologous upstream sequences in which the motif is found across
the genome. Such conservation score was used by Getz et al. [17]. In that paper, each
gene that has motif sites receives a score that is equal to the number of species in which
the corresponding ortholog contained a site in its upstream sequence. The scores for all
the genes that contained at least one site in reference genome are averaged together to
give the conservation score for a particular motif. In brief, the conservation score S is
defined as:

1

i
n

i

s
S

n=

=∑ ,

where si is the number of species in which the ortholog of gene i contained a site in its
upstream sequence, and n is the total number of genes in the reference genome whose
upstream sequence has at least one site of the motif. The weakness of this conservation
score is that it does not consider the following key facts:

Fact 1: if m denotes the number of species in comparative genomic data, the more

 instances in which ni equals to m, the more significant the motif is;
Fact 2: with the same conservation score, the motif with larger value of n is more
 significant.

After taking the above two facts into account, we propose a new metric to measure
the conservation score and use it to rank the motifs resulting from the EMR algorithm.
The new metric is given by:

[] 1
1

1

log , ,
i

m

i

i
c i i

m

i

i

w in
S mn w w i

n w

=
−

=

= > ∀
∑

∑

where m is the number of species in comparative genomic data, n is the total number of
genes in the reference genome whose upstream sequence has at least one site of the
motif, ni is the number of genes that has i number of species in which the corresponding

334 E. Zeng and G. Narasimhan

ortholog contained at least one motif site in the upstream sequence, and wi is the weight
constant which satisfies wi > wi-1 for all i, i. e., higher significance is assigned to motif
instances that occurs in the orthologs of more genomes.

3 Results and Analysis

3.1 Synthetic Data

3.1.1 Constructing Synthetic Data
The input to the EMR algorithm are the upstream sequences of ORFs of the reference
genome and the upstream sequences of ORFs from genomes of phylogenetically related
organisms. The yeast genome was used to constructe a synthetic data set to evaluate the
EMR algorithm, we used the data set for the metabolic phase in sporulation, which was
complied by Narasimhan et al., from the work of Chu et al. [26, 27].

Diploid cells of yeast produce haploid cells through the developmental program of
sporulation, which is characterized by sequential transcription of at least four sets of
genes — early, middle, mid-late, and late [26, 28]. A conserved site (URS1) was found
in the upstream region of many of the known early genes [29]. A total of 42 genes were
compiled from the work of Chu et al. following a pattern of expression characterized by
early induction. The upstream regions of 15 of these genes contained a URS1 motif.
The upstream sequences of these 42 genes were obtained as the first step in
constructing the synthetic data. All orthologous sequences corresponding to the 42
sequences were extracted from the genomes - S. paradoxus, S. mikatae, and S. bayanus
[30]. The gene set associated with these orthologous sequences serve as the gene set G2

in the EMR algorithm. For keeping the phylogenetic information purpose, the upstream
sequence of gene set G2 remained unchanged. The upstream sequences of gene set G1
were constructed from the 15 binding sites. A total of 65 random sequences of length
800bp were generated based on the GC content of yeast genome Saccharomyces
cerevisiae. One copy of a known 15 URS1 binding sites was inserted in a random
location of each of the 15 sequences.

3.1.2 Results from Synthetic Data Using EMR Algorithm
The generated sequences (described above) were fed into the motif finding programs
AlignACE and MEME. The predictions of motif URS1 from AlignACE and MEME
were then refined using the EMR algorithm. The results are shown in Table 1.

From the results summary from Table 1, we can see that all the characteristics of the
motif including MAP score, information content, and number of false sites, showed
improvement after refinement by the EMR method, regardless of whether the input was
the results of using AlignACE or MEME. Although the EMR algorithm attempts to
optimize the MAP score, the IC (information content) score of the motif also showed
improvement. The data set fed to motif finding algorithms had low signal-to-noise ratio
(0.23 in this example), which make it difficult for motif finding algorithm to discover
real motif instances. For example, the output of AlignACE found 6 false sites, while

 Enhancing Motif Refinement by Incorporating Comparative Genomics Data 335

Table 1. Refined motif from synthetic data (the characteristics of motif before and after
refinement using the EMR algorithm. The characteristics include consensus sequences or motif
logos, MAP scores, information content, and number of false sites).

Program
Known consensus,

predicted motif logo,
and refined motif logo

MAP Score
(Before/After)

Information Content
(Before/After)

No. of false sites
(Before/After)

AlignACE

TAGCCGCCGA

2.02/3.63 6.85/8.49 6/2

MEME

TAGCCGCCGA

2.81/3.64 6.70/8.02 2/2

MEME introduced 2. After refinement, the number of false sites reduced to 2 using the
output of AlignACE, and remained unchanged using the output of MEME.

3.2 Results of Yeast Data

In a second set of experiments, we applied the EMR algorithm to real yeast data. The
motif data were obtained from the work of Narasimhan et al. [27]. Four known binding
sites were investigated including are EBF1, GAL4, PDR, and URS1. The data set
consisted of upstream sequences of a set of genes. The details of data sets are
summarized in Table 2.

Table 2. Yeast Motif Data Sets Summary

Motif Total No. of sequences
No. of sequences

that have motif hits
Known consensus

EBF1 16 16 ACACCCA
GAL4 10 10 CGGNNNNNNNNNNNCCG
PDR 11 11 TCCGCGGA

URS1 20 47 TAGCCGCCGA

Table 3. Motif Ranking by conservation score Sc

Motif
Rank reported by

MEME
Rank reported by

EMR
Sc Score*

EBF1 3 1 1.0276 (0.8187, 0.7756, 0.7322, 0.7971)
GAL4 1 1 0.9672 (0.7284, 0.3548, 0.4359, 0.3054)
PDR 1 1 0.6176 (0.2543, 0.1324, 0.2180, 0.4560)

URS1 3 1 0.9168 (0.8198, 0.8686, 0.8321, 0.5123)

* The score outside the parenthesis is the conservation score for the motif listed in the
corresponding first column. The score within parenthesis is the conservation score for four
other motifs reported by MEME.

336 E. Zeng and G. Narasimhan

Motif finding program MEME was applied to these four data sets. For each data set,
five highest-rank motifs based on the metric used by MEME were chosen to report. The
motifs listed in Table 3 were expected to be reported as the highest one in each
corresponding category. But this is not always the case as shown in Table 3. However,
after refinement by our method, the motifs listed in Table 3 were output as the top list.
Table 3 summarizes the results.

4 Discussion

Comparative genomics data can play an important role in motif finding and motif
ranking. Our work shows that comparative genomics data provides significant
improvements in these two areas. Our proposed EMR algorithm helps improve motif
prediction by removing artificial upstream segment.

Many variants of motif-finding algorithms have been proposed by researchers.
Different algorithms optimize different scoring functions. Our proposed new metric
measures the motif score by integrating the comparative genomics data. Previous
research shows that evolutionarily conserved motifs are functionally relevant. Our
results show that by using comparative genomics data in a sophisticated manner, motif
conservation score calculated by our method gives consistent motif ranking and teases
out biologically-relevant motifs. When motif finding algorithms are applied to a whole
genome sequence, it generated a lot of output with a large number of false positives.
Our proposed metric helps to rank these genome-wide motifs to facilitate researchers to
choose the best ones for experimental verification.

Acknowledgements. The work of G. N. was supported in part by a grant from NIH
under NIH/NIGMS S06 GM008205. E. Z. was supported by Florida International
University Presidential Fellowship.

References

1. Stormo, G.D., DNA binding sites: representation and discovery. Bioinformatics, 2000.
16(1): p. 16-23.

2. Werner, T., Models for prediction and recognition of eukaryotic promoters. Mamm
Genome, 1999. 10(2): p. 168-75.

3. Hughes, J.D., et al., Computational identification of cis-regulatory elements associated with
groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol, 2000. 296(5):
p. 1205-14.

4. Bailey, T.L. and C. Elkan, Fitting a mixture model by expectation maximization to discover
motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol, 1994. 2: p. 28-36.

5. Liu, X., D.L. Brutlag, and J.S. Liu, BioProspector: discovering conserved DNA motifs in
upstream regulatory regions of co-expressed genes. Pac Symp Biocomput, 2001: p. 127-38.

6. Liu, X.S., D.L. Brutlag, and J.S. Liu, An algorithm for finding protein-DNA binding sites
with applications to chromatin-immunoprecipitation microarray experiments. Nat
Biotechnol, 2002. 20(8): p. 835-9.

7. Sinha, S. and M. Tompa, YMF: A program for discovery of novel transcription factor
binding sites by statistical overrepresentation. Nucleic Acids Res, 2003. 31(13): p. 3586-8.

 Enhancing Motif Refinement by Incorporating Comparative Genomics Data 337

8. Pavesi, G., et al., Weeder Web: discovery of transcription factor binding sites in a set of
sequences from co-regulated genes. Nucleic Acids Res, 2004. 32(Web Server issue): p.
W199-203.

9. Hertz, G.Z. and G.D. Stormo, Identifying DNA and protein patterns with statistically
significant alignments of multiple sequences. Bioinformatics, 1999. 15(7-8): p. 563-77.

10. Friberg, M., P. von Rohr, and G. Gonnet, Scoring functions for transcription factor binding
site prediction. BMC Bioinformatics, 2005. 6: p. 84.

11. Jensen, S.T. and J.S. Liu, BioOptimizer: a Bayesian scoring function approach to motif
discovery. Bioinformatics, 2004. 20(10): p. 1557-64.

12. MacIsaac, K.D. and E. Fraenkel, Practical strategies for discovering regulatory DNA
sequence motifs. PLoS Comput Biol, 2006. 2(4): p. e36.

13. Sandve, G.K. and F. Drablos, A survey of motif discovery methods in an integrated
framework. Biol Direct, 2006. 1: p. 11.

14. GuhaThakurta, D., Computational identification of transcriptional regulatory elements in
DNA sequence. Nucleic Acids Res, 2006. 34(12): p. 3585-98.

15. van Nimwegen, E., et al., Probabilistic clustering of sequences: inferring new bacterial
regulons by comparative genomics. Proc Natl Acad Sci U S A, 2002. 99(11): p. 7323-8.

16. Xie, X., et al., Systematic discovery of regulatory motifs in human promoters and 3' UTRs
by comparison of several mammals. Nature, 2005. 434(7031): p. 338-45.

17. Gertz, J., et al., Discovery, validation, and genetic dissection of transcription factor binding
sites by comparative and functional genomics. Genome Res, 2005. 15(8): p. 1145-52.

18. Gertz, J., J.C. Fay, and B.A. Cohen, Phylogeny based discovery of regulatory elements.
BMC Bioinformatics, 2006. 7: p. 266.

19. Blanchette, M. and M. Tompa, Discovery of regulatory elements by a computational
method for phylogenetic footprinting. Genome Res, 2002. 12(5): p. 739-48.

20. Moses, A.M., D.Y. Chiang, and M.B. Eisen, Phylogenetic motif detection by
expectation-maximization on evolutionary mixtures. Pac Symp Biocomput, 2004: p. 324-35.

21. Wang, T. and G.D. Stormo, Combining phylogenetic data with co-regulated genes to
identify regulatory motifs. Bioinformatics, 2003. 19(18): p. 2369-80.

22. Sinha, S., M. Blanchette, and M. Tompa, PhyME: a probabilistic algorithm for finding
motifs in sets of orthologous sequences. BMC Bioinformatics, 2004. 5: p. 170.

23. Siddharthan, R., E.D. Siggia, and E. van Nimwegen, PhyloGibbs: a Gibbs sampling motif
finder that incorporates phylogeny. PLoS Comput Biol, 2005. 1(7): p. e67.

24. Comin, M. and L. Parida. Subtle Motif Discovery for Detection of DNA regulatory sites. in
Asia Pacific Bioinformatics Conference (APBC2007). 2007. Hong Kong.

25. Tompa, M., et al., Assessing computational tools for the discovery of transcription factor
binding sites. Nat Biotechnol, 2005. 23(1): p. 137-44.

26. Chu, S., et al., The transcriptional program of sporulation in budding yeast. Science, 1998.
282(5389): p. 699-705.

27. Narasimhan, C., P. LoCascio, and E. Uberbacher, Background rareness-based iterative
multiple sequence alignment algorithm for regulatory element detection. Bioinformatics,
2003. 19(15): p. 1952-63.

28. Mitchell, A.P., Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol
Rev, 1994. 58(1): p. 56-70.

29. Rubin-Bejerano, I., et al., Induction of meiosis in Saccharomyces cerevisiae depends on
conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated
association with the transcriptional activator Ime1. Mol Cell Biol, 1996. 16(5): p. 2518-26.

30. Kellis, M., et al., Sequencing and comparison of yeast species to identify genes and
regulatory elements. Nature, 2003. 423(6937): p. 241-54.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 338–349, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Mining Discriminative Distance Context of Transcription
Factor Binding Sites on ChIP Enriched

Regions

Hyunmin Kim1, Katherina J. Kechris2, and Lawrence Hunter1

1 Center for Computational Pharmacology, University of Colorado Health Sciences Center,
Aurora, CO 80045 USA

2 Department Preventive Medicine and Biometrics, University of Colorado Health Sciences
Center, 4200 East Ninth Avenue, B-119

Denver, CO 80262 USA
{Hyun.Kim,Katerina.Kechris,Larry.Hunter}@UCHSC.EDU

Abstract. Genome-wide identification of transcription factor binding sites
(TFBSs) is critical for understanding transcriptional regulation of the gene
expression network. ChIP-chip experiments accelerate the procedure of
mapping target TFBSs for diverse cellular conditions. We address the problem
of discriminating potential TFBSs in ChIP-enriched regions from those of non
ChIP-enriched regions using ensemble rule algorithms and a variety of
predictive variables, including those based on sequence and chromosomal
context. In addition, we developed an input variable based on a scoring scheme
that reflects the distance context of surrounding putative TFBSs. Focusing on
hepatocyte regulators, this novel feature improved the performance of
identifying potential TFBSs, and the measured importance of the predictive
variables was consistent with biological meanings. In summary, we found that
distance-based features are better discriminators of ChIP-enriched TFBS over
other features based on sequence or chromosomal context.

Keywords: transcription factor, ChIP-chip data analysis, ensemble learning.

1 Introduction

Transcription factors (TFs) play a key role in transcription, an initial step of gene
expression regulation. By binding to cis-regulatory DNA sequences (transcription
factor binding sites, or TFBSs), these proteins directly control the level of gene
expression in a cell. In higher eukaryotes, complexity is introduced with combinatorial
interactions of transcription factors, as well as remodeling chromatin structure, and the
degree of specific regulation of gene expression varies according to cell type,
developmental stage, disease state and environment. A cluster of interacting functional
elements of TFBSs is typically called a cis-regulatory module (CRM) [1]. Recently,
high-throughput experimental techniques such as microarrays and Chromatin
ImmunoPrecipitation, followed by detection on genomic microarray chips (ChIP-chip)
are available to localize the TFBSs associated with the regulation of expression under

ă

 Mining Discriminative Distance Context of TFBSs on ChIP Enriched Regions 339

specific conditions. Localizing TFBSs is a primary step for the global characterization
of gene regulatory networks of multiple genes. Towards this goal, the ENCODE
(Encyclopedia of DNA elements) project started in 2004 to identify the functional
elements in 1% of the human genome (The ENCODE Project Consortium 2004).

Because of protein-protein interactions between transcription factors, their position
and orientation are functionally tied within a CRM. To characterize CRMs, putative
TFBSs (pTFBSs) need to be calculated. One of the current computational strategies is
to discover motifs conserved in a particular set of CRMs [2, 3]. Another approach is
to search for the known binding sites using a library of previously characterized
profiles called position weight matrices (PWMs) [4, 5]. Given a DNA sequence, a
pTFBS is defined as a hit of the corresponding PWM when the PWM score satisfies
the predetermined threshold. Many machine learning techniques and statistical
models have been developed to characterize the pTFBSs in the CRM context.
Regression methods incorporate motif occurrences of tissue-specific factors with
cooperation rules and spacing constraints between pTFBSs (for summary, see [6]).
The other aspect of CRM modeling deals with characterizing the distance effects of
interacting TFBSs [7, 8]. Current efforts include the discrimination of pTFBS patterns
in ChIP enriched regions [6, 9, 10], in which the DNA sequence region of a high ChIP
enrichment score is defined as a ChIP-oriented CRM (cCRM).

Fig. 1. Overview of characterizing distance features. (I) Shown are pTFBSs of a target TF
(marked with stars), and the ChIP enrichment scores (solid line) of the corresponding TF with
the threshold (dotted line). (II) The target cCRM expands in each direction from the center of
the target pTFBS (star). Thick arrows depict the distance of a neighboring TFBS from the
center of the target pTFBS. (III) For each TFBS, positioning in a particular distance is
illustrated with a thick arrow, and a score of the positioning is calculated by the corresponding
odds ratio function of a distance value (see materials and methods section).

Unlike conventional approaches, we examine the context of a cCRM represented by
distance preferences of surrounding pTFBSs calculated by PWMs (Fig. 1). In this
study, we selected the ChIP-chip experimental data sets produced by the ENCODE
project for identifying target TFBSs of HNF4α, HNF3β, and USF1 in the HepG2
(liver) nuclear extracts [11]. Using ensemble rule learners, we characterize this context,
and compare it with other types of contexts including pTFBS counts, and genomic
contents (e.g., DNase Hypersensitive sites and nucleosome binding occupancy),
associated with a conformation of chromatin structure. The evaluation procedure is
performed using five-fold cross validation on the average error rates. Based on the

340 H. Kim, K.J. Kechris, and L. Hunter

best-performed learner, we further analyze the importance and interaction effects of
variables used in each context.

2 Materials and Methods

We introduce a variety variables types to represent the context of a cCRM. The first
variable type reflects the number of occurrences of a pTFBS (count variable). The
second type represents a distance preference between pTFBSs (distance variable). The
last type involves genome contents such as DNase hypersensitive sites, multi-species
conservation, nucleosome occupancy, and histone acetylation sites (genome content
variable). Using different combinations of the above variable types, we build
classifiers for testing the relative contribution of a particular variable set.

2.1 Prediction of Putative TFBSs in the ENCODE Genomic Region

The forty-four ENCODE (ENCyclopedia Of DNA Elements) regions comprise 1% (30
Mb) of the human genome. Non-repeat ENCODE regions in hg17 version of UCSC
genome browser were downloaded [12]. The prediction of TFBSs (putative TFBSs, or
pTFBSs) were performed using the MATCH program with TRANSFACv9.4
vertebrate PWM profiles [4]. After masking the genomic DNA sequences in the repeat
and exon regions, the binding affinity between the DNA sequence and a TF is
measured by PWM scoring [13]. We defined the “hits” of PWM (i.e., putative TFBS or
pTFBS) on the DNA sequence when its binding affinity score is equal or greater than
the threshold (optimized by the minimum false positive ratio in the MATCH program,
see [4] for the details). Mapping information between a TF and a set of the
corresponding PWMs was extracted from the transcription factor-to-pwm fields in
TRANSFAC.

2.2 Scoring ChIP Enrichment

The ChIP-chip experimental data sets of the target TFs (HNF4α, HNF3β, and USF1)
were downloaded from the ENCODE ChIP-chip track in hg17 UCSC genome
repository (original paper is in [11]). For each target TF (i.e., an antibody target for a
ChIP experiment), a set of DNA sequences (i.e., candidate cCRM) was obtained by
expanding positions of the corresponding pTFBSs equally in each direction to have
length 1 kb (Fig. 1-I). The resultant regions overlapped by >990 bp were merged to
form the final set of candidate cCRMs. We assigned the ChIP score for the candidate
cCRMs by taking the ChIP score overlapping with the center position of the cCRMs
(Fig. 1-I). Then, following the threshold used in the original paper, the DNA
sequences with log2 ChIP score of greater than or equal to 1.2 were selected as a
positive cCRM set. Note, the negative set also contains the target pTFBSs (false
positives). The DNA sequences of high ChIP scores without target pTFBSs (false
negatives) were ignored for this study.

2.3 Building Distance Variables

Given a positive set Sp and a negative set Sn of cCRMs, we took the distribution of
distances between a neighbor pTFBS and the target pTFBS. The distribution was

 Mining Discriminative Distance Context of TFBSs on ChIP Enriched Regions 341

smoothed using Gaussian kernels [14], implemented in the density function (adjust
option =0.2) in the statistical package R (v2.4.0). The following log odds ratio form
defines the function Φ of the distance preference of the jth PWM in a distance d (see
examples in Fig 1-III).

),|Pr(

),|Pr(
log),(

nj

pj

SPWMd

SPWMd
dj =φ , (1)

where),|Pr(sPWMd j is the (smoothed) density of the PWM j in the subset s of

cCRMs with a distance d.
The DNA sequence s∈ S contains a sequence of tuples a1…an where each tuple

ak=<ak
M, ak

P> denotes the match position P of the PWM M. Now, this content is
transformed into variables x as the input of a classifier. Using the above distance
preference function Φ, we can calculate the variable xij of PWM j in a sequence i:

∑

∑

=

=

=

=−
=

n

k

M
k

M
k

n

k

P
k

M
k

ij

jaI

jaIcaa
x

1

1

)(

)(|)|,(φ
,

(2)

where c is the center position of sequence i, and I is an indicator function.

2.4 Acquisition of Genome Content Variables

ChIP-chip experiments do not yet have the resolution to recognize precise cis-
regulatory elements (DNA sequences) that may be bound by TFs. Computational
methods designed for searching known elements suffer from extremely high false
positive rate [15, 16]. Additional genome contents would be useful to filter out such
false positives in the cCRMs. These include nucleosome occupancy (NS), multi-
species conservation (CN), and DNase hypersensitive sites (HS). The NS variables
were calculated using a chicken model [17], and the variables for HS and CN were
obtained from the UCSC genome database1 by taking: raw scores of HS mapping in
the HepG2 cell line [18]; union set of consensus element tracks of 28 vertebrate
species, and converting to binary values (0 or 1). Phylogenetic foot-printing is well
suited for identifying evolutionarily conserved sequences [19, 20], however it cannot
detect lineage/species-specific TFBSs [21]. The DNase hypersensitive (HS) sites have
shown to be well associated with cis-regulatory elements including promoters,
enhancers, suppressors, insulators, and locus control regions. This approach has the
advantage of considering chromatin context, allowing for identification of both
ubiquitous and tissue-specific regulatory elements.

2.5 Rule Ensemble Learning

Ensemble learning has emerged as a promising tool in bioinformatics, where weak,
noisy signals are common. It has been reported that rule-based ensemble classifiers

1 http://hgdownload.cse.ucsc.edu/goldenPath/hg17/encode/database/

342 H. Kim, K.J. Kechris, and L. Hunter

perform very well compared to other classifiers such as discriminant analysis, support
vector machines, and neural networks [22]. The ensemble classification model is
constructed as linear combinations of simple rules. Each rule consists of conjunction
of decision statements considering the value of individual input variables. The
decision statements are easy to understand and used to assess the degree of relevance
of the respective input variables. The unknown value of an attribute y, denoting ChIP
enrichment, is predicted using known joint values of n variables (of different types) x
= (x1, x2, …, xn). The predictive model)(ˆ xFy = of the ensemble learner [23] is

denoted by

∑∑
==

++=
n

j
jjj

K

k
kk xlbxraaxF

11
0)(ˆ)(ˆˆ)((3)

where)(xrk and)(xl j are basis functions of K conjunctive rules and n original

variables respectively. Given a loss function L(y,F), the parameters are estimated with

)||||())(,(minarg)}{,}({
111}{,}{

10
10

∑∑∑
===

++=
n

j
j

K

k
k

N

i
ii

ba

n
j

K
k baxFyLba

n
j

K
k

λ (4)

where the first term in (4) measures the prediction risk, and the second term penalizes
large values for the coefficients of the base learners. Both RandomForests and RuleFit
algorithms are ensemble learners and variants of the above model with different
usages of basis functions and definitions of the loss function. We obtained the
RandomForests program from the randomForests library in the R 2.4.0 package, and
the beta version of RuleFit from the website2.

2.6 Tuning Classifiers for the Imbalanced Data

Our data set is extremely imbalanced (e.g., 200 positive examples versus 8000
negative examples in the HNF4α data), which may result in a classifier with poor
performance for predicting the minority class. There are two common solutions to
handle the problem. One is based on cost sensitive learning by assigning a high cost
to a misclassification of the minority class to minimize the overall costs. The other
one is a sampling approach forcing equal class priors by down-sampling the majority
class or over-sampling the minority class (see applications using different classifiers
[24-26]). To handle the imbalance between positive and negative sets, we employed
the down-sampling scheme for RandomForests and cost sensitive (assigning a high
cost to misclassification of minority class) method for the RuleFit. We defined the
balancing factor (BF) as a rate proportional to the size of the minority class. In
RandomForests, down samples of #minority samples for minority class and #minority
samples/BF for majority class were applied. In RuleFit, class weight of BF/#minority
samples for minority samples and 1/#majority samples for majority samples were
used. RandomForests has two main parameters mtry and ntree to be optimized. The
default setting of ntree=500 performs well and does not increase the out-of-bag
(OOB) error. We obtained the optimum parameters for each rebalanced data set, using

2 http://www-stat.stanford.edu/~jhf/R-RuleFit.html

 Mining Discriminative Distance Context of TFBSs on ChIP Enriched Regions 343

the tuneRF function in the RandomForests library. We used the default settings for
the RuleFit algorithm, and the rebalancing procedure is conducted by applying
different BFs.

2.7 Performance Evaluation

RandomForests concurrently estimates the classification error when each tree is
constructed using a different bootstrap sample from the original data. About one-third
of the samples are left out of the bootstrap sample for testing the error rate of the tree.
The aggregated error rates are averaged, and called the out-of-bag (OOB) estimate of
error rate. In general cases, we separate the training and testing sets to estimate the
classification error using the k-fold cross validation method. We fit the classifiers
until they achieve the balanced error rate (equal or similar error rates on both positive
and negative sets), and then take the average error rates to report and compare the
performance. The positive error rate corresponds to the false positive error rate
(FP/T), or 1-sensitivity, and the negative error rate corresponds to the false negative
error rate (FN/N), or 1-specificity.

2.8 Variance Importance and Interaction Criteria

The RandomForests algorithm estimates the importance of a variable by measuring
the increasing prediction error when that variable is permuted while all others are left
unchanged. We used the “Gini importance” criterion available in the RandomForests
implementation [27]. The “Gini importance” describes the improvement in the “Gini
gain” splitting criterion. This involves non-linear and complex high-order interaction
effects for predictor variables of PWM hits. In the RuleFit algorithm, the relative
importance of input variables are judged by their participation in the most influential
predictors (rules or linear) appearing in the model [23].

3 Results

The ChIP-chip experimental data sets involve Hnf4α, Hnf3β, and USF1 data sets.
ENCODE regions contain 10k to 30k hits of corresponding PWM binding sites

Table 1. Summary of data set statistics. pos: number of positive cCRMs; neg: number of
negative cCRMs; miss: number of ChIP enriched sequences without any hits of corresponding
PWMs; hits: number of PWM hits matched to the total cCRMs; profile: PWM ids of a target
TF.

cCRM PWMTF
target pos neg total miss hits profile
HNF4 209 8,301 8,510 133 10,004 HNF4_01, COUP_01, HNF4_Q6, DR1_Q3, HNF4_Q6_01, HNF4_01_B,

HNF4ALPHA_Q6, HNF4_Q6_02, HNF4_Q6_03, HNF4_DR1_Q3,

HNF3 272 18,259 18,567 68 28,566 HNF-3b, XFD3_01, HNF3_Q6_01, HNF3_Q6,HNF3B_01

 USF1 26 5,701 5,727 17 10,927 USF_C, USF_01, USF_Q6, EBOX_Q6_01, USF_02, USF_Q6_01

344 H. Kim, K.J. Kechris, and L. Hunter

(Table 1). The set of sequences is expanded from these hits (see materials and
methods section). The configuration of final positive (ChIP enriched) regions is 209,
272, 26 for the Hnf4α, Hnf3β, and USF1 data sets, respectively. Of the positive
sequences 33% (113) do not contain PWM hits for Hnf4α (20% for Hnf3β, and 39%
for the USF1). These missing DNA sequences could be found by relaxing the
threshold for the PWM score or with different PWM profile or motifs. As mentioned
in [11], those missing binding sites could be a weak signal in which their overall
binding affinity is compensated by direct or indirect binding with other cooperative
TFs thru protein-protein interactions. The fraction of DNA sequences are very similar
to the original report [11].

3.1 Performance Evaluation for Discriminating ChIP Enriched TFBSs

Over three data sets in Table 1, we evaluated the performance of the selected variable
type using the two ensemble classifiers RandomForests and RuleFit. After
rebalancing the data sets (see materials and methods section), the performance of the
classifiers were estimated by five-fold cross validation (Fig 2).

0.3724

0.3073

0.3909

0.1273
0.1585

0.1153

0.3833
0.3453

0.3852

0.1647
0.1824 0.1899

0.3164

0.2298

0.3201

0.1133 0.1245

0.084

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

HNF4aCount HNF3bCount USF1Count HNF4aDist HNF3bDist USF1Dist

RuleFit

RandomForest

RandomForest(oob)

count distance
algorithm par HNF4a HNF3b USF1 HNF4a HNF3b USF1
RuleFit BF 6 4 4 10 6 13
RandomForests BF 1.66 1.65 1.65 1.6 1.55 1.6

mtry 16 8 4 4 4 2

Fig. 2. Comparison of average error rates using the five-fold cross validation and OOB. RuleFit
and RandomForests classifiers using the count variables (left three triplets), and the distance
variables (remaining three triplets) in the top panel; The bottom panel summarizes the
parameter settings used for the rebalancing; the mtry values are automatically determined by
the tuneRF function.

Applying count variables, both predictors misclassified the data sets with about
30% average error rate. The gain is dramatic when we use distance variables as a

 Mining Discriminative Distance Context of TFBSs on ChIP Enriched Regions 345

feature. On average, the error rate of classifiers with distance features ranged from 10-
20%. The RuleFit algorithm outperformed the RandomForests in most data sets. This
can be explained by the selective nature of the RuleFit model, in which additional
linear terms (equation 3), when it properly reflects the characteristics of the class, will
improve the performance of the model and owing to the lasso penalty (equation 4)
their influence is controlled. In contrast, RandomForests fixes the number of variables
(mtry) assigned in a node in building each tree.

3.2 Important TFBS Variables

We examined the importance of 224 predictor variables combining count and distance
types thru a RuleFit importance measurement, and selected the top twenty entries in
Table 2. The distance variables (notated with the prefix “D.”) were ranked higher than
most of the count variables (with the prefix “C.”), except some PWMs belonging to
the target TFs. HNF4α and HNF3β data sets share the important variables with
different order. HNF-type genes (e.g., Hnf1β(tcf2), HNF1α(tcf), Hnf4, Hnf3β(Foxa2),
Hnf6(Onecut1)), play a role in tissue-specific gene regulation in adult cells, including
pancreas, liver, lung, and intestinal gene expression, and these factors appear to
cooperate with more tissue-specific regulators C/EBP-α (CCAAT/enhancer binding
protein), and Cdx1[28]. These data suggest that the HNF4 factor may be acting by
direct communication with distant C/EBP factors. Interestingly, lymphoid enhancer-
binding factor 1 (LEF-1) has been reported to have a similar effect regarding bent
DNA, facilitating an interaction between proteins bound at the distant 5' and 3'
enhancer [29]. C.HNF3_Q6_01 and C.USF_02 indicate an importance of repeated
occurrences of the target pTFBSs in HNF3β and USF1data set.

Table 2. Relative importance of feature variables mixture (count + distance). Parenthesized
number id represents interacting group (interaction strength > 0.1).

 HNF4α HNF3β USF1
1 D.CEBP_Q3 (a,b) C.HNF3_Q6_01 (a) C.CMAF_01
2 D.CDPCR1_01 D.HELIOSA_01 C.SREBP1_Q6
3 D.EN1_01 (b) D.PAX2_02 D.CDXA_01
4 C.CEBPGAMMA_Q6 D.PBX_Q3 C.USF_02
5 D.HNF3_Q6_01 D.AML1_01 D.CDXA_02
6 D.PBX_Q3 (a) D.TATA_01 (a) D.SMAD_Q6
7 D.YY1_Q6 D.DBP_Q6 C.COMP1_01
8 D.HNF1_C (c) D.MAF_Q6_01 (b) D.PBX1_03 (a)
9 D.NF1_Q6_01 D.SMAD_Q6 C.E2F1_Q3 (a)
10 D.CDX2_Q5 D.TTF1_Q6 D.PAX2_01 (a)
11 D.HMGIY_Q6 D.HELIOSA_02 D.CAP_01
12 D.HNF1_Q6 C.HNF4_01 D.HMGIY_Q3
13 D.TATA_01 D.CEBP_Q2_01 D.AML1_01
14 D.PAX4_02 C.LEF1_Q2 (b) D.TEF1_Q6
15 D.FOXP3_Q4 (c) D.CEBP_01(a) D.OCT1_Q6 (b)
16 D.TEF1_Q6 D.FOXD3_01 D.PAX4_01 (b)
17 D.DR1_Q3 D.CMAF_01 D.PAX4_03 (b)
18 D.PAX2_01 D.CDX2_Q5
19 D.CDXA_02 D.CDC5_01
20 D.EFC_Q6 D.EFC_Q6

346 H. Kim, K.J. Kechris, and L. Hunter

3.4 Genome Contents and Related ChIP Experimental Data Set

In this section, the performance of distance variables is compared with those of
variables involving genome contents (GCs) and the related ChIP-chip experiments
(ChIP) other than the target ChIP-chip experiment. Fig 3 represents performances of
each individual variable type (left panel), and the relative importance of a variable in
each experiment (right panel). Our distance feature performed best overall. However,
none of distance variables is more influential than the best ChIP/genome content
feature (e.g., hnf3b in HNF4α data set, hnf4a for HNF3β data set, ach3(acetylation
genome content) for USF1 data set in Fig. 3-right). It is not surprising because, for
example, the Hnf4α and Hnf3β ChIP-chip data sets are strongly correlated (Pearson
correlation = 0.670, pval < 2.2e-16).

0

0.05

0.1

0.15

0.2

0.25

dist GC ChIP Full

hnf4a

hnf3b

usf1

Fig. 3. Performance of RuleFit model applying various variable types with distance, genome
content (GC), and related ChIP score of other target (ChIP). Right panel represents relative
importance of variable of the full model.

The full models of all possible variables achieved the performance of 7.4%, 6.8%
and 7.7% average error rates, and 98.3, 98.0 and 98.0 for the area under the ROC
Curve (AUC) in the HNF4α, HNF3β, and USF1 data sets respectively. Among GC
variables (i.e., nucleosome binding sites (ns), DNase hypersensitive sites (hs), multi-
species conserved regions (con), and nucleosome acetylation sites (ach3)), ach3 and
hs were chosen as the relatively important variables.

We also examined the dependence of the full models on the genome contents
variables. Fig. 4 displays partial dependence plots for selected GC variables (see the
definition in [23]). For each dataset, the relative importance of GC variables is drawn
in the left column, followed by four sub plots displaying the degree of dependence (y
axis) for values of different variables (x-axis). The plots for ach3 show a positive
linear response for the predictor variables of the HNF4α and HNF3β models and a
drastic increase at 0.5 for USF1. Different dependence distributions for hs and ns
indicate that there are distinct genome content preferences for different TFs.

 Mining Discriminative Distance Context of TFBSs on ChIP Enriched Regions 347

Fig. 4. Relative importance and partial dependence function of genome content variables.
Panels in the left column show relative importance of variables. Plots in the right columns
display partial dependence plots, which are graphical depictions of the effects of individual
variables on the class predictions.

4 Discussions and Conclusions

Regarding the missing ChIP enriched regions (Table 1), ChIP-chip experiments of
HNF4α showed that the TFBSs of HNF4α contain small, but distinct motif patterns in
promoter regions (within 5k bp of TSS) different from enhancer regions [11]. This
may be because some of the HNF4α interactions with proximal promoters might be
indirect through formation of enhancer/promoter loops with HNF4α bindings. These
TFs are commonly bound to distal regulatory elements and may participate in long
distance communication. The pTFBS of HMG-I/Y is chosen as an important variable
(Table 2). The HMG-I/Y binds preferentially to the minor groove of A+T rich regions
in double stranded DNA. It suggests that HMG-I/Y may function in nucleosome
phasing, which in turn changes the topology of chromatin structure. We observed a
slight contribution of nucleosome occupancy and multi-species conserved regions.
These features are known to be correlated with particular TFs such as Sp1 (data is not
shown), and non lineage/species specific TFs, respectively. Therefore, careful

348 H. Kim, K.J. Kechris, and L. Hunter

consideration is needed to apply the genomic contents as a filtering procedure (for
summary of identification of TFBS, see [30]).

Using ensemble learners, we evaluated the usefulness of distance features of
pTFBSs, for which effects are composed of a large volume of weak signals, and are
consistent with biological meanings. We are testing the method against the remaining
99% of the human genome, and the missing 30% of ChIP enriched regions. This
methodology could be extended to the characterization of CRM models for diverse
TF roles affecting tissue-specificity or time-dependent expression level of a particular
gene set. Combined with other ChIP-chip results, our approach will allow researchers
to discover synergistic TF participants for regulation in mammalian systems under
different preference of genomic contents preferences.

Acknowledgments

We acknowledge Anis Karimpour-Fard for helpful comments; Sonia Leach for help
with an earlier version of algorithm, and David Farrell for help with setting up
computer system.

References

1. Yuh, C.H., H. Bolouri, and E.H. Davidson, Genomic cis-regulatory logic: experimental
and computational analysis of a sea urchin gene. Science, 1998. 279(5358): p. 1896-902.

2. Bailey, T.L. and M. Gribskov, Score distributions for simultaneous matching to multiple
motifs. J Comput Biol, 1997. 4(1): p. 45-59.

3. Roth, F.P., et al., Finding DNA regulatory motifs within unaligned noncoding sequences
clustered by whole-genome mRNA quantitation. Nat Biotechnol, 1998. 16(10): p. 939-45.

4. Kel, A.E., et al., MATCHTM: a tool for searching transcription factor binding sites in
DNA sequences. Nucl. Acids Res., 2003. 31(13): p. 3576-3579.

5. Sandelin, A., et al., JASPAR: an open-access database for eukaryotic transcription factor
binding profiles. Nucleic Acids Res, 2004. 32(Database issue): p. D91-4.

6. Smith, A.D., et al., Mining ChIP-chip data for transcription factor and cofactor binding
sites. Bioinformatics, 2005. 21(suppl_1): p. i403-412.

7. Yu, X., et al., Genome-wide prediction and characterization of interactions between
transcription factors in Saccharomyces cerevisiae. Nucleic Acids Res, 2006. 34(3): p. 917-
27.

8. Yu, X., et al., Computational analysis of tissue-specific combinatorial gene regulation:
predicting interaction between transcription factors in human tissues. Nucleic Acids Res,
2006. 34(17): p. 4925-36.

9. Jin, V.X., et al., A computational genomics approach to identify cis-regulatory modules
from chromatin immunoprecipitation microarray data--A case study using E2F1. Genome
Res, 2006. 16(12): p. 1585-95.

10. Macisaac, K.D., et al., A hypothesis-based approach for identifying the binding specificity
of regulatory proteins from chromatin immunoprecipitation data. Bioinformatics, 2006.
22(4): p. 423-9.

11. Rada-Iglesias, A., et al., Binding sites for metabolic disease related transcription factors
inferred at base pair resolution by chromatin immunoprecipitation and genomic
microarrays. Hum. Mol. Genet., 2005. 14(22): p. 3435-3447.

 Mining Discriminative Distance Context of TFBSs on ChIP Enriched Regions 349

12. Karolchik, D., et al., The UCSC Genome Browser Database. Nucleic Acids Res, 2003.
31(1): p. 51-4.

13. Wasserman, W.W. and A. Sandelin, Applied bioinformatics for the identification of
regulatory elements. Nat Rev Genet, 2004. 5(4): p. 276-87.

14. Silverman, B.W., Density estimation for statistics and data analysis. 1986, London:
Chapman and Hall.

15. Clifford, S., et al., Contrasting effects on HIF-1alpha regulation by disease-causing pVHL
mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum
Mol Genet, 2001. 10(10): p. 1029-1038.

16. Pennacchio, L.A. and E.M. Rubin, Genomic strategies to identify mammalian regulatory
sequences. Nat Rev Genet, 2001. 2(2): p. 100-9.

17. Segal, E., et al., A genomic code for nucleosome positioning. Nature, 2006.
18. Crawford, G.E., et al., Identifying gene regulatory elements by genome-wide recovery of

DNase hypersensitive sites. Proc Natl Acad Sci U S A, 2004. 101(4): p. 992-7.
19. Thomas, J.W., et al., Comparative analyses of multi-species sequences from targeted

genomic regions. Nature, 2003. 424(6950): p. 788-93.
20. Huber, B.R. and M.L. Bulyk, Meta-analysis discovery of tissue-specific DNA sequence

motifs from mammalian gene expression data. BMC Bioinformatics, 2006. 7: p. 229.
21. Slightom, J.L., et al., The complete sequences of the galago and rabbit beta-globin locus

control regions: extended sequence and functional conservation outside the cores of
DNase hypersensitive sites. Genomics, 1997. 39(1): p. 90-4.

22. Breiman, L., Random forests. Machine Learning, 2001. 45(1): p. 5-32.
23. Friedman, J.H. and B.E. Popescu, Predictive Learning viva Rule Ensembles. 2005,

Department of Statistics, Stanford University.
24. Chen, C., A. Liaw, and L. Breiman, Using random forest to learn imbalanced data. 2004,

statistics department, university of california at berkeley.
25. Guo, H. and H.L. Viktor, Learning from imbalanced data sets with boosting and data

generation: the DataBoost-IM approach. SIGKDD Explor. Newsl. , 2004 6 (1): p. 30-39
26. Akbani, R., S. Kwek, and N. Japkowicz, Applying support vector machines to imbalanced

datasets. ECML, 2004: p. 39-50.
27. Breiman, L., Manual on setting up, using, and understanding random forests v3.1. 2002,

http://oz.berkeley.edu/users/breiman.
28. Jensen, J., Gene regulatory factors in pancreatic development. Dev Dyn, 2004. 229(1): p.

176-200.
29. Giese, K., J. Cox, and R. Grosschedl, The HMG domain of lymphoid enhancer factor 1

bends DNA and facilitates assembly of functional nucleoprotein structures. Cell, 1992.
69(1): p. 185-95.

30. Elnitski, L., et al., Locating mammalian transcription factor binding sites: A survey of
computational and experimental techniques. Genome Res., 2006: p. gr.4140006.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 350–360, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Enhanced Prediction of Cleavage in Bovine Precursor
Sequences

Allison N. Tegge1, Sandra L. Rodriguez-Zas1,2,3, J.V. Sweedler3,4,
and Bruce R. Southey1,4

1 Department of Animal Sciences, University of Illinois at Urbana-Champaign, IL 61801, USA
2 Department of Statistics, University of Illinois at Urbana-Champaign, IL 61801, USA

3 Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
4 Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801, USA

{SL,Rodriguez-Zas}rodrgzzs@uiuc.edu

Abstract. Neuropeptides are important signaling molecules that influence a
wide variety of biological processes. The prediction of neuropeptides from
precursor proteins is difficult due to the numerous and complex series of
enzymatic processing and posttranslational modification steps. Bioinformatics
prediction of cleavage sites using statistical models was used to overcome the
challenge of identifying neuropeptides. Binary logistic models were trained on a
bovine dataset and validated on a mammalian dataset that contained no bovine
precursors. A model that incorporated amino acid locations and properties
provided more accurate and precise cleavage predictions than one using amino
acid locations alone. All models consistently resulted in highly accurate
predictions of cleavage sites in both datasets. The logistic model proposed can
accurately predict cleavage sites in mammalian species and minimize the time
consuming and costly experimental validation of neuropeptides.

Keywords: Neuropeptide, precursor, cleavage, logistic regression.

1 Introduction

Efforts to annotate recently sequenced genomes from various organisms have resulted
in a comprehensive connection between the genomic and proteomic components for
extensively studied species. Genomes of species with less experimental information
are being sequenced and in these scenarios, comparative genomics and sequence
homology can support a first attempt at annotating the genomes. However, for certain
protein and peptide groups such as neuropeptides, similarities between protein
sequences from both well and poorly studied species may provide an inaccurate
prediction of a bioactive neuropeptide, thereby hindering the functional annotation of
predicted genes.

Neuropeptides are small signaling molecules located in the central nervous system
and are essential components of the information processing and communication
between neurons [1]. They affect a vast number of biological processes including
development, growth, reproduction, health, communication, memory, and behavior.
Neuropeptides are formed from cleavage of large precursor proteins involving

ă

 Enhanced Prediction of Cleavage in Bovine Precursor Sequences 351

complex posttranslational enzymatic processing. After translation, the precursor
is passed into the endoplasmic reticulum and the signal peptide is cleaved by
signal peptidases. Further cleavage by multiple peptidases (prohormone convertases
or PCs) and other posttranslational modifications (e.g., amidation, glycosylation,
phosphorylation) occur before the final bioactive neuropeptides are formed.

Neuropeptide discovery and confirmation is an area of active research; however,
experimental verification is time consuming and costly. Consequently, information on
precursors and resulting neuropeptides is very limited in many species. The
incomplete and highly variable level of neuropeptide characterization across species
and neuropeptide families can be traced to different scenarios. A common scenario
involves research that targets a specific bioactive neuropeptide with little or no
precursor sequence information. In an alternative scenario, the precursor sequence has
been identified in multiple species but the resulting neuropeptide(s) are not
characterized. Some neuropeptide families have been characterized in many species.
For example, insulin (perhaps the best-studied neuropeptide) precursor sequences and
cleavage sites are available in 15 mammalian species. In general, approximately half
of the neuropeptides found in human, rat and mouse have been experimentally
characterized in bovine, the next most-studied mammal.

A first attempt at identifying neuropeptides in species with a limited body of
experimental evidence is to use the information from more extensively studied species
through sequence homology. However, simple homology can be inadequate to predict
neuropeptides because of the complex processing involved in the cleavage of
precursors and posttranslational modification(s) of the precursor segments that result
in the final neuropeptides. Bioinformatics prediction of precursor cleavage sites using
statistical models trained on experimentally confirmed data offers a solution to the
challenge of neuropeptide identification. Previously we demonstrated the potential of
binary logistic models solely based on the relative location of the amino acids in the
precursor sequence to predict the probability of cleavage at any location in the
precursor [2], [3], [4], [5], [6] The objectives of this study were to extend the cleavage
prediction logistic model by incorporating amino acid properties in addition to amino
acids and validate the predictive equation. The enhanced model resulted in improved
accuracy and precision in predicting cleavage and provided further insights into the
factors influencing cleavage. Because a second draft of the bovine genome is
available, the proposed approach was applied to bovine neuropeptides. However,
approximately half of the neuropeptide precursors are known in human, rat and mouse
have been reported in the bovine. The predictive equations were validated in an
independent mammalian dataset of precursors.

2 Materials and Methods

2.1 Data

Mammalian neuropeptide sequences were obtained from the UniProt database
(http://www.pir.uniprot.org/). Only mammalian precursors with complete sequence
and empirically validated PC cleavage information were considered. The sequences
used are available at http://neuroproteomics.scs.uiuc.edu/neuropred.html. The Bovine

352 A.N. Tegge et al.

dataset only included bovine sequences and the Mammalian dataset used to validate
the bovine model excluded all bovine sequences. The location of amino acids relative
to the cleavage site was denoted following the notation of Schechter and Berger [7].
Amino acids from the scissile bond of any potential cleavage site to the N-terminus
were denoted as P, and amino acids towards the C-terminus (opposite side) were
denoted as P'. Each amino acid was given a number denoting the location of the
amino acid relative to the cleavage site, so that the cleavage occurs between the P1
and P1' amino acids. The physiochemical amino acid properties included in the model
for each location were: hydrophobic, hydrophilic, charged, acidic, basic, tiny, small,
large, aliphatic, aromatic, sulfur containing, imine, amide, and hydroxyl group
containing[8]. The selected precursors were then processed using the following steps
described in Southey et al. [5], [6]:

1. Signal peptides were removed using the annotation information or predicted using
SignalP V3 [9].

2. Overlapping sliding windows of 18 amino acids from the remaining precursor
sequence were created such that every amino acid occurred in the middle or P1
location.

3. Windows without an Arg or Lys in the P1 location and any window with less than
four amino acids on either side of the potential cleavage site were removed.

4. Windows that exceeded either the C- or N-terminus of the prohormone were
completed with XXX (unspecified amino acid) to ensure the window would be
included in the analysis. However, this coding was not used in the training process.

5. When cleavage occurred with multiple sequential basic amino acids, the cleaved
site was associated with the most C-terminal basic amino acid.

6. Windows that could not be cleaved due to cleavage at a nearby location were
removed. Specifically, windows with a basic amino acid in the P1 location, a basic
amino acid present in either the P1' or P4' locations, and no basic amino acid in
either the P2 or P4 locations were removed.

2.2 Model

The probability of cleavage, πi within the ith window is described with a binary
logistic regression model:

() () βx '

1
1log i

p

j
ijjiiii x ===−= ∑

=
βηπππlogit . (1)

and

iii expexp ηη +=π 1 . (2)

where βj is the regression coefficient associated of the jth model term and xij denotes
the presence or absence of the jth model term in the ith window. A detailed description
of logistic regression models can be found in Agresti [10]. Three different sets of
model terms were used:

1. individual amino acid at different locations only (Amino Acid model),
2. amino acid properties at different locations only (Properties model), and

 Enhanced Prediction of Cleavage in Bovine Precursor Sequences 353

3. combined influence of the individual amino acid and the amino acid properties at
different locations (Combination model).

Within each set, the initial model terms were identified using a stepwise variable
selection approach with minimum significance P-value threshold for a term to be
included in the model equal to 0.1 and maximum significance P-value threshold before a
term is removed from the model equal to 0.3. Further model tuning was done to identify
the most parsimonious model with the fewest incorrect predictions in the Bovine dataset.
The analysis and validation were implemented using the Logistic procedure in SAS
(Statistical Analysis Systems, Cary, NC). Artificial neural networks have been used to
predict precursor cleavage [11]. Studies comparing the performance of artificial neural
networks and logistic models to predict cleavage have demonstrated the superiority of the
logistic approach on a wide range of species [3], [4]. Consequently, only results from
logistic models will be presented and discussed.

2.3 Validation and Model Accuracy

The final models were validated on precursor sequence information obtained from other
non-bovine mammalian precursor sequences in the UniProt database with experimental
cleavage data. Mammalian dataset was processed in the same way as the Bovine
dataset. Windows were predicted as cleaved if the predicted probability of cleavage
exceeded a 50% threshold probability. It was assumed that experimental cleavage
information was true and offered a correct depiction of the prohormone processing. This
assumption allowed the categorization of predictions into correct cleavage (true-positive
result), incorrect cleavage (false-positive result), correct non-cleavage (true-negative
result), and incorrect non-cleavage (false-negative result). The following measures of
model accuracy [5], [6], [12] were then calculated on all datasets:

1. Correct classification rate: number of correctly predicted sites divided by the total
number of sites.

2. Sensitivity (one minus false-positive rate): number of true positives divided by the
total number of sites cleaved.

3. Specificity (one minus false-negative rate): number of true negatives divided by
the total number of sites not cleaved.

4. Mathews [13] correlation coefficient: a correlation coefficient between observed
and predicted cleavage.

5. Positive Precision: number of true-positive results divided by the total number of
positives.

6. Negative Precision: number of true-negative results divided by the total number of
negatives.

3 Results

There were 48 bovine precursors with an average of 2.58 cleavages per precursor and
288 non-bovine precursors an average of 2.48 cleavages per precursor (66 unique
precursors from 26 non-bovine mammalian species) that had complete precursor
sequence and sufficient experimental evidence supporting the cleavage sites. After

354 A.N. Tegge et al.

processing, the Bovine dataset consisted of 644 windows including 124 cleavage sites
(19% of windows) and the non-bovine Mammalian dataset consisted of 3674
windows including 715 cleaved sites (19% of windows).

Table 1. Number of non-cleaved and cleaved precursor windows by amino acid motif,
frequency of the motif and of cleavage in the Bovine and Mammalian datasets

Motif1 Bovine Data Mammalian Data
P4 P2 P1 NC2 C3 M Freq4 C Freq5 NC C M Freq C Freq
K K K 1 0 0.002 0.000 19 0 0.005 0.000
K K R 2 3 0.008 0.600 5 16 0.006 0.762
K R K 1 0 0.002 0.000 5 1 0.002 0.167
K R R 2 4 0.009 0.667 16 29 0.012 0.644
K y K 18 0 0.028 0.000 110 2 0.030 0.018
K y R 14 3 0.026 0.176 81 3 0.023 0.036
R K K 0 0 0.000 0.000 2 1 0.001 0.333
R K R 2 5 0.011 0.714 11 38 0.013 0.776
R R K 2 1 0.005 0.333 12 9 0.006 0.429
R R R 6 6 0.019 0.500 35 42 0.021 0.545
R y K 24 2 0.040 0.077 142 6 0.040 0.041
R y R 29 12 0.064 0.293 151 44 0.053 0.226
y K K 15 10 0.039 0.400 103 48 0.041 0.318
y K R 10 43 0.082 0.811 61 280 0.093 0.821
y R K 17 2 0.030 0.105 116 17 0.036 0.128
y R R 30 10 0.062 0.250 159 88 0.067 0.356
y y K 157 5 0.252 0.031 841 14 0.233 0.016
y y R 190 18 0.323 0.087 1090 77 0.318 0.066
x K K 16 10 0.066 0.385 124 49 0.079 0.283
x K R 14 51 0.149 0.785 77 334 0.169 0.813
x R K 20 3 0.059 0.130 133 27 0.073 0.169
x R R 38 20 0.136 0.345 210 159 0.154 0.431
K x K 20 0 0.051 0.000 134 3 0.063 0.022
K x R 18 10 0.070 0.357 102 48 0.069 0.320
R x K 26 3 0.073 0.103 156 16 0.078 0.093
R x R 37 23 0.140 0.383 197 124 0.137 0.386
Total 520 124 1.000 0.193 2959 715 1.000 0.195

1 Motif denotes the amino acid code P4, P2, or P1 location relative to cleavage. L denotes

Lysine, R denotes Arginine, x denotes any amino acid and y denotes any non-basic amino
acid. The motifs that include x are summations across different motifs.

2 Number of non-cleaved windows.
3 Number of cleaved windows.
4 Proportion of all windows that contain the motif.
5 Proportion of motif windows that are cleaved.

 Enhanced Prediction of Cleavage in Bovine Precursor Sequences 355

A summary of the frequency of the amino acid motifs immediately preceding
(N terminal) the cleavage site in the training and test datasets is presented in Table 1.
The most frequent motifs in the Bovine dataset were xxKR, xxRR and RxxR (where x
denotes any amino acid), each observed in 15%, 14% and 14% of windows,
respectively (Table 1). However, 78% of the xxKR motifs were cleaved compared to
34% and 38% in the xxRR and RxxR motifs, respectively. These motifs were also the
most frequent motifs in the Mammalian dataset although the xxKR and xxRR motifs
were associated with a higher proportion of cleavage sites than in the Bovine dataset
(81% and 43%, respectively). Approximately 50% of the windows had a basic amino
acid in the P1 site and a non-basic amino acid in the P2 or P4 sites in both datasets,
with most windows having Arg rather than Lys (32% and 25% of all windows,
respectively). In the P1 location, the Bovine dataset had slightly more Lys and Arg
windows cleaved (3% and 9%, respectively) than the Mammalian dataset (2% and
7%). Although the xxKK motif was relatively rare, 7% of windows in both datasets,
this motif was cleaved 38% and 28% in the Bovine and Mammalian datasets,
respectively.

Fig. 1. The ROC curve for the Amino Acid (aa), Properties (prop) and Combined (aaprop)
models using the Bovine dataset

All indicators of model accuracy corresponding to the Amino Acid, Properties and
Combined models for the Bovine and Mammalian datasets are summarized in
Table 2. Each of the three models offered an adequate to very good prediction of
cleavage in the Bovine dataset. The Properties model, trained only using amino acid
properties, had the weakest performance of all models for all measures except
specificity. The Combined model, which included both amino acid properties and
specific amino acids, had the best performance of all models except for specificity.
The three most significant amino acid positions in the Combined model were: Lys at
P2, Arg at P2, and Pro at P1', with the first two having a positive, and the other one a
negative, effect on cleavage. Among the most significant amino acid properties and

356 A.N. Tegge et al.

positions in the Combined model, sulfur-containing amino acids at P5 and neutrally
charged amino acids in P3', hindered the probability of cleavage, whereas aromatic
amino acids at P6' and hydroxyl group containing amino acids at P2' enhanced the
probability of cleavage.

Overall, the differences between the best and worst models amounted to eight
false-positive and 14 false-negative cleavage predictions. These results indicated that
at least 90% of windows would be correctly classified by any of the models.
Furthermore, at least 92% of windows would be correctly predicted to be non-cleaved
and at least 76% of windows would be correctly predicted to be cleaved. In Figure 1,
the ROC curve of the three models tested on the Bovine dataset is shown. This graph
shows that high levels of sensitivity can be obtained before a drop in specificity is
observed, confirming the accuracy of the models.

The same relative performance among models observed in the bovine training was
also observed in the Mammalian dataset (Table 2). In general, the Combined model
had the best model accuracy and the range in performance indicators among models
was higher in the Mammalian dataset than in the Bovine dataset. For example, the
difference between the sensitivity of the Properties and Combined models was 0.16 in
the Mammalian dataset.

Table 2. Indicators of model performance for the Amino Acid (AA), Properties (Prop) and
Combination (Comb) models in the training (Bovine) and test (Mammalian) datasets

Measure Bovine Data Mammalian Data
 AA Prop Comb AA Prop Comb

TN2 95 83 97 514 402 493
FN2 500 494 502 2698 2699 2768
TP2 20 26 18 261 260 191
FP2 29 41 27 201 313 222

CCR (%)3 92.4 89.6 93.0 87.4 84.4 88.8
Corr (%)4 74.9 65.1 77.0 61.2 48.9 63.6
Sen (%)5 76.6 66.9 78.2 71.9 56.2 69.0
Spec (%)6 84.0 85.6 83.8 84.0 87.0 84.9
PPrec (%)7 82.6 76.1 84.3 66.3 60.7 72.1
NPrec (%)8 94.5 92.3 94.9 93.1 89.6 92.6

1 Cleavage was predicted using a 50% threshold probability.
2 Number of True Negative (TN), False Negative (FN), True Positive (TP), and False

Positive (FP).
3 Correct classification rate or the number of correctly predicted sites divided by the total

number of sites.
4 Mathews Correlation coefficient.
5 Sensitivity or the number of true positives divided by the total number of sites cleaved.
6 Specificity or the number of true negatives divided by the total number of sites not

cleaved.
7 Positive Precision or the number of true-positive results divided the total number of

positives.
8 Negative Precision or the number of true-negative results divided by the total number of

negatives.

 Enhanced Prediction of Cleavage in Bovine Precursor Sequences 357

There were 99 incorrect predictions from 40 precursors for at least one model in
the Bovine dataset. Of the 17% incorrect predictions in all three models, 71% were
false-positive results. The most incorrect predictions (11%) occurred with the
Chromogranin A precursor, of which 73% were false-positive results. The remaining
precursors accounted for 5% or less of the incorrect predictions and showed no bias
due to specific precursors. The majority of the incorrect predictions (32%) occurred in
monobasic sites with no basic amino acid in the P2 or P4 locations, most of these
occurring with Arg in the P1 location (24% of all incorrect predictions); 63% of them
were false positives and many of the remaining incorrect predictions (38%) occurred
with a basic amino acid only in the P2 location.

The incorrect predictions from 64 precursors in the Mammalian dataset showed a
similar relationship to the Bovine dataset. Of the 862 incorrect predictions, 23%
occurred with all models and just 29% occurred with the Properties model. The
Chromogranin A precursor had the highest number of incorrect predictions, however,
this precursor only accounted for 6% of the incorrect predictions. Monobasic sites and
dibasic sites with basic amino acids only present in the P2 and P1 locations accounted
for 31% and 44% of the incorrect predictions, respectively.

Across the two datasets, 69% of the incorrect predictions for at least one model
were unique predictions in that they only occurred in one window of a precursor from
a single species. The remaining incorrect predictions occurred at the same location
because the sequences of windows were identical. High sequence homology and non-
independence between observations caused an artificial decrease in the predictive
performance of the models because the same incorrect prediction was multiplied.
Conversely, correct predictions across identical or similar precursor sequences were
also observed, thereby artificially increasing the predictive performance of the
models.

4 Discussion

The consistency of the cleavage predictions across models in the Mammalian dataset
indicated that all models provided highly accurate predictions of cleavage sites in
mammalian precursors. The lack of any significant signal or pattern associated with
the incorrect predictions indicates that the variability and quality of experimental
dataset may be a major factor in incorrect predictions. Determination of model
performance is based on the assumption that the experimental data is completely
correct, but this assumption may not hold for all cleavage sites and species, especially
with less well- studied species or precursors.

False-positive results may be a consequence of a lack of detection, incorrect
inference or incorrect inclusion in the datasets. In many species, a number of cleavage
sites are likely to remain unidentified because these species have not been as
extensively studied as others. For example, both the swine and dog Natriuretic peptide
B precursor sequences show additional processing that has not been reported in other
species. In addition, some database entries are also likely to be incorrect. For
example, the Natriuretic peptide B in the domestic cat appears to have an incorrect
cleavage site that is incorrectly assigned to a similar location in the human version as
opposed to the more likely correct location in the dog version. Application of the

358 A.N. Tegge et al.

models developed in this study is one strategy to improve the inference of known
precursors that lack sufficient experimental validation.

Consideration of the amino acids and properties associated with incorrect cleavage
prediction offered insights into approaches to improve model performance. A number
of incorrect cleavage predictions occurred in the proximity of the cleavage site and
could be assigned to one of two cases, multiple basic sites preceding and following
the cleavage site and/or more than one possible cleavage site within the window. In
the first case, the processing rules applied to the datasets assumed that cleavage was
associated with the most C-terminal basic amino acid when only the bioactive peptide
is known. When multiple sequential basic amino acids are present, cleavage can occur
between any of these amino acids and still produce the same active peptide because
carboxylases will remove any C-terminal basic amino acids. However, without
experimental evidence, the actual sequence of the other peptide produced by the
cleavage remains unknown. As for the second case, the presence of interconnected
cleavage sites with cleavage at one site renders cleavage at other locations impossible.
For example, in the Endothelin-1 precursor, the sequence PWRPRRSKRCSCSSLMD
is known to be cleaved after the KR site, yet cleavage at the other basic sites results in
false-positive predictions. In some cases it is possible that more than one site is
cleaved.

The consideration of precursors that may be cleaved by enzymes other than PCs
introduces an additional source of bias. For example, the precursor Platelet-Derived
Growth Factor D is known to be cleaved by the serine protease Urokinase-type
plasminogen activator, which cleaves at the Arg-|-Val bond [14] but is not cleaved by
the Furin PC. However, PCs are enzyme candidates that cleave the related Platelet-
derived growth factor-B precursor [15].

An additional underlying assumption made when assessing the performance of the
models is that all cleavage sites will be cleaved. The basis of this assumption is that
different PCs can cleave sequences at the same site and thus, may produce
neuropeptides even in the absence of one or more PCs. However, not all PCs are
expressed in all tissues and therefore some specific peptides are not formed in all
tissues. For example, PC2 is required to process gamma-melanocyte stimulating
hormone from the Pro-opiomelanocortin precursor and so this peptide is not
detectable in brain regions where PC2 is not expressed. Scamuffa et al. [16] reviewed
the effects of PC knockouts in the mouse. Inactivation of Furin or PC5 enzymes
results in embryonic mortality at an early age. Mutant mouse lines for PC1, PC2, PC4
and PACE4 mutants are viable, however, they can exhibit retarded growth,
hyperproinsulinemia and reduced fertility. Interestingly, PC7 null mice have no
apparent defective phenotype. Consequently, a false-positive result could be a true-
positive site in another tissue or under other PC combinations, especially for the lesser
studied species or tissues.

A unique advantage of using logistic models to predict cleavage in precursors is
that the predicted probability of cleavage has an associated measurement of
uncertainty or standard error. The uncertainty associated with each predicted
probability of cleavage provides indication of the evidence available in the data
supporting the prediction. For example, a precursor site may be predicted to be
cleaved because the predicted probability of cleavage was higher than the threshold of

 Enhanced Prediction of Cleavage in Bovine Precursor Sequences 359

0.5 (i.e., 0.55). However, this prediction may have a high confidence interval and
thus, the prediction should be weighted by the uncertainty.

The alignment of sequences from many species can also help identify cleavage
sites that may be incorrectly predicted. Southey et al. [3] predicted that a single amino
acid difference between the human and chimpanzee neuropeptide FF precursor
provided a false-positive result since the cleavage only occurred in the human
sequence. For example, although Hinuma et al. [17] predicted three human and
bovine neuropeptides in the RFamide-related peptide precursor, only two predictions
were experimentally validated. The missing predicted neuropeptides did not occur in
the rat and mouse sequences and alignment of the sequences from these species
showed that the missing sequence was not present in rat and mouse precursors.
However, it is possible for a precursor to be differentially expressed between species.
For instance, although the Cocaine- and amphetamine-regulated transcript protein
precursor is expressed in long (102 amino acids) and short (89 amino acids) forms in
mice and rats, only the short form is present in humans [18].

Acknowledgements. This material is based upon work supported by the National
Institute on Drug Abuse under Award No. P30 DA018310 to the UIUC
Neuroproteomics Center, and the National Institutes of Health under Award No. R01
GM068946.

References

1. Fricker, L.D.: Neuropeptide-processing enzymes: applications for drug discovery. AAPS
J. 7 (2005) E449-455

2. Hummon, A.B., Hummon, N.P., Corbin, R.W., Li, L.J., Vilim, F.S., Weiss, K.R.,
Sweedler, J.V.: From precursor to final peptides: a statistical sequence-based approach to
predicting prohormone processing. J. Proteome Res. 2 (2003) 650-656

3. Southey, B.R., Rodriguez-Zas, S.L., Sweedler, J.V.: Prediction of neuropeptide
prohormone cleavages with application to RFamides. Peptides 27 (2006) 1087-1098

4. Amare, A., Hummon, A.B., Southey, B.R., Zimmerman, T.A., Rodriguez-Zas, S.L.,
Sweedler, J.V.: Bridging neuropeptidomics and genomics with bioinformatics: prediction
of mammalian neuropeptide prohormone processing. J. Proteome Res. 5 (2006) 1162-1167

5. Southey, B.R., Hummon, A.B., Richmond, T.A., Sweedler, J.V., Rodriguez-Zas, S.L.:
Prediction of neuropeptide cleavage sites in insects. Mol Cell Proteomics (2007)
(submitted)

6. Southey, B.R., Amare, A., Zimmerman, T.A., Rodriguez-Zas, S.L., Sweedler, J.V.:
NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses
of the resulting peptides. Nucleic Acids Res. 34(Web Server issue) (2006) W267-272

7. Schechter, I., Berger, A.: On the size of the active site in proteases. I. papain. Biochem.
Biophys. Res. Commun. 27 (1967) 157-162

8. Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry. 5th edn. WH Freeman and
Company, New York (2002)

9. Bendtsen, J.D., Nielsen, H., von Heijne, G., Brunak, S.: Improved prediction of signal
peptides: SignalP 3.0. J. Mol. Biol. 340 (2004) 783-795

10. Agresti, A.: An Introduction to Categorical Data Analysis. John Wiley and Sons, New
York (1996)

360 A.N. Tegge et al.

11. Duckert, P., Brunak, S., Blom, N.: Prediction of proprotein convertase cleavage sites.
Protein Eng. Des. Sel. 17 (2004) 107-12

12. Baldi, P., Brunak, S., Chauvin. Y., Andersen, C.A., Nielsen, H.: Assessing the accuracy of
prediction algorithms for classification: an overview. Bioinformatics 16 (2000) 412-424

13. Matthews, B.W.: Comparison of predicted and observed secondary structure of T4 phage
lysozyme. Biochim. Biophys. Acta 405 (1975) 442-451

14. Ustach, C.V., Kim, H.R.C.: Platelet-derived growth factor D is activated by urokinase
plasminogen activator in prostate carcinoma cells. Mol. Cell Biol. 25 (2005) 6279-6288

15. Siegfried, G., Basak, A., Prichett-Pejic, W., Scamuffa, N., Ma, L., Benjannet, S., Veinot,
J.P., Calvo, F., Seidah, N., Khatib, A.M.: Regulation of the stepwise proteolytic cleavage
and secretion of PDGF-B by the proprotein convertases. Oncogene 24 (2005) 6925-6935

16. Scamuffa, N., Calvo, F., Chretien, M., Seidah, N.G., Khatib, A.M.: Proprotein
convertases: lessons from knockouts. FASEB J., 20 (2006) 1954-1963

17. Hinuma, S., Shintani, Y., Fukusumi, S., Iijima, N., Matsumoto, Y., Hosoya, M., Fujii, R.,
Watanabe, T., Kikuchi, K., Terao, Y., Yano, T., Yamamoto, T., Kawamata, Y., Habata,
Y., Asada, M., Kitada, C., Kurokawa, T., Onda, H., Nishimura, O., Tanaka, M., Ibata, Y.,
Fujino. M.: New neuropeptides containing carboxy-terminal RFamide and their receptor in
mammals. Nat. Cell Biol. 2 (2000) 703-708

18. Stein, J., Steiner, D.F., Dey, A.: Processing of cocaine- and amphetamine-regulated
transcript (CART) precursor proteins by prohormone convertases (PCs) and its
implications. Peptides 27 (2006) 1919-1925

Invited Talk:

A Computational Study of Bidirectional
Promoters in the Human Genome

Mary Qu Yang1 and Laura L. Elnitski2

1 National Human Genome Research Institute
National Institutes of Health

yangma@mail.nih.gov
2 Head, Genomic Functional Analysis

National Human Genome Research Institute
National Institutes of Health
elnitski@mail.nih.gov

Abstract. A bidirectional promoter is a region along a strand of DNA
that regulates the expression of two genes flanking the region. Each of
these genes is transcibed in a direction that points away from the other
gene; two such genes are said to be in a head-to-head configuration. We
search the UCSC List of Known Genes and GenBank Expressed Sequence
Tag (EST) data for pairs of genes in such a configuration in order to
identify new bidirectional promoters.

The EST data constitutes a larger and more intricate dataset than the
UCSC List of Known Genes. However, working with EST data presents
a challenge, as the EST database may be highly redundant and may
also contain overlapping ESTs. To deal with these problems, we have
developed an algorithm to identify bidirectional promoters based on the
above data sources; the algorithm is capable of handling redundant ESTs,
and also ESTs that overlap or disagree in orientation.

This analysis resulted in the identification of thousands of new candi-
date head-to-head gene pairs, corroborated the 5’ ends of many known hu-
man genes, revealed new 5’ exons of previously characterized genes, and in
some cases identified novel genes. Further analyses yielded evidence for co-
ordinate expression of genes in ahead-to-head configuration, and examined
the prevalence of bidirectional promoters in different biological pathways.

1 Introduction

The mechanisms by which gene expression is regulated in the human genome
are as yet not well-understood; it would greatly aid our understanding to be
able to pin down prospective regulatory regions. It turns out that candidate
regulatory regions can be identified by searching for genes arranged in a “head-
to-head” configuration. Recall that a gene has a 5’ end and a 3’ end; in general,
genes are transcribed in the 5′ → 3′ direction (“downstream”) by an RNA
polymerase. The site where the RNA polymerase initially binds is a region of
the DNA called a promoter; since transcription generally proceeds in the 5′ → 3′

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 361–371, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

362 M.Q. Yang and L.L. Elnitski

direction, the promoter must be located upstream of the 5’ end of the gene. Two
genes that have their 5’ ends located fairly close together, say, within 1000 base
pairs, and furthermore are transcribed in opposite directions are said to be in
a head-to-head. configuration. The significance of this configuration is that it is
likely that one or more regulatory regions will be located in the stretch between
the 5’ end of one gene and the 5’ end of the other. This stretch is known as a
bidirectional promoter1, because it likely serves as the promoter for two genes
that are transcribed in opposite directions.

Bidirectional promoters are abundant in the human genome [1], and help to
regulate DNA repair, non-DNA housekeeping functions, and other processes.
Most early instances of bidirectional promoters were discovered in the course of
investigating individual genes [1], but recent work by Trinklein et al. [1] resulted
in a substantial increase in the number of known bidirectional promoters.

Spliced Expressed Sequence Tags (ESTs) [2], which are short DNA sequences
(usually 200-500 base pairs) obtained by sequencing one or both ends of a tran-
script of an expressed gene, constitute a large and intricate dataset that can
be used to search for bidirectional promoters. However, working with EST data
presents a challenge, as the EST database may be highly redundant and may also
contain overlapping ESTs. To deal with these problems, we have developed an
algorithm to identify bidirectional promoters based on the UCSC List of Known
Genes [3], Spliced EST data [2], and GenBank mRNA data [2]; the algorithm
is capable of handling redundant ESTs, and also ESTs that overlap or disagree
in orientation. The algorithm combines data from the three sources, so that if
there is not sufficient evidence to conclude that a candidate region is in fact a
bidirectional promoter based on EST data alone, it looks for supporting evidence
by examining Known Gene and mRNA data.

This analysis resulted in the identification of thousands of new candidate
bidirectional promoters, corroborated the 5’ ends of many known human genes,
revealed new 5’ exons of previously characterized genes, and in some cases identi-
fied novel genes. The fact that our algorithm extracts significantly more bidirec-
tional promoters than were previously known raises the question as to whether
these are in fact valid promoter regions; we provide supporting evidence to show
that this is indeed the case. Further analyses yielded evidence for coordinate ex-
pression of genes in a head-to-head configuration, and examined the prevalence
of bidirectional promoters in different biological pathways.

2 Data and Algorithm

The data that we use derives from 3 sources:

– The UCSC List of Known Genes [3].
– GenBank mRNA data [2].
– Spliced EST data from the GenBank dbEST database [2].

1 Here we use the term candidate bidirectional promoter to denote a region between two
genes in a head-to-head configuration, and the term bidirectional promoter to denote
such a region that also satisfies the various conditions imposed by the algorithm.

Invited Talk: A Computational Study of Bidirectional Promoters 363

The algorithm for extracting bidirectional promoters is as follows:

I. Known Gene Analysis: Known Genes that overlap and have the same
orientation are clustered; these clusters are defined by the furthest 3’ and 5’
ends of any gene in the cluster. The region between the 5’ ends of two gene
clusters is classified as a bidirectional promoter if the following conditions
are satisfied:

• The 5’ ends of the two gene clusters are adjacent to one another, and the
two arrows that define the 5′ → 3′ direction for each gene cluster point
away from each other.

• The 5’ ends of the two gene clusters are separated by no more than 1000
base pairs.

• There are no other gene clusters between the 5’ ends of the two gene
clusters.

II. EST Analysis: ESTs were assessed for confidence in their orientation using
the ”ESTOrientInfo” table from the UCSC Genome Browser, which gives a
measure of reliability of the orientation of the EST based on all overlapping
transcripts from the region. Those with no score were excluded due to low
confidence in their orientation. Once the orientation was confirmed, all ESTs
were compared to the ”intronEST” table to verify agreement; this table lists
the intronic orientation for each intron of a spliced EST based on the presence
of consensus splice sites.

ESTs that overlap and have the same orientation are then clustered; these
clusters are defined by the furthest 3’ and 5’ ends of any gene in the clus-
ter. Candidate bidirectional promoter regions are formed by pairing an EST
cluster with either another EST cluster or a Known Gene cluster, such that
the two clusters are in a head-to-head configuration. The candidate bidirec-
tional promoter is rejected if the two clusters overlap, or if the 5’ ends of the
two clusters are separated by more than 1000 base pairs.
The candidate bidirectional promoters are then classified using a decision
tree, as shown in Figure 3. The tree either rejects the candidate bidirectional
promoter, or assigns it a class label “EST-Li”, where i is an integer between
1 and 10. To streamline the notation, in the sequel we truncate the leading
“EST-L” from the class label, so that the class label is just an integer between
1 and 10. The class label carries two pieces of information:

• It gives a confidence level that the candidate is in fact a bidirectional
promoter. The confidence level is an integer between 1 and 5, where 1
represents the lowest confidence level and 5 the highest. The confidence
level can be obtained from the class label via:

confidence level = 5 −
⌊

class label − 1
2

⌋

• It indicates whether the candidate bidirectional promoter is contained
within a Known Gene or not. Odd-numbered class labels indicate that
the candidate bidirectional promoter is contained within a Known Gene
whereas even-numbered class labels indicate that it is not.

364 M.Q. Yang and L.L. Elnitski

The classification proceeds as follows:

1. Candidate bidirectional promoters enter at the top of the tree in Figure
3. If the candidate bidirectional promoter is contained within a Known
Gene, and there exists base pairs of the candidate bidirectional promoter
that are more than 1000 base pairs away from the 5’ end of the Known
Gene in which the candidate bidirectional promoter is contained, then
the candidate bidirectional promoter is rejected, otherwise we proceed
to Step 2 (the next level of the tree).

2. If the EST cluster(s) flanking the candidate bidirectional promoter sat-
isfy the condition that the number of ESTs that overlap the cluster and
disagree in orientation with the cluster is smaller than the number of
ESTs comprising the cluster, then we say there is “majority agreement
in orientation”, and the candidate bidirectional promoter is classified to
class 1 or class 2, depending on whether it is contained within a Known
Gene. Otherwise we proceed to Step 3 (the next level of the tree).

3. If the EST cluster(s) flanking the candidate bidirectional promoter sat-
isfy the condition that, after disregarding ESTs that disagree in orien-
tation with the cluster and overlap the 5’ end of the cluster by no more
than 1000 base pairs, the number of ESTs that overlap the cluster and
disagree in orientation with the cluster is smaller than the number of
ESTs comprising the cluster, then we say there is “majority agreement
after excluding 5’ overlap”, and the candidate bidirectional promoter
is classified to class 3 or class 4, depending on whether it is contained
within a Known Gene. Otherwise we proceed to Step 4 (the next level
of the tree).

4. If the EST cluster(s) flanking the candidate bidirectional promoter agree
in orientation with Known Genes and mRNA transcripts, then the can-
didate bidirectional promoter is classified to class 5 or class 6, depending
on whether it is contained within a Known Gene. Otherwise we proceed
to Step 5 (the next level of the tree).

5. If the EST cluster(s) flanking the candidate bidirectional promoter agree
in orientation with Known Genes, then the candidate bidirectional pro-
moter is classified to class 7 or class 8, depending on whether it is con-
tained within a Known Gene. Otherwise we proceed to Step 6 (the next
level of the tree).

6. If the EST cluster(s) flanking the candidate bidirectional promoter ex-
hibit majority agreement (as in Step 2) after excluding ESTs that overlap
the 3’ end of the cluster, then the candidate bidirectional promoter is
classified to class 9 or class 10, depending on whether it is contained
within a Known Gene. Otherwise the candidate bidirectional promoter
is rejected.

The set of bidirectional promoters extracted by the algorithm consists of those
extracted in Step I, which are precisely those flanked by Known Gene clusters,
along with those extracted in Step II, which are precisely those flanked either

Invited Talk: A Computational Study of Bidirectional Promoters 365

Table 1. Verification of regulatory regions by TAF250 and CpG overlap

Leaf Gene Pairs Valid Taf250 (%) CpG island (%) Dual TAF250 (%)

K.G 1,006 74.55 90.15 71.37
EST-L1 2,083 53.77 72.11 50.17
EST-L2 240 50.83 80.41 49.58
EST-L3 225 50.22 73.78 47.11
EST-L4 173 61.85 79.19 58.96
EST-L5 184 37.50 47.80 35.32
EST-L6 103 61.17 67.96 57.28
EST-L7 21 42.86 66.67 33.33
EST-L8 24 29.16 58.33 25.00
EST-L9 363 66.92 83.27 60.84
EST-L10 54 53.70 74.07 48.15

Overall (EST) 3,470 52.30 70.40 48.85

by two EST clusters, or by one EST cluster and one Known Gene cluster, and
furthermore are not rejected by the decision tree.

Evidence that the extracted regions indeed serve as promoters can be obtained
by looking for two features in the extracted regions that are associated with
promoters:

– The presence of experimentally validated TAF250 (or TAF1) binding sites:
a high percentage of TAF250 binding sites coincide with other markers of
promoter regions [4].

– The presence of CpG islands.

For extracted regions that are flanked by two Known Gene clusters (those ex-
tracted in Step I), 74% overlapped a valid TAF250 binding site and 90% over-
lapped a CpG island, whereas for extracted regions that are flanked either by
two EST clusters or by one EST cluster and one Known Gene cluster (those
extracted in Step II), 52% overlapped a valid TAF250 binding site and 70%
overlapped a CpG island. A summary of the percentages of extracted regions
with valid TAF250 binding sites and/or CpG islands for each class is given in
Table 1.

Evidence that the extracted regions are in fact bidirectional promoters was
obtained by dividing the extracted region in half and looking for experimentally
validated TAF250 binding sites in each half. The last column of Table 1 gives
the percentage of extracted regions with TAF250 binding sites in each half.

3 Results and Discussion

The algorithm identified 1006 bidirectional promoters flanked by two Known
Genes, and 159 bidirectional promoters flanked by one Known Gene and one
EST cluster (this situation is illustrated in Figure 4(c)). Of 5,575 candidate
bidirectional promoters flanked by two EST clusters, 2,105 were rejected by the
algorithm. Of the remaining 3,470 identified bidirectional promoters:

366 M.Q. Yang and L.L. Elnitski

– 2,876 were supported by downstream sequences overlapping additional ESTs,
mRNA or Known Gene data.

– 594 were located in Known Genes; these alternative promoters direct tran-
scription of both a shorter form of the gene G in which they are embedded
and a gene that has the opposite orientation to that of G (this situation is
illustrated in Figure 4(b)).

Ratio of bidirectional promoter

N
um

be
r

of
 C

lu
st

er
s

0.1 0.2 0.3 0.4 0.5 0.6

0
50

0
10

00
15

00

Fig. 1. Histogram of proportions of genes with bidirectional promoters after clustering
genes with similar expression profiles

Distance between TSSs

C
um

ul
at

iv
e

P
er

ce
nt

0 100 200 300 400 500 600 700 800 900 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Protein−coding gene
Est

Fig. 2. Percentiles of the widths of the bidirectional promoter regions extracted in the
Known Gene analysis and in the EST analysis

Invited Talk: A Computational Study of Bidirectional Promoters 367

Candidate bidirectional
promoters

Bidirectional promoter is
contained in Known Gene

All of bidirectional promoter
is within 1000 base pairs
of 5’ end of Known Gene

Yes
Reject

No

Majority agree-
ment in orientation

Bidirectional promoter is
contained in Known Gene

Yes
EST-L1

EST-L2

No

Yes

Majority agreement after
excluding 5’ overlap

Bidirectional promoter is
contained in Known Gene

Yes
EST-L3

EST-L4

No

Yes

Orientation agrees with
Known Genes and mRNA

Bidirectional promoter is
contained in Known Gene

Yes
EST-L5

EST-L6

No

Yes

Orientation agrees
with Known Genes

Bidirectional promoter is
contained in Known Gene

Yes
EST-L7

EST-L8

No

Yes

Majority agreement after
excluding 3’ overlap

Bidirectional promoter is
contained in Known Gene

Yes
EST-L9

EST-L10

No

Yes

Reject

Yes
No

No

No

No

No

No

Fig. 3. Decision tree for classifying candidate bidirectional promoter regions flanked
by at least one EST cluster

3.1 Identification of Novel Genes and Exons

For each Known Gene G that is not in a head-to-head configuration with an-
other Known Gene, let E be the closest EST to G that is in a head-to-head
configuration with G. If the 5’ end of E is no more than 1000 base pairs away
from the 5’ end of G, then:

– If E overlaps a downstream Known Gene G2 having the same orientation as
E, then E is considered to be an extension of the 5’ end of G2.

– If E overlaps a downstream gene G2 having the opposite orientation to E,
then E is considered to be a novel gene.

368 M.Q. Yang and L.L. Elnitski

Fig. 4. Possible configurations of Known Genes and spliced ESTs

– If E does not overlap any Known Gene, but one or more downstream Known
Genes have the same orientation as E, then E could either be a 5’ extension or
a novel gene (this situation is illustrated in Figure 4(f)). These ESTs require
further investigation as well as experimental verification to determine if they
represent 5’ extensions or novel genes.

New functional elements identified in this analysis included novel 5’ exons for
characterized human genes (this situation is illustrated in Figure 4(d)). For in-
stance, the EST AW169946 extended the 5’ end of gene AK094318 by 144,000
base pairs to create a new transcription initiation site adjacent to the neighboring
gene, AK125085.

In addition to extension of characterized genes, this analysis identified novel
transcripts. These transcripts were absent from the List of Known Gene anno-
tations and therefore were only detected by the EST analysis (this situation is
illustrated in Figure 4(e)). These transcripts were spliced, however their protein-
coding potential was not always obvious.

Of the 3,470 pairings of EST clusters in a head-to-head configuration, 40%
represented extensions of the 5’ ends of Known Genes and 43% represented novel

Invited Talk: A Computational Study of Bidirectional Promoters 369

sreto
mor

P lanoitceridi
B hti

w sene
G fo noitcar

F

5.0
4.0

3.0
2.0

1. 0
0.0

egareva e
moneg na

muH

niahc tropsnart nortcelE

noitcefni azneulfnI

gnissecorp ANR
m

noisserpxe eneG

noitalsnarT

noitpircsnarT

riaper AND

noitcefni VIH

stniopkcehc elcyc lleC

elcyc lleC
olet fo ecnanetnia

M

sere
m

noitacilper AND

gnilangis detaide
m−rotpecer nilusnI

msilobate
m ygrenE

msilobate
m dica oni

mA

gnilangis
metsys enu

m
mI

noitacifido
m nietorp noitalsnart−tsoP

msilobate
m dipiL

msilobate
m editoelcuN

sisotpopA

msilobate
m elucelo

m lla
mS

yawhtap gnilangis hctoN

sistatso
meH

msilobate
m citoiboneX

gnilangis ateb FGT

Pathway

Fig. 5. Fraction of genes regulated by bidirectional promoters for different pathways.
The first bar gives the average for the human genome, which is approximately .31.

transcripts. ESTs that confirmed the 5’ ends of Known Genes were abundant
(this situation is illustrated in Figure 4(g)).

3.2 Localization of Regulatory Intervals

The abundance of Known Genes whose 5’ ends were extended by the EST analy-
sis indicated that in many cases augmenting the Known Gene data with EST
data resulted in narrower, more localized bidirectional promoter regions. To com-
pare the widths of the bidirectional promoter regions extracted in the Known
Gene analysis and in the EST analysis, the percentiles of the widths of the bidi-
rectional promoter regions extracted in the Known Gene analysis and in the EST
analysis are shown in Figure 2. The curve corresponding to the EST analysis
lies below that for the Known Gene analysis, indicating that the EST analy-
sis resulted in narrower, more localized bidirectional promoter regions than the

370 M.Q. Yang and L.L. Elnitski

Known Gene analysis; 80% of the bidirectional promoters identified by the EST
analysis were 300 base pairs or less, whereas 80% of the bidirectional promoters
identified by the Known Gene analysis were 550 base pairs or less.

3.3 Coordinately-Regulated Expression Groups

We looked for evidence of common regulatory patterns revealed by microarray
expression profiles among 16,078 Known Genes. For each Known Gene, a cluster
was formed consisting of that Known Gene, along with the 500 Known Genes with
the most similar co-expression profiles according to the GNF expression data [5].
The association rate, defined as the proportion of genes in the same cluster that
are regulated by bidirectional promoters, was then calculated for each cluster; it
ranged from a low of .16 to a high of .56. A histogram of the association rates,
shown in Figure 1, reveals a bimodal distribution. Genes with the highest rates
clustered with other genes regulated by bidirectional promoters at a ratio of 2:1.
The difference between the clusters obtained and those that would be expected by
chance was statistically significant. Thus there was strong evidence of coordinated
expression among subsets of genes in a head-to-head configuration.

3.4 Prevalence of Bidirectional Promoters in Biological Pathways

Bidirectional promoters are known to regulate a few categories of genes [6,7]. Us-
ing the 26 biological pathway genes from the Reactome project [8] we examined
additional biological categories for enrichment of bidirectional promoters. Com-
pared to the human genome average in which 31% of genes contained bidirec-
tional promoters, 13 Reactome pathways had a ratio of bidirectional promoters
significantly larger than 31%, as shown in Figure 5. For example, the percent-
age of bidirectional promoters in the Influenza, HIV infection, and DNA repair
pathways were respectively 48%, 42%, and 40%; these values yielded respective
p-values of 0.04, 0.04, and 0.09 in a Chi-square test, indicating a statistically
significant enrichment of bidirectional promoters as compared to the genome av-
erage. These results suggest that bidirectional promoters could provide potential
therapeutic targets for disease intervention.

Acknowledgements

We gratefully acknowledge discussions with faculty of National Human Genome
Research Institute for improvement of this manuscript. This research was sup-
ported by the Intramural Research Program of the National Human Genome
Research Institute, National Institutes of Health.

References

1. Trinklein, N.D., Aldred, S.F., Hartman, S.J., Schroeder, D.I., Otillar, R.P., Myers,
R.M.: An Abundance of Bidirectional Promoters in the Human Genome. Genome
Res. 14(1) (2004) 62–66

2. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.: Gen-
Bank: update. Nucl. Acids Res. 32 (2004) D23–26

Invited Talk: A Computational Study of Bidirectional Promoters 371

3. Hsu, F., Kent, W.J., Clawson, H., Kuhn, R.M., Diekhans, M., Haussler, D.: The
UCSC Known Genes. Bioinformatics 22(9) (2006) 1036–1046

4. Kim, T.H., Barrera, L.O., Zheng, M., Qu, C., Singer, M.A., Richmond, T.A., Wu,
Y., Green, R.D., Ren, B.: A high-resolution map of active promoters in the human
genome. Nature 436 (August 2005) 876–880

5. Su, A.I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K.A., Block, D., Zhang, J.,
Soden, R., Hayakawa, M., Kreiman, G., Cooke, M.P., Walker, J.R., Hogenesch,
J.B.: A gene atlas of the mouse and human protein-encoding transcriptomes.
PNAS 101(16) (2004) 6062–6067

6. Adachi, N., Lieber, M.R.: Bidirectional gene organization: a common architectural
feature of the human genome. Cell 109(7) (June 2002) 807–9

7. Zhao, Q., Wang, J., Levichkin, I.V., Stasinopoulos, S., Ryan, M.T., Hoogenraad,
N.J.: A mitochondrial specific stress response in mammalian cells. The EMBO
Journal 21 (2002) 4411–19

8. Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono,
B., Jassal, B., Gopinath, G., Wu, G., Matthews, L., Lewis, S., Birney, E., Stein,
L.: Reactome: a knowledgebase of biological pathways. Nucl. Acids Res. 33 (2005)
D428–432

9. Beissbarth, T., Speed, T.P.: GOstat: find statistically overrepresented Gene On-
tologies within a group of genes. Bioinformatics 20(9) (2004) 1464–1465

10. Chen, C., Gentles, A.J., Jurka, J., Karlin, S.: Genes, pseudogenes, and Alu sequence
organization across human chromosomes 21 and 22. PNAS 99(5) (2002) 2930–2935

11. Cooper, S.J., Trinklein, N.D., Anton, E.D., Nguyen, L., Myers, R.M.: Compre-
hensive analysis of transcriptional promoter structure and function in 1% of the
human genome. Genome Res. 16(1) (2006) 1–10

12. Trinklein, N.D., Aldred, S.J.F., Saldanha, A.J., Myers, R.M.: Identification and
Functional Analysis of Human Transcriptional Promoters. Genome Res. 13(2)
(2003) 308–312

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 372–381, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Identification of Antisense Gene Pairs Through
Available Software

Mark J. Lawson and Liqing Zhang

Department of Computer Science, Virginia Tech, McBryde 660,
Blacksburg, VA, 24060

{malawso4,lqzhang}@vt.edu

Abstract. Antisense genes have been shown to have a variety of functions in
both prokaryotes and recently in eukaryotes as well. They are hypothesized to
be an important part of every genome and have been shown to be evolutionarily
conserved as well. Naturally, it is in our interest to develop a software for
identifying antisense pairs. While a variety of approaches and software do exist,
each approach has its limitations and the software is not meant for large-scale
analyses for identifying both cis and trans antisense genes. Here we present a
novel way to identify antisense genes and show the results we obtained through
it. While in no means a perfect solution, we do manage to show a possible way
that may lead to more accurate prediction of antisense genes.

Keywords: Antisense genes, Antisense software, MUMmer.

1 Introduction

1.1 What Are Antisense Pairs?

Antisense pairs (sometimes referred to as NATS: Natural Antisense Transcripts) are
pairs of endogenous RNAs in an organism that are complementary to each other. Due
to this complementarity, these pairs oftentimes will bind to each other, altering normal
processes that these RNA might undergo (such as splicing and translation) and in some
cases creating double-stranded RNA. It is also common to refer to antisense pairs as
sense/antisense pairs. In this term, the sense RNA is the one that is being affected by
the antisense RNA. In cases where only one RNA is protein coding, this coding gene is
referred to as the sense RNA, whereas the non-coding RNA is the antisense RNA [1].
In cases where both are coding/non-coding, this assignment is arbitrary, so it makes
more sense to use the term “antisense pair” as we shall throughout this paper.

There are two types of antisense pairs: cis and trans. Cis-antisense pairs occur
when two RNAs are transcribed from the same locus but on opposing strands. Trans-
antisense pairs occur when the RNA is transcribed from different genomic locations.
The majority of research has been done on identifying cis-antisense pairs, so the
majority of functionality that is described here has only been observed in cis-antisense
pairs. However, it is conceivable that trans-antisense pairs have similar effects.

In human and mouse, estimates have placed the amount of transcripts involved in
cis-antisense relations between 5 and 10% [2, 3] although recent estimates claim this

ă

 The Identification of Antisense Gene Pairs Through Available Software 373

amount could very well be higher [4] with some claiming it could be as high as over
20% [5]. These amounts seems to be consistent across all analyzed mammals and
plants but no estimates for the number of trans-antisense pairs are available [6, 7].
The amount of trans-antisense pairs could easily be as high as cis-antisense pairs
because Rosok and Sioud have shown that over 50% of the double-stranded RNAs
that they experimentally determined are originated from trans-antisense pairs [8].

Recent research has also shown that cis-antisense pairs are evolutionarily
conserved and were twice as likely to remain in their original orientation as non-
antisense pairs. This gives further support to antisense pairs being an important part of
the genome [9].

1.2 Antisense Functions

Antisense pairs are thought to be responsible for a variety of gene functions, which
will be elaborated on in the following paragraphs. All of these functions fall under the
main idea of gene regulation. This listing of functions represents only an introduction
to antisense pair functions and is in no way meant to be complete. For a more
complete review, we encourage the reader to read several of the reviews we have
annotated in our reference list [1, 10-12].

A function that can be observed in cis-antisense pairs is transcriptional
interference. For instance, it has been shown that the α1(I) collagen gene produces
low-levels of mRNA in the chick embryo chondrocytes [13]. This is due to an
antisense gene being located directly across from it, which has increased transcription
and seems to prevent the transcription of the sense gene. In a study using
Saccharomyces cerevisiae [14], Prescott and Proudfoot found that when the GAL10
and GAL7 genes were placed on opposite strands in convergent gene orientation, both
genes are transcribed at full levels. But as soon as the two genes overlap, the amount
of mRNA they produce drops.

A very common function of antisense pairs is that of RNA masking. This occurs
when two RNA strands bind to each other which mask the key regulatory features that
are responsible for further steps in gene expression such as splicing, transport,
translation and degradation. For instance, the Rev-ErbAα gene in rat is responsible for
preventing the normal splicing of the ErbAα gene, a thyroid hormone receptor, in rat.
The antisense transcript of Rev-ErbAα binds with the ErbAα2 transcript, which
prevents its splicing and thereby its normal gene expression as well [15, 16].

A specific case of gene regulation can be seen in X-inactivation [17]. This is
partially achieved through the expression of the Xist gene. The Xist gene possesses a
cis-antisense gene called Tsix that is expressed equally before the onset of X-
inactivation in an organism. After X-inactivation, it seems to disappear, creating no
more transcription.

Further examples of antisense functions stem from interactions that occur due to
double-stranded RNA. Two of these interactions are RNA editing and RNA
interference. RNA editing reactions alter an RNA strand by changing one or two
nucleotides in it [18], which in turn can have an effect on coding and the RNA
structure, among other things. Peters et al. observed an “A-to-G” (adenine is
converted to guanine) edit that was caused by antisense genes in the Drosophila

374 M.J. Lawson and L. Zhang

melanogaster genome [19]. The two genes 4f-rnp and sas-10 create RNA that bind
together, causing the “A-to-G” edit to occur in both RNA strands.

RNA interference refers to double-stranded RNA that prevents the creation of gene
products that are homologous to the double-stranded RNA, causing gene silencing.
This double-stranded RNA can be introduced into eukaryotes to prevent the
production of a specific gene [20], but the effect has also been observed to happen
within organisms themselves through antisense pairs. The Stellate genes have been
known to undergo gene silencing in the testes of Drosophila melanogaster through
this process [21].

One aspect of antisense pairs that seems to require further investigation is the role
antisense pairs play in genetic disease. A few examples have been discovered [10].
One example can be found in the antisense transcript that reduces the expression of
the UBE3A gene [22]. This can in turn lead to Prader-Willi syndrome and Angelman
syndrome. Antisense pairs are also thought to play a role in DNA methylation and
gene silencing leading to diseases such as anemia [23].

1.3 Antisense Software and Computational Methods

With so much discovered functionality and with so much more to be discovered
(especially in the field of associated human genetics diseases), it is not surprising that
much research has been done on the identification of these antisense pairs. While
some have a biological approach of doing this [8], others generally use more
computational methods to identify them, as this can be done with ease on a large
scale. Despite the fact that many analyses have been done on identifying antisense
genes, no research group has come up with a program that can be used for large-scale
antisense pair identification. Most just have online databases of their results with an
interface that allows the user to search for possible antisense pairs to the given
sequence ID. While this is a useful tool for researchers, the majority of these
databases are not updated as newer UniGene builds are released and EST databases
are updated.

Most approaches that have been done rely on the use of ESTs and/or mRNA to
identify antisense pairs. One basic idea is to locate expressed areas of the genome that
overlap and lie on opposite strands. This approach is used by Yelin et al. in their
“Antisensor” algorithm [2]. It consists of determining the orientation of ESTs through
poly(A) tails and signals and then mapping these oriented ESTs to genomes and
thereby identifying genes that are likely cis-antisense pairs. They provide an online
search tool to go through their results but no downloadable software is available.

Kiyosawa et al. [3] used a combination of cDNA and mRNA to determine
overlapping genes. They used cDNA from the FANTOM2 project and mRNA
obtained from GenBank to determine 2481 sense-antisense pairs in mouse. They also
provide a web interface to view their results. The same analysis was later done with
the FANTOM3 dataset [4].

A recent addition to the list of online databases is the NATsDB [24, 25]. Using the
UniGene ESTs and the UCSC genome build to map expressed regions to genomes,
Zhang et al. have identified cis-antisense pairs in ten different organisms (including
human and mouse). Furthermore, they use a “pipeline” approach to update their
results as new build of UniGene are available.

 The Identification of Antisense Gene Pairs Through Available Software 375

While the previous approaches seem to have relatively accurate datasets, they do
suffer from the fact that they only identify cis-antisense pairs. Furthermore, due to the
very nature of their analyses, it seems unlikely that one would be able to extend these
methods to search for trans-antisense pairs. So a different approach seems warranted.

One such approach can be seen in the AntiHunter program [26, 27]. It is an online
search tool that uses a given sequence to conduct a search for possible antisense
transcripts in an EST database. They have a complete EST database for a variety of
organisms and use RepeatMasker and a BLASTN search to find the antisense pairs.
While their tool can be used to identify antisense pairs, the interface is cumbersome and
slow (results are e-mailed and can take several hours for long sequences) and it has been
reported that it presents a large amount of false positives [11]. The online interface only
allows for one sequence at a time, making it less than ideal for large-scale analysis.

An approach that has been used to identify trans-antisense pairs was presented in a
paper by Wang et al. [7]. In their approach Wang et al. used BLAST on aligned
Arabidopsis thaliana cDNA and identified sequence complementarity between the
sequences. They came up with two levels of complementarity for a pair of cDNAs:
“high coverage” when at least one cDNA has at least 50% of their sequence
complement to the other sequence and “100 nt” when a chunk of at least 100
contiguous nucleotides was identified between the two pairs. These results were then
validated by the use of a hybridization modeling program called hybrid [28, 29] that
showed that 100% of the high coverage antisense pairs would hybridize and 90% of
the “100 nt” antisense pairs would hybridize as well. These results were then clustered
and evaluated along many metrics such as gene expression and gene ontology.

Our future goal is to develop a robust program for identifying both trans- and cis-
antisense pairs for large scale analyses. The idea is that the program does not require
the use of EST databases but can determine antisense pairs through sequence alone.
We then hope to distribute this program to aid the research community in the search
for antisense pairs. Furthermore, we want to be able to create a database of antisense
pairs with an online tool that allows the user to search for antisense transcripts based
on a given gene ID. We plan to setup antisense databases for every annotated genome.

To test the method we have developed, we decided to test the hypothesis set forth by
Kiyosawa et al. [3]. Through their analysis of cis-antisense pairs on the mouse genome
they came to the hypothesis that the X chromosome has less antisense pairs than
other chromosomes, possibly due to X-inactivation. This hypothesis was supported by
Zhang et al. [25] who determined that in mammals this holds for the cis-antisense pairs
they determined. In this study we present our preliminary studies on identifying
antisense genes in human chromosome X and chromosome 10 (chosen because they
possess a similar amount of genes), using MUMmer and rules similar to those used by
Wang et al. [7] to see if the hypothesis holds true for trans-antisense pairs as well.

2 Materials and Methods

2.1 MUMmer and Input Data

In an attempt to identify a novel method to identify antisense pairs in a genome, we
chose to use the program MUMmer [30]. MUMmer is an efficient pattern matching

376 M.J. Lawson and L. Zhang

tool that uses a suffix tree approach to identify maximal unique matches between
sequences. The way this is done is the program first builds a suffix tree out of the
reference sequences and then compares each of the query sequences to this suffix tree,
identifying the longest unique matches for both the reference and the query sequence.

For our dataset we used all annotated human transcripts from the ENSEMBL
database [31] (version 41). We limited ourselves to only those annotated to a
chromosome but included all biotypes not just “protein coding” transcripts to capture all
annotated non-coding RNAs as well. Furthermore, we filtered out all transcripts that
possessed unknown nucleotides (denoted with an “N”) as they proved to obscure the
MUMmer data. The remaining transcripts were stored in fasta-formatted files, organized
by chromosome (due to its size, chromosome 1 was split into two files).

The first step consisted of creating reverse complements to these transcripts. This
was done easily with a perl script that complemented each nucleotide and reversed the
sequence. MUMmer was then run by using each chromosome as the reference
sequence and then using the complements of this chromosome and all other
chromosomes as query sequences. The sequences had to be split up as even just
loading chromosome 1 into a suffix tree would cause MUMmer to segment fault on
our server. While no complete time analysis was done, MUMmer ran quite efficiently,
taking on average an hour to run for each chromosome. The MUMmer results were
then parsed with the use of perl scripts and inserted into a MySQL database to
eliminate duplicated entries and to link the transcripts with their corresponding genes.

2.2 Antisense Quantification

To quantify our data we chose a method similar to Wang et al. [7]. We basically split
our generated MUMmer data into two levels of pairs, those with “high coverage” and
those with a contiguous matching region of at least 100 nt. The “high coverage”
antisense pairs (or “HC” antisense pairs as we shall henceforth refer to them) are pairs
in which at least 50% of one transcript is covered by the matching region. This is
different from the way Wang et al. classified this as they do not use a contiguous
region as we do. Our way is more stringent. We chose this method because through
their hybridization tests, Wang et al. had an accuracy rate of 100% with the HC pairs
and 90% with the “100 nt” pairs.

3 Results

In total, 977 genes on chromosome X with 2702 transcripts and 904 genes on
chromosome 10 with 2805 transcripts were analyzed (after filtering). Out of these
transcripts, 741 form either an HC or 100 nt antisense pair on chromosome X and 729
form either an HC or 100 nt antisense pair on chromosome 10. This represents 27.4%
and 26% of their respective transcripts. Based on this, we cannot confirm the hypothesis
stated by Kiyosawa et al. based on the fact that not only does the X-chromosome have
more than 20% of its transcripts form antisense pairs, but more antisense paired
transcripts were found in chromosome X than in chromosome 10.

The results of linking these transcripts to their respective genes can be seen in Table 1.
As can be seen on first glance, there exist more antisense pairs in chromosome 10 for

 The Identification of Antisense Gene Pairs Through Available Software 377

both groups (HC and 100 nt), despite the fact that there are slightly less genes in the
chromosome. In total, if we just look at the genes within the chromosome, 94 genes
possess an HC antisense partner, 194 possess a 100 nt partner and 262 have either one or
the other on chromosome X. This represents 9.6%, 19.8%, and 26.8% of all the genes on
the chromosome. If we include trans-antisense pairs that have genes from other
chromosomes, the amount of genes on chromosome X increase to 98 (10%) for HC, 233
(23.8%) for 100 nt, and 297 (30.4%) in total.

For chromosome 10, if we focus only on pairs where both genes of the antisense
pair are on the same chromosome, we find 112 genes (12.3%) with an HC partner,
174 (19.2%) with a 100 nt partner, and 254 (28.1%) have either one or the other.
Expanding our results to antisense pairs that include genes from other chromosomes,
there are 114 genes (12.6%) with HC antisense pairs, 204 (22.5%) with 100 nt, and
280 (31%) total.

Evaluating the gene amounts, we can see that like the transcript amounts mentioned
earlier, there is no evidence to confirm the Kiyosawa et al. hypothesis. The amount of
genes that form antisense pair is percentage wise close to identical with minimal
deviations. A difference does however lie in the amount of cis-antisense pairs we have
found. A total of 145 cis-antisense paired genes were found on chromosome 10 (16%
of all genes) while only 120 were found on chromosome X (12.3%). This does give
some support to the hypothesis, especially since the focus of the hypothesis is on the
amount of cis-antisense pairs the chromosome possesses.

Looking further at Table 1 we can see more interesting trends. For instance, for
both chromosomes the majority of HC antisense pairs involve genes that are both on
the respective chromosome (i.e. both genes lie on the X chromosome). Also, the
majority of these pairs are cis-pairs in both chromosomes. If we look at the 100 nt
pairs, we see that the majority of trans-antisense pairs occur with genes on other
chromosomes (i.e. a gene on chromosome X forms an antisense pair with a gene on a
different chromosome) and that less cis-pairs exist.

A noticeable difference is in the amount of convergent and divergent cis-pairs. In
chromosome X there are more divergent cis-pairs as opposed to convergent pairs.
However, in chromosome 10 divergent and convergent cis-antisense pairs are
practically equal.

Another trend we noticed in our analysis is that the genes that form an antisense
pair (both HC and 100 nt) have more transcripts associated with them (i.e. are more
likely to be alternatively spliced) than the norm. In chromosome X the average gene
has 2.77 transcripts associated with it, while in chromosome 10 this number is 3.1.
However the antisense genes have an average transcript amount of 3.44 and 3.67 for
chromosome X and 10, respectively. Based on this, it would seem that genes with
more alternative splicing are slightly more likely to form antisense pairs.

In figure 1 we compared how many transcripts genes that are a part of an antisense
pair and genes that are not a part of an antisense pair possess. We did this by looking
at the percentage of all the genes that possess a transcript of a certain number. As can
be seen on both graphs, non-antisense genes have more genes with less transcripts
(1 and 2) and antisense genes possess in general more transcripts (> 2).

378 M.J. Lawson and L. Zhang

Table 1. Table of antisense gene data

 Chromosome X Chromosome 10
Total Genes 977 904
 HC 100 nt HC 100 nt
Convergent cis pairs 15 6 29 11
Divergent cis pairs 32 11 29 12
Same chromosome trans 6 379 2 322
Other chromosome trans 5 5732 6 6826
Total 58 6128 66 7171

Fig. 1. Percentage of alternate splicing on both chromosomes (i.e. percentage of genes that have
a certain amount of transcrips associated with them

In figure 2, we graphed the percentage of genes on other chromosomes. We totaled
up the amount of genes involved in all antisense pairs (whether HC or 100 nt) and
determined what percent of those genes came from each chromosome. Interesting to
see here, is the fact that percentage wise there is little to no difference in terms of
where the antisense genes come from.

A further analysis was carried out to determine the biotypes of these antisense
pairs. On both chromosomes the majority of pairs consisted of transcripts that were
both “protein-coding.” However a small amount did exist in which one transcript was
“protein-coding” and one was deemed a “pseudogene” (alternative biotypes were not
discovered). On the X-chromosome 3 pseudogenes were discovered that were a part
of an antisense pair with another gene (in all cases, all of their transcripts were
complementary as well). Two of these pseudogenes were part of HC cis-antisense
pairs and the other one formed a 100 nt complement with the TBL1Y gene on the Y
chromosome.

Chromosome 10 was found to have more antisense pairs that involved pseudogenes.
Specifically, 12 pseudogenes were found to be involved in antisense pairs of which 6
can be found on chromosome 10 and the remaining on other chromosomes (1, 20, and

 The Identification of Antisense Gene Pairs Through Available Software 379

Fig. 2. Percentage of antisense genes that are derived from each chromosome

21). Of the pseudogenes on chromosome 10, 3 are a part of cis-antisense pairs, 2 form
trans antisense pairs that are still within this chromosome, and 1 forms antisense pairs
with a genes located on chromosome 1 and 4. Of note among these pseudogenes is the
gene “ENSG00000203294” (no additional name is given). Not only does it form an
HC cis-antisense pair with the ABCC2 gene, it also forms an antisense pair with 5 other
genes (2 on chromosome 1 and 1 each on chromosomes 5, 8, and 12). Of interest here
is that these so-called pseudogenes may still play an important role in the regulation of
gene expression.

4 Discussion

Overall our analysis gives only marginal support to the Kiyosawa et al. hypothesis and
shows that the inclusion of trans-antisense pairs may in fact call this hypothesis into
question. We did see that there are more cis-antisense gene pairs in chromosome 10 but
when including trans-antisense pairs there are only slightly more antisense pairs in
chromosome 10. Based on our results, we certainly do not see support for the hypothesis
that the X-chromosome is “under represented” when it comes to antisense pairs.

There is however a variety of problems with the results we present here. While we
can feel relatively confident that at least the HC genes are very likely to form antisense
pairs (and that a “good chunk” of the 100 nt pairs will as well), our results are most
likely too narrow. While MUMmer presents a good and efficient way to locate exact
matches, it does not identify inexact matches, due to the nature of using a suffix tree. In
order for us to have better results, we would need to use or develop an algorithm that

380 M.J. Lawson and L. Zhang

takes into account possible mismatches that will not prevent the two strands from
binding. So it would be unwise for us to reject or accept the hypothesis based on our
obtained data. It merely suggests that further study into this may be required.

A question that was brought up by Rosok and Sioud [8, 32] was whether BLAST
identified complementary sequences would even bind in an organism. The fact that
two sequences possess complementary sequences (and even hybridization programs
predict they would bind) does not necessarily mean they would actually bind in an
organism. What if they never come in contact with each other? At best, we can now
present good “guesses” as to what antisense pairs might exist.

What we propose to do in future work is to develop an algorithm that uses a dataset of
known antisense pairs to identify other antisense pairs. Through a machine learning
approach such as a Hidden Markov Model or the use of SVMs, we could train the
identification of antisense pairs based on parameters such as sequence and genomic loca-
tion. We could even do organism specific training as more datasets become available, so
as to incorporate data specific to each organism as well.

The goal is also to develop software that is not dependent on current gene annotation
and able to perform large-scale antisense gene identification. Identifying genes in a
genome is a “guessing game” in some cases, so our software will take in entire
chromosomal strands and identify regions that may likely form antisense pairs. Thus it
can identify antisense regions that may not be currently annotated. Meanwhile, we hope
to be able to show the results in an online database and make the software package
available for download.

References

1. Munroe, S.H. and J. Zhu, Overlapping transcripts, double-stranded RNA and antisense
regulation: A genomic perspective. Cellular and Molecular Life Sciences, 2006. 63(18): p.
2102-2118.

2. Yelin, R., et al., Widespread occurrence of antisense transcription in the human genome.
Nature Biotechnology, 2003. 21(4): p. 379-386.

3. Kiyosawa, H., et al., Antisense transcripts with FANTOM2 clone set and their
implications for gene regulation. Genome Research, 2003. 13(6B): p. 1324-1334.

4. Katayama, S., et al., Antisense transcription in the mammalian transcriptome. Science,
2005. 309(5740): p. 1564-1566.

5. Chen, J.J., et al., Over 20% of human transcripts might form sense-antisense pairs. Nucleic
Acids Research, 2004. 32(16): p. 4812-4820.

6. Wang, X.J., T. Gaasterland, and N.H. Chua, Genome-wide prediction and identification of
cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biology, 2005. 6(4): p. -.

7. Wang, H., N.-H. Chua, and X.-J. Wang, Prediction of trans-antisense transcripts in
Arabidopsis thaliana. Genome Biology, 2006. 7(10): p. R92.

8. Rosok, O. and M. Sioud, Systematic identification of sense-antisense transcripts in
mammalian cells. Nature Biotechnology, 2004. 22(1): p. 104-108.

9. Dahary, D., O. Elroy-Stein, and R. Sorek, Naturally occurring antisense: Transcriptional
leakage or real overlap? Genome Research, 2005. 15(3): p. 364-368.

10. Lavorgna, G., et al., In search of antisense. Trends in Biochemical Sciences, 2004. 29(2):
p. 88-94.

11. Makalowska, I., C.F. Lin, and W. Makalowski, Overlapping genes in vertebrate genomes.
Computational Biology and Chemistry, 2005. 29(1): p. 1-12.

 The Identification of Antisense Gene Pairs Through Available Software 381

12. Knee, R. and P.R. Murphy, Regulation of gene expression by natural antisense RNA
transcripts. Neurochemistry International, 1997. 31(3): p. 379-392.

13. Farrell, C.M. and L.N. Lukens, Naturally-Occurring Antisense Transcripts Are Present in
Chick-Embryo Chondrocytes Simultaneously with the down-Regulation of the Alpha-1(I)
Collagen Gene. Journal of Biological Chemistry, 1995. 270(7): p. 3400-3408.

14. Prescott, E.M. and N.J. Proudfoot, Transcriptional collision between convergent genes in
budding yeast. Proceedings of the National Academy of Sciences of the United States of
America, 2002. 99(13): p. 8796-8801.

15. Munroe, S.H. and M.A. Lazar, Inhibition of C-Erba Messenger-Rna Splicing by a
Naturally-Occurring Antisense Rna. Journal of Biological Chemistry, 1991. 266(33): p.
22083-22086.

16. Hastings, M.L., et al., Post-transcriptional regulation of thyroid hormone receptor
expression by cis-acting sequences and a naturally occurring antisense RNA. Journal of
Biological Chemistry, 2000. 275(15): p. 11507-11513.

17. Lee, J.T., L.S. Davidow, and D. Warshawsky, Tsix, a gene antisense to Xist at the
X-inactivation centre. Nature Genetics, 1999. 21(4): p. 400-404.

18. Bass, B.L., RNA editing by adenosine deaminases that act on RNA. Annual Review of
Biochemistry, 2002. 71: p. 817-846.

19. Peters, N.T., et al., RNA editing and regulation of Drosophila 4f-rnp expression by sas-10
antisense readthrough mRNA transcripts. Rna-a Publication of the Rna Society, 2003.
9(6): p. 698-710.

20. Hannon, G.J., RNA interference. Nature, 2002. 418(6894): p. 244-251.
21. Aravin, A.A., et al., Double-stranded RNA-mediated silencing of genomic tandem repeats

and transposable elements in the D-melanogaster germline. Current Biology, 2001. 11(13):
p. 1017-1027.

22. Runte, M., et al., The IC-SNURF-SNRPN transcript serves as a host for multiple small
nucleolar RNA species and as an antisense RNA for UBE3A. Human Molecular Genetics,
2001. 10(23): p. 2687-2700.

23. Tufarelli, C., et al., Transcription of antisense RNA leading to gene silencing and
methylation as a novel cause of human genetic disease. Nature Genetics, 2003. 34(2): p.
157-165.

24. Zhang, Y., et al., NATsDB: Natural Antisense Transcripts DataBase. Nucl. Acids Res.,
2007. 35(suppl_1): p. D156-161.

25. Zhang, Y., et al., Genome-wide in silico identification and analysis of cis natural antisense
transcripts (cis-NATs) in ten species. Nucleic Acids Research, 2006. 34(12): p. 3465-
3475.

26. Lavorgna, G., et al., AntiHunter: searching BLAST output for EST antisense transcripts.
Bioinformatics, 2004. 20(4): p. 583-585.

27. Lavorgna, G., et al., AntiHunter 2.0: increased speed and sensitivity in searching BLAST
output for EST antisense transcripts. Nucleic Acids Research, 2005. 33: p. W665-W668.

28. Markham, N.R. and M. Zuker, DINAMelt web server for nucleic acid melting prediction.
Nucleic Acids Research, 2005. 33: p. W577-W581.

29. Dimitrov, R.A. and M. Zuker, Prediction of hybridization and melting for double-stranded
nucleic acids. Biophysical Journal, 2004. 87(1): p. 215-226.

30. Kurtz, S., et al., Versatile and open software for comparing large genomes. Genome
Biology, 2004. 5(2): p. -.

31. Ensembl Genome Browser. [cited 2006 12/20]; Available from: http://www.ensembl.org.
32. Rosok, O. and M. Sioud, Systematic search for natural antisense transcripts in eukaryotes -

(Review). International Journal of Molecular Medicine, 2005. 15(2): p. 197-203.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 382–393, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Inferring Weak Adaptations and Selection Biases in
Proteins from Composition and Substitution Matrices

Steinar Thorvaldsen1, Elinor Ytterstad2, and Tor Flå2

1 Tromsø University College, AFL-Informatics, 9293 Tromsø - Norway
2 Dept of Mathematics and Statistics, University of Tromsø, 9037 Tromsø - Norway

steinar@hitos.no

Abstract. There is a desire for increasing use of statistical methods in analysing
the growing amounts of bio-sequences. We present statistical methods that are
useful when a protein alignment can be divided into two groups based on known
features or traits. The approach is based on stratification of the data, and to show
the applicability of the methods we present analysis of genomic data from
proteobacteria orders. A dataset of 25 periplasmic/extracellular bacterial enzyme
endonuclease I proteins was compiled to identify genotypic characteristics that
separate the cold adapted proteins from ortholog sequences with a higher optimal
growth temperature. Our results reveal that the cold adapted protein has a
significantly more positively charged exterior. Life in a cold climate seems to be
enabled by many minor structural modifications rather than a particular amino
acid substitution. Redistribution of charge might be one of the most important
signatures for cold adaptation.

Keywords: Stratified data, Two-way ANOVA, Mantel-Haenszel test, cold
adaptation.

1 Introduction

The polar biological sciences stand on the threshold of a new epoch, because of the
availability of proteins and genomes of their constituent organisms [1]. The years
2007/08 are announced as international polar years. For both the Northern and
Southern polar region, great distances, physical isolation, long periods of darkness, and
extreme climates have always posed special challenges. Extreme environments are in
general those that fall outside the limited range in which we and most other mesophilic
organisms can survive, and are populated by the extremophiles. Among extremophiles,
which include thermophiles, psychrophiles, barophiles, halophiles and acidophiles,
those which live and prefer low temperatures are the largest but still one of the least
studied groups. The major proportion of biomass on earth is generated by
microorganisms in the world’s oceans at cold temperatures (≤ 5ºC), and the
psychrophilic organisms live only in this type of permanently cold habitats, often close
to the freezing point of water. All macromolecules of such organisms must be stable
and functional in the temperature range in which the species lives, and it is of great
interest to understand how this is achieved [2].

ă

 Inferring Weak Adaptations and Selection Biases in Proteins 383

Living at low temperatures requires a multiplicity of crucial adaptations including
maintenance of enzymatic activities at appropriate levels, since this is decreasing
exponentially with decreasing temperature. At these temperatures a number of
environmental factors are also changed; the solubility of gases is not the same, the
viscosity of water increases severalfold as temperature is changed towards the
extreme areas, for example.

The present lack of consensus among studies [2] has given rise to the recognition
that no set of simple factors distinguish all mesophile and psychrophile proteins. If
there are no general rules to cold adaptation and functionality, a more specific
approach to the problem will be required to elucidate them. This accentuates the
importance of protein- and taxon-specific comparisons. In particular, we try to
identify trends in amino acid composition, substitutions and structural features of
proteins, which distinguish specific proteins of cold-adapted bacteria from their
mesophilic counterparts.

In the present study, we focus on one protein from a relatively narrow range of
closely related species belonging to the group of marine gamma and delta
proteobacteria - a strategy also adopted by [3]. Alignment-free analysis has been used
previously to compare amino acid compositions in whole genome and proteome
datasets [4, 5]. In our comparative study, we in addition employ alignment-based
methods for examination of significant differences between mesophilic (M) and
psychrophilic (P) groups.

Several articles concerning sequence comparisons, which aim to find common
denominators for cold adaptation, have been published in recent years [2]. There is
still no general consensus in the field, and different groups of proteins may adapt in
different ways. To study closer the mechanisms involved in protein cold adaptation on
a molecular level, the enzyme endonuclease I has been chosen from related mesophile
and psychrophile bacteria [6, 7]. Endonuclease I is a periplasmic or extracellular,
monomeric enzyme known to cleave both RNA and DNA in a sequence-independent
manner, at internal sites. By using a bioinformatics approach, we attempt to find the
trends in temperature adaptations of this enzyme.

2 Materials and Methods

2.1 Sequence Data

Orthologues of bacterial endonuclease I protein sequences from marine organisms
belonging to the gamma and delta subdivision of proteobacteria were gathered from
various genome sequence projects around the world, and a total of 48 amino acid
sequences were found, when only one sequence per bacterial species was considered.
Often the homologues are so distantly related that the amino acid changes due to
temperature adaptation are indistinguishable from those originating from random
genetic drift, and adaptation to other factors than temperature. Therefore, plasmid
sequences and sequences which showed abnormal phylogenetic placement were
discarded from the analyses as were sequences suspected to be horizontally
transferred or recombined.

384 S. Thorvaldsen, E. Ytterstad, and T. Flå

The relative GC% of the nucleases suspected to be horizontally transferred was
compared with the corresponding average GC of the genome. The data for genomic
GC was found in literature, and GC% of the nuclease genes was calculated by the
program BioEdit [8]. Sequences suspect of horizontal transfer, or from organisms
with extraordinary low GC%, were discarded from the analysis due to the fact that
low GC% also affects the codon usage and hence the amino acid preferences [9].
Prediction of the signal-sequence cleavage site was performed using the SignalP-web-
server [10], and the signal-sequences were removed.

The optimal growth temperature, Topt, was found by studying the literature, and by
searching The Prokaryotic Growth Temperature Database, PGTdb [11]. The
sequences were sorted according to phylogeny, and bacterial families with both
psychrophilic and mesophilic members were studied in particular [12]. Endonuclease
I is most similar between the gamma proteobacteria orders Vibrionales and
Alteromonadales, and the delta proteobacteria order Desulfobacterales. We made a
special study of these three groups, with sequence identity in the range from 30 to
97%, and sequence length from 194 (Pseudoalteromonas tunicata) to 233
(Desulfutalea psychrophilia) amino acids. Of the original 48 sequences, 25 were now
left in our material for further analyses. On these sequences we conducted the
statistical tests. They are assembled from three taxonomic orders, and from two
growth groups defined by temperature adaptation: mesophilic (17 sequences), and
psycrophilic (8 seq.). Temperature is the main environmental trait that separates these
groups, not factors like highly concentrated salts or toxics.

A structural based alignment of the remaining 25 sequences was created using the
crystal structure of V. vulnificus nuclease (Vvn) as guide [7]. Furthermore, for the sake
of a more specific analysis, the solvent Accessible Surface Area (ASA) was
calculated using the program GETAREA [13] with the crystal structure of Vvn (PDB
id: 1OUO) as template with default settings. The spatial location was attached
according to solvent accessible surface area of the side-chain, where core is defined as
0-9% exposed side-chain, twilight zone 9-36%, and surface 36-100%. With these cut-
offs the number of amino acids is distributed approximately equally between the three
bins. This method makes it possible to analyse the data relative to some of its 3D
structural location. We looked for patterns in the data following from this partitioning
and decompositions. The secondary structure was also determined from Vvn.

Our main goal is to detect potential differences between the sequences, not to
examine the particular organisation and conservation of the enzyme in the study.
Therefore, the sites in the alignment with no difference (the conserved sites) were
discarded from the analysis. The dataset in general will be unbalanced, in the sense
that there are different numbers of sequences in each group.

2.2 Amino Acid Composition

Data consists of 25 aligned amino acid sequences from two groups, 17 mesophilic
(M) and 8 psycrophilic (P). There are altogether 20 different amino acids, and we may
consider the amino acid occupying a particular site along the sequence, a random
categorical variable X with possible values {A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,
W,Y,V}.

 Inferring Weak Adaptations and Selection Biases in Proteins 385

For convenience the amino acids are often encoded by numbers x = 1, 2,…, 20. A
sequence may contain gaps, which are given the value x = 21.

The amino acids may also be joined in many ways based on common characteristics,
and hence the amino acid alphabet can be reduced. Based on charge distribution, one
may divide them into four main categories: negatively charged (D and E), positively
charged (K and R), uncharged polar (C, S, T, Y, N, Q, W and H) and hydrophobic (G,
A, V, L, I, F, P and M). The categorisations of C and H are based on the similarities of
their behaviour to those of the other polar residues. The amino acids may also be
divided into three main groups: charged/polar/hydrophobic, or into just two categories
like hydrophobic/non-hydrophobic or A/non-A etc, but not all of these are focused on in
the present paper.

If sites are independent, the number of residues of each category (either 21 amino
acids or a smaller number of categories as explained above) along a sequence will
follow a multinomial distribution. The frequency of each amino acid (or other
categorizations) may also be considered as a normally distributed variable.

We have for each amino acid x performed a two-way unbalanced ANOVA test for
differences between M- and P-species in the amount of amino acid x. In addition to
temperature, taxonomic order is included as the second factor in the ANOVA model.

The preceding compositional analysis overlooks the importance of amino acids that
are gained in some contexts and lost in others. This may be a serious limitation, and
one should also study the nature of the replacement patterns of residues in the aligned
sequences.

2.3 Amino Acid Substitution Bias

By a comparative study of alignments it is possible to look for genome-wide amino acid
directional biases in substitutions among proteins from different source populations of
interest. First we examine how to model the substitutions of amino acids between two
aligned sequences.

A Substitution Pair (SP) is defined as a pair of two amino acids, (xM,yP), where
residue x in mesophilic group M is converted to residue y in psychrophilic group P.
For a given pair of amino acids, the “forward” substitution refers to the
mesophilic(M) → psychrophilic(P) direction, and the process may be called cold
adaptation.

The SP-matrix is the count, nx,y , of all such pairs observed in the alignment by
summing over all sites where x ≠ y. This accumulated array contains the occurrence of
all position specific pairing of residues.

Furthermore, we may calculate the cumulative SP-matrices between two groups M
and P,),(

,
PM

yxN , as well as within one group M,),(
,

MM
yxN , where there is no direction. The

cumulative numbers are found by forming the maximum number of independent
sequence pairs, were each sequence are involved only once to avoid oversampling of
the data. Such possible combinations of ordered pairs of sequences in the two groups
are computed, and use the average counting’s in the cumulative SP-matrix.

The question we would like to address is whether there are over- or under-
representations of amino acid substitutions between our temperature groups compared

386 S. Thorvaldsen, E. Ytterstad, and T. Flå

to a random model. We thus need to define statistical models to test for over- or under-
representation in relation to relevant background distributions. A natural approach will
be to consider a statistical technique for detecting adaptation by utilising the neutral
expectation that aligned sequences from two species should have a symmetrical
substitution matrix: for any two amino acids x and y, the number of aligned sites with x
in one species and y in the second should equal the number with y in the first species
and x in the second. Accordingly, in the background model we may use as our null
hypothesis the 50:50 balance, and then perform a binomial test in the manner of earlier
approaches [14, 15, 16].

However, we prefer a more general approach. For a given pair of amino acids, the
substitution order refers to the M → P direction. The number of substitutions of
residue xM → yP may be compared versus the following backgrounds [cf. 17]:

1. yP → xM [forward (M→P) vs. reverse (P→ M)]
2. xM → yM [forward (M→P) vs. internal (M→ M)]
3. xP → yP [forward (M→P) vs. internal (P→ P)]
4. xM’ → yP’ [forward (M→P) vs. forward (M’→ P’)]

Here M’ and P’ in case 4 are independent of the original dataset. Model 3 is usually
not considered a good reference group, as the psychrophilic group is secondary with
larger internal differences than the more primary mesophilic group.

Because of selective pressure or genetic drift, there may be biased substitutions on
the amino acids within the mesophilic group itself. Therefore, the probability of a
directional amino acid bias greater than or equal to that observed is compared relative
to several relevant background frequencies (control data). Similar results for the
different cases (1-4) will add weight to the conclusion.

We want to investigate whether the samples are drawn from groups with identical
substitution frequencies. The null hypothesis is that the mean for the target group and
the control group are the same, the alternative is that they are different. In case 1
above, only two sequences are needed as input for an independent cell counting, and
the biased mutations from mesophiles to psychrophils are extracted by simply
analysing the differences between the cumulative SP-matrix and its transposed matrix.
In case 2 and 3 we need three sequences as input to count, and we compute two
separate SP-matrices. The cumulative SP-matrices contain all the data that are used to
address the question of which SPs account for the significant variations between the
mesophilic and psychrophilic sequence groups. It is often convenient to look at test
results from model 1 and 2 together. Model 4 may be used to find dissimilar
adaptations in two different sets of alignments.

Table 1. A 2x2 table summarizing one cumulative SP-matrix with it’s mesophilic background
(model 2) for one particular substitution x→ y

Substitutions of x: y Not y
Adaptation M→P:),(

,
PM

yxN),(
,

PM
ynonxN −

Background M→M:),(
,

MM
yxN),(

,
MM

ynonxN −

 Inferring Weak Adaptations and Selection Biases in Proteins 387

For these purposes 2x2 contingency tables were constructed, with the number of
aligned sites exhibiting each of the pairwise substitution patterns. The statistical
analyses are performed on the numbers from the cumulative SP-matrices, as described
in Table 1.

To be able to detect substitution biases, we also pooled the substitution data that
share the same outcome in the psychrophilic population, e.g. we studied the
substitutions x → aa, where x may be any amino acid and aa is given.

Our alignment data consists of three different bacterial orders, and this information
may be utilised to build a stratified design. In a stratified design (also called blocked
analysis or matched analysis), the data are selected from two or more strata that are
formed from important covariates such as taxonomic order. A separate 2x2 table is
formed for each stratum. Although substitution frequencies may vary among strata,
hypotheses about the overall expected frequency can be tested using the Mantel-
Haenszel test [18, 19]. The initial data are represented as a series of K 2x2
contingency tables, where K is the number of strata. The stratification of the subjects
into K disjoint groups increases the power of the test to detect association. This
increase in power comes from comparing like subjects to like subjects. Simulation
studies show the test to perform well in most situations with expected cell counts of at
least five in most of the cells of each stratum-specific table [19].

2.4 Multiple Test Correction

Each time we statistically test the number of amino acids or SP’s with a statistical test,
we incur the risk of a false positive (type I error). When multiple hypothesis tests are
carried out, significance levels must be adjusted to account for the increased
probability of false positives. It is common practice in statistics to use a P-value
threshold of 0.05 for the decision as to whether a difference is significant or not, so on
average we would expect to get a false positive result about once every 20 times the
test is used (1/0.05). For an experiment with 400 tests, this translates to 20 false
positives (0.05 × 400 tests). This calculation ignores correlations between tests, but it is
a useful guideline. It shows that a much smaller P-value threshold than 0.05 is needed
to keep the number of false positives at an acceptable level.

There are many ways of correcting for this problem. The simplest is the Bonferroni
method, in which each P-value is simply multiplied by the number of tests done. This
method is very conservative. We can usually accept a few false positives, and a better
way to establish P-value thresholds is to focus on the number of false positives that are
expected at a given uncorrected P-value threshold. This approach has been formalised
by Benjamini and Hochberg [20] as the false discovery rate (FDR). The idea can best
be clarified by an example. If there are 20 SP’s that meet a P-value threshold of 0.001,
and there are 1000 SP tested, we would expect there to be 1 false positive among those
20 SP’s (1000 × 0.001=1). The FDR in this case is 0.05. Benjamini and Hochberg give
an easy method for finding the right P-value threshold to control the FDR at a pre-
specified level [21]. We have applied the FDR analysis with a false positive level of
0.05, and results with significant difference are shown with bold face in the tables.
This correction will in most cases lead to increased power in the statistical inference
compared to the Bonferroni method.

388 S. Thorvaldsen, E. Ytterstad, and T. Flå

3 Experimental Results and Discussion

3.1 Amino Acid Composition

To examine if there were detectable trends in the amino acid composition with growth
temperature, amino acid frequencies of mesophilic M and psychrophilic P proteins were
compared. From Figure 1 it is observed that the compositional differences between the
groups are mostly marginal, with overlapping standard deviation intervals. Despite this,
there seems to be differences in composition of amino acids A, G and Y that possibly
may be symptomatic for cold adaptation of this protein.

K Q A G R S N E V D P F L I Y C W T H M
0

2

4

6

8

10

12

P
er

ce
nt

ag
e

Mesophile
Psychrophile

Fig. 1. Comparison of amino acid compositions of the two temperature groups with the amino
acids ranked according to frequencies in the mesophile group. Error bars represent the
empirical standard deviations of the mesophile sequences, while the overlapping error bars
from the psychrophile sequences are not shown.

The temperature of the environment of the organism seems to be important for
which amino acid is favorable in its proteins, and the frequency shifts depending on
temperature appears to be a trend independent of lineage. For each amino acid we
calculate a P-value for rejecting the null hypothesis that the groups did not vary, and
perform the False Discovery Rate (FDR) multiple testing correction [20], setting the
false discovery rate to be 5%. The two-way statistical analyses, with temperature and
taxonomy as factors, show in table 2 that the decrease of amino acid G, and the
increase of A and Y, can be significantly related to temperature. Changes of A and G
are mainly located at the protein surface, Y at the interior, and G also in loop regions
(data not shown). The high mutability of A is probably due to its role as a default
residue. Lack of gamma-carbon also allows substitutions with small steric obstructions,
and replacements to the slightly rigid A induce smaller changes in the fold than
substitutions to the very flexible G.

 Inferring Weak Adaptations and Selection Biases in Proteins 389

It is interesting to observe that the compositional change of the amino acids A and
G with Topt are in agreement with earlier results found by Nakashima et al. [22],
mainly from a study of proteins from a higher temperature range, while Y is opposite.

Counts of H, M, and W in the present study are low (< 5), making the statistical
test questionable, and to increase counts we joined data in broader categories, as also
shown in table 2. Divergences related to taxonomic order are shown in the table, but
not discussed further in this article.

Table 2. P-values from two-way ANOVA tests of effect of temperature and taxonomic order
on amino acid composition. Differences with a false positive level <0.05 are shown in bold (the
FDR-corrected threshold is 0.012 in upper table, and 0.024 in lower).

aa A R N D C Q E G H I L K M F P S T W Y V
Ptmp .0003 .02 .80 .08 .09 .08 .06 .003 - .16 .09 .09 - .26 .63 .76 .06 - .001 .24
Ptax .004 <10−4 .79 .24 .06 .01 .27 .80 - .0004 <10−4 .88 - .37 .52 .94 .67 - .005 .04

aa group Hydrophobic Charged Negative Positive Polar
Ptmp .92 .02 .95 .004 .86
Ptax .01 .003 .11 .002 .69

A R N D C Q E G H I L K M F P S T W Y V ~

A
R
N
D
C
Q
E
G
H
I

L
K
M
F
P
S
T

W
Y
V
~

Replaced amino acid

R
ep

la
ce

m
en

t
am

in
o

ac
id

2

4

6

8

Fig. 2. Visualisation of the mean numbers of individual substitutions, observed from the
mesophilic to the psycrophilic group, summed over all the strata. K, R, A and Q are clearly the
most central amino acids in terms of involvement. A tilde (~) indicates a gap.

390 S. Thorvaldsen, E. Ytterstad, and T. Flå

Table 3. P-values from pooled substitutions, where the amino acids are the outcome in the
psychrophilic group. P-values are obtained from stratified Mantel-Haenszel test. Model 2 only
contains two strata, because the third strata only included one mesophilic sequence. The tilde
(~) indicates gap. Differences with a false positive level <0.05 are shown in bold (the FDR-
corrected threshold is 0.005 in upper table, and <0.02 in lower).

Subst to A R N D C Q E G H I L K M F P S T W Y V ~
Model 1 .005 .08 .92 .11 .28 .07 .22 .03 .26 .41 .31 .12 .94 .33 .63 .91 .04 .19 .001 .47 .003
Model 2 .24 .26 .86 .92 .001 .64 .67 .07 .36 .51 .99 .01 .27 .15 .82 .99 .10 - .17 .84 .008

aa group Hydrophobic Charged Negative Positive Polar
Model 1 .79 .13 .87 .02 .93
Model 2 .29 .90 .65 .99 .19

3.2 Analysis of Substitution Patterns

To better understand the individual contributions by substitutions, Figure 2 reports
counts of all the 380 substitution pairs (421 when gaps are included) added over the
three strata. Because of low counts, the data may not be analysed by the full 21x21
substitution matrices, and the number of categories were reduced to 2x2 representation,
as described in Table 1. The data were also analysed against different backgrounds, as
defined in Materials and Methods above. The pooled cumulative SPs were all tested
for statistical significance by using the two-sided Mantel-Haenszel test. The tests were
performed with an assumption that the significant changes seen in substitution patterns
may be interpreted as due to thermal adaptation. A summary of the results with the
substitution biases in the (M → P) direction are shown in Table 3.

The Mantel-Haenszel tests based on substitutions are confirming the ANOVA test
results based on compositions.

In the psychrophilic enzyme we find no significant differences in the number of
hydrophobic or polar residues, compared with the mesophilic enzyme. But the
exterior of the psychrophilic enzyme has a more positive electrostatic charge. A more
positive (or negative) charged surface is considered beneficial for cold adaptation,
because it will increase the solubility of the protein in water. Another possible effect
is that the extra positive amino acids may repel each other and thereby increase the
flexibility of the molecule.

The statistical approach above, assumes pairwise independence also among the
sequences samples (and species) in each temperature group at each strata. This is not
the case in the presence of underlying phylogenetic processes with horizontal gene
transfer and recombination. Hence, we may modify the approach to treat each
temperature group at each stratum as one observation. When there are multiple
dependent sequence samples in a group, instead of computing the cumulative SP-
matrix, we compute the average counting’s yxn , in the representative SP-matrix:

∑ ≠= yxnn yxG

PM
yx

MP
,,

1),(
,

 Inferring Weak Adaptations and Selection Biases in Proteins 391

where GMP is the number of ordered pairs of sequences in the two groups. The use of
group sample mean also removes some of the random genetic drift (“noise”). This
way of arriving at mean cell counts may also be based on a rationale of assigning a
weight to every sequence as the inverse of the number of dependent sequences in its
group, where all sequences are given equal weights that sum to 1. Then we just apply
a counting technique by counting the multiplied weights of the substitution pairs
between the sequences in the two groups.

In the same way we may treat the data from the compositional analyses by
applying average counts of each amino acid within group M and P at each stratum.

We computed P-values based the modified models, and arrived at the following P-
values for the most significant results found in Table 1 and 2: A: 0.10 and 0.07, G:
0.06 and 0.23, Y: 0.07 and 0.03, charged: 0.57 and 0.66, positive: 0.006 and 0.15. The
P-values are from the temperature factor of the ANOVA test, and from model 1 in the
Mantel-Haenzel test, respectively. The modified models and tests are more
conservative, but show some of the same results as previously found, although the
results in general are weaker.

4 Conclusion

As a general observation, it seems difficult to resolve fixed and absolute elements of cold
adaptation of a particular protein molecule at the overall compositional level, or based on
the general substitution matrix. However, a stratified two-way design, where also
taxonomic order is taken into consideration, yields a better statistical analysis. This
model is more robust against differences due to differences between different
phylogenetic lineages, and hence appropriate to detect possible temperature associated
trends independent of linage. On our dataset with three strata, both ANOVA test based
on composition and the Mantel-Haenszel test based on substitution patterns performed
well. The two tests show some of the same trends, but with more strata the Mantel-
Haenszel test may be more powerful, although the missing categorisation of gaps
represents a problem in the substitution analyses.

Both the compositional and the substitution statistical analyses reveal that psychrophilic
and mesophilic proteins have similar hydrophobic contributions. However, the exterior of
the psychrophilic molecule is found to be significantly more positively charged. A
positively charged molecule will increase its solubility in water.

Several minor structural and charge increasing substitutions appear to be responsible
for the cold adaptation, rather than a particular substitution. There must also be some
fine-tuning in the process, such as increasing charged residues mainly at the exterior of
the protein [22]. It is also possible that there are several ways to adapt within each
enzyme class. The endonuclease studied here binds the negatively charged phosphate
backbone of DNA [7]. It is therefore interesting to notice an increase in positively
charged amino acids, where Lys (K) and Arg (R) are favoured amongst the cold
adapted sequences. Our compositional analyses also imply a somewhat reduced
content of negative charged Asp (D). The higher positive electrostatic potential will
increase the electrostatic interactions between the enzyme and the negatively charged
substrate, and may in this way contribute to an increase in catalytic efficiency.

392 S. Thorvaldsen, E. Ytterstad, and T. Flå

Acknowledgements

The sequence alignment of endonuclease I was kindly provided by Bjørn Altermark.
Our algorithms and data can be downloaded as part of our Matlab toolbox DeltaProt

at: http://www.math.uit.no/bi/deltaprot/

References

1. Committee on Frontiers in Polar Biology (CB). Frontiers in polar biology in the genomics
era. Washington, DC, USA: National Academies Press, 2003.

2. Sohail, K. and Cavicchioli, R.: Cold-adapted enzymes. Annu. Rev. Biochem. 75: 403-433,
2006.

3. Saunders, N.F.W., Thomas, T., Curmi, P.M.G., et al.: Mechanisms of thermal adaptation
revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and
Methanococcoides burtonii. Genome Res 13 (7): 1580-1588, 2003.

4. Karlin, S., Brocchieri, L., Trent, J., Blaisdell, B.E., Mrazek, J.: Heterogeneity of genome
and proteome content in bacteria, archaea, and eukaryotes. Theor Popul Biol. 61:367–390,
2002

5. Pe'er, I., Felder, C.E., Man, O., Silman, I., Sussman, J.L., Beckmann, J.S.: Proteomic
signatures: Amino acid and oligopeptide compositions differentiate among phyla. Proteins-
Structure Function and Genetics 54 (1): 20-40, 2004.

6. Jekel, M. and Wackernagel, W. The periplasmic endonuclease I of Escherichia coli has
amino-acid sequence homology to the extracellular DNases of Vibrio cholerae and
Aeromonas hydrophila. Gene 154(1): 55-9, 1995.

7. Li, C. L., Hor, L. I., Chang, Z. F., Tsai, L. C., Yang, W. Z. and Yuan, H. S. DNA binding and
cleavage by the periplasmic nuclease Vvn: a novel structure with a known active site. Embo J
22(15): 4014-25, 2003.

8. Hall, T.A.: BioEdit: a user-friendly biological sequence alignment editor and analysis
program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98, 1999.

9. Lambros, R.J., Mortimer, J.R. and Forsdyke, D.R.: Optimum growth temperature and the
base composition of open reading frames in prokaryotes. Extremophiles 7: 443-450, 2003.

10. Bendtsen, J.D., Nielsen, H., von Heijne, G. and Brunak, S. Improved prediction of signal
peptides: SignalP 3.0. J. Mol. Biol. 340: 783-795, 2004.

11. Huang, S.L. et al. PGTdb: a database providing growth temperatures of prokaryotes.
Bioinformatics, 20: 276-278, 2004.

12. Garrity, G.M.: Bergey's Manual of Systematic Bacteriology, Vol. 2B. Plenum US, 2nd
edition, 2005.

13. Fraczkiewicz, R. and Braun, W.: Exact and efficient analytical calculation of the accessible
surface areas and their gradients for macromolecules. J. Comp. Chem. 19(3): 319-333,
1998.

14. Haney, P. J., Badger, J. H., Buldak, G. L. et al.: Thermal adaptation analyzed by comparison
of protein sequences from mesophilic and extremely thermophilic Methanococcus species.
PNAS vol. 96 (7) 3578-3583, 1999.

15. McDonald, J.H., Grasso, A.M., Rejto, L.K.: Patterns of temperature adaptation in proteins
from Methanococcus and Bacillus. Molecular Biology and Evolution 16 (12): 1785-1790,
1999.

16. Smith, N.G.C., Eyre-Walker, A.: A test of amino acid reversibility. J Mol Evol 52: 467-
469, 2001.

 Inferring Weak Adaptations and Selection Biases in Proteins 393

17. Chakravarty, S. and Varadarajan, R.: Elucidation of factors responsible for enhanced
thermal stability of proteins: A structural genomics based study. Biochemistry 41 (25):
8152-8161, 2002.

18. Mantel, N. and Fliss, J.L.: Minimum expected cell-size requirements for the Mantel-
Haenszel one-degree-of-freedom chi-square test and a related rapid procedure. American
Journal of Epidemiology 112: 129-134, 1980.

19. Parshall, C.G., Miller, T.R.: Exact versus asymptotic Mantel-Haenszel DIF statistics - A
comparison of performance under small-sample conditions. Journal of Educational
Measurement 32 (3): 302-316, 1995.

20. Benjamini, Y. and Yekutieli, D.: The control of the false discovery rate in multiple testing
under dependency. Ann Stat 29 (4): 1165-1188, 2001.

21. Koen, J.F. et al.: Implementing false discovery rate control: increasing your power.
OIKOS 108: 643-647, 2005.

22. Nakashima, H., Fukuchi, S., Nishikawa, K.: Compositional changes in RNA, DNA and
proteins for bacterial adaptation to higher and lower temperatures. Journal of Biochemistry
133 (4): 507-513, 2003.

Markov Model Variants for Appraisal of Coding

Potential in Plant DNA

Michael E. Sparks1, Volker Brendel1,2, and Karin S. Dorman1,2

1 Department of Genetics, Development and Cell Biology, Iowa State University,
Ames, IA 50011, USA

2 Department of Statistics, Iowa State University, Ames, IA 50011, USA

Abstract. Markov chain models are commonly used for content-based
appraisal of coding potential in genomic DNA. The ability of these mod-
els to distinguish coding from non-coding sequences depends on the
method of parameter estimation, the validity of the estimated param-
eters for the species of interest, and the extent to which oligomer us-
age characterizes coding potential. We assessed performances of Markov
chain models in two model plant species, Arabidopsis and rice, compar-
ing canonical fixed-order, χ2-interpolated, and top-down and bottom-up
deleted interpolated Markov models. All methods achieved comparable
identification accuracies, with differences usually within statistical error.
Because classification performance is related to G+C composition, we
also considered a strategy where training and test data are first parti-
tioned by G+C content. All methods demonstrated considerable gains
in accuracy under this approach, especially in rice. The methods studied
were implemented in the C programming language and organized into a
library, IMMpractical, distributed under the GNU LGPL.

1 Introduction

Markov chain models, as applied to problems concerning gene recognition in
DNA sequences, make the fundamental assumption that sequences of different
functional roles exhibit distinct and reproducible dependencies among adjacent
nucleotides, such that sequences can be distinguished by oligomer usage. In prac-
tice, Markov models appear to be a suitable proxy to the (unknown) generative
models that have produced biologically relevant nucleic acid sequences, and they
have enjoyed widespread use in popular gene prediction applications, including
GENSCAN [1], GlimmerM [2], and GeneMark.HMM [3]. The Markov models used in
these applications tend to be complex, and in most cases, only heurisitic pro-
cedures exist for estimating Markov transition probabilities. Because both the
validity of the Markov model assumption and the accuracy of the estimation
procedures are unknown, it remains important to assess classification perfor-
mance in novel applications. As this study is primarily motivated by the need to
annotate plant gene structures, we used sequences from the model plant species
Arabidopsis thaliana and Oryza sativa (rice).

There are a number of distinct methods for estimating Markov chain transi-
tion probabilities and selecting among models of varying complexity. Azad and

I. Măndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 394–405, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Markov Model Variants for Appraisal of Coding Potential in Plant DNA 395

Borodovsky [4] undertook an empirical survey of fixed-order, χ2-interpolated
[5,6], and top-down deleted interpolated Markov models [7] in prokaryotic taxa,
and found considerable differences in the relative performances of each method
as a function of genomic sequence characteristics, particularly G+C composi-
tion. The present study extends this work by comparing a greater breadth of
training methods and by considering method performances in the context of two
eukaryotic taxa. We show that, for the task of binary classification of coding
and intron sequences from A.thaliana and rice, all the Markov model variants
surveyed here (canonical fixed-order, χ2-interpolated, top-down and bottom-up
deleted interpolated [7]) performed approximately equally. All Markov model
variants were implemented in the C programming language and organized into a
library, called IMMpractical, which is distributed under the GNU lesser/library
general public license and is available for download at [8].

We also compared a standard approach that trains and tests without concern
for the G+C composition of sequences, and a quartiled approach in which se-
quences are first partitioned into quartiles on the basis of overall G+C content,
and quartile-specific transition probability estimates are used to classify. The
latter strategy resulted in substantial improvements in classification accuracy
relative to the standard approach, particularly in rice.

2 Materials and Methods

2.1 Data Accumulation

The success of any gene-finding algorithm to accurately classify sequences is
largely dependent on how well the training data represent true coding and non-
coding DNA. To obtain a reliable set of nuclear protein coding and intron se-
quences for training and testing purposes, we started with the current genome
annotations for A.thaliana and rice available from the TAIR (version 6.0, [9])
and TIGR (version 4.0, [10]) resources, respectively.

As we were primarily interested in distinguishing coding sequences from in-
trons in split genes, single exon genes were excluded. This exclusion also elimi-
nated many processed pseudogenes, which are often intronless and share similar
features with functional genes [11,12]. We ignored all loci with multiple gene
models because these may be alternatively spliced [13], making coding/intron
classification much more difficult [14].

Full-length coding sequences were parsed from assembled pseudomolecules
based on reference coordinates, and if any ambiguous nucleotide symbols were
encountered, the gene was discarded. Start and stop codons along with 5’- and
3’-UTRs were removed from the coding sequences, and only genes encoding
translation products of 150 or more amino acids were retained. The selected se-
quences were compared to the TIGR plant repetitive element database [10] using
BLASTN [15], and all coding sequences with significant matches (E-value < 10−15)
were removed. We also used BLAST to limit redundancy in the coding data by
randomly retaining only one member of each pair of sequences having at least

396 M.E. Sparks, V. Brendel, and K.S. Dorman

80% nucleotide identity over at least 80% of the length of both sequences. Reduc-
tion in dataset size during this refinement process is indicated in Table 1. Introns
from the remaining gene structures were parsed from the pseudomolecules, leav-
ing the concatenated exons as the coding data set. Introns that exceeded 50
nucleotides in length and contained no ambiguous characters were retained, and
the resulting collection was made non-redundant using BLAST, as described
above, to form the intron dataset. In total, we retained 15,538 coding sequences
(mean length 1,467nt) and 87,477 intron sequences (mean length 159nt) from
A.thaliana. In rice, 24,349 coding sequences (mean length 1,502nt) and 104,737
intron sequences (mean length 396nt) were retained. For the quartiled approach,
coding and intron sequences were separated into quartiles according to their
overall percent G+C composition (see Fig. 1).

Table 1. Number of genes excluded in the A.thaliana and O.sativa data sets at each
refinement stage

Type Removed A.thaliana O.sativa
Annotated pseudogenes 3,818 0
Intronless genes 5,793 12,780
Alternatively spliced genes 2,887 4,280
Genes with ambiguous nucleotides 4 20
Genes with protein length < 150 2,009 7,433
Repetitive elements 60 7,379
Redundant genes 250 322

Total remaining 15,538 24,349

2.2 Fixed-Order Markov Models (FO)

For fixed-order methods, an order, k, is selected for the Markov chain based
on empirical or statistical considerations—in practice, this is often set to five
[1,3,11], and we also used this value. Let hk represent some pretext, or history,
of length k that precedes a nucleotide i. The fixed-order Markov chain has 4k+1

transition probabilities, whose maximum likelihood estimates are

P̂ (i | hk) =
Cnt(hk, i)

∑
j∈{A,C,G,T} Cnt(hk, j)

, (1)

where Cnt(hk, x) is the count of oligomer hk succeeded by some nucleotide x
in the training data. Given a test sequence S = s1s2 · · · sn of length n, the
likelihood, assuming that the sequence belongs to some functional class t with
maximum likelihood estimates Ω̂t = {P̂ (i | hk)}, is

P (S | t, Ω̂t) =
n−k∏

j=1

P̂ (sj+k | sjsj+1 · · · sj+k−1) .

Markov Model Variants for Appraisal of Coding Potential in Plant DNA 397

A.thaliana Coding A.thaliana Introns O.sativa Coding O.sativa Introns

0.
2

0.
4

0.
6

0.
8

G+C Compositional Variability

%
[G

+C
]

Fig. 1. Box-and-whiskers plot showing variation in G+C percent composition for cod-
ing and intron sequences in A.thaliana and O.sativa. Each data set was partitioned on
the quartiles, such that partitions contained roughly 3,884 coding and 21,869 intron
sequences for A.thaliana and roughly 6,087 coding and 26,184 intron sequences for
O.sativa, respectively.

For coding sequences, one recognizes the distinct properties of the three codon
positions by computing one set of transition probabilities P (f)(i | hk) for each
of the three reading frames, f = 1, 2, 3. There are now 3 × 4k+1 parameters to
estimate for this inhomogeneous Markov chain model, and each is estimated by
Eq. (1) with oligomer counts from the appropriate codon position. When simul-
taneously modeling a coding sequence shadow, parameters are also estimated
for the three codon positions in the reverse complement [16].

Certain rare oligomers may not appear in the training data, resulting in
null transition probabilities using Eq. (1). Any test sequence containing an
unobserved oligomer is then impossible (has zero likelihood) under the esti-
mated model. To avoid this problem, we use parameter smoothing, where for all

398 M.E. Sparks, V. Brendel, and K.S. Dorman

hk and i, Cnt(hk, i) is incremented by a fixed integer (in practice, five), ensuring
at least a basal representation of all possible oligomers in the training data.

2.3 Interpolated Markov Models (IMMs)

The general paradigm of IMMs is that each transition probability is determined
by taking linear, weighted sums of relevant fixed-order transition probabilities.
For the transition probability with context hk, fixed order transition probabili-
ties for the pretext of length k and all shorter pretexts are used to produce the
smoothed transition probability

Pimm(i | hk) =
k∑

x=−1

μx(hk)P̂ (i | hx).

Here, P̂ (i | h−1) is taken to be one over the cardinality of the nucleotide alphabet,
i.e., 0.25. Pimm(i | hk) is a probability when the weights μx(hk) satisfy 0 ≤
μx(hk) ≤ 1 for all x and

∑k
x=−1 μx(hk) = 1. To account for data sparsity, these

models assign weights in terms of oligomer frequencies, preferentially giving more
weight to oligomers with longer histories, unless they occur rarely enough in
training data that more weight should be given to one of their 5’-truncated
variants. Final, smoothed transition probabilities of oligomers whose histories
do not occur in the training data are defined as Pimm(i | hk) = Pimm(i | hz),
where z = max z′ ∈ [1, k) : Cnt(hz′) > 0 and k is the maximum Markov chain
order. We consider three distinct methods for estimating the smoothed transition
probabilities as described in [4,5,6,7].

χ2-Interpolated Markov Models (χ2). The χ2-IMM defines transition prob-
abilities iteratively as

Pchi(i | hk) = λ(hk)P̂ (i | hk) + [1 − λ(hk)]Pchi(i | hk−1), (2)

with boundary condition Pchi(i | h−1) = P̂ (i | h−1). The history weights for
x = 0, . . . , k are

λ(hx) =

⎧
⎨

⎩

1 if Cnt(hx) ≥ T ;
0 if Cnt(hx) < T and q < 0.5;
q×Cnt(hx)

T otherwise.

T is some minimally-reliant count threshold for pretexts, e.g., 400; and q is the
confidence (one minus the p-value) that the distribution of i | hx differs from
that of i | hx−1, i ∈ {A, C, G, T }, obtained by a χ2 statistical test [5,6].

One possible scenario that is not addressed in any literature we encountered
describing χ2-IMMs [5,6,17,4] is the condition where some pretext hy occurs more
than T times in the training data, but i | hy does not occur for some nucleotide
i. Then recursion (2) for computing Pchi(i | hx) can generate problematic null
transition probabilities, precisely the complication interpolated models were de-
veloped to avoid. For such cases, we used an approach similar to that described
in [18] for correcting weight array matrices in splice site modeling:

Markov Model Variants for Appraisal of Coding Potential in Plant DNA 399

Pfix =
1

Cnt(hy)
Pnew = Pold(1 − 4 × Pfix) + Pfix,

where any null transition probability is re-assigned the value Pfix, and all remain-
ing non-null probabilities in the distribution are adjusted to Pnew as a function
of Pfix and their previous values, Pold. Alternative solutions are described in [7].

Top-down Deleted IMMs (TDDI). The basic idea of deleted IMMs is to
divide the training data into a large development set (D) and a small heldout
set (H)—the development set generates initial, unrefined transition probability
estimates according to Eq. (1), which are generalized to the heldout set by cross-
set maximization [7]. To prevent over-fitting to the heldout set, pretexts in the
development set are partitioned into groups based on their frequencies, and all
pretexts in a group are tied to the same weight. The pretext partitions are called
buckets Bx,m = { hx : boundx,m−1 ≤ CntD(hx) < boundx,m}, where x indexes
pretext length, m indexes the bucket, and CntD indicates counts in D only.
Bucket width is specified using a real-valued constant (e.g., 1.2, which is used in
our implementation) dictating ratios of adjacent bucket boundaries.

Top-down deleted IMM-smoothed probabilities are computed by recursively
solving, for x = 0, 1, . . . , k,

PTD(i | hx) = λm(hx)P̂ (i | hx) + [1 − λm(hx)]PTD(i | hx−1), (3)

with λm(hx) values computed as

argmax
0<λ<1

⎧
⎪⎪⎨

⎪⎪⎩

∑

i∈{A,C,G,T }
hx∈Bx,m

CntH(hx, i) log
[
λP̂ (i | hx) + (1 − λ)PTD(i | hx−1)

]

⎫
⎪⎪⎬

⎪⎪⎭

, (4)

and PTD(i | h−1) = P̂ (i | h−1) again initializes the recursion.

Bottom-up Deleted IMMs (BUDI). In the bottom-up deleted IMM ap-
proach, development pretexts of length k are partitioned into buckets Bk,m

in similar fashion to the top-down variant. Each BUDI transition probability
PBU(i | hk) is produced through a series of iterations initialized with

P (k)(i | hk) = ξP̂ (i | h−1) + (1 − ξ)P̂ (i | hk), (5)

for ξ = 10−5. The recursion formula for the smoothing procedure is

P (l−1)(i | hk) = λl,m(hk)P (l)(i | hk) + [1 − λl,m(hk)]P̂ (i | hl−1), (6)

starting at l = k and producing PBU(i | hk) := P (−1)(i | hk) upon termination
when l = 0. Weighting factors λl,m(hk) for the recursion are computed as

argmax
0<λ<1

⎧
⎪⎪⎨

⎪⎪⎩

∑

i∈{A,C,G,T }
hk∈Bk,m

CntH(hk, i) log
[
λP (l)(i | hk) + (1 − λ)P̂ (i | hl−1)

]

⎫
⎪⎪⎬

⎪⎪⎭
. (7)

400 M.E. Sparks, V. Brendel, and K.S. Dorman

2.4 Accounting for G+C Content

We compared two approaches for fitting and using Markov chains with our data
sets. The default method—the standard approach—involved producing a single
set of transition probability estimates by training with all available data from
each cross validation replicate; the same estimates were used to assay all test
fragments. We also considered a quartiled approach, in which all sequences avail-
able for a given species were classified into quartiles on the basis of overall G+C
composition (See Fig. 1). Coding and intron training sequences were quartiled
separately, and quartile-specific Markov chains were estimated. Each test se-
quence was assigned a quartile based on its G+C content and likelihoods were
computed using the appropriate Markov chains.

2.5 Test Design

The estimation methods were assessed on their abilities to correctly identify
the—a priori known—functional class of a test sequence using the familiar Gen-
mark framework [16]. Only binary classification of sequences as either coding or
intron was tested. Likelihoods of test data were computed under N = 7 Markov
models: six coding Markov models for each frame of the forward f1, f2, f3 or
shadow w1, w2, w3 strand; and a homogeneous Markov chain itr for the intron
hypothesis. Prior probabilities are specified as follows. Let z be the (hypothe-
sized) sequence type; then the prior is

P (z) =
{

1/2 if z = itr;
1

(N−1)×2 otherwise. (8)

Bayes rule provides the classifier:

P (z | S) =
P (S | z) × P (z)

P (S)
, (9)

where S is a test sequence. P (intron | S) = P (itr | S) is obtained directly
from Bayes rule, and P (coding | S) =

∑
z∈{f,w}

∑3
i=1 P (zi | S). A sequence was

classified as coding if P (coding | S) exceeded 0.5—otherwise it was labeled as
an intron.

We used a five-fold cross validation approach where, for each cyclic permu-
tation, transition probabilities for each of the coding and intron classes were
estimated using four of the data partitions, and methods were assayed against
the remaining test partition. (Note that for the deleted IMM variants, three of
the five data partitions were used for the development set, and one for the held-
out.) Results from all five cross-validation replicates were pooled and averaged
for final reporting.

To establish uniformity in training and testing sample sizes, we reduced the
sizes of the five initial data partitions by randomly sampling a subset from each
partition. For each species and sequence type, 3,000 random sequences were
retained for the standard approach, and 750 from each bin in the quartiled

Markov Model Variants for Appraisal of Coding Potential in Plant DNA 401

data. For test samples used under the standard approach, 2,500 fragments were
randomly sampled from each test partition, for each of the coding and intron
data sets, independently for both species; similarly, we randomly sampled 750
fragments from each bin in the quartiled method.

Normalizing for test sequence length is crucial for comparing performances of
the methods at classifying sequences—longer test sequences would increase the
odds of detecting a signal characteristic of the underlying generative model, and
would tend to increase classification accuracy relative to shorter fragments. A
fixed length of 96 nucleotides was used for assaying the methods under both the
standard and quartiled approaches. A single test fragment was randomly parsed
from each sequence among the test data partitions.

3 Results

Table 2 presents the average classification success of the Markov model training
variants under the standard approach, for both species. Although the χ2-IMM
achieved the maximum accuracy in all but one category, this advantage was not
statistically significant. The only statistically significant differences (p-values
< 0.01) were the poorer performance of FO compared to all three IMM variants
in A.thaliana and the poorer performance of BUDI relative to the other IMM
variants in rice. Notably, all methods were significantly less successful at the
classification task in rice relative to A.thaliana.

Table 2. Mean success rates, averaged over five cross-validation replicates, for
A.thaliana and O.sativa coding and intron sequences, under the standard approach.
Values are given as percentages and standard deviations are shown in parentheses.

A.thaliana O.sativa
Overall

Coding Intron Averaged Coding Intron Averaged

FO 96.78 (0.16) 94.96 (0.29) 95.87 (0.22) 87.15 (1.12) 86.89 (0.90) 87.02 (1.01) 91.44 (0.62)
TDDI 97.16 (0.24) 95.28 (0.45) 96.22 (0.34) 87.20 (0.61) 87.30 (0.65) 87.25 (0.63) 91.73 (0.49)
BUDI 96.95 (0.34) 94.99 (0.63) 95.97 (0.48) 86.28 (0.93) 86.45 (1.09) 86.37 (1.01) 91.17 (0.75)

χ2 97.20 (0.22) 95.31 (0.41) 96.25 (0.32) 87.42 (0.59) 87.29 (0.74) 87.36 (0.67) 91.81 (0.49)

We noticed that the success of classification varied considerably depending
on the G+C content of the test sequence (data not shown). To address this
problem, we partitioned the data into quartiles based on G+C content and
trained quartile-specific Markov chains (the quartiled approach). Under this ap-
proach, classification performance still depended on G+C content as shown in
Table 3 (only χ2-based results are shown, though all methods exhibit similar pat-
terns). For coding sequences, method performance generally increased slightly
with G+C composition, except in the fourth quartile, where a slight tapering in
prediction accuracy was seen. In contrast, performance generally decreased as
G+C composition increased for intron sequences, with a marked drop in perfor-
mance in the fourth quartile.

402 M.E. Sparks, V. Brendel, and K.S. Dorman

Table 3. Quartile-specific mean coding and intron fragment identification success rates
for the χ2-interpolated method, averaged over all five cross-validation replicates. Values
are given as percentages and standard deviations are shown in parentheses.

Species Class 1st 2nd 3rd 4th

A.thaliana
coding 98.11 (0.71) 99.47 (0.25) 99.41 (0.18) 99.12 (0.28)
intron 99.89 (0.11) 99.55 (0.20) 98.61 (0.20) 92.85 (0.66)

O.sativa coding 94.93 (0.88) 97.84 (0.53) 99.44 (0.15) 98.46 (0.58)
intron 99.71 (0.15) 99.47 (0.14) 99.33 (0.16) 88.69 (1.65)

Despite the continued G+C content-dependent performance differences, the
quartiled approach achieved a clear performance gain over the standard approach
for all training methods (Table 4). The performance boost was moderate—
though significant—for A.thaliana (roughly 2 − 3%) and even more dramatic
for rice (roughly 10%). Importantly, all measures of classification performance
improved under the quartiled approach.

Table 4. Comparison of classifiers under standard (std) and quartiled (qrt) approaches.
Predictions across cross-validation replicates were pooled for a total of 30,000 distinct
test cases. Classification measures, per [19], are Accuracy = TP+TN

TP+TN+F P+F N
; Sn (Sen-

sitivity) = TP
TP+F N

; Sp (Specificity) = TP
TP+F P

; Corr. Co. (Correlation Coefficient) =
TP×TN−F P×F N√

(TP+F N)(TP+F P)(TN+F P)(TN+F N)
; ROC AUC (Area under receiver operator char-

acteristic curve, calculated using [20]); where TP are true positives; FP , false positives;
TN , true negatives; FN , false negatives.

FO TDDI BUDI χ2

std qrt std qrt std qrt std qrt

A.thaliana

Accuracy (%) 95.83 98.01 96.29 98.41 96.11 98.42 96.27 98.38
Sn (%) 96.84 98.53 97.29 99.04 97.21 98.99 97.33 99.03
Sp (%) 94.93 97.52 95.39 97.81 95.12 97.88 95.31 97.76

Corr. Co. 0.92 0.96 0.93 0.97 0.92 0.97 0.93 0.97
ROC AUC (%) 99.02 99.67 99.11 99.73 99.08 99.74 99.11 99.73

O.sativa

Accuracy (%) 86.84 96.89 87.11 97.22 86.37 97.26 87.25 97.24
Sn (%) 86.80 97.35 86.96 97.61 86.01 97.77 87.17 97.67
Sp (%) 86.87 96.45 87.23 96.86 86.63 96.77 87.31 96.83

Corr. Co. 0.74 0.94 0.74 0.94 0.73 0.95 0.75 0.94
ROC AUC (%) 93.91 99.03 94.06 99.12 93.52 99.08 94.11 99.14

4 Discussion

While the gene structure prediction community has increasingly turned to gene
annotation approaches dependent on homology information [21,22,23], the con-
tinued development of single-genome ab initio gene prediction tools remains
worthwhile. Multi-genome gene prediction requires the presence of syntenic re-
gions from two or more moderately divergent genomes. Genomic sequences from

Markov Model Variants for Appraisal of Coding Potential in Plant DNA 403

related taxa do not always exist, and the optimal level of evolutionary diver-
gence between such genomes remains unknown [22]. Indeed, even if requisite
genomic data were abundant for all such gene annotation tasks, and the models
worked perfectly, these methods would restrict attention to shared, homologous
gene structures. Arguably, the complement of unique, species-specific genes, e.g.,
novel antifreeze glycoproteins in Arctic fish [24] and sex pheromones in moths
[25], would be considerably more interesting for further experimental charac-
terization by biologists. Thus, demand for highly sensitive single-genome gene
prediction methods persists.

We have assayed the relative performances of a number of transition probabil-
ity estimation methods for Markov chain models on coding and intron sequences
of varying G+C composition in the model plant species Arabidopsis thaliana and
Oryza sativa. Computational gene finders produced most gene annotations used
to form our dataset [9,10], which could have biased the data to favor one model
over another. Because prediction methods are not recorded [13], we were unable
to test or correct for such bias. However, Fisher’s exact tests on the accuracies
we have computed show that most methods perform equivalently in the standard
approach. Only FO is significantly worse in A.thaliana, and BUDI is significantly
worse than the other IMM variants in rice. The fixed order model becomes statis-
tically less accurate in both plant species under the quartiled approach, but the
order k = 5 may not be appropriate for the reduced size of quartiled data sets.

It is well known that classification success depends on G+C content
(e.g., [1,4]). We observed that misclassified coding fragments are generally
G+C-poorer than usual, while misclassified intron fragments are generally
G+C-richer. In fact, the G+C profile of misclassified fragments loosely mim-
ics that of correctly classified fragments in the competing functional category
(data not shown). Markov models perform well when there is little overlap in
oligomer usage between competing functional classes, but fail if overlap is con-
siderable. Apparently, similar G+C content, a very simple indicator of monomer
usage, also indicates substantial overlap in higher order oligomer usage. The
G+C dependent performance motivated our quartiled approach, where training
data are partitioned by G+C content and a Markov chain is trained for all par-
titions. Test sequences were first assigned a partition and then classified using
partition-specific Markov chains. The deployment of all the models studied un-
der a quartiled framework yielded considerable performance gains in both taxa,
but most dramatically in rice (see Table 4).

The quartiled approach involves the estimation of more Markov chains, and
presumably far more parameters; the fixed order Markov chain requires four
times as many parameters under the quartile methodology, but the interpolated
variants automatically adjust the parameter space according to data complex-
ity. However, all methods, including the fixed order Markov chain, classified
substantially better under quartile training. The results suggest that enhancing
model complexity through chain order may not be the most efficient way to dis-
tinguish sequence class. Instead, the assumption that there is a single Markov
chain generating each class is suspect. We are currently investigating mixture

404 M.E. Sparks, V. Brendel, and K.S. Dorman

models where multiple Markov chains generate each class. IMM variants can be
seen as mixture models across chain orders, but the resulting parameterization
may be overly restrictive.

Our results suggest that use of essentially any of the interpolated estima-
tion methods, coupled with a G+C composition-specific (quartiled) framework,
should improve gene annotation in plant genomic sequences, particularly in
monocot species, including those with mature (rice) and emerging (maize and
sorghum) genomic resources. The availability of our software to efficiently train
Markov chains from species-specific and stratified data sets can facilitate in-
corporation of tailored parameter sets into general ab initio gene prediction
programs.

Acknowledgements. We would like to thank two anonymous reviewers for
helpful suggestions that improved this report. This work was supported in part
by NSF Grant DBI-0606909 to V.B. M.E.S was also supported in part by the
USDA with an IFAFS Multidisciplinary Graduate Education Training Grant
(2001-52100-11506).

References

1. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic
DNA. Journal of Molecular Biology 268 (1997) 78–84

2. Majoros, W., Pertea, M., Antonescu, C., Salzberg, S.: GlimmerM, Exonomy and
Unveil: three ab initio eukaryotic genefinders. Nucleic Acids Research 31 (2003)
3601–3604

3. Lukashin, A., Borodovsky, M.: GeneMark.HMM: new solutions for gene finding. Nu-
cleic Acids Research 26 (1998) 1107–1115

4. Azad, R., Borodovsky, M.: Effects of choice of DNA sequence model structure on
gene identification accuracy. Bioinformatics 20 (2004) 993–1005

5. Salzberg, S., Delchur, A., Kasif, S., White, O.: Microbial gene identification using
interpolated Markov models. Nucleic Acids Research 26 (1998) 544–548

6. Delcher, A., Harmon, D., Kasif, S., White, O., Salzberg, S.: Improved microbial
gene identification with GLIMMER. Nucleic Acids Research 27 (1999) 4636–4641

7. Potamianos, G., Jelinek, F.: A study of n-gram and decision tree letter language
modeling methods. Speech Communication 24 (1998) 171–192

8. IMMpractical. http://sourceforge.net/projects/immpractical/
9. TAIR: The Arabidopsis Information Resource. http://www.arabidopsis.org/

10. TIGR: The Institute for Genomic Research. http://www.tigr.org/
11. Zhang, M.: Computational prediction of eukaryotic protein-coding genes. Nature

Reviews Genetics 3 (2000) 698–709
12. van Baren, M., Brent, M.: Iterative gene prediction and pseudogene removal im-

proves genome annotation. Genome Research 16 (2006) 678–685
13. TIGR XML Specification. ftp://ftp.tigr.org/pub/data/DTDs/tigrxml.dtd
14. Florea, L.: Bioinformatics of alternative splicing and its regulation. Briefings in

Bioinformatics 7 (2006) 55–69
15. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment

search tool. Journal of Molecular Biology 215 (1990) 403–410

Markov Model Variants for Appraisal of Coding Potential in Plant DNA 405

16. Borodovsky, M., McIninch, J.: GENMARK: Parallel gene recognition for both DNA
strands. Computers in Chemistry 17 (1993) 123–133

17. Salzberg, S., Pertea, M., Delchur, A., Gardner, M., Herve, T.: Interpolated Markov
models for eukaryotic gene finding. Genomics 59 (1999) 24–31

18. Sparks, M., Brendel, V.: Incorporation of splice site probability models for non-
canonical introns improves gene structure prediction in plants. Bioinformatics 21
(2005) iii20–iii30

19. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C., Nielsen, H.: Assessing the ac-
curacy of prediction algorithms for classification: an overview. Bioinformatics 16
(2000) 412–424

20. Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T.: ROCR: visualizing classifier
performance in R. Bioinformatics 21 (2005) 3940–3941

21. Guigó, R., Brent, M.: Recent advances in gene structure prediction. Current
Opinion in Structural Biology 14 (2004) 264–272

22. Siepel, A., Haussler, D.: Computational identification of evolutionarily conserved
exons. In: Proceedings of the 8th Annual International Conference on Research in
Computational Biology. (2004) 177–186

23. Majoros, W., Pertea, M., Salzberg, S.: Efficient implementation of a generalized
pair Hidden Markov model for comparative gene finding. Bioinformatics 21 (2005)
1782–1788

24. Chen, L., DeVries, A., Cheng, C.H.: Convergent evolution of antifreeze glycopro-
teins in Antarctic notothenioid fish and Arctic cod. Proceedings of the National
Academy of Sciences, USA 94 (1997) 3817–3822

25. Roelofs, W., Liu, W., Hao, G., Jiao, H., Rooney, A., Linn Jr., C.: Evolution of
moth sex pheromones via ancestral genes. Proceedings of the National Academy
of Sciences, USA 99 (2002) 13621–13626

Predicting Palmitoylation Sites Using a

Regularised Bio-basis Function Neural Network

Zheng Rong Yang

School of Engineering, Computer Science and Mathematics
University of Exeter, UK

Abstract. Palmitoylation is one of themost important post-translational
modifications involving molecular signalling activities. Two simple meth-
ods have been developed very recently for predicting palmitoylation sites,
but the sensitivity (the prediction accuracy of palmitoylation sites) of
both methods is low (< 65%). A regularised bio-basis function neural
network is implemented in this paper aiming to improve the sensitivity.
A set of protein sequences with experimentally determined palmitoyla-
tion sites are downloaded from NCBI for the study. The protein-oriented
cross-validation strategy is used for proper model construction. The ex-
periments show that the regularised bio-basis function neural network
significantly outperforms the two existing methods as well as the support
vector machine and the radial basis function neural network. Specifically
the sensitivity has been significantly improved with a slightly improved
specificity (the prediction accuracy of non-palmitoylation sites).

Keywords: Palmitoylation site prediction, bio-basis function, regulari-
sation.

1 Introduction

Palmitoylation is a hydrophobic protein-modification activity where fatty acids
are covalently attached to cysteine residues of membrane proteins. In biochem-
istry and enzymology study, it has been observed that this hydrophobic protein-
modification activity uses cellular and viral membrane proteins for signal
transmission [1]. It is still unknown what the molecular signals for palmitoy-
lation are. Although palmitoylation is known to be a reversible activity with
cycles of acylation and deacylation, the relevant enzymatic mechanism has not
been completely known because some palmitated proteins are found without
any enzyme source present. Despite of these observations, palmitoylation activ-
ity has been widely studied in various areas including most signalling pathway
activities [2], [3]. For instance, Smotrys et al showed that most trafficking and
protein-protein interactions as well as enzyme activities depend on the existence
of palmitated proteins [4]. They also showed that palmitated proteins can en-
hance the membrane interactions and the reversibility of palmitoylation is an
attractive mechanism for regulating protein activity and cell signalling. Li and
Yang have found that most palmitoylation-deficient mutant Env proteins are

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 406–417, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

Predicting Palmitoylation Sites 407

soluble when extracted by ice-cold TX-100 and stay at the bottom of the gra-
dients in their study of the association between the Maurine leukaemia virus
Env protein and lipid rafts [5]. Palmitoylation has also been studied in disease-
related subjects. For instance, Yu and Lee have found that two cysteine residues
(257 and 261) at the C-terminal of NS4B have lipid modifications (palmitoyla-
tion) in studying the polymerization of Hepatitis C virus NS4B protein [6]. They
concluded that site-specific mutagenesis of these cysteine residues are important
for protein-protein interactions in the formation of HCV RNA replication com-
plex. Another example of disease-related biology study of palmitoylation activity
is vacuolar events. Peng and Tang showed that palmitoylation targets Vac8p to
specific membrane sub-domains for vacuole homotypic fusion at three cysteine
residues (4, 5 and 7) [7].

Specificity study of post-translational modifications like phosphorylation,
methylation, sumoylation and palmitoylation is a very important subject in sys-
tems biology research for understanding how proteins are responding to extra-
cellular cues for information transmission along signalling pathways. One of the
important subjects in studying post-translational modifications is to identify
where the modifications are or where proteins are binding for the modifications.
For this kind of study, it is generally not necessary to view whole protein sequences.
Rather, one normally focuses on a small area of a binding site or a few residues
around a functional site. This study is commonly termed as protein functional site
prediction which involves the use of a set of peptides (short regions of protein se-
quences) with known functional status, i.e. functional or non-functional. In this
context, a functional peptide is the one with a palmitoylation site.

The earliest work on protein functional site prediction were normally based on
frequency estimate. For example, the h function [8], where the frequency of 20
amino acids at each residue is calculated from a set of functional peptides. The
estimated frequencies are then stored in a computer program for prediction. The
major shortcoming of this method is that they usually result in high sensitivity
and low specificity. Some statistical models like hidden Markov models (HMM)
[9], discriminant analysis [10] and quadratic discriminant analysis [11] have also
been used for data mining protein peptides. However, a HMM model also has a
high sensitivity and a low specificity [12].

Neural networks and the support vector machine [13], [14] have been applied
to data mining protein peptides as well. For instance, neural networks have been
used in signal peptide cleavage site prediction [15], glycoproteins linkage site pre-
diction [16], enzyme active site prediction [17], phosphorylation site prediction
[18], and water active site prediction [19]. The support vector machine has been
used for the prediction of translation initiation sites [20], the prediction of phos-
phorylation sites [21], the prediction of T-cell receptor [22], and the prediction
of protein-protein interactions [23].

In the context of predicting palmitoylation sites, Zhou et al first employed a
clustering and scoring strategy to build a model to predict palmitoylation sites
in early 2006 [24]. In the same group, Xue et al employed a Naive Bayes method
to predict palmitoylation sites in late 2006 [25]. They have used 105 protein

408 Z.R. Yang

sequences with 245 palmitoylation sites being experimentally determined. Based
on these protein sequences, 977 non-palmitoylation peptides with various lengths
were generated, each having a cysteine in the middle. Their model [25] is able
to make total prediction accuracy 86.74% with the sensitivity 58.37%, the speci-
ficity 93.86% and the Matthews’ correlation coefficient 0.5618. In comparison,
they have used the support vector machine and the radial basis function neu-
ral network. For the former, the specificity is 94.47%, the sensitivity is 64.49%
and the Matthews’ correlation coefficient is 0.623. For the latter, the sensitivity
is 95.09%, the specificity is 55.51% and the Matthews’ correlation coefficient is
0.5664. It can be seen that all have a low sensitivity from 58.37% to 64.49%. For
the Naive Bayes method, they found that the optimal window size is six. For
the support vector machine, they found that the optimal window size is seven.
For the radial basis function neural network, they found that the best window
size is eight. In dealing with amino acids, they employed the orthogonal coding
mechanism where each amino acid is coded using a 20-bit long orthogonal binary
vector [26].

Although the orthogonal coding mechanism has been widely used for various
protein peptide modelling tasks, it may not well code biological information
in peptides. The bio-basis function neural network was therefore developed for
proper coding of amino acids in 2003 [27], [28]. The bio-basis function neural
network has been successfully used for Trypsin cleavage site prediction [27], HIV
cleavage site prediction [28], [30], [29], disordered protein prediction [31], [32],
phosphorylation site prediction [33], [12], glycoprotein O-linkage site prediction
[34], Caspase cleavage site prediction [35], SARS-CoV protease cleavage site
prediction [36], signal peptide prediction [37], [38], and T-cell epitope prediction
[39]. In all these applications, no regularisation was applied. This means that the
models may possibly overfit to the training peptides. With the regularisation
theory [40], we can constrain the model parameters to trade off between bias
and variance so as to improve model generalisation capability when a proper
regularisation constant is determined. This has been widely studied in neural
network community [41], [42].

In this study, a regularised bio-basis function neural network is implemented
for improving palmitoylation site prediction sensitivity using the data down-
loaded from NCBI. First, the regularised bio-basis function neural network is
introduced and then how data downloaded from NCBI are organised for simu-
lation is discussed. Particularly, the protein-oriented cross-validation strategy is
discussed for proper model construction. A comparison will be given showing if
the regularised bio-basis function neural network can improve the sensitivity for
palmitoylation site prediction.

2 Regularised Bio-basis Function Neural Network

Before discussing the regularised bio-basis function neural network, the bio-
basis function neural net is briefly discussed. Given two peptides si and sj ,

Predicting Palmitoylation Sites 409

the likelihood that they are from the same ancestor through evolution is L =∏d
k=1 p(sik, sjk). Here d is the number of residues in two peptides, p(sik, sjk)

is the probability that both sik and sjk occur in si and sj at the same time.
Applying a logarithm operation on the likelihood function leads to

ρ(si, sj) = lnL =
d∑

k=1

M(sik, sjk) (1)

Here M(sik, sjk) can be found from various mutation matrices [43], [44], [45].
The bio-basis function is designed as follows

φ(si, sj) = exp
(

ρ(si, sj) − ρ(sj , sj)
ρ(sj , sj)

)

(2)

It can be seen that φ(si, sj) ∈ (0, 1]. When si = sj, φ(si, sj) = 1. When si is
very different from sj, φ(si, sj) → 0. By using the log-odds-ratio, a model using
the bio-basis function for peptide classification is defined as

yn =
1

1 + exp (−wT φn)
(3)

Here w = (w0, w1, · · · , w�)
T and φn = (1, φn1, φn2, · · · , φn�)

T . The objective
function with an added regularisation term (neg log pdf + regularisation) is then
defined as

O = −
�∑

n=1

(tn log yn + (1 − tn) log(1 − yn)) +
1
2
λwT w (4)

Here λ is a regularisation constant. The update rule of the parameters is defined
as

Δw = −H−1∇O =
(
ΦT ΛΦ + λI

)−1
(ΦT e − λw) (5)

Here I is an identity matrix, Λ = diag{yn(1 − yn)} is called an entropy matrix,
∇O is the first derivative of O with respect to w,

H = ∇∇O (6)

is the Hessian matrix, e = (e1, e2, · · · , e�)
T , en = tn − yn, and

Φ =

⎛

⎜
⎜
⎜
⎝

1 φ11 φ12 · · · φ1�

1 φ21 φ22 · · · φ2�

1
...

...
...

...
1 φ�1 φ�2 · · · φ��

⎞

⎟
⎟
⎟
⎠

(7)

The learning procedure is designed as below

[1]: c = 0, wc = 0
[2]: Calculate yc = (yc

1, y
c
2, · · · , yc

�)
T , ec and Λc

410 Z.R. Yang

[3]: wc+1 = wc +
(
ΦT ΛcΦ + λI

)−1 (ΦT ec − λwc)
[4]: If ‖wc+1 − wc‖ < ε, stop, otherwise c = c + 1, goto [2].

Here wc is w at cth learning cycle, yc is y at cth learning cycle, ec is e at
cth learning cycle, Λc is Λ at cth learning cycle and ε > 0 is a small number
functioning as a termination rule. The other termination rule is the maximum
training cycle (being set 100 in this paper). In most cases, the first termination
rule is satisfied.

3 Result

3.1 Data

A data set of 55 protein sequences with 90 experimentally confirmed palmitoy-
lation sites was downloaded from NCBI. It has been found that palmitoylation
activity won’t happen if cysteine is not present. We can then scan these 55 pro-
tein sequences to generate peptides with cysteine in the middle (P0). In total,
there are 490 cysteine residues in these 55 protein sequences. There are on aver-
age 8.9 cysteine residues in each protein sequence and less than two of them are
possible palmitoylation sites. The peptide chain with 2n+1 residues is expressed
as Pn − · · · − P1 − P0 − P1′ − · · · − Pn′ .

3.2 Cross-Validation

The next question is then how to use the data for constructing models for pre-
diction. We don’t want a model to overfit the training data in any circumstances.
Cross-validation or jackknife is certainly a way for achieving this goal. However,
the fundamental principle of cross-validation has been very often abused in data
mining protein peptides. In using cross-validation, one important principle is
that we cannot use a data set which has any information exposed to training for
evaluation. If this happens, the model can be very likely over-evaluated. However,
in many applications, this important issue has not been seriously addressed. Sub-
sequences or peptides are normally generated through scanning all the available
protein sequences at first. These generated peptides are then pooled together and
then randomly divided for cross-validation. With this strategy, we may almost
over-evaluate a model or an algorithm. The reason is very simple. Each protein
sequence can be treated as a small world in which mutation (although the under-
line mechanism of it has not yet been completely known) happens in a specific
way which may differ from other protein sequences. If we have generated peptides
before cross-validation, some peptides generated from a protein sequence can be
randomly picked up for training and some peptides generated from the same
protein sequence can be randomly picked up for testing. This means that the
pattern in testing peptides have already partially known in training! To handle
this problem, we have proposed a new strategy called protein-oriented cross-
validation [49], [50]. The core principle of the protein-oriented cross-validation is
to divide protein sequences into k folds at first. For each sequence in each fold,
a sliding window is applied to generate peptides. Cross-validation simulation is
then run based on peptides in these folds.

Predicting Palmitoylation Sites 411

3.3 Sequence Logos

Fig 1 and 2 show the sequence logos for palmitated and non-palmitated peptides.
The logos were produced using the WebLogo1 [47]. Note that the middle cysteine
residue is removed. This means that we are working for the peptides in the
following format Pn −· · ·−P1 −P1′ −· · ·−Pn′ . From Fig 1 and 2, it can be seen
that two classes of peptides show some difference in amino acid distributions.

Palmitated Peptides

weblogo.berkeley.edu

0

1

b
it

s

N

1

Y
W
M
E
A
P
G
V
R
F
S
I

C
N
K
Q
L

2

I

T

N

K

V

Q

P

F

C
S
M
A
R
G
L

3

W

T

V
N
D
R
M

I
A
S
F
E
K
C
G
L

4

Q

P

E

D

I
Y
V
T
M
K
R
A
F
S
G
L
C

5

V

K

H

E

D

Y
P
N
M
W
T
R
F
G
S
Q
I
L
C

6

V

Q

E

D

P
I
F
A
S
T
K
G
R
M
L
C

7

Y
M
D
T
S
R
N

I
K
F
P
A
G
V
C
L

8

M

I

Y
N
K
H
E
A
Q
V
P
F
R
S
G
L
C

9

Y

V

N

E

Q

H

D

W
P
T
A
M
G
K
S
R
L
C

10

Y

T
I
S
K
A
P
N
G
F
V
R
L
C

11

W

Q

N

F

Y
I

H
V
P
G
T
E
R
A
S
K
L
C

12
H

D

V
Q

P
N

I
F
E
A
R
G
T
S
L
K
C

13

M

Q

V
I

G
F
T
P
R
A
E
S
K
L

14

R

A

Y

V

T

I

F

Q

P

K

D

C

E
S
L

C

Fig. 1. Sequence logos generated for palmitated peptides

Non-palmitated Peptides

weblogo.berkeley.edu

0

b
it

s

N

1

H

C

D
Y
M
T
P
K
R
F

I
A
Q
N
W
V
S
E
G
L

2

H

W
M
C
K
Y
Q
N
E
S
I
F
P
T
D
A
G
R
V
L

3

H

M

W
N
R
Y
Q
I

C
T
D
P
K
S
F
A
V
E
G
L

4

W

C

Q
K
R
P
H
D
Y
E
N
T
I
F
A
L
G
V
S

5

W

Y
H
C
M
N
P
K
A
T
R
F
Q
D
S
E
G
I
V
L

6

M

Q
Y
H
C
P
W
F
D
A
R
N

I
G
K
E
S
T
V
L

7

M

Q
H
Y
R
V
P
E
K
G
D
N
C
I
T
F
A
L
S

8

Y
W
D
N

I
G
S
A
K
P
C
T
R
Q
F
E
V
L

9

N
C
W
H
F
R
M
P

I
Q
G
D
T
K
E
A
S
V
L

10

M

H
Y
C
W
K

I
N
D
Q
T
R
A
F
S
P
G
E
V
L

11

M

W

H

C

G
Q
Y
D
A
T
P
K
F
N
V
R

I
E
S
L

12

M

W

Y
E
H
C
G
R
D
T
N
S
Q
F
K

I
V
P
L
A

13

N

W

C

Y
H
F
T
Q
D
K
P
R
V
G
E
A
L
S
I

14

M

N
F
C
Q
H
Y
P
K
R
D
A
T
S
I

G
V
E
L

C

Fig. 2. Sequence logos generated for non-palmitated peptides

1 http://weblogo.berkeley.edu/logo.cgi

412 Z.R. Yang

3.4 Model Evaluation

Two criteria are used for model evaluation. They are the Matthews’ correla-
tion coefficient [46] and the receiver operating characteristic (ROC) curve [48].
Let TN, TP, FN, FP denote true negative (correctly identified non-palmitated
peptides), true positive (correctly identified palmitated peptides), false negative
(palmitated peptides identified as non-palmitated ones) and false positive (non-
palmitated peptides identified as palmitated ones), respectively. The Matthews’
correlation coefficient (MCC) is

MCC =
TN × TP − FN × FP

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(8)

The Matthews’ correlation coefficient measures how the predictions correlate
with the real target values. If the coefficient is positive, the predictions are posi-
tively correlated with the target values. If the Matthews’ correlation coefficient is
zero, the prediction is completely random. For the ROC analysis, we use the area
under a ROC curve (AUR) for the testing set as it is a quantitative measurement
of the robustness of a built model.

3.5 Result

For simulation, we have changed the λ (see Eq. 4) value from the range (0.001,
0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 0.08). The simulation result
using 10 λ values for 6 window sizes (5, 7, 9, 11, 13, and 15) are shown in Fig 3

0 0.05 0.1
0.2

0.4

0.6

0.8

1

λ

M
ea

su
re

Window size=5

0 0.05 0.1
0.4

0.6

0.8

1

λ

M
ea

su
re

Window size=7

0 0.05 0.1
0.4

0.6

0.8

1

λ

M
ea

su
re

Window size=9

0 0.05 0.1
0.4

0.6

0.8

1

λ

M
ea

su
re

Window size=11

Fig. 3. Performance for window sizes 5, 7, 9, and 11

Predicting Palmitoylation Sites 413

0 0.05 0.1

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

Me
asu

re

Window size=13

0 0.05 0.1

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

Me
asu

re

Window size=15

Fig. 4. Performance for window sizes 13 and 15

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

L
ik

el
ih

o
o

d
 v

s
Δ

w

Likelihood vs Δ w

Likelihood
Δ w

5 6 7 8 9 10 11 12 13 14 15

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Window

M
C

C

Naive Bayes vs Bio−Basis Function Neural Net

(a) (b)

Fig. 5. (a) Learning performance using the regularised bio-basis function neural net-
work. (b) MCC comparison between Naive Bayes and Bio-Basis Function Neural Net.

and Fig 4, where the dashed lines are for MCC and the solid lines are for AUR.
It can be seen for almost all cases, small λ values produce better models.

Fig 5 (a) shows the learning performance using the regularised bio-basis func-
tion neural network. It can be seen that the likelihood

∏�
n=1 ytn

n (1 − yn)1−tn is
consistently increasing and the change of weights ‖Δw‖ is decreasing.

3.6 Comparison

Table 1 shows a comparison between different algorithms. It can be seen that
the regularised bio-basis function neural net significantly outperforms the Naive
Bayes, the support vector machine and the radial-basis function neural net. The
best bio-basis function neural network uses 7-mer (in fact 6-mer after removing
P0) peptides and λ = 0.006. The best bio-basis function neural net and the
Naive Bayes show a difference 0.12 in MCC. The best bio-basis function neural
net and the Naive Bayes show a difference 0.09% in specificity. However, the
best bio-basis function neural net and the Naive Bayes show a difference 16.04%
in sensitivity accounting for 27.5% increase! Fig 5 (b) shows a MCC comparison
between the Naive Bayes and the bio-basis function neural network, where the
dash line represents the bio-basis function neural network using various window

414 Z.R. Yang

sizes while the straight solid line represents the performance using the Naive
Bayes method. It can be seen that the latter much outperforms the former.

It has been mentioned above that the best window sizes are six using the
Naive Bayes method, seven using the support vector machine, eight using the
radial-basis function neural network. The regularised bio-basis function neural
network selects the best window size as seven as the support vector machine
which produced the best sensitivity compared with the rest conventional meth-
ods. It should be noted that both the support vector machine and the regularised
bio-basis function neural network use the regularisation theory to improve gen-
eralisation capability. This may be the reason that these two are close in the
prediction sensitivity and the window size.

Table 1. The comparison between different algorithms. Naive Bayes, Support vector
machine and Radial-basis function neural net have no report of AUR measures. The
number within brackets mean the window size used for modelling.

Algorithms λ Specificity Sensitivity MCC AUR

Naive Bayes 93.86% 58.37% 0.562 n.a.
Support vector machine 94.47% 64.44% 0.623 n.a.
Radial-basis function neural net 95.09% 55.51% 0.537 n.a.
Bio-basis function neural net (5) 0.01 89.78% 70.10% 0.581 0.845
Bio-basis function neural net (7) 0.006 95.95% 74.41% 0.682 0.899
Bio-basis function neural net (9) 0.01 93.70% 72.53% 0.660 0.920
Bio-basis function neural net (11) 0.02 95.41% 63.39% 0.652 0.894
Bio-basis function neural net (13) 0.02 93.66% 68.67% 0.644 0.882
Bio-basis function neural net (15) 0.01 89.88% 77.24% 0.636 0.889

It should be noted that the models presented by Zhou et al [24] and Xue et
al [25] used 245 palmitated peptides and 977 non-palmitated peptides compared
with 90 palmitated peptides and 400 non-palmitated peptides. The author is
contacting Zhou et al and Xue et al at the moment for requesting their data.
It is expected that the regularised bio-basis function neural network will even
perform better after their data arrive.

4 Conclusion

This paper has implemented a regularised bio-basis function neural network for
predicting palmitoylation sites in proteins. Through comparison, it has been
found that the new method presented in this paper significantly outperforms
the traditional methods, namely the Naive Bayes method, the support vector
machine and the radial-basis function neural network. We are currently investi-
gating how to use the regularised bio-basis function neural network to produce
sparse models for better interpretation to the trained models. In using the in-
formation provided by the Hessian matrix, we can evaluate the importance of
each bio-basis using the statistic as Zn = wn√

H−1
nn

(∀n ∈ [0, �]). If Zn < ϑ (ϑ > 0

Predicting Palmitoylation Sites 415

is a small number functioning as a threshold), wn can be zeroed or the nth bio-
basis can be removed. A detailed research is undergoing for investigating how to
determine ϑ and how to interpret the left bio-bases in biology.

References

1. Veit, M., Schmidt, M.F.G.: Palmitoylation of viral and cellular proteins. In: In-
fluenza Viruses. Facts and Perspectives, Schmidt, Michael F.G.(Hrsg.) Berlin:
Grosse-Verlag ISBN: 3-9810221-3-0 (2006)

2. Navarro-Lerida, I., Alvarez-Barrientos, A., Rodrguez-Crespo, I.: N-terminal palmi-
toylation within the appropriate amino acid environment conveys on NOS2 the
ability to progress along the intracellular sorting pathways. Journal of Cell Science
119 (2006) 1558–1596

3. Kurayoshi, M., Yamamoto, H., Izumi, S., Kikuchi, A.: Post-translational palmitoy-
lation and glycosylation of Wnt-5a are necessary for its signaling

4. Smotrys, J.E., Linder, M.E.: Palmitoylation of intracellular signaling proteins: reg-
ulation and function. Annu. Rev. Biochem. 73 (2004) 559–587

5. Li, M., Yang, C., Tong, C., Weidmann, A., Compans, R.W.: Palmitoylation of the
murine leukemia virus envelope protein is critical for lipid raft association and
surface expression. J Virol. 76 (2002) 11845–11852

6. Yu, G., Lee, K., Gao, L., Lai, M.M.C.: Palmitoylation and Polymerization of Hep-
atitis C Virus NS4B Protein. Journal of Virology 80 (2006) 6013–6023

7. Peng, Y., Tang, F., Weisman, L.S.: Palmitoylation plays a role in targeting Vac8p
to specific membrane subdomains. Traffic 7 (2006) 1378

8. Poorman, R.A., Tomasselli, A.G., Heinrikson, R.L., Kezdy, F.J.: A cumulative
specificity model for protease from human immunodeficiency virus types 1 and 2,
inferred from statistical analysis of an extended substrate data base. J. Biol. Chem
22 (1991) 14554–14561

9. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE 77 (1989) 257–286

10. Nakata, K., Maizel, J.V.: Prediction of operator-binding protein by discriminant
analysis. Gene Anal Tech 6 (1989) 111–119

11. Chen, C.P., Rost, B.: State-of-the-art in membrane protein prediction. Applied
Bioinformatics 1 (2002) 21–35

12. Senawongse, P., Dalby, A., Yang, Z.R.: Predicting the phosphorylation sites us-
ing hidden Markov models and Machine Learning methods. Journal of Chemical
Information and Computer Science 45 (2005) 1147–1152

13. Vapnik, V.: The Nature of Statistical Learning Theory.Springer-Verlag, New York
(1995)

14. Scholkopf, B.: The kernel trick for distances, Technical Report. Microsoft Research
May (2000)

15. Nielsen, M., Lundegaard, C., Worning, P., Lauemoller, S.L., Lamberth, K., Buss,
S., et al. Reliable prediction of T-cell epitopes using neural networks with novel
sequence representations. Protein Science 12 (2003) 1007–1017

16. Hansen, J.E., Lund, O., Engelbrecht, J., Bohr, H., Nielsen, J.O.: Prediction
of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:
polypeptide N-acetylgalactosaminyltransferase. Biochem J. 30 (1995) 801–813

17. Gutteridge, A., Bartlett, G.J., Thornton, J.M.: Using a neural network and spatial
clustering to predict the location of active sites in enzymes. Journal of Molecular
Biology 330 (2003) 719–734

416 Z.R. Yang

18. Blom, N., Gammeltoft, S., Brunak, S.: Sequence and structure based prediction of
eukaryotic protein phosphorylation sites. J. Mol. Biol 24 (1999) 1351–1362

19. Ehrlich, L., Reczko, M., Bohr, H., Wade, R.C.: Prediction of protein hydration
sites from sequence by modular neural networks. Protein Eng 11 (1998) 11–19

20. Zien, A., Ratsch, G., Mika, S., Scholkopf, B., Lengauer, T. and Muller, K.R.: Engi-
neering support vector machine kernels that recognize translation initiation sites.
Bioinformatics 16 (2000) 799–807

21. Kim, J.H., Lee, J., Oh, B., Kimm, K., Koh, I.: Prediction of phosphorylation sites
using SVMs. Bioinformatics 20 (2006) 3179–3184

22. Zhao, Y., Pinilla, C., Valmori, D., Martin, R., Simon, R.: Application of support
vector machines for T-cell epitopes prediction. Bioinformatics 19 (2003) 1978–1984

23. Koike, A., Takagi, T.: Prediction of protein-protein interaction sites using support
vector machines. Protein Eng Des Sel 17 (2004) 165–173

24. Zhou, F., Xue, Y., Yao, X., Xu, Y.: CSS-Palm: palmitoylation site prediction with
a clustering and scoring strategy (CSS). Bioinformatics 22 (2006) 894–896

25. Xue, Y., Chen, H., Jin, C., Sun, Z., Yao, X.: NBA-Palm: prediction of palmitoy-
lation site implemented in Nave Bayes algorithm. BMC Bioinformatics 7 (2006)
1–10

26. Qian, N., Sejnowski, T.: Predicting the secondary structure of globular proteins
using neural network models. Proceeding of Int J. Conf. On Neural Networks,
(1998) 865–884

27. Thomson, R., Hodgman, T., Yang, Z.R., Doyle, A.: Characterising proteolytic
cleavage site activity using bio-basis function neural networks. Bioinformatics 19
(2003) 1741–1747

28. Yang, Z.R., Thomson, R.: Bio-basis function neural network for prediction of pro-
tease cleavage sites in proteins. IEEE Trans. on Neural Networks 16 (2005) 263–274

29. You, L., Garwicz, D., Rognvaldsson, T.: Comprehensive bioinformatic analysis of
the specificity of human immunodeficiency virus type 1 protease. Journal of Virol-
ogy 79 (2005) 12477–12486

30. Yang, Z.R., Berry, E.: A novel neural learning algorithm for protease cleavage site
prediction. Journal of Bioinformatics and Computational Biology 2 (2004) 511–531

31. Thomson, R., Esnouf, R.: Predict disordered proteins using bio-basis function neu-
ral networks. Lecture Notes in Computer Science 3177 (2004) 19–27

32. Yang, Z.R., Thomson, R., McNeil, P., Esnouf, R.: RONN: use of the bio-basis
function neural network technique for the detection of natively disordered regions
in proteins. Bioinformatics 21 (2005) 3369–3376

33. Berry, E., Dalby, A., Yang, Z.R.: Reduced bio-basis function neural networks in
prediction of phosphorylation sites, a comparative study. Computational Biology
and Chemistry 28 (2004) 75–85

34. Yang, Z.R., Chou, K.C.: Predicting the O-linkage sites in glycoproteins using bio-
basis function neural networks. Bioinformatics 20 (2004) 903–908

35. Yang, Z.R.: Prediction of caspase cleavage sites using Bayesian bio-basis function
neural networks. Bioinformatics 21 (2005) 1831–1837

36. Yang, Z.R.: Mining SARS-CoV protease cleavage data using decision trees, a novel
method for decisive template searching. Bioinformatics 21 (2005) 2644–2650

37. Sidhu, A., Yang, Z.R.: Prediction of signal peptides using bio-basis function neural
networks and decision trees. Applied Bioinformatics 5 (2006) 13–19

38. Yang, Z.R.: Orthogonal kernel machine in prediction of functional sites in preteins.
IEEE Trans on Systems, Man and Cybernetics 35 (2005) 100–106

Predicting Palmitoylation Sites 417

39. Yang, Z.R., Johnathan, F.: Predict T-cell epitopes using bio-support vector ma-
chines. Journal of Chemical Information and Computer Sciences 45 (2005) 1142–
1148

40. Neumaier, A.: Solving ill-conditioned and singular linear systems: A tutorial on
regularization, SIAM Review 40 (1998) 636–666

41. Girosi, F., Jones, M., Poggio, T.: Regularization Theory and Neural Networks
Architectures Neural Computation 7 (1995) 219–269

42. Bishop, C.: Neural Networks for Pattern Recognition, Oxford Press, 1995
43. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in

proteins. matrices for detecting distant relationships. Atlas of protein sequence and
structure 5 (1978) 345–358

44. Henikoff, S., Henikoff, J.G.: Amino acid Substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. 89 (1992) 10915–10919

45. Johnson, M.S., Overington, J.P.: A structural basis for sequence comparisons-an
evaluation of scoring methodologies. Journal Molecular Biology 233 (1993) 716–
738

46. Matthews, B.W.: Comparison of the predicted and observed secondary structure
of T4 phage lysozyme. Biochim Biophys Acta 405 (1975) 442–451

47. Schneider, T.D., Stephens, R.M.: Sequence Logos: A new way to display consensus
sequences. Nucleic Acids Res. 18 (1990) 6097–6100

48. Metz, C.E.: Basic principles of ROC analysis. Seminars in Nuclear Medicine 8
(1978) 283–298

49. Yang, Z.R.: Predicting Hepatitis C virus protease cleavage sites using generalised
linear indicator regression models. IEEE Trans on Biomedical Engineering. 53
(2006) 2119–2123

50. Yang, Z.R.: A probabilistic peptide machine for predicting Hepatitis C virus pro-
tease cleavage sites. IEEE Trans on Information Technology in Biomedicine (in
press)

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 418–429, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Novel Kernel-Based Approach for Predicting Binding
Peptides for HLA Class II Molecules

Hao Yu1, Minlie Huang1, Xiaoyan Zhu1,*, and Yabin Guo2

1 Department of Computer Science and Technology, Tsinghua University
th@mails.tsinghua.edu.cn, {aihuang,zxy-dcs}@tsinghua.edu.cn

2 School of Biomedicine, Ministry of Education Key Laboratory of Bioinformatics,
Tsinghua University, Beijing 100084, P. R. China

gyb06@mails.tsinghua.edu.cn

Abstract. Peptides that bind to Human Leukocyte Antigens (HLA) can be
presented to T-cell receptor and trigger immune response. Identification of
specific binding peptides is critical for immunology research and vaccine
design. However, accurate prediction of peptides binding to HLA molecules is
challenging. A variety of methods such as HMM and ANN have been applied
to predict peptides that can bind to HLA class I molecules and therefore the
number of candidate binders for experimental assay can be largely reduced.
However, it is a more complex process to predict peptides that bind to HLA
class II molecules. In this paper, we proposed a kernel-based method,
integrating the BLOSUM matrix with string kernel to form a new kernel. The
substitution score between amino acids in BLOSUM matrix is incorporated into
computing the similarity between two binding peptides, which exhibits more
biological meaning over traditional string kernels. The promising results of this
approach show advantages than other methods.

Keywords: SVM, string kernel, kernel-based, HLA.

1 Introduction

Major Histocompatibility Complex (MHC) molecules are cell surface glycoproteins
presented on antigen presenting cells. They recognize and bind peptides and then trigger
immune response. MHC molecules derived from human alleles are called Human
Leukocyte Antigens (HLA), which are important for designing vaccines and developing
immunotherapies against cancer and autoimmune diseases[1]. As an example, HLA-
DRB1*0401 is reported to associate with rheumatoid arthritis[2]. Due to the cost
limitation of traditional experimental methods, it is necessary to exploit efficient in
silico methodologies to predict candidate binding peptides to reduce the number of
experiments required for identifying helper T cell epitopes.

HLA genes have different alleles and are therefore highly polymorphic. More than
1800 different HLA molecules have been reported[3], and they can be divided into
two classes, HLA class I and HLA class II, both of which have a groove for binding

* The corresponding author.

ă

 A Novel Kernel-Based Approach for Predicting Binding Peptides for HLA 419

peptides[4]. Unlike HLA class I molecules, the groove of HLA class II molecules is
open at both ends and is not well defined yet. Previous work suggested that HLA
class I molecules can hold peptides of lengths ranging from 8 to 10 amino acids[5],
and length of HLA class II binding peptides could vary from 13 to 25 residues[4]. It is
clear from previous studies that the prediction of binding peptides of HLA II
molecules is much more complex mainly due to 1) the various lengths of reported
binding peptides, 2) the undetermined core regions for individual peptides, and 3) the
number of amino acids permissible as primary anchors[6].

In recent years, a large number of predicting methods have been developed to
identify HLA class I binding peptides, but only a few for HLA class II molecules. All
these approaches can be classified as structure- or sequence-based methods. Structure-
based methods take the crystal structure of HLA molecules into account and evaluate
the compatibility between an HLA molecule and a peptide[7], and some methods even
estimate the binding free energies of a peptide to an HLA molecule[8]. Structure-based
methods are promising but require already known HLA structures. More seriously,
high computational cost limits its large-scale applications.

Sequence-based approaches include three groups: motifs-based approaches,
quantitative matrices and machine learning approaches.

Motif-based approaches[9-11] are the earliest approaches which compute the
frequency of specific amino acids at special position to generate sequence patterns,
then use the patterns to predict binding peptides. However, these methods achieved
high specificity but low sensitivity. Hammer gives a good review[12] for these
approaches.

The second type of methods is based on quantitative matrices[13-15]. These
methods assume the binding affinity between HLA molecules and peptides can be
modeled as the sum of independent residues at each position. Hammer [13] presented
quantitative matrices to calculate weights for each amino acid in every position and
then computed the binding score of peptides. SYFPEITHI[16] is another frequently
used web server for prediction. However, it is difficult to align peptides with various
lengths and quantitative matrix based models require a large amount of training data.
For some kinds of HLA class II alleles, such methods cannot generate matrix models
currently.

Machine learning approaches, such as ANN[1, 6] and HMM[17], using known
binding and non-binding peptides with fixed lengths to train models and then predict
binding peptides., Machine-learning approaches are expected to be more powerful
with the increasing data of HLA binding peptides.

SVM is reported to perform better than any other machine learning prediction
methods[18, 19]. HLA-DR4Pred[2], SVMHC[18], and SVRMHC[20] are recently
reported SVM-based prediction web servers. However, they only examined three
common kernels (linear, Gaussian and polynomial kernels) and still need to extract
9mers from peptides which longer than 9mers.

Most previous methods can only handle a fixed length of peptides (usually 9mers),
or have to identify a fixed length of continuous core region prior to binding prediction,
where this assumption is still biologically questionable, particularly for the non-
binders. Obviously, there is no core region for non-binding peptides. Many alignment
or extracting algorithms[21-24] are proposed to identify the core region in recent years.
Hammer[13], Brusic[6], HLA-DR4Pred[2], MHCPred[25] have developed different

420 H. Yu et al.

matrixes to identify core regions of peptide that binds to HLA-DRB1*0401.
Doytchinova[25] has examined 6 alignment matrixes including the referred ones.
Unfortunately, no overall correlation was found between them. Therefore, matrix-
based alignment approaches is doubtfully.

In our previous study[26], we reported a string kernel method for predicting HLA
class II peptides, which is able to handle binding peptides with various lengths. In this
paper, we propose a novel kernel-based approach, which integrates BLOSUM matrix
with the previous string kernel method. In our approach, there is no need to extract core
regions before binding prediction and a given peptide can be classified as a binder or
non-binder directly. By using BLOSUM matrix to measure the substitution similarity
between amino acids, our approach outperforms previous methods on predicting
benchmark datasets. Comparative results show that our approach is a promising model
for the prediction of binding peptides for many HLA class II alleles.

The rest of this paper is structured as follows: in Section 2, we present the method
of binding peptides prediction using the proposed kernel method in detail. In Section 3,
the datasets and experimental evaluation are stated. In Section 4, we make our
conclusions and discussions.

2 Method

This paper presents a kernel-based method to predict binding peptides of HLA class II
molecules. Kernel-based methods, most integrated with Support vector machines, are
widely used in classification of microarray data, Protein homology detection and
other biological problems[27, 28], which has been proved to performed better than
other prediction methods.

2.1 String Kernel

A function that calculates the inner product for input examples in a feature space is a
kernel function. More formally, is a kernel function for any mapping function from the
object space X to a feature space. The kernel computes the inner product by implicitly
mapping the examples to the feature space. The mapping function transforms a
d-dimensional example x into an N-dimensional feature vector, as follows:

1() ((), , ()) (()), 1, ,
N ix x x x for i Nφ φ φ φ= = = (1)

However, the explicit extraction of features in a feature space generally has very
high computational cost, and a kernel function provides a way to compute in an
implicit feature space. The mathematical foundation of the kernel was established by
Mercer[29].

Kernels have been well integrated into the framework of support vector machines,
which produces the following decision function:

1

* *() sgn{ (,) }
n

i

f x y K x x b
i i i

α
=

= +∑ (2)

 A Novel Kernel-Based Approach for Predicting Binding Peptides for HLA 421

Traditional SVM learning framework requires input objects are represented in
feature vectors, which means the feature space is explicitly constructed. Kernels such
as linear kernel, RBF kernel, and polynomial kernel are widely used in the context.
However, objects, for example, strings and sequences, are not always easy to
represent in a form of feature vector. Kernels for complex objects such as tree kernels
and string kernels have been well-studies for text categorization or relation extraction
[30] in the communities of natural language processing. As peptides can be viewed as
strings, we here adopt string kernel for classifying binding and non-binding peptides
for HLA class II molecules. The sequence of a peptide consists of various numbers of
amino acids, ranging from 9 to 30. More specifically, a peptide can be viewed as a
string whose alphabet consists of twenty amino acids. Given a string s = s1s2s3…s|s|,
string u is the sub-string of s if there exists an integer sequence i = (i1,i2,…,i|u|) (1≤i1

<…<i|u|≤|s|) satisfying uj=sij
for all j = 1,2,…, |u|, which can be denoted by

1 2 | |
: .

ui i ii s u s s s≡ . The length of sub-string s.u is l(s.u) = i|u|-i1+1. The string kernel

that computes the similarity between peptide x and y is defined by

(.) (.)

: . : .

(,)
n

l x u l y u
n

i x u j y uu

K x y λ +

∈∑

= ∑∑∑
(3)

where ∑n is all possible substrings of length n defined on alphabet ∑, and the alphabet
consists of twenty amino acids; λ is a decay factor.

Usually the kernel should be normalized to [0,1] by the below transformation:

(,)
(,)

(,)* (,)
n

n

n n

K x y
K x y

K x x K y y
= (4)

The kernel essentially calculates the similarity between two peptides, and the SVM
classifier makes a prediction by training a hyper-plane implied by supporting peptides.

Example. Consider two short peptides LGE and LEY. If we assume k = 2, there are
five unique sub-strings as follows:

 L-G L-E G-E L-Y E-Y

φ (LGE) λ2 λ3 λ2 0 0

φ (LEY) 0 λ2 0 λ3 λ2

The similarity between LGE and LEY is K(LGE, LEY) = λ5, and K(LGE, LGE) =
K(LEY, LEY) = 2λ4 + λ6. Hence the normalised value is λ5 / (2λ4 + λ6) = λ / (2 + λ2) .
The algorithm has been applied in our previous work [26] and achieved good
performance.

2.2 Incorporating BLOSUM Matrix into String Kernel

String kernel works well for many tasks of sequence classification[30, 31]. However,
difference among different amino acids is not considered since each amino acid is
viewed as a letter equally. We have observed that peptides PKVVKQNTLKLAT and

422 H. Yu et al.

PKIVKQNTLKLAT are both bind to HLA-DRB1∗0401[32] while there is only a
substitution in position 3. In another case, peptide VRSMAAAAA binds to HLA-
DRB1∗0401[32] while TRSMAAAAA does not[33]. We noticed that Val (V) and
Ile(I) are both aliphatic amino acids, but Thr(T) is hydroxyl. It is a reasonable
assumption that the chemical properties of residues may associate with binding affinity.
Thus a substitution from V to I does not change the binding affinity but a replacement
from V to T does. Traditional string kernel is not able to capture such difference.

Therefore, we incorporate BLOSUM matrix into computing the similarity between
two peptides, and propose a new kernel named BLOSUM substitution string kernel
(BSSK). The basic idea is that the probability of a substitution from one amino acid to
another one should be involved in computation of the similarity between peptides. For
example, the similarity between PKVV and PKIV should be larger than that between
PKVV and PKTV although the two pairs both have only one different amino acid,
because the BLOSUM62 substation score for V↔I is 3, while 0 for V↔T. Our
approach works as follows:

First, build a feature vector where each dimension is a sub-string of peptides. Since
binding peptides are short (no more than 40), we take the length of sub-string n = 2
here. The dimension of the feature vector is 20*20=400 (20 types of amino acids),
and each dimension corresponds to a pair of amino acids.

Second, all sub-strings of a given peptide are enumerated. For instance, given a

peptide 1 2... mX x x x= , we have 2n
mC = sub-strings.

Third, calculate the weight value for each dimension of the feature vector. Suppose
one dimension corresponds to a pair fifj, the weight value for this dimension is
computed as the below:

(.)

: . &| |

(,) (* ())l X u
i j i j

i X u u n

w X f f u f fλ β
=

= ↔∑
(5)

Where Equation i :X.u & |u| = n means u is an n-length sub-string of peptide X, u=u1u2,
and

1 2 1 1 2 2
1

(,) (,) [(,) (,) (,) (,)]
2() 2

i j i i j js u f s u f s u u s u u s f f s f f

i ju f fβ
+ − + + +

↔ = (6)

Where s(a1,a2) is the substitution score between amino acid a1 and a2 in BLOSUM
matrix. The substitution factor β(u↔fifj) computes the relative possibility that one
peptide changes to another one.

At last, the kernel between two peptides X and Y is the direct inner product of
weight vectors:

(,) (,)* (,)
i j

i j i j
f f

K X Y w X f f w Y f f
∀

= ∑
(7)

Similarly as Equation (4), the kernel is normalized to [0,1].
In comparison to traditional string kernels, we adopt a substitution factor β(u↔fifj)

from BLOSUM matrix to measure how similar two peptides are although they do not
own the same sub-string. This factor can exhibit more biological knowledge and
meaning than traditional string kernels.

 A Novel Kernel-Based Approach for Predicting Binding Peptides for HLA 423

Example. Consider peptides mentioned early in this section. If we assume n = 2 and
λ = 0.7, the kernel values is shown in Table 1. Our approach successfully confirms
the fact that the similarity between PKVVKQNTLKLAT and PKIVKQNTLKLAT is
larger.

Table 1. Kernel values calculated with two different algorithms

 StringKernel our approach

K(PKVVKQNTLKLAT, PKIVKQNTLKLAT) 0.90 0.97

K(VRSMAAAAA, TRSMAAAAA) 0.96 0.96

2.3 Implementation and Parameter Optimization

We implement our algorithm with the aid of SVMLight[34] package. Here binary
classification is performed to separate binding peptides (with class label +1) from non-
binding ones (with class label -1). Peptides do not need be aligned to extract a core region
before classification because our approach offers computational ability for various
lengths of peptides.

As our previous work[26], Each peptide is represented as a string sequence in which
one character stands for an acid amino. There are still two important parameters in the
method, namely the length of sub-string n and the decay factor λ. To measure the
performance of parameter optimization we carry out 5-folder cross validation and use
Matthews Correlation coefficients to measure the performance.

3 Experiment

3.1 Peptides Dataset

Different methods for MHC binding peptide prediction are hard to compare because
most of them are tested on very small test datasets or unpublished datasets. Therefore,
Our datasets contain peptides with experimentally natural binders or non-binders for
HLA-DRB1*0401 allele. The data are extracted from MHCBench (URL: http://www.
imtech.res.in/raghava/mhcbench/), a major database that offers benchmark datasets
for evaluating the methods for predicting HLA class II binding peptides. Choosing
MHCBench is because MHCBench lists some comparable results from some previously
reported methods and choosing HLA-DRB1*0401 is because it has been well studied.
We use the SET-IVb dataset of MHCBench database according to previous work[26].
The ratio of positive/negative examples is 1:1, and redundant duplicate peptides have
been removed. A set of 584 peptides are obtained.

Three other datasets for the HLA class alleles HLA-DRB1*0101, HLA-DRB1*0301
and HLA-DRB1*1101 are obtained from the MHCBN database[33]. The original
dataset for HLA-DRB1*0101 consists of 585 binder and 131 non-binder peptides.
The dataset for HLA-DRB1*0301 consists of 219 binder and 154 non-binder peptides.
The dataset for HLA-DRB1*1101 consists of 278 binder and 96 non-binders. There are

424 H. Yu et al.

quite unbalanced number of binders and non-binders in these datasets, therefore we
randomly choose binders to keep the ratio of positive/negative examples being 1:1. The
length of most peptides is longer than 12 and the average length of HLA-DRB1*0401 is
26.34, much longer than the other alleles drawn from MHCBN.The size of original
datasets is listed in Table 2.

Table 2. Size of peptides in original datasets for 4 HLA-class II molecules

LengthHLA allele Binder
size

Non-
binder Min Max Ave.

Database

DRB1*0401 292 292 19 35 26.34 MHCBench
DRB1*0101 131 131 8 25 15.44 MHCBN
DRB1*0301 154 154 8 24 17.80 MHCBN
DRB1*1101 96 96 8 24 14.39 MHCBN

3.2 Testing of the Benchmark Data for HLA-DRB1*0401 Allele

The HLA-DRB1*0401dataset is randomly partitioned into five parts. Each time four out
of the five parts are used for training, while the remainder part is used for evaluation.
The average performance of 5-fold cross validation is taken as the final result. The
following measurements are used in our approach:

• Sensitivity: the proportion of correctly predicted binders to all predicted binders,
TP/(TP+FN)

• Specificity: the proportion of correctly predicted non-binders to all predicted non-
binders, TN/(TN+FP)

• PPV: the probability that a predicted binder will actually be a binder, TP/(TP+FP)
• NPV: the probability that a predicted non-binder will be a real non-binder,

TN/(TN+FN)
• Accuracy: the percent of correct predictions
• MCC: Matthews correlation coefficient, which is defined as follows:

()()()()

TP TN FP FN
MCC

TP FN TP FP TN FP TN FN

× − ×=
+ + + +

(8)

50 different models are generated and the best performance is achieved when n=2
and λ=0.72. The results of our approach on the HLA-DRB1*0401 dataset are
compared with those obtained from the Motif-, Matrix- and ANN-based methods.
Since all methods were evaluated on the same dataset, they are directly comparable.
Table 3 shows the comparative results. Note that the results from other methods except
string kernel (see our previous work) are directly reproduced from MHCBench.

It is observed that among the proposed methods, our approach has the best MCC
than other methods. It is also observed that some motif-based methods can get high
specificity (>82%) but very low sensitivity (<35%).

 A Novel Kernel-Based Approach for Predicting Binding Peptides for HLA 425

Table 3. The performance of different prediction algorithms on MHCBench’s SET-IVb dataset
for HLA-DRB1*0401

Method Ref. Sen
(%)

Spec
(%)

PPV
(%)

NPV
(%)

Acc
(%)

MCC

Max,
1993[35]

51.03 67.12 60.82 57.82 59.08 0.1839

Chicz,
1993[4]

34.85 82.95 77.84 42.55 52.54 0.1906
Motif

Rammen
-nse,
1995[9]

68.15 71.92 70.82 69.31 70.03 0.4010

Marshal,
1995[36]

68.15 68.84 68.62 68.37 68.49 0.3699

Brusic,
1998[6]

63.70 64.04 63.92 63.82 63.87 0.2774
Matrix

Borras-
Cuesta,
2000[37]

59.59 57.53 58.39 58.74 58.56 0.1713

ANN
Brusic,
1998 [6]

64.04 64.38 64.26 64.16 64.21 0.2842

String
kernel

Yu,
2006[26]

72.48 70.12 70.63 72.05 71.40 0.4265

Our
approach

 74.83 72.52 73.46 73.81 73.63 0.4731

One reason for the poor performance of some methods is that they relied heavily

on the training dataset and they did not use non-binding data. Another reason is that
string kernel is more suitable for classifying binders and non-binders. A notable
observation is that the performance of ANN-based method appears to be very poor
because it requires that the core region in this dataset has to be determined prior to the
prediction. It is difficult to extract proper 9mer core region from peptides whose
average length is 26.

Some recent methods are not compared on MHCBench dataset because they
focused on different HLA class II molecules[3] or used unpublished data. Burden[1]

presented predictive Bayesian neural network models, and only processed 9AA
peptides. Bhasin[38] also used a SVM method with RBF kernel on another dataset
and they declared to achieve an accuracy of 86.1%, but the performance on a blind
dataset is yet to be experimentally validated.

3.3 Evaluation for Other HLA Class II Alleles

Three datasets for HLA class II alleles HLADRB1*0101, HLA-DRB1*0301 and
HLA-DRB1*1101 are obtained from the MHCBN database as described in Table 2.

Our approach is evaluated with 5-folder cross validation on the three datasets. The
results are list in Table 4. The corresponding λ parameter is 0.6, 0.3, and 0.6,
respectively. The length of sub-strings n is 2.

426 H. Yu et al.

Table 4. The prediction result for other MHC class II alleles

HLA allele
Sen
(%)

Spec
(%)

PPV
(%)

NPV
(%)

Acc
(%) MCC

DRB1*0101 77.84 82.04 78.50 77.89 79.02 0.5808
DRB1*0301 75.99 81.17 79.29 77.51 78.58 0.5697
DRB1*1101 79.89 84.68 84.66 79.78 82.64 0.6450

The result is also compared against those obtained from TEPITOPE (ProPred) [39]

and LP(iterative learning model) [24]. The performance is now evaluated by the area
under the ROC curve (AROC). The ROC curve uses the combination of specificity and
sensitivity to measure the performance. In a ROC curve, the AROC value have a range
of [0, 1]. A purely random prediction model would have an AROC of 0.5, and the
closer AROC is to 1, the better the performance is. Our results are shown in Table 5
and the ROC curve in Fig 1.

Table 5. The average AROC values for three different methods

Method DRB1*0101 DRB1*0301 DRB1*1101
ProPred 0.842 0.585 **

LP 0.779 0.721 **
our approach 0.869 0.802 0.857

** These methods had no results for HLA-DRB1*1101 in [24].

Fig. 1. Roc curves of three HLA class II alleles predicted by our approach

 A Novel Kernel-Based Approach for Predicting Binding Peptides for HLA 427

The experiment shows that our approach contributes promising results for the
prediction of other HLA class II binding peptides. Note that the results in Table 4 are
significantly better than those shown in Table 3. This is because the datasets used in
the two experiments are different (peptides in the first experiment are significantly
longer than those in the second experiment, see Table 2). Another difference is that
the data in the first experiment is larger scale and all the binding peptides have been
experimentally verified. Moreover, the peptides used in the first experiment are
natural peptides. It is observed that predicting longer peptides is more difficult.

4 Discussion and Conclusion

Predicting the binding between HLA molecules and short peptides is still a major task
for immunoinformatics, particularly for HLA class II alleles due to the various lengths
of reported binding peptides and undetermined core regions.

Most previous methods impose a variety of uncertain biological assumptions, for
example, assuming that a fixed length of continuous amino acids (usually 9mers)
stand for the binding region. A number of methods have been proposed to extract core
regions. However, not all HLA II binding peptides has such a region or the region
may be discontinuous.

In this paper, we demonstrated a novel kernel-based approach for predicting binding
peptides for HLA II alleles, which integrates BLOSUM matrix with string kernel. The
approach is competitive to handle various lengths of peptides (thus no need to extract
core regions) and also exhibits better results than other methods. The approach is
simple, easy to implement and do not impose many biological assumptions. In our
approach, more biological knowledge and meaning is exploited by applying substitution
scores in BLOSUM matrix. This is the reason why our approach outperforms others in
our belief.

Acknowledgement

The work was supported by Chinese Natural Science Foundation under grant
No.60272019 and 60321002.

References

1. Burden, F.R. and D.A. Winkler, Predictive Bayesian neural network models of MHC class
II peptide binding. Journal of Molecular Graphics and Modelling, 2005. 23: p. 481-489.

2. Bhasin, M. and G.P.S. Raghava, SVM based method for predicting HLA-DRB1(*)0401
binding peptides in an antigen sequence. Bioinformatics, 2004. 20(3): p. 421-423.

3. Bozic, I., G.L. Zhang, and V. Brusic, Predictive vaccinology: Optimisation of predictions
using support vector machine classifiers, in Intelligent Data Engineering And Automated
Learning Ideal 2005, Proceedings. 2005. p. 375-381.

4. Chicz, R.M., et al., Specificity and promiscuity among naturally processed peptides bound
to HLA-DR alleles. J. Exp. Med., 1993. 178(1): p. 27-47.

428 H. Yu et al.

5. Chen, Y., et al., Naturally processed peptides longer than nine amino acid residues bind to
the class I MHC molecule HLA-A2.1 with high affinity and in different conformations. The
journal of immunology, 1994. 152: p. 2874-2881.

6. Brusic, V., et al., Prediction of MHC class II-binding peptides using an evolutionary
algorithm and artificial neural network. Bioinformatics, 1998. 14: p. 121-130.

7. Schueler-Furman, O., et al., bound peptides: a study of 23 complexes. Folding design,
1998. 3: p. 549-564.

8. Froloff, N., A. Windemuth, and B. Honig, On the calculation of binding free energies
using continuum methods: Application to MHC class I protein-peptide interactions.
Protein Sci, 1997. 6(6): p. 1293-1301.

9. Rammensee, H.G., T. Friede, and S. Stevanovic, Mch Ligands And Peptide Motifs - First
Listing. Immunogenetics, 1995. 41(4): p. 178-228.

10. Meister, G.E., et al., 2 Novel T-Cell Epitope Prediction Algorithms Based On Mhc-Binding
Motifs - Comparison Of Predicted And Published Epitopes From Mycobacterium-
Tuberculosis And Hiv Protein Sequences. Vaccine, 1995. 13(6): p. 581-591.

11. K Falk, O Roetzschke, S Stevanovie, G Jung, HG Rammensee., Allele-specific motifs
revealed by sequencing of self-peptides eluted from MHC molecules, in Nature. 1991. p.
290-296.

12. Hammer, J., et al., New Methods To Predict Mhc-Binding Sequences Within Protein
Antigens. Current Opinion In Immunology, 1995. 7(2): p. 263-269.

13. Hammer, J., et al., Precise Prediction Of Major Histocompatibility Complex Class-Ii
Peptide Interaction Based On Peptide Side-Chain Scanning. Journal Of Experimental
Medicine, 1994. 180(6): p. 2353-2358.

14. Mallios, R.R., Class II MHC quantitative binding motifs derived from a large molecular
database with a versatile iterative stepwise discriminant analysis meta- algorithm.
Bioinformatics, 1999. 15(6): p. 432-439.

15. Sturniolo, T., et al., Generation of tissue-specific and promiscuous HLA ligand databases
using DNA microarrays and virtual HLA class II matrices. Nature Biotechnology, 1999.
17(6): p. 555-561.

16. Rammensee, H.G., et al., SYFPEITHI: database for MHC ligands and peptide motifs.
Immunogenetics, 1999. 50(3 - 4): p. 213-219.

17. Mamitsuka, H.M., Predicting peptides that bind to MHC molecules using supervised
learning of hidden Markov models. Proteins, 1998. 33: p. 460-474.

18. Donnes, P. and A. Elofsson, Prediction of MHC class I binding peptides, using SVMHC.
Bmc Bioinformatics, 2002. 3(1):p.25-32.

19. Zhao, Y.D., et al., Application of support vector machines for T-cell epitopes prediction.
Bioinformatics, 2003. 19(15): p. 1978-1984.

20. Wan, J., et al., SVRMHC prediction server for MHC-binding peptides. BMC
Bioinformatics, 2006. 7(1): 463.

21. Brusic, V., et al. Data Cleansing for Computer Models: A Case Study from Immunology.
in Proceedings of ICONIP99, The Sixth International Conference on Neural Information
Processing. 1999.

22. Nielsen, M., et al., Improved prediction of MHC class I and class II epitopes using a novel
Gibbs sampling approach. Bioinformatics, 2004. 20(9): p. 1388-1397.

23. Karpenko, O., J. Shi, and Y. Dai, Prediction of MHC class II binders using the ant colony
search strategy. Vol. 35. 2005: Elsevier Science. 147-156.

24. Murugan, N. and Y. Dai, Prediction of MHC class II binding peptides based on an
iterative learning model. Immunome Research, 2005. 1(1): 6.

 A Novel Kernel-Based Approach for Predicting Binding Peptides for HLA 429

25. Doytchinova, I.A. and D.R. Flower, Towards the in silico identification of class II
restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for
affinity prediction. Bioinformatics, 2003. 19(17): p. 2263-2270.

26. Yu, H., X. Zhu, and M. Huang. Using String Kernel to Predict Binding Peptides for MHC
Molecules. in the 8th International Conference on Signal Processing. 2006. Guilin, China:
IEEE Press. p. 2499-2502.

27. Saigo, H., et al., Protein homology detection using string alignment kernels.
Bioinformatics, 2004. 20(11): p. 1682-1689.

28. Zhao, X.M., Y.M. Cheung, and D.S. Huang, A novel approach to extracting features from
motif content and protein composition for protein sequence classification. Neural
Networks, 2005. 18(8): p. 1019-1028.

29. J, M., Functions of positive and negative type and their connection with the theory of
integral equations. Philos. Trans. Soc, 1909. 209: p. 415-446.

30. Lodhi, H., et al., Text classification using string kernels. Journal Of Machine Learning
Research, 2002. 2(3): p. 419-444.

31. Brown, M.P.S., et al., Knowledge-based analysis of microarray gene expression data by
using support vector machines. PNAS, 2000. 97(1): p. 262-267.

32. Brusic, V., G. Rudy, and L.C. Harrison, MHCPEP, a database of MHC-binding peptides:
update 1997. Nucl. Acids Res., 1998. 26(1): p. 368-371.

33. Bhasin, M., H. Singh, and G.P.S. Raghava, MHCBN: a comprehensive database of MHC
binding and non-binding peptides. Bioinformatics, 2003. 19(5): p. 665-666.

34. Joachims, T., Making large-Scale SVM Learning Practical. Advances in Kernel Methods -
Support Vector Learning, ed. B.S.a.C.B.a.A. Smola. 1999: MIT-Press.

35. Max, H., et al., Characterization of peptides bound to extracellular and intracellular HLA-
DR1 molecules, in Human immunology. 1993, Elsevier/North-Holland.: [New York,
N.Y.]. p. 193.

36. Marshall, K.W., et al., Prediction of peptide affinity to HLA DRB1*0401. J Immunol,
1995. 154(11): p. 5927-5933.

37. Borras-Cuesta, F., et al., Specific and general HLA-DR binding motifs: comparison of
algorithms. Human Immunology, 2000. 61(3): 266.

38. Bhasin, M. and G.P.S. Raghava, Prediction of CTL epitopes using QM, SVM and ANN
techniques. Vaccine, 2004. 22(23-24): p. 3195-3204.

39. Singh, H. and G.P.S. Raghava, ProPred: prediction of HLA-DR binding sites.
Bioinformatics, 2001. 17(12): p. 1236-1237.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 430–440, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Database for Prediction of Unique Peptide Motifs as
Linear Epitopes

Margaret Dah-Tsyr Chang1, Hao-Teng Chang1, Rong-Yuan Huang1,
Wen-Shyong Tzou2, Chih-Hong Liu3, Wei-Jun Zhung3, Hsien-Wei Wang3,

Chun-Tien Chang4, and Tun-Wen Pai3,*

1 Institute of Molecular and Cellular Biology & Department of Life Science,
National Tsing Hua University, Hsinchu, Taiwan, Republic of China

2 Institute of Bioscience and BioTechnology, National Taiwan Ocean University,
Keelung, Taiwan, Republic of China

3 Department of Computer Science and Engineering, National Taiwan Ocean University,
Keelung, Taiwan, Republic of China

4 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan,
Republic of China

twp@mail.ntou.edu.tw

Abstract. A linear epitope prediction database (LEPD) is designed for identifi-
cation of unique peptide motifs (UPMs) as specific linear epitopes for all
protein families defined by Pfam. The UPMs in LEPD are extracted from each
protein family by employing reinforced merging techniques that merge the
primary unique patterns into a consecutive peptide based on the neighboring
relationships and various levels of parameter settings. These merged peptide
motifs are examined using the physicochemical and structural propensity scales
for antigenic characteristics and are verified by employing background model
analysis for specificity. The filtered UPMs with high antigenicity and
specificity are considered as linear epitopes that provide important information
for designing antibodies and vaccines. The predicted epitopes of each protein
family in the LEPD can be searched in a straightforward manner, and the
corresponding chemical properties be displayed in graphical and tabular
formats. To verify the specificity of the predicted epitopes, each identified UPM
is analyzed by scanning over the complete genomes of a series of model
organisms. For any query protein possessing a resolved 3D structure, the
proposed database also provides interactive visualization of the protein
structures for allocation and comparison of the predicted linear epitopes. The
accuracy of the prediction algorithm is evaluated to be higher than 70% in terms
of mapping a UPM as a linear epitope as compared to the known databases.

Keywords: unique peptide motif, linear epitope, antigenicity, specificity,
protein family.

Availability: The linear epitope prediction database is available at http://
140.121.196.30/LEPD, and the details of the proposed algorithm can be
referred to the documents as described previously (1,2).

* Corresponding author.

ă

 A Database for Prediction of Unique Peptide Motifs as Linear Epitopes 431

1 Introduction

Antigen-antibody interactions facilitate the identification and characterization of
specific molecular recognition in vivo and in vitro. In general, the most remarkable
features of this special class of protein-protein interactions are the high affinity and strict
specificity among antibodies and their respective antigens. Structural determination by
employing NMR and X-ray crystallography have revealed that antibodies recognize the
unique conformations and spatial locations composed of sequential or gapped regions
on the antigen surface (3,4). Therefore, epitopes are defined as the portions of antigen
molecules exhibiting complementary structural interactions with the antigen
determinants of antibodies (5,6). B-cell epitopes are classified as either linear or
discontinuous epitopes (conformational epitopes). The former comprise a single
continuous stretch of amino acids within a protein sequence, while the latter possess
distantly separated fragments in a protein sequence resulting in physical proximity due
to the protein folding mechanism. Generally speaking, there exist three types of
computer-based methods for predicting potential B-cell epitopes. The first method
applies physicochemical and structural propensity scales for linear epitopes from the
primary sequence of a protein. The second method is based on a comparative
mechanism that takes into consideration the amino acid sequence and the structural
similarity among proteins in terms of known antigenicities. The last method is derived
from the integration of structural features such as surface accessibility and loop
characteristics with an existing B-cell epitope motif database (7). Most available epitope
prediction tools are designed to analyze a single query protein sequence at a time
(7,8,9,10,11). These tools mainly focus on analyzing the chemical property of the
specified protein sequence itself or comparing it directly with the known epitope
databases. In this study, unlike the conventional methods, we propose a pre-analysis
module that performs multiple sequence-based searches followed by a comparison
operation to extract potential epitopes from a set of closely related proteins and
generates a novel database for linear epitopes based on their respective antigentic
characteristics. We believe that the predicted epitopes obtained by comparing with their
related family sequences can provide more accurate results from the viewpoint of
designing protein-specific antibodies.

A protein family, and its related domains, is defined as a set of proteins that possess a
common evolutionary origin. The relationship between the common biophysical and
biochemical properties of a protein family can be easily observed from the high sequence
identity, structural homology, or similar biological functions (12). However, certain
multifunctional enzymes possess high sequence identity but differential biological
functions other than the common catalytic abilities; this is presumably due to the
molecular interactions with different cellular compartments. Therefore, the identification
of the localizations and compositions of the unique peptide motifs (UPM) in each
member of a protein family to establish correlation with their unique functions could
yield useful information. In the proposed database, the categorized protein families were
defined by Pfam—a comprehensive database containing 8957 families in the current

432 M.D.-T. Chang et al.

release version (21.0). Each family is manually curated and is represented by two
multiple sequence alignments, two profile hidden Markov models (HMMs), and an
annotation file (13).

To evaluate the physicochemical properties of the query sequences, approximately
500 normalized amino acid scales were identified from the AAindex database (14); each
scale assigns a value to each of the 20 amino acids. To enhance the antigenicity of the
searched unique peptide motifs, the proposed LEPD also provides evaluation functions
for the users. Various combinations of parameters and weighting coefficients can be
selected to visualize the positions of the linear epitopes.

2 Algorithms for Linear Epitope Prediction

Linear epitopes are predicted by bottom-up merging techniques that identify the UPMs
from all classified protein families defined by Pfam (1,13). The proposed system
employs a sequence-based search algorithm that consists of a three-phase operation
comprising clustering, searching, and merging modules. The clustering phase based on
hierarchical clustering techniques is an optional process that facilitates the classification
of the 20 amino acids according to the specified BLOSUM/PAM series of matrices
(15,16). The clustered groups can also be simply customized according to the user’s
preference. In the search phase, the system executes exact or approximate string
matching to extract the fundamental UPMs referred to as primary patterns. The length
of the primary pattern is selected as a parameter for extracting the appropriate
fundamental units in order to construct a representative UPM. The rule of thumb for
primary pattern lengths is that a longer length is set for similar sequences and a shorter
one for dissimilar sequences. In other words, if the pattern length selected as the primary
pattern in a diverging sequence set is longer than required, then a larger set of
fundamental unique patterns is obtained resulting in a high false-positive rate.
Therefore, a suitable primary pattern length should be selected so as not to produce
several fundamental UPMs, and the identified patterns are expected to merge to form a
longer merged segment. To calculate the optimal length of the primary patterns and
formulate a linear epitope database, we propose an intelligent decision algorithm in this
study. The general rule for determining the optimal primary pattern length is to find the
maximal production between the percentage of unique primary patterns and the
percentage of non-merged sites. The percentage of unique primary patterns is calculated
as the ratio of the number of unique primary patterns with a specified length to the total
number of all possible segments with the same specified length. The percentage of non-
merged sites is computed as the ratio of the number of non-merged sites after the
merging operations with the specified criteria to the total number of residues of all the
imported sequences. In the proposed system, we investigate the pattern lengths in the
range of 8 to 15 as the optimal length for the identification of linear epitopes. After the
length setting for the primary pattern is determined, the search module executes the
Boyer-Moore algorithm to efficiently retrieve all primary patterns based on previous
clustering definitions. Each searched fundamental segment is analyzed based on

 A Database for Prediction of Unique Peptide Motifs as Linear Epitopes 433

its appearance frequencies, and its representation level of uniqueness is calculated for
the subsequent merging processes.

In the last phase of the merging algorithms, the system initiates a methodology to
extract unique primary patterns by the bottom-up merging processes. The construction
of a merged segment w from overlapped primary patterns u and v is formulated in
Eq. (1).

w(i)=
()
() ,21

;1

lmimiflmiv

miifiu

−≤≤++−
≤≤

 (1)

where w(i) is the ith residue of w ; m, the length of u and v ; and l, the number of
overlapped residues. In addition, as the merged UPMs from the query sequences are
allocated, the LEPD ranks the identified segments according to the four default key
features to represent the following antigenic properties of amino acids: hydrophilicity,
charge, number of prolines, and the proximity of the segments towards the N- or
C-terminal end of the protein. A higher rank indicates stronger antigenicity in the
UPMs. Consequently, segments with a higher rank may be suggested to serve as a
suitable linear epitope or peptide antigen for generation of a specific antibody (1).
However, the coarse definition of the antigenicity of distinct amino acids may not be
sufficient to represent the details of the chemical propensity of each amino acid.
Therefore, the proposed system also provides the well-known physicochemical and
structural propensity scales for the user’s selection. Details regarding this are
discussed in the subsequent section.

3 Physico-Chemical and Structural Propensity Scales

When the UPMs extracted from a protein family are ordered, the antigenicity of each
candidate can be reexamined by using the physicochemical and structural propensity
scales. Herein, several properties are considered for recognizing a UPM as an ideal
epitope. They include hydrophilicity/hydrophobicity, bent features (secondary
structure, mainly beta-turns), surface accessibility, polarity, and mobility and/or
flexibility characteristics. These basic biophysical parameters are calculated with
various weights and considered for the determination of potential epitopes. In order to
extract the local optimal and continuous segments from a sequence, we consider the
profile of a chemical propensity scale as a signal function f(i) = ∑

j
(i)jfjc , where i is

the ith residue, fj(i) represents the scores from the jth chemical property at the ith
residue, and cj is the weighting coefficient of the jth chemical property. Using the
derived chemical propensity function, we can design an algorithm to extract
continuous segments wf with antigenicity higher than a defined threshold value. To
efficiently extract a continuous stretch from a sequence based on its related antigentic
profiles, we employ the techniques of grayscale mathematical morphology to filter out

434 M.D.-T. Chang et al.

the segments with local maximal scales. Four basic morphological operations,
including dilation, erosion, opening, and closing operations, are defined in theory. A
function of the chemical propensity profile, f(i), is represented as a discrete signal in a
real-valued function on R. The signal has values only at the discrete point, where i
assumes only integer values, and is represented at the ith residue of the query sequence.
Hence, the basic grayscale morphological operations can be denoted as follows:

Erosion: (f , g) f g)}({

,

min xif
igx

Dilation: (f , g) f g)}({

,

max xif
igx

Opening: (f , g) f g ((f , g), g) f g] g

Closing: (f , g) f g ((f , g), g) [f g] g

where i and x denote the position of an amino acid under evaluation, f is a real-valued
discrete signal, and g is a predetermined function of the structuring element. The
dilation of f by g at the ith position is the maximal value of all points f(i + x) such that

gx ∈ , and the erosion of f by g at the ith position is the minimal value of all points

f(i + x) such that gx ∈ . The closing operation involves first considering the dilation

of f by g followed by an erosion operation by g. For the opening operation, the
transformation is considered to be the erosion of f by g prior to performing the
dilation operation on the eroded function by using g.

Both the opening and closing operations use function g once as a structuring element
to compensate for the shift effect due to the first erosion or dilation when g is not a
symmetric function. Grayscale morphological dilation and erosion are defined from a
functional viewpoint where the dilation and erosion operations cause the “expanding”
and “shrinking,” respectively, of the envelope of a function. The opening transformation
cuts off the local positive peaks, whereas the closing transformation fills up the local
valleys from the original function. Therefore, in this study, we employ morphological
opening operations to first cut off the local peaks, and then the difference between the
original and opened function are obtained to reveal the local peaks. Once the local peaks
are derived, we only need to evaluate the length of the continuous segments. The lengths
of the corresponding structuring elements are selected according to the required epitope
length. If we assume the typical length of a peptide segment for an epitope to be between
5 and 15, then the size of the structuring function can be set as 5. We present an example
of local peak extraction from an original chemical propensity profile. In Figure 1(a), the
original chemical propensity profile of the ECP_HUMAN sequence is calculated and
normalized in the range of [0,1] by considering the following default weighted
coefficients: 0.4 for secondary structure feature, 0.3 for hydrophilicity property, 0.15 for
surface accessibility, and 0.15 for flexibility. The eroded and opened profiles are shown
in Figure 1(b) and 1(c), respectively. The difference between the original and opened
functions is obtained and displayed in Figure 1(d). Finally, Figure 1(e) demonstrates the
application of a size filter to extract the continuous segments that satisfy the minimal
length requirement.

 A Database for Prediction of Unique Peptide Motifs as Linear Epitopes 435

(a)

(b)

(c)

(d)

(e)

Fig. 1. Chemical propensity profiles of the ECP_HUMAN sequence and the corresponding
local continuous segment extraction by the combination of morphological operations

436 M.D.-T. Chang et al.

4 Results and Discussion

The LEPD provides complete identified UPMs with various antigenic priorities from
all the clustered protein family sequences listed in Pfam. Moreover, the REMUS system
(http://140.121.196.30/REMUS/) facilitates the online analysis of linear epitope
prediction. Using this system, the users can input any query protein data set for
analysis rather than selecting the default protein family defined by Pfam. Both systems
are implemented on IIS with Windows Server as the operating system and the web
interface is written in PHP.

To illustrate the practical application of the LEPD, the major operation steps are
demonstrated in the following figures. Figure 2 shows the keyword search interface
for a preferred protein family and the corresponding identified linear epitopes. In the
current version, 8957 protein families available in Pfam (release 21.0) have been
analyzed completely. The UPMs of each query protein family are arranged
alphabetically by the interface. As shown in Figure 3, a user can click on a specific
protein family displayed on the screen shown in Figure 2; on clicking, the predicted
linear epitopes are identified and listed according to their antigenicity rank.

In Figure 4, the selected chemical properties, including hydrophilicity, hydrophobicity,
surface accessibility, polarity, secondary structure, etc., for each predicted linear epitope
are shown for advanced analyses. Moreover, the resolved 3D structural information of all
protein families or domains can be displayed and analyzed simultaneously for their
secondary structural features, surface accessibilities, and relative geometrical positions.
The predicted linear epitopes can be displayed in an interactive manner in a web browser
for 3D visualization by incorporating with the Jmol (http://jmol.sourceforge.net/)
technology, as shown in Figure 5.

The linear epitopes can be validated by a variety of biochemical and biophysical
methods such as Western blotting, enzyme-linked immunosorbent assay (ELISA),
immunoprecipitation, and X-ray crystallography. The prediction results can provide
researchers valuable information regarding peptide antigen design and the structural
determination of the heterocomplexes formed by specific antigen-antibody
interactions. In this study, the performance of the bottom-up merging algorithms for
the prediction of linear epitopes is evaluated by adopting the epitopes of human
monoclonal antibodies retrieved from the website of Santa Cruz Biotechnology, Inc.
(http://www.scbt.com/), which focuses on the ongoing development of antibodies for
research. Among the 21337 entries listed in the database, 3450 monoclonal antibodies
with a specified epitope length of less than 300 amino acid residues are generated
against human antigens; these are classified into 70 human protein families containing
a total of 260 protein sequences. Each set of the protein family sequences is collected
from seed sequences of Pfam database and analyzed employing the bottom-up
merging algorithms. It is found that 582 UPMs are located within the antibody-
antigen recognition sites of 55 monoclonal antibodies; this indicates that the average
accuracy of matching at least one of the UPMs with the reported epitopes of the
antibodies of selected protein family is 78.6% (55/70). It should be noted that Pfam
database is constructed based on sequence homology of conservative functional

 A Database for Prediction of Unique Peptide Motifs as Linear Epitopes 437

domains, therefore the most variable segments as potential linear epitopes of protein
family sequences, frequently the terminal regions, are excluded in the database. As
compared with our previous reports in which full length protein family sequences
were derived from GeneBank database (1,2), less UPMs were obtained in LEPD.

To further evaluate the specificity of the searched UPMs, we conduct background
model analysis by scanning the identified UPMs over the completed genome species.
Since all the UPMs listed in our database are derived by identifying the common
sequence stretches during the multiple sequence comparison of closely related protein
families, it is expected that the identified UPMs are quite rare in the rest areas of the
genomes. Considering the RNase A-type families as an example, we obtain 30 seed
sequences clustered in the family set and 47 UPMs are allocated under the default
settings. As expected, when each predicted epitope is scanned over the completed
genome provided by the NCBI database (ftp://ftp.ncbi.nih.gov/genomes/), only 6 out
of the 47 candidates appear in more than one species. This advanced analysis provides
an additional filter for improving the specificity of antigenic epitope selection. In
summary, we have developed a novel database for the prediction of the linear
epitopes located in all protein families listed in Pfam. Antigens designed based on the
identified UPMs are advantageous in differentiating one member of a large protein
family due to the nature of specific molecular recognition.

Fig. 2. Search interface and the related linear epitopes of each protein family listed in Pfam

438 M.D.-T. Chang et al.

Fig. 3. Specified RNase A-type protein family and the corresponding linear epitopes in the
decreasing order of antigenticity

Fig. 4. Chemical properties, including hydrophilicity, hydrophobicity, surface accessibility,
polarity, secondary structure, etc., of each predicted linear epitope

 A Database for Prediction of Unique Peptide Motifs as Linear Epitopes 439

Fig. 5. 3D structural representation and detailed information of each identified linear epitope of
the selected protein (PDB ID: 1agi:A, ANGI_BOVIN)

Acknowledgments. This work is supported by Center for Marine Bioscience and
Biotechnology (CMBB), National Taiwan Ocean University and National Science
Council (grants NSC 95-2221-E-019 -032 to Tun-Wen Pai, NSC95-2627-B007-003
and NSC95-2622-B-007-001-CC3 to Margaret Dah-Tsyr Chang) in Taiwan, R. O. C.

References

1. Chang, H.T., Pai, T.W., Fan, T.C., Su, B.H., Wu, P.C., Tan, C.Y., Chang, C.T., Liu, S.H.,
and Chang, M.D.T. (2006) A reinforced merging methodology for mapping unique peptide
motifs in members of protein families. BMC Bioinformatics 7:38.

2. Pai, T.W., Chang, M.D.T., Tzou, W.S., Su, S.H., Wu, P.C., Chang, H.T., and Chou, W.I.
(2006) REMUS: a tool for identification of unique peptide segments as epitopes. Nucleic
Acids Res. 34, Web Server Issue. W198-201.

3. Mackay, I.R, Rowley, and M.J. (2004) Autoimmune epitopes: autoepitopes. Autoimmun
Rev. 3, 487-92.

4. Sharon, M., Rosen, O., and Anglister, J. (2005) NMR studies of V3 peptide complexes
with antibodies suggest a mechanism for HIV-1 co-receptor selectivity. Curr Opin Drug
Discov Devel. 8, 601-12.

5. Schlessinger, A., Ofran, Y., Yachdav, G., amd Rost, B. (2006) Epitome: database of
structure-inferred antigenic epitopes. Nucleic Acids Res, 34, Database issue D777-780.

6. Kulkarni-Kale, U., Bhosle, S., and Klaskar, A.S. (2005) CEP:a conformational epitope
prediction server. Nucleic Acids Res, 33, Web server issue W168-171.

440 M.D.-T. Chang et al.

7. Roggen,E. (2006) Recent Developments with B-Cell Epitope Identification. J. of
Immunotoxicology, 3:137-149.

8. Sollne, J., and Mayer, B. (2006) Machine learning approaches for prediction of linear B-
cell epitopes on proteins. J Mol Recognit. 19, 200-208.

9. Saha, S., and Raghava, G.P. (2006) AlgPred: prediction of allergenic proteins and mapping
of IgE epitopes. Nucleic Acids Res. 34, Web server issue, 202-209.

10. Alix, A.J. (1999) Predictive estimation of protein linear epitope by using the program
PEOPLE,. Vaccine, 18, 311-314.

11. Jones, S., and Thomton, J.M. (1997) Analysis of protein-protein interaction sites using
surface patches. J. Mol.Biol., 272, 121-132.

12. Houslay, M.D., Schafer, P., and Zhang, K.Y. (2005) Keynote review: phosphodiesterase-4
as a therapeutic target. Drug Discov. Today, 10, 1503-1519.

13. Finn, R., Mistry, J., Schuster-Böckler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T.,
Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S., Sonnhammer, E., and
Bateman, A. (2006) Pfam: clans, web tools and services. Nucleic Acids Res. Database Issue
34:D247-D251.

14. Kawashima, S. and Kanehisa, M. (2000), AAindex: Amino acid index database. Nucleic
Acids Res. 28:374.

15. Dayhoff, M.O. (1978) A model of evolutionary change in proteins. Atlas of Protein
Sequence and Structure, 5, Suppl 3, 345-352.

16. Henikoff, S., and Henikoff, J.G. (1992) Amino acid substitution matrices from protein
blocks. Proc. Natl. Acad. Sci. USA, 89, 10915-10919.

A Novel Greedy Algorithm for the Minimum

Common String Partition Problem

Dan He

Department of Computer Science, University of Vermont
Burlington, VT 05405, USA

Abstract. The Minimum Common String Partition problem (MCSP)
is to partition two given input strings into the same collection of sub-
strings, where the number of substrings in the partition is minimized.
This problem is a key problem in genome rearrangement, and is closely
related to the problem of sorting by reversals with duplicates. MCSP
is NP-hard, even for the most trivial case, 2-MCSP, where each letter
occurs at most twice in each input string. There are various approxima-
tion algorithms which can achieve very good approximation ratios but
with complicated implementations, for example, 1.5-approximation al-
gorithm for 2-MCSP, 1.1037-approximation algorithm for 2-MCSP and
a 4-approximation algorithm for 3-MCSP. There is also a simple greedy
algorithm for MCSP which extracts the longest common substring from
the given strings at each step. In this paper, we propose a novel greedy
algorithm for MCSP, where we extract the longest common substring
containing a symbol occurring only once at each step whenever there is
a such symbol. We show our algorithm is more “worst case” greedy at
each step than the greedy algorithm and the expected performance of
our algorithm is better than that of the greedy algorithm. Our experi-
ments show that our method achieves a better partition on average than
the greedy algorithm does. Another advantage of our algorithm is that
it is much faster than the greedy algorithm.

1 Introduction

A typical problem for string comparison is given a set of string operations (e.g.,
delete, insert, substitute, move a substring, reverse a substring), find the mini-
mum number of operations needed to convert a string to the other. Edit distance
and permutation sorting by reversals are two well known examples. The Mini-
mum Common String Partition problem (MCSP) is to partition two given input
strings into the same collection of substrings, where the number of substrings in
the partition is minimized. This problem is motivated by genome rearrangement,
and is closely related to the problem of sorting by reversals with duplicates.

A partition of a string S is a sequence P = (P1, P2, ..., Pm) of substrings
whose concatenation is S, namely P1P2...Pm = S. The substrings Pi are called
blocks of P . Given two partitions P, Q for two strings S1, S2, respectively, the
pair π = (P, Q) is a common partition of S1 and S2 if P is a permutation of Q.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 441–452, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

442 D. He

The Minimum Common String Partition problem (MCSP) is to find a common
partition of two given strings S1, S2 with the minimum number of blocks. And we
define k-MCSP the version of MCSP where each letter occurs at most k times
in each input string. The optimal common partition is not necessarily unique.

The property related, namely each symbol has the same number of occur-
rences in two strings, is necessary and sufficient for these two strings to have
common partitions. This property can be verified in linear time. And in the rest
of the paper, we assume this property is held by the two input strings.

The motivation of the MCSP problem is mainly genome rearrangement ap-
plications. It was first introduced by Chen et al. [1]. They point out that MCSP
problem is closely related to the problem of sorting by reversals with duplicates,
a key problem in genome rearrangement. The size of the partition of two strings
S1 and S2 can be considered as a novel distance measure between S1 and S2, as
claimed by Chrobak et al.[3]. Besides the classical edit-distance measure which
is defined as the number of three classical edit operations: insertion, deletion
and substitution, there are various kinds of distance measures ([4], [5], [6], [7],
[8], [9]) considering block operations in string comparison.

Lots of algorithms have been developed for MCSP. Cormode and Muthukr-
ishnan [4] propose an O(lognlog∗n)-approximation algorithm for the edit dis-
tance with moves problem, a more general case of MCSP; Chen et al. [1]
describe a 1.5-approximation algorithm for 2-MCSP; Goldstein et al. [2] give a
1.1037-approximation algorithm for 2-MCSP and a 4-approximation algorithm
for 3-MCSP; Chrobak et al. [3] propose a 3-approximation greedy algorithm for
2-MCSP, which they called Algorithm Greedy. Algorithm Greedy also achieves
an approximation ratio of at least Ω(logn) for 4-MCSP and an approximation
ratio between Ω(n0.43) and O(n0.69) for general MCSP. Chrobak et al. [3] claim
that the implementation of the greedy algorithm, which extracts the longest com-
mon substring in each step, is considerably simple than the implementations of
other approximation algorithms with tighter approximation ratios. Therefore the
greedy algorithm is a likely choice for MCSP in many practical situations.

In this paper, we propose a novel greedy algorithm based on the longest
common substring strategy. We first count the number of occurrences for each
symbol in the strings and then extract the longest common substring containing a
symbol with only one occurrence. If there is no such symbol, we apply the greedy
strategy of Chrobak et al. [3] to extract the regular longest common substring.
After each extraction we mark the substring extracted and reduce accordingly
the number of occurrences of the symbols in the extracted substring. We apply
this procedure iteratively until all the symbols are marked. We show the worst
case scenario of our method is no worse than that of the greedy algorithm. And
if there are such longest common substrings containing a symbol with only one
occurrence, our method has a better worse case scenario than that of Algorithm
Greedy. Our experiments on randomly generated strings show that our algorithm
achieves a better partition on average than Algorithm Greedy does. Another
advantage of our algorithm is that it is much faster than Algorithm Greedy.

A Novel Greedy Algorithm for the MCSP 443

The outline of this paper is as follows: In Section 2 we summarize previous
greedy algorithm from Chrobak et al. [3] and present a novel greedy algorithm.
We show the results of our experiments in Section 3. We include our final remarks
in Section 4.

2 Iterative Greedy Algorithm

2.1 Iterative Greedy Algorithm

Chrobak et al. [3] propose a simple greedy algorithm for the MCSP which ex-
tracts a longest common substring from the given strings each step. They also
claim that the idea of this greedy algorithm is simple and it is a good choice for
solving MCSP in many practical situations. They prove that the approximation
ratio of their greedy algorithm is 3 for 2-MCSP, Ω(logn) for 4-MCSP and be-
tween Ω(n0.43) and O(n0.69) for general MCSP. They also give out an example
where the Greedy algorithm fails to find the optimal partition. For two given
strings S1 = cdabcdabceab and S2 = abceabcdabcd, Algorithm Greedy returns
the partition:

〈(c, d, abcdabc, e, ab), (ab, c, e, abcdabc, d)〉
while the optimal partition is 〈(cdabcd, abceab), (abceab, cdabcd)〉.

Our Iterative Greedy algorithm is based on Algorithm Greedy of Chrobak et
al. [3]. We build a profile for the number of unmarked occurrences of each symbol
in the given strings. Then we extract the longest common substring containing
a symbol with only one occurrence. If there is no such symbol, we apply the
greedy strategy of Chrobak et al. [3] to extract the regular longest common
substring. After each extraction we mark the substring extracted and reduce
accordingly the number of occurrences of symbols which occur in the substring
being extracted. We apply this procedure iteratively until all the symbols are
marked. The algorithm is described in detail with pseudo-code in Figure 1.

Using the same example as in Chrobak et al. [3], we show that our It-
erative Greedy algorithm can find the optimal common partition. Given two
strings S1 = cdabcdabceab and S2 = abceabcdabcd, Algorithm Greedy returns
〈(c, d, abcdabc, e, ab), (ab, c, e, abcdabc, d)〉. While according to our Iterative
Greedy algorithm, we first build the profile of the number of occurrences for
each unmarked unique symbol:

〈(a − 3), (b − 4), (c − 3), (d − 2), (e − 1)〉

Therefore we pick symbol e and find the longest common substring containing
e, namely abceab. After we mark the substring abceab in both strings, we reduce
the number of occurrences for each symbol accordingly:

〈(a − 1), (b − 2), (c − 2), (d − 2), (e − 0)〉

Next we pick a and find the unmarked longest common substring contain-
ing a, namely cdabcd. Now there is no unmarked substrings. We then obtain

444 D. He

Iterative Greedy Algorithm
Assume S1 and S2 are two related input strings
Initialize all symbols in S1 and S2 to be unmarked
Build the profile of the number of unmarked occurrences and
their positions for each unique symbol in S1 and S2

While there are symbols in S1 or S2 unmarked {
If there are symbols occurring only once {

Pick up the first symbol k occurring only once
S ← unmarked longest common substring of S1 and S2 containing symbol k

}else{
S ← unmarked longest common substring of S1 and S2

}
Mark one occurrence of S in each of S1 and S2 as blocks
Mark the corresponding occurrences in the profile for each symbol in S
Update the corresponding numbers of unmarked occurrences for each symbol in S

}
(P,Q) ← sequence of consecutive marked blocks in S1 and S2

Fig. 1. Iterative Greedy Algorithm

the common partition 〈(cdabcd, abceab), (abceab, cdabcd)〉, which is the optimal
common partition.

However, our method can not guarantee the optimality of the partition ei-
ther. For example, given two strings aabccbx and ccbaabx, our method returns
〈(aa, b, cc, bx), (cc, b, aa, bx)〉, while the optimal partition is 〈(aab, ccb, x),
(ccb, aab, x)〉. Although our method is not optimal either, we show in the next
several subsections that the worst case scenario of our method is no worse than
the Greedy algorithm and the expected performance of our algorithm is better
than that of Algorithm Greedy.

2.2 Preliminaries

We use the same annotations by Chrobak et al. [3]. Given two related strings A
and B, if π is a common partition of A and B, #blocks(π) is the number of blocks
in π, which is also the size of π. A bijection ξ: [n] → [n] (where [n] = {1, 2, ..., n})
preserves letters of A and B if bξi = ai for all i ∈ [n]. A pair of consecutive
positions i, i+1 ∈ [n] is called a break of ξ if ξ(i+1) �= ξ(i)+1. We use #breaks(ξ)
to denote the number of breaks in ξ and we have #blocks(ξ) = #breaks(ξ) + 1.
A substring S = apap+1...ap+s is written as set of indices p, p+1, ..., p+s, where
|S| = s + 1 is the length of S. If S is a common substring of A and B, SA, SB

are then the occurrences of S in A, B respectively. For a common substring S of
A and B, ξ respects S if it maps consecutive letters of SA = apap+1...ap+s onto
consecutive letters of SB = bqbq+1...bq+s, namely ξ(i) = i + q − p for i ∈ SA.

Chrobak et al. [3] introduce reference common partition of A and B that
respects all the blocks S1, ..., St−1 selected by Algorithm Greedy in steps 1 to
t-1. Reference common partitions are used to estimate the “damage” caused
by Algorithm Greedy. It may introduce more breaks and include more blocks
gradually.

A Novel Greedy Algorithm for the MCSP 445

For t = 0, 1, ..., g where g is the number of steps of Greedy on A and B, the
reference common partition ρt is defined inductively as follows. Initially ρ0 = π
where π is the minimum common partition and ρ0 is the corresponding bijection
of π. For any step t = 1, .., g, suppose SA

t = {p, p + 1, ..., p + s} and SB
t =

{q, q + 1, ..., q + s}. Function δ : SA
t → SB

t is defined as δ(i) = i + q − p for
i ∈ SA

t . Then ρt is defined by [3]

ρt(i) = min
{

δ(i) for i ∈ SA
t

ρt−1(δ−1ρt−1)l(i)(i) for i ∈ [n] − SA
t

(1)

where l(i) = min{λ ≥ 0 : ρt−1(δ−1(ρt−1))λ(i) /∈ SB
t }. So for i ∈ [n] − SA

t , ρt(i)
is the first symbol not in SB

t on the G-path (we give definition of G-path in the
following paragraph) starting from i.

Chrobak et al. [3] introduces annotations of G-paths and G-cycles to analyze
the introduction of new breaks. A bipartite graph G ⊆ [n]× [n] has edges (i, ρ(i))
for i ∈ [n] (we call ρ-edges) and edges (i, δ(i)) for i ∈ SA (we call δ-edges). Let
S

A
= [n] − SA and S

B
= [n] − SB. Without loss of generality, we assume SA

and S
A

as the sets of nodes on the “left-hand” side of G and we assume SB and
S

B
as the sets of nodes on the “right-hand” side. Then each node in S

A
and S

B

is incident to one ρ-edge and each node in SA and SB is incident to one ρ-edge
and one δ-edge. Therefore G is a collection of vertex disjoint paths and cycles
with edges alternate between ρ-edges and δ-edges. They are called G-paths and
G-cycles. An example of G-paths is shown in the upper part of Figure 2.

Chrobak et al. [3] showed that each partition introduces at most 4 breaks.

Lemma 1. [3] For each t=0,1,...,g, (a)ρt is a common partition of A, B, (b)ρt

respects S1, ..., St and (c) if t > 0 then #breaks(ρt) ≤ #breaks(ρt−1) + 4.

Notice that in this lemma the information that S has maximum length is not
used. So the construction of ρt can be used to convert any common partition π
into another partition π′ that has at most 4 breaks more than π. Chrobak et al.
[3] show that new breaks can be introduced by the endpoints of SA, the breaks
inside SA, and the endpoints of SB.

Chrobak et al. [3] give an example shown in Figure 2. The upper part is
reference common partition, which we call ρ, the lower part is new common
partition after extracting the longest common substring SA = SB = abccababd.
We call the new common partition ρ′. And we use ρA, ρ′A to denote the partitions
on the first string in ρ and in ρ′, respectively, and use ρB, ρ′B to denote the
partitions on the second string in ρ and in ρ′, respectively. As we can see, there
are 4 more breaks in ρ′, which are introduced by the two endpoints of SA and
the two endpoints of SB: The break between block 7 and block 8 and the break
between block 8 and block 9 in ρ′A are introduced by the two endpoints of SA.
The break between block 1 and block 8 and the break between block 8 and block
6 in ρ′B are introduced by the two endpoints of SB. The two breaks inside SA,
which are the break between block 3 and block 4 and the break between block
4 and block 5 in ρA, also introduce two new breaks: the break between block

446 D. He

Fig. 2. The example given by Chrobak et al. [3]. The upper part is the reference
common partition ρ and the lower part is the partition after extracting the unmarked
longest common substring abccababd. The upper part also shows some G-paths.

3 and 4 and the break between block 2 and 3 in ρ′A. However, these two new
breaks are “compensated” by the covering of SA on the two old breaks. So the
total number of breaks increases only by 4.

However, the endpoints and the old breaks in SA do not necessarily introduce
new breaks in ρ′. If the endpoint of SA is either the left symbol or the right
symbol of a break in ρA (we simply say that the endpoint is a break), which
indicates that SA starts from or ends at the break in ρ, then the endpoint will
not introduce new break. For example, in Figure 2, if we assume the lower part
as a reference common partition and the unmarked longest common substring
is abccababd, then the endpoints of this substring will not introduce new breaks.
This is because the endpoints of this substring are also the breaks in the reference
common partition and the substring does not cover any break and thus does not
modify any block in the reference common partition. The same principle can be
also applied to the endpoints of SB.

For the old breaks in SA, assume i, i+1 in SA is a break in ρ, then ξ(i+1) �=
ξ(i)+1, where ξ is the bijection from A to B in ρ. Otherwise i, i+1 can not be a
break since its corresponding bijection in B must also be a break. If δ(i) �= ξ(i)
and δ(i+1) �= ξ(i+1), where δ is the bijection from SA to SB in ρ′, this old break
introduces a new break in ρ′. This means that if the bijections of both i, i + 1
in ρ are different from the bijections of i, i + 1 in ρ′, the old break introduces
a new break. This is shown in Figure 2, where the two old breaks in SA intro-
duce two new breaks. However, if one of the bijections of i, i+1 in ρ is the same as

A Novel Greedy Algorithm for the MCSP 447

its corresponding bijection in ρ′, namely if δ(i) = ξ(i) or δ(i+1) = ξ(i+1), then
the old break does not introduce new break in ρ′.

Lemma 2. Assume i, i + 1 is a break in SA of ρ. If δ(i) = ξ(i) or δ(i + 1) =
ξ(i + 1), then the break i, i + 1 in SA of ρ does not introduce a new break of ρ′.

Proof. We prove this lemma by contradiction. Assume the old break i, i + 1 in
SA of ρ introduces a new break j, j + 1 of ρ′A. And without loss of generality,
assume δ(i) = ξ(i). According to the definition of ρt(i) in Equation (1) and the
definition of G-path, and since j, j+1 ∈ [n]−SA is a new break in ρ′A, there must
be a G-path starting from j and passing through i. For example, in sequence A
of the upper part of Figure 2, a G-path starts from a b in block 1 and passes
through a b in block 3. Then there is a k ∈ SB such that δ−1(k) = i and also
there is a f ∈ A such that ξ(f) = k, where k, f stand for positions. And we also
have δ(i) = k in ρ′ since δ is the bijection from SA to SB. Since δ(i) = ξ(i), we
then have ξ(f) = ξ(i). However, ξ is a bijection that preserves letters of A and
B, there can not be i �= f such that ξ(f) = ξ(i). Therefore the old break i, i + 1
in SA does not introduce a new break.

2.3 Worst Case Scenario

The worst case scenario for Algorithm Greedy is that the extraction of the longest
common substring can introduce as bad as 4 more breaks. Chrobak et al. [3]
show an example of the worst case scenario in Figure 2. As shown in Figure 2,
the 4 more breaks come from the two endpoints of SA and the two endpoints
of SB. The two old breaks in S = abccababd also introduce to two new breaks
in ρ′ since the bijections of both sides of the two breaks in ρ are not equal to
their corresponding bijections in ρ′. However, since SA covers two old breaks,
the total number of breaks is not increased by the introduction of the two new
breaks.

While for our Iterative Greedy algorithm, if there is a symbol x occurring only
once, the extraction of the longest common substring S containing x introduces
at most 2 breaks in ρ′.

Lemma 3. If there is a symbol x occurring only once, the extraction of the
longest common substring S containing x introduces at most 2 breaks in ρ′.

Proof. There are two cases:

1. x is an internal symbol of S
2. x is one of the endpoints of S

Since x occurs only once, there is only one way of bijection for it. Therefore
ξ(x) = δ(x) (We call x is a match symbol, and if H is a substring and ξ(a) = δ(a)
for all a ∈ H , we call H is a match substring). In case (1), since x is a match,
there must be a common string f of length at least 1 containing x and f is
a match substring(f can be x itself and then be a match symbol). Therefore
the two breaks of the endpoints of f are the old breaks in SA of ρ. Since the

448 D. He

inner side of the two breaks are both match symbols, according to Lemma 2,
these two breaks will not introduce new breaks. And since they are covered by
S, the total number of breaks in ρ′ are reduced by 2. So the number of breaks
can be increased by at most 4 − 2 = 2. In case (2), without loss of generality,
let’s assume x is the right endpoint of S. Since S is maximally extended, and
S can not be right extended, and x is a match symbol, x then must also be a
break in ρ and therefore it does not introduce a new break. Since S is a common
string, the right endpoints of both SA and SB do not introduce new breaks.
What’s more, according to our analysis for case (1), there must also be a match
substring f containing x. Therefore, the break of the left endpoint of f in S does
not introduce any new break. Then the number of breaks can be increased by
at most 4 − 2 − 1 = 1.

One example for case (1) is the two given strings are aabccbxbccbaa and
ccbaabxbaabcc. Our Iterative Greedy algorithm returns 〈(aa, b, cc, bxb, cc, b, aa),
(cc, b, aa, bxb, aa, b, cc)〉, while the optimal partition is 〈(aab, ccb, x, bcc, baa), (ccb,
aab, x, baa, bcc)〉. x occurs only once and is a match symbol. The longest common
substring containing x is S = bxb and x is an internal symbol in S. The number of
partition increases by only 2. Our example of two strings aabccbx and ccbaabx is
in case (2). Our Iterative Greedy algorithm returns 〈(aa, b, cc, bx), (cc, b, aa, bx)〉,
while the optimal partition is 〈(aab, ccb, x), (ccb, aab, x)〉. The symbol x occurs
only once and is a match symbol. The longest common substring containing x
is S = bx and x is the right endpoint of S. The number of partition increases by
only 1.

Since our Iterative Greedy algorithm extracts longest common substring con-
taining a symbol occurring only once when there is such a symbol, and extracts
regular longest common substring when there is no such a symbol, the worst
case scenario of each step by our method, which introduces 2 more breaks, is
no worse than the worst case sceneario by Algorithm Greedy, which introduces
4 more breaks. The expected performance of our Iterative Greedy algorithm is
better than Algorithm Greedy since once there is a symbol occurring only once,
our algorithm is guaranteed to introduce no more than 2 more breaks, while
Algorithm Greedy may still introduce 4 more breaks. But since there are cases
that in all steps no unmarked symbol occurring only once, our Iterative Greedy
algorithm has the same approximation ratio as that of the Greedy Algorithm,
which is Ω(3) for 2-MCSP, Ω(logn) for 4-MCSP and an approximation ratio
between Ω(n0.43) and O(n0.69) for general MCSP. Our experiments on hundreds
of pairs of randomly generated strings indicate that the expected performance
of our Iterative Greedy algorithm is better than that of Algorithm Greedy.

2.4 Time Complexity

Another advantage of our Iterative Greedy algorithm over Algorithm Greedy
of Chrobak et al. [3] is the time complexity. In Algorithm Greedy, each step
we need to extract the unmarked longest common substrings. This would take
O(n) time with a suffix tree, where n is the length of the given two strings. In

A Novel Greedy Algorithm for the MCSP 449

our Iterative Greedy algorithm, we first build a profile for all the symbols in the
given strings. The profile contains the numbers of unmarked occurrences for each
symbol, and the positions of these occurrences. Building the profile takes O(n)
time. If there is no symbol occurring only once, we apply the greedy strategy
to extract the regular longest common substring and the step takes O(n) time
too. However, if there are symbols occurring only once, our algorithm takes only
O(r) time to walk through the profiles and to find these symbols. Here r is the
size of the alphabet of the unmarked substrings in the given strings. After we
find the first symbol with only one unmarked occurrence, we just maximally
extend the symbol to both directions to extract the longest common substring
containing the symbol. The extraction of a substring would change the number
of unmarked occurrences for those symbols in this substring and result in the
reduction of r if the numbers of unmarked occurrences of some symbols become
0. And it is also possible that the numbers of unmarked occurrences of some
symbols become 1, which can make our next step of extraction efficient. Although
the time complexity depends on the quality of partitions, namely the number of
steps, our experiments on randomly generated strings indicate that our Iterative
Greedy algorithm is faster than Algorithm Greedy of Chrobak et al. [3].

3 Experiments

We conduct two sets of experiments on randomly generated strings and all the
experiments are done on an Intel Celeron 1.8GHz processor with 256M memory.

In the first set of experiments, we generate random strings using similar way as
that of Chen et al. [1]. The four components (n, r, k, t) denote the parameters of
a pair of related strings. We first generate n distinct symbols as a string of length
n, then we randomly pick two symbols and substitute all occurrences of them
with a same new symbol. The process terminates until r singletons are left in the
string. Therefore these are general MCSP problems. We apply two operations
on the strings. The first is k reversals whose endpoints are uniformly distributed
with the size of the string. A reversal on substring s[i], s[i+ 1], ..., s[j − 1], s[j] is
to reverse this substring to s[j], s[j − 1], ..., s[i + 1], s[i]. The second is t moves.
A move is to randomly pick up a substring and move the substring to a random
position. In our experiments, we set n as 2000, r as 500. Notice that this setting
is reasonable since real genomes consists of lots of different genes and we consider
each gene as a symbol here. So the number of different genes can be very large
and 500 is reasonable. We first fix k as 40 and test the cases of t as 0, 20,
40, 60, 80, 100, respectively, and then fix t as 40 and test the cases of k as 0,
20, 40, 60, 80, 100, respectively. We apply both our Iterative Greedy algorithm
and Algorithm Greedy of Chrobak et al. [3] on each (n, r, k, t) setting, and we
test 10 independent instances of randomly generated strings for each parameter
setting and show the average performances of each algorithm. In this set of
experiments, the sizes of common partitions obtained by our Iterative Greedy
algorithm and Algorithm Greedy are always the same, which indicates that for
randomly generated strings, the Greedy algorithm performs well and it’s hard

450 D. He

Fig. 3. The execution times our Iterative Greedy algorithm and the Greedy algorithm
[3], for randomly generated strings without repeats (a) and with repeats (b), respectively

to generate cases where Iterative Greedy algorithm is better. However, as shown
in Figure 3 (a), our Iterative Greedy algorithm is always faster than Algorithm
Greedy.

In the second set of experiments, we randomly generate pairs of repeats (re-
peats like abcdabcd) and insert them into the string of length n. We set the
occurrences of each symbol to be at most twice. Therefore this is 2-MCSP. We
set the repeats to be no longer than 40. And we test the same parameter set-
tings (n, r, k, t) as those in the first set of experiments. We also test different (k, t)
pairs where k, t ∈ {0, 20, 40, 60, 80, 100}. We again apply our Iterative Greedy
Algorithm and Algorithm Greedy of Chrobak et al. [3] on 10 instances of ran-
domly generated strings and show the average performances of each algorithm.
The experiment results are shown in Figure 3 (b) and Figure 4. The average
performance of our Iterative Greedy algorithm is no worse than that of Algo-
rithm Greedy for each parameter setting. As shown in Figure 4, our Iterative
Greedy algorithm finds a better common partition in most of the cases. The
most significant advantage of our algorithm over Algorithm Greedy we have ob-
tained is 23, where t = 100 and k = 0. Also we can observe that the operation of

A Novel Greedy Algorithm for the MCSP 451

#Move

#Reverse

0 20 40 60 80 100

0 0 0 4 7 11 18

20 1 2 3 3 5 6

40 1 2 2 5 5 6

60 1 1 4 5 5 7

80 1 1 3 4 6 6

100 1 3 4 5 7 7

Fig. 4. The size of common partition by Algorithm Greedy over the corresponding
size by our Iterative Greedy algorithm. The numbers of Reverses and Moves are set to
be 0, 20, 40, 60, 80, 100, respectively. We show the average performance of 10 randomly
instances for each Reverse-Move set.

Move affects the performance of our algorithm much more than Reverse. This is
reasonable since Reverse would generate many blocks of length 1, therefore our
Iterative Greedy algorithm would have no advantage over Algorithm Greedy.
On the other hand, Move would generate long blocks where it is easy for our
algorithm to make improvements. When there are many repeats, as shown in the
example in Figure 2, our Iterative Greedy algorithm can perform much better.
In this set of experiments, the execution time of our Iterative Greedy algorithm
is much faster than that of Algorithm Greedy, as shown in Figure 3 (b). Com-
pared with the first set of experiments, the execution time of Greedy algorithm
doesn’t change much, on the contrary, the execution time of our Iterative Greedy
algorithm improves a lot. This is because the extraction of a substring would
result in the number of unmarked occurrences of the symbols in this substring
to be either 0 or 1, which makes our algorithm efficient. Therefore, as our exper-
iments indicate, the repeats in the string not only improve the execution time
of our Iterative Greedy algorithm, but also improve the quality of the common
partition obtained by our algorithm. This set of experiments clearly indicates
the expected performance of our Iterative Greedy algorithm is better than that
of Algorithm Greedy.

4 Conclusion

In this paper, we propose a novel greedy algorithm for the minimum common
string partition problem where we first try to extract the longest common sub-
string containing a symbol occurring only once. We show that our Iterative Greedy
algorithm has better expected performance than that of Algorithm Greedy by
Chrobak et al. [3]. Our experiments show that this algorithm could achieve signif-
icant advantages over Algorithm Greedy in both time complexity and quality of
the partition, especially when there are many repeats in the strings.

452 D. He

References

1. X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi and T. Jiang. Computing the
assignment of orthologous genes via genome rearrangement. Proc. of Asia Pacific
Bioinformatics Conference 2005, Jan 18-20, pp. 363-378, 2005.

2. A. Goldstein, P. Kolman, J. Zheng. Minimum common string partition problem:
hardness and approximation. Proc. of International Symposium on Algorithms and
Computation (ISAAC04), pp.484-495, LNCS 3341, Hong Kong, China, 2004.

3. M. Chrobak, P. Kolman, J. Sgall. A greedy algorithm for the minimum common
string partition problem. Proc. 7th. International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems (APPROX’04), LNCS 3122,
Springer 2004, pp. 84-95.

4. G. Cormode, J.A. Muthukrishnan. The string edit distance matching with moves.
Proc. 13th Annual Symposium on Discrete Algorithms (SODA), pp. 667-676, 2002

5. J.B. Kruskal and D. Snakoff. An anthology of algorithms and concepts for sequence
comparision. In Time Warps, String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison, Edited by David Sankoff and Joseph B. Kruskal,
Addison-Wesley, 1983.

6. D. Lopresti, A. Tomkins. Block edit models for approximate string matching. The-
oretical Computer Science 181, pp. (159-179) 1997.

7. D. Shapira, J.A. Storer. Edit distance with move operations. Proc. 13th Annual
Symposium on Combinatorial Pattern Matching (CPM), pp. 85-98, 2002.

8. W.F. Tichy. The string-to-string correction problem with block moves. ACM Trans.
Computer Systems 2, pp. (309-321) 1984.

9. G.A. Watterson, W.J. Ewens, T.E.Hall, and A. Morgan. The chromosome inversion
problem. J. of Theoretical Biology, 99: 1-7 1982.

An Efficient Algorithm for Finding

Gene-Specific Probes for DNA Microarrays�

Mun-Ho Choi, In-Seon Jeong, Seung-Ho Kang, and Hyeong-Seok Lim

Dept. of Computer Science, Chonnam National University,
Yongbong-dong 300, Buk-gu, Gwangju 500-757, Korea

howork@paran.com, isjung0@hotmail.com,
kinston@natural.chonnam.ac.kr, hslim@chonnam.ac.kr

Abstract. The accuracy of a DNA microarray is fairly dependent on
the quality of the probes it uses; a good probe should be specific for
exactly one gene. Most sequence based algorithms use the edit distance
to the target sequences as the measure of the specificity of the probe. We
propose a novel algorithm for finding gene-specific probes which avoids
large amounts of redundant computations of the edit distance, while
maintaining the same accuracy as that provided by an exhaustive search.
Our approach utilizes the fact that when the starting position of a probe
candidate is moved only a few base pairs, the change in the edit distance
to the off-target sequence is limited. The proposed algorithm does not
use any index structures and is insensitive to the length of the probes.
Our approach enables short (20∼30 bases) or long (50 or more bases)
probes to be computed for genomes of size 10M within a day.

1 Introduction

The DNA microarray is a widely used tool to perform rapid experiments on a
large scale in areas such as gene discovery and mapping, gene regulation studies,
diagnosis, drug discovery, and toxicology[13]. In general, microarrays have been
constructed with two types of probes, PCR-generated probes that typically range
in size from 200 to 2,000 base pairs and oligonucleotide probes that are between
20 and 70 nucleotides long[4].

The accuracy of a microarray is fairly dependent on the quality of the selected
probes. Good probes (homogeneity) should have similar reaction conditions,
(sensitivity) should not form stable secondary structures that may interfere
with the probes in forming heteroduplexes during hybridization, and (speci-
ficity) should be totally specific to their respective targets to avoid any cross-
hybridization.

Empirically, the optimum probe for a gene would be the one with the minimum
hybridization free energy for the target gene and the maximum hybridization
free energy for all other genes in the hybridizing pool. Thermodynamic ap-
proaches are used to calculate the hybridization energy and to predict secondary
structures[22,3].
� This work was supported by the Korea Research Foundation Grant funded by the

Korean Government(MOEHRD)(KRF-2005-041-D00747).

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 453–464, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

454 M.-H. Choi et al.

Given the current uncertainties in the hybridization energy in a chip envi-
ronment[3], most biologists use the working hypothesis that the specificity of a
probe can be well approximated by the dissimilarity to the target sequences[12].
For the sake of accuracy and convenience, most researchers use the edit distance
as a dissimilarity measure.

Searching for similar patterns in DNA sequences can be considered as the
traditional approximate string matching problem. There exist numerous algo-
rithms that conduct approximate searches using the edit distance[16], the fastest
of which is based on so-called bit-parallelism[15,8].

Another approach to accelerate approximate string matching is filtering[6]. To
filter out uninteresting parts of text in a reasonable time, index structures for
the text, such as a suffix tree or q-grams, are used[16]. However, in the context
of probe design, the existing indexing schemes do not perform well in practice,
because genome data are very large and the size of the DNA alphabet is only
four. Some index structures require a large amount of memory (several times the
text size), while others suffer from a low filtering ratio[16].

Currently, for the inspection of the probe specificity, in computational biol-
ogy, two approaches are commonly used. Some applications perform a homology
search with BLAST. This approach uses the heuristics to speed up the search;
but cannot guarantee that all significant matches will be found[18]. Other appli-
cations use similarity search algorithms based on the filtering scheme that does
not lose any significant matches[6].

In this paper, we propose a novel filtering approach which does not use any
index scheme. Our approach takes advantage of the intra-similarities between
the probe candidates. Typically, all consecutive substrings of the gene sequence
are potential probe candidates, thus, the computation time can be reduced by
utilizing the fact that when the starting position of a probe candidate is moved
only a few base pairs, the change in the edit distance to the off-target sequence
is limited.

2 Preliminary and Related Work

We will use the following notation with strings. We assume that strings are
sequences of characters from a finite character set Σ. The ith character of a
string s is denoted by si, and si..j denotes the substring of s that begins at the
ith position and ends at the jth position. The first character has index 1, and
so s = s1..|s|. In particular, if j < i, then si..j = ε, an empty string; if i ≤ 0, then
si..j = s1..j; if j > |s|, then si..j = si..|s|. We will use the notation st to denote
the concatenation of the strings s and t.

Approximate string matching. The approximate string matching problem
can be stated as follows. Given a text T of length n, a pattern P of length m,
and an integer k, find all text positions j such that the suffix of T matches P ,
allowing at most k errors(differences). We use the term error level to refer to
α = k/m.

An Efficient Algorithm for Finding Gene-Specific Probes 455

The distance determines how different two strings are. The edit distance be-
tween two strings, x and y, is defined as the number of edit operations that
transform x into y or vice versa. The most common form of edit distance is the
Levenshtein edit distance, for which the allowed edit operations are insertions,
deletions, and substitutions of a single character. Another choice of distance
is the Hamming distance which allows only replacements. We will use ed() to
denote the Levenshtein edit distance.

The canonical dynamic programming (in short DP) algorithm for the deter-
mination of the edit distance between a text T1..n and a pattern P1..m computes
an (m+1)×(n+1) DP matrix D[0..m, 0..n] in time O(mn) using the recurrence
relation

D[i, j] = min

⎧
⎨

⎩

D[i − 1, j − 1] + δij

D[i − 1, j] + 1
D[i, j − 1] + 1

⎫
⎬

⎭
, where δij =

{
0, if Pi = Tj

1, otherwise.

For the global edit distance problem, the base conditions are D[i, 0] = i and
D[0, j] = j. ed(T1..j, P1..i) = D[i, j], and so ed(T1..n, P1..m) = D[m, n].

We denote the edit distance of approximate string matching as edA(), for
which the base conditions are D[i, 0] = i and D[0, j] = 0, since an occurrence can
start anywhere in the text. The edit distance of approximate string matching be-
tween a text T1..n and a pattern P1..m is edA(T1..n, P1..m) = min0≤j≤n{D[m, j]},
since an occurrence can end anywhere in the text.

The DP algorithm was refined to O(kn) by Ukkonen[24] in the case where only
the hits of a pattern in a text with at most k mismatches are significant. The
speed of the canonical algorithm was further increased using bit-parallelism[15,8].
The key idea is to use the differences between the entries of the DP matrix
instead of their absolute values (see Property 1) in order to take advantage of
the intrinsic parallelism of the bit operations inside a computer word and so
reduce the number of operations. The number of operations that an algorithm
performs can be reduced by a factor of w, where w is the number of bits in a
computer word. This technique permits a running time of O(�m/w�n) to be
achieved.

Property 1. [23] In the DP matrix, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n,

(a) Δhi,j = D[i, j] − D[i, j − 1] ∈ {−1, 0, +1},
(b) Δvi,j = D[i, j] − D[i − 1, j] ∈ {−1, 0, +1},
(c) Δdi,j = D[i, j] − D[i − 1, j − 1] ∈ {0, +1}.

Another approach to accelerate approximate string matching is filtering. General
filtering criteria are based on the Pigeonhole principle. If T matches pattern P
with k errors, and P = z1z2...zj(a concatenation of subpatterns), then some
substring of T matches at least one of the zi’s, with �k/j� errors[1]. Based on
this condition, if we divide a pattern into k + 1 non-overlapping subpatterns,
then at least one of the subpatterns has to match without error. Thus, text
areas that have no perfect match to then subpatterns can be discarded from
further consideration.

456 M.-H. Choi et al.

The performance of filtering algorithms, however, is very sensitive to the error
level, since it affects the amount of text that has a potential match. Also, a
filtering algorithm is normally unable to discover the matching text positions by
itself and, consequently, these potential match positions then need to be verified
with another algorithm(e.g., bit-parallel algorithm).

For filtering algorithms to run in a reasonable amount of time for a long
text, they use an index scheme. Indexing based on a suffix tree requires an
unrealistically large amount of memory (12 to 70 times the text size). Other
algorithms based on q-grams have reasonable memory requirements, but work
well with only a small number of allowed mismatches. The suffix array, which
strikes a compromise between the required memory and search time, has been
shown to be useful, but still requires a large amount of memory(four times the
text size)[17]. One important class of algorithms used for this problem consists
of those that are hybrid in the sense that they reap the benefits of suffix tree
traversal and filtering based on q-grams[14,17,7,11].

Probe design problem. In general, multiple probes per gene are used in de-
signing microarrays, in order to obtain reliable quantitative information of gene
expression[5,2]. Thus, lots of probe candidates have to be generated. Typically,
all consecutive substrings of the gene sequence are potential probe candidates
and the probe design problem can be solved based on probe candidates elimina-
tion. Initially, for every gene g, every segment(substring) of gene g whose length
is l is assumed to be feasible as a probe. “Bad” probe candidates are filtered
out using the three criteria: homogeneity, sensitivity, and specificity. Specificity
filtering is the most time consuming phase because the dissimilarities between
all probe candidates and all other genes in the genome should be checked.

There exist many probe design tools (see ref. [18]). To determine the specificity
of probe candidates, several tools (OligoArray,OligoWiz,ROSO,OligoPicker,
Yoda) rely on BLAST or an alternative which is similar to BLAST. The oth-
ers perform specificity filtering by themselves based on approximate pattern
matching. Some of them (ProbeSelect, PROBESEL) use a filtering algorithm
with a suffix array. Hyyrö et al.[10] used an 8-gram indexing scheme with
1-neighborhood generation. Rahmann[19,20] used a suffix array with the longest
common substring instead of the edit distance. Sung and Lee[21] used a gapped
hashing method with the Hamming distance as a similarity measure.

3 Problem Definition and Our Approach

Given a certain gene, we aim to identify all probes that can be obtained from
it such that no other genes in the genome are approximately matched to them.
The more strict description of specificity filtering is: given a set of genes, G, for
each probe candidate p of length l in a gene g, find out whether there exists a
substring q in G − {g} such that ed(p, q) ≤ k, for some threshold k. If such a q
is found, then the probe p is said to be able to cross-hybridize with other genes
and, thus, it is not a “good” probe. The aim of specificity filtering is to filter out
all such “bad” probes.

An Efficient Algorithm for Finding Gene-Specific Probes 457

Algorithm 1. ClassicalApproximateSearch
input: text T , pattern P , substring length l, maximal number of errors k
output: Set S of pairs of (i, j) such that ed(Tt..j , P

i) ≤ k, 1 ≤ t ≤ j
1 S ← ∅
2 for i ← l to m do
3 S ← S ∪

{
{i} × ApproximateStringMatching(T, P i, k)

}

Fig. 1. The classical approximate string matching algorithm

Problem Definition. Given a text T1..n, a pattern P1..m, a pre-specified sub-
string length l, and a maximal number of errors k, 0 ≤ k < l, find all text
positions j for all subpatterns

{
P i|P i = Pi−l+1..i, l ≤ i ≤ m

}
of length l, such

that there exists t such that ed(Tt..j, P
i) ≤ k, 1 ≤ t ≤ j.

Hereafter, to denote the whole text and pattern, we use T and P , respectively,
and P i and T j to denote the substring of P of length l such that P i = Pi−l+1..i

and the substring of T of length 2l such that T j = Tj−2l+1..j , respectively.
Fig. 1 represents a classical solution for the gene specific probe design. For

the set of genes, G, the text T is the concatenated string of all gene sequences,
such that T = g1$g2$...$g|G|, $ /∈ Σ. The pattern P is the DNA sequence of gene
g ∈ G for which we aim to design probes.

If the returned set S contains any pair (i, j) and j is not a position which
corresponds to the gene g, then the probe candidate P i is “bad”, and so it is
filtered out. The function ApproximateStringMatching returns a set of all posi-
tions in the text where the given pattern occurs allowing up to k mismatches.
The time complexity of Algorithm 1 is O(�l/w� mn), since ApproximateString-
Matching requires a running time of O(�l/w� n), where w is the number of bits
in a computer word.

Let us introduce another method that obtains the same results as Algorithm1
by comparing each subpattern P i to all substrings of text T whose length is
l + k.

Lemma 2. Given a text T1..n, and a pattern P1..l, all text positions j such that
there exists t such that ed(Tt..j, P1..l) ≤ k, 1 ≤ t ≤ j, are

{j|edA(Tj−l−k+1..j , P1..l) ≤ k, 1 ≤ j ≤ n}

for all 0 ≤ k ≤ l.

Proof. If an occurrence of P with up to k mismatches ends at j, then the oc-
currence starts, at least, at j − l − k + 1 since there are at most k insertions of
P to make it match with T . So all occurrences of P up to k mismatches can be
found by using edA(Tj−l−k+1..j , P1..l). �	

The following lemma provides logical bases of filtering: if any occurrence of a
pattern P i appears in a text T at a position j with errors k′
 k, then, for the
small natural numbers t1 and t2, the pattern P i±t1 is rarely matched with the
text T j±t2 while allowing for up to k errors.

458 M.-H. Choi et al.

Fig. 2. Example of the lower and upper bounds of edit distances deduced from
edA(T j, P i)

Lemma 3. For a text T and a pattern P

(a) edA(T j±1, P i) − edA(T j , P i) ∈ {−1, 0, +1},
(b) edA(T j±1, P i±1) − edA(T j , P i) ∈ {−1, 0, +1},
(c) edA(T j, P i+1) − edA(T j , P i) ∈ {−2, −1, 0, +1} and

edA(T j, P i−1) − edA(T j , P i) ∈ {−1, 0, +1, +2}.

Proof. Let P i = ap, P i+1 = pb, T j = cq, and T j+1 = qd; p is a common
substring of P i and P i+1, and q is a common substring of T j and T j+1.

(a) Due to the property of DP matrix(Property 1(a)) edA(cqd, P i)−edA(cq, P i) ∈
{−1, 0, +1}. And, from Lemma 2, edA(cqd, P i) = edA(cq, P i) or edA(cqd, P i) =
edA(qd, P i) since edA(cqd, P i) = min

{
edA(cq, P i), edA(qd, P i)

}
. So Lemma 3(a)

holds.
(b) We first prove the subcase edA(T j+1, P i+1)− edA(T j , P i) ∈ {−1, 0, +1}. We
obtain edA(qd, pb) − edA(q, p) ∈ {0, +1} and edA(cq, ap) − edA(q, p) ∈ {0, +1}
from Property 1(c). Thus, edA(qd, pb)− edA(cq, ap) ∈ {−1, 0, 1}. The remaining
case can be proved in the same way.
(c) We can show that edA(T j , P i+1) − edA(T j , P i) ∈ {−2, −1, 0, +1, +2} in
the same way as we did in (b) by using Property 1(b). Now, we prove
that edA(T j, P i+1) − edA(T j , P i) �= 2. Let e = edA(T j , ap). Suppose that
edA(T j, pb) = e+2. Due to Property 1(b), edA(T j, apb) ≤ e+1. We can divide T j

into U and V such that T j = UV and edA(U, a)+edA(V, pb) = e+1. edA(V, pb) ≤
e + 1 since edA(U, a) ≥ 0. Because V is a suffix of T j, edA(T j, pb) ≤ e + 1, how-
ever, this contradicts with edA(T j , pb) = e + 2. Thus, edA(T j, pb) �= e + 2. The
remaining case can be proved in the same way. �	

For the given edA(T j, P i), the lower bounds and upper bounds of the edit dis-
tances between the patterns near to P i and the texts near to T j are determined
according to Lemma 3. In Fig. 2, for example, the values of the cells are lower
bounds or upper bounds deduced from the dark cells. If the maximal number of
errors, k, is 5 then the values of the gray cells guarantee that the corresponding
probe candidates and the targets (a) have no potential match or (b) are matched
while allowing for up to k errors.

An Efficient Algorithm for Finding Gene-Specific Probes 459

Corollary 4. For a given maximal number of errors, k, an integer h, 0 ≤ h,
dL and dH such that dL = edA(T j, P i) − k and dH = edA(T j+h, P i+h) − k

(a) if dL > 0, dH > 0, and dL + dH ≥ h + 1,
then edA(T j+t, P i+t) > k for all t such that 0 ≤ t ≤ h, and

(b) if dL ≤ 0 and dH ≤ 0, and |dL| + |dH | ≥ h − 1,
then edA(T j+t, P i+t) ≤ k for all t such that 0 ≤ t ≤ h.

Proof. This corollary can be directly proved from Lemma 3. �	

From Corollary 4, the interval [i, i+h] is said to be either (case (a)) over-covered
or (case (b)) under-covered by dL and dH , or otherwise, uncovered. The covered
intervals can be discarded from further inspection.

Fig. 3 presents a jumping approximate search algorithm which applies
Corollary 4. The function ApproximateStringMatchingEx does the same thing
as the ApproximateStringMatching of Algorithm 1, but it returns the last row
of the DP matrix after extending both end sides as follows: D[m, l − t] =
max(D[m, l] − t, k + t) and D[m, n + t] = max(D[m, n] − t, k + t) for 0 < t ≤ h.

The function InspectRangeCovering examines the edit distances in U and V ,
that are returned by ApproximateStringMatchingEx, to determine whether there
is an uncovered interval. If there is an uncovered rectangle, i.e. the rectangle
enveloping consecutive uncovered intervals(e.g. the area [j′L, j′H] × [iL, iM] of
Algorithm 2), the rectangle is divided into two half-sized rectangles, the new edit
distance vector is computed, and then InspectRangeCovering is called recursively
for each half-sized rectangle.

Fig. 4 shows an example of the jumping approximate search method. The
first and last rows denote the extended vectors, U and V , that are returned
by ApproximateStringMatchingEx taking P 16 and P 20 as patterns, respectively.
The extended values are circled. The white bars indicate that, from those posi-
tions, there is a series of uncovered intervals. The gray bars indicate that, from
those positions, there is a series of covered intervals. Only the boxed areas are
uncovered, so, further inspections of them need to be done.

In contrast to Algorithm 1, only every hth probe candidate is compared to
off-targets by computing the edit distance to the off-targets. h is referred to as
the jump. The amount of discarded areas is influenced by the jump. A bigger
jump leads to a higher filtering ratio, however too big a jump can lead to a large
amount of uncovered areas, thereby reducing the filtering effects.

In the context of probe design, the optimal jump h is larger than �l/2� − k
for the moderate error level α(see experimental results). Also, in the case of the
optimal jump, very few rectangles remain uncovered when InspectRangeCover-
ing is called directly from the main procedure. Thus, the time complexity of
Algorithm 2 is asymptotic to O(�l/w� �m/h�n), where w is the number of bits
in a computer word.

Algorithm 2 is not only simple and efficient, but also provides many preferable
features. This algorithm is itself a verification algorithm, it needs no preprocess-
ing and does not use any index scheme. Because the algorithm can be applied
gene by gene, only a very small amount of additional memory is required. In

460 M.-H. Choi et al.

Algorithm 2. JumpingApproximateSearch
input: text T , pattern P , substring length l, maximal number of errors k, jump h
output: Set S of pairs of (i, j) such that edA(T j , P i) ≤ k
begin
01 S ← ∅; iL ← l
02 U ← ApproximateStringMatchingEx(T,P iL , h)
03 while iL < |P | do
04 iH ← min(iL + h, |P |)
05 V ← ApproximateStringMatchingEx(T,P iH , h)
06 InspectRangeCovering(l, |T | , iL, iH , U, V)
07 iL ← iH ; U ← V
end.
function InspectRangeCovering(jL, jH , iL, iH , U, V)
begin
08 h′ ← iH − iL
09 if h′ = 1 then
10 S ← S ∪ {(iL, t)|U [t − jL] ≤ k, jL ≤ t ≤ jH}
11 S ← S ∪ {(iH , t)|V [t − jL] ≤ k, jL ≤ t ≤ jH}
12 state ← CLOSED; j ← jL − h′

13 while j ≤ jH do
14 dL ← U [j − jL] − k; dH ← V [j + h′ − jL] − k
15 if interval[iL, iH] is over-coverd by dL and dH then
16 if state = OPENED then
17 j′

H ← j + h′ − dH ; state ← CLOSED
18 iM ← (iL + iH)/2
19 Z ← ApproximateStringMatchingEx(Tj′

L
..j′

H
, P iM , h′)

20 InspectRangeCovering(j′
L, j′

H , iL, iM , U, Z)
21 InspectRangeCovering(j′

L, j′
H , iM , iH , Z, V)

22 else if interval[iL, iH] is under-coverd by dL and dH then
23 S ← S ∪ {(iL + t, j + t)|0 ≤ t ≤ h′}
24 if state = OPENED then
25 j′

H ← j + h′ − |dH | − 1; state ← CLOSED
26 S ← S ∪ {(iH − t′, j + h′ − t)|1 ≤ t ≤ |dH | , 0 ≤ t′ < t}
27 Do same as the lines from 18 to 21.
28 else
29 if state = CLOSED then
30 state ← OPENED
31 if dL > 0 then j′

L ← j + dL

32 else j′
L ← j + |dL| + 1

33 S ← S ∪ {(iL + t′, j + t)|0 ≤ t ≤ |dL| , 0 ≤ t′ ≤ t}
34 j ← j + 1
35 if state = OPENED then
36 j′

H ← jH

37 Do same as the lines from 18 to 21.
38 return S′

end.

Fig. 3. The jumping approximate string matching algorithm

An Efficient Algorithm for Finding Gene-Specific Probes 461

Fig. 4. Example of jumping approximate search

contrast to other filtering methodologies, this algorithm not only discards those
areas that have no potential match, but also excludes those areas that preserve
approximate matches from further inspection: the under-covered rectangles that
preserve approximate matches are skipped with no verification.

In addition, the algorithm is not sensitive to the length of the probes. Although
a longer probe causes the computing time of the edit distance to be longer, a
larger edit distance leads to a bigger jump. This makes the algorithm insensitive
to the length of the probe. In fact, a shorter running time is required for a longer
probe length(see experimental results).

The proposed approach can be adapted to perform an approximate search
which adopts the Hamming distance instead of the Levenshtein edit distance. In
the case of the Hamming distance, only Lemma 3(b) holds.

4 Experimental Results

The proposed algorithms are implemented in C language1 and tested on a single
32-bit processor system (Pentium-4 3.2Ghz with 512M RAM) and 64-bit proces-
sor system (dual Pentium-4 3.2Ghz with 4G RAM). The function Approximat-
eStringMatchingEx of Algorithm 2 is implemented according to [8]. The genomes
involved in the experiments are listed in Table 1.

Table 1. Information of datasets used in experiments

E. coli S. pombe S. cerevisiae N. crassa

Length (bps) 4,846,583 7,278,949 8,865,725 16,534,812
of genes 5,589 5,487 5,869 10,074

A summary of the running times is shown in Table 2. Li and Stormo used the
fact that, in general, the hybridization free energy of a near-match is sufficiently
large when the near-match contains more than 4 errors for 25mer oligonucleotides
and 10 errors for 50mer oligonucleotides[12]. Hyrrö et al tested numerous ap-
proximate string matching methods and presented the results of an exhaustive
1 We used the gcc compiler with full optimization (-fexpensive-optimizations) and

the long long type is used for the 64bit words. The gcc compiler provides internal
emulations of the long long type for the 32bit architecture.

462 M.-H. Choi et al.

Table 2. Running times of Algorithm 2

E. coli S. pombe S. cerevisiae N. crassa
l=25 l=50 l=25 l=50 l=25 l=50 l=25 l=50
k=4 k=10 k=4 k=10 k=4 k=10 k=4 k=10

running time tested on 32bit system 314 356 698 790 1,221 1,145 4,644 4,927
(min) tested on 64bit system 445 201 894 408 1,601 802 5,703 2,795

Fig. 5. Running time of the exhaustive unique probe search for the genome of S.
cerevisiae. (a) and (b) are tested on the single 32-bit system; (c) and (d) on the 64-bit
system.

Table 3. Optimal jumps for the genome of S. cerevisiae

Short probe length Long probe length

l=20 l=25 l=30 l=40 l=50 l=60

k=2 13 18 22 k=6 23 32 40

k=3 11 15 20 k=8 19 28 37

k=4 9 13 18 k=10 16 24 34

k=5 7 11 15 k=12 12 21 29

k=6 6 9 13 k=14 9 16 23

An Efficient Algorithm for Finding Gene-Specific Probes 463

unique probe search of various genome datasets[6,9,10]. The tests were run on
a dual Pentium III 550Mhz system with 256M RAM. The exhaustive search
comprised the checking of all 25 nucleotide long probes of a full genome while
allowing for up to 4 errors. The running time of the fastest method, i.e. the
method using indexed filtering with 1-neighborhood, in the case of the genomes
of E. coli and S. cerevisiae were 43.4 hours and 190.6 hours, respectively. The
running time of our algorithm for the genomes of E. coli and S. cerevisiae under
the same conditions were 5.2 hours and 20.4 hours, respectively. Taking the dif-
ference of the computing power used in the tests into account, the results imply
that our algorithm is superior to those used by Hyrrö.

We verified the insensitivity of our algorithm to the length of the probes. We
tested short (l=20, 25, 30) and long (l=40, 50, 60) sized probes, searching with
2, 3, 4, 5, and 6 errors for the short ones and with 6, 8, 10, 12, and 14 errors for
the long ones. The tested dataset is the genome of S. cerevisiae. In computing
the edit distance using bit-parallelism, the short sized probes fit in the 32-bit
word and the long sized probes fit in the double words of 32-bit computers or the
single word of 64-bit computers. Fig. 5 shows the results of the tests; within the
limit of the word size of the processor, a longer probe length leads to a shorter
running time.

Table 3 shows that the optimal jumps for all of the tested cases are h ≥
�l/2� − k for the genome of S. cerevisiae.

5 Conclusion

A good probe should be specific for exactly one gene. We proposed a new ap-
proach to determining the specificity of each probe candidate of a full genome.
The key idea behind this approach is that once the similarity between a probe
candidate and a target gene sequence is computed, by using the result, it is
possible to exclude neighboring probe candidates from further consideration if
they cannot be matched. Based on our approach, we can reduce the search space
without the loss of any significant matches. The presented algorithm is very sim-
ple and efficient and a high filtering ratio is attained without any use of index
structure. In addition, it is insensitive to the length of the probe.

References

1. R. Baeza-Yates and G. Navarro. Faster Approximate String Matching. Algorith-
mica, 23(2):127-158, 1999.

2. L.-L. Cheng, D. Cheung, and S.-M. Yiu. Approximate String Matching in DNA Se-
quences. Proc. the 8th International Conference on Database Systems for Advanced
Applications, 303-310, 2003.

3. A. Halperin, A. Buhot, and E. B. Zhulina. On the hybridization isotherms of DNA
microarrays: the Langmuir model and its extentions. Journal of Physics: Condensed
Matter, 18:S463-S490, 2006

464 M.-H. Choi et al.

4. Z. He, L. Wu, M. W. Fields, and J. Zhou. Use of Microarrays with Different Probe
Size for Monitoring Gene Expression. Applied and Environmental Microbiology,
71(9):5154-5162, 2005.

5. T. R. Hughes, M. Mao, et al., Expression profiling using microarray fabricated by
an ink-jet oligonucleotides synthesizer. Nature Biotechnology, 19:342-347, 2001.

6. H. Hyrrö. On using two-phase filtering in indexed approximate string matching
with application to searching unique oligonucleotides. Proc. String Processing and
Information Retrieval (SPIRE 2001), 84-95, 2001.

7. H. Hyrrö. Practical Methods for Approximate String Matching. PhD thesis, De-
partment of Computer Sciences, University of Tampere, Finland, December 2003.

8. H. Hyrrö, J, Fredriksson, and G. Navarro. Increased Bit-Parallelism for Approxi-
mate and Multiple String Matching. ACM Journal of Experimental Algorithmics,
10(2.06), 2005.

9. H. Hyrrö, M. Juhola, and M. Vihinen. On approximate string matching of unique
oligonucleotides. Proc. the 10th World Congress on Health and Medical Informatics
(Medinfo 2001), 10(Pt2):960-964, 2001.

10. H. Hyrrö, M. Juhola, and M. Vihinen. Genome-wide selection of unique and valid
oligonucleotides. Nucleic Acids Research, 33(13):e115, 2005.

11. H. Hyrrö and G. Navarro. A Practical Index for Genome Searching. Proc. String
Processing and Information Retrieval (SPIRE 2003), 341-349, 2003.

12. F. Li and G. D. Stormo. Selection of optimal DNA oligos for gene expression array,
Bioinformatics, 17(11):1067-1076, 2001

13. T. Majtan, G. Bukovsk, and J. Timko. DNA Microarrays – Techiques and Appli-
cations in Microbial Systems. Folia Microbiologica, 49(6):635-664, 2004.

14. E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,
12(4/5):345-374, 1994.

15. G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic progamming. Journal of the ACM, 46(3):395-415, 1999.

16. G. Navarro. A guided tour to approximate string matching. ACM Computing Sur-
veys, 33(1):31-88, 2001.

17. G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate string
matching. Journal of Discrete Algorithms, 1(1):205-239, 2000.

18. E. K. Nordberg. YODA: selecting signature oligonucleotides. Bioinformatics,
21(8):1365-1370, 2005

19. S. Rahmann. Rapid large-scale oligonucleotide selection for microarrays. Proc.
IEEE Computer Society Bioinformatics Conference 2002, 1:54-63, 2002.

20. S. Rahmann. Fast and sensitive probe selection for DNA chips using jumps in
matching statistics. Proc. IEEE Computational Systems Bioinformatics, 2:57-64,
2003.

21. W. Sung and W. Lee. Fast and accurate probe selection algorithm for large
genomes. Proc. IEEE Computational Systems Bioinformatics, 2:65-74, 2003.

22. J. SantaLucia Jr. and D. Hicks D. The Thermodynamics of DNA Structural Motifs,
Annual Review of Biophysics and Biomolecular Structure, 33:415-440, 2004.

23. E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms, 6:132-
137, 1985.

24. E. Ukkonen. Algorithms for approximate string matching. Information and Con-
trol, 64:100-118, 1985.

Multiple Sequence Local Alignment Using

Monte Carlo EM Algorithm

Chengpeng Bi

Children’s Mercy Hospitals, Schools of Medicine, Computing and Engineering
University of Missouri, 2401 Gillham Road, Kansas City, MO 64108, USA

cbi@cmh.edu
http://www.cmh.edu

Abstract. The Expectation Maximization (EM) motif-finding algorithm
is one of the most popular de novo motif discovery methods. However,
the EM algorithm largely depends on its initialization and can be easily
trapped in local optima. This paper implements a Monte Carlo version
of the EM algorithm that performs multiple sequence local alignment
to overcome the drawbacks inherent in conventional EM motif-finding
algorithms. The newly implemented algorithm is named as Monte Carlo
EM Motif Discovery Algorithm (MCEMDA). MCEMDA starts from an
initial model, and then it iteratively performs Monte Carlo simulation
and parameter update steps until convergence. MCEMDA is compared
with other popular motif-finding algorithms using simulated, prokaryotic
and eukaryotic motif sequences. Results show that MCEMDA outper-
forms other algorithms. MCEMDA successfully discovers a helix-turn-
helix motif in protein sequences as well. It provides a general framework
for motif-finding algorithm development. A website of this program will
be available at http://motif.cmh.edu.

Keywords: Expectation Maximization (EM), Monte Carlo EM, Motif
Discovery, Multiple Sequence Local Alignment, Transcriptional Regula-
tion.

1 Introduction

A critical task in functional genomics is deciphering the genetic regulatory codes
(i.e. motifs). Although many endeavors have been attempted and numerous al-
gorithms have been developed in the past two decades [1], breaking the regula-
tory codes in a genome remains challenging because motifs are typically short,
degenerate, and obey few rules [2]. A particularly successful class of computa-
tional methods for the motif discovery problem adopts a position weight matrix
(PWM) update approach [3] based on the expectation maximization (EM) al-
gorithms [4]. The EM-based motif discovery algorithm was first developed using
PWM-based statistical modeling by Lawrence and Reilly [3]. This methodology
has been generalized to one of the most popular motif-finding software pack-
ages called MEME [5]. The EM algorithm has been widely deployed in scientific
computing due to its simplicity and stability.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 465–476, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

http://motif.cmh.edu

466 C. Bi

However, despite some appealing features, the EM algorithm has several well-
documented limitations: (1) it is strongly dependent on its starting position, and
(2) it can provide a saddle point of the likelihood function rather than a local
maximum. It has been shown that the Monte Carlo EM (MCEM) algorithm
can fix the above limitations to some extent [6]. The MCEM algorithm intro-
duced by Wei and Tanner [7] is a modification of the EM algorithm where the
expectation in the E-step is computed numerically through Monte Carlo simula-
tions. It was designed to cope with situations where E-step is hard to compute.
More specifically, let the complete data be z = (x, y), here x ∈ X is known
and y ∈ Y unobserved, the t-th step is: (i) Generate iid samples, y(t,1), . . . ,
y(t,j), . . . , y(t,m) from u(y|x, θ(t))1 through Monte Carlo simulation, or namely
S-step; and (ii) Empirically update the current approximation to the expected
log-likelihood function Q(θ; θ(t))2 through a update or U-step as,

Q(t+1)(θ|θ(t)) ≡ Q(t+1)(θ|θ(t); y(t,1), . . . , y(t,m)) =
1
m

m∑

r=1

logf(x, y(t,r)|θ) (1)

Finally the M-step determines θ(t+1) = argmaxθ{Q(t+1)(θ|θ(t))}. The S- and
U-steps iteratively progress until the algorithm converges [7,8]. This paper de-
signs and implements a MCEM algorithm for motif-finding problem. The newly
implemented algorithm is named as Monte Carlo EM Motif Discovery Algorithm
(MCEMDA). It starts from an initial model, and then iteratively performs Monte
Carlo simulation and parameter update steps until convergence. MCEMDA per-
forms very well in the examples presented in the paper.

The rest of this article is organized as follows: Section 2 introduces a frame-
work for motif discovery problems; Section 3 describes the MCEMDA algorithm;
Section 4 implements the algorithm; Section 5 gives experimental examples and
compares with other EM and Monte Carlo based algorithms; finally Section 6
concludes with discussion.

2 Multiple Local Alignment for Motif Discovery

Let S = {S1, . . . , Si, . . . , SN} denote the sequence data set. Let Li be the length
of the sequence i (Si) and Sij denote a residue symbol taking on a value in K,
for instance, K = {A, C, G, T }. Let |K| be the number of letters in a biological
sequence alphabet (i.e., |K| = 4 for DNA, and |K| = 20 for protein sequences).
If only one motif per sequence (i.e. oops model) is assumed, there are N motifs
in total for N sequences. A zero or one motif per sequence (i.e. zoops) model
is also frequently used. Nonetheless, both oops and zoops models assume that
1 Note that u(y|x, θ) is the marginal distribution of the unobserved data y and θ

is the model parameter to be estimated. The complete-data log-likelihood is thus
defined as: L(θ|z) = logf(x, y|θ) which cannot be directly solved via the Maximum
Likelihood method.

2 The expected value (or Q-function) of the complete-data log-likelihood in an EM
algorithm [4] is defined as, Q(θ; θ(t)) =

∫
Y logf(x, y|θ)u(y|x, θ(t))dy.

Multiple Sequence Local Alignment Using Monte Carlo EM Algorithm 467

sequence data come from a two-component multinomial mixture model: (1) the
background model, assuming that residues at non-motif positions follow an in-
dependent and identical multinomial distribution (θ0); and (2) the w-mer motif
model, assuming that residues within the motif are independent but not iden-
tical, in other words, residues at different motif positions come from different
multinomial distributions (θj). A motif sequence can be thought of drawing
from a product of multinomial distributions: Θ = [θ1, . . . , θj , . . . , θw].

Let Ai be the indicator variable drawing from the location space {0, 1}(Li−w+1),
A = [A1, . . . , Ai, . . . , AN]T be the set of indicator variables representing the
motif start sites (i.e. a local alignment) in the sequences, and w be the motif
width. The total number of local alignments (V)3 can be generally expressed
as: V =

∏N
i=1

(
Li−w+1
|Ai|

)
, and here the number of motif sites on sequence i is

defined as: |Ai| =
∑

l Ail. Therefore, if |Ai| = 1 for all i, it is an oops model,
otherwise it is a zoops or multiple-site model. The total number of motif sites
is |A| =

∑
i |Ai|. Alternatively, an indicator variable ai = l is used to represent

the motif starting at position l on sequence i, which is equivalent to Ail = 1.
Note that ai = 0 means no motifs found on sequence i. If multiple sites occur
on a sequence, a vector (ai) is used to store all the positions. Obviously a motif
indicator vector ai ∈ Pi({1, 2, . . . , Li − w + 1}), here Pi is the power set of the
i-th sequence motif sites. The alignment of motif sites is initialized by randomly
generating a set of motif start sites (i.e. A(0) or equivalently [a(0)

1 , . . . , a
(0)
N]T)

and then it is progressively refined until convergence.
Multiple local alignment is the most frequently used method to solve the mo-

tif discovery problem. Each alignment can be thought of as a hidden state in
the alignment space. The motif discovery problem can therefore be formulated
as finding the optimized alignment state (v∗) among the entire alignment space.
Index a state by v ≡ [a1, . . . , ai, . . . , aN]T = A(v), and let the energy of state v

be E(v) = E(S,A(v)) where A(v) is the alignment corresponding to the state v.
The energy may be related to an alignment score or the motif sequence speci-
ficity/binding energy [9]. Then at equilibrium the probability of state v (pv)
is proportional to exp[−E(S,A(v))/kBT]. Therefore, the optimized alignment
state (v∗) is the one with the maximum probability (p∗). If v∗ is found, then the
parameter estimation (Θ∗) is done. However computing the partition function4

is intractable, because the alignment problem is NP -complete [10].

3 Motif Discovery Using Monte Carlo EM Algorithm

3.1 EM Motif-Finding Algorithms

Since the motif locations (A) are unobserved, the EM algorithm is used to
estimate the model parameters given the observed sequences (S). The full data

3 If it is an oops, V =
∏N

i=1(Li −w+1); if sequence i has no sites at all, then
(

Li
0

)
= 1.

4 Note the partition function is: Z =
∫

P1
· · ·

∫
PN

exp
{

−E(S,A(v))/kBT
}

da1 · · · daN .

Then, the state probability pv is simply computed as, 1
Z

exp
(
−E(S,A(v))/kBT

)
.

468 C. Bi

for motif sequence model is (S,A) = {(Si, Ai) : i = {1, . . . , N}}. The conditional
likelihood of sequence i, given the hidden variables (ai), is as follows,

p(Si|ai = l,Θ, θ0) =
∏

y∈Ac
il

∏

k∈K

θ
I(Siy=k)
0k

w∏

m=1

∏

k∈K

θ
I(Si,l+m−1=k)
mk (2)

where Ac
il denotes the background sites and I(·) is the indicator function. Al-

though equation (2) is for an oops model, it is easy to extend to other motif
models [11]. To simplify notation, Θ is used to contain the background param-
eters (θ0) in the following derivation. Let Θ(t) be the parameter estimates after
t-th iteration, then conditional expected complete data log-likelihood given the
observed data is often referred to as the Q-function which is defined as,

Q(Θ;Θ(t)) = E[ln(p(S,A|Θ))|S,Θ(t)] (3)

=
N∑

i=1

Li−w+1∑

l=1

p(ai = l|Si,Θ(t))ln(p(Si|ai = l,Θ))

The EM-based motif-finding algorithms maximize the above Q-function by
iteratively performing the E- and M-steps [3,11]. The E-step calculates a condi-
tional probability of each potential site,

p(ai = l|Si,Θ(t)) =
p(Si|ai = l,Θ(t))

∑Li−w+1
j=1 p(Si|ai = j,Θ(t))

(4)

The M-step computes the updated estimation [3,5,11]. The EM algorithm merely
iterates E- and M-steps a number of times until it converges [4].

3.2 Monte Carlo EM Motif-Finding Algorithms

This section describes a special case of the originally reported MCEM algorithm
(i.e. one simulation per sequence or m = 1) [7] and then it can be easily general-
ized in the next section. The basic idea underlying MCEMDA is to replace the
computation and maximization of Q(Θ;Θ(t)) by computing p(ai = l|Si,Θ(t))
on which an unobserved complete pseudo-sample A(t) is drawn or aligned (i.e.
S-step), followed by an update on Θ(t+1) (i.e. the U-step). The S- and U-steps
iterate until convergence (i.e. a criterion is satisfied). Since the updated param-
eters lead to a generalized EM (GEM) estimation [4,12], this iterative procedure
eventually converges to a better local optimum [6,8]. The following formula is
derived [11] as the target density function of the unobserved data (a):

u(ai = l|Si, Θ̂(t)) =

∏w
j=1

∏
k∈K

(
θ̂
(t)
jk

θ̂
(t)
0k

)I(Si,l+j−1=k)

∑Li−w+1
q=1

{
∏w

j=1
∏

k∈K

(
θ̂
(t)
jk

θ̂
(t)
0k

)I(Si,q+j−1=k)
} (5)

Multiple Sequence Local Alignment Using Monte Carlo EM Algorithm 469

The parameter update procedure is reduced to counting residues as follows,

θ̂
(t)
jk =

∑N
i=1 I(Si,ai+j−1 = k) + βjk

∑N
i=1

∑
k∈K I(Si,ai+j−1 = k) + |βj |

where ai is the motif start position on sequence i, and |βj | =
∑

k |βjk|. The vector
β is pseudo-counts or has the meaning of Dirichlet prior distribution in Bayesian
formulation. An identical pseudo-count vector is applied to each motif position:
βj = β, where j ∈ {1, . . . , w}. The major advantage of using pseudo-counts is to
avoid zero-count of a residue in a motif position due to a small sample size. Here
|β| = 1.5 for DNA sequences, and |β| = sqrt(|A|) for amino acids sequences [13].
Given the current estimate of motif matrix (i.e. Θ̂(t)) and number of motif sites
(i.e. |A|), the Q-function for t-th iteration can be evaluated as,

Q(t) = |A|
∑

k∈K

θ̂
(t)
0k ln(θ̂(t)

0k) + |A|
w∑

j=1

∑

k∈K

θ̂
(t)
jk ln(θ̂(t)

jk) (6)

Note that the Q(t)-function is a summation of two mixture negative entropy func-
tions times the number of motif sites. The scoring Q-function can be normalized
to represent the binding free energy [9].

4 Implementation

Given a set of sequences (S), a motif width (w), maximum simulation (m) and
iterations (tmax), the MCEMDA algorithm starts via randomly initializing an
alignment (A(0)). It then computes the initial model (Θ(0)) and proceeds by
simulation (i.e. drawing a new set of sites) and parameter update. The pseudo-
code of the generalized MCEM motif-finding algorithm is given below,

program MCEMDA (S, w, m, t_max)
initialize motif start positions: A(0)
evaluate Theta(0), Q(0)
t := 0, Q_max := Q(0)
repeat:

t := t + 1
for r := 1 to m {

for i := 1 to N {
compute probabilities based on Eq. 5
draw a sample according to the cdf function U

}
update Theta(t,r), Q(t,r)

}
evaluate Theta(t), Q(t) by averaging Theta(t,r) and Q(t,r)
if Q(t) > Q_max

Q_max := Q(t) and Theta* := Theta(t)
until t := t_max
output the best alignment & its motif model

end.

470 C. Bi

To achieve efficient computation, one can pre-compute the frequencies of each
residue type given a total number of motif sites and their associated logarithm
values, and store them in arrays. Note that each motif site is encoded as an
object consisting of its start position, associated Q-value, its strand attribute
(forward or reverse), and motif probability. While initializing the motif sites in
double helix DNA sequences, one can flip a coin to decide whether the motif is
on the forward or reverse strand.

To draw an iid sample from a sequence, one ought to compute the cumulative
density function (cdf), U(ai|Si,Θ(t)), conditioning on previous estimate (Θ(t)).
New sites (ai) can be determined by repeatedly generating a sequence of random
number (c) uniformly in [0, 1] such that: U(ai−1|Si,Θ(t))) < c ≤ U(ai|Si,Θ(t)).
Note that if it is an oops model, then a single draw is needed on each sequence.
The sampling procedure iterates until a specified number of simulations (m)
and iterations (tmax). The final output is the best alignment (A∗) found in
all rounds and its associated motif matrix (Θ∗). Furthermore, it shall be easy
to see that MCEMDA provides a general framework for developing maximum
likelihood-based motif discovery algorithms (detailed in the discussion section).

5 Experimental Results

This section describes motif discovery experiments using the MCEMDA algo-
rithm implemented in C++ and other related methods. MCEMDA performs
multiple local alignment on either DNA or protein sequences. The MCEMDA
algorithm (case m = 1 is tested in this report) is compared with other similar
algorithms, i.e. EM-based MEME [5] and Gibbs sampling-based BioProspec-
tor [14], to demonstrate its robust performance. MEME and BioProspector are
two of the most popular motif discovery algorithms. The motif width is chosen
in a way that each algorithm achieves its best performance but shall be very
close to its known biologically verified length. For other options, MEME and
BioProspector defaulted to their own settings. MCEMDA set its maximum iter-
ations of 5,000 per run if not specified otherwise. Their running times were not
compared because programs were executed on different machines.

5.1 Motif Discovery in Simulated DNA Sequences

The simulated data sets are generated to test the performance of the MCEMDA
algorithm. Eukaryotic sequence motifs are usually highly degenerate and subtle
in nature, and therefore the planted motif width is set as 11 base pairs long.
Each simulated dataset contains 100 sequences, each of which is 100 nucleotides
long. Two simulated datasets are made of either high motif conservation level or
low motif conservation level. A high conservation motif is formed such that at
any position a dominant nucleotide has a probability of 0.91 and each of the rest
positions is 0.03. A low conservation motif is formed such that at any position a
dominant nucleotide has a probability of 0.70 and each of the rest is 0.10. A fair
Bernoulli coin is tossed in order for each motif sequence to have an equal likeli-
hood of being implanted either on the forward or backward strand. The location

Multiple Sequence Local Alignment Using Monte Carlo EM Algorithm 471

Table 1. Algorithm performance on simulation data*

High Level Low Level

MCEM MEME BioPros MCEM MEME BioPros

B1 98 96 40 68 44 37
B2 100 99 49 66 34 47
B3 99 99 34 71 49 32

* The motif width is fixed at 11 base pairs long for all algorithms. The performance
is defined as the number of predicted motif sites that are true sites divided by the
number of predicted motif sites and then times 100. The number in bold indicates the
best performance in each set.

where a motif is implanted is randomly generated. Motifs are planted in three
different background sequences (i.e. B1-B3): (1) B1 is uniform (all nucleotide
types are equally likely), (2) B2 is AT-rich (AT content = 60% and GC = 40%),
and (3) B3 is GC-rich (GC = 60% and AT = 40%).

Table 1 compares the MCEMDA algorithm with MEME and Gibbs motif-
finding algorithms using simulated data. It showed that MCEMDA is the best
predictor in all backgrounds with different conserved motif sequences. Although
MEME and MCEMDA perform equally well in highly conserved motif sequences,
MEME is not as good as MCEMDA in low conservation cases. EM algorithms
perform greedy searches and thus easily get trapped in a local optimum in low
conserved cases. To fix this, MEME incorporates other strategies such as gener-
ating smart initial seeds to alleviate the initialization difficulty. In contrast, it is
not essential for MCEMDA to bring in other methods to overcome the obstacle.

BioProspector is a Gibbs motif sampler. Its performance is not as good as
the other algorithms’ in all datasets. In case m = 1, MCEMDA is different
from BioProspector in that the former updates parameters after each round (i.e.
after sampling an alignment or all the motif sequences have been done), whereas
BioProspector performs a new update right after sampling each sequence and
the current sequence sampling depends on its previous single sequence update.
The strategy used in BioProspector may give rise to very quick convergence, and
thus most likely predispose the sampler to local optima.

5.2 Motif Discovery in Real Biological Sequences

Five annotated motif datasets are used: three of them from bacterial genomes
(i.e. CRP, FNR and LexA) and two from eukaryotic TF binding sites (ERE
and E2F). Three bacterial TF binding sites (i.e. CRP, FNR and LexA) share
the same sequence property: all have two core sub-motifs interrupted by low
conserved nucleotides (gap spacer) in between (see Fig. 1A-1C). The presence
of the spacer makes the final motif model more degenerate and influences the
performance of the motif-finding algorithms. The CRP dataset is taken from
the previous papers [3,11,14]. There are one or two known CRP-binding sites in
each of the 18 sequences in the dataset, and the location of these binding sites
has been well documented. Each determined binding site motif length is 22 base

472 C. Bi

0

1

2

5'

-6C

G
T
A

-5T
A

-4G
T
A

-3

G
A
T

-2C
T

-1C
A
T
G

0A
T

1G 2T

G
C
A

3G
T
C

4A

T
C
G

5A

G
C
T

6 7C

A

T
G

8C
A
T

9A
G
T

10

A
T
C

11

G
A

12

G
A
C

13

G
T
C
A

14 15

C
T
A

3'

(D)

0

1

2

5' -6

T
G
A

-5

T
A

G

-4

G
-3

G
C
T

-2

T
A

C
-1

C
T
A

0 1T

C
A
G

2A
C
G

3A
C
T

4C
G

5T
C
A

6G
T
C

7T
C

8G
C
T

(E)

-6 -5

G

A
T

-4

C
T

-3

A
C
T

-2

A
C
T

-1

G
C

0C
G

1

C

2

G

3

C

4T

G
C

5T

G

C
A

6

G
T
A

3'

(B)

0

1

2

5' -6

G
C
A
T

-5

A
C
G
T

-4
T
C
A
G

-3
G

T
C
A

-2

A
G
T

-1

A
C
T

0G
A
T

1C

T
G
A

2A

G

C

T

3T
G
A

4

A
T

5T

G
C

6G
T
A

7

C
A

(C)

-6

G

C

A
T

-5

C
G
A

-4

T
C

-3

T

-2

G

-1

A
G
T

0G

A

T

1G

C
A
T

2G
A
T

3C

G
A
T

4G

C
T
A

5G
C
A
T

6C
G
A

7C
G
T

8

G
C
A

9T

A
C

10

A

11

G

12

A
C
T

13

C

G
T
A

3'

Motif Location

In
fo
rm
at
io
n
C
on
te
nt
(b
its
)

(A)

Fig. 1. Sequence logos of five annotated transcription factor binding sites. The sequence
logos [15] are plotted using WebLogo [16]. (A) CRP binding sites (18 sequences); (B)
FNR protein binding sites (67 sequences); (C) LexA binding sites (24 sequences); (D)
ERE binding elements (25 sequences); (E) E2F binding site sequences (25 sequences).

pairs. However, MEME achieved its best performance in 24-mer motif model
(Table 2).

Apart from the CRP dataset, two other annotated bacterial motif datasets
(i.e. the FNR and LexA TF binding sites) are also extracted from the Reg-
ulonDB [17]. The FNR motif is described in the literature as an interrupted
14-bp palindrome and the consensus, TTGACnnnnATCAA, consists of two con-
served 5-bp blocks separated by a fixed 4-bp spacer. The LexA motif length
is 20 base pairs long with two core motifs on the ends and it is interrupted
by low-conserved nucleotides in between as well. Two eukaryotic motif datasets
(ERE and E2F) contain short motif sequences extracted from references [18,19].
The estrogen receptor (ER), an important nuclear hormone receptor, is a ligand-
induced enhancer protein bound with the estrogen response elements (EREs),
and it regulates downstream genes. There are 25 ERE genomic sequences, each
200 base pairs long and its motif length is known to be 15 base pairs long. The
E2F transcription factor [18] binding dataset contains 25 genomic sequences,
each 200 base pairs long with 27 embedded motif sites.

Table 2 summarizes the motif algorithm performance using the F-score [20].
Different motif widths are used in a way that algorithms can achieve their best
performance. However, MCEMDA chose the known motif width in all cases.
The MCEMDA algorithm is the best predictor (F-score is 0.912) compared
to others. MEME has better average performance (0.776) than BioProspec-
tors (0.602), but is not as good as MCEMDA in tested samples. Figure 2
shows the sequence logos for all the five transcription factor binding motifs built
from the MCEMDA algorithm. The CRP motif consists of two core sub-motifs
(5-mer) separated by six unspecified nucleotides: TGTGAnnnnnnTCACT, which
is congruous with biological findings. The FNR and LexA motifs have consensus

Multiple Sequence Local Alignment Using Monte Carlo EM Algorithm 473

Table 2. Algorithm comparison on biological real data*

TF Algorithms width(w) sites(|A|) Precision Recall F-score
CRP MCEMDA 22 18 18/18 18/23 0.878

BioPros 22 9 9/9 9/23 0.563
MEME 24 13 12/13 12/23 0.667

FNR MCEMDA 14 67 64/67 64/67 0.955
BioPros 14 67 39/67 39/67 0.575
MEME 20 43 43/43 43/67 0.782

LexA MCEMDA 20 24 24/24 24/24 1.000
BioPros 20 24 15/24 15/24 0.625
MEME 21 24 23/24 23/24 0.958

ERE MCEMDA 15 25 22/25 22/25 0.880
BioPros 13 16 14/16 14/25 0.683
MEME 15 17 15/17 15/25 0.714

E2F MCEMDA 13 25 22/25 22/27 0.846
BioPros 11 21 11/21 11/27 0.564
MEME 13 23 19/23 19/27 0.760

* Note that the results of CRP, ERE and E2F for BioProspector and MEME algorithms
are obtained from [20]. The precision is defined as the number of predicted motif sites
that are true sites divided by the number of predicted motif sites [20]. The recall is the
number of predicted motif sites that are true sites divided by the number of true sites.
The F-score is computed as: F = 2 * precision*recall / (precision + recall).

sequences of TTGATnnnnATCAA and nnCTGnnwwwwwrwmCAGyd, respec-
tively, and these are in line with their validated motif sites. Two short motifs
(ERE and E2F) are slightly higher conserved, and the identified consensus se-
quences are in agreement with the annotated motif sequences [18,19].

5.3 Motif Discovery in Protein Sequences

The helix-turn-helix (HTH) is composed of two almost perpendicular α helices
linked by a several-residue β turn. The HTH motif is a common recognition
element used by transcription regulators of prokaryotes and eukaryotes. Many
bacterial transcription regulators which bind DNA through a HTH motif can
be classified into subfamilies on the basis of sequence similarities. IclR is one
of the subfamilies, and it is the repressor of the acetate operon in bacteria.
There are 352 non-redundant IclR protein sequences downloaded from the Bac-
Tregulators website [21]. The sequence length ranges from 181 to 845 residues.
The HTH DNA binding domain is known to contain 24 amino acids as high-
lighted in Figure 2A. MCEMDA was run five times each with 500 iterations to
perform the protein sequence alignment. The motif length is set to 28 residues
including 2 flanking residues. The HTH motif sites in the IclR protein sequences
are successfully detected and the associated motif model is built as illustrated
in the protein sequence logo (Figure 2B), which conforms to the annotated

474 C. Bi

R

Q

S

C

I
A
M
V
L

P
A
R
T
G
S

R

F
N
A
I

V
L

L

P

R

G

Q
K
S
A
T

L

G

R

T

A
Q
D
E

F

M
A
V
I

L
G

T

Q

C

L
I
V
S
A

H

S

D
K
A
R
Q
E

S

K

Q
L
E
A
R

C

I
V
S
A
L
T

H

Q

S
K
A
N
E
M
D
G

A

R

Y

V
I

M
L

D

G
H
N
A
T
S
P

N

S

Q

V

L
A
P
R
K

N
G
T
P
A
S

G

R

E

N
K
A
S
T
F

I
L
T
A
V

L

T

A

Q
F
S
R
Y
H

S

P

H

L

E

A

G

T
N
R

V

H

C

T

Y
F
M

I
L

M

I
V
A
T
L

H

R

S

T

N

A

Q

E

D

V

L
R

G

A
S
T

D

F
M
L

S

R

K
I
T
A
Q
E
V

L

K

D

V

H

T

Q

S
A
R
E

V

C

M

Q

A
R
E
H
L

S

A

K

N

D
E
R
G

Helix Turn Helix
P77734 ss vsdislnl dlp lsttfrllkvlqa ad
P15360 lg lsdiassl gla kgtahgilrtlqq eg
P17430 va ltelaqqa glp nstthrllttmqq qg
P76268 ig itelsqrv mms kstvyrflqtmkt lg

… … … … … …
Q8XE06 cn aatiidtl gip kstaylllnelrr qr
Q8U7I4 lt qieiakai gks pnelyrmldrlvr rg
Q9HHM8 it lqelttel dlt katihtymatlrq vg

A

B

Fig. 2. HTH motif alignment and its sequence logo. (A) Multiple local alignment of
352 nonredundant protein sequences (shown in part), the highlighted parts from left
to right are α helix (α2, 8 residues), β turn (3 residues) and α helix (α3, 13 residues)
respectively; (B) Sequence logo [15] plotted using WebLogo [16].

documentation [22]. Although the example shows the new algorithm’s capabil-
ity of performing large-scale protein sequence alignment, the algorithm shall be
extended to simultaneously discover several distinct protein motifs in the future.

6 Discussion

The MCEMDA algorithm to some extent fixes the problems inherent in EM
motif algorithms due to its stochastic properties. Results showed its robust per-
formance since MCEMDA increases the chance of escaping from inferior local
optima and does not depend on its initialization given a long period of itera-
tions. In contrast to MCEMDA, MEME integrates other methods such as smart
seed initialization in order to achieve a better convergence [5]. Algorithm perfor-
mance comparison using simulated and real motif sequence datasets shows that
the sampling strategy in MCEMDA is better than that used in BioProspector.
The Gibbs sampling tactics employed in BioProspector contribute to its expe-
ditious convergence, whereas it would most likely give rise to a local optimum.

This paper presents a general framework for developing motif-finding algo-
rithms based on the maximum log-likelihood model. First, if the simulation size
(m) equals to 1, MCEMDA can be thought of as a simple Markov Chain Monte
Carlo algorithm, or a special case of Metropolis-Hastings algorithms [11] with ac-
cept rate αM = 1.0, i.e. each Monte Carlo move is always accepted. The Markov
chain is evolved such that Monte Carlo sampling is based on the current estima-
tion of parameter vector and its random walk explores as much alignment space
as possible. MCEMDA keeps track of the best solution along the Monte Carlo it-
erative sampling process. Second, if its parameter update step is performed right
after drawing from each sequence, then MCEMDA is reduced to the Gibbs motif

Multiple Sequence Local Alignment Using Monte Carlo EM Algorithm 475

sampler [13,14]. Last, if m equals to the number of all the potential motif sites in
the sequence data set, then MCEMDA is the same as ordinary EM motif-finding
algorithms [3,5]. It would be intriguing to design a synergistic scheme that can
take advantages of each above strategy in the near future.

Moreover, the current algorithm shall be extended to tackle more general
motif-finding issues, i.e. discover multiple sites per sequence or several distinct
motifs in one run. Motif width is usually unknown. The maximum log-likelihood
model can be generalized to the minimum description length (MDL) principle
whereby the motif width can be assimilated into the total code length. Therefore
one would argue that MDL criterion might be better utilized to deal with w-mer
motif model selection [23].

Currently large-scale multiple alignment of motif sequences is common in
bioinformatics, and using parallel processing machines such as cluster comput-
ing facilities, MCEMDA can send many runs each of which has a sufficiently
long Markov chain to cluster nodes, and then collect solutions from nodes and
rank them to output the top best models. This simple parallel algorithm would
remarkably ameliorate the dilemma of whether a single long chain or multiple
short chains shall be applied to the Monte Carlo simulation.

Acknowledgments. The author would like to thank Heather L. Newkirk for
text editing, and Zhi Wei for providing eukaryotic motif sequences. This research
is supported in part by the Katharine B. Richardson Foundation.

References

1. MacIsaac, K.D. and Fraenkel, E.: Practical Strategies for Discovering Regulatory
DNA Sequence Motifs. PLoS Comput Biol, 2 (2006) e36

2. Tompa, M. et al.: Assessing Computational Tools for the Discovery of Transcription
Factor Binding Sites. Nature Biotechnology 23 (2005) 137-144

3. Lawrence, C.E. and Reilly, A.A.: An Expectation Maximization Algorithm for
the Identification and Characterization of Common Sites in Unaligned Biopolymer
Sequences. Proteins: Structure, Function and Genetics 7 (1990) 41-51

4. Dempster, A.P. et al.: Maximum Likelihood from Incomplete Data via the EM
Algorithm (with Discussion). J. the Royal Statist. Soc. B 39 (1977) 1-38

5. Bailey, T.L. and Elkan, C.: Unsupervised Learning of Multiple Motifs in Biopoly-
mers Using Expectation Maximization. Machine Learning 21 (1995) 51-80

6. Celeux, G et al.: Stochastic Versions of the EM Algorithm: An Experimental Study
in the Mixture Case. J. Statist. Comput. Simul. 55 (1996) 287-314

7. Wei, G.C.G. and Tanner, M.A.: A Monte Carlo Implementation of the EM Algo-
rithm and the Poor Man’s Data Augmentation Algorithms. Journal of the Ameri-
can Statistical Association 85 (1990) 699-704

8. Delyon, B. et al.: Convergence of a Stochastic Approximation Version of the EM
Algorithm. Ann. Statist. 27 (1999) 94-128

9. Berg, O.G. and von Hippel, P.H.: Selection of DNA Binding Sites by Regulatory
Proteins: Statistical-mechanical Theory and Application to Operators and Pro-
moters. Journal of Molecular Biology 193 (1987) 723-750

10. Bonizzoni, P. and Vedova, G.D.: The Complexity of Multiple Sequence Alignment
with SP-score That Is a Metric. Theoretical Computer Science 259 (2001) 6379

476 C. Bi

11. Bi, C.-P.: SEAM: A Stochastic EM-type Algorithm for Motif-Finding in Biopoly-
mer Sequences. J. Bioinformatics and Comput. Biol. (2007) in press

12. Wu, C.F.J.: On the Convergence Properties of the EM Algorithm. The Annals of
Statistics 11 (1983) 95-103

13. Lawrence, C.E. et al.: Detecting Subtle Sequence Signals: A Gibbs Sampling Strat-
egy for Multiple Alignment. Science 262 (1993) 208-214

14. Liu, X. et al.: BioProspector: Discovering Conserved DNA Motifs in Upstream
Regulatory Regions of Co-expressed Genes. Pacific Symposium on Biocomputing
6 (2001) 127-138

15. Schneider, T.D. and Stephens, R.M.: Sequence Logos: A New Way to Display
Consensus Sequences. Nucleic Acids Research 18 (1990) 6097-6100.

16. Crooks, G.E. et al.: WebLogo: A Sequence Logo Generator. Genome Research 14
(2004) 1188-1190

17. Salgado, H. et al.: RegulonDB (version 5.0): Escherichia coli K-12 Transcriptional
Regulatory Network, Operon Organization, and Growth Conditions. Nucleic Acids
Res. 34 (2006) D394-7

18. Kel, A.E. et al.: Computer-assisted Identification of Cell Cycle-related Genes: New
Targets for E2F Transcription Factors. J. Mol. Biol. 309 (2001) 99-120

19. Klinge, C.M.: Estrogen Receptor Interaction with Estrogen Response Elements.
Nucleic Acids Res. 29 (2001) 2905-2919

20. Wei, Z. and Jensen, S.T.: GAME: Detecting cis-Regulatory Elements Using a Ge-
netic Algorithm. Bioinformatics 22 (2006) 1577-1584

21. Martnez-Bueno1, M. et al.: BacTregulators: A Database of Transcriptional Regu-
lators in Bacteria and Archaea. Bioinformatics 20 (2004) 2787-2791

22. Krell, T. et al.: The IclR Family of Transcriptional Activators and Repressors Can
Be Defined by a Single Profile. Protein Science 15 (2006) 1207-1213

23. Bi, C.-P.: A Genetic-Based EM Motif-Finding Algorithm for Biological Sequence
Analysis. Proceeding of IEEE Symposium on Computational Intelligence in Bioin-
formatics and Computational Biology (2007) in press

Cancer Class Discovery Using Non-negative

Matrix Factorization Based on Alternating
Non-negativity-Constrained Least Squares

Hyunsoo Kim and Haesun Park

College of Computing, Georgia Institute of Technology,
266 Ferst Drive, Atlanta, GA 30332-0765

{hskim,hpark}@cc.gatech.edu

Abstract. Many bioinformatics problems deal with chemical concen-
trations that should be non-negative. Non-negative matrix factorization
(NMF) is an approach to take advantage of non-negativity in data. We
have recently developed sparse NMF algorithms via alternating non-
negativity-constrained least squares in order to obtain sparser basis
vectors or sparser mixing coefficients for each sample, which lead to eas-
ier interpretation. However, the additional sparsity constraints are not
always required. In this paper, we conduct cancer class discovery us-
ing NMF based on alternating non-negativity-constrained least squares
(NMF/ANLS) without any additional sparsity constraints after intro-
ducing a rigorous convergence criterion for biological data analysis.

Keywords: Cancer Class Discovery, Non-negative Matrix Factorization,
Convergence Criterion, Non-negativity-constrained Least Squares.

1 Introduction

Since non-negative matrix factorization (NMF) may give us simple interpre-
tation due to non-subtractive combinations of non-negative basis vectors, it
has recently received much attention and it has been applied to text data
mining [1,2], gene expression data analysis [3,4,5], and so forth. Given a non-
negative matrix A of size m × n, where each column of A corresponds to a data
point in the m-dimensional space, and a desired rank k < min{m, n}, NMF
(A ≈ WH s.t. W, H ≥ 0) can be obtained by solving the following optimiza-
tion problem:

min
W,H

f(W, H) ≡ 1
2
‖A − WH‖2

F , s.t. W, H ≥ 0, (1)

where W ∈ R
m×k is a basis matrix, H ∈ R

k×n is a coefficient matrix, and W,
H ≥ 0 means that all elements of W and H are non-negative. Imposing ad-
ditional sparsity constraints on W or H may give us simpler interpretation.
Thus, we have recently developed sparse NMF algorithms via alternating non-
negativity-constrained least squares [6]. However, the additional sparsity con-
straints are not always required unless one is interested in easier interpretation

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 477–487, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

478 H. Kim and H. Park

in spite of some possible information loss. In this paper, we focus on NMF algo-
rithms that do not have additional sparsity constraints.

Cancer class discovery using NMF based on multiplicative updating rules [7]
has been studied [4]. This work used a convergence criterion using connectivity
matrix [4] that can only consider the analytical convergence of H . Since we need
to use W for biological analysis in order to investigate the contribution of a gene
to each biological process, it is also necessary to guarantee the analytical conver-
gence of W [6]. In this paper, we perform cancer class discovery by NMF based on
alternating non-negativity-constrained least squares (NMF/ANLS), which is fast
due to its sound convergence property. The rest of this paper is organized as fol-
lows. In Section 2, we describe NMF/ANLS and a rigorous convergence criterion.
Section 3 presents experimental results illustrating properties of NMF/ANLS.
Summary is given in Section 4.

2 NMF Based on Alternating Non-negativity-Constrained
Least Squares (NMF/ANLS)

In this section, we describe NMF based on alternating non-negativity-constrained
least squares. Paatero and Tapper [8] originally proposed using a constrained
alternating least squares algorithm to solve Eq. (1). However, this approach has
not been widely used for many pattern recognition applications since an NMF
algorithm using ‘lsqnonneg’ function in Matlab takes too long computing time
[9,10]. To enhance computing speed, we utilize the recent achievements on fast
algorithms for non-negativity-constrained least squares (NLS). Bro and de Jong
[11] made a substantial speed improvement to Lawson and Hanson’s algorithm
[12] for large scale NLS problems. Van Benthem and Keenan [13] devised an
algorithm that further improves the performance of NLS. This algorithm deals
with the following NLS optimization problem given B ∈ R

m×k and A ∈ R
m×n:

min
G

‖BG − A‖2
F , s.t. G ≥ 0,

where G ∈ R
k×n is a solution. It is based on the active/passive set method. More

detailed explanations of this algorithm can be found in [13].
Given a non-negative matrix A ∈ R

m×n, NMF/ANLS starts with the initial-
ization of H ∈ R

k×n with non-negative values. Then, it iterates the following
ANLS until convergence:

min
W

‖HT WT − AT ‖2
F , s.t. W ≥ 0, (2)

which fixes H and solves the optimization with respect to W , and

min
H

‖WH − A‖2
F , s.t. H ≥ 0, (3)

which fixes W and solves the optimization with respect to H . Alternatively,
after initializing W , one can iterate Eq. (3) and Eq. (2) until convergence. We

Cancer Class Discovery Using Non-negative Matrix Factorization 479

utilize the fastest NLS algorithm [13] to solve Eqs. (2-3). Lin [9] discussed the
convergence property of alternating non-negativity-constrained least squares and
showed that any limit point of the sequence (W ,H) generated by alternating
non-negativity-constrained least squares is a stationary point of Eq. (1), and
proposed projected gradient methods that do not use lsqnonneg function. To
alleviate the uniqueness problem, after convergence, the columns of the basis
matrix W are normalized to unit L2-norm and the rows of H are adjusted so
that the approximation error is not changed.

2.1 Analytic Convergence Criterion

Once we have a non-negative decomposition (A ≈ WH s.t. W, H ≥ 0), we
can use the basis matrix W to divide the m genes into k gene-clusters and the
coefficient matrix H to divide the n samples into k sample-clusters. Typically,
gene i is assigned to gene-cluster q if the W (i, q) is the largest element in W (i, :)
and sample j is assigned to sample-cluster q if the H(q, j) is the largest element
in H(:, j). We test convergence at every five iterations by using these positions
of the largest elements in rows of W and columns of H . We assume that NMFs
are converged if both the positions of the largest elements in rows of W and the
positions of the largest elements in columns of H have not changed during 10
convergence tests. This analytic convergence criterion was proposed in [6].

2.2 Mathematical Convergence Criterion

Here, we describe a rigorous mathematical convergence criterion, which checks
if NMF is converged to (near) a stationary point. Most non-convex optimization
algorithms guarantee only the stationarity of limit points, which may or may
not be a local minimum. The Karush-Kuhn-Tucker (KKT) optimality condition
can be used for convergence test. The KKT conditions of NMF problem Eq. (1)
are

(C1) Wiq ≥ 0,
(C2) Hqj ≥ 0,
(C3) (∂f(W, H)/∂W)iq ≥ 0,
(C4) (∂f(W, H)/∂H)qj ≥ 0,
(C5) Wiq · (∂f(W, H)/∂W)iq = 0,
(C6) Hqj · (∂f(W, H)/∂H)qj = 0, ∀i, q, j.

(4)

These conditions can be rewritten as

min(W, WHHT − AHT) = 0,
min(H, WT WH − WT A) = 0,

(5)

where the minimum is taken component wise [14]. Let Δo be the KKT residual
measured by the L1-vector norm,

Δo =
∑m

i=1
∑k

q=1 | min(Wiq, (WHHT − AHT)iq)|+
∑k

q=1
∑n

j=1 | min(Hqj , (WT WH − WT A)qj)|.
(6)

480 H. Kim and H. Park

We count the number of W elements that did not converge yet, i.e. δW =
#(min(W, WHHT − AHT) �= 0), and the number of H elements that did not
converge yet, i.e. δH = #(min(H, WT WH−WT A) �= 0). Then, Δo is normalized
and we defined the following normalized KKT residual:

Δ =
Δo

δW + δH
, (7)

which reflects the average of convergence errors for elements in W and H that
did not converge. The mathematical convergence criterion is defined as

Δ ≤ εΔ1, (8)

where Δ1 is the Δ value in the first iteration and ε is a tolerance.

2.3 Combined Convergence Criterion

In the mathematical convergence criterion, one could set ε to 10−3, 10−4, 10−5,
10−6, or even a smaller value. The smaller ε yields the larger number of itera-
tions for convergence, which results in the larger computing time. When ε = 0,
the KKT conditions are completely satisfied since the mathematical convergence
criterion is Δ = 0. However, it is too harsh to use ε = 0 in general. In order
to reduce computing time, one may use a larger ε value. Then, a NMF solu-
tion may be farther from a stationary point and may sometimes not satisfy the
analytical convergence criterion. Thus, we suggest a combined convergence crite-
rion that requires not only the mathematical convergence but also the analytical
convergence that is very important for biological analysis.

3 Experiments and Discussion

3.1 Datasets Description

We used the leukemia gene expression dataset (ALLAML) and the central ner-
vous system tumors dataset (CNS) [4], which are the same datasets used in [6].
The ALLAML dataset contains acute lymphoblastic leukemia (ALL) that has B
and T cell subtypes, and acute myelogenous leukemia (AML) that occurs more
commonly in adults than in children. This gene expression dataset consists of 38
bone marrow samples (19 ALL-B, 8 ALL-T, and 11 AML) with 5,000 genes. The
central nervous system dataset is composed of four categories of CNS tumors
with 5,597 genes. It consists of 34 samples representing four distinct morpholo-
gies: 10 classic medulloblastomas, 10 malignant gliomas, 10 rhabdoids, and 4
normals. All datasets we used contain only non-negative entries. To make a non-
negative matrix for the CNS dataset, a cutoff lower threshold value (20) and an
upper threshold value (16,000) were used, as in the previous studies [4,5]. We
implemented algorithms in Matlab 6.5 [15]. All our experiments were performed
on a P3 600MHz machine with 512MB memory.

Cancer Class Discovery Using Non-negative Matrix Factorization 481

Table 1. Performance comparison between NMF using norm-based updating rules
(NMF/NUR) [7] and NMF/ANLS on the leukemia dataset with k = 3. After 30 runs
with different random initializations, we obtained the average values of computing time,
percentages of zero elements in W and H , and the number of iterations. Purity and
entropy were computing from H that produced the lowest approximation error. ∗The
average percentages of the number of very small non-negative elements that are smaller
than 10−8 in W and H computed from NMF/NUR.

Algorithms NMF/NUR NMF/ANLS

#(W = 0) (%) 2.72%∗ 2.71%

#(H = 0) (%) 17.28%∗ 18.42%

Purity 0.974 0.974

Entropy 0.095 0.095

of iterations 3806 91.5

Computing time 159.2 sec. 7.1 sec.

3.2 Clustering Performance Measures

To measure the clustering performance, we used purity and entropy. Suppose we
are given l categories (true class labels), while NMF generates k clusters. Purity
is given by

Purity =
k∑

q=1

nq

n
P (Ω̃q), P (Ω̃q) =

1
nq

max
j

(nj
q), (9)

where Ω̃q is a particular cluster of size nq, nj
q is the number of samples in Ω̃q

that belong to original class Ωj (1 ≤ Ωj ≤ l), k is the number of clusters, and n
is the total number of samples. The larger values of purity, the better clustering
performance. Entropy is defined as follows:

Entropy =
k∑

q=1

nq

n
E(Ω̃q), E(Ω̃q) = − 1

log2 l

l∑

j=1

nj
q

nq
log2

nj
q

nq
, (10)

where l denotes the number of original class labels. The smaller values of entropy,
the better clustering quality.

3.3 Clustering Performance Comparison

We used the NMF using norm-based updating rules (NMF/NUR) that minimizes
the Euclidean distance ‖A − WH‖F in order to compare with NMF/ANLS. We
used the combined convergence criterion with ε = 10−5. We also imposed a max-
imal number of 20,000 iterations on each method. Table 1 shows the performance
comparison between NMF/NUR and NMF/ANLS on the leukemia data matrix

482 H. Kim and H. Park

Table 2. Performance comparison between NMF/NUR [7] and NMF/ANLS on the
CNS tumors dataset. After 30 runs with different random initializations, we obtained
the average values of computing time (in seconds), percentages of zero elements in W
and H , and the number of iterations. ∗The average percentages of the number of very
small non-negative elements that are smaller than 10−8 in W and H computed from
NMF/NUR.

Algorithm NMF/NUR

k 3 4 5

#(W = 0) (%) 8.77%∗ 9.07%∗ 12.60%∗

#(H = 0) (%) 16.99%∗ 24.14%∗ 25.43%∗

of iterations 11151 13770 16717

Computing time 563.5 sec. 836.4 sec. 1334.9 sec.

Algorithm NMF/ANLS

k 3 4 5

#(W = 0) (%) 8.69% 9.03% 12.54%

#(H = 0) (%) 18.63% 25.00% 26.88%

of iterations 105.2 100.3 130.5

Computing time 9.8 sec. 12.1 sec. 20.3 sec.

with k = 3. After 30 runs with different random initializations, we computed
the average values of computing time, percentage of zero elements in W and
H , approximation error, and the number of iterations. Purity and entropy were
computing from H that produced the lowest approximation error. It is interest-
ing that NMF/NUR also produced purity=0.974 with only one misclustering,
whereas the previous study [4] showed that NMF using divergence-based multi-
plicative updating rules misclustered two samples. This result may be attributed
to the rigorous combined convergence criterion. However, NMF/NUR took much
longer computing time than NMF/ANLS. The fast convergence of NMF/ANLS
is due to its sound convergence property. NMF/NUR produced very small non-
negative elements (< 10−8) in W and H , while NMF/ANLS generated the exact
zero elements. This is also a very interesting property of NMF/ANLS since exact
zero values are helpful in reducing computing complexity and storage require-
ment for handling sparse datasets.

Table 2 shows the performance comparison on the CNS tumors dataset with
various k values. NMF/ANLS was an order of magnitude faster than NMF/NUR.
For some of random initializations, NMF/NUR could not converge to a station-
ary point in terms of the combined convergence criterion within 20,000 iterations.
This is a serious problem of NMF/NUR since it may not be practically applicable
to huge data analysis due to its slow convergence. Using both NMF/NUR and
NMF/ANLS with k = 4, we obtained purity=0.971 and entropy=0.071, which
means excellent clustering power since there was only one misclustering.

Cancer Class Discovery Using Non-negative Matrix Factorization 483

k=2

10 20 30

5

10

15

20

25

30

35
0

0.2

0.4

0.6

0.8

1
k=3

10 20 30

5

10

15

20

25

30

35
0

0.2

0.4

0.6

0.8

1

k=4

10 20 30

5

10

15

20

25

30

35
0

0.2

0.4

0.6

0.8

1
k=5

10 20 30

5

10

15

20

25

30

35
0

0.2

0.4

0.6

0.8

1

2 3 4 5
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Rank (k)
D

is
p

e
rs

io
n

 c
o

e
ff

ic
ie

n
t

(ρ
)

Fig. 1. Leukemia clustering by NMF/ANLS. (Left) The reordered consensus matrices
on the leukemia dataset. (Right) The corresponding dispersion coefficients.

3.4 Model Selection

For the determination of the number of clusters in the leukemia dataset and the
CNS tumors dataset, we repeated non-negative matrix factorizations 30 times to
obtain the average connectivity matrix (i.e. consensus matrix) whose entries re-
flect the probability that samples i and j belong to the same cluster. To measure
the dispersion of the consensus matrix C, we defined the dispersion coefficient
(ρ) as

ρ =
1
n2

n∑

i=1

n∑

j=1

4(Cij − 1
2
)2, (11)

of which value is ρ = 1 for a perfect consensus matrix (all entries = 0 or 1)
and 0 ≤ ρ < 1 for a scattered consensus matrix. After obtaining ρk values
for various k, we can determine the number of clusters from the maximal k
producing maximal ρk. Figure 1 shows that NMF/ANLS could find the number
of clusters in the leukemia dataset due to the maximal ρk at k = 3. Figure 2
and Figure 3 illustrate that NMFs could find the number of clusters in the CNS
tumors dataset due to the maximal ρk at k = 4, since they generated perfect
consensus matrices for k = 2, 3, 4. In other words, they produced H matrices
that have the same cluster structure with different random initializations of H .

3.5 Biological Analysis

Figure 4 presents the matrices W and H obtained from NMF/ANLS, which pro-
duced the lowest approximation error ‖A − WH‖F after 30 runs with different

484 H. Kim and H. Park

k=2

10 20 30

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1
k=3

10 20 30

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1

k=4

10 20 30

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1
k=5

10 20 30

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1

2 3 4 5
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Rank (k)
D

is
p

e
rs

io
n

 c
o

e
ff

ic
ie

n
t

(ρ
)

Fig. 2. CNS tumors clustering by NMF using norm-based update rules [7]. (Left) The
reordered consensus matrices on the CNS tumors dataset. (Right) The corresponding
dispersion coefficients.

random initializations of H . A row vector of the basis matrix W has the contri-
butions of a gene to the k biological pathways or processes (i.e. k columns of W).
A gene can participate in more than one biological process. One can investigate
genes that have relatively large coefficient in each biological process. A column
vector of the coefficient matrix H has the contributions of k biological processes
to the gene expression of a sample. From the matrix H , we can recognize that
ALL-B is dominated by the first biological process. ALL-T is almost controlled
by the second biological process. The third biological process is the major com-
ponent for AML. Some genes dominantly contribute to only single biological
pathway or process. For instance, MB-1 gene (U05259) is most active in the first
process. Transcription factor 7 (T-cell specific, HMG-box) (TCF7, X59871) is ac-
tive in the second process, which is also known as T cell factor-1 (TCF-1). Some
genes play a major role in the third process, for example, Interleukin 8 (IL8,
M28130), DF D component of complement (adipsin) (CFD, M84526), Cystatin
C (amyloid angiopathy and cerebral hemorrhage (CST3, M27891), galectin 3
(LGALS3,M57710), Chemokine (C-X-C motif) ligand 2 (CXCL2, M57731), etc.
Chemokine is a type of cytokines that bind to a specific cell-surface receptor and
are critical to the functioning of both innate and adaptive immune responses.
Among above genes, MB-1, IL8, CFD, CST3, LGALS3 were the same gene as
those found in [16]. Ribosomal protein S3 (RPS3, X57351) simultaneously par-
ticipates in all three processes. This gene encodes a ribosomal protein that is a
component of the 40S subunit, where it forms part of the domain where trans-
lation is initiated. It is reasonable since RPS3 is a housekeeping gene and ribo-
somal protein genes are usually overexpressed in some cancers. We have shown
that NMF/ANLS can be used for cancer class discovery and biological process
analysis.

Cancer Class Discovery Using Non-negative Matrix Factorization 485

k=2

10 20 30

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1
k=3

10 20 30

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1

k=4

10 20 30

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1
k=5

10 20 30

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1

2 3 4 5
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Rank (k)
D

is
p

e
rs

io
n

 c
o

e
ff

ic
ie

n
t

(ρ
)

Fig. 3. CNS tumors clustering by NMF/ANLS. (Left) The reordered consensus ma-
trices on the CNS dataset. (Right) The corresponding dispersion coefficients. The dis-
persion coefficient drops when k increases from 4 to 5, indicating a four-cluster split of
the data is more stable than a five-cluster split.

3.6 Remarks on Clustering Via NMF

The object function of NMF ‖A − WH‖2
F can be rewritten as

JNMF =
n∑

j=1

∥
∥
∥
∥
∥
A(:, j) −

k∑

q=1

W (:, q) ∗ H(q, j)

∥
∥
∥
∥
∥

2

2

. (12)

The j-th sample A(:, j) is represented as a linear combination of basis vectors.
The sample j is assigned to sample-cluster Ω̃q when the q-th coefficient H(q, j)
is maximal in H(:, j), in other words, when the q-th basis vector W (:, q) is a
dominant component of the sample j. The K-means clustering minimizes

JK−MEANS =
k∑

q=1

∑

j∈Sq

‖A(:, j) − cq‖2
2, (13)

where Sq is a set of column indices of A belonging to cluster Ω̃q and cq is
the centroid vector of the q-th cluster, which satisfies cq = argminz

∑
j∈Sq

‖A(:, j) − z‖2
2. A special NMF A+ ≈ C+Δ+ s.t. A+, C+, Δ+ ≥ 0, where C+ ∈

R
m×k is a centroid matrix and Δ+ ∈ R

k×n is a cluster indicator matrix
((Δ+)qj = 1 if j ∈ Sq and (Δ+)qj = 0 otherwise,

∑
q(Δ+)qj = 1), is equiv-

alent to K-means [17]. Moreover, a special one-sided NMF A± ≈ C±Δ+ s.t.
Δ+ ≥ 0 without non-negativity constraints on A and C, where C± ∈ R

m×k is a
centroid matrix of A±, is equivalent to K-means. In these cases, centroid vectors
become basis vectors and the j-th sample is represented by only one basis vector.

486 H. Kim and H. Park

W

1 2 3

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.05

0.1

0.15

0.2

0.25

H

10 20 30

1

2

3

0

2

4

6

8

10

x 10
4

Fig. 4. W (basis matrix) and H (coefficient matrix) obtained from NMF/ANLS for
the leukemia dataset (38 samples: 19 ALL-B, 8 ALL-T, 11 AML) with the 5,000 most
highly varying genes

However, in most of practical situations, sample j is usually a linear combination
of more than one basis vectors. For instance, gene expression pattern under an
experimental condition comes from usually more than one biological pathways
or processes. K-means gives a centroid-based hard-clustering, while NMF gives
a soft-clustering (except the case that each basis vector is a centroid vector).

4 Summary

Cancer class discovery is conducted by using NMF based on alternating non-
negativity-constrained least squares, which has a sound convergence property. A
rigorous convergence criterion is also introduced. We have established a reliable
framework of data analysis using NMF, which is theoretically sound and practi-
cally efficient. This approach can be applied to many practical problems in wide
areas including text data mining, bioinformatics, and computational biology.

Acknowledgments. This material is based upon work supported in part by
the National Science Foundation Grants ACI-0305543 and CCF-0621889. Any
opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

Cancer Class Discovery Using Non-negative Matrix Factorization 487

References

1. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix
factorization. Nature 401 (1999) 788–791

2. Pauca, V.P., Shahnaz, F., Berry, M.W., Plemmons, R.J.: Text mining using non-
negative matrix factorizations. In: Proc. SIAM Int’l Conf. Data Mining (SDM’04).
(April 2004)

3. Kim, P.M., Tidor, B.: Subsystem identification through dimensionality reduction
of large-scale gene expression data. Genome Research 13 (2003) 1706–1718

4. Brunet, J.P., Tamayo, P., Golub, T.R., Mesirov, J.P.: Metagenes and molecular
pattern discovery using matrix factorization. Proc. Natl Acad. Sci. USA 101(12)
(2004) 4164–4169

5. Gao, Y., Church, G.: Improving molecular cancer class discovery through sparse
non-negative matrix factorization. Bioinformatics 21(21) (2005) 3970–3975

6. Kim, H., Park, H.: Sparse non-negative matrix factorizations via alternating non-
negativity-constrained least squares. In Du, D.Z., ed.: Proceedings of the IASTED
International Conference on Computational and Systems Biology (CASB2006).
(November 2006) 95–100

7. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In:
Proceedings of Neural Information Processing Systems. (2000) 556–562

8. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics 5 (1994)
111–126

9. Lin, C.J.: Projected gradient methods for non-negative matrix factorization. Tech-
nical Report Information and Support Service ISSTECH-95-013, Department of
Computer Science, National Taiwan University (2005)

10. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algo-
rithms and applications for approximate nonnegative matrix factorization (2006)
Computational Statistics and Data Analysis, to appear.

11. Bro, R., de Jong, S.: A fast non-negativity-constrained least squares algorithm. J.
Chemometrics 11 (1997) 393–401

12. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall, En-
glewood Cliffs, NJ (1974)

13. van Benthem, M.H., Keenan, M.R.: Fast algorithm for the solution of large-scale
non-negativity-constrained least squares problems. J. Chemometrics 18 (2004)
441–450

14. Gonzales, E.F., Zhang, Y.: Accelerating the Lee-Seung algorithm for non-negative
matrix factorization. Technical report, Department of Computational and Applied
Mathematics, Rice University (2005)

15. MATLAB: User’s Guide. The MathWorks, Inc., Natick, MA 01760 (1992)
16. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P.,

Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander,
E.S.: Molecular classification of cancer: Class discovery and class prediction by
gene expression monitoring. Science 286 (1999) 531–537

17. Ding, C., He, X., Simon, H.D.: On the equivalence of nonnegative matrix factor-
ization and spectral clustering. In: Proc. SIAM Int’l Conf. Data Mining (SDM’05).
(April 2005) 606–610

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 488–495, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Support Vector Machine Ensemble for Cancer
Classification Using Gene Expression Data

Chen Liao and Shutao Li

College of Electrical and Information Engineering, Hunan University,
Changsha 410082, China
shutao_li@hnu.cn

Abstract. In this paper, we propose a support vector machine (SVM) ensemble
classification method. Firstly, dataset is preprocessed by Wilcoxon rank sum
test to filter irrelevant genes. Then one SVM is trained using the training set,
and is tested by the training set itself to get prediction results. Those samples
with error prediction result or low confidence are selected to train the second
SVM, and also the second SVM is tested again. Similarly, the third SVM is
obtained using those samples, which cannot be correctly classified using the
second SVM with large confidence. The three SVMs form SVM ensemble
classifier. Finally, the testing set is fed into the ensemble classifier. The final
test prediction results can be got by majority voting. Experiments are performed
on two standard benchmark datasets: Breast Cancer, ALL/AML Leukemia.
Experimental results demonstrate that the proposed method can reach the state-
of-the-art performance on classification.

Keywords: Support Vector Machine, Wilcoxon Rank Sum Test, Gene Selection,
Ensemble Classifier, Classification Accuracy.

1 Introduction

Accurate cancer diagnosis is crucial for the successful application of specific
therapies nowadays. Recent studies show that DNA microarrays can provide useful
information for cancer classification at the gene expression level because of their
ability to measure the large quantity of messenger ribonucleic acid (mRNA)
transcripts for genes simultaneously [1].

There are many classification methods used in cancer diagnosis. Such as K-nearest
neighbor (KNN), neural network, SVM and so on. KNN uses an integer parameter K.
Provided an input, the algorithm finds the K closest training data points to the input,
and then the label of the input based on the label of the K points will be predicted [2].
Neural network is also often used in cancer classification. It contains some structure
consisting of a certain number of hidden layers and one output layer. Among the
different training procedures of neural networks, the back propagation algorithm with
adaptive learning and momentum is most popular and is often utilized. The learning
algorithm will not be stopped until the classification performance of the validation set
starts to diverge from that of the training set [3]. SVM is one of the most popular

ă

 A SVM Ensemble for Cancer Classification Using Gene Expression Data 489

cancer classification methods. If the data is linearly separable, it computes the
hyperplane which maximizes the margin between the training samples and the class
boundary. And when the data is not linearly separable, the samples are projected into
a high dimensional space where such a separating hyperplane can be found [4].

SVM ensemble is actually a type of cross-validation optimization of single SVM
with a more stable classification performance than other models. In this paper, a SVM
ensemble classification method is proposed. We construct SVM ensemble classifier.
The first SVM uses all of the training samples, and the next two SVMs respectively
use the samples, which are incorrectly classified or low confidence obtained by the
preceding SVM.

This paper is organized as follows. In next section, the basic theory of SVM is
introduced. In section 3, the new classification method is proposed. In section 4, the
experimental results are shown, and in the last section, the paper is concluded.

2 Support Vector Machines

SVM has been considered as a widely used classification approach of statistical
learning theory. The training set is supposed to be

1{(,)}N
i i ix y = , with each input

m
ix R∈ and { 1}iy ∈ ± . The SVM projects x to ()z x= ϕ in a Hilbert space F by a

nonlinear map ϕ : mR F→ . The dimensionality of F is very high in most conditions.

When the data is linearly separable in F , a hyperplane (, ())w x bϕ + is constructed

by the SVM, the separation between the positive and negative examples is maximized
for the hyperplane. By minimizing ||w||, the w for the optimal hyperplane is obtained,

and the solution can be presented as w=
1

()
N

i i ii
y x

=
α ϕ∑ for some certain

i
α 0≥ . The

vector of
i

α 's,
i NΛ = (α ,...,α) , can be obtained by solving the following quadratic

programming problem:

 maximize 1
() 1

2
W QΤ ΤΛ = Λ − Λ Λ , (1)

with respect to Λ , subject to the constraints Λ ≥ 0 and ΛΥ = 0 . Here,
1 Ny yΤΥ = (, ...,)

and Q are symmetric matrixes with elements

ij i j i jQ y y x x= ϕ(),ϕ() . (2)

For those
i

α 's greater than zero, the relevant training examples should lie along the

margins of the decision boundary, and these are defined as the support vectors.
However, due to the high dimensionality of F and ()ixϕ and ()jxϕ in (2), the

way is not so impractical. An important characteristic of the SVM, and of kernel
methods in general, plays a crucial part here. It is that one can gain

i jx xϕ(),ϕ() in

(2) without explicit ()ixϕ and ()jxϕ first, this is realized by using kernel function.

The kernel methods provide good tools to process, analyze, and compare many types

490 C. Liao and S. Li

of data, and provide state-of-the-art performance in many cases. Here some kinds of
kernel functions are introduced as follows:
○1 linear kernel

 (,) T

L
x y x yK = , (3)

where x is the value of the independent variable for which one seeks an estimate, and
y are the values of the independent variable in the data.
○2 polynomial kernels

(,) ()T d

P
x y x yK = , (4)

where d is the degree of the polynomial, its kernel
p

K of degree 2 is corresponding to

a feature space spanned by all products of two variables, that is, 2 2
1 1 2 2{ , , }x x x x .

○3 Gaussian RBF kernel
2

(,) exp()G x y x yK = −σ ∗ − , (5)

where σ is a parameter, the Gaussian kernel is one of the most popular utilized
kernels in practice due to its capacity to produce nonparametric classification
functions [5].

3 Proposed Method

We suppose a gene expression dataset with M genes (features) and N samples
(observations) be represented by the following matrix:

11 12 1

21 22 2

1 2

N

N

M M MN

x x x

x x x

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

X
 ,

where xij is the measurement of the expression level of gene i in sample j. Let xj = (x1j,
x2j, ..., xMj) denote the jth sample of X, and yj the corresponding class label (e.g, tumor
type or clinical outcome).

The schematic diagram of the proposed method is shown in Figure 1.

Step 1: Preprocessing using Wilcoxon rank sum test
Due to the small size of training set, leave-one-out cross validation (LOOCV) is
utilized to select the training set and the testing set.

The statistics formula of Wilcoxon rank sum test is:

1 1

() ()() (() 0)g g
j i

i j

s g I
+ −∈ ∈

= − ≤∑ ∑
N N

x x ,

where I is the discrimination function, if the logic expression in the bracket is true, the
value of I is 1, or else it is 0. ()g

ix is the expression value of the sample i in the gene g.

1+N and 1−N are the index sets of different classes of samples. ()s g can represent the

measurement of the difference between the two classes. When it is closer to 0 or

 A SVM Ensemble for Cancer Classification Using Gene Expression Data 491

closer to the max value of 1 1n n+ − (here 1 1n+ += N , 1 1n− −= N), the corresponding

gene is more important to the classification. So according to (6), the importance
degree of gene can be calculated [6]:

 1 1() max((), ())q g s g n n s g− += − . (6)

Genes are ranked according to ()q g , and the top m genes are selected to form a

new training subset.

Fig. 1. The proposed method of SVM ensemble classification

Step 2: Constructing SVM ensemble classifier
Using each new training set, we train SVM1, and SVM1 is tested by the training set
itself to obtain the prediction results. Then we select the samples with incorrect
prediction result or low confidence to train SVM2, and SVM2 is also tested. As the
same, SVM3 can be obtained. Finally, SVM ensemble classifier is composed of these
three SVM together.

The value of confidence is defined as:

() ()Tf x w x bϕ= + .

And the dual form is

() (,)j j j
j SV

f x y K x x bα
∈

= +∑ ,

where
j

α is Lagrange multiplier, and
jy represents for the jth support vector.

492 C. Liao and S. Li

Step 3: Classification
The testing set is fed into the ensemble classifier, and there are three classification
results from the three SVM classifiers. We use majority voting to decide the final
classification result, that’s to say, if more than one classifier show the result to be +1,
the final classification result will be +1, otherwise it will be -1.

4 Experimental Setup and Results

4.1 Setup

The gene selection and classification performance of the proposed method is
evaluated by two benchmark datasets: Breast cancer dataset: It consists of a total of
38 samples, 18 of them are ER+ (estrogen receptor) samples while the remaining 20
are ER-. Each sample contains expression values of 7129 genes [7]. ALL/AML
Leukemia dataset: It contains a total of 72 samples of two types of leukemia: 25 of
acute myeloid leukemia (AML) and 47 of acute lymphoblastic leukemia (ALL). Each
sample contains expression values of 7129 genes [8].

4.2 Experimental Results

In our experiments, the samples with error classification result or confidence less than
1 are used to construct the next classifier. For Breast cancer dataset, the numbers of
training sample of SVM1, SVM2 and SVM3 are respectively 37, 13 and 11. And for
Leukemia dataset, the numbers are respectively 71, 17 and 16.

Table 1 shows the classification accuracy of Breast cancer dataset with different
parameters, and Table 2 shows the results of Leukemia dataset.

In these tables, m is the number of the informative genes selected by Wilcoxon rank
sum test. Gaussian kernel is used and there are two parameters σ and C for each

SVM. 1σ , C1, 2σ , C2, 3σ and C3 represent the corresponding σ and C for SVM1,

SVM2 and SVM3 , respectively.

Because 1σ and C1 have the most obvious effect on the classification results, we

only list the effect of 1σ and C1 in the tables for the length limit.

Table 3 shows the classification accuracy obtained by single SVM classifier, and
Gaussian kernel is also used with the value of σ set to 0.0001. For Breast cancer, it
can reach the prediction result of 100%, and for Leukemia dataset, it’s only 97.2%.
Compared to the results using single SVM classifier, we can conclude that SVM
ensemble classifier can obtain better and more stable prediction results.

Table 4 shows the performance of various methods on the two datasets as reported
in the literature. All these methods use LOOCV and so their classification accuracies
can be directly compared. As can be seen, the proposed method, which attains the best
classification accuracy (of 100%) on both of Breast cancer dataset and Leukemia
dataset, outperforms most of the methods. The JCFO (Joint Classifier and Feature
Optimization) [9] with linear kernel can also attain 100% on Leukemia dataset,
however, JCFO relies on the Expectation-Maximization (EM) algorithm [9] and is
much slower.

 A SVM Ensemble for Cancer Classification Using Gene Expression Data 493

As can be seen, for both Breast cancer and Leukemia data, SVM ensemble can
reach the best classification performance 100%.

Table 1. Classification accuracy (%) of Breast cancer data (2σ =0.1, C2=10, 3σ =0.01,

C3=100)

m 1σ C1 Classification accuracy

10 100.0 0.1
100 100.0
10 100.0

0.01
100 100.0
10 100.0

50

0.001
100 100.0
10 100.0 0.1

100 100.0
10 100.0 0.01

100 100.0
10 100.0

70

0.001
100 100.0
10 100.0

0.1
100 100.0
10 100.0 0.01

100 100.0
10 100.0

90

0.001
100 100.0

Table 2. Classification accuracy (%) of Leukemia data (2σ =0.001, C2=10, 3σ =0.01, C3=10)

m 1σ C1 Classification accuracy

1 98.6 0.01
10 98.6
1 98.6

0.001
10 98.6
1 98.6

50

0.0001
10 98.6
1 97.2

0.01
10 97.2
1 97.2

0.001
10 97.2
1 97.2

70

0.0001
10 97.2
1 100.0

0.01
10 98.6
1 100.0 0.001

10 98.6
1 100.0

90

0.0001
10 98.6

494 C. Liao and S. Li

Table 3. Classification accuracy (%) obtained by single SVM classifier

m C Breast cancer Leukemia
1 52.6 65.3

100 89.5 81.9 30
1000 100.0 94.4

1 52.6 65.3
100 100.0 88.9 50

1000 100.0 97.2
1 52.6 65.3

100 100.0 93.1 70
1000 100.0 97.2

1 52.6 65.3
100 100.0 95.8 90

1000 100.0 97.2

Table 4. Classification accuracy (%) obtained by various methods

Classifier Breast cancer Leukemia

Adoboost (decision stumps) [10] -- 95.8
SVM (quadratic kernel) [10] -- 95.8

SVM (linear kernel) [10] 97.4 94.4
RVM (linear kernel) [9] 94.7 94.4

RVM (no kernel) [9] 89.5 97.2
Logistic regression (no kernel) [9] -- 97.2

Sparse probit regression
(quadratic kernel) [9]

-- 95.8

Sparse probit regression
(linear kernel) [9]

97.4 97.2

Sparse probit regression(no kernel) [9] 84.2 97.2
JCFO (quadratic kernel) [9] -- 98.6

JCFO (linear kernel) [9] 97.4 100.0
Proposed method 100.0 100.0

5 Conclusion

A SVM ensemble classification method is proposed in this paper. Experiments are
performed on the Breast cancer and Leukemia datasets. While the use of single SVM
classifier does not yield satisfactory results, the ensemble classifier shows the superior
classification performance on both of the datasets, and the classification performance
of both datasets can reach to a state-of-the-art level. The SVM ensemble classification
method proves to be a reliable method.

Acknowledgement

This paper is supported by the National Nature Science Foundation of China (No.
6040204), Program for New Century Excellent Talents in University, and the
Excellent Youth Foundation of Hunan Province (06JJ1010).

 A SVM Ensemble for Cancer Classification Using Gene Expression Data 495

References

1. Wang, Y., Tetko, I. V., Hall, M. A., Frank. E., Facius. A., Mayer, K. F. X., Mewes, H. W.:
Gene Selection from Microarray Data for Cancer Classification—A Machine Learning
Approach. Computational Biology and Chemistry 29 (2005) 37-46

2. Li, T., Zhang, C., Ogihara, M.: A Comparative Study of Feature Selection and Multiclass
Classification Methods for Tissue Classification Based on Gene Expression.
Bioinformatics 20 (2004) 2429-2437

3. Guo, H., Jack, L. B., Nandi, A. K.: Feature Generation Using Genetic Programming with
Application to Fault Classification. IEEE Transactions on Systems 35 (2005) 89-99

4. Huerta, E. B, Duval, B., Hao J.: A Hybrid GA/SVM Approach for Gene Selection and
Classification of Microarray Data. EvoWorkshops, Budapest (2006) 34-44

5. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines, Cambridge
University Press, Cambridge (2000)

6. Park, P. J., Pagano, M., Bonetti, M.: A Nonparametric Scoring Algorithm for Identifying
Informative Genes from Microarray Data. Pacific Symposium on Biocomputing (2001)
52-63

7. West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R., Zuzan, H.,
Marks, J. R., Nevins, J. R.: Predicting the Clinical Status of Human Breast Cancer Using
Gene Expression Profiles. Proceedings of the National Academy of Science 98 (2001)
11462-11467

8. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. H. H. C., Loh,
M., Downing, J., Claligiuri, M., Bloomfield, C., Lander, E.: Molecular Classification of
Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science
286, 531-537

9. Krishnapuram, B., Carin, L., Hartemink, A.: Gene Expression Analysis: Joint Feature
Selection And Classifier Design. In Kernel Methods in Computational Biology, Schölkopf,
B., Tsuda, K., & Vert, J, -P., eds. MIT Press (2004)

10. Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., Yakhini, Z.: Tissue
Classification with Gene Expression Profiles. Proceedings of the Fourth Annual
International Conference on Computational Molecular Biology (2000) 54-64

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 496–505, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Combining SVM Classifiers Using Genetic Fuzzy Systems
Based on AUC for Gene Expression Data Analysis

Xiujuan Chen1, Yichuan Zhao2, Yan-Qing Zhang1, and Robert Harrison1

1 Department of Computer Science, Georgia State University, Atlanta, GA 30302, USA
2 Department of Mathematics and Statistics, Georgia State University, Atlanta,

GA 30302, USA
{xchen8@,matyiz@langate,zhang@taichi.cs,

cscrwh@asterix.cs}gsu.edu

Abstract. Recently, the use of Receiver Operating Characteristic (ROC) Curve
and the area under the ROC Curve (AUC) has been receiving much attention as
a measure of the performance of machine learning algorithms. In this paper, we
propose a SVM classifier fusion model using genetic fuzzy system. Genetic
algorithms are applied to tune the optimal fuzzy membership functions. The
performance of SVM classifiers are evaluated by their AUCs. Our experiments
show that AUC-based genetic fuzzy SVM fusion model produces not only
better AUC but also better accuracy than individual SVM classifiers.

Keywords: Receiver Operating Characteristic (ROC), Support Vector Machines
(SVMs), Gene Expression, Genetic Fuzzy System (GFS), Classifier fusion.

1 Introduction

With the key technologies developed in the biomedical area, such as DNA sequencing,
micro-array, and structure genomics, large-scale biological and biomedical data have
been accumulated, including DNA sequences, protein sequences and structures, gene
expression data, protein profiling data, and genomic sequence data. Accordingly, the
bulk of research efforts have been shifted to the biomedical data analysis to extract
patterns and discover useful information from the data and therefore provide valuable
supports for biomedical and evolutionary research.

Machine learning and classification techniques have been widely used to assist the
interpretation and analysis of biomedical data. As recently discovered pattern
recognition tools, Support Vector Machines (SVMs) [1] have become popular become
of their outstanding learning performance when applied to real-world classification
applications. SVMs are capable of classifying not only linear separable but also non-
linear separable problems. They aim to find an optimal hyperplane to separate
positive/negative classes with the maximum margin in a high dimensional feature
space, which is transformed from the original input space by applying a kernel
function, for instance, a polynomial or a RBF kernel.

However, how to select an appropriate SVM kernel to achieve the best possible
performance for a real classification application is one of the practical difficulties.

ă

 Combining SVM Classifiers Using Genetic Fuzzy Systems Based on AUC 497

Instead of finding the best kernel for the application by exhaustively trying out all
possible kernel functions with all possible parameters, classifier fusion methods
provide a more efficient but still high-performance way of solving the practical
problem existing in the SVM classification.

Classifier fusion is to combine a set of classifiers in a certain way so that the
combined classifier can receive a better performance than its composing individual
classifiers. The reason that the combined classifier could outperform the best
individual classifier is because the data examples misclassified by the different
classifiers would not necessarily overlap, which leaves the room for the classifier
complementariness [2]. One sufficient condition for a combined classifier to be more
accurate than any of its individual members is that individual classifiers should be
accurate and diverse [3]. “Diverse” is crucial when combining classifiers. Different
classifiers can be achieved by using different data feature sets, different training sets,
or different classification algorithms [2], [3], [4], [5], [6].

In this study, we propose a classifier fusion model particularly for SVM classifiers
aiming to boost the performance of SVM classifiers. A fuzzy logic system (FLS) is
constructed to combine multiple SVM classifiers in the light of the performance of
each individual classifier. The memberships of the fuzzy logic system are tuned by
genetic algorithms (GAs) to generate the optimal fuzzy logic system.

One question here is how to evaluate classifier performance in the fusion model.
Typically, accuracy is the standard criterion to evaluate a classifier performance [7],
[8]. In many scenarios, however, accuracy is not enough or not much meaningful.
Researchers are often interested in ranking of data examples rather than mere
positive/negative classification results. Moreover, if class distribution is skewed or
unbalanced, a classifier can still receive a high accuracy by simply classifying all data
examples in the dominant class [7], [9]. Recently, the Receiver Operating
Characteristics (ROC) and the area under an ROC curve (AUC) have been shown to
be statistically consistent with and more discriminating than accuracy empirically and
theoretically [7], [8], [10]. This paper will use AUC as the evaluation of classifier
performance to build the genetic fuzzy fusion model to enhance the performance of
SVM classifiers. It has also been shown that classifiers based on AUC produce not
only better AUC, but also better accuracy [11].

In this paper, we will first introduce the concepts associated with ROC analysis in
Section 2. Then we will discuss genetic fuzzy algorithms in Section 3. The SVM
classifier fusion model will be proposed in Section 4 and gene expression data will be
experimented in Section 5. Finally in Section 6, conclusions will be drawn.

2 ROC Analysis for Binary Classification

ROC has been receiving much attention recently as a measure to analyze classifier
performance and has attractive properties that make it especially useful for domains
with skewed class distribution and unequal classification error costs.

An ROC curve of a classifier is a plot of true positive rate (TPR) on Y axis versus
false positive rate (FPR) on the X axis as shown in Fig.1. The TPR and FPR are
defined as follows [9].

+=
N

TP
TPR ,

−=
N

FP
FPR (1)

498 X. Chen et al.

where TP denotes true positives, FP denotes false positives, and N + and N – denote
positives and negatives respectively.

Fig. 1. An ROC curve

For a discrete classifier, which produces only a positive/negative class label on
each example, only a single point can be drawn in the ROC graph. However, for a
probabilistic classifier, which yields a numeric value on each example representing
the degree to which an example belongs to a class, if various decision thresholds are
applied to classify data examples, a series of points can be plotted in a ROC plane
with pairs of {FPR, TPR} as their coordinates. Each threshold results in one point on
the ROC curve representing the classifier which is generated by using this threshold
as the cutoff point. Therefore, an ROC curve of a probabilistic classifier can be
viewed as an aggregation of classifiers from all possible decision thresholds [7].

The quality of an ROC curve can be summarized in one value by calculating the
area under the ROC curve (AUC). AUC represents the probability that one classifier
ranks a randomly chosen positive example higher than a randomly chosen negative
example [9]. According to Hand [12], AUC can be simply calculated in the following
formula:

−+
=

++∑
+

+−
=

NN

NNr
AUC

N

i i1
2/)1((2)

where ri denotes the rank of ith positive example in the ranking list if we arrange the
classification results of data examples in ascending order.

AUC has been shown to be a better measure than accuracy when assessing
classifier performances [8], [10].

3 Genetic Fuzzy Systems

Fuzzy logic has demonstrated the powerful abilities to handle the imprecision and
uncertainties in real-world applications. It captures uncertainties by defining linguistic
fuzzy sets with fuzzy membership functions (MFs) and reasoning fuzzy rules in a

 Combining SVM Classifiers Using Genetic Fuzzy Systems Based on AUC 499

rigorous mathematical discipline. However, the success of designing a fuzzy logic
system (FLS) largely relies on high-performance fuzzy MFs and fuzzy rules to
interpret the expert knowledge. When lack of human expert, rather than choosing
fuzzy MFs or defining fuzzy rules in a manual trail-and-error manner, we may seek
the assistant from a learning process.

A genetic fuzzy system (GFS) is able to learn and search fuzzy MFs or fuzzy rules
efficiently. It is basically a fuzzy system augmented by a learning process based on a
genetic algorithm [13]. GAs are optimization algorithms inspired by natural evolution
and provide robust search and learning capabilities in complex space. GAs are able to
learn or train or tune different components of fuzzy logic systems [13]. For instance,
some genetic fuzzy rule-based systems may learn and determine the number of IF-
THEN fuzzy rules from all possible rules [14], [15]. Other genetic fuzzy systems may
tune MFs of a given fuzzy rule set, such as tuning positions or shapes of MFs [16],
[17], [18].

To tune fuzzy MFs, there are two techniques in general: Pittsburgh approach and
Michigan approach [13]. Pittsburgh approach is to represent an entire fuzzy rule set as
a chromosome and maintain a population of candidate rule sets using genetic
operations to produce new generations of rule sets [19]. Michigan approach is to
represent an individual rule as a chromosome and the whole rule set is represented by
the entire population [20].

4 Genetic Fuzzy SVM Fusion Based on AUC

The genetic fuzzy fusion model for combing SVM classifiers is constructed as shown
in Fig. 2. The system has three phases. In phase I, training data are trained on

Training Data

PHASE I

Validation
Data

SVM 1 SVM 2 SVM 3 SVM n

Genetic Fuzzy SVM Classifier Fusion System

Model 1 Model 2 Model 3 Model n

AUC 1
Distances 1

AUC 2
Distances 2

AUC 3
Distances 3

AUC n
Distances n

Validation
Data

Validation
DataValidation

Data

Best AUC or Maximum
Generation

Optimal Fuzzy SVM Classifier Fusion System
(Optimal Fuzzy MFs)

Yes

AUC
Distances

PHASE II

No

PHASE III
Testing

Data

Fig. 2. Genetic fuzzy fusion system for SVM classifiers

500 X. Chen et al.

different SVMs. Validation data are classified to obtain individual SVM AUCs and
distances of validation data examples to SVM hyperplanes. In phase II, a GFS is
constructed and fuzzy MFs are tuned by GAs in cross validation manner. Finally, in
phase III, testing data are fed into the optimal fuzzy fusion system to make the final
decision. We have implemented the proposed fusion system on combing THREE
SVM classifiers and will give the detailed explanation in the rest of the section. This
process can be easily extended to combine arbitrary number of SVMs in general.

4.1 Fuzzy System Inputs and Output

The fuzzy fusion system is designed by applying Mamdani model [21] where the
consequences of fuzzy rules are fuzzy sets. In the fusion system combining three
SVM classifiers, there are three AUC inputs depicting three SVM classifier
performances, three distance inputs representing the classification results of a data
example from three individual SVM classifiers, and one output indicating the final
decision from the fusion system for the example.

All the MFs of the inputs and output are defined as simple triangles shown in
Fig. 3. Each AUC input is described by two fuzzy sets: low and high, and each

M
em

be
rs

hi
p

G
ra

de
s

0.2 0.4 1.0
0.1
0.2
0.3
0.4
0.5

0.7
0.8
0.9

1
High (H)Low (L)

0.6

0.6 Lr
0.8Ll HrHl AUC

M
em

be
rs

hi
p

G
ra

de
s

-3 -1 5
0.1
0.2
0.3
0.4
0.5

0.7
0.8
0.9

1
Positive (P)Negative (N)

0.6

-2 4 -4
Distance

 0 1Nl Nr 3 -5 2 PrPl

0.4-0.8 0 1.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Output

M
em

be
rs

hi
p

G
ra

de
s

-1 -0.4 -0.2 0.2 0.8

O1 O2 O3 O4 O5 O6 O60 O61 O62 O63O64

-0.6 0.6

Fig. 3. MFs for the inputs and output

 Combining SVM Classifiers Using Genetic Fuzzy Systems Based on AUC 501

distance input is also represented by two fuzzy sets: negative and positive. The output
is composed of 64 fuzzy sets corresponding to the consequences of 64 fuzzy rules. All
the MFs are not fixed and each has control parameters to control its position and
shape. Each AUC MF or distance MF has two control points and each output MF has
one control point. We will discuss how to tune the MFs later.

4.2 Fuzzy Rule Base

There are 64 rules in total each corresponding to one of 64 combinations of six inputs
(2 ^ 6 = 64). The ith (i = 1...64) fuzzy rule is defined as follows:

IF auc1 is Ai1 and auc2 is Ai2 and auc3 is Ai3 and dis1 is Di1 and dis2 is Di2 and
dis3 is Di3, THEN gi is Oi (i = 1...64).

where aucj denotes jth AUC input and disj denotes jth distance input (j=1..3). Aij
(j=1..3) denotes the AUC fuzzy set in {Low, High}, Dij (j=1..3) denotes a distance
fuzzy set in {Negative, Positive}, and Oi denotes an output fuzzy set in {O1...O64} for
the ith rule.

4.3 Fuzzy System Output and Defuzzification

The system output is calculated by aggregating individual rule contributions:

∑∑ ==
= 64

1

64

1 i ii ii gy ββ (3)

where gi is the output value of the ith rule and βi is the firing strength of the ith rule
defined by product t-norm:

)(*)(3
1 jDjAji disauc

ijij
μμβ =∏= (4)

where)(jA auc
ij

μ and)(jD dis
ij

μ are the membership grades of input aucj and disj

(j=1…3) in the fuzzy sets Aij and Dij.
If the output value is greater than or equal to 0, the data example is defuzzified in

the positive class. Otherwise, it is in the negative class. This information may be used
to calculate the accuracy of the model.

4.4 Tuning Fuzzy System Using GAs

We use a real-coded GA and apply Pittsburgh approach [19] to tune the input and
output MFs. Each chromosome is composed of the 72 genes representing 72 entire
membership control parameters: 4 control points for AUC, 4 for distance MFs, and
the rest 64 for output MFs.

The fuzzy MFs are tuned in cross-validation manner. The fitness of the GA is
defined to maximize the average AUC of each fold of data examples by applying the
same MFs defined in a chromosome.

Selection schema is roulette-wheel selection, which implies the higher the AUC,
the greater the chance that a chromosome will be selected into the next generation.
We also apply elitism strategy to ensure the best fuzzy MFs to be selected. Uniform
crossover is used here since it is believed to outperform one or multiple crossover in

502 X. Chen et al.

many applications. We apply Gaussian mutation to modify genes by adding a
Gaussian distributed random number with a mean of zero to them [22].

5 Experiments on Gene Expression Data

In the experiment, we have tested the proposed SVM fusion model using colon tumor
dataset from Kent Ridge Biomedical Data Set Repository [23]. The colon tumor
dataset is a set of gene expression data. It is collected from colon cancer patients.
There are totally 62 data examples, among which 40 examples are tumor tissues from
diseased parts of the patients and 22 are normal tissues from healthy parts of the
colons of the same patients. Each example is composed of 2000 genes as 2000
features.

The data in Phase I in Fig. 2 are classified using SVMLight software [24]. The
generalization parameter C of SVMs is set to 1. Two types of kernels are used:
polynomial kernels and RBF kernels. The degree in polynomial kernels are set to 1, 2,
…, 10, and gamma in RBF kernels are set to 10-4, 10-3,…,101. In order to avoid the
selection bias, we apply cross validation strategy to assess accuracies and AUCs of
individual SVM classifiers. Table 1 shows the SVM testing AUCs and testing
accuracies for colon tumor data in 4-fold cross validation.

The genetic fuzzy system is constructed and tuned in cross-validation manner as
well. Each training dataset in Phase I is further divided into second-level training and
testing data. The second-level training data are still trained by SVMLight to obtain the
AUCs and distances of the second-level testing data (validation data in Fig. 2), which
will be used as the inputs of the genetic fuzzy fusion system to tune the optimal fuzzy
MFs based on AUC measure. After the optimal MFs are adapted, the testing data in
the first-level are applied to the tuned optimal fuzzy fusion model to make the final
decision. The genetic fuzzy fusion system combining three SVM classifiers has been
implemented in C language. The parameter setting for the GA is as follows: crossover
probability 90%, generation of 200, and population size of 3000.

Table 1. Testing AUC and accuracy using individual SVMs (4-fold cross-validation)

Kernels Testing AUC Testing Accuracy (%)
Polynomial degree 1 2 3 4 Avg. 1 2 3 4 Avg.

poly_1 1 0.87 0.94 0.84 0.91 0.89 75.00 93.75 86.67 80.00 83.86
poly_2 2 0.87 0.90 0.86 0.91 0.88 81.25 87.50 86.67 86.67 85.52
poly_3 3 0.87 0.84 0.82 0.77 0.82 75.00 75.00 86.67 80.00 79.17
poly_4 4 0.88 0.83 0.76 0.77 0.81 87.50 81.25 66.67 66.67 75.52
poly_5 5 0.88 0.84 0.70 0.73 0.79 87.50 81.25 66.67 66.67 75.52
poly_6 6 0.90 0.83 0.70 0.70 0.78 87.50 75.00 66.67 66.67 73.96
poly_8 8 0.85 0.79 0.64 0.68 0.74 87.50 75.00 66.67 66.67 73.96
poly_10 10 0.85 0.73 0.56 0.68 0.71 87.50 75.00 66.67 66.67 73.96

RBF gamma
rbf_0.0001 0.0001 0.83 0.95 0.84 0.91 0.88 62.50 56.25 66.67 73.33 64.69
rbf_0.001 0.001 0.85 0.95 0.82 0.91 0.88 62.50 56.25 66.67 73.33 64.69
rbf_0.01 0.01 0.85 0.95 0.82 0.91 0.88 62.50 56.25 66.67 73.33 64.69
rbf_0.1 0.1 0.87 0.94 0.82 0.91 0.88 62.50 56.25 66.67 73.33 64.69
rbf_1 1 0.83 0.90 0.78 0.93 0.86 75.00 93.75 86.67 73.33 82.19

rbf_10 10 0.85 0.90 0.74 0.82 0.83 62.50 56.25 66.67 80.00 66.36

 Combining SVM Classifiers Using Genetic Fuzzy Systems Based on AUC 503

We chose six groups of three SVM classifiers and combined each group of three
SVMs using the proposed genetic fuzzy SVM fusion model. Table 2 shows the
experimental results.

Table 2. Three selected SVM classifiers, maximum and average AUC and accuracy (%) of the
three individual SVM classifiers, and AUC and accuracy (%) from the fusion model by
combing the three SVMs

Test SVM1 SVM2 SVM3
Max
AUC

Avg.
AUC

Max
Accuracy

Avg.
Accuracy

Fusion
AUC

Fusion
Accuracy

1 poly_1 poly_3 rbf_0.01 0.89 0.86 83.86 75.91 0.92 88.75

2 poly_4 poly_8 rbf_1 0.86 0.80 82.19 77.22 0.87 83.75

3 poly_4 rbf_1 rbf_0.01 0.88 0.85 82.19 74.13 0.91 85.11

4 poly_1 poly_5 poly_10 0.89 0.80 83.86 77.78 0.89 86.94

5 rbf_0.0001 rbf_0.01 rbf_1 0.88 0.87 82.19 70.52 0.88 88.81

6 poly_3 rbf_0.001 rbf_0.1 0.88 0.86 79.17 69.52 0.89 88.65

Avg. 0.880 0.841 82.243 74.181 0.893 87.002

From Table 2 we may see that the proposed SVM fusion model demonstrates
stable and robust classification capabilities. It not only performs far better than the
average of three individual SVM classifiers in terms of both AUC and accuracy, but
also outperforms the best of three individual SVMs in terms of accuracy and achieves
as least as much performance as the best in terms of AUC. For all the six tests, the
model accuracy is better than the best accuracy. For Tests 1, 5 and 6, the model
achieves 88% accuracy, but the best accuracy is only no more than 83%. For four of
six tests (Tests 1, 2, 3, 6), the model achieves a better AUC than the best AUC of
three individual SVM classifiers. The remaining (Tests 4, 5) receives the same AUC
as the best. These two tests combine three RBF or three polynomial SVM classifiers.
RBF classifiers or polynomial classifiers behavior similar and this might cause not
much complementary room for the combined classifiers.

We can also see that the classifier fusion model that optimizes AUC measure not
only achieves nice AUC performance, but also excellent accuracy as well [11]. The
genetic fuzzy SVM fusion model based on AUC produces a combined classifier with
the best AUC naturally because of the properties of AUC. This means that the
accurate ranking of data examples is maintained and it provides researchers more
interpretation of the data than mere positive or negative classification results.

6 Conclusion

In this paper, we propose a genetic fuzzy SVM classifier fusion model to combine
multiple SVM classifiers. Individual SVMs are combined in a genetic fuzzy system
and GAs are applied to tune the fuzzy MFs based on AUC measure. The experimental
results show that the proposed genetic fuzzy system is more stable and more robust
than individual SVMs. Moreover, the combined SVM classifier from the genetic
fuzzy fusion model accomplishes more accurate ranking of data examples which
provides valuable interpretation of the real-world data and may help medical
diagnosis.

504 X. Chen et al.

Acknowledgments. This work was supported in part by NIH under P20 GM065762,
NIGMS 065762, Georgia Cancer Coalition, and Georgia Research Alliance. Dr.
Harrison is a GCC distinguished cancer scholar.

References

1. Vapnik, V. N.: The Nature of Statistical Learning Theory. Springer-Verlag, New York
(1995)

2. Kittler, J., Hatef, M., Duin R., Matas J.: On Combining Classifiers, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 20, No. 3. (1998) 226-239

3. Hansen, L., Salamon, P.: Neural network ensembles, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 12. (1990) 993-1001

4. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision Combination in Multiple Classifier Systems,
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 16, No. 1. (1994) 66-75

5. Ho, T.K.: Random Decision Forests, Third Int’l Conf. Document Analysis and
Recognition, Montreal. (1995) 278-282

6. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of Combining Multiple Classifiers and Their
Applications to Handwriting Recognition, IEEE Trans. Systems, Man, and Cybernetics,
Vol. 22, No. 3. (1992) 418-435

7. Qin, Z.-C.: ROC Analysis for Predictions Made by Probabilistic Classifiers, Proceedings
of the Fourth International Conference on Machine Learning and Cybernetics, Vol. 5.
(2005) 3119-3124

8. Ling, C.X., Huang, J., Zhang, H.: AUC: A Statistically Consistent and More
Discriminating Measure than Accuracy, Proc. 18th Int'l Conf. Artificial Intelligence
(IJCAI '03). (2003) 329-341

9. Fawcett, T.: ROC graphs: Notes and practical considerations for researchers, Tech Report
HPL-2003-4, HP Laboratories. (2003)

10. Huang, J., Ling, C.X.: Using AUC and Accuracy in Evaluating Learning Algorithms.
IEEE Trans. Knowl. Data Eng, Vol. 17, No. 3. (2005) 299-310

11. Ling, C.X., Zhang, H.: Toward Bayesian Classifiers with Accurate Probabilities,
Proceedings of the Sixth Pacific-Asia Conference on KDD, Springer. (2002)

12. Hand, D. J., Till, R. J.: A Simple Generalization of the Area under the ROC Curve for
Multiple Class Classification Problems, Machine Learning, Vol. 45. (2001) 171–186

13. Magdalena, L., Cordon, O., Gomide, F., Herrera, F., Hoffmann, F.: Ten Years of Genetic
Fuzzy Systems: Current Framework and New Trends, Fuzzy Sets & Systems, Vol. 141,
No. 1. (2004) 5-31.

14. Herrera, F., Lozano, M., Verdegay, J.L.: Generating Fuzzy Rules from Examples Using
Genetic Algorithms, Fuzzy Logic and Soft Computing. (1995c)

15. 15. Karr, C.: Applying Genetic to Fuzzy Logic, AI Expert, Vol. 6. (1991) 26-33
16. Homaifar, and McCormick, E.: Simultaneous Design of Membership Functions and Rule

Sets for Fuzzy Controllers Using Genetic Algorithms, IEEE Transactions on Fuzzy
Systems, Vol. 3, No. 2. (1995) 129-139

17. Park, D., Kandel, A.: Genetic-based New Fuzzy Reasoning Models with Application to
Fuzzy Control, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 24, No. 1.
(1994) 39-47

18. Cordon and Herrera, F.: A Three-Stage Evolutionary Process for Learning Descriptive and
Approximate Fuzzy Logic Controller Knowledge Bases from Examples, International
Journal of Approximate Reasoning, Vol. 17, No. 4. (1997) 369-407

 Combining SVM Classifiers Using Genetic Fuzzy Systems Based on AUC 505

19. Smith, S.: A Learning System Based on Genetic Adaptive Algorithms, Doctoral
dissertation, Department of Computer Science, University of Pittsburgh. (1980)

20. 20.Holland, J., Reitman, J.: Cognitive Systems Based on Adaptive Algorithms, Pattern-
Directed Inference Systems, Academic Press. (1978)

21. Mamdani, E.H.: Application of Fuzzy Algorithms for Control of Simple Dynamic Plant,
IEEE Proceedings, Vol. 121, No. 12. (1974) 1585-1588

22. 22.Bäck, T., Hoffmeister, F., Schwefel, H.: A Survey of Evolution Strategies, Proceedings
of the Fourth International Conference on Genetic Algorithms. (1991) 2–9

23. 23.Li, J., Liu, H.: Kent Ridge Biomedical Data Set Repository, http://sdmc.i2r.a-
star.edu.sg/rp/. (2003)

24. Joachims, T.: Making large-Scale SVM Learning Practical, Advances in Kernel Methods -
Support Vector Learning, B. Schölkopf and C. Burges and A. Smola (ed.), MIT-Press.
(1999)

A BP-SCFG Based Approach for RNA

Secondary Structure Prediction with
Consecutive Bases Dependency and Their

Relative Positions Information

Dandan Song and Zhidong Deng

Department of Computer Science, National Laboratory of Information Science and
Technology, Tsinghua University, Beijing 100084, China

sdd00@mails.tsinghua.edu.cn, michael@tsinghua.edu.cn

Abstract. The prediction of RNA secondary structure is a fundamental
problem in computational biology. However, in the existing RNA sec-
ondary structure prediction approaches, none of them explicitly take the
local neighboring bases information into account. That is, when predict-
ing whether a base is paired, only the long range correlation is considered.
As a substructure consists of multiple bases, it is affected by consecutive
bases dependency and their relative positions in the sequence. In this
paper we propose a novel RNA secondary structure prediction approach
through a combination of Back Propagation (BP) neural network and
statistical calculation with Stochastic Context-Free Grammar (SCFG)
approach, in which the consecutive bases dependency and their relative
positions information in the sequence are incorporated into the predict-
ing process. When performing on tRNA dataset and three species of
rRNA datasets, compared to the SCFG approach alone, our experimen-
tal results show that the prediction accuracy is all improved.

1 Introduction

Not just as a passive carrier of genetic information, RNA molecules are also in-
volved in some of the cell’s most fundamental processes including catalysis, pre-
mRNA splicing and gene expression regulation. Similar to proteins, the function
of RNA molecules is mainly determined by their structures. Due to the fact that
experimental techniques such as X-ray crystallography and nuclear magnetic reso-
nance (NMR) to obtain the structure data usually require a great deal of time and
cost. Compared to the breakthrough advance in the high-throughput sequencing
technology, the gap between the exponentially exploding number of nucleic acid
sequences and the slowly accumulating number of structures data is expanding.

Using effective computational methods to predict RNA structure from the
knowledge of primary sequence can solve this problem. As RNA secondary struc-
ture is the backbone of its three-dimensional structure and it is found to be more
conservative in evolution, RNA secondary structure prediction is a meaningful
and still challenging task.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 506–517, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

A BP-SCFG Based Approach for RNA Secondary Structure Prediction 507

There have been many kinds of RNA secondary structure prediction ap-
proaches so far. Early in 1978, Nussinov et al proposed a maximal base-paring
approach that initiated a conversion of RNA secondary structure prediction into
an optimal decision problem and used a dynamic programming approach to
directly solve it [1]. This research work is undoubtedly of great significance al-
though the resulting prediction accuracy is poor due to its simplicity. Then Zuker
developed a minimum free energy(MFE) approach [2]. The earlier version of the
MFE approach has been improved and implemented by several commonly-used
packages such as Mfold [3] and RNAfold(ViennaRNA Package) [4].

Stochastic approaches are also applied to the problem of RNA secondary
structure prediction, e.g., stochastic context-free grammars (SCFG) [5], Bayesian
statistical [6], and partition function [7]. Among these approaches, the SCFG
approach is preferred due to its simple and suitable description of RNA secondary
structures. In addition, heuristic methods based on Hopfield neural network
[8], genetic algorithm (GA) [9] and ant colony optimization [10] have also been
proposed. However, all these methods still have several limitations. They are
always sensitive to parameters, and most importantly, the prediction accuracy
of these methods is still far from perfect.

Among above existing computational approaches of RNA secondary structure
prediction, the bases are treated separately with long range correlations. None
of these methods explicitly consider the local neighboring bases information. Al-
though in the MFE method, some neighboring information is incorporated by
the free energy rules, it is much implicit and also too complex. On the other
side, as a substructure is composed of multiple bases, consecutive bases depen-
dency and their relative positions information have influence on the type and
the stabilization of the structure.

Our approach is a combination of BP neural network and statistical calcula-
tion with the SCFG approach. A BP neural network is constructed to incorporate
a base’s consecutive neighboring bases dependency, and statistical calculation is
made to incorporate the base’s relative position information. The SCFG ap-
proach is then used with such calculated information together with long range
correlation information of the bases to predict the optimal secondary structure
of the target RNA sequence.

The experiments were done with RNA datasets including tRNA and three
species of rRNA sequences. With different training and test samples, our results
showed that the prediction accuracy of the proposed method was higher than the
BJK grammar model of the SCFG approach, all of which validated the feasibility
and effectiveness of our new approach.

2 Method

Firstly, we assume the target RNA sequence has a length n, and the bases in
the sequence are indexed by 1, . . . , n from 5’-end to 3’-end. The bases of the
sequence are denoted by x(i) (i = 1, · · · , n).

508 D. Song and Z. Deng

2.1 Diagram of the Approach

The overall block diagram of our approach is shown in Fig. 1. The sequence
is reading sequentially with a sliding window of a fixed size, and a BP neural
network is used to calculate the probability P1 of the central base in the win-
dow to be unpaired using its consecutive neihboring bases dependency. Also,
another probability P2 of the base to be unpaired is calculated by performing
statistical calculation to incorporate its relative position information. Then the
two probabilities are combined into one value. The value is then used in the
initialization step of the SCFG process, which calculates the optimal secondary
structure through iterative filling and traceback computation.

Fig. 1. The overall diagram of our approach

2.2 Consecutive Bases Dependency

A BP neural network is used to incorporate the consecutive bases dependency
into the RNA secondary structure prediction. The input of the network is a en-
coded segment of consecutive bases in the target RNA primary sequence reading
by the sliding window, and the output is the probability of the central base in
the window to be unpaired. Through training of the neural network, the model
is set up and can be used to incorporate consecutive bases dependency of the
sequences into RNA secondary structure prediction.

Structure of the BP Neural Network. The structure of the BP neural
network is shown in Fig. 2, and is described as follows.

– Input:
In our experiment, a sliding window of a fixed odd length 2w − 1 is used
to read the primary sequence, denoted as (W1, · · · , Ww−1, Ww, Ww+1, · · · ,
W2w−1). Currently, w is set to be 7 thus the size of each sliding window is
13 bases, and the overlapping size is set to be 1 base. This means that each
sliding window includes 13 bases and goes forward 1 base each time along
the RNA sequence. In this case, the subsequence of each window corresponds
to one sample.

In current encoding scheme, each base in each window is expressed by a
binary code of 5 bit. Besides the four kinds of RNA bases of ACGU, a new

A BP-SCFG Based Approach for RNA Secondary Structure Prediction 509

Fig. 2. The structure of the BP neural network

symbol E is defined to denote the end of a sequence, which is added to the
two ends of the sequence. The binary codes for each base are:

A ⇒ 10000
C ⇒ 01000
G ⇒ 00100
U ⇒ 00010
E ⇒ 00001

(1)

Thus for each window, binary sequential codes of 13 ∗ 5 = 65 bits, which are
denoted as (B1, B2, · · · , B64, B65), are used to represent the sample. That is,

(W1, W2, · · · , W13) ⇒ (B1, B2, · · · , B65) (2)

An illustration of the sliding window and its binary coding expression is
shown in Fig. 3.

Then the input of the BP neural network, (I1, I2, · · · , Im) where m is
the number of the input neural nodes, are set to be the binary codes of each
sliding window. Thus, m = 65 and

(I1, I2, · · · , I65) = (B1, B2, · · · , B65) (3)

– Hidden layer:
Currently, the number of the neural nodes in the hidden layer of the proposed
BP neural network model is arbitrarily set to be 40.

510 D. Song and Z. Deng

Fig. 3. Illustration of the sliding window and its binary coding expression

– Output:
For each sliding window, corresponding to its inputs into the BP neural
network described above, the one node output Ow of the neural network
represents the probability of the central base in the sliding window to be
unpaired.

Training. Training samples are RNA sequences with their known secondary
structures. For a sequence of length n, its training samples are produced accord-
ing to the following rules:

(1) Extend the sequence.
Every base of index i (i = 1, · · · , n) should be the center of one sliding window,
so to realize this, the sequence is extended by labels E in the two ends. The
number of E in each end is w − 1, that is, set xk = E for k = −(w − 2), · · · , 0
and k = n + 1, · · · , n + w − 1.
(2) Encode the bases of the sequence.
The extended sequence is encoded according to (1).
(3) Get inputs and outputs.
Slide the sliding window along the encoded sequence to get inputs. That is, the
subsequence read by the sliding window is

(W1, W2, · · · ,W7, · · · , W12, W13)
= (xi−(w−1), xi−w , · · · , xi−1,xi, xi+1, · · · , xi+w−2, xi+(w−1))

(i = 1, · · · , n).
(4)

which is encoded by (2) and input into the neural network as (3).
The corresponding output Ow is the known structure status of the central

base xi. If it is unpaired, then set Ow = 1, otherwise Ow = 0.
After the training samples are constructed, then the traditional BP learning

algorithm [11] is used to train the parameters.

Inference. For the target sequence to be predicted, inputs are attained in the
same way as the training sequences. The output of the neural network Ow is a

A BP-SCFG Based Approach for RNA Secondary Structure Prediction 511

value in the interval of [0, 1], which represents the probability P1(i) = Ow for
the central base xi to be unpaired.

2.3 Relative Position Information

Training. The position of a base is assumed to have influence on its probability
to be unpaired. Since the lengths of the RNA sequences are different, relative
positions of their bases are used. In the training process, the positions of unpaired
bases relative to their whole sequences rpi

n′ = i/n′ are stored, where rpi
n′ is the

relative position of the unpaired base of index i in the sequence of length n′ in
the training dataset.

Inference. For the target sequence, when taking the relative positions informa-
tion of the bases into account, the computation of the probabilities of the bases
to be unpaired is as follows.

After relative positions of the unpaired bases in the training samples are
stored in the training process, they are multiplied by the length n of the target
sequence. Then absolute positions are attained in a statistical sense, denoted
as

rpi
n′ × n (5)

By rounding above results to the nearest integers, these absolute positions are
scattered into the base positions of the target sequence. Then for positions i =
1, . . . , n of the target sequence, discrete frequencies Pi of these elements occurred
in the training dataset are computed using Laplace prior (plus-one) equation
given in (6).

Pi =
Ni + 1
N + I

, (i = 1, 2, · · · , I, N =
∑

Ni). (6)

where Ni denotes the occurrence number of the ith case and I is the number
of cases. Therefore, when taking account of relative positions information, the
frequencies of the base x(i) to be unpaired P2 are specified by:

P2(i) =
Ni + 1

∑n
j=1 Nj + n

(7)

where i = 1, . . . , n, Ni and Nj denote the occurrence numbers of the unpaired
bases in positions i and j, respectively.

2.4 Optimal Structure Calculation

The SCFG approach is used to calculate the optimal secondary structure with
the maximum likelihood. As [12] pointed out, among nine SCFG models, the
performance of Knudsen/Hein’s BJK grammar [13] is only slightly lower than
its extending to G6S grammar with a first order Markov chain. While including
stacking parameters makes the G6S grammar much more complex, in the syn-
thetic sense, BJK grammar can be taken as the best SCFG grammar. Therefore,
the BJK grammar of the SCFG approach is used here.

512 D. Song and Z. Deng

The production rules of the BJK grammar of SCFG approach are:

S → LS | L

L → aFa′ | a

F → aFa′ | LS

where S L and F are nonterminals, a and a′ are terminals which represent bases.

Estimation of the SCFG Parameters. The parameters of the SCFG ap-
proach is simply estimated by their frequencies occurred in the training samples
with Laplace (plus-one) prior function given in (6). Although it is not accu-
rate as the inside-outside learning algorithm [14], it can mainly satisfy current
requirement and the computational complexity is much lower.

For the production rules that produce bases, such as L → aFa′ L → a
and F → aFa′, the probability of the production rule can be divided into two
parts. That is, the probability of the transition from the left of the rule to the
right, and the probability of the emission of the specific base or base pairs. By
multiplying these two probabilities, the result value equals to the probability of
the production rule.

– Probabilities of Transition Rules
The probabilities of the transition rules in the BJK grammar of SCFG ap-
proach are computed as

Ptran(Rr
i) =

N r
i + 1

∑
j N r

j + N r
(8)

where Rr
i denotes the ith transition rule of nonterminal r, N r

i denotes its
occurrence number, and N r is the number of the transition rules of nonter-
minal r. For the specific rules of the BJK grammar of SCFG, N r = 2 for
r = {L, S, F}.

– Probabilities of Emission Rules
After the occurrence numbers of base pairs and single bases in the annotated
RNA secondary structures are counted, the probabilities of the emission rules
emitting base pairs and single bases are determined by (9) and (10).

Ppair(X, Y) =
NX,Y + 1

∑
X,Y NX,Y + 16

X, Y ∈ {A, C, G, U} (9)

Psingle(X) =
NX + 1

∑
X NX + 4

X ∈ {A, C, G, U} (10)

where Ppair(X, Y) denotes the probability to emit the base pair (X, Y), and
NX,Y is its occurrence number in the training samples. Similarly, Psingle(X)
and NX denote the probability to emit the single base X and its occurrence
number respectively.

A BP-SCFG Based Approach for RNA Secondary Structure Prediction 513

Combination of the Two Kinds of Probabilities
(1) Scale the two kinds of unpaired probabilities for bases in the target sequence,
making the maximum value to be 1:

Ph(i) =
Ph(i)

max1≤j≤n Ph(j)
(h = 1, 2) (11)

(2) Combine the probabilities of the base to be unpaired with its consecutive
bases dependency information and its relative position information:

P(i) =
P1(i) + P2(i)

2
(12)

(3) Scale the combined probabilities making the maximum value to be 1:

P(i) =
P(i)

max1≤j≤n P(j)
(13)

Prediction of the Secondary Structure. The secondary structure with the
maximum likelihood is computed by the dynamic programming algorithm. The
symbols L(i, j) S(i, j) and F (i, j) denote that, when bases x(i) and x(j) con-
struct the specific structure under the meanings of nonterminals L S and F ,
the maximum likelihood of the substructure composing of the bases between
indices i and j (x(i), · · · , x(j)). The calculation of these values initiates from
subsequences of length 1 and expands to longer subsequences through iteration.
In our approach, the initialization step is adjusted to incorporate the probabili-
ties of the bases to be unpaired which has been calculated with consecutive bases
dependency and relative positions information. It is given in (14).
Initialization:

For L(i, j) when i = j,

P(L(i, i)) = Psingle(x(i)) ∗ Ptran(L → a) ∗ (P(i)) (14)

Other iterative calculation is the same as in the Viterbi process of the SCFG
approach, which is specified in the following equations.

(1)S(i, j),when i ≤ j,

P(S(i, j)) = max

{
max

i≤k<j
P(L(i, k)) ∗ P(S(k + 1, j)) ∗ Ptran(S → LS)

P(L(i, j)) ∗ Ptran(S → L)
(15)

(2)F (i, j), when i ≤ j,

P(F (i, j)) = max

{
max

i≤k<j
P(L(i, k)) ∗ P(S(k + 1, j)) ∗ Ptran(F → LS)

P(F (i + 1, j − 1)) ∗ Ppair(x(i), x(j)) ∗ Ptran(F → aFa′)
(16)

514 D. Song and Z. Deng

(3)L(i, j),when i < j,

P(L(i, j)) = P(F (i + 1, j − 1)) ∗ Ppair(x(i), x(j)) ∗ Ptran(L → aFa′) (17)

Using the iteration process, the maximum likelihood of the optimal structure is
calculated, then traceback process is used to trace the corresponding secondary
structure.

3 Experimental Results

3.1 Dataset Preparation

In experiments, a tRNA dataset and three species of rRNA datasets are used.
In the tRNA dataset, there are 843 tRNA sequences with annotated secondary
structures taken from the EMBL databank [15], including various series such as
virus, archaea, eubacteria, cyanelle, cytoplasm and mitochondria. Three training
datasets are constructed. The first one is named MT10CY10, whose 10 tRNA se-
quences are randomly selected from the cytoplasm data and 10 sequences from
the mitochondria data; while the second one is MT100, whose 100 tRNA se-
quences are randomly selected from the mitochondria data. And the Rand tRNA
dataset is composed of 569 randomly selected tRNA from all the series.

In the rRNA datasets, three different species of rRNA are used: SRP (Singal
Recognition Particle) dataset [16], tmRNA dataset [17] and RNaseP dataset
[18]. In these datasets, there are 81 rRNA sequences in the SRP dataset, 97
sequences in the tmRNA dataset and 225 sequences in the RNaseP dataset
with their known secondary structures. For the former two datasets, both 40
sequences are randomly selected to form training samples while the others form
test samples; For the RNaseP dataset, 100 sequences are randomly selected to
form training samples and the others form test samples. And in each experiment,
different random selection are performed to form new training and test samples.

Table 1. The Sensitivity(%) value of the proposed CBRP approach compared with
the BJK grammar of the SCFG approach with the same training (columns) and test
(rows) datasets. For instance, the first number 83.07 refers to the prediction accuracy
of the BJK grammar of SCFG using the MT10CY10 dataset to train parameters and
using the ARCHAE dataset to test.

MT10CY10 MT100 Rand tRNA
Dataset SCFG CBRP SCFG CBRP SCFG CBRP

ARCHAE 83.07 89.14 81.16 87.91 83.26 93.25
CY 81.88 91.39 81.59 91.17 83.01 92.09
CYANELCHLORO 84.22 87.07 83.44 89.41 85.71 91.75
EUBACT 90.06 88.85 87.56 89.74 91.19 93.34
VIRUS 81.28 88.68 79.01 86.21 80.45 88.68
MT 77.88 81.42 78.56 86.81 73.47 79.58
PARTIII 77.11 74.36 77.39 81.36 73.98 77.11

A BP-SCFG Based Approach for RNA Secondary Structure Prediction 515

Table 2. The Specificity(%) value of the proposed CBRP approach compared with
the BJK grammar of the SCFG approach

MT10CY10 MT100 Rand tRNA
Dataset SCFG CBRP SCFG CBRP SCFG CBRP

ARCHAE 75.40 91.61 73.97 90.17 77.99 97.66
CY 78.03 93.72 77.19 92.32 82.65 97.69
CYANELCHLORO 79.88 91.02 78.54 93.42 83.75 97.04
EUBACT 84.05 89.37 81.73 90.78 86.84 96.54
VIRUS 78.69 90.93 74.13 90.50 79.80 94.52
MT 76.57 89.92 76.90 93.64 78.28 94.39
PARTIII 75.74 86.00 76.88 91.49 78.04 93.79

Table 3. For the dataset of SRP rRNA, the prediction accuracy compared between
the proposed CBRP approach and the BJK grammar of SCFG implemented in [12]

Sensitivity(%) Specificity(%)
Test No. SCFG CBRP SCFG CBRP

1 55.46 59.96 50.26 56.67
2 50.62 56.77 45.55 53.13
3 54.68 62.34 49.87 60.47
4 58.34 63.27 54.14 61.83
5 55.40 59.52 50.36 56.97
6 57.34 62.67 54.49 60.49
7 57.70 62.93 52.51 59.08

3.2 Comparison to the BJK Grammar of the SCFG Approach

Using the same training and test samples, our results are compared with the
BJK grammar model of the SCFG approach. Sensitivity and Specificity param-
eters are used to evaluate the RNA secondary structure prediction accuracy,
which are common measures of the accuracy of prediction approaches. The Sen-
sitivity value denotes the percentage of base-pairs that are predicted correctly
among actual base-pairs in the reference structure, while the Specificity value

Table 4. For the dataset of tmRNA rRNA, the prediction accuracy compared between
the proposed CBRP approach and the BJK grammar of SCFG implemented in [12]

Sensitivity(%) Specificity(%)
Test No. SCFG CBRP SCFG CBRP

1 39.44 46.03 37.68 52.73
2 37.37 44.02 34.37 48.89
3 39.72 41.83 37.54 47.64
4 37.48 44.49 35.74 50.44
5 38.69 45.6 36.11 49.7
6 38.59 42.21 36.35 47.04
7 39.54 45.69 38.27 50.59

516 D. Song and Z. Deng

Table 5. For the dataset of RNaseP rRNA, the prediction accuracy compared between
the proposed CBRP approach and the BJK grammar of SCFG implemented in [12]

Sensitivity(%) Specificity(%)
Test No. SCFG CBRP SCFG CBRP

1 46.21 53.57 45.90 55.74
2 47.48 56.37 44.93 55.20
3 48.62 56.66 46.56 56.42
4 48.40 58.58 45.97 57.90
5 47.13 58.62 43.57 56.08
6 46.35 56.01 43.72 54.99
7 44.97 57.17 45.00 58.34

denotes the percentage of base-pairs that are predicted correctly among pre-
dicted base-pairs. Tab. 1 and 2 express the prediction accuracy of our approach
(CBRP) compared with the BJK grammar of the SCFG approach (SCFG) us-
ing the tRNA database. The results show that our method outperforms the BJK
grammar of the SCFG approach significantly.

For the SRP dataset of rRNA, 7 experiments are done with different train-
ing and test samples which are selected randomly. The prediction accuracy of
our approach and the SCFG approach is shown in Tab. 3, our approach also
outperforms the SCFG approach.

The Tab. 4 and Tab. 5 show the prediction results of our approach com-
pared with the SCFG approach when performing on tmRNA and RNaseP rRNA
datasets with 7 different training and test datasets selected randomly. The pre-
diction accuracy is all greatly improved by our approach.

4 Conclusion and Future Work

By combining a BP neural network and statistical calculation with the SCFG
approach, our approach incorporates consecutive bases dependency and their
relative positions information into the RNA secondary structure prediction pro-
cess. With the same training and test samples randomly selected from four kinds
of RNA datasets including tRNA and rRNA, our experimental results are com-
pared with the SCFG approach alone. The greatly improved prediction accuracy
demonstrates the effectiveness of our approach. And the future work includes:

– The size of the sliding window is arbitrarily set to be 13 by taking reference
of the proteins secondary structure prediction. But as the characters of RNA
and protein are different, the size should be fixed through experiments.

– The number of neural nodes in the hidden layer of the BP neural network is
also arbitrarily set, it can be adjusted to better suit features of the samples.

– Traditional BP neural network and the learning algorithm are used. As other
revised network structure and much more efficient learning algorithms are
prompted in recent years, the neural network can be improved.

– The proposed approach has only been performed in the training and test
samples selected from the same species of RNA. Experiments between

A BP-SCFG Based Approach for RNA Secondary Structure Prediction 517

different species of datasets should be performed. And it needs to be pointed
out that when no training sets are available then energy minimization meth-
ods such as the Mfold/Vienna are the best that can be tried.

Acknowledgement

This work was supported in part by the National Science Foundation (Grant
No. 60621062) and the Teaching and Research Award Program for Outstanding
Young Teachers in Higher Education Institutions of MOE (TRAPOYT), China.

References

1. Nussinov, Pieczenik, Griggs, Kleitman: Algorithms for loop matchings. SIJAM:
SIAM Journal on Applied Mathematics 35 (1978) 68–82

2. Zuker, M., Stiegler, P.: Optimal computer folding of large rna sequences using ther-
modynamics and auxiliary information. Nucleic Acids Research 9(1) (1981) 133–148

3. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Research 31(13) (2003) 3406–3415

4. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster,
P.: Fast folding and comparison of RNA secondary structures. Monatsh. Chem.
125 (1994) 167–188

5. Eddy, S.R., Durbin, R.: Rna sequence analysis using covariance models. Nucleic
Acids Res 22(11) (1994) 2079–2088

6. Ding, Y.: Statistical and bayesian approaches to rna secondary structure prediction.
RNA 12 (2006) 323–331

7. Mccaskill, J.S.: The equilibrium partition function and base pair binding proba-
bilities for rna secondary structure. Biopolymers 29(6-7) (1990) 1105–1119

8. Steeg,E.W.: Neural network algorithms for rna secondary structure prediction. Tech-
nical report, University of Toronto Computer Science Dept., Toronto Canada (1990)

9. Hu, Y.J.: Gprm: a genetic programming approach to finding common rna secondary
structure elements. Nucleic Acids Research 31(13) (2003) 3446–3449

10. McMillan, N.: RNA secondary structure prediction using ant colony optimization.
Master’s thesis, School of Informatics, The University of Edinburgh (2006)

11. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-
propagating errors. Nature 323 (1986) 533–536

12. Dowell, R.D., Eddy, S.R.: Evaluation of several lightweight stochastic context-free
grammars for rna secondary structure prediction. BMC Bioinformatics 5 (2004)
71–99

13. Knudsen, B., Hein, J.: Rna secondary structure prediction using stochastic context-
free grammars and evolutionary history. Bioinformatics 15(6) (1999) 446–454

14. Lari, K., Young, S.J.: The estimation of stochastic context-free grammars using
the inside-outside algorithm. Computer Speech and Language 4 (1990) 35–56

15. Steinberg, S., Misch, A., Sprinzl, M.: Compilation of tRNA sequences and se-
quences of tRNA genes. Nucleic Acids Research 21(13) (1993) 3011–3015

16. Rosenblad, M.A., Gorodkin, J., Knudsen, B., Zwieb, C., Samuelsson, T.: SRPDB:
Signal recognition particle database. Nucleic Acids Research 31(1) (2003) 363–364

17. Zwieb, C., Gorodkin, J., Knudsen, B., Burks, J., Wower, J.: tmrdb (tmrna
database). Nucleic Acids Research 31(1) (2003) 446–447

18. Brown, J.W.: The ribonuclease P database. Nucleic Acids Research 27(1) (1999)
314

Delta: A Toolset for the Structural Analysis of Biological
Sequences on a 3D Triangular Lattice�

Minghui Jiang��, Martin Mayne, and Joel Gillespie

Department of Computer Science, Utah State University,
Logan, Utah 84322-4205, USA
mjiang@cc.usu.edu

Abstract. The lattice approach to biological structural analysis was made pop-
ular by the HP model for protein folding, but had not been used previously for
RNA secondary structure prediction. We introduce the Delta toolset for the struc-
tural analysis of biological sequences on a 3D triangular lattice. The Delta toolset
includes a proof-of-concept RNA folding program that is both fast and accurate
in predicting the secondary structures with pseudoknots of short RNA sequences.

1 Introduction

The prediction and analysis of the folded structures of biological sequences such as
proteins and RNAs are important research problems in bioinformatics and computa-
tional biology. Protein folding, for example, is such a difficult problem that it has been
studied extensively in various simplified models. In the HP model [10,11], the 20 types
of amino acids are grouped to two types, hydrophobic (H) and hydrophilic (P). The
folding takes place on a lattice: each amino acid occupies a unique lattice point; con-
secutive amino acids in the protein sequence occupy adjacent lattice points. Given a
protein sequence, the problem reduces to finding a lattice folding of the sequence with
the maximum number of H-H contacts.

The prediction of RNA secondary structures with pseudoknots is another difficult
problem in structural bioinformatics. We review some basic concepts. The primary
structure of an RNA is the sequence of nucleotides (that is, the four different bases
A, C, G, and U) in its single-stranded polymer. An RNA folds into a three-dimensional
structure by forming hydrogen bonds between pairs of complementary bases, such as
the Watson-Crick pairs G-C and A-U and the wobble pair G-U, which are nonconsecu-
tive in the sequence. The three-dimensional arrangement of the atoms in the folded RNA
molecule is its tertiary structure; the collection of base pairs is its secondary structure.
A pseudoknot in an RNA secondary structure is composed by two interleaving base
pairs (i, j) and (k, l) with sequence indices i < k < j < l.

Most early research on RNA secondary structure prediction adopts the thermody-
namic approach: each candidate secondary structure corresponds to a global free en-
ergy, which depends on the recursive decomposition of the structure and on a set of
experimentally determined energy parameters; the optimal secondary structure has the

� Supported by Utah State University research funds A13501 and A14766.
�� Corresponding author.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 518–529, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

Delta: A Toolset for the Structural Analysis of Biological Sequences 519

minimum global free energy. When pseudoknots are excluded, the optimal secondary
structure of an RNA can be effectively computed by dynamic programming algorithms
in O(n3) time and O(n2) space [27,36,15,24]. There has been considerable effort
[28,33,3] on extending the dynamic programming algorithms to include pseudoknots
in RNA secondary structures. However, these extended algorithms typically have very
high complexities, ranging from O(n4) to O(n6) in time and from O(n3) to O(n4) in
space, which make them impractical even for RNA sequences of only a few hundred
bases. Furthermore, as noted by Lyngsø and Pedersen [23] and also by Ieong et al.
[16], these algorithms can handle only limited types of pseudoknots: the exact types
are implicit in the algorithms and difficult to determine. On the other hand, if arbitrary
pseudoknots may be included in the secondary structures, then the prediction problem
becomes exceedingly difficult. Lyngsø and Pedersen [23] showed that the problem of
determining the optimal secondary structure possibly with pseudoknots is NP-hard even
for a simple nearest-neighbor energy model. Similar hardness results have been shown
for other models that permit arbitrary pseudoknots [3,16,34,22]. Although approxima-
tion algorithms [16,22,8,17,18] have been proposed for optimization problems in these
models, the practical relevance of these algorithms is diminished by either the large ap-
proximation ratios or the (still) high time and space complexities. Alternative methods,
such as maximum weighted matching [31] and iterated loop matching [29], are based
on a combination of thermodynamic and comparative approaches. These methods can
often achieve better prediction accuracies than algorithms based on the thermodynamic
approach alone, but the necessary information for comparative studies (for example,
homologous sequences) are not always available.

The apparent difficulty of the prediction of RNA secondary structures with pseudo-
knots naturally prompts researchers to explore heuristic approaches such as Monte-
Carlo simulation [1] and genetic algorithms [13,4,30]. However, to the best of our
knowledge, no previous work has been done for this problem using the lattice approach.
This is somewhat surprising, especially in light of the fact that the related problem of
protein folding has been extensively studied in the HP model [14,2,6,7,25,26,21,19]. To
evaluate the feasibility of the lattice approach to RNA secondary structure prediction,
we have developed the Delta toolset for the structure analysis of biological sequences
on a 3D triangular lattice. The toolset includes a proof-of-concept RNA folding pro-
gram based on simulated annealing [20] with pull moves [21], which is shown by our
experiment to be both fast and accurate in predicting the secondary structures with
pseudoknots of short RNA sequences. The classic two-step approach to RNA struc-
ture prediction, which first predicts the secondary structure then derives the compatible
tertiary structure, can be problematic since a lot of secondary structures that are valid
under the typical constraints of the existing models (for example, no base is included in
more than one base pair, and the bases of any base pair obey the minimum separation re-
quirement) cannot be realized as three-dimensional structures due to steric constraints.
Our lattice approach avoids this problem by simulating the RNA tertiary structure on a
3D triangular lattice directly; the secondary structure is then derived from the tertiary
structure, not vice versa.

The rest of the paper is organized as follows. In Section 2, we introduce the Delta
toolset. In Section 3, we present our experimental results on the effectiveness of our

520 M. Jiang, M. Mayne, and J. Gillespie

RNA folding program in predicting RNA secondary structures with pseudoknots. We
conclude in Section 4.

2 The Delta Toolset

The Delta toolset1 is implemented in the C programming language. It consists of three
components: the Delta library, which includes the core data structures, input/output
utilities, programming interfaces, and biology-specific information; and two front-end
tools, show and fold, for the visualization and manipulation of the folded structures
of biological sequences on a 3D triangular lattice.

2.1 The 3D Triangular Lattice

We briefly examine the 2D triangular lattice first. We refer to Fig. 1. Let x and y,
respectively, be the unit vectors along the x and y axes of a square lattice (a). Add an
auxiliary axis u = x + y along the xy diagonal of the square lattice, then skew the
lattice until the angle between x and y becomes 2π/3, and we obtain a 2D triangular
lattice (b). To specify a lattice point on a 2D triangular lattice, the coordinates on the two
primary axes along x and y are sufficient. For example, each lattice point p = (x, y)
has six neighbors (x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1), (x + 1, y + 1), and
(x − 1, y − 1). With the auxiliary axis u, the six neighbors of p can be more succinctly
specified by p ± x, p ± y, and p ± u.

x

y u

x

y u

(a) (b)

Fig. 1. The 2D triangular lattice

We now consider the 3D triangular lattice formed by a closest cubic packing of
spheres. We refer to Fig. 2. An interesting property of the 3D triangular lattice is that it
consists of layers of square lattices in parallel planes. Beside the two unit vectors x and
y that specify the two primary axes of each square lattice, the 3D triangular lattice has
an additional primary axis along a unit vector z, which is at an angle of 2π/3 from both
x and y. The distance between two adjacent planes, which support two consecutive lay-
ers of square lattices, is

√
2/2. Each lattice point on a 3D triangular lattice has 12 neigh-

bors, distributed among three consecutive layers of square lattices, four on each layer.

1 http://www.cs.usu.edu/∼mjiang/delta/

Delta: A Toolset for the Structural Analysis of Biological Sequences 521

x

yz

√
2

1

1

x

y

z

z = 0

z = 1

(a) (b)

Fig. 2. The 3D triangular lattice. (a) Each lattice point has 12 neighbors distributed in three square
lattices in parallel planes. (b) A projected view: alternating layers of square lattices are depicted
by solid and dotted lines.

In a 3D triangular lattice, the location of each lattice point can be specified by its
coordinates on the three primary axes along x, y, and z. Since the three axes are not
orthogonal, the Cartesian coordinates (x′, y′, z′) of a lattice point p = (x, y, z) need to
be computed from the following equations:

x′ = x − z/2, y′ = y − z/2, z′ = z/
√

2.

For convenience, we also define three auxiliary axes along the three unit vectors
u = x + z, v = y + z, and w = x + y + z. The 12 neighbors of a lattice point p are
p ± x, p ± y, p ± z, p ± u, p ± v, and p ± w; each neighbor can be uniquely indexed
by a number between 1 and 12.

We use the 3D triangular lattice instead of the more common cubic lattice for two
reasons: first, the 3D triangular lattice is “denser” than the cubic lattice and therefore
approximates the 3D space better; second, the 3D triangular lattice is not susceptible to
the parity problem [2] associated with the cubic lattice, in which two elements with the
same parity in the sequence cannot be adjacent in the lattice.

2.2 Representation of Structures

On the 3D triangular lattice, the folded structure of a biological sequence S of n el-
ements can be represented by a turn sequence T of n − 1 directions that simulates
a self-avoiding walk on the lattice. The directions in the turn sequence are over the
alphabet {U,V,W,X,Y,Z,u,v,w,x,y,z}; the upper and the lower cases of each
letter, respectively, correspond to the positive and the negative directions along the cor-
responding axis.

The configuration of a biological sequence on the 3D triangular lattice is its 3D
structure, represented in the Delta library as an array of lattice points occupied by the

522 M. Jiang, M. Mayne, and J. Gillespie

elements in the sequence. As the Delta library reads the turn sequence in, an initial
configuration is “decoded”: place the first element at the origin, then repeatedly follow
the next direction in the turn sequence to one of the 12 neighbors of the current lattice
point and place the next element there. As the configuration is decoded, each element
is also inserted into a hashtable with its lattice coordinates as the key. When the con-
figuration changes during the structural manipulation, both the coordinates array and
the hashtable are updated accordingly. The configuration is valid if no two elements oc-
cupy the same lattice point and if consecutive elements in the sequence occupy adjacent
lattice points. The hashtable is used so that collisions can be detected very efficiently
when maintaining the validity of the configuration.

To export the structure of the biological sequence, the Delta library “encodes” the
coordinates array back into a turn sequence by comparing the differences in the coor-
dinates of consecutive elements. A biological sequence and its lattice configuration can
be stored externally in a text file that contains a sequence of elements over the alphabet
{A-Za-z} and a sequence of turns over the alphabet {U-Zu-z}.

2.3 Visualization of Structures

The Delta toolset includes a visualizer, called show, that can display the structure of
a biological sequence on a 3D triangular lattice. The show program is implemented
using the Delta library and the OpenGL graphics library.

Fig. 3. An example sequence displayed by the visualizer

Given the input consisting of a sequence of elements and a sequence of turns, the
visualizer decodes the lattice coordinates of the elements from the turn sequence using
the Delta library, computes the Cartesian coordinates of the occupied lattice points, then
displays the 3D structure of the biological sequence in the ball-and-stick model: each
element is represented by a ball; two consecutive elements are connected by a stick.
Elements of different types (specified by different letters) are rendered by the visualizer
in different colors. For example, with a biological sequence CAGT and its turn sequence
XZv saved in a file input.txt, the command show -i input.txt displays the
structure in Fig. 3. The visualizer also provides a -rna option that enables the display
of base pairings in the RNA secondary structure. When the 3D structure of a sequence
is displayed, the user can use the mouse and the keyboard to rotate, zoom, and adjust
the view. All figures of RNA structures included in this paper are processed from actual
screenshots of the visualizer.

Delta: A Toolset for the Structural Analysis of Biological Sequences 523

2.4 Manipulation of Structures by Pull Moves

The Delta library provides programming interfaces for the structural manipulation of
biological sequences by pull moves. The pull moves were introduced by Lesh et al.
[21] as a complete and effective move set for protein folding on the square lattice in the
HP model; it was later adapted to the hexagonal lattice by Jiang and Zhu [19]. We adapt
the pull moves to the 3D triangular lattice.

For a sequence S, denote by S[i] the i’th element of S. Given a lattice configuration
of a sequence S of n elements, for each element S[i], 1 ≤ i ≤ n, and for each direction
d ∈ {U-Zu-z}, there is a possible pull move pull (i, d). Denote by p(i, d) the neighbor
of (the lattice point adjacent to) S[i] in the direction d. The element S[i + 1] or S[i− 1]
is called an anchor of the pull move pull(i, d) if it is also adjacent to p(i, d). For con-
venience, define two imaginary elements S[0] and S[n + 1] such that S[0] is always an
anchor of S[1] and that S[n + 1] is always an anchor of S[n]. A pull move pull(i, d) is
valid if p(i, d) is unoccupied and the pull move has at least one anchor.

Let pull(i, d) be a valid pull move on a valid configuration. To execute the pull move,
first move S[i] to p(i, d). If the pull move has two anchors S[i − 1] and S[i + 1], then
this move of S[i] alone, which is called a flip, already results in a valid configuration,
and the pull move is finished. If the pull move has only a single anchor, say, S[i − 1],
then continue to “pull” S[k] to the former location of S[k − 1], for k = i + 1, . . . , n,
until S[k] is adjacent to the new location of S[k − 1]. The other case, that S[i + 1] is
the only anchor, is symmetric. A valid pull move clearly maintains the two properties
that no two elements occupy the same lattice point and that consecutive elements in the
sequence occupy adjacent lattice points. The resulting configuration is still valid.

Fig. 4. An example of a pull move

We refer to Fig. 4 for an example of a pull move. Moving the element as indicated
changes the sequence from one configuration to the other. The unmoved element next
to the first moved element in the sequence is the anchor. An important property of the
pull moves is that they are reversible. Each pull move results in a contiguous range
of elements being relocated. To return a sequence to its old configuration, another pull
move is sufficient: simply move the last element in the range back to its former location;
the remaining elements in the range are then “pulled” one by one to their respective
former locations. Another property of the pull moves is that they are complete, that is,
any valid configuration can be moved to any other valid configuration by a sequence of
pull moves. It is easy to check that any configuration v can be pulled into a straight line
l by a sequence of pull moves move(v, l). Since each pull move is reversible, a move
sequence move(u, v) can be composed by concatenating the move sequence move(u, l)
and the reversed move sequence move(l, v).

524 M. Jiang, M. Mayne, and J. Gillespie

As noted by Lesh et al. [21], an important aspect of pull moves in terms of their
effectiveness on protein folding is that they make relative small adjustments to a given
configuration, or, more accurately, the average number of relocated elements of a pull
move is small. To test whether this “small adjustment” property is preserved in our
adaptation of pull moves to the 3D triangular lattice, we ran random pull moves on
sequences of various sizes to measure the numbers of relocated elements of the pull
moves. Let � be the length of a test sequence. Our test program initializes the sequence
in a straight-line configuration, executes 105� random pull moves as warm-up, then
executes another 105� random pull moves to gather statistics. Each random pull move
pull(i, d) is specified by two uniformly random numbers: a number between 1 and �
for the index i, and another number between 1 and 12 for the direction to move S[i]. If
a random pull move is valid, it is committed and the number of relocated elements is
recorded; otherwise, the move is aborted and the configuration is reverted.

Table 1. Statistics on the number of relocated elements of random pull moves

sequence size 32 64 128 256 512
average 2.40625 3.79688 4.10938 3.36328 3.48438

standard deviation 1.29164 2.65581 3.21716 1.97754 2.40347

We tested sequence sizes ranging from 32 to 512, typical of biological sequences
such as RNAs and proteins. As we can see from the results listed in Table 1, the number
of relocated elements of a pull move is on average a small constant.

2.5 The Structural Manipulation Tool

The Delta toolset includes a structural manipulation tool called fold, which allows
a user to input a sequence, manipulate it with pull moves, then output the resulting
structure. We introduce two important command-line options of fold:

-z n performs n random (warm-up) pull moves on the sequence.
-a n n′ k performs simulated annealing for k rounds; each round attempts at

most n random pull moves and aborts if the configuration does not improve af-
ter n′ consecutive moves (the two parameters n′ and k are optional; by default,
n′ = n and k = 1).

These options allow the use of fold as an RNA folding program based on sim-
ulated annealing with pull moves. Each configuration v of a sequence has a corre-
sponding score s(v) ≥ 0. With the sequence set to an arbitrary configuration v0 at
the beginning (either directly from the input, or after a number of random warm-up
moves specified by the -z option), the RNA folding program performs simulated an-
nealing for n steps (specified by the -a option). At the i’th step, a random pull move
is chosen, which may transform the old configuration vi−1 into a new configuration vi.
If s(vi) ≥ s(vi−1), the pull move is committed and the simulated annealing procedure

Delta: A Toolset for the Structural Analysis of Biological Sequences 525

continues to the next step; otherwise, the pull move is committed with a probability of
pi = 2(s(vi)−s(vi−1))/Ti , where Ti = c/ log2(1 + i/n) is the system temperature at the
i’th step. This cooling schedule is chosen because of its special statistical properties
[35]. When i = 0, we have T0 = ∞; when i = n, we have Tn = c. Intuitively, the
system can be found in any configuration with approximately equal probabilities at a
high temperature, and is more likely to be found in a configuration with a high score at
a low temperature. The constant c is set to 1/ log2 10 in our implementation so that the
accepting probability pn in the end is about 2−1/Tn = 2−1/c = 0.1.

We now specify the score function of our RNA folding program. According to the
Tinoco model [32], an RNA structure can be recursively decomposed into loops with
independent free energy; the free energy of each loop is an affine function in the number
of unpaired bases and the number of interior base pairs. Stacking pairs are the only type
of loops without unpaired bases; therefore it has a negative free energy and stabilizes the
RNA structure. Our scoring function is designed to approximate the number of stacking
pairs [16,22,18].

For each pair of bases i and j adjacent in the lattice and at least a distance of 5 apart
in the sequence (that is, |i − j| ≥ 5), we assign it a pair score s(i, j): 8 for a G-C, 5 for
an A-U, 3 for a G-U, and −2 for the other pairs. Given a configuration, we compute for
each base i the sum of absolute pair scores

sum(i) =
∑

(i,j) a pair

|s(i, j)|.

The normalized score of a pair (i, j) is then defined as

s′(i, j) =
s(i, j)
sum(i)

· s(i, j)
sum(j)

· s(i, j),

where the two ratios s(i,j)
sum(i) and s(i,j)

sum(j) , respectively, represent the levels of “commit-
ment” of i and j in forming the pair (i, j). For a stacking pair SP that consists of two
pairs (i, j) and (i + 1, j − 1) such that s′(i, j) > 0 and s′(i + 1, j − 1) > 0, we define
a stacking score s′′(SP) = s′(i, j) + s′(i + 1, j − 1). The score of a configuration is
the total score of its stacking pairs.

By allowing each base to participate in multiple base pairs, our normalized scoring
scheme avoids the expensive computation of a maximum weight matching [31] in the
adjacency graph of each configuration; rare but still possible structures such as base
triples [31] are not arbitrarily excluded by our model. We note especially that a pair
(i, j) with a negative pair score −2 must also have a negative normalized score: the
pair does not participate in stacking pairs, and its contributions to sum(i) and sum(j)
only drag down the positive normalized scores of other pairs incident to either i or j.
This implicitly discourages the unnecessary clustering of bases. Finally, we observe
that the score change due to a pull move depends only on the relocated bases and their
nearby bases. Since the average number of relocated bases of a random pull move is a
small constant, we optimize the computation of the score change so that each simulated
annealing step takes only constant time on average.

526 M. Jiang, M. Mayne, and J. Gillespie

3 Experiment

To evaluate our RNA folding program, we used RNA sequences with known secondary
structures from the PseudoBase [5]. The PseudoBase contained (as of February 1, 2007)
150 short RNA sequences with length between 20 and 40, which we used in our exper-
iment. For each sequence of length �, the fold options were set to -z 104� -a 104�
103� k. As k, the number of rounds, changes from 5 to 10 then to 20, the prediction ac-
curacy (the fraction of base pairs correctly predicted) steadily increases from 53.7% to
65.7% then to 70.3%. For a sequence of length 40, a 20-round run of our RNA folding
program typically takes about two minutes on an Apple iMac computer2. The predic-
tion accuracy and the running time of our program compare favorably with those of the
existing softwares [28,9] for predicting RNA secondary structures with pseudoknots.

CCCCUUUACUUGAGGGAAAUCAAGC

XwwuuyvvYYWZUWWuvvxzwyyW

(a) BSBV1

CCCCCAUCCGGAGGGUUAUCCGGC

WWVxZwyWWXzwwwUWUYZxxwy

(b) SBWMV2

UAGGGGCUUACCGAAAUAAGCC

wyVxYUWyyzvZWZxuYYwuy

(c) CcTMW UPD-PK2

Fig. 5. Predicted structures of RNA sequences from the PseudoBase

In Fig. 5 and Fig. 6, we have sampled a few typical predictions made by our program:
for each RNA sequence whose identifier is listed in the caption, the corresponding figure
includes a screenshot of the visualizer output, the base sequence, and the predicted
turn sequence. The four bases, A, C, G, U, are rendered in red, yellow, green, and
blue, respectively; each base pair is rendered as a black line between the two bases.
The three sequences in Fig. 5 (from the PseudoBase3) contain pseudoknots; the two
sequences in Fig. 6 (from the Nucleic Acids Database4) do not contain pseudoknots. We
note that the three sequences in Fig. 5 are also included as samples in Deogun et al.’s
empirical study [9] of dynamic programming algorithms for RNA secondary structure
prediction. Deogun et al.’s program correctly predicted the pseudoknots in BSBV1 and
SBWMV2, but failed to identify the pseudoknot in CcTMW UPD-PK2; our program
correctly predicted the pseudoknots in all three sequences.

2 2GHz PowerPC G5 processor; 2GByte DDR SDRAM memory; MacOS 10.4.8; GCC 4.0.0.
3 http://wwwbio.leidenuniv.nl/∼batenburg/pkb.html
4 http://ndbserver.rutgers.edu/

Delta: A Toolset for the Structural Analysis of Biological Sequences 527

GGUGCAGAAACAGCGCUUCGGCGCGUAUAUUACGCACC

zzzzyUUZyyyuwwwwyzYWWWWWWXVYxzYuuZZZZ

(a) PDB:1B36

GGCGGAACCGGUGAGUACACCGGAAUCCGAAAGGAUUUGGGCGUGCCCCCGCC

WYVxZYWyyyyyuvWXZYYYYYYuYwwxYXzyWUyUUvUUXvwxWuuuxvyw

(b) NDB:UR0018

Fig. 6. Predicted structures of RNA sequences from the Nucleic Acids Database

With a relatively simple scoring scheme, our RNA folding program has already
achieved very good prediction accuracy (around 70%) for short RNA sequences (Eddy
[12] noted that “current RNA folding programs get about 50–70% of base pairs correct,
on average”). In particular, as we can see directly from Fig. 5 and Fig. 6, simulated
annealing with pull moves on a 3D triangular lattice can indeed predict correct RNA
secondary structures with stacked base pairs. We see great potential for improving the
prediction accuracy further when more elaborate energy parameters are incorporated in
our program. Furthermore, our local search technique allows an easy trade-off between
running time and prediction accuracy; more simulation steps usually results in better
prediction accuracy, as our experimental result shows.

4 Concluding Remarks

In this paper, we introduced the Delta toolset for the structural analysis of biological
sequences on a 3D triangular lattice. Our experiment with the proof-of-concept RNA
folding program shows that it is both fast and accurate in predicting the secondary
structures with pseudoknots of short RNA sequences.

We believe the lattice approach to the structural prediction of biological sequences
is promising. There are several interesting directions for our future work. Beside exper-
imenting with other effective move sets for the structural manipulation and exploring
alternative optimization techniques such as tabu search and genetic algorithm, we intend
to extend the Delta toolset for the manipulation and visualization of multiple sequences.
This new feature will allow bioinformaticians to perform structural analysis of com-
plex biological structures that contain protein-protein, protein-RNA, and RNA-RNA
interactions.

528 M. Jiang, M. Mayne, and J. Gillespie

References

1. J. P. Abrahams, M. van den Berg, E. van Batenburg, and C. Pleij. Prediction of RNA
secondary structure, including pseudoknotting, by computer simulation. Nucleic Acids Re-
search, 18(10):3035–3044, 1990.

2. R. Agarwala, S. Batzoglou, V. Dančı́k, S. E. Decatur, M. Farach, S. Hannenhalli, and S.
Skiena. Local rules for protein folding on a triangular lattice and generalized hydrophobic-
ity in the HP model. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’97), pages 390–399, 1997.

3. T. Akutsu. Dynamic programming algorithms for RNA secondary structure prediction with
pseudoknots. Discrete Applied Mathematics, 104(1-3):45–62, 2000.

4. F. H. D. van Batenburg, A. P. Gultyaev, and C. W. A. Pleij. An APL-programmed genetic
algorithm for the prediction of RNA secondary structure. Journal of Theoretical Biology,
174(3):269–280, 1995.

5. F. H. D. van Batenburg, A. P. Gultyaev, C. W. A. Pleij, J. Ng, and J. Oliehoek. Pseudobase: a
database with RNA pseudoknots. Nucleic Acids Research, 28(1):201–204, 2000.

6. B. Berger and T. Leighton. Protein folding in the hydrophobic-hydrophilic (HP) model is
NP-complete. In Proceedings of the 2nd Conference on Computational Molecular Biology
(RECOMB’98), pages 30–39, 1998.

7. P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and M. Yannakakis. On the com-
plexity of protein folding. In Proceedings of the 2nd Conference on Computational Molec-
ular Biology (RECOMB’98), pages 61–62, and in Proceedings of the 30th Annual ACM
Symposium on Theory of Computing (STOC’98), pages 597–603, 1998.

8. M. Crochemore, D. Hermelin, G. M. Landau, and S. Vialette. Approximating the 2-interval
pattern problem. In Proceedings of the 13th Annual European Symposium on Algorithms
(ESA’05), LNCS 3669, pages 426–437, 2005.

9. J. S. Deogun, R. Donis, O. Komina, and F. Ma. RNA secondary structure prediction with
simple pseudoknots. In Proceedings of the 2nd Asia-Pacific Bioinformatics Conference
(APBC’04), pages 239–246, 2004.

10. K. A. Dill. Theory for the folding and stability of globular proteins. Biochemistry,
24(6):1501–1509, 1985.

11. K. A. Dill. Dominant forces in protein folding. Biochemistry, 29:7133–7155, 1990.
12. S. R. Eddy. How do RNA folding algorithms work? Nature Biotechnology, 22(11):1457–1458,

2004.
13. A. P. Gultyaev, F. H. D. van Batenburg, and C. W. A. Pleij. The computer simulation of RNA

folding pathways using a genetic algorithm. Journal of Molecular Biology, 250(1):37–51,
1995.

14. W. E. Hart and S. Istrail. Fast protein folding in the hydrophobic-hydrophilic model within
three-eights of optimal. In Proc. 27th Annual ACM Symposium on Theory of Computing
(STOC’95), pages 157–168, 1995.

15. I. L. Hofacker, W. Fontana, P. F. Stadler, S. Bonhoeffer, M. Tacker, and P. Schuster. Fast
folding and comparison of RNA secondary structures. Monatshefte für Chemie, 125(2):
167–188, 1994.

16. S. Ieong, M.-Y. Kao, T.-W. Lam, W.-K. Sung, and S.-M. Yiu. Predicting RNA secondary
structure with arbitrary pseudoknots by maximizing the number of stacking pairs. Journal of
Computational Biology, 10(6):981–995, 2003.

17. M. Jiang. A 2-approximation for the preceding-and-crossing structured 2-interval pattern
problem. Journal of Combinatorial Optimization, Special Issue on Bioinformatics, to appear.

18. M. Jiang. Improved approximation algorithms for predicting RNA secondary structures with
arbitrary pseudoknots. In Proceedings of the 3rd International Conference on Algorithmic
Aspects in Information and Management (AAIM’07), to appear.

Delta: A Toolset for the Structural Analysis of Biological Sequences 529

19. M. Jiang and B. Zhu. Protein folding on the hexagonal lattice in the HP model. Journal of
Bioinformatics and Computational Biology, 3(1):19–34, 2005.

20. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

21. N. Lesh, M. Mitzenmacher, and S. Whiteslides. A complete and effective move set for sim-
plified protein folding. In Proceedings of the 7th Annual International Conference on Com-
putational Molecular Biology (RECOMB’03), pages 188–195, 2003.

22. R. B. Lyngsø. Complexity of pseudoknot prediction in simple models. In Proceedings of
the 31st International Colloquium on Automata, Languages and Programming (ICALP’04),
pages 919–931, 2004.

23. R. B. Lyngsø and C. N. S. Pedersen. RNA pseudoknot prediction in energy-based models.
Journal of Computational Biology, 7(3/4):409–427, 2000.

24. R. B. Lyngsø, M. Zuker, and C. N. S. Pedersen. Fast evaluation of interval loops in RNA
secondary structure prediction. Bioinformatics, 15(6):440–445, 1999.

25. G. Mauri, G. Pavesi, and A. Piccolboni. Approximation algorithms for protein folding pre-
diction. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’99), pages 945–946, 1999.

26. A. Newman. A new algorithm for protein folding in the HP model. In Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’02), pages 876–884, 2002.

27. R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman. Algorithms for loop matching.
SIAM Journal on Applied Mathematics, 35(1):68–82, 1978.

28. E. Rivas and S. R. Eddy. A dynamic programming algorithm for RNA structure prediction
including pseudoknots. Journal of Molecular Biology, 285:2053–2068, 1999.

29. J. Ruan, G. D. Stormo, and W. Zhang. An iterated loop matching approach to the prediction
of RNA secondary structure with pseudoknots. Bioinformatics, 20(1):58–66, 2004.

30. B. A. Shapiro and J. C. Wu. Predicting RNA H-type pseudoknots with the massively parallel
genetic algorithm Computer Applications in the Biosciences, 13(4):459–471, 1997.

31. J. E. Tabaska, R. B. Cary, H. N. Gabow, and G. D. Stormo. An RNA folding method capable
of identifying pseudoknots and base triples. Bioinformatics, 14(8):691–699, 1998.

32. I. Tinoco, P. N. Borer, B. Dengler, M. D. Levine, O. C. Uhlenbeck, D. M. Crothers, and J.
Gralla. Improved estimation of secondary structure in ribonucleic acids. Nature New Biology,
246:40–42, 1973.

33. Y. Uemura, A. Hasegawa, S. Kobayashi, and T. Yokomori. Tree adjoining grammars for RNA
structure prediction. Theoretical Computer Science, 210(2):277–303, 1999.

34. S. Vialette. On the computational complexity of 2-interval pattern matching problems. The-
oretical Computer Science, 312:223–249, 2004.

35. M. S. Waterman. Introduction to Computational Biology: Maps, Sequences and Genomes.
Chapman & Hall, 1995.

36. M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using thermo-
dynamics and auxiliary information. Nucleic Acids Research, 9(1):133–148, 1981.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 530–538, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Statistical Estimate for the Size of the Protein
Structural Vocabulary

Xuezheng Fu1, Bernard Chen1, Yi Pan1, and Robert W. Harrison1,2

1 Department of Computer Science, Georgia State University, Atlanta, GA, 30303
2 Department of Biology, Georgia State University, Atlanta, GA, 30303

xfu1@student.gsu.edu, bchen3@cs.gsu.edu, pan@cs.gsu.edu,
rharrison@cs.gsu.edu

Abstract. The concept of structural clusters defining the vocabulary of protein
structure is one of the central concepts in the modern theory of protein folding.
Typically clusters are found by a variation of the K-means or K-NN algorithm.
In this paper we study approaches to estimating the number of clusters in data.
The optimal number of clusters is believed to result in a reliable clustering.
Stability with respect to bootstrap sampling was adapted as the cluster validation
measure for estimating the reliable clustering. In order to test this algorithm, six
random subsets were drawn from the unique chains in the PDB. The algorithm
converged in each case to unique set of reliable clusters. Since these clusters
were drawn randomly from the total current set of chains, counting the number
of coincidences and using basic sampling theory provides a rigorous statistical
estimate of the number of unique clusters in the dataset.

Keywords: K-means algorithm, clustering, stability validation measure.

1 Introduction

Understanding the protein structure motifs and sequence-structure correspondence is
an important task in current bioinformatics research. In this work, we explored these
problems using the K-means algorithm. K-means algorithm is by far the most popular
clustering method used in scientific and industrial applications [1]. However, its
robustness is heavily affected by the initial number of clusters K, and in general, there
is no reliable algorithm for predicting K. A variety of methods have been proposed on
how to initialize the K or on how to let the clustering depend less on the initial K. All
these efforts try to discover the optimal number of clusters for a dataset. Since
stability has been widely used as a validation measure and proved to have good
performance [2-4], in this work we decided to investigate the stability-based measure
formulated by Ben-hur et al. [2]. for reliable clustering of protein structures. We
proposed a new descriptor for representation of the protein structures and compared it
with the descriptor used by Chen et al. [5].

In this work six random subsets drawn from the current set of chains and used as
test cases to show the algorithm converged. Since these are random subsets, the
probability of coincidences between each subset allows the estimation of the total
number of clusters that could be found on the whole data set. The estimates we retrieve

ă

 Statistical Estimate for the Size of the Protein Structural Vocabulary 531

are consistent with the direct observations of Zhong et al. [6]. Therefore population
sampling coupled with reliable clustering is a viable approach to estimating K for the
total population.

2 Method

The meaning behind of the stability is that a meaningful cluster should appear on all
bootstrap samplings of the data. In bootstrap sampling data are drawn from the dataset
with replacement thus preserving the underlying distribution. Based on this idea, it is
not necessary to make any assumption about the distribution of the data or the shape
of the clusters. This is the most significant advantage of this algorithm. The algorithm
of determining the reliable clustering is outlined in Table 1.

Table 1. Algorithm of detecting reliable clustering

Input: Kmax{user-defined maximum number of clusters},
 Smax{user-defined maximum number of resample}

Output: R{cluster is reliable at R}
1. Produce the mean similarity of each k
 For k=2 to Kmax do
 Resample Smax new datasets from the original one;
 Apply K-means clustering on each dataset;
 Compute cluster similarity of any two datasets;
 Compute the mean of the similarities;
 End For

2. The largest mean similarity occurs at k1;
3. The second largest mean similarity occurs at k2;
4. Return the reliable R
 If isReliable(k1) is true, R=k1
 Elseif isReliable(k2) is true, R=k2
 Else R=0

Return R

In Table 1, isReliable(k) is a function to judge whether the clustering at k is
reliable. Given the k, if the distribution of mean similarities before k is increasing
while the distribution after k is decreasing, isReliable(k)is true. If the return
value is 0, it indicates that there is no structure in the dataset. The cluster similarity
mentioned in the Table 1 is defined in section 2.2.

2.1 Cluster Similarity

Cluster similarity is the estimation of similarity between any two clustering solutions
on the same dataset. It is given by

Let X is the dataset to be clustered, X={x1, x2,…, xN} where xi is Rd ,N is the
number of samples in the dataset. X is clustered into k clusters. We use a NxN matrix

532 X. Fu et al.

C to indicate whether any two samples in X are in the same cluster. If xi and xj are in
the same cluster and i is not equal to j, Cij is 1. Otherwise Cij is 0.

For two datasets P and Q, their matrix representations of clustering solutions are
respectively CP and CQ . The number of common joined pairs in clustering solutions
of P and Q can be described the following dot product

∑=><=
ji

Q
ji

P
ji CC

,
,,

QP C ,C r (1)

The cluster similarity proposed by Fowlkes et al. [7] is then defined as

||||
),(

QP CC

r
QPS

×
= (2)

where >=< PPP CCC ,|| .

According to Cauchy-Schwartz inequality: ><×><>≤< QQPPQP CCCCCC ,,, ,
the similarity is between 0 and 1. 1 represents that two clustering solutions are
identical. Equation (2) is the cluster similarity used in this experiment.

2.2 Initialization of K-Means

The initialization of K-means is to set k cluster centroids for a dataset. It has been
reported that results obtained from the K-means are dependent on the initialization of
the cluster centroids [8].

In this work, we initialize the K-means using an algorithm which tries to isolate the
initial centroids as far as possible. It includes four steps to find the K initial centroids.
First, randomly choose a sample of the dataset as the first initial centroid. Second,
search for the second sample which is farthest from the first centroid. Third, search
for the next sample which his farthest from all previous centroids. Firth, repeat steps 3
till K centroids are found.

3 Empirical Analyses

3.1 Dataset

Six datasets are used in this experiment and each dataset includes 100 protein
structures. The protein structures are randomly selected from Protein Sequence
Culling Server [9]. In [5], the protein sequences are separated into segments using
sliding window with a window size 9. To compare with their work, we keep using 9
as the window size. The protein structures in the six datasets are represented in two
descriptors. Our descriptor generates structure segments while the descriptor [5]
produces sequence segments. The definitions of structure segments and sequence
segments are explained as follows.

Representation of structure segments
A good descriptor should contain enough information and keep as easy-understanding
and each-using as possible for study. Keeping this goal in mind, we propose a new

 Statistical Estimate for the Size of the Protein Structural Vocabulary 533

descriptor for the protein structure segments. The descriptor is based on a distance
matrix which consists of the Euclidean distance between any two amino acids in a
sliding window. The definition of distance matrix is described as follows:

Let the sliding window size is w. The subsequence in the sliding window is
S=X1X2…Xw. The coordinates of a protein backbone are known. The distance
matrix (DM) is

⎩
⎨
⎧

>=

<=<
=

jiif

wjiifd
DM

ij

,0

,

(3)

where dij is the Euclidean distance between amino acids i and j; w is the sliding
window size.

The DM can be further simplified into a vector which only contains dij where
i<j<=w. Consequently, a structure segment is finally described as a vector

w}ji0|{dV ij <=<<= (4)

Representation of sequence segments
We use the frequency profile from the HSSP [10] to represent the sequence segments.
The frequency profile from HSSP is constructed based on the alignment of each
protein sequence from the homologous sequences in protein data bank [11]. The
secondary structures of each protein sequence are obtained from DSSP [12], a
database of secondary structure assignments for all protein entries in the PDB. DSSP
originally assigns the secondary structure to eight different classes. In this work, we
combine the eight classes into three classes: H, G and I to H (Helices); B and E to E
(Sheets); all others to C (Coils).

3.2 Parameters Setup

In this experiment, we set the Kmax (the maximum number of clusters) change from
2 to 50 and Smax (the maximum number of sampling) as 20.

3.3 Experimental Results

The distribution of mean similarities of each protein structure dataset is shown in
Fig.1.

Fig. 1(1)-(6) are respectively the distributions of six protein datasets, including
both clustering structure segments and clustering sequence segments. We observe the
following advantages of structure segments over sequence segments:

• Compared with the mean similarity values using structure segments, the mean
similarity values scatter in a small range using sequence segments. For the six
datasets, the mean similarity values using sequence segments respectively range
in [0.976, 1], [0.969, 1], [0.977, 1], [0.971, 1], [0.973, 1], [0.959, 1]. Using
structure segments, the mean similarity values using structure segments
respectively range in [0.806, 1], [0.811, 1], [0.761, 1], [0.750, 1], [0.741, 1],
[0.743, 1]. Larger range of mean similarity values favors the determination of
optimal number of clusters.

534 X. Fu et al.

• Unique maximum mean similarity value is found in every dataset no matter
using sequence segments or structure segments.

• It is more stable to find the optimal number of clusters using structure segments
than using sequence segments. In our experiment, clustering on structure
segments works well for all datasets while clustering on sequence segments
works for none of the six datasets.

• Using structure segments needs fewer dimensions than using sequence segments.
For window size 9 in this experiment, the former is 36 and the later is 180.

0 5 10 15 20 25 30 35 40 45 50
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

The number of clusters(K)

M
ea

n
si

m
ila

rit
y

Cluster structures
Cluster sequences

0 5 10 15 20 25 30 35 40 45 50
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

The number of clusters(K)

M
ea

n
si

m
ila

rit
y

Cluster structures
Cluster sequences

(1) (2)

0 5 10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

0.95

1

The number of clusters(K)

M
ea

n
si

m
ila

rit
y

Cluster structures
Cluster sequences

0 5 10 15 20 25 30 35 40 45 50
0.75

0.8

0.85

0.9

0.95

1

The number of clusters(K)

M
ea

n
si

m
ila

rit
y

Cluster structures
Cluster sequences

(3) (4)

0 5 10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

0.95

1

The number of clusters(K)

M
ea

n
si

m
ila

rit
y

Cluster structures
Cluster sequences

0 5 10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

0.95

1

The number of clusters(K)

M
ea

n
si

m
ila

rit
y

Cluster structures
Cluster sequences

(5) (6)

Fig. 1. Distribution of mean similarities. (1)-(6) are respectively the distributions of six datasets.

 Statistical Estimate for the Size of the Protein Structural Vocabulary 535

3.4 Evaluation of Experimental Results

3.4.1 Secondary Structure Similarity Analysis
To verify the effectiveness of our clustering analysis, a biological evaluation criterion
is used to evaluate the optimal number of clusters we found. The optimal number of
clusters for each protein dataset has been found for the clustering of structure
segments. For the clustering of sequence segments, the K where the maximum mean
similarity occurs is adapted as the optimal number of clusters. The biological
evaluation criterion is called structural secondary structure similarity [10] which is
used in many literatures. Its definition is given by,

For each cluster, the secondary structure similarity of a cluster is

ws

ppp
ws

i
CiEiHi∑

== 1
,,,),,max(

 Similarity StructureSecondary (5)

Where ws is the window size and Hip , shows the frequency of occurrence of helix
among the segments of a cluster at position i. Eip , and Cip , are defined in a similar
way.

Sander and Schneider state [10], if the structural secondary structure similarity for
a cluster is larger than 70%, the cluster can be considered structurally identical. If the
secondary structure similarity of a cluster exceeds 60% and bellows 70%, the cluster
can be considered weakly structurally homologous [6].

According to the secondary structure similarity definition above, we calculate the
secondary structure similarity of all segments of each dataset. It is shown in Table 2.

Table 2. Secondary structure similarity of each protein dataset

Datasets 1 2 3 4 5 6

of segments (window size =9) 18797 16138 17866 16365 17454 16490

SSS of all segments 0.392 0.420 0.389 0.397 0.384 0.388

 SSS: Secondary Structure Similarity

We do experiments by clustering both structure segments and sequence segments.
The average secondary structure similarity analysis is shown in the Table 3.

Table 3. The average secondary structure similarity of each protein dataset

Datasets 1 2 3 4 5 6

Optimum K 4 7 12 14 9 7 Structure
segments Arg. SSS 0.616 0.622 0.631 0.615 0.623 0.624

Optimum K 7 9 8 18 20 20 Sequence
segments Arg. SSS 0.410 0.420 0.398 0.411 0.401 0.407

 Arg. SSS: Average Secondary Structure Similarity

536 X. Fu et al.

To obtain the average secondary structure similarity for each dataset, we first
cluster the dataset using the optimal number of clusters found in Figure 1. Then we
compute the secondary structure similarity of each cluster and the average secondary
structure similarity. From the table 3, we can see that the average secondary structure
similarity of each dataset by clustering structure segments is above 0.6. However,
clustering sequence segments gives an average secondary structure similarity about
0.4 which is much lower than the method of clustering structures. According to [5],
the clusters we found have meaningful secondary structural similarity. It proves that
the distance descriptor of structure segments is effective and our algorithm is helpful
to find the optimal number of clusters and work well with the distance descriptor for
protein structure analysis.

3.4.2 Population Analysis
The total population can be estimated by extracting and tagging a subset of a
population, releasing the tagged subset and then estimating the probability of
recovering the tagged individual when a new sample is drawn from the population.
Since the probability of recovering a tagged individual is:

sample

sampleintagged

total

tagged

N

N

N

N
IndividualTaggedP ≈=)((6)

Where Ntagged is the number of tagged individuals in the total population and the Ntotal
is the number of total population; Nsample is the number of individuals in a sample and
Ntagged_in_sample is the number of tagged individuals in a sample. That is, Ntagged in sample is
the number of coincidence between Ntagged and Nsample. From the above equation, the
Ntotal can be derived as:

sampleintagged

sampletaggedtagged
total N

NN

IndivudalTaggedP

N
N ≈=

)(
 (7)

Thus, individual estimates for the total population size can be made by counting
the number of coincidences between clusters. In our experiment, we have found the
number of clusters for each of the six protein datasets. Based on the knowledge, we
can estimate the range of how many clusters are in a larger or even the whole set of
protein structures. The number of clusters in two different datasets can be seen as
Ntagged and Nsample respectively. The number of coincidences between clusters of two
different datasets is Ntagged in sample.

 Finding the mean and standard deviation of these individual estimates determines
a statistical confidence interval. Table 4 shows the number of coincidences between
different subsets. The upper triangle in Table 4 shows when clusters were defined to
be identical when the RMSD between them was less than 1Å; the lower triangle
shows the number of coincidences with a criterion of less than 2Å. The diagonal in
Table 4 shows the number of clusters in each dataset.

Not surprisingly, there are more coincidences with the looser criteria (less than
2Å), and therefore there will be a lower total number when the looser criterion is
used.

 Statistical Estimate for the Size of the Protein Structural Vocabulary 537

Table 4. The number of coincidences between clusters

Datasets 1 2 3 4 5 6

1 4 0 0 0 0 0

2 0 7 2 1 1 5

3 0 2 12 3 2 1

4 0 2 5 14 1 2

5 1 3 3 3 9 2

6 0 7 2 3 4 7

According to equation 7, we now calculate the Ntotal for each pair of different
datasets. Let’s take the dataset 2 and 3 as an example. Ntagged is 7. Nsample is 12.
Ntagged_in_sample is 2 in the upper triangle of Table 4. Then Ntotal=7*12/2=42. Computing
in this way, we get the total estimate from each pair of datasets. With the 1Å criterion
the mean estimate for the total number of 9-mers was 62 with the standard deviation
of 30.8. Thus the three-sigma estimate for the maximum number of 9-mers is 154.
When the larger 2Å criterion is used the mean value is 32.5 with a standard deviation
of 12.7. Thus the three-sigma estimate for the maximum number of 9-mers is 70.

For comparison, Zhong et al [6] found 211-253 clusters of 9-mers with >60%
secondary structure similarity and 80-92 clusters with >70% secondary structure
similarity when using different K-means algorithms. Thus our statistical estimates are
consistent with direct observation.

4 Conclusion

In this paper, we proposed a new descriptor for representation of protein structures
and an algorithm for detecting reliable clustering. In order to test our algorithm, six
random datasets of protein three dimensional structures are drawn from the unique
chains in the PDB. The algorithm converges in each case to a unique set of reliable
clusters. Since these clusters are drawn randomly from the total current set of chains,
counting the number of coincidences and using basic sampling theory provides a
rigorous statistical estimate of the number of unique clusters in the dataset. The
effectiveness of our algorithm with the new descriptor was verified by the secondary
structure similarity analysis. The population estimates derived from sampling were
consistent with the direct observation.

Acknowledgements

This work was partially supported by NIH1 P20 GM065762-01A1, the Georgia
Research Alliance and the Georgia Cancer Collation. Dr. Robert Harrison is a
Georgia Cancer Collation Distinguished Scholar. Xuezheng Fu is supported by
Molecular Basis for Disease (MBD) Doctoral Fellowship.

538 X. Fu et al.

References

1. A. K. Jain, M. N. Murty, P. J. Flynn Data clustering: a review. ACM Computing Surveys,
Volume 31, Issue 3, (1999) pp.264-323.

2. A. Ben-Hur, A. Elisseeff and I. Guyon. A stability based method for discovering structure
in clustered data. Pacific Symposium on Biocomputing, (2002) pp.6-17.

3. J. Bryan, Problems in gene clustering based on gene expression data. Journal of
Multivariate Analyis. 90, (2004) pp.67-89.

4. S. Dudoit and J. Fridlyand, A prediction-based resampling method to estimate the number
of clusters in a dataset. Genome Biology 3, (2002) pp.0036.1-0036.21.

5. B. Chen, P.C. Tai, R. Harrison, and Y. Pan, FIK model: A Novel Efficient Granular
Computing Model for Protein Sequence Motifs and Structure Information Discovery,
IEEE BIBE 2006 proceeding, (2006) pp. 20-26.

6. W. Zhong, G. Altun, R. Harrison, P.C. Tai and Y. Pan, Improved K-Means Clustering
algorithm for Exploring Local Protein Sequence motifs Representing Common Structural
Property, IEEE transactions on Nanobioscience, vol4, no.3, (2005) pp. 255-265.

7. E.B. Fowlkes and C.L. Mallows, A method for comparing two hierarchical clusterings.
Journal of the American Statistical Association 78(383), (1983) pp. 553–584.

8. J. Pena, J. Lozano and P. Larranaga, An Empirical comparison of four initialization methods
for the k-means algorithm, Pattern Recognition Letters Vol. 20, (1999) pp. 1027-1040.

9. G. Wang and R. L. Dunbrack, Jr., PISCES: a protein sequence-culling server,
Bioinformatics, vol. 19, no. 12, (2003) pp.1589-1591.

10. C. Sander and R. Schneider, Database of similarity derived protein structures and the
structure meaning of sequence alignment, Proteins:Struct. Funct. Genet., vol.9 no. 1,
(1991) pp. 56-68.

11. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, and P.E Bourne, The Protein Data Bank. Nucleic Acids Res., (2000) 28,
pp. 235–242.

12. W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of
hydrogen-bonded and geometrical features, Biopolymers, vol. 22, (1983) pp. 2577–2637.

Coclustering Based Parcellation of Human Brain Cortex
Using Diffusion Tensor MRI

Cui Lin1, Shiyong Lu1, Danqing Wu1, Jing Hua1, and Otto Muzik2

1 Department of Computer Science, Wayne State University
{cuilin,shiyong,dqwu,jinghua}@wayne.edu

2 PET Center at Children’s Hospital of Michigan, Radiology at Wayne State University
otto@pet.wayne.edu

Abstract. The fundamental goal of computational neuroscience is to discover
anatomical features that reflect the functional organization of the brain. Investiga-
tions of the physical connections between neuronal structures and measurements
of brain activity in vivo have given rise to the concepts of anatomical and func-
tional connectivity, which have been useful for our understanding of brain mech-
anisms and their plasticity. However, at present there is no generally accepted
computational framework for the quantitative assessment of cortical connectiv-
ity. In this paper, we present accurate analytical and modeling tools that can re-
veal anatomical connectivity pattern and facilitate the interpretation of high-level
knowledge regarding brain functions are strongly demanded. We also present
a coclustering algorithm, called Business model based Coclustering Algorithm
(BCA), which allows an automated and reproducible assessment of the connec-
tivity pattern between different cortical areas based on Diffusion Tensor Imaging
(DTI) data. The proposed BCA algorithm not only partitions the cortical mantel
into well-defined clusters, but at the same time maximizes the connection strength
between these clusters. Moreover, the BCA algorithm is computationally robust
and allows both outlier detection as well as operator-independent determination
of the number of clusters. We applied the BCA algorithm to human DTI datasets
and show good performance in detecting anatomical connectivity patterns in the
human brain.

1 Introduction

With ever-improving imaging technologies, the complexity and scale of brain imaging
data has continued to grow at an explosive pace. Recent advances in imaging technolo-
gies, especially that of Diffusion Tensor Imaging [1,2,3], have allowed an increased
understanding of normal and abnormal brain structure and function [4,3]. It is well
understood that normal brain function is dependent on the interactions between spe-
cialized functional areas of the brain which process information within local and global
networks. Perhaps the most promising approach to parcelate the cerebral cortex into
such distinct functional areas originates from the notion that functionally discrete ar-
eas of the cortical mantel are characterized by cortico-cortical connectivity patterns,
which represent functionally integrated neural subsystems and determine the region’s
functional properties [5] and also allow their anatomical delineation and mapping.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 539–550, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

540 C. Lin et al.

At present, no generally accepted parcellation scheme exists for the human cortex,
although circumstantial evidence points to a distinct arrangement of functional terri-
tories within the cortex. As illustrated in Figure 1, most cortical voxels in one region
are strongly connected to a particular region of the cortex and the connections to any
other regions are relatively weaker. For example, most voxels on the top of the cortex
congregating in cortical region C2 are connected to voxels of cortical region C1, with
only few connections to other cortical regions. Therefore, in order to perform an accu-
rate in-vivo analysis of the cortico-cortical connectivity, what is needed is a partitioning
procedure that not only simultaneously partitions voxels into groups, but also identifies
the corresponding strong connectivities between the two classes of groups.

Traditional clustering algorithms [6,7,8,9] are suboptimal in incorporating anatom-
ical constraints and as a result will fail to identify accurately the corresponding con-
nectivity between cortical regions. Moreover, our focus in this paper is to assess the
neural connections within a hemisphere (intra-hemispheric connections) sine these con-
nections are relatively weak compared to the connections between the left and right
hemisphere, but represent crucial neural pathways which are abnormal in neurological
disease. Consequently, we consider only clusters which connect cortical areas within
one hemisphere.

coclusterC

C3

C5

C1

C2

C4

C7

coclusterD

C6

cocluster B

cocluster
A 1O

O4

O2

O3

Fig. 1. The coclustering process

The main contributions of this paper are:

1. We are the first to propose a new coclustering model for defining cortico-cortical
connectivity analysis as a computational problem.

2. Our BCA coclustering algorithm is able to define functional cortical areas based on
cortico-cortical fiber tract connections taking into account anatomical constraints.
In contrast to traditional clustering paradigms, the BCA algorithm is not only able
to partition image voxels within the cortical mantel into well-defined clusters, but
also is able to maximize the connectivity strength between such clusters. Moreover,
the BCA method is able to identify outliers as well as the number of cortical clusters
with high efficiency.

3. The application of the BCA algorithm to human DTI dataset allows automated and
reproducible assessment of the connectivity patterns in the human brain.

Organization. The rest of the paper is organized as follows: Section 3 formalizes the
coclustering model for the cortico-cortical connectivity analysis. Section 4 proposes our

Coclustering Based Parcellation of Human Brain Cortex Using Diffusion Tensor MRI 541

coclustering algorithm, BCA, in order to assess fiber tract connectivity between remote
cortical areas. Section 5 presents 3-D visualization of the obtained results followed by
a discussion of the application in patient groups. Finally, Section 6 concludes the paper
and comments on future work.

2 Background and Related Work

The cerebral cortex sends connections (efferents) and receives connections (afferents)
from many subcortical structures, but the largest part of the connections arriving at the
cerebral cortex comes from the cerebral cortex itself. Assessing connectivity patterns
of cortico-cortical fiber tracts is important for our understanding of the mechanisms
involved in human brain functions and might provide clues towards the identification
and characterization of many neurological diseases.

Recently, Diffusion Tensor Imaging (DTI) tractography has been shown to produce
results that are consistent with known pathways formed by major white matter fiber
tracts in the human brain [10,2], although limitations in data acquisition and process-
ing algorithms [11] related to clinical constraints produce data which cannot resolve
crossing or intersecting fibers. DTI is based upon the ability of MRI to evaluate in
vivo the direction and magnitude of water diffusion in tissues [2]. These attributes of
in vivo water diffusion depend upon microscopic tissue architecture [12]. Therefore,
changes in these parameters serve as markers for changes in tissue micro-architecture.
The principal eigenvector obtained from DTI provides information about the prefer-
ential direction of water diffusion in each imaging voxel. This direction corresponds to
the direction of the nerve fiber bundles, which predominantly constitute the given voxel.
Hence, different nerve fiber bundles can be identified and used to assess the integrity of
white matter tracts throughout the brain [13,12]. Despite some success in delineating
functional cortical areas using DTI, a systematic framework allowing functional par-
cellation of the neocortex based on quantitative assessment of fiber tract connectivity
has not yet been produced, and the relationship among cortical territories, fiber tracts,
and neuronal connections remains controversial. Consequently, there is a need to fur-
ther develop advanced clustering algorithms that allow better characterization of brain
connectivity patterns and as a result improve our understanding of process interactions
in a complex biological system.

Traditional partitioning relocation clustering algorithms, such as the K-means [6],
K-medoids [7] are simple and efficient, however, their final results may be overly sen-
sitive to the initial cluster set and the presence of outliers. In addition, it is difficult
to implement when no information exists about the likely cluster number. Hierarchical
clustering algorithms [8,14] do not require the number of clusters K as input, but they
require a termination condition. In addition, they do not support reclassification of ob-
jects to new clusters. Density-based algorithms [9,15,16] have good performance with
respect to noise handling and one-scan efficiency, but are suboptimal for the cortico-
cortical problem, as they do not consider the connectivity strength between clusters,
hence fail to identify accurately the corresponding strongest connectivity between cor-
tical regions.

542 C. Lin et al.

Even though our first coclustering algorithm GCA [17] was effective in the analy-
sis of thalamo-cortical connectivity, it is not directly applicable to the cortico-cortical
connectivity problem as each fiber connects to two different cortical voxels. Direct ap-
plication of the GCA algorithm to cortico-cortical connectivity analysis might lead to
the following undesirable results: (1) the same voxel can be classified simultaneously
into several clusters, (2) two end voxels of a fiber tract might be classified into the same
cluster, and (3) two partitions of voxels given by GCA might be inconsistent and the
resolution of this inconsistency is not obvious.

3 The Coclustering Model

In this section, we present our coclustering model, which models the cortico-cortical
connectivity problem. The structure of the cerebral cortex and its cortical connections
is initialized as a graph G(V, F), as illustrated in Figure 1, where V represents all
cortical voxels, and F represents all of the cortico-cortical connections between each
other.

Definition 1 (Outlier). Given a partition C of G(V, F), C = {C1, C2, · · · , CK}, an
outlier is defined as:

o = {v|v ∈ V, ∀Ci ∈ C, v �∈ Ci}

Definition 2 (Connection strength θ(Ci, Cj)). Given a cortical cluster Ci and Cj , the
connection strength between Ci and Cj is defined as:

θ(Ci, Cj) =
Nij

|Ci|
where Nij equals to the total number of connections between Ci and Cj .

Definition 3 (Spouse cluster). Given a partition P of G(V, F), P = {C1, C2, ..., Ck},
SP (Ci) = {Cj|∀Ck ∈ P, θ(Ci, Cj) ≥ θ(Ci, Ck)}
Definition 4 (Cocluster set). < Ci, Cj > is called a cocluster set iff Cj is the spouse
cluster of Ci.

Example 1. In Figure 1, C2 is C1’s spouse cluster, they form a cocluster set coclusterA
< C1, C2 >, < C7, C1 > forms another cocluster set coclusterD. worth mentioning,
the two elements in a cocluster set are not commutative. thus, < Ci, Cj > does not
necessarily implies < Cj , Ci >. For instance, < C1, C7 > is an invalid cocluster set,
because only C2 can be identified as C1’s spouse cluster.

The goal of our coclustering procedures is to partition objects into groups while min-
imizing the cross-connectivity costs between those groups. More specifically, the co-
clustering procedures will separate objects into K groups so that (1) similar objects are
within the same group, while dissimilar objects are in different groups, (2) there is a
one-to-one correspondence /one-to-many correspondence between one cortical cluster
to another / other clusters; and (3) the total cross-connectivity cost between each cluster
and its non-spouse cluster is minimized.

To achieve the above goals, we define several notions. First, we define the centroid of
a cluster and its Within-Cluster Variation (WCV) to quantify the similarity of objects
within one cortical cluster.

Coclustering Based Parcellation of Human Brain Cortex Using Diffusion Tensor MRI 543

Definition 5 (Centroid). Given a cortical cluster Ck, its centroid −→μk is defined as:

−→μk =

∑
−→
Xn∈Ck

−→
Xn

|Ck|

where |Ck| represents the number of cortical voxels in cluster Ck.

Definition 6 (WCV). We define Within-Cluster Variation of cortical cluster Ck as:

WCV (Ck) =
∑

−→
Xn∈Ck

d(
−→
Xn, −→μk)

where d(
−→
Xn, −→μk) is the Euclidean distance between the cortical voxel

−→
Xn and the cen-

troid −→μk of cortical cluster Ck.

Second, we define the Total Within-Cluster Variation(TWCV) to quantify the quantity
of a particular partitioning.

Definition 7 (TWCV). The Total Within-Cluster Variation of a cortical partition
(C1,· · ·, CK) is defined as

TWCV (C1, · · · , CK)

=
K∑

k=1

WCV (Ck)

=

K∑

k=1

∑

−→
Xn∈Ck

D∑

d=1

(Xnd − μkd
)2

=
K∑

k=1

D∑

d=1

Xnd

2 −
K∑

k=1

1

|Ck|

D∑

d=1

(SCFkd
)2

where SCFkd
is the sum of the dth feature of all voxels in Ck.

Third, in order to minimize the cross-connectivity cost, for each cortical cluster, we
define the set of cortical voxels that are connected to it as its shaded cortical cluster.

Definition 8 (Shaded cluster). Given a cortical partition (C1, · · · , CK), the shaded
cluster SCk (k = 1, · · · , K) is defined as:

SCk = {sc|sc ∈ C, ∀v ∈ Ck, ∃v′ ∈ C, (v′, v) ∈ F, sc ∩ Ck = ∅}

Example 2. In Figure 2, all the cortical voxels that are connected to voxels in cortical
cluster C2 forms the shaded cluster SC1, while all voxels that are connected to the
voxles in cortical cluster C1 forms the shaded cluster SC2.

In an ideal coclustering, as CoclusterB, a shaded cluster should coincide with the cor-
responding spouse cluster. However, this is not always the case in general. The cross-
connectivity cost can be characterized by the disagreement between shaded clusters
and spouse clusters and quantified by the Within-Cluster Variance of shaded clusters
with respect to their corresponding spouse clusters, called Shaded Within-Cluster Vari-
ation(SWCV), that is defined as follows.

544 C. Lin et al.

c1
c2

c4

sc2sc1

c3 sc3 sc4

cocluster A

cocluster B

Fig. 2. Shaded clusters

Definition 9 (SWCV). The Shaded Within-Cluster Variation(SWCV) of cortical clus-
ter SCk is defined as:

SWCV (SCk) =
∑

−→
X′

n∈SCk

d(
−→
X ′

n, −→μk)

Note that, instead of using the centroid of SCk , the centroid of the Ck is used to cal-
culate SWCV (SCk). The intuition is that, in an ideal partitioning, the shaded partition
SC1, · · · , SCK should mostly coincide with C1 · · · CK .

Definition 10 (STWCV). The Shaded Total Within-Cluster Variation (STWCV) of
cortical partition (SC1, · · · , SCK) is defined as:

STWCV (SC1, · · · , SCK) =
K∑

k=1

SWCV (SCk)

=
K∑

k=1

∑

−→
X′

n∈SCk

D∑

d=1

(X ′
nd

− μkd
)
2

The variance in distances between voxels is partitioned into variance attributable to dif-
ferences among distance within clusters and to differences among clusters. WCV (Ck)
measures the variability within the cluster Ci, while we introduce BCV (Ck)as a mea-
sure of the variability between cortical clusters.

Statement of the problem. Finally, the coclustering problem can be formally stated as
follows: given a Graph G = (V, F) and a distance metric d for nodes between vi and
vj(i �= j), coclustering is required to partition V into K clusters and cocluster sets,
as well as a set of outliers, formulated as {< C1, SP (C1) >, · · · , < CK , SP (CK) >
, O}, such that the connection strength of each cluster is maximized and the following
objective function OTWCV is minimized:

OTWCV (C1, C2, · · · , CK) =

K∑

k=1

TWCV (Ck) + STWCV (SCk)

Coclustering Based Parcellation of Human Brain Cortex Using Diffusion Tensor MRI 545

4 The BCA Algorithm

In this section, we propose our coclustering algorithm, Business model based Coclus-
tering Algorithm (BCA), to solve the coclustering problem.

BCA starts with the density-based initialization, and produces a better solution from
the current solution by applying the following three phases, viz. Split, Transfer, and
Merge sequentially. Three procedures can run iteratively to produce one solution after
another until a termination condition is reached. During each iteration, the current solu-
tion Si is associated with the figure of merits that include a function of OTWCV and
the connection strength.

The goal of our algorithm’s initialization is to not only partition cortical voxels into
cocluster sets, but also to minimize the distance variance within one cluster while max-
imizing each cluster’s connection strength.

4.1 Density-Based Initialization

The goal of our density-based initialization is to have an initial clustering of the corti-
cal voxels based on the following working hypothesis provided by our domain experts:
voxels within one functional cortical region should be close to each other and each
functional cortical region should contain at least one dense subregion. The initializa-
tion procedure is described by Algorithm Initialize in Figure 3. The algorithm takes
a cortico-cortical connectivity graph G and two parameters ε and δ as input and pro-
duces an initial coclustering as output. In addition, in the output, a set of voxels O will
be identified as outliers that will not be classified into any functional cortical region.
While ε is the maximum radius of a voxel’s neighborhood, δ is the minimum number
of voxels within the ε-neighborhood of a voxel for the voxel to be a core voxel. We first
introduce the following notions.

Definition 11 (ε-neighborhood and core voxel). Given a cortico-cortical connectivity
graph G(V, F), the ε-neighborhood of a voxel v ∈ V , denoted Nε(v), is defined by
Nε(v) = {u ∈ V | dist(v, u) ≤ ε}. We call v a core voxel iff |Nε(v)| ≥ δ.

Definition 12 (Distance-reachable). A voxel u is directly distance-reachable from a
voxel v w.r.t. ε and δ if u ∈ Nε(v) and u is distance-reachable from v if there is a chain
of voxels v1, · · · , vn, such that v1 = v, vn = u, and vk is directly distance-reachable
from vk−1 for k = 2, · · · , n.

As shown in Figure 3, Algorithm Initialize firstly calculates N ∗N distance-connection
matrix M to store the Euclidean distances between each pair of cortical voxels (line 5).
We define dist(u, v) = +∞ iff u and v belong to different hemispheres of the brain
to implement the constraint that each resulting cluster will not span across different
hemispheres. The algorithm will iteratively consider each voxel v (lines 7 - 18). If v is
an unclassified voxel, then a new cluster is formed by all the voxels that are distance-
reachable from v; otherwise, either v is already classified (lines 8-9), or it is a non-core
voxel (lines 14-15), the processing of v will be skipped. After the iteration completes, all
the unclassified voxels will be assigned to a set O as outliers. Finally, for each identified

546 C. Lin et al.

(1) Algorithm: Initialize
(2) Input: Cortico-cortical connectivity graph G(V, F), maximum radius ε, and minimum number of voxels δ
(3) Output: initial coclustering {< C1, SP (C1) >, · · · , < CK , SP (CK) >, O}
(4) Begin
(5) Calculate from G the distance-connection matrix M to store dist(u, v) for all u, v ∈ V ;
(6) k = 0;
(7) For each voxel v ∈ V do
(8) If v is classified then
(9) Process the next voxel;
(10) Else /* v is not classified */
(11) If v is a core voxel then
(12) k := k + 1;
(13) Collect all voxels distance-reachable from v and assign them to Ck

(14) Else
(15) Process the next voxel;
(16) End If
(17) End If
(18) End For
(19) Collect all unclassified voxels and assign them to O ;
(20) Identify SP (Ck)(k = 1...K) according to Definition 3.
(21) End Algorithm

Fig. 3. Algorithm Initialize

cluster Ck (k = 1, · · · , K), its spouse cluster SP (Ck) will be identified according to
Definition 3 (line 20) to produce the initial coclustering result.

Since the analysis performed in the initialization procedure focuses on region density
and distances between cortical voxels rather than their connectivity, the BCA algorithm
further applies operators Split, Transfer, and Merge iteratively to improve the cocluster-
ing result by minimizing its OTWCV value.

4.2 Split

The split operator attempts to split a cluster into two clusters when such a split will
improve the result of coclustering that is characterized by the following split condition.

Definition 13 (Split condition). Given a coclustering CO={< C1, SP (C1) >, · · · , <
Ci, SP (Ci) >, · · · , < CK , SP (CK) >} and a cluster Ci ∈ CO, let Ci1 be the
set of voxels in Ci that are connected to SP (Ci), Ci2 be Ci − Ci1, and CO′ = {<
C1, SP (C1) >, · · · , < Ci1, SP (Ci1) >, < Ci2, SP (Ci2)>, · · · ,< CK , SP (CK)>},
then we say that Ci satisfies the split condition iff

1) |Ci1| >= δ and |Ci2| >= δ;
2) OTWCV (CO′) ≤ OTWCV (CO);
3) θ(C1, SP (C1)) ≤ θ(Ci2, SP (Ci2)).

Intuitively, the split condition ensures that after a split, 1) the number of voxels in each
new cluster is still greater than or equal to δ, 2) the OTWCV value for the new coclus-
tering will not increase, and 3) the connection strengths of the two new clusters Ci1 and
Ci2 will be no less than the connection strength of the original cluster Ci. This is always
true for Ci1, and thus we only need to require θ(C1, SP (C1)) ≤ θ(Ci2, SP (Ci2)) in
the above definition of the split condition.

Coclustering Based Parcellation of Human Brain Cortex Using Diffusion Tensor MRI 547

(1) Algorithm: Split
(2) Input: CO = {< C1, SP (C1) >, · · · , < CK , SP (CK) >}
(3) Output: a new version of CO in which no more cluster satisfies the split condition
(4) Begin
(5) While there exists a cluster Ci ∈ CO satisfying the split condition do
(6) Split Ci into Ci1 and Ci2;
(7) Recalculate the spouse cluster for each cluster in CO according to Definition 3;
(8) End while
(9) End Algorithm

Fig. 4. Algorithm Split

Algorithm Split is sketched in Figure 4. Basically, it iteratively splits the colustering
result until no more cluster satisfies the above defined split condition.

4.3 Transfer

The transfer operator attempts to reassign each voxel to a new cluster in order to im-
prove the result of coclustering that is characterized by the following transfer condition.

Definition 14 (Transfer Condition). Given a coclustering CO = {< C1, SP (C1) >
, · · · , < Ci, SP (Ci) >, · · · , < Cj , SP (Cj) >, · · · , < CK , SP (CK) >}, let v ∈
Ci for some Ci in CO, Cj be the cluster to whose centroid v is the closest, after
transferring v from Ci to Cj , Ci becomes C′

i, Cj becomes C′
j , and CO becomes

CO′ = {< C1, SP (C1) >, · · · , < C′
i, SP (C′

i) >, · · · , < C′
j , SP (C′

j) >, · · · , <
CK , SP (CK) >}, we say that v satisfies the transfer condition iff

1) |C′
i| >= δ;

2) OTWCV (CO′) ≤ OTWCV (CO);
3) θ(Ci, SP (Ci)) ≤ θ(C′

i, SP (C′
i)) and θ(Cj , SP (Cj)) ≤ θ(C′

j , SP (C′
j)).

(1) Algorithm: Transfer
(2) Input: CO = {< C1, SP (C1) >, · · · , < CK , SP (CK) >}
(3) Output: new version of CO in which no more voxel satisfying the transfer condition
(4) Begin
(5) While there exists a voxel v ∈ Ci satisfying the transfer condition do
(6) Transfer v from Ci to Cj where Cj is the cluster to whose centroid v is the closest;
(7) Recalculate the spouse cluster for each cluster in CO according to Definition 3;
(8) End while
(9) End Algorithm

Fig. 5. Algorithm Transfer

Intuitively, the transfer condition ensures that after a transfer, 1) Ci still contains at least
δ voxels, 2) the OTWCV value for the new coclustering will not increase, and 2) the
connection strengths of the two affected clusters will not decrease. Algorithm Transfer
is sketched in Figure 5. Basically, it attempts to assign each voxel to a new cluster if it
satisfies the transfer condition. The procedure terminates when no more voxel satisfies
the above defined transfer condition.

548 C. Lin et al.

4.4 Merge

Finally, the merge operator attempts to merge two clusters if such a merge will improve
the result of coclustering that is characterized by the following merge condition.

Definition 15 (Merge Condition). Given a coclustering CO = {< C1, SP (C1) >
, · · · , < Ci, SP (Ci) >, · · · , < Cj , SP (Cj) >, · · · , < CK , SP (CK) >}, and two
clusters Ci, Cj ∈ CO, we merge Ci and Cj into Cm and derive a new coclustering
CO′ = {< C1, SP (C1) >, · · · , < Cm, SP (Cm) >, · · · , < CK , SP (CK) >}. We
say Ci and Cj satisfy the merge condition iff

1) OTWCV (CO′) ≤ OTWCV (CO);
2) θ(Ci, SP (Ci)) ≤ θ(Cm, SP (Cm)) and θ(Cj , SP (Cj)) ≤ θ(Cm, SP (Cm)).

(1) Algorithm: Merge
(2) Input: CO = {< C1, SP (C1) >, · · · , < CK , SP (CK) >}
(3) Output: new version of CO in which no more cluster satisfying the merge condition
(4) Begin
(5) While there exists Ci, Cj ∈ CO satisfying the merge condition do
(6) Merge Ci and Cj into Cm;
(7) Recalculate the spouse cluster for each cluster in CO according to Definition 3;
(8) End while
(9) End Algorithm

Fig. 6. Algorithm Merge

Intuitively, the merge condition ensures that after a merge, 1) the OTWCV value for the
new coclustering will not increase, and 2) the connection strength of the new merged
cluster is no less than the connection strengths of the two original clusters. Algorithm
Merge is sketched in Figure 6. Basically, it merges two clusters into one if the two
clusters satisfy the above defined merge condition. The algorithm terminates when no
more pair of clusters satisfy the above defined merge condition.

5 3-D Visualization of the BCA Results

All fiber tracts calculated from DTI data were rendered in relation to the cortical mesh
obtained from conformal brain surface mapping [18], as shown in Figure 7-(a)-Top. It
can be seen that there is a large number of fiber tracts connecting cortical areas. BCA was
performed based on the spatial relationship of voxels on the cortical surface and Figure
7-(a)-Bottom exhibits clustered cortical fibers in frontal and lateral view. Figure 7-(b)
shows the results of our BCA in a representative subject. Well-know anatomical fiber
tracts in the brain are reproduced such as the colossal fibers (pink) which connect the two
hemispheres and the forceps minor of the corpus callosum (yellow) connecting the left
and right side of the frontal cortex. Moreover, the intra-hemispheric connections of the
arcuate fasciculus connecting Broca’s and Wernicke’s cortical areas can be appreciated.

These results indicate that the developed algorithm is consistent with brain anatomy
and that it allows automated segmentation of the cortex based on DTI-derived cortical

Coclustering Based Parcellation of Human Brain Cortex Using Diffusion Tensor MRI 549

(a) (b)

Fig. 7. (a)-Top: frontal and lateral view of cortico-cortical fibers before coclustering; (a)-Bottom:
frontal and lateral view of clustered cortico-cortical connectivity; (b) Zoom in view of some
specific coritco-cortical clusters

connections within the brain. We therefore believe that our algorithm is well suited to
provide an efficient framework for further analysis including the quantitative assess-
ment of cortico-cortical connectivity.

6 Conclusions and Future Work

In this paper, we defined the coclustering problem and we applied this approach to
the analysis of cortico-cortical connections in the brain. Our approach represents an
efficient mathematical framework that is computationally robust and is able to be used
for quantitative analysis of cortico-cortical fiber tracts. This in turn might be relevant
for the identification of secondary epileptic foci in patients with intractable epilepsy and
might impact their clinical management.

Although the coclustering problem was initially motivated by the need of cortico-
cortical connectivity analysis, we expect that it will have a wide range of applications.
In the future, we plan to apply our BCA also to the analysis of thalamo-cortical connec-
tivity and the segmentation of thalamic nuclei.

Acknowledgment

This research was partially supported by the Michigan Technology Tri-Corridor basic
research grant MTTC05-135/GR686.

References

1. D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis and M. Laval-Jeantet. MR
imaging of intravoxel incoherent motions: application to diffusion and perfusion in neuro-
logic disorders. Radiology, 161:401–407, 1986.

550 C. Lin et al.

2. D. Le Bihan. Looking into the functional architecture of the brain with diffusion MRI. Nature
Rev Neurosci, 4:469–480, 2003.

3. P.J. Basser and C. Pierpaoli. Microstructural and physiological features of tissues elucidated
by quantitative diffusion-tensor MRI. J Magn Reson, Series B:209 – 219, 1996.

4. A.W. Toga P.M. Thompson. A framework for computational anatomy. Computing and
Visualization in Science, 5:13–34, 2002.

5. R.E. Passingham , K.E. Stephan and R. Kotter. The anatomical basis of functional localiza-
tion in the cortex. Nat Rev Neurosci, 3:606–616, 2002.

6. J. Han and M. Kamber. Data Mining, pages 349–353. I-55860-489-8. Morgan Kaufmann
Publishers, 340 Pine Street, Sixth Floor, San Francisco, CA 94104-3205, USA, 2001.

7. R.T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. 20th
Int. Conf. on Very Large DataBases, pages 144–155, 1994.

8. S. Guha, R. Rastogi and K. Shim. Cure: An efficient clustering algorithm for large databases.
ACM SIGMOD international conference on management of data, pages 73–84, 1998.

9. M. Ester, H.P. Kriegel, J. Sander and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. 2nd Int. Conf. on Knowledge Discovery and
Data Mining, pages 226–231, 1996.

10. T.E. Conturo , N.F. Lori, T.S. Cull, E. Akbudak, A.Z. Snyder, J.S. Shimony, R.C. Mckinstry,
H. Burton and M.E. Raichle. Tracking neuronal fiber pathways in the living human brain.
Natl. Acad. Sci. USA, 96:10422–10427, 1999.

11. R.F. Dougherty, M. Ben-Shachar, R. Bammer, A.A. Brewer and B.A. Wandell. Functional
organization of human occipital-callosal fiber tracts. Natl. Acad. Sci. USA, 102:7350–7355,
2005.

12. P.J. Basser , S. Pajevic, C. Pierpaoli, J. Duda and A. Aldroubi. In vivo fiber tractography
using DT-MRI data. Magn Reson Med, 4:625–32, 2000.

13. S. Mori, B.J. Crain, V.P. Chacko and P.C.M. van Zijl. Three dimensional tracking of axonal
projection in the brain by magnetic resonance imaging. Ann. Neurol., 45:265–269, 1999.

14. G. Karypis, E. Han and V. Kumar. Chameleon: A hierarchical clustering algorithm using
dynamic modeling. Computer, 32(8):68–75, 1999.

15. M. Ankerst, M.M. Breunig, H. Kriegel and J. Sander. Optics: ordering points to identify the
clustering structure. ACM SIGMOD international conference on management of data, pages
49 – 60, 1999.

16. A. Hinneburg and D.A. Keim. An efficient approach to clustering in large multimedia
databases with noise. In Knowledge Discovery and Data Mining, pages 58–65, 1998.

17. C. Lin, S. Lu, X. Liang, and J. Hua. GCA: a Coclustering Algorithm for Thalamo-Cortico-
Thalamic Connectivity Analysis. ICDM Workshop on Data Mining in Bioinformatics, pages
163–168, December 2006.

18. G. Zou, J. Hua, X. Gu, and O. Muzik. An Approach for Intersubject Analysis of 3D Brain
Images based on Conformal Geometry. IEEE Int. Conf. on Image Processing, pages 1193 –
1196, 2006.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 551–563, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Algorithm for Hierarchical Classification of
Genes of Prokaryotic Genomes

Hongwei Wu*, Fenglou Mao*, Victor Olman, and Ying Xu**

Computational Systems Biology Laboratory
Department of Biochemistry and Molecular Biology and Institute of Bioinformatics

University of Georgia, Athens, GA30602
{hongweiw@csbl,fenglou@csbl.,olman@csbl.,xyn@}bmb.uga.edu

Abstract. We present in this paper our hierarchical classification of genes for
prokaryotic genomes from a methodological point of view. Our classification
scheme is unique in that (1) the functional equivalence relationships among
genes are assessed by using both sequence similarity and genomic context
information, (2) genes are grouped into clusters of multiple resolution levels
based on their equivalence relationships among each other, and (3) gene
clusters, which are either parallel-to or inside-of one another, naturally form a
hierarchical structure. This classification scheme has been applied for the genes
of 224 complete prokaryotic genomes (release as of March, 2005). The
classification results are available at http://csbl.bmb.uga.edu/HCG, and are
validated through comparisons with the taxonomy of these 224 genomes, and
with two existing gene classification schemes, Clusters of Orthologous Groups
of proteins (COG) and Pfam, respectively.

1 Introduction

Functional classification of genes (or gene products) has been generally done under the
framework of homology and orthology, where homologous genes are considered to be
functionally equivalent at a coarse level and orthologous genes are considered to be
equivalent at a fine level. As our knowledge about gene functions accumulates, it has
become clear that the concepts of homology/orthology, which comes from studies of
gene evolution, may not necessarily be the most appropriate concepts for functional
classification of genes, particularly at high resolution levels. For example, the L-serine
dehydratase, which converts serine into pyruvate in the gluconeogenesis pathway, is
encoded by a single gene, sda, in Escherichia coli, but is encoded by two separate
genes, sdhA and sdhB, in Bacillus subtillis. Also, because in some species (e.g., E. coli
and Bacillus anthracis) there exist multiple mechanisms to synthesize L-serine
dehydratese, the sda, sdhA and sdhB genes each may correspond to multiple versions
(e.g., sdaA/sdaB for sda, sdhA-1/sdhA-2 for sdhA, and sdhB-1/sdhB-2 for sdhB,
respectively) [1]. At a coarse level, all these L-serine dehydratase genes, sda/sdaA/sdaB,
sdhA/sdhA-1/sdhA-2, sdhB/sdhB-1/sdhB-2, can be viewed as functionally equivalent; at

 * These two authors have contributed equally to this paper.
** Corresponding author.

ă

552 H. Wu et al.

a finer level, however, the sda/sdaA/sdaB, sdhA/sdhA-1/sdhA-2 and sdhB/sdhB-1/sdhB-
2 genes can be grouped into three different subgroups; and at a even finer level, the
different versions of the same gene (e.g., sdaA and sdaB for sda, sdhA-1 and sdhA-2 for
sdhA, and sdhB-1 and sdhB-2 for sdhB) can be grouped into different sub-sub-groups.
This example indicates that the functional equivalence relationships among genes could
be multi-layered, and a new classification framework that is more general than
homology/orthology may be needed to better capture these relationships at finer
resolution levels.

We have developed a computational framework for hierarchical classification of
genes (HCG) for prokaryotic genomes to capture the functional equivalence
relationships among genes at multiple resolution levels, and have applied this scheme
to 224 complete prokaryotic genomes (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/,
March 2005)1. We have validated the HCG in a systematic manner by comparing the
classification results for these 224 genomes with the taxonomy of the involved
genomes, and with two of the existing classification systems of genes, Cluster of
Orthologous Groups of proteins (COG) [4, 5] and Pfam [6]. Due to the limit of space,
we only focus on the methodological issues of the HCG in the paper. More details
about the results and validations are provided in [7].

2 Method

Our HCG scheme consists of three steps. First, we define a measure to capture the
functional equivalence relationship between a pair of genes based on both their
sequence similarity and conserved genomic neighborhood information. Secondly, we
apply this scoring function to all gene pairs under study, and apply a minimum
spanning tree (MST)-based clustering algorithm on the graph representation of genes
and their equivalence relationships to identify clusters. In the final step, we apply an
annotation algorithm to summarize the functional properties of each cluster. However,
due to the limit of space, we can only focus on the first two steps but provide a brief
description of the final step.

In the rest of this paper, we only consider those gene pairs whose reciprocal
BLASTP [8] e-values ≤ 1.0.

2.1 Functional Equivalence Relationship Between Genes

2.1.1 Training Sets
Before explaining how to measure the functional equivalence relationships among
genes, we first describe the positive and negative training sets based on which those
parameters used for the assessments are optimized. A pair of genes from two different
genomes is considered to be orthologous and is therefore included in the positive
training set if and only if the two genes are both enzymes with identical EC numbers
and exactly the same enzymatic property descriptions (http://ca.expasy.org/enzyme/)
[9]. Whereas, a pair of genes from two different genomes, (ĝ1, ĝ2), is considered to be
non-orthologous and is therefore included in the negative training set if and only if

1 The classification results are stored in a database at http://csbl.bmb.uga.edu/HCG

 An Algorithm for Hierarchical Classification of Genes of Prokaryotic Genomes 553

there is an orthologous pair (ĝ1, g2) in the positive set such that (i) g2 and ĝ2
correspond to different genes of the same genome, and (ii) the probability for g2 and
ĝ2 to be in the same operon is negligible (See section 2.1.4 for more discussion on
operons), suggesting little chance for them to be duplicated genes.

2.1.2 Measure of the Functional Equivalence
In prokaryotic genomes, genes belonging to the same genomic neighborhood (e.g.,
operons) are usually functionally related; hence, it is possible to incorporate so-
encoded functional information of genes to better quantify the functional equivalence
relationships among genes. We have recently observed that about 20% of orthologous
gene pairs but only about 3% of non-orthologous gene pairs in the training sets are
accompanied by gene pairs in their genomic neighborhoods2, indicating that gene
pairs with companions are more likely to be orthologous than non-orthologous.

Inspired by this observation, we have integrated the sequence similarity
information and the genomic neighborhood information, as in (1), to quantify the
functional equivalence relationship between genes.

 () () ()() ()() ()()⎥
⎦

⎤
⎢
⎣

⎡ ≥∈∈+= ∑
ji

hjiji tgghIggPggPgghggf
,

212121 ,Operon,Operon,1,, λ (1)

In this definition, h(·,·) represents the gene pair’s sequence similarity measure – the
larger h(·,·) is, the more similar two genes are from the sequence point of view (See
Section 2.1.3); the genomic neighborhood of a gene g consists of those genes gi
whose probabilities to be in the same operon as g are non-negligible (See Section
2.1.4); the summation Σi,j is over all the gene pairs (gi, gj) with gi and gj belonging to
the genomic neighborhoods of g1 and g2, respectively; ()()Operon, ∈⋅⋅P is the

probability for two genes to belong to the same operon; I(·) is an indicator function; th
is the threshold so that a pair of genes with their h(·,·) value above th is more likely to
be orthologous than non-orthologous from the sequence similarity point of view; and
λ determines the level of contribution from the gene pair’s neighborhood information
to their final equivalence measure f(·,·).

Before we describe how h(·,·), th, ()()Operon, ∈⋅⋅P and λ are estimated in the

following sub-sections, we first explain why the particular form of (1) is used. First,
we believe that a gene pair’s sequence similarity information should be a dominating
factor in determining the level of functional equivalence between the two genes, while
their genomic neighborhood information, which only suggests the possibility of the
gene pair’s functional equivalence, should play only a secondary role. Secondly, the
more likely two genes belong to the same operon, the more functionally related
the two genes are. Therefore, we have set the impact of (gi, gj) on the functional
equivalence relationship between g1 and g2 proportional to the probability that g1 and
gi (as well as g2 and gj) belong to the same operon. Finally, for a gene pair (g1, g2), the
gene pairs in their genomic neighborhoods should be reliable enough to be considered
as supporting evidence for (g1, g2)’s functional equivalence relationship. Therefore,

2 A gene gm is considered to be in the genomic neighborhood of another gene gn if and only if

the probability for gm and gn to belong to the same operon is non-negligible. See section 2.1.4
for more discussions.

554 H. Wu et al.

by using the indicator function and th, only those pairs that are more likely to be
orthologous than non-orthologous are incorporated.

2.1.3 Sequence Similarity Measure h(·,·) and Threshold th
It is known that the BLAST e-value depends on the search space, and it can be
different for the two directions of the alignment for the same pair of sequences. This
suggests that the BLAST e-values alone may not represent the most reliable measure
for sequence similarities. We have therefore turned to the slower but more reliable
Smith-Waterman (SW) algorithm [10, 11]. Given a pair of genes of two different
genomes, (g1, g2), we have collected the five SW measurements, including the SW
score x1, the length of the aligned (sub-)sequence x2, the percentages of sequence
identity x3, the percentage of sequence similarity x4, and the percentage of sequence
gap x5. By combining these five SW measurements plus the sequence lengths of g1
and g2 (l1 and l2, respectively) as in (2), we have obtained h(·,·) as a measure for the
sequence similarity between genes .

 () ()() 554433
21

22

2

11
21215432121 ,,,,,,,, xaxaxa

ll

xa

x

xa
ggllxxxxxhggh +++

+
+=≡ γ (2)

Note that h(·,·) can actually be interpreted as a linear combination of the five SW
measurements, except for that a1x1/x2

γ normalizes the SW score x1 with the length of
the aligned subsequence x2. Introducing the parameter γ in a1x1/x2

γ allows flexibility of
normalization so that a1x1/x2

γ can faithfully reflect the quality of sequence alignment
regardless of the lengths of the genes. There are certainly many other ways to
combine these different SW measures. The main reason that drives us to use (2) is its
simplicity and efficiency. After the parameters ai (i=1, …, 5) and γ are optimized to
best discriminate between the positive and negative training sets with a Bayesian
classifier, we have obtained the classification error rate as 13.12%. As a comparison,
when a Bayesian classification is performed directly on BLASTP e-values, we have
obtained the classification error rate as 18.47%. This indicates that h(·,·), into which
the multi-dimensional SW measures is fused in even just a simple fashion, is better
than BLASTP e-values in characterizing the sequence similarity between genes.

With the parameters of (2) being optimized, a gene pair with h(,) ≥ th≡2.984 is
more likely to be othorlogous than non-orthologous just from the sequence similarity
point of view.

2.1.4 Probability of Two Genes Belonging to Same Operon, ()()Operon, ∈⋅⋅P
We assume that whether two adjacent genes on the same strand, gi and gi+1, belong to
the same operon only depends on gi and gi+1 themselves but not on any other genes.
Then, given two genes gm and gn on the same strand without intervening genes on the
opposite strand, ()()Operon, ∈nm ggP can be computed as:

 ()() ()()features,features, 1

1

OperonggPOperonggP ii

n

mi
nm ∈∏=∈ +

−

=
 (3)

Note that features in (3) refer to the features used for operon prediction, and usually
include one or more of the following characteristics: (i) the inter-genic distance

 An Algorithm for Hierarchical Classification of Genes of Prokaryotic Genomes 555

between the two genes, (ii) whether the two genes have co-evolved, (iii) whether the
two genes belong to the same conserved genomic neighborhood, and (iv) whether the
two genes are functionally related.

Note that some of the above features, especially the second and third ones, are
usually obtained through the identification of orthologous genes. Since we cannot
assume the availability of orthology mapping or functional annotations of genes, we
have only used the inter-genic distance as the feature. By using the Bayesian rule, the
probability of gi and gi+1 belonging to the same operon provided their inter-genic
distance di,i+1 can be computed as:

 ()() ()() ()()
()() ()() ()() ()()OggPOggdPOggPOggdP

OggPOggdP
dOggP

iiiiiiiiiiii

iiiiii
iiii ∉∉+∈∈

∈∈
=∈

++++++

+++
++

111,111,

111,
1,1 ,,,,

,,
, (4)

where O stands for operon, ()()OggdP iiii ∈++ 11, , [or ()()OggdP iiii ∉++ 11, ,] describes

the conditional distribution of di,i+1 when gi and gi+1 do (or do not) belong to the same
operon, and ()()OggP ii ∈+1, [or ()()OggP ii ∉+1,] is the a-priori probability that any

two adjacent genes on the same strand do (or do not) belong to the same operon.
To estimate the two a-priori probabilities, ()()OggP ii ∉+1, and ()()OggP ii ∈+1, ,

we have applied the assumption used in [12] that the adjacent two genes not
belonging to the same operon are equally likely to be on the same strand or on
opposite strands. Under this assumption, Ermolaeva et al. have suggested that

()()OggP ii ∉+1, can be estimated as the ratio of the number of directons3 to the number

of gene pairs whose two component genes are adjacent on the same strand [12]. For
the genomes covered by the four different operon prediction methods [12-15], two
adjacent genes on the same strand are more likely to belong to the same operon than
not, 58% vs. 42%, before we start to consider any additional information.

To estimate the two conditional probabilities ()()OggdP iiii ∈++ 11, , and

()()OggdP iiii ∉++ 11, , , we have utilized the operon prediction results provided by [12-

15] to construct two data sets, (){ }Ogg ii ∈+1, and (){ }Ogg ii ∉+1, . The set

(){ }Ogg ii ∈+1, consists of gene pairs whose two component genes are adjacent on the

same strand and are predicted to belong to the same operon by at least one of the four
prediction methods [12-15]. For the (){ }Ogg ii ∉+1, set, by applying the assumption

used in [12] that the distribution of di,i+1 is the same for all non-operonic pairs,
regardless whether the adjacent two genes are on the same or the opposite strands, we
have included those gene pairs whose two component genes are adjacent on the
opposite strands. Since di,i+1 ranges from -5,951 to 12,991 bps for the (){ }Ogg ii ∈+1,

set and from -12,853 to 50,476 bps for the (){ }Ogg ii ∉+1, set, it would be impractical

to estimate ()()OggdP iiii ∈++ 11, , and ()()OggdP iiii ∉++ 11, , for every possible value of

di,i+1. Instead, we have applied a discretization method adapted from [16] to segment
the entire range of di,i+1 into small intervals {I1, I2, …}, and have then estimated

3 A directon is a list of genes arranged in tandem in the same strand of the genome without

being interrupted by genes on the other strand.

556 H. Wu et al.

()()OggIdP iikii ∈∈ ++ 11, , and ()()OggIdP iikii ∉∈ ++ 11, , for each such small interval.

After excluding some unreliable estimations, we have obtained
()()kiiii IdOggP ∈∈ ++ 1,1, as non-negligible when di,i+1 belongs to [-13, 151] bps.

A gene gm is considered to be in the genomic neighborhood of another gene gn if
and only if the probability for gm and gn to belong to the same operon, as computed in
(3), is non-negligible.

2.1.5. Estimation of λ
Given a gene pair (g1, g2), if there exist gene pairs, (gi, gj), with gi and gj belonging to
g1 and g2’s genomic neighborhoods, respectively, and h(gi, gj) ≥ th, then (g1, g2) is
viewed to be with neighborhood confirmations; otherwise (g1, g2) is viewed to be
without neighborhood confirmations. When both the positive/negative and
with/without neighborhood confirmations are considered, the training data can be
divided into four different subsets, namely, positive with neighborhood confirmations
(PwN), positive without neighborhood confirmations (PwoN), negative with
neighborhood confirmations (NwN), and negative without neighborhood
confirmations (NwoN), respectively. Because it is only for the PwN and NwN data
that the f(,) value is affected by different values of λ, we have chosen λ so as to
optimally discriminate between these two subsets.

(a) (b)

Fig. 1. (a) (ErrPwN+ErrNwN)/2 and (b) [P(positive| negative)+P(negative| positive)]/2, as
functions of λ. In both figures, the black straight lines correspond to what are obtained when
λ=0, and the black fluctuated curves correspond to what are obtained by varying λ from 0 to
0.15 with step-size of 0.0001, and the red curves are obtained by smoothing the black fluctuated
curves with a 45-point rectangular window.

Consider that a Bayesian classifier is applied to f(,) for distinguishing between the
positive and negative training data. Let P(negative|positive) denote the probability of
incorrectly classifying a positive data as negative, P(positive|negative) denote the
probability of incorrectly classifying a negative data as positive, ErrPwN denote PwN’s
contribution to P(negative|positive), and ErrNwN denote NwN’s contribution to
P(positive|negative). As the value of λ varies, the f(,) value for both PwN and NwN
also varies; hence, the distributions of f(,) for both the positive and negative sets, the
classification errors P(negative|positive) and P(positive|negative), and the error
contributions from PwN and NwN sets, ErrPwN and ErrNwN, all vary as well. Fig. 1

 An Algorithm for Hierarchical Classification of Genes of Prokaryotic Genomes 557

shows [P(negative|positive)+P(positive|negative)]/2 and (ErrPwN+ErrNwN)/2 as functions
of λ. Observe from the figure that both (ErrPwN+ErrNwN)/2 and [P(negative| positive)+
P(positive| negative)]/2 remain in relatively flat valleys when λ is in the interval of
[0.03, 0.05]. Therefore, without loss of generality, we have chosen λ to be 0.0345.

2.2 Hierarchical Clustering of Genes

Genes and their functional equivalence relationships among each other can be
represented by a weighted graph G(Vall, Eall), where Vall and Eall denote the node set
and edge set, respectively, As exemplified by Fig. 2 (a), in this graph representation,
each node ∈ Vall represents a gene, and the weight on each edge equals to the f(,)
value between the two genes being connected. In the rest of this paper, we use the two
terms, (sub-)graph and cluster, inter-changeably.

Note that G(Vall, Eall) should ideally consist of a number of unconnected sub-graphs
with each sub-graph representing a group of genes that are functionally equivalent at a
coarse level. However, when G(Vall, Eall) is to represent the functional equivalence
relationships among a huge number of genes (e.g., 658,174 genes from 224 genomes
in our study), there inevitably exist some coincidental edges whose f(,) values are
insignificant and whose existences cannot be confirmed by other edges. Therefore, we
have applied a graph partitioning algorithm, the Markov Cluster Algorithm (MCL)
[17], to remove these coincidental edges. The resulting sub-graphs, G(Vi, Ei) (i=1, 2,
…), each can be viewed to represent a group of genes that are functionally equivalent
in a loose sense. Fig. 2 (a) shows one such sub-graph. Observe from the figure that
even within the same sub-graph some genes are more equivalent with each other than
they are with the other genes and therefore form a densely intra-connected sub-sub-
graph. Note that these densely intra-connected sub-sub-graphs naturally form a
hierarchical structure, and this hierarchy of clusters strongly suggests the need for a
multi-level clustering scheme. We present here one such clustering scheme.

Fig. 2. (a) The graph representation for a group of genes that are functionally equivalent at a
coarse level, where genes inside each ellipse are more equivalent to each other than they are to
the genes outside. The layout of the nodes and edges is generated by using the Pajek Software
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/), where the Euclidean distance between two
genes and the darkness of their connecting edge are both roughly proportional to their f(,)
value. (b) The sequential representation of the graph in (a) that is obtained during our MST-
based clustering. Ellipses in (a) have one-to-one correspondences with the valleys with
identical labels in (b).

558 H. Wu et al.

2.2.1 Minimum Spanning Tree (MST) Based Clustering Algorithm
Our clustering algorithm is based on a minimum spanning tree (MST) representation
of a graph. The same idea has been successfully used in the identification of
regulatory binding motifs [3], clustering gene expression data [2], etc. The
characteristics of this clustering algorithm are summarized as follows:

A. Disassociation Measure: Note that the level of functional equivalence between a
pair of genes, (g1, g2), is reflected not only by their own f(g1, g2) value but also by the
equivalence measures between g1 (or g2) with the other genes gk (k≠1 or 2), f(g1, gk)
[or f(g2, gk)]. Therefore, by combining their own equivalence measure with the
confirmative evidence from the additional genes gk (k≠1 or 2), we have defined the
disassociation measure for (g1, g2), d(g1, g2), as:

 () () ()() ()()
1

1
2121

2
21 ,,,,

−

=
⎟
⎠
⎞

⎜
⎝
⎛ += ∑

r

k
kk ggfggf

r
ggfggd

ρ
 (5)

where g(k) is the k-th ranked additional gene in terms of the value of f(g1, gk)f(g2, gk), r
is the maximum number of the additional genes allowed to be counted, and ρ
determines the level of confirmative evidence that the additional genes adds. The two
parameters r and ρ provide flexibilities for a user to tailor the clustering method to
their specific problems. In our study, ρ is set to be 0.6, and r is set adaptive to the
number of genes included in G(Vi, Ei) with some saturation effect, as
r= ()⎣ ⎦10 μμ +ii VV with |·| representing the cardinality and ⎣ ⎦ representing the floor

function, and μ0 and μ1 being set as 40 and 100, respectively.

B. Cluster Identification: A spanning tree [18] of a graph G(V, E) is a connected
sub-graph that includes all nodes of V but does not contain any cycle, while a
minimum spanning tree (MST) is a spanning tree with the minimum total edge-
distance (disassociation) measure. Any connected component of a MST is called a
sub-tree of the MST. Based on the definition of a cluster in [2, 3], for which, the
disassociation measures within a cluster should be smaller than inter-cluster
disassociation measures, the clustering problem can be reduced to a tree partitioning
problem and can then be solved in the following two steps:

• By applying Prim’s algorithm [19] to construct an MST of G(V, E), we can map
G(V, E) to a list of nodes, {g(1) … g(|V|)}, with g(j)∈V being the node selected at
the j-th step. When g(j) gets selected, the disassociation measure between g(j) and
the gene that recruits g(j) into the current MST, min1≤i≤j-1{d(g(i), g(j))}, is the
smallest among all possible candidates to be selected. We call min1≤i≤j-1{d(g(i),
g(j))} as the dissociation measure on g(j)’s selection edge, and the list {g(1) … g(|V|)}
along with the disassociation measures on the corresponding selection edges as
the sequential representation of G(V, E).

• We represent the information of a sequential representation of G(V, E) by using a
two-dimensional plot, as in Fig. 2(b), where along the horizontal axis are g(1) …
g(|V|) and along the vertical axis are the disassociation measures on the
corresponding selection edges. Based on our previous work [2, 3], each valley in
this plot, which is a sub-list of nodes whose internal disassociation measures are
smaller than their disassociation measures with the outside nodes, renders a
cluster. Additionally, because of the hierarchical nature of valleys, it is

 An Algorithm for Hierarchical Classification of Genes of Prokaryotic Genomes 559

straightforward to identify hierarchical clusters by searching for (sub-)valleys
within (super-)valleys.

C. Statistical Significance Assessment of Clusters: Given a sequential representa-
tion of a graph G(V, E), if there is no cluster structure, then the disassociation
measures on the nodes’ selection edges comply to the Dirichlet distribution [20]. So,
the statistical significance for a subset of nodes to form a cluster is reflected by the p-
value computed for the hypothesis that the disassociation measures on these nodes’
selection edges comply to the Dirichlet distribution. The smaller the p-value is, the
less likely it is that these disassociation values comply to the Dirichlet distribution,
and therefore the more statistical significant the cluster is. Given a sub-set of nodes
{g(m), …, g(n)} that are likely to form a cluster, we have used the following ratio as the
statistic to test the hypothesis that the disassociation measures on the selection edges
of {g(m), …, g(n)} comply to the Dirichlet distribution.

() ()()

() ()() () ()(){ }1111

111

,min,,minmin

,minmax

+≤≤−≤≤

−≤≤≤≤+=
ninimimi

jijinjm

ggdggd

ggd
T (6)

The details for cluster identification and statistical significance assessment of clusters
can be found in [3].

2.2.2 Cluster Pruning Based on the Taxonomy of the Prokaryotic Genomes
It is non-trivial to choose a threshold for T in (6) (or equivalently a threshold for the
p-value) that is appropriate for all clusters. If the threshold for T is set too small, then
only those mathematically very dominant clusters can be detected. In order not to
miss too many of those clusters that are mathematically less dominant but may be of
great biological meanings, we have first used a fairly high threshold, 0.95, for T
(which is that a group of nodes are considered to form a cluster mathematically if
their inside disassociation measures are no greater than 0.95 of their disassociation
measures with the outside); and, have then utilized the taxonomy of the prokaryotic
genomes to perform some pruning.

Prokaryotic genomes are classified in a hierarchical way, based on their ribosomal
RNA genes and their morphological and physiological characteristics [21, 22]
(http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/). The resulting
taxonomic lineages are organized in a tree, which, from the root (the most general)
level down to the leaf (the most specific) level, consists of superkingdom (SK),
phylum, class, order, family, genus, and species, and can roughly reflect the relative
evolutionary distances among genomes.

We have used two measures to quantify the taxonomic commonality of a group of
genomes. One, denoted as MSCTL, is the level of the most specific taxonomic lineage
that is common to all the genomes in the group; and the other, denoted as MCTL and
defined in (7), is the level of the taxonomic lineage that best describes the genomes in
the group.

 () () { }
() { } ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∪
∩

=
∀ m

m

t
m GGtGenomes

GGtGenomes
GGMCTL

,,

,,
,,

1

1
1 maxarg (7)

In (7), {G1, …, Gm} represents a group of genomes, t denotes a taxonomic lineage, the
maximization is over all possible lineages in the taxonomic hierarchy, Genomes(t)

560 H. Wu et al.

refers to the genomes whose taxonomic lineages include t, ∩ and ∪ denote the
intersection and union operations, respectively, and |·| denotes the cardinality of a set.
Both the MSCTL and MCTL measures can be used to reveal the taxonomic diversity
of the genomes covered by a cluster. The more specific the MSCTL (or MCTL)
measure is, the less diversified the genomes are covered by a cluster.

Cluster pruning is performed based on the MSCTL and MCTL values of the
clusters. The basic idea is that a cluster is kept if and only if its relationship with its
parent cluster reflects a child-parent relationship from the taxonomic point of view.
More specifically, a cluster G(V, E) is kept if and only if it satisfies one of the
following three conditions: (1) G(V, E) corresponds to a root level cluster, (2) G(V, E)
does not contain multiple genes of the same genome, while G(V, E)’s parent cluster
does, and (3) either the MSCTL or the MCTL measure of G(V, E) is strictly more
specific than the corresponding measure of G(V, E)’s parent cluster.

2.3 Functional Annotations of the HCG Clusters

For each cluster in the HCG, we have selected a non-redundant set of NCBI
annotations as well as a non-redundant set of Gene Ontology (GO) annotations [23]
(http://www.ebi.ac.uk/GOA/) that are frequently used for the genes belonging to this
cluster to describe the cluster’s functional properties.

3 Results and Discussion

By applying our HCG scheme to 224 complete prokaryotic genomes, we have
obtained 51,205 clusters covering 609,887 (~92.7%) of the total 658,174 genes, and
have deposited these results into a database (http://csbl.bmb.uga.edu/HCG/). These
clusters are organized into 5,339 multi-leveled and 15,770 single-leveled non-
overlapping trees, where the multi-leveled trees totally contain 35,435 clusters
covering 534,818 (~87.7%) genes, and the single-leveled trees totally contain 15,770
clusters covering 75,067 (~12.3%) genes. In a multi-leveled cluster tree, each child
cluster only contains a subset of genes of its parent cluster, and sibling clusters do not
have overlap. The number of genes included in each multi-leveled tree ranges from
five to 3,938 with the average being 100.2, the number of genomes covered by each
multi-leveled tree ranges from three to 224 with the average being 52.3, the number of
clusters in each multi-leveled tree ranges from two to 203 with the average being
6.64, and the tree depth of a multi-leveled tree ranges from two to 10 with the average
being 3.41.

In [7], we have shown through examples that the HCG can capture the functional
equivalence relationships among genes at different levels, which are more consistent
with the biochemical descriptions of genes that are already documented in literatures;
and that the HCG can also be used to reveal the evolutionary traces of genes/genomes.
However, due to the limit of space, we cannot present similar examples here, but can
only briefly describe the computational validations of our clustering results, which are
conducted through comparisons of the HCG results with the taxonomic hierarchy of
prokaryotic genomes, and with two of the existing systems for the classification of
genes, COG [5, 24] and Pfam [6].

 An Algorithm for Hierarchical Classification of Genes of Prokaryotic Genomes 561

3.1 Comparison with Taxonomic Hierarchy of Genomes:

The taxonomy of prokaryotic genomes roughly reflects whether two genomes are
evolutionarily close or distant. For a pair of genes, we have used the taxonomic
lineages of their pertinent genomes to measure their taxonomic distance. As shown in
Fig. 3, compared to a pair of genes that are randomly picked out of the pool consisting
of all the genes of the 224 genomes, a pair of genes in the same cluster at the leaf
level of the HCG are much more likely to belong to the same genome, species, genus
or family, but are much less likely to belong to different phyla or different super-
kingdoms. In contrast, a pair of genes in the same cluster at the root level of the HCG
does not have any preference to any taxonomic level; and a pair of genes in the same
cluster at the middle level of the HCG represents a transition from the distribution of
the leaf-levels to the distribution of the root-levels. The trend that the taxonomic
diversity of each cluster varies along different levels of the cluster hierarchy is
consistent with the taxonomic hierarchy of the involved genomes, which means that
our clustering results can be used to reveal evolutionary trace of genes/genomes.

Fig. 3. Distribution of the taxonomic distance of a pair of genes belonging to the same cluster at
the root, middle and leaf levels of the HCG, relative to the distribution of the taxonomic
distance of a pair of genes that are randomly picked out of the whole gene pool. SK stands for
super-kingdom, and beyond means that two genes do not even belong to the same super-
kingdom. Each bin represents the ratio of the percentage of the gene pairs at a particular level
of the HCG to the percentage of the gene pairs that are randomly picked out of the whole gene
pool, where these gene pairs of interest all have the same level of taxonomic distance.

3.2 Comparisons with COG and Pfam Classifications

We have used the Jaccard’s coefficient to measure the consistency between two
clusters, and have considered two clusters matched if their consistency measure is
above the threshold MD0=2/3. About 85.3% of the COG clusters each can be matched
by one of the HCG clusters, and about 72.5% of the Pfam clusters each can be
matched by one of the HCG clusters. In contrast, only about 55.90% of the COG
clusters each can be matched by one of the Pfam clusters, and about 44.74% Pfam
clusters each can be matched by one of the COG clusters. The consistency measures

562 H. Wu et al.

between the HCG and the COG and Pfam, in the context of the consistency measures
between the COG and Pfam, demonstrate that the information conveyable through
these two existing systems, including the clusterabilities of genes and difference
among different gene clusters, can essentially be conveyed by the HCG.

We have also used the COG and Pfam systems to examine how the functional
diversity of a cluster varies along different levels of the HCG. About 40.8% of the
clusters at the root level of the HCG each contain genes that have identical COG
annotations, and 47.5% of the clusters at the root level each contain genes that have
identical Pfam annotations. In contrast, these two percentages reach to 68.6% and
79.3% for the clusters at the middle level; and to 89.0% and 95.1% for the clusters at
the leaf level. This indicates that from the root level down to the leaf level along the
HCG hierarchy, the functional diversity of each cluster becomes increasingly less.

These validation results show that our clustering results are solid from both
evolutionary and functional points of view.

4 Conclusion

We have described a framework for hierarchically classifying prokaryotic genes based
on their functional equivalence relationships, which can be used to predict biological
functions of genes at different levels and to provide hints on the evolutionary trace of
genes/genomes. Besides, we have computationally validated the HCG by comparing
the classification results for 224 prokaryotic genomes with the taxonomic hierarchy
of these genomes, and with COG and Pfam. On one hand, these comparisons show
that the HCG can essentially capture the information that is conveyable through these
three systems. On the other hand, we have also shown that from the root levels down
to the leaf levels along the HCG hierarchy the functional diversity of a cluster tends to
be increasingly smaller, and the functional commonality shared by genes of the same
cluster is increasingly more specific. We expect that this new functional classification
scheme will provide a useful tool for gene predictions that is complementary to other
classification schemes.

Acknowledgement. This work was supported in part by the US Department of
Energy’s Genomes to Life Program under project “Carbon Sequestration in
Synechococcus sp: From Molecular Machines to Hierarchical Modeling”
(http://www.genomes-to-life.org). The work is also supported, in part, by National
Science Foundation (#NSF/DBI-0354771, #NSF/ITR-IIS-0407204, #NSF/DBI-
0542119), and also by Distinguished Scholar grant from the Georgia Cancer Coalition.

References

[1] H. Su, J. Moniakis, and E. B. Newman, "Use of gene fusions of the structural gene sdaA
to purify L-serine deaminase 1 from Escherichia coli K-12," Eur J Biochem, vol. 211, pp.
521-7, 1993.

[2] V. O. a. D. X. Ying Xu, "Clustering gene expression data using a graph-theoretic
approach: An application of minimum spanning tree," Bioinformatics, vol. 18, pp. 526-
535, 2002.

 An Algorithm for Hierarchical Classification of Genes of Prokaryotic Genomes 563

[3] V. Olman, D. Xu, and Y. Xu, "CUBIC: identification of regulatory binding sites through
data clustering," J Bioinform Comput Biol, vol. 1, pp. 21-40, 2003.

[4] A. Kato and E. A. Groisman, "Connecting two-component regulatory systems by a
protein that protects a response regulator from dephosphorylation by its cognate sensor,"
Genes Dev, vol. 18, pp. 2302-13, 2004.

[5] R. L. Tatusov, D. A. Natale, I. V. Garkavtsev, T. A. Tatusova, U. T. Shankavaram, B. S.
Rao, B. Kiryutin, M. Y. Galperin, N. D. Fedorova, and E. V. Koonin, "The COG
database: new developments in phylogenetic classification of proteins from complete
genomes," Nucleic Acids Res, vol. 29, pp. 22-8, 2001.

[6] R. D. Finn, J. Mistry, B. Schuster-Bockler, S. Griffiths-Jones, V. Hollich, T. Lassmann, S.
Moxon, M. Marshall, A. Khanna, R. Durbin, S. R. Eddy, E. L. Sonnhammer, and A.
Bateman, "Pfam: clans, web tools and services," Nucleic Acids Res, vol. 34, pp. D247-51,
2006.

[7] H. Wu, F. Mao, V. Olman, and Y. Xu, "Hierarchical classification of functionally
equivalent genes in prokaryotes," accepted by Nucleic Acids Research, 2007.

[8] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J.
Lipman, "Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs," Nucleic Acids Res, vol. 25, pp. 3389-402, 1997.

[9] A. Bairoch, "The ENZYME database in 2000," Nucleic Acids Res, vol. 28, pp. 304-5, 2000.
[10] P. Rice, I. Longden, and A. Bleasby, "EMBOSS: the European Molecular Biology Open

Software Suite," Trends Genet, vol. 16, pp. 276-7, 2000.
[11] T. F. Smith and M. S. Waterman, "Identification of common molecular subsequences," J

Mol Biol, vol. 147, pp. 195-7, 1981.
[12] M. D. Ermolaeva, O. White, and S. L. Salzberg, "Prediction of operons in microbial

genomes," Nucleic Acids Res, vol. 29, pp. 1216-21, 2001.
[13] X. Chen, Z. Su, P. Dam, B. Palenik, Y. Xu, and T. Jiang, "Operon prediction by

comparative genomics: an application to the Synechococcus sp. WH8102 genome,"
Nucleic Acids Res, vol. 32, pp. 2147-57, 2004.

[14] M. N. Price, K. H. Huang, E. J. Alm, and A. P. Arkin, "A novel method for accurate operon
predictions in all sequenced prokaryotes," Nucleic Acids Res, vol. 33, pp. 880-92, 2005.

[15] Y. Zheng, J. D. Szustakowski, L. Fortnow, R. J. Roberts, and S. Kasif, "Computational
identification of operons in microbial genomes," Genome Res, vol. 12, pp. 1221-30, 2002.

[16] U. M. F. a. K. B. Irani, "On the Handling of Continuous-Valued Attributes in Decision
Tree Generation," Machine Learning, vol. 8, pp. 87-102, 1992.

[17] S. v. Dongen, "Graph Clustering by Flow Simulation," University of Utrecht, 2000.
[18] T. H. Cormen, Introduction to algorithms, 2nd ed. Cambridge, Mass.: MIT Press, 2001.
[19] R. C. Prim, "Shortest Connection Networks and Some Generalizations," Bell System

Technology Journal, vol. 36, pp. 1389-1401, 1957.
[20] S. S. Wilks, Mathematical Statistics. New York: John Wiley & Sons, 1962.
[21] A. Balows, The Prokaryotes : a handbook on the biology of bacteria : ecophysiology,

isolation, identification, applications. New York: Springer-Verlag, 1992.
[22] D. R. Boone, R. W. Castenholz, and G. M. Garrity, Bergey's manual of systematic

bacteriology, 2nd ed. New York: Springer, 2001.
[23] E. Camon, M. Magrane, D. Barrell, D. Binns, W. Fleischmann, P. Kersey, N. Mulder, T.

Oinn, J. Maslen, A. Cox, and R. Apweiler, "The Gene Ontology Annotation (GOA)
project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro," Genome Res,
vol. 13, pp. 662-72, 2003.

[24] R. L. Tatusov, E. V. Koonin, and D. J. Lipman, "A genomic perspective on protein
families," Science, vol. 278, pp. 631-7, 1997.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 564–576, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Using Multi Level Nearest Neighbor Classifiers for
G-Protein Coupled Receptor Sub-families Prediction

Mudassir Fayyaz1, Asifullah Khan2, Adnan Mujahid1
, and Alex Kavokin1

1 Faculty of Computer Science & Engineering,
Ghulam Ishaq Khan (GIK) Institute of Engineering Science & Technology, Swabi, Pakistan

mudassir.fayyaz@gmail.com

2 Signal and Image Processing Lab, Deptt. of Mechatronics,
GIST, Gwangju, South Korea
asif_jg@yahoo.com

Abstract. Prediction based on the hydrophobicity of the protein yields
potentially good classification rate as compared to the other compositions for
G-Proteins coupled receptor (GPCR’s) families and their respective sub-
families. In the current study, we make use of the hydrophobicity of the proteins
in order to obtain a fourier spectrum of the protein sequence, which is then used
for classification purpose. The classification of 17 GPCR subfamilies is based
on Nearest Neighbor (NN) method, which is employed at two levels. At level-1
classification, the GPCR super-family is recognized and at level-2, the
respective sub-families for the predicted super-family are classified. As against
Support Vector Machine (SVM), NN approach has shown better performance
using both jackknife and independent data set testing. The results are
formulated using three performance measures, the Mathew’s Correlation
Coefficient (MCC), overall accuracy (ACC) and reliability (R) on both training
and independent data sets. Comparison of our results is carried out with the
overall class accuracies obtained for super-families using existing technique.
The multilevel classifier has shown promising performance and has achieved
overall ACC and MCC of 97.02% and 0.95 using jackknife test, and 87.50 %
and 0.85 for independent data set test respectively.

Keywords: Fast Fourier Transform, G-Proteins Coupled Receptors, Multilevel
classification, Nearest Neighbor Classifier.

1 Introduction

The science of Bioinformatics, which is the melding of molecular biology with computer
science, is essential to the use of genomic information in understanding human diseases
and in the identification of new molecular targets for drug discovery [1].

The Protein bioinformatics aids in protein analysis and helps in suggestion and
assigning of a function for all proteins that are known till present. Proteins are major
constituent of living organisms and constitute more than 25% by weight of a cell [1].
They can perform variety of functions that involves digestion, transport, movement,
sensory capabilities, immune protection and many more. G-protein coupled receptors
(GPCR’s) are transmembrane proteins that constitute largest protein family known. Its

ă

 Using Multi Level NN Classifiers for GPCR Sub-families Prediction 565

members are involved in all types of stimulus-response pathways, from intercellular
communication to physiological senses. GPCR’s consists of different amino acids
sequences [2] and based on these, they are divided into six major classes. Most
importantly, 50% of the drugs on the market today constitute GPCR’s [3].

Amino acids and Nucleotides are the building blocks of proteins and act as
intermediates in metabolism. There are 20 amino acids known today, found in a
protein and convey a vast array of chemical versatility. The chemical properties of the
amino acids of proteins specify its biological activity. The hydrophobic properties
reflect the structure of protein.

Classifying GPCR’s is an important job in the protein study. In past, various
strategies have been employed for classification of GPCR’s. These include similarity
searching database search tools (e.g. BLAST, FASTA) [4-5] and such database searches
coupled with searches of pattern databases (PRINTS) [6]. However, these methods fail
when query proteins lack major sequence similarity to the database sequences. In order
to overcome the limitations of the above two strategies, hidden markov model (HMM)-
based methods [7-10] are used but these too have many limitations. Another approach
of classifying GPCR’s is based on SVM [11-14]. SVM is a binary classifier and
approaches used in [11-14] need training N SVMs for N Protein families, which is a
limitation of this approach. Further, to blend SVM for multi-classification, one need
some weight selection mechanism or combination of different other models like HMM
for combining the outputs from different SVMs. Some approaches have used weighted
polling for combining the output of SVM, which again is an overhead.

The approach used in [11] is based on multi level classification of GPCR’s using
SVM. In this approach three level classification is performed. At first level the GPCR
is validated, at level 2 the GPCR’s super-families are predicated and at third level the
GPCR’s sub-families are predicted. This approach is good to follow as it increases the
classification accuracy. The problem with this approach is that for S super-families
and N sub-families predications, it needs to have 1+S+N classifiers, which is a big
over head. On the other hand, the approach used in [12] uses 17 SVMs for classifying
17 sub-families belonging to different super families of proteins. It reports the results
by performing jackknife test on the training data using one versus rest approach. The
results on independent data set for only Class B sub-families are presented, while for
the remaining sub-families, results are not reported, which raises doubts about the
generalization performance of the proposed prediction model.

The approach proposed in the current work is based on classifying the 17 GPCR’s
sub-families based on 2-level NN classifier. In this way, in contrast to [11], only a
total of 5 classifiers are utilized i.e. 1 classifier for level-1, GPCR’s super-families
predication and 4 classifiers for level-2, GPCR’s sub-families predication (1 classifier
for each super-family). This helps in developing fast, efficient and generalized
prediction model for GPCR’s sub-families.

2 Material and Methods

A. Data Set
In order to conduct our study, all the sequences belonging to subfamilies of Class B, C,
D and F have been extracted from GPCRDB (March 2005, release 9.0) [36], by a text

566 M. Fayyaz et al.

parsing method [21]. The sequences marked as putative/orphan are dropped out and
identical sequences are removed except one. The subfamilies with less than 10
sequences are also dropped out because they are not going to play much role in
classification. This process leads to 403 sequences, as in [13], belonging to 17
subfamilies. These sequences are then used as a training set for our classifier. As
against [13], where independent data set performance of only class B has been
mentioned, we extract the independent data set sequences for all the selected
subfamilies of Class B, C, D and F from GPCRDB (June 2006 release 10.0). The
sequence with putative/orphan and the sequence that have already been used for
training are removed. This gives us a test set of 107 sequences belonging to the 17
subfamilies. The number of training and independent test sequences of each subfamily
is listed in Table 1.

B. Protein Substitution
The three important properties of the protein, hydrophobicity, electronic property and
bulk, are represented by hydrophobicity [18-20], electron-ion interaction potential
(EIIP) [15, 16] and c-p-v [17] models respectively. These are used for converting the
protein sequence to a numerical sequence. Hydrophobicity of proteins plays an
important role in shaping a protein’s structure and function. Three hydrophobicity
scales, including KDHΦ [18], MHΦ [19] and FHΦ [20] have been mostly used by
researcher for optimization. EIIP value describes the average energy states of all

Table 1. Number of Training & Test Sequences belonging to each G-Protein Coupled Receptor
(GPCR) sub-families

Class GPCR sub-family Training
Set

Test
Set

Calcitonin 20 8

Corticotropin releasing factor 23 6

Glucagon 12 4

Growth hormone-releasing
hormone

13 3

Parathyroid hormone 17 2

PACAP 11 4

Vasoactive intestinal polypeptide 14 3

Latrophilin 20 10

Class B

Methuselah-like proteins 21 4

Metabotropic glutamate 46 14

Calcium-sensing like 18 6
GABA-B 23 8

Class C

Taste receptors 12 4

Fungal pheromone A-Factor like 16 5 Class D

Fungal pheromone B like 32 7
Frizzled 94 17 Class F

Smoothened 11 2
Total 403 107

 Using Multi Level NN Classifiers for GPCR Sub-families Prediction 567

valence electron of amino acids, while c-p-v model includes the composition (c),
polarity (p), and molecular volume (v) of each amino acid. As proposed in [12], we
have selected the best substitution model FHΦ in our experimentation for converting
protein sequences to numerical sequences. The numerical series obtained after
substitution is normalized to zero mean squared error by Equation (1).

x xij j
xij

s j

−
= (1)

where xij is some property value of the ith amino acid residue in the jth sequence, jx

is the mean property value of the jth sequence, and sj is the standard deviation of the
jth sequence.

C. Power Spectral Density (PSD)
For classification purpose, we need all sequence to be of the same length. Proteins
sequences that we have used are of variable lengths. The Fast Fourier Transform
(FFT) has been frequently used in the protein bioinformatics for conversion of
variable length sequence into a fixed length vector [21-23]. Based on the observations
made in [12], we have used PSD of 512 frequency points for our experiments. The
PSD is defined as a plot of power versus frequency. PSD serves as an input to the
classifier. FFT is defined in Equation (2), while PSD is defined through Equation (3)
and (4):

(1)(1)

1
() ()

N j k
N

j
X k x j ω − −

=
= ∑ (2)

() () * ()CONJ X REAL X i IMAG X= − (3)

()
 *

CONJ X
PSD X

N
= ⋅ (4)

where ω = exp (−2πi / N) is an Nth root of Unity. N denotes the frequency points and
CONJ denotes complex conjugate.

D. The Nearest Neighbor Algorithm
In pattern recognition, the Nearest Neighbor algorithm (NN) is a method for
classifying objects based on closest training examples in the feature space [26-28].
The training examples are mapped into multidimensional feature space and the space
is partitioned into regions by class labels of the training samples. A point in the space
is assigned to the class C if it is the closest class label among the training samples.
Usually Euclidean distance metric is used to measure the proximity.

Let us assume that we have N proteins sequences (X1, X2 XN), each belonging
to one of the Y classes (with labels µ1, µ2 . . . µY). For a protein X under question, how

568 M. Fayyaz et al.

Protein Sequence NN Classifier

Predicted Super
family

NN Classifier
 for class B

NN Classifier
 for class C

NN Classifier
 for class D

NN Classifier
 for class F

Protein Sequence

Protein Sequence

Protein Sequence

Protein Sequence

Protein Sequence

Protein Sequence

Protein Sequence

Protein Sequence

If Class D

If Class C

If Class B

If Class F

Level 1 Classifiaction Level 2 Classifiaction

Predicted
Class B
Sub families

Predicted
Class C
Sub families

Predicted
Class F
Sub families

Predicted
Class D
Sub families

Fig. 1. Flow Chart of the Proposed Scheme

can one predict its class label? According to the NN principle, we have to find the
generalized distance between X and Xi, as given in Equation (5).

i
(1, 2, ,)i

i

D(,) 1
|| || || ||

i N=
⋅

= − L
X X

X X
X X

 (5)

where X · Xi is the dot product of vectors X and Xi, and ||X|| and ||Xi|| are respectively
their modulus.

The NN algorithm can be expressed as follows. First minimum generalized
distance between X and Xk (k= 1, 2, . . . N) is computed as:

1 2(,) { (,), (,) , (,)}k ND Min D D D= LX X X X X X X X (6)

The protein under question is assigned the category corresponding to the training
protein Xk.

E. Basic Methodology
The flow chart of the proposed scheme is given in Fig. 1. The more the number of
classes are, the more it is possible that the classifier will confuse their class
boundaries by overlapping some of them, hence affecting the over all accuracy.

 Using Multi Level NN Classifiers for GPCR Sub-families Prediction 569

However if we have less number of classes to be predicted, it is more probable that
the classifier will construct the distinct boundary among the classes with a smaller
overlapping margin. We have exploited this property in our work to achieve better
classification accuracy. Classifying the super-families first at level-1 and based on
level-1 predictions, classifying the respective sub-families at level-2 will reduce the
classification inaccuracy as compared to the case where all subfamilies are predicted
at a single level. The classification of sub-families in two levels will reduce the
number of classes to be predicted by a single classier at any given time. In Table1, all
the subfamilies are categorized into 4 super-families B, C, D and F containing 9, 4, 2
and 2 sub-families respectively.

F. Performance Evaluation
The independent data set, sub-sampling and jackknife tests are the three methods
often used for cross-validation in statistical prediction. However, independent data set
and Jackknife tests are important schemes of the performance evaluation [27-29]. In
this study, we have used both independent data set and jackknife tests for cross
validation of protein data. For the cross-validation by jackknifing, each of the
proteins in the data set is in turn singled out as a test sample and remaining all
samples are used to train the classifier. As in [12], four measures of performance are
used for the evaluation of predictions by the classifier. They are ACC, MCC [30],
total accuracy (ACCtotal), total MCC (MCCtotal), defined through Equations (7-18)
respectively.

()
()

()LX

p i
ACC i

Z i
= (7)

where, LX represents the classification level for super-families and sub-families
respectively; its possible values are 1 or 2, i range from 1 to the number of super-
families (or sub-families). Z (i) is the number of samples in the super-family (or sub-
family) i.

() () () ()
()

[() ()][() ()][() ()][() ()]LX

p i n i u i o i
MCC i

p i u i p i o i n i u i n i o i
−=

+ + + +
 (8)

p(i), n(i), o(i) and u(i) are the number of true positive, false negative, true negative
and false positive sequences belonging to super-family (or sub-family) i .

arg

()

()m inal

p j
j

ACC k
N

∑

= (9)

arg

() ()

()
LXj

m inal

Z j MCC j

MCC k
N

∑
= (10)

570 M. Fayyaz et al.

where, N is the total number of protein sequences and j varies from 1 to the number of
sub-families in a super-family k. ACCmarginal and MCCmarginal are the average ACC and
MCC values for super-family k in level-2 classification respectively.

Table 2. Level-1 classification results based on the Hydrophobicity model (FHΦ) adopting
512 Frequency points, as validated by the Jackknife Test

Class Proposed approach

 ACCLX MCCLX R

Class B

98.01 %

0.97

0.98

Class C 99.0 % 0.99 0.99
Class D 97.92 % 0.95 0.99
Class F 98.10 % 0.97 0.99
Total 98.26% 0.98

Table 3. Level-1 classification results based on the Hydrophobicity model (FHΦ) adopting
512 Frequency points, as validated by the Independent Data Test

Class Proposed approach

 ACCLX MCCLX R

Class B

95.45%

0.92

0.96

Class C 87.50 % 0.89 0.95
Class D 100.0% 0.92 0.96
Class F 100.0 % 0.97 0.97
Total 94.40% 0.92

Table 4. Comparison of SVM and Multi Level classification results (Level-2) based on the
Hydrophobicity model (FHΦ) adopting 512 Frequency points, as validated by the Jackknife
Test

Class SVM Based Method Proposed approach

 ACC MCC ACCML MCCML

Class B

90.7%

0.94

96.71%

0.96

Class C 87.0% 0.91 96.03% 0.95
Class D 95.0% 0.97 97.92% 0.95
Class F 100% 1.0 97.16% 0.92
Overall 93.3% 0.95 96.80% 0.95

()

()

p i
iACC LXtotal

N

∑

= (11)

() ()
()

LXi
Z i MCC i

MCC LXtotal
N

∑
=

(12)

 Using Multi Level NN Classifiers for GPCR Sub-families Prediction 571

Table 5. Comparison of SVM and Multi Level classification results (Level-2) based on the
Hydrophobicity model (FHΦ) adopting 512 Frequency points, as validated by the Independent
Data Test

Class SVM Based Method Proposed approach

 ACCML MCCML ACCML MCCML

Class B

81.82%

0.90

91.11%

0.88

Class C 55.56% 0.77 84.77 % 0.85
Class D 46.15% 0.5 91.67% 0.77
Class F 78.95% 0.84 100.0 % 0.97
Overall 71.96% 0.81 90.86% 0.87

40%

50%

60%

70%

80%

90%

100%

A
C

C m
u

lt
ile

ve
l

SVM Approach
with Jackknife

Proposed
Approach with

Jackknife

SVM Approach
with Ind data

Proposed
Approach with

Ind data

Fig. 2. Comparison of ACCmultilevel of proposed
scheme and ACCtotal of each superfamily in
[12]

0.4

0.5

0.6

0.7

0.8

0.9

1
M

C
C

m
u

lt
il

ev
el

SVM Approach
with Jackknife

Proposed
Approach with

Jackknife

SVM Approach
with Ind data

Proposed
Approach with

Ind data

Fig. 3. Comparison of MCCmultilevel of proposed
scheme and ACCtotal of each superfamily in
[12]

ACCtotal and MCCtotal represent the individual total ACC and MCC values for level-1
and level-2 classification steps for LX= 1 and 2 respectively.

1 1 arg() 100 [(100 ()) (()) (100 ())]ML m inalACC k ACC k ACC k ACC k= − − + − (13)

1 1 arg() 1 [(1 ()) (()) (1 ())]ML m inalMCC k MCC k MCC k MCC k= − − + − (14)

ACCML and MCCML represent multilevel ACC and MCC value of each super-family,
where ACC1(k) and MCC1(k) show the Accuracy and MCC value of kth superfamily
at level-1.

100 [(100 (1)) ((1)) (100 (2))]
total total totaloverallACC ACC ACC ACC= − − + − (15)

1 [(1 (1)) ((1)) (1 (2))]
total total totaloverallMCC MCC MCC MCC= − − + − (16)

ACCoverall and MCCoverall represent the multilevel overall ACC and MCC values for all
super-families.

572 M. Fayyaz et al.

G. Reliability Prediction
When a machine learning approach is adopted, mostly the reliability prediction is an
important factor. Equations (17, 18) define the reliability of prediction R [31] as:

2 (() ())
()

1 | () () |

ACC i ERROR i
R i

ACC i ERROR i

∗ −
=

+ −
 (17)

where
()

()
() ()

o i
ERROR i

n i o i
=

+
 (18)

The reliability value lies between -1≤ R(i) ≤1. When all the receptors are correctly
predicted; i.e. when Acc(i)=1 and Error(i)=0 then R(i)=1. On the other hand, R(i)=-1
when Acc(i)=0 and Error(i)=1.

3 Results and Discussions

A. Observations Using Jackknifing Test
FH scale of hydrophobicity has been used to convert protein sequences to numerical
sequences, and further have been converted to a fixed length vector by FFT using 512
frequency points. In Table 2, columns 2-4 show the ACC, MCC and R values of each
class (superfamily) after jackknife test in level-1 classification. The results show that
ACC of each class is very promising and is approaching 100%. This consequently
boosts the accuracy at level-2, which performs the actual prediction of GPCR sub-
families. In Table 6, Columns 3-5 show the ACC, MCC and R respectively, belonging
to 17 GPCR’s sub-families for level-2 classification. The results show that the ACCLX
belonging to all subfamilies of class B is 100% for all of the subfamilies except
Methuselah-like proteins, which is found to be 90.48. The results of the MCCLX for
subfamilies of class B also show significant results.Similarly the ACCLX, MCCLX and
R belonging to sub-families of class C, D and F improves too. The ACCmarginal for
class C, D and F are 96.97%, 100% and 99.05% respectively.

In Table 4, columns 2-3 show the ACC and MCC values of GPCR’s classes in [12]
and column 4-5 show the ACCML and MCCML obtained through proposed technique.
From the results, it is clear that proposed technique outperforms the overall class
results in [12] by a comprehensive margin for all the classes except class F, where it is
lagging by 2.84%. The comparison of both techniques in terms of ACC and MCC for
jackknife test is depicted in Figure 2 and 3 respectively. The result of R for each class
and sub-families also shows the improvement. 0.4 better respectively than that of
[12]. What we analyze from the experimental results is that sequential pattern
based information using hydrophobicity could be exploited efficiently using an
NN classifier that uses proximity in feature space for mapping feature space to
class space.

 Using Multi Level NN Classifiers for GPCR Sub-families Prediction 573

Table 6. Level-2 classification results based on the Hydrophobicity model (FHΦ) adopting
512 even Frequency points, as validated by the Jackknife Test and Independent Data set Test

Proposed approach Class GPCR sub-family
Jackknife Test Independent Data Test

ACCLX MCCLX R ACCLX MCCLX R

Calcitonin 100% 1.0 1.0 100% 1.0 1.0

Corticotropin releasing factor 100% 1.0 1.0 100% 1.0 1.0
Glucagon 100% 0.96 1.0 100% 1.0 1.0
Growth hormone-releasing
hormone

100% 1.0 1.0 100% 1.0 1.0

Parathyroid hormone 100% 1.0 1.0 100% 0.69 1.0
PACAP 100% 1.0 1.0 100% 1.0 1.0
Vasoactive intestinal
polypeptide

100% 0.96 1.0 100% 1.0 1.0

Latrophilin 100% 1.0 1.0 90% 0.93 0.99
Methuselah-like proteins 90.48% 0.94 0.99 75.0% 0.85 0.98

Class B

Marginal 98.68% 0.99 95.46% 0.96

Metabotropic glutamate 100% 0.98 0.99 100% 1.0 1.0
Calcium-sensing like 83.34% 0.90 0.96 100% 1.0 1.0
GABA-B 100% 0.97 0.97 87.5% 0.92 0.98
Taste receptors 100% 0.95 0.97 100% 0.88 0.97

Class C

Marginal 96.97% 0.96 96.88% 0.96

Fungal pheromone A-Factor
like

100% 1.0 1.0 100% 0.84 0.92

Fungal pheromone B like 100% 1.0 1.0 85.72% 0.84 0.96
Class D

Marginal 100% 1.0 91.67% 0.84

Frizzled 98.94% 0.95 1.0 100% 1.0 1.0
Smoothened 100% 0.95 0.99 100% 1.0 1.0 Class F
Marginal 99.05% 0.95 100% 1.0

Total 98.51% 0.97 96.26% 0.95

B. Results by Independent Test Data
The independent data set of 107 sequences involving the GPCR’s from 17 sub-
families has been validated by the classifiers trained on 403 sequences. In Table 3,
columns 2-4 show the ACC, MCC and R values of each class (superfamily) after
independent data set test in level-1 classification. The results show that ACC of class
D and F is 100%, and for class B it is above 90% and 87% for class C. The scheme
proposed in [12] has also been evaluated on independent data set. Our proposed
scheme proves to go comprehensively ahead of SVM based method in [12], in terms
of both ACC and MCC. In Table 6, columns 6-8 show the ACC and MCC and R
respectively, belonging to 17 GPCR’s sub-families for level-2 classification on
independent data set. The results show that the ACCLX belonging to all subfamilies of
class B is 100% for all of the subfamilies except Latrophilin and Methuselah-like
proteins, which are found to be 90% and 75% respectively. Similarly the ACCLX,
MCCLX, and R belonging to sub-families of class C, D and F are better than that
of [12].

In Table 5, columns 2-3 show the ACC and MCC values of GPCR’s classes in [12]
and column 4-5 show the ACCML and MCCML obtained through the proposed
technique for independent data set. From the results, it is clear that proposed
technique is better than that of [12], both in terms of ACC and MCC for all classes by

574 M. Fayyaz et al.

a comprehensive margin. This comparison of both techniques in terms of ACC and
MCC for independent data set test is depicted in Figure 2 and 3 respectively. The
ACCoverall, and MCCoverall are found to be 90.86% and 0.87 respectively. The results
show that SVM based scheme in [12] fails to achieve generalization as compared to
NN based proposed scheme. This is mainly because increase in margin of separation,
which is the core concept of SVM classifiers, looses its effectiveness when used
asone versus all strategy for blending it to multi-classification problem. The second
reason could be that proximity, instead of increasing margin of separation, in the
transform domain of protein sequences, has better discrimination power.

4 Conclusion

In this paper, a classification system using multi-level NN classifiers for the
prediction of 17 GPCR’s subfamilies is developed. Fourier spectrum of the amino
acid composition of the sequences is used as the features for the NN classifiers. The
results on both jackknife and independent data set test are better as compared to that
of [12]. The reliability prediction has also been calculated for each sub-family and it
improves too, which also validates our proposed technique. Based on the potential in
classifying GPCR sub-families, in future, we intend to use ensembles of NN classifier
using boosting [32] as well as Genetic programming [33, 34] based techniques.

Acknowledgements

We are very grateful to Ghulam Ishaq Khan Institute of Engineering Sciences and
Technologies (GIKI) for providing healthy and rich research environment as well as
moral support for carrying out this research. This work has been supported by
National Engineering & Scientific Commission of Pakistan (NESCOM).

References

1. A. Tramantano: The 10 most wanted solutions in Bioinformatics, Champan & Hall/CRC
Press (2005).

2. Eisenhaber,F. and Bork,P, Wanted: subcellular localization of proteins based on sequence,
Trends Cell Biol (1998),vol. 8, pp. 69–70.

3. ilman, A.G., J.G. Hardman and L.E. Limbird: Goodman and Gilman’s the pharmacological
basis of therapeutics. McGraw Hill, New York.

4. Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ.: Basic local alignment search
tool, J Mol Biol (1990), vol. 215, pp. 403–410.

5. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped
BLAST and PSI-BLAST: A new generation of protein database search programs, Nucleic
Acids (1997), vol. 25, pp. 3389−3402.

6. Lapinsh,M., Gutcaits,A., Prusis,P., Post,C., Lundstedt,T. and Wikberg,J.E.: Classification
of G-protein coupled receptors by alignment-independent extraction of principal chemical
properties of primary amino acid sequences, Protein Sci. (2002), vol. 11, pp. 795–805.

 Using Multi Level NN Classifiers for GPCR Sub-families Prediction 575

7. Karplus K, Barrett C and Hughey R.: Hidden Markov models for detecting remote
protein homologie,. Bioinformatics (1998), vol. I4, pp. 846-856.

8. Sonnhammer E L L, Eddy S R, Birney E, Bateman A. and Durbin R., Pfam.: Multiple
sequence alignments and hmm-profiles of protein domains (1998), NAR, vol. 26, pp.
320-322.

9. Papasaikas PK, Bagos PG, Litou ZI, Promponas VJ, Hamodrakas SJ.: PRED-GPCR:
GPCR recognition and family classification server, Nucleic Acids (2004), vol. 32, pp.
W380−W382.

10. Papasaikas PK, Bagos PG, Litou ZI, Hamodrakas SJ.: A novel method for GPCR
recognition and family classification from sequence alone, using signatures derived from
profile hidden Markov model., SAR QSAR Environ, vol. 14, pp. 413−420, 2003.

11. Bhasin M, Raghava GPS., GPCRpred: An SVM-based method for prediction of families
and sub-families of G-protein coupled receptors, Nucleic Acids (2004), vol. 32: pp.
W383−W389.

12. Guo YZ, Li ML, Wang KL, Wen ZN, Lu ML, Liu LX, Jiang L.: Fast Fourier transform-
based support vector machine for prediction of G-protein coupled receptor sub-families,
Acta Biochim Biophys Sin (2005), vol. 37, pp. 759–766.

13. Y.-Z. Guo, M. Li, M. Lu, Z. Wen, K. Wang, G. Li, and J. Wu.: Classifying G protein-
coupled receptors and nuclear receptors on the basis of protein power spectrum from Fast
Fourier transform, Amino Acids (2006), vol. 30, pp. 397–402.

14. Karchin R, Karplus K, Haussler D.: Classifying G-protein coupled receptors with support
vector machines, Bioinformatics (2002), vol. 18, pp. 147−159.

15. Horn F, Vriend G, Cohen FE.: Collecting and harvesting biological data: The GPCRDB
and NucleaRDB information systems, Nucleic Acids (2001), vol. 29, pp. 346−349.

16. Cosic I.: Macromolecular bioactivity: Is it resonant interaction between macromolecules?
Theory and applications, IEEE Trans. Biomed (1994), vol. 41, pp. 1101−1114.

17. Grantham R.: Amino acid difference formula to help explain protein evolution, Science
(1974), vol. 185, pp. 862−864.

18. Kyte J, Doolittle RF.: A simple method for displaying the hydropathic character of a
protein, J Mol Biol (1982), vol. 157, pp. 105−132.

19. Mandell AJ, Selz KA, Shlesinger MF.: Wavelet transformation of protein hydrophobicity
sequences suggests their memberships in structural families, Physica A (1997), vol. 244,
pp. 254−262.

20. Fauchére J, Pliška V.: Hydrophobic parameters Φ of amino-acid side chains from the
partitioning of n-acetyl-amino-acid amides, Eur J Med Chem Chim Ther (1983), vol. 18,
pp. 369−375.

21. Hiramoto T, Nemoto W, Kikuchi T, Fujita N.: Construction of hypothetical three-
dimensional structure of P2Y1 receptor based on Fourier transform analysis, J Protein
Chem (2002), vol. 21, pp. 537–545.

22. Katoh K, Misawa K, Kuma K, Miyata T.: MAFFT: a novel method for rapid multiple
sequence alignment based on fast Fourier transform, Nucleic Acids (2002), vol. 30, pp.
3059–3066.

23. Shepherd AJ, Gorse D, Thornton JM.: A novel approach to the recognition of protein
architecture from sequence using Fourier analysis and neural networks, Proteins (2003),
vol. 50, pp. 290–302.

24. T.M. Cover, P.E. Hart.: Inform. TheoryIT-13, IEEE Trans (1967), pp. 21–27.
25. J.H. Friedman, F. Baskett, L.J. Shustek.: Inform. TheoryC-24, IEEE Trans (1975), pp.

1000–1006.
26. R. O. Duda, P. E. Hart, D. G. Stork.: Pattern Classification, 2nd Edition, Wiley Press.

576 M. Fayyaz et al.

27. Chou KC, Zhang CT.: Prediction of protein structural classes, Crit Rev Biochem Mol
(1995), vol. 30, pp. 275−349.

28. Chou KC, Cai YD.: Using functional domain composition and support vector machines for
prediction of protein sub cellular location, J. Biol Chem (2002), vol. 277, pp. 45765–45769.

29. Chou KC, Cai YD.: Predicting protein structural class by functional domain composition,
Biochem Biophys Res Commun (2005), vol. 321, pp. 1007–1009.

30. Matthews BW.: Comparison of predicted and observed secondary structure of T4 phage
lysozyme, Biochim Biophys Acta (1975), vol. 405, pp. 442–451.

31. Novic M, Zupan J.: Investigation of infrared spectra-structure correlation using kohonen
and counter-propagation neural network, J Chem Inf Comput Sci (1995), vol. 35, pp.
454–466.

32. Ludmila I. Kuncheva.: Combining Pattern Classifiers: Methods and Algorithms, John
Wiley & Sons, Inc.2004

33. A. Khan, A. Majid, and Anwar M. Mirza.: Combination and Optimization of Classifiers in
Gender Classification Using Genetic Programming, ISSN 1327-2314, International Journal
of Knowledge-Based Intelligent Engineering Systems (2005), vol. 9, pp 1-11.

34. A. Majid, A. Khan and Anwar M. Mirza.: Combining Support Vector Machines Using
Genetic Programming, International Journal of Hybrid Intelligent Systems (2006), vol. 3,
No. 2, pp. 109-125.

Invited Talk:

Ab Initio Gene Finding Engines:
What Is Under the Hood

Mark Borodovsky

School of Biology, Department of Biomedical Engineering and College of Computing
Georgia Institute of Technology

Atlanta, Georgia, USA
mark.borodovsky@biology.gatech.edu

I will revisit the statistical and computational foundations of ab initio gene
finding algorithms that best fit current challenges in analysis of genomic data.
With the number of new sequenced genomes rapidly growing, there is a need to
generate high quality gene annotations in less time.

In recent gene prediction competitions, the organizers described in great de-
tails the sets of experimentally confirmed eukaryotic genes that the contest par-
ticipants were supposed to use for training statistical models, the key parts of
ab initio gene finding algorithms. However, the gene prediction algorithm devel-
oped in our lab is only one of its kind that does not require a training set at all.
It is using an unsupervised training approach and exhibits the same or better
level of accuracy of gene identification as the algorithm trained on a sufficiently
large training set. With more than 600 eukaryotic genome sequencing projects
registered, as of February 2007, the self-learning gene finders become important
tools able to accelerate extraction of biological information from newly sequenced
eukaryotic genomes.

Another type of challenge in gene finding is presented by metagenomic se-
quences which are highly fragmented, diverse in nature, and carry larger rates
of sequence irregularities than it is observed in sequenced genomes of cultivated
microorganisms. The issues of finding gene starts or identifying short genes in
metagenomes become much more difficult than in completely sequenced prokary-
otic genomes.

Devising automatic gene annotation algorithms that identify specific features
of gene organization in a novel genome and use adaptive strategies of self- train-
ing remains one of the open problems in machine learning. I will describe ap-
proaches to solving this problem for several classes of prokaryotic and eukaryotic
genomes.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, p. 577, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 578–589, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Reconstruction of 3D Structures from Protein Contact
Maps

Marco Vassura1, Luciano Margara1, Filippo Medri1, Pietro di Lena1,
Piero Fariselli2, and Rita Casadio2

1 Computer Science Department
margara@cs.unibo.it

2 Biocomputing Group, Department of Biology,
University of Bologna, Italy

casadio@alma.unibo.it

Abstract. Proteins are large organic compounds made of amino acids arranged
in a linear chain (primary structure). Most proteins fold into unique three-
dimensional (3D) structures called interchangeably tertiary, folded, or native
structures. Discovering the tertiary structure of a protein (Protein Folding Prob-
lem) can provide important clues about how the protein performs its function
and it is one of the most important problems in Bioinformatics. A contact map
of a given protein P is a binary matrix M such that Mi,j = 1 iff the physical dis-
tance between amino acids i and j in the native structure is less than or equal to
a pre-assigned threshold t. The contact map of each protein is a distinctive sig-
nature of its folded structure. Predicting the tertiary structure of a protein di-
rectly from its primary structure is a very complex and still unsolved problem.
An alternative and probably more feasible approach is to predict the contact
map of a protein from its primary structure and then to compute the tertiary
structure starting from the predicted contact map. This last problem has been
recently proven to be NP-Hard [6]. In this paper we give a heuristic method that
is able to reconstruct in a few seconds a 3D model that exactly matches the tar-
get contact map. We wish to emphasize that our method computes an exact
model for the protein independently of the contact map threshold. To our
knowledge, our method outperforms all other techniques in the literature
[5,10,17,19] both for the quality of the provided solutions and for the running
times. Our experimental results are obtained on a non-redundant data set con-
sisting of 1760 proteins which is by far the largest benchmark set used so far.
Average running times range from 3 to 15 seconds depending on the contact
map threshold and on the size of the protein. Repeated applications of our
method (starting from randomly chosen distinct initial solutions) show that the
same contact map may admit (depending on the threshold) quite different 3D
models. Extensive experimental results show that contact map thresholds rang-
ing from 10 to 18 Ångstrom allow to reconstruct 3D models that are very simi-
lar to the proteins native structure. Our Heuristic is freely available for testing
on the web at the following url: http://vassura.web.cs.unibo.it/cmap23d/

1 Introduction

Protein folding is the process by which a protein assumes its three-dimensional (3D)
structure. All protein molecules are heterogeneous chains of amino acids (or residues)

ă

 Reconstruction of 3D Structures from Protein Contact Maps 579

which form the primary structure of the protein. Protein folding is in relation to the
protein biological function. At the coarsest level, folding involves first the establish-
ment of secondary structures, particularly alpha helices and beta sheets, and only
afterwards tertiary structure. Actually, the greatest open problem in Structural Bioin-
formatics is the 3D protein structure prediction from its primary structure [13]. Since
the protein folding problem is still unsolved, a typical alternative approach is to iden-
tify a set of sub-problems, such as the prediction of protein secondary structures,
solvent accessibility and/or prediction of residue contacts and try to search specific
solutions. Among different possibilities, the prediction of contact maps of proteins
starting from the protein chain is particularly promising, since a partial solution of it
can significantly help the prediction of the protein structure [9].

Having at hand a contact map a reliable and fast re-construction procedure of the
3D structure is needed. The problem is equivalent to unit disk graph realization which
has been proved to be NP-hard [6]. Other well studied similar problems are NMR
structure determination [12,16] and protein conformational freedom [11]. However
the different nature of distance constraints induced by the contact map of the protein
requires the use of other methods and tools. A series of heuristic algorithms have been
developed to solve the problem. Galaktinov and Marshall [10] reconstructed the
structures of five small proteins by adopting information relative to the residue coor-
dination numbers. Vendruscolo et al. [19] described a method based on simulated an-
nealing with the contact map as a target potential. They achieved an average RMSD
of 2.5 Ångstrom (Å) on some 20 protein structures. Other approaches rely on steepest
descent with inequality distance constraints [5] and on an algorithm which minimizes
a continuous cost function that embodies constraints associated with contact and angle
maps [17], respectively. On average these methods reconstruct the protein structures
without completely satisfying the contact map in that the reconstructed protein struc-
tures may have contact maps that slightly differ from the native ones.

In this paper we propose a new heuristic algorithm for 3D reconstruction. We show
that our algorithm is successful on our non redundant data set consisting of 1760
complete protein structures. Also, and irrespectively of the contact map threshold, it
satisfies the initial contact map. Average execution times vary from 3 to 15 seconds,
depending on the contact map threshold. The relation between contact map threshold,
protein size and protein 3D structure is analyzed, showing that on average contact
maps computed at thresholds between 10 and 18 Å allow a better 3D structure recov-
ery than those computed at lower thresholds (from 7 to 9 Å).

2 Protein Structure Reconstruction

2.1 Protein Representation and Contact Map

Proteins structures are described by the coordinates of the atoms that concur to consti-
tute the macromolecule. In this paper we adopt the widely used Cα representation of
the protein backbone, where residues are considered as unique entities. The contact
map of a given protein is a binary matrix CM such that CM[i,j] = 1 iff the Euclidean
distance between residues i and j is less than or equal to a pre-assigned threshold t.

580 M. Vassura et al.

2.2 Distance Geometry and Protein Structure Reconstruction

Distance geometry (see [4] for an introduction) deals with the characterization of
mathematical properties that can be derived from distance values between pairs of
points. The mathematical foundation of distance geometry is essentially due to Cayley
(1841) and Menger (1928) who showed how some basic geometry properties, such as
convexity, could be defined in terms of distance values. One fundamental problem in
distance geometry is to find a correct set of three-dimensional Euclidean coordinates
that satisfy a set of distance constraints. In general, a set of points in the three-
dimensional space that satisfy some given constraints does not exist. However,
Cayley and Menger gave necessary and sufficient conditions for a set of positive val-
ues to be the exact distances between pairs of three-dimensional coordinates. Thus,
given a consistent set of distances in the three-dimensional space the problem to find
coordinates which satisfy such exact distance constraints can be solved by a polyno-
mial-time algorithm [4] while the problem is NP-hard when the given set of distances
is sparse [18].

NMR spectroscopy and X-ray crystallography are the most widely used experi-
mental techniques to obtain bounds to the inter-atomic distances between residues.
Because of experimental errors, we can usually obtain only a set of lower and upper
bounds to such inter-atomic distances rather than exact values. The distance geome-
try-based approach to the protein structure reconstruction problem aims at developing
techniques to recover the 3D protein structure, given a set of lower and upper bounds
to residue inter-atomic distances. The problem of computing a set of consistent coor-
dinates is generally intractable [15]. Havel and Crippen developed a recovering algo-
rithm from a sparse set of lower and upper bounds to the inter-atomic distances
[8,12]. Their algorithm first uses some bound smoothing technique to estimate bounds
values for the missing distances. Then it uses an algebraic technique known as the
EMBED algorithm to generate an approximate set of three-dimensional coordinates
adopted as starting solution for an optimization procedure. While the problem of re-
covering protein structures from a set of distances is known to have a polynomial time
solution, the same problem from contact maps is NP-hard [6]. However, empirical
developed applications seem to suggest that such approach is fruitful (see for example
[5, 19, and 20]). An introduction to the approach of predicting protein structure from
contact maps can be found elsewhere [3].

3 Algorithm Description

In this section we briefly describe a heuristic algorithm which finds a set of three-
dimensional coordinates consistent with some given contact map CM of threshold t.

The algorithm is in two phases (see pseudocode below): in the first phase it gener-
ates a random initial set of 3D coordinates C ∈ R3×n while in the second phase it
refines the set of coordinates by applying a correction/perturbation procedure. The re-
finement applies until the set of coordinates is consistent with the given contact map
or until a control parameter ε becomes 0. The control parameter ε has initially a
positive value and it is decremented every some amount of refinement steps. If it
reaches the 0 value before a consistent set of coordinates is found, then a new random

 Reconstruction of 3D Structures from Protein Contact Maps 581

initial set of coordinates is generated; ε is initialized again to a strictly positive value
and the refinement procedure re-starts from the beginning.

HEURISTIC RECONSTRUCTION(CM ∈ {0,1}n×n, t ∈ N)
1: while coordinates set C is not correct do

 //First phase: random generation
2: C ← RANDOM-PREDICT(CM, t)

//Second phase: refinement
3: C ← CORRECT(CM, C, t)
4: set ε to a strictly positive value
5: while coordinates set C is not consistent with CM and ε > 0 do
6: C ← PERTURBATE(CM, C, t, ε)
7: C ← CORRECT(CM, C, t)
8: decrement slightly ε
9: return C

The first phase of the algorithm consists in the partially random prediction
(RANDOM-PREDICT) of a set of starting coordinates (as consistent as possible
with a given contact map) that will be the starting point for the refinement procedure
in the second phase of the algorithm. A fast and reliable way to obtain good starting
coordinates is provided by the metric matrix embedding (EMBED) algorithm [12].
Generally, no set of three-dimensional points is consistent with some distance matrix
D. However, the EMBED algorithm can be used to compute a set of three-
dimensional coordinates that is, in a certain sense, the best three-dimensional fit for
D. The computing of the initial solution is preceded by a phase in which the contact
map is scanned for the existence of splittable components. Splitting the initial contact
map in submatrices is done to locate those fragments of proteins which demonstrate a
high degree of independence with respect to mutual interactions. The submatrices are
then separately used to create sets of coordinates to be merged in order to give an ini-
tial solution. The merging procedure is managed by selecting, between a set of
equally distributed three-dimensional angles, the best rotation with respect to the
lower number of errors generated in the contact map. A more detailed description of
the prediction phase can be found in [14].

The second phase of the algorithm iteratively applies two local techniques to the
current set of coordinates, CORRECT and PERTURBATE. This is performed in
order obtain a new set of coordinates “more consistent” with the given contact map.
We call not well placed residues whose coordinates are not consistent (according the
contact map) with the coordinates of all other residues. The local correction technique
CORRECT attempts to change the coordinates of every not well placed residue i in
order to reduce the cardinality of the set of not well placed residues. The radius of
mobility ri of the residue i is defined as ri = min{D0 – t, t – D1} where D0 = min{dij|dij

> t and CM[i,j] = 0} and D1 = min{dij|dij ≤ t and CM[i,j] = 1}. Then, the residue i can
safely move to the surface of the sphere with center i and radius ri without decreasing,
and eventually increasing, the cardinality of the set of residues well placed. The new
position has to be as distant as possible from the whole set of residues j not well
placed wrt i such that CM[i,j] = 0 and as close as possible to the whole set of residues

582 M. Vassura et al.

k not well placed wrt i such that CM[i,k] = 1. This is achieved by projecting the C[i]
coordinates on the surface of the sphere in the direction described by a force vector F
applied to i (line 7). For every residue j not well placed wrt i, let consider the (vecto-
rial) pseudo-force Fj = (C[i] - C[j])/||C[i] - C[j]|| of magnitude one and direction ij. F
is the result of the (vectorial) addition of all F’j, where F’j = Fj whether CM[i,j] = 1
and F’j = -Fj has opposite direction to Fj whether CM[i,j] = 0 (lines 5-6).

CORRECT(CM ∈ {0,1}n×n, C ∈ R3×n, t ∈ N)

1: foreach i ∈ {1,...,n} not well placed do

2: F ← {0, 0, 0}

3: foreach j ∈ {1,...,n} not well placed wrt i do

4: compute the radius of mobility ri according to CM and C

5: if CM[i,j] = 1 then F ← F − C[i]− C[j]

C[i]− C[j]

6: else F ← F + C[i] − C[j]
C[i] − C[j]

7:][iC ← C[i]+ F ⋅ ri

F

8: return C

A run of the correction procedure does not add new errors to the coordinates set,

but may reduce the radius of mobility for not well placed residues. In order to main-
tain as large as possible the radius of mobility for such residues, after a correction
procedure we apply small perturbations to the coordinates set using the
PERTURBATE procedure. For every residue i and every residue j well placed wrt i,
if the distance dij is under a given threshold then PERTURBATE changes the coor-
dinates of i and j in order to make them a bit more closer (lines 3-4) and if dij is above
a given threshold then PERTURBATE changes the coordinates of i and j in order to
make them a bit more distant (lines 5-6). A perturbation can introduce new errors to
the coordinates set but, conversely, it avoids that not well placed residues get stuck.

PERTURBATE(CM ∈ {0,1}n×n, C ∈ R3×n, t ∈ N, ε ∈ R)

1: for i ← 1 to n do

2: for j ← 1 to n do

3: if t −ε < C[i]− C[j] ≤ t and CM[i, j] =1 then

4: approach C[i] and C[j] of ε /10

5: if t < C[i] − C[j] < t + ε and CM[i, j] = 0 then

6: place at distance C[i] and C[j] of ε /10

7: return C

 Reconstruction of 3D Structures from Protein Contact Maps 583

4 Experimental Results

We selected the list of proteins with their relative structural classifications from
SCOP [2] release 1.67. We then downloaded the corresponding protein structures
from the PDB and we retained only those files with coordinates obtained with X-ray
experiments, with resolution <2.5 Å, and without missed internal residues. Finally,
using BLAST [1] we removed sequence redundancies, ending up with a datasets of
1760 protein chains with sequence similarity lower than 25%. The distribution of the
1760 protein chains accordingly to the SCOP classification is shown in Fig. 1. Our
protein set contains 1502 one domain- and 258 multi-domain chains. The complete
list is available at the web site http://vassura.web.cs.unibo.it/protlist.tgz.

0

100

200

300

400

500

A B C D MultiA MultiB MultiC MultiD Other
SCOP class

n
u

m
b

er
 o

f
pr

o
te

in
s

Fig. 1. Distribution of our protein set according to the SCOP classes. A=all alpha; B=all beta;
C=Alpha/Beta; D=Alpha+Beta. Multi-{A,B,C,D} and Other contain multi-domain proteins.

All the test runs are executed on personal computers equipped with an Intel Pentium 4
processor with a clock rate of 3GHz and 1Gb of RAM memory. Times reported are
Unix user CPU times, and are measured using the time() C library function. During
each run the program collects time information before reading the input and again af-
ter computing the result; the CPU time actually elapsed is computed as the difference
between the two figures. The Heuristic is freely available for testing on the web at the
following url: http://vassura.web.cs.unibo.it/cmap23d/

To measure the difference between contact maps, we used the simple Hamming
distance that counts the numbers of different bits; this distance is also the target func-
tion of the problem. When we deal with two protein structures, the classical Root
Mean Square Deviation (RMSD) is computed between the native and the recon-
structed structure. RMSD is commonly used to compare two molecular structures de-
scribed by some set of coordinates C, C’ ∈ R3×n.It is defined as the smallest distance

Dk = 1

n
C'[i]− Ck[i]()2

i=1

n

∑

where Ck ∈ R3×n is obtained by rotating and translating the coordinates set C.
For each protein of our selected non redundant data set, containing 1760 protein struc-
tures (see Protein set section), we generate 12 different contact maps by changing the
contact threshold from 7 to 18 Å with a 1 Å step and then we run our procedure for all
the 12*1760 generated contact maps.

584 M. Vassura et al.

The most relevant result of our procedure is the fact that all the reconstructed pro-
tein structures satisfy the native contact maps. This means that the Hamming distance
between the native and the reconstructed contact maps is 0, or in other words, that
given the contact map of a protein our algorithm finds a 3D structure which has the
same contact map of the native protein. In spite of this, in some cases, the RMSD of
the reconstructed protein with respect to the native structure can be very large (Fig.2).

(a) (b)

(c) (d)

Fig. 2. Contact map degeneracy: a test case. The recovery of the 3D structure of 1cxp chain B
(104 residues, all-alpha). (a) 1cpx contact map computed at a threshold of 7 Å; (b) 1cpx contact
map computed at a threshold of 16 Å; (c) 1cpx native structure (thick line) compared to a re-
covered structure with the same contact map (a) (RMSD= 41.31Å); (d) 1cpx native structure
(thick line) compared to a recovered structure with the same contact map (b) (RMSD= 4.95Å).

This indicates that some contact maps can represent a huge ensemble of protein
conformations and degenerate. Usually this means that the map contains only a broad
central band of local contacts, and no constraints are posed on the global bending of
the protein. The reconstruction ambiguity is more evident when the contact map is
generated using low values of contact thresholds (ranging from 7 to 9 Å) and de-
creases as the contact threshold increases (Table 1). Our results indicate that at

 Reconstruction of 3D Structures from Protein Contact Maps 585

increasing contact map threshold both average RMSD and standard deviation values
decreases over the all protein set (Table 1). At increasing threshold value global fea-
tures in the contact map help in finding the 3D structure likely to be more simi-
lar/close to the native one.

Table 1. Scoring the recovery of 3D structure from the contact maps of 1760 proteins

Threshold
(Å)

Cmap dist
(Å)

Avg RMSD
(Å)

AvgSD RMSD
(Å)

Avg Time
(s)

AvgSD Time
(s)

7 0 6.11 4.09 15 136

8 0 4.58 3.86 9 110

9 0 3.37 3.42 9 155

10 0 2.62 2.98 10 157

11 0 2.21 2.69 5 71

12 0 1.97 2.51 3 15

13 0 1.75 2.29 2 13

14 0 1.58 2.09 3 16

15 0 1.47 2.01 10 274

16 0 1.39 1.90 2 9

17 0 1.36 1.75 5 94

18 0 1.35 1.79 3 17

Threshold is the threshold used to compute the input contact map; Cmap dist is the Hamming
distance between the contact map of the native structure and the contact map of the recovered
structure; Avg RMSD is the average, over all proteins, RMSD between the native structure and
the recovered structure; AvgSD is the average standard deviation over all proteins; Avg Time is
the average, over all proteins, time needed to recover the 3D structure.

A typical example is shown in Fig. 2 for protein 1cxp chain B. The contact map
computed with a threshold equal to 7 Å (Fig. 2a) does not contain enough global in-
formation of the protein structure and a large number of protein structures is repre-
sented by that map. For instance, a possible reconstruction is reported in Fig. 2c
where the RMSD to the native structure is 41.3 Å. When the contact map is computed
at a threshold of 16 Å (Fig. 2b) more features appear off of the main diagonal and the
recovered 3D structure is closer to the native one. Indeed RMSD decreases now to 4.9
Å (Fig. 2d).

This finding prompted us to do a search in the threshold space to optimize the
RMSD values. We find that a better 3D reconstruction is obtained when a high
threshold value is adopted (10 Å or higher), while the average running time (over
1760 proteins) does not depend on the threshold adopted (Table 1). RMSD values be-
tween the reconstructed and the corresponding native 3D protein structures are ana-
lyzed as function of the four main SCOP classes, clustered in mono and multi-domain
proteins. The results are shown in Fig. 3. As a general trend we find that multi-
domain proteins are more easily reconstructed with our procedure than mono domain
proteins. This is so rather independently of the threshold value adopted. One possible
explanation is that the contact map of multi-domain proteins carry information about
the inter-domain residue contacts that poses more constraints to the reconstruction of

586 M. Vassura et al.

the 3D protein structure. Another interesting point that emerges from Fig. 3 is the fact
that the contact maps of mono-domain all-alpha proteins (A SCOP label) tend, on av-
erage, to be more ambiguous in their reconstruction. This is in agreement with the fact
that all-alpha proteins are characterized by contact maps with a great number of con-
tacts made by sequence nearest-neighbor residues and this hampers global 3D recon-
struction.

0

1

2

3

4

5

6

A B C D MultiA MultiB MultiC MultiD Other
SCOP class

A
vg

 R
M

S
D

Fig. 3. Average RMSD on the different SCOP classes, obtained using contact maps computed
with a threshold of 13 Å

An analysis of our procedure as function of the protein length, show that the
method is working independently of the protein size and that long proteins are on av-
erage reconstructed as well as short ones (Fig. 4).

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400
Protein size

R
M

S
D

Fig. 4. Actual RMSD distribution as function of the protein length when contact maps are com-
puted with a contact threshold of 13 Å

4.4 Comparison with Previous Methods

To our knowledge only four methods have been introduced so far to reconstruct the
protein 3D structures starting from the contact map information [5,10,17,19]. The ap-
proach developed by Vendruscolo et al. [19] was tested on some 20 proteins. Differ-
ent from our results, their finding indicates that RMSD on average increases when the
protein length increases.

This effect may be due to the adopted simulated annealing procedure that require
more optimization steps for large than for short proteins; furthermore they stop the
search without a complete satisfaction of the contact maps (Cmap distance = 0). On
the contrary, our method runs till the very satisfaction of the contact map (Table 1).

 Reconstruction of 3D Structures from Protein Contact Maps 587

0

1

2

3

4

5

6

0 200 400 600

Protein size

R
M

S
D

threshold 13
threshold 9
Vend. et al.

Fig. 5. Reconstruction accuracy (RMSD) of our method on the set of Vendruscolo et al, [19].
The results correspond to a contact threshold of 9 Å (for a direct comparison with [19]) and of
13 Å, respectively. The error associated with the Vendruscolo et al. reported data is due to the
fact that the complete satisfaction of the contact map is not a constraint for their search.

Table 2. Comparison of our method with that of Galaktinov and Marshall [10]

Protein Number
of residues

Galaktinov
Marshall [10]

RMSD (Å)

Our method(*)

RMSD (Å) Time (s)
1rdg 52 0.66 1.08 0.01
1pcy 99 0.88 0.90 0.08
4fd1 106 0.86 0.74 0.14
1acx 108 0.96 0.83 0.13
1cpv 108 0.89 0.80 0.12
Average 0.85 0.87 0.096

The protein set is the same of Galaktinov and Marshall [10].
(*) In this specific case we used a cut-off threshold of 13 Å; the results with other thresholds
are similar.

When our method is tested on the Vendruscolo et al set [19], it is worth noticing
that even when a comparable threshold of 9 Å is used, the reconstructed RMSD is
lower on average then that previously obtained (Fig. 5). At higher contact map
threshold value (for instance 13 Å, as shown in Fig. 5), all the proteins of the Ven-
druscolo et al. set [19] are reconstructed with RMSD values lower than 2 Å and again
with 0 errors in the contact map. The average execution time on this set is less than 1
second.

Galaktinov and Marshall [10] reports values for only for 5 proteins, with RMSD
values lower than 1 Å. In Table 2 we show that our method performs similarly on
their data set (results were obtained with a contact threshold of 13 Ås).

Two other papers [5, 17] describe reconstruction procedures: however they adopt
predicted constraints or predicted contacts to fold the proteins, so that a direct com-
parison with them is not possible.

588 M. Vassura et al.

5 Conclusions and Further Works

In this paper we address the problem of reconstructing the protein structures starting
from the contact matrix. We introduce this problem and we describe an efficient and
very fast procedure. We show that contact maps computed using threshold values
greater than those commonly used for Cα-Cα distances allow better 3D structure re-
covery than those computed at lower thresholds (7-9 Å). This is mainly due to the fact
that for some proteins (in particular, but not exclusively, the all-alpha mono-domain)
exist a large number of different conformations that satisfy the native contact map.
When the threshold of the contact map computation is increased the ensemble of pos-
sible different solutions is reduced by increasing the number of structural constraints.
Our finding indicates that the best cut-off threshold is in the range of 10-18 Å.

In summary in this paper we show that:

• our method can reconstruct with zero contact map errors all the protein structures
of our data set, and to our knowledge, this result has not been achieved before by
other authors;

• the required computational time is in the range of few seconds when a normal per-
sonal computer is available, making the program a useful tool also for wide-scale
applications;

• our results are obtained on a non-redundant data set comprising 1760 proteins and
this is the largest dataset used so far for this specific task.

We are working on reconstruction of protein 3D structure from noisy, and possibly
non-physical, contact maps. Obviously it is not always possible to reconstruct with
zero contact map errors, nevertheless, comparing reconstructed structure with the na-
tive one, some preliminary tests show that our method is tolerant and reliable.

References

1. S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D._J. Lipman.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402

2. Andreeva, D. Howorth, S.E. Brenner, T.J. Hubbard, C. Chothia, A.G. Murzin . SCOP da-
tabase in 2004: refinements integrate structure and sequence family data. Nucleic Acids
Res. 2004 Jan 1;32(Database issue):D226-9

3. L. Bartoli, E. Capriotti, P. Fariselli, P.L. Martelli, R. Casadio. The pros and cons of pre-
dicting protein contact maps.

4. L.M. Blumental. Theory and applications of distance geometry, Chelsea, New York 1970.
5. J. Bohr, et al. Protein structures from distance inequalities. J. Mol. Biol. 231, 861-869,

1993.
6. H. Breu, D.G. Kirkpatrick, Unit disk graph recognition is NP-hard, Computational Ge-

ometry 9 (1998) 3-24.
7. T. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction to algorithms. Second edi-

tion. MIT Press, Cambridge, MA; McGraw-Hill Book Co., Boston, MA, 2001.
8. G.M. Crippen, T.F. Havel. Distance geometry and molecular conformation. John Wiley &

Sons, 1988.

 Reconstruction of 3D Structures from Protein Contact Maps 589

9. P. Fariselli, O. Olmea, A. Valencia, R. Casadio. Progress in predicting inter- residue con-
tacts of proteins with neural networks and correlated mutations. Proteins: 45 Suppl 5: 157-
162 (2001)

10. S.G. Galaktionov, G.R. Marshall. Properties of intraglobular contacts in proteins: an ap-
proach to prediction of tertiary structure. In System Sciences, 1994. Vol.V:, Proceedings
of the Twenty-Seventh Hawaii International Conference on Biotechnology Computing
Vol. 5, 4-7 Jan. 1994 Page(s):326 – 335

11. B.L. de Groot, D.M.F. van Aalten, R.M. Scheek, A. Amadei, G. Vriend and H.J.C. Ber-
endsen; Prediction of protein conformational freedom from distance constraints, Proteins
29: 240-251, 1997

12. T.F. Havel. Distance Geometry: Theory, Algorithms, and Chemical Applications in the
Encyclopedia of Computational Chemistry 1998.

13. A. Lesk. Introduction to Bioinformatics. Oxford University Press, 2006.
14. L. Margara, M. Vassura, P. di Lena, F. Medri, P. Fariselli, R. Casadio. Reconstruction of

the Protein Structures from Contact Maps. University of Bologna, Department of Com-
puter Science, technical report UBLCS-2006-24, October 2006.

15. J. Moré, Z. Wu. [epsilon]-Optimal solutions to distance geometry problems via global con-
tinuation. In P. M. Pardalos, D. Shalloway, and G. Xue, editors, Global Minimization of
Nonconvex Energy Functions: Molecular Conformation and Protein Folding, pages 151–
168. American Mathemtical Society, 1995.

16. J. Moré, Z. Wu. Distance geometry optimization for protein structures, Journal on Global
Optimization, 15, pp. 219-234, 1999

17. G. Pollastri, A. Vullo, P. Fiasconi, P. Baldi. Modular DAG-RNN Architectures for As-
sembling Coarse Protein Structures J. Comp. Biol., 13:3, 631-650, 2006

18. J. B. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. In Proc. 17th
Allerton Conf. Commun. Control Comput., pages 480–489, 1979.

19. M. Vendruscolo, E. Kussell, and E. Domany. Recovery of protein structure from contact
maps. Folding and Design, 2(5):295? 306, September 1997.

20. M. Vendruscolo, E. Domany. Protein folding using contact maps. Vitam Horm 2000, 58,
171-212.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 59 –60 , 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Feature Selection Algorithm Based on Graph Theory
and Random Forests for Protein Secondary Structure

Prediction

Gulsah Altun1, Hae-Jin Hu1, Stefan Gremalschi1, Robert W. Harrison1,2, and Yi Pan1

1 Department of Computer Science
2 Department of Biology
Georgia State University
30303, Atlanta, GA, USA

Abstract. Protein secondary structure prediction problem is one of the widely
studied problems in bioinformatics. Predicting the secondary structure of a
protein is an important step for determining its tertiary structure and thus its
function. This paper explores the protein secondary structure problem using a
novel feature selection algorithm combined with a machine learning approach
based on random forests. For feature reduction, we propose an algorithm that
uses a graph theoretical approach which finds cliques in the non-position
specific evolutionary profiles of proteins obtained from BLOSUM62. Then, the
features selected by this algorithm are used for condensing the position specific
evolutionary information obtained from PSI-BLAST. Our results show that we
are able to save significant amount of space and time and still achieve high
accuracy results even when the features of the data are 25% reduced.

Keywords: protein secondary structure prediction, feature selection, random
forests, clique.

1 Introduction

Proteins play a variety of roles that define particular functions of a cell. They interact
between DNA, RNA and other proteins in their tertiary and quaternary state.
Therefore, knowing the structure of a protein is crucial for understanding its function.
A protein is primarily made up of amino acids which determine its structure. The
structure of a protein exists in three levels. The first level is the secondary structure
which is formed of recurring shapes called alpha-helix, the beta-sheet, and coil. The
tertiary structure of a protein is the spatial assembly of helices and sheets and the
pattern of interactions between them. Many proteins contain more than one subunit
and the combinations of these subunits are called the quaternary structure.

Today, large volumes of genes are being sequenced. Therefore, the gap between
known protein sequences and protein structures being solved by experimentally is
growing exponentially. Today, in PDB there are over 1 million proteins whose amino
acid sequence are known, however only about 40,000 of these proteins’ structures are
known [3][4]. The reason for this gap is that NMR and x-cryptography techniques take

0 0ă

years to determine the structure of one protein. Therefore, having computational tools
to predict the structure of a protein is very important and necessary. Even though most
of the computational methods proposed for protein structure prediction do not give
100% accurate results, even an approximate model can help experimental biologists for
guiding their experiments.

Predicting the secondary and tertiary structure of a protein from its amino acid
sequence is one of the important problems in bioinformatics. However, with the
methods available today, protein tertiary structure prediction is a very hard task even
when starting from the exact knowledge of protein backbone torsion angles [11]. It is
also suggested that protein secondary structure delimits overall topology of the
proteins [23]. It is believed that predicting the protein secondary structure gives an
insight and an important starting point for the prediction of the tertiary structure of the
protein, which leads to understanding the function of the protein.

The organization of this paper is as follows: In section 2, we present the problem
formulation and previous work on the protein secondary structure prediction problem.
We also present a brief background on the random forests and some feature selection
techniques used for protein secondary structure prediction. In section 3, we propose a
novel algorithm using a graph theory approach for feature selection based on
evolutionary information stored by the BLOSUM62 matrix [14]. We use this method
to select features from PSSM (Position Specific Scoring Matrix) profiles of proteins
[1]. In section 4, we show our experimental results and compare different encoding
schemes of proteins. In section 5, we give conclusion and future work.

2 Problem Formulation and Background

2.1 Protein Secondary Structure Prediction Problem Formulation

This study adopted the most generally used DSSP secondary structure assignment
scheme. The DSSP classifies the secondary structure into eight different classes: H
(α- helix), G (310-helix), I (π-helix), E (β-strand), B (isolated β-bridge), T (turn), S
(bend), and - (rest). These eight classes were reduced into three regular classes based
on the following method: H, G and I to H; E to E; all others to C.

The problem formulation is stated as: Given a protein sequence a1a2…aN, secondary
structure prediction is finding the state of each amino acid ai as being either H (helix),
E (beta strand), or C (coil). The quality of secondary structure prediction is measured
with a “3-state accuracy” score called Q3. Q3 is the percent of residues that match
reality. Most of the previous research adopted Q3 as an accuracy measurement.

2.2 Previous Work on Protein Secondary Structure Prediction

Protein secondary structure prediction problem has been studied widely for almost a
quarter of a century. Many methods have been developed for prediction of the
secondary structure of proteins. In the initial approaches, secondary structure predictions
were performed on single sequences rather than families of homologous sequences [12].
The methods were shown to be around 65% accurate. Later, with the availability of
large families of homologous sequence, it is found out that when these methods were
applied to a family of proteins rather than a single sequence, the accuracy increased well

 A Feature Selection Algorithm Based on Graph Theory and Random Forests 591

above 70%. Today, many proposed methods utilize evolutionary information such as
multiple alignments and PSI-BLAST profiles [1] [13]. Many of these methods that are
based on Neural networks, SVM and hidden markov models have been very successful
[19][8][2][3][18]. The accuracy of these methods reaches around 80%. An excellent
review on the methods for protein secondary structure prediction has been published by
Ross [25].

Recently, there has been an increase in pattern based approaches for protein
secondary structure prediction for their high accuracy values that are well above 80%
accuracy. Among this machine learning methods SVMs, decision trees and random
forests have been attracting a lot of attention. In this paper, we propose a new
algorithm that adapts a graph theory approach combined with random forests for the
secondary structure prediction problem and feature selection. In section 2.2 we give a
brief introduction to random forests.

2.3 Random Forests

Random forests are proposed by Leo Breiman [5]. Random forests are a combination of
decision trees and each tree is grown from a randomly sampled set of the training data.
Each of the classification trees is built using a bootstrap sample of the data. Each tree
outputs a class for a given test data and the test data is labeled with the class that has the
majority of the votes from these trees. Given M features in a training set, for each
decision tree in the random forest the best splitting feature is determined by from a
randomly selected subspace of m features at each decision node. The optimal value of m
is usually the square root of M; however this m value also depends on the strength and
correlation of the trees. The user has to specify the m value accordingly.

Random forests use both bagging and random variable selection for tree building.
There is no pruning. Bagging and random variable selection result in low correlation
of the individual trees which yield to better classification. Random forests do not
overfit and show comparable results to other machine learning approaches such as
SVM. It is a robust method concerning the noise and the number of attributes
Generated forests in random forests can be saved for future use on other data.

2.4 Feature Selection

Analysis with a large number of variables requires a large amount of memory and
computation time. The problem of selecting a subset of relevant features in a large
quantity of data is very important. Feature selection is a process commonly used in
machine learning, where a subset of the features available from the data is selected for
the learning algorithm. Feature selection is often necessary where it is computationally
infeasible to use all available features. The benefits of feature selection reduce training
and storage requirements. Also, a good feature selection mechanism can improve the
classification by eliminating noisy or non-representative features.

There has been a lot of research on feature selection. Birzele and Kramer [4] have
used a new representation for protein secondary structure prediction based on frequent
patterns which gives competitive results with the current techniques. Shi and P. N.
Suganthan [26] investigated feature analysis for the prediction of the secondary
structure of protein sequences using support vector machines (SVMs) and K-nearest

592 G. Altun et al.

neighbors algorithm (KNN). They applied feature selection and scaling techniques to
obtain a number of distinct feature subsets. Their experimental results show that the
feature subset selection improves the performance for both SVM and KNN.

Kurgan and Homaeian [20] describe a new method for prediction of protein secondary
structure content based on feature selection and multiple linear regression. The
application of feature selection and the novel representation results in 14-15% error rate
reduction when compared to results when normal representation is used. Their prediction
tests also show that a small set of 5-25 features is sufficient to achieve accurate prediction
for helix and strand content for non-homologous proteins Karypis proposes a new
encoding scheme and better kernels for protein secondary structure problem [18]. In the
proposed new coding scheme both position-specific and non-position specific
information is combined for the representation of each protein sequence. In this paper,
we compared this new encoding scheme with many different encoding schemes and
presented the results.

Su et al. [28] have used condensed position specific scoring matrix with respect to
physicochemical properties (PSSMP) on the prediction accuracy, where the PSSMP is
derived by merging several amino acid columns of a PSSM sharing a certain property
into a single column. Their experimental results show that the selected feature set
improves the performance of a classifier built with Radial Basis Function Networks
(RBFN) in comparison with the feature set constructed with PSSMs or PSSMPs that
adopt simply the conventional physicochemical properties. In order to get an effective
and compact feature set on this problem, they propose a hybrid feature selection
method that inherits the efficiency of uni-variant analysis and the effectiveness of the
stepwise feature selection that explores combinations of multiple features. They
decompose each conventional physicochemical property of amino acids into two
disjoint groups which have a propensity for order and disorder respectively. Then,
they show that some of the new properties perform better than their parent properties
in predicting protein disorder.

In this paper, we have applied a different approach from that of Su et al, to condense
the PSSM matrix. We propose an algorithm that used a graph theory approach for
feature selection. First, we apply this algorithm on BLOSUM62 matrix and then based
on the feature set produced by the algorithm; we use this feature set for condensing the
PSSM matrix. The details of our method are presented in the next section.

3 Methods

3.1 New Algorithm for the Prediction of the Secondary Structure

This study attempted to reduce the feature space of the dataset using a graph
theoretical approach. Even though, graph theory concepts have been around for more
than a century, its concepts are just newly being explored for applying to biology
[6][30]. The clique search algorithm was applied to find all the cliques with the
different threshold values. We used Niskanen’s and Ostergard’s original
implementation of the Cliquer version 1.1 [21]. The code Cliquer is a set of C
routines for finding cliques in an arbitrary weighted graph. It uses an exact branch-
and-bound algorithm recently developed by Östergård [23].

 A Feature Selection Algorithm Based on Graph Theory and Random Forests 593

Data Set

 Bootstrapped
 sample

Clique Search Algorithm

Data Set with Reduced Features

…Bootstrapped
 sample

 Bootstrapped
 sample

Random Forest

Fig. 1. New model for the prediction of the secondary structure

Next, based on the newly designed algorithm, final cliques were determined. By merging
the vertices within the same clique into one, the original feature space is reduced. Finally this
reduced feature set was applied to random forests and the performance was compared with
the unreduced counterpart. In Fig. 1, the whole picture of this model is presented.

3.2 Encoding Schemes of the Data

The two matrices such as Blosum62 and PSSM were applied alone or combined with a
feature reduction scheme. BLOSUM62 matrix is a measure of differences between two
distantly related proteins. The values in the BLOSUM62 matrix represent the possibility
that a given amino acid pair will interchange with each other in the evolutionary
process. The position-specific scoring matrix (PSSM) generated by PSI-BLAST uses
position-specific scores for each position in the alignment. Highly conserved positions
have high scores and weakly conserved positions have low scores close to zero. Since
each of these coding schemes captures different aspects of the properties of the amino
acids, the combinations of these two different encodings would be more informative.

The above encoding profiles were generated based on the sliding window scheme. In
the sliding window scheme, a window becomes one training pattern for predicting the
structure of the residue at the center of the window. The optimal window size of
the sliding window scheme was set as 13 based on the previous research [15]. To reduce
the

noise in the training data and to minimize the memory requirement for training, the

feature set was reduced based on the clique search algorithm. This approach is described
in detail in the next section.

3.3 Feature Reduction Based on Cliques

A clique in an undirected graph G is a set of vertices V such that for every two vertices
in V, there exists an edge connecting the two. The subgraph induced by V is a complete
graph. The size of a clique is the number of vertices it contains. The maximum clique
problem is to find the largest clique in a graph.

The BLOSUM62 matrix of this study can be represented as a graph which consists of
20 different vertices. The edges among these 20 vertices can be introduced by applying

594 G. Altun et al.

different threshold values to the BLOSUM62 matrix. This study attempted to reduce the
feature size by obtaining the cliques which occur commonly in different threshold values
and by merging the vertices within the same clique. This process can be divided into the
following three steps. The first step is converting the matrix into the adjacency matrix
based on different threshold values ranging from -2 to 2. Each cell of the adjacency
matrix has a value ‘1’ if there is an edge between two vertices and a value ‘0’ if there is
no edge between them based on different threshold values. The second step is applying
the clique search algorithm to each of these adjacency matrices. The third step is
scanning through all the cliques obtained from each matrix and finding the common
cliques. The cliques of size 2, 3 or 4 vertices (n-mer) which share at least one physico-
chemical property (polar, hydrophobic, or aromatic etc) were considered for final
decision. The common cliques were determined by counting the same vertices (n-mer) in
each clique. Based on our voting scheme, three most commonly occurring n-mers were
found by our proposed algorithm. These were merged into one-mers such as follows:

 Q E → E
 I L M → L
 H F Y → Y

Input: Blosum62 matrix B
 Threshold set T T = {-2, -1, 0, 1, 2}
 Physico-chemical property sets P P= {P1, P2, …, P8, P9}
Output: Common_Clique_Set C

Process:
 FOR each threshold i of T
 Adj_Matrixi = Create_adjacency_matrix (B)
 END FOR

 FOR each adjacency matrix Adj_Matrixi

Clique_Seti = Find_all_cliques (Adj_Matrixi)
 END FOR

 FOR each clique set Clique_Seti

 FOR each clique j j Clique_Set i

 if size_of(j) equals to 2 or 3 or 4
 FOR each Pi P

 if j Pi

 count++
 END FOR

Save the count into count_array
END FOR

END FOR
Common_Clique_Set C = Vote_and_Find_Top_Three(count_array)

Fig. 2. Common clique search algorithm

 A Feature Selection Algorithm Based on Graph Theory and Random Forests 595

Table 1. Physico-chemical property set

Set P Physico-chemical
properties Amino acids in each set

P1 Small A, C, D, G, N, P, S, T, V

P2 Hydrophobic A, C, F, G, H, I, K, L, M, T, V, W, Y

P3 Polar C, D, E, H, K, N, Q, R, S, T, W, Y

P4 Tiny A, C, G, S

P5 Aliphatic I, L, V

P6 Aromatic F, W, Y

P7 Charged D, E, H, K, R

P8 Positive H, K, R

P9 Negative D, E

The pseudocode of this algorithm is given in Fig. 2. The physico-chemical property
sets P in the pseudocode is described in Table 1.

The BLOSUM62 matrix can be reduced to the size of 15x15 based on the above
compression. By applying the same reduction, the PSSM can also be compressed into
Lx15. Here, L is the sequence length of the protein.

3.4 Training and Testing

The commonly used RS126 set was applied to compare the results with previous
studies. The RS126 data set was proposed by Rost & Sander [27] and is known to be
a non-homologous set which shares less than 25% sequence identity. The random
forests algorithm performs bootstrap test with the training data. In other words, one-
third of the instances are left out in the construction of the kth tree and these are
applied for classification. Therefore, in random forests we do not need to perform a
cross-validation. Nor we need to save a separate test set to obtain an unbiased
accuracy values. However, the current study applied two thirds of the original data for
training and one third for testing to confirm the result obtained from the training data.

3.5 Parameter Optimization

In the random forests program, the only parameter to be optimized is the number of
features called mtry that are randomly selected at each node [8]. As a rule of thumb, the
author suggested that it could be set as the square root of the number of whole features.
Including this value, this study tested different mtry values to find the optimum value.

3.6 Binary Classifiers

Six binary classifiers, such as three one-versus-rest classifiers (H/~H, E/~E and
C/~C), and three one-versus-one classifiers (H/E, E/C and C/H) were created based on
the previous study [16]. Here, the name ‘one’ in one-versus-rest classifier refers to
positive class and the name ‘rest’ means negative class. Likewise, the name ‘one’s in
one-versus-one classifier refers to positive class and negative class respectively. For

596 G. Altun et al.

example, the classifier H/~H classifies the testing sample as helix or not helix and the
classifier E/C classifies the testing sample as sheet or coil.

4 Results

4.1 Parameter Optimization

Table 2 presents the result of applying different mtry values (the number of features
randomly selected) based on the Blosum62 and reduced PSSM concatenated encoding
scheme. In the second column of the table, the value 22 is obtained from the square root
of the whole dimension of the feature: the whole dimension is (20+15) * 13 = 455. As it
can be seen from the table, the accuracy values are almost same even though we choose
the larger mtry values. This means that the square root value is almost the optimal.

Table 2. Comparison of different mtry values

Accuracy (%) for different mtry values Binary
classifier 22 50 100 200

H/~H
82.2
85.1

82.1
85.6

83.3
85.6

82.1
85.1

4.2 Encoding Scheme Optimization

Table 3 shows the result obtained by applying different encoding schemes into the
random forests. Two different accuracy values are displayed. The first row is obtained
by bootstrap test on the training data and the second row is on the test data. As it can be
observed from the table, both the reduced Blosum62 matrix and the reduced PSSM
encodings present equal level of accuracy values when compared with the unreduced
counterparts whether applied alone or applied with concatenated form. This result
proves that there is no information loss from the feature reduction and our algorithm
for this reduction works properly. Among the all different encoding schemes, the
reduced PSSM encoding shows the best performance. The reduced PSSM encoding
performs comparable to the concatenated encoding of reduced PSSM and BLOSUM62
matrix. Besides reduced PSSM shown in the last column has 13*15=195 features
whereas unreduced PSSM 13*20=260 features. This means that ~25% feature
reduction is achieved using by our algorithm while still achieving high accuracy.

Table 3. Comparison of different encoding schemes for H/~H binary classifier

 PSSM
Reduced
 PSSM

BLOSUM
Reduced

BLOSUM
PSSM+

BLOSUM

Reduced
PSSM+

BLOSUM

Reduced
PSSM+

Reduced
BLOSUM

H/~H
 82.3
 85.5

82.5
85.7

76.9
80.7

77.2
80.8

82.3
85.1

82.2
85.1

81.7
85.0

 A Feature Selection Algorithm Based on Graph Theory and Random Forests 597

In Table 4, the all six binary classifiers are tested based on BLOSUM and PSSM
combined encodings. Once again, it can be observed that the reduced PSSM encoding
has almost the same performance as the unreduced counterpart against all six binary
classifiers.

Table 4. Accuracy results with BLOSUM+PSSM encoding

Binary
classifiers

Accuracy for
PSSM+BLOSUM

Accuracy for
reduced

PSSM+BLOSUM

Accuracy for
reduced PSSM

H/~H
82.3
85.1

82.2
85.1

82.5
85.7

E/~E
83.9
81.1

83.7
81.1

84.0
81.0

C/~C
76.1
75.5

75.7
74.9

76.3
75.6

H/E
85.2
83.1

85.3
82.7

86.5
84.0

E/C
79.5
78.7

78.9
78.6

80.6
80.3

C/H
82.0
83.2

82.1
82.9

82.2
83.3

4.3 Time Comparison

Table 5 shows the execution times of reduced PSSM encoding scheme versus
PSSM+BLOSUM encoding scheme with different number of trees. Our proposed en-
coding scheme reduced PSSM has a faster execution time. Also, when using 2000
trees, PSSM+BLOSUM encoding scheme didn’t run after some time due to its high
dimensionality whereas reduced PSSM encoding could run. These results show that
reduced PSSM encoding could be used to reduce space and time complexity
drastically where the data dimensionality is very high.

Table 5. Comparison of execution times for reduced PSSM vs. PSSM+BLOSUM

Encoding Scheme
Tree size

PSSM+BLOSUM Reduced PSSM

100 25min 58.9s 5min 53.7s

500 153min 50.6s 31min 8.5s

1000 267min 31.9s 66min 15.8s

2000 _ 124min 24.7s

598 G. Altun et al.

5 Conclusion

In this paper, we proposed a novel algorithm for feature selection based on cliques and
evolutionary information of proteins. We tested our algorithm using random forests
and different encoding schemes for the secondary structure problem in proteins. These
algorithms were tested on a condensed and non-condensed data set. We found out that
the prediction accuracies for both data sets were almost similar. These results show
that a significant amount of space and time can be saved while still achieving the same
and high accuracy results by using a subset of the features when these features are
carefully selected. These results show that it is important to select features from data
that are more significant for training and testing instead of using all the features set.
Also, using our novel algorithm, we achieved about 25% reduction in space and time.
In the future, we plan to enhance our algorithm using different approaches from graph
theory such as vertex cover and machine learning algorithms such as SVM. We will
also test different evolutionary matrices and apply different encoding schemes.

Acknowledgments. This research was supported in part by the U.S. National
Institutes of Health under grants R01 GM34766-17S1, and P20 GM065762-01A1,
and the U.S. National Science Foundation under grants ECS-0196569, and ECS-
0334813. This work was also supported by the Georgia Cancer Coalition (GCC) and
the Georgia Research Alliance. Gulsah Altun and Hae-Jin Hu are supported by
Georgia State University Molecular Basis of Disease Fellowship.

References

1. Altschul, S. F., Madden TL., Schaffer AA., Zhang J., Zhang, Z. , Miller, W., Lipman DJ.:
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,
Nucleic Acids Research, Vol 25, no.17 (1997) 3389-3402

2. Altun, G., Hu, H.-J., Brinza, D., Harrison, R.W., Zelikovsky, A. and Pan, Y.: Hybrid SVM
kernels for protein secondary structure prediction, Proc. IEEE Intl Conf on Granular
Computing (GRC 2006), 762-765.

3. Aydin Z., Altunbasak Y., and Borodovsky M.: Protein secondary structure prediction for a
single-sequence using hidden semi-Markov models, BMC Bioinformatics. (2006) Vol. 7,
178

4. Berman, H., Henrick K., Nakamura H. and Markley J.L.: The worldwide Protein Data
Bank (wwPDB):ensuring a single, uniform archive of PDB Data

5. Birzele F. and Kramer S.: A new representation for protein secondary structure prediction
based on frequent patterns. Bioinformatics (2006) Vol. 22, no.21, 2628-2634

6. Butenko, S., Wilhelm, W.: Clique-detection models in computational biochemistry and
genomics. European Journal of Operational Research (2006). To appear. Available online
at http://www.sciencedirect.com/

7. Breiman, L.: Random Forests. Machine Learning Vol. 45. no. 15-32
8. Breiman, L. and Cutler, A.: Random Forest, http://www.stat.berkeley.edu/~breiman/

RandomForests/cc_software.htm
9. Bystroff, C., Thorsson, V., Baker, D.: HMMSTR: a Hidden Markov Model for Local

Sequence Structure Correlations in Proteins. J Mol Biol. (2000) Vol. 301 173–190.

 A Feature Selection Algorithm Based on Graph Theory and Random Forests 599

10. Chou, P.Y, Fasman, G.D.: Prediction of protein conformation. Biochemistry. (1974) Vol.
13, no.2, 222–245.

11. Efron, B. Tibshirani, R.: An Introduction to the Bootstrap. Chapman and Hall, New York
(1993).

12. Fleming, P.J., Gong, H. and Rose, G.D.: Secondary structure determines protein topology.
Protein Science, Vol. 15, (2006) 1829-1834

13. GOR Garnier, Osguthorpe and Robson.: Analysis of the accuracy and implications of
simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol.,
(1978) Vol. 120 97-120

14. Henikoff, S. and Henikoff, J. G.: Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. (1992) Vol. 89, 10915-10919.

15. Hu, H., Pan, Y., Harrison, R. and Tai, P.C.: Improved protein secondary structure
prediction using support vector machine with a new encoding scheme and an advanced
tertiary classifier,” IEEE Trans. NanoBiosci., (2004) Vol. 3, 265

16. Hua, S. and Sun, Z.: A Novel Method of Protein Secondary Structure Prediction with High
Segment Overlap Measure: Support Vector Machine Approach," J. Mol. Biol, (2001) Vol.
308, 397-407

17. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring
matrices. J Mol Biol. (1999) Vol. 292:195–202.

18. Karypis, G.YASSPP: better kernels and coding schemes lead to improvements in protein
secondary structure prediction.Proteins. (2006) Vol. No. 64(3):575-86

19. Kloczkowski, A., Ting KL, Jernigan RL, Garnier J. Combining the GOR V algorithm with
evolutionary information for protein secondary structure prediction from amino acid
sequence. Proteins. (2002) Vol. 49, 154-166.

20. Kim, H., Park, H.: Protein Secondary Structure based on an improved support vector
machines approach. Protein Eng. (2003)

21. Kurgan, L. and Homaeian, L.: Prediction of Secondary Protein Structure Content from
Primary Sequence Alone-A Feature Selection Based Approach Machine Learning and
Data Mining in Pattern Recognition Vol. 3587 (2005) 334-345

22. Niskanen, S. and Östergård, P.R.J.: Cliquer User's Guide, Version 1.0, Communications
Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48, (2003).

23. Östergård, P.R.J., A fast algorithm for the maximum clique problem, Discrete Applied
Mathematics, (2002) Vol.120,0 no.1-3, 197-207

24. Przytycka, T., Aurora, R., Rose, G.D.: A protein taxonomy based on secondary structure.
Nature Structural Biol. Vol. 6 (1999) 672-682.

25. Przybylski, D, Rost, B.: Alignments grow, secondary structure prediction improves.
Proteins. Vol. 46 (2002) 197-205.

26. Rost, B.: Rising accuracy of protein secondary structure prediction. In: Chasman
D.,editor., Protein structure determination, analysis, and modeling for drug discovery.
New York: Dekker, (2003) 207-249

27. Rost, B. and Sander, C.: Prediction of protein secondary structure at better than 70%
accuracy, J. Mol. Biol., (1993) Vol. 232, 584-599.

28. Shi, S. Y. M. and Suganthan, P.N.: Feature Analysis and Classification of Protein
Secondary Structure Data, In Lecture Notes in Computer Science, Vol.2714, (2003) 1151-
1158, Springer-Verlag Berlin, Germany

29. Su, C.-T., Chen, C.-Y. and Yu-Yen, Ou.: Protein disorder prediction by condensed PSSM
considering propensity for order or disorder, BMC Bioinformatics, (2006) Vol. 7., 319

30. Vishveshwara, S., Brinda, K.V., Kannan, N.: Protein Structure: Insights from Graph
Theory Jl Th Comp Chem. (2002) Vol. 1., 187-211

600 G. Altun et al.

DNA Sites Buried in Nucleosome Become Accessible at
Room Temperature: A Discrete-Event-Simulation Based

Modeling Approach

Amin R. Mazloom1, Kalyan Basu1, Subhrangsu S. Mandal2, Mehran Sorourian3,
and Sajal Das1

1 CReWMaN Lab, Department of Computer Science and Engineering
2 Department of Chemistry and Biochemistry

3 Department of Biology
The University Of Texas at Arlington, Arlington TX 76019-23015, USA

Abstract. Conformation of a canonical nucleosome inhibits the direct access
of the binding proteins to portions of nucleosomal DNA. Nucleosome dynamics
establish certain pathways through which nucleosome gets remodeled (sponta-
neously, covalently or non-covalently) and the buried DNA sites become acces-
sible. Currently for most pathways no single model is available to capture the
temporal behavior of these pathways. Plus traditional diffusion-based models in
most cases are not precise. In this work we have given a systematic overview of
such pathways. Then, we manipulate the probability of a binding site on array of
N nucleosomes and chromatin of length G base pairs . We further identify three
of the widely accepted thermal-driven (passive) pathways and model those based
on stochastic process and the Discrete-Event-Simulation. For the output of the
models we have sought either the site access rate or the sliding rate of the nucle-
osome. We also show that results from these models match the experimental data
where available.

1 Introduction

DNA access is the key to cell protein machinery both in prokaryotes and eukaryotes.
The long DNA chain of the eukaryotes use a systematic hierarchical compression. In the
lowest compaction level the genetic material comprises arrays of coiled DNA around
globular octamer of cationic nucleus proteins (histone) [1]. Each of these array elements
is referred to as nucleosome and the chain of the ∼1.65 left-handed superhelical turn is
known as chromatin [2][3].

A nucleosome component consists of ∼200 base pairs (bps) (∼147 nucleosomal-DNA
bps), ∼ 153 linker-DNA bps) in euchromatin which is the most permissible
chromatin conformation in gene expression [1]. Higher order DNA structures are also
available in the form of 30nm chromatin fiber [4] and heterochromatin [15], all of which
encapsulate the multi-billion base pairs of higher organism in the nano-metric volume
of nucleus. Massive research in the past thirty years on the chromatin structure and dy-
namics has revolutionized our knowledge on chromatin and its dynamics, yet much of
the actual mechanistic is still far from completely understood. The experimental data
of in-vivo and in-vitro assays have played an important role in the success of biologists

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 601–614, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

602 A.R. Mazloom et al.

and biochemists in one or more of following aspects: (a) explaining the nature of the
nucleosome related bio-processes, (b) proposing rational speculations where no explicit
indication of actual mechanism could be observed, or (c) providing some useful em-
pirical data in different domains (time, concentration , gene expression level , etc.) that
would help further discoveries and validations. Scientists are now convinced that, in or-
der to have a better understanding of a biological process they have to understand that
at the cell level. The fundamental challenge in such a system-level understanding is the
complexity of the molecule bodies and their interactions at the cell level, and this com-
plexity increases manifold in higher scales. An example of that is the interaction of cell
ensembles in a tissue. For this purpose one needs to have individual models for lowest
level processes in place and very finely define their interaction in hierarchical order. We
have previously defined the concept of stochastic discrete event simulation of biological
systems iSimBioSys [5] and introduced this lower biological function modeling method.
We further have shown how these lower level models can be used to build a complex bi-
ological system. The models that we have introduced includes: (1)DNA-protein binding
[27], (2) Protein-ligand docking [6], (3) Cytoplasmic reaction [26], and (4) Molecule
intake by bacteria [28]. In this paper we use the same concept to develop parametric
understanding of nucleosome dynamics specifically the passive pathways.

The dynamics of nucleosome establishes certain pathways for accessing the hindered
portions of nucleosomal DNA (nDNA). From the energetic point of view, a pathway
that requires energy for its progression is called an ’Active pathway’ and if it is sponta-
neous, is referred to as a Passive pathway. For the latter which is the focus of this paper
we incorporate spontaneous unwrapping and rewrapping and also nucleosome sliding
pathways. We implement two mechanisms for nucleosome sliding: twist-defect [7] and
planar-bulge inchworm [8]. Also we try to benefit our modeling approach from the
virtue of any of biophysical and/or biochemical models that are available elsewhere and
fit appropriately with our schema. In this work, we first find the probabilities of finding
a motif of length n elsewhere genome wide. Second, we propose a stochastic model
for unwrapping and rewrapping and come up with a closed form solution. Thirdly, for
twist-defect and planar-bulge inchworm we propose two models both of which are fully
stochastic, where the first model is sequence specific. The rest of the paper is organized
as follows: We briefly discuss the important aspects of nucleosome dynamics in Sec-
tion 2. Motif access pathways and the pathway model is presented in Section 3. Section
4 discusses the stochastic component of the model and proposes the abstracts for the
species. In Section 5, two model each corresponding to one mechanisms of DNA access
is proposed. Numerical analysis and validation is given in Section 6. Conclusions are
drawn in the last section.

2 Nucleosome Dynamics

Nucleosome is not a monolithic static assembly. In literature the dynamics of nucleo-
some is segregated into three categories; however there is a belief that conformational
fluctuation is the forth category. Therefore, a nucleosome exhibits at least four dynam-
ics: (1) compositional alternation, (2) covalent modification, (3) translational reposi-
tioning, and (4) conformational fluctuation. Compositional alternation is done by some

DNA Sites Buried in Nucleosome Become Accessible at Room Temperature 603

remodeling enzymes to promote gene activation [12]. For example, although canonical
nucleosomes are deposited during cell replication, H2A variant H2A.Z are highly en-
riched in promoter area which is deposited by SWR1 chromatin-remodeling complex
[11]. Post translational modifications including acetylation, methylation, phosphoryla-
tion and ubiquitination [13] are among the covalent modifications that can destabilize
the histone cores and exploit DNA access to the biological processes. ATP-dependant
remodelers use energy derived form ATP hydrolysis to loosen the contacts between
the coiled DNA and the histone core. All these remodelers have at least one ATPase
domain that provides the energy necessary to alter the nucleosome conformation. For
instance, it takes less than one second for SWI/SNF to remodel a nucleosome1. The
nucleosome remodeling is a catchall for different mechanisms proprietary to each fam-
ily of remodellers or an individual protein complex. Some of the biochemical activities
that the remodeling mechanisms evolve from include: creation of translational positions
of histone octamer, ejection and spacing of nucleosomes, histone octamer transfer, cre-
ation of remodeled di-nucleosome species and altered restriction enzyme access [10].
In translational repositioning the bp position of core particle in the genome changes to
enhance the target site access. This process could happen both intrinsically or by the aid
of remodellers. Conformational fluctuation is a periodic minor change to the conforma-
tion of a canonical nucleosome happens in the room temperature and will be further
elucidated in successive sections.

3 Motif Access Pathways

Coiled structure of DNA in nucleosome confined the accessibility of the portion of
DNA where the minor groove of helical turn faces the histone core. In euchromatin,
passive and active pathways make a buried target motif (site) accessible by employ-
ing one or more of the nucleosome Conformation Alternator Families (CAF). Main
CAFs include: (1) Thermal spontaneous conformational fluctuations [3] [8], (2) ATP-
dependent chromatin remodeling [9], and (3) covalent nucleosome modifications [10].
Each CAF might have different classes and mechanisms, where they could work indi-
vidually or in a concerted fashion. In the latter, they facilitate each others’ functions,
allowing multiple options to be considered during the evolution of a specific pathway
for an individual motif access. The eventual goal is to have a properly structured tem-
plate with all compulsive pre-initiation complexes, available in a timely manner.

3.1 Pathway Model

In eukaryotes assembly of transcription apparatus and associated basal transcription
comprises access of promoter by several other TF target sites. Every access pathway is
distinguished based on the mechanism that the pathway employs. Each of these path-
ways could further be broken into complex specific pathways. Figure 1 depicts a set of
plausible mechanism level motif access pathways part of which is the focus of our in-
vestigation. In this paper we just concentrate on passive pathways that is shown in light

1 The mechanisms implemented by remodelers and their pathways are beyond the scope of this
paper. Currently in CReWMaN, we are conducting another work to model the pathways of
SWI/SNF and ISWI remodelers.

604 A.R. Mazloom et al.

Fig. 1. nDNA accessibility mechanism pathway; each pathway starts with one trigger event;
HA-mechanism nucleosome alternation block represents the mechanism implemented by His-
tone acetylation; R-mechanism nucleosome conformation alternation and R-mechanism nucle-
osome transposition depicts two classes of remodeling mechanism that derive the remodeling
process

green in Figure 1. Each block in a pathway is an event and since the cell is a random
environment due to the stochastic resonance [16] we will treat each pathway as a series
of uncorrelated random events in the time and space and offer a probability distribution
for them. The collaborative effect of these stochastic events in a concerted fashion will
lead to motif accessibility. In distinguishing the series of events in a pathway we will as-
sume the discrete event simulation methodology. Thus, parallel events are allowed to be
executed as long as they do not have resource access collision among them, otherwise
they need to be serialized [17].

4 Assumptions and Stochastic Components

In order to manipulate the temporal behavior of each under study pathways of Figure
1, we need to have execution time of individual components (event) and the respective
probability distribution of each event. For that purpose we need to make certain ratio-
nal assumption without losing the generality and introduce the abstract bodies that can
represent physical topology of the individual participant of the process. The abstract
bodies that we shall use along the paper are as follows:

DNA: The DNA model that we are using is the rod-like model from [19]. Such a DNA
model is formed from beads that are inter-connected by harmonic spring in a spatially
harmonic fashion. This model defines three dynamics for the DNA: longitudinal, rota-
tional and bending. These dynamic will further be used in the mechanical models.

Nucleosome: Nucleosome consists of two components, the histone core and nDNA.
Throughout this paper, histone core is assumed to be a rigid cylinder with no structural
alternation. The nucleosomal DNA is attached to the histone core at 7 absorption points

DNA Sites Buried in Nucleosome Become Accessible at Room Temperature 605

per super-helical turn, starting from the dyad [23] axis down to end of core cylinder.
These contact points are perpendicular to the super helix axis of nucleosome. In [20]
the nucleosomal DNA is mapped into Frenkel-Kontorova chain and the total energy of
the canonical nucleosome in equilibrium is manipulated based on three energy compo-
nents: elasticity energy (El), docking point energy (Ed), and sequence energy (Es). We
shall follow the same energy concept for manipulating the energy barriers in the model
where applicable.

Proteins: In our processes, proteins appear in two forms: (a) single protein which is
one polypeptide of amino acids molecule within its proper tertiary structure (e.g. a sin-
gle transcription factor recruiter), or (b) protein complex that is made of number of
protein molecules in their quaternary structure prior to binding to the target site, such
as RNAP II holoenzyme or SWI/SNF remodeling complex. In either case we abstract
the molecules with a spherical body. For the former we approximate the diameter of the
sphere by the average width of the protein, where in latter this is done through averaging
over width of the complex.

Chromatin Wide Collision
For any binding to happen a priori is to have collision between the parties, for our work
we follow the collision theory concept of an infinitesimally small time Δt. We assume
that the continuous nucleosome chain inside the nucleus is not repositioning. Also since
the nucleosome array are available in the form of continuous chain, therefore their pop-
ulation density is non-uniformly distributed and is directly proportional to the density
of the chain . For this purpose, we divide the nucleus into s equal volume partitions
νs = ν/s where each partition will have ρi = Ni/νi nucleosome density, Ni being the
number of nucleosomes in partition i and νi as the respective partition volume. We fur-
ther assume that the second colliding party, e.g. TF or RNP II, is uniformly distributed
inside the nucleus. Hence, one can find probability of collision between a TF and any
nucleosome component in partition i druring Δt from the same way as calculated in
[26] from:

pi
col = π(rp + 1/2(rnuc + r�))2

√
π8kbTΔt[TF]m−1/2

p νs (1)

In Eqn.(1), rnuc and r� are the nucleosome and linker DNA (lDNA) radiuses, rp and
mp are TF radius and mass, kb is the Botzmann constant, T is kelvin temperature, and
[TF] is the transcription factor concentration.

In the partition borders, the chain structure of chromatin enforces a close correla-
tion among the nucleosome population distribution in the local neighboring. Hence the
effect of choosing the distribution form either in the final results is negligible. Consider-
ing Eqn.(1), in order to get the collision probability anywhere in the nucleus we can use,
pν

col = 1/s
∑

i ρip
i
col. Also, the probability just to collide with a specific nucleosome

is:

pN
col =

pν
colvnuc

ν
=

pν
colr

2
nucLnuc�G/200�

1/2(rnuc + r�)2(lnuc + l�)
(2)

Here, lnuc is the nucleosome length where l� is the lDNA length and G is the bp length
of genome.

606 A.R. Mazloom et al.

Each complete helical turn (360◦) consists of ∼10.2 bps [8] in the nucleosome relax
condition, where for our calculation we make rough assumption of 10 bps per helical
turn. The outer face of each symmetric half of the helical turn forms 6 DNA histone core
association points, which along with an additional contacts between the N terminal of
αN −helix and the N termini of histone H3 tail is referred as Super-Helical- Locations
(SHL) [8],(see Figure 5). Therefore, in each nucleosome we have 14 association points.
Also we know that DNA packaging and occlusion causes on each helical turn, inhibits
the access to those bps that face the histone octamer where the minor groove of DNA
contacts the core particle, at SHLs, this structural conformation is further elucidated in
[23]. Having these in mind, we derive few useful probabilities. Probability that a motif
i (i � 10) bps lays in one helical turn, ph, is:

ph =
14(10 − i + 1) × L

(L − 147 + 1)(147 − �)
(3)

In the above expression, L is the length of DNA in bps and � is the average linker DNA
length. In each helical turn coiled on canonical nucleosome only half of the base pairs
are accessible; therefore the probability of a motif of length i, (i � 5) to be directly
accessible is: pi

m = ph
5−i+1
10−i+1 .

Seemingly the probability of having the motif of length i, (i ≤ 147) in one nucleo-
some, pi

n will be: pi
n = L(147−i+1

(147−�)(L−i+1) and if L � i then, pi
n ≈ 147−i+1

147−� .

������
��	�

�	���������������

�����	�����������	���

����	
�����	�������	����

�����

������ ��	�������������

��

Fig. 2. Left side: The upper image shows the site buried in the nucleosome, and the lower one
shows site access made possible through translational repositioning; Right side: The upper shows
the dynamics that can lead to translational repositioning of nucleosome, and the lower image
plots the partial uncoiling of nDNA that makes a site accessible

Now we make another rational assumption for the structure of the DNA turns around
the histone octamer and keep up with that for the rest of the paper: DNA helical turn
on entry and exit points of nucleosome have 180◦ phase difference. On the other hand,
if we assume that on entry point DNA enters with major groove and leaves the nu-
cleosome with minor groove, therefor the leading flanking tail of the nDNA is always
accessible and the lagging one is doomed. Also we assume all of the motifs that we
are working with in this paper shall remain in one super-helical turn. Hence we avoid
trapping nucleosome in a DNA knot [18]. This assumption enforces a maximum motif
length imax = 147/2 ≈ 73. Another useful probability will be the probability of ac-
cessing a motif of length i on the linker. If � ≈ 53 the average length per linker DNA

DNA Sites Buried in Nucleosome Become Accessible at Room Temperature 607

and g = 3.5 the accessible length of lagging flanking nDNA, then the maximum length
of motif on the linker DNA, that could be accessed without moving the nucleosome is:
i� = � + 5 + g ≈ 62.

Furthermore probability of finding a motif of length i , i � 63 in the linker DNA
could be written as:p�m = (�j+9−i+1)×(N−1)

L−i+1 = �j+10−i
147−� , where �j is the lDNA be-

tween jth and j + 1th nucleosome.

5 Spontaneous Mechanisms of DNA Accessibility

Most of the DNA involved reactions in eukaryotes requires DNA packaging alternation
for specie accessing the target site. Amongst mechanisms spontaneous nucleosome al-
ternation is a slow phenomena driven by the thermal molecular energy that happens in
the room temperature. In this work, we try to use the discrete-event-simulation approach
to model three widely accepted mechanisms of this kind including: partial unwrap-
ping/rewrapping of nucleosomal DNA, twist-defect nucleosome shifting, and planar-
bulge inchworm sliding of nucleosome2.

5.1 Partial Unwrapping/Rewrapping of Nucleosomal DNA

The propensity of nucleosomal DNA (nDNA) to partially unwrap on either end, gives
temporal access to the DNA sequence whose readability was obstacled in the canonical
conformation. This scaffold is driven by thermal force in a periodic manner [3] [9].

(a) (b)

Fig. 3. (a) Projecting the partial unwrapping to a renewal process; Upon arrival of TF during state
1 life time there is a chance of accessing the hindered sites; (b) Process life/residual life concept:
process life lays between the two state arrival time, where the residual life is the interval between
present time and the arrival moment of next state

As reported in [3], nDNA remains fully wrapped for ∼250 ms then spontaneously
becomes partially unwrap, it remains in that state for ∼10 − 50 ms and then rewraps
again. In the latter state, if any of the protein machinery TFs find their target sites on
the DNA , which would have been hindered otherwise, binding is highly probable. This
scaffold manifests a nature of renewal processes [25], where the active service time of

2 Proofs of the selected expressions that appear in the subsequent sections are available as
supplementary materials online at BioNet web site: http://crewman.uta.edu/dynamic/bone/
publications.htm

http://crewman.uta.edu/dynamic/bone/publications.htm
http://crewman.uta.edu/dynamic/bone/publications.htm

608 A.R. Mazloom et al.

the process is the period in which process reside in state 2 of Figuer 3. We assume this
service time is negative exponentially distributed, p(τ1) = e−μτ1 . Therefore, based on
the data in [3] one can say: μ ∈ [20, 100] and λ ≈ 4. Considering a general distribution
for the arrival rate of the binding specie, in order to receive service (binding) it must
arrive when the process is in state 2 and τ2 > 0, where τ2 is the residual life of state
2. Using the m/g/1 queue service model and hippie arrival concept as in [25], we find

p(τ2) = μ+e−μτ2−1
μ2 ; however we need to have τ2 > 0, thus:

p(τ2 > 0) = 1 − p(τ2 = 0) = μ−2(μ2 − μ + 1) (4)

From Eqn.(4) and p2 = μ/(λ+μ), the probability of state 2, we can find the probability
of specie reaches unwrapped nDNA, puw, in time τ from:

puw =
μ2 − μ + 1
μ(λ + μ)

(5)

As we see the puw has an stationary probability and it is justifiable because the two inte-
grations, one in calculating the laplace transform of residual life, and other the implicit
integration in Eqn.(4) have averaged over the time.

Fig. 4. Markovian Random-walk chain with absorbing states: The absorbing states guaranties two
conditions: (a) there will be no re-enter for each walker, and, (b) access to the two exits points
are mutually exclusive to every walker

5.2 Twist-Defect Nucleosome Sliding

Introduction of an anomaly into the super-helix conformation of nucleosomal DNA is
an alternative mechanism to translocate the nucleosome. The concerted translational
and rotational motion of DNA that has high torsional flexibility, leads to injection of
this anomaly to the nDNA. Since this phenomena is impelled by thermal energy at
the room temperature, it is highly confined only to very efficient torsions. Considering
10pb/turn would have ∼36◦/pb in a relaxed nDNA. Therefore twisting or unwinding
the DNA double helix by 36◦ would add or remove one bp to or from the 360◦ heli-
cal turn docked to the histone core between two SHLs [8]. This over-twist/unwound
torsion being introduced at an entry or exit point of a nucleosome would have to suc-
cessfully travel all 147 bps around nucleosome to shift the nucleosome for 1 pb. From
this point on we work only with over-twist because the calculation for both are roughly
similar. The fluctuation of the twist between each pair of docking points forms a mono-
dimensional random walk (RW). To model this random walk, we define 13 states that
resemble the location of the twist between each pair of 14 docking points at arbitrary

DNA Sites Buried in Nucleosome Become Accessible at Room Temperature 609

time t. Our approach is different from the one used in [20] in following aspects: (i) We
have used an- isotropic RW where they have isotropic RW (ii) Our Markovian step pro-
cess has two absorbing state at both ends but they did not include any absorbtion (iii)
our model is fully stochastic where as they use deterministic computation in the middle
of formulation (iv) we end up with a stochastic process rather than diffusion constant.

In order to move in either directions, twist will require to overcome docking energy
(Ed), elastic (El) energy, and sequence energy (Es) barriers. The first two energy bar-
riers are already embedded in the defect potential energy cost expression that is in [20]
which is based on the Peierls-Nabarro potential energy concept [21]. By assembling
all parts of twist PN equation and integrating the expression given in [21] the aver-
age energy of a twist is written as: ΔUtwist = 1

12C +0.45U0. Where in this expression
C ≈ (84−120)kbT is the effective Frenkel-Kontorova (FK) combined twist and stretch
constant, and U0 ≈ 6kbT is the SHL docking energy. In ΔUtwist the an-isotropic bend-
ability of DNA is not included. This propensity of DNA is sequence dependant and the
respective energy cost can be calculated from the following equation which is obtained
from [20] after proper substitutions:

Es(k) =
10∑

i=1

−αs
i+10(k−1)cos(iπ/5) + βs

i+10(k−1) (6)

Eqn.(6) defines a 10 bp periodic energy field around the histone and linearly assigns two
bending energy charges to each dinucleotides, isotropic (βs

i) and an-isotropic (αs
i). Here

1 � k � 13 represents the state of defect in Figure 4, (0 and N = 14 are the absorbing
states). The two approximate bending energy charges per dinuleotide variants, in kbT
unit, are as follows: (A/T) : α = −43 β = −1.5 , (G/C) : α = 48 β = 10 , and
(others) : α = 0 β = 3.5 . The defect follows a one dimensional Random Walk (RW)
on the nucleosome to exit from either end. If the defect that is inserted at one end (entry
point) leaves the nucleosome from the other end (exit point) , this would result a one bp
sliding of the nucleosome. We use Mean First Passage time (MFPT) to get the defect
leaving time from entry point (ten) or exit point (tex). Using the splitting probability
concept given in [22] we can find probability of reaching one site before being absorbed
by the other. Therefore, we will have the probability to exit from entry point (pen), and
probability to exit from the exit point (pex) as follows:

pex =

(

1 +
13∑

i=1

u(i)

)−1

where uj(i) =

{
μiu(i − 1), for i > j

μi, i=j

}

(7)

pen =
1 +

∑13
i=2 v(i)

1 +
∑13

i=1 v(i)
where vj(i) =

{
μ−1

i v(i + 1), for i < j
μi, i=j

}

(8)

In Eqns.(7,8) μi = pi/qi, where pi and qi are probabilities of the defect to move one
step to the right or to the left of state i in the unit of time, respectively. Considering the
energy barrier, Es, we can define pi and qi as:

pi =
e−Es(i+1)ωi

e−Es(i−1)ωi + e−Es(i+1)ωi
qi =

e−Es(i−1)ωi

e−Es(i−1)ωi + e−Es(i+1)ωi

610 A.R. Mazloom et al.

ωi = (|Es(i + 1)| + |Es(i − 1)|)−1 is the projection coefficient that project the en-
ergy barrier to [−1, 1], thus, minimize the effect of exp(·) function on the fate of the
probability.

Now we apply the concept of Mean First Passage Time (MFPT) for single dimen-
sional RW on a random lattice form [29]. By applying such a method, the pair of exit
times, ten and tex that are the MFPT from exit point and entry point respectively could
be manipulated as follows:

tex = ΣN−1
k=1 p−1

k + ΣN−2
k=1 ΣN−1

i=k+1Π
i
j=1qip

−1
j τs (9)

ten = ΣN−1
k=1 p−1

k Πk
i=1μiτs (10)

Here τs is one RW step. Also since

ps
i =

i−1∏

k=0

qk

pk+1
ps
1 (11)

is the stationary probability of non-absorbing state i, therefore:

ps
0 = q1

(
N−1∑

i=1

(
i−1∏

k=1

qk

pk+1

)

+ q1 +
N−2∏

k=1

qk

pk+1
pN−1

)−1

(12)

Arrival rate of the defect, λd is confined to: (a) our original assumption that at most
one defect could exit in the nucleosome at any moment which is satisfied by p0 and
(b) the energetic probability of a twist formation which is given by Boltzmann fac-
tor, p(ΔU) = e−ΔU/kbT . Another implicit indication of (a) is λd < μd where μd =
(pextex + penten)−1 is the export rate of defect from either end of the nucleosome.

Having μd, Eqns(7,8) and considering (a) and (b), we can give the following upper
bound for nucleosome sliding rate to the right (5

′
to 3

′
):

λd � (p0 + pN) · pex · μde
−ΔUtwist/kbT (13)

We have elucidated the forward sliding (5
′

to 3
′

wrt dna) of the nucleosome here, like-
wise approach could also be applied to the reverse sliding (3

′
to 5

′
wrt DNA).

Our model is more accurate than the one in [20], since they have used isotropic RW
and ignored the DNA an-isotropic bendability where we have included the sequence
dependant energy directly. Also their diffusion constant was significantly off from real
value and they have to use apply the Es through modified Bessel function to negative
exponentially reduce their diffusion constant. However that would not compensable for
the contribution of absorbtion states that they have not included on their model which
our model comprises. Their intermediate domain switch (to deterministic approach)
would induce approximation overhead and consequently less accuracy.

5.3 Planner-Bulge Inchworm Nucleosome Sliding

Formation of bulge is a prominent feature of the nDNA that is cognate with high DNA
bendability. If during the final interphase of state 1 (partial unwrap) in section 5.1 a

DNA Sites Buried in Nucleosome Become Accessible at Room Temperature 611

more distal sequence of DNA be pulled in to the nucleosome and be adsorbed to the
entry SHL then a bugle is formed. There are two types of bugle: planar and topological
bulge. In the planar bulge the entire bulge falls in a same plane, while the topological
bulge has a more complex structure where the DNA crosses over itself and creates a
twist [23]. In this paper we just consider the small planar bugle since in the passive
paradigm it is highly unlikely to have topological bulge. Small bulges are 10 or 20 bps
in length, and the reason for having a multiply of 10 bps in their length is to encompass
an even number of 360◦ helical turns. Because otherwise it would impose a phase shift
to the nucleosomal DNA which energetically is very costly [8].

Sliding of histone octamer is a consent of bulge formation and annihilation along the
nDNA. This resembles the motion of an inchworm creeper around the nucleosome. In
[24] they defined an energy barrier for small bulge, then used a one dimensional diffu-
sion to move the bulge around the nucleosome and came up with a diffusion constant.
Knowing the motion of the bulge around the DNA is not a deterministic unidirectional
motion; therefore, casting a stochastic process to the deterministic domain might further
impose inaccuracy and pushes the results away from the real value. In our approach we
use the same energy barrier as in [24]. To model the fluctuation of the bulge we use a
RW but with some distinction that as the one we applied earlier for twist defect. One
major difference in this RW is the isotropy of the steps; therefore in the step process
diagram of Fig. 4 for all steps probabilities pi = qi = 1/2 and Es would not have any
effect in fluctuation of the bulge. Adopting the energy barrier model from [24] after
applying proper substitutions, the energy cost ΔU for a bulge of length l will be:

ΔUbulge =
(
20π4R4

NE5
aσkbT

)1/6
(

3.4lÅ

RN

)1/3

(14)

In (14) RN is the nucleosome radius, Ea is the docking energy per unit of length, kb

is the Boltzmann constant, T is the absolute temperature, and σ is persistence length of
DNA. Persistence length of DNA is the limit beyond which DNA will loose its physical
behavior as a pure elastic rod. DNA bend persistence length is ∼150 bps (51 nm).

By applying the same RW algorithms, while pi = qi = 1/2, ∀iε[1, 13], we can
find the tex and ten from the same approach as for twist defect. Again the export rate
of the bulge is μb = (pextex + penten)−1. For calculation of arrival rate of bulge λb is
very similar to the one for twist: λb � (p0 +pN) ·pex ·μbe

−ΔUbulge/kbT × l . The factor
l on the left side of expression is the bulge size. The argument that we made earlier for
direction of nucleosome sliding as a result of twist-defect RW stays valid for the bulge
as well.

6 Numerical Analysis

In this section we supply some of numerical results that have been derived from the
theoretical models we presented earlier. For twist-defect nucleosome sliding, we used
two sequences: PSEN1 bp ε [−700, −200] (human gene responsible for producing
precenilin-1 protein), and AHI1 bp ε [+181, +681] (gene responsible for Jouberin pro-
tein in human). Figure 5.(a) shows the variation of nucleosome sliding rate for different

612 A.R. Mazloom et al.

(a)
0 1 2 3 4 5 6 7

x 10
5

−200

−100

0

100

200

300

400

500

600

Time (sec)

N
uc

le
os

om
e

D
is

pl
ac

em
en

t (
bp

s)

5’ to 3’
3’ to 5’
Relative

(b)
0 100 200 300 400 500 600

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Relative bp index in sequence

 N
uc

le
os

om
e

S
lid

in
g

R
at

e
d (

s−1
)

PSEN1 sequence
AHI1 sequence

Experimental data
thersholds

G/C−A/T
reach area

Less rigid
nDNA area

Fig. 5. The twist-defect mechanism used for manipulations in both graph (a) The red line depicts
the forward displacement wrt to bp at position -700 in PSEN1 gene vs. time; The blue line shows
the amount of reverse displacement wrt reference bp index vs. time; Green line shows the net
displacement of nucleosome, where a negative value indicates the intrinsic sliding of nucleosome
tends to slide in reverse direction in this sequence (b) shows the forward sliding rates of the nucle-
osome for PSEN1 HUMAN and AHl1 HUMAN sequences, the reported experimental thresholds
are shown in dashed-lines

base pair in the sequences. As we observe the PSEN1 sequence has larger variation
domain. This biologically implies that the sequence has more an-isotropic segments
(more populated with A/T and G/C di-nucleotides), hence predicating a lower sliding
rate for it. In both sequences the high picks could imply a rotational trap in the DNA
where ATP-dependent remodeling might be required and intrinsic sliding gets stock.
Due to the granularity of the measurement, finding the sliding rates is a challenging
task. Although we could not find any explicit sliding rate for twist defect, we could infer
some thresholds form assays in [14]; These thresholds are depicted by dashed lines.
The sole theoretical model that we could find to the day of this paper, is a diffusion
based deterministic model reported two diffusion constant: D = 580bp/s2 → λd ≈
0.79bp/s and D = 10−6bp2/s → λd ≈ 1.2 × 10−8bp/s for isotropic and an-isotropic
sequences, respectively. Where the diffusion constant is greater than experimental range
by many folds, and for the second one although its closer the lower threshold but still not
within the range. Figure 5.(b) depicts the time required for nucleosome to slide on same
section of PSEN1 in forward (5

′
to 3

′
) or reverse (3

′
to 5

′
) direction; However the more

interesting result shown in this graph is the relative displacement of nucleosome with
respect to the reference bp (-700) position which incorporate both forward and reverse
repositions. For the bulge inchworm model we got λb = 2.14×10−7 for l = 10 bps and
λb = 4.56×10−9 for a bulge length of 20 bps. The bulge results indicate that within an
hour period almost no sliding happens. We concluded that nucleosome sliding through
bulge mechanism is a very rare event. We were not able to find any experimental data
for the bulge model. We used time step , τs = 10−6 throughout our calculations. More
numerical results are available for Sections 4 and 5 that are not presented here due to
space limitation.

DNA Sites Buried in Nucleosome Become Accessible at Room Temperature 613

7 Conclusion

We have created a systematic view of the pathways which comprises the synergy of
events that effect nucleosome dynamics and procures nDNA accessibility. We have elu-
cidated three of such pathways all of which are passive and tried to stochastically model
them. We used the collision theory to manipulate the probability of finding the target
nucleosome component in the genome. Also, we have derived the probability of di-
rect accessibility of a target site in the conformation of a canonical nucleosome. For
each specie participating in the pathways an abstract model is either proposed or em-
ployed from literature. We used the renewal process along with hippie arrival concept to
model the spontaneous unwrapping pathway. For twist-defect we used an-istorpic ran-
dom walk3 based on the sequence bendability energy barrier to find the MFPT and ul-
timately the sliding rate of the nucleosome. Bulge-inchworm is another mechanism for
intrinsic nucleosome sliding that we modeled. As a conclusion to the bulge model we
argued that bulge pathway does not have an appreciative effect on the fate of site access.
Our proposed models are more versatile compared to the available diffusion constant
based models, firstly because we identify the individual micro events that comprise the
process by their physical natures and characteristics, secondly the stochasticity of the
event transitions would grant their proper weight in the process composite. The state of
art of our models is that, whilst capturing the actual nature of biological events, they
are accurate and computationally very fast. The proposed schema has important biolog-
ical implications in explaining the target site access, in-vivo. Currently, we are working
to model some of the prominent active pathways. Having these collection completed,
we can give a comprehensive picture of pre-transcription events inside the nucleus in
presence of TFs, Remodellers, and RNA II holoenzyme. Our model also links molec-
ular properties of DNA and the location of the target sites on nucleosome component
to the timing of transcription activation. This provides us with a general, predictive,
parametric model for this biological function.

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter,“Molecular Biology of
the Cell”, 4th Edition, Garland Science, 2002, ISBN 0815332181.

2. T. Richmond, and C. A. Davey, “The Structure of DNA in Nucleosome Core”, Nat. , vol 423,
pp. 145-150, 2003.

3. G.u Li, M. Levitus, C. Bustamante, and J. Widom, ”Rapid spontaneous accessibility of nu-
cleosomal DNA”, Nat. Struc. & Mol. Bio., vol. 12, pp. 46-53, 2005.

4. D. A. Beard, and T. Schlick, “Computational Modeling Predicts the Structure and Dynamics
of Chromatin Fiber”, Els. J. Strcu., Vol. 9, pp. 105114, 2001.

5. S. Ghosh, P. Ghosh, K. Basu, S. K. Das, and S. Daefler, “iSimBioSys: A Discrete Event
Simulation Platform for in silico study of biological systems”, proc. of the 39th Annual
Simulation Symp. (ANSS06), 2006.

6. P. Ghosh, S. Ghosh, K. Basu, and S. Das, “A Stochastic model to estimate the time taken for
Protein-Ligand Docking”, IEEE CIBCB, 2006.

3 In an-istorpic RW the probabilities of jumps to the left and right states are not necessarily
equal.

614 A.R. Mazloom et al.

7. K. Luger, A. W. Mader, A.W., R. K. Richmond, D. F. Sargent, and T. J. Richmond, “Crystal
structure of the nucleosome core particle at 2.8 resolution”, Nature, vol. 389, pp.251260,
1997.

8. A. Flaus, T. Owen-Hughes, “Mechanism for Nucleosome Mobilization”, J. Biopolymers, vol
68, pp. 563-578, 2003.

9. J. Mellor, “The Dynamics of Chromatin Remodeling at Promoters”, J. Molecular Cell, vol
19, pp.147-157, 2005

10. G. J. Narlikar, H. Fan, R. E. Kingston, “ Cooperation between Complexes that Regulate
Chromatin Structure and Transcription”, Cell, vol. 108, pp.475-487, 2002.

11. A. Saha, J. Wittmeyer, and B. R. Cairns, “Cairns Chromatin remodelling: the industrial rev-
olution of DNA around histones”, Nat. rev. Mol. Cell Biol., vol. 7, pp. 437-447.

12. M. S. Kobor et al., “A protein complex containing the conserved Swi2/Snf2-related ATPase
Swr1p deposits histone variant H2A.Z into euchromatin”, PLoS Biol. 2, E131, 2004.

13. X. Guo, K. Tatsuoka, and A. R. Liu, “Histone acetylation and transcriptional regulation in
the genome of Saccharomyces cerevisiae”, Bioinformatics, vol. 22, pp. 392-399, 2006.

14. S. Pennings, G. Meersseman, and E. M. Bradbury, “Mobility of positioned nucleosomes on
5 S rDNA”, J. Mol. Biol., vol. 220(1), pp. 101-110, 1991.

15. B. Levin, “Genes VIII”, Pearson Prentice Hall , Upper Sadle River NJ, 2004, ISBN
0131439812.

16. K. Wiesenfeld and F. Jaramillo, “Minireview of stochastic c resonance”, Chaos, vol. 8, pp.
539-548, 1998.

17. S. Das, F. Sarkar, K. Basu, and S. Madhavapeddy,“Parallel Discrete Event Simulation in Star
Networks with Applications to Telecommunications”, Int. Workshop on Modeling, Analysis
and Sim. of Computer and Telecom. Sys., 1995.

18. I.M. Kulic and H. Schiessel, “ Nucleosome repositioning via loop formation”, Biophys. J.,
2003.

19. Lumila V. Yakushevich, “Nonlinear Physics of DNA”, Wiley-VCH, Germany, 2004,
ISBN:3527404171.

20. I.M. Kulic and H. Schiessel, “chromatin Dynamics: Nuicleosome go Mobile through Twist
Defects”, Phy. rev. lett. , vol. 91(14), 2003.

21. Y. S. Kivshar, O. M. Braun, and J. S. Kivar, “The Frenkel-Kontorova Model: Concepts, Meth-
ods, and Applications”, Springer, 2004, ISBN:3540407715.

22. N. G. van Kampen “Stochastic Processes in Physics and Cnimstrary”, Elsevier pub., 1992,
ISBN:0444893490.

23. Helmut Schiessel, “The physics of chromatin”, Max-Planck-Institut fur Polymerforschung,
Theory Group, Mainz, Germany, 2003.

24. H. Schiessel, J. Widom, R. F. Bruinsma, and W. M. Gelbart, “Polymer Reptation and Nucle-
osome Repositioning”, Phy. rev. lett., vol.86(19), pp.4414-4417, 2001.

25. L. Kleinrock, “Queueing Systems, Vol. I: Theory ”, Wiley, New York, 1975.
26. P. Ghosh, S. Ghosh, K. Basu, S. Das and S. Daefler, “An Analytical Model to Estimate

the time taken for Cytoplasmic Reactions for Stochastic Simulation of Complex Biological
Systems”, IEEE Granular Computing Conf., 2006.

27. P. Ghosh, S. Ghosh, K. Basu, S. Das and S. Daefler, “A Model to estimate the time taken
for protein-DNA binding for Stochastic discrete event simulation of biological processes,
Accepted for pub. in IEEE CIBCB, USA, 2007.

28. A. R. Mazloom , K Basu and S. Das, “A Random Walk Modelling Approach for Passive
Metabolic Pathways in Gram-Negative Bacteria”, IEEE CIBCB, Canada, 2006.

29. K. P. N. Murthy and K. W. Kehr, “Mean first-passage time of random walks on a random
lattice”, Phys. rev A.,vol.(40),pp.2082, 1989.

Comparative Analysis of Gene-Coexpression

Networks Across Species

Shiquan Wu and Jing Li�

Electrical Engineering and Computer Science Department
Case Western Reserve University, Cleveland, OH 44106, USA

{shiquan.wu,jingli}@case.edu

Abstract. This paper presents a large scale analysis of gene-coexpression
networks (GCNs) across four plant species, i.e. Arabidopsis, Barley, Soy-
bean, and Wheat, over 1471 DNA microarrays. We first identify a set of
5164 metagenes that are highly conserved across all of them. For each
of the four species, a GCN is constructed by linking reliable coexpressed
metagene pairs based on their expression profiles within each species. Sim-
ilarly, an overall GCN for the four species is constructed based on gene
expression profiles across the four species. On average, more than 50K cor-
relation links have been generated for each of the five networks. A num-
ber of recent studies have shown that topological structures of GCNs and
some other biological networks have some common characteristics, and
GCNs across species may reveals conserved genetic modules that contain
functionally related genes. But no studies on GCNs across crop species
have been reported. In this study, we focus on the comparative analysis
of statistical properties on the topological structure of the above five net-
works across Arabidopsis and three crop species. We show that: (1) the
five networks are scale-free and their degree distributions follow the power
law; (2) these networks have the small-world property; (3) these networks
share very similar values for a variety of network parameters such as degree
distributions, network diameters, cluster coefficients, and frequency distri-
butions of correlation patterns (sub-graphs); (4) these networks are non-
random and are stable; (5) cliques and clique-like subgraphs are overly
present in these networks. Further analysis can be carried out to inves-
tigate conserved functional modules and regulatory pathways across the
four species based on these networks. A web-based computing tool, avail-
able at http://cbc.case.edu/coexp.html, has been designed to visualize ex-
pression profiles of metagenes across the four species.

1 Introduction

With the availability of huge amount of genomic data, gene functions are usu-
ally predicted by similarity-based sequence analysis [7,9]. A great challenge in the
post-genomic era is to understand gene regulations, genetic pathways and func-
tional relations/modules of biological organisms at a system level [13,17,18,19,22].

� Corresponding author.

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 615–626, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

616 S. Wu and J. Li

For such a purpose, sequence-based analysis has its limitations because genes
with even very similar sequences may not be functionally related to one another
[11,19]. Therefore, it becomes essential to integrate both genomic information and
microarray data (and some other data sources) in the discovery of gene regula-
tory and functional relations. However, it is still hard or even impossible to iden-
tify regulatory or functionally related genes if studies are limited to only a single
species[19]. This motivates the investigation of gene regulatory and functional re-
lations by integrating both genomic information and microarray data to study not
only a single species, but across multiple species. Recently, much attention has
been paid to the investigation of biological networks and/or conserved functional
modules using multiple species, or multiple tissues. An earliest study has inves-
tigated gene-coexpression networks across humans, flies, worms, and yeast[19],
and has discovered some global conserved genetic modules across these species.
Since then, a number of studies[4,10,15] have been proposed to analyze complex
gene-coexpression networks across species. Berg and Lässig[4] have proposed a
Bayesian alignment method and have identified significant conservations of gene
expression clusters and gene functions by analyzing GCNs between humans and
mice. Lelandais et al. [15] have adopted the Multi-dimensional Scaling technique
to compare GCNs from budding and fission yeasts and have extracted some com-
mon properties and difference between the two species. Guimera and Amaral[10]
have proposed a method that can generate a ‘cartographic representation’ of bio-
logical networks which enables the identification of functional modules from those
networks. They have applied the method on metabolic networks across twelve or-
ganisms and have discovered that nodes with different connectivity patterns are
affected by different evolutionary constraints and pressures. Gene-coexpression
networks across different tissues have also been studied by a number of groups
[2,6,14] in order to identify conserved interactions among disease genes. Other re-
searchers [3] have identified functionally related proteins by analyzing conserved
protein-protein interactions across species.

These studies mainly focus on crossing humans, animals or diseases. None
of them have investigated the properties of GCNs across plants. In this paper,
we study the statistical properties [1] of gene coexpression networks across four
plant species: Arabidopsis, Barley, Soybean, and Wheat using 1471 hybridiza-
tions, whose genomic and DNA microarray data are available at public webs.
Arabidopsis is chosen here because it is a well-understood model organism and
can be used to study the functionality of genes and/or functional modules in
other three species, which are important crops in the world. To the authors’
best knowledge, this is the first study on gene-coexpression networks of crop
species together with a model organism Arabidopsis. It is of importance to un-
derstand the statistical properties of gene-coexpression networks in order to learn
their functional relations, and to understand regulatory pathways among genes
across these species. The current study on GCNs is an important step towards
further understandings and studies of conserved functional modules from the
four species.

Comparative Analysis of Gene-Coexpression Networks Across Species 617

The rest of this paper is organized as follows. In Section 2, we first introduce
the data sources that include genomic sequences and 1471 DNA microarray
expression profiles of the four plant species. A set of 5164 metagenes is then
obtained by comparing the genes across the four species using BLAST. A web-
based computing tool is designed to view the expressions of metagenes across
various species, experiments, and hybridizations. Five gene-coexpression net-
works are then constructed based on the Pearson’s correlation coefficient from
the DNA microarray expression profiles of metagenes. We also propose a sim-
ple algorithm to calculate the frequency distribution of correlation patterns. In
Section 3, a comparative analysis is conducted on the five gene-coexpression net-
works. We have obtained the following statistical properties for these networks:
(1) the degree distributions of the five coexpression networks follow the power-
law, i.e., P (k) ∼ k−γ , which means the probability of a node with a degree of
k (P (k)) is proportional to k−γ , where γ ≥ 0 is the exponent of the power-law
[1]; (2) the five gene-coexpression networks have the small-world property [20],
i.e., the network diameters are small and the cluster coefficients are great; (3)
the five gene-coexpression networks share very similar values across a variety of
network parameters such as degree distributions, network diameters, cluster co-
efficients, and the frequency distributions of interaction/correlation patterns; (4)
these networks are non-random and their properties are stable under randomly
introduced noise, even with as large as 20% changes of edges; (5) cliques and
clique-like subgraphs are overly present in these gene-coexpression networks. In
Section 4, we conclude the paper by discussing some potential work in predicting
functional modules and regulatory pathways using these coexpression networks
from multiple species.

2 Materials and Methods

2.1 Sequence and Expression Data

The materials used in this study include the genomic sequences and a large set
of DNA microarray expression profiles of the four plant species, which were
collected from several public sources on the Internet: http://affymetrix.com,
http://arabidopsis.org, http://tigr.org, http://ausubellab.mgh.harvard.edu/imds,
http://psi081.ba.ars.usda.gov/SGMD,http://soybeangenome.org,http://harvest-
web.org, http://plexdb. org, http://www.ncbi.nlm.nih.gov/projects/geo, http://
smd.stanford.edu, etc. For Arabidopsis, we select 617 DNA microarray expres-
sion profiles. For Barley, Soybean, and Wheat, we respectively have 671, 53, and
130 microarrays. These 1471 DNA microarray expression profiles contain diverse
conditions of microarray experiments (e.g., various experimental organisms, dif-
ferent experimental types, a wide range of experimental factors, etc.)

The aim of this study is to investigate the common orthologous genes of the
four species and the statistical properties of the gene-coexpressions across the
species, experiments, and hybridizations.

There are three major steps in this study: (1) identifying metagenes across the
four species; (2) constructing five gene-coexpressionnetworks based on microarray

618 S. Wu and J. Li

expression profiles of the metagenes: one for each of the four individual species,
and one for the overall gene-coexpressions across the four species; (3) investigating
the statistical properties of the five gene-coexpression networks by a comparative
analysis.

2.2 Identifying Metagenes

By applying “all-against-all” BLAST[19] to all genes of each pair of species,
5146 metagenes are obtained and shown in Table 1 (a complete list of the 5164
metagenes is available on our website). These 5164 metagenes are only a small
fraction of all the genes with expression data from each species. Each metagene
is defined as a set of four genes, one from each of the four species. Any two
genes in a metagene are each other the best hit by BLAST using their protein
sequences. For example, Metagene 1 consists of four genes: “244901 at” in Ara-
bidopsis, “Barley1 53087” in Barley, “GmaAffx.25198.1.S1 at” in Soybean, and
“Ta.22468.1.S1 at” in Wheat (see the first row in Table 1). These four genes are
the best hits each other by BLAST using their protein sequences. Metagenes
setup a mapping between the genes of one species and those of another species.
By this mapping, it is possible to analyze gene expressions across various species,
experiments, and hybridizations. The expressions of metagenes across species,
experiments, and hybridizations can be viewed by our web-based computing tool
at http://cbc.case.edu/coexp.html.

Table 1. Metagenes across Arabdopsis, Barley, Soybean, and Wheat

No. Arabidopsis Barley Soybean Wheat
1 244901 at Barley1 53087 GmaAffx.25198.1.S1 at Ta.22468.1.S1 at
2 244936 at Barley1 53095 GmaAffx.17247.1.S1 at TaAffx.124056.1.S1 at

· ·
5164 267646 at Barley1 07944 Gma.3262.1.S1 at Ta.10084.1.S1 at

2.3 Constructing Gene-Coexpression Networks

Gene-coexpression networks are constructed based upon metagenes’ DNA mi-
croarray expression profiles. Relabel the 1471 hybridizations and denote H1, H2,
· · ·, and H617 the 617 hybridizations of Arabidopsis; H618, H619, · · ·, and H1288 the
671 hybridizations of Barley;H1289, H1290, · · ·, and H1418 the 130 hybridizations of
Soybean; and H1419, H1420, · · ·, H1471 the 53 hybridizations of Wheat. These 1471
DNA microarrays define the following 5164 × 1471 matrix of intensities, where
the kth row of the matrix represents the expression intensities of the kth metagene
across the 1471 hybridizations. Whereas each column represents the expression
intensities of all metagenes under a hybridization. The hybridizations within each
experiment have been normalized when we downloaded the data. However, when
the hybridizations from various experiments and different species are put together,
a new normalization is needed. The expression intensities are normalized across

Comparative Analysis of Gene-Coexpression Networks Across Species 619

species and experiments using the Quantile normalization method[5]. The pur-
pose is to adjust the effects arising from variation of different experiments rather
than from biological differences [5,21].

To construct a gene-coexpression network G = (V, E), we take each metagene
as a node in V . For each pair of metagenes: k and j, the Pearson’s correla-
tion coefficient (r(k, j)) based on their expression profiles can be calculated as
r(k, j) = ΣKL−ΣK

ΣL√

(ΣK2− (ΣK)2
N)(ΣL2− (ΣL)2

N)
, where K and L represent the kth and lth

row vectors of the intensity matrix, and N is the number of hybridizations. If
|r| is greater than a predefined cutoff value (the choice of the exact value of the
threshold will be discussed below), the expressions of metagenes k and j are
highly correlated and an edge is added between the pair. When constructing a
gene-coexpression network, a proper cutoff value is necessary so that only signif-
icant correlations are included in a coexpression network. In this study, a similar
approach as in[14] has been used in determining threshold values for different
datasets. Basically, under the null hypothesis of no correlation, the Pearson cor-
relation coefficient corresponds to a t-distribution with degrees of N − 2. An
overall error rate of 0.05 is chosen after Bonferroni correction of multiple test-
ing. In addition, only top and bottom 0.5% of correlations will be included for
further study[14]. The combination of criteria corresponds to cutoff values from
0.8 to 0.9 in this study.

There are five gene-coexpression networks being constructed as follows. For
Arabidopsis, the gene-coexpression network GAT = (V, EAT) is constructed
based on the microarray data of Arabidopsis: H1, H2, · · ·, and H617, with a
cutoff value 0.8. Similarly, for Barley, Soybean, and Wheat, their gene coex-
pression networks GBB = (V, EBB), GGM = (V, EGM), GTA = (V, ETA) are
respectively constructed by using H618, H619, · · ·,H1288 with cutoff value 0.8 for
GBB; H1289, H1290, · · ·, H1418 with cutoff value 0.85 for GGM ; H1419, H1420,
· · ·, H1471with cutoff value 0.9 for GTA. Finally, G = (V, E) is constructed as
an overall gene coexpression network across four species by using all 1471 DNA
microarrays with cutoff value 0.8. Therefore, GAT , GBB , GGM and GTA respec-
tively represent metagene pairs that are coexpressed with significant correlations
within the experiments of each individual species. Whereas, G represents meta-
gene pairs coexpressed with significant correlations in all experiments across the
four species. Each of the networks has 5164 nodes and the number of edges
is in the range of 50k-70k (see Table 2). A possible explanation that different
networks have different cutoff values is that the numbers of hybridizations for
different networks vary dramatically, from around 600 for GAT and GBB to 100
for GGM and 50 for GTA. Greater cutoff values for smaller data sets are chosen
to ensure only significant correlations being included.

2.4 Statistical Analysis of Network Parameters

The aim of this study is to investigate the statistical properties of network pa-
rameters that include degree distributions, network diameters, and clustering
coefficients from the five gene-coexpression networks. These parameters have

620 S. Wu and J. Li

been widely discussed for large-scale complex networks and the calculation can
be performed based on their definitions [1].

In addition to expression links, some subgraphs in gene-coexpression networks
may represent important functional modules, and it is of great interest to under-
stand or identify special patterns of subgraphs that are overly represented from
GCNs across species. As the first step, we have studied the frequency distri-
bution of correlation patterns/subgraphs in this paper that have similarly been
taken into considerations by other researchers [19]. In total, 29 correlation pat-
terns/subgraphs each with 3 to 5 nodes have been included (see Fig. 2). For
each of the patterns, its frequency in a network is defined as the number of its
occurrences in the network. If a substructure has been counted as one pattern
(say Pattern 17 in Fig. 2), none of its subgraphs with the same number of nodes
(say Pattern 12 and 16) will be counted as occurrences of smaller patterns. A
simple computer program has been implemented to count the frequencies of the
29 correlation patterns in a network based on the following algorithm. The run-
ning time of the algorithm depends on the degree distribution of a network. But
it is much faster than the naive method that examines every subset with 5 nodes.

Algorithm: Counting Pattern Frequency

Input Network G = (V, E) (denote V by integers: 1,2,. . .,5164).
Output Frequency fk (denote Pk the kth pattern, 1 ≤ k ≤ 29).

Step 1 For each node i, find its neighbors:
Ni = {j|(j, i) ∈ E, j > i}, 1 ≤ i ≤ 5164.

Step 2 For each Ni, check every subset U of Ni with |U | ≤ 4,
if {i} ∪ U is a pattern, say Pk = G{i}∪U , and G{i}∪U

is not contained in any other patterns with |U | + 1 nodes,
count the occurrence into the frequency of Pk, i.e. fk++.

3 Results

In this section, we present the statistical properties of network parameters ob-
tained by the comparative analysis of the five gene-coexpression networks. First,
a brief summary on the network parameters of the five networks is given in
Table 2. It can be seen that all the parameters are very similar across the five
gene coexpression networks. This is probably because the four plant species have
relatively small evolutionary distances from each other.

As observed in many gene expression networks by other researchers, the GCNs
obtained here also have the small-world property, i.e., they all have small net-
work diameters (either 4 or 5) and great cluster coefficients (at least 0.6). The
degrees of the five GCNs follow the power-law distributions with very similar
power-law exponents γ (Table 2). The values of γ (1.13-1.28) are consistent with
many other gene-coexpression networks obtained by other researchers(see [2]
and references therein). The degree distributions of the five GCN are displayed

Comparative Analysis of Gene-Coexpression Networks Across Species 621

Table 2. Summary of network parameters

Network Node Edge Power-law exponent Network diameter Cluster coefficient

GAT 5164 56392 1.1520 5 0.7042
GBB 5164 52714 1.2147 4 0.8264
GGM 5164 72968 1.1298 4 0.7827
GTA 5164 63382 1.1569 4 0.6338
G 5164 51905 1.2777 4 0.6444

0 50 100 150 200
0

50

100

150

200

250

300

350

400

G
AT

: Arabdopsis

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

0 50 100 150 200
0

100

200

300

400

500

600

G
BB

: Barley

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

0 50 100 150 200
0

50

100

150

200

250

300

350

400

G
GM

: Soybean

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

0 50 100 150 200
0

100

200

300

400

500

600

G
TA

: Wheat

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

0 50 100 150 200
0

100

200

300

400

500

G: Overall network

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

G
0
: Common network

0 1 2 3 4 5
0

1

2

3

4

5

6

7

Fig. 1. The first and third columns are the degree distributions of GAT , GBB ,
GGM , GTA, G and G0, respectively, where x−axis represents the number of degrees
and y−axis represents the number of nodes. The second and forth columns are the
log-log plots of the degree distributions of GAT , GBB , GGM , GTA, G, G0.

in Fig. 1, together with their log-log plots. In addition, we have defined a new
network G0 = (V, E0) (called the common network) by taking all the com-
mon edges from the four gene-coexpression networks for individual species, i.e.
E0 = EAT ∩EBB ∩EGM ∩ETA. The degrees of G0 also follows a power-law dis-
tribution, shown in Fig. 1, but the total number of edges in G0 is much smaller
compared with other five networks.

Distributions of correlation patterns/subgraphs. Genes and proteins al-
ways interact with each other in groups to perform certain biological functions.
It is important to understand their interaction/correlation patterns. As the first
step, we evaluate the frequency distributions of 29 correlation patterns (also
see [16], each of which has 3 to 5 nodes) in the gene-coexpresion networks

622 S. Wu and J. Li

obtained in this study. Each pattern may represent a particular type of the
interactions/correlations of the genes/metagenes. For comparison purpose, we
further introduce two new networks. The perturbed network under noise GS is
defined by introducing as much as 20% noise on edges, i.e., deleting 10% of the
existing edges and adding 10% of new edges in the network G. And a random
network GR is generated, which consists of the same number of nodes (5164). An
edge will be added to each pair of nodes in GR with a small probability so that
the total number of edges in GR will be similar as the number of edges in other
networks. The frequency distributions of the 29 patterns in all eight networks,
i.e., GAT , GBB , GGM , GTA, G, GS , G0 and GR, are counted using the algorithm
described in subsection 2.4 and shown in Fig. 2.

0 10 20 30 40
10

0

10
2

10
4

10
6

10
8

10
10

G
AT

G
BB

G
GM

G
TA

G

G
S

G
0

G
R

G
0
10 5

Fig. 2. Left: the 29 correlation patterns (also see [16]). Right: the frequency distribu-
tions of the 29 patterns; Top part: GAT , GBB , GGM , GTA, G, GS (presented by “∗”),
G0 · 105(presented by “�”); Bottom part: G0 (presented by “�”); GR is indicated by
“◦”: up and down between top and bottom. x−axis: 29 patterns. y−axis: frequency.

The five gene-coexpression networks (GAT , GBB, GGM , GTA, G), as well as
the perturbed network GS , have very similar frequency distributions over all the
29 patterns. The frequencies in graph G0 are much lower because G0 consists
of a much smaller number of edges. But the distribution pattern is the same as
those of other coexpression networks. To make it clear, we multiple the frequency
distribution in G0 by 105 and denote the new scaled distribution by G0 ·105. Fig.
2 shows that all the 7 gene coexpression networks have very similar distributions
across all the patterns, but the random network GR has a very different distri-
bution. Further examinations reveal that a subset patterns (such as patterns 2,
7-8, 22-29) in the 7 coexpression networks have very different frequencies from
the random network GR. Those patterns are either cliques (patterns 2, 8 and
29) or some condensed patterns that are very similar to cliques (patter 7 and
patterns 22-28). The over presence of cliques or clique-like subgraphs in GCNs
may reflect the facts that those genes in a clique may encode proteins that form

Comparative Analysis of Gene-Coexpression Networks Across Species 623

a protein complex, or they may be regulated by a common transcription factor.
More investigations are needed on these overly presented patterns.

In order to quantitatively measure the overall differences of frequency dis-
tributions of the 29 patterns among GAT ,GBB ,GGM ,GTA, G, GS , and GR, a
distance measure is defined as d(Gi, Gj) =

∑29
k=1 wk|log(nik) − log(njk)|, where

nik and njk are the frequencies of Pattern k of Gi and Gj , respectively, and wk

is the weight of Pattern k (wk ≥ 0 and
∑29

k=1 wk = 1). In this study, we simply
take an equal weight for each pattern, i.e., wk = 1/29 for any k. The pairwise
distances among all the networks are given in Table 3. The distances show that
GAT ,GBB ,GGM ,GTA, G, and GS (also G0 · 105) are very close each other (all
pairwise distances of the 6 networks are less than 1.66). In contrast, the random
network GR is quite different from them (the distance between GR and any other
one is around 6, see the last row).

Table 3. Distances on frequency distributions

Distance GAT GBB GGM GTA G G0 G0 · 105 GS GR

GAT 0 0.99 1.07 1.30 0.49 11.39 1.19 0.61 6.81
GBB 0.99 0 1.11 0.93 0.63 10.57 1.33 0.76 5.91
GGM 1.07 1.11 0 1.27 1.21 11.29 1.35 1.14 6.41
GTA 1.30 0.93 1.27 0 1.26 10.32 1.66 1.38 6.18
GG 0.49 0.63 1.21 1.26 0 11.00 1.06 0.22 6.33

G0 · 105 1.19 1.33 1.35 1.66 1.06 11.40 0 1.14 6.73
GS 0.61 0.76 1.14 1.38 0.22 11.22 1.14 0 6.37
GR 6.81 5.91 6.41 6.18 6.33 19.13 6.73 6.37 0

Non-randomness and stability of coexpression networks. We believe that
the correlation links and the overly presented patterns in the networks are sta-
tistically significant and they might be biologically meaningful. First of all, the
analysis was performed on a large data set that consists of 1471 hybridizations.
It is unlikely to obtain significant correlations and expression patterns by chance
over such a large data set. Furthermore, we have constructed a random network
GR and a perturbed network GS . The network parameters of the two networks
are shown in Table 4 and their degree distributions are shown in Fig. 3. It is ob-
vious that the gene-coexpression networks are quite different from the random
network in terms of degree distributions, cluster coefficients, and pattern fre-
quency distributions. On the other hand, all the parameters from the perturbed
network are very similar with those from all other gene-coexpression networks.
This indicates that the results obtained from this study are quite robust and can
not be generated by chance.

Biological meaning of the gene coexpression networks. The networks we
construct represent significant correlations among metagenes across the species
over a large set of microarray data. Various types of subgraphs in these coexpres-
sion networks may imply biological meaningful properties or functional relations
of genes. We first take the top three hub nodes from the Arabidopsis network

624 S. Wu and J. Li

Table 4. Network parameters of GR and GS

Network Node Edge Power-law exponent Network diameter Cluster coefficient

GR 5164 53461 Non Power-law 4 0.008
GS 5164 73119 1.2672 6 0.604

0 20 40 60 80
0

50

100

150

200

250

300

350

400

G
R

: Random network

0 50 100 150 200
0

50

100

150

200

250

300

350

400

G
S
: Perturbed network

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

Fig. 3. Left: the non-power-law degree distribution of GR. x−axis: number of degrees;
y−axis: number of nodes. Middle: the degree distribution of GS . Right: the log-log plot
of the degree distribution of GS .

and check their GO (Gene Ontology) annotations(http://www.arabidopsis.org).
We find that the genes represented by the hub nodes are involved in protein
expressing, folding, and binding, which are essential in protein synthesis and
protein-protein interactions. The corresponding metagenes also have large num-
ber of links in the coexpression networks of other three species (due to the page
limitation, details of the results in this subsection can be found from our website).
The above observations suggest that our coexpression networks may reveal cer-
tain important biological properties. Gene functions from Barley, Soybean, and
Wheat, which are mostly unknown, can be predicted through our coexpression
networks and functional annotations of Arabidopsis.

To further explore the networks, we choose those highly significant links by a
cut-off value of 0.99. The node with the largest number of links in Arabidopsis
(gene 246075 at) has 47 neighbors. This gene has its GO annotation as trans-
ferase activity, transferring glycosyl groups, and UDP-galactosyltransferase ac-
tivity. Among all the 48 genes, more than 70% of all the gene pairs (48 choose
2) are linked. Most genes in this subgraph share similar GO annotations such as
catalytic activity, cellulose synthase activity, transferase activity, and kinase ac-
tivity. Therefore this subgraph may present one or several groups of functionally
related genes. A few genes with unknown biological functions in this subgraph
may be predicted based on annotations of other genes within the same group.

4 Discussions

In this study, we first obtained metagenes that are orthologous genes in common
to the four plant species by sequence analysis. Those metagenes might have been

Comparative Analysis of Gene-Coexpression Networks Across Species 625

conserved from their common ancestor through evolution and might play an im-
portant role in biological functions and regulations. Gene-coexpression networks
were then constructed based on their expression profiles. We have investigated
the statistical properties of those gene-coexpression networks. The degrees of
all gene-coexpression networks follow power-law distributions and they have the
small-world property with small network diameters and great cluster coefficients.
The values of those parameters from all the expression networks are very similar,
probably because the four species are very close in evolution. The properties are
quite different from those of a random network and are robust under pertur-
bation. We have also investigated the frequency distributions of 29 correlation
patterns and have found that cliques and clique-like patterns are overly present
in these networks but not in a random network with similar size. This result
implies that some of those patterns may represent certain important functional
modules. Further studies are needed to explore the biological meanings of those
patterns.

This study has two significant features. First, it is the first study on the gene-
coexpression networks across crop species, whereas previous studies mainly focus
on the gene-coexpression networks of single crop species[8], or across humans,
animals and diseases[2,3,4,6,10,14,15,19]. Secondly, this study first investigates
the statistical properties of the frequency distributions of correlation patterns
in gene-coexpression networks and has identified that cliques and clique-like
patterns are overly present in these networks. Previous studies mainly discuss
network parameters such as degree distributions, diameters, cluster coefficients.

Pathways and gene regulatory networks are usually predicted by compara-
tive genomics using sequence information, which can also be applied on crops
such as Barley, Soybean, and Wheat. However, metagenes and coexpression net-
works can be used as a new method to predicting functionally related genes,
functional modules and regulatory pathways. By across-species inference, the
known functionally related genes, functional modules and regulatory pathways
of one species can be used to predicting those of other species. Arabidopsis is
a well-studied species. Many functionally related genes, functional modules and
regulatory pathways have been identified in Arabidopsis. Whereas, little has
been known on the pathways, regulations, functions, and modules about Bar-
ley, Soybean, and Wheat. Gene-coexpression networks can make it possible to
predict functionally related genes, functional modules and regulatory pathways
in the three species by those in Arabidopsis. If a group of coexpressed meta-
genes are functionally related in Arabidopsis, by comparing gene-coexpression
networks, it is possible to predict that those metagenes may also be functionally
related in Barley, Soybean, and Wheat. We will address this issue in our future
studies.

Acknowledgements. This research was supported in part by NIH/NLM grant
LM008991 and a start-up fund from Case Western Reserve University to JL.

626 S. Wu and J. Li

References

1. Albert, B. and Barabási, A.-L.: Statistical mechanics of complex networks, Review
of Modern Physics, 74(2002)47-97.

2. Aggarwal, A., Guo, D. L., etc.: Topological and Functional Discovery in a Gene
Coexpression Meta-Network of Gastric Cancer, Cancer Research, 16(2006)232-241.

3. Bandyopadhyay, S., Sharan, R. and Ideker, T.: Systematic identification of
functional orthologs based on protein network comparison, Genome Research,
16(2006)428-435.

4. Berg, J. and Lässig, M.: Cross-species analysis of biological networks by Bayesian
alignment, PNAS, 103(2006)10967-10972.

5. Bolstad, B. M., Irizarry, R. A., Astrand, M. and Speed, T. P.: A Comparison of
Normalization Methods for High Density Oligonucleotide Array Data Based on
Bias and Variance, Bioinformatics, 19(2003)185-193.

6. Choi, J. K., Yu, U., Yoo, O. J. and Kim, S.: Differential coexpression analy-
sis using microarray data and its application to human cancer, Bioinformatics,
21(2005)4348-4355.

7. Durbin, R., Eddy, S. R., Krogh, A. and Mitchison, G.: Biological sequence analysis:
Probabilistic models of proteins and nucleic acids, Cambridge Univ. Press (1998).

8. Faccioli, P., Provero, P., etc: From single genes to co-expression networks: ex-
tracting knowledge from barley functional genomics, Plant Molecular Biology,
58(2005)739-750.

9. Gusfield,D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology, Cambridge University Press (1997).

10. Guimera, R. and Amaral, L. A. N.: Functional cartography of complex metabolic
networks, Nature, 443(2005)895-900.

11. Gerlt, J. A. and Babbitt, P. C.: Can sequence determine function?, Genome Biol-
ogy, 1(2000):REVIEWS0005.

12. Hanfrey, C., Sommer, S., etc.: Arabidopsis polyamine biosynthesis: absence of or-
nithine decarboxylase and the mechanism of arginine decarboxylase activity, Plant
Journal, 27(2001)551-60.

13. Kitano, H.: Systems Biology: A Brief Overview, Science 295(2002)1662-1664.
14. Lee, H. K., Hsu, A.K., etc.: Coexpression analysis of human genes across many

microarray data sets, Genome Research, 14(2004)1085-1094.
15. Lelandais, G., Vincens, etc.: Comparing gene expression networks in a multi-

dimensional space to extract similarities and differences between organisms, Bioin-
formatics, 22(2006)1359-1366.

16. Pržulj, N., Corneil, D. G. and Jurisica, I.: Modeling interactome: scale-free or
geometric? Bioinformatics, 20(2004)3508-3515.

17. Sali, S.: Functional links between proteins, Nature, 402(1999)23-26.
18. Strogatz, S. H.: Exploring complex networks, Nature, 410(2001)268-276.
19. Stuart, J. M., Segal, E., Koller, D., and Kim, S. K.: A Gene-Coexpression Network

for Global Discovery of Conserved Genetic Modules, Science, 302(2003)249-255.
20. Watts, D. J. and Strogatz, H.: Collective dynamics of ‘small-world’ networks, Na-

ture, 393(1998)440-442.
21. Yang, Y. H., Dudoit, S., etc.: Normalization for cDNA microarray data: a robust

composite method addressing single and multiple slide systematic variation, Nu-
cleic Acids Research, 30N4(2002)e15.

22. Zhou, X. J. and Gibson, G.: Cross-species comparison of genome-wide expression
patterns, Genome Biology, 5(2004)232-233.

Comparative Pathway Prediction Via Unified

Graph Modeling of Genomic Structure
Information

Jizhen Zhao, Dongsheng Che, and Liming Cai

Department of Computer Science, University of Georgia, Athens, GA 30602, USA
Fax: (706) 542-2966

{jizhen,che,cai}@cs.uga.edu

Abstract. Genomic information other than sequence similarity is
important for comparative analysis based prediction of biological path-
ways. There is evidence that structure information like protein-DNA
interactions and operons is very useful in improving the pathway predic-
tion accuracy. This paper introduces a graph model that can unify the
protein-DNA interaction and operon information as well as homologous
relationships between involved genes. Under this model, pathway predic-
tion corresponds to finding the maximum independent set in the model
graph, which is solved efficiently via non-trivial tree decomposition-based
techniques. The developed algorithm is evaluated based on the prediction
of 30 pathways in E. coli K12 using those in B. subtilis 168 as templates.
The overall accuracy of the new method outperforms those based solely
on sequence similarity or using different categories of structure informa-
tion separately.

Keywords: Pathway prediction, protein-DNA interaction, operon, tree
decomposition, independent set, clique.

1 Introduction

It is important yet challenging to understand the roles of genes and their relation-
ships for many sequenced genomes [14]. In addition to the analysis of individual
gene functions, the task of pathway annotation, assigning a biological pathway to
a set of genes, plays a fundamental role in the higher order functional analysis
of organisms and in the understanding of cellular processes and organism be-
haviors in a larger context [16]. Experimentally determining biological pathways
is usually expensive and laborious. Computational methods based on genomic
information to predict pathway are more desirable. In particular, it is feasible
to employ comparative genomic analysis in pathway prediction at the genome
scale. Based on an annotated pathway from one genome as template, a pathway
for a target genome can be predicted by identifying a set of orthologues based on
sequence similarity to the genes in the template pathway. A naive approach for
orthology assigning is choosing the best BLAST hit for each gene (BH). A more
often used technique is by reciprocal BLAST search, called bidirectional best-hit

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 627–637, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

628 J. Zhao, D. Che, and L. Cai

(BBH) [10], where gene pairs are regarded as orthologues if they are the best hits
in both directions of the search. However, these and other sequence similarity
based approaches share the same limitation [9]: the best hits may not necessarily
be the optimal orthologues, thus compromising the prediction accuracy.

Homology relationships between genes can exist not only at the sequence
level, but also at functional and structural levels [17], especially those of operon
structures and transcriptional regulation patterns of genes by transcriptional
factors (TFs). Such high level categories of information among genes along with
the sequence similarity can be used to improve the pathway prediction accuracy.
Without doubt, research in the collection of genomic structure information has
appeared to support such an endeavor as well. For example, recently, substantial
operon and transcriptional regulation information have been curated from the
scientific literatures for a number of genomes [8,13]. Computational methods
[12,13,17] have also been developed to predict operon structures and co-regulated
genes.

It is computationally challenging to incorporate genomic structure informa-
tion into others for the pathway prediction. The optimal prediction of pathways
at the genome scale becomes intractable combinatorial optimization problems
if sophisticated structure information is considered. PMAP [9] is an existing
method that addresses this issue by incorporating partial structure information
(i.e. structure information of the target genome only) and solving it with integer
programing.

In this paper, we introduce a unified graph model for integrating data in se-
quence similarity, gene functions, experimentally confirmed or predicted operons,
and transcriptional regulations, of both template pathway and target genomes.
The new approach has led to an efficient pathway prediction algorithm TdP that
outperforms the existing ones in prediction accuracy.

Algorithm TdP predicts a pathway in a target genome based on a template
pathway by identifying an orthologous gene in the target genome for each gene
in the template pathway, such that the overall sequence and structural similar-
ity between the template and the predicted pathways achieves the optimal. In
particular, homologes for each gene in the template pathway are first identified
by the BLAST search [1]. Functional information is then used to filter out genes
unlikely to be orthologues. The structural information are used to constrain the
orthology assignment. One of the homologes is eventually chosen to be the or-
tholog for the gene. The pathway prediction is formulated into the maximum
independent set (MIS) problem by taking protein-DNA interaction and operon
structures all together. Because problem MIS is computationally intractable, we
solve them efficiently with non-trivial techniques based on tree decompositions
of the graphs constructed from the structural information.

Our algorithm TdP has been implemented and its effectiveness is evaluated
against BH, BBH and PMAP in the annotation of 30 pathways of E. coli K12
using the corresponding pathways of B. subtilis 168 as templates. The results
showed that overall, in terms of the accuracy of the prediction, TdP outperforms
BH and BBH that are based solely on sequence similarity, as well as PMAP

Comparative Pathway Prediction Via Unified Graph Modeling 629

that uses partial structural information. In term of average running time to
predict a pathway, it outperforms PMAP. The core of algorithm TdP is dynamic
programing based on tree decomposition techniques. The running time of the
dynamic programing is dominated by function 2tn, where t is the tree width of
the input graphs for dynamic programming of n vertices constructed from the
structural information. In particular, the statistics on the tree width of these
graphs shows that about 93% of the graphs have tree width at most 5. Therefore,
the tree decomposition based algorithm for pathway prediction is more efficient
theoretically and practically than the existing algorithm PMAP based on integer
programming.

2 Methods and Algorithm

2.1 Problem Formulation

A pathway is defined as a set of molecules (genes, RNAs, proteins, or small
molecules) connected by links that represent physical or functional interactions.
It can be reduced to a set of genes that code related functional proteins. An
operon is a set of genes transcribed under the control of an operator gene. Genes
that encode transcriptional factors are called tf genes. In the work described in
this paper, a known pathway in one genome is used as a template to predict
a similar pathway in a target genome. That is, for every gene in the template
pathway, we identify a gene in target genome as its ortholog if there is one, under
the constraints of protein-DNA interaction (i.e., transcriptional regulation) and
operon information. The problem of predicting pathways is defined as:

Input: a template pathway model P = 〈AP , RP , OP 〉 and a target genome T ,
where AP is a set of genes in P , RP is a set of relationships between tf genes and
genes regulated by corresponding tf gene products, and OP is a set of operons;
Output: a pathway Q = 〈AQ, RQ, OQ〉 for T and an orthology mapping π :
AQ → AP such that the score function

s1(AQ, AP , π) + s2(RQ, RP , π) + s3(OQ, OP , π) (1)

is the maximum.

In the above definition, the predicted pathway Q for the target genome T is
quantified with three functions: function s1 measures the sequence similarity
between all genes in pathway Q and their corresponding orthologues in the
template P ; functions s2 and s3 measure the regulation consistency and operon
consistency between pathways P and Q respectively.

2.2 The Methods

Our approach TdP consists of the following steps:

1. For every gene in the template pathway P , find a set of homologes in the
target genome T with BLAST;

630 J. Zhao, D. Che, and L. Cai

2. Remove from the homologous genes unlikely to be orthologues to the cor-
responding gene in the template P . This is done based on functional infor-
mation, e.g., Cluster of Orthologous Groups (COG)[18], which is available.
In particular, genes that are unlikely orthologs would have different COG
numbers.

3. Obtain protein-DNA interactions and operon structures for the genes in the
template pathway and the homologous genes in target genome from related
databases [8,13], literatures or computational tools [12,17]. Although the
more complete information the better, partially available information could
also be used.

4. For each template gene not covered by the available structural information,
one of its homologs is assigned as its ortholog if they are among the top
three hits in both directions of BLAST search. We need to point out that
we arbitrary choose top three here to relax bidirectional best hit constraint
that may not be true in reality. Alternative finer strategies could be used
here.

5. For template genes covered by the available structural information, exactly
one of the homologous genes is eventually assigned as the ortholog for the
corresponding gene in the template. This is done by a procedure mapping,
which seeks the genes in the target genome with overall optimal sequence
similarity and structural consistency to the corresponding genes in the tem-
plate.

This method optimally incorporate the structural information, i.e. the regula-
tion and operon information, into sequence similarity in the procedure mapping.
Thus, such an orthology mapping or assignment after these steps essentially yield
a predicted pathway that has overall optimal sequence similarity and structural
consistency with the template pathway.

By incorporating sophisticated unified structural information, the orthology
mapping constrained by the structural information mentioned in step (5) may
become computationally intractable. We describe in the following in detail how
the efficient procedure mapping can be obtained.

Let genes be vertices and relations among the genes be edges, the genes with
available structural information (i.e. the transcriptional regulation and operon
information) in the template pathway and the corresponding homologs in target
genome can be naturally formed into two graphs. The optimal common subgraph
of these two graphs corresponds to the optimal orthology assignment respect-
ing to sequence similarity and structural consistency for involved genes. This
is done by a procedure called OptimalOrth, which takes the involved genes in
the template pathway, the corresponding homologs in target genome, together
with the related structural information as inputs, and output the optimal orthol-
ogy assignment for a sub set of the input template genes. Since one call of the
procedure OptimalOrth may not assign orthologs for all of the input template
genes, the procedure mapping may need to call OptimalOrth on reduced gene
set of the template pathway and related homologs in target genome with related
structural information. Next we first describe the procedure OptimalOrth, then
give the details of the procedure mapping.

Comparative Pathway Prediction Via Unified Graph Modeling 631

a b c ge f

(a)

d h ji
1 2 3 75 64 8 109

1’ 2’ 3’ 7’5’ 6’4’ 8’ 10’9’

a,1

a,1’

b,2

b,2’

c,3

c,3’

d,4

d,4’

e,5

e,5’

f,6

f,6’

g,7 h,8

h,8’

i,9

i,9’

j,10

j,10’g,7’

(b)

(c)

Fig. 1. Orthology mapping with structural information. (a) Structure graph G1 for
template pathway. A directed edge points from a tf gene to a gene regulated by the
corresponding TF, a dashed edge connects two genes belonging to a same operon, a solid
edge connects two genes regulated by a same TF but belonging to different operons.
(b) Structure graph G2 for the homologous genes in the target genome, constructed
in similar way to (a). (c) Merged graph G from G1 and G2. Each node is a pair of
homologous genes.

Procedure OptimalOrth. The inputs of the procedure OptimalOrth are g1,
a set of genes with structural information in one genome, and g2, the related
homologs of g1 with the structural information among them in another genome.
It outputs the optimal orthology assignment for a sub set of gtem in a set orth,
which indeed are a number of ortholog pairs (i, j) where i ∈ g1 and j ∈ g2. It
includes the following steps:

1. A structure graph G1 = (V1, E1) is built for the gene set g1, where vertex
set V1 represents all genes in it, and edge set E1 contains three types of
edges: an edge of type-1 connects a tf gene and every gene regulated by its
corresponding product; an edge of type-2 connects two genes belonging to a
same operon; and edges of type-3 connect two genes regulated by the same
tf gene product but belonging to different operons (Figure 1(a)).

2. A structure graph G2 = (V2, E2) is built for the homologous gene set g2 in
the similar way, where V2 represents homologous genes in it (Figure 1(b)).

3. Graphs G1 and G2 are merged into a single graph G = (V, E) such that V
contains vertex [i, j] if and only if i ∈ V1 and j ∈ V2 are two homologous
genes. A weight is assigned to vertex [i, j] according to the BLAST score
between genes i and j. Add an edge ([i, j], [i′, j′]) if either (a) i = i′ or j = j′

but not both, or (b) i �= i′ and j �= j′ and either one of (i, i′) and (j, j′) is an
edge but not both or edges (i, i′) ∈ E1 and (j, j′) ∈ E2 are not of the same
type (Figure 1(c)).

4. Then the independent set in the graph G with the maximum weight should
correspond to the optimal common subgraph of graph G1 and G2, which in

632 J. Zhao, D. Che, and L. Cai

turn corresponds to desired orthology mapping that achieves the maximum
sequence similarity and structure consistency between the involved genes in
g1 and the ones in g2. The maximum weighted independent set is identified
by a tree decomposition based procedure mis, which will be described in
section 2.3.

Procedure mapping. The inputs of this procedure are gtem, the genes in tem-
plate pathway with available structural information, and gtar, the related ho-
mologs in the target genome with the structural information among them. It
will assign an ortholog for each gene in gtem and output the ortholog pairs in a
set op. Details are following.

1. Initialize gtem as all the genes in template pathway with structural informa-
tion, gtar as the related homologs in target genome with structural informa-
tion, op as empty. Repeat step (2) and (3) until gtem is empty.

2. Call OptimalOrth on gtem and gtar, get an orthology assignment orth, which
is a set of gene pairs (i, j) where i ∈ gtem and j ∈ gtar. Put all the ortholog
pairs in orth into op.

3. Remove all the template genes appeared in orth from gtem, and their ho-
mologs from gtar. If there is a tf gene whose product regulates some genes
in the reduced gtem removed, add it back to the reduce gtem and its or-
tholog to the reduced gtar. This is because that we still want the regulation
information to constrain the orthology assignment for the reduced pathway.

Apparently, the procedure will output an orthology mapping such that the over-
all sequence similarity and the structural consistency achieves maximum.

2.3 Tree Decomposition Based Algorithm

Based on section 2.2, the orthology mapping with protein-DNA interactions and
operon structures can be reduced to the problems of maximum independent set
(MIS) on graphs formulated from the structural information. The problem is in
general computationally intractable; any naive optimization algorithm would be
very inefficient considering the pathway prediction is at the genome scale.

Our algorithm techniques are based on graph tree decomposition. A tree de-
composition [15] of a graph provides a topological view on the graph and the tree
width measures how much the graph is tree-like. Informally, in a tree decompo-
sition, vertices from the original graph are grouped into a number of possibly
intersecting bags; the bags topologically form a tree relationship. Shared vertices
among intersecting bags form graph separators; efficient dynamic programming
traversal over the graph is possible when all the bags are (i.e., the tree width is)
of small size [3].

In general, we solve the MIS problem on the graphs formulated from protein-
DNA interactions and operon structures via tree decomposition based method
(Procedure mis). On graphs that have small tree width, we employ the standard
tree decomposition-based dynamic programming algorithm [3]. On graphs with
larger tree width, we first find a tree decomposition on its complement graph,

Comparative Pathway Prediction Via Unified Graph Modeling 633

then find the maximum clique for the induced subgraph of each tree bag. Then
the maximum independent set of the original graph must be the maximum of
these maximum cliques. This is based two on facts: one is that a clique must be
completely contained in a tree bag [4], thus the maximum of these maximum
cliques for the subgraphs of the above mentioned complement graph must be the
maximum clique of the complement graph; the other is that the maximum inde-
pendent set of one graph is equivalent to the maximum clique of its complement
graph. This way, the MIS problem could be transfered to the CLIQUE problem
on smaller graphs. The CLIQUE problem is also solved via tree decomposition
based method (Procedure clique).

In Procedure mis, we say the tree width is small if it is less than a predefined
threshold tw. Procedure clique is recursive. The parameter depth denotes this is
the depthth call (the initial call is the 1st call). We define a density measure of a
graph G = (V, E) as D = |E|

(|V |−1)∗|V |
2

. If the density of the graph G is greater than

a threshold d (e.g. 0.8), we say it is very dense. The procedures are described
below.

Procedure mis(graph G = (V, E)):

1. Get tree width and tree decomposition of graph G.
2. If the tree width is small, find the maximum independent set of graph G

by standard tree decomposition based method [3]. Return the maximum
independent set.

3. If the tree width is not small, get the complement graph Gc of G, find a tree
decomposition of Gc, find the maximum clique Ci for the induced subgraph
GBi of each tree bag Bi by calling clique(1, GBi), return the maximum of
all the Ci’s.

Procedure clique(int depth, graph G = (V, E)):

1. If depth ≥ 3 or G is very dense, find the maximum independent set of the
complement of graph G by standard tree decomposition based method and
return it.

2. Otherwise find a tree decomposition of G, find the maximum clique Ci for
the induced subgraph GBi of each tree bag Bi by calling clique(depth + 1,
GBi), return the maximum of all the Ci’s.

We use the parameter depth to restrict the recursive call of clique to a small
number. According to our experiments, a threshold 3 can successfully reduce
the tree width of the input graphs for the the standard tree decomposition-
based dynamic programming algorithm used to find the maximum independent
set. The running time of the standard tree decomposition-based algorithms is
O(2tn), where t and n are respectively the tree width and the number of vertices
in the graph. Since some biological networks (e.g. the E. coli network of regu-
latory interactions) follows a power-law distribution (i.e., few nodes are highly
connected, whereas many have a low connectivity) [5], we expect our method

634 J. Zhao, D. Che, and L. Cai

is scalable to larger pathways and even biological networks. Due to the space
limitation, we omit the formal definition of tree decomposition and the standard
dynamic programming algorithm. Instead, we refer the reader to [3] for details.

We need to point out that finding the optimal tree decomposition (i.e., the
one with the smallest tree width) is NP-hard [2]. Since input graphs for Pro-
cedure mis and clique may not have small tree width, we use a simple, fast
approximation algorithm greedy fill-in [6] to produce a tree decomposition and
the approximated tree width for the given graphs. The approximated tree width
t may affect the running time of the pathway prediction but not its accuracy.
We reduce the tree width of the tree decompositions for dynamic programing by
doing the transformation between MIS and CLIQUE described above.

3 Evaluation Results

We evaluated TdP against BH, BBH and PMAP by using 30 known pathways
in B. subtilis 168 from KEGG pathway database [7] as templates (Table 1) to
predict corresponding pathways in E. coli K12. For TdP, the operon structures
are predicted according to the method used in [12] and experimentally confirmed
transcriptional regulation information is taken from [8] for B. subtilis 168 and
from [13] for E. coli K12. For PMAP, predicted operon and regulon information
is obtained according to the method used in [9]. Both of TdP and PMAP include
the COG filtering.

Table 1. Template pathways of B. subtilis 168, taken from KEGG pathway database

bsu00020 bsu00040 bsu00100 bsu00193 bsu00240 bsu00260 bsu00271 bsu00300
bsu00362 bsu00480 bsu00511 bsu00520 bsu00523 bsu00530 bsu00604 bsu00670
bsu00720 bsu00730 bsu00750 bsu00900 bsu00920 bsu00930 bsu01032 bsu02010
bsu02030 bsu02040 bsu03010 bsu03020 bsu03030 bsu03060

We evaluated the accuracy of the algorithms. The accuracy was measured
as the arithmetic mean of sensitivity and specificity. Let K be the real target
pathway, H be the homologous genes searched by BLAST according to the corre-
sponding template pathway. Let R be the size of K ∩H , i.e. the number of genes
common in both the real target pathway and the candidate orthologues. We use
this number as the number of real genes to calculate sensitivity and specificity
because that is the maximum number of genes a sequence based method can
predict correctly. Let TP (true positive) be the number of correctly predicted
genes and FP (false positive) be the number of predicted genes that do not exist
real target pathway. We define SE (sensitivity) as TP/RP , and SP (specificity)
as TP/(TP +FP). Since BH (or BBH) can be considered a subroutine of PMAP
and TdP, we only evaluated efficiency for PMAP and TdP. Running times from
reading inputs to output the predicted pathway were collected. For TdP, we also
collected the data on tree width of the tree decompositions on the constructed
graphs for dynamic programing. For all of the algorithms, program NCBI blastp
[1] was used for BLAST search and the E-value threshold was set to 10−6. The

Comparative Pathway Prediction Via Unified Graph Modeling 635

Table 2. Evaluation results. SE: sensitivity, SP: specificity, A: accuracy ((SE+SP)/2),
T: time (seconds).

BH BBH TdP PMAP
SE SP A SE SP A SE SP A T SE SP A T

ave 0.807 0.892 0.849 0.779 0.926 0.853 0.82 0.928 0.874 14 0.849 0.878 0.864 16.5
min 0.333 0.333 0.333 0.333 0.5 0.45 0.39 0.428 0.514 0.8 0.5 0.5 0.633 12.8
max 1 1 1 1 1 1 1 1 1 159.9 1 1 1 52.8

experiments ran on a PC with 2.8 GHz Intel(R) Pentium 4 processor and 1-GB
RAM, running RedHat Enterprise Linux version 4 AS. Running times were mea-
sured using the ”time” function. The testing results are summarized in Table 2.

On average, TdP has accuracy of 0.874, which is better than those of other
algorithms. PMAP has the second highest accuracy, which means prediction ac-
curacy could be improved even by incorporating structural information partially.
We also give two examples here to show the improvement is good for small as
well as large pathways. One is the aminosugars metabolism, which has 17 genes
in B. subtilis 168 while 20 genes in E. coli K12. The prediction accuracy of TdP
is 0.881, better than 0.839, 0.839 and 0.769 of BH, BBH and PMAP respectively.
Another is the glycine, serine and threonine metabolism pathway, which has 36
genes both in B. subtilis 168 and E. coli K12. TdP has prediction accuracy of
0.858, better than 0.819, 0.779, 0.633 of BH, BBH and PMAP respectively.

For efficiency, TdP has average of 14.0 seconds for predicting a pathway,
which is slightly better than 16.5 seconds of PMAP. The tree width distribution
is shown in Figure 2. On average, tree width of the tree decompositions for
dynamic programing is 3.7 and 93% of them have tree width at most 5. Since
theoretically the running time to find the maximum independent set for an input
graph by the tree decomposition based method is O(2tn) (where t is the tree
width), we can conclude that most of the time our algorithm is efficient based
on the statistics of the tree width.

0

10

20

30

40

50

60

0 2 4 6 8 10 12

Tree width

%

Fig. 2. Distribution of the tree width of the tree decompositions on the constructed
graphs or their complement graphs

636 J. Zhao, D. Che, and L. Cai

4 Discussion and Conclusion

We have shown our work in utilizing structural information including protein-
DNA interactions and operon structures in comparative analysis based pathway
prediction. The structural information used to constrain the orthology assign-
ment between the template pathway and the one to be predicted appears to be
critical for prediction accuracy improvement. It was to seek the sequence sim-
ilarity and the structural consistency between the template and the predicted
pathways as high as possible. Technically, the problem was formulated as find-
ing the maximum independent set problem on the graphs constructed based on
the structure information. Our algorithm, based on the non-trivial tree decom-
position, coped with the computational intractability issue well and ran very
efficiently. Evaluations on real pathway prediction for E. coli also showed the
effectiveness of this approach. It could also utilize incomplete data and tolerate
some noise in the data.

Tree decomposition based algorithm is sophisticated yet practically efficient.
Simpler algorithms are possible if only functional information and sequence
similarity are considered. However, computationally incorporating structure in-
formation such as protein-DNA interactions and operons in optimal pathway
prediction appears to be inherently difficult. Naive optimization algorithms may
not be scalable to larger pathway at the genome scale. In addition to the com-
putational efficiency, our graph-theoretic approach also makes it possible to in-
corporate more information such as gene fusion and protein-protein interactions
[14] to further improve the accuracy simply because such information may be
represented as graphs as well.

On the other hand, when a template pathway is not well conserved in the
target genome, the method may predict the pathway incorrectly. Multiple tem-
plates could be used to rescue this problem since the conserved information could
be compensated with each other. We are trying to build profiles from multiple
template pathways and use them to do the pathway prediction.

References

1. S. F. Altschul, T. L. Madden, A. A. Schffer, J. Zhang, Z. Zhang, W. Miller, D. J.
Lipman, “Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs”, Nucleic Acids Res, 25, 3389-3402, 1997.

2. H. L. Bodlaender, “Classes of graphs with bounded tree-width”, Tech. Rep. RUU-
CS-86-22, Dept. of Computer Science, Utrecht University, the Netherlands, 1986.

3. H. L. Bodlaender, “Dynamic programming algorithms on graphs with bounded
tree-width”, In Proceedings of the 15th International Colloquium on Automata,
Languages and Programming, Lecture Notes in Computer Science, 317, 105-119,
Springer Verlag, 1987.

4. H. L. Bodlaender. Discovering Treewidth. SOFSEM, 1-16, 2005.
5. R. M. Gutierrez-Rios, D. A. Rosenblueth, J. A. Loza, A. M. Huerta, J. D. Glasner,

F. R. Blattner, J. Collado-Vides, “Regulatory network of Escherichia coli: consis-
tency between literature knowledge and microarray profiles”, Genome Res. 13(11),
2435-2443, 2003.

Comparative Pathway Prediction Via Unified Graph Modeling 637

6. I. V. Hicks, A. M. C. A. Koster, E. Kolotoglu, “Branch and tree decomposition tech-
niques for discrete optimization”, In Tutorials in Operations Research: INFORMS
– New Orleans, 2005.

7. M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima,
T. Katayama, M. Araki, M. Hirakawa, “From genomics to chemical genomics: new
developments in KEGG”, Nucleic Acids Res. 34, D354-357, 2006.

8. Y. Makita, M. Nakao, N. Ogasawara, K. Nakai, “DBTBS: database of transcrip-
tional regulation in Bacillus subtilis and its contribution to comparative genomics”,
Nucleic Acids Res., 32, D75-77, 2004

9. F. Mao, Z. Su, V. Olman, P. Dam, Z. Liu, Y. Xu, “Mapping of orthologous genes
in the context of biological pathways: An application of integer programming”,
PNAS, 108 (1), 129-134, 2006.

10. D. W. Mount, Bioinformatics: sequence and genome analysis, Cold Spring Harbor
Lab Press, 516-517, 2000.

11. R. Nielsen, “Comparative genomics: Difference of expression”, Nature, 440, 161-
161, 2006.

12. M. N. Price, K. H. Huang, E. J. Alm, A. P. Arkin, “A novel method for accurate
operon predictions in all sequenced prokaryotes”, Nucleic Acids Res., 33, 880-892,
2005.

13. H. Salgado, S. Gama-Castro, M. Peralta-Gil, etc., “RegulonDB (version 5.0): Es-
cherichia coli K-12 transcriptional regulatory network, operon organization, and
growth conditions”, Nucleic Acids Res., 34, D394-D397, 2006.

14. J. L. Reed, I. Famili, I. Thiele, B. O. Palsson, “Towards multidimensional genome
annotation.”, Nature Reviews Genetics, 7, 130-141, 2006.

15. N. Robertson and P. D. Seymour, “Graph minors ii. algorithmic aspects of tree
width”, J. Algorithms, 7, 309-322, 1986.

16. P. Romero, J. Wagg, M. L. Green, D. Kaiser, M. Krummenacker, P. D. Karp,
“Computational prediction of human metabolic pathways from the complete hu-
man genome”, Genome Biology, 6, R2, 2004.

17. Z. Su, P. Dam, X. Chen, V. Olman, T. Jiang, B. Palenik, Y. Xu, “Computational
Inference of Regulatory Pathways in Microbes: an Application to Phosphorus As-
similation Pathways in Synechococcus sp. WH8102”, Genome Informatics, 14, 3-
13, 2003.

18. R. L. Tatusov, E. V. Koonin, D. J. Lipman, “A Genomic Perspective on Protein
Families”, Science, 278 (5338), 631-637, 1997.

Extending the Calculus of Looping Sequences to

Model Protein Interaction at the Domain Level

Roberto Barbuti, Andrea Maggiolo–Schettini, and Paolo Milazzo

Dipartimento di Informatica, Università di Pisa
Largo B. Pontecorvo 3, 56127 - Pisa, Italy

{barbuti,maggiolo,milazzo}@di.unipi.it

Abstract. In previous papers we introduced a formalism, called Calcu-
lus of Looping Sequences (CLS), for describing biological systems and
their evolution. CLS is based on term rewriting. Terms can be con-
structed by composing symbols of a given alphabet in sequences, which
could be closed (looping) and contain other terms. In this paper we ex-
tend CLS to represent protein interaction at the domain level. Such an
extension, called Calculus of Linked Looping Sequences (LCLS), is ob-
tained by labeling alphabet symbols used in terms. Two symbols with
the same label are considered to be linked. We introduce a type system
to express a concept of well–formedness of LCLS terms, we give an op-
erational semantics of the new calculus, and we show the application of
LCLS to the description of a biological system.

1 Introduction

Among the formalisms that either have been applied to or have been inspired
by biological systems there are automata–based models [1,8], rewrite systems
[5,9], and process calculi [11,10,4]. Automata have the advantage of allowing the
direct use of many verification tools such as model checkers. Rewrite systems
usually allow describing biological systems with a notation that can be easily
understood by biologists. On the other hand, automata–like models and rewrite
systems present, in general, problems of compositionality. Compositionality al-
lows studying the behavior of a system componentwise, and it is in general
ensured by process calculi, included those used to describe biological systems.

In [2,3] we introduced a new formalism, called Calculus of Looping Sequences
(CLS for short), for describing biological systems and their evolution. CLS is
based on term rewriting with some features, such as a commutative parallel
composition operator, and some semantic means, such as bisimulations, that are
common in process calculi. This permits to combine the simplicity of notation
of rewriting systems with the advantage of a form of compositionality. Actually,
in [3] we have defined bisimulation relations which are congruences with respect
to the operators. This is ensured by the assumption that the same set of rewrite
rules is used for terms that are composed.

CLS terms are constructed by starting from basic constituent elements and
composing them by means of operators of sequencing, looping, containment and

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 638–649, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

Extending the CLS to Model Protein Interaction at the Domain Level 639

parallel composition. Sequences may represent DNA fragments and proteins,
looping sequences may represent membranes, and parallel composition may rep-
resent juxtaposition.

A formalism for modelling protein interactions was developed in the seminal
paper by Danos and Laneve [5], and extended in [6]. This formalism allows ex-
pressing proteins by a node with a fixed number of domains; binding between
domains allows complexating proteins. In this work we extend CLS to repre-
sent protein interaction at the domain level. Such an extension, called Calculus
of Linked Looping Sequences (LCLS), is obtained by labelling elements of se-
quences. Two elements with the same label are considered to be linked.

We introduce a type system to express a concept of well–formedness of LCLS
terms, we give an operational semantics of the new calculus, and, finally, we
show the application of LCLS to the description of a biological system.

2 The Calculus of Looping Sequences

In this section we recall the Calculus of Looping Sequences (CLS). It is essentially
based on term rewriting, hence a CLS model consists of a term and a set of
rewrite rules. The term is intended to represent the structure of the modeled
system, and the rewrite rules the events that may cause the system to evolve.

We start with defining the syntax of terms. We assume a possibly infinite
alphabet E of symbols ranged over by a, b, c,

Definition 1 (Terms). Terms T and Sequences S of CLS are given by the
following grammar:

T ::= S
∣
∣

(
S

)L � T
∣
∣ T | T

S ::= ε
∣
∣ a

∣
∣ S · S

where a is a generic element of E, and ε represents the empty sequence. We
denote with T the infinite set of terms, and with S the infinite set of sequences.

In CLS we have a sequencing operator · , a looping operator
()L, a parallel

composition operator | and a containment operator � . Sequencing can be
used to concatenate elements of the alphabet E . The empty sequence ε denotes
the concatenation of zero symbols. A term can be either a sequence, or a looping
sequence (that is the application of the looping operator to a sequence) contain-
ing another term, or the parallel composition of two terms. By definition, looping
and containment are always applied together, hence we can consider them as a
single binary operator

()L � which applies to one sequence and one term.
The biological interpretation of the operators is the following: the main enti-

ties which occurs in cells are DNA and RNA strands, proteins, membranes, and
other macro–molecules. DNA strands (and similarly RNA strands) are sequences
of nucleic acids, but they can be seen also at a higher level of abstraction as se-
quences of genes. Proteins are sequence of amino acids which usually have a very
complex three–dimensional structure. In a protein there are usually (relatively)
few subsequences, called domains, which actually are able to interact with other

640 R. Barbuti, A. Maggiolo–Schettini, and P. Milazzo

(i)

b

ca

b

ca

d e(ii)

b

ca

d e

f g

(iii)

Fig. 1. (i) represents
(
a · b · c

)L
; (ii) represents

(
a · b · c

)L �
(
d · e

)L
; (iii) represents

(
a · b · c

)L � (
(
d · e

)L | f · g)

entities by means of chemical reactions. CLS sequences can model DNA/RNA
strands and proteins by describing each gene or each domain with a symbol of
the alphabet. Membranes are closed surfaces, often interspersed with proteins,
which may contain something. A closed surface can be modeled by a looping
sequence. The elements (or the subsequences) of the looping sequence may rep-
resent the proteins on the membrane, and by the containment operator it is
possible to specify the content of the membrane. Other macro–molecules can be
modeled as single alphabet symbols, or as short sequences. Finally, juxtaposition
of entities can be described by the parallel composition of their representations.

Brackets can be used to indicate the order of application of the operators,
and we assume

()L � to have precedence over | . In Figure 1 we show some
examples of CLS terms and their visual representation.

In CLS we may have syntactically different terms representing the same struc-
ture. We now introduce a structural congruence relation to identify such terms.

Definition 2 (Structural Congruence). The structural congruence relations
≡S and ≡T are the least congruence relations on sequences and on terms, re-
spectively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

S1 ≡S S2 implies S1 ≡T S2 and
(
S1

)L � T ≡T

(
S2

)L � T

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3 T | ε ≡T T
(
ε
)L � ε ≡T ε

(
S1 · S2

)L � T ≡T

(
S2 · S1

)L � T

Rules of the structural congruence state the associativity of · and | , the commu-
tativity of the latter and the neutral role of ε. Moreover, axiom

(
S1 ·S2

)L � T ≡T
(
S2 · S1

)L � T says that looping sequences can rotate. In the following, for sim-
plicity, we will use ≡ in place of ≡T .

Rewrite rules will be defined essentially as pairs of terms, in which the first
term describes the portion of the system in which the event modeled by the
rule may occur, and the second term describes how that portion of the system
changes when the event occurs. In the terms of a rewrite rule we allow the use of
variables. As a consequence, a rule will be applicable to all terms which can be
obtained by properly instantiating its variables. Variables can be of three kinds:
two of these are associated with the two different syntactic categories of terms

Extending the CLS to Model Protein Interaction at the Domain Level 641

and sequences, and one is associated with single alphabet elements. We assume
a set of term variables TV ranged over by X, Y, Z, . . ., a set of sequence variables
SV ranged over by x̃, ỹ, z̃, . . ., and a set of element variables X ranged over by
x, y, z, All these sets are possibly infinite and pairwise disjoint. We denote
by V the set of all variables, V = TV ∪ SV ∪ X , and with ρ a generic variable of
V . Hence, a pattern is a term which may include variables.

Definition 3 (Patterns). Patterns P and sequence patterns SP of CLS are
given by the following grammar:

P ::= SP
∣
∣

(
SP

)L � P
∣
∣ P | P

∣
∣ X

SP ::= ε
∣
∣ a

∣
∣ SP · SP

∣
∣ x̃

∣
∣ x

where a is a generic element of E, and X, x̃ and x are generic elements of TV, SV
and X , respectively. We denote with P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to pat-
terns. An instantiation is a partial function σ : V → T . An instantiation must
preserve the type of variables, thus for X ∈ TV, x̃ ∈ SV and x ∈ X we have
σ(X) ∈ T , σ(x̃) ∈ S and σ(x) ∈ E , respectively. Given P ∈ P , with Pσ we
denote the term obtained by replacing each occurrence of each variable ρ ∈ V
appearing in P with the corresponding term σ(ρ). With Σ we denote the set of
all the possible instantiations and, given P ∈ P , with V ar(P) we denote the set
of variables appearing in P . Now we define rewrite rules.

Definition 4 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 �→ P2, where P1, P2 ∈ P, P1 �≡ ε and such that V ar(P2) ⊆
V ar(P1). We denote with
 the infinite set of all the possible rewrite rules.

A rewrite rule P1 �→P2 states that a term P1σ, obtained by instantiating variables
in P1 by some instantiation function σ, can be transformed into the term P2σ. We
define the semantics of CLS as a transition system, in which states correspond
to terms, and transitions correspond to rule applications.

Definition 5 (Semantics). Given a set of rewrite rules R ⊆
, the semantics
of CLS is the least transition relation → on terms closed under ≡, and satisfying
the following inference rules:

P1 �→P2 ∈ R P1σ �≡ ε σ ∈ Σ

P1σ → P2σ

T1 → T2

T | T1 → T | T2

T1 → T2
(
S

)L � T1 →
(
S

)L � T2

where the symmetric rule for the parallel composition is omitted.

A model in CLS is given by a term describing the initial state of the system and
by a set of rewrite rules describing all the events that may occur.

3 The Calculus of Linked Looping Sequences

To model a protein at the domain level in CLS it would be natural to use a
sequence with one symbol for each domain. However, the binding between two

642 R. Barbuti, A. Maggiolo–Schettini, and P. Milazzo

domains of two different proteins, that is the linking between two elements of two
different sequences, cannot be expressed in CLS. To represent this, we extend
CLS by labels on basic symbols. If in a term two symbols have the same label,
we intend that they represent domains that are bound to each other. If in a term
there is a single symbol with a certain label, we intend that the term represents
only a part of a system we model, and that the symbol will be linked to another
symbol in another part of the term representing the full model.

As membranes create compartments, elements inside a looping sequence can-
not be linked to elements outside. Elements inside a membrane can be linked
either to other elements inside the membrane or to elements of the membrane
itself. An element can be linked at most to another element. The partner to
which an element is bound can be different at different times, and a domain able
to bind to multiple partners simultaneously could be described by using more
elements instead of a single one.

The syntax of terms of the Calculus of Linked Looping Sequences (LCLS) is
defined as follows. We use as labels natural numbers.

Definition 6 (Terms). Terms T and Sequences S of LCLS are given by the
following grammar:

T ::= S
∣
∣

(
S

)L � T
∣
∣ T | T

S ::= ε
∣
∣ a

∣
∣ an

∣
∣ S · S

where a is a generic element of E, and n is a natural number. We denote with
T the infinite set of terms, and with S the infinite set of sequences.

The structural congruence relation is the same as for CLS. Patterns of LCLS are
similar to those of CLS, with the addition of the labels.

Definition 7 (Patterns). Patterns P and sequence patterns SP of LCLS are
given by the following grammar:

P ::= SP
∣
∣

(
SP

)L � P
∣
∣ P | P

∣
∣ X

SP ::= ε
∣
∣ a

∣
∣ an

∣
∣ SP · SP

∣
∣ x̃

∣
∣ x

∣
∣ xn

where a is an element of E, n is a natural number and X, x̃ and x are elements
of TV, SV and X , respectively. We denote with P the infinite set of patterns.

Note that an LCLS term is also an LCLS pattern; everything we define for pat-
terns will be immediately defined also for terms. Moreover, in what follows, we
will often use the notions of compartment and of top–level compartment of a
pattern. A compartment is a subpattern that is the content of a looping se-
quence and in which the contents of inner looping sequences are not consid-
ered. The top–level compartment is the portion of the pattern that is not inside
any looping sequence. For instance, the top–level compartment of a pattern
P = a |

(
b
)L � c |

(
d
)L � (X |

(
e
)L � f) is a |

(
b
)L � ε |

(
d
)L � ε. Other

compartments in P are c, X |
(
e
)L � ε, and f .

Extending the CLS to Model Protein Interaction at the Domain Level 643

An LCLS pattern is well–formed if and only if a label occurs no more than
twice, and two occurrences of a label are always in the same compartment. The
following type system will be used for deriving the well–formedness of patterns.

In each inference rule the conclusion has the form (N, N ′) |= P , where N and
N ′ are sets of natural numbers with N the set of labels used twice and N ′ the
set of labels used only once in the top–level compartment of P .

Definition 8 (Type System). The typing algorithm for LCLS patterns is de-
fined by the following inference rules:

1.
(
∅, ∅

)
|= ε 2.

(
∅,∅

)
|= a 3.

(
∅, {n}

)
|= an

4.
(
∅, ∅

)
|= x 5.

(
∅, {n}

)
|= xn 6.

(
∅, ∅

)
|= x̃ 7.

(
∅, ∅

)
|= X

8.

(
N1, N

′
1
)

|= SP1
(
N2, N

′
2
)

|= SP2 N1 ∩ N2 = N ′
1 ∩ N2 = N1 ∩ N ′

2 = ∅
(
N1 ∪ N2 ∪ (N ′

1 ∩ N ′
2), (N

′
1 ∪ N ′

2) \ (N ′
1 ∩ N ′

2)
)

|= SP1 · SP2

9.

(
N1, N

′
1
)

|= P1
(
N2, N

′
2
)

|= P2 N1 ∩ N2 = N ′
1 ∩ N2 = N1 ∩ N ′

2 = ∅
(
N1 ∪ N2 ∪ (N ′

1 ∩ N ′
2), (N

′
1 ∪ N ′

2) \ (N ′
1 ∩ N ′

2)
)

|= P1 | P2

10.

(
N1, N

′
1
)

|= SP
(
N2, N

′
2
)

|= P N1 ∩ N2 = N ′
1 ∩ N2 = N1 ∩ N ′

2 = ∅ N ′
2 ⊆ N ′

1
(
N1 ∪ N ′

2, N
′
1 \ N ′

2

)
|=

(
SP

)L � P

where a is a generic element of E, n is a natural number, and X, x̃ and x are
generic elements of TV, SV and X , respectively. We write |= P if there exist
N, N ′ ⊂ IN such that (N, N ′) |= P , and �|= P otherwise.

Rules 1–7 are self explanatory. Rule 8 states that a sequence pattern SP1 · SP2
is well–typed if there are no variables occurring either four times (N1 ∩N2 = ∅)
or three times (N ′

1 ∩N2 = N1 ∩N ′
2 = ∅). Variables occurring twice in SP1 · SP2

are those which occur twice either in SP1 or in SP2 together with variables
occurring once both in SP1 and in SP2. Rule 9 for the parallel composition is
analogous to rule 8. Rule 10 states that the only labels which can be used for
typing

(
SP

)L � P must be different from those used for typing P . Moreover the
labels used once in P must be used once in SP , that is these labels are used to
bind elements inside the membrane to elements on the membrane itself.

The following lemma states some simple properties of the type system.

Lemma 1. Given N, N ′ ⊂ IN, and P ∈ P, then (N, N ′) |= P implies:
(i) both N and N ′ are finite; (ii) N ∩ N ′ = ∅.

Definition 9 (Well–Formedness of Patterns). A pattern P is well–formed
if and only if |= P holds.

Now we give two lemmas. The first relates the well–formedness of a pattern with
the well–formedness of its subpatterns. The second states that well–formedness
is preserved by structural congruence.

Lemma 2. Given P ∈ P and P ′ a subpattern of P , then |= P implies |= P ′.

644 R. Barbuti, A. Maggiolo–Schettini, and P. Milazzo

Lemma 3. Given P1, P2 ∈ P, |= P1 and P1 ≡ P2 imply |= P2.

The use of labels to represent links is not new. In [5] well–formedness of terms
is given by a concept of graph–likeness. We notice that in our case membranes,
which are not present in the formalism of [5], make the treatment more compli-
cated. In [6], where the concept of membrane is introduced, well–formedness of
terms is given intuitively and not formally defined.

We say that a well–formed pattern P is closed if and only if (N, ∅) |= P for
some N ⊂ IN, and that it is open otherwise. Moreover, we say that P is link–
free if and only if (∅, ∅) |= P . Since patterns include terms, we use the same
terminology also for terms. For example, a · b · c | d · x is a link–free pattern,
a · b1 · c | d · x1 is a closed pattern, and a · b1 · c2 | d · x1 is an open pattern.

In the following we shall use a notion of set of links of a pattern, namely the
set of labels that occur twice in the top–level compartment of the pattern.

Definition 10. The set of links of a pattern P is L(P) = {n|#(n, LM (P)) = 2},
where LM (P) is the multiset of labels of P , recursively defined as follows:

LM (ε) = ∅ LM (ν) = ∅ LM (νn) = {n} LM (x̃) = ∅

LM (SP1 · SP2) = LM (SP1) ∪ LM (SP2) LM (P1 | P2) = LM (P1) ∪ LM (P2)

LM (
(
SP

)L � P) = LM (SP) ∪ (LM (SP) ∩ LM (P)) LM (X) = ∅

where ν ∈ E ∪ EV , n ∈ IN, P1, P2 are any pattern, SP is any sequence pattern.

If P is a well–formed pattern, there exists N ⊂ IN such that (L(P), N) |= P .
Let A be the set of all total injective functions α : IN → IN. Given α ∈ A,

the α–renaming of an LCLS pattern P is the pattern Pα obtained by replacing
every label n in P by α(n). It holds that α–renaming preserves well–formedness.

Lemma 4. Given P ∈ P, ∀α ∈ A it holds |= P ⇐⇒ |= Pα.

Links in a term are placeholders: the natural number used in the two labels of a
link has not a particular meaning. Hence, we can consider as equivalent patterns
which differ only in the values of their links.

Definition 11 (α–equivalence). The α–equivalence relation =α on LCLS pat-
terns is the least equivalence relation which satisfies the following rules:

νn1 | μn1 =α νn2 | μn2 P1 | P2 =α P3

P2 | P1 =α P3

SP1 | SP2 =α P3

SP1 · SP2 =α P3

P1 =α P2 P3 =α P4 L(P1) ∩ L(P3) = L(P2) ∩ L(P4) = ∅

P1 | P3 =α P2 | P4

SP1 =α SP2 P1 =α P2 L(SP1) ∩ L(SP2) = L(P1) ∩ L(P2) = ∅
(
SP1

)L � P1 =α

(
SP2

)L � P2

Extending the CLS to Model Protein Interaction at the Domain Level 645

(
SP1 · SP ′

1
)L � P1 =α

(
SP2 · SP ′

2
)L � P2 ni �∈ LM (SPi · SP ′

i) ∪ LM (Pi)
(
SP1 · νn1 · SP ′

1

)L � (μn1 | P1) =α

(
SP2 · νn2 · SP ′

2

)L � (μn2 | P2)

(
SP1 · SP ′

1
)L � P1 =α

(
SP2 · SP ′

2
)L � P2 ni �∈ LM (SPi · SP ′

i) ∪ LM (Pi)

νn1 |
(
SP1 · μn1 · SP ′

1

)L � P1 =α νn2 |
(
SP2 · μn2 · SP ′

2

)L � P2

where ν, μ ∈ E ∪ EV , n1, n2 ∈ IN, P1, P2, P3, P4 are any pattern, SP1, SP2, SP3,
SP4 are any sequence pattern.

It is easy to see that α–equivalence preserves well–formedness of patterns.

Lemma 5. Given P1, P2 ∈ P, |= P1 and P1 =α P2 imply |= P2.

Note that the labels occurring only once in a pattern P are not renamed by the
α–equivalence relation. Instead, the application of an α–renaming function to P
may change these labels. Moreover, labels which occur twice in more than one
compartment of the pattern can be renamed differently in each compartment
by the α–equivalence relation, while they are all renamed by the same value by
applying some α–renaming function.

We say that an instantiation function σ is well–formed if it maps variables
into well–formed closed terms and sequences. We denote with Σwf the set of all
well–formed instantiation functions. Differently from CLS, the application of an
instantiation function to a pattern does not correspond to the substitution of
every variable in the pattern with the corresponding term given by the instanti-
ation function, because this could lead to not well–formed terms. As an example,
consider the well-formed pattern P = a · x̃ | X and a well–formed instantiation
function σ such that σ(x̃) = b1 · c1 and σ(X) = d1 | e1. The application of σ to
P would produce the term Pσ = a · b1 · c1 | d1 | e1, which is not well–formed.
Similarly, consider the well–formed pattern P = a·x̃·x̃ and the same well-formed
instantiation function. We obtain Pσ = a ·b1 ·c1 ·b1 ·c1, which is not well–formed.
To avoid these situations, we define the application of an instantiation function
to an LCLS pattern in a way such that the links in the instantiations of all
occurrences of all variables are renamed, if necessary.

Definition 12 (Pattern Instantiation). Given a pattern P ∈ P and an in-
stantiation function σ ∈ Σ, the application of σ to P is an LCLS term Pσ given
by the following inductive definition:

εσ = ε aσ = a anσ = an x̃σ = σ(x̃) xσ = σ(x) xnσ = σ(x)n Xσ = σ(X)

SPiσ =α Si L(S1) ∩ L(S2) = ∅

SP1 · SP2 σ = S1 · S2

Piσ =α Ti L(T1) ∩ L(T2) = ∅

P1 | P2 σ = T1 | T2

SPσ =α S Pσ =α T L(S) ∩ L(T) = ∅
(
SP

)L � P σ =
(
S

)L � T

where P1, P2, P are any pattern, SP1, SP2, SP are any sequence pattern.

Now, by applying a well–formed instantiation function to a well–formed pattern,
we obtain a well–formed term.

646 R. Barbuti, A. Maggiolo–Schettini, and P. Milazzo

Lemma 6. Given P ∈ P , σ ∈ Σwf , it holds that |= P implies |= Pσ.

As in CLS, rewrite rules in LCLS are pairs of patterns.

Definition 13 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 �→ P2, where P1, P2 ∈ P, P1 �≡ ε and such that V ar(P2) ⊆
V ar(P1). We denote with
 the infinite set of all the possible rewrite rules.

Our aim is to show that the application of a rewrite rule composed by well–
formed patterns to a well–formed term produces another well–formed term. It
is easy to see that, as a consequence of Lemma 6, this holds if variables of the
rewrite rule are instantiated by a well–formed instantiation function. However,
sometimes we would like to relax this constraint and allow a variable to be
instantiated with an open term. For instance, we would permit the application
of a rewrite rule x̃ · a �→ x̃ · b to the term c1 | d1 · a (so to obtain c1 | d1 · b),
which requires that σ(x̃) = d1. Relaxing this constraint causes the introduction
of constraints on the two patterns of the rewrite rules: they must not add or
remove occurrences of variables, they cannot move variables from a compartment
to another one, and they cannot add single occurrences of labels. To check these
constraints we introduce a notion of compartment safety.

Definition 14 (Compartment Safety). The compartment safety relation cs
on pairs of patterns is the least equivalence relation satisfying the following rules:

cs(ε, ε) cs(ε, ν) cs(νn, μn) cs(ε, νn|μn) cs(x̃, x̃) cs(X, X)

cs(P1, P2) cs(P3, P4)

cs(P1|P3, P2|P4)

cs(P1|P2, P3)

cs(P2|P1, P3)

cs(SP1|SP2, P3)

cs(SP1 · SP2, P3)

cs(SP1, SP2) cs(P1, P2)

cs(
(
SP1

)L � P1,
(
SP2

)L � P2)

cs(
(
SP1 · SP2

)L � P1,
(
SP3

)L � P2)

cs(
(
SP2 · SP1

)L � P1,
(
SP3

)L � P2)

cs(
(
SP1

)L � P1,
(
SP2

)L � P2)

cs(
(
SP1

)L � P1,
(
SP2 · νn

)L � (μn | P2))

cs(
(
SP1

)L � P1,
(
SP2

)L � P2)

cs(
(
SP1

)L � P1, νn |
(
SP2 · μn

)L � P2)

where ν, μ ∈ E ∪ EV , n ∈ IN, P1, P2, P3, P4 are any pattern, SP1, SP2, SP3 are
any sequence pattern.

Definition 15 (Compartment Safe Rewrite Rule). A rewrite rule P1 �→P2
is compartment safe (CS) if cs(P1, P2) holds. It is compartment unsafe (CU)
otherwise. We denote with
CS ⊂
 the infinite set of CS rewrite rules, and
with
CU ⊂
 the infinite set of CU rewrite rules.

Now, we can introduce well–formedness also for rewrite rules.

Definition 16 (Well–Formedness of Rewrite Rules). Given a rewrite rule
P1 �→ P2 ∈
, it is well–formed if P1 and P2 are well–formed patterns, and
either P1 �→ P2 ∈
CS or both P1 and P2 are closed patterns.

The application of a well–formed rule satisfying compartment safety to a well–
formed term preserves the well–formedness of the term even if variables are
instantiated by a non well–formed instantiation function.

Extending the CLS to Model Protein Interaction at the Domain Level 647

Lemma 7. Given σ ∈ Σ and a well–formed rewrite rule P1 �→ P2 such that
P1 �→P2 ∈
CS, it holds that |= P1σ implies |= P2σ.

Now, we can define the semantics of LCLS.

Definition 17 (Semantics). Given a set of rewrite rules R ⊆
, such that
R = RCS ∪ RCU with RCS ⊂
CS and RCU ⊂
CU , the semantics of LCLS is
the least transition relation → on terms closed under ≡ and =α, and satisfying
the following inference rules:

(appCS)
P1 �→ P2 ∈ RCS P1σ �≡ ε σ ∈ Σ α ∈ A

P1ασ → P2ασ

(appCU)
P1 �→ P2 ∈ RCU P1σ �≡ ε σ ∈ Σwf α ∈ A

P1ασ → P2ασ

(par)
T1 → T ′

1 L(T1) ∩ L(T2) = {n1, . . . , nM} n′
1, . . . , n

′
M fresh

T1 | T2 → T ′
1{n′

1, . . . , n
′
M/n1, . . . , nM} | T2

(cont)
T → T ′ L(S) ∩ L(T ′) = {n1, . . . , nM} n′

1, . . . , n
′
M fresh

(
S

)L � T →
(
S

)L � T ′{n′
1, . . . , n

′
M/n1, . . . , nM}

where the symmetric rule for the parallel composition is omitted.

Rules (appCS) and (appCU) describe the application of compartment safe and
compartment unsafe rewrite rules, respectively. In the latter case we require that
the instantiation function used to apply the rule is well–formed. In both cases,
an α–renaming function is used to rename the labels in the pattern, in particular
those appearing only once in the top–level compartment. The (par) and (cont)
rules propagate the effect of a rewrite rule application to contexts by resolving
conflicts in the use of labels.

Finally, we can give a theorem which states that the application of well–formed
rewrite rules to well–formed terms produces new well–formed terms.

Theorem 1 (Subject Reduction). Given a set of well–formed rewrite rules
R and T ∈ T , it holds that |= T and T → T ′ imply |= T ′.

4 An Example: The EGF Signalling Pathway

A cell recognizes the EGF signal from the environment because it has on its mem-
brane some EGF receptor proteins (EGFR), which are transmembrane proteins
(they have some intra–cellular and some extra–cellular domains). One of the
extra–cellular domains binds to one EGF protein in the environment, forming a
signal–receptor complex on the membrane. This causes a conformational change
on the receptor protein that enables it to bind to another one signal–receptor
complex. The formation of the binding of the two signal–receptor complexes
(called dimerization) causes the phosphorylation of some intra–cellular domains
of the dimer. This causes the internal domains of the dimer to be recognized by

648 R. Barbuti, A. Maggiolo–Schettini, and P. Milazzo

a protein that is in the cytoplasm, called SHC. The protein SHC binds to the
dimer, enabling a chain of protein–protein interactions inside the cell.

We model in LCLS the steps of the EGF pathway up to the binding of the
protein SHC to the dimer. We model the EGFR protein as the sequence RE1 ·
RE2 · RI1 · RI2, where RE1 and RE2 are two extra–cellular domains and RI1
and RI2 are two intra–cellular domains. The membrane of the cell is modeled
as a looping sequence which could contain EGFR proteins. Outside the looping
sequence (i.e. in the environment) there could be EGF proteins, and inside (i.e.
in the cytoplasm) there could be SHC proteins. The rewrite rules modeling the
pathway are the following:

EGF |
(
RE1 ·x̃

)L � X �→
(
SRE1 ·x̃

)L � X (R1)

(
SRE1 ·RE2 ·RI1 ·RI2 ·x̃·SRE1 ·RE2 ·RI1 ·RI2 ·ỹ

)L � X �→
(
SRE1 ·R1

E2 ·RI1 ·RI2 ·SRE1 ·R1
E2 ·RI1 ·RI2 ·x̃·ỹ

)L � X (R2)

(
R1

E2 ·RI1 ·x̃·R1
E2 ·RI1 ·ỹ

)L � X �→
(
R1

E2 ·PRI1 ·x̃·R1
E2 ·RI1 ·ỹ

)L � X (R3)

(
R1

E2 ·PRI1 ·x̃·R1
E2 ·RI1 ·ỹ

)L � X �→
(
R1

E2 ·PRI1 ·x̃·R1
E2 ·PRI1 ·ỹ

)L � X (R4)

(
R1

E2 ·PRI1 ·RI2 ·x̃·R1
E2 ·PRI1 ·RI2 ·ỹ

)L � (SHC | X) �→
(
R1

E2 ·PRI1 ·R2
I2 ·x̃·R1

E2 ·PRI1 ·RI2 ·ỹ
)L � (SHC2 | X) (R5)

Rule R1 represents the binding of the EGF protein to the receptor domain
RE1 with SRE1 as a result. Rule R2 represents that when two EGFR proteins
activated by proteins EGF occur on the membrane, they may bind to each other
to form a dimer (shown by the link 1). Rule R3 represents the phosphorylation
of one of the internal domains RI1 of the dimer, and rule R4 represents the
phosphorylation of the other internal domain RI1 of the dimer. The result of
each phosphorylation is PRI1. Rule R5 represents the binding of the protein
SHC in the cytoplasm to an internal domain RI2 of the dimer. Remark that the
binding of SHC to the dimer is represented by the link 2, allowing the protein
SHC to continue the interactions to stimulate cell proliferation.

Let us denote the RE1 ·RE2 ·RI1 ·RI2 by EGFR. By starting from a cell with
some EGFR proteins on its membrane, some SHC proteins in the cytoplasm and
some EGF proteins in the environment, a possible evolution is the following (we
write on each transition the name of the rewrite rule applied):

EGF | EGF |
(
EGFR·EGFR·EGFR·EGFR

)L � (SHC | SHC)

(R1)−−−→ EGF |
(
SRE1 ·RE2 ·RI1 ·RI2 ·EGFR·EGFR·EGFR

)L � (SHC | SHC)

(R1)−−−→
(
SRE1 ·RE2 ·RI1 ·RI2 ·EGFR·SRE1 ·RE2 ·RI1 ·RI2 ·EGFR

)L � (SHC | SHC)

(R2)−−−→
(
SRE1 ·R1

E2 ·RI1 ·RI2 ·SRE1 ·R1
E2 ·RI1 ·RI2 ·EGFR·EGFR

)L � (SHC | SHC)

(R3)−−−→
(
SRE1 ·R1

E2 ·PRI1 ·RI2 ·SRE1 ·R1
E2 ·RI1 ·RI2 ·EGFR·EGFR

)L � (SHC | SHC)

Extending the CLS to Model Protein Interaction at the Domain Level 649

(R4)−−−→
(
SRE1 ·R1

E2 ·PRI1 ·RI2 ·SRE1 ·R1
E2 ·PRI1 ·RI2 ·EGFR·EGFR

)L � (SHC | SHC)

(R5)−−−→
(
SRE1 ·R1

E2 ·PRI1 ·R2
I2 ·SRE1 ·R1

E2 ·PRI1 ·RI2 ·EGFR·EGFR
)L � (SHC2 | SHC)

5 Conclusion

In previous papers we introduced the formalism Calculus of Looping Sequences
(CLS) suitable to describe biological systems and their evolution.

In the present paper we have presented LCLS, an extension of CLS suitable to
describe protein interaction at the domain level. A type system allows expressing
well–formedness of terms and rewrite rules of the calculus, and an operational
semantics is given which preserves well–formedness. We have shown an example
of application of the calculus to the description of a classical biological system,
namely the protein interactions of the EGF signalling pathway.

The relationship between CLS/LCLS and similar formalisms are studied in
detail in [7]. Further work includes developing concepts of bisimulations for the
new calculus in the line of what done for CLS.

References

1. R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin, and
J. Schug. “Hybrid Modeling and Simulation of Biomolecular Networks”. Hybrid
Systems: Computation and Control, LNCS 2034, pages 19–32, Springer, 2001.

2. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. “A Calculus of Loop-
ing Sequences for Modelling Microbiological Systems”. Fundamenta Informaticae,
volume 72, number 1–3, pages 21–35, 2006.

3. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. “Bisimulation Con-
gruences in the Calculus of Looping Sequences”. Proc. of ICTAC’06, LNCS 4281,
pages 93–107, 2006.

4. L. Cardelli. “Brane Calculi. Interactions of Biological Membranes”. Proc. of
CMSB’04, LNCS 3082, pages 257–280, Springer, 2005.

5. V. Danos and C. Laneve. “Formal Molecular Biology”. Theoretical Computer Sci-
ence, volume 325, number 1, pages 69–110, 2004.

6. C. Laneve and F. Tarissan. “A Simple Calculus for Proteins and Cells”. Proc. of
MeCBIC’06, ENTCS, to appear.

7. P. Milazzo. “Qualitative and Quantitative Formal Modeling of Biological Systems”.
PhD Thesis, University of Pisa, 2007.

8. H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano.“Hybrid Petri Net Representa-
tion of Gene Regulatory Network”. Proc. of PSB’00,World Scientific Press, pages
341–352, 2000.

9. G. Păun. “Membrane Computing. An Introduction”. Springer, 2002.
10. A. Regev, E.M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. “BioAmbients:

An Abstraction for Biological Compartments”. Theoretical Computer Science, vol-
ume 325, number 1, pages 141–167, 2004.

11. A. Regev, W. Silverman, and E.Y. Shapiro. “Representation and Simulation of
Biochemical Processes Using the Pi-Calculus Process Algebra”. Proc. of PSB’01,
World Scientific Press, pages 459–470, 2001.

Author Index

Abdallah, Basem M. 73
Altun, Gulsah 590
Antoniotti, Marco 158

Bagyinka, Csaba 49
Balla, Sudha 260
Bao, Yiming 192
Barbuti, Roberto 638
Basu, Kalyan 601
Bernt, Matthias 305
Bi, Chengpeng 465
Blelloch, Guy E. 37
Borodovsky, Mark 577
Braga, Maŕılia D.V. 293
Brendel, Volker 394
Buendia, Patricia 109
Busa-Fekete, Róbert 49

Cai, Liming 627
Calin-Jageman, Robert J. 182
Casadio, Rita 578
Chang, Chun-Tien 430
Chang, Hao-Teng 430
Chang, Kung-Hua 227
Chang, Margaret Dah-Tsyr 430
Che, Dongsheng 627
Chen, Bernard 530
Chen, Li 237
Chen, Xiujuan 496
Choi, Mun-Ho 453
Cohan, Frederick 133

Dahlgaard, Jesper 73
Das, Sajal 601
Deng, Zhidong 506
Derado, Gordana 203
di Lena, Pietro 578
Dorman, Karin S. 394
DuBois Bowman, F. 203

Elnitski, Laura L. 361
Eschrich, Steven A. 237

Fariselli, Piero 578
Fayyaz, Mudassir 564

Fei, Xubo 1
Fl̊a, Tor 382
Fu, Xuezheng 530

Gillespie, Joel 518
Goldgof, Dmitry B. 237
Gremalschi, Stefan 590
Guo, Yabin 418
Gupta, Arvind 121
Gupta, Pramod K. 146

Hall, Lawrence O. 237
Harrison, Robert W. 496, 530, 590
He, Dan 441
Heath, Lenwood S. 317
Horn, David 85
Hu, Hae-Jin 590
Hua, Jing 539
Huang, Minlie 418
Huang, Rong-Yuan 430
Hunter, Lawrence 338

Imoto, Seiya 146

Jeong, In-Seon 453
Jiang, Minghui 518
Jin, Guohua 61

Kang, Seung-Ho 453
Karuturi, R. Krishna Murthy 25
Kassem, Moustapha 73
Katz, Paul S. 182
Kavokin, Alex 564
Kechris, Katherina J. 338
Khan, Asifullah 564
Kim, Hyunmin 338
Kim, Hyunsoo 477
Kocsor, András 49
Krizanc, Danny 133
Kruse, Torben A. 73
Kwon, Yong Kyun 227

Lam, Fumei 37
Lavrač, Nada 248
Lawson, Mark J. 372
Lee, George 170

652 Author Index

Li, Jing 615
Li, Juntao 25
Li, Ming 145
Li, Shutao 488
Liang, Lily R. 1
Liao, Chen 488
Lim, Hyeong-Seok 453
Lin, Cui 539
Linial, Michal 85
Liu, Chih-Hong 430
Liu, Jianhua 25
Loganantharaj, Raja 282
Lu, Shiyong 1, 539
Lu, Yun 133

Madabhushi, Anant 170
Maggiolo–Schettini, Andrea 638
Mandal, Subhrangsu S. 601
Maňuch, Ján 121
Mao, Fenglou 551
Margara, Luciano 578
Mauri, Giancarlo 158
Mayne, Martin 518
Mazloom, Amin R. 601
Medri, Filippo 578
Merico, Daniele 158
Merkle, Daniel 305
Middendorf, Martin 305
Milazzo, Paolo 638
Mishra, Bud 158
Miyano, Satoru 146
Mujahid, Adnan 564
Muzik, Otto 539

Nakhleh, Luay 61
Narasimhan, Giri 109, 329
Newell, Mary 203

Olman, Victor 551

Pai, Tun-Wen 430
Pan, Yi 182, 530, 590
Park, Haesun 477
Parker, D. Stott 227
Patel, Rajan 203
Pati, Amrita 317
Phoungphol, Piyaphol 215
Pop, Horia F. 1

Rajasekaran, Sanguthevar 260
Ravi, R. 37

Rodriguez, Carlos 170
Rodriguez-Zas, Sandra L. 350

Sagot, Marie-France 293
Schwartz, Russell 37
Scornavacca, Celine 293
Shaik, Jahangheer 97
Smith, Scott F. 270
Snir, Sagi 61
Song, Dandan 506
Sorourian, Mehran 601
Southey, Bruce R. 350
Sparks, Michael E. 394
Sridhar, Srinath 37
Stacho, Ladislav 121
Sunderraman, Rajshekhar 215
Sweedler, J.V. 350

Tan, Qihua 73
Tannier, Eric 293
Tatusova, Tatiana A. 192
Tegge, Allison N. 350
Thorvaldsen, Steinar 382
Trajkovski, Igor 248
Tuller, Tamir 61
Tzou, Wen-Shyong 430

Vach, Werner 73
Vandenberg, Art 182
Varshavsky, Roy 85
Vassura, Marco 578
Vidakovic, Brani 203

Wang, Hsien-Wei 430
Wang, Yanchao 215
Wu, Danqing 539
Wu, Fang-Xiang 13
Wu, Hongwei 551
Wu, Shiquan 615

Xie, Chao 182
Xu, Ying 551

Yamaguchi, Rui 146
Yang, Mary Qu 361
Yang, Zheng Rong 406
Yeasin, Mohammed 97
Yoshida, Ryo 146
Ytterstad, Elinor 382
Yu, Hao 418

Author Index 653

Zaslavsky, Leonid 192
Zeng, Erliang 329
Zhang, Liqing 372
Zhang, Yan-Qing 496
Zhao, Jizhen 627

Zhao, Xiaohong 121
Zhao, Yichuan 496
Zhu, Xiaoyan 418
Zhung, Wei-Jun 430
Zoppis, Italo 158

	Title Page
	Preface
	Organization
	Table of Contents
	GFBA: A Biclustering Algorithm for Discovering Value-Coherent Biclusters
	Introduction
	Related Work
	Our Proposed Fuzzy Value-Coherent Bicluster Model and Its Objective Function
	The Value-Coherent Bicluster Model
	Our Proposed Fuzzy Value-Coherent Bicluster Model
	Our Proposed Objective Function

	Our Proposed GFBA Algorithm
	An Overview of GFBA
	Solution Encoding and Fitness Function Definition
	Operators
	Interpretation of Fuzzy Biclustering Results

	Experimental Results
	Conclusions and Future Work

	Significance Analysis of Time-Course Gene Expression Profiles
	Introduction
	Methods
	Time-Dependent Model
	Time-Independent Model
	Hypothesis Testing

	Evaluation
	Datasets
	Benchmarking Results on SYN
	Results on Biological Data BAC

	Conclusion
	References

	Data-Driven Smoothness Enhanced Variance Ratio Test to Unearth Responsive Genes in 0-Time Normalized Time-Course Microarray Data
	Introduction
	Data-Driven Smoothness Enhanced Variance Ratio Test (dSEVRaT)
	Data-Driven SEVRaT (dSEVRaT)
	Testing for Statistical Significance

	Results
	Simulated Data
	Environmental Response Data
	Yeast Cell Cycle Data

	Discussion

	Efficiently Finding the Most Parsimonious Phylogenetic Tree Via Linear Programming
	Introduction
	Preliminaries
	Preprocessing
	Reducing the Set of Possible Steiner Vertices
	Decomposition into Smaller Problems
	Merging Rows and Columns

	ILP Formulation
	Empirical Results
	Conclusion

	A Multi-Stack Based Phylogenetic Tree Building Method
	Introduction
	Background
	Phylogenetic Trees
	Constrained Least Squares Criterion

	Materials and Methods
	Multi-Stack Approach
	Closest Neighborhood Tree Joining Operator
	Distances and Similarities
	Generation of Model Populations
	Description of Real-Life Datasets

	Experiments
	Evaluation of the Model Populations
	Real-Life Datasets

	Conclusion

	A New Linear-Time Heuristic Algorithm for Computing the Parsimony Score of Phylogenetic Networks: Theoretical Bounds and Empirical Performance
	Introduction
	Parsimony of Phylogenetic Networks
	Parsimony of Phylogenetic Networks

	Hardness of Approximation of the PSPN Problem
	A Linear-Time Algorithm
	A 3-Approximation Ratio

	Experimental Results
	Results and Analysis

	A Bootstrap Correspondence Analysis for Factorial Microarray Experiments with Replications
	Introduction
	Methods
	Correspondence Analysis
	Non-parametric Bootstrapping
	The Analysis of Variance Model
	Functional Analysis of Significant Genes

	Applications
	Stem Cell Data
	Breast Cancer Data

	Discussion
	References

	Clustering Algorithms Optimizer: A Framework for Large Datasets
	Introduction
	Methods
	Preprocessing
	Parameter Tuning

	Implementation
	Results
	The Colon Dataset of Alon et al. (1999)
	The Leukemia Dataset of Golub et al., 1999
	The Yeast Dataset of Spellman et al. (1998)

	Conclusion
	References

	Ranking Function Based on Higher Order Statistics (RF-HOS) for Two-Sample Microarray Experiments
	Introduction
	Research Context
	Mathematical Formulation
	Empirical Analyses
	Discussions
	Conclusion
	References

	Searching for Recombinant Donors in a Phylogenetic Network of Serial Samples
	Introduction
	Methods
	Notations and Definitions
	Selection Criteria
	The DescendantsInfo List
	Phase 1: Storing Candidate Donor Nodes in the DescendantsInfo List
	Phase 2: Identification of Donor Nodes
	Time Complexity

	Experimental Results and Discussion
	Conclusion
	References

	Algorithm for Haplotype Inferring Via Galled-Tree Networks with Simple Galls (Extended Abstract)
	Introduction
	Definitions of Phylogenetic and Galled-Tree Networks

	Inferring Haplotypes Via Galled-Tree Network
	Special Instances of GTNH Problem
	The Algorithm
	Phase 1: Eliminating Rows with Less Than Three or More Than Four 2's.
	Phase 2: Eliminating of Some Triples of 2's.
	Phase 3: Reducing to a Hypergraph Covering Problem
	Solving Hypergraph Covering Problem
	Experimental Results

	Estimating Bacterial Diversity from Environmental DNA: A Maximum Likelihood Approach
	Introduction
	Venter's Coverage Depth Method
	PHACCS Methods

	A Maximum Likelihood Approach
	Model A: Discrete Distribution
	Model B: Power Law Distribution
	Model C: Broken Stick Distribution
	Model D: Log-Normal Distribution

	Sargasso Sea Data
	Our Results
	Discussion

	Invited Talk: Modern Homology Search
	Statistical Absolute Evaluation of Gene Ontology Terms with Gene Expression Data
	Introduction
	Ontological Analysis of Gene Expression Data
	Proposed Method
	Existing Methods

	Numerical Experiments
	Monte Carlo Simulation
	Ontological Analysis of Gene Expression Data of Human Diabetes

	Concluding Remarks

	Discovering Relations Among GO-Annotated Clusters by Graph Kernel Methods
	Introduction
	Kernel Functions and Graph Kernel
	Method
	GO Graph Model
	A Kernel for GO Window Graphs

	Numerical Results
	Preliminary Analysis of the Yeast Cell Cycle Data-Set

	Biological Results
	Conclusion

	An Empirical Comparison of Dimensionality Reduction Methods for Classifying Gene and Protein Expression Datasets
	Introduction
	Description of Dimensionality Reduction Methods
	Linear Dimensionality Reduction Methods
	Nonlinear Dimensionality Reduction Methods

	Experimental Design
	Description of Datasets and Parameter Settings
	Classifiers
	Quantitative Evaluation of DR Methods

	Results and Discussion
	Quantitative Evaluation of DR Methods Via Classifier Accuracy
	Semi-quantitative Evaluation of Dimensionality Reduction Methods Via Class Separation and Novel Class Detection

	Concluding Remarks

	NEURONgrid: A Toolkit for Generating Parameter- Space Maps Using NEURON in a Grid Environment
	Introduction
	Uses of Parameter-Space Maps in Neuroscience
	GridMP Environment
	Toolkit
	Helper Classes for Parameter Manipulation
	NEURON Package for GridMP
	Management Client

	Test Case
	Experimental Setup
	Results

	Discussion and Future Work
	References

	An Adaptive Resolution Tree Visualization of Large Influenza Virus Sequence Datasets
	Introduction
	Methods
	Discussion

	Wavelet Image Interpolation (WII): A Wavelet-Based Approach to Enhancement of Digital Mammography Images
	Introduction
	Brief Overview of the Discrete Wavelet Transformation (DWT)
	Previous Work

	Description of the Data
	Methodology
	Detection of Regions of Interest (ROI)
	Wavelet Image Interpolation Procedure
	Imputing Details

	Results
	Conclusion

	High Level Programming Environment System for Protein Structure Data
	Introduction
	High Level Programming System for Protein Structure Data
	Client Application
	Middleware Layer
	Protein Structure Data Operators

	Details on Using System
	Conclusions and Future Work
	References

	Finding Minimal Sets of Informative Genes in Microarray Data
	Introduction
	Heuristic Branch-and-Bound Depth First Search
	Experimental Setup and Results
	Preprocessing Steps
	Datasets
	Experimental Results

	Conclusion and Future Work
	References

	Noise-Based Feature Perturbation as a Selection Method for Microarray Data
	Introduction
	Method
	Feature Perturbation
	Feature Perturbation Method vs. SVM-RFE Method

	Experimental Results
	Data and Parameters
	Experiments and Results

	Conclusion

	Efficient Generation of Biologically Relevant Enriched Gene Sets
	Introduction
	Background
	Gene Ontologies
	Differentially Expressed Genes

	Gene Set Enrichment Analysis (GSEA)
	Generation of New Gene Sets
	Experiments
	Experimental Results
	Statistical Validation

	Conclusion

	Space and Time Efficient Algorithms to DiscoverEndogenous RNAi Patterns in Complete Genome Data
	Introduction
	Problem Description
	New Algorithms for TRIP
	Experimental Results
	Conclusion

	A Fast Approximate Covariance-Model-Based Database Search Method for Non-coding RNA
	Introduction
	Covariance Models for Non-coding RNA Database Search
	From Structure-Annotated Consensus Sequence to a Covariance Model Structure Tree
	Searching a Database with a Covariance Model

	Fast Search Method
	Experimental Results
	Conclusion
	References

	Extensions of Naive Bayes and Their Applications to Bioinformatics
	Introduction
	Formulation
	First Improvement
	Second Improvement

	Application of These Extensions
	Application of Extension 1
	Application of Extension 2

	Summary and Conclusion
	References

	The Solution Space of Sorting by Reversals
	Introduction
	Sorting by Reversals and Its Solution Space
	The Algorithm and Its Complexity
	The Enumeration of the Solutions
	The Enumeration of the Traces
	Theoretical Complexity

	Experimental Results and Applications
	Conclusions, Limitations and Perspectives

	A Fast and Exact Algorithm for the Perfect Reversal Median Problem
	Introduction
	Basic Definitions
	Solving the Perfect Reversal Median Problem
	Definitions and The Median Parity Theorem
	Unambiguous Trees Without Prime Nodes
	Unambiguous Trees with Prime Nodes
	Ambiguous Trees

	Results
	Properties of Strong Interval Trees
	Computing RMP Medians

	Conclusion

	Genomic Signatures from DNA Word Graphs
	Introduction
	Preliminaries
	Theory and Methods
	Results and Discussion
	Conclusion

	Enhancing Motif Refinement by Incorporating Comparative Genomics Data
	Introduction
	Methods
	Enhanced Motif Refinement (EMR Algorithm)
	Motif Ranking

	Results and Analysis
	Synthetic Data
	Results of Yeast Data

	Discussion
	References

	Mining Discriminative Distance Context of Transcription Factor Binding Sites on ChIP Enriched Regions
	Introduction
	Materials and Methods
	Prediction of Putative TFBSs in the ENCODE Genomic Region
	Scoring ChIP Enrichment
	Building Distance Variables
	Acquisition of Genome Content Variables
	Rule Ensemble Learning
	Tuning Classifiers for the Imbalanced Data
	Performance Evaluation
	Variance Importance and Interaction Criteria

	Results
	Performance Evaluation for Discriminating ChIP Enriched TFBSs
	Important TFBS Variables
	Genome Contents and Related ChIP Experimental Data Set

	Discussions and Conclusions
	References

	Enhanced Prediction of Cleavage in Bovine Precursor Sequences
	Introduction
	Materials and Methods
	Data
	Model
	Validation and Model Accuracy

	Results
	Discussion
	References

	Invited Talk: A Computational Study of Bidirectional Promoters in the Human Genome
	Introduction
	Data and Algorithm
	Results and Discussion
	Identification of Novel Genes and Exons
	Localization of Regulatory Intervals
	Coordinately-Regulated Expression Groups
	Prevalence of Bidirectional Promoters in Biological Pathways

	The Identification of Antisense Gene Pairs Through Available Software
	Introduction
	What Are Antisense Pairs?
	Antisense Functions
	Antisense Software and Computational Methods

	Materials and Methods
	MUMmer and Input Data
	Antisense Quantification

	Results
	Discussion
	References

	Inferring Weak Adaptations and Selection Biases in Proteins from Composition and Substitution Matrices
	Introduction
	Materials and Methods
	Sequence Data
	Amino Acid Composition
	Amino Acid Substitution Bias
	Multiple Test Correction

	Experimental Results and Discussion
	Amino Acid Composition
	Analysis of Substitution Patterns

	Conclusion
	References

	Markov Model Variants for Appraisal of Coding Potential in Plant DNA
	Introduction
	Materials and Methods
	Data Accumulation
	Fixed-Order Markov Models (FO)
	Interpolated Markov Models (IMMs)
	Accounting for G+C Content
	Test Design

	Results
	Discussion

	Predicting Palmitoylation Sites Using a Regularised Bio-basis Function Neural Network
	Introduction
	Regularised Bio-basis Function Neural Network
	Result
	Data
	Cross-Validation
	Sequence Logos
	Model Evaluation
	Result
	Comparison

	Conclusion

	A Novel Kernel-Based Approach for Predicting BindingPeptides for HLA Class II Molecules
	Introduction
	Method
	String Kernel
	Incorporating BLOSUM Matrix into String Kernel
	Implementation and Parameter Optimization

	Experiment
	Peptides Dataset
	Testing of the Benchmark Data for HLA-DRB1*0401 Allele
	Evaluation for Other HLA Class II Alleles

	Discussion and Conclusion
	References

	A Database for Prediction of Unique Peptide Motifs as Linear Epitopes
	Introduction
	Algorithms for Linear Epitope Prediction
	Physico-Chemical and Structural Propensity Scales
	Results and Discussion
	References

	A Novel Greedy Algorithm for the Minimum Common String Partition Problem
	Introduction
	Iterative Greedy Algorithm
	Iterative Greedy Algorithm
	Preliminaries
	Worst Case Scenario
	Time Complexity

	Experiments
	Conclusion

	An Efficient Algorithm for Finding Gene-Specific Probes for DNA Microarrays
	Introduction
	Preliminary and Related Work
	Problem Definition and Our Approach
	Experimental Results
	Conclusion

	Multiple Sequence Local Alignment Using Monte Carlo EM Algorithm
	Introduction
	Multiple Local Alignment for Motif Discovery
	Motif Discovery Using Monte Carlo EM Algorithm
	EM Motif-Finding Algorithms
	Monte Carlo EM Motif-Finding Algorithms

	Implementation
	Experimental Results
	Motif Discovery in Simulated DNA Sequences
	Motif Discovery in Real Biological Sequences
	Motif Discovery in Protein Sequences

	Discussion

	Cancer Class Discovery Using Non-negative Matrix Factorization Based on Alternating Non-negativity-Constrained Least Squares
	Introduction
	NMF Based on Alternating Non-negativity-Constrained Least Squares (NMF/ANLS)
	Analytic Convergence Criterion
	Mathematical Convergence Criterion
	Combined Convergence Criterion

	Experiments and Discussion
	Datasets Description
	Clustering Performance Measures
	Clustering Performance Comparison
	Model Selection
	Biological Analysis
	Remarks on Clustering Via NMF

	Summary

	A Support Vector Machine Ensemble for Cancer Classification Using Gene Expression Data
	Introduction
	Support Vector Machines
	Proposed Method
	Experimental Setup and Results
	Setup
	Experimental Results

	Conclusion
	References

	Combining SVM Classifiers Using Genetic Fuzzy Systems Based on AUC for Gene Expression Data Analysis
	Introduction
	ROC Analysis for Binary Classification
	Genetic Fuzzy Systems
	Genetic Fuzzy SVM Fusion Based on AUC
	Fuzzy System Inputs and Output
	Fuzzy Rule Base
	Fuzzy System Output and Defuzzification
	Tuning Fuzzy System Using GAs

	Experiments on Gene Expression Data
	Conclusion
	References

	A BP-SCFG Based Approach for RNA Secondary Structure Prediction with Consecutive Bases Dependency and Their Relative Positions Information
	Introduction
	Method
	Diagram of the Approach
	Consecutive Bases Dependency
	Relative Position Information
	Optimal Structure Calculation

	Experimental Results
	Dataset Preparation
	Comparison to the BJK Grammar of the SCFG Approach

	Conclusion and Future Work

	Delta: A Toolset for the Structural Analysis of Biological Sequences on a 3D Triangular Lattice
	Introduction
	The Delta Toolset
	The 3D Triangular Lattice
	Representation of Structures
	Visualization of Structures
	Manipulation of Structures by Pull Moves
	The Structural Manipulation Tool

	Experiment
	Concluding Remarks

	Statistical Estimate for the Size of the Protein Structural Vocabulary
	Introduction
	Method
	Cluster Similarity
	Initialization of K-Means

	Empirical Analyses
	Dataset
	Parameters Setup
	Experimental Results
	Evaluation of Experimental Results

	Conclusion
	References

	Coclustering Based Parcellation of Human Brain Cortex Using Diffusion Tensor MRI
	Introduction
	Background and Related Work
	The Coclustering Model
	The BCA Algorithm
	Density-Based Initialization
	Split
	Transfer
	Merge

	3-D Visualization of the BCA Results
	Conclusions and Future Work

	An Algorithm for Hierarchical Classification of Genes of Prokaryotic Genomes
	Introduction
	Method
	Functional Equivalence Relationship Between Genes
	Hierarchical Clustering of Genes
	Functional Annotations of the HCG Clusters

	Results and Discussion
	Comparison with Taxonomic Hierarchy of Genomes:
	Comparisons with COG and Pfam Classifications

	Conclusion
	References

	Using Multi Level Nearest Neighbor Classifiers for G-Protein Coupled Receptor Sub-families Prediction
	Introduction
	Material and Methods
	Results and Discussions
	Conclusion
	References

	Invited Talk: Ab Initio Gene Finding Engines: What Is Under the Hood
	Reconstruction of 3D Structures from Protein Contact Maps
	Introduction
	Protein Structure Reconstruction
	Protein Representation and Contact Map
	Distance Geometry and Protein Structure Reconstruction

	Algorithm Description
	Experimental Results
	Comparison with Previous Methods

	Conclusions and Further Works
	References

	A Feature Selection Algorithm Based on Graph Theory and Random Forests for Protein Secondary Structure Prediction
	Introduction
	Problem Formulation and Background
	Protein Secondary Structure Prediction Problem Formulation
	Previous Work on Protein Secondary Structure Prediction
	Random Forests
	Feature Selection

	Methods
	New Algorithm for the Prediction of the Secondary Structure
	Encoding Schemes of the Data
	Feature Reduction Based on Cliques
	Training and Testing
	Parameter Optimization
	Binary Classifiers

	Results
	Parameter Optimization
	Encoding Scheme Optimization
	Time Comparison

	Conclusion
	References

	DNA Sites Buried in Nucleosome Become Accessible at Room Temperature: A Discrete-Event-Simulation Based Modeling Approach
	Introduction
	Nucleosome Dynamics
	Motif Access Pathways
	Pathway Model

	Assumptions and Stochastic Components
	Spontaneous Mechanisms of DNA Accessibility
	Partial Unwrapping/Rewrapping of Nucleosomal DNA
	Twist-Defect Nucleosome Sliding
	Planner-Bulge Inchworm Nucleosome Sliding

	Numerical Analysis
	Conclusion

	Comparative Analysis of Gene-Coexpression Networks Across Species
	Introduction
	Materials and Methods
	Sequence and Expression Data
	Identifying Metagenes
	Constructing Gene-Coexpression Networks
	Statistical Analysis of Network Parameters

	Results
	Discussions

	Comparative Pathway Prediction Via Unified Graph Modeling of Genomic Structure Information
	Introduction
	Methods and Algorithm
	Problem Formulation
	The Methods
	Tree Decomposition Based Algorithm

	Evaluation Results
	Discussion and Conclusion

	Extending the Calculus of Looping Sequences to Model Protein Interaction at the Domain Level
	Introduction
	The Calculus of Looping Sequences
	The Calculus of Linked Looping Sequences
	An Example: The EGF Signalling Pathway
	Conclusion

	Author Index

