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Preface

This volume contains selected papers from WADT 2006, the 18th International
Workshop on Algebraic Development Techniques. Like its predecessors, WADT
2006 focussed on the algebraic approach to the specification and development
of systems, an area that was born around the algebraic specification of abstract
data types and encompasses today the formal design of software systems, new
specification frameworks and a wide range of application areas.

WADT 2006 took place at Chateau Floréal, La-Roche-en-Ardenne, Belgium,
June 1–3, 2006, and was organized by Pierre-Yves Schobbens.

The program consisted of invited talks by David Rosenblum (University Col-
lege London, UK) and Hubert Comon-Lundh (ENS-Cachan, France), and 32
presentations describing ongoing research on main topics of the workshop: formal
methods for system development, specification languages and methods, systems
and techniques for reasoning about specifications, specification development sys-
tems, methods and techniques for concurrent, distributed and mobile systems,
and algebraic and co-algebraic foundations.

The Steering Committee of WADT, consisting of Michel Bidoit, José
Fiadeiro, Hans-Jörg Kreowski, Till Mossakowski, Peter Mosses, Fernando
Orejas, Francesco Parisi-Presicce, and Andrzej Tarlecki, with the additional
help of Pierre-Yves Schobbens and Martin Wirsing, selected several presenta-
tions and invited their authors to submit a full paper for possible inclusion in
this volume. All submissions underwent a careful refereeing process. We are ex-
tremely grateful to the following additional referees for their help in reviewing the
submissions: A. Borzyszkowski, F. Gadducci, G. Godoy, K. Hölscher, A. Kurz,
S. Kuske, A. Lopes, W. Pawlowski, H. Reichel, U. Schmid, L. Schröder,
M. Sebag, and H. Wiklicky.

This volume contains the final versions of the ten contributions that were
accepted.

The workshop was jointly organized with IFIP WG 1.3 (Foundations of Sys-
tem Specification), and received generous sponsorship from the University of
Namur (Facultés Universitaires Notre-Dame de la Paix).

January 2007 José Fiadeiro
Pierre-Yves Schobbens
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A Temporal Graph Logic for Verification

of Graph Transformation Systems�

Paolo Baldan1, Andrea Corradini2, Barbara König3,
and Alberto Lluch Lafuente2

1 Dipartimento di Matematica Pura e Applicata, Università di Padova
baldan@math.unipd.it

2 Dipartimento di Informatica, Università di Pisa
{andrea,lafuente}@di.unipi.it

3 Abt. für Informatik und Ang. Kognitionswissenschaft, Universität Duisburg-Essen
barbara koenig@uni-due.de

Abstract. We extend our approach for verifying properties of graph
transformation systems using suitable abstractions. In the original ap-
proach properties are specified as formulae of a propositional temporal
logic whose atomic predicates are monadic second-order graph formulae.
We generalize this aspect by considering more expressive logics, where
edge quantifiers and temporal modalities can be interleaved, a feature
which allows, e.g., to trace the history of objects in time. After char-
acterizing fragments of the logic which can be safely checked on the
approximations, we show how the verification of the logic over graph
transformation systems can be reduced to the verification of a logic over
suitably defined Petri nets.

1 Introduction

Graph Transformation Systems (GTSs) are suitable modeling formalisms for
systems involving aspects such as object-orientation, concurrency, mobility and
distribution. The use of GTSs for the verification and analysis of such systems
is still at an early stage, but there have been several proposals recently, either
using existing model-checking tools [10,25] or developing new techniques [20,21].
A recent line of research [1,2,3,4,5] takes the latter approach and proposes a
method inspired by abstract interpretation techniques. Roughly speaking, a GTS
R, whose state space might be infinite, is approximated by a finite structure
C(R), called covering of R. The covering is a Petri net-like structure, called Petri
graph, and it approximates R in the sense that any graph G reachable in R has
an homomorphic image reachable in C(R). In a sense, this reduces the verification
of GTSs to the verification of Petri nets. One central feature of this approach is

� Research partially supported by the EU IST-2004-16004 SEnSOria, the MIUR
PRIN 2005015824 ART, the DFG project SANDS and CRUI/DAAD Vigoni
“Models based on Graph Transformation Systems: Analysis and Verification”.

J.L. Fiadeiro and P.-Y. Schobbens (Eds.): WADT 2006, LNCS 4409, pp. 1–20, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the fact that it is a partial order reduction technique using unfoldings. That is,
the interleaving of concurrent events—leading to state explosion—is avoided if
possible.

In [5] a logic for the approximation approach is introduced, which is basi-
cally a propositional μ-calculus whose atomic predicates are closed formulae in a
monadic second-order logic for graphs. Also, fragments of the logic are identified
which are reflected by the approximations, i.e., classes of formulae which, when
satisfied by the approximation, are satisfied by the original system as well. For
the verification of such formulae, the logic is encoded into a μ-calculus whose
atomic predicates are formulae over markings of a Petri net, allowing the reuse
of existing model checking techniques for Petri nets [12].

There are other related papers working with graph logics, for instance [14].
However, most of them are based, like [5], on propositional temporal logics, that
is, logics that do not allow to interleave temporal modalities with graph-related
ones. Thus, properties like a certain edge is never removed are neither expressible
nor verifiable. The only exceptions we are aware of are [20,22].

In this paper we extend the approach of [5] by considering a more expres-
sive logic that allows to interleave temporal and graphical aspects. As we shall
see, our temporal graph logic combines a monadic-second order logic of graphs
with the μ-calculus. Formulae of our logic are interpreted over graph transition
systems (GTrS), inspired by algebra transition systems [15] and the formalism
of [20], which are traditional transition systems together with a function map-
ping states into graphs and transitions into partial graph morphisms. Graph
transition systems are suitable formalisms for modeling the state space of graph
transformation systems and Petri graphs. We introduce a notion of approxima-
tion for GTrSs, identifying fragments of the logic whose formulae are preserved or
reflected by approximations. Then we show that the GTrS of the covering, as de-
fined in [1], is an approximation of the GTrS of the original graph transformation
system, thus providing a concrete way of constructing approximations. Finally,
we propose an encoding for a fragment of our logic into a Petri net logic. Our
encoding is correct and complete, i.e., a Petri graph satisfies a formula exactly
when the encoding of the formula is satisfied by the underlying Petri net.

Putting all this together, given a graph transformation system G and a formula
F in a suitable fragment of our logic, we can construct a Petri graph P which
approximates G, using the algorithm in [1]. Then F can be translated into a Petri
net formula [F ], such that if NP is the Petri net underlying P , then NP |= [F ]
implies G |= F , i.e., we reduce verification over graph transformation systems to
verification over Petri nets.

Section 2 introduces graphs, graph transformation systems and graph transi-
tion systems. Section 3 defines syntax and semantics of our temporal graph logic.
Section 4 defines Petri graphs, the structures used for approximating graph trans-
formation systems. Section 5 identifies fragments of the logic that are preserved
or reflected by approximations. Section 6 proposes an encoding of a fragment of
the logic into a Petri net logic. A last section concludes the paper and proposes
further work.
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2 Graph Transition Systems

An (edge-labeled) graph G is a tuple G = 〈VG, EG, sG, tG, labG〉 where VG is
a set of nodes, EG is a set of edges, sG, tG : EG → VG are the source and
target functions, and labG : EG → Λ is a labeling function, where Λ is a fixed
set of labels. Nodes and edges are sometimes called items and we shall write
XG = EG ∪ VG for the set of items of G.

The transformation of a graph into another by adding, removing or merging
of items is suitably modeled by (partial) graph morphisms.

Definition 1 ((partial) graph morphism). A graph morphism ψ : G1 → G2
is a pair of mappings ψV : VG1 → VG2 , ψE : EG1 → EG2 such that ψV ◦ sG1 =
sG2 ◦ ψE , ψV ◦ tG1 = tG2 ◦ ψE and labG1 = labG2 ◦ ψE. A graph morphism
ψ : G1 → G2 is injective if so are ψV and ψE; it is edge-injective if ψE is
injective. Edge-bijective morphisms are defined analogously. A graph G′ is a
subgraph of graph G, written G′ ↪→ G, if VG′ ⊆ VG and EG′ ⊆ EG, and the
inclusion is a graph morphism.

A partial graph morphism ψ : G1 ⇀ G2 is a pair 〈G′
1, ψ

′〉 where G′
1 ↪→ G1 is a

subgraph of G1, called the domain of ψ, and ψ′ : G′
1 → G2 is a graph morphism.

Graph transformation is presented in set-theoretical terms, but could be equiv-
alently presented by using the double-pushout [7] or single-pushout [11] ap-
proaches. With respect to more general definitions, our rules can neither delete
nor merge nodes, and they have a discrete interface, i.e., the interface graph
contains only nodes and thus edges are never preserved. Similar restrictions are
assumed in [1]. While the condition of having a discrete interface can be relaxed,
the deletion and merging of nodes is quite problematic in an unfolding-based
approach.

Also observe that, as it commonly happens in the algebraic approaches to
graph rewriting, we consider basic graph grammars, without any distinction
between terminal and non-terminal symbols and without any high-level control
mechanism. We remark that, even in this basic formulation, graph grammars
are Turing complete (since they can simulate string rewriting).

Definition 2 (graph transformation system). A graph transformation sys-
tem (GTS) R is a pair 〈G0, R〉, where G0 is a start graph and R is a set of
rewriting rules of the form r = 〈GL, GR, α〉, where GL and GR are left- and
right-hand side graphs, respectively, and α : VL → VR is an injective function.

A match of a rule r in a graph G is a morphism ψ : GL → G that is edge-
injective. The application of a rule r to a match ψ in G, resulting in a new graph
H, is called a direct derivation and is written G

r,ψ−→ H, where H is defined as
follows. The set VH is VG � (VR \α(VL)) and EH is (EG \ψ(EL))�ER, where �
denotes disjoint union. The source, target and labeling functions are defined by

sH(e) = sG(e) tH(e) = tG(e) labH(e) = labG(e) if e ∈ (EG \ ψ(EL)),
sH(e) = ψ(sR(e)) tH(e) = ψ(tR(e)) labH(e) = labR(e) if e ∈ ER,

where ψ : VR → VH satisfies ψ(α(v)) = ψ(v) if v ∈ VL and ψ(v) = v, otherwise.
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M

C

G0
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u1u0 e2

e1

v0 e4

CC
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Fig. 1. A graph transformation system

Intuitively, the application of r to G at the match ψ first removes from G the
image of the edges of L. Then the graph G is extended by adding the new nodes
in GR and the edges of GR. All nodes in L are preserved.

A direct derivation G
r,ψ−→ H induces an obvious partial graph morphism

τ
G

r,ψ−→H
: G ⇀ H , injective and total on nodes, which maps items which are not

deleted in G to corresponding items in H .
A derivation is a sequence of direct derivations starting from the start graph

G0. We write G0
∗→ H if there is a derivation ending in graph H , and we denote

by GR the set of all graphs reachable in R, i.e., GR = {G | G0
∗→ G}.

Example 1. Figure 1 depicts a GTS G = 〈G0, {r = 〈GL, GR, α〉}〉 describing
a simple message passing system. The start graph G0 consists of three nodes
u0, u1, u2, one M -labeled edge e1, representing a message, and one C-labeled
edge e2, representing a connection. The only rule consists of graphs GL and GR,
and function α, which is the identity on VL. The rule consumes the message
and the connection, shifts the message to the successor node and recreates the
connection. Furthermore a new C-labeled edge e5 is created, along which the
message can be passed in the next step. Note also that the source node of the
message, representing its “identity”, is preserved by the rule. In the rest of the
paper we shall use this as a running example.

The state space of a GTS can be represented in a natural way as a transi-
tion system where the states are the reachable graphs and a transition between
two states G and H exists whenever there is a direct derivation G

r,ψ−→ H , as
in [3]. However, such a structure would not be sufficient to interpret the logic
introduced in the next section. Informally, since temporal modalities can be in-
terleaved with quantification (over edges), the logic allows to trace the evolution
of graph items over time and thus we need to represent explicitly which items of
a graph are preserved by a rewriting step. To this aim, after recalling the stan-
dard definition of transition systems, we introduce below an enriched variant
called graph transition systems.

Definition 3 (transition system). A transition system is a tuple M = 〈SM ,
TM , inM , outM , sM

0 〉 where SM is a set of states, TM is a set of transitions,
inM , outM : TM → SM are functions mapping each transition to its start and
end state, and sM

0 ∈ SM is the initial state. We shall sometimes write s
t→ s′
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if inM (t) = s and outM (t) = s′, and s
∗→ s′ if there exists a (possibly empty)

sequence of transitions from s to s′.
Correspondingly, a transition system morphism h : M → M ′ is a pair of

functions 〈hS : SM → SM ′ , hT : TM → TM ′〉 such that the initial state as well
as the start and end states of all transitions are preserved, i.e., hS(sM

0 ) = sM ′

0 ,
hS ◦ inM = inM ′ ◦ hT , and hS ◦ outM = outM ′ ◦ hT .

A graph transition system is defined as a transition system together with a
mapping which associates a graph with each state, and an injective partial graph
morphism with each transition. We use the same name that is used in [20] for
different, but closely related structures. The main difference is that in our case
there is a clear distinction between the states and the graphs associated to
the states: This leads below to a natural notion of morphism between graph
transition systems, which will play a basic role in our definition of abstraction.

Definition 4 (graph transition system). A graph transition system (GTrS)
M is a pair 〈M, g〉, where M is a transition system and g is a pair g = 〈gS , gT 〉,
where gS(s) is a graph for each state s ∈ SM , and gT (t) : gS(inM (t)) ⇀
gS(outM (t)) is an injective partial graph morphism for each transition t ∈ TM .

Note that the result of the application of a rule to a given match in a graph is
determined only up to isomorphism, because of the use of disjoint union in the
definition. Therefore, formally speaking, the state space of a GTS contains for
each reachable graph G all graphs isomorphic to G as well. The next definition
shows how to represent the state space of a GTS with a graph transition system
(GTrS), where we get rid of such useless redundancy. Note that since the resulting
GTrS is usually infinite-state, this construction is non-constructive and useless
for practical purposes. We need the GTrS in order to define the semantics of the
logic, but verification itself is done using a different method.

Definition 5 (graph transition system of a graph transformation sys-
tem). Given a GTS R = 〈G0, R〉, a GTrS representing its state space, denoted
by GTrS(R), can be obtained as follows.

1. Consider first the graph transition system 〈M, g〉, where: SM = GR (set

of all graphs generated by R); sM
0 = G0; TM = {G

r,ψ−→ H | G
r,ψ−→

H is a direct derivation of R}; and the mapping g = 〈gS , gT 〉 is defined as

follows: gS(G) = G and gT (G
r,ψ−→ H) = τ

G
r,ψ−→H

: G ⇀ H.
2. Next, for each state G in SM and for each pair 〈r, ψ〉 where r is a rule

applicable to match ψ in G, choose one among the transitions leaving from
G and using r and ψ, and delete from TM all the remaining ones.

3. Finally, GTrS(R) is defined as the graph transition sub-system reachable
from the start graph.

Example 2. Figure 2 depicts a GTrS of the GTS depicted in Figure 1. Since state
identities coincide with their corresponding graphs, the figure is simplified and
we directly depict the graphs and partial graph morphisms. The leftmost state is
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C

M

u1u0 e2

e1

u2

e4

CC

M

e5

e3

u0 u1

u2

u3 e4

C
u0 u1

C

M

u2

C
u3 u4

e6

e7 e8

→ . . .
t1→ t2→

Fig. 2. A graph transition system

G0, the initial state of both the GTS and its GTrS. Observe that for the second
transition t2, gT (t2)V (the component on nodes of gT (t2)) is an inclusion, while
gT (t2)E is partial and is only defined on the edge e4. All transitions correspond
to different instances of the same rule.

The construction described in Definition 5 is clearly non-deterministic, because
of step 2. Among the possible GTrSs associated with the GTS of Figure 1, the one
drawn above enjoys some desirable properties: the partial injective morphisms
associated with transitions are partial inclusions (i.e., every item preserves its
name along rewriting), and edge and node names are not reused again in the com-
putation after they have been deleted. The interpretation of the logic of Section 3
will be defined only over GTrSs satisfying such properties, and called unraveled
GTrSs. For any GTrS M not satisfying these properties we shall consider an
unraveled one which is behaviorally equivalent to M, called its unraveling.

In order to characterize the unraveling of a GTrS we first need to introduce
GTrS morphisms, which will also be used later for relating a system and its ap-
proximation. A morphism between two GTrSs consists of a morphism between
the underlying transition systems, and, in addition, for each pair of related
states, of a graph morphism between the graphs associated with such states.
Furthermore, these graph morphisms must be consistent with the partial graph
morphisms associated to the transitions.

Definition 6 (graph transition system morphism). A graph transition
system morphism h : M → M′ from M = 〈M, g〉 to M′ = 〈M ′, g′〉 is a
pair 〈hM , hg〉, where hM : M → M ′ is a transition system morphism, and for
each state s ∈ SM , hg(s) is a graph morphism from gS(s) to g′S(hS

M (s)), such
that the following condition is satisfied: for each transition s1

t→ s2 ∈ TM ,
g′T (hT

M (t)) ◦ hg(s1) = hg(s2) ◦ gT (t).

The diagram below illustrates the situation. The bottom square represents tran-
sition s1

t→ s2 in M and its image through hM in M ′ (sub- and super-scripts are
avoided for the sake of readability). The vertical arrows of the left front square
show how transition t is associated to a graph morphism via the g component of
M, and similarly for the back right square. Finally, the back left and front right
sides of the top square are the components of the GTrS morphism associated to
states s1 and s2, and the top square is required to commute.
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g′(h(s1)) g′(h(t))
����� ���

g(s1)

hg(s1) �������������
�����������

g(t)
����� ���

g′(h(s2))

g(s2)
hg(s2)

���������������
�������������

h(s1) h(t)
��������

��

s1

��

t ��������

��

h(s2)

��

s2

��

��

Definition 7 (unraveled graph transition system). A GTrS M = 〈M, g〉
is unraveled whenever M is a tree, for each t ∈ TM the morphism gT (t) :
gS(inM (t)) ⇀ gS(outM (t)) is a partial inclusion, and item names are not re-
used, i.e., for all s′, s′′ ∈ SM , if x ∈ XgS(s′) ∩ XgS(s′′) there exists s ∈ SM such
that

x ∈ XgS(s) ∧ s
∗→ s′ ∧ s

∗→ s′′ ∧ gT (s ∗→ s′)(x) = x ∧ gT (s ∗→ s′′)(x) = x,

where gT (s ∗→ s′) is the composition of the partial morphisms associated with
the transitions in s

∗→ s′, which is uniquely determined since M is a tree.
An unraveling of a GTrS M = 〈M, g〉 is a pair 〈M′, h〉 where M′ is an

unraveled GTrS and h = 〈hM , hg〉 : M′ → M is a GTrS morphism, satisfying:

1. for each s ∈ SM ′ , hg(s) : g′S(s) → gS(hS
M (s)) is an isomorphism;

2. for each s ∈ SM ′ and transition hS
M (s) t′

→ s′′ in M , there is a transition
s

t→ s′ in M ′ such that hT
M (t) = t′ (and thus hS

M (s′) = s′′).

Proposition 1 (unraveling of a GTrS). Any GTrS admits an unraveling.

The conditions defining an unraveled GTrS M ensure that taking the union of all
the graphs associated to the states in SM , we obtain a well-defined graph. In fact,
given any two states s and s′ and an edge e ∈ EgS(s) ∩EgS (s′), the source, target
and label of e coincide in gS(s) and gS(s′). We shall denote the components of
this “universe” graph as 〈VM, EM, sM, tM, labM〉, where VM =

⋃
s∈SM

VgS(s),
EM =

⋃
s∈SM

EgS(s), sM(e) = sgS(s)(e) if e ∈ gS(s), and similarly for tM and
labM.

3 A Temporal Graph Logic for Graph Transformation
Systems

We now define syntax and semantics of our temporal graph logic, that extends
the logic μL2 of [3]. The logic is based both on the μ-calculus [6] and on second-
order graph logic [8]. Let Vx, VX , VZ be sets of first- and second-order edge
variables and propositional variables, respectively.
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Definition 8 (syntax). The logic μG2 is given by the set of all formulae gen-
erated by:

F ::= η(x) = η′(y) | x = y | l(x) = a | ¬F | F ∨ F | ∃x.F | ∃X.F |
x ∈ X | Z | �F | μZ.F

where η, η′ ∈ {s, t} (standing for source and target), x, y ∈ Vx, X ∈ VX , a ∈ Λ
and Z ∈ VZ . Furthermore �F is the (existential) next-step operator. The letter μ
denotes the least fixed-point operator. As usual the formula μZ.F can be formed
only if all occurrences of Z in F are positive, i.e., they fall under an even number
of negations. In the following we will use some (redundant) connectives like ∧, ∀,
� and ν (greatest fixed-point), defined as usual. We denote by μG1 its first-order
fragment, where second-order edge variables and quantification are not allowed.

Definition 9 (semantics of μG2). Let M = 〈M, g〉 be an unraveled GTrS.
The semantics of temporal graph formulae is given by an evaluation function
mapping closed formulae into subsets of SM , i.e., the states that satisfy the
formula. We shall define a mapping �·�Mσ : μG2 → 2SM , where σ is an environ-
ment, i.e., a tuple σ = 〈σx, σX , σZ〉 of mappings from first- and second-order
edge variables into edges and edge sets, respectively, and from propositional vari-
ables into subsets of SM . More precisely, σx : Vx → EM, σX : VX → 2EM and
σZ : VZ → 2SM , where EM is the set of all edge names used in M. When M is
implicit, we simply write �·�σ.

�η(x) = η′(y)�σ = �ηM(σx(x)) = η′
M(σx(y))� �x = y�σ =�σx(x)=σx(y)�

�l(x) = a�σ = �labM(σx(x)) = a� �y ∈ Y �σ =�σx(y)∈σX(Y )�
�¬F �σ = SM \ �F �σ �F1 ∨ F2�σ = �F1�σ ∪ �F2�σ

�Z�σ = σZ(Z) �μZ.F �σ=lfp(λv.�F �σ[v/Z])

��F �σ = {s ∈ SM | ∃s′, t. s t→ s′ ∧ s′ ∈ �F �σ}
�∃x.F �σ = {s ∈ SM | ∃e ∈ Eg(s) . s ∈ �F �σ[e/x]}
�∃X.F �σ = {s ∈ SM | ∃E ⊆ Eg(s) . s ∈ �F �σ[E/X]}

where �·� maps true and false to SM and ∅, respectively, v ∈ 2SM , and lfp(f)
denotes the least fixed-point of the function f .

In particular, if F is a closed formula, we say that M satisfies F and write
M |= F , if s0 ∈ �F �σ, where σ is the empty environment. Finally, we say that a
GTS R = 〈G0, R〉 satisfies a closed formula F , written R |= F , if the unraveling
of GTrS(R) satisfies F .

The restriction to formulae where all occurrences of propositional variables are
positive guarantees every possible function λv.�F �σ[v/Z] to be monotonic. Thus,
by Knaster-Tarski theorem, fixed-points are well-defined.

Note that using unravelled GTrS is crucial for the definition of the semantics
of the logic: items can be easily tracked since their identity is preserved and
names are never reused. This allows to remember also the identities of deleted
items, differently from what happens in the semantics given in [20,22].
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Example 3. The following formula states that no M -labeled message edge is
preserved by any transition: M-consumed ≡ ¬∃x.(l(x) = M ∧ �∃y. x = y).
The fact that this property holds in any reachable state is expressed by the
formula: always-M-consumed ≡ νZ.(M-consumed ∧ �Z). It is easy to see
that M-consumed is satisfied by any state of the unraveled GTrS in Fig. 2, and
thus G |= always-M-consumed, where G is the GTS of Fig. 1.

The formula M-moves ≡ ¬∃x.(l(x) = M ∧ �(∃y.(l(y) = M ∧ t(y) = t(x) ∧
s(y) = s(x)))) states that messages always move, i.e., there is no message edge
such that in the next state there is another message edge with the same identity
(i.e., source nodes coincide) attached to the same target node. And we can
require this property to hold in every reachable state: always-M-moves ≡
νZ.(M-moves∧�Z). Again, the GTS G satisfies this property. A GTS in which
the message would at some point cross a “looping connection” or with more than
one message would violate the formula.

4 Approximating GTSs with Petri Graphs

In the verification approach proposed in [1,3,4,5] Petri graphs, structures consist-
ing of a Petri net and a graph component, have been introduced. They are used
to represent finite approximations of the (usually infinite) unfolding of a GTS,
on which to verify certain properties of the original system. Furthermore they
provide a bridge to Petri net theory, allowing to reuse verification techniques de-
veloped for nets: a property expressed as a formula in the graph logic can be trans-
lated into an equivalent multiset formula to be verified on the net underlying the
Petri graph. Here we shall concentrate on this latter aspect. We will not treat in-
stead the construction of finite Petri graphs over-approximating GTSs, presented
in [1,4] also for varying degrees of precision, recently enriched with a technique
for counterexample-guided abstraction refinement [18], and for which the verifi-
cation tool Augur (http://www.ti.inf.uni-due.de/research/augur 1/) has
been developed.

Before introducing Petri graphs we need some definitions. Given a set A
we will denote by A⊕ the free commutative monoid over A, whose elements
will be called multisets over A. In the sequel we will sometimes identify A⊕

with the set of functions m : A → N such that the set {a ∈ A | m(a) �= 0}
is finite. E.g., in particular, m(a) denotes the multiplicity of an element a in
the multiset m. Sometimes a multiset will be identified with the underlying
set, writing, e.g., a ∈ m for m(a) �= 0. Given a function f : A → B, by f⊕ :
A⊕ → B⊕ we denote its monoidal extension, i.e., f⊕(m)(b) =

∑
f(a)=b m(a)

for every b ∈ B.

Definition 10 (Petri nets and Petri graphs). A (Place/Transition) Petri
net is a tuple N = 〈SN , TN , •( ), ( )•, m0〉, where SN is a set of places, TN is a
set of transitions, •( ), ( )• : TN → S⊕

N determine for each transition its pre-set
and post-set, and m0 ∈ S⊕

N is the initial marking. A transition t is enabled at a
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Fig. 3. A Petri graph

marking m ∈ S⊕
N if •t ≤ m; in this case the transition can be fired at m, written

m[t〉m′, and the resulting marking is m′ = m − •t + t•.1

A Petri graph P over a GTS R = 〈G0, R〉 is a tuple 〈G, N, p〉 where (1) G
is a graph (sometimes called the template graph); (2) N is a Petri net such
that (2.1) SN = EG, i.e., the set of places is the set of edges of G; (2.2) there
is a graph morphism ψ : G0 → G; (2.3) the initial marking m0 ∈ E⊕

G properly
corresponds to the start graph of R, i.e., m0 = ψ⊕(EG0); (3) p : TN → R is
a labeling function mapping each transition to a rule of R, such that (3.1) for
each transition t ∈ TN , its pre- and post-sets •t and t• properly correspond to
the left- and right-hand side graphs of p(t). A marking m is said to be reachable
in P if there is a (possibly empty) sequence of firing m0[t1〉m1[t2〉 . . . [tn〉m in
the underlying net N . The set of reachable markings of P is denoted by MP .

Example 4. Figure 3 depicts a Petri graph over the GTS G of our running ex-
ample. It has been computed by the tool Augur as the covering of depth 1. As
edges are places, the boxes representing edges can include tokens, which here
represent the initial marking. Transitions are depicted as black rectangles. The
pre-sets (resp. post-sets) of transitions are represented by dotted edges from edge
places to transitions or vice versa. Note that all three transitions are instances
of rule r, the only rule of G, and that there is indeed a morphism from G0 to
the template graph, such that the image of this morphism (e1, e2) corresponds
to the depicted (initial) marking.

A marking m of a Petri graph can be seen as an abstract representation of a
graph. The intuition is that every token of an edge represents an instance of the
corresponding template edge.

Definition 11 (graph generated by a marking). Let P = 〈G, N, p〉 be a
Petri graph and let m ∈ E⊕

G be a marking of N . The graph generated by m,
denoted by graphP (m), is the graph H defined as follows: VH = VG, EH =
{〈e, i〉 | e ∈ m ∧ 1 ≤ i ≤ m(e)}, sH(〈e, i〉) = sG(e), tH(〈e, i〉) = tG(e) and

1 Operations on markings are computed pointwise on the coefficients: e.g., m1 ≤ m2

iff m1(s) ≤ m2(s) for all s ∈ SN , and (m1 + m2)(s) = m1(s) + m2(s).
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labH(〈e, i〉) = labG(e). In the following ψm denotes the obvious graph mor-
phism from graphP (m) into G, which is the identity on nodes and which satisfies
ψmE(〈e, i〉) = e ∈ EG.

Example 5. The marking of the Petri graph depicted in Figure 3 generates the
leftmost graph of Figure 4. The remaining graphs are generated by other reach-
able markings.

To each Petri graph P we can associate a GTrS, as shown in the next definition.
As the reader would expect, each marking m is a state and the associated graph
is graphP (m). However, each transition of P corresponds in general to a set of
transitions in the GTrS, representing the different ways of preserving the edges.
To see why this is necessary consider the Petri graph of our running example.
Transition t3 consumes a token from edge place e8. Now assume that the marking
m is such that m(e8) = 2, i.e., there are two tokens in e8. Such a marking is
indeed reachable. In this case one has to consider two transitions in the transition
system: one consuming edge 〈e8, 1〉 and the other consuming 〈e8, 2〉. The intuitive
idea of having different ways of preserving edges is formalized by the notion of
significant preservations.

Definition 12 (significant preservations). Let P = 〈G, N, p〉 be a Petri
graph, m, m′ be markings and t a transition such that m[t〉m′. We denote by
SP (m, t) the set of significant preservations, which contains the possible differ-
ent subsets of edges in graphP (m) which are not deleted by a firing of t, i.e.,
SP (m, t) = {EgraphP (m) − Y : Y ⊆ EgraphP (m) ∧ ψ⊕

m(Y ) = •t}.

Definition 13 (GTrS by a Petri graph). The GTrS generated by a Petri
graph P = 〈G, N, p〉, denoted by GTrS(P ), is 〈M, g〉 where

– SM is the set of markings reachable in P , i.e., SM = MP ;
– TM = {〈m, t, X, m′〉 | m[t〉m′ and X ∈ SP (m, t)};
– in(〈m, t, X, m′〉) = m and out(〈m, t, X, m′〉) = m′ for 〈m, t, X, m′〉 ∈ TM ;
– sM

0 = m0;
– gS(m) = graphP (m);
– gT (〈m, t, X, m′〉) = fm,t,X, where fm,t,X : graphP (m) → graphP (m′) is any

injective partial graph morphism which is the identity over nodes, and whose
domain over edges is exactly X; for example, a concrete definition over edges
can be fE

m,t,X(〈e, i〉) = 〈e, k〉 if k = |〈e, j〉 ∈ X : j ≤ i|.

Example 6. Figure 4 illustrates the GTrS associated to the Petri graph of our
running example. For the sake of simplicity only the underlying graphs and
partial graph morphisms are depicted. The leftmost state corresponds to the
initial marking m0 = {e1, e2}, while the next one corresponds to marking m1 =
{e3, e4, e5} reachable after firing t1. In the third graph a looping C-edge is in-
troduced, due to over-approximation. The most interesting transitions are t′4, t′′4 ,
both leaving marking m3. Both have the form 〈m3, t3, X, m4〉, where X can either
be {〈e4, 1〉, 〈e7, 1〉, 〈e8, 1〉} or {〈e4, 1〉, 〈e7, 1〉, 〈e8, 2〉}. These transitions represent
different ways of consuming an instance of edge place e8.
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Fig. 4. A graph transition system of a Petri graph

Definition 14 (approximation). Let R = 〈G0, R〉 be a GTS, let P = 〈G, N, p〉
be a Petri graph and let MR and MP be the unravelings of the GTrSs generated
by R and P , respectively. We say that P is an approximation of R if there is a
GTrS morphism 〈hM , hg〉 : MR → MP such that for each state s ∈ SMR , the
graph morphism hg(s) is edge-bijective.

It is easy to see that this notion of approximation implies a simulation in Milner’s
sense: if the original system can make a transition t from a graph G to a graph
H , then the approximation can simulate it with a transition from a graph G′ to
a graph H ′ via h(t). Additionally, we require that there must be edge-bijective
morphisms from G to G′ and from H to H ′, a property which will be crucial
for determining fragments of our logic that are preserved or reflected by the
approximation.

Example 7. Consider our running example. It is easy to see that the Petri graph
in Fig. 3 approximates the GTS in Fig. 1: there exist several morphisms with
edge-bijective components from the GTrS of Fig. 2 to the unraveling of the GTrS
of Fig. 4.

As already mentioned, given a GTS R = 〈G0, R〉, an algorithm proposed in [1,4]
constructs a Petri graph associated to R, called its covering and denoted by
C(R). The covering is an approximation of R in the sense stated above.

Proposition 2 (covering approximates). Let R = 〈G0, R〉 be a graph trans-
formation system. Then the covering C(R) = 〈G, N, p〉 of R is an approximation
of R.
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5 Preservation and Reflection of Formulae

In this section we introduce a type system over graph formulae in μG2, gener-
alizing the one in [5], which characterizes subclasses of formulae preserved or
reflected by approximations. More precisely, the type system may assign to a
formula F the type “→”, meaning that F is preserved by approximations, or
the type “←”, meaning that F is reflected by approximations. Note especially
that since the approximation may merge nodes, formulae checking the identity
of nodes are preserved, but not reflected.

Definition 15 (reflected/preserved formulae). The typing rules are given by

η(x) = η′(y): → x = y, l(x) = a, x ∈ X, Z: ↔
F : d

¬F : d−1
F1, F2: d

F1 ∨ F2: d
F : d

∃x.F : d
F : d

∃X.F : d
F : →

�F : →
F : ←

�F : ←
F : d

μZ.F : d

where it is intended that →−1 = ← and ←−1 = →. Moreover F : ↔ is a shortcut
for F : → and F : ←, while F1, F2 : d stands for F1 : d and F2 : d.

The type system can be shown to be correct in the following sense (see also [19]).

Proposition 3 (preservation and reflection). Let M and M′ be two un-
raveled GTrSs such that there is a morphism 〈hM , hg〉 : M → M′ having all hg

components edge-bijective. Then for each closed formula F ∈ μG2 we have (i)
if F :← then M′ |= F implies M |= F and (ii) if F :→ then M |= F implies
M′ |= F .

Not all formulae that are preserved respectively reflected are recognized by the
above type system. A result of [5] shows that this incompleteness is a fundamen-
tal problem, due to the undecidability of reflection and preservation.

Example 8. Observe that always-M-consumed : ← and hence approximations
reflect this property. Indeed the unraveling of the GTrS of the Petri graph of
our running example (see Fig. 4) satisfies the property, and so does the original
GTrS. Also, formula always-M-moves is classified as reflecting: however, in
this case the GTrS of Fig. 2 satisfies this property, but the unraveling of the
GTrS of Figure 4 does not, by the presence of a connection loop e8.

Since the covering provides an approximation of the original GTS, the theorem
above applies. For a Petri graph P and a closed formula F ∈ μG2, we shall write
P |= F if the unraveling of the graph transition system GTrS(P ) generated by
P satisfies F .

Corollary 1 (covering preserves and approximates). Let R be a GTS
and let F ∈ μG2 be a closed formula. Then we have (i) if F :← then C(R) |= F
implies R |= F and (ii) if F :→ then R |= F implies C(R) |= F .
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6 From Temporal Graph Logics to Petri Net Logics

In this section we show how the first-order fragment of μG2 can be encoded into
a temporal logic for Petri nets, in a way that the Petri net underlying a Petri
graph satisfies the encoding of a formula exactly when the Petri graph satisfies
the original μG2 formula.

Let VZ be a set of propositional variables and NP , NT sets from which place
and transition names are drawn, respectively.

Definition 16 (Petri net logic syntax). The syntax of the Petri net logic P
is given by the following grammar, where p ∈ NP , t ∈ NT , c ∈ N and Z ∈ VZ :

φ ::= #p ≤ c | φ ∨ φ | ¬φ | Z | μZ.φ | 〈t〉φ.

The semantics is mostly standard and given by a mapping �·�P
σ : P → 2MP

mapping formulae into sets of markings, where σ : freeZ → 2MP is an environ-
ment mapping propositional variables into sets of markings. We sometimes use
a satisfaction relation |=σ⊆ MP × P , where m |=σ φ whenever m ∈ �φ�P

σ .
As an example, #e ≤ c is satisfied by markings m, where m(e) ≤ c, i.e.,

markings where the number of tokens in place e is less than or equal to c. Next-
time modalities are enriched with transition labels with the following meaning:
〈t〉φ is satisfied by markings from which transition t can be fired leading to a
marking that satisfies φ.

The encoding �·�, which maps formulae of μG1 into formulae of the logic P ,
is based on the following observation: Every graph graphP (m) for some marking
m of P can be generated from the finite template graph G in the following way:
some edges of G might be removed and some edges be multiplied, generating
several parallel instances of the same template edge. Whenever a formula has
two free variables x, y and graphP (m) has n parallel instances e1, . . . , en of the
same edge, it is not necessary to associate x and y to edges in all possible ways,
but it is sufficient to remember whether x and y are mapped or not mapped
to the same edge. Hence, in the encoding of a formula F , we keep track of the
following information: a partition Q on the free variables free(F ), telling which
variables are mapped to the same edge, and a mapping ρ from free(F ) to the
edges of G, with ρ(x) = e meaning that x will be instantiated with an instance
of the template edge e. When encoding an existential quantifier ∃x, we form a
disjunction over all the possibilities we have in choosing such an x: either x is
instantiated with the same edge as another free variable y, and thus x and y are
in the same class of the partition Q; or x is mapped to a new instance of an edge
in G, and thus a new set {x} is added to Q, adding a suitable predicate which
ensures that enough edges are available.

This is enough for the logic of [5], where interleaving of temporal operators
and edge quantifiers is not allowed. Here we have to consider the case in which
temporal modalities are nested into edge quantification. The main problem is
that an edge where some variables have been mapped can be removed by a tran-
sition and thus, when encoding quantification, one must be careful in avoiding to
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instantiate a variable with the class of a removed edge. This is faced by recording
in a set R the classes corresponding to removed edges.

Before we define the encoding we need some definitions. An equivalence re-
lation Q over a set A will be represented as a partition Q ⊆ 2A, where every
element represents an equivalence class. We will write xQy whenever x, y are in
the same equivalence class k ∈ Q. Furthermore we assume that each equivalence
Q is associated with a function rep : Q → A which assigns a representative to
every equivalence class. The encoding given below is independent of any specific
choice of representatives. Given a function f : A → B such that f(a) = f(a′) for
all a, a′ ∈ A with aQa′, we shall often write f(k) for f(rep(k)); furthermore, for
any b ∈ B we define nQ,f (b) = |{k ∈ Q | f(k) = b}|, i.e., the number of classes
in the partition Q that are mapped to b.

We next define the encoding, concentrating first on the fragment without
fixed-point operators.

Definition 17 (encoding for the fixed-point free first-order logic). Let
P = 〈G, N, p〉 be a Petri graph, F be a fixed-point-free μG1 formula, ρ : free(F ) →
EG and Q ⊆ 2free(F ) be an equivalence relation, R ⊆ Q and xQy implies
ρ(x) = ρ(y) for all x, y ∈ free(F ). The encoding [·] : μG1 → P is defined as
follows:

[¬F, ρ, Q, R] = ¬[F, ρ, Q, R]
[F1 ∨ F2, ρ, Q, R] = [F1, ρ, Q, R] ∨ [F2, ρ, Q, R]

[x = y, ρ, Q, R] =
{

true if xQy
false otherwise

[l(x) = a, ρ, Q, R] =
{

true if labG(ρ(x)) = a
false otherwise

[s(x) = s(y), ρ, Q, R] =
{

true if sG(ρ(x)) = sG(ρ(y))
false otherwise

analogously for t(x) = t(y) and s(x) = t(y)

[∃x.F, ρ, Q, R] =
∨

k∈Q\R[F, ρ ∪ {x �→ ρ(k)}, Q \ {k} ∪ {k ∪ {x}}, R] ∨
∨

∨
e∈EG

([F, ρ ∪ {x �→ e}, Q ∪ {{x}}, R]
∧ (#e ≥ nQ\R,ρ(e)+1))

[�F, ρ, Q, R] =
∨

t∈TN

∨
R′∈SR,t

(
∧

e∈ •t(#e ≥ nQ\(R∪R′),ρ(e)+ •t(e)) ∧
∧〈t〉[F, ρ, Q, R ∪ R′])

[Z, ρ, Q, R] = Z

where SR,t abbreviates {R′ ∈ 2(Q\R) | (ρ ◦ rep)⊕(R′) ≤ •t}.

If F is closed, we define [F ] to be [F, ∅, ∅, ∅]. The main novelty with respect to [5]
is the encoding of formulae �F involving the next-time operator. In order to see
if there is a transition after which F holds we examine the possible transitions t of
the Petri graph, and hence the disjunction amongst all t ∈ TN arises. Concerning
the removed edges, after the firing of a transition t several cases may apply since
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edges corresponding to places in the pre-set of t may be preserved or consumed,
depending on the number of tokens in such places.

All the cases that have to be considered are defined by SR,t. In words, SR,t

contains sets of equivalence classes from Q \ R that correspond to places in the
preset of t, not exceeding the number of tokens removed by t from each place,
i.e., if a transition consumes n tokens from a place e we shall not consider the
case in which more than n equivalence classes mapped to e are consumed.

When considering the consumption of one of such set R′ of equivalence classes,
we have to ensure that equivalence classes not included in R′ can actually
be preserved. This can only happen if there are enough tokens (

∧
e∈ •t #e ≥

nQ\(R∪R′),ρ(e)+ •t(e)), i.e., if in each place e in the pre-set of t the number of
tokens is greater or equal to the number of tokens removed by t from e plus the
number of equivalence classes mapped to e that will be preserved.

Example 9. To clarify this point consider an example in which we are treating
a transition t whose pre-set is {e, e′, e′} and we have that Q is {k1, k2, k3}, R
is empty and ρ maps k1, k2 to e and k3 to e′. In this case we have that SR,t is
{∅, {k1}, {k2}, {k1, k3}, {k2, k3}}. Note that {k1, k2, k3} does not belong to SR,t

because the in-degree of e for t is just 1. Now let us consider the requirements
on the places for some of the elements of SR,t. For instance, for {k1} we need
#e ≥ 2 ∧ #e′ ≥ 3 in order to be able to preserve k2 and k3, while for {k1, k3}
we need #e ≥ 2 to preserve k2.

After fixing an R′ and setting the requirement on the number of tokens in the pre-
set of t we have only to state that formula F holds under the new configuration,
i.e., where R′ is added to the set of removed equivalence classes.

Example 10. For the Petri graph in Fig. 3 formula [M-consumed] has the fol-
lowing form:

¬
∨

(i,j)∈L

⎛

⎝(#ei ≥ 2 ∧ #ej ≥ 1) ∨

⎛

⎝#ei ≥ 1 ∧
∨

(k,�)∈L−{(i,j)}
(#ek ≥ 1 ∧ #e� ≥ 1)

⎞

⎠

⎞

⎠

where L = {(1, 2), (3, 5), (6, 8)} (pairs of indices of edges which form the pre-set
of a transition). Intuitively, the two disjuncts above encode the fact that an M -
edge can be preserved if there is an enabled transition with more than one token
in the M -edge in its pre-set (left disjunct), or there is a token in an M -edge and
a transition which does not consume this token is enabled (right disjunct).

In the worst case there can be an exponential blowup in the size of the en-
coded formula. But at the same time, the resulting formula can often be greatly
simplified, even on-the-fly.

The encoding for general formulae of μG1, possibly including fixed-point oper-
ators requires additional effort. Suppose we want to express that there is an edge
x and a computation that never consumes x, i.e., F ≡ ∃x.νZ.∃y.(x = y ∧ �Z).
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Now, if we try to encode F we encounter a problem: sometimes Z should be eval-
uated in a context where the equivalence class of x is preserved and sometimes
in one where x is consumed.

In order to solve this, we exploit a property of fixed-points, namely that un-
folding an occurrence of the variable of a fixed-point formula results in an equiv-
alent formula. More formally, μZ.F is equivalent to μZ.F ′, where F ′ is the same
as F except that some free occurrences of Z are substituted by μZ ′.F [Z ′/Z],
where Z ′ is a fresh variable. As we shall see, unfolded fixed-points will be evalu-
ated in different contexts and a syntactic restriction will guarantee termination
of the encoding.

This is handled in the encoding of the next-step operator where in the case of
partition-consuming transitions we use the unfolding of F , denoted by uf (F, R).
The unfolding is formally defined as follows. Let fp(Z) denote the fixed-point
formula corresponding to a propositional variable Z and let {ZF

1 , .., ZF
n } denote

the set of propositional variables appearing free in F . Then uf (F, R) is defined
as F{fp(ZF

1 )/ZF
1 , .., fp(ZF

n )/ZF
n }, i.e., each variable is substituted by the cor-

responding fixed-point formula, if R is not empty, otherwise uf (F, R) is just F .
The idea is that if no equivalence class is consumed the unfolding is not neces-
sary. Of course, every propositional and edge variable must be renamed in the
unfolding.

Formally, the encoding in presence of fixed-point operators is defined as
follows.

Definition 18 (encoding for first-order logic). Let P = 〈G, N, p〉 be a Petri
graph, F ∈ μG1, ρ, Q, R as in Definition 17. The encoding [·] : μG1 → P is
defined as in Definition 17, but for the clause of the next-step operator which
becomes (a) below and the new clause for fixed-point operators (b):

[�F, ρ, Q, R] =
∨

t∈TN

∨
R′∈SR,t

(
∧

e∈ •t(#e ≥ nQ\(R∪R′),ρ(e)+ •t(e)) ∧ (a)
∧〈t〉[uf (F, R′), ρ, Q, R ∪ R′])

[μZ.φ, ρ, Q, R] = μZ.[φ, ρ, Q, R] (b)

In order to guarantee termination of the encoding, we have to forbid formulae in
which propositional variables appear free under the scope of an edge quantifier.
To see why this is necessary, one can apply the encoding to formula νZ.∃x.�(Z∧
∃y.y = x), expressing that there is an infinite computation where in every state
there is at least one edge that is preserved in the next state. With the restriction
mentioned the encoding is guaranteed to terminate, since in this case the set Q
will not increase, hence set SR,t will decrease and at some point the chosen R′

must be empty. It is an open question whether this syntactic restriction involves
a loss of expressive power.

Proposition 4 (finite encoding). Let (G, N, p) be a Petri graph, F ∈ μG1
such that no propositional variable appears free under the scope of an edge quan-
tifier. Then [F, ∅, ∅, ∅] is finite.
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Example 11. We have that [always-M-consumed] equals

νZ.

⎛

⎝[M-consumed] ∧
∧

(i,j,k)∈M
(#ei ≥ 1 ∧ #ej ≥ 1 ⇒ [tk]Z)

⎞

⎠ ,

where M = {(1, 2, 1), (3, 5, 2), (6, 8, 3)} (indices of pre-sets together with tran-
sition indices) and [t]φ = ¬〈t〉¬φ. That is, in order to ensure that it is im-
possible for a message to be preserved in any reachable state we require that
M-consumed holds for any reachable marking.

This formula is satisfied by the Petri net underlying the Petri graph in Fig. 3
and it can even be verified using standard techniques for coverability checking.

Finally, we state correctness of the encoding. This result, together with Corol-
lary 1 allows to check that a formula F in μG1, typed as reflected, holds for a
GTS R by checking that its encoding [F ] holds in the Petri net underlying any
covering of R.

Proposition 5 (correct encoding). Let P = 〈G, N, p〉 be a Petri graph and
let F be a closed formula in μG1. Then m0 |=∅ [F, ∅, ∅, ∅] iff P |= F .

7 Conclusion

We have enriched an existing approach for the verification of behavioral prop-
erties of GTSs via approximation [1,4,5]. The original approach approximates a
GTS by a Petri graph and reduces temporal graph formulae to existing logics for
Petri nets. The original logic proposed in [5] does not allow to interleave tem-
poral modalities and edge quantifiers and is thus not able to express properties
like an edge is never removed. We have proposed a solution to this, by using a
logic that interleaves temporal and structural aspects of a GTS and extending
the encoding into Petri net logics.

Our work is not the first one that proposes a non-propositional temporal
logic for graph transformation systems. The most relevant approach, in this
respect, is [20], where a second-order LTL logic is proposed, which is interpreted
on “graph transition systems” (these however are defined in a slightly different
way). Our approach is more general in the sense that also consider systems with
a possibly infinite state space and approximations of these systems, whereas
[20] considers finite-state systems; furthermore the temporal aspect of our logic
subsumes LTL. However, a precise comparison of the two approaches is not
easy, because the graph-related aspect of the logics are different ([20] considers
a logic to express path properties as regular expressions, while ours is based on
a fragment of the monadic second-order logic of graphs [8]), and graph items
which are deleted are handled differently in the two approaches.

Another first order temporal logic—called evolution logic—is proposed in [26],
in a framework based on abstract interpretation for the verification of Java
programs featuring dynamic allocation and deallocation of objects and threads.
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Evolution logic is a first order version of LTL, enriched with transitive closure,
and we think it suitable to express complex properties of graph transformation
systems as well: a deep comparison in this respect with our logic μG2 is planned
as future work.

In [22] it has been shown how the verification problem for CTL with additional
quantification over “items” can be reduced to the verification of standard CTL.
This is not directly applicable to our setting, since we consider infinite-state
systems, but the connection to [22] deserves further study. Another related work
is [9], which is concerned with the approximation of special kinds of graphs and
the verification of a similar logic for verifying pointer structures on a heap.

In future work we plan to study the decidability of fragments of our logic.
First, we can profit from decidability results on similar logics like the guarded
monadic fragments of first-order temporal logics [16] and similar approaches for
the modal μ-calculus with first-order predicates [13]. Note that from a practical
point of view we can focus on the target Petri net logic P . Although the full logic
is undecidable, there are some clearly identifiable decidable fragments [12,17]. In
the linear-time case for instance, it is decidable to show whether there exists a
run satisfying a formula containing only “eventually” operators, but mixing of
“eventually” and “generally” operators in general leads to an undecidable logic.

Additionally, further approximation on the transition system generated by
the Petri net can be used in order to model-check formulas on infinite-state
Petri nets (see, e.g., [24]). We plan to enhance our approach by extending the
encoding to the full logic including second-order quantification, and considering
more general graph transformation systems, allowing non-discrete interfaces [2].
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Abstract. The theory of abstract algebraic logic aims at drawing a
strong bridge between logic and universal algebra, namely by generaliz-
ing the well known connection between classical propositional logic and
Boolean algebras. Despite of its successfulness, the current scope of appli-
cation of the theory is rather limited. Namely, logics with a many-sorted
language simply fall out from its scope. Herein, we propose a way to
extend the existing theory in order to deal also with many-sorted logics,
by capitalizing on the theory of many-sorted equational logic. Besides
showing that a number of relevant concepts and results extend to this
generalized setting, we also analyze in detail the examples of first-order
logic and the paraconsistent logic C1 of da Costa.

1 Introduction

The general theory of abstract algebraic logic (AAL from now on) was first in-
troduced in [1]. It aims at providing a strong bridge between logic and uni-
versal algebra, namely by generalizing the so-called Lindenbaum-Tarski method,
which led to the well known connection between classical propositional logic and
Boolean algebras. Within AAL, one explores the relationship between a given
logic and a suitable algebraic theory, in a way that enables one to use alge-
braic tools to study the metalogical properties of the logic being algebraized,
namely with respect to axiomatizability, definability, the deduction theorem, or
interpolation [2]. Nevertheless, AAL has only been developed (as happened, until
recently, also with much of the research in universal algebra) for the single-sorted
case. This means that the theory applies essentially only to propositional-based
logics, and that logics over many-sorted languages simply fall out of its scope. It
goes without saying that rich logics, with many-sorted languages, are essential
to specify and reason about complex systems, as also argued and justified by the
theory of combined logics [3,4].

Herein, we propose a way to extend the scope of applicability of AAL by
generalizing to the many-sorted case several of the key concepts and results of
the current theory, including several alternative characterization results, namely
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those involving the Leibniz operator and maps of logics. The generalization we
propose assumes that the language of a logic is built from a many-sorted signa-
ture, with a distinguished sort for formulas. The algebraic counterpart of such
logics will then be obtained via a strong representation over a suitable many-
sorted algebraic theory, thus extending the notion of single-sorted algebraization
of current AAL. Terms of other sorts may exist, though, but they do not corre-
spond to formulas. Of course, in a logic, one reasons only about formulas, and
only indirectly about terms of other sorts. Hence, we consider that the sort of
formulas is the only visible sort, and we will also aim at a direct application of
the theory of hidden algebra, as developed for instance in [5], to explore possible
behavioral characterizations of the algebraic counterpart of a given many-sorted
algebraizable logic.

We explore the new concepts by analyzing the example of first-order logic in a
many-sorted context, and comparing with its previous unsorted study [1,6]. We
will also see how to apply our many-sorted approach in order to provide a new al-
gebraic perspective to certain logics which are not algebraizable in current AAL.
Namely, we will establish the many-sorted algebraization of the paraconsistent
logicC1 of da Costa [7], whose single-sortednon-algebraizability is well known [8,9].

The paper is organized as follows. In section 2 we will introduce a number of
necessary preliminary notions and notations. In section 3 we will introduce the
essential concepts and results of current AAL, and present some of its limitations
by means of examples. Then, in section 4, we will present our generalized notion
of many-sorted algebraizable logic and a detailed analysis of the examples in the
generalized setting. We will also show that some relevant concepts and results of
AAL smoothly extend to the many-sorted setting. Finally, section 5 draws some
conclusions, and points to several topics of future research.

2 Preliminaries

In this section we introduce the preliminary notions and notations that we will
need in the rest of the paper, namely concerning logic and algebra.

2.1 Logics and Maps

We will adopt the Tarskian notion of logic. A logic is a pair L = 〈L, �〉, where
L is a set of formulas and �⊆ 2L × L is a consequence relation satisfying the
following conditions, for every Γ ∪ Φ ∪ {ϕ} ⊆ L:

Reflexivity: if ϕ ∈ Γ then Γ � ϕ;
Cut: if Γ � ϕ for all ϕ ∈ Φ, and Φ � ψ then Γ � ψ;
Weakening: if Γ � ϕ and Γ ⊆ Φ then Φ � ϕ.

We will consider only these three conditions. However, Tarski also considered a
finitariness condition (see [10]):

Finitariness: if Γ � ϕ then Γ ′ � ϕ for some finite Γ ′ ⊆ Γ .
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In the sequel if Γ, Φ ⊆ L, we shall write Γ � Φ whenever Γ � ϕ for all ϕ ∈ Φ.
We say that ϕ and ψ are interderivable, which is denoted by ϕ �� ψ, if ϕ � ψ and
ψ � ϕ. In the same way, given Γ, Φ ⊆ L we say that Γ and Φ are interderivable,
if Γ � Φ and Φ � Γ . The theorems of L are the formulas ϕ such that ∅ � ϕ. A
theory of L, or briefly a L-theory, is a set Γ of formulas such that if Γ � ϕ then
ϕ ∈ Γ . Given a set Γ , we can consider the set Γ�, the smallest theory containing
Γ . The set of all theories of L is denoted by ThL. It is easy to see that 〈ThL, ⊆〉
forms a complete partial order.

We will need to use a rather strong notion of map of logics. Let L = 〈L, �〉 and
L′ = 〈L′, �′〉 be two logics. A map θ from L to L′ is a function θ : L → 2L′

such
that, if Γ � ϕ then (

⋃
γ∈Γ θ(γ)) �′ θ(ϕ). The map θ is said to be conservative

when Γ � ϕ iff (
⋃

γ∈Γ θ(γ)) �′ θ(ϕ). A strong representation of L in L′ is a pair
(θ, τ) of conservative maps θ : L → L′ and τ : L′ → L such that:

i) For all ϕ ∈ L we have that ϕ �� τ [θ(ϕ)];
ii) For all ϕ′ ∈ L′ we have that ϕ′ ��′ θ[τ(ϕ′)].

Note that the cases where θ(ϕ) is a singleton set for every ϕ ∈ L, or is a
finite set for every ϕ ∈ L, are usual particular cases of the above definition of
map. For the sake of notation we will use θ[Γ ] =

⋃
γ∈Γ θ(γ). Hence, a map θ

is such that if Γ � ϕ then θ[Γ ] � θ(ϕ). Analogously, it is conservative when
Γ � ϕ iff θ[Γ ] � θ(ϕ). Note also that, because of the symmetry of the definition
of strong representation, we also have a strong representation (τ, θ) of L′ in L.
The existence of a strong representation of L in L′ intuitively means that the
consequence relation of L can be represented in L′, and vice-versa, such that
they are, in some precise sense, inverse of each other. Actually, θ and τ induce
an isomorphism of the complete partial orders of theories of L and L′. It is not
difficult to see that, if we assume the conservativeness of θ and consider any
function τ : L′ → 2L that satisfies ii), then we can conclude that τ is in fact a
conservative map from L′ to L that also satisfies i).

2.2 Algebra

Recall that a many-sorted signature is a pair Σ = 〈S, O〉 where S is a set (of
sorts) and O = {Ows}w∈S∗,s∈S is an indexed family of sets. For simplicity, we
write f : s1 . . . sn → s for an element f of Os1...sns. As usual, we denote by TΣ(X)
the S-indexed family of carrier sets of the free Σ-algebra TΣ(X) with generators
taken from a sorted family X = {Xs}s∈S of variable sets. Often, we will need
to write terms over a given finite set of variables t ∈ TΣ(x1 : s1, . . . , xn : sn).
For simplicity, we will denote such a term by t(x1 : s1, . . . , xn : sn). Moreover,
if T is a set whose elements are all terms of this form, we will denote this fact
by writing T (x1 : s1, . . . , xn : sn). Fixed X , we will use t1 ≈ t2 to represent an
equation 〈t1, t2〉 between Σ-terms t1 and t2 of the same sort1. If t1 and t2 are

1 We use the symbol ≈ to avoid confusion with the usual symbol = for (metalevel)
equality, as used in the definitions.
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terms of sort s, we will dub t1 ≈ t2 an s-equation. The set of all Σ-equations
will be written as EqΣ . Moreover, we will denote conditional equations by t1 ≈
u1 ∧ · · · ∧ tn ≈ un → t ≈ u. A set Θ whose elements are all equations over terms
of the form t(x1 : s1, . . . , xn : sn), will also be dubbed Θ(x1 : s1, . . . , xn : sn). A
substitution σ = {σs : Xs → TΣ(X)s}s∈S is an indexed family of functions. As
usual, σ(t) denotes the term obtained by uniformly applying σ to each variable
in t. Given t(x1 : s1, . . . , xn : sn) and terms t1 ∈ TΣ(X)s1 , . . . , tn ∈ TΣ(X)sn ,
we will write t(t1, . . . , tn) to denote the term σ(t) where σ is a substitution
such that σs1 (x1) = t1, . . . , σsn(xn) = tn. Extending everything to sets of terms,
given T (x1 : s1, . . . , xn : sn) and U ∈ TΣ(X)s1 × · · · × TΣ(X)sn , we will use
T [U ] =

⋃
〈t1,...,tn〉∈U T (t1, . . . , tn).

Given a Σ-algebra A, we will use As to denote its carrier set of sort s. As
usual, an element of Hom(TΣ(X),A) will be called an assignment over A. Given
the freeness properties of TΣ(X), an assignment is completely determined by
the values it assigns to the elements of X . Given an assignment h over A and
an equation t1 ≈ t2 of sort s, we write A, h � t1 ≈ t2 to denote the fact
h(t1) = h(t2). We say that A is a model of, or satisfies, an equation t1 ≈ t2
if, for every assignment h over A, we have that A, h � t1 ≈ t2. The same
applies to conditional equations. Given a class K of Σ-algebras, we define the
consequence relation �K

Σ as follows: Θ �K
Σ t1 ≈ t2 when, for every A ∈ K and

every assignment h over A, if A, h � u1 ≈ u2 for every u1 ≈ u2 ∈ Θ then also
A, h � t1 ≈ t2. We may omit the superscript and simply write �Σ if K is the
class of all Σ-algebras. We will use EqnK

Σ to refer to the logic 〈EqΣ , �K
Σ 〉.

From now on we will assume that all signatures have a distinguished sort φ,
for formulas. Moreover, we will assume that Xφ = {ξi : i ∈ N} and will simply
write ξk instead of ξk : φ. Given a specification 〈Σ, Φ〉 where Φ is a set of Σ-
equations, we define the induced set of formulas LΣ,Φ to be the carrier set of
sort φ of the initial model LΣ,Φ = TΣ(∅)/Φ of Φ. When Φ = ∅, we will simply
write LΣ. We define also the set of schematic formulas LΣ,Φ(X) to be the carrier
set of sort φ of the initial model LΣ,Φ(X) = TΣ(X)/Φ of Φ. When Φ = ∅, we
will simply write LΣ(X). Moreover, we will use BEqnK

Σ to refer to the logic
〈EqΣ , �K

Σ,bhv〉, where �K
Σ,bhv is the behavioral consequence relation defined for

instance as in [5,11], by considering φ to be the unique visible sort and adopting
a suitable set of visible contexts.

3 Limitations of the Current Theory of AAL

In this section, we intend to illustrate some of the limitations of the current
theory of AAL. For that purpose, we begin by briefly presenting the essential
notions and results of the theory. Still, it is not our aim to survey AAL, but rather
to focus on what will be relevant in the rest of the paper. A recent comprehensive
survey of AAL is [2], where the proofs (or pointers to the proofs) of the results
we will mention can be found.
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3.1 Concepts and Results of Unsorted AAL

The original formulation of AAL in [1] considered only finitary logics. Currently,
the finitariness condition has been dropped [2]. Still, the objects of study of
current AAL are logics whose formulas have some additional algebraic structure,
namely their set of formulas is freely obtained from a propositional (single-
sorted) signature.

Definition 1 (Structural single-sorted logic)
A structural single-sorted logic is a pair L = 〈Σ, �〉, where Σ is a single-sorted
signature and 〈LΣ(X), �〉 is a logic that also satisfies:

Structurality: if Γ � ϕ then σ[Γ ] � σ(ϕ) for every substitution σ.

Clearly, φ must be the unique sort of Σ. Note that, if 〈Σ, �〉 is a structural
single-sorted logic, then 〈LΣ , �′〉 is also a logic, where �′ is the restriction of �
to LΣ . Finally, we can introduce the main notion of AAL.

Definition 2 (Single-sorted algebraizable logic)
A structural single-sorted logic L = 〈Σ, �〉 is algebraizable if there exists a class
K of Σ-algebras, a set Θ(ξ) of Σ-equations, and a set E(ξ1, ξ2) of schematic
L-formulas such that the following conditions hold:

– for every Γ ∪ {ϕ} ⊆ LΣ(X), Γ � ϕ iff Θ[Γ ] �K
Σ Θ(ϕ);

– for every Δ ∪ {ϕ ≈ ψ} ⊆ EqΣ , Δ �K
Σ ϕ ≈ ψ iff E[Δ] � E(ϕ, ψ);

– ξ �� E[Θ(ξ)] and ξ1 ≈ ξ2 =||=K
Σ Θ[E(ξ1, ξ2)].

The set Θ of equations is called the set of defining equations, E is called the
set of equivalential formulas, and K is called an equivalent algebraic semantics
for L. The notion of algebraizable logic intuitively means that the consequence
relation of L can be captured by the equational consequence relation �Σ

K , and
vice-versa, in a logically inverse way. When a logic is algebraizable and both Θ
and E are finite, we say the logic is finitely algebraizable. Other variants of the
notion of algebraizability and their relationships are illustrated in Fig. 1. Note
however that, in this paper, we will not explore them.

In [1] Blok and Pigozzi proved interesting results concerning the uniqueness
and axiomatization of an equivalent algebraic semantics of a given finitary and
finitely algebraizable logic. They proved that a class of algebras K is an equiva-
lent algebraic semantics of a finitary finitely algebraizable logic if and only if the
quasivariety generated by K is also an equivalent algebraic semantics. In terms
of uniqueness they showed that there is a unique quasivariety equivalent to a
given finitary finitely algebraizable logic. The axiomatization of this quasivariety
can be directly built from an axiomatization of the logic being algebraized, as
stated in the following result.

Theorem 1. Let L = 〈Σ, �〉 be a (finitary) structural single-sorted logic ob-
tained from a deductive system formed by a set of axioms Ax and a set of infer-
ence rules R. Assume that L is finitely algebraizable with Θ and E. Then, the
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Fig. 1. A view of the Leibniz hierarchy

equivalent quasivariety semantics is axiomatized by the following equations and
conditional-equations:

– Θ(ϕ) for each ϕ ∈ Ax;
– Θ[E(ξ, ξ)];
– Θ(ψ0) ∧ . . . ∧ Θ(ψn) → Θ(ψ) for each rule ψ0 ... ψn

ψ ∈ R;
– Θ[E(ξ1, ξ2)] → ξ1 ≈ ξ2.

There are several interesting and useful alternative characterizations of alge-
braizability. The most useful, namely to prove negative results, is perhaps the
characterization that explores the properties of the so-called Leibniz operator.
A congruence ≡ in a Σ-algebra A is said to be compatible with a subset F of
Aφ if whenever a ∈ F and a ≡ b then b ∈ F . In this case, F is a union of
equivalence classes of ≡. We will use CongA to denote the set of all congruences
of a Σ-algebra A. Recall that CongA equipped with inclusion also constitutes a
complete partial order.

Definition 3 (Leibniz operator)
Let L = 〈Σ, �〉 be a structural single-sorted logic. The Leibniz operator on the
formula algebra, Ω : ThL → CongLΣ(X) is such that, for each theory Γ of L,
Ω(Γ ) is the largest congruence of LΣ(X) compatible with Γ .

The denomination of the hierarchy considered in Fig. 1 is well justified by the
fact that each of the classes of logics mentioned can be characterized by in-
spection of the properties of the corresponding Leibniz operator. Concerning
algebraizability, we have the following result.

Theorem 2. A structural single-sorted logic L = 〈Σ, �〉 is algebraizable iff Ω is
monotone, injective, and commutes with inverse substitutions.

Another enlightening characterization of algebraization can be expressed using
maps of logics [12].

Theorem 3. A structural single-sorted logic L = 〈Σ, �〉 is algebraizable iff there
exists a class K of Σ-algebras and a strong representation (θ, τ) of L in EqnΣ

K

such that both θ and τ commute with substitutions.
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Note that the fact that both maps commute with substitutions is essential to
guarantee that each can be given uniformly, respectively, by a set Θ of one-
variable equations, and a set E of two-variable formulas.

3.2 Examples, Good and Bad

The theory of AAL is fruitful in positive and interesting examples. We will begin
by introducing two well known simple examples.

Example 1 (Classical and Intuitionistic Propositional Logics)
The main paradigm of AAL is the well establish connection between classical
propositional logic (CPL) and the variety of Boolean algebras. This was really
the starting point to the idea of connecting logic with algebra, which evolved
trying to generalize this connection to other logics. Another important example
is intuitionistic propositional logic (IPL). Its algebraization gives rise to the class
of Heyting algebras. It is interesting to note that, in contrast to Boolean algebras,
which were defined before the Lindenbaum-Tarski techniques were first applied
to generate them from CPL, Heyting algebras seem to be the first algebras of
logic that were identified precisely by applying these techniques (which are the
ancient roots of the modern theory of AAL) to a given axiomatization of IPL.

Even considering the enormous success of this theory, not only in the generality
of its results, but also in the large amount of examples, we can point out some
limitations. From our point of view, one major limitation of the existing theory
is its inability to correctly deal with logics with a many-sorted language. Let us,
first of all, discuss the paradigmatic example of first-order classical logic (FOL).

Example 2 (First-Order Classical Logic)
Research on the algebraization of FOL goes back to the seminal work initiated by
Tarski in the 1940s, and published in collaboration with Henkin and Monk in [13].
This line of research is known as the cylindric approach, the one that we will
follow here. Nevertheless, we mention that there is another important approach
to the algebraization of FOL, known as the polyadic approach, that differs from
the cylindric approach mainly because it deals with explicit substitutions.

In [1], Blok and Pigozzi, following the cylindric approach, presented a single-
sorted algebraization of FOL in the terms we have just introduced. Their idea
was to massage the first-order language into a propositional language and then
present a structural propositional deductive system PR, introduced by Németi,
for first-order logic over this propositional language. It is then proved that PR
is algebraizable. Moreover, it is proved that the variety equivalent to PR is the
variety of cylindric algebras.

Despite the success of the example of FOL within AAL, we can point out
some drawbacks. The first one is related to the fact that the first-order lan-
guage they start from differs in several important respects from standard FOL.
This is due to the fact that, since the theory only applies to single-sorted log-
ics, the atomic formulas of FOL have to be represented, within the propositional
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language, as propositional variables. So, in order to preserve structurality, one
has to constrain the language.

Another important drawback is the fact that, given the many-sorted character
of first-order logic, where we have at least syntactic categories for terms and for-
mulas, and possibly also for variables, it would be desirable to have an algebraic
counterpart that reflects this many-sorted character. This is clearly not the case
with cylindric algebras.

One of our motivations is precisely to extend the theory of AAL to cope with
logics that, like first-order logic, have a many-sorted language. This will allow us
to, given an algebraizable many-sorted logic, reflect its many-sorted character in
its corresponding algebraic counterpart.

But it is not only at the purely many-sorted level that the limitations of
current AAL arise. Even at the propositional level, there are interesting logics
that fall out of the scope of the theory. It is the case of certain so-called non-truth-
functional logics, such as the paraconsistent systems of da Costa [7]. The major
problem with these logics is that they lack congruence for some connective(s).
Roughly speaking, a logic is said to be paraconsistent if its consequence relation
is not explosive [14]. We say that a logic L = 〈Σ, �〉 is an explosive logic with
respect to a negation connective ¬ if, for all formulas ϕ and ψ, it is true that
{ϕ, ¬ϕ} � ψ.

Example 3 (Paraconsistent Logic C1 of da Costa)
It was proved, first by Mortensen [8], and after by Lewin, Mikenberg and Schwarze
[9] that C1 is not algebraizable in current AAL. So, we can say that C1 is an exam-
ple of a logic whose non-algebraizability is well studied. Nevertheless, it is rather
strange that a relatively well-behaved logic fails to have an algebraic counterpart.
We will briefly introduce C1.

The language of C1 is generated by the unisorted signature Σ with sort φ and
composed of the following operations:

– t, f :→ φ, ¬ : φ → φ and ∧, ∨, ⊃: φ2 → φ.

The consequence relation of C1 can be given by the structural deductive sys-
tem composed of the following axioms:

– ξ1 ⊃ (ξ2 ⊃ ξ1)
– (ξ1 ⊃ (ξ2 ⊃ ξ3)) ⊃ ((ξ1 ⊃ ξ2) ⊃ (ξ1 ⊃ ξ3))
– (ξ1 ∧ ξ2) ⊃ ξ1
– (ξ1 ∧ ξ2) ⊃ ξ2
– ξ1 ⊃ (ξ2 ⊃ (ξ1 ∧ ξ2))
– ξ1 ⊃ (ξ1 ∨ ξ2)
– ξ2 ⊃ (ξ1 ∨ ξ2)
– (ξ1 ⊃ ξ3) ⊃ ((ξ2 ⊃ ξ3) ⊃ ((ξ1 ∨ ξ2) ⊃ ξ3))
– ¬¬ξ1 ⊃ ξ1
– ξ1 ∨ ¬ξ1
– ξ◦1 ⊃ (ξ1 ⊃ (¬ξ1 ⊃ ξ2))
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– (ξ◦1 ∧ ξ◦2) ⊃ (ξ1 ∧ ξ2)◦

– (ξ◦1 ∧ ξ◦2) ⊃ (ξ1 ∨ ξ2)◦

– (ξ◦1 ∧ ξ◦2) ⊃ (ξ1 ⊃ ξ2)◦

– t ≡ (ξ1 ⊃ ξ1)
– f ≡ (ξ◦1 ∧ (ξ1 ∧ ¬ξ1))

and the rule of modus ponens :

– ξ1, ξ1 ⊃ ξ2 � ξ2

where ϕ◦ is an abbreviation of ¬(ϕ ∧ (¬ϕ)) and ϕ ≡ ψ is an abbreviation of
(ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ).

Despite of its innocent aspect, C1 is a non-truth-functional logic, namely it
lacks congruence for its paraconsistent negation connective. In general, it may
happen that ϕ �� ψ but ¬ϕ ���¬ψ. This phenomenon leaves the non-truth-
functional logics, and in particular C1, outside of the existing theory of AAL,
since congruence is a key ingredient for the algebraization process. Still, C1 has
other peculiarities. Although it is defined as a logic weaker than CPL, it happens
that a classical negation ∼ can be defined in C1 by using the abbreviation ∼ ϕ =
ϕ◦ ∧ ¬ϕ. Exploring this fact, da Costa himself introduced in [15] a so-called
class of Curry algebraic structures as a possible algebraic counterpart of C1. In
fact, nowadays, these algebraic structures are known as da Costa algebras [16].
However, their precise nature remains unknown, given the non-algebraizability
results reported above.

One of the objectives of this paper is to point out a way to use our many-sorted
approach to give a possible connection between C1 and the algebras of da Costa.

4 Generalizing Algebraization

In this section we will propose a novel many-sorted extension of the notion of
algebraization, where the major generalizations will happen at the syntactic
level. The new notion is then illustrated with the help of examples, and some of
its essential results are extended to the many-sorted setting.

4.1 The Many-Sorted Generalization

Our initial aim is to extend the range of applicability of AAL. Therefore, we
need to introduce a suitable notion of structural many-sorted logic. First of all,
we will assume that the formulas of the logic are built from a many-sorted
signature Σ. It is usual to assume that the syntax, namely of a logic, is defined
by a free construction over the given signature Σ. In the previous section the
set of formulas was precisely TΣ, as inforced by the terminology introduced in
section 2 when the formulas are built from a specification 〈Σ, Φ〉 with Φ = ∅.
However, it is not unusual that certain syntactic abbreviations are assumed. For
instance, in CPL one may assume that all classical connectives are primitive,
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or else, for instance, that negation and implication are primitive and the other
connectives appear as abbreviations. We have also the example of α-congruence
in the λ-calculus. In such a scenario, it makes all the sense to assume that these
syntactic abbreviations correspond to equations over the syntax, thus making
Φ �= ∅. Of course, by doing this one may be contributing to blurring the essential
distinction between syntax and semantics. Still, as we will see, the development
applies unrestrictedly. Hence, in general, the syntax of the logic will be specified
by a pair 〈Σ, Φ〉, which justifies the general definition of LΣ,Φ. Note that given
a substitution σ over Σ, it is easy to see that σ is well behaved with respect
to the congruence ≡Φ induced by Φ on LΣ(X). Namely, given t1, t2 ∈ LΣ(X)
if t1 ≡Φ t2 then σ(t1) ≡Φ σ(t2). Hence, it makes sense to write σ(ϕ) for any
schema formula ϕ ∈ LΣ,Φ(X). We will use [t]Φ to denote the schema formula
corresponding to the equivalence class of t ∈ LΣ(X) under ≡Φ.

Definition 4 (Structural many-sorted logic)
A structural many-sorted logic is a tuple L = 〈Σ, Φ, �〉 where 〈Σ, Φ〉 is a many-
sorted specification and 〈LΣ,Φ(X), �〉 is a logic that also satisfies:

Structurality: if Γ � ϕ then σ[Γ ] � σ(ϕ) for every substitution σ.

It should be clear that, in the particular case of a single-sorted signature with
Φ = ∅, this notion coincides precisely with the notion of structural single-sorted
logic used in the previous section. Note also that, given a structural many-sorted
logic L = 〈Σ, Φ, �〉, we can consider the following induced consequence relation
�Φ
L⊆ P(LΣ(X))×LΣ(X) defined by T �Φ

L u iff [T ]Φ � [u]Φ. It is easy to see that
there exists a strong representation of L into 〈LΣ(X), �Φ

L〉. In particular, the
theories ThΦ

L of this induced logic are isomorphic to ThL. When convenient, this
induced consequence relation will allow us to work over LΣ(X), thus avoiding
the explicit reference to quotients and equivalence classes. We can now introduce
our new notion of many-sorted algebraization. The key idea is to replace the role
of single-sorted equational logic in current AAL by many-sorted equational logic.

Definition 5 (Many-sorted algebraizable logic)
A structural many-sorted logic L = 〈Σ, Φ, �〉 is algebraizable if there exists a
class K of 〈Σ, Φ〉-models, a set Θ(ξ) of φ-equations and a set E(ξ1, ξ2) of φ-terms
such that the following conditions hold:

i) for every T ∪ {u} ⊆ LΣ(X), T �Φ
L u iff Θ[T ] �K

Σ Θ(u);
ii) for every set Δ∪{t1 ≈ t2} of φ-equations, Δ �K

Σ t1 ≈ t2 iff E[Δ] �Φ
L E(t1, t2);

iii) ξ ��Φ
L E[Θ(ξ)]] and ξ1 ≈ ξ2 =||=K

Σ Θ[E(ξ1, ξ2)].

As before, Θ is called the set of defining equations, E the set of equivalential
formulas, and K is called an equivalent algebraic semantics for L. Again, it
should be clear that in the case of a single-sorted signature with Φ = ∅ this
definition coincides with the notion of algebraizable logic of current AAL.
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4.2 Examples

Before we proceed, let us illustrate the new notion, namely by revisiting the
examples of FOL and C1.

Example 4 (First-order Classical Logic Revisited)
In example 2, we have already discussed the problems with the single-sorted
algebraization of FOL developed in [1]. With our many-sorted framework we
can now handle first-order logic as a two-sorted logic, with a sort for terms and
a sort for formulas. This perspective seems to be much more convenient, and we
no longer need to view atomic FOL formulas as propositional variables. Working
out the example, whose details we omit, we manage to algebraize FOL having as
an equivalent algebraic semantics the class of two-sorted cylindric algebras, whose
restriction to the sort φ is a plain old cylindric algebra, but which corresponds
to a regular first-order interpretation structure on the sort of terms. In the new
many-sorted context it is also straightforward to algebraize many-sorted FOL.

Example 5 (C1 Revisited)
In example 3, we made clear that the single-sorted theory of AAL has some
unexpected limitations, even in the case of propositional-based logics. We will
now revisit C1 and its algebraization in the many-sorted setting. Actually, in
this new perspective, the way in which a logic is presented and, in particular,
the way its language is specified, is very relevant in the algebraization process.
The trick for C1 will be to present it as a two-sorted logic, as suggested in [17].
Namely we will consider the two-sorted syntactic specification 〈Σ, φ〉 such that:

– Σ has two sorts, h and φ, and operations t, f :→ h, ¬, ∼: h → h and ∧, ∨, ⊃:
h2 → h, as well as o : h → φ, and t, f :→ φ, ∼: φ → φ and ∧, ∨, ⊃: φ2 → φ;

– Φ includes the following equations:

∼ x ≈ x◦ ∧ ¬x
o(t) ≈ t o(∼ x) ≈ ∼ o(x) o(x ∧ y) ≈ o(x) ∧ o(y)
o(f) ≈ f o(x ∨ y) ≈ o(x) ∨ o(y) o(x ⊃ y) ≈ o(x) ⊃ o(y)

where x and y are variables of sort h. The idea is to take all the primitive syntax
of C1 to the sort h, including the classical negation connective ∼ definable as an
abbreviation, and to have an observation operation o into sort φ, where all the
connectives are again available, with the exception of the non-truth-functional
paraconsistent negation ¬. The top equation aims precisely at internalizing the
definition of ∼. The other 6 equations simply express the truth-functional (ho-
momorphic) nature of the corresponding connectives. It is not difficult to see
that LΣ,Φ is isomorphic to the set of C1-formulas. With this two-sorted perspec-
tive, it can now be shown that, taking Θ(ξ) = {ξ ≈ t} as the set of defining
equations and E(ξ1, ξ2) = {ξ1 ≡ ξ2} as the set of equivalential formulas, C1 is al-
gebraizable in our generalized sense, and that the resulting algebraic counterpart
is precisely the two-sorted quasivariety KC1 proposed in [17]. We do not dwell
into the details here, but we can say that the corresponding two-sorted algebras
are Boolean on sort φ. Actually, the conditional equational specification of KC1
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only needs to use φ-equations, which leaves little to be said about what happens
with sort h. It is certainly very interesting to understand what is the impact of
the KC1 specification over h-terms, but that is something that we can only do
behaviorally, by assuming that h is a hidden-sort. If we restrict our attention
to contexts that do not involve the paraconsistent negation, we can show that
every algebra A ∈ KC1 behaviorally satisfies all the conditions in the definition
of da Costa algebras. On the other hand, given any da Costa algebra, we can
canonically extend it to a two-sorted algebra in KC1 . In this way, we manage
to discover the connection of da Costa algebras with the algebraization of C1,
which had never been found.

4.3 Many-Sorted AAL

In order to further support our generalization of the notion of algebraizable logic,
we will now show that we can also extend other notions and results of AAL. We
begin by defining a many-sorted version of the Leibniz operator.

Definition 6 (Many-sorted Leibniz operator)
Let L = 〈Σ, Φ, �〉 be a structural many-sorted logic. The many-sorted Leibniz
operator on the term algebra, Ω : ThΦ

L → CongLΣ(X) is such that, for each
T ∈ ThΦ

L, Ω(T ) is the largest congruence of LΣ(X) containing Φ and compatible
with T .

Note that, given T ∈ ThΦ
L, since Φ ⊆ Ω(T ), we have that Ω(T ) can be seen

as a congruence on LΣ(X)/Φ
. As we will see, also in the many-sorted setting,

the Leibniz operator will play an important role. In fact, we are able to general-
ize the characterization theorem of single-sorted algebraizable logic we gave in
section 3.1.

Theorem 4. A structural many-sorted logic L = 〈Σ, Φ, �〉 is algebraizable iff Ω
is monotone, injective, and commutes with inverse substitutions.

Proof. This proof uses the same methodology as the proof of the single-sorted
result. So, we will just give a sketch of the proof focusing on the important
methodological steps. First assume that L is algebraizable, with K, Θ(ξ) and
E(ξ1, ξ2). Using Θ(ξ) and its properties we can define the function ΩK : ThΦ

L →
CongLΣ(X), such that, for every sort s, 〈t1, t2〉 ∈ (ΩK(T ))s iff for every φ-term
u(x : s) we have that Θ[T ]�K

Σu(t1) ≈ u(t2). Using the properties of K, Θ(ξ)
and E(ξ1, ξ2) it is easy to prove that ΩK(T ) is the largest congruence containing
Φ that is compatible with T , that is, ΩK = Ω. The fact that ΩK is injective,
monotone and commutes with inverse substitutions also follows easily from the
properties of Θ(ξ) and E(ξ1, ξ2).

On the other direction, suppose that Ω is injective, monotone and commutes
with inverse substitutions. Consider the class of algebras K = {TΣ(X)/Ω(T )

:
T ∈ ThΦ

L}. It is clear that K is a class of 〈Σ, Φ〉-models. The fact that Ω is
monotone and commutes with inverse substitutions implies, according to [18],
that Ω is also surjective. Hence, Ω is indeed a bijection. Our objective is to prove
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that L is algebraizable with K an equivalent algebraic semantics. We still have
to find the sets of defining equations and equivalence formulas. Let T = {ξ1}�

Φ
L .

Let σ be the substitution over Σ such that σφ(ξ) = ξ1 for every ξ, and it is
the identity in the other sorts. If we take Θ = σ[Ω(T )φ] it can be shown, using
the fact that Ω commutes with inverse substitutions, that Θ = Θ(ξ1) is a set
of φ-equations and T �Φ

L u iff Θ[T ] �K
Σ Θ(u). Now let us construct the set of

equivalence formulas. Take now σ to be the substitution such that σφ(ξ2) = ξ2
and σφ(ξ) = ξ1 for every ξ �= ξ2, and it is the identity in the other sorts. Take
E = σ[Ω−1({ξ1 ≈ ξ2}�K

Σ )]. It can be proved that E = E(ξ1, ξ2) is a set of
φ-terms and that Θ[E(ξ1, ξ2)] =||=K

Σ ξ1 ≈ ξ2. The algebraizability of L follows
straightforwardly from these facts. ��

We can also extend the characterization of algebraization using maps of logics,
namely a strong representation between the given many-sorted logic and many-
sorted equational logic.

Theorem 5. A structural many-sorted logic L = 〈Σ, Φ, �〉 is algebraizable iff
there exists a class K of 〈Σ, Φ〉-models and a strong representation 〈θ, τ〉 of
〈LΣ(X), �Φ

L〉 in EqnK
Σ , such that θ is given by a set Θ(ξ) of φ-equations and τ

by a set E(ξ1, ξ2) of φ-terms.

Proof. The result follows from the observation that conditions i), ii), and iii) of
the definition of many-sorted algebraizable logic are equivalent to the fact that
〈θ, τ〉 is a strong representation. ��

When a structural many-sorted logic L is algebraizable, we can sometimes provide
a specification of its algebraic counterpart given a deductive system for L.

Theorem 6. Let L = 〈Σ, Φ, �〉 be a structural many-sorted logic obtained from
a deductive system formed by a set Ax of axioms and a set R of inference rules.
Assume that L is finitely algebraizable with Θ and E. Then, the equivalent qua-
sivariety semantics is axiomatized by the following equations and conditional-
equations:

i) Φ;
ii) Θ(ϕ) for each [ϕ]Φ ∈ Ax;
iii) Θ[E(ξ, ξ)];
iv) Θ(ψ0) ∧ . . . ∧ Θ(ψn) → Θ(ψ) for each [ψ0]Φ,...,[ψn]Φ

[ψ]Φ
∈ R;

v) Θ[E(ξ1, ξ2)] → ξ1 ≈ ξ2.

Proof. Let K be the quasivariety defined by i)-v). We will prove that K is the
equivalent algebraic semantics of L. First note that the fact that K satisfies
i) is equivalent to the fact that K is a class of 〈Σ, Φ〉-models. It is easy to
prove that equation iii) and conditional equation v) are jointly equivalent to
ξ1 ≈ ξ2 =||=K

Σ Θ[E(ξ1, ξ2)] which is one-half of condition iii) in the definition of
many-sorted algebraizable logic. It can also be verified that condition i) of the
definition of algebraizable logic is equivalent to the above equations ii) and iv).
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It now remains to say that, as it is well known in the single-sorted case, this is
enough to guarantee the algebraizability of L. The uniqueness of the equivalent
quasivariety in this case is straightforward. ��

Note that, due to the inclusion of the equations in Φ, items ii) and iv) are
independent of the particular choice of representatives of the equivalence classes.

At this point it is important to clarify the precise role of behavioral logic
in our framework. It should be clear that we do not use behavioral reasoning
directly in the algebraization process, since this is built over plain old many-
sorted equational logic. However, following the spirit of hidden equational logic,
and considering the sort of formulas as the only visible sort, we might think of
behaviorally reasoning about the other sorts. It is exactly here that we use be-
havioral logic to reason about the algebraic counterpart of a given algebraizable
logic. This possibility was particularly useful in example 5.

It is well known that behavioral reasoning can be a very complex issue, since
it involves reasoning about all possible experiments we can perform on a hidden
term. There are, nevertheless, some nice approaches to tackle this problem [11,5].
Here, we identify a very particular case that occurs when the behavioral reason-
ing associated with a class K of algebras is specifiable, in the sense that all the
behaviorally valid equations can be derived, in standard equational logic, from
some set of (possibly hidden) equations. We will show that, when L is expressive
enough and it is finitely algebraizable, the behavioral reasoning (over the whole
signature) associated with an equivalent algebraic semantics for L is specifiable.
A structural many-sorted logic L = 〈Σ, Φ, �〉 is said to be observationally equiv-
alential if there exists a sorted set E = {Es(x1 : s, x2 : s)}s∈S of φ-terms such
that, for every s ∈ S and x, y, z ∈ Xs:

– �Φ
L Es(x, x);

– Es(x, y) �Φ
L Es(y, x);

– Es(x, y), Es(y, z) �Φ
L Es(x, z);

– for each operation o ∈ Os1...sns and x1, y1 ∈ X1, . . . , xn, yn ∈ Xn

{Es1(x1, y1), . . . , Esn(xn, yn)} �Φ
L Es(o(x1, . . . , xn), o(y1, . . . , yn));

– Eφ(ξ1, ξ2), ξ1 �Φ
L ξ2.

Each Es is called the set of equivalential terms of sort s. If, for each s ∈ S,
the set Es is finite, then L is called finitely observationally equivalential.

Theorem 7. Let L = 〈Σ, Φ, �〉 be a finitely algebraizable, finitary, and struc-
tural many-sorted logic, and K be an equivalent algebraic semantics for L. If L
is finitely observationally equivalential then �K

Σ,bhv is specifiable.

Proof. Since L is finitary and finitely algebraizable, �K
Σ is specifiable. Let E =

{Es}s∈S the S-indexed set of equivalential formulas. Consider the sorted set
Ψ = {Ψs}s∈S such that Ψs = Θ[Es], where Θ(ξ) is the (finite) set of defining
equations. Then, it is easy to prove that Ψ forms a finite set of equivalential
formulas for �K

Σ . Then, using theorem 5.2.21. in [19], �K
Σ,bhv is specifiable. ��
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Note that this theorem does not apply to C1, in examples 3 and 5, since C1 is
not observationally equivalential due to the non-congruence of its paraconsis-
tent negation. This fact motivated the idea, in example 5, of not considering
paraconsistent negation as a visible connective. The fact that the other connec-
tives remain visible can be justified by a maximality argument. Here we point
out the importance of investigating general results relating algebraization with
the choice of visible connectives, namely when applying this framework to other
non-truth-functional logics.

5 Conclusions and Further Work

In this paper, we have proposed a generalization of the notion of algebraizable
logic that encompasses also many-sorted logics. The key ingredient of the gen-
eralization was to replace the role of single-sorted equational logic of traditional
AAL by many-sorted equational logic. To support our approach we proved, in
this more general setting, extended versions of several important results of AAL,
including characterizations using the Leibniz operator, as well as maps of logics.
We illustrated the approach by reanalyzing the examples of first-order logic and
of the paraconsistent logic C1 in a many-sorted context. In particular, for C1, we
managed to characterize the precise role of da Costa algebras.

Being a first attempt at this generalization, there is much to be done, and
there are many more interesting results of AAL to generalize. We also aim at
investigating a many-sorted version of the Leibniz hierarchy, including also pro-
toalgebraization, weak-algebraization, and related work, such as k-deductive sys-
tems. Many further examples are also to be tried. In this front, our ultimate aim
is to understand the relationship between orthomodular lattices as used in the
Birkhoff and Von Neumann tradition of quantum logic and the algebraic coun-
terpart of exogenous quantum logic [20]. An important open question is whether
and how our approach can be integrated with the work on the algebraization of
logics as institutions reported in [21]. Another interesting line of future work is
to study the impact of our proposal with respect to the way a logic is represented
within many-sorted equational logic in the context of logic combination, namely
in the lines of [3].

We already have some ideas on how to incorporate behavioral reasoning di-
rectly in the algebraization process. This will allow for a better treatment of
non-truth-functional logics and will be the subject of a forthcoming paper. In
any case, this seems to be an area which is very fit for application of the the-
ory of many-sorted algebras, including hidden-sorts and behavioral reasoning, as
developed within the formal methods community over the last couple of decades.
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Abstract. We present a notion of module acquired from developing an alge-
braic framework for service-oriented modelling.  More specifically, we give an 
account of the notion of module that supports the composition model of the 
SENSORIA Reference Modelling Language (SRML). The proposed notion is 
independent of the logic in which properties are expressed and components are 
programmed.  Modules in SRML are inspired in concepts proposed for Service 
Component Architecture (SCA) and Web Services, as well the modules that 
have been proposed for Algebraic Specifications, namely by H. Ehrig and F. 
Orejas, among others; they include interfaces for required (imported) and pro-
vided (exported) services, as well as a number of components (body) whose or-
chestrations ensure how given behavioural properties of the provided services 
are guaranteed assuming that the requested services satisfy required properties.  

1   Introduction 

In the emerging service-oriented computing paradigm, services are understood as 
autonomous, platform-independent computational entities that can be described, pub-
lished, discovered, and dynamically assembled for developing massively distributed, 
interoperable, evolvable systems.  In order to cope with the levels of complexity en-
tailed by this paradigm, one needs abstractions through which complex systems can 
be understood in terms of compositions of simpler units that capture structures of the 
application domain.  This is why, within the IST-FET Integrated Project SENSORIA 
– Software Engineering for Service-Oriented Overlay Computers – we are developing 
an algebraic framework for supporting service-oriented modelling at levels of abstrac-
tion that are closer to the “business domain”. 

More precisely, we are defining a suite of languages that support different activi-
ties in service-oriented modelling to be adopted as a reference modelling “language” 
– SRML – within the SENSORIA project.   In this paper, we are concerned with the 
“composition language” SRML-P through which service compositions can be  
modelled in the form of business processes, independently of the hosting middleware 

* This work was partially supported through the IST-2005-16004 Integrated Project SENSO-
RIA: Software Engineering for Service-Oriented Overlay Computers, and the Marie-Curie 
TOK-IAP MTK1-CT-2004-003169 Leg2Net: From Legacy Systems to Services in the Net.
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and hardware platforms, and the languages in which services are programmed.  The 
cornerstone of this language is the notion of module through which one can model 
composite services understood as services whose business logic involves the invoca-
tion of other services. 

In our approach, a module captures a business process that interacts with a set of 
external services to achieve a certain “goal”.  This goal should not be understood as a 
“return value” to be achieved by a computation in the traditional sense, but as a 
“business interaction” that is offered for other modules to discover and engage with.  
Global business goals emerge not from prescribed computations but from the peer-to-
peer, conversational interactions that are established, at run-time, between business 
partners.  This is why software development in the service-oriented paradigm requires 
new abstractions, methods and techniques. 

The challenge that we face, and on which we wish to report, is to support this 
paradigm with mathematical foundations that allow us to define, in a rigorous and 
verifiable way, (1) the mechanisms through which modules can use externally pro-
cured services to offer services of their own, and (2) the way modules can be assem-
bled into (sub-)systems that may, if desired, be offered themselves as (composite) 
modules. Having this goal in mind, we present in Section 2 a brief overview of the 
supported composition model and a summary of the different formal domains in-
volved in it. Then, in Section 3, we formalise the notion of module as a graph  
labelled over the identified formal domains. Section 4 discusses the correctness prop-
erty of modules and the notion of system as an assembly of modules. Finally, Section 
5 develops the notion of composition through which composite modules are defined 
from systems.  

2   The Composition Model 

Modules in SRML-P are inspired by concepts proposed in Service Component Archi-
tectures (SCA) [10].  The main concern of SCA is to develop a middleware-
independent architectural layer that can provide an open specification “allowing  
multiple vendors to implement support for SCA in their development tools and run-
times”. That is, SCA shares with us the goal of providing a uniform model of service 
behaviour that is independent of the languages and technologies used for program-
ming and deploying services.  However, whereas we focus on the mathematical struc-
tures that support this new architectural model, SCA looks “downstream” in the  
abstraction hierarchy and offers specific support for a variety of component imple-
mentation and interface types such as BPEL processes with WSDL interfaces, and 
Java classes with corresponding interfaces.  

Given the complementarities of both approaches, we decided to stay as close as 
possible to the terminology and methodology of SCA.  This is why in SRML-P we 
adopt the following formal domains when characterising the new architectural ele-
ments: business roles that type SCA components, business protocols that type SCA 
external interfaces (both entry points and required services), and interaction protocols 
that type SCA internal wires.

Service components do not provide any business logic: the units of business logic are 
modules that use such components to provide services when they are interconnected 
with a number of other parties offering a number of required services. In 
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Fig. 1. A SRML-P module; SC–service component; EX-P–(provides) external interface; EX-R–
(requires) external interface; IW–internal wire 

a SRML-P module, both the provided services and those required from other parties are 
modelled as external interfaces, or interfaces for short.  Each such interface specifies a 
stateful interaction (business protocol) between a service component and the corre-
sponding party; that is, SRML-P supports both “syntactic” and “behavioural” interfaces.  

The service components within a module orchestrate the interactions with the ex-
ternal parties that, in any given configuration, are linked to these interfaces.  Like in 
SCA, modules are interconnected within systems by linking required external services 
of given modules with provided services offered by other modules.  Such interconnec-
tions can be performed “just-in-time” once a mechanism is provided through which 
modules can be “discovered” and the binding of required with provided external inter-
faces can be effectively supported. 

2.1   Business Roles 

Central to SCA is the notion of component.  In SRML-P, a component is a computa-
tional unit that fulfils a given business role, which is modelled in terms of an execu-
tion pattern involving a number of interactions that the component can maintain with 
other parties.  We refer to the execution pattern as an orchestration element, or or-
chestration for short. 

The model provided through the business role is independent of the language in 
which the component is programmed and the platform in which it is deployed; it may 
be a BPEL process, a Java program, a wrapped-up legacy system, inter alia.  The 
orchestration is independent of the specific parties that are actually interconnected 
with the component in any given run-time configuration; a component is totally inde-
pendent in the sense that it does not invoke services of any specific co-party – it just 
offers an interface of two-way interactions in which it can participate.   

The primitives that we are adopting in SRML-P for describing business roles have 
been presented in [7] and, in more detail, also in [6]; they are defined in terms of 
typical event-condition-action rules in which the actions may involve interactions 
with other parties.  An example is given in the Appendix in terms of a BookingAgent 
of a typical TravelBooking composite service.  However, given that our focus in this 
paper is the notion of module, we do not need to commit to any specific orchestration 
language and, therefore, will not discuss the language used in SRML-P any further.  
All we need is to assume a set BROL of business roles to be given together with a 
number of mappings to other formal domains as detailed further on. 



40 J.L. Fiadeiro, A. Lopes, and L. Bocchi 

2.2   Signatures 

One of the additional formal domains that we need to consider consists of the struc-
tures of interactions through which components can be connected to other architec-
tural elements.  These structures capture both classical notions of “syntactic” interface 
– i.e. declarations of types of interactions – and the ports through which interconnec-
tions are established.   In SRML-P, interactions can be typed according to the fact that 
they are synchronous or asynchronous, and one or two-way; parameters can also be 
defined for the exchange of data during interactions. 

We assume that such structures are organised in a category SIGN, the objects of 
which are called signatures.  Morphisms of signatures define directional “part-of” 
relationships, i.e. a morphism σ:S1 S2 formalises the way a signature (structure of 
interactions) S1 is part of S2 up to a possible renaming of the interactions and corre-
sponding parameters.  In other words, a morphism captures the way the source is 
connected to the target, for instance how a port of a wire is connected to a component.   

We assume that every business role defines a signature consisting of the interac-
tions in which any component that fulfils the role can become involved.  This is cap-
tured by a mapping signBROL:BROL SIGN.  For instance, in the Appendix, we can 
see that the signature of a business role is clearly identified under “interactions”.  For 
simplicity, we do not give any detail of the categorical properties of signatures in 
SRML-P, which are quite straightforward. 

We further assume that SIGN is finitely co-complete.  This means that we can 
compose signatures by computing colimits (amalgamated sums) of finite diagrams; 
typically, such diagrams are associated with the definition of complex structures of 
signatures, which can result from the way modules are put together as discussed in 
Section 0, or the way modules are interconnected as discussed in Section 5.   

2.3   Business Protocols 

Besides components, a module in SRML-P may declare a number of (external) inter-
faces.  These provide abstractions (types) of parties that can be interconnected with 
the components declared in the module either to provide or request services; this is 
what, in SCA, corresponds to “Entry Points” and “External Services”.  

External interfaces are specified through business protocols, the set of which we 
denote by BUSP.  Like business roles, protocols declare the interactions in which 
the external entities can be involved as parties; this is captured by a mapping sign-
BUSP: BUSP SIGN.  The difference with respect to business roles is that, instead 
of an orchestration, a business protocol provides a set of properties that model the 
protocol that the co-party is expected to adhere to.  In the Appendix, we give as an 
example the business protocol that corresponds to the FlightAgent.  Like for busi-
ness roles, the signature of a business protocol in SRML-P is clearly identified 
under “interactions”. 

Business protocols, which model what in SCA corresponds to “external services”, 
specify the conversations that the module expects relative to each party.  Those that 
model what in SCA corresponds to an “entry point”, specify constraints on the  
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interactions that the module supports as a service provider.  Examples of such con-
straints are the order in which the service expects invocations or deadlines for the user 
to commit, but also properties that the client may expect such as pledges on given  
parameters of the delivered service.  It is the responsibility of the client to adhere to 
these protocols, meaning that the provider may not be ready to engage in interactions 
that are not according to the specified constraints.

2.4   Interaction Protocols 

Service components and external interfaces are connected to each other within mod-
ules through internal wires that bind the interactions that both parties declare to sup-
port and coordinate them according to a given interaction protocol. Typically, an 
interaction protocol may include routing events and transforming data provided by a 
sender to the format expected by a receiver. The examples given in the Appendix are 
quite simple: they consist of straight synchronisations at the ports. 

Just like business roles and protocols, an interaction protocol is specified in terms 
of a number of interactions.  However, interaction protocols are somewhat more com-
plex.  On the one hand, an interaction protocol declares two disjoint sets of interac-
tions; in SRML-P, this is done under the headings ROLE A and ROLE B.  On the other 
hand, the properties of the protocol – what we called the interaction glue – are de-
clared in a language defined over the union of the two roles, what we call its signa-
ture.  We consider that we have a set IGLU of specifications of interaction glues to-
gether with a map signIGLU:IGLU SIGN.

In order to model the composition of modules, we also need a way of composing 
interaction protocols.  For that purpose, we assume that IGLU is itself a co-complete 
category whose morphisms σ:G1 G2 capture the way G1 is a sub-protocol of G2,
again up to a possible renaming of the interactions and corresponding parameters.  
That is, σ identifies the glue that, within G2, captures the way G1 coordinates the 

Fig. 2. How the different formal domains relate to each other: BROL–business roles; BUSP–
business protocols; IGLU–interaction glue of protocols; SIGN–signatures 
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interactions sign(G1) as a part of sign(G2).  More precisely, we assume that signIGLU is 
a functor that preserves colimits, i.e. that the signature of a composition of protocols 
is a composition of their signatures. 

2.5   Summary 

The relationships between all these different formal domains are summarised in  
Figure 2 (categories are represented with a thick line).  For simplicity, we use sign as 
an abbreviated notation for signBROL, signBUSP and signIGLU.

3   Defining Modules 

As already mentioned, modules are the basic units of composition.  They include 
external interfaces for required and provided services, and a number of components 
whose orchestrations ensure that the properties offered on the provides-interfaces are 
guaranteed by the connections established by the wires assuming that the services 
requested satisfy the properties declared on the requires-interfaces.   

In our formal model, a module is defined as a graph: components and external in-
terfaces are nodes of the graph and internal wires are edges that connect them.  This 
graph is labelled by a function : components are labelled with business roles, exter-
nal interfaces with business protocols, and wires with connectors that include the 
specification of interaction protocols. An example of the syntax that we use in SRML-
P for defining the graph and labelling function can be found in the Appendix. 

Because a wire interconnects two nodes of the module (graph), we need some 
means of relating the interaction protocols used by the wire with the specifications 
(business roles or protocols) that label the nodes. The connection for a given node n
and interaction protocol P is characterised by a morphism µn that connects one of the 
roles (A or B) of P and the signature sign( (n)) associated with the node.  We call a 

connector for a wire n w← → ⎯ m a structure <µn,πn,G,πm,µm> where G is the interac-

tion glue of the protocol P and the morphisms n and m identify the roles of P:

roleA  roleB 
n A B m

sign( (n))  sign(G) sign( (m))

In SRML-P, connections are defined in a tabular form that should be self-
explanatory as illustrated in the Appendix.  Some wires may be labelled by more than 
one connector because they involve more than one interaction.  In such cases, we may 
compose the connectors by taking the sum of their protocols.  More concretely, if we 
have a collection < µn

i , πn
i ,Gi, π m

i , µm
i > of connectors labelling a wire n m, we can 

represent it by the connector <⊕ µn
i ,⊕ πn

i ,⊕Pi,⊕ π m
i ,⊕ µm

i > given by the diagram:

L L

L

L
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⊕roleAi ⊕roleBi

⊕µn
i    ⊕ π A

i ⊕ π B
i ⊕ µm

i

sign( (n))  sign(⊕Gi)≡⊕sign(Gi) sign( (m))

The morphisms are given uniquely by the properties of sums in SIGN [5].  This 
corresponds to looking at the set of connectors that labels a wire as defining a single 
connector, which makes it easier to define and manipulate modules.  

Formally, we take a module M to consist of:  

• A graph, i.e. a set nodes(M) and a set wires(M) of pairs n m of nodes (ele-
ments of nodes(M)).

• A distinguished subset of nodes requires(M) nodes(M).
• At most one distinguished node provides(M) nodes(M)\requires(M).
• A labelling function L such that: 

o L (provides(M)) BUSP if provides(M) is defined 
o L (n) BUSP for every n∈requires(M)
o L (n) BROL for every other node n∈nodes(M)
o L (n m) is a connector <µn,πn,G,πm,µm>.

A module M for which provides(M) is not defined corresponds to applications 
that do not offer any services but still require external services to fulfil their 
goals.  They can be seen to be “agents” that, when bound to the external services 
that they require, execute autonomously in a given configuration as discussed 
below.  Modules that do provide a service and can be discovered are called ser-
vice modules.  Notice that modules do not offer services to more than one user.  
However, multiple sessions may be allowed – an aspect that we do not address in 
this paper. 

We can expand every wire n m into the following labelled directed graph: 

roleA  roleB 
n A B m

(n)   G (m)

That is, we make explicit the protocol and the connections.  We denote by ex-
panded(M) the result of expanding all wires in this way.  Therefore, in expanded(M)
we have the nodes of M with the same labels – business roles and protocols – and, for 
each wire, an additional node labelled with a protocol, two additional nodes (ports) 
labelled with the roles of the protocol, and directed edges from the ports labelled with 
signature morphisms.  For instance, the expanded graph of the module depicted in 
Figure 1 has the following structure: 

L L

L L
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4   Semantic Correctness 

Section 3 defines some criteria that ensure the syntactic correctness of modules, 
namely the fact that the endpoints of the connectors in the wires match the labels of 
the nodes linked by the wire.  In this section, we are concerned by the semantic cor-
rectness of service modules, i.e. the fact that the properties offered in the provides-
interface are ensured by the orchestration of the components and the properties  
required of the other external interfaces. 

The correctness condition is expressed in terms of logical entailment of properties of 
business protocols.  The mechanisms that we provide for putting together, interconnect-
ing and composing modules is largely independent of this logic.  The particular choice 
of operators, their semantics and proof-theory are essential for supporting the modelling 
of service-based applications, i.e. for the pragmatics of “in-the-small” issues, but not for 
the semantics and pragmatics of modules as units of composition, i.e. for the “in-the-
large” issues.  What is important is that the logic satisfies some structural properties that 
are required for the correctness condition and the notion of module composition to work 
well together as explained below.  In SRML-P, we use the temporal logic µUCTL [8] 
defined over an alphabet of events such that every interaction declared in a signature 
gives rise to the following set of events (see [6] for additional explanations):  

interaction  The event of initiating interaction. 

interaction  The reply-event of interaction. 

interaction  The commit-event of interaction. 

interaction  The cancel-event of interaction. 

interaction  The deadline-event of interaction. 

interaction  The revoke-event of interaction. 

As a consequence, we assume that we have available an entailment system (or -

institution) [5,9] <SIGN,gram,�> where gram:SIGN SET is the grammar functor 

Fig. 3. The expanded graph of a module; 
 

 – business role; 
 

 – business protocol; 
 

 – 
interaction glue; 

 

 – signature (role) 



 Algebraic Semantics of Service Component Modules 45 

that, for every signature Q, generates the language used for describing properties of 
the interactions in Q.  Notice that, given a signature morphism σ:Q Q’, gram(σ)
translates properties in the language of Q to the language of Q’.  Notice that temporal 
logics define institutions [5]. 

We denote by �Q the entailment system that allows us to reason about properties 
in the language of Q.  We write S�Qs to indicate that sentence s is entailed by the set 
of sentences S.  Pairs <Q,S> consisting of a set S of sentences over a signature Q – 
usually called theory presentations – can be organised in a category SPEC whose 
morphisms capture entailment.  We denote by sign the forgetful functor that projects 
theories on the underlying signatures.   

Given a specification SP=<Q,S> and sets P and Ri of sentences over Q, we also 
use the notation 

P
SP RN

R1

to indicate that R1 … RN S �Q p for every p P, i.e. that the properties expressed 

by P are guaranteed by SP relying on the fact that the properties expressed in Ri

hold. 
As discussed in Section 2, the specifications of business roles, business protocols 

and interaction protocols carry a semantic meaning.  We take this meaning to be de-
fined by mappings specBROL:BROL SPEC, specBUSP:BUSP SPEC and specIGLU:
IGLU SPEC that, when composed with sign:SPEC SIGN, give us the syntactic 
mappings discussed in Section 2.   

In the case of business roles, this assumes that we can abstract properties from or-
chestrations, which corresponds to defining an axiomatic semantics of the orchestration 
language.  In SRML-P, this means a straightforward translation of event-condition-
action rules into µUCTL.

In the case of business and interaction protocols, this mapping is more of a transla-
tion from the language of external specifications to a logic in which one can reason 
about the properties of interactions as well as that of orchestrations.  In SRML-P, the 
operators used in the examples given in the Appendix are translated as follows:  

If b holds then a must have been true. AG(b Pa)
b can occur iff b and a have never occurred. AG(¬Pa∧H(¬b) Eb) 
b can occur iff a has already occurred but 
not b.

AG(Pa∧H(¬b) Eb) 

b will occur after a occurs, but b cannot 
occur without a having occurred. 

AG(b Pa ∧ a Fb) 

We further assume that the mapping specIGLU is in fact a functor, i.e. that the com-
position of interaction protocols preserves properties.  This leads to the following 
extension of Figure 2:

a before b

b exceptif a

a enables b

a ensures b
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Fig. 4. Relating the specification domain with the other formal domains 

The correctness property of service modules relies on the fact that the orchestrations 
of the business roles and the properties of the interaction protocols guarantee that the 
properties of the requires-interfaces entail those ensured by the provides-interfaces.  To 
express it, we need a means of referring to the fragment of the module that is con-
cerned with components and wires, what we call the body of the module.  Formally, we 
define body(M) for a module M as being the diagram of specifications and signatures 
that is obtained from expanded(M) by applying the mappings spec to all the labels 
(business roles, business protocols and interaction protocols).  That is, we obtain the 
same graph as that of expanded(M) except that we label the nodes with the specifica-
tions of the business roles and interaction protocols, and the signatures of the business 
protocols.  For instance, the following picture corresponds to the body-diagram of the 
expanded-graph of Figure 3: 

Fig. 5. The body diagram of a module 

We assume that the category SPEC is finitely co-complete and coordinated over 
SIGN, which allows us to calculate the colimit (amalgamated sum) of this diagram.  
The colimit returns a specification Body(M) and a morphism qn:sign( (n)) sign(M)
for every node n of expanded(M).

L
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It is helpful to detail the construction of Body(M).  Its signature sign(M) is the 
colimit (amalgamation) of the diagram of signatures defined by body(M).  This signa-
ture contains all the interactions that are involved in the module; the morphisms qn

record in which nodes each interaction is used.  The set of axioms of Body(M) con-
sists of the union of the following sets: 

• For every node n labelled by a business role W, the translation gram(qn)(SW) where 
spec(W)=<sign(W),SW>, i.e. we take the translations of the axioms of spec(W).

• For every node n labelled by a glue G of an interaction protocol, the transla-
tion gram(qn)(SG) where spec(G)=<sign(G),SG>, i.e. we take the translations 
of the axioms of spec(G).

Notice that the business protocols of the external interfaces are not used for calcu-
lating Body(M): only their signatures are used.  However, because their signatures are 
also involved, we can operate the same kind of translation on every external interface 
by using the corresponding signature morphism q:

• We denote by Prov(M) the translation of the specification of the business pro-
tocol of provides(M), i.e. of the provide-interface of M.

• We denote by Reqs1..N(M) the translations of the specifications of the business 
protocols in requires(M), i.e. of the requires-interfaces of M.

Given that all these sets of sentences are now in the language of sign(M), the cor-
rectness property of a service module M can be expressed by:

Prov(M )
Body(M ) ReqsN (M )

Reqs1(M )

That is, every property offered in the business protocol of the provides-interface 
must be entailed by the body of the module using the properties required in the busi-
ness protocols of the requires-interfaces. 

5   Composing Modules 

In this section, we discuss the mechanisms through which modules can be assembled 
to create systems and modules can be created from systems.   These mechanisms are 
similar to those provided in SCA, i.e. they provide a means of linking requires-
external interfaces of a module with provides-external interfaces of other modules.  In 
SRML-P, we provide only abstract models of such links, which we call external
wires.  That is, we remain independent of the technologies through which interfaces 
are bound to parties, which depend on the nature of the parties involved (BPEL proc-
esses, Java programs, databases, inter alia).  In summary, external wires carry a 
proof-obligation to ensure that the properties offered by the provides-interface are 
implied by those declared in the requires-interfaces. 

A system is a directed acyclic graph in which nodes are labelled by modules and 
edges are labelled with so-called “bindings” or “external wires”.  A binding for an 
edge n k between modules Mn and Mk consists of: 



48 J.L. Fiadeiro, A. Lopes, and L. Bocchi 

• A node r requires(Mn), i.e. one of the requires-interfaces of Mn.  This node 
cannot be used by any other binding.  Let this node be labelled with Sr.

• A specification morphism ρ:spec(Sr) spec(Sp) where Sp is the business proto-
col of provides(Mk), i.e. of the provides-interface of Mk.

In other words, bindings connect a requires-interface of one module to the pro-
vides-interface of another module such that the properties of the requires-interface are 
implied by the properties of the provides-interface.  

Fig. 6. An assembly of modules defining a SRML-P system; EW–external wire 

SRML-P also supports a way of offering a system as a module, i.e. of turning an 
assembly of services into a composite service that can be published and discovered on 
its own.  The operation that collapses a system into a module internalises the external 
wires and forgets the external specifications.   

Fig. 7. The previous system turned into a module 

Formally, a module may be created from every (finite) weakly connected system 
by internalising the bindings.  The resulting module M is as follows: 

• The graph of M is obtained from the sum (disjoint union) of the graphs of all 
modules involved in the system by eliminating, for every edge n k of the sys-
tem, the nodes r (requires) of Mn and provides(Mk), and adding, for every such 
edge n k of the system, an edge i j between any two nodes i and j such that 
i r is an edge of Mn and provides(Mk) j is an edge of Mk.
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• The labels are inherited from the graphs of the modules involved, except for 
the new edges i j.  These are calculated by merging the connectors that label 
i r and provides(Mk) j.  The interaction protocol of the new connector is 
obtained through the colimit diagram below where m=provides(Mk).

roleAr roleBr  roleAm   roleBm

π A
r π B

r
r m     π A

m π B
m

   sign(Sr)
  Gr     Gm

   
   sign(Sp)

This composition is defined by the following colimit diagram in IGLU:

roleAr roleBr  roleAm   roleBm

π A
r π B

r
r; m     π A

m π B
m

    
   Gr    iglu(sign(Sp))    Gm

’r   ’m

    G 

The rest of the connector is defined by the morphisms µi of i r and µj of 
provides(Mk) j:

roleAr  roleBm

i π A
r ;π 'r π B

m ;π 'm j

(i)    G    (j)

• requires(M) consists of the remaining requires-interfaces. 
• provides(M) consists of the remaining provides-interface, if one remains. 

Notice that the connectivity of the graph implies that at most one provides-
interface can remain. 

The colimits calculated in order to obtain the protocol of the new connectors are 
expressed over a “diagram” that involves both signatures (those of the external inter-
faces and the ports) and protocols.   

For this construction to make sense, we assume that the category IGLU is coordi-
nated over SIGN [5].  This means that we have a canonical way of lifting signatures 
to interaction protocols that respects the interactions.  In other words, every signature 
can be regarded as an interaction protocol through which the “diagram” above defines 
a diagram in IGLU, thus allowing for the colimit to be computed.   

The following picture depicts the graph involved in the composition considered in 
Figure 6:

LL
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Fig. 8. The graphs involved in a composition; the diagram of interaction protocols involved in 
the internalisation of the binding is singled out 

The graph obtained from the internalisation of the binding is the one that expands 
the module identified in Figure 7:

Fig. 9. The expanded graph of the composite module

6   Concluding Remarks and Further Work 

In this paper, we have described some of the primitives that are being proposed for 
the SENSORIA Reference Modelling Language in order to support building systems 
in service-oriented architectures using “technology agnostic” terms.  More specifi-
cally, we have focused on the language that supports the underlying composition 
model.  This is a minimalist language that follows a recent proposal for a Service 
Component Architecture [10] that “builds on emerging best practices of removing or 
abstracting middleware programming model dependencies from business logic”.  
However, whereas the SCA-consortium concentrates on the definition of an open 
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specification that supports a variety of component implementation and interface types, 
and on the deployment, administration and configuration of SCA-based applications, 
our goal is to develop a mathematical framework in which service-modelling primi-
tives can be formally defined and application models can be reasoned about.  

Our composition model relies on the notion of module, which we adapted from 
SCA.  Modules can be discovered and bound to other modules at run-time to produce 
configurations.  We proposed a formal model for module assembly and composition 
in line with algebraic notions of component such as [2] and [4].  The former proposes 
a notion of component that is similar to what is put forward by SCA but misses the 
notion of module as providing services that result from the orchestration of compo-
nents and external services.  Its algebraic semantics is based on Interface Automata 
[1], which are similar to I/O-automata, defined over operation (method) invocations; 
as explained in Section 4 (see also [6]), SRML works over a richer alphabet of events 
that capture the kind of stateful interactions typical of services.  The latter [4] is based 
on more traditional algebraic notions of module [3] and uses graph-based formalisms 
to model component behaviour.  The underlying algebraic framework is, once again, 
similar to the one we use but some research effort needs to be dedicated to bring out 
similarities and complementarities. 

We are currently developing a notion of configuration for SRML-P as a collection 
of components wired together that models a run-time composition of service compo-
nents.  A configuration results from having one or more clients using the services 
provided by a given module, possibly resulting from a complex system, with no ex-
ternal interfaces, i.e. with all required external interfaces wired-in.  It is at the level of 
configurations that we address run-time aspects of service composition such as ser-
vice discovery (and service-level agreements), sessions (and dynamic reconfigura-
tion), as well as notions of persistence.   
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Appendix – TravelBooking  

In this Appendix, we provide parts of a typical travel-booking process involving a 
flight and a hotel agent.  The module – TRAVELBOOKING – that defines this composite 
service exposes to the environment an interface for booking a flight and a hotel for a 
given itinerary and dates.  External services are requested in order to offer the service 
behaviour that the module declares to provide. 

TRAVELBOOKING  consists of:  

• CR – the external interface of the service provided by the module, of type  
Customer;

• FA – the external interface of a service required for handling the booking of 
flights, of type FlightAgent;

• HA – the external interface of a service required for handling the booking of ho-
tels, of type HotelAgent;
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• BA – a component that coordinates the business process, of type BookAgent; 
• CB, CF, BF, BH – four internal wires that make explicit the partner relationship 

between CR and BA, CR and FA, BA and FA, and BA and FA.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MODULE TravelBooking is  

COMPONENTS 

 BA: BookAgent 

PROVIDES 

 CR: Customer 

REQUIRES 

 FA: FlightAgent 

 HA: HotelAgent 

WIRES 

 
BA 

BookAgent BF  FA 
FlightAgent 

s&r bookFlight 
  from 
  to 
  out 
  in 
  fconf 

S1  

i1 
i2 
i3 

i4 
o1 

Straight 
I[airport,airport, 

date,date]  
O[fref] 

R1  

i1 
i2 
i3 

i4 
o1 

r&s lockFlight 
  from 
  to 
  out 
  in 
  fconf 

rcv fConfirm 
  result 

R1 

i1 
Straight 
I[bool] 

S1 

i1 
snd flightAck 
  result 

[…] 
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– 18 –

SPECIFICATIONS

BUSINESS ROLE BookAgent is

INTERACTIONS

r&s bookTrip
from,to:airport, out,in:date
tconf:(fcode,hcode)

s&r bookFlight
from,to:airport, out,in:date
fconf:fcode

s&r bookHotel
checkin:date, checkout:date
hconf:hcode

snd tAck
result:bool

rcv fConfirm
result:bool

ORCHESTRATION

local s:[0..6], fconf:fcode, hconf:hcode,
out,in:date, from,to:airport,
frep, hrep: boolean

initialisation s=0
termination s=3 (s=6 today out)
transition TOrder

triggeredBy bookTrip ?
guardedBy s=0
effects from’=bookTrip.from

to’=bookTrip.to
out’=bookTrip.out
in’=booktrip.in
out’ today s’=1
out’<today s’=3

sends out’>today bookFlight !
bookFlight.from=from’
bookFlight.to=to’
bookFlight.out=out’
bookflight.in=in’
alertDate !
alertDate.Ref=”flight”
alertDate.Interval=fresp

out’ today bookTrip !
bookTrip.Reply=false

State variables for storing
data that may be needed
during the orchestration.

s is used for control flow,
i.e. for encoding an
internal state machine.

The other state variables
are used for storing data
transmitted through the
parameters of interactions

Property guaranteed for
the initial state.

A request to travel on a
date already passed leads
immediately to a final
state.

today is an external
service that we assume to
be globally available; it
provides the current date.

In response to a request for travelling in a future date, a flight
request is issued and a timeout is set with the duration that the
agent is willing to wait for a reply.

alertDate is also a service that is globally available; it replies when
the duration set-up in the parameter Interval elapses. We use the
parameter Ref to correlate different alerts that are sent.

Property that determines
when the orchestration
has terminated.

If var is a state variable,
var’ denotes its value after
the transition; this expres-
sion can be used in both
“effects” and “sends”.
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[…]

BUSINESS PROTOCOL FlightAgent is

INTERACTIONS

r&s lockFlight
from,to:airport, out,in:date
fconf:fcode

s&r payRequest
amount:nat, benef:account,
bank:servRef
pay:payData

snd payAck
result:bool

snd payRefund
amount:nat

BEHAVIOUR (fref:string)
lockFlight ? exceptif true
lockFlight ! lockFlight.Reply

alertDate !
alertDate.Ref=fref
alertDate.Interval fval

lockFlight ! alertDate ?
alertDate.Ref=fref

lockFlight ? ensures payRequest !
payRequest ? payRequest.Reply

ensures payAck!
today<lockFlight.out (payAck!

payAck.result enables lockFlight ?)
lockFlight ? ensures payRefund !

payRefund.amount
>payRequest.amount*0.9

INTERACTION PROTOCOL Straight.I(d1,d2,d3,d4)O(d5) is

ROLE A
s&r S1

i1:d1, i2:d2, i3:d3, i4:d4

o1:d4

ROLE B
r&s R1

i1:d1, i2:d2, i3:d3, i4:d4

o1:d4

COORDINATION

S1 R1

S1.i1=R1.i1

S1.i2=R1.i2

S1.i3=R1.i3

S1.i4=R1.i4

S1.o1=R1.o

In the initial state, FA is
required to be ready to
receive a request for a
flight.

FA is required to request
the payment after receiv-
ing the commit.

FA is required to send
payAck to acknowledge
the reception of a suc-
cessful payment.

FA is required to accept the revoke of a flight booking until the day of
departure and provide a refund of at least 90% of its cost.

The timeout for flight
reservations is at least
fval.
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Abstract. Communities of autonomous units are rule-based and graph-
transformational devices to model data-processing systems that may
consist of distributed and mobile components. The components may
communicate and interact with each other, they may link up to ad-hoc
networks. In this paper, we introduce and investigate the parallel-process
semantics of communities of autonomous units.

1 Introduction

Communities of autonomous units are introduced in [1] as rule-based and graph-
transformational devices to model processes that run interactively, but indepen-
dently of each other in a common environment. The main goal of this approach
is to cover new programming and modeling paradigms like communication net-
works, multiagent systems, swarm intelligence, ubiquitous, wearable and mobile
computing in a common and systematic way with rigorous formal semantics.
While the sequential process semantics is considered in [1], we introduce and
start to investigate the parallel-process semantics of communities of autonomous
units in this paper.

An autonomous unit consists of a goal, a set of rules, and a control condition.
The rules can be applied to environments which are assumed to be graphs. Rule
application is usually quite nondeterministic because many rules may be applica-
ble to an environment and even a single rule may be applicable to various parts
of the environment. The control condition can cut down this nondeterminism by
dividing all possible rule applications into the “good” and the “bad” ones. The
control condition gives the unit autonomy in the sense that the unit can decide
for one of the good rule applications to be performed. The goal describes the
environments the unit wants to reach. A set of autonomous units forms a com-
munity which is additionally provided with a description of initial environments
(where computational processes can start) and with an overall goal. A process
then consists of a finite or infinite sequence of rule applications.
� Research partially supported by the Collaborative Research Centre 637 (Au-

tonomous Cooperating Logistic Processes: A Paradigm Shift and Its Limitations)
funded by the German Research Foundation (DFG).

J.L. Fiadeiro and P.-Y. Schobbens (Eds.): WADT 2006, LNCS 4409, pp. 56–73, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Autonomous Units and Their Semantics - The Parallel Case 57

To cover parallelism, we assume that not only single rules but multisets of
rules can be applied to environment graphs. This means that in each step many
rules can be applied and single rules multiple times. As the rules may belong to
different units, the autonomous units act in parallel. The units in a community
are not directly aware of each other, but they may notice the outcome of the ac-
tivities of their co-units because some of their rules may become applicable and
others may loose this possibility. In this way, autonomous units can communi-
cate and interact. To cover these phenomena in the process semantics of a single
unit, we assume a change relation on environments that makes the environment
dynamic. Then a parallel process of a single autonomous unit can be described
as a sequence of application of multisets of rules of this unit in parallel with
changes of the environment. These notions are introduced in Sections 3 and 4
and illustrated by the running example of a community of two autonomous units
that work together and compute shortest paths. The basic ingredients including
graphs, rules, rule applications, graphs class expressions to describe goals, and
control conditions are defined by means of the notion of graph transformation
approaches in Section 2. All components are quite generic so that they can be
instantiated in various ways according to need or taste. Graph transformation
approaches play a somewhat similar role for graph transformation than institu-
tions for algebraic specification.

To shed some first light on the significance and usefulness of communities of
autonomous units with parallel-process semantics, we compare our concepts with
the parallelism provided by other well-known frameworks. In Section 5, we trans-
late place/transition systems into communities of autonomous units and show
that firing sequences of multisets of transitions correspond to parallel processes
of the associated community. Similarly, cellular automata can be considered as
communities of autonomous units as shown in Section 6. Cellular automata are
particularly interesting as all their cells change states simultaneously so that the
mode of computation is massively parallel. In Section 7, we discuss the rela-
tionship between communities of autonomous units and multiagent systems. As
the latter are defined in an axiomatic way, the former can be seen as rule-based
models providing an operational semantics for multiagent systems independent
of the implementation of agents.

The introduction and investigation of autonomous units is mainly motivated
by the Collaborative Research Centre 637 Autonomous Cooperating Logistic
Processes. This interdisciplinary project focuses on the question whether logis-
tic processes with autonomous control may be more advantageous than those
with central control, especially regarding time, costs and robustness. The guid-
ing principle of autonomous units is the integration of autonomous control into
rule-based models of processes. The aims are

1. to describe algorithmic and particularly logistic processes in a very general
and uniform way, based on a well-founded semantic framework,

2. to provide a range of applications that reaches from classical process chain
models like the ones by Kuhn (see, e.g., [2]) or Scheer (see, e.g., [3]) and
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the well-known Petri nets (see, e.g., [4,5]) to agent systems see, e.g., [6]) and
swarm intelligence (see, e.g., [7]),

3. to comprise the foundation of the dynamics of processes by means of rules
where rule applications define process, transformation, and computation
steps yielding local changes.

Archetypes of a rule-based approach to data processing are grammatical sys-
tems of all kinds (see, e.g., [8]) and term rewriting systems (see, e.g., [9]) as well
as the domain of graph transformation (see, e.g., [10,11,12]) and DNA comput-
ing (see, e.g., [13]). The rule-based approach is meant to ensure an operational
semantics as well as to lay the foundation for formal verification.

In [1] we have shown that autonomous units with sequential process semantics
generalize our former modeling concept of graph transformation units (see, e.g.,
[14]). While the latter apply their rules without any interference from the outside,
an autonomous unit works in a dynamic environment which may change because
of the activities of other units in the community. This makes quite a difference
because the running of the system is no longer controlled by a central entity.
Clearly, this applies to the parallel case, too, because it generalizes the sequential
case.

2 Parallel Graph Transformation Approaches

Graph transformation (see e.g. [10,15]) constitutes a formal specification tech-
nique that supports the modeling of the rule-based transformation of graph-like,
diagrammatic, and visual structures in an intuitive and direct way. The ingre-
dients of graph transformation are provided by so-called graph transformation
approaches. In this section, we recall the notion of a graph transformation ap-
proach as introduced in [14] but modified with respect to the purposes of this
paper.

Two basic components of every graph transformation approach are a class
of graphs and a class of rules that can be applied to these graphs. In many
cases, rule application is highly nondeterministic – a property that is not always
desirable. Hence, graph transformation approaches can also provide a class of
control conditions so that the degree of nondeterminism of rule application can
be reduced. Moreover, graph class expressions can be used in order to specify for
example sets of initial and terminal graphs of graph transformation processes.

The basic idea of parallelism in a rule-based framework is the application of
many rules simultaneously and also the multiple application of a single rule. To
achieve these possibilities, we assume that multisets of rules can be applied to
graphs rather than single rules.

Given some basic domain D, the set of all multisets D∗ over D with finite
carriers consists of all mappings m: D → N such that the carrier car(m) = {d ∈
D | m(d) �= 0} is finite. For d ∈ D, m(d) is called the multiplicity of d in m. The
union or sum of multisets can be defined by adding corresponding multiplicities.
D∗ with this sum is the free commutative monoid over D where the multiset with
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empty carrier is the null element, i.e. null: D → N with null(D) = 0. Note that
the elements of D correspond to singleton multisets, i.e. for d ∈ D, d̂: D → N

with d̂(d) = 1 and d̂(d′) = 0 for d′ �= d. If R is a set of rules, r ∈ R∗ comprises a
selection of rules each with some multiplicity. Therefore, an application of r to
a graph yielding a graph models the parallel and multiple application of several
rules.

Formally, a parallel graph transformation approach is a system consisting of
the following components.

– G is a class of graphs.
– R is a class of graph transformation rules such that every r ∈ R∗ specifies a

binary relation on graphs SEM (r) ⊆ G × G.
– X is a class of graph class expressions such that each x ∈ X specifies a set

of graphs SEM (x) ⊆ G.
– C is a class of control conditions such that each c ∈ C specifies a set of se-

quences SEMChange(c) ⊆ SEQ(G) where Change ⊆ G × G.1 As we will see
later the relation Change defines the changes that can occur in the environ-
ment of an autonomous unit. Hence, control conditions have a loose seman-
tics which depends on the changes of the environment given by Change.

For technical simplicity we assume in the following that A = (G, R, X , C) is
an arbitrary but fixed parallel graph transformation approach. The multisets of
rules in R∗ are called parallel rules. A pair of graphs (G, G′) ∈ SEM (r) for some
r ∈ R∗ is an application of the parallel rule r to G with the result G′. It may be
also called a direct parallel derivation or a parallel derivation step.

Sometimes it is meaningful to parameterize the semantics of a graph class
expression x by the class of graphs. i.e. SEM G(x) ⊆ G for all G ∈ G. This allows
one to describe relations and functions between graphs rather than just sets of
graphs. An example of this kind can be found in Section 4.

Examples
In the following we present some instances of the components of parallel graph
transformation approaches. These will be used in the following sections. Further
examples of graph transformation approaches can be found in e.g. [10].

Graphs. A well-known instance for the class G is the class of all directed edge-
labeled graphs. Such a graph is a system G = (V, E, s, t, l) where V is a set of
nodes, E is a set of edges, s, t: E → V assign to every edge its source s(e) and its
target t(e), and the mapping l assigns a label to every edge in E. The components
of G are also denoted by VG, EG, etc. As usual, a graph M is a subgraph of G,
denoted by M ⊆ G if VM ⊆ VG, EM ⊆ EG, and sM , tM , and lM are the restric-
tions of sG, tG, and lG to EM . A graph morphism g: L → G from a graph L to a
graph G consists of two mappings gV : VL → VG, gE : EL → EG such that sources,
targets and labels are preserved, i.e. for all e ∈ EL, gV (sL(e)) = sG(gE(e)),
1 For a set A 2A denotes its powerset and SEQ(A) the set of finite and infinite se-

quences over A.
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gV (tL(e)) = tG(gE(e)), and lG(gE(e)) = lL(e). In the following we omit the
subscript V or E of g if it can be derived from the context.

Other classes of graphs are trees, forests, Petri nets, undirected graphs, hy-
pergraphs, etc.

Rules. As a concrete example of rules we consider the so-called dpo-rules each
of which consists of a triple r = (L, K, R) of graphs such that L ⊇ K ⊆ R. The
application of a rule to a graph G yields a graph G′, if one proceeds according to
the following steps: (1) Choose a graph morphism g: L → G so that for all items
x, y (nodes or edges) of L g(x) = g(y) implies that x and y are in K. (2) Delete
all items of g(L)− g(K) provided that this does not produce dangling edges. (In
the case of dangling edges the morphism g cannot be used.) (3) Add R to the
resulting graph D, and (4) glue D and R by identifying the nodes and edges of
K in R with their images under g. The conditions of (1) and (2) concerning g
are called gluing condition.

Graph transformation rules can be depicted in several forms. In the following
they are either shown in the form L ⊇ K ⊆ R or by drawing only its left-hand
side L and its right-hand side R together with an arrow pointing from L to R,
i.e. L → R. The different nodes of K are distinguished by different fill-styles.

A graph transformation rule (L, K, R) with positive context is a quadruple
(PC, L, K, R) such that L ⊆ PC. It can be applied to G by applying (L, K, R)
to G as described provided that there is a morphism g′: PC → G such that the
restriction of g′ to L equals g. In the folllowing, a rule with positive context is
depicted as PC ⊇ L ⊇ K ⊆ R where different fill-styles determine the nodes and
edges of L in PC. A graph transformation rule with negative context is defined
as (NC, L, K, R) where (L, K, R) is a rule and L ⊆ NC. It can only be applied
to G if the negative context of L is not in G, i.e. if the morphism g: L → G
cannot be extended to some morphism g′: NC → G of which g is the restriction
to L (cf. also [16]). Rules with negative context are depicted as NC → R such
that the part of NC not belonging to L is dashed (see for example Fig. 1).

Given two rules ri = (Li, Ki, Ri) (i = 1, 2) their parallel composition yields
the rule r1+r2 = (L1+L2, K1+K2, R1+R2) where + denotes the disjoint union
of graphs. In the same way one can construct a parallel rule from any multiset
r ∈ R∗. For every pair (G, G′) ∈ SEM (r1 + r2) there exist graphs M1 and M2
such that (G, M1) and (M2, G

′) are in SEM (r1) and (G, M2) and (M1, G
′) are in

SEM (r2). This means that the graph G′ can also be obtained from G by applying
the rules r1 and r2 sequentially and in any order. Moreover, let ri (i = 1, 2) be
two (parallel) rules and let gi: Li → G be two morphisms that satisfy the gluing
condition described in steps (1) and (2) of a rule application. Then r1 and r2 are
independent w.r.t. gi if the the following independence condition is satisfied:

g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2).

In this case both rules can be applied to G in parallel via the application of r1+r2
using the graph morphism 〈g1 + g2〉: L1 +L2 → G such that 〈g1 + g2〉(x) = gi(x)
if x is an element of Li (see, e.g., [17] for more details).
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Graph class expressions. Every subset M ⊆ G is a graph class expression that
specifies itself, i.e. SEM (M) = M . Moreover, every set L of labels specifies the
class of all graphs in G the labels of which are elements of L. Every set P ⊆ R∗ of
(parallel) graph transformation rules can also be used as a graph class expression
specifying the set of all graphs that are reduced w.r.t. P where a graph is said
to be reduced w.r.t. P if no rules of P can be applied to the graph. The least
restrictive graph class expression is the term all specifying the class G.

Control conditions. The least restrictive control condition is the term free that
allows all parallel graph transformations, i.e. SEMChange(free) = SEQ(G) for all
Change ⊆ G × G. Another useful control condition is alap(P ) where P ⊆ R∗.
It applies P as long as possible. More precisely, for every Change ⊆ G × G
SEMChange(alap(P )) consists of all finite sequences (G0, . . . Gn) ∈ SEQ(G) for
which there is an i ∈ {0, . . . , n} such that no rule in P can be applied to the
graphs in (Gi, . . . , Gn). The condition alap(P ) can also be used to specify infinite
sequences, a more complicated case that is not needed here.

3 Autonomous Units

Autonomous units act within or interact on a common environment which is
modeled as a graph. An autonomous unit consists of a set of graph transfor-
mation rules, a control condition, and a goal. The graph transformation rules
contained in an autonomous unit aut specify all transformations the unit aut
can perform. Such a transformation comprises for example a movement of the
autonomous unit within the current environment, the exchange of information
with other units via the environment, or local changes of the environment. The
control condition regulates the application process. For example, it may require
that a sequence of rules be applied as long as possible or infinitely often. The
goal of a unit is a graph class expresson determining how the transformed graphs
should look like.

Definition 1 (Autonomous unit). An autonomous unit is a system aut =
(g, P, c) where g ∈ X is the goal, P ⊆ R is a set of graph transformation rules,
and c ∈ C is a control condition. The components of aut are also denoted by
gaut , Paut , and caut , respectively.

An autonomous unit modifies an underlying environment while striving for its
goal. Its semantics consists of a set of transformation processes being finite or in-
finite sequences of environment transformations. An environment transformation
comprises the parallel application of local rules or environment changes typically
performed by other autonomous units that are working in the same environment.
These environment changes are given as a binary relation of environments. Be-
cause the parallel-process semantics is meant to describe the simultaneous ac-
tivities of autonomous units, the environment changes must be possible while a
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single autonomous unit applies its rules. To achieve this, we assume that there
are some rules, called metarules, the application of which defines environment
changes. Consequently, environment changes and ordinary rules can be applied
in parallel. Hence, in this parallel approach a transformation process of an au-
tonomous unit consists of a sequence of parallel rule applications which combine
local rule applications with environment changes specified by other components.
Every autonomous unit has exactly one thread of control. Autonomous units
regulate their transformation processes by choosing in every step only those
rules that are allowed by its control condition. A finite transformation process
is called successful if its last environment satisfies the unit goal. Every infinite
transformation process is successful if it contains infinitely many environments
that satisfy the goal.

Definition 2 (Parallel semantics)

1. Let aut = (g, P, c) be an autonomous unit and let Change ⊆ G × G. Let
MR ⊆ R∗ be a set of parallel rules, called metarules, such that SEM (MR)
=

⋃

r∈MR
SEM (r) = Change . Let s = (G0, G1, G2, · · ·) ∈ SEQ(G).

Then s ∈ PARChange(aut) if
– for i = 0, · · · , |s| if s is finite2 and for i ∈ N if s is infinite, (Gi−1, Gi) ∈

SEM (r + r′) for some r ∈ P∗ and r′ ∈ MR,
– s ∈ SEMChange(c).

2. The sequence s is called a successful transformation process if s is finite and
G|s| ∈ SEM (g) or there is an infinite monotone sequence i0 < i1 < i2 < · · ·
with Gij ∈ SEM (g) for all j ∈ N.

The elements of PARChange(aut) are sequences of applications of parallel rules
which may be called the parallel processes of aut . Every single step of these
processes applies a parallel rule of the form r + r′ where r is a parallel rule of
the unit aut and r′ is a metarule. Therefore, while the autonomous unit acts on
the environment graph, the environment may change in addition. But as r and
r′ may be the null rule and r + null = r as well as null + r′ = r′, a step can also
be an exclusive activity of aut or a change of the environment only.

Examples
As examples of autonomous units consider the units minimum and sum depicted
in Fig. 1. The underlying graphs are labeled with natural numbers representing
distances. The graph class expression for the goals of both units is all meaning
that both units do not have any particular goal. The rule of minimum deletes
the longer one out of two parallel edges labeled with natural numbers. The
control condition of the unit minimum requires that the rule be applied as long
as possible. In other words, a minimum process can only stop if no parallel edges
are around. Two rule applications are independent if they delete different edges.
This means that the rule can be applied k times in parallel, if the corresponding
2 For a finite sequence s its number of elements is denoted by |s|.



Autonomous Units and Their Semantics - The Parallel Case 63

parallel rule application deletes k edges. In particular, one can transform each
graph in a simple one without parallel edges in a single step.

The rule of the second unit sum can be applied to a path e1, e2 provided
that e1 and e2 are labeled with natural numbers x and y and that there exists
no edge from the source of e1 to the target of e2 that is labeled with a number
z ≤ x+y. The last requirement is expressed by the dashed edge which represents
negative context. The rule inserts a new edge from the source of e1 to the target
of e2 and labels it with x+ y. This rule must also be applied as long as possible.
Moreover, the rule can only be applied if the graph morphism from the left-hand
side of the rule to the current graph is injective. This means that the rule can
be applied neither to edges that are loops nor to a cycle of length two. This
condition ensures that no loops are produced in the computation of the sums of
the edge labels. Each two applications of the sum-rule are independent because
nothing is deleted. Consequently, the sum-rule can be applied k times in parallel
for every k ∈ N as long as there are loop-free paths of length 2 satisfying the
negative application condition. In particular, a parallel rule can be applied so
that afterwards each loop-free path of length 2 and distance x + y has got a
parallel edge of distance z ≤ x + y.

minimum
goal: all
rules:

−→
x

y

min(x, y)

(x, y ∈ N)

cond: alap

sum
goal: all
rules:

−→x y

z

x y

x + y

(x, y, z ∈ N, z ≤ x + y)

cond: alap, injective

Fig. 1. Two autonomous units
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4 Communities of Autonomous Units

Autonomous units are meant to work within a community of autonomous units
that modify the common environment together. In the parallel case these mod-
ifications take place in an interleaving manner. Every community is composed
of an overall goal that should be achieved, an environment specification that
specifies the set of initial environments the community may start working with,
and a set of autonomous units. The overall goal may be closely related to the
goals of the autonomous units in the community. Typical examples are the goals
admitting only graphs that satisfy the goals of one or all autonomous units in
the community.

Definition 3 (Community). A community COM is a triple (Goal , Init ,Aut),
where Goal , Init ∈ X are graph class expressions called the overall goal and the
initial environment specification, respectively, and Aut is a set of autonomous
units.

In a community all units work on the common environment in a self-controlled
way by applying their rules. The change relation integrated in the semantics of
autonomous units makes it possible to define a parallel semantics of a commu-
nity in which every autonomous unit may perform its transformation processes.
From the point of view of a single autonomous unit, the changes of the environ-
ment that are not caused by itself must be activities of the other units in the
community. This is reflected in the following definition.

Definition 4 (Change relation). Let COM = (Goal , Init ,Aut) be a commu-
nity. Then for each aut ∈ Aut the change relation Change(aut) w.r.t. aut is
given by the parallel rules composed of rules of the autonomous units in COM
other than aut as metarules, i.e. Change(aut) =

⋃

aut′∈Aut−{aut}
SEM ((Paut ′)∗).

Every transformation process of a community must start with a graph speci-
fied as an initial environment of the community. Moreover, it must be in the
parallel semantics of every autonomous unit participating in the community.
Analogously to successful transformation processes of autonomous units, a finite
transformation process of a community is successful if its last environment sat-
isfies the overall goal. Every infinite transformation process of a community is
successful if it meets infinitely many environments that satisfy the overall goal.

Definition 5 (Parallel community semantics)

1. Let COM = (Goal , Init ,Aut). Then the parallel community semantics of
COM consists of all finite or infinite sequences s = (G0, G1, . . .) ∈ SEQ(G)
such that G0 ∈ SEM (Init) and s ∈ PARChange(aut)(aut) for all aut ∈ Aut .

2. The sequence s is called a successful transformation process if s is finite and
G|s| ∈ SEM (Goal ) or there is an infinite monotone sequence i0 < i1 < · · ·
such that Gij ∈ SEM (Goal ) for all j ∈ N.

3. The parallel community semantics is denoted by PAR(COM ). Its elements
are called parallel processes of COM .
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As the definition of the community semantics shows, there is a strong connec-
tion between the semantics of a community COM = (Goal , Init ,Aut) and the
semantics of an autonomous unit aut ∈ Aut . The parallel semantics of COM is a
subset of the semantics of aut with respect to the change relation Change(aut).
Conversely, one may take the intersection of the parallel semantics of all au-
tonomous units with respect to their own change relation and restrict it to the
sequences starting in an initial environment. Then one gets the parallel seman-
tics of the community. This reflects the autonomy because no unit can be forced
to do anything that is not admitted by its own control.

Example
In following, we shortly illustrate how communities of autonomous units can be
used to find shortest paths by working in parallel. The presented community
CAU (spath) is a parallel variant of the famous shortest-path algorithm of Floyd
[18].

As initial environments CAU (spath) admits all directed edge-labeled graphs
so that every edge from v to v′ is labeled with a number representing the distance
from v to v′. The set of autonomous units of CAU (spath) consists of the two
units minimum and sum presented in Fig. 1 above.

The goal of the community CAU (spath) is twofold: (1) Whenever there is an
edge e and a path p from a node v to a node v′ the distance of e has to be
less or equal to the distance of p (i.e. the distances edges are the shortest). (2)
Whenever there is an edge from a node v to a node v′, there is a shortest path
from v to v′ in the initial environment with the same distance. (This guarantees
that the computed edges yield the distances of the shortest paths in the initial
graphs.)

The parallel semantics of CAU (spath) is equal to the parallel semantics of the
unit minimum if the change relation is given by all (parallel) transformations
of sum and if the transformation processes start with an initial environment of
CAU (spath). The analogous property holds for the unit sum. More formally,
let ID be the identity relation on environments. This relation does not allow
environment changes and can be realized with the null rule as the only meta rule.
For any set S ⊆ SEQ(G) let REL(S) consist of all pairs (G0, Gn) for which there
is a finite sequence (G0, . . . , Gn) ∈ S. Finally, for each autonomous unit aut let
SEM (aut) be the semantic relation obtained from all parallel transformations of
aut that obey the control condition, i.e. SEM (aut) = REL(PARID (aut)). Then

PAR(CAU (spath))= PARSEM (minimum)(sum)|SEM (InitCAU (spath))
= PARSEM (sum)(minimum)|SEM (InitCAU (spath)).

Moreover it can be shown that the community CAU (spath) works correctly.
This means that the parallel semantics of CAU (spath) contains only finite se-
quences (G0, . . . , Gn) such that for every two nodes v and v′ there is an edge e
with distance x in Gn from v to v′ if and only if the shortest path in G0 from
v to v′ has distance x (cf. [19] for a correctness proof concerning the sequential
variant of this algorithm).
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5 Petri Nets

The area of Petri nets (see, e.g., [4,5]) is established as one of the oldest, well-
known, and best studied frameworks in which parallelism is precisely introduced
and investigated. Hence it is meaningful to relate Petri nets with the parallel
semantics of communities of autonomous units and to shed some light on the sig-
nificance of the latter in this way. It turns out for instance that place/transition
nets, which are the most frequently used variants of Petri nets, can be seen as a
special case of communities of autonomous units where the transitions play the
role of the units.

A place/transition system S = (P, T, F, m0) consists of a set P of places, a set
T of transitions, a flow relation F ⊆ (P × T ) ∪ (T × P ), and an initial marking
m0 : P → N, i.e. m0 ∈ P∗. The sets P and T are assumed to be disjoint so that
N = (P ∪ T, F ) is a bipartite graph (with the projections as source and target
maps respectively).

The firing of enabled transitions transforms markings that are multisets of
places. This is formally defined as follows.

A multiset m ∈ P∗ is called a marking. A transition t ∈ T is enabled w.r.t.
m if •t ≤ m where •t : P → N describes the input places of t that flow into
t, i.e. •t(p) = 1 if (p, t) ∈ F and •t(p) = 0 otherwise. The order •t ≤ m is
defined place-wise, i.e. •t(p) ≤ m(p) for all p ∈ P or, in other words, m(p) �= 0
if (p, t) ∈ F . If t is enabled w.r.t. m, it can fire resulting in a marking which
is obtained by subtracting •t from m and by adding t• given by t•(p) = 1 if
(t, p) ∈ F and t•(p) = 0 otherwise. Such a firing is denoted by m [t〉m − •t +t•.
If one interprets m(p) as the number of tokens on the place p, then the firing of
t removes one token from each input place of t and puts a new token on each of
the output places of t.

Analogously, a multiset of transitions τ ∈ T∗ can be fired in parallel by sum-
ming up all input places and all output places:

m [τ〉 m − •τ +τ• provided that •τ ≤ m.

Here •τ and τ• are defined by •τ(p) =
∑

t∈T τ(t) ∗ •t(p) and τ•(p) =∑
t∈T τ(t) ∗ t•(p) for all p ∈ P, and the order •τ ≤ m is again place-wise defined,

i.e. •τ(p) ≤ m(p) for all p ∈ P .
Now one may consider the underlying net, which is the bipartite graph N,

together with a marking as an environment. This is represented by the mark-
ing because the net is kept invariant. The transitions can be seen as rules and
the firing of multisets of transitions as parallel rule application. As environment
class expressions, we need single markings describing themselves as initial mark-
ings and the constant all accepting all environments. The only control condition
needed is the constant free allowing a unit the free choice of rules. Then these
components form a graph transformation approach, and a place/transition sys-
tem S = (P, T, F, m0) can be translated into a community of autonomous units
CAU (S) = (all, m0, {aut(t) | t ∈ T }) with aut(t) = (all, {t}, free).
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A parallel process of CAU (S) is a sequence of markings m0m1 . . . such that for
each two successive markings mi and mi+1, there is a multiset τi+1 of transitions
that is enabled by mi and yields mi+1 if fired. Therefore one gets a firing sequence
m0 [τ1〉 m1 [τ2〉 . . .. Conversely, given such a firing sequence, one may remove
the firing symbols including the multisets of transitions and obtain a parallel
process of CAU (S) as parallel rule application coincides with firing of multisets
of transitions. This proves that the community of autonomous units CAU (S)
mimics the place/transition system S correctly. The following figure depicts the
relation.

P/T-2-CAU

firing deriver

adapter

S CAU (S)

=

The adapter transforms a firing sequence into a sequence of markings by
removing the firing symbol (including the fired multisets of transitions) between
each two successive markings.

6 Cellular Automata

Cellular automata (see, e.g., [20]) are well-known computational devices that
exhibit massive parallelism. A cellular automaton consists of a network of cells
each in a particular state. In a computational step, all cells change their states in
parallel depending on the states of their neighbours. To simplify technicalities,
one may assume that the neighbourhoods of all cells are regular meaning that
they have the same number of neighbours and that the state transition of all
cells is based on the same finite-state automaton. This leads to the following
formal definition.

A cellular automaton is a system CA = (G, A, init) where

– G = (V, E, s, t, l) is a regular graph of type k subject to the condition: for
each v ∈ V, there is a sequence of edges e(v)1 · · · e(v)k with s(e(v)i) = v
and l(e(v)i) = i for all i = 1, . . . , k,

– A = (Q, Qk, d) is a finite-state automaton, i.e. Q is a finite set of states, Qk

is the input set and d ⊆ Q × Qk × Q is the state transition with k-tuples of
states as inputs, and

– init: V → Q is the initial configuration.

If the graph G is infinite, one assumes a sleeping state q0 ∈ Q in addition such
that d(q0, q

k
0 ) = {q0} and active(init) = {v ∈ V | init(v) �= q0} is finite.

The latter means that only a finite number of nodes is not sleeping initially
and that the sleeping state can only wake up if not all inputs are sleeping.
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The edge sequence e(v)1 · · · e(v)k yields the neighbours of v as targets, i.e.
t(e(v1)) · · · t(e(v)k)).

A configuration is a mapping con: V → Q that assigns each node (which rep-
resent cells) an actual state. Configurations can be updated by state transitions
of all actual states using the states of the neighbours as input.

Let con: V → Q be a configuration. Then con′: V → Q is a directly derived
configuration, denoted by con con′, if the following holds for every v ∈ V :

con′(v) ∈ d(con(v), con(t(e(v)1)) · · · con(t(e(v)k))).

The semantics of a cellular automaton CA is given by all configurations that can
be derived from the initial configuration:

L(CA) = {con | init ∗ con}

It is worth noting and easy to prove that all configurations derivable from the ini-
tial configuration have a finite number of nodes with non-sleeping states. Typical
examples of regular graphs underlying cellular automata are the following: The
set of nodes is the set of all points in the plane with integer coordinates, i.e. Z×Z.
Then there are various choices for the neighbourhood of a node (x, y) ∈ Z × Z.
that establish the set of edges with sources and targets. Typical ones are:

1. the four nearest nodes (to the north, east, south and west): (x, y + 1), (x +
1, y), (x, y − 1), (x − 1, y),

2. the eight nearest nodes: (x, y+1), (, x+1, y+1), (x+1, y), (x+1, y−1), (x, y−
1), (x − 1, y − 1), (x − 1, y), (x − 1, x + 1),

3. only the neighbours to the south and the west: (x, y − 1), (x − 1, y).

The edges connecting a node with a neighbour may be numbered in the given
order.

Cellular automata can be translated into communities of autonomous units
where each cell is transformed into a unit.

celaut-2-CAU
CA CAU (CA)

The environments are given by the configurations. To get a graph representation
of a configuration con, the underlying regular graph G is extended by a loop at
each node v which is labeled with con(v), i.e. (G, con) = (V, E + V, s, t, l), such
that G is a subgraph and s(v) = t(v) = v and l(v) = con(v) for all v ∈ V ⊆ E+V.

The community of autonomous units CAU (CA) associated with a cellular
automaton CA = (G, A, init) gets (G, init) as initial environment and an au-
tonomous unit aut(v) for each v ∈ V.
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Each of these units has the same rules with positive context which reflect the
state transition:

q

q1

q2

qk

1
2

k

⊇ q ⊇ ⊆ q′

provided that q′ ∈ d(q, q1, · · · , qk) and not all the states q, q1, . . . , qk are sleeping.
Moreover each unit aut(v) has got a control condition requiring that the central
node must be mapped to v. This means that the matching of the left-hand side
of each rule is fixed and no search for it is needed. Moreover, the matchings of
rules of different units are not overlapping so that the rules can be applied in
parallel. If a node is sleeping and all its neighbours are sleeping too, then no
rule can be applied. A parallel rule is maximal if all other nodes are matched.
According to this construction, the application of such a maximal parallel rule to
the environment (G, con) yields an environment (G, con′) such that con con′.
This means that the application of a maximal parallel rule corresponds exactly
to a derivation step on the respective configurations.

In other words, the semantics of a cellular automaton CA and the parallel
semantics PAR(CAU (CA)) of the community of autonomous units CAU (CA)
are nicely related to each other if one applies maximal parallel rules only. Let
L(PAR(CAU (CA))) be the set of configurations con such that a parallel process
(G, init) · · · (G, con) ∈ PAR(CAU (CA)) exists. Then L(PAR(CAU (CA)))
equals L(CA). This correctness result is depicted by the following figure.

celaut-2-CAU

generator deriver

squeezer
L(CA) = L(PAR(CAU (CA)))

CA CAU (CA)

PAR(CAU (CA))

A finite-state automaton fitting the third neighbourhood is

SIER = ({b, w}, {b, w}2, d)

with d(b, x, y) = b for all x, y ∈ {b, w}, d(w, b, w) = d(w, w, b) = b, and d(w, b, b)
= d(w, w, w) = w. The state w is sleeping.

The initial configuration may map the node (0, 0) to b and all others to w.
There is a very nice pictorial interpretation of this cellular automaton. Each

node (x, y) is represented by the square spanned by the points (x, y), (x, y +
1), (x + 1, y + 1), (x + 1, y). If a configuration con assigns b to (x, y), the square
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gets the color black and white otherwise. The initial configuration consists of a
single black square. Because the automaton is deterministic, there is exactly one
derivation for each length, where the shorter derivations are initial sections of
the longer ones. The first five steps are

After 15 steps the picture looks as follows:

And all derived configurations can be seen as approximations of the Sierpinski
triangle, a famous fractal. (see, e.g., [21]).

7 Multiagent Systems

Multiagent systems are modelling and programming devices well-known in arti-
ficial intelligence (see, e.g., Wooldridge et al. [6]). A multiagent system provides
a set of agents and an initial environment state. Starting at this state, the agents
change environment states step by step where they act together in parallel in
each step. Each agent can perceive the current environment state at least partly.
Based on this perception and its own intention, the agent chooses an action to be
performed next. Therefore, a process in a multiagent system MAS is a sequence

es0 es1 es2 · · ·

of environment states esi for all i where es0 is initial. Each environment state
esi+1 is given by the state transition τ of MAS depending on the previous state
esi and the action act(ag)i chosen by every agent ag of MAS . The choice of
such an action is made according to the function doag each agent ag is pro-
vided with. The do-function yields an action depending on the agent’s percep-
tion perceiveag(esi) of the current state and the agent’s intention intendag. The
global state transition τ and the functions doag, perceiveag and intendag which
are individually assigned to each agent ag of MAS are assumed to satisfy some
consistency properties (cf. [6] for details). Altogether, multiagent systems form a
logical and axiomatic approach to model distributed information proccesses that
interact on common environment states. It should be noted that all functions of
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MAS are allowed to be nondeterministic so that chosen actions as well as the
next state may not be uniquely determined.

Communities of autonomous units are nicely related to multiagent systems as
may be not too surprising from the description above. Actually, a community
of autonomous units CAU = (Goal , Init ,Aut) turns out to be a particular rule-
based model of multiagent systems. The environment states are the environment
graphs. The agents are the units. The initial graphs are explicitly given. The
rules – or the parallel rules likewise – of a unit are the actions of the agent
embodied by the unit. The control condition plays the role of the do-function
because it identifies the rules that are allowed to be applied next. As the control
condition can take into account the current environment graph, the perception
of the agent is also reflected. The most important aspect of the correspondence
between agents and units is the transition function that is made operational by
means of parallel rule application. The parallel rule to be applied in each step is
just the sum of all rules chosen by the various units according to their control. If
one considers the parallel rules of a unit as actions, the parallel processes of the
community and the processes of the corresponding multiagent system coincide.
If only the rules are actions, the multiagent system is not parallel with respect
to single agents. That all agents must act in parallel in each step is a minor
difference to community processes because a multiagent system may provide
void actions without effect to the environment.

The relation between communities of autonomous units and multiagent sys-
tems is only sketched because a full formal treatment is beyond the scope of
the paper. But even on this informal level, it should be clear that both con-
cepts fit nicely together and may profit from each other. Communities of au-
tonomous units represent explicit models of multiagent systems on one abstract,
implementation-independent level with a precise, rule-based operational seman-
tics. The perceive-do mechanism of multiagent systems to choose next actions
provides a wealthy supply of control conditions that can be employed in modeling
by means of autonomous units.

8 Conclusion

In this paper, we have supplemented the sequential-process semantics of au-
tonomous units in [1] by a parallel-process semantics which allows the units
of a community to act and interact simultaneously in a common environment.
Moreover, we have studied the relationship of autonomous units to three other
modeling frameworks that provide notions of parallelism: Petri nets, cellular au-
tomata, and multiagent systems. While the first two have been correctly trans-
formed into autonomous units, autonomous units have turned out to be models
of multiagent systems in that the environments are instantiated as graphs, the
actions of agents as rules, and the environment transformation as parallel rule
application. This is the very first step of the investigation of autonomous units
in a parallel setting. The future study may include the following topics:
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1. The interplay of different autonomous units in a community should be fur-
ther investigated on a theoretical as well as on a case-study based level. In
particular, it would be interesting to check under which conditions the result
concerning the semantics of the units sum and minimum in the example of
Section 4 can be generalized to arbitrary communities with more than two
units.

2. Besides Petri nets, the theory of concurrency offers a wide spectrum of no-
tions of processes like communicating sequential processes, calculus of com-
municating systems, traces, and bigraphs. A detailed comparison of them
with autonomous units can lead to interesting insights.

3. The basic idea of autonomous units is that each of them decides for itself
which rule is to be applied next. They are independent of each other and the
parts of the environment graphs where their rules apply may be far away
from each other. Hence a sequential behaviour of the community (like in
many card and board games) will be rarely adequate. But also the parallel
behaviour does not always reflect the actual situations to be modeled because
a parallel step provides a graph before and a graph after the step whereas
there may be activities of units that cannot be related to each other with
respect to time. A proper concurrent semantics of autonomous units may fix
this problem.

4. In all explicit examples, we have made use of the fact that independent rule
applications can be applied in parallel. This holds in the DPO approach (as
well as in the SPO approach) together with several other properties and con-
structions that relate parallel and sequential processes yielding true concur-
rency for example. It seems to be meaningful to extend these considerations
to the framework of autonomous units.
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Abstract. We connect the algebraic specification language Casl with
a variety of automated first-order provers. The heart of this connection
is an institution comorphism from Casl to SoftFOL (softly typed first-
order logic); the latter is then translated to the provers’ input syntaxes.
We also describe a GUI integrating the translations and the provers
into the Heterogeneous Tool Set. We report on experiences with provers,
which led to fine-tuning of the translations. This framework can also be
used for checking consistency of specifications.

1 Introduction

The Common Algebraic Specification Language (Casl) [3,5] is a modern stan-
dard for axiomatic specification using first-order logic and datatypes. During
the development of Casl specifications, it is crucial to have good proof sup-
port – be it for proving intended consequences of specifications, or checking their
consistency.

So far, only interactive provers like Isabelle [12] have been connected to Casl.
This paper describes reasoning support for Casl with automated first-order logic
theorem proving (ATP) systems made available through the Heterogeneous Tool
Set (Hets) [11]. Although ATP systems do not provide reasoning support for
all features of Casl, they can take us surprisingly far.

The ATP reasoning support for Casl described in this paper is based on softly
typed first-order logic (SoftFOL) which is presented as an institution. Further-
more, a coding of a sublogic of Casl into SoftFOL is formalized as an institution
comorphism. Two different syntactical representations (DFG and TPTP) of Soft-
FOL allow the connection of Spass [15] and MathServe [16] with Hets. While
Spass is an ATP system by itself, MathServe offers reasoning support for differ-
ent ATP systems as web services and a broker service, which chooses a suitable
ATP system after classification of the problem. Furthermore, the integration
of reasoning support into Hets is presented together with a description of the
graphical user interface (GUI) used to control the ATP. Finally, we summarize
optimisations of the coding implemented in Hets.
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2 Institutions and Their Comorphisms

The use of automated first-order provers for Casl requires translations to be set
up between the Casl logic and the provers’ logics. We formalize these transla-
tions as institution comorphisms. Institutions were introduced by Goguen and
Burstall [7] to capture the notion of logical system and abstract away from the
details of signatures, sentences, models and satisfaction.

Let CAT be the category of categories and functors.1

Definition 1. An institution I = (Sign,Sen,Mod, |=) consists of

– a category Sign of signatures,
– a functor Sen:Sign −→ Set giving, for each signature Σ, the set of sen-

tences Sen(Σ), and for each signature morphism σ: Σ −→Σ′, the sentence
translation map Sen(σ):Sen(Σ) −→ Sen(Σ′), where often Sen(σ)(ϕ) is
written as σ(ϕ),

– a functor Mod:Signop −→CAT giving, for each signature Σ, the category of
models Mod(Σ), and for each signature morphism σ: Σ −→Σ′, the reduct
functor Mod(σ):Mod(Σ′)−→Mod(Σ), where often Mod(σ)(M ′) is writ-
ten as M ′|σ,

– a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|,

such that for each σ: Σ −→Σ′ in Sign the following satisfaction condition holds:

M ′ |=Σ′ σ(ϕ) ⇔ M ′|σ |=Σ ϕ

for each M ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ), expressing that truth is invariant
under change of notation and enlargement of context. ��

A theory in an institution is a pair T = (Σ, Γ ) consisting of a signature Sign(T )
= Σ and a set of Σ-sentences Ax(T ) = Γ , the axioms of the theory. Theory
morphisms are signature morphisms that map axioms to logical consequences.

Institution comorphisms [6] allow the expression of the fact that one institu-
tion I is included or encoded into an institution J . Given institutions I and J ,
an institution comorphism ρ = (Φ, α, β): I −→J consists of

– a functor Φ:SignI −→SignJ ,
– a natural transformation α:SenI −→SenJ ◦ Φ,
– a natural transformation β:ModJ ◦ Φop −→ModI

such that the following satisfaction condition is satisfied for all Σ ∈ SignI ,
M ′ ∈ ModJ (Φ(Σ)) and ϕ ∈ SenI(Σ):

M ′ |=J
Φ(Σ) αΣ(ϕ) ⇔ βΣ(M ′) |=I

Σ ϕ.

In more detail, this means that each signature Σ ∈ SignI is translated to a
signature Φ(Σ) ∈ SignJ , and each signature morphism σ: Σ −→ Σ′ ∈ SignI is
1 Strictly speaking, CAT is not a category but only a so-called quasicategory, which

is a category that lives in a higher set-theoretic universe.
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translated to a signature morphism Φ(σ): Φ(Σ)−→Φ(Σ′) ∈ SignJ . Moreover, for
each signature Σ ∈ SignI , we have a sentence translation map αΣ :SenI(Σ)−→
SenJ(Φ(Σ)) and a model translation functor βΣ : ModJ (Φ(Σ)) −→ ModI(Σ).

A simple theoroidal comorphism is like a comorphism, except that the sig-
nature translation functor Φ ends in the category of theories over the target
institution.

3 The Casl Logic

Casl, the Common Algebraic Specification Language, has been designed by
CoFI, the international Common Framework Initiative for algebraic specifica-
tion and development [1], with the goal to subsume many previous algebraic
specification languages and to provide a standard language for the specification
and development of modular software systems. See the Casl user manual [3]
and reference manual [5] for further information.

Here, we concentrate on Casl basic specifications, designed for writing single
specification modules. Casl also provides constructs for structured and archi-
tectural specifications and specification libraries.

The logic of Casl basic specifications combines first-order logic and induc-
tion (the latter is expressed using so-called sort generation constraints, and is
needed for the specification of the usual inductive datatypes) with subsorts and
partial functions. The institution underlying Casl is introduced in two steps [5]:
first, we introduce many-sorted partial first-order logic with sort generation con-
straints and equality (PCFOL=), and then, subsorted partial first-order logic
with sort generation constraints and equality (SubPCFOL=) is described in
terms of PCFOL=.

3.1 Partial First-Order Logic

We now sketch the institution PCFOL= of many-sorted partial first-order logic
with sort generation constraints and equality. Full details can be found in [10,5].

A many-sorted Casl signature Σ = (S,TF ,PF , P ) consists of a set S of
sorts, two S∗ × S-indexed2 sets TF = (TFw,s) and PF = (PFw,s) of total and
partial operation symbols, and an S∗-indexed set P = (Pw) of predicate symbols.
Function and predicate symbols are written f : s̄ → t and p : s̄, respectively,
where t is a sort and s̄ is a list s1 . . . sn of sorts, thus determining their name
and profile. Symbols with identical names are said to be overloaded ; they may be
referred to by just their names in Casl specifications, but are always qualified
by profiles in fully statically analysed sentences. Signature morphisms map the
sorts and the function and predicate symbols in a compatible way, such that the
totality of function symbols is preserved.

Models are many-sorted partial first order structures, interpreting sorts as
carrier sets, total (partial) function symbols as total (partial) functions and pred-
icate symbols as relations. Homomorphisms between such models are so-called
2 S∗ is the set of strings over S.
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weak homomorphisms. That is, they are total as functions, and they preserve
(but not necessarily reflect) the definedness of partial functions and the satisfac-
tion of predicates.

Concerning reducts, if σ: Σ1 −→Σ2 is a signature morphism and M is a Σ2-
model, then M |σ is the Σ1-model which interprets a symbol by first translating
it along σ and then taking M ’s interpretation of the translated symbol. Reducts
of homomorphisms are defined similarly.

Given a many-sorted signature Σ = (S,TF ,PF , P ) and a pairwise disjoint
S-indexed set of variables X , the set TΣ(X) of terms over Σ and X is defined
inductively as usual, using variables and operation symbols. Concerning the
semantic interpretation of terms in a model, variable assignments are total, but
the value of a term w.r.t. a variable assignment may be undefined, due to the
application of a partial function during the evaluation of the term. Undefinedness
propagates from subterms to superterms.

Sentences are built from atomic sentences using the usual features of first
order logic. Given Σ and X , the set AFΣ(X) of many-sorted atomic Σ-formulas
with variables in X contains:

1. pw(t1, . . . , tn), for ti ∈ TΣ(X)si
, p ∈ Pw, w = s1 . . . sn ∈ S∗,

2. t
e= t′, for t, t′ ∈ TΣ(X)s, s ∈ S (existential equations),

3. t = t′, for t, t′ ∈ TΣ(X)s, s ∈ S (strong equations),
4. def t, for t ∈ TΣ(X)s, s ∈ S (definedness assertions).

A definedness assertion holds w.r.t. a given valuation in a model if the term
is defined under that valuation. A strong equation holds if its two sides are
both defined or both undefined under the valuation, and in case of definedness,
they are interpreted equally. An existence equation holds if both sides are defined
and interpreted equally. A predicate application holds if all the terms are defined
under the given valuation, and the resulting tuple of model elements is in the
corresponding predicate. In this way, we retain the simplicity of a two-valued
logic.

The satisfaction of compound formulas, built from atomic formulas using log-
ical connectives and quantifiers, is defined as usual in first-order logic.

There is an additional type of sentence that goes beyond first-order logic: a
sort generation constraint states that a given set of sorts is generated by a given
set of functions, i.e. that all the values of the generated sorts are reachable by
some term in the function symbols, possibly containing variables of other sorts.

Formally, a sort generation constraint over a signature Σ is a triple (S′, F ′, θ),
where θ: Σ̄ −→Σ, Σ̄ = (S̄, T̄F , P̄F , P̄ ), S′ ⊆ S̄ and F ′ ⊆ ¯TF ∪ P̄F .

A Σ-constraint (S′, F ′, θ) is satisfied in a Σ-model M if the carriers of M |θ
of the sorts in S′ are generated by the function symbols in F ′, i.e. for every sort
s ∈ S′ and every value a ∈ (M |θ)s, there is a Σ̄-term t containing only function
symbols from F ′ and variables of sorts not in S′ such that ν#(t) = a for some
assignment ν into M |θ.

Translation of a sentence along a signature morphism just replaces all the sym-
bols in the sentence according to the signature morphism; this (together with
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the reducts) fulfills the satisfaction condition [10]. Sort generation constraints
cannot be translated in this way; instead, the extra signature morphism compo-
nent is used: The translation of a constraint (S′, F ′, θ) along σ is (S′, F ′, σ ◦ θ).
This obviously leads to fulfillment of the satisfaction condition.

This completes the definition of the institution PCFOL=.
Casl additionally has unique existential quantification and a conditional term

construct. These are coded out; see Sect. 7 for details.

3.2 Subsorted Partial First-Order Logic

Subsorted partial first-order logic is defined in terms of partial first-order logic.
The basic idea is to reduce subsorting to injections between sorts. While in the
subsorted institution, these injections have to occur explicitly in the sentences,
in the Casl language, they may be left implicit. Apart from the injections, one
also has partial projection functions (one-sided inverses of the injections) and
membership predicates.

The institution SubPCFOL= is defined as follows, extending the notion of
order-sorted signatures as given by Goguen and Meseguer [8].

A subsorted signature Σ = (S,TF ,PF , P, ≤S) consists of a many-sorted sig-
nature (S,TF ,PF , P ) together with a reflexive transitive subsort relation ≤S

on the set S of sorts.
For a subsorted signature, Σ = (S,TF ,PF , P, ≤S), we define overloading

relations (also called monotonicity orderings), ∼F and ∼P , for function and
predicate symbols, respectively:

Let f : w1 −→ s1, f : w2 −→ s2 ∈ TF ∪ PF , then

f : w1 −→ s1 ∼F f : w2 −→ s2

iff there exist w ∈ S∗ with w ≤ w1 and w ≤ w2 and s ∈ S with s1 ≤ s and
s2 ≤ s. Let p : w1, p : w2 ∈ P , then p : w1 ∼P p : w2 iff there exists w ∈ S∗

with w ≤ w1 and w ≤ w2.
A signature morphism σ : Σ → Σ′ is a many-sorted signature morphism that

preserves the subsort relation and the overloading relations.
With each subsorted signature Σ = (S,TF ,PF , P, ≤S) we associate a many-

sorted signature Σ̂, which is the extension of the underlying many-sorted signa-
ture (S,TF ,PF , P ) with new symbols,

– a total injection function symbol inj : s → s′, for each pair of sorts s ≤S s′,
– a partial projection function symbol pr : s′ →? s, for each pair of sorts

s ≤S s′, and
– a unary membership predicate symbol ∈s: s′, for each pair of sorts s ≤S s′.

Subsorted Σ-models are ordinary many-sorted Σ̂-models satisfying the fol-
lowing properties (which can be formalized as a set of conditional axioms):

– Embedding operations are total and injective; projection operations are par-
tial, and injective when defined.
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– The embedding of a sort into itself is the identity function.
– All compositions of embedding operations between the same two sorts are

equal functions.
– Embedding followed by projection is the identity function; projection fol-

lowed by embedding is included in the identity function.
– Membership in a subsort holds just when the projection to the subsort is

defined.
– Embedding is compatible with those operations and predicates that are in

the overloading relations.

Signature morphisms, homomorphisms, reducts, sentences, sentence trans-
lation and satisfaction are simply inherited via the translation Σ �→ Σ̂ from
PCFOL=.

This completes the definition of the institution SubPCFOL=.
Every Casl basic specification SP generates, along with its SubPCFOL=-

signature Σ, a set Γ of Σ-sentences; together, these determine the theory (Σ, Γ )
generated by SP . Note that Γ contains not only explicitly stated sentences, but
also sentences that are generated e.g. by Casl’s powerful datatype constructs
(see below), such as the statement that selectors are one-sided inverses of their
constructor. See [5] for further details.

3.3 Derived Casl Sublogics

Let SubCFOL= be the restriction of SubPCFOL= to signatures without par-
tial functions symbols, and SulPCFOL= be the restriction of SubPCFOL= to
signatures with a locally filtered subsort relation. Furthermore, SulCFOL= is
the similar restriction of SubCFOL=. Recall that a pre-order is locally filtered,
if each connected pair has an upper bound.

4 Spass, MathServe and SoftFOL

This section introduces the ATP system Spass and the MathServe-system. The
latter provides web services for different FOL ATP systems, as well as a broker
for FOL ATP web services. The following part of this section introduces the logic
SoftFOL which provides softly typed FOL, while the last two parts introduce
the input languages of Spass and MathServe.

4.1 Spass

Spass [15] is a saturation based automated theorem prover and supports full
sorted first-order logic with equality. It has been developed as an open source
tool (GPL) since 1991 at the Max Planck Institut Informatik in Saarbrücken,
Germany by Christoph Weidenbach, Thomas Hillenbrand, Dalibor Topić et al.

The reasoning methods utilized by Spass include the following:

– superposition calculus,
– specific inference/reduction rules for sorts,
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– splitting rules for explicit case analysis,
– sophisticated clause normal form (CNF) translation.

4.2 MathServe

The MathServe system has been developed by Jürgen Zimmer as open source
software (GPL) and provides web services for ATP [16]. MathServe uses state-of-
the-art Semantic Web technologies for describing the input, output and effects of
the provided reasoning web services. It uses standardised protocols and formats
to communicate with client software systems such as HTTP, SOAP and XML.

Table 1. ATP systems provided as web services by MathServe

ATP System Version Suitable Problem Classesa

DCTP 10.21p effectively propositional
EP 0.91 effectively propositional; real first-order, no equal-

ity; real first-order, equality;
Otter 3.3 real first-order, no equality;
Spass 2.2 effectively propositional; real first-order, no equal-

ity; real first-order, equality
Vampire 8.0 effectively propositional; pure equality, equality

clauses contain non-unit equality clauses; real
first-order, no equality, non-Horn;

Waldmeister 704 pure equality, equality clauses are unit equality
clauses

a The list of problem classes for each ATP system is not exhaustive,
but only the most appropriate problem classes are named according
to benchmark tests made with MathServe by Jürgen Zimmer.

The reasoners provided by MathServe (version 0.81) as web services are sum-
marized in Table 1 (see [14] for further details – all listed ATP systems partici-
pated in the competition CASC-20). Additionally, a broker service is provided by
MathServe which classifies a given reasoning problem given in FOL with equality
and calls the most appropriate reasoning service.

4.3 SoftFOL

We now capture the logic underlying the Spass theorem prover. The institution
SoftFOL 3 (softly typed first order logic) is a softly (i.e. semantically) typed vari-
ant of unsorted (i.e. single-sorted) first-order logic. In the signatures, it provides
sorts, predicates and total functions. Each predicate and function symbol may
optionally have a type profile in terms of the sorts. Overloading of predicates
3 SoftFOL it similar to membership equational logic [9], but provides only one (im-

plicit) kind and has operation symbols as part of the signatures, instead of coding
them as axioms.
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and functions is only allowed if the kind of symbol (predicate or function) and
the arities are the same. Subsorting is available as in Casl except that only a
locally filtered subsort relation is allowed. Signature morphisms are similar to
those of Casl; they have to preserve the typing, if present.

SoftFOL models have only one carrier set. Sorts are interpreted as subsets of
the carrier. Subsorts must lead to subset inclusions. Each operation or predicate
symbol is interpreted as one operation or predicate over the whole carrier. Each
typing of an operation leads to the restriction that the operation takes arguments
from the subsets as determined by the typing to results as determined by typing.

Sentences in SoftFOL are closed untyped FOL sentences, and hence applica-
tions of predicates and functions are not qualified with types and a type-correct
usage of predicates and functions is not statically checked. (Only an invoked ATP
may find incorrect applications to be inconsistent.) Variables may be typed (as
operations may be), but again the typing information is not used for sentence
formation. Sentences may also involve sort membership tests (as in Casl). Sat-
isfaction is mostly as in untyped first-order logic – only the typing of variables
leads to a restriction of their possible valuations. Sort generation constraints are
available as sentences as in Casl, and their satisfaction is also inherited from
Casl (note that this, unlike the case in the rest of SoftFOL, involves correctly
strongly typed terms only!).

4.4 DFG Syntax

The input language of Spass is called DFG and is a notation for SoftFOL.
The DFG format distinguishes three relevant sections of a problem: (1) a list of
symbols; (2) a list of declarations; and (3) two lists of formulas for axioms and
conjectures. In the list of symbols the arities for functions and predicates are
declared and the symbols for sorts are fixed. The list of declarations is a special
form of axioms dealing with information about subsorting and (free) generated-
ness of sorts and the types of predicates and functions. Internally subsort and
function type declarations are treated as axioms by Spass and the other decla-
rations are used for the Knuth-Bendix ordering of symbols. The lists of formulas
allow for the typing of variables with sort predicates at the quantification level,
but internally the typing of variables is treated as the antecedent of an implica-
tion where the quantified formula is the consequent. A symbol declared as sort,
predicate or function cannot be used as a variable symbol. The DFG language
has a built-in special predicate for equality.

4.5 TPTP Syntax

The TPTP (Thousands of Problems for Theorem Provers) language was in-
vented as a uniform exchange language for ATP systems and is used for the
TPTP library of logical problems [13]. This library forms the basis for the annual
CADE ATP System Competition (CASC) [14] at the Conference on Automated
Deduction (CADE). It is also used as the input language for the MathServe
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web-services (Sect. 4.2). The TPTP format provides only untyped FOL with
an equality predicate. So, there are no constructs for the declaration or typing
of symbols. A TPTP problem consists simply of a list of labeled axioms and
conjectures.

5 Coding of Logics

The process of coding Casl into the input languages of Spass and MathServe
is performed in three steps, where the first step may be omitted if the Casl
theory has no partial functions:

1. Coding of SulPCFOL= into SulCFOL=, using a comorphism,
2. Coding of SulCFOL= into SoftFOL, using a comorphism,
3. Coding of SoftFOL into DFG or TPTP, using a syntax translation.

The first translation has been described as translation (5a′) in [10], modulo the
– here inessential – Sub versus Sul. Note that this translation totalizes not only
the user-declared partial function, but also uses of partial projection symbols
(for the latter, total projection symbols are introduced). The second translation
will be detailed below. The translations in the third item are not described as
comorphisms, because the logic remains essentially the same and only the syntax
changes, while usually a theory (with proof goals) is translated as a whole.

SoftFOL

DFG TPTP

SulPCFOL=

SulCFOL=

Casl

Fig. 1. Relation of the logics and translations

Figure 1 shows the codings as arrows and the logics and syntax formats used
for automated theorem proving. The rest of this section covers the second and
third step of the list shown above.
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5.1 Coding Casl into SoftFOL

We now describe a simple theoroidal institution comorphism from SulCFOL=

to SoftFOL.

Signatures. Casl signatures are mapped to SoftFOL signatures where each Casl
symbol is qualified with its kind (sort, pred, op) and its arity, e.g. sort s becomes
sort s and operation f : s ∗ s → r becomes op f 2. The subsorting relation is
kept, but for each subsorting relation s < t, an operation op inj: s−→t is added
(for potential use in sort generation constraints), axiomatized to be the identity

∀x :s . op inj(x) = x

For each sort in the Casl signature an axiom is generated stating that the sort
is not empty.

Models. SoftFOLmodels haveonly one carrier set. In order to obtainaCaslmodel,
subsets of this carrier set (according to the interpretation of sorts in SoftFOL) are
takenas carrier sets of aCaslmodel. SinceCasloperations are translated to typed
operations in SoftFOL, their restrictions are well-defined total operations on the
subsets corresponding to the carriers of the Casl model. Subsort injections are in-
terpreted as identities and membership as subset membership. This automatically
ensures that the subsorting axioms (see Sect. 3.2) hold.

Sentences. Sentences are translated by erasing all subsorting injection opera-
tions; only in sort generation constraints are injections kept (therefore, we needed
to introduce special injections into the signatures above).

Satisfaction. The satisfaction condition is clear from the fact that erasing all sub-
sorting injection operations in the sentences corresponds to interpreting them as
identities. Note that while SoftFOL-sentences may be ill-typed, all sentences in
the image of the translation (and therefore all sentences relevant for the satis-
faction condition) are well-typed.

Proposition 2. For finite signatures, the model translation components of the
comorphism from SulCFOL= to SoftFOL are surjective.

Proof. Since we have restricted ourselves to SulCFOL=, in a finite signature,
each connected component of the subsort graph has a top element. A Casl
model can be turned into a SoftFOL model as follows: take the disjoint union
of all carriers of top sorts to be the carrier of the SoftFOL model. Predicates
of same name and arity of the Casl model are united into a single predicate
in the SoftFOL model. Similarly with operations, where operations need to be
extended to the whole carrier of the SoftFOL model in an arbitrary way. ��

Corollary 3. We can use the borrowing technique along the comorphism from
Casl to SoftFOL. That is, Casl proof goals can be translated to SoftFOL proof
goals in a sound and complete way.
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Proof. We assume that proof goals live over finite signatures and hence can apply
Prop. 2. It is well known (see e.g. [4]) that surjectivity of the model translation
leads to the property

Γ |=Σ ϕ iff Ax(Φ(Σ)) ∪ αΣ [Γ ] |=Sign(Φ(Σ)) αΣ(ϕ).
��

5.2 Generating DFG Format from SoftFOL

A SoftFOL theory is transformed into a list of symbols, a list of declarations, and
a list of axioms. The symbol list distinguishes sorts, predicates and functions and
each predicate and function symbol is paired with its arity. Each subsort relation
is transformed into a subsort declaration. The profiles of predicates and functions
are also transformed into corresponding declarations. The sort generation axioms
are turned into declarations of generated sorts (and to free generatedness, if the
corresponding axioms are present). Note that declarations are treated by Spass
as special sentences.

5.3 Generating TPTP Format from SoftFOL

Since the TPTP language has no notion of a signature, only type information
given in the signature is taken into account. A SoftFOL theory is transformed
into a list of sentences named declarationX where X is a natural number. Each
subsort relation and each function type is turned into a corresponding impli-
cation treating sorts as unary predicates. Typing information of predicates is
not used. Concerning sentences, each variable list in a quantification that has
type information is turned into an antecedent of an implication with the original
quantified formula as consequent. The sorts are used like unary predicates. All
other sentence constructs in SoftFOL have corresponding constructs in TPTP.

Development Graph  Automatic Structural Proof

Goal Inspection

 Invoked at grey nodes

Proof Details

Opened for
selected goals

ATP Interface

Invoked for selected
goals and prover

By Closing the window
 proof results are integrated

Fig. 2. Proof work-flow used for ATP proofs in Hets
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6 Integration of ATP Reasoning into Hets

The logics and comorphisms described in the previous sections are integrated
into the Heterogeneous Tool Set Hets, which already offers static analysis of
Casl specifications and libraries and an automatic proof system at the struc-
turing level of Casl. The Graphical User Interface (GUI) initially presents an
analyzed and structurally proved development graph and offers to open the Goal
Inspection GUI for the selection of goals and theorem provers at nodes with proof
obligations, which are colored grey (see Fig. 2 for the proof work-flow and see
Fig. 3 for a development graph).

Relation

IrreflexiveRelation AsymmetricRelation

TransitiveRelation

BooleanAlgebra

StrictOrder

Fig. 3. Extract of the RelationsAndOrders development graph

Figure 4 shows the interface for inspecting goals and discharging goals to
different provers. The list on the left shows all goal names prefixed with the
proof status in square brackets (see Tab. 2).

The two lists at the bottom of the window allow the detailed selection of
axioms and proved theorems of this theory (see Sect. 7). By pressing the ‘Prove’
button the ATP interface of the selected prover is opened with the selected goals.
The shortest (composed) comorphism is used for the translation into a prover

Table 2. Possible proof statuses

[+] proved goal
[-] disproved goal
[×] proved goal revealing an inconsistent theory
[ ] open goal
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Fig. 4. Hets Goal Inspection Interface

supported logic. The button ‘More fine grained selection...’ allows the user to
pick a (composed) comorphism in a separate window from where the prover
interface is launched.

Currently the ATP systems Spass and Vampire are connected to Hets and
the MathServe broker, which classifies the theory and chooses a suitable ATP
system for the proof attempt. The ATP interface for SoftFOL based provers is
implemented generically, such that each interface has the same layout. Figure 5
shows a screen shot of the ATP interface instantiated for Spass. The Vampire
interface looks the same except for the window title and the broker interface has
no extra options fields.

The ATP interface offers functions to call and inspect the selected goal in the
upper part and the indicators in the goal list are the same as in the goal inspec-
tion interface (see Tab. 2). The batch mode tries to prove each open goal without
interaction. The details shown for each goal in the ATP interface are specific to
the different provers, while the proof tree integrated into the development graph
is always in the TSTP format which is the unified TPTP solution format.

After closing the ATP interface the goal inspection interface (see Fig. 4) gets
the proof results and offers a unified view at the structural level. Figure 6 shows
the proof details for some goal proved with Spass where the tactic script and the
proof tree are hidden initially and the underlined labels are used to toggle the
information hiding. The (composed) comorphism used for the translation into
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Fig. 5. ATP Interface of the Spass prover

SoftFOL is shown as well. This example is taken from the specification Stric-
tOrder in the library Basic/RelationsAndOrders.

6.1 Connection of the ATPs

While Spass is supposed to be installed and run locally with Hets on the same
computer, MathServe is running on a dedicated central server which offers its
reasoning services through HTTP and SOAP. The communication with Spass is
done via a standard Unix pipe and for MathServe all encoding, communication,
and parsing of XML, SOAP, and HTTP is done through the Hets binary.

asym
Com: SuleCFOL2SoftFOL : CASL -> SoftFOL

Status: Proved
Used axioms: "irrefl", "trans"
Prover: SPASS
Tactic script
Time limit: 20
Extra options: ["-DocProof"]

Proof tree

Fig. 6. Proof details for goal asym
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6.2 Consistency Checking with Spass

Because Spass can also disprove theorems, a consistency checker based on Spass
seemed appropriate. Because consistency checking of large libraries is time-
consuming and hence more suitable for batch processing, we did not integrate it
into the GUI of Hets. Instead, consistency checking is invoked outside of Hets
after generating DFG problem files for each Casl specification in a library with
logical atom false as conjecture. Each of these files is run through Spass with
time limit t (initially, t is 500 seconds). If Spass finds a proof for false from the
current theory it is inconsistent. If false is disproved Spass has found a comple-
tion for the current theory and it is logged as consistent. But, often the time
limit is exceeded, because the search space for the given theory is too large. In
this case, the theory is t-consistent.

We have taken Casl specifications from the repository available under www.
cofi.info/Libraries and tested their 500-second-consistency. Actually, this al-
ready revealed a number of inconsistencies. Passing to 1500-second-consistency
increased the number of inconsistencies, while at 5000 seconds, a kind of satu-
ration could be observed. Inconsistencies have been caused by

– missing definedness conditions when using partial functions within axioms,
that is, formulas of the shape

∀x : s . f(x) = t,

which force f to be total. The correct form is

∀x : s . def x ⇒ f(x) = t

– missing side-conditions ensuring the well-definedness of operations on non-
freely generated datatypes (such as sets), that is, formulas like

leftSummand(x ∪ y) = x

– erroneously declaring a partial function as total,
– oversight of Casl’s non-empty carrier assumption when defining subsorts,

that is, declarations of form

sort s = {x : s′ • ϕ(x)}

with the possibility that there is no x with ϕ(x) in some circumstances.

It should be noted that consistency checking with Spass only concerns the first-
order fragment of Casl specifications. That is, even when Spass proves a theory
to be consistent, using saturation, there can still be inconsistencies due to the
presence of sort generation constraints.

6.3 Induction

Spass uses sort generation constraints only for obtaining efficient rewriting
strategies, and the other provers do not use these at all. That is, all provers
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that we have considered in this work are pure first-order provers. Still, we have
realised a strategy how to perform induction proofs using first order provers:
Along with the first-order goals sent to the prover, Hets takes the induction
principles corresponding to sort generation constraints and instantiates them
for the given proof goals. This already has been used for proving a number of
theorems about inductive datatypes. Of course, with this method, one cannot
expect the prover to find intermediate lemmas and prove them with induction –
rather, the user has to provide the lemmas as proof goals along with the spec-
ification. Still, the method has turned out to be quite efficient: the fact that
reverse(reverse(L)) = L for any list L has been proved with just one lemma,
which is much less than in the standard proof in Isabelle.

For induction proofs, it is crucial to carefully select the axioms that are fed
into the first-order prover, otherwise it is very easy to run into a time-out (see
also the next sections).

7 Used Optimisations

This section discusses some optimisations that we have implemented for the
comorphism SulCFOL= to SoftFOL and the encodings into the DFG and TPTP
syntaxes.

Most of the optimisations are needed to shorten the search space of the proof
and have been discussed with the developers of Spass: Christoph Weidenbach,
Thomas Hillenbrand, and Dalibor Topić. The central feature shortening the
search space is the selection of axioms and proved goals that are included in
the theory sent to the ATP system (see Fig. 4).

The more specialized optimizations are the following ones. Single sorted the-
ories are translated into untyped FOL theories, because the sort provides no
additional information in a single sorted theory; if the single sort is generated,
it is still kept in the theory. If a sort is generated by constant constructors only,
a sentence stating the exhaustive generation is introduced. Binary predicates
equivalent to the built-in equality predicate are removed from the signature; the
definitions of such binary predicates are removed from the sentences and the
application of such binary predicates is substituted with the built-in equality in
the other sentences. Unique existential quantification is coded out into a con-
junction of two formulas: (1) there exists an element that satisfies the quantified
formula and (2) all elements fulfilling the formula are equal to the element of the
first conjunct. The conditional term construct is coded out in a standard way as
a conjunction of two implications [5].

Before the DFG and TPTP format generation those signature elements, which
are not used in the axioms and conjecture sent to the ATP system, are removed,
except for sorts. This removes the declaration sentences of unused symbols from
the theories. Sentences related to the definedness encoding of partial functions
are not considered for finding used symbols. All sort injection functions, which
are not used as constructors for generated sorts, are removed from the SoftFOL
signature.
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8 Conclusion and Future Work

We have connected Spass and several other automated theorem provers to Casl.
This has been done via an institution comorphism to an intermediate logic Soft-
FOL (softly typed first logic). Both the comorphism and the prover interfaces are
integrated into the Heterogeneous Tool Set. The resulting tool has been used to
verify a number of properties of Casl specifications, in particular for the com-
plete verification of the composition table of the qualitative spatial calculi RCC5
and RCC8 based on Bennett’s first-order axiomatization of connectedness [2].
The latter verification goal involved 95 theorems and turned out to be much too
tedious to be carried out with the interactive prover Isabelle [12], which previ-
ously was the only prover for Casl available in a stage beyond initial prototypes.
With Spass, now a higher degree of automation is available.

The possibility of using the SoftFOL coding for checking consistency of Casl
specifications turned out to be extremely useful – several typical specification
errors could be found in a number of specifications. It is therefore advisable
to check specifications in this way before proceeding e.g. to further proofs or
refinements.

Actually, the Spass developers often have the opinion that certain specifi-
cation styles are just wrong, because they lead to theories that are difficult to
handle for Spass. We have answered this by implementing several optimiza-
tions according to feedback from the Spass developers about unsuccessful proof
attempts. We think that it is more the responsibility of tools to transform spec-
ifications that are“bad” for provers to “good” ones, and not the responsibility
of the specifier – especially since the latter has to consider other goals such as
clarity and validity of specifications.

To obtain further optimization, we have considered analyzing the Spass out-
put of unsuccessful proof attempts in order to obtain hints which axioms to
exclude from the next proof attempt because they lead the prover into infinite
loops. However, we think that such an analysis should be done by Spass itself,
since it can lead to a more fined grained penalty system that only gradually
removes axioms from the list of used input formulas. The Spass developers are
somewhat reluctant to follow this path, as they claim that it is difficult to design
general strategies detecting loops, and they point to the fact that the general
problem is undecidable. We nevertheless think that it is worth trying to obtain at
least some partial information along these lines and to use it for loop avoidance.

Currently, proofs are only inspected to obtain the list of used axioms, infor-
mation which is essential for efficient change management. A future extension
of the tool described here will translate the proof trees returned by the various
provers into a format that is more easily readable by the Casl specifier.
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11. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. Avail-
able at www.tzi.de/cofi/hets, University of Bremen.

12. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer Verlag; Berlin, 2002.

13. G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

14. G. Sutcliffe and C. Suttner. The State of CASC. AI Communications, 19(1):35–48,
2006.

15. C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and D. Topic.
SPASS version 2.0. In A. Voronkov, editor, Automated Deduction – CADE-18,
volume 2392 of LNCS, pages 275–279. Springer Verlag; Berlin, 2002.

16. J. Zimmer and S. Autexier. The MathServe System for Semantic Web Reasoning
Services. In U. Furbach and N. Shankar, editors, Proceedings of the third Inter-
national Joint Conference on Automated Reasoning, volume 4130 of LNCS, pages
140–144. Springer Verlag; Berlin, 2006.

www.cofi.info
www.tzi.de/cofi/hets


Structured CSP –

A Process Algebra as an Institution∗

Till Mossakowski1 and Markus Roggenbach2

1 DFKI Lab Bremen and University of Bremen, Germany
till@tzi.de

2 University of Wales Swansea, United Kingdom
M.Roggenbach@Swan.ac.uk

Abstract. We introduce two institutions for the process algebra Csp,
one for the traces model, and one for the stable failures model. The
construction is generic and should be easily instantiated with further
models. As a consequence, we can use structured specification constructs
like renaming, hiding and parameterisation (that have been introduced
over an arbitrary institution) also for Csp. With a small example we
demonstrate that structuring indeed makes sense for Csp.

1 Introduction

Among the various frameworks for the description and modelling of reactive
systems, process algebra plays a prominent role. Here, the process algebra Csp
[13, 18] has successfully been applied in various areas, ranging from train control
systems [7] over software for the international space station [6] to the verification
of security protocols [19].

In this paper we extend the process algebra Csp by a ’module concept’ that
allows us to build complex specifications out of simpler ones. To this end, we
re-use typical structuring mechanisms from algebraic specification as they are
realised, e.g., in the algebraic specification language Casl [8, 4]. This approach
leads to a new specification paradigm for reactive systems: our framework offers
also the loose specification of Csp processes, where the structured free con-
struct applied to a basic specification yields the usual fixed point construction
by Tarski’s theorem.

On the theoretical side our approach requires us to formulate the process
algebra Csp as an institution [12] — the latter notion captures the essence of a
logical system and allows for logic-independent structuring languages. We show
that various Csp models1 fit into this setting. The practical outcome is a flexible
module concept. We demonstrate through some examples that these structuring

∗ This work has been supported by EPSRC under the grant EP/D037212/1 and by
the German DFG under grant KR 1191/5-2.

1 i.e. the combination of process syntax, semantic domain, semantic clauses, and a
fixed-point theory in order to deal with recursion.
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mechanisms (e.g. extension, union, renaming, parametrisation) are suitable for
Csp. Furthermore, formulating a process algebra as an institution links two
hitherto unrelated worlds.

The paper is organised as follows: Sect. 2 discusses what a Csp signature
might be. Then we describe in a generic way how to build a Csp institution.
It turns out that many properties can already be proven in the generic setting.
Sections 4 and 5 instantiate the generic institution with the traces model and the
stable failures model, resp. Having now institutions available, we discuss how to
obtain the full range of structuring mechanisms in spite of the missing pushouts
of our signature category. In Sect. 7 we make structured specifications available
to Csp and illustrate this with a classical example of process algebra. Sect. 8
discusses some related work and concludes the paper.

2 What Is an Appropriate Notion of a Signature
Morphism?

When analysing Csp specifications, it becomes clear that there are two types
of symbols that change from specification to specification: communications and
process names. Pairs consisting of an alphabet A of communication symbols and
of process names N (together with some type information) will eventually be the
objects of our category CspSig of CSP signatures, see Sect 3.1 below. The notion
of a signature morphism, however, is not as easy to determine. An institution
captures how truth can be preserved under change of symbols. In this sense, we
want to come up with a notion of a signature morphism that is as liberal as
possible but still respects fundamental Csp properties. In this section we discuss
why this requires to restrict alphabet translations to injective functions.

The process algebra Csp itself offers an operator that changes the commu-
nications of a process P , namely functional renaming2 f [P ]. Here, f : A →? A
is a (partial) function such that dom(f ) includes all communications occurring
in P . The Csp literature, see e.g. [18], classifies functional renaming as follows:
(1) Functional renaming with an injective function f preserves all process prop-
erties. (2) Functional renaming with a non-injective function f is mainly used
for process abstraction. Non-injective renaming can introduce unbounded non-
determinism3, and thus change fundamental process properties.

As a process algebra, Csp exhibits a number of fundamental algebraic laws.
Among these the so-called step laws of Csp, take for example the following law
〈�-step〉,

2 Note that the so-called relational renaming, which is included in our Csp dialect,
subsumes functional renaming.

3 Take for example f [?n : N → (−n) → Skip] = 0 → � { (−n) → Skip | n ∈ N},
where f (z) = 0, if z ≥ 0, and f (z) = z , if z < 0. As functional renaming can be
expressed in terms of relational renaming, the process on the left-hand side is part
of our Csp dialect. The process on the right-hand side, however, does not belong to
our Csp dialect, as we restrict the internal choice operator to be binary only.
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(?x : A → P)�(?y : B → Q)
= ?x : A ∪ B → if x ∈ A ∩ B then (P �Q) else (if x ∈ A then P else Q)

are of a special significance: The step laws do not only hold in all the main
Csp models, including the traces model T , the failures/divergences model N ,
and the stable-failures model F . They are also essential for the definition of
complete axiomatic semantics for Csp, see [18, 14]. The Csp step laws show that
e.g. the behaviour of external choice �, alphabetised parallel |[X ]| and hiding \
crucially depends on the equality relation in the alphabet of communications.
We demonstrate this here for the external choice operator �:

– Assume a 	= b. Then

(?x : {a} → P)�(?y : {b} → Q)
= ?x : {a, b} → if x ∈ {a} ∩ {b} then (P �Q) else (if x ∈ {a} then P else Q)
= ?x : {a, b} → if x ∈ {a} then P else Q

– Mapping a and b with a non-injective function f to the same element c has
the effect:

f [(?x : {a} → P)�(?y : {b} → Q)]
= ((?x : {c} → f [P ])�(?y : {c} → f [Q ]))
= ?x : {c} → if x ∈ {c} ∩ {c} then (f [P ]� f [Q ]) else

(if x ∈ {c} then f [P ] else f [Q ])
= ?x : {c} → (f [P ]� f [Q ])

I.e. before the translation, the environment controls which one of the two pro-
cesses P and Q is executed - after the translation this control has been lost: The
process makes an internal choice between f [P ] and f [Q ]. Similar examples can
be extracted from the step laws for external choice �, alphabetised parallel |[X ]|
and hiding \.

Summarised: Non-injective renaming can fundamentally change the behaviour
of processes.One reason for this is that alphabets of communications play two roles
inCsp:Theyare constituents ofboth (i) theprocess syntaxand (ii) the semantic do-
main. This causes problems with non-injective functions as signature morphisms:
syntax is translated covariantly while semantics is translated contravariantly.

3 The CSP Institution – General Layout

Institutions have been introduced by Goguen and Burstall [12] to capture the no-
tion of logical system and abstract away from the details of signatures, sentences,
models and satisfaction. We briefly recall the notion here.

Let CAT be the category of categories and functors.4

4 Strictly speaking, CAT is not a category but only a so-called quasi-category, which
is a category that lives in a higher set-theoretic universe.



Structured CSP – A Process Algebra as an Institution 95

Definition 1. An institution I = (Sign,Sen,Mod, |=) consists of

– a category Sign of signatures,
– a functor Sen:Sign −→ Set giving, for each signature Σ, the set of sen-

tences Sen(Σ), and for each signature morphism σ: Σ −→Σ′, the sentence
translation map Sen(σ):Sen(Σ) −→ Sen(Σ′), where often Sen(σ)(ϕ) is
written as σ(ϕ),

– a functor Mod:Signop −→ CAT giving, for each signature Σ, the cate-
gory of models Mod(Σ), and for each signature morphism σ: Σ −→Σ′, the
reduct functor Mod(σ):Mod(Σ′) −→ Mod(Σ), where often Mod(σ)(M ′)
is written as M ′ |σ,

– a satisfaction relation |=Σ ⊆| Mod(Σ) | ×Sen(Σ) for each Σ ∈| Sign |,

such that for each σ: Σ −→Σ′ in Sign the following satisfaction condition holds:

M ′ |=Σ′ σ(ϕ) ⇔ M ′ |σ|=Σ ϕ

for each M ′ ∈| Mod(Σ′) | and ϕ ∈ Sen(Σ).

We first discuss the general layout of the Csp institution independently of a
concrete Csp model.

3.1 The Category CspSig of CSP Signatures

An object in the category CspSig is a pair (A,N ) where

– A is an alphabet of communications and
– N = (N̄ , sort, param) collects information on process names; N̄ is a set of

process names, where each n ∈ N̄ has
• a parameter type param(n) = 〈X1, . . . ,Xk〉, Xi ⊆ A for 1 ≤ i ≤ k ,

k ≥ 0. A process name without parameters has the empty sequence 〈〉
as its parameter type.

• a type sort(n) = X ⊆ A, which collects all communications in which the
process n can possibly engage in.

By abuse of notation, we will write n ∈ N instead of n ∈ N̄ and (a1, . . . , ak ) ∈
param(n) instead of (a1, . . . , ak ) ∈ X1×. . .×Xk , where param(n) = 〈X1, . . . ,Xk〉.

A morphism σ = (α, ν) : (A,N ) → (A′,N ′) in the category CspSig consists
of two maps

– α : A → A′, an injective translation of communications, and
– ν : N → N ′, a translation of process names, which has the following two

properties:
• param′(ν(n)) = α(param(n)): preservation of parameter types, where

α(param(n)) denotes the extension of α to sequences of sets.
• sort′(ν(n)) ⊆ α(sort(n)) : non-expansion of types, i.e. the translated

process ν(n) is restricted to those events which are obtained by transla-
tion of its type sort(n).
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The non-expansion of types principle is crucial for ensuring the satisfaction
condition of the CSP institution below. It ensures that the semantics of a
process is frozen when translated to a larger context, i.e. even when moving
to a larger alphabet, up to renaming, models for “old” names may only use
“old” alphabet letters. This corresponds to a black-box view on processes
that are imported from other specification modules.

As usual, the composition of morphisms σ = (α, ν) : (A,N ) → (A′,N ′) and
σ′ = (α′, ν′) : (A′,N ′) → (A′′,N ′′) is defined as σ′ ◦ σ := (α′ ◦ α, ν′ ◦ ν).

3.2 Sentences

Given A : alphabet of communications
N : set of process names
Z : variable system over A

L(A,N ,Z ) : logic
we define
P ,Q ::= n(z1, . . . , zk ) %% (possibly parametrised) process name

| Skip %% successfully terminating process
| Stop %% deadlock process
| a → P %% action prefix with a communication
| y → P %% action prefix with a variable
| ?x : X → P %% prefix choice
| P � Q %% external choice
| P � Q %% internal choice
| if ϕ then P else Q %% conditional
| P |[X ]| Q %% generalized parallel
| P \ X %% hiding
| P [[r ]] %% relational renaming
| P o

9 Q %% sequential composition
where
n ∈ N , param(n) = 〈X1, . . . ,Xk〉 for some k ∈ N, and zi ∈ (

�
Y ⊆Xi

ZY ) ∪ Xi for
1 ≤ i ≤ k ; a ∈ A; y ∈ Z ; x ∈ ZX ; X ⊆ A; ϕ ∈ L(A,N ,Z ) is a formula; and
r ⊆ A × A

Fig. 1. Csp syntax

Relative to an alphabet of communications A we define a variable system
Z = (ZX )X∈P(A) to be a pairwise disjoint family of variables, where subsets
X ⊆ A of the alphabet A are the indices.

The standard Csp literature does not reflect what kind of logic L(A,N ,Z )
is plugged into the language. A logic that is quite simple but covers those for-
mulae usually occurring in process examples is given in Fig. 2. We record some
properties of formulae:
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L1 There is a substitution operator [b/y] defined in an obvious way on formulae.
Substitution has the following property: If ϕ ∈ L(A,N ,Z ), y : Y ∈ Z , and
b ∈ Y , for some Y ⊆ A, then ϕ[b/y] ∈ L(A,N ,Z\{y : Y }).

Csp terms, see Fig. 1 for the underlying grammar, are formed relatively to a
signature (A,N ), a variable system Z over A, and a logic L(A,N ,Z ). Additional
Csp operators can be encoded as syntactic sugar, including the synchronous
parallel operator P ‖ Q := P |[ A ]| Q and the interleaving operator P ||| Q :=
P |[ ∅ ]| Q .

For the purpose of turning Csp into an institution, the use of variables needs
to be made more precise. Given a system of global variables G and a system
of local variables L, which are disjoint, we define the system of all variables
Z := G ∪ L. We define the set of process terms T(A,N )(G,L) over a signature
(A,N ) to be the least set satisfying the following rules:

– n(z1, . . . , zk ) ∈ T(A,N )(G,L) if n ∈ N , param(n) = 〈X1, . . . ,Xk 〉 for some
k ∈ N, and zi ∈ (

⋃
Y⊆Xi

ZY ) ∪ Xi for 1 ≤ i ≤ k ;
– Skip, Stop ∈ T(A,N )(G,L).
– a → P ∈ T(A,N )(G,L) if a ∈ A and P ∈ T(A,N )(G,L)
– x → P ∈ T(A,N )(G,L) if x ∈ G ∪ L and P ∈ T(A,N )(G,L)
– ?x : X → P ∈ T(A,N )(G,L) if P ∈ T(A,N )(G,L ∪ {x : X }).
– P � Q , P � Q ∈ T(A,N )(G,L) if P ,Q ∈ T(A,N )(G,L).
– if ϕ then P else Q ∈ T(A,N )(G,L) if P ,Q ∈ T(A,N )(G,L) and ϕ ∈ L(A,N ,Z ).
– P |[X ]| Q ∈ T(A,N )(G,L) if P ,Q ∈ T(A,N )(G,L) and X ⊆ A.

– P \ X ∈ T(A,N )(G,L), if P ∈ T(A,N )(G,L) and X ⊆ A.

– P [[r ]] ∈ T(A,N )(G,L) if P ∈ T(A,N )(G,L) and r ⊆ A × A.

– P o
9 Q ∈ T(A,N )(G,L) if P ∈ T(A,N )(G,L) and Q ∈ T(A,N )(G, ∅).

The set of global variables remains constant in all rules; local variables are ef-
fected in the rules for prefix choice and sequential composition: prefix choice
adds a new local variable; sequential composition deletes all local variables.

The Csp semantics deals with variables using substitution on the syntax level.
Here, P [b/y] denotes the process P in which every free occurrence of the variable

Formulae in L(A,N , Z ):
t1 = t2 t1, t2 terms over (N ,A) and Z
t ∈ X t a term over (N ,A) and Z ; X ⊆ A

Terms over (N ,A) and Z :
a a ∈ A (alphabet symbol)
x x ∈ Z (variable)

Fig. 2. A simple logic for formulae occurring in CSP processes
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n(z1, . . . , zk )[a/y ] = n(y1, . . . , yk ) with yi =
�

a if zi = y
zi otherwise.

Skip[b/y ] = Skip
Stop[b/y ] = Stop
(a → P)[b/y ] = a → P [b/y ]

(x → P)[b/y ] =
�

b → P [b/y ] ; x = y
x → P [b/y ] ; x �= y

(?x : X → P)[b/y ] =
�

?x : X → P ; x = y
?x : X → P [b/y ] ; x �= y

(P � Q)[b/y ] = P [b/y ] � Q [b/y ]
(P � Q)[b/y ] = P [b/y ] � Q [b/y ]
(if ϕ then P else Q)[b/y ] = if ϕ[b/y ] then P [b/y ] else Q [b/y ]
(P |[X ]| Q)[b/y ] = P [b/y ] |[X ]| Q [b/y ]
(P \ X )[b/y ] = P [b/y ] \ X
(P [[r ]])[b/y ] = (P [b/y ])[[r ]]
(P o

9 Q)[b/y ] = P [b/y ] o
9 Q [b/y ]

Fig. 3. Substitution

y : Y is replaced by a communication b ∈ Y . Fig. 3 gives the formal definition5.
We write P [a1/x1, a2/x2, . . . , an/xn ] for (. . . ((P [a1/x1])[a2/x2]) . . .)[an/xn ].

A process definition over a signature (A,N ) is an equation

p(x1, . . . , xk) = P

where p ∈ N , the xi are variables with xi : Xi , where Xi is the i-th com-
ponent of param(p), and P is a term. A process definition is a sentence if
P ∈ T(sort(p),N )({x1 : X1, . . . , xk : Xk}, ∅).

3.3 Translation Along a Signature Morphism

Let σ = (α, ν) : (A,N ) → (A′,N ′) be a signature morphism. Given a variable
system Z = (ZX )X∈P(A) over (A,N ) we obtain a variable system σ(Z ) over
(A′,N ′) by σ(Z )X ′ :=

⋃
α(X )=X ′ ZX . For an individual variable x : X this

translation yields σ(x : X ) = α(x : X ) = x : α(X ). For the translation of
formulae we require:

L2 L has a formula translation of the type σ : L(A,N ,Z ) → L(A′,N ′, σ(Z ))
with the following property: given a formula ϕ ∈ L(A,N ,Z ), then σ(ϕ) ∈
L(α(A),N ′, σ(Z )).

L3 Formula translation composes, i.e., for all signature morphisms σ = (α, ν) :
(A,N ) → (A′,N ′), σ′ = (α′, ν′) : (A′,N ′) → (A′′,N ′′), and ϕ ∈ L(A,N ,Z )
holds: (σ′ ◦ σ)(ϕ) = σ′(σ(ϕ)).

5 The rule for prefix choice deals with free and bound variables. In the case of sequential
composition only a substitution with a global variable can have an effect on the
process Q .
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Properties L2 and L3 are indeed satisfied by our simple logic given in Fig. 2.
Fig. 4 gives the rules for term translation. Translation of process definitions

is defined as

σ(p(x1, . . . , xk ) = P) := σ(p(x1, . . . , xk)) = σ(P).

The translation of process definitions composes.

Fig. 4. Term translation

3.4 Models and Reducts

Let D(A) be a Csp domain constructed relatively to a set of communications A.
Examples of D(A) are the domain T (A) of the Csp traces model, see Section 4,
and the domain F(A) of the Csp stable failures model, see Section 5. A model
M over a signature (A,N ) assigns to each n and for all a1, . . . , ak ∈ param(n)
a type correct element of the semantic domain D(A), i.e.

M (n(a1, . . . , ak )) ∈ D(sort(n)) ⊆ D(A).

We define model categories to be partial orders, that is, there is a morphism
between models M1 and M2, iff M1 � M2. Here � is the pointwise extension of
the partial order used in the denotational Csp semantics for the chosen domain
D; see the individual domains for the concrete choice of the partial order.

Given an injective (total) alphabet translation α : A → A′ we define its
partial inverse as

α̂ :
A′ →? A

a′ �→
{

α̂(a) ; if a ∈ A is such that α(a) = a′

undefined ; otherwise

Let α̂D : D(A′) →? D(A) be the extension of α̂ to semantic domains – to be
defined for any domain individually.

The reduct of a model M ′ along σ is defined as

M ′|σ (n(a1, . . . , ak )) = α̂D(M ′(ν(n)(α(a1), . . . , α(ak ))).
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As for reducts it is clear that we work with domains, we usually omit the in-
dex and write just α̂. On the level of domains, we define the following reduct
condition on α and α̂ : ∀X ⊆ A : α̂(D(α(X ))) ⊆ D(X ).

Theorem 2 (Reducts are type correct). Let α and α̂ fulfil the reduct con-
dition. Then reducts are type correct, i.e. M ′ |σ (n(a1, . . . , ak )) ∈ D(sort(n)).

3.5 Satisfaction

Given a map denotation : M × P → D(A), which – given a model M – maps
a closed process term P ∈ T(A,N )(∅, ∅) to its denotation in D, we define the
satisfaction relation of our institution6:

M |= p(x1, . . . , xk) = P
:⇔

∀(a1, . . . , ak ) ∈ param(p).
denotationM (p(a1, . . . ak )) = denotationM (P [a1/x1, . . . , ak/xk ])

Remark 3. We can replace the logic L(A,N ,Z ) by any other logic that comes
with a satisfaction relation

|= ⊆ CspModD(A,N ) × L(A,N , ∅)

and satisfies laws L1 to L3 above, plus

L4 The logic fulfils a satisfaction condition, i.e., forall ϕ ∈ L(A,N , ∅) holds:

M ′ |σ|= ϕ[a1/x1, . . . , an/xn ] ⇔ M ′ |= σ(ϕ)[α(a1)/x1, . . . , α(an)/xn ]

To be concise with the Csp semantics, which deals with variables using
substitution on the syntax level, it is necessary to include here a (possibly
empty) substitution, see the reduct property stated in Theorem 4 below.

The Csp models give interpretations to the process names. The formulae
used in practical Csp examples usually only reason about data, not on processes.
Thus, in the satisfaction condition above the notion of a model and its reduct
will vanish in most logic instances.

If the chosen Csp model has the reduct property and the extension of α and
α̂ are inverse functions on D(A) and D(α(A)), the satisfaction condition holds:

Theorem 4 (Satisfaction condition). Let σ = (α, ν) : (A,N ) → (A′,N ′) be
a signature morphism. Let M ′ be a (A′,N ′)-model over the domain D(A′). Let
the following reduct property hold:

denotationM ′|σ(P [a1/x1, . . . , an/xn ])
= α̂(denotationM ′(σ(P)[α(a1)/x1, . . . , α(an )/xn ]))

for all P ∈ T(A,N )({x1 : X1, . . . xn : Xn}, ∅), ai ∈ Xi ⊆ A for 1 ≤ i ≤ n, n ≥ 0.
Let α and α̂ be inverses on D(A) and D(α(A)). Under these conditions, we have
for all process definitions p(x1, . . . , xk) = P over (A,N ) :

M ′ |σ|= p(x1, . . . , xk) = P ⇔ M ′ |= σ(p(x1, . . . , xk) = P).
6 Here and in the following we use ‘:⇔’ as an abbreviation for ‘iff, by definition’.
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4 The CSP Traces Model as an Institution

Given an alphabet A and an element � 	∈ A (denoting successful termination)
we define sets A� := A ∪ {�} and A∗� := A∗ ∪ {t � 〈�〉 | t ∈ A∗}. The
domain T (A) of the traces model is the set of all subsets T of A∗� for which
the following healthiness condition holds:

T1 T is non-empty and prefix closed.

The domain T (A) gives rise to the notion of trace refinement S �T T :⇔ T ⊆ S .
(T (A), �T ) forms a complete lattice, with A∗� as its bottom and {〈〉} as its top.
Morphisms in the category ModT (A,N ) are defined as:

M1 → M2 :⇔
∀n ∈ N : ∀ a1, . . . , ak ∈ param(n) : M2(n(a1, . . . , ak )) �T M1(n(a1, . . . , ak ))

I (n(a1, . . . , ak )) = {〈〉}, i.e. the model which maps all instantiated process names
to the denotation of Stop is initial in ModT (A,N ); F (n(a1, . . . , ak )) = A∗� is
final in ModT (A,N ).

Let σ = (α, ν) : (A,N ) → (A′,N ′) be a signature morphism. We extend the
map α canonically to three maps α�, α∗� and α∗�

T to include the termination
symbol, to extend it to strings, and to let it apply to elements of the semantic
domain, respectively. In the same way we can extend α̂, the partial inverse of α,
to three maps α̂�, α̂∗� and α̂∗�

T . With these notions, it holds that:

Theorem 5 (Reducts in the traces model are well-behaved)

1. Let T ′ ∈ T (A′). Then α̂(T ′) ∈ T (A).
2. ∀X ⊆ A : α̂(T (α(X ))) ⊆ T (X ).

tracesM (n(a1, . . . , ak )) = M (n(a1, . . . , ak))
tracesM (Skip) = {〈〉, 〈�〉}
tracesM (Stop) = {〈〉}

tracesM (a → P) = {〈〉} ∪ {〈a〉 � s | s ∈ tracesM (P)}
tracesM (? x : X → P) = {〈〉} ∪ {〈a〉 � s | s ∈ tracesM (P [a/x ]), a ∈ X }

tracesM (P � Q) = tracesM (P) ∪ tracesM (Q)
tracesM (P � Q) = tracesM (P) ∪ tracesM (Q)

tracesM (if ϕ then P else Q) = if M |= ϕ then tracesM (P) else tracesM (Q)
tracesM (P |[X ]| Q) =

�
{t1 |[X ]| t2 | t1 ∈ tracesM (P), t2 ∈ tracesM (Q)}

tracesM (P \ X ) = {t \ X | t ∈ tracesM (P)}
tracesM (P [[r ]]) = {t | ∃ t ′ ∈ tracesM (P). (t ′, t) ∈ r∗}
tracesM (P o

9 Q) = (tracesM (P) ∩ A∗) ∪
{t1 � t2 | t1 � 〈�〉 ∈ tracesM (P), t2 ∈ tracesM (Q)}

Fig. 5. Semantic clauses of the basic processes in the traces model T
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Fig. 5 gives the semantic clauses of the traces model, see [18] for the definition
of the various operators on traces. Note that thanks to the rules imposed on the
use of variables, there is no need to provide a denotation for a process term of
the form x → P : In the clause for prefix choice ?x : X → P , which is the only
way to introduce a variable x , every free occurrence of x in the process P is
syntactically substituted by a communication.

Lemma 6 (Terms, Substitutions and Reducts). With tracesM as denota-
tion function, the traces model has the reduct property stated in Theorem 4.

As reducts are healthy and the reduct property holds, reducts are well formed.
Thanks to Lemma 6 and Theorem 4, the Csp traces model forms an institution.

5 The CSP Stable Failures Model as an Institution

Given an alphabet A the domain F(A) of the stable failures model consists of
those pairs

(T ,F ), where T ⊆ A∗� and F ⊆ A∗� × P(A�),

satisfying the following healthiness conditions:

T1 T is non-empty and prefix closed.
T2 (s ,X ) ∈ F ⇒ s ∈ T .
T3 s � � ∈ T ⇒ (s � �,X ) ∈ F for all X ⊆ A�.
F2 (s ,X ) ∈ F ∧ Y ⊆ X ⇒ (s ,Y ) ∈ F .
F3 (s ,X ) ∈ F ∧ ∀ a ∈ Y : s � 〈a〉 /∈ T ⇒ (s ,X ∪ Y ) ∈ F .
F4 s � 〈�〉 ∈ T ⇒ (s ,A) ∈ F .

The domain F(A) gives rise to the notion of stable failures refinement

(T ,F ) �F (T ′,F ′) :⇔ T ′ ⊆ T ∧ F ′ ⊆ F

(F(A), �F) forms a complete lattice with (A∗�,A∗� × P(A�)) as its bottom
and ({〈〉}, ∅) as its top. See [18] for a complete definition of the stable failures
model. Morphisms in the category ModF (A,N ) are defined as:

M1 → M2 :⇔
∀n ∈ N : ∀ a1, . . . , ak ∈ param(n) : M2(n(a1, . . . , ak ) �F M1(n(a1, . . . , ak ))

I (n(a1, . . . , ak )) = ({〈〉}, ∅), i.e. the model which maps all instantiated process
names to the denotation of the immediately diverging process, is initial in
ModT (A,N ); F (n(a1, . . . , ak )) = (A∗�,A∗� × P(A�)) is final in ModT (A,N ).

The semantic clauses of the stable failures model are given by a pair of
functions: fdM (P) = (tracesM (P), failuresM (P)) – see [18] for the definition.
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Following the same extension pattern for α : A → A′ as demonstrated for
the traces model, we obtain:

Theorem 7 (Reducts in the stable failures model are well-behaved)

1. Let (T ′,F ′) ∈ F(A′). Then α̂(T ′,F ′) ∈ F(A).
2. ∀X ⊆ A : α̂(F(α(X ))) ⊆ F(X ).

Lemma 8 (Terms, Substitutions and Reducts). With fdM as denotation
function, the stable failures model has the reduct property stated in Theorem 4.

As reducts are healthy and the reduct property holds, reducts are well formed in
the stable failures model. Thanks to Lemma 8 and Theorem 4, the Csp stable
failures model forms an institution.

6 Pushouts and Amalgamation

The existence of pushouts and amalgamation properties shows that an institution
has good modularity properties. The amalgamation property (called ‘exactness’
in [9]) is a major technical assumption in the study of specification semantics
[20] and is important in many respects. To give a few examples: it allows the
computation of normal forms for specifications [3, 5], and it is a prerequisite for
good behaviour w.r.t. parametrisation [10] and conservative extensions [9, 17].
The proof system for development graphs with hiding [15], which allow a man-
agement of change for structured specifications, is sound only for institutions
with amalgamation. A Z-like state based language has been developed over an
arbitrary institution with amalgamation [2].

The mildest amalgamation property is that for pushouts. It is also called
semi-exactness. An institution is said to be semi-exact, if for any pushout of
signatures

Σ
σ1 σ2

Σ1

θ1

Σ2

θ2

Σ′

any pair (M1,M2) ∈ Mod(Σ1) × Mod(Σ2) that is compatible in the sense that
M1 and M2 reduce to the same Σ-model can be amalgamated to a unique Σ′-
model M (i.e., there exists a unique M ∈ Mod(Σ′) that reduces to M1 and M2,
respectively), and similarly for model morphisms.

Proposition 9. CspSig does not have pushouts.
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Proof. Suppose that there is a pushout

({n}, {a})
inclusioninclusion

({n}, {a, b})
(ν1,α1)

({n}, {a, c})
(ν2,α2)

(N ,A)

By the pushout property, we have the following mediating morphisms:

({n}, {a})

({n}, {a, b})

(ν1,α1)

(ν3,α3)

a �→a,b �→d

({n}, {a, c})

(ν2,α2)

(ν4,α4)

a �→a,c �→d

(N , A)

(ν5,α5)

(ν6,α6)

({n}, {a, b, c}) ({n}, {a, d})

Since α1 and α6 are injective, A must have cardinality 2, which implies that α1
and α2 are bijective. But then, {a, b} = Im(α3) = Im(α5) = Im(α4) = {a, c}, a
contradiction. ��

However, this result is not as severe as it might look. Let CspSignoninj be CspSig
with the restriction dropped that α must be injective. Then we have:

Proposition 10. CspSignoninj has pushouts, and any such pushout of a span
in CspSig actually is a square in CspSig (although not a pushout in CspSig).

Proof. Set has pushouts, and monomorphisms in Set are stable under pushouts
([1, Exercise 11P]). This lifts to the indexed level in CspSignoninj and CspSig .

��

Note that the phenomenon that pushouts of CspSig -spans in CspSignoninj are
squares but not pushouts in CspSig is due to the fact that mediating morphisms
are generally not in CspSig .

Pushouts in CspSignoninj give us an amalgamation property:

Theorem 11. CspSignoninj -pushouts of CspSig-morphisms have the semi-
exactness property for the traces model and the stable failures model.
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Proof. Let
(N ,A)

σ1=(ν1,α1) σ2=(ν2,α2)

(N1,A1)

σ′
1=(ν′

1,α′
1)

(N2,A2)

σ′
2=(ν′

2,α′
2)

(N ′,A′)

be a CspSignoninj -pushout of CspSig -morphisms, and let Mi be an (Ni ,Ai)-
model w.r.t. the trace or the stable failure semantics (i = 1, 2) such that M1 |σ1=
M2 |σ2 . We construct an (N ′,A′)-model M ′ as follows:

M ′(n) =
{

α1(M1(n1)), if n1 is such that ν1(n1) = n
α2(M2(n2)), if n2 is such that ν2(n2) = n

This is well-defined because M1 |σ1= M2 |σ2 . It is clear that M ′ |θi = Mi (i =
1, 2). Due to the non-expansion of types principle for signature morphisms, M ′

is unique. ��

In fact, this result generalizes easily to multiple pushouts. Moreover, the initial
(=empty) signature has the terminal model category. Since all colimits can be
formed by the initial object and multiple pushouts, this shows that we even have
exactness (when colimits are taken in CspSignoninj ).

7 Structuring and Parametrization for CSP

Mostly following [20], in this section we recall a popular set of institution-
independent structuring operations, which seems to be quite universal and which
can also be seen as a kernel language for the Casl structuring constructs [8].

basic specifications For any signature Σ ∈| Sign | and finite set Γ ⊆ Sen(Σ)
of Σ-sentences, the basic specification 〈Σ, Γ 〉 is a specification with:

Sig(〈Σ, Γ 〉) := Σ
Mod(〈Σ, Γ 〉) := {M ∈ Mod(Σ) | M |= Γ}

union : For any signature Σ ∈| Sign |, given Σ-specifications SP 1 and SP 2,
their union SP 1 ∪ SP 2 is a specification with:

Sig(SP 1 ∪ SP 2) := Σ
Mod(SP 1 ∪ SP 2) := Mod(SP 1) ∩ Mod(SP 2)

translation : For any signature morphism σ: Σ → Σ′ and Σ-specification SP ,
SP with σ is a specification with:

Sig(SP with σ) := Σ′

Mod(SP with σ) := {M ′ ∈ Mod(Σ′) | M ′ |σ∈ Mod(SP )}
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hiding : For any set SYs of symbols in a signature Σ′ generating a subsignature
Σ of Σ′, and Σ′-specification SP ′, SP ′ reveal SYs is a specification with:

Sig(SP ′ reveal SYs) := Σ
Mod(SP ′ reveal SYs) := {M ′ |σ | M ′ ∈ Mod(SP ′)}

where σ: Σ → Σ′ is the inclusion signature morphism.
free specification : For any signature morphismσ: Σ → Σ′ and Σ′-specification

SP ′, free SP ′ along σ is a specification with:
Sig(free SP ′ along σ) = Σ′

Mod(free SP ′ along σ) = {M ′ ∈ Mod(SP ′) |
M ′ is strongly persistently (Mod(σ):Mod(SP ′)−→Mod(Σ))-free }

Given categories A and B and a functor G:B −→ A, an object B ∈ B
is called G-free (with unit ηA:A −→ G(B)) over A ∈ A, if for any object
B ′ ∈ B and any morphism h:A −→ G(B ′), there is a unique morphism
h#:B −→B ′ such that G(h#) ◦ ηA = h. An object B ∈ B is called strongly
persistently G-free if it is G-free with unit id over G(B) (id denotes the
identity).

parametrisation : For any (formal parameter) specification SP , (body) spec-
ification SP ′ with signature inclusion σ: Sig(SP )−→ Sig(SP ′) and specifi-
cation name SN , the declaration

SN [SP ] = SP ′

names the specification SP ′ with the name SN , using formal parameter SP .
The formal parameter SP can also be omitted; in this case, we just have
named a specification for future reference.

instantiation : Given a named specification SN [SP ] = SP ′ with signature
inclusion σ: Sig(SP ) −→ Sig(SP ′) and an (actual parameter) specification
SPA and a fitting morphism θ: Sig(SP )−→Sig(SPA), SN [SPA fit θ] is a
specification with

Sig(SN [SPA fit θ]) := Σ
Mod(SN [SPA fit θ]) :=

{M ∈ Mod(Σ) | M |σ′∈ Mod(SP ′),M |θ′∈ Mod(SPA) }
where

Sig(SP )

σ θ

Sig(SP ′)

σ′

Sig(SPA)

θ′

Σ

is a pushout (note that for Csp, we take the pushout in CspSignoninj , as
discussed in Sect. 6).

In Casl, we can also extend specifications with new declarations and axioms.
This is written SP thenSP ′, where SP ′ is a specification fragment. Since we do
not want to deal with specification fragments formally here, we just note that
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spec NoLoss =
• OneCoin = coin → Skip
• AtLeastOneCoin = OneCoin � coin → AtLeastOneCoin
• NoLoss = AtLeastOneCoin; item → NoLoss

end

spec MachineForTeaAndCoffee
[ {NoLoss then NoLoss � V M \ {button} } reveal V M ]

=
TeaAndCoffee = V M [[{(item, coffee), (button, c-button)}]]

� V M [[{(item, tea), (button, t-button)}]]
end

spec UnfairMachine =
UnfairMachine = button → coin → coin → item → UnfairMachine

end

spec UnfairMachineForTeaAndCoffee =
{ MachineForTeaAndCoffee [ UnfairMachine fit UnfairMachine �→ V M ]
} reveal TeaAndCoffee

end

Fig. 6. Process Instantiation

the semantics of extension is similar to that of union, and refer to [8] for full
formal details.

In standard Csp, the cpo approach defines the meaning of a system of
recursive process equations to be its smallest fixed-point, if such a smallest
fixed-point exists. To determine this fixed point, Tarski’s fixed-point theorem
is applied to the function underlying the system of equations. Take for ex-
ample, the system P = P , Q = a → Q . Over the alphabet A = {a} it
has traces(P) = {〈〉}, traces(Q) = a∗ as its smallest solution. However, there
are other fixed-points, as the equation P = P holds for every process, i.e.
traces(P) = {〈〉, 〈a〉}, traces(P) = {〈〉, 〈a〉, 〈aa〉}, etc. also yield fixed-points.
As structured Csp works with loose semantics,

spec Loose = • P = P • Q = a → Q end

has the set of all fixed-points as its semantics. Choosing initial semantics by
adding the keyword free, however, i.e.

spec Initial = free { • P = P • Q = a → Q } end

has the smallest fixed point as its semantics thanks to our choice of morphisms
in the model categories.

In order to illustrate the practical use of structured Csp specifications, we
consider the classical example of process algebra: the development of a vending
machine for tea and coffee, following [13], see Fig. 6. For simplicity, we omit
explicit signature declarations and derive the alphabet and the process names



108 T. Mossakowski and M. Roggenbach

from the symbols used. The owner of a vending machine will insist the machine
never to make a loss. The process NoLoss with sort(NoLoss) = {coin, item} in
the specification NoLoss has the property that at any time the number of coins
inserted to the machine is bigger than the number of items delivered. The spec-
ification MachineForTeaAndCoffee describes how to turn the specification
of a non-dedicated vending machine VM into the specification of a machine for
selling tea and coffee. Here, we assume sort(VM ) = {coin, item, button}. VM is
loosely specified by the condition NoLoss � VM \ {button}, i.e. VM \ {button}
does not make any loss. The specification MachineForTeaAndCoffee takes
the machine VM as its parameter and defines the machine TeaAndCoffee by
renaming the item to be delivered into tea and coffee, resp., and the button
into c-button and t -button, resp. However, only those vending machines VM are
accepted as an actual parameter that fulfil the condition specified by NoLoss :
This is expressed via the refinement condition NoLoss � VM \ {button} in
the parameter7. The UnfairMachine, which lets the customer pay twice for one
item, fulfils this requirement in the traces model as well as in the stable failures
model. Therefore, it is a legal parameter. Instantiating MachineForTeaAnd-
Coffee with the process UnfairMachine yields a process CoffeeAndTea, where
the customer has to pay twice for tea and coffee.

The semantics of the specifications above behaves as expected. For example,
for the basic specification NoLoss, we get:

– Sig(NoLoss) = (A, (N̄ , sort, param)) with
– A = {coin, item}
– N̄ = {OneCoin,AtLeastOneCoin,NoLoss}
– sort(OneCoin) = {coin}, sort(AtLeastOneCoin) = {coin},

sort(NoLoss) = A.
– param(n) = 〈〉.
– Mod(NoLoss) consists of one model M with

M (NoLoss) = {s | s is prefix of t ∈ (coin+ item)∗}

It is quite typical that Csp specifications have exactly one model; indeed, in
this respect, Csp resembles more a programming language than a specification
language. However, using refinement, we can also write useful loose specifications.
Consider SP = {NoLoss then NoLoss � VM \ {button}} reveal VM . This
has the following semantics:

– Sig(SP ) = (A, (N̄ , sort, param)) with
– A = {coin, item, button}
– N̄ = {VM }
– sort(VM ) = {coin, item, button}.
– param(n) = 〈〉.
– Mod(SP) consists of models M that provide a trace set M (VM ) with the

following property: if the action button is removed from M (VM ), the result-
ing trace set is contained in M (NoLoss) above.

7 Note that Csp refinement P � Q is equivalent to P = P � Q .
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That is, SP can be see as a requirement specification on a vending machine,
allowing several actual vending machine implementations. SP is the formal pa-
rameter of a parametrised specification that can be instantiated with different
vending machines. Moreover, due to the amalgamation property of Theorem 11,
we can ensure that each vending machine model can be extended to a model of
the appropriately instantiated specification MachineForTeaAndCoffee.

8 Conclusion and Future Work

Our institutions for Csp use injective signature morphisms, due to the fact that
the alphabet plays a double role, in the process syntax and the semantic domains,
and both aspects are mapped covariantly — a contravariant mapping would
destroy important laws for of Csp processes.

Languages like Unity and CommUnity [11] split the alphabet of communi-
cations into ‘data’ – to be translated covariantly – and ‘actions’ – to be trans-
lated contravariantly. The advantage of this approach is that the contravariant
translation makes it possible to ‘split’ actions. We avoid such a partition of the
alphabets of communications as Csp with its relational renaming already offers
a means of ‘splitting’ an action on the term level. A rich set of algebraic laws
allows to relates the new process with the old one.

We have demonstrated that with our Csp institutions, structured specifica-
tions have a semantics that fits with what one would expect in the Csp world. In
particular, we can use loose semantics and parameterisation in combination with
Csp refinement in a very useful way, going beyond what has been developed in
the Csp community so far. Future work will extend the institutions presented
here with an algebraic data type part, aiming at an institution for the language
Csp-Casl [16]. For this, it is probably useful to distinguish between a syntactic
and a semantic alphabet, at the price of complicating algebraic laws like the
〈�-step〉 law by using equality on the semantic alphabet in a subtle way, but
with the advantage of allowing for non-injective alphabet translations.

Acknowledgment. The authors would like to thank José Fiadeiro, Yoshinao Isobe,
Grigore Rosu, Erwin R. Catesbeiana, Andrzej Tarlecki, and Lutz Schröder for
helpful discussions on what the right Csp institution might be.
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Abstract. During model-driven software development, we are inevitably con-
fronted with design models that contain a wide variety of inconsistencies. Inter-
active and automated support for detecting and resolving these inconsistencies
is therefore indispensable. In this paper, we report on an iterative inconsistency
resolution process. Our approach relies on the underlying formalism of graph
transformation. We exploit the mechanism of critical pair analysis to analyse de-
pendencies and conflicts between inconsistencies and resolutions, to detect reso-
lution cycles and to analyse the completeness of resolutions. The results of this
analysis are integrated in the iterative inconsistency resolution process and can
help the software engineer to develop and evolve models in presence of inconsis-
tencies.

1 Introduction

During development and evolution of analysis and design models it is often desirable
to tolerate inconsistencies in design models [1]. Such inconsistencies are inevitable
for many reasons: (i) in a distributed and collaborative development setting, different
models may be developed in parallel by different persons; (ii) the interdependencies
between models may be poorly understood; (iii) the requirements may be unclear or
ambiguous; (iv) the models may be incomplete and subject to interpretation because
some essential information is intentionally left out to avoid premature decisions; (v)
the models are continuously subject to evolution; (vi) the semantics of the modeling
language itself may be poorly specified.

All of these reasons can hold in the case of the Unified Modeling Language (UML),
the de-facto general-purpose modelling language [2]. Therefore, current UML model-
ing tools should provide better support for dealing with inconsistencies. These incon-
sistencies may either be localised in a single UML diagram, or spread over different
(types of) UML diagrams. An example of the latter is illustrated in Fig. 1. The be-
haviour of the CardReader class (belonging to some class diagram) is specified by a
protocol state machine that refers to an operation retainCard() that is not defined in the
class CardReader or any of its ancestors. We call this situation a Dangling Operation
Reference.

J.L. Fiadeiro and P.-Y. Schobbens (Eds.): WADT 2006, LNCS 4409, pp. 111–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Example of a Dangling Operation Reference inconsistency between a class diagram and
protocol state machine

In this paper, we will introduce a Simple Iterative Inconsistency Resolution Process
(SIRP). This process provides a formally founded, yet automated, approach to detect
and resolve model inconsistencies. Our approach relies on graph transformation theory.
It detects inconsistencies automatically and proposes possible resolutions to the user.

Our approach contributes to the management of the different detected inconsisten-
cies and their possible resolutions. A first step to manage the possibly large amount of
detected inconsistencies and resolutions is to analyse the parallel conflicts and sequen-
tial dependencies between inconsistencies and resolutions. A second step is to ascertain
that all possible resolutions for a given inconsistency are effectively treated. In this
article we show and discuss how graph transformation dependency analysis can be ex-
ploited to achieve these goals and we report on a tool we are developing to support the
inconsistency resolution process.

2 Simple Iterative Resolution Process

We implemented tool support for an iterative and incremental process of resolving
model inconsistencies. First, inconsistencies in the model are identified. Next, reso-
lutions are proposed, selected and applied. The user may also wish to ignore or disable
certain types of inconsistencies or resolutions. This process continues until all problems
are resolved or until the user is satisfied.

A screenshot of the tool that we developed to support this process is shown in Fig. 2.1

Several inconsistencies have been resolved already, as shown in the resolution history.
For an occurrence of the dangling operation reference inconsistency, four resolutions are
proposed with a certain popularity (based on whether the rule has been applied before
by the user). Selected resolutions can be applied to resolve the selected inconsistency.

Because model inconsistency resolution is an inherently incremental and iterative
process, a number of typical problems may arise:

– Induced inconsistencies. The resolution of a certain inconsistency may induce
other inconsistencies as a side effect.

– Conflicting resolutions. Some resolutions may not be jointly applicable, even if
they resolve another type of inconsistency.

1 The tool was developed by Jean-François Warny during his Masters Thesis [3].
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Fig. 2. Screenshot of the incremental inconsistency resolution tool in action

– Resolution cycles. Certain sequences of resolutions may reintroduce an inconsis-
tency that has been resolved earlier.

During the inconsistency resolution process, it is very important to be aware of such
situations, and to take the appropriate actions when they arise. Because, in practice,
the set of model inconsistencies and their resolutions can be quite large, it is virtually
impossible to do this analysis manually. For this reason, automated support is needed.
The next section explains the formal approach we adopted and support by our tool.

3 Inconsistencies and Resolutions as Graph Transformation Rules

To specify model inconsistencies and their resolutions, we opted for a formal descrip-
tion based on the theory of graph transformation [4,5]. The main benefit is that this
allows us to rely on theoretical results about critical pairs [6] to perform analysis of
parallel conflicts and sequential dependencies between graph transformation rules. In
this article, we exploit this feature to optimise the resolution process, by analysing and
detecting conflicts and dependencies between resolutions. We also use the technique to
check to which extent the provided set of resolutions is complete.
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3.1 Models as Graphs

The UML metamodel is represented by a so-called type graph. A simplified version
of the metamodel, showing a subset of UML 2.0 class diagrams and statemachine dia-
grams only, is given in the bottom right part of Fig. 3.

Fig. 3. Screenshot of the AGG tool. The bottom right graph displays the type graph, correspond-
ing to a simplified version of the UML metamodel.

A UML model will be represented as a graph that satisfies the constraints imposed
by the aforementioned type graph. Fig. 4 shows a directed, typed, attributed graph that
represents the UML model of Fig. 1. This graph representation can be generated auto-
matically from the corresponding UML model without any loss of information. 2

3.2 Detecting Model Inconsistencies with Graph Transformation Rules

Model inconsistencies can be detected automatically by means of graph transformation
rules. For each type of inconsistency, a graph transformation rule is specified that de-
tects the inconsistency. This is realised by searching for the occurrence of certain graph
structures in the model, as well as the absence of certain forbidden structures (so-called
negative application conditions or NACs). When an inconsistency is found, the graph
is annotated with a new node of type Inconsistency pointing to the node that is the
source of this inconsistency. An example is given in Fig. 4, where an occurrence of the

2 An experiment along these lines has been carried out by Laurent Scolas as a student project.
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Fig. 4. Graph representation of the inconsistent UML model of Fig. 1

Dangling Operation Reference inconsistency has been found, as can be seen in the
description attribute of the Inconsistency node. In the remainder of this article, detection
rules denote the graph transformation rules expressing an inconsistency.

The top right part of Fig. 3 gives the formal specification of the detection rule for the
Dangling Operation Reference inconsistency. This occurs when a message specified on
a transition in a protocol state machine does not correspond to an existing Operation
defined in some existing Class. The specification of this rule as a graph transformation
is composed of three parts. The middle pane represents the left-hand side (LHS) of the
rule. The leftmost pane represents a negative application condition (NAC), expressing
the fact that the Operation of interest is not defined in any existing Class. Finally, the
rightmost pane represents the right-hand side (RHS) of the rule, showing the result
after the transformation. In this case, the only modification is the introduction of a
Inconsistency node that is linked to the Operation to indicate a model inconsistency has
been detected.

Given a source model, we can apply all detection rules in sequence to detect all
possible model inconsistencies. Different occurrences of the same inconsistency may
be detected at different locations, and the same model element may be annotated with
occurrences of multiple inconsistencies. By construction, the detection rules are parallel
independent, i.e., the application of a detection rule has no unexpected side effects on
other detection rules. This is because a detection rule only introduces in its RHS a
new node of type Inconsistency. Moreover, the LHS and NAC of a detection rule never
contain any Inconsistency nodes.

As a technical side note, we needed to avoid repeated application of an inconsistency
rule for the same match, since this could potentially introduce arbitrarily many copies
of the Inconsistency node. This problem was tackled as follows. During the process of
finding a match of the LHS of the rule in the source model, matches that have been used
in previous applications of the rule are excluded automatically. This process works be-
cause the inconsistency detection rules are monotonous and only add new information.
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An alternative way to achieve the same thing would be to include the Inconsistency node
explicitly as a NAC in each of the inconsistency detection rules. We decided not to do it
in this way because it would make the rules more complex and because it would cause
undesired side effects during the resolution analysis process that will be explained in
Sect. 4.

3.3 Resolving Model Inconsistencies with Graph Transformation Rules

Graph transformation rules are also used to resolve previously detected inconsistencies.
In the remainder of this article, resolution rules denote the graph transformation rules
expressing an inconsistency resolution. For each type of model inconsistency, several
resolution rules can be specified. Each resolution rule has the same general form. On
the LHS we find an Inconsistency node that indicates the particular inconsistency that
needs to be resolved. On the RHS this Inconsistency node has disappeared because the
rule removes the inconsistency.

As an example, Fig. 5 proposes three resolution rules for the Dangling Operation
Reference inconsistency. Note that other resolution rules are also possible.

Fig. 5. Three graph transformations specifying alternative resolution rules for the Dangling Op-
eration Reference inconsistency. For the last two resolution rules, only the RHS is shown, since
the LHS is the same as for the first resolution rule.

3.4 AGG

The tool that we have used to perform our experiments is AGG3 (version 1.5.0), a state-
of-the-art general purpose graph transformation tool [7]. It provides direct support for
all concepts mentioned before: directed, attributed, typed graphs and typed graph trans-
formations. In addition to the type graph, extra graph constraints can be expressed in

3 See http://tfs.cs.tu-berlin.de/agg/. Note that the screenshot shown in Fig. 2
is not part of the standard AGG distribution. It is an extension of the AGG tool that we have
developed for the purposes of this article.
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AGG, and the consistency of a graph with respect to these graph constraints can be
checked. Termination of certain types of graph grammars can be checked automatically
by AGG.

Critical pair analysis is provided by AGG to detect critical pairs between graph
transformation rules [6,8]. The goal is to compute all potential mutual exclusions and
sequential dependencies for a given set of transformation rules by pairwise comparison.
Critical pair analysis of graph transformations has already been used to detect conflict-
ing functional requirements in UML models composed of use case diagrams, activity
diagrams and collaboration diagrams in other, related, domains in [9]. In previous work
[10], we used it to detect conflicts and dependencies between software refactorings. Re-
cently we explored its use in the context of model inconsistency management [11]. The
current article is a continuation of this line of research. In the future, we will also make
use of the other formal reasoning mechanisms provided by AGG.

4 Inconsistency Resolution Analysis

As already mentioned in Sect. 2, model inconsistency resolution is an incremental and
iterative process in which induced inconsistencies, conflicting resolutions and resolu-
tion cycles can occur. In this section, we explain how we exploited the technique of
critical pair analysis to achieve automated support for the aforementioned problems.
Such analysis is directly supported by the AGG engine, so it can readily be used in
SIRP4. For a detailed explanation of the inconsistencies and resolution used in the re-
mainder of this paper we refer to [11] in which we presented a set of inconsistencies
and resolutions.

4.1 Induced Inconsistencies

Induced inconsistencies may appear when the resolution of a certain model inconsis-
tency introduces one or more other inconsistencies as a side effect. For example, sup-
pose that we have a model that contains an inconsistency of type dangling operation
reference, and we want to resolve this problem using the first resolution rule of Fig. 5,
i.e., by adding a containment relationship between an existing class and an existing op-
eration. If, however, the class was concrete, while the operation was abstract, the incon-
sistency resolution induces a new type of model inconsistency called abstract operation.
This is because a concrete class is not supposed to contain any abstract operations.

The problem of induced inconsistencies is a typical situation of a sequential depen-
dency: an inconsistency detection rule causally depends on a previously applied reso-
lution rule. Fig. 6 shows an example of a dependency graph that has been generated
by AGG. It shows all resolution rules that may induce a Dangling Operation Refer-
ence inconsistency. For example, we see that this inconsistency sequentially depends
on AbstractOperation-Res4, the specification of which is given in the top right part of
Fig. 7. This kind of information is quite important in an incremental resolution process,

4 The current version of SIRP does not yet incorporate these results, integration of critical pair
analysis in SIRP is scheduled for a later version of the tool.
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Fig. 6. Dependency graph generated by AGG showing how the inconsistency of type Dangling
Operation Reference may be induced by different resolution rules

as it informs us which types of inconsistencies will need to be redetected after the
application of a given resolution rule.

4.2 Conflicting Resolutions

Conflicting resolutions may appear when there are multiple inconsistencies in a model,
each having their own set of applicable resolution rules. It may be the case that apply-
ing a resolution rule for one inconsistency, may invalidate another resolution rule for
another inconsistency. As an example, consider Fig. 7. The left pane depicts a situation
where two inconsistencies occur, one of type Abstract Operation and Dangling Oper-
ation Reference respectively, but attached to different model elements. The resolution
rules AbstractOperation-Res4 and DanglingOperationRef-Res2 for these inconsisten-
cies (shown on the right of Fig. 7) are conflicting, since the first resolution rule sets the
relation contains connecting class 1 to operation 2 to connecting class 4 and operation
2, whereas the second resolution rule requires as a precondition that class 1 is connected
to operation 2 through a containment relation.

Fig. 7. Conflicting resolutions: Example of a critical pair illustrating a mutual exclusion between
resolution rules AbstractOperation-Res4 and DanglingOperationRef-Res2

The problem of conflicting resolutions is a typical situation of a parallel conflict:
two rules that can be applied independently cannot be applied one after the other (i.e.,
they are mutually exclusive) because application of the first rule prevents subsequent
application of the second one. This kind of information is quite important during an
interactive resolution process, as it informs the user about which resolution rules are
mutually exclusive and, hence, cannot be applied together.
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4.3 Resolution Cycles

Starting from the dependency graph, we can also compute possible cycles in the conflict
resolution process. This may give important information to the user (or to an automated
tool) to avoid repeatedly applying a certain combination of resolution rules over and
over again. Clearly, such cycles should be avoided, in order to optimise the resolution
process. AGG allows us to compute a conservative approximation of such cycles. This
is illustrated in Fig. 8, which represents a carefully selected subset of sequential depen-
dencies that have been computed by AGG.5 In this figure, we observe the presence of
multiple cycles of various lengths, all of them involving the Abstract Operation incon-
sistency.

Fig. 8. Some examples of detected cycles in the sequential dependency graph

Let us start by analysing the cycles of length 4, that correspond to an alternation
of two successive detection and resolution steps. The cycle corresponding to region 1
shows that we can repeatedly apply resolution rules AbstractStateMachine-Res3 and
AbstractOperation-Res3 ad infinitum. This is the case because the two resolution rules
are inverses of each other. Therefore, after applying one of both rules, a resolution tool
should not propose the other rule in the same context, as it would undo the effect of the
first one. The cycle corresponding to region 4 is similar to the previous one, except that
it occurs between resolution rules AbstractObject-Res1 and AbstractOperation-Res3.

There is also a cycle of length 6, corresponding to a succession of three detection
and resolution rules. The cycle is described by the boundaries of the region composed
by 1 and 2, and occurs when we apply resolution rules AbstractStateMachine-Res2,
DanglingOperationRef-Res1 and AbstractOperation-Res3 in sequence.

One should note that the computed dependency graph only presents a conservative
approximation of what can actually happen in a concrete setting. Sometimes, false pos-
itives may be reported by the dependency analysis. Careful manual analysis is required
to reveal such situations. An example is the cycle corresponding to region 3. It turns out

5 To interpret the dependency graph, the blue directed arrows should be interpreted as “enables”
or “triggers”.
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that the sequential dependency between AbstractOperation-Res4 and DanglingOpera-
tionRef is a false positive. A more sophisticated dependency analysis algorithm would
be needed to resolve this problem.

Because the sequential dependency graph can be very large, manual detection of cy-
cles is unfeasible in practice. Therefore, we have used a small yet intuitive user interface
for detecting all possible cycles in a flexible and interactive way, based on the output
generated by AGG’s critical pair analysis algorithm. 6

5 Completeness

The resolution rules and inconsistencies proposed in this article have been specified
manually based on our intuition and on similar work carried out by other authors. These
resolution rules correspond to typical ways to resolve the inconsistencies. However,
nothing guarantees us that we didn’t forget any important resolution rules. Therefore,
this section discusses completeness issues related to our approach to inconsistency man-
agement.

5.1 Completeness of Inconsistency Representation

There is a first question related to completeness for which we already know the answer:
Can we represent all possible types of model inconsistencies as graph transformation
rules? The answer is “no” for multiple reasons. First, there are certain types of semantic
inconsistencies that are quite hard to express by means of graph transformation rules.
Therefore, we focus on structural inconsistencies only. Second, the notion of inconsis-
tency is ill-defined. There is a virtually infinite set of things that can be regarded as an
inconsistency, because it is a subjective notion. Different persons tend to have a different
interpretation of what it means for something to be inconsistent. Of course, in theory, it
is possible to provide a strict and precise definition of (in)consistency. In AGG, syntac-
tically inconsistent models are defined by means of their type graph: every graph that
does not correspond to the constraints imposed by the type graph is considered to be
inconsistent. For our purposes, however, this approach is insufficient. There are many
types of inconsistencies that we want to detect but that cannot be expressed by relying
on the type graph alone. Additional graph constraints are needed to cover these cases.

5.2 Completeness of Resolution Rules

Resolution rules consist of –what we call– primitive operations performed on the user-
defined model. Primitive operations are the addition or removal of a given type of model
element, or changing the attribute values of a given model element (e.g., its name) or
its references (e.g., the containment relation between an operation and a class).

For the type graph of Fig. 3, we have expressed each of these primitive operations
manually as (parameterised) graph transformation rules in AGG. In the future, we will
automate the process of generating the transformation rules corresponding to primitive

6 This program has been developed by Stéphane Goffinet in the course of a student project.
Currently, the tool is not yet integrated in SIRP, this is planned for a next version.
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operations. Some of these rules are shown on the left of Fig. 3: addOperation, delete-
Operation, addClass, deleteClass and so on.

With respect to the inconsistency resolution rules, we have asked ourselves the fol-
lowing two relevant questions: (1) Given a particular model inconsistency, what is the
complete set of primitive operations that are needed to resolve the inconsistency? (2)
Given a particular primitive operation, what are all the model inconsistencies that it may
resolve?

These questions pertain to the relation between primitive operations and inconsis-
tency resolution rules. They can be answered by critical pair analysis. The reasoning
is as follows. By computing all parallel conflicts between inconsistency detection rules
and primitive operations, we find all situations in which a primitive operation invalidates
at least one of the (positive or negative) preconditions of the inconsistency. As a result,
after applying the primitive operation, the inconsistency will no longer be present. This
implies that any inconsistency resolution rule for this particular inconsistency must in-
clude at least one of these primitive operations.

Fig. 9. Parallel conflicts between primitive operations and inconsistencies. On the left, we see
all possible primitive operations that may potentially resolve the Dangling Operation Reference
inconsistency. On the right, we see all possible inconsistencies that may be resolved by the dele-
teOperation primitive.

In response to question (1), consider the left part of Fig. 9 as an example. It shows
all parallel conflicts between the Dangling Operation Reference inconsistency and the
primitive operations. We conclude from this figure that the inconsistency may be (at
least partially) resolved by applying a deleteTransition operation, a deleteReferredOp
operation, an addOperationContainment operation, and so on. Coming back to the res-
olution rules that we manually specified in Fig. 5 based on our intuition, we see that
this reasoning is correct, since each of these resolution rules involves at least one of
the primitive operations identified in Fig. 9. Rule DanglingOperationRef-Res1 corre-
sponds to the application of an addOperationContainment operation. Rule Dangling-
OperationRef-Res3 corresponds to the application of a deleteReferredOp operation.
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Rule DanglingOperationRef-Res4 involves a combination of several of the primitive op-
erations that we identified: deleteTransition, deleteTransitionContainment, and delete-
ReferredOp.

In a similar vein, every resolution rule for the Dangling Operation Reference incon-
sistency will involve at least one of the primitive operations identified in Fig. 9. As
such, we can use this analysis to assess whether a set of resolution rules that has been
specified for a given model inconsistency is complete, in the sense that all possible
situations have been considered. Such an analysis is quite useful, since it allows us to
find the primitive operations that need to be included in resolution rules of a certain
inconsistency.

To answer question (2), consider the right part of Fig. 9 as an example. It shows in-
consistencies that the deleteOperation primitive may potentially resolve. The same kind
of information can be generated automatically for every kind of primitive operation.

5.3 Completeness of Detection Rules

With respect to the inconsistency detection rules, we have asked ourselves two similar
questions. (1) Given a particular model inconsistency, can we identify the complete
set of primitive operations that potentially give rise to this inconsistency? (2) Given a
particular primitive operation, what are all the model inconsistencies that it potentially
gives rise to?

As described in Sect. 5.2, the primitive operations can be derived from the type
graph and can be expressed as (parameterised) graph transformation rules. The ques-
tions stated above pertain to the relation between primitive operations and inconsis-
tency detection rules. They can be answered by computing all sequential dependencies
between both types of rules. In fact, they give us an alternative view on the induced
inconsistencies that have been discussed in Sect. 4.1.

In response to question (1), consider the left part of Fig. 10 as an example. It shows
all sequential dependencies between the Dangling Operation Reference inconsistency

Fig. 10. Sequential dependencies between primitive operations and inconsistencies. On the left,
we see all possible primitive operations that may potentially induce the Dangling Operation
Reference inconsistency. On the right, we see all possible inconsistencies that may be induced by
the addBehaviour primitive operation.
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and the primitive operations. We see that the inconsistency may be induced by different
types of primitive operations. Whenever one of the primitive operations is applied, a
new occurrence of the inconsistency may be introduced. For example, the inconsistency
may occur when the user adds a new behaviour link between a protocol state machine
and a class (addBehaviour), or when he links the message on a transition to an operation
belonging to some class (addReferredOp), and so on.

In a similar way, we can answer question (2) by computing all sequential depen-
dencies from a given primitive operation to all possible inconsistencies. This analysis
results in the set of all possible, specified inconsistencies induced by the given primitive
operation. As an example, the right part of Fig. 10 shows all sequential dependencies
between the addBehaviour primitive operation and the inconsistency detection rules.
The addBehaviour operation links a class to a statemachine. This operation can cause
the occurrence of a Dangling Operation Reference and a Abstract Statemachine incon-
sistency. This set of inconsistency detection rules is complete with respect to the given
primitive operation and the specified inconsistency detection rules.

6 Discussion and Future Research

Based on our experience with AGG’s critical pair analysis, we can provide several recom-
mendations. First, the algorithm sometimes reports false positives, which can be avoided
by resorting to more clever solutions. Second, we found the analysis of transformation
dependencies to be quite instrumental as a debugging mechanism, either to detect flaws
in the type graph, or in the graph transformations themselves. We have encountered many
such situations while carrying out the experiment reported on in this article.

Recently an integration of AGG within the Eclipse Modeling Framework (EMF) has
been proposed [12]. Our work can directly benefit from this approach by integrating our
ideas into the EMF environment. Once this will be achieved, we will be able to validate
our approach on real industrial UML models. Such a validation will not significantly
affect the results of this paper, but it will provide us with crucial information about the
actual set of inconsistencies and resolution rules that are most frequently used in prac-
tice. Lange et al. have performed some empirical studies on the types of inconsistencies
that commonly occur in industrial practice and how these can be resolved [13,14,15].

With respect to the issues of scalability, we are aware of the performance limitations
of the AGG tool when applied to large models. While some of these limitations are
inherent to the computational complexity of graph matching, we are convinced that the
performance of the proposed approach can increase significantly, and can be made to
scale up to large industrial projects, if an efficient implementation of a graph transfor-
mation tool were to be used. We have gathered some initial evidence to confirm our
conviction. In [16] we performed a comparison of critical pair analysis in AGG and in
a tool (called Condor) based on logic programming. We found that the latter approach
resulted in a performance improvement of several orders of magnitude. A similar ex-
periment was carried out by Hanh-Missi Tran (University of Lille, France) to compare
AGG with logic programming approach for the purpose of evolving software archi-
tecture models. Again, a performance difference of several orders of magnitude was
observed.
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The fact that the resolution of one model inconsistency may introduce other incon-
sistencies is a clear sign of the fact that inconsistency resolution is a truly iterative and
interactive process. One of the challenges is to find out whether the resolution process
will ever terminate. It is easy to find situations that never terminate (cf. the presence
of cycles in the dependency graph). Therefore, the challenge is to find out under which
criteria a given set of resolution rules (for a given set of model inconsistencies and a
given start graph) will terminate. Recent work that explores such termination criteria for
model transformation based on the graph transformation formalism has been presented
in [17].

Another challenge is to try and come up with an optimal order of resolution rules. For
example, one strategy could be to follow a so-called “opportunistic resolution process”,
by always following the choice that corresponds to the least cognitive effort (i.e., the
cognitive distance between the model before and after resolution should be as small as
possible). How to translate this into more formal terms remains an open question. A
second heuristic could be to avoid as much as possible resolution rules that give rise to
induced inconsistencies.

We may also investigate research by the database community on automatic repairs
on inconsistent databases [18]. This corresponds to a fully automated resolution process
that intends to come to a final consistent model (by resolving all inconsistencies accord-
ing to some predetermined formal strategy) that is as “semantically” close as possible
to the original model. The strategy to be used depends on the precise notion of seman-
tics that is used. A possible way to provide fully automated resolution of inconsistent
models based on graph transformation may be achieved by relying on the GROOVE
tool [19]. It can be used to explore the state space of all possible consistent models that
can be obtained from an inconsistent one by applying a sequence of resolution rules.

Not all kinds of model inconsistencies and resolution rules can be expressed easily
as graph transformation rules. For example, behavioural inconsistencies are also dif-
ficult to express in a graph-based way. Because of this, our tool has been developed
in an extensible way, to make it easier to plug-in alternative mechanisms for detecting
inconsistencies, such as those based on the formalism of description logics [20,21]. Of
course, it remains to be seen how this formalism can be combined with the formalism
of graph transformation, so that we can still benefit from the technique of critical pair
analysis.

7 Related Work

Egyed [22] presents a very efficient approach to detect inconsistencies in UML models.
This instant consistency checking mechanism scales up to large, industrial UML mod-
els. On the other hand, the inconsistency resolution process is not yet supported by this
approach.

An approach that is very related to ours is reported in [23]. A logic rule-based ap-
proach (as opposed to a graph-based one) is proposed to detect and resolve inconsis-
tencies in UML models, using the Java Rule Engine JESS. The architecture of this
tool provides a Rule Engine Abstraction Layer, making it possible to replace their rule
engine by a graph-based one.
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The main novelty of our approach compared to the previously mentioned ones, is the
use of the mechanism of critical pair analysis to detect mutual inconsistencies between
rules that can be applied in parallel, as well as sequential dependency analysis between
resolution rules.

There have been several attempts to use graph transformation in the context of in-
consistency management. In [24], distributed graph transformation is used to deal with
inconsistencies in requirements engineering. In [25], graph transformations are used to
specify inconsistency detection rules. In [26] repair actions are also specified as graph
transformation rules. Again, the added value of our approach is the ability to analyse
conflicts and dependencies between detection and resolution rules.

8 Conclusion

In this article we addressed the problem of model inconsistency management. Resolu-
tion of inconsistencies occurring in or between models is supported in an iterative way
by looking for model inconsistencies, and by proposing resolutions to remove these in-
consistencies. Interactive tool support for this iterative inconsistency resolution process
can benefit from a formal foundation. This article proposed a tool based on the underly-
ing formalism of graph transformation. Given a formal specification of the UML model
as a graph (and the metamodel as a type graph), model inconsistencies and their reso-
lutions are specified as graph transformation rules. Furthermore, critical pair analysis is
used to identify and analyse induced inconsistencies (i.e., new inconsistencies that are
introduced after resolving existing inconsistencies), conflicting resolutions (i.e., apply-
ing a resolution invalidates other resolution rules) and cycles in the resolution process.
Using critical pair analysis we can also compute all primitive operations that are needed
to resolve a particular inconsistency, and all primitive operations that potentially induce
a particular inconsistency. The results of these different analyses gives us the opportu-
nity to reason about formal properties such as completeness, and allow us to improve
tool support for the resolution process.
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criteria for model transformation. In: Proc. Fundamental Aspects of Software Enginering
(FASE). Volume 3442 of LNCS., Springer-Verlag (2005) 49–63

18. Wijsen, J.: Database repairing using updates. Trans. Database Systems 30 (2005) 722–768
19. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Proc. AGTIVE

2003. Volume 3062 of LNCS., Springer-Verlag (2004) 479–485
20. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logics to main-

tain consistency between UML models. In: UML 2003 - The Unified Modeling Language.
Volume 2863 of LNCS., Springer-Verlag (2003) 326–340

21. Van Der Straeten, R.: Inconsistency Management in Model-driven Engineering. An Ap-
proach using Description Logics. PhD thesis, Department of Computer Science, Vrije Uni-
versiteit Brussel, Belgium (2005)

22. Egyed, A.: Instant consistency checking for the UML. In: Proc. Int’l Conf. Software Engi-
neering, ACM (2006) 381–390

23. Liu, W., Easterbrook, S., Mylopoulos, J.: Rule-based detection of inconsistency in UML
models. In: Proc. UML 2002 Workshop on Consistency Problems in UML-based Software
Development, Blekinge Insitute of Technology (2002) 106–123

24. Goedicke, M., Meyer, T., , Taentzer, G.: Viewpoint-oriented software development by dis-
tributed graph transformation: Towards a basis for living with inconsistencies. In: Proc.
Requirements Engineering 1999, IEEE Computer Society (1999) 92–99

25. Ehrig, H., Tsioalikis, A.: Consistency analysis of UML class and sequence diagrams using
attributed graph grammars. In: ETAPS 2000 workshop on graph transformation systems.
(2000) 77–86

26. Hausmann, J.H., Heckel, R., Sauer, S.: Extended model relations with graphical consistency
conditions. In: Proc. UML 2002 Workshop on Consistency Problems in UML-Based Soft-
ware Development. (2002) 61–74



Coalgebraic Modal Logic in COCASL
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Abstract. We propose to extend the algebraic-coalgebraic specification
language CoCasl by full coalgebraic modal logic based on predicate
liftings for functors. This logic is more general than the modal logic
previously used in CoCasl and supports the specification of a variety of
modal logics, such as graded modal logic, majority logic, and probabilistic
modal logic. CoCasl thus becomes a modern modal language that covers
a wide range of Kripke and non-Kripke semantics of modal logics via the
coalgebraic interpretation.

Introduction

The algebraic-coalgebraic specification language CoCasl [14] combines the al-
gebraic specification of functional aspects of software with the specification of
reactive systems following the emerging coalgebraic paradigm [21]. As a spec-
ification logic, modal logic plays an analogous role for coalgebra as equational
logic does for algebra; in particular, modal logic respects the behavioural encap-
sulation of the state space.

Two notions of modal logic have been included in the original design of Co-
Casl. The first one treats observer operations that have a non-observable re-
sult sort as modalities (here, the sorts in the local environment are regarded
as observable). The second notion of modal logic is based on a specific way of
extracting modalities from datatypes with equations.

Recently, a more general formulation of coalgebraic modal logic, based on a
notion of predicate lifting, has been proposed by Pattinson [18]. A substantial
body of theory has developed for this generic logic, including results on duality,
expressivity, decidability, and complexity [22, 9, 23, 26]. We hence propose to
extend the CoCasl design by support for coalgebraic modal logic, including
polyadic modal operators needed in order to obtain expressiveness in the gen-
eral case, in particular for composite functors [22]. To this end, it is convenient
to promote functors, which feature only implicitly in the original design of Co-
Casl, to first-class citizens. Specifically, functors can be defined as algebraic or
coalgebraic datatypes, with the dependency on type arguments recorded explic-
itly; such functors can then be used as signatures for coalgebraic types. Predicate
liftings for given functors can be specified without polymorphic axioms using a
classification result from [22]; one thus obtains customized modal logics for user-
defined system types. In particular, it becomes possible to specify e.g. graded or
probabilistic modal operators.
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1 Coalgebraic Modal Logic

We briefly recapitulate the basics of the coalgebraic interpretation of modal logic.

Definition 1. [21] Let T : Set → Set be a functor, referred to as the signature
functor, where Set is the category of sets. A T -coalgebra A = (X, ξ) is a pair
(X, ξ) where X is a set (of states) and ξ : X → TX is a function called the
transition function. A morphism (X1, ξ1) → (X2, ξ2) of T -coalgebras is a map
f : X1 → X2 such that ξ2 ◦ f = Tf ◦ ξ1.

We view coalgebras as generalised transition systems: the transition function
assigns to each state a structured set of successors and observations.

Coalgebraic modal logic in the form considered here has been introduced
as a specification logic for coalgebraically modelled reactive systems in [18],
generalising previous results [8, 20, 10, 17]. The coalgebraic semantics is based
on predicate liftings; here, we consider the notion of polyadic predicate lifting
introduced in [22].

Definition 2. An n-ary predicate lifting (n ∈ N) for a functor T is a natural
transformation

λ : Qn → Q ◦ T op,

where Q denotes the contravariant powerset functor Setop → Set (i.e.
Q(f)(A) = f−1[A]), and Qn refers to its n-fold cartesian product.

A coalgebraic semantics for a modal logic consists of a signature functor and
an assignment of a predicate lifting to every modal operator; we write [λ] for a
modal operator that is interpreted using the lifting λ. Thus, a set Λ of predicate
liftings for T determines the syntax of a modal logic L(Λ). Formulae φ, ψ ∈ L(Λ)
are defined by the grammar

φ ::= ⊥ | φ ∧ ψ | ¬φ | [λ] (φ1, . . . , φn),

where λ ranges over Λ and n is the arity of λ. Disjunctions φ ∨ ψ, truth �, and
other boolean operations are defined as usual.

The satisfaction relation |=C between states x of a T -coalgebra C = (X, ξ)
and L(Λ)-formulae is defined inductively, with the usual clauses for the boolean
operations. The clause for the modal operator [λ] is

x |=C [λ](φ1, . . . , φn) ⇐⇒ ξ(x) ∈ λ([[φ1]]C , . . . , [[φn]]C)

where [[φ]]C = {x ∈ X | x |=C φ}. We drop the subscripts C when C is clear
from the context.

Remark 3. Coalgebraic modal logic exhibits a number of pleasant properties
and admits non-trivial metatheoretic results, e.g. the following.

1. States x and y in T -coalgebras A and B, respectively, are called behaviourally
equivalent if there exists a coalgebra C and morphisms f : A → C, g : B →
C such that f(x) = g(y). It is easy to see that coalgebraic modal logic
is adequate, i.e. invariant under behavioural equivalence. Thus, coalgebraic
modal logic automatically ensures encapsulation of the state space.
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2. Conversely, it is shown in [18, 22] that if T is ω-accessible and Λ is separating
in the sense that t ∈ TX is determined by the set {(λ, A) ∈ Λ × P(X) |
t ∈ λ(A)}, then L(Λ) is expressive, i.e. if two states satisfy the same L(Λ)-
formulae, then they are behaviourally equivalent.

3. As a consequence of 1., classes of coalgebras restricted by modal axioms have
final models [11, 14].

4. The standard duality theory of modal logic, including the theory of ultra-
filter extensions and bisimulation-somewhere-else, generalizes to coalgebraic
modal logic [9].

5. Coalgebraic modal logic has the finite and shallow model properties [23, 26].
6. There are generic criteria for a coalgebraic modal logic to be (effectively)

decidable [23, 26].

Coalgebraic modal logic subsumes a wide variety of modal logics (recall that
a modal operator � is called monotone if it satisfies �(p∧ q) → �p, and normal
if it satisfies (�p ∧ �q) ↔ �(p ∧ q)).

Example 4. [18, 3, 23]

1. Let P be the covariant powerset functor. Then P-coalgebras are graphs,
thought of as transition systems or Kripke frames. The predicate lifting λ
defined by

λX(A) = {B ⊂ X | B ⊂ A}

gives rise to the standard box modality � = [λ]. This translates verbatim to
the finitely branching case, captured by the finite powerset functor Pfin .

2. Coalgebras for the functor N = Q ◦ Qop (composition of the contravariant
powerset functor with itself) are neighbourhood frames, the canonical se-
mantic domain of non-normal logics [2]. The coalgebraic semantics induced
by the predicate lifting λ defined by

λX(A) = {α ∈ N(X) | A ∈ α}

is just the neighbourhood semantics for � = [λ].
3. Similarly, coalgebras for the subfunctor UpP of N obtained by restricting N

to upwards closed subsets of Q(X) are monotone neighbourhood frames [5].
Putting � = [λ], with λ as above, gives the standard interpretation of the
�-modality of monotone modal logic.

4. It is straightforward to extend a given coalgebraic modal logic for T with
a set U of propositional symbols. This is captured by passing to the functor
T ′X = TX ×P(U) and extending the set of predicate liftings by the liftings
λa, a ∈ U , defined by

λa
X(A) = {(t, B) ∈ TX × P(U) | a ∈ B}.

Since λa is independent of its argument, we can write the propositional
symbol a in place of [λa]φ, with the expected meaning.



130 L. Schröder and T. Mossakowski

5. The finite multiset (or bag) functor BN maps a set X to the set of maps
b : X → N with finite support. The action on morphisms f : X → Y is
given by BNf : BNX → BNY, b 
→ λy.

∑
f(x)=y b(x). Coalgebras for BN are

directed graphs with N-weighted edges, often referred to as multigraphs [4],
and provide a coalgebraic semantics for graded modal logic (GML): One
defines a set of predicate liftings {λk | k ∈ N} by

λk
X(A) = {b : X → N ∈ BN(X) |

∑
a∈A b(a) > k}.

The arising modal operators are precisely the modalities ♦k of GML [4],
i.e. x � ♦kφ iff φ holds for more than k successor states of x, taking into
account multiplicities. Note that �k, defined as ¬♦k¬, is monotone, but fails
to be normal unless k = 0. A non-monotone variation of GML arises when
negative multiplicities are admitted.

6. The finite distribution functor Dω maps a set X to the set of probability
distributions on X with finite support. Coalgebras for the functor T = Dω ×
P(U), where U is a set of propositional symbols, are probabilistic transition
systems (also called probabilistic type spaces [7]) with finite branching degree.
The natural predicate liftings for T consists of the propositional symbols
(Item 4 above) together with the liftings λp defined by

λp(A) = {P ∈ DωX | PA ≥ p}
where p ∈ [0, 1] ∩ Q. The induced operators are the modalities Lp = [λp] of
probabilistic modal logic (PML) [12, 7], where Lpφ reads ‘φ holds in the next
step with probability at least p’.

7. Let T be the functor given by TX = Q(X) → P(X) (with P the covariant
powerset functor and Q the contravariant powerset functor). Then a T -
coalgebra is a standard conditional model [2]. The strict implication operator
⇒ of conditional logic is interpreted using the binary predicate lifting λ
defined by

λX(A, B) = {f : Q(X) → P(X) | f(A) ⊂ B}.

The following simple fact gives immediate access to all predicate liftings that
a functor admits, and will serve as a means of specifying predicate liftings in
CoCasl without introducing polymorphic axioms.

Proposition 5. [22] For n ∈ N, n-ary predicate liftings for T are in bijective
correspondence with subsets of T (2n), where 2 = {�, ⊥}. The correspondence
works by taking a predicate lifting λ to λ2n(π−1

1 {�}, . . . , π−1
n {�}) ⊆ T (2n),

where πi : 2n → 2 is the i-th projection, and, conversely, C ⊆ T (2n) to the
n-ary predicate lifting λC defined by

λC
X(A1, . . . , An) = (T 〈χA1 , . . . , χAn〉)−1[C]

for Ai ⊆ X (i = 1, . . . , n), where angle brackets denote tupling of functions and
χA : X → 2 is the characteristic function of A ⊆ X.

(We refrain from defining the logic using subsets of T (2n) instead of predicate
liftings, as the latter convey a better intuition of how a given modal operator is
interpreted.)
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2 Algebraic-Coalgebraic Specification

The algebraic-coalgebraic specification language CoCasl has been introduced
in [14] as an extension of the standard algebraic specification language Casl.
For the basic Casl syntax, the reader is referred to [1, 15]. We briefly explain
the CoCasl features relevant for the understanding of the present work using
the example specification shown in Fig. 1.

spec Unit =
sort Unit
• ∀x , y : Unit . x = y

spec Stream [sortElem] given Unit =
cotype Stream ::= (hd :?Elem; tl :?Stream) | (stop :?Unit)

spec FairStream [sortElem] given Unit =
op c : Elem
then cofree { Stream [sortElem] with Stream �→ FairStream

then
• 〈tl∗〉hd = c

}
end

Fig. 1. Specification of a fairness property

Dually to Casl’s datatype construct type, CoCasl offers a cotype construct
which defines coalgebraic process types; it is formally proved in [14] that one
can indeed define for each cotype signature a functor T such that models of
the cotype correspond to T -coalgebras. A simple example is the cotype of fair
streams defined in Fig. 1. We first introduce a singleton type Unit. Then, a loose
type of possibly terminating streams over a (loosely interpreted) sort Elem is
declared using a cotype with two alternatives. Like a type declaration, a cotype
declaration is essentially just a short way of declaring operations; specifically, the
declaration of Stream produces observer operations hd : Stream →? Elem, tl :
Stream →? Stream, and stop : Stream →? Unit, with additional conditions on
the definedness of observers which guarantee that models of the cotype Stream
are essentially coalgebras for the functor λX. Elem × X + 1 (i.e. deterministic
output automata with output in Elem).

CoCasl’s modal logic now turns the observers hd and stop into flexible
constants, as they have result sorts which stem from the local environment and
hence are regarded as observable, while the observer tl has a result sort which
is regarded as non-observable and hence induces modalities [tl] and 〈tl〉. The
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modality [tl ] is interpreted as ‘for the tail of the stream, if any, it is the case that
. . . ’, while 〈tl〉 means ‘the stream has a tail, which satisfies . . . ’. The latter is
stronger, as it enforces that the tail is defined.

Modalities can be starred; this refers to states reachable by a finite number
of iterated applications of an observer. The specification FairStream of Fig. 1
hence expresses that all fair streams will always eventually output a c (before
they possibly end). Here, the ‘always’ stems from the fact that by stating the
modal formula, we mean that it holds for all elements of type FairStream.

The keyword cofree in the specification FairStream further restricts the
models to those that are final (over their Elem-part). In particular, one has a
coinduction principle for FairStream, and all possible behaviours are realised
by the cotype FairStream — i.e. up to isomorphism, the cotype FairStream
consists of all streams satisfying the modal axiom.

This form of specification only supports (coalgebras for) polynomial functors.
A more general form of coalgebras involves structured observations: e.g. for non-
deterministic automata, in each state, a set of successor states can be observed.
In Fig. 2, finite sets are specified using a free type. Note that without structured
observers, there can only be one or no successor state for a given state, while
now we have a finite set of successor states. Hence, the modal logic needs to
be adapted accordingly. As before, each observer with a (possibly structured)
non-observable result leads to a modality. Since the observer next is additionally
parameterized over an input sort In, we have modalities [next(i)] and 〈next(i)〉
for i : In. The interpretation of these modalities is ‘after reading i in the current
state, for all successor states, it is the case that . . . ’ and ‘after reading i in the
current state, for some successor state, it is the case that . . . ’, respectively. E.g.
the specification of non-deterministic automata in Fig. 2 uses these operators to
express a form of liveness property stating that if an input i is disabled in some
state, then there exists a sequence of tau-transitions that will enable i.

spec LiveNonDeterministicAutomata =
sort In
op tau : In
sort State
then free %modal{

type Set ::= {} | { }(State) | ∪ (Set ; Set)
op ∪ : Set × Set → Set ,

assoc, comm, idem,unit {} }
then cotype State ::= (next : In → Set)
• ∀i : In • [next(i)]false ⇒ 〈next(tau)∗〉〈next(i)〉 true

end

Fig. 2. Specification of ‘live’ non-deterministic automata using modalities for struc-
tured observations
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The example can be recast in the framework of section 1 as follows. The
annotation %modal leads to extraction of the finite powerset functor Pω, and
the cotype leads to a functor

T X = Pω(X)In

On this functor, a canonical predicate lifting is induced via

nat(Q, Q ◦ T op) ∼= Q(T 2) � T {�}.

The modal logic for structured observations described above is just the modal
logic induced by this predicate lifting.

While this form of modal logic for CoCasl is syntactically rather lightweight,
it leads to the need of carrying around distinguished presentations (constructors
and equations) of datatypes in the signatures (and these presentations need to be
preserved by signature morphisms). Moreover, the interaction between basic and
structured specifications indicated by the annotation %modal is rather implicit
and hard to grasp. Most severely, the approach can only handle specific predicate
liftings, and hence has only limited expressiveness.

3 Functors and Liftings in COCASL

Motivated by the above considerations, we extend CoCasl by explicit notions
of functors and modalities. Both these concepts will, in the extended language,
give rise to named components of signatures.

Like in modern higher order functional programming languages such as
Haskell [19], functors constitute type constructors that enrich the type system
generated by the signature. The semantics of functors requires that these type
constructors are really the object parts of functors, although the action of the
functor on maps is not directly syntactically available as higher order functions
are not a basic CoCasl language feature (function types and higher order func-
tions may however by specified by the user; cf. [14]).

A functor is introduced by the keyword functor. It must be defined as either
an initial datatype or a final process type. Thus, the definition takes one of the
two standard forms

functor F (X ) = free { type F (X ) ::= . . . }

or

functor F (X ) = cofree { cotype F (X ) ::= . . . }

where the omitted parts consist of a single type or cotype declaration, respec-
tively, optionally followed by declarations of additional operation and predicate
symbols, as well as
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– in the case of a free type declaration, Horn axioms constraining the type
as well as the additional operations (typically providing recursive definitions
for the latter)

– in the case of a cofree cotype declaration, modal axioms over the cotype F (X)
and corecursive definitions of the additional operations and predicates.

Note that the use of modal axioms in the second case does not constitute a cir-
cularity: F (X) is defined as the final coalgebra for a previously declared functor,
for which modalities have already been defined. Additional operations and pred-
icates introduced along with the definition of the functor are uniquely defined
due to the freeness or cofreeness constraint, respectively.

The format of functor definitions has been chosen in such a way that, given
any interpretation of the functor argument X as a set A, the type F (X) has
an interpretation which is determined uniquely up to isomorphism and depends
functorially on A; thus, F induces an endofunctor [[F ]] on the category of sets.
In the case of a free datatype, this functor takes a set A to the interpretation of
F (X) in the initial model of the defining specification interpreting X as A, and
correspondingly with initial models replaced by fibre-final models in the case of
a cofree cotype (cf. [14] for the definition of fibre finality).

At the level of the static semantics, functor definitions such as the above
have the effect of extending the signature by a type constructor (F in the above
examples), to which the corresponding basic specification in curly brackets is ex-
plicitly associated. The latter, in turn, has an enlarged local environment where
the functor argument (X in the above examples) appears as an additional sort
symbol; of course, the functor argument is hidden in the subsequent specification.

In the model semantics, the functor definition as such does not have any
effect at all — there is no need for recording an explicit interpretation of
the functor in the models, as the interpretation is already determined (up to
isomorphism) by the remaining parts of the model. This interpretation shows
up, however, as soon as the functor is actually used. As functors are regarded
as type constructors, we have a type formation rule producing for every type
s and every functor F a type F (s), whose interpretation is obtained from the
interpretation of s by applying the functor [[F ]] induced by F as described above.
A typical use of functors is in types of observers for cotypes; in particular, a
coalgebra X for a functor F is declared by writing

cotype X ::= (next : F (X ))

The second place where functors may appear is in definitions of predicate
liftings. Unary predicate liftings are introduced by means of the keyword
modality in the form

modality m : F = {C • φ}

This declares m to be a unary predicate lifting for F , defined as corresponding
to the subset {C | φ} of F2 under Prop. 5. Polyadic modalities may be declared
in the form
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modality m(
n placeholders

︷ ︸︸ ︷
; . . . ; ) : F = {C • φ}

The above declares m to be an n-ary predicate lifting for F , corresponding under
Prop. 5 to the subset {C | φ} of F (2n).

There is a certain amount of additional syntax available for purposes of defin-
ing the properties φ above. To begin, the local variable mentioned by φ (C in
the above example) need not (and in fact cannot) be provided with a type, be-
ing implicitly of type F (2n); moreover, within the scope of φ, further variables
without explicit typing may be used (in quantifications) that represent values
of type 2 = {⊥, �}. Finally, the elements of 2 may be explicitly referred to as
terms true and false (in standard Casl, true and false are formulas). All this
serves to encapsulate the mention of 2 within definitions of liftings, rather than
introducing a type of truth values globally, in an effort to keep the language
extension as non-invasive as possible.

CoCasl’s original implicit mechanism for defining modalities is kept in the
extension: by writing

modality m : F canonical

m is defined to be the predicate lifting for F corresponding to the subset F{�}
of F2.

The modal operator induced by a predicate lifting m for T and an observer
operation f : X → TX of a cotype is standardly denoted as [m; f ]. As this
is frequently not the desired notation in particular cases, we provide syntax
annotations that allow replacing the standard syntax with rather arbitrary
notation. Explicitly, the annotation

modality m( ; . . . ; ) : F = {C • φ} %syntax [m; ; . . . ; ] = L

introduces the mixfix identifier L, containing n placeholders corresponding to
the arguments of [m; ; . . . ; ] in the given order, as an alternative notation for
the n-ary modal operator [m; ; . . . ; ]. (Of course, the annotation may be used
with canonical as well.)

In this general setting, iterated modal operators [m; f∗] are defined as greatest
fixed points [m; f∗]φ = νX. φ∧ [m; f ]X . More precisely, the semantics is defined
as the union of all fixed points, which yields a greatest fixed point if the modal op-
erator [m; f ] is monotone. The dual operator is defined by 〈m; f∗〉 ≡ ¬[m; f∗]¬.

Remark 6. A basic motivation for introducing functors and modalities as dedi-
cated language features is to avoid the need for extending the language by shallow
polymorphism as e.g. in the higher order Casl extension HasCasl [25]. The
crucial point here is that polymorphic axioms complicate the semantics [24]. It is
for this reason that functors and predicate liftings are provided with mandatory
definitions, since loosely specified functors or liftings would give rise to implicit
polymorphic functoriality or naturality axioms, respectively. Similarly, defining
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predicate liftings via the correspondence of Prop. 5 serves the purpose of avoiding
polymorphic definitions. Finally, the possibility of including auxiliary operations
and predicates in the format for functor definitions provides a workaround re-
placing later polymorphic definitions of such entities. If the later introduction of
polymorphic operations or predicates is desired by the user, e.g. for purposes of
specification structuring, then these may (resp. have to) be emulated by means
of parametrized specifications.

Remark 7. Like the original version of CoCasl’s modal logic, functors and
modal operators induced by predicate liftings may be regarded as a syntactic
sugaring of basic CoCasl. Functors may be replaced by parametrized specifica-
tions of the associated type constructor and the action on morphisms (which has
two formal type parameters), and their application by explicit instantiations. In
order to code the modal operator [m; f ] induced by a predicate lifting m for
T and an observer f : X → TX of a cotype X (the general case of mutually
recursive cotypes (Xi) with observers f : Xi → TXj and polyadic liftings works
analogously), one specifies 2 as a free datatype and the predicate type Q(X) as
a cofree cotype with observer is in : Q(X) × X → 2, correspondingly for the
predicate type Q(T 2). The definition of m then induces an element of Q(T 2).

Remark 8. The mechanism for defining functors described above is, as the ex-
amples given in the next section will show, quite flexible. It does have its limita-
tions, however; in particular, it does not cover definitions of functors Set → Set
that come about as composites of functors involving a third category, notably
composites of the form Set → Setop → Set. This includes e.g. the neighbour-
hood frame functor and the standard conditional model functor (Examples 4.2
and 4.7). A more general mechanism for functor definitions would include ex-
plicit definitions of the action of the functor on morphisms, something we are
trying to avoid for reasons given in Remark 6.

4 Example Specifications

We now illustrate the specification of modal logics in CoCasl by means of
a number of examples, some of them formal specifications of logics given in
Example 4.

To begin, Fig. 3 shows a specification of standard modal logic, interpreted over
finitely branching Kripke frames. The latter are specified as coalgebras for the
finite powerset functor, called Set in the specification. Recursive functions and
predicates needed at later points are defined along with the recursive datatype
Set(X) itself; in particular, the subset predicate is needed for the definition of
the modality all in Fig. 3, and the elementhood predicate is provided for later
use in Fig. 5. The modality all is the box modality of standard modal logic; it
arises from the predicate lifting taking a set A ⊆ X to the set Set(A) ⊂ Set(X),
which corresponds according to Prop. 5 to the subset {∅, {�}} of Set(2).
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spec FiniteBranching =
functor Set(X ) = free {

type Set(X ) ::= {} | { }(X )
op ∪ : Set(X ) × Set(X ) → Set(X ), assoc, comm, idem,unit {}
preds ⊆ :Set(X ) × Set(X )

ε : X × Set(X )
. . . %% inductive definitions of ⊆, ε
}

modality all : Set = {C • C ⊆ {true}}; %syntax [all ; ] = [ ]

Fig. 3. Specification of finitely branching modal logic

The modality all may alternatively be defined as a canonical modality
corresponding to the subset Set({�}) = {∅, {�}} of Set(2):

modality all : Set canonical %syntax [all ; ] = [ ]

It may be used in specifications such as

free type Bit ::= 0 | 1
cotype Node ::= (next : Set(Node); out : Bit)
• out = 0 ⇒ [next ] out = 1

(with explicit mention of all suppressed as prescribed by the syntax annota-
tion) declaring a (loose) transition system with bit-labelled nodes, where all the
successors of nodes labelled 0 are labelled 1.

Using cofree cotypes, one can also specify the full class of Kripke frames,
without a bound on branching, as the semantics of standard modal logic; the
corresponding specification in shown in Fig. 4. Here, the functor Set denotes
the full powerset functor, specified as a cofree cotype observed via a boolean
elementhood function. Note that generally, observer declarations with functional
result type actually declare an uncurried function, in this case ε : Set(X) ×
X → Bool.

spec UnboundedBranching =
free type Bool ::= F | T
functor Set(X ) = cofree {cotype Set(X ) ::= ( ε : X → Bool) }
modality all : Set = {C • false ε C = F}; %syntax [all ; ] = [ ]

Fig. 4. Specification of modal logic with unbounded branching
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As an example of a binary modality, a standard modality for the composite of
the finite powerset functor and the squaring functor is specified in Fig. 5. This
functor is well suited for the modelling of processes that may fork into independent
subprocesses, e.g. for purposes of higher order communication [27] or mobility [6];
it does not admit an expressive set of unary modalities [22], so that the use of a
binary modality cannot in general be avoided. The specification in Fig. 5 imports
the definition of the finite powerset functor from Fig. 3; the composition of this
functor with the squaring functor Pair is realized by means of a free datatype
PairSet(X) encapsulating the type Set(Pair (X)). The binary modality bAll is
determined by the binary predicate lifting taking a pair (A, B) of subsets of X to
the subset {C | (a, b) ∈ C =⇒ a ∈ A∧ b ∈ B} of PairSet(X), which corresponds
under Prop. 5 to the subset {C | ((a, b), (c, d)) ∈ C =⇒ a = � ∧ d = �} of
PairSet(22) (where we identify 22 with 2 × 2). The modality bAll can be used in
specifications such as

free type Bit ::= 0 | 1
cotype Proc ::= (branch : PairSet(Proc); out : Bit)
• out = 0 ⇒ [branch] (out = 1 , out = 0 )

declaring a (loose) cotype Proc of forking processes with bit-labelled states,
where all left (right) children of states labelled 0 are labelled 1 (0).

spec Fork = FiniteBranching then
functor Pair(X ) = free {type Pair(X ) ::= pair(X ; X )}
functor PairSet(X ) = free {

type PairSet(X ) ::= pairSet(Set(Pair(X )))
pred ε : Pair(X ) × PairSet(X )
vars z : Pair(X );A : Set(Pair(X ))
• z ε pairSet(A) ⇔ z ε A

}
modality bAll( ; ) :PairSet = {C • ∀a, b, c, d •

pair((a, b), (c, d)) ε C ⇒ a = true ∧ d = true}
%syntax [bAll ; ] = [ ]

Fig. 5. A binary modality for the ‘forking functor’ λX. P(X × X)

As an illustration of a coalgebraic semantics which is more clearly distinct
from standard Kripke semantics, a specification of graded modal logic, inter-
preted over coalgebras for the bag functor, is shown in Fig. 6. The bag functor
is obtained, like the finite powerset functor, from basic operations representing
empty, singletons, and union, without however imposing idempotence on the
union operator. The modal operators of GML are induced by predicate liftings
λk as in Example 4.5. The correspondence of Prop. 5 takes λk to the subset
{n� + m⊥ | n > k} of Bag(2).
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The following example specification of a bag-branching bit-labelled process
type expresses that there are always more successors labelled 1 than successors
labelled 0:

free type Bit ::= 0 |1
cotype M ::= (next : Bag(M ); out : Bit)
var n : Nat
• 〈n,next〉out = 0 ⇒ 〈n + 1 ,next〉out = 1

Note how quantification over indices of modal operators increases expressivity;
indeed, the above formula corresponds to the formula M (out = 1 ) of majority
logic [16], which is not standardly expressible in graded modal logic.

spec GradedModalLogic =
functor Bag(X ) = free {

type Bag(X ) ::= {} | { }(X )
op ∪ : Bag(X ) × Bag(X ) → Bag(X ),

assoc, comm,unit {}
op count : Bag(X ) × X → Nat
. . . %% recursive definition of count
}

var n : Nat
modality more(n) : Bag = {C • count(C , true) > n}

%syntax [more(n); ] = 〈n; 〉

Fig. 6. Specification of Graded Modal Logic

We conclude with a few examples illustrating the interpretation of starred
modalities:

– Over the cotype Node specified above, [next∗] corresponds to the CTL op-
erator AG, i.e. [next∗]φ holds in a state if all states reachable from it in
finitely many steps satisfy φ. The dual 〈next∗〉 of [next∗] corresponds to the
CTL operator EF .

– If we introduce a separate diamond operator for Set

modality ex : Set = {C • ¬(false ε C )}
then [ex; next] corresponds to the CTL operator EG, with dual AF .

– Over the bag-branching cotype M defined above, [more(2)∗]φ is satisfied in
a state x : M iff φ holds everywhere on some bag-branching substructure
of M with root x in which every node has at least 2 children, counting
multiplicities.
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5 Conclusion

We have proposed a syntactic integration of recent forms of coalgebraic modal
logic into CoCasl. The main device is a syntax that makes functors and pred-
icate liftings explicit, replacing less flexible implicit mechanisms in the origi-
nal CoCasl design. This leads to both a cleaner (static) semantics of CoCasl
specifications and to increased expressiveness: in the resulting coalgebraic modal
logic, one can now express graded modal logic, majority logic, and probabilistic
modal logic, as well as binary modalities. We have illustrated these concepts by
means of extensive example specifications.

Once these extensions are incorporated into the CoCasl tool support, coal-
gebraic modal logic will be embedded into an extensive network of related spec-
ification languages and tools, in particular theorem provers, within the Bremen
heterogeneous tool set Hets [13]. This will also provide a suitable framework
for experimental implementations of generic decision procedures for coalgebraic
modal logic [26].
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[14] T. Mossakowski, L. Schröder, M. Roggenbach, and H. Reichel. Algebraic-co-
algebraic specification in CoCasl. J. Logic Algebraic Programming, 67:146–197,
2006.

[15] P. D. Mosses, editor. Casl Reference Manual, volume 2960 of LNCS. Springer,
2004.

[16] E. Pacuit and S. Salame. Majority logic. In Principles of Knowledge Representa-
tion and Reasoning, KR 04, pages 598–604. AAAI Press, 2004.

[17] D. Pattinson. Semantical principles in the modal logic of coalgebras. In Theoretical
Aspects of Computer Science, STACS 01, volume 2010 of LNCS, pages 514–526.
Springer, 2001.

[18] D. Pattinson. Expressive logics for coalgebras via terminal sequence induction.
Notre Dame J. Formal Logic, 45:19–33, 2004.

[19] S. Peyton-Jones, editor. Haskell 98 Language and Libraries — The Revised Report.
Cambridge, 2003. Also: J. Funct. Programming 13 (2003).
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Abstract. SVtL is the core of a slicing-based verification environment
for UML statechart models. We present an overview of the SVtL software
architecture. Special attention is paid to the slicing approach. Slicing
reduces the complexity of the verification approach, based on removing
pieces of the model that are not of interest during verification. In [18]
a slicing algorithm has been proposed for statecharts, but it was not
able to handle orthogonal regions efficiently. We optimize this algorithm
by removing false dependencies, relying on the broadcasting mechanism
between different parts of the statechart model.

1 Introduction

The industry strives for a reliable, high-quality and time-efficient UML design
methodology. Formal verification methods support the design of a wide-range of
systems and advertise these benefits, yet the industry remains skeptical [4, 7];
verifying systems is still done by experts with limited support from automated
verification tools. That makes the verification process often error-prone.

The SVtL (System Verification through Logic) framework addresses these
problems and supports a “provably correct design” methodology. The frame-
work enhances the commercial UML tool Rhapsody, by adding a slicing-based
verification functionality. This approach to verification advocates software de-
signers to apply formal methods for improving the quality of systems whose
behavior is designed using UML statechart models. To be of interest in practice,
the tool fulfills the following requirements:

– The framework provides tool support for verification-in-the-large. It allows
both a thorough verification of systems that are modelled as multi-threaded
applications and huge statechart designs as it integrates slicing as an ab-
straction (reduction) approach.

– The tool bridges the semantic gap between statecharts and verification logic;
and thus hides away “scary” logical aspects.
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– It delivers interaction and assurance in a form fit for designers. Designers
use the tool without a training effort in the field of formal verification.

SVtL bridges the gap between Rhapsody and the model checker Cadence SMV
(CaSMV [12]) as Fig. 1 illustrates. Developers use Rhapsody in J 1 to define the
(multi-threaded) behavior of systems as a set of UML statechart diagrams. The
Property Writing Assistant offers specification patterns [3] to guide developers in
defining system requirements. The framework imports the model and performs
the necessary transformations and simplifications (Parser, Slicer, Generator) to
retrieve a semantically equivalent verification model. It also translates the re-
quirements into CaSMV temporal logic formulas. The tool verifies the properties
by spawning the model checker as an external process. If the temporal formula
fails to hold, the GUI visualizes the verification failure in the context of UML
statechart diagrams since the error traces on the CaSMV level are hardly read-
able for the designers working at the UML level. Designers either change the
requirement or the behavioral model and resume the verification.

SVtL Verification Tool

Rhapsody in J

Rhapsody

XMI
Toolkit

UML Statechart

Diagrams

UML Statechart Diagrams

XML Data File

XMI ->  EHA
(Parser)

EHA
EHA -> Sliced EHA

(Slicer)

Sliced EHA -> CaSMV
(Generator)

GUI
CaSMV

Executor

Property Writing
Assistant

LTL/CTL
formula

Verification Model

CaSMV File

CaSMV

Model Checker

CaSMV

Counterexample

Fig. 1. Functionality of SVtL

Outline of the paper. In the next section we describe a multi-threaded behavioral
model, which will be used to explain the slicing principle of SVtL. Section 3
introduces two slicing algorithms that are explored in the sections thereafter.
Section 4 emphasizes on slicing a single statechart. The definitions presented
are concentrating on the given example (for the full description we refer to [10]).

1 Available from http://www.ilogix.com/homepage.aspx.

http://www.ilogix.com/homepage.aspx
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Section 5 elaborates the slicing principles for a multi-threaded behavioral model.
They are based on an extension of the happens-before relation to collaborating
statecharts. Section 6 considers the thread-run-to-completion semantics as un-
derlying semantics for the verification model of the multi-threaded behavioral
model. Section 7 shortly refers to the equivalences of the models used in the
verification process.

Related Tools. There are several tools for automated verification of UML stat-
echart models [5, 14, 16], but they place restrictions on the characteristics of
the multi-threaded behavioral model. The most innovative characteristic of the
SVtL framework is that it is the first verification tool capable to handle huge
designs due to the integration of a slicing approach. Therefore the slicing-based
verification technology is considered to be the strength of SVtL.

2 The Multi-threaded Behavioral Model

In this paper we propose a new slicing technique in the context of the verification
of concurrent multi-threaded models. In general, the problem is known to be
undecidable [17]. Based on communication using locks, Kahlon and Gupta [8]
show that model checking threads for LTL properties becomes feasible. Our
slicing technique proceeds along similar lines.

A simple example of a multi-threaded behavioral model comes in a washing
machine. As the machine runs through its washing cycle, the android Marvin2

carries out other tasks in the household. In terms of UML, both the washing
machine and Marvin are interacting active (concurrent) objects. The washing
machine contains a water tank and an electrical heater. These components are
passive (sequential) objects since they execute one after the other. Due to the
presence of active objects, we acquire a multi-threaded design. Each tread of
control contains at most one active object, and allows to include an arbitrary
number of passive objects in the group (Fig. 2). SVtL allows that both active
and passive (“sequential”) objects of the model can be reactive, i.e. statechart
diagrams specify their behaviors. Verification tools like [5, 14, 16] only allow
active objects to be reactive which definitely restricts the complexity of a realistic
design.

Let us zoom in on a simplified statechart diagram of the washing machine
depicted in Fig. 3. Each washing cycle consists of several activities as visualized
in the concurrent region WashingCycle. Marvin can configure the program mode
(behavior of the concurrent region Mode) at any time prior to the start of a wash
cycle. The program mode dictates the wash, rinse and dry times. At the moment
Marvin starts a wash cycle (transition t1), a lamp is blinking. The lamp stops
blinking when the wash is done (behavior depicted in region Lamp). Note that
Marvin is also responsible for refilling the soap tank. The event evSoapEmpty
(entry action of state GetSoap) triggers a signal Marvin can react on whenever
it is convenient.
2 Marvin is the paranoid android of the “The Hitchhiker’s Guide to the Galaxy”.
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Thread of Control 1

WashingMachine

Heater WaterTank

Thread of Control 2

Marvin

Fig. 2. Example of a Multi-Threaded Behavioral Model

Standby

entry/filling = content_soap

GetSoap

t1: evStart / ^evLampOn

entry/^itsWaterTank.evGetWater

GetWater

t2: [gotSoap()] / ^evSoapEmpty

Washing

t3: evGotWater

Rinsing

t4: [isWashed()]

DrySpin

t5: [isRinsed()]

Off On

t7: evLampOn

t8: evLampOff

Idle SoapAdded

t11: evSoapEmpty / content_soap = full

Normal Quick

t10: evQuick

t9: evNormal

On

Mode

Lamp

Soap

WashingCycle

Done

t6: [isDried()] / ^evLampOff

Fig. 3. Statechart of the Washing Machine

Figure 4 shows the behavior of the water tank. This component is activated
by the washing machine by sending out the event evGetWater (entry action
of state GetWater). The water tank sends the event evGotWater back to the
washing machine when the water level has reached a certain limit.

3 The Power of the Tool: Slicing

Model checking is only feasible if the input model is small; the smaller the
better. Slicing simplifies the verification of behavioral models with respect to
a property of interest. It reduces the input model while keeping the relevant
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Empty

Filling...

t12: evGetWater

Full

t13: [waterLevel >= 100] / ^itsMachine.evGotWater

Draining...

t14: evDrain

t15: [waterLevel <= 0] / ^itsMachine.evDrained

Fig. 4. Statechart of the Water Tank

elements for verification at hand. As such SVtL is capable to verify larger UML
statechart input models. SVtL exploits two slicing algorithms: an algorithm to
slice a single statechart (e.g. the statechart of Fig. 3), and a parallel algorithm to
slice complex multi-threaded models (e.g. the model of Fig. 2). The verification
property is satisfied by the reduced behavioral model if and only if it is satisfied
by the full model [18, 10].

4 Slicing a Single Statechart

The slicer of SVtL is based (i.e. optimized and extended) on the slicing algorithm
presented by Wang et al. [18]. They present a slicing method to reduce a single
statechart based on dependence relations between states and transitions. We
recall two of them [18].

Definition 1 (Parallel Data Dependence, →pdd). A state u or transition
r is (directly) parallel data dependent on a “concurrent” state v or transition t
(u →pdd v or u →pdd t, or r →pdd v, or r →pdd t) iff some output variables of
the latter are used in the input of the other.

Definition 2 (Synchronization Dependence, →sd). A state u or transition
r is (directly) synchronization dependent on a “concurrent” state v or transition
t (u →sd v or u →sd t, or r →sd v, or r →sd t) iff some events generated by the
latter are used as trigger events of the other.

Example 1. In the statechart of the washing machine (Fig. 3), GetSoap →pdd t11
due to the shared variable content−soap. t11 →sd t2 since the trigger event of
t11 is generated by the action list of t2.

Suppose we want to verify the property F(WashingCycle=GetSoap ∧ filling
�= ∅): “eventually we reach the state GetSoap with a non-empty soap dosis.”.
Obviously, regions Mode and Lamp are irrelevant during the verification of this
property; reaching the state GetSoap and acquiring soap is independent both
of the program (mode) followed and of the fact the lamp is either blinking or
not. Therefore, [18] slices these regions correctly away. Unfortunately, during the
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construction of its slice, [18] uses a false dependency: GetSoap →pdd t11. Con-
sequently, region Soap will be added to the final slice. But this is a wrong way
of working as there is no possible execution where the content−soap = full
statement (i.e. action of t11) has an influence on filling = content−soap (i.e.
action of GetSoap). Figure 5 motivates that the latter always executes before the
first. SVtL detects and removes such false dependencies; it avoids adding region
Soap to the slice; it returns smaller slices than [18] and thus fastens verification
even more. For a comparison between [18] and SVtL we refer to [10].

Standby t1 GetSoap t2

Synch on evSoapEmpty

t11Idle

Fig. 5. Execution Timeline

Getting Rid of False Dependencies like GetSoap →pdd t11. Basically,
SVtL uses the following rule while searching for false parallel data dependencies:

x �pdd y iff x →so y

where →so is a Lamport-like [9] happens-before relation on statecharts i.e. SVtL
ensures to take the execution chronology into account during the detection of a
parallel data dependency. For our example SVtL finds GetSoap �pdd t11 iff it
can derive that GetSoap →so t11. The happens-before relation →so is defined
as a combination of two other relations: the statechart concurrent order relation
(Sect. 4.2) and the statechart sequential order (Sect. 4.3).

4.1 Preliminary Definitions

Let F = {WashingCycle, Mode, Lamp, Soap} be the set of sequential automata
the statechart is composed of. Let A = (σA, s0

A, δA) ∈ F be a sequential automa-
ton with σA the set of states of A; s0

A the initial state of A, and δA the set of
transitions of A.

Definition 3 (Mutilated Automaton of A Ending in x). Let A ∈ F and
x ∈ (σA ∪ δA). The mutilated automaton of A ending in x, denoted as MAEx,
is the maximal (near)3sub-automaton of A ending in x (x included), i.e. x can
be reached from each state and each transition of MAEx.

3 Note that MAEx and MASx are not complete automata if x belongs to δA.
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Example 2. The mutilated automaton of WashingCycle (Fig. 3) ending in tran-
sition t2 (MAEt2) is given by the set {Standby, t1, GetSoap, t2}.

Definition 4 (Predecessors of an Element (predelement)). Let A ∈ F and
x ∈ (σA ∪ δA). Let MAEx be the mutilated automaton of A ending in x. Let
SCCx (⊆ MAEx) be a strongly connected component of A containing x. Then,
the set of all predecessors of element x is defined as follows:

predx :=
{

MAEx \ {x} if SCCx = ∅
MAEx \ SCCx otherwise

Example 3. For all possible executions of the orthogonal region WashingCycle,
the predecessor set of t2 is given by the set predt2 = {Standby, t1, GetSoap}.
The predecessor set of state Off (region Lamp) is empty as MAEOff = {Off,
On, t7, t8} = SCCOff .

In a similar way, the successors of an element (state/transition) can be defined.
We refer to [10] for further details.

4.2 Concurrent Order

SVtL uses a concurrent order relation, denoted as C→so, to represent the relative
timing of concurrent states/transitions in a single statechart. Such a relation im-
mediately follows from the internal broadcasting (synchronization) mechanism
used in statecharts (see also Fig. 5); i.e. SVtL directly derives an order relation
between those concurrent states/transitions that communicate through events
(messages), simply because “a message cannot be delivered before its sending”.
In [10] we have defined several concurrent order relations, but for the given exam-
ple we only need to define the order relation between two concurrent transitions
formally:

Definition 5. The relation C→so on states and transitions of concurrent au-
tomata is a relation satisfying the following condition: if A, B ∈ F are con-
current regions, r ∈ δA, t ∈ δB, and if r →sd t (Definition 2) then t

C→so r, for
all possible parallel executions of A and B.

Example 4. t2 C→so t11 since t11 →sd t2 (Fig. 3). As long as the trigger event of
t11 has not been generated by t2, t11 never has the chance to be fired.

4.3 Sequential Order

SVtL only manages to derive that GetSoap →so t11 if it also can rely upon a
sequential order relation (see also Fig. 5). The sequential order, denoted as S→so,
is formally defined as follows:

Definition 6. The relation S→so on states and transitions of an automaton is
a relation satisfying the following condition: if A ∈ F, x ∈ (σA ∪ δA) then (1)
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predx
S→so x4, (2) x

S→so succx
5, for all possible executions of A i.e. no prede-

cessor (successor) ever has the chance to be a successor (predecessor) as well,
no matter how A transitions between states.

Example 5. All the elements of predt2 = {Standby, t1, GetSoap} are guaranteed
to execute before t2 (Fig. 3).

4.4 Happens-Before on Statecharts

We define the relation →so= ( S→so ∪ C→so)+ to be our happens-before relation
on statecharts. With such a relation SVtL establishes a useful ordering among
states and transitions of the statechart. The transitivity [10] of this order relation
imposes a trivial but interesting property due to definitions of predecessors and
successors.

Property 1. Let A, B ∈ F be concurrent regions, x ∈ (σA ∪ δA), y ∈ (σB ∪ δB).
The relation →so on states and transitions of concurrent automata is a binary
relation with the following property: if x →so y then (1) predx →so y, (2)
x →so succy, and (3) predx →so succy.

SVtL now applies this property on Example 4 which results in predt2 →so t11
and thus {Standby, t1, GetSoap} →so t11. It has derived that GetSoap →so t11,
so it safely concludes that GetSoap never can be parallel data dependent on
t11. The slicer of SVtL reduces the number of parallel dependencies used in slic-
ing statecharts with concurrent states, and consequently avoids that irrelevant
information (e.g. region Soap) is added to the final slice.

5 Slicing the Multi-threaded Behavioral Model

As far as we know, slicing a multi-threaded model like ours never has been con-
sidered in the literature. The most straightforward way to slice such models is to
reduce the model to a single statechart. We have some arguments to avoid this.

– In a multi-threaded design model components are allowed to either communi-
cate asynchronously with signal events, or synchronously with call events, or
even both. If statecharts communicate synchronously, the sender is blocked
until the receiver has returned an answer. The UML semantics forbids that
the elements (states, transitions) of a single statechart communicate through
synchronous calls because both of the re-entrance problem as well as the
blocking mechanism.

– To build a single statechart for the multi-threaded design model, each thread
will correspond to a separate concurrent region. But how does the behavior
of these regions look like as a thread groups together a collection of reactive
objects (i.e. each object has its behavior expressed in a different statechart)?

4 ∀y ∈ predx : y
S→so x

5 ∀y ∈ succx : x
S→so y
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– And if we manage to build a single statechart, then there is still the fact the
slicer will add to much irrelevant information to the final slice. This follows
from some dependence relations (which we don’t have mentioned here) and
some steps of the slicing algorithm (see [10]).

– Finally, we lose the object-oriented structure of the model. Side-effect: the
transparency of the verification gets lost.

The above arguments strongly prevent us from generating a single statechart
diagram. Our goal is now to define a parallel slicing algorithm on the given
multi-threaded model so that in the final slice, irrelevant information comes
along as little as possible.

5.1 Global Dependence Relations

To slice a collection of statechart diagrams, SVtL must address the possible inter-
actions between the statecharts, as they imply new dependence relations. Stat-
echarts either communicate through global variables or global events. A global
variable does not belong to any statechart in particular and can be accessed from
any other statechart. Any statechart can modify global variables and any part
(state/transition) of a statechart may depend on it. This results in a global data
dependence (Definition 7). Obviously, something similar can be said of global
events resulting in a global synchronization dependence (Definition 8). However,
the synchronous call, as a global event, also implies a global data dependence
due to the return value that is needed to de-block the sender of the call. Note
that this corresponds to the locking conditions as presented in [8].

Definition 7 (Global Data Dependence, →gdd). Let S1, S2 be two different
statecharts of the input model. A state u ∈ S1 or transition r ∈ S2 is (directly)
global data dependent on a state v ∈ S2 or transition t ∈ S2 (u →gdd v or
u →gdd t, or r →gdd v, or r →gdd t) iff

– some global output variables of the latter are used in the input of the other
– or some call events (triggers) of the latter are sent out by the other.

Definition 8 (Global Synchronization Dependence, →gsd). Let S1, S2 be
two different statecharts of the input model. A state u ∈ S1 or transition r ∈ S1
is (directly) global synchronization dependent on a state v ∈ S2 or transition
t ∈ S2 (u →gsd v or u →gsd t, or r →gsd v, or r →gsd t) iff some global events
generated by the latter are used as trigger events of the other.

Example 6. t12 →gsd GetWater (Fig. 3- 4) since the trigger event of t12 is global
event that is generated at the moment GetWater is entered.

Note that the multi-threaded behavioral model has other global dependence
relations but we omit to mention them here.



SVtL: Tool Support for Verifying Sliced Hierarchical Statecharts 151

5.2 A Directed Graph

SVtL does not use the global dependence relations to slice the set of statecharts
in parallel. Instead, it uses these global relations to connect the statecharts to
each other in such a way that it obtains a graph-like structure. It is sufficient
to draw a global directed edge for each global dependence relation. With these
edges we devise an elegant parallel slicing algorithm (Section 5.3). The edges are
formally defined as follows:

Definition 9 (Global Data Edge, dEdge(source, target)). Let S1, S2 be two
different statecharts of the input model. There exists a global data edge from
x ∈ S1 to y ∈ S2 (dEdge(x,y)) iff x →gdd y.

Definition 10 (Global Synchronization Edge, sEdge(source, target)). Let
S1, S2 be two different statecharts of the input model. There exists a global syn-
chronization edge from x ∈ S1 to y ∈ S2 (sEdge(x,y)) iff x →gsd y.

Example 7. There exist a global synchronization edge between t12 and Get −
Water, notation sEdge(t12, GetWater), since t12 →gsd GetWater (see Ex. 6).

5.3 The Parallel Algorithm

Once having constructed the graph, SVtL is able to slice the collection of stat-
echarts independently. This means that in the worst case, SVtL has to execute
three slicing algorithms in parallel: a slicer for the statechart of the washing ma-
chine (Fig. 3), a slicer for the statechart of the water tank (Fig. 4), and finally
a slicer for the statechart of Marvin.

Suppose we want to verify the property F (Watertank = Filling): “eventu-
ally the water tank is filled with water”. Such a property starts a first slicing
algorithm (Water Tank Slicer) to possibly reduce the statechart of the water
tank. SVtL adds transition t12 to the slice, since we have to be able to reach
state Filling, which is of course also part of the final slice. At this point, SVtL
initializes a second slicing algorithm (Washing Machine Slicer), as there exists
a global synchronization edge between t12 and GetWater (see Ex. 7). Thus,
global edges cause the adding information into the slice of other statecharts.
Both slicers continue working in parallel. The water tank slicer is not able to
remove some elements of the statechart, while the washing machine slicer re-
duces the statechart to a sequential statechart consisting of the hierarchical
state WashingCycle. Note that SVtL didn’t allow to let Marvin play a role here,
so its statechart will not belong to the final slice.

Remark. The happens-before relation on a single statechart can easily be lifted
to a happens-before relation on a set of collaborating statecharts. This reduces
the amount of global dependence relations (and consequently the number of
global directed edges) so that SVtL retrieves smaller slices.
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6 The Verification Model: Underlying Semantics

Once SVtL has reduced the input model, it translates this sliced model into
the input language of the model checker. Thereafter, SVtL instructs the model
checker to verify the property. A necessary first step towards the construction of
the verification model is the definition of a formal semantics of the behavioral
model yielding finite Kripke structures. This issue is addressed in many research
papers [1, 2, 15, 11] , but the suggested approaches are unsatisfying with respect
to multi-threaded applications; they cover only statechart diagrams in isola-
tion. Intuitively, the Kripke structure for a multi-threaded behavioral model is
a combination of the Kripke structures that we can build for each statechart
separately.

Example 8. The Kripke structure for the model given in Fig. 2 is a combination
of the Kripke structures belonging to the WashingMachine, the Heater, the Tank,
and Marvin respectively.

UML defines the semantics of a statechart as a run-to-completion step (RTC-
step) semantics. Such a semantics states that an event can only be dispatched
when the processing of the previous event has been completed. When target-
ing multi-threaded applications, we have to lift the semantics to a thread-run-
to-completion step semantics, while still allowing that each object belonging
to the thread performs a run-to-completion algorithm. Due to the presence of
several objects, an event is either dispatched from the call queue (qc, synchro-
nous calls) or the signal queue (qe, asynchronous signals) and sent to the stat-
echart of the object that responds to the message; which is of course unique.
Thereafter, the target statechart is repeatedly evaluated until a stable configu-
ration (no triggerless (ε-) transitions can be taken) is reached, i.e. it executes
an RTC-step. Only then, the event is fully consumed and the next event can
be dispatched, and possibly another statechart responds to the latter event.
Formally:

Definition 11 (STEP→ ). Let ‘last’ be the statechart to which an event is last
dispatched. Let ‘auto’ be one of the objects that became unstable (triggerless (ε-)
transitions can be taken) due to the progress made in ‘last’. Then, the transition
relation of a thread is defined as follows:

STEP→ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1. (
prog−→ε)last if (MaxET (C)dispatch(C)=ε)last �= ∅

2. (
prog−→ε)auto if (MaxET (C)dispatch(C)=ε)auto �= ∅

3.
prog−→qc[0] if MaxET (C)dispatch(C)=qc[0] �= ∅

4.
prog−→qe[0] if MaxET (C)dispatch(C)=qe[0] �= ∅

5. stut−→ otherwise

with MaxET (C) the set of maximal enabled transitions
with

prog−→ε: progress due to a triggerless transition
with

prog−→qc[0]: progress due to a synchronous call
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with
prog−→qe[0]: progress due to an asynchronous signal

with stut−→: lack of progress or exception, guarantees a total transition relation.

However, before serving a new event, the dispatcher needs to verify whether
there are other objects that became unstable due to the progress made in the
last evaluated statechart.

7 What About Model Equivalences?

Original Statechart Model ≡ Sliced Statechart Model. Slicing an EHA
H (= the behavioral model) with respect to a LTL (CTL) property ϕ should yield
a smaller residual EHA Hs that preserves and reflects the satisfaction of ϕ and
has as little irrelevant information as possible. In case of a LTLX

6 specification,
H and Hs have to be ϕ-stuttering equivalent [10]; while in case of a CTLX
specification, the models have to be ϕ-stuttering bisimular [10].

Sliced Statechart Model ≡ Kripke Model. Intuitively, a statechart model
is equivalent to a Kripke model if they have the same semantics i.e. if they
denote the same behavior. To verify the transformation, a semantics for both
the statechart model and the Kripke model with the same semantic domain is
required. An elegant way is to define the semantics as coalgebras [13, 6]. Conse-
quently, the proof of the behavioral equivalence is reduced to the construction of
a coalgebraic bisimulation relation between the statechart model and the Kripke
model.

8 Conclusion

The more complex systems of today require modeling methods and tools that
allow errors to be detected in the initial phases of development. This paper
has presented a prototype tool, SVtL, that enables the behavior of the system
expressed in UML to be verified in a completely automatic way based on model
checking and slicing. This paper has also shortly discussed the correctness of the
verification approach covered by SVtL.

SVtL carries out a formal logical framework in which to verify UML statechart
diagrams. The advantage of such an approach is that at the one hand software
developers can use UML to specify and to describe the software, and on the
other hand, they benefit from a “well-known” efficient verification method.

As there exist already similar UML verification tools that act as usable front-
ends to existing model checkers, SVtL is the first tool that integrates a slic-
ing step while verifying UML statechart models. Its strength, the slicing-based
verification environment, makes the verification approach applicable to multi-
threaded UML statechart models. We believe that SVtL is valuable enough to

6 LTLX (CTLX): LTL (CTL) without the next X operator.
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encourage the use of formal methods by software engineers. SVtL makes the
software development process more effective, as it can be repeatedly activated
to verify behavioral designs.

Currently we are working on an evaluation over one or more “real-life” case
studies to prove the usefulness of the slicing algorithm.
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Abstract. We present a model theoretic analysis of synchronization of
deterministic CSP processes. We show that there is co-amalgamation
within the indexed coalgebraic reconstruction of CSP developed in [14].
Synchronization, however, can not be characterized in terms of co-amalga-
mation. We show that synchronization can be described, nevertheless, as
a pullback construction within the corresponding fibred algebraic set-
ting. Analyzing and generalizing the transition between the indexed and
the fibred setting we show that for a wide range of signature embeddings
ϕ : Σ1 → Σ2 the Σ1-algebras, traditionally considered as parameter
algebras, can be considered also as signatures, instead.

1 Introduction

We present a further outcome of a more comprehensive program of “Dualizing
Universal Algebra” [7,11,13,14,15]. Having in mind that structuring and modu-
larization in Algebraic Specifications is based on amalgamation [3] we have been
looking this time for a dualization of amalgamation. And, since synchronization
is one of the most important structuring mechanisms in system specification and
process calculi, we have also investigated the relation between co-amalgamation
and synchronization.

An investigation of co-amalgamation has to be based on a coalgebraic expo-
sition of system specifications. Therefore we chose for a first analysis the coal-
gebraic reconstruction of (deterministic) CSP [6] presented in [14].

For deterministic CSP, as for many other approaches to system specifications,
sets of action/input symbols can be considered as signatures. And we can de-
fine coreduct functors and co-amalgamation within the corresponding indexed
coalgebraic setting developed in [14]. Co-amalgamation, however turns out to
be a very poor mechanism (in the same way as amalgamation is poor in case of
one-sorted algebras) and, moreover, synchronization can not be characterized in
terms of co-amalgamation.

Analysing the situation more thouroughly from an algebraic viewpoint we
made two observations worth communicating:

– The possibility to take sets of input symbols as signatures is based on the
fact that for a wide range of signature embeddings ϕ : Σ1 → Σ2 the corre-
sponding forgetful functor Uϕ : PAlg(Σ2) → PAlg(Σ1) is a fibration.
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– Synchronization in CSP actually combines automata with idle actions and
can be described by a pullback construction within the fibred algebraic set-
ting that is obtained from the indexed coalgebraic setting by the
Grothendieck construction. In the pullback construction, however, the idle
actions don’t play the same rôle as they do it, for example, in CommUnity
[4]. That is, the pullback is not taken in the category of automata with idle
actions.

The paper presents an intermediate state of our research. We hope, however,
that it encourages also other computer scientists to analyse and to resolve the
conceptual mismatch pointed out in the paper.

2 Deterministic Partial Automata

For a first analysis and since there is no clean model theoretic interpretation of
non-deterministic CSP available (compare [14]) we restrict here to deterministic
CSP. The insight that has been elaborated in [14] is that deterministic CSP is
concerned with deterministic partial automata without output, i.e., with triples
M = (I, S, d) where I is a set of input symbols, S a set of states, and d : S×I →� S
a partial state transition function. Note that M can be considered as a partial
algebra with two sorts and one partial operation (compare [2,9,12]). It is well-
known that for any such partial function there is an equivalent curried version,
i.e., a total function λ(d) : S → [I →� S] with i ∈ dom(λ(d)(s)) iff (s, i) ∈ dom(d)
for all s ∈ S, i ∈ I, and with λ(d)(s)(i) = d(s, i) for all i ∈ dom(λ(d)(s)). In
such a way an automaton M can be described equivalently using the curried
version of d by the triple (I, S, λ(d)) .

The crucial point now is that those triples can be interpreted as I→-coalgebras
[7,11] (S, λ(d)) for the functor I→ : Set → Set where I→(S)

def
= [I →� S] is the

set of all partial functions from I into S and for any mapping f : S1 → S2 the
mapping I→(f) : [I →� S1] −→ [I →� S2] is defined by post-composition

I→(f)(g)
def
= g ; f for all partial functions g ∈ [I →� S1].

An I→-homomorphism f : (S1, β1) → (S2, β2) between two I→-coalgebras
(S1, β1) and (S2, β2) is a mapping f : S1 → S2 such that the following dia-
gram commutes

S1
β1 ��

f

��

[I →� S1]

; f

��
S2

β2 �� [I →� S2]

Note that for any g in [I →� S1] domI→(g) = dom(g ; f) = dom(g) since
f : S1 → S2 is a total mapping. That is, I→-homomorphisms preserve and
reflect definedness and correspond, in such a way, exactly to the closed homo-
morphisms [2,9,12] between the partial algebras given by the uncurried version
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of (S1, β1) and (S2, β2), respectively. The category of all I→-coalgebras and all
I→-homomorphisms will be denoted by DAI .

A basic result in [14] is that the deterministic CSP processes can be charac-
terized in terms of homomorphisms between coalgebras: A deterministic process
with alphabet I is defined to be any non-empty prefix closed subset P of I∗,
i.e., any subset P ∈ I∗ which satisfies the two conditions (i) 〈〉 ∈ P , and (ii)
(∀s, t ∈ I∗ : ŝ t ∈ P ⇒ s ∈ P ), where 〈〉 ∈ P denotes the empty trace (finite
sequence) and ŝ t the catenation of traces. We denote by DPI the set of all de-
terministic processes with alphabet I and define a I→-coalgebra HI = (DPI , nI)
with nI : DPI → [I →� DPI ] where for any P ∈ DPI the domain of nI(P ) is
denoted in [6] by P 0 and defined by dom(nI(P )) = {a | 〈a〉 ∈ P}. nI(P )(a) for
any a ∈ P 0 = dom(nI(P )) is denoted in [6] by P (a) and defined by nI(P )(a) =
{t | 〈a〉̂ t ∈ P}.

The Hoare-model HI is characterized uniquely, up to isomorphism, by the
property of being the final object in DAI : Let M = (S, β) be an I→-coalgebra.
We write s

a−→ s′ for a ∈ dom(β(s)) and β(s)(a) = s′. The process that can be
observed in M starting in a state s is given by

τM(s)
def
= {〈〉} ∪ {〈a1, . . . , an〉 | s

a1−→ s1
a2−→ · · · an−→ sn} ∈ DPI

In analogy to [10] τM(s) could be also called the language accepted by s.
It is easy to see that the mapping τM : S → DPI defines an I→-homomor-

phisms τM : M → HI and the uniqueness of τM can be shown straightforwardly
by induction on the length of traces (see [14]).

3 Concurrent Interaction and Synchronization

The concurrent interaction P ‖ Q of processes P and Q with different alphabets
I and J reflects, according to [6], lock-step synchronization. Only events that
are in both alphabets, i.e., in the intersection I ∩J , are required to synchronize.
However, events in the alphabet of P but not in the alphabet of Q may occur
independently of Q whenever P engages in them. Similarly, Q may engage alone
in events which are in the alphabet of Q but not of P . In such a way the
alphabet of the process P ‖ Q will be the union I ∪ J of the alphabets of the
component processes. To model this kind of synchronization we have to define a
map ‖ : DPI × DPJ → DPI∪J .

In Section 2 we have seen that the Hoare-model HK = (DPK , nK) is a final
K→-coalgebra. This allows us to define mappings from an arbitrary set S into
DPK coinductively [7,11]: We have only to construct a K→-coalgebra M = (S, β)
with carrier S. Then, by finality of HK , there exists a unique K→-homomorphism
τM : M → HK . The substantial problem is to design M in such a way that the
underlying mapping τM : S → DPK becomes the intended one.

The coinductive definition of the intended mapping ‖ : DPI × DPJ →
DPI∪J can be extracted from law 7, page 71 in [6]. The synchronization of HI

and HJ provides an (I ∪ J)→-coalgebra
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SI,J = (DPI × DPJ , synI,J : DPI × DPJ −→ [I ∪ J →� DPI × DPJ ])
as follows: For any pair of processes (P, Q) ∈ DPI × DPJ we define

dom(synI,J(P, Q))
def
= (dom(nI(P )) \ J) ∪ (dom(nI(P )) ∩ dom(nJ (Q))) ∪ (dom(nJ(Q)) \ I)

and for any c ∈ dom(synI,J(P, Q)) we set

synI,J(P, Q)(c)
def
=

⎧
⎨

⎩

(nI(P )(c), Q) , c ∈ dom(nI(P )) \ J
(nI(P )(c), nJ (Q)(c)), c ∈ dom(nI(P )) ∩ dom(nJ (Q))

(P, nI(Q)(c)) , c ∈ dom(nJ(Q)) \ I

The final (I ∪J)→-homomorphism τSI,J : SI,J → HI∪J provides the intended
concurrent interaction operator ‖ : DPI × DPJ → DPI∪J .

This coalgebraic reconstruction of synchronization in CSP makes it possible
to extend synchronization to arbitrary automata:

Definition 1. For partial automata M1 = (S1, β1 : S1 → [I →� S1]) and M2 =
(S2, β2 : S2 → [J →� S2]) we define the corresponding synchronized automaton

M1 ‖ M2 = (S1 × S2 , synM1,M2 : S1 × S2 −→ [I ∪ J →� S1 × S2] )

as follows: For each (s1, s2) ∈ S1 × S2 we define

dom(synM1,M2(s1, s2))
def
= (dom(β1(s1)) \ J) ∪ (dom(β1(s1)) ∩ dom(β2(s2))) ∪ (dom(β2(s2)) \ I)

and for any c ∈ dom(synM1,M2(s1, s2)) we set

synM1,M2(s1, s2)(c)
def
=

⎧
⎨

⎩

(β1(s1)(c), s2) , c ∈ dom(β1(s1)) \ J
(β1(s1)(c), β2(s2)(c)), c ∈ dom(β1(s1)) ∩ dom(β2(s2))

(s1, β2(s2)(c)) , c ∈ dom(β2(s2)) \ I

Now, it turns out that synchronization is indeed the semantical basis of concur-
rent interaction. That is, concurrent interaction of processes describes exactly
how the processes in an arbitrary synchronized automaton M1 ‖ M2 can be
reconstructed from the processes of the single automata M1 and M2. In other
words, synchronization of automata can be seen as a compatible semantical ex-
tension of concurrent interaction of processes as stated in

Theorem 1. For any partial automata M1 = (S1, β1 : S1 → [I →� S1]), M2 =
(S2, β1 : S2 → [J →� S2]), and any pair of states (s1, s2) ∈ S1 × S2 we have that

τM1‖M2(s1, s2) = τSI,J (τM1 (s1), τM2(s2)) = τM1(s1) ‖ τM2(s2)

Proof: We have to show that the following diagram commutes.

M1 ‖ M2 τM1×τM2

��

τM1‖M2

��
SI,J τSI,J

�� HI∪J
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Since ‖ : DPI ×DPJ → DPI∪J is given by the final (I ∪J)→-homomorphism
τSI,J : SI,J → HI∪J it suffices to show that the mapping τM1 × τM2 : S1 ×S2 →
DPI × DPJ constitutes a (I ∪ J)→-homomorphism τM1 × τM2 : M1 ‖ M2 →
SI,J (see [14] for a proof). Then the diagram commutes due to the uniqueness
of (I ∪ J)→-homomorphisms into HI∪J . �

4 Co-amalgamation

In universal coalgebra, abstract signatures are functors from Set into Set; thus,
abstract signature morphims are given by natural transformations [11]. That is, in
coalgebraic specification formalisms the corresponding category Sig of signatures
is usually assumed to be a subcategory of the functor category Func(Set,Set).
And the duality between coalgebras and algebras is reflected by the fact that we
have a covariantmodel functor mod : Sig → Cat instead of a contravariantmodel
functor mod : Sigop → Cat as in algebraic specifications.

The interesting point, in case of CSP, is that abstract signatures I→ : Set →
Set are represented by sets I and that maps φ : I → J represent the abstract sig-
nature morphisms, i.e., natural transformations φ→ : J→ ⇒ I→ in the opposite
direction, where the components

φ→(S)
def
= (φ; ) : [J →� S] → [I →� S]

are simply given by pre-composition. In other words: The assignments I �→ I→
and φ �→ φ→ define an embedding of Setop into Func(Set,Set). To have a basis
for dualizing amalgamation, however, we take as our category Sig of abstract
signatures instead of Set (or Setop) the subcategory of Func(Set,Set) given
by the image of this embedding.

Any abstract signature morphism φ→ : J→ ⇒ I→, i.e., any map φ : I → J ,
defines now a coreduct functor DAφ : DAJ → DAI with

DAφ(A, α)
def
= (A, φ; α( )) for any J→-coalgebra (A, α).

and DAφ(f)
def
= f for any J→-homomorphism f : (A, α) → (B, β)

A
α ��

f

��

[J →� A]

;f
��

φ; �� [I →� A]

;f
��

B
β �� [J →� B]

φ; �� [I →� B]

That is, we delete all transitions in the partial automaton (A, α) labelled by
elements in J \φ(I), and the other transitions are multiplied, if φ is non-injective,
and the labels are renamed according to φ.

It is straightforward to show that the assigments I→ �→ DAI and φ→ �→ DAφ

define a covariant model functor DA : Sig → Cat
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In algebraic specifications we have amalgamation if the corresponding con-
travariant model functor maps pushouts in Sig into pullbacks in Cat.

Dually we have, in our case, co-amalgamation if DA maps pullbacks in Sig
into pullbacks in Cat or, equivalently formulated, if a pushout diagram of maps
between sets of input symbols induces a pullback diagram in Cat:

L
φ ��

ψ

��

I

ψ̂

��

L→ I→
φ→�� DAL DAI

DAφ��

J
φ̂ �� K J→

ψ→

��

K→
φ̂→��

ψ̂→

��

DAJ

DAψ

��

DAK

DAφ̂��

DAψ̂

��

To prove that the diagram on the right is a pullback in Cat we have to show
that for any I→-coalgebra (A, α) and any J→-coalgebra (B, β) with DAφ(A, α) =
DAψ(B, β) there is a unique K→-coalgebra (C, γ) such that DAψ̂(C, γ) = (A, α)
and DAφ̂(C, γ) = (B, β). Due to the definition of the coforgetful functors, how-
ever, this means that (C, ψ̂; γ( )) = (A, α) and (C, φ̂; γ( )) = (B, β). That is, we
require A = B = C and this set has to be also the carrier of the L→-coalgebra
DAφ(A, α) = DAψ(B, β).

In such a way, the assertion we have to show reduces to: For any maps α :
C → [I →� C] and β : C → [J →� C] with φ; α( ) = ψ; β( ) : C → [L →� C] there
exists a unique γ : C → [K →� C] such that ψ̂; γ( ) = α and φ̂; γ( ) = β. This
assertion, however, is immediately ensured since the inner square in the diagram
below is a pullback in Set.

[I →� C]
φ;

������������

C

α

����������������������������

β
		��������������������������

γ �� [K →� C]
ψ̂;



����������

φ̂;

������������
[L →� C]

[J →� C]
ψ;

������������

That is, the co-amalgamated automaton (C, γ) has the same carrier as the two
given automata (C, α) and (C, β) and for any c ∈ C the corresponding one-step
transition γ(c) : K →� C is given by a compatible union of the two one-step
transisitions α(c) : I →� C and β(c) : J →� C due to the pushout property of
the inner square in the diagram below (bear in mind that the embedding of Set
into the category Par of partial maps preserves pushouts).

I

φ̂ ���
��

��
��

�
α(c)

����������������������

L

φ


��������

ψ ��	
		

		
		

K
γ(c) �� C

J

ψ̂









 β(c)

����������������������
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We is evident that co-amalgamation of automata is a very poor mechanism,
however, in the same way as amalgamation is poor in one-sorted algebraic speci-
fications where amalgamation just collects the different operations over the same
carrier from two given algebras.

Based on the pullback and pushout property, respectively, also homomor-
phisms between coalgebras can be co-amalgamated.

5 Synchronization and Co-amalgamation

If we look now at synchronization in view of co-amalgamation we can make the
simple observation that the diagram on the left below is a pushout diagram in
Set thus we obtain a corresponding induced pullback diagram in Cat.

I ∩ J
φ ��

ψ

��

I

ψ̂

��

DAI∩J DAI

DAφ��

J
φ̂ �� I ∪ J DAJ

DAψ

��

DAI∪J

DAφ̂��

DAψ̂

��

For the two automata in Definition 1 we will have, in general, DAφ(M1) �=
DAψ(M2), thus M1 and M2 can be not co-amalgamated.

The only relation between co-amalgamation and synchronization is that M1 ‖
M2 can be reconstructed by coamalgamation from its “components” DAψ̂(M1 ‖
M2) and DAφ̂(M1 ‖ M2). This, however, is true for any (I ∪ J)→-coalgebra
since the diagram on the right above is a pullback.

In the given coalgebraic setting we can even not relate M1 ‖ M2 with the
original automata M1 and M2: The projection π1 : S1 × S2 → S1, for example,
does not provide an I→-homomorphism from DAψ̂(M1 ‖ M2) into M1 since
definedness is preserved but not reflected,

S1 × S2
ψ̂;synM1,M2( )

��

π1

��

[I →� S1 × S2]

; π1

��
S1

β1 �� [I →� S1]

i.e., we have only π1; β1 ≥ ψ̂; synM1,M2( ); π1, where ≥ reflects the correspond-
ing partial order on [I →� S1].

An idea could be now to allow for those kind of “weak homomorphims” and
to try to characterize M1 ‖ M2 by a minimality property: There exists for
any (I ∪ J)→-coalgebra M, any weak I→-homomorphism f : DAψ̂(M) →
M1, and any weak J→-homomorphism g : DAφ̂(M) → M2 a unique weak
(I ∪ J)→-homomorphism h : M → M1 ‖ M2 such that DAψ̂(h); π1 = f and
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DAφ̂(h); π2 = g. Even this characterization, however, fails and the problem is
not the uniqueness but the existence of h.

6 Synchronization Algebraically

In the last section we have seen that synchronization can be not described in
terms of co-amalgamation, i.e., within the coalgebraic setting. Therefore we will
try to find in this section a characterization of synchronization within a partial
algebraic setting. Firstly, we have in this setting weak homomorphisms available
thus the problem concerning the projections can be resolved. Secondly, it allows
to fix the intuition that M1 ‖ M2 is a subautomaton of a product automaton. In
other formalisms as CommUnity [4], for example, synchronization is described
by a pullback (on the level of sets of actions). Thus we will look for a pullback
characterization of synchronization.

The coalgebraic setting in the first sections has been an “indexed setting” since
we have considered, in accordance with many other approaches, sets of actions as
signatures. To obtain the intended universal characterization of synchronization
we have to work, however, in a “flat setting”, i.e., we have to consider sets of
actions not as signatures but only as one of the two carrier sets of an automaton.
The relation between the “indexed setting” and the “flat setting” will be clarified
by a general result presented in the next section.

As already pointed out, a deterministic partial automaton A without output
can be seen as a partial AUT -algebra where AUT is a specification (signa-
ture) given by two sort symbols In and St and one operation symbol t with
arity t : St In → St. A (weak) AUT -homomorphism f : A → B between two
AUT -algebras A and B is given by two maps f(In) : A(In) → B(In) and
f(St) : A(St) → B(St) such that f(St) × f(In)(domA(t)) ⊆ domB(t) and
f(St)(A(t)(s, i)) = B(t)(f(St)(s), f(In)(i)) for all (s, i) ∈ domA(t). f is said
to be closed if f also reflects definedness, i.e., if we have (s, i) ∈ domA(t) iff
(f(St)(s), f(In)(i)) ∈ domB(t) for all (s, i) ∈ A(St) × A(In) (see [2,9,12]). By
PAlg(AUT ) (PAlgcl(AUT )) we denote the category of all partial AUT -algebras
and all (closed) AUT -homomorphisms.

A closer look at the obvious uncurried algebraic version of synchronization
makes apparent that we are not synchronizing simple automata but automata
with “idle actions”. That is, we have to consider a further specification AUT⊥
that extends AUT by a constant symbol e : → In and by an existence equation
(s : St, t(s, e) e= s) forcing the idle action to be always defined and not to change
the state of the automaton.

We have now a free functor F : PAlg(AUT ) → PAlg(AUT⊥) and instead
of the two original AUT -algebras A and B the corresponding two extended
AUT -algebras A⊥

def
= U(F (A)) and B⊥

def
= U(F (B)) are synchronized, where

U : PAlg(AUT⊥) → PAlg(AUT ) is the forgetful functor that forgets that the
idle action was designated as a constant. In such a way, the extended AUT -
algebra A⊥ will be given by
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– A⊥(St)
def
= A(St), A⊥(In)

def
= A(In) ∪ {⊥A},

– domA⊥(t)
def
= domA(t) ∪ A(St) × {⊥A} and for all (s, i) ∈ domA⊥(t) we

have

A⊥(t)(s, i)
def
=

{
A(t)(s, i), (s, i) ∈ domA(t)

(s, i) , i = ⊥A

All limits in PAlg(AUT ) exist and are obtained by constructing the corre-
sponding limits in Set. The product A⊥ × B⊥ of A⊥ and B⊥ is given by

– A⊥ × B⊥(St)
def
= A(St) × B(St), A⊥ × B⊥(In)

def
= A⊥(In) × B⊥(In),

– domA⊥ × B⊥(t)
def� domA⊥(t) × domB⊥(t) = (domA(t) ∪ A(St) × {⊥A}) ×

(domB(t) ∪ B(St) × {⊥B}) and for all ((s, s′), (i, i′)) ∈ domA⊥ × B⊥(t) we
have

A⊥ × B⊥(t)((s, s′), (i, i′))

def
=

⎧
⎪⎪⎨

⎪⎪⎩

(A(t)(s, i), s′) , (s, i) ∈ domA(t), i′ = ⊥B
(A(t)(s, i), B(t)(s′, i′)), (s, i) ∈ domA(t), (s′, i′) ∈ domB(t)

(s, B(t)(s′, i′)) , i = ⊥A, (s′, i′) ∈ domB(t)
(s, s′) , i = ⊥A, i′ = ⊥B

The definition of A⊥×B⊥ ensures that the projections π1(St) : A(St)×B(St) →
A(St), π1(In) : A⊥(In) × B⊥(In) → A⊥(St) and π2(St) : A(St) × B(St) →
B(St), π2(In) : A⊥(In) × B⊥(In) → B⊥(St) provide AUT -homomorphisms
π1 : A⊥ × B⊥ → A⊥ and π2 : A⊥ × B⊥ → B⊥, respectively.

The (uncurried version of) the synchronized automaton A ‖ B has the same
carrier as A⊥ ×B⊥. Moreover, the map em : A(In)∪B(In) → A⊥(In)×B⊥(In)
with

em(x)
def
=

⎧
⎨

⎩

(x, ⊥B), x ∈ A(In) \ B(In)
(x, x) , x ∈ A(In) ∩ B(In)

(⊥A, x), x ∈ B(In) \ A(In)

is injective and a comparison of the definitions above with Definition 1 makes
immediately evident that the two maps m(St)

def
= idA(St)×B(St) : A ‖ B(St) →

A⊥ × B⊥(St) and m(In)
def
= em : A ‖ B(In) → A⊥ × B⊥(In) define an AUT -

homomorphism m : A ‖ B → A⊥ × B⊥. That is, A ‖ B can be essentially
considered as an AUT -subalgebra of A⊥ × B⊥.

In view of pullbacks em can be described as the coequalizer of π1(In); φ and
π2(In); ψ in the following diagram

A(In) ∩ B(In) ∪ {⊥L, ⊥R} A⊥(In)
φ��

A⊥(In) × B⊥(In)

π1(In)
����������������

π2(In)

��



















B⊥(In)

ψ

��

A(In) ∪ B(In)

ψ̂

��

φ̂��

em

����������������
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where

φ(x)
def
=

⎧
⎨

⎩

⊥L, x ∈ A(In) \ B(In)
x , x ∈ A(In) ∩ B(In)

⊥R, x = ⊥A
and ψ(x)

def
=

⎧
⎨

⎩

⊥R, x ∈ B(In) \ A(In)
x , x ∈ A(In) ∩ B(In)

⊥L, x = ⊥B

thus the outer square in the diagram with ψ̂ = em; π1(In) and φ̂ = em; π2(In)
becomes a pullback diagram.

Note that the idle actions in A⊥ and B⊥ don’t play the same rôle w.r.t.
synchronization as they do it, for example, in CommUnity [4]. The crucial point
is that φ(⊥A) �= ψ(⊥B), thus an action a in A⊥(In) with φ(a) = φ(⊥A) can not
be combined freely with an arbitrary action b in B⊥(In) with ψ(b) = ψ(⊥B).
On the contrary, all actions have to synchronize. The idle action ⊥A is forced
to synchronize with an action in B⊥(In) \ A⊥(In), and ⊥B is correspondingly
forced to synchronize with an action in A⊥(In) \ B⊥(In). And this constraint
can be seen as the model-theoretic essence of lock-step synchronization in CSP.

To complete the pullback picture we have to extend A(In)∩B(In)∪{⊥L, ⊥R}
to an AUT -algebra such that φ and ψ, respectively, can be extended to AUT -
homomorphisms: We simply define a one-state total AUT -algebra L by

– L(St)
def
= {∗}, L(In)

def
= A(In) ∩ B(In) ∪ {⊥L, ⊥R},

– domL(t)
def
= L(St) × L(In) and L(t)(∗, i)

def
= ∗ for all i ∈ L(In).

and obtain AUT -homomorphisms f : A⊥ → L and g : B⊥ → L, respectively,
with f(In)

def
= φ, g(In)

def
= ψ and with f(St) : A⊥(St) → {∗}, g(St) : B⊥(St) →

{∗} the obvious total constant functions. Finally, we obtain, in such a way, the
intended pullback diagram in PAlg(AUT ) since m(St) = idA(St)×B(St) : A ‖
B(St) → A⊥×B⊥(St) is trivially the equalizer of π1(St); f(St) and π2(St); g(St)

L A⊥
f��

A⊥ × B⊥

π1

������������

π2

�����������

B⊥

g

��

A ‖ B

��

��

m

������������

Note that the above discussion concerning lock-step synchronization is reflected
by the fact that we construct a pullback in PAlg(AUT ) but not in PAlg(AUT⊥).

7 Signatures vs. Parameter Algebras

In section 4 we have insisted on abstract signature morphisms, i.e., on natural
transformations, since we have been interested in dualizing amalgamation. In
this section we want to relate the “indexed” coalgebraic setting and the “flat”
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algebraic setting, thus it is more appropriated now to consider instead the under-
lying maps between input sets. That is, we consider here the contravariant model
functor DA : Setop → Cat given by the assigments I �→ DAI and φ �→ DAφ.

Often the transition from an “indexed” to a “flat” setting can be described by
the so-called Grothendieck construction [1]. This construction applied to DA :
Setop → Cat provides a category Fl(DA) defined as follows:

– An object of Fl(DA) is a pair (I, (A, α)) where I is an input set and (A, α)
is an I→-coalgebra.

– An arrow (φ, f) : (I, (A, α)) → (J, (B, β)) in Fl(DA) has φ : I → J a map
and f : (A, α) → (B, φ; β( )) is a I→-homomorphism.

– If (φ, f) : (I, (A, α)) → (J, (B, β)) and (ψ, g) : (J, (B, β)) → (K, (C, γ)) then
the composition (φ, f); (ψ, g) : (I, (A, α)) → (K, (C, γ)) is defined by

(φ, f); (ψ, g)
def
= (φ; ψ, f ; g)

A
α ��

f

��

[I →� A]

;f
��

B
β ��

g

��

[J →� B]
φ; ��

;g

��

[I →� B]

;g

��
C

γ �� [K →� C]
ψ; �� [J →� C]

φ; �� [I →� C]

The construction induces a “projection” functor P : Fl(DA) → Set given by

P (I, (A, α))
def
= I and P (φ, f)

def
= φ, and a general property of the Grothendieck

construction is that this functor is a split fibration [1].
Every pair (I, (A, α)) can be equivalently represented as an AUT -algebra

A with A(In)
def
= I, A(St)

def
= A and A(t) : A(St) × A(In) → A(St) and

with a transition function defined by uncurrying α, i.e., (a, i) ∈ domA(t) iff

i ∈ dom(α(a)) and A(t)(a, i)
def
= α(a)(i) for all (a, i) ∈ domA(t). Moreover, any

arrow (φ, f) : (I, (A, α)) → (J, (B, β)) can be represented by a closed AUT -
homomorphism h : A → B between the corresponding AUT -algebras A and B
defined by h(In)

def
= φ and h(St)

def
= f . It is easy to see that this uncurrying

provides

Proposition 1. The categories and Fl(DA) and PAlgcl(AUT ) are isomorphic.

By Proposition 1 we have now a transition from the “indexed”’coalgebraic setting
into the (closed) “flat” algebraic setting. We have, however, even more. The “flat”
setting turns out to be actually a “fibred” setting since we have according to the
remarks above and Proposition 1 a split fibration P : PAlgcl(AUT ) → Set and
the fibration can be transformed into the indexed category DA : Setop → Cat
and vice versa.
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If we consider now Set as the category of all IN -algebras where IN is the
subsignature of AUT just given by the single sort In then we can formulate
the question: Under which conditions do we have the free choice to consider a
“structure” as a “signature” or as a “parameter algebra”?

Having a closer “algebraic” look at the definition of the coforgetful functors
DAφ we observe that the “new operation” in AUT has as result sort also a “new
sort” and not an old “parameter sort”. This observation is the key for answering
our question:

Theorem 2. Let be given signatures Σ1 = (S1, OP1), Σ2 = (S2, OP2) and an
embedding ϕ : Σ1 → Σ2 with s ∈ S2 \ ϕ(S1) for all op : s1 . . . sn → s in
OP2 \ ϕ(OP1). Then the forgetful functor U : PAlg(Σ2) → PAlg(Σ1) is a split
fibration.

Proof: We assume w.l.o.g. Σ1 ⊆ Σ2. Recall that for any Σ2-algebra A the
forgetful image U(A) is defined by U(A)(s) = A(s) for all s ∈ S1 and by
U(A)(op) = A(op) for all op ∈ OP1. Moreover, for any Σ2-homomorphism g :
A → B the Σ1-homomorphism U(g) : U(A) → (B) is defined by U(g)(s) = g(s)
for all s ∈ S1.

First, we have to define for any Σ1-homomorphism f : A1 → A2 and any
Σ2-algebra B with U(B) = A2 a cartesian arrow γ(f, B) : C(f, B) → B: For any
s ∈ S2 we set

C(f, B)(s)
def
=

{
B(s) , s ∈ S2 \ S1
A1(s), s ∈ S1

and

γ(f, B)(s)
def
=

{
idB(s), s ∈ S2 \ S1
f(s) , s ∈ S1

Further, we set for any op : s1 . . . sn → s in OP2

C(f, B)(op)
def
=

{
(γ(f, B)(s1) × . . . × γ(f, B)(sn)); B(op), op ∈ OP2 \ OP1

A1(op) , op ∈ OP1

In case op ∈ OP1, the homomorphism property of C(f, B)(op) w.r.t. γ(f, B)
is exactly the homomorphism property of A1(op) w.r.t. f , and, in case op ∈
OP2 \ OP1 the homomorphism property of C(f, B)(op) w.r.t. γ(f, B) is ensured
by the definition of C(f, B)(op) and since we have γ(f, B)(s) = idB(s) by definition
and by assumption.

The first cartesian property U(γ(f, B)) = f and thus U(C(f, B)) = A1 is
directly ensured by definition. Moreover, also the splitting conditions

– γ(idU(B), B) = idB for all Σ2-algebras B and
– γ(f, C(g, B′)); γ(g, B′) = γ(f ; g, B′) for all Σ1-homomorphisms f : A1 → A2,

g : A2 → A3 and all Σ2-algebras B′ with A3 = U(B′), A2 = U(C(g, B′)).

are immmediately ensured by definition. It remains to show the second cartesian
property: For any Σ2-homomorphism v : C → B and any Σ1-homomorphism
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h : U(C) → A1 for which h; f = U(v) there is a unique Σ2-homomorphism
ε(h, v) : C → C(f, B) such that U(ε(h, v)) = h and ε(h, v); γ(f, B) = v.

C
ε(h,v) ���������

�

U

��

v

��C(f, B)
γ(f,B) ��

�

U

��

B�
U

��
U(C) h ��

U(v)

��A1
f �� A2

For any s ∈ S2 we set

ε(h, v)(s)
def
=

{
v(s), s ∈ S2 \ S1
h(s), s ∈ S1

thus U(ε(h, v)) = h and ε(h, v); γ(f, B) = v are immediately ensured by the
definitions of ε(h, v), γ(f, B), U and by the assumption h; f = U(v). Also the
homomorphism property of ε(h, v) can be shown straightforwardly.

The uniqueness of ε(h, v) is forced, in case s ∈ S1, by the requirement
U(ε(h, v)) = h and, in case s ∈ S2 \ S1, by the requirement ε(h, v); γ(f, B) = v
and since we have γ(f, B)(s) = idB(s) in this case. �

Any split fibration gives rise to a contravariant functor into the category Cat
[1] thus Theorem 2 provides

Corollary 1. The split fibration U : PAlg(Σ2) → PAlg(Σ1) gives rise to a
contravariant functor mod : PAlg(Σ1)op → Cat:

– For a Σ1-algebra A mod(A) is the fiber over A, i.e., mod(A) has as objects
all Σ2-algebras B with U(B) = A and as morphisms all Σ2-homomorphisms
g : B → B′ with U(g) = idA.

– For a Σ1-homomorphism f : A1 → A2 and a Σ2-algebra in B in mod(A2)
we have mod(f)(B) = C(g, B).

– For a Σ1-homomorphism f : A1 → A2 and a Σ2-homomorphism g : B1 → B2
in mod(A2) we have mod(f)(g) = ε(idA1 , γ(f, B1); g).

C(f, B2)
γ(f,B2) ��

�

U

��

B2�

U

��

C(f, B1)
γ(f,B1) ��

�

U

��

mod(f)(g)
���

�
�

�
�

B1�
U

���
��

��
��

�

g
��









A1
idA1 �� A1

f �� A2

That these assignments preserve identities and composition is ensured by the
splitting conditions. �
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The construction of a contravariant functor out of a split fibration and the
Grothendieck construction are inverse to each other. This means, in our case,
that the categories Fl(mod) and PAlg(Σ2) are isomorphic. And, based on a
variant of Theorem 2 for closed homomorphisms, that can be proved straight-
forwardly, this means that the contravariant functor DA : Setop → Cat and
the contravariant functor mod : Setop → Cat induced by the split fibration
U : PAlgcl(AUT ) → PAlgcl(IN)(∼= Set) are natural isomorphic.

8 Conclusions and Further Work

We have shown that there is co-amalgamation within the indexed coalgebraic
reconstruction of deterministic CSP developed in [14]. It turned out that syn-
chronization can not be characterized in terms of co-amalgamation.

We have been able, however, to characterize synchronization by a pullback
property within the corresponding fibred algebraic setting. Analyzing and gen-
eralizing the transition between the indexed and the fibred setting we have shown
that for a wide range of signature embeddings ϕ : Σ1 → Σ2 the Σ1-algebras, tra-
ditionally considered as parameter algebras, can be considered also as signatures,
instead.

Our analysis makes apparent that there is a conceptual mismatch between
process calculi and model theory. Concepts and constructions in process calculi
are not directly related to model theoretic concepts and constructions and vice
versa. To give a complete model theoretic account of constructions in determin-
istic CSP, we had to take different viewpoints and we had to move freely between
them (compare also, for example, the analysis of concealment in [14]): We had to
take into account different kinds of automata and the transitions between them.
And we had to work as well in an indexed coalgebraic as in the corresponding
fibred algebraic setting.

One conclusion could be that all the different viewpoints reflect different as-
pects of systems and that only a future structured synthesis of all the model
theoretic viewpoints as well as the viewpoint of process calculi will provide an
appropriate framework for system specifications.

There are at least three directions of further work:

– Synchronization: Firstly, we should analyse as well synchronization of
non-deterministic processes in CSP as synchronization mechanisms in other
process calculi. Secondly, the model theoretic description of synchronization
by a special pullback opens the possibility to define other kinds of synchro-
nization based on general pullbacks and to incorporate them into CSP.

– Signatures vs. Parameter Algebras: It is worth to look for other exam-
ples where Theorem 2 allows to consider a “structure” as a “signature” or as
a “parameter algebra”, respectively. And a more methodological discussion
of this duality will be surely of interest.

– Many-sorted Coalgebras: The restriction on the signature extension in
Theorem 2 allows also to transform, by currying, any Σ2-algebra into a
many-sorted coalgebra where the the sorts of these coalgebras are the sorts
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in S2 \ S1. This transformation is a generalization the relation between
PAlgcl(AUT ) and DA. Co-amalgamation should be investigated for those
many-sorted coalgebras. And, it would be nice to locate areas where many-
sorted coalgebras are used or can be used with some benefit.
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