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Abstract. We introduce two institutions for the process algebra Csp,
one for the traces model, and one for the stable failures model. The
construction is generic and should be easily instantiated with further
models. As a consequence, we can use structured specification constructs
like renaming, hiding and parameterisation (that have been introduced
over an arbitrary institution) also for Csp. With a small example we
demonstrate that structuring indeed makes sense for Csp.

1 Introduction

Among the various frameworks for the description and modelling of reactive
systems, process algebra plays a prominent role. Here, the process algebra Csp

[13, 18] has successfully been applied in various areas, ranging from train control
systems [7] over software for the international space station [6] to the verification
of security protocols [19].

In this paper we extend the process algebra Csp by a ’module concept’ that
allows us to build complex specifications out of simpler ones. To this end, we
re-use typical structuring mechanisms from algebraic specification as they are
realised, e.g., in the algebraic specification language Casl [8, 4]. This approach
leads to a new specification paradigm for reactive systems: our framework offers
also the loose specification of Csp processes, where the structured free con-
struct applied to a basic specification yields the usual fixed point construction
by Tarski’s theorem.

On the theoretical side our approach requires us to formulate the process
algebra Csp as an institution [12] — the latter notion captures the essence of a
logical system and allows for logic-independent structuring languages. We show
that various Csp models1 fit into this setting. The practical outcome is a flexible
module concept. We demonstrate through some examples that these structuring
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1 i.e. the combination of process syntax, semantic domain, semantic clauses, and a
fixed-point theory in order to deal with recursion.
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mechanisms (e.g. extension, union, renaming, parametrisation) are suitable for
Csp. Furthermore, formulating a process algebra as an institution links two
hitherto unrelated worlds.

The paper is organised as follows: Sect. 2 discusses what a Csp signature
might be. Then we describe in a generic way how to build a Csp institution.
It turns out that many properties can already be proven in the generic setting.
Sections 4 and 5 instantiate the generic institution with the traces model and the
stable failures model, resp. Having now institutions available, we discuss how to
obtain the full range of structuring mechanisms in spite of the missing pushouts
of our signature category. In Sect. 7 we make structured specifications available
to Csp and illustrate this with a classical example of process algebra. Sect. 8
discusses some related work and concludes the paper.

2 What Is an Appropriate Notion of a Signature
Morphism?

When analysing Csp specifications, it becomes clear that there are two types
of symbols that change from specification to specification: communications and
process names. Pairs consisting of an alphabet A of communication symbols and
of process names N (together with some type information) will eventually be the
objects of our category CspSig of CSP signatures, see Sect 3.1 below. The notion
of a signature morphism, however, is not as easy to determine. An institution
captures how truth can be preserved under change of symbols. In this sense, we
want to come up with a notion of a signature morphism that is as liberal as
possible but still respects fundamental Csp properties. In this section we discuss
why this requires to restrict alphabet translations to injective functions.

The process algebra Csp itself offers an operator that changes the commu-
nications of a process P , namely functional renaming2 f [P ]. Here, f : A →? A
is a (partial) function such that dom(f ) includes all communications occurring
in P . The Csp literature, see e.g. [18], classifies functional renaming as follows:
(1) Functional renaming with an injective function f preserves all process prop-
erties. (2) Functional renaming with a non-injective function f is mainly used
for process abstraction. Non-injective renaming can introduce unbounded non-
determinism3, and thus change fundamental process properties.

As a process algebra, Csp exhibits a number of fundamental algebraic laws.
Among these the so-called step laws of Csp, take for example the following law
〈�-step〉,

2 Note that the so-called relational renaming, which is included in our Csp dialect,
subsumes functional renaming.

3 Take for example f [?n : N → (−n) → Skip] = 0 → � { (−n) → Skip | n ∈ N},
where f (z) = 0, if z ≥ 0, and f (z) = z , if z < 0. As functional renaming can be
expressed in terms of relational renaming, the process on the left-hand side is part
of our Csp dialect. The process on the right-hand side, however, does not belong to
our Csp dialect, as we restrict the internal choice operator to be binary only.



94 T. Mossakowski and M. Roggenbach

(?x : A → P)�(?y : B → Q)
= ?x : A ∪ B → if x ∈ A ∩ B then (P �Q) else (if x ∈ A then P else Q)

are of a special significance: The step laws do not only hold in all the main
Csp models, including the traces model T , the failures/divergences model N ,
and the stable-failures model F . They are also essential for the definition of
complete axiomatic semantics for Csp, see [18, 14]. The Csp step laws show that
e.g. the behaviour of external choice �, alphabetised parallel |[X ]| and hiding \
crucially depends on the equality relation in the alphabet of communications.
We demonstrate this here for the external choice operator �:

– Assume a 	= b. Then

(?x : {a} → P)�(?y : {b} → Q)
= ?x : {a, b} → if x ∈ {a} ∩ {b} then (P �Q) else (if x ∈ {a} then P else Q)
= ?x : {a, b} → if x ∈ {a} then P else Q

– Mapping a and b with a non-injective function f to the same element c has
the effect:

f [(?x : {a} → P)�(?y : {b} → Q)]
= ((?x : {c} → f [P ])�(?y : {c} → f [Q ]))
= ?x : {c} → if x ∈ {c} ∩ {c} then (f [P ]� f [Q ]) else

(if x ∈ {c} then f [P ] else f [Q ])
= ?x : {c} → (f [P ]� f [Q ])

I.e. before the translation, the environment controls which one of the two pro-
cesses P and Q is executed - after the translation this control has been lost: The
process makes an internal choice between f [P ] and f [Q ]. Similar examples can
be extracted from the step laws for external choice �, alphabetised parallel |[X ]|
and hiding \.

Summarised: Non-injective renaming can fundamentally change the behaviour
of processes.One reason for this is that alphabets of communications play two roles
inCsp:Theyare constituents ofboth (i) theprocess syntaxand (ii) the semantic do-
main. This causes problems with non-injective functions as signature morphisms:
syntax is translated covariantly while semantics is translated contravariantly.

3 The CSP Institution – General Layout

Institutions have been introduced by Goguen and Burstall [12] to capture the no-
tion of logical system and abstract away from the details of signatures, sentences,
models and satisfaction. We briefly recall the notion here.

Let CAT be the category of categories and functors.4

4 Strictly speaking, CAT is not a category but only a so-called quasi-category, which
is a category that lives in a higher set-theoretic universe.



Structured CSP – A Process Algebra as an Institution 95

Definition 1. An institution I = (Sign,Sen,Mod, |=) consists of

– a category Sign of signatures,
– a functor Sen:Sign −→ Set giving, for each signature Σ, the set of sen-

tences Sen(Σ), and for each signature morphism σ: Σ −→Σ′, the sentence
translation map Sen(σ):Sen(Σ) −→ Sen(Σ′), where often Sen(σ)(ϕ) is
written as σ(ϕ),

– a functor Mod:Signop −→ CAT giving, for each signature Σ, the cate-
gory of models Mod(Σ), and for each signature morphism σ: Σ −→Σ′, the
reduct functor Mod(σ):Mod(Σ′) −→ Mod(Σ), where often Mod(σ)(M ′)
is written as M ′ |σ,

– a satisfaction relation |=Σ ⊆| Mod(Σ) | ×Sen(Σ) for each Σ ∈| Sign |,

such that for each σ: Σ −→Σ′ in Sign the following satisfaction condition holds:

M ′ |=Σ′ σ(ϕ) ⇔ M ′ |σ|=Σ ϕ

for each M ′ ∈| Mod(Σ′) | and ϕ ∈ Sen(Σ).

We first discuss the general layout of the Csp institution independently of a
concrete Csp model.

3.1 The Category CspSig of CSP Signatures

An object in the category CspSig is a pair (A,N ) where

– A is an alphabet of communications and
– N = (N̄ , sort, param) collects information on process names; N̄ is a set of

process names, where each n ∈ N̄ has
• a parameter type param(n) = 〈X1, . . . ,Xk〉, Xi ⊆ A for 1 ≤ i ≤ k ,

k ≥ 0. A process name without parameters has the empty sequence 〈〉
as its parameter type.

• a type sort(n) = X ⊆ A, which collects all communications in which the
process n can possibly engage in.

By abuse of notation, we will write n ∈ N instead of n ∈ N̄ and (a1, . . . , ak ) ∈
param(n) instead of (a1, . . . , ak ) ∈ X1×. . .×Xk , where param(n) = 〈X1, . . . ,Xk〉.

A morphism σ = (α, ν) : (A,N ) → (A′,N ′) in the category CspSig consists
of two maps

– α : A → A′, an injective translation of communications, and
– ν : N → N ′, a translation of process names, which has the following two

properties:
• param′(ν(n)) = α(param(n)): preservation of parameter types, where

α(param(n)) denotes the extension of α to sequences of sets.
• sort′(ν(n)) ⊆ α(sort(n)) : non-expansion of types, i.e. the translated

process ν(n) is restricted to those events which are obtained by transla-
tion of its type sort(n).
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The non-expansion of types principle is crucial for ensuring the satisfaction
condition of the CSP institution below. It ensures that the semantics of a
process is frozen when translated to a larger context, i.e. even when moving
to a larger alphabet, up to renaming, models for “old” names may only use
“old” alphabet letters. This corresponds to a black-box view on processes
that are imported from other specification modules.

As usual, the composition of morphisms σ = (α, ν) : (A,N ) → (A′,N ′) and
σ′ = (α′, ν′) : (A′,N ′) → (A′′,N ′′) is defined as σ′ ◦ σ := (α′ ◦ α, ν′ ◦ ν).

3.2 Sentences

Given A : alphabet of communications
N : set of process names
Z : variable system over A

L(A,N ,Z ) : logic
we define
P ,Q ::= n(z1, . . . , zk ) %% (possibly parametrised) process name

| Skip %% successfully terminating process
| Stop %% deadlock process
| a → P %% action prefix with a communication
| y → P %% action prefix with a variable
| ?x : X → P %% prefix choice
| P � Q %% external choice
| P � Q %% internal choice
| if ϕ then P else Q %% conditional
| P |[X ]| Q %% generalized parallel
| P \ X %% hiding
| P [[r ]] %% relational renaming
| P o

9 Q %% sequential composition
where
n ∈ N , param(n) = 〈X1, . . . ,Xk〉 for some k ∈ N, and zi ∈ (

�
Y ⊆Xi

ZY ) ∪ Xi for
1 ≤ i ≤ k ; a ∈ A; y ∈ Z ; x ∈ ZX ; X ⊆ A; ϕ ∈ L(A,N ,Z ) is a formula; and
r ⊆ A × A

Fig. 1. Csp syntax

Relative to an alphabet of communications A we define a variable system
Z = (ZX )X∈P(A) to be a pairwise disjoint family of variables, where subsets
X ⊆ A of the alphabet A are the indices.

The standard Csp literature does not reflect what kind of logic L(A,N ,Z )
is plugged into the language. A logic that is quite simple but covers those for-
mulae usually occurring in process examples is given in Fig. 2. We record some
properties of formulae:
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L1 There is a substitution operator [b/y] defined in an obvious way on formulae.
Substitution has the following property: If ϕ ∈ L(A,N ,Z ), y : Y ∈ Z , and
b ∈ Y , for some Y ⊆ A, then ϕ[b/y] ∈ L(A,N ,Z\{y : Y }).

Csp terms, see Fig. 1 for the underlying grammar, are formed relatively to a
signature (A,N ), a variable system Z over A, and a logic L(A,N ,Z ). Additional
Csp operators can be encoded as syntactic sugar, including the synchronous
parallel operator P ‖ Q := P |[ A ]| Q and the interleaving operator P ||| Q :=
P |[ ∅ ]| Q .

For the purpose of turning Csp into an institution, the use of variables needs
to be made more precise. Given a system of global variables G and a system
of local variables L, which are disjoint, we define the system of all variables
Z := G ∪ L. We define the set of process terms T(A,N )(G,L) over a signature
(A,N ) to be the least set satisfying the following rules:

– n(z1, . . . , zk ) ∈ T(A,N )(G,L) if n ∈ N , param(n) = 〈X1, . . . ,Xk 〉 for some
k ∈ N, and zi ∈ (

⋃
Y⊆Xi

ZY ) ∪ Xi for 1 ≤ i ≤ k ;
– Skip, Stop ∈ T(A,N )(G,L).
– a → P ∈ T(A,N )(G,L) if a ∈ A and P ∈ T(A,N )(G,L)
– x → P ∈ T(A,N )(G,L) if x ∈ G ∪ L and P ∈ T(A,N )(G,L)
– ?x : X → P ∈ T(A,N )(G,L) if P ∈ T(A,N )(G,L ∪ {x : X }).
– P � Q , P � Q ∈ T(A,N )(G,L) if P ,Q ∈ T(A,N )(G,L).
– if ϕ then P else Q ∈ T(A,N )(G,L) if P ,Q ∈ T(A,N )(G,L) and ϕ ∈ L(A,N ,Z ).
– P |[X ]| Q ∈ T(A,N )(G,L) if P ,Q ∈ T(A,N )(G,L) and X ⊆ A.

– P \ X ∈ T(A,N )(G,L), if P ∈ T(A,N )(G,L) and X ⊆ A.

– P [[r ]] ∈ T(A,N )(G,L) if P ∈ T(A,N )(G,L) and r ⊆ A × A.

– P o
9 Q ∈ T(A,N )(G,L) if P ∈ T(A,N )(G,L) and Q ∈ T(A,N )(G, ∅).

The set of global variables remains constant in all rules; local variables are ef-
fected in the rules for prefix choice and sequential composition: prefix choice
adds a new local variable; sequential composition deletes all local variables.

The Csp semantics deals with variables using substitution on the syntax level.
Here, P [b/y] denotes the process P in which every free occurrence of the variable

Formulae in L(A,N , Z ):
t1 = t2 t1, t2 terms over (N ,A) and Z
t ∈ X t a term over (N ,A) and Z ; X ⊆ A

Terms over (N ,A) and Z :
a a ∈ A (alphabet symbol)
x x ∈ Z (variable)

Fig. 2. A simple logic for formulae occurring in CSP processes
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n(z1, . . . , zk )[a/y ] = n(y1, . . . , yk ) with yi =
�

a if zi = y
zi otherwise.

Skip[b/y ] = Skip
Stop[b/y ] = Stop
(a → P)[b/y ] = a → P [b/y ]

(x → P)[b/y ] =
�

b → P [b/y ] ; x = y
x → P [b/y ] ; x �= y

(?x : X → P)[b/y ] =
�

?x : X → P ; x = y
?x : X → P [b/y ] ; x �= y

(P � Q)[b/y ] = P [b/y ] � Q [b/y ]
(P � Q)[b/y ] = P [b/y ] � Q [b/y ]
(if ϕ then P else Q)[b/y ] = if ϕ[b/y ] then P [b/y ] else Q [b/y ]
(P |[X ]| Q)[b/y ] = P [b/y ] |[X ]| Q [b/y ]
(P \ X )[b/y ] = P [b/y ] \ X
(P [[r ]])[b/y ] = (P [b/y ])[[r ]]
(P o

9 Q)[b/y ] = P [b/y ] o
9 Q [b/y ]

Fig. 3. Substitution

y : Y is replaced by a communication b ∈ Y . Fig. 3 gives the formal definition5.
We write P [a1/x1, a2/x2, . . . , an/xn ] for (. . . ((P [a1/x1])[a2/x2]) . . .)[an/xn ].

A process definition over a signature (A,N ) is an equation

p(x1, . . . , xk) = P

where p ∈ N , the xi are variables with xi : Xi , where Xi is the i-th com-
ponent of param(p), and P is a term. A process definition is a sentence if
P ∈ T(sort(p),N )({x1 : X1, . . . , xk : Xk}, ∅).

3.3 Translation Along a Signature Morphism

Let σ = (α, ν) : (A,N ) → (A′,N ′) be a signature morphism. Given a variable
system Z = (ZX )X∈P(A) over (A,N ) we obtain a variable system σ(Z ) over
(A′,N ′) by σ(Z )X ′ :=

⋃
α(X )=X ′ ZX . For an individual variable x : X this

translation yields σ(x : X ) = α(x : X ) = x : α(X ). For the translation of
formulae we require:

L2 L has a formula translation of the type σ : L(A,N ,Z ) → L(A′,N ′, σ(Z ))
with the following property: given a formula ϕ ∈ L(A,N ,Z ), then σ(ϕ) ∈
L(α(A),N ′, σ(Z )).

L3 Formula translation composes, i.e., for all signature morphisms σ = (α, ν) :
(A,N ) → (A′,N ′), σ′ = (α′, ν′) : (A′,N ′) → (A′′,N ′′), and ϕ ∈ L(A,N ,Z )
holds: (σ′ ◦ σ)(ϕ) = σ′(σ(ϕ)).

5 The rule for prefix choice deals with free and bound variables. In the case of sequential
composition only a substitution with a global variable can have an effect on the
process Q .
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Properties L2 and L3 are indeed satisfied by our simple logic given in Fig. 2.
Fig. 4 gives the rules for term translation. Translation of process definitions

is defined as

σ(p(x1, . . . , xk ) = P) := σ(p(x1, . . . , xk)) = σ(P).

The translation of process definitions composes.

Fig. 4. Term translation

3.4 Models and Reducts

Let D(A) be a Csp domain constructed relatively to a set of communications A.
Examples of D(A) are the domain T (A) of the Csp traces model, see Section 4,
and the domain F(A) of the Csp stable failures model, see Section 5. A model
M over a signature (A,N ) assigns to each n and for all a1, . . . , ak ∈ param(n)
a type correct element of the semantic domain D(A), i.e.

M (n(a1, . . . , ak )) ∈ D(sort(n)) ⊆ D(A).

We define model categories to be partial orders, that is, there is a morphism
between models M1 and M2, iff M1 � M2. Here � is the pointwise extension of
the partial order used in the denotational Csp semantics for the chosen domain
D; see the individual domains for the concrete choice of the partial order.

Given an injective (total) alphabet translation α : A → A′ we define its
partial inverse as

α̂ :
A′ →? A

a′ �→
{

α̂(a) ; if a ∈ A is such that α(a) = a′

undefined ; otherwise

Let α̂D : D(A′) →? D(A) be the extension of α̂ to semantic domains – to be
defined for any domain individually.

The reduct of a model M ′ along σ is defined as

M ′|σ (n(a1, . . . , ak )) = α̂D(M ′(ν(n)(α(a1), . . . , α(ak ))).
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As for reducts it is clear that we work with domains, we usually omit the in-
dex and write just α̂. On the level of domains, we define the following reduct
condition on α and α̂ : ∀X ⊆ A : α̂(D(α(X ))) ⊆ D(X ).

Theorem 2 (Reducts are type correct). Let α and α̂ fulfil the reduct con-
dition. Then reducts are type correct, i.e. M ′ |σ (n(a1, . . . , ak )) ∈ D(sort(n)).

3.5 Satisfaction

Given a map denotation : M × P → D(A), which – given a model M – maps
a closed process term P ∈ T(A,N )(∅, ∅) to its denotation in D, we define the
satisfaction relation of our institution6:

M |= p(x1, . . . , xk) = P
:⇔

∀(a1, . . . , ak ) ∈ param(p).
denotationM (p(a1, . . . ak )) = denotationM (P [a1/x1, . . . , ak/xk ])

Remark 3. We can replace the logic L(A,N ,Z ) by any other logic that comes
with a satisfaction relation

|= ⊆ CspModD(A,N ) × L(A,N , ∅)

and satisfies laws L1 to L3 above, plus

L4 The logic fulfils a satisfaction condition, i.e., forall ϕ ∈ L(A,N , ∅) holds:

M ′ |σ|= ϕ[a1/x1, . . . , an/xn ] ⇔ M ′ |= σ(ϕ)[α(a1)/x1, . . . , α(an)/xn ]

To be concise with the Csp semantics, which deals with variables using
substitution on the syntax level, it is necessary to include here a (possibly
empty) substitution, see the reduct property stated in Theorem 4 below.

The Csp models give interpretations to the process names. The formulae
used in practical Csp examples usually only reason about data, not on processes.
Thus, in the satisfaction condition above the notion of a model and its reduct
will vanish in most logic instances.

If the chosen Csp model has the reduct property and the extension of α and
α̂ are inverse functions on D(A) and D(α(A)), the satisfaction condition holds:

Theorem 4 (Satisfaction condition). Let σ = (α, ν) : (A,N ) → (A′,N ′) be
a signature morphism. Let M ′ be a (A′,N ′)-model over the domain D(A′). Let
the following reduct property hold:

denotationM ′|σ(P [a1/x1, . . . , an/xn ])
= α̂(denotationM ′(σ(P)[α(a1)/x1, . . . , α(an )/xn ]))

for all P ∈ T(A,N )({x1 : X1, . . . xn : Xn}, ∅), ai ∈ Xi ⊆ A for 1 ≤ i ≤ n, n ≥ 0.
Let α and α̂ be inverses on D(A) and D(α(A)). Under these conditions, we have
for all process definitions p(x1, . . . , xk) = P over (A,N ) :

M ′ |σ|= p(x1, . . . , xk) = P ⇔ M ′ |= σ(p(x1, . . . , xk) = P).
6 Here and in the following we use ‘:⇔’ as an abbreviation for ‘iff, by definition’.
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4 The CSP Traces Model as an Institution

Given an alphabet A and an element � 	∈ A (denoting successful termination)
we define sets A� := A ∪ {�} and A∗� := A∗ ∪ {t � 〈�〉 | t ∈ A∗}. The
domain T (A) of the traces model is the set of all subsets T of A∗� for which
the following healthiness condition holds:

T1 T is non-empty and prefix closed.

The domain T (A) gives rise to the notion of trace refinement S �T T :⇔ T ⊆ S .
(T (A), �T ) forms a complete lattice, with A∗� as its bottom and {〈〉} as its top.
Morphisms in the category ModT (A,N ) are defined as:

M1 → M2 :⇔
∀n ∈ N : ∀ a1, . . . , ak ∈ param(n) : M2(n(a1, . . . , ak )) �T M1(n(a1, . . . , ak ))

I (n(a1, . . . , ak )) = {〈〉}, i.e. the model which maps all instantiated process names
to the denotation of Stop is initial in ModT (A,N ); F (n(a1, . . . , ak )) = A∗� is
final in ModT (A,N ).

Let σ = (α, ν) : (A,N ) → (A′,N ′) be a signature morphism. We extend the
map α canonically to three maps α�, α∗� and α∗�

T to include the termination
symbol, to extend it to strings, and to let it apply to elements of the semantic
domain, respectively. In the same way we can extend α̂, the partial inverse of α,
to three maps α̂�, α̂∗� and α̂∗�

T . With these notions, it holds that:

Theorem 5 (Reducts in the traces model are well-behaved)

1. Let T ′ ∈ T (A′). Then α̂(T ′) ∈ T (A).
2. ∀X ⊆ A : α̂(T (α(X ))) ⊆ T (X ).

tracesM (n(a1, . . . , ak )) = M (n(a1, . . . , ak))
tracesM (Skip) = {〈〉, 〈�〉}
tracesM (Stop) = {〈〉}

tracesM (a → P) = {〈〉} ∪ {〈a〉 � s | s ∈ tracesM (P)}
tracesM (? x : X → P) = {〈〉} ∪ {〈a〉 � s | s ∈ tracesM (P [a/x ]), a ∈ X }

tracesM (P � Q) = tracesM (P) ∪ tracesM (Q)
tracesM (P � Q) = tracesM (P) ∪ tracesM (Q)

tracesM (if ϕ then P else Q) = if M |= ϕ then tracesM (P) else tracesM (Q)
tracesM (P |[X ]| Q) =

�
{t1 |[X ]| t2 | t1 ∈ tracesM (P), t2 ∈ tracesM (Q)}

tracesM (P \ X ) = {t \ X | t ∈ tracesM (P)}
tracesM (P [[r ]]) = {t | ∃ t ′ ∈ tracesM (P). (t ′, t) ∈ r∗}
tracesM (P o

9 Q) = (tracesM (P) ∩ A∗) ∪
{t1 � t2 | t1 � 〈�〉 ∈ tracesM (P), t2 ∈ tracesM (Q)}

Fig. 5. Semantic clauses of the basic processes in the traces model T
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Fig. 5 gives the semantic clauses of the traces model, see [18] for the definition
of the various operators on traces. Note that thanks to the rules imposed on the
use of variables, there is no need to provide a denotation for a process term of
the form x → P : In the clause for prefix choice ?x : X → P , which is the only
way to introduce a variable x , every free occurrence of x in the process P is
syntactically substituted by a communication.

Lemma 6 (Terms, Substitutions and Reducts). With tracesM as denota-
tion function, the traces model has the reduct property stated in Theorem 4.

As reducts are healthy and the reduct property holds, reducts are well formed.
Thanks to Lemma 6 and Theorem 4, the Csp traces model forms an institution.

5 The CSP Stable Failures Model as an Institution

Given an alphabet A the domain F(A) of the stable failures model consists of
those pairs

(T ,F ), where T ⊆ A∗� and F ⊆ A∗� × P(A�),

satisfying the following healthiness conditions:

T1 T is non-empty and prefix closed.
T2 (s ,X ) ∈ F ⇒ s ∈ T .
T3 s � � ∈ T ⇒ (s � �,X ) ∈ F for all X ⊆ A�.
F2 (s ,X ) ∈ F ∧ Y ⊆ X ⇒ (s ,Y ) ∈ F .
F3 (s ,X ) ∈ F ∧ ∀ a ∈ Y : s � 〈a〉 /∈ T ⇒ (s ,X ∪ Y ) ∈ F .
F4 s � 〈�〉 ∈ T ⇒ (s ,A) ∈ F .

The domain F(A) gives rise to the notion of stable failures refinement

(T ,F ) �F (T ′,F ′) :⇔ T ′ ⊆ T ∧ F ′ ⊆ F

(F(A), �F) forms a complete lattice with (A∗�,A∗� × P(A�)) as its bottom
and ({〈〉}, ∅) as its top. See [18] for a complete definition of the stable failures
model. Morphisms in the category ModF (A,N ) are defined as:

M1 → M2 :⇔
∀n ∈ N : ∀ a1, . . . , ak ∈ param(n) : M2(n(a1, . . . , ak ) �F M1(n(a1, . . . , ak ))

I (n(a1, . . . , ak )) = ({〈〉}, ∅), i.e. the model which maps all instantiated process
names to the denotation of the immediately diverging process, is initial in
ModT (A,N ); F (n(a1, . . . , ak )) = (A∗�,A∗� × P(A�)) is final in ModT (A,N ).

The semantic clauses of the stable failures model are given by a pair of
functions: fdM (P) = (tracesM (P), failuresM (P)) – see [18] for the definition.
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Following the same extension pattern for α : A → A′ as demonstrated for
the traces model, we obtain:

Theorem 7 (Reducts in the stable failures model are well-behaved)

1. Let (T ′,F ′) ∈ F(A′). Then α̂(T ′,F ′) ∈ F(A).
2. ∀X ⊆ A : α̂(F(α(X ))) ⊆ F(X ).

Lemma 8 (Terms, Substitutions and Reducts). With fdM as denotation
function, the stable failures model has the reduct property stated in Theorem 4.

As reducts are healthy and the reduct property holds, reducts are well formed in
the stable failures model. Thanks to Lemma 8 and Theorem 4, the Csp stable
failures model forms an institution.

6 Pushouts and Amalgamation

The existence of pushouts and amalgamation properties shows that an institution
has good modularity properties. The amalgamation property (called ‘exactness’
in [9]) is a major technical assumption in the study of specification semantics
[20] and is important in many respects. To give a few examples: it allows the
computation of normal forms for specifications [3, 5], and it is a prerequisite for
good behaviour w.r.t. parametrisation [10] and conservative extensions [9, 17].
The proof system for development graphs with hiding [15], which allow a man-
agement of change for structured specifications, is sound only for institutions
with amalgamation. A Z-like state based language has been developed over an
arbitrary institution with amalgamation [2].

The mildest amalgamation property is that for pushouts. It is also called
semi-exactness. An institution is said to be semi-exact, if for any pushout of
signatures

Σ
σ1 σ2

Σ1

θ1

Σ2

θ2

Σ′

any pair (M1,M2) ∈ Mod(Σ1) × Mod(Σ2) that is compatible in the sense that
M1 and M2 reduce to the same Σ-model can be amalgamated to a unique Σ′-
model M (i.e., there exists a unique M ∈ Mod(Σ′) that reduces to M1 and M2,
respectively), and similarly for model morphisms.

Proposition 9. CspSig does not have pushouts.
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Proof. Suppose that there is a pushout

({n}, {a})
inclusioninclusion

({n}, {a, b})
(ν1,α1)

({n}, {a, c})
(ν2,α2)

(N ,A)

By the pushout property, we have the following mediating morphisms:

({n}, {a})

({n}, {a, b})

(ν1,α1)

(ν3,α3)

a �→a,b �→d

({n}, {a, c})

(ν2,α2)

(ν4,α4)

a �→a,c �→d

(N , A)

(ν5,α5)

(ν6,α6)

({n}, {a, b, c}) ({n}, {a, d})

Since α1 and α6 are injective, A must have cardinality 2, which implies that α1
and α2 are bijective. But then, {a, b} = Im(α3) = Im(α5) = Im(α4) = {a, c}, a
contradiction. ��

However, this result is not as severe as it might look. Let CspSignoninj be CspSig
with the restriction dropped that α must be injective. Then we have:

Proposition 10. CspSignoninj has pushouts, and any such pushout of a span
in CspSig actually is a square in CspSig (although not a pushout in CspSig).

Proof. Set has pushouts, and monomorphisms in Set are stable under pushouts
([1, Exercise 11P]). This lifts to the indexed level in CspSignoninj and CspSig .

��

Note that the phenomenon that pushouts of CspSig -spans in CspSignoninj are
squares but not pushouts in CspSig is due to the fact that mediating morphisms
are generally not in CspSig .

Pushouts in CspSignoninj give us an amalgamation property:

Theorem 11. CspSignoninj -pushouts of CspSig-morphisms have the semi-
exactness property for the traces model and the stable failures model.
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Proof. Let
(N ,A)

σ1=(ν1,α1) σ2=(ν2,α2)

(N1,A1)

σ′
1=(ν′

1,α′
1)

(N2,A2)

σ′
2=(ν′

2,α′
2)

(N ′,A′)

be a CspSignoninj -pushout of CspSig -morphisms, and let Mi be an (Ni ,Ai)-
model w.r.t. the trace or the stable failure semantics (i = 1, 2) such that M1 |σ1=
M2 |σ2 . We construct an (N ′,A′)-model M ′ as follows:

M ′(n) =
{

α1(M1(n1)), if n1 is such that ν1(n1) = n
α2(M2(n2)), if n2 is such that ν2(n2) = n

This is well-defined because M1 |σ1= M2 |σ2 . It is clear that M ′ |θi = Mi (i =
1, 2). Due to the non-expansion of types principle for signature morphisms, M ′

is unique. ��

In fact, this result generalizes easily to multiple pushouts. Moreover, the initial
(=empty) signature has the terminal model category. Since all colimits can be
formed by the initial object and multiple pushouts, this shows that we even have
exactness (when colimits are taken in CspSignoninj ).

7 Structuring and Parametrization for CSP

Mostly following [20], in this section we recall a popular set of institution-
independent structuring operations, which seems to be quite universal and which
can also be seen as a kernel language for the Casl structuring constructs [8].

basic specifications For any signature Σ ∈| Sign | and finite set Γ ⊆ Sen(Σ)
of Σ-sentences, the basic specification 〈Σ, Γ 〉 is a specification with:

Sig(〈Σ, Γ 〉) := Σ
Mod(〈Σ, Γ 〉) := {M ∈ Mod(Σ) | M |= Γ}

union : For any signature Σ ∈| Sign |, given Σ-specifications SP 1 and SP 2,
their union SP 1 ∪ SP 2 is a specification with:

Sig(SP 1 ∪ SP 2) := Σ
Mod(SP 1 ∪ SP 2) := Mod(SP 1) ∩ Mod(SP 2)

translation : For any signature morphism σ: Σ → Σ′ and Σ-specification SP ,
SP with σ is a specification with:

Sig(SP with σ) := Σ′

Mod(SP with σ) := {M ′ ∈ Mod(Σ′) | M ′ |σ∈ Mod(SP )}
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hiding : For any set SYs of symbols in a signature Σ′ generating a subsignature
Σ of Σ′, and Σ′-specification SP ′, SP ′ reveal SYs is a specification with:

Sig(SP ′ reveal SYs) := Σ
Mod(SP ′ reveal SYs) := {M ′ |σ | M ′ ∈ Mod(SP ′)}

where σ: Σ → Σ′ is the inclusion signature morphism.
free specification : For any signature morphismσ: Σ → Σ′ and Σ′-specification

SP ′, free SP ′ along σ is a specification with:
Sig(free SP ′ along σ) = Σ′

Mod(free SP ′ along σ) = {M ′ ∈ Mod(SP ′) |
M ′ is strongly persistently (Mod(σ):Mod(SP ′)−→Mod(Σ))-free }

Given categories A and B and a functor G:B −→ A, an object B ∈ B
is called G-free (with unit ηA:A −→ G(B)) over A ∈ A, if for any object
B ′ ∈ B and any morphism h:A −→ G(B ′), there is a unique morphism
h#:B −→B ′ such that G(h#) ◦ ηA = h. An object B ∈ B is called strongly
persistently G-free if it is G-free with unit id over G(B) (id denotes the
identity).

parametrisation : For any (formal parameter) specification SP , (body) spec-
ification SP ′ with signature inclusion σ: Sig(SP )−→ Sig(SP ′) and specifi-
cation name SN , the declaration

SN [SP ] = SP ′

names the specification SP ′ with the name SN , using formal parameter SP .
The formal parameter SP can also be omitted; in this case, we just have
named a specification for future reference.

instantiation : Given a named specification SN [SP ] = SP ′ with signature
inclusion σ: Sig(SP ) −→ Sig(SP ′) and an (actual parameter) specification
SPA and a fitting morphism θ: Sig(SP )−→Sig(SPA), SN [SPA fit θ] is a
specification with

Sig(SN [SPA fit θ]) := Σ
Mod(SN [SPA fit θ]) :=

{M ∈ Mod(Σ) | M |σ′∈ Mod(SP ′),M |θ′∈ Mod(SPA) }
where

Sig(SP )

σ θ

Sig(SP ′)

σ′

Sig(SPA)

θ′

Σ

is a pushout (note that for Csp, we take the pushout in CspSignoninj , as
discussed in Sect. 6).

In Casl, we can also extend specifications with new declarations and axioms.
This is written SP thenSP ′, where SP ′ is a specification fragment. Since we do
not want to deal with specification fragments formally here, we just note that
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spec NoLoss =
• OneCoin = coin → Skip
• AtLeastOneCoin = OneCoin � coin → AtLeastOneCoin
• NoLoss = AtLeastOneCoin; item → NoLoss

end

spec MachineForTeaAndCoffee

[ {NoLoss then NoLoss � V M \ {button} } reveal V M ]
=

TeaAndCoffee = V M [[{(item, coffee), (button, c-button)}]]
� V M [[{(item, tea), (button, t-button)}]]

end

spec UnfairMachine =
UnfairMachine = button → coin → coin → item → UnfairMachine

end

spec UnfairMachineForTeaAndCoffee =
{ MachineForTeaAndCoffee [ UnfairMachine fit UnfairMachine �→ V M ]
} reveal TeaAndCoffee

end

Fig. 6. Process Instantiation

the semantics of extension is similar to that of union, and refer to [8] for full
formal details.

In standard Csp, the cpo approach defines the meaning of a system of
recursive process equations to be its smallest fixed-point, if such a smallest
fixed-point exists. To determine this fixed point, Tarski’s fixed-point theorem
is applied to the function underlying the system of equations. Take for ex-
ample, the system P = P , Q = a → Q . Over the alphabet A = {a} it
has traces(P) = {〈〉}, traces(Q) = a∗ as its smallest solution. However, there
are other fixed-points, as the equation P = P holds for every process, i.e.
traces(P) = {〈〉, 〈a〉}, traces(P) = {〈〉, 〈a〉, 〈aa〉}, etc. also yield fixed-points.
As structured Csp works with loose semantics,

spec Loose = • P = P • Q = a → Q end

has the set of all fixed-points as its semantics. Choosing initial semantics by
adding the keyword free, however, i.e.

spec Initial = free { • P = P • Q = a → Q } end

has the smallest fixed point as its semantics thanks to our choice of morphisms
in the model categories.

In order to illustrate the practical use of structured Csp specifications, we
consider the classical example of process algebra: the development of a vending
machine for tea and coffee, following [13], see Fig. 6. For simplicity, we omit
explicit signature declarations and derive the alphabet and the process names
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from the symbols used. The owner of a vending machine will insist the machine
never to make a loss. The process NoLoss with sort(NoLoss) = {coin, item} in
the specification NoLoss has the property that at any time the number of coins
inserted to the machine is bigger than the number of items delivered. The spec-
ification MachineForTeaAndCoffee describes how to turn the specification
of a non-dedicated vending machine VM into the specification of a machine for
selling tea and coffee. Here, we assume sort(VM ) = {coin, item, button}. VM is
loosely specified by the condition NoLoss � VM \ {button}, i.e. VM \ {button}
does not make any loss. The specification MachineForTeaAndCoffee takes
the machine VM as its parameter and defines the machine TeaAndCoffee by
renaming the item to be delivered into tea and coffee, resp., and the button
into c-button and t -button, resp. However, only those vending machines VM are
accepted as an actual parameter that fulfil the condition specified by NoLoss :
This is expressed via the refinement condition NoLoss � VM \ {button} in
the parameter7. The UnfairMachine, which lets the customer pay twice for one
item, fulfils this requirement in the traces model as well as in the stable failures
model. Therefore, it is a legal parameter. Instantiating MachineForTeaAnd-

Coffee with the process UnfairMachine yields a process CoffeeAndTea, where
the customer has to pay twice for tea and coffee.

The semantics of the specifications above behaves as expected. For example,
for the basic specification NoLoss, we get:

– Sig(NoLoss) = (A, (N̄ , sort, param)) with
– A = {coin, item}
– N̄ = {OneCoin,AtLeastOneCoin,NoLoss}
– sort(OneCoin) = {coin}, sort(AtLeastOneCoin) = {coin},

sort(NoLoss) = A.
– param(n) = 〈〉.
– Mod(NoLoss) consists of one model M with

M (NoLoss) = {s | s is prefix of t ∈ (coin+ item)∗}

It is quite typical that Csp specifications have exactly one model; indeed, in
this respect, Csp resembles more a programming language than a specification
language. However, using refinement, we can also write useful loose specifications.
Consider SP = {NoLoss then NoLoss � VM \ {button}} reveal VM . This
has the following semantics:

– Sig(SP ) = (A, (N̄ , sort, param)) with
– A = {coin, item, button}
– N̄ = {VM }
– sort(VM ) = {coin, item, button}.
– param(n) = 〈〉.
– Mod(SP) consists of models M that provide a trace set M (VM ) with the

following property: if the action button is removed from M (VM ), the result-
ing trace set is contained in M (NoLoss) above.

7 Note that Csp refinement P � Q is equivalent to P = P � Q .
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That is, SP can be see as a requirement specification on a vending machine,
allowing several actual vending machine implementations. SP is the formal pa-
rameter of a parametrised specification that can be instantiated with different
vending machines. Moreover, due to the amalgamation property of Theorem 11,
we can ensure that each vending machine model can be extended to a model of
the appropriately instantiated specification MachineForTeaAndCoffee.

8 Conclusion and Future Work

Our institutions for Csp use injective signature morphisms, due to the fact that
the alphabet plays a double role, in the process syntax and the semantic domains,
and both aspects are mapped covariantly — a contravariant mapping would
destroy important laws for of Csp processes.

Languages like Unity and CommUnity [11] split the alphabet of communi-
cations into ‘data’ – to be translated covariantly – and ‘actions’ – to be trans-
lated contravariantly. The advantage of this approach is that the contravariant
translation makes it possible to ‘split’ actions. We avoid such a partition of the
alphabets of communications as Csp with its relational renaming already offers
a means of ‘splitting’ an action on the term level. A rich set of algebraic laws
allows to relates the new process with the old one.

We have demonstrated that with our Csp institutions, structured specifica-
tions have a semantics that fits with what one would expect in the Csp world. In
particular, we can use loose semantics and parameterisation in combination with
Csp refinement in a very useful way, going beyond what has been developed in
the Csp community so far. Future work will extend the institutions presented
here with an algebraic data type part, aiming at an institution for the language
Csp-Casl [16]. For this, it is probably useful to distinguish between a syntactic
and a semantic alphabet, at the price of complicating algebraic laws like the
〈�-step〉 law by using equality on the semantic alphabet in a subtle way, but
with the advantage of allowing for non-injective alphabet translations.
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