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Preface

Increasing computing power in the last decades has given mathematical mod-
eling an ever greater impulse and made it a very important tool to solve
problems coming from industry. The European Consortium for Mathematics
in Industry (ECMI) was founded 20 years ago by mathematicians from ten
European universities to foster the use of mathematics to help European in-
dustry and commerce to pose and solve their problems. The aims of ECMI are
to (a) promote the use of mathematical models and mathematics in industry,
(b) form applied mathematicians capable of working effectively in industry
and (c) work for these goals at the European scale. Efficient problem solving
often requires the use of results in different mathematical fields, yet no single
applied mathematician may be able to cover the whole subject. By providing
a European research network, ECMI can bring together experts from a wide
geographical range.

Since 1986, ECMI has incorporated many more institutions and indus-
tries throughout Europe and it has been consolidated as a brand name for
Industrial Mathematics. Twenty years later, the biannual ECMI conference
was celebrated for the first time in Spain, at the Universidad Carlos III de
Madrid. This is a young university created in 1989. Technological studies and
departments are located at the Leganés campus where the conference was
held. Moreover, University Carlos III participates in the Leganés Scientific
and Technological Park, together with the Autonomous Region of Madrid
and the city of Leganés. They contribute to place Madrid at the forefront of
research and development in Spain.

The scientific program covered a wide variety of topics related to techno-
logical sectors (aerospace and automotive industry, materials and electronics,
information and telecommunication technologies, energy and environment,
biology, biotechnology, life sciences, imaging) and to finances and economics.
The different origin of participants helped making the conference multi-
disciplinary. Active participation of industry was intended, with reasonable
success. The present volume includes a part of the contributions to the con-
ference, selected after a refereeing process. It is a pleasure to see that six



Preface VII

plenary speakers have submitted papers for this volume. Vincenzo Capasso
in his “Alan Tayler” lecture, besides presenting his scientific work on sta-
tistical geometric measure applied to medicine and materials science, recalls
some of the challenges for Mathematics in Industry listed in the first ECMI
brochure produced by Alan Tayler and himself in 1994, relates them to the
present situation of an enlarged Europe, and tells us how these challenges re-
main important and pressing for us today. Antonio Barrero (Seville), Alfredo
Bermúdez (Santiago), Russel Caflisch (UCLA), Luis Campos (Lisbon) and
Pierre Degond (Tolouse) illustrate with their contributions the breadth of
applications and variety of techniques that are embraced by ECMI. ECMI’s
commitment to educating students in Industrial Mathematics is reflected in
the fact that many papers were given by students. The Wacker Prize, of-
fered for a Master’s Level thesis on an industrial problem was awarded to
Filippo Terragni, in line with the tradition of excellent work by previous win-
ners. Many of the minisymposia and special sessions included the activities
of ECMI Special Interest Groups. Of the 35 minisymposia organized for the
conference, many are gathered in this book, usually preceded by a short ex-
planation about their contents. A number of contributed papers complete the
volume. I hope that these proceedings will contribute both to show inter-
esting and relevant mathematical problems and methods, and to strengthen
cooperation between academia and industry, the absence of which is a major
weakness of the European Science-Technology system.

As President of ECMI and on behalf of the ECMI Council, I wish to thank
all those who have contributed to the success of the Conference. Among them
the participants, the speakers, the International Scientific Committee and the
National and Local Organizing Committees. Organizing this meeting has been
possible thanks to the efforts of many people both at the Spanish national
and local level to whom we are very grateful. In particular all the members
of the Modeling, Simulation and Industrial Mathematics Group at Universi-
dad Carlos III worked hard to run a smooth and successful conference which
would not have been possible without their help. The dedication of our univer-
sity congress bureau, Congrega, was also essential for the conference success.
Ms. Bárbara Tapiador’s help was very important to process the manuscripts
that are gathered in the present book. I am grateful to my co-editors, Gloria
Platero, Miguel Moscoso and José Manuel Vega for their invaluable help.

Lastly, the support of our sponsors is gratefully acknowledged: Minis-
terio de Educación y Ciencia (grant MTM-2005-24569-E), Comunidad de
Madrid (grant S-0505/ENE/0229), Universidad Carlos III de Madrid, Univer-
sidad Politécnica de Madrid, Consejo Superior de Investigaciones Cient́ıficas
(CSIC), Instituto de Tecnológico de Qúımica y Materiales “Álvaro Alonso
Barba”, Ayuntamiento de Leganés and Springer.

Madrid, May 2007 Luis L. Bonilla, President of ECMI
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J. Gravesen, B. Jüttler, and Z. Š́ır . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

Semantic Modelling for Styling and Design
C.E. Catalano, V. Cheutet, F. Giannini, B. Falcidieno,
and J.C. Leon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724

Minisymposium “Web-based Learning Environments
in Applied Mathematics”
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H. Pesonen and R. Piché . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908

Singular Problems With Quadratic Gradient Term
A. Vitolo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913

Pattern Matching for Control Chart Monitoring
D. Cantone and S. Faro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918



Contents XXI

Index Characterization in DAE Circuit Models Without
Passivity Assumptions
A.J. Encinas and R. Riaza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923

Fingerprint Classification using Entropy Sensitive Tracing
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Dedicated to Alan Tayler

Preface [VC]

It has been a great honour for me to deliver the “Alan Tayler Lecture” in
this ECMI Conference, to honour one of the leading founders and Presidents
of ECMI. I have collaborated with Alan for many years, especially during
my term as Chairman of the Educational Committee, and later during the
first ECMI-HCM Project. While he was already very ill, he found the way to
participate (even though only for a couple of days) in a workshop in Milan,
opening ECMI to the Italian academic and industrial community, and highly
supported the birth of MIRIAM (the Milan Research Centre for Industrial
and Applied Mathematics).

I had a rewarding experience around the early 1990s producing, in a strict
collaboration with Alan, the first ECMI Brochure [CT94] (see the ECMI web
site) in order to advertise the specific role of ECMI within academia and
industry in Europe.

It was clear to me that he had a vision of how to establish in Europe a co-
operative action by the most active groups in the applications of mathematics
to real world problems; I wish to remind the key issues stated in the brochure,
since I may claim that these are still update.

“Realising the need of interaction between universities and research groups
in industry, the European Consortium for Mathematics in Industry (ECMI)
was founded in 1986 by mathematicians from ten European universities.

· · ·
Mathematics, as the language of the sciences, has always played an

important role in technology, and now is applied also to a variety of prob-
lems in commerce and the environment.
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European industry is increasingly becoming dependent on high technology
and the need for mathematical expertise in both research and development
can only grow.

· · ·
These new demands on mathematics have stimulated academic interest

in Industrial Mathematics and many mathematical groups world-wide are
committed to interaction with industry as part of their research activities.

In 1986 ten of these groups in Europe founded ECMI with the intention
of offering their collective knowledge and expertise to European Industry.

The experience of ECMI members is that similar technical problems are
encountered by different companies in different countries. It is also true that
the same mathematical expertise may often be used in differing industrial
applications.

If European industry is to compete in world markets it should take ad-
vantage of the competitive edge which may be gained from using European
mathematical expertise.

No single European country is likely to have sufficient expertise
of mathematical knowledge whereas ECMI can provide a compre-
hensive coverage of mathematical skills and their diverse applica-
tions.” [CT94]

We are now facing the challenge of a larger European Union.
Alan had anticipated this by promoting an ECMI “patronage”, financially

supported by the EU, of those countries usually called “Central Europe”, such
as Čekia, Hungary, Poland, Romania, Slovakia.

I am sure that he would have liked to participate in the process of complete
integration of all the new entries in the ECMI system.

Going back to the ECMI Brochure, a major scope of ECMI was identified
as follows.

“C. TO OPERATE ON A EUROPEAN SCALE
Academic resources in Mathematics for Industry are also scarce and dis-

tributed across Europe; industrial needs are widely spread. Exchange and
interactive programmes are necessary in training, research and industrial col-
laboration if there is to be an effective transfer of knowledge and skills. The
EC is encouraging ECMI to involve relevant groups in Eastern Europe as
Associate members.”

As part of this encouragement, the EC provided funds to ECMI for organ-
ising a series of workshops in those countries, in collaboration with recognised
colleagues at the local level. Thus anticipating the enlargement of the political
Europe.

In my opinion, having the EC approved a significant enlargement of Europe
towards East, listing soon 27 member states, ECMI, as an enlarged Consor-
tium, should find new ways to exploit the best of the scientific resources of
the old and the new member states together, to actively participate in the
building up of a common competitive Europe. As far as scientific competence
is concerned, there are excellencies in all regions of Europe, some of them well
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identifiable also in the new member states; a genuine will to sustain compe-
tence of Europe should go through ways to exploit all of them, with the usual
ECMI cooperative attitude.

Another anticipation envisaged by Alan has been the shift of meaning of
the key word “Industry” in the ECMI system.

“This collaboration may also be extended to developing math-
ematical models for the environment, earth sciences, biology and
finance.” [CT94]

We have already achieved the inclusion of what we call Economathemat-
ics, and today we are facing a further shift of attention towards Medicine
and Biotechnology.

All over the world leading experts of Mathematics for/in Industry,
are participating actively in the development of Mathematics for/in Medi-
cine, thus undertaking the further challenge of contributing to the develop-
ment of innovative methods for diagnosis and treatment of relevant diseases,
from cancer to infectious diseases.

My own presentation here is aimed to showing an example of how mathe-
matics, originally developed for mining industry or more in general for ma-
terial science and chemical industry, is now moving to deal with problems of
interest in medicine.

At first this research was motivated by polymer industry in Europe, and
constitutes one of the most important success stories of collaborative research
within ECMI, that was supported within the first HCM Project coordinated
by Alan Tayler. As a documentation of the cooperation between different
research teams in Europe within the ECMI Special Interest Group on “Poly-
mers”, the volume “Mathematical Modelling for Polymer Processing. Poly-
merization, Crystallization, Manufacturing”, edited by myself, was published
as Volume 2 in the ECMI Series on Mathematics in Industry by
Springer-Verlag, Heidelberg 2002, showing an additional success story
of ECMI: the start of the Springer Series on Mathematics in Industry.

1 Introduction

Many processes of biomedical or material science interest may be modelled as
birth-and-growth processes (germ–grain models), which are composed of two
processes, birth (nucleation, branching, etc.) and subsequent growth of spatial
structures (cells, vessel networks, etc.), which, in general, are both stochastic
in time and space. These structures induce a random division of the relevant
spatial region, known as random tessellation (see Fig. 1). A quantitative de-
scription of the spatial structure of a tessellation can be given, in terms of the
mean densities of interfaces (n-facets).

In applications to material science a main industrial interest is controlling
the quality of the relevant final product in terms of its mechanical properties;
as shown, e.g. in [FC98], these are strictly related to the final morphology
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Fig. 1. The spatial tessellation generated by vessels in a dragonfly wing

Fig. 2. Vascularization of an allantoid [Credit: Dejana et al. 2005]

of the solidified material, so that quality control in this case means optimal
control of the final morphology.

In medicine, an important area of application of birth-and-growth processes
and other models of stochastic geometry is tumour-induced angiogenesis. It
can be modelled as a fibre process of Hausdorff dimension 1 in the relevant
2D or 3D space.

Tumour-induced angiogenesis is believed to occur when normal tissue vas-
culature is no longer able to support growth of an avascular tumour. At this
stage the tumour cells, lacking nutrients and oxygen, become hypoxic. This
is assumed to trigger cellular release of tumour angiogenic factors (TAFs)
which start to diffuse into the surrounding tissue and approach endothelial
cells (ECs) of nearby blood vessels. ECs subsequently respond to the TAF
concentration gradients by forming sprouts, dividing, and migrating towards
the tumour. A summary of these mechanisms can be found in the recent paper
by Carmeliet [JK01] (see also Figs. 2–4 where examples of real or simulated
vascular networks are depicted).

Initially, the sprouts arising from a parent vessel grow essentially parallel
to each other. It is observed that once the finger-like capillary sprouts have
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Fig. 3. Left: Angiogenesis on a rat cornea [Credit: Dejana et al. 2005]. The white spot
is a pellet implanted in the cornea containing an angiogenetic substance, emulating
the effect of a tumour. Right: A simulation of an angiogenesis due to a localized
tumour mass (black region on the right) (from [CA99])

Fig. 4. Response of a vascular network to an antiangiogenic treatment (from [JK01])

reached a certain distance from the parent vessel, they tend to incline towards
each other, leading to fusions called anastomoses. Such fusions lead to a net-
work of vessels. On the other hand the sprout branching dramatically increases
while approaching the tumour mass, eventually resulting in vascularization.
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The coupling of the branching and growth process to the underlying chem-
ical gradients is limited by the local density of the existing capillary network,
thus leading to a mathematical strong coupling of this density and the kinetic
parameters of the branching and growth process.

The study of angiogenesis has such potential for providing new therapies
that it has received enthusiastic interest from the pharmaceutical and biotech-
nology industries. Indeed, dozens of companies are now pursuing angiogenesis-
related therapies, and approximately 20 compounds that either induce or
block vessel formation are being tested in humans. Although such drugs can
potentially treat a broad range of disorders, many of the compounds now un-
der investigation inhibit angiogenesis and target cancer. Intriguingly, animal
tests show that inhibitors of vessel growth can boost the effectiveness of tra-
ditional cancer treatments (chemotherapy and radiation). Preliminary studies
also hint that the agents might one day be delivered as a preventive measure to
block malignancies from arising in the first place in people at risk for cancer.

In developing mathematical models of angiogenesis, the hope is to be able
to provide a deeper insight into the underlying mechanisms which cause the
process. It is therefore essential that predictive mathematical models are de-
veloped, capable of producing precise quantitative morphological features of
developing blood vessels. Such models might be used for predicting the evolu-
tion of tumours (prognosis), and identifying optimal control strategies (med-
ical treatment).

Unfortunately, a satisfactory modelling of angiogenesis requires a theory of
stochastic fibre processes, evolving in time, and strongly coupled with underly-
ing fields. In this case the theory of birth-and-growth processes (or branching-
and-growth processes), developed for volume growth, cannot be applied to
analyse realistic models, due to intrinsic mathematical difficulties, coming
from the dependence of the kinetic parameters from the geometric spatial
densities of the existing tumour, or capillary network itself [CM05,McDou06].

All these aspects induce stochastic time and space heterogeneities, thus
motivating a more general analysis of the stochastic geometry of the process.
The formulation of an exhaustive evolution model which relates all the relevant
features of a real phenomenon dealing with different scales, and a stochastic
domain decomposition at different Hausdorff dimensions, is a problem of high
complexity, both analytical and computational.

Anyway statistical methods for the estimation of geometric densities may
offer significant tools for diagnosis and dose/response analysis in medical treat-
ments.

In the modelling of the above-mentioned systems it is of great importance
to handle random closed sets of different (even though integer) Hausdorff
dimensions. Following a standard approach in geometric measure theory, such
sets may be described in terms of suitable measures. For a random closed set of
lower dimension with respect to the environment space, the relevant measures
induced by its realizations are singular with respect to the Lebesgue measure,
and so their usual Radon–Nikodym derivatives are zero almost everywhere.
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In Sect. 2 an original approach is reported, recently proposed by the re-
search group of the authors, who have suggested to cope with these difficulties
by introducing generalized densities (distributions) á la Dirac–Schwartz, for
both the deterministic case and the stochastic case. In this last one, mean
generalized densities are of interest.

These instruments may then help to formulate stochastic models (that is
solving direct problems) for the over-mentioned applications; they also suggest
methods for the solution of the related inverse problems, including methods
of statistical analysis for the estimation of geometric densities of a stochastic
fibre process that characterize the morphology of a real system. We apply
such methods to real data, taken from the literature, and to simulated data,
obtained by existing computational models of tumour-induced angiogenesis.

These methods can be used for validating computational models, and for
monitoring the efficacy of possible medical treatment.

1.1 Nomenclature

We remind that a random closed set (RACS) Ξ in Rd is a measurable map

Ξ : (Ω,F ,P) −→ (F, σF),

where F denotes the class of the closed subsets in Rd, and σF is the σ−algebra
generated by the so-called hit-or-miss topology (see [Mat75]).

The theory of Choquet–Matheron shows that it is possible to assign a
unique probability law associated with a RACS Ξ in Rd on the measurable
space (F, σF) by assigning its hitting functional TΞ.

This is defined as

TΞ : K ∈ K �−→ P (Ξ ∩K �= ∅),

where K denotes the family of compact sets in Rd.

Actually we may consider, equivalently, the restriction of TΞ to the family
of closed balls {Bε(x);x ∈ Rd, ε ∈ R+ − {0}}.

In dependence of its regularity, a random closed set Θn with Hausdorff
dimension n (i.e. dimHΘn(ω) = n for a.e. ω ∈ Ω), may induce a random
Radon measure

µΘn
(·) := Hn(Θn ∩ · )

on Rd (Hn is the n-dimensional Hausdorff measure), and, as a consequence,
an expected measure

E[µΘn
](·) := E[Hn(Θn ∩ · )]

(for a discussion about measurability of Hn(Θn) we refer to [BM97,Z82]).
In several real applications, it is of interest to study the density (said

mean density) of the measure E[µΘn
] [BR04], and, in the dynamical case, its

evolution in time [Mol92,Mol94]. Here we present a synthesis of a theory of
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random distributions as generalized densities of random measures, and mean
geometric densities as expected values of random generalized densities, as
proposed in [CV06c]. In particular we introduce a Delta formalism, á la Dirac–
Schwartz, for the description of random measures associated with random
closed sets of lower dimensions, such that the well known usual Dirac delta at
a point follows as a particular case (see, for instance, [Jones82,KF70,Vlad79]).

In dealing with mean densities, a concept of absolutely continuous random
closed set arises in a natural way in terms of the expected measure; indeed, an
interesting property of a random set in Rd is whether the expected measure
induced by the random set is absolutely continuous or not with respect to
the d-dimensional Lebesgue measure νd. Thus, it is of interest to distinguish
between random closed sets which induce an absolutely continuous expected
measure, and random closed sets which induce a singular one. To this aim we
introduce definitions of discrete, continuous, and absolutely continuous ran-
dom closed set, coherently with the classical 0-dimensional case, in order to
propose an extension of the standard definition of discrete, continuous, and ab-
solutely continuous random variable, respectively (see also [CV06a,CV06b]).

2 Generalized Densities

In the sequel we will refer to a class of sufficiently regular random closed sets
in the Euclidean space Rd, of integer dimension n.

Definition 1 (n-regular set). Given an integer n ∈ [0, d], we say that a
closed subset S of Rd is n-regular, if it satisfies the following conditions:

(i) Hn(S ∩BR(0)) <∞ for any R > 0

(ii) lim
r→0

Hn(S ∩Br(x))
bnrn

= 1 for Hn-a.e. x ∈ S

Here bn denotes the volume of the unit ball in Rn.

Remark 1. Note that condition (ii) is related to a characterization of the Hn-
rectifiability of the set A ([Fal85], p. 256, 267, [AFP00], p. 83).

We may observe that if An is an n-regular closed set in Rd, we have

lim
r→0

Hn(An ∩Br(x))
bnrn

=
{

1 Hn-a.e. x ∈ An,
0 ∀x �∈ An;

as a consequence (by assuming 0 · ∞ = 0), for 0 ≤ n < d we have

lim
r→0

Hn(An ∩Br(x))
bdrd

= lim
r→0

Hn(An ∩Br(x))
bnrn

bnr
n

bdrd

=
{
∞ Hn-a.e. x ∈ An,
0 ∀x �∈ An.
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It is well known that every positive Radon measure µ on Rd can be
decomposed as

µ = µ� + µPerp,

where µ� and µPerp are the absolutely continuous, and the singular parts of
µ, respectively, with respect to νd, the usual Lebesgue measure on Rd.

It then follows that µ� admits a (nontrivial) Radon–Nikodym derivative
with respect to νd, which is known as its density; while the Radon–Nikodym
derivative of µPerp, with respect to νd, would be zero νd− a.e.

Anyhow in analogy with the usual Dirac delta function δx0(x) associated
with a point x0 ∈ Rd (a 0-regular closed set), a density can be introduced also
for µPerp, in a generalized sense, according to Definition 2 [KF70].

Definition 2 (Generalized density). We call δµPerp , the generalized density
(or, briefly, the density P) of µPerp, the quantity

δµPerp(x) := lim
r→0

µPerp(Br(x))
bdrd

,

finite or not.

Clearly, if An is an n-regular closed set in Rd with n < d, then the measure

µAn
(·) := Hn(An ∩ ·)

is a singular measure with respect to νd. Based on Definition 1, the quantity

δAn
(x) := lim

r→0

Hn(An ∩Br(x))
bdrd

,

(finite or not), can now be introduced as the (generalized) density associated
with An.

With an abuse of notations, we may introduce the linear functional δAn

associated with the measure µAn
, as follows:

(δAn
, f) :=

∫
Rd

f(x)µAn
(dx),

for any f ∈ Cc(Rd,R), having denoted by Cc(Rd,R) the space of all contin-
uous functions from Rd to R with compact support. In accordance with the
usual representation of distributions in the theory of generalized functions, we
formally write ∫

Rd

f(x)δAn
(x) dx := (δAn

, f).

Define the function

δ
(r)
An

(x) :=
Hn(An ∩Br(x))

bdrd
,

and correspondingly the associated measure
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µ
(r)
An

(B) :=
∫
B

δ
(r)
An

(x) dx, B ∈ BRd .

As above, we may introduce the linear functional δ(r)
An

associated with the

measure µ(r)
An

, as follows:(
δ
(r)
An
, f
)

:=
∫

Rd

f(x)µ(r)
An

(dx),

It can be proven (see [CV06c]) that the sequence of measures µ(r)
An

weakly*
converges to the measure µAn

; in other words, the sequence of linear function-
als δ(r)

An
weakly* converges to the linear functional δAn

, i.e. (δ(r)
An
, f) → (δAn

, f)
for any f ∈ Cc(Rd,R).

Consider now random closed sets.

Definition 3 (n-regular random set). Given an integer n, with 0 ≤ n ≤ d,
we say that a random closed set Θn in Rd is n-regular, if it satisfies the
following conditions:

(i) For almost all ω ∈ Ω, Θn(ω) is an n-regular set in Rd

(ii) E[Hn(Θn ∩BR(0))] <∞ for any R > 0

If Θn is a random closed set in Rd, the measure

µΘn
(·) := Hn(Θn ∩ ·)

is a random measure, and consequently δΘn
is a random linear functional (i.e.

(δΘn
, f) is a real random variable for any test function f).

By extending the definition of expected value of a random operator à la
Pettis (or Gelfand–Pettis) [AG80,Bosq00], we may define the expected linear
functional E[δΘn

] associated with δΘn
as follows:

(E[δΘn
], f) := E[(δΘn

, f)] (1)

and the mean generalized density E[δΘn
](x) of E[µΘn

] by the formal integral
representation: ∫

A

E[δΘn
](x) dx := E[Hn(Θn ∩A)],

with

E[δΘn
](x) := lim

r→0

E[Hn(Θn ∩Br(x))]
bdrd

.

It can be shown [CV06c] that an equivalent definition of (1) can be given in
terms of the expected measure E[µΘn

] by

(E[δΘn
], f) :=

∫
Rd

f(x)E[µΘn
](dx),

for any f such that the above integral makes sense.
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By using the integral representation of (δΘn
, f) and (E[δΘn

], f), (1)
becomes ∫

Rd

f(x)E[δΘn
](x) dx = E

[∫
Rd

f(x)δΘn
(x) dx

]
;

so that, formally, we may exchange integral and expectation.

Remark 2. When n = d, integral and expectation can be really exchanged
by Fubini’s theorem. Since in this case δΘd

(x) = 1Θd
(x), νd-a.s., it follows

that E[δΘd
](x) = P(x ∈ Θd). In particular, in material science, the density

VV (x) := P(x ∈ Θd) is known as the (degree of) crystallinity.
If n = 0 and Θ0 = X0 is an absolutely continuous random point with p.d.f.

pX0 , then E[H0(X0∩ · )] = P(X0 ∈ ·) is absolutely continuous, and its density
E[δX0 ](x) is just the probability density function pX0(x).

Thus, for any lower dimensional random closed set Θn in Rd, while it
is clear that µΘn(ω) is a singular measure, when we consider the expected
measure E[µΘn

], it may happen that it is absolutely continuous with respect
to νd, thus having a classical Radon–Nikodym derivative, so that E[δΘn

](x) is
a classical real-valued integrable function on Rd (see [CV06c], and [CV06a]).
It is then of interest to say whether or not a classical mean density can be
introduced for sets of lower Hausdorff dimensions, with respect to the usual
Lebesgue measure on Rd. In order to respond to this further requirement,
in [CV06a] we have proposed a concept of absolute continuity for random
closed sets.

To avoid pathologies, as discussed in [ACaV06] (see also [CV06d]), we
introduce now a class of random sets, which, in particular, include all random
sets we are interested in the sequel.

Definition 4 (R class). We say that a random closed set Θ in Rd belongs
to the class R if

dimH(PartialΘ) < d and P(HdimH(PartialΘ)(PartialΘ) > 0) = 1.

Definition 5 (Absolute continuity). We say that a random closed set Θ ∈
R is (strongly) absolutely continuous if

E[µPartialΘ] 
 νd (2)

on BRd .

Remark 3. Note that, if Θ ∈ R with dimH(Θ) = d is sufficiently regular so
that dimH(PartialΘ) = d− 1, then it is absolutely continuous if

E[Hd−1(PartialΘ ∩ · )] 
 νd(·).

Remark 4. In the particular case thatΘ = X is a random variable, Definition 5
coincides with the usual definition of absolute continuity of a random variable.
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In fact, dimHX = 0, PartialX = X, and E[H0(X)] = P(X ∈ Rd) = 1, so
X ∈ R and then Condition (2) is equivalent to

E[H0(X ∩ · )] = P(X ∈ · ) 
 νd.

To conclude this section, we may then claim that, if Θn, with 0 < n < d,
is an absolutely continuous random closed set, then E[µΘn

] 
 νd, so that
its local mean density E[δΘn

](x) is a classical real-valued integrable function
on Rd.

3 Approximation of Mean Densities

In many real applications, it is of interest the estimation of the local mean
density E[δΘn

] of an absolutely continuous lower dimensional random closed
set such as a fibre process of dimension n = 1 in a space of dimension d > 1
(see, e.g. [BR04] and [SKM95]).

For facing the problem of the zero ν2-measure for points or lines in R2 it
is natural to make use of a 2-D box approximation of points or lines. As a
matter of fact, a computer graphic representation of them is anyway provided
in terms of pixels, which can only offer a 2-D box approximation of points in
R2. This is the motivation of this and the following sections, which tend to
suggest estimators for local mean densities of absolutely continuous random
closed sets of lower dimensions in a given d-dimensional space [ACaV06].

Given a random closed set Θn with Hausdorff dimension n, we consider
the enlarged set Θn⊕r

, which is now of dimension d, and hence of nontrivial
measure νd. We observe that P(x ∈ Θn⊕r

) = TΘn
(Br(x)).

Proposition 1. [ACaV06] Let Θn be a random closed set with Hausdorff
dimension n, and A ∈ BRd such that P(Hn(Θn ∩ PartialA) > 0) = 0. If

lim
r→0

E[νd(Θn⊕r
∩A)]

bd−nrd−n
= E[Hn(Θn ∩A)], (3)

then

E[Hn(Θn ∩A)] = lim
r→0

∫
A

TΘn
(Br(x))

bd−nrd−n
dx.

Sufficient conditions for (3) have been given in [ACaV06].
As a consequence of Proposition 1, if we denote by µ⊕r the measure on

BRd defined by

µ⊕r(A) :=
∫
A

TΘn
(Br(x))

bd−nrd−n
dx,

then it follows that µ⊕r weakly* converges to E[µΘn
].

For every fixed r > 0, the measure µ⊕r is absolutely continuous with
respect to the d-dimensional Lebesgue measure with density
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δ⊕r
n (x) :=

TΘn
(Br(x))

bd−nrd−n
.

Such a function defines a linear functional, say δ⊕r
n , associated with the mea-

sure µ⊕r as follows

(δ⊕r
n , f) :=

∫
Rd

f(x)µ⊕r(dx).

Note that many kinds of random closed sets satisfy the proposition above,
like fibre processes, line and segment processes, Boolean models, etc. (see
[ACaV06]). As a consequence, estimating the probability that the random set
Θn intersects the ball Br(x) may suggest (global) estimators of E[µΘn

], and
possibly (local) estimators of the mean density E[δΘn

] (see, e.g. [BR04]).
If Θn is absolutely continuous, then there exists an integrable function λΘn

(the Radon–Nikodym derivative) such that, for all A ∈ BRd ,

E[Hn(Θn ∩A)] =
∫
A

λΘn
(x) dx.

So, in this case, we have that

lim
r→0

∫
A

TΘn
(Br(x))

bd−nrd−n
dx =

∫
A

λΘn
(x) dx. (4)

If Θn is a stationary random closed set, then δ⊕r
n (x) is independent of

x and the expected measure E[µΘn
] is motion invariant, i.e. it is absolutely

continuous with density λΘn
(x) = L ∈ R+ for νd-a.e. x ∈ Rd. It follows that

lim
r→0

∫
A

TΘn
(Br(x))

bd−nrd−n
dx = lim

r→0

TΘn
(Br(0))

bd−nrd−n
νd(A),

and ∫
A

λ(x) dx = Lνd(A);

and so, by (4),

lim
r→0

TΘn
(Br(0))

bd−nrd−n
= L.

Remark 5. When it is possible to exchange limit and integral in (4), by Propo-
sition 1 we may claim that

lim
r→0

TΘn
(Br(x))

bd−nrd−n
= λΘn

(x) νd-a.e. x ∈ Rd.

In the particular case n = d, we know that the measure E[µΘd
] is always

absolutely continuous with density λΘd
(x) = P(x ∈ Θd). We may notice that

δ⊕r
d = TΘn

(Br(x)) and by Monotone Convergence Theorem we can exchange
limit and integral, and so we have, as expected,
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lim
r→0

TΘd
(Br(x)) = P(x ∈ Θd) = λΘd

(x).

Further, for n = 0, if Θ0 = X is a random point in Rd, we have E[H0(X∩ ·)] =
P(X ∈ ·). So, if X is absolutely continuous with probability density function
f , we know that E[µX ] = PX is absolutely continuous with density f . In
this case it can be shown that (3) holds, so that the sequence {δ⊕r(x)} con-
verges to f(x), as expected, which leads to the usual histogram estimation of
f(x) [ACaV06].

Example 1. As an additional example of applicability of the results above, let
us consider the case in which Θn is given by a random union of absolutely
continuous random closed sets of dimension n < d:

Θn =
Φ⋃

i=1

Ei,

where Φ is a nonnegative discrete random variable with E[Φ] < ∞, and the
Ei’s are IID as E and independent of Φ. Then it follows that [ACaV06]

lim
r→0

TΘn
(Br(x))

bd−nrd−n
= E[Φ] lim

r→0

TE(Br(x))
bd−nrd−n

,

provided that at least one of the two limits exists.
As a consequence, when it is possible to exchange limit and integral in (4),

and so in particular when E is a stationary random closed set (which implies
Θn stationary as well), we have

λΘn
(x) = E[Φ] lim

r→0

TE(Br(x))
bd−nrd−n

= E[Φ]λE(x),

where λΘn
and λE are the Radon–Nikodym derivatives of µΘn

and µE , re-
spectively. The above model may be used as a preliminary one for angiogene-
sis [CM05], but also for the earthworm burrow system in a soil [BR04, p.73].

4 Statistical Methods for Fibre Systems

We will here consider random fibre systems generated by Boolean models
having a fibre as primary grain, that is a RACS Γ such that

Γ = ∪i∈NΓi ⊕ xi,

where

– {xi}i∈N is a spatial Poisson point process, possibly inhomogeneous, with
intensity α(x), x ∈ R2
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– {Γi}i∈N is a family of i.i.d. random fibres (i.e. random, a.s. bounded,
1-regular sets), passing a.s. through the origin

The resulting Boolean model is thus in general nonstationary and non-
isotropic. The source of nonstationarity comes essentially from the nonsta-
tionarity of the germ process, i.e. from the location of the fibres, and not from
intrinsic geometric irregularities of the fibres themselves. In fact the grains are
assumed geometrically regular (1-regular) and with “good” statistical proper-
ties (i.i.d.). The main source of anisotropy instead comes from the distribution
of fibres (grains) orientation, which may be nonuniform.

Note now that

TΘn
(Br(x)) = P(x ∈ Θn⊕r

) = P(Θn ∩Br(x) �= ∅)

thus we may rewrite Equality (4) in the following way∫
A

λn(x)dx = lim
r→0

∫
A

P(Θn ∩Br(x) �= ∅)
bd−nrd−n

dx (5)

= lim
r→0

∫
A

TΘn
(Br(x))

bd−nrd−n
dx (6)

= lim
r→0

∫
A

P(x ∈ Θn⊕r
)

bd−nrd−n
dx. (7)

Equalities (5)–(7) provide a way to introduce estimators of λn(x) when
Θn is a random fibre, or fibre system Γ , provided that the limit and the
integrals in the right-hand terms of (5)–(7) can be exchanged, by estimating
the quantities

TΓ (Br(x))
bd−1rd−1

=
P(x ∈ Γ⊕r)
bd−1rd−1

=
P(Γ ∩Br(y) �= ∅)

bd−1rd−1
.

We will call them histogram-like estimators, since the “enlargement” Γ⊕r of
the set Γ via the Minkowski addition of a d-dimensional ball, which approx-
imates the fibre with a d-dimensional set, imitates the procedure used when
we estimate the p.d.f. of a real random variable from an i.i.d. sample us-
ing moving histograms (see [Hard91,Pest98] for details), where we “enlarge”
the Dirac-delta’s measures concentrated on the sample points, approximating
them with classical and sufficiently regular functions.

In the following we will provide two estimators for the mean geometric
density of length, also called intensity, of the random fibre system Γ . The
intensity can be used to characterize the mean geometric properties of the fibre
system. Accordingly with the definitions introduced in the previous sections,
the intensity of Γ is defined by

λ(x) : = E[δΓ ](x) = lim
r→0

E(H1(Γ ∩Br(x)))
rdbd

.
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4.1 Basic Assumptions for the Estimation Procedure

Suppose to have one or more images of the random fibre system Γ under
study and that the window W ⊆ Rd where Γ is observed can be divided in a
partition of subwindows {Ak}k=1,...,K such that:

A1 Aj ∩Ak = ∅, ∀j �= k

A2
⋃K

k=1 Ak = W
A3 in each window Ak limit and integral in (4) can be exchanged when

Θn = Γ . This is the case for example if in Ak the fibre system is
(locally) stationary

A4 the intensity λ(x) is sufficiently “smooth” to be locally well approximated
by piecewise constant functions, assuming different constant values in each
window Ak

We will now introduce a (nonstationary!) example where the previous assump-
tions are satisfied. The example will be used in the following as a case study
for the properties of our estimators.

4.2 An Example of Inhomogeneous Poisson Segment Process

Let d = 2 and consider the Boolean model Γ formed by:

– Germs: A spatial nonhomogeneous Poisson point process {xi}i∈N, xi ∈ R2

having intensity α(x) = α(x1, x2) = cx2
1, and c is a constant.

– Grains: A family {Si}i∈N of (deterministic) closed sets all distributed like
the segment S = [0, l]× {0} of fixed length l.

The resulting Boolean model is

Γ =
⋃
i∈N

Si ⊕ xi

(see Fig. 5 where a realization is depicted). Note that since the germ intensity
α(x) is a function of class C∞, Assumption A4 is trivially satisfied.

Let us assume that the following equality holds

λ(x) : = lim
r→0

E
(
ν1(Γ ∩Br(x))

)
2r

= lim
r→0

E
(
ν1(Γ ∩Qr(x))

)
2r

, 0 (8)

where Qr(x) is a square centred at x with side 2r. This assumption is reason-
able, since both cubes and spheres form a system of generators of the Borel
σ-algebra in Rd. Then Assumption A3 is satisfied thanks to the following.

Proposition 2. Let Γ be the random segment system described above, λ(x) be
the mean intensity of length of the system, and suppose that Assumption (8)
is satisfied, i.e.

λ(x) = lim
r→0

E
(
ν1(Γ ∩Qr(x))

)
2r

.
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Fig. 5. A realization of the Boolean model in the example. The point process {xi}
of germs is formed by the left-hand extremes of the segments

Then, the quantity

λ̄(x) : = lim
r→0

P(Γ ∩Qr(x) �= ∅)
2r

. (9)

exists and is finite and we have, a.s.

λ̄(x) = λ(x)

for ν2− almost all x ∈ R2.

For the proof of this proposition see [CM06]. Let us remark that, in the
proof, the particular functional form of λ̄(x) is not relevant.

5 Estimators of the Intensity

In the assumptions stated in Sect. 4.1, for all x ∈ Ak, let us denote by

λk : = lim
r→0

E(ν1(Γ ∩Br(x)))
bdrd

= lim
r→0

P(x ∈ Γ⊕r ∩Ak)
2r

= lim
r→0

TΓ (Br(x))
2r
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the (constant) intensity of the random fibre system in the subwindow Ak.
We have explicited all the previous equalities since we will obtain different
estimators, based on the estimate of the quantities:

1. P(x ∈ Γ⊕r ∩Ak)
2. TΓ (Br(x)),

respectively.
Let us build first an estimator based on the estimate of P(x ∈ Γ⊕r ∩Ak).

Let us overlap to Ak a grid of points z1, . . . , zp ∈ Ak and build the set Γ⊕r∩Ak.
Then a first estimator of λk is

λ̂1
k,r,p : =

1
2rp

p∑
i=1

1zi∈Γ⊕r∩Ak
, (10)

where 1zi∈Γ⊕r∩Ak
are i.i.d. Bernoulli random variables assuming value one

with probability P(x ∈ Γ⊕r ∩Ak) which is independent of x ∈ Ak in our
assumptions. Since estimator (10) is the arithmetic mean of these variables,
by applying the strong law of large numbers (SLLN) and Slutsky Theorem
(see, e.g. [Pest98]) we obtain

E(λ̂1
k,r,p) =

P(x ∈ Γ⊕r ∩Ak)
2r

−→ λk, for r → 0 (11)

Var(λ̂1
k,r,p) =

(P(x ∈ Γ⊕r ∩Ak))(1− P(x ∈ Γ⊕r ∩Ak))
4r2p

−→0, (12)

for r → 0, p→∞, rp→∞

that is the asymptotic unbiasedness and weak consistency of the estimator,
when r → 0, p→∞ with rp→∞.

Note that this estimator is not much affected by edge effects, if the “en-
largement” of Γ is performed correctly. If the fibres go across the whole
window or have extremes internal to the window but far from the window
border, edge effects are not present. For fibres having extremes close to the
window border, edge effects can be reduced by reducing also the width r of
the enlargement (see Fig. 6).

Let us now introduce an estimator based on the estimate of TΓ (Br(x)), x ∈
Ak. Let us again consider a grid of points z1, . . . , zp overlapped on the window
Ak, such that Br(zi) ⊆ Ak for all i = 1, . . . , p (this assumption has again the
aim of reducing the edge effects). We then define

λ̂2
k,r,p : =

1
2rp

p∑
i=1

1Γ∩Br(zi) �=∅. (13)

where again 1Γ∩Br(zi) �=∅ is a Bernoulli random variable assuming value 1 with
probability
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Fig. 6. Examples of edge effects: If the extreme of the fibre is internal and too close
to the window border, a piece of enlargement is not considered in the estimator λ̂1

k,r

P(Γ ∩Br(zi) �= ∅) = TΓ (Br(zi)) = TΓ (Br(x)),

∀x ∈ Ak. Thus again by using the SLLN and Slutsky Theorem we obtain the
asymptotic unbiasedness and weak consistency of this estimator, in fact, for
any x ∈ Ak,

E(λ̂2
k,r,p) =

TΓ (Br(x))
2r

=
P(x ∈ Γ⊕r ∩Ak)

2r
−→ λk, for r → 0 (14)

Var(λ̂2
k,r,p) =

(TΓ (Br(x)))(1− TΓ (Br(x)))
4r2p

(15)

=
(P(x ∈ Γ⊕r ∩Ak))(1− P(x ∈ Γ⊕r ∩Ak))

4r2p
→0, (16)

for r → 0, p→∞, rp→∞.

6 Application of the Estimators to the Simulated
Inhomogeneous Poisson Segment Process

In this section we will apply the estimators λ̂1
k,r,p and λ̂2

k,r,p introduced in
Sect. 5 to the working example introduced in Sect. 4.2 and we will also derive
the rate of convergence to 0 of the variance, in order to assess a method for
choosing an “optimal bandwidth” of enlargement r, depending on p. Since the
true intensity of this process is known, we use first this example to test empir-
ically the properties of our estimators. In Sect. 7 we will apply the estimators
to real or simulated processes where the true intensity is unknown.
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Fig. 7. The regions where a germ must appear in order that a segment hits Br(x)

Assume that r < l, where l is the length of the segments forming the
Boolean model, consider the quantities which have been estimated in Sect. 5
in the specific case of our example, where x = (x1, x2) ∈ R2 and refer to Fig. 7
for the definition of the regions Q and D.

P(x∈Γ⊕r) = P(Br(x) ∩ Γ �= ∅)
= 1− P(Br(x) ∩ Γ = ∅)

= 1− P(no germs fall in Q ∪D)

= 1− exp
[
−
∫
Q

α(x)dx−
∫
D

α(x)dx
]

= 1−exp

[
−2r
∫ x1

x1−l

cx̄2
1dx̄1−

∫ x1+r

x1

∫ x2+
√

r2−(x̄1−x1)2

x2−
√

r2−(x̄1−x1)2
cx̄2

1dx̄1dx̄2

]

= 1− exp
[
− 2

3
rc
(
x3

1 − (x1 − l)3
)

(17)

−
∫ x1+r

x1

2cx̄2
1

√
r2 − (x̄1 − x1)2dx̄1

]
. (18)

Now by computing a Taylor series expansion of (17)–(18) in a right neighbor-
hood of r = 0, we obtain

P(x ∈ Γ⊕r) = 2rλ(x)− 2r2(λ(x))2 + o(r2).

By substituting this expansion in the expressions of the expected value and
variance of the estimators λ̂1

k,r,p and λ̂2
k,r,p, which are the same, given by

(11), (12), and (14), (16), we get, for all x ∈ Ak and i = 1, 2
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E(λ̂i
k,r,p) = λ(x)− rλ2(x) + o(r) (19)

Var(λ̂i
k,r,p) =

λ(x)
2rp

− 3λ2(x)
2p

+ o

(
1
p

)
. (20)

The optimal enlargement or bandwidth r can then be computed by minimizing
the mean square error, which (by neglecting infinitesimal terms of higher
order) is given by

MSE(λ̂i
k,r,p) = Var(λ̂i

k,r,p) + Bias2(λ̂i
k,r,p)

=
λ(x)
2rp

− 3λ2(x)
2p

+ r2λ4(x).

By minimization one obtains

roptimal = arg min
r

MSE(λ̂i
k,r,p) = [4pλ(x)]−1/3

.

Note that the optimal bandwidth can be computed only if the true intensity
λ(x) is known, which is obviously not the case in general. The problem can
be overcome in various ways, for example assuming that λ belongs to a given
family of functions depending on parameters which can be estimated from the
data, or with iterative methods, via the use of an initial guess for λ(x) or for
roptimal. A discussion for the case of kernel density estimators of the p.d.f. of
real-valued random variables can be found in [Hard91, Chap. 4].

7 Experimental Results

We applied estimators λ̂1
k,r,p and λ̂2

k,r,p to simulated data coming from the
model described in Sect. 4.2. The simulation has been performed in the window
[0, 1] × [0, 1]; the constant c appearing in the intensity of germs has been
assumed c = 400, and the length of segments was fixed to l = 0.2. The
window [0, 1] × [0, 1] was divided into ten vertical stripes of equal width.
The two estimators have been computed on each subwindow both by using
a deterministic grid of p points zi, coinciding with the grid of pixels of the
image, and by overlapping a random grid of p uniformly distributed points
zi, i = 1, . . . , p. The second method is less affected by correlation problems
which may arise from points which have a spatially close location, but has
higher computational costs. The optimal bandwidth r has been computed via
the true value of λ(x) in the centroid of each subwindow. The results are
reported in Fig. 8. Since the estimators are biased, with first order bias given
in (19), we corrected the estimators by subtracting −rλ2(x). The corrected
estimators are reported in Fig. 9, and show a good agreement with the true
value of the intensity of the process.

We also computed confidence bands for the estimators, both corrected and
uncorrected for bias, by simulating 100 processes with the same intensity, per-
forming on each simulated pattern the estimation procedure and taking the
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Fig. 8. Left: estimate with a deterministic grid; right: estimate with a random grid.
Dashed line = λ̂1

k,r,p, dotted-dashed line = λ̂2
k,r,p, continuous line = true value of

λ(x). The random grid used for the right-hand picture was formed by p = 2, 000
uniformly distributed points. The number of pixels in each subwindow, used for the
deterministic grid, is 11, 628

Fig. 9. Left: estimate with a deterministic grid; right: estimate with a random
grid. dashed line = λ̂1

k,r,p, dotted-dashed line = λ̂2
k,r,p, continuous line = true value

of λ(x). The estimators have been corrected for bias using the true value of the
intensity. The random grid used for the bottom picture was formed by p = 2, 000
uniformly distributed points. The number of pixels in each subwindow, used for the
deterministic grid, is 11, 628

minimum and maximum values of the estimated intensity in each subwindow.
The results are reported in Figs. 10 and 11. From the experimental results the
estimators obtained by overlapping to the subwindows a deterministic equally
spaced grid seem not to be equivalent to the ones obtained by overlapping a
random grid of uniformly distributed points. The deterministic ones seem to
have a larger variance than the random ones, and the random ones still show
some negative bias, even after the correction, probably due to the terms of
higher order which we neglected. The difference in the variance is due to the
fact that in the derivation of the expected value and variance of the two esti-
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Fig. 10. Dashed line min–max confidence band computed by estimating the inten-
sity over 100 simulations of the process; continuous line true value of λ(x). For the
estimation we used a deterministic equally spaced grid of points (coinciding with
the pixels of the image) overlapped to each subwindow

mators, we assumed that the indicator functions appearing in their definition
were i.i.d. Unfortunately the indicators are not independent if the points zi
are located on a regular grid, of width dx comparable with the length l of the
segments of the Boolean model or with the “enlargement bandwidth” r. Note
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Fig. 11. Dashed line min–max confidence band computed by estimating the inten-
sity over 100 simulations of the process; continuous line true value of λ(x). For the
estimation we used a random grid of 2, 000 uniformly distributed points overlapped
to each subwindow

that the results obtained using a random grid could be improved by augment-
ing the number of random points of the grid, with a consequent increase of
the computational costs.

Since in real applications the true intensity of the fibre process is unknown,
we also applied an iterative method to compute the intensity. The method
starts by enlarging of the same quantity rstart (initial guess) the fibres in all
the subwindows; then the estimate procedure is applied and the estimate of
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Fig. 12. Estimates with an iterative method. Left figure: estimate with a determin-
istic grid. The number of pixels in each subwindow, used for the deterministic grid,
is 11, 628. Right figure: Estimate with a random grid. The random grid used for the
estimate was formed by p = 2, 000 uniformly distributed points. The estimators have
been corrected for bias; dashed line = λ̂1

k,r,p, dotted-dashed line = λ̂2
k,r,p, continuous

line = true value of λ(x)

λ(x) is computed in each subwindow. The estimated intensity is then used to
compute the optimal enlargement bandwidth r in the next iteration and an
update of λ̂k,r,p is computed. A given tolerance constant tol is fixed and the
procedure is iterated up to when

sup
x
|λ̂i(x)m+1 − λ̂i(x)m| < tol,

where λ̂i(x)m is the intensity function estimated at iteration m (i = 1, 3 for
the two considered estimators). The study of the termination of the iterative
procedure is left to subsequent papers.

The results are reported in Fig. 12. Also in this case the estimators have
been corrected for bias, using the estimated intensity for the correction instead
of the true value of λ(x). From the experimental results the termination and
the results of the algorithm does not seem to depend strongly on the initial
guess. The convergence looks faster for λ̂1

k,r,p if we use a deterministic grid,
and for λ̂2

k,r,p if we use a random grid.
Min–max confidence bands have been computed over 100 simulations of

the process also with the iterative method, using both a deterministic and a
random grid; the results are reported in Figs. 13 and 14.

Remark 6. In this case estimator λ̂1
k,r,p computed with a random grid seems to

behave badly with respect to the others, in particular when the true intensity
is high. Nevertheless this estimator has many computational advantages when
applied to subwindows which have not a rectangular shape, since overlapping
a random grid of points to a window having any shape and counting what
points are falling inside the enlarged fibres, is much easier than selecting ran-
dom points which have a spherical neighbourhood of fixed width r entirely
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Fig. 13. Confidence bands for λ(x) using λ̂1
k,r,p (left figure) and λ̂2

k,r,p (right figure).
Dashed line = min–max confidence band computed by estimating the intensity over
100 simulations of the process; continuous line = true value of λ(x). For the esti-
mation we used a deterministic equally spaced grid of points (coinciding with the
pixels of the image) overlapped to each subwindow
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Fig. 14. Confidence bands for λ(x) using λ̂1
k,r,p (left figure) and λ̂2

k,r,p (right figure).
Dashed line = min–max confidence band computed by estimating the intensity over
100 simulations of the process; continuous line = true value of λ(x). For the estimate
we used a random grid formed by p = 2, 000 uniformly distributed points
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contained in the subwindow. Thus estimator λ̂1
k,r,p will be more often used in

the real applications which need a nonrectangular division in subwindows for
a good analysis.

The estimators have then been applied to some simulations of real fibre
processes, where the true intensity is not known. In Fig. 15a simulation of the
generation and branching of vessels driven by a chemotactic field generated
by a tumour is reported. The tumour is located on the right-hand side of the
window and the vessels start growing and branching from the left-hand side
of the window in the right direction. The chemotactic field has a gradient in
the x direction and influences both the speed of growth and the branching of
the vessels. The intensity has been estimated both with a deterministic and
a random grid, by dividing the observation window into ten vertical stripes
of the same width. The estimators have been corrected for bias. The results
are reported in Fig. 15. In Fig. 16 two simulations are reported where the
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Fig. 15. Estimate of the fibre intensity of an angiogenetic process with a chemotactic
field having a gradient in the x direction. Bottom left: estimate with a deterministic
grid; bottom right: estimate with a random grid of 2,000 points. The estimators have
been corrected for bias. Dashed line = λ̂1

k,r,p, dotted-dashed line = λ̂2
k,r,p
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Fig. 16. Comparison between the two simulated angiogenetic processes depicted
in the top line. Bottom left: comparisons of λ̂1

k,r,p for the two processes estimated

with a deterministic grid; bottom right: comparisons of λ̂1
k,r,p for the two processes

estimated with a random grid. In both cases the first process reveals an intensity
lower than the second, and this was really the case in the performed simulation

intensities of branching where different. The difference is not much evident by
simply looking at the patterns, but the estimate of the intensity reveals that
the pattern on the left has a lower intensity than the pattern on the right for
any value of x, and this was really the case, since the frequency of branching
and speed of growth was settled higher in the right-hand pattern. This is thus
an example where quantitative analysis is essential for the characterization
and differentiation of the geometry.

In Fig. 17 an analogous process but driven by a chemotactic field with a
spherical symmetry around a point-shaped tumour is reported. Because of the
observed symmetry, in this case the window of observation has been divided



Estimation of Mean Geometric Densities of RACS’s 31

0 0.1 0.2 0.3 0.4 0.5
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

6

8

10

12

14

16

18

20

22

r

estimate in radial direction

λ1 (
x)

Fig. 17. Estimate of the fibre intensity of an angiogenetic process driven by a
chemotactic field with a spherical symmetry. Top line: the fibre process and an esti-
mate of λ̂1

k,r,p using a random grid and dividing the window into ten spherical shells
centred at the tumour; bottom: plot of λ̂1

k,r,p with respect to the radial coordinate,
centred at the tumour

into 10 spherical shells centred at the tumour location. Both the estimated
values in each subregion in a 2D visualization and the plot of the estimated
intensity with respect to the radial coordinate are reported. In this case, since
the subwindows are not rectangular, only estimator λ̂1

k,r,p has been computed
(see Remark 6).

In Fig. 18 an estimator λ̂1
k,r,p has been computed on three images of a

vascular networks generated in allantoids (see [CM05] for a discussion of the
relevance of these studies in tumour treatment). Two of the three allantoids
have been treated with two different doses of an antiangiogenic substance,
which should inhibit the formation of vessels. The figure on the left refers
to an untreated control allantoid. Because of the spherical symmetry of the
images, also in this case the observation window has been divided into spher-
ical shells centred at the centroid of the allantoid. The results of the estimate
reveal, in a quantitative way, that the increase of the dose of the substance
results in a less widespread network and in a lower intensity of length of the
vessels.
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Fig. 18. Vascularization in allantoids. First line, from left to right: control experi-
ment (untreated), treated with 0.75 mg of antiangiogenetic substance, treated with
1 mg of antiangiogenic substance. Second line: scheletonization of the upper images.
Third line: 2D representation of the intensity estimate of the fibres in the skele-
tons; the space has been divided into ten spherical concentric shells. Bottom line:
comparison of the radial estimates of the intensities of the three allantoids
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Summary. The use of electrohydrodynamic (EHD) forces to generate highly
charged coaxial jets of immiscible fluids, with diameters in the micro and nanoregime,
has unravel itself as a quite interesting choice for producing complex nanostructures
from a vast variety of precursors, provided they can solidify, polymerize or gel, in
times comparable or shorter than the living time of the coaxial nanojet. For time
ratios larger than one, the result of the process are micro or nanocapsules, while for
time ratios smaller than one coaxial nanofibres are produced. We show examples of
both situations, with organic and inorganic precursors. On the other hand, realiza-
tion of the process in a liquid bath opens the door to production of controlled micro
and nanosized complex emulsions.

1 Introduction

It is well known that the physical properties of a piece of a given substance
(thermal and electrical conductivity, strength, toughness, etc.) depend not
only on the substance itself but also on its characteristic size. In effect, let us
consider an ideal experiment consisting of a material piece whose character-
istic length L can be shortened in a controlled way by an external observer.
The observer would find out that the values of the physical properties of the
material piece undergone a dramatic change when L reaches values sufficiently
small. The explanation for such an anomalous behaviour lays on the fact that
the surface of a piece of matter decreases with L much more slowly than
its volume does and, contrarily to what happens in our familiar macroscopic
world, the atomic and molecular interactions of the surface becomes dominant
compared to those in the volume once the nanoscopic limit is reached. The
length at which the change of properties takes place is, roughly speaking, of
the order of 100 nm so this length may be thought as the boundary below
which nanotechnology and nanoscience apply. Therefore, its application do-
main ranges from isolated atoms/molecules to bulk materials, where length
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and timescales of the phenomena become comparable to those of the structure.
Nanotechnology implies the ability to generate and to use structures, compo-
nents, and devices with a size range from about 0.1 nm (atomic and mole-
cular scale) to about 100 nm (or larger in some situations) by control at
atomic, molecular, and macromolecular levels. Nanotechnology is a major
breakthrough that will yield new tools for fundamental discoveries with broad
impact on technology, materials, biomedical, energy, and environment. More-
over, their interdisciplinary character allows for unparalleled synergy between
previously unrelated fields and therefore their applications are extremely di-
verse. Some few examples of potential applications that are being actively
investigated are: advanced drug delivery via nanoparticles in medicine and
pharmaceutics fields; chemical and biodetectors for security and other civil-
ian uses; nanostructured catalysts in chemical and fuel industries; metallic
and ceramic nanostructured materials with engineered properties, molecu-
lar manipulation of polymeric macromolecules, and nanostructured coatings,
among others, in material science; nanofabrication of electronic products in
electronics, etc. Commercially viable technologies are already available for
some ceramic, metallic, and polymeric nanoparticles, nanostructured alloys,
colorants and cosmetics, tissue engineering, electronic components such as
those for media recording, and hard-disk reading, to name a few. In biomedi-
cine, tissue engineering, for example, applies to regeneration of bones, arteries,
and other organs by using biocompatible polymers: polycaprolactone (PCL)
and polylactide-co-glycolide acid (PLGA). Basically, it is based on the fact
that cells get together and rearrange faster around fibres with smaller diam-
eters (500 nm) than the cells. These scaffolds made of woven fibres, which
have proved to be a very efficient growing environment, are being used as bio-
compatible films to cover prostheses to avoid rejection. This stimulating tissue
growth also applies in the cicatrization of wounds and burns. Another example
of synergy between nanotechnology and medicine is the use of nanoparticles
in drug delivery. The technique involves binding a therapeutic compound to
a nanoparticle, or encapsulating it within a nanoshell. A key advantage of
nanoshells is that they can be targeted to specific cell populations through
conjugation with a monoclonal antibody. When the nanoshells reach the target
site, their therapeutic contents are released by breaking them using a low in-
tensity light source such as a laser; shells with controlled porous wall could be
also used for the appropriate outflow of the drug. Drug delivery using nanopar-
ticles provides high target specificity, with high potential for treatment of lo-
calized neurological disorders and cancer with therapeutic compounds which
have side effects in the rest of the body. An alternative, noninvasive procedure
for tumour ablation, which has been tested in mice, consists in the intravenous
injection of nanoparticles with a dielectric core coated by a thin gold shell,
Loo (2005). Based on the relative dimensions of the shell thickness and core
radius (typical diameter of the shell is in 100 nm range), nanoshells may be de-
signed to scatter and/or absorb light over a broad spectral range including the
near-infrared (NIR), a wavelength region that provides maximal penetration
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of light through tissue. Immunotargeted nanoshells are engineered to absorb
light, allowing selective destruction of targeted carcinoma cells through pho-
tothermal therapy. Production of micrometer- or even nanometer-sized parti-
cles and fibres can be tackled from two different approaches: bottom-up and
top-down methods. Bottom-up refers to methods where materials and devices
are built from molecular components which assemble themselves chemically
using principles of molecular recognition. Bottom-up should broadly speak-
ing be able to produce devices in parallel and much cheaper than top-down
methods, but getting control over the methods is difficult when nanostruc-
tures become larger and more bulky than what is normally made by chemical
synthesis. On the contrary, in top down methods, nanoobjects are obtained
from the appropriate splitting of much larger physical systems without atomic
level control along the process.

Top-down methods to produce micro- and nanoparticles require the divi-
sion of a macroscopic (i.e. millimetric) piece of matter, generally a liquid, into
tiny offsprings of micro- or nanometric size. Surface tension strongly opposes
the huge increase of area inherent to this dividing process. Thus, to produce
such small particles, energy must be properly supplied to the interface. This
energy is the result of a mechanical work done on the interface by any exter-
nal force field, i.e. hydrodynamic forces, electrical forces, etc. Two kinds of
approaches can be distinguished, depending on how the energy is supplied.
In one approach, such as in the mechanical emulsification techniques, the
force fields (extensional and shear flows) employed to break up the interface
between two immiscible fluids are so inhomogeneous that, in general, the off-
spring droplets present a very broad size distribution. Nevertheless, a good
degree of monodispersity might be achieved for a particular combination of
the emulsification parameters (shear rate, rotation speeds, temperature, etc.)
and a given combination of substances. However, such a desirable condition
might not exist if one of the substances is changed, if a new one is added,
or if a different size is desired. The same occurs if capsules must be formed.
Furthermore, in many instances, the formation of the structure depends on
chemical interactions, usually preventing the process from being applicable to
a broad combination of substances.

In the other approach, which has the advantage of being based on purely
physical mechanisms, the force field stretches, steadily and smoothly, the fluid
interface without breaking it until at least one of its radii of curvature reaches
a well-defined micro or nanoscopic dimension d; at this point, the spontaneous
break up of the stretched interface by capillary instabilities yields monodis-
perse particles with a size of the order of d, Barrero and Loscertales (2007).
These types of flows are known as capillary flows due to the paramount role of
the surface tension. For example, the formation and control of single and coax-
ial jets with diameters in the micrometer/nanometer range, and their eventual
varicose breakup, lead to particles without structure (single jets) or compound
droplets (coaxial jets), with the outer liquid encapsulating the inner one. On
the other hand, if the liquid solidifies before the jet breaks, one obtains fibres
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(single jet) or coaxial nanofibres or hollow nanofibres (coaxial jets). The mean
size of the particles obtained with these methods ranges from hundreds of
micrometers to several nanometers, although the nanometric range is gener-
ally reached when electric fields are employed. The particles obtained using
this approach are, in general, nearly monodisperse and its employment en-
ables, in the case of capsules, a precise tailoring of both the capsule size and
the shell thickness.

2 Capillary Flows Driven by Electrical Forces

2.1 Electrospray

The interaction of an intense electrical field with the interface between a con-
ducting liquid and a dielectric medium has been known to exist since William
Gilbert (1600) reported the formation of a conical meniscus when an electrified
piece of amber was brought close enough to a water drop. The deformation of
the interface is caused by the force that the electrical field exerts on the net
surface charge induced by the field itself. Experiments show that the inter-
face reaches a motionless shape if the field strength is below a critical value,
whereas for stronger fields the interface becomes conical, issuing mass and
charge from the cone tip in the form of a thin jet of diameter d. In the latter
case, the jet becomes steady if the mass and charge it emits are supplied to the
meniscus at the same rate. Taylor (1964) explained the conical shape of the
meniscus as a balance between electrostatic and surface tension stresses; since
then the conical meniscus has been referred to as the Taylor cone. The thin jet
eventually breaks up into a stream of highly charged droplets with a diameter
of the order of d. This electrohydrodynamic (EHD) steady-state process is the
so-called steady cone-jet electrospray after Cloupeau and Prunet-Foch (1989),
or just electrospray, see Fig. 1, Pantano et al. (1994).

The electrospray has been applied for bioanalysis (Fenn et al. 1989), fine
coatings (Siefert 1984), synthesis of powders (Rullison and Flagan 1994), and
electrical propulsion (Martinez-Sanchez et al. 1999), among other technolog-
ical applications. Recently, the electrosprays in cone–jet mode were also sta-
bilized inside dielectric liquid baths, Barrero et al. 2004; hence, the technique
could be applied to the production of simple and double emulsions of the type
water in oil, oil in water, and oil–water–oil.

Although the equations (Navier–Stokes and Maxwell equations) and
boundary conditions governing the electrospray are known, the numerical
simulation of the electrospray is quite complex due to (a) the disparity of
length scales between the diameter of the jet and the needle diameter, or
aperture, through which liquid is being injected, which can vary more than
three orders of magnitude, (b) the existence of one (or more) free surface that
must be consistently determined as part of the solution of the problem, and
(c) the fact that the region where the interface breaks is time dependent in
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Fig. 1. Cone, jet, and spray in an electrospray; the electrosprayed liquid was
methanol. The size of the charged droplets ranged between 380 and 720 nm, which
are the wavelength of the blue and red radiation. As shown in the picture, droplets
scatter the blue component avoiding its pass throughout the spray while the other
components of the white light pass through the droplet cloud

spite of the steady character of the flow upstream of the breaking zone. For
these reasons most works on electrospray have focused on experiments, which
under the guide of the dimensional analysis have provided the widely accepted
relationship between the current I and the flow rate q transported through
the jet, Fernández de la Mora and Loscertales (1994),

I

I0
= g(β)

(
q

q0

)1/2

with I0 =
(
ε0
ρ

)1/2

q0 =
γε0
ρK

, (1)

where γ is the surface tension, ρ,K, and βεo are density, electrical conductivity
and permittivity of the liquid respectively, εo is the vacuum permittivity,
and g(β) ∼ β−1/4 is a dimensionless function that has been experimentally
determined (Gañán-Calvo et al. 1997). However, the scaling law for the jet
diameter d is still controversial because experimental errors in the reported
measurements of the mean droplet diameter do not allow one to distinguish
between the different proposed size laws. The scaling size laws that appear
most frequently in the literature can be cast in the form

d

d0
= f(β)

(
q

q0

)n

with d0 =
γε20
ρK2

, (2)

where f(β) is a dimensionless function of order of unity and exponent n takes
the values 1/3, 1/2, and 2/3 depending on the authors. For electrosprays,
the minimum flow rate at which it can operate in steady-state conditions is
approximately given by qmin ∼ q0, which for liquids with electrical conductiv-
ities of the order of 1 S m−1, the minimum jet diameter becomes of the order
of a few nanometers.
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Fig. 2. Nonagglomerated spherical titanium oxide nanoparticles were prepared using
an electrospray assisted chemical vapor deposition (ES-CVD) process. From Nakaso
et al. (2003)

Numerical simulation of the cone jet electrospray has been considered in a
recent paper, Higuera (2003); details of the equations and boundary conditions
can be found there. To avoid the numerical difficulty of dealing with two highly
disparate length scales, which appears in the case of liquids of relatively high
electrical conductivity. Higuera did not consider the full problem from the
needle to the final jet region (before breakup) but the cone-to-jet transition
region and used the cone and the jet as asymptotic boundary conditions. The
numerical analysis included the effect of the liquid viscosity, which had been
neglected in prior experiments, and he approximately recovered the I ∼ Q1/2

law. An excellent review on the physics of electrosprays may be found in
Fernandez de la Mora (2007).

The electrospray technique has proved its ability for the production of
single nanoparticles; the ones shown in Fig. 2 are an example.

2.2 Electrospinning

The EHD flow described above can be also used to obtain very thin fibres if
the jet solidifies before breaking into charged droplets. This process, known
as electrospinning, occurs when the working fluid is a complex fluid, such as
the melt of polymers of high molecular weight dissolved in volatile solvent,
Doshi and Reneker (1995), Fridrikh et al. (2003). The rheological properties
of these melts, sometimes enhanced by the solvent evaporation from the jet,
slowdown, and even prevent the growth of varicose instabilities. As is well
known, large values of liquid viscosity delay the jet breakup by reducing the
growth rate of axisymmetric perturbations, so longer jets may be obtained.
However, nonsymmetric perturbation modes can grow due to the net charge
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Fig. 3. Whipping instability in an electrified jet of glycerine in a bath of hexane.
Courtesy of Mr. A. Gomez-Maŕın

carried by the jet. Indeed, if a small portion of the charged jet moves slightly
off axis, the charge distributed along the rest of the jet will push that portion
farther away from the axis, thus leading to a lateral instability known as
whipping or bending instability. A picture capturing the development of the
whipping instability in a jet of glycerine in a hexane bath is shown in Fig. 3.

The chaotic movement of the jet under this instability gives rise to very
large tensile stresses, which lead to a dramatic jet thinning. The solidifica-
tion process, and thus the production of micro- or nanofibres, is enhanced
by the spectacular increase of the solvent evaporation rate due to the thin-
ning process. This technique is very competitive to produce nanofibres as
compared with other existing ones (i.e. phase separation, self-assembly, and
template synthesis, among others), and it is therefore the subject of intense
research.

2.3 Electrified Coaxial Jets

A new technique, which also uses EHD forces to generate coaxial jets of
immiscible liquids, with diameters in the nanometer range, has been recently
reported, Loscertales et al. 2002. The method is being used to synthesize
nanoparticles with core-shell structure. Basically, the technique consists of
the injection at appropriate flow rates of two immiscible liquids through two
concentrically located needles. The inner diameter of the inner needle ranges
from the order of 1 mm to tens of micrometers, whereas its outer diameter
sets limits to the cross-section of the outer needle.

The outer needle is connected to an electrical potential of several kilovolts
relative to a ground electrode. The inner needle is kept to an electrical po-
tential that, depending on the conductivity of the outer liquid, can be varied
from that of the outer needle to that of the extractor. For a certain range
of values of the electrical potential and flow rates, a structured Taylor cone
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Fig. 4. Picture on the left shows a structured liquid Taylor cone; a downstream
detail of the two coaxial jets emitted from the vertexes of the two menisci is given
in picture on the right

is formed at the exit of the needles with an inner meniscus surrounded the
inner one, see picture on the left in Fig. 4. A liquid thread is issued from the
vertex of each one of the two menisci, giving rise to a compound jet of two
coflowing liquids see picture on the right (Fig. 4). At the minimum jet section,
the two-layered jet has an outer diameter of 4 µm.

To obtain this compound Taylor cone, at least one of the two liquids must
be sufficiently conductive. Similarly to simple electrosprays, the electrical field
pulls the induced net electric charge located at the interface between the con-
ducting liquid and a dielectric medium and sets this interface into motion;
because this interface drags the bulk fluids, it may be called the driving inter-
face. The driving interface may be either the outermost or the innermost one;
the latter happens when the outer liquid is a dielectric. When the driving in-
terface is the outermost, it induces a motion in the outer liquid that drags the
liquid–liquid interface. When the drag overcomes the liquid–liquid interfacial
tension, a steady-state coaxial jet may be formed. On the other hand, when
the driving interface is the innermost, its motion is simultaneously diffused
to both liquids by viscosity, setting both in motion to form the coaxial jet.
Scaling laws showing the effect of the flow rates of both liquids on the current
transported by these coaxial jets and on the size of the compound droplets
were recently investigated (Lopez-Herrera et al. 2003).

3 Core-Shell Nanoparticles

3.1 Nanocapsules and Hollow Nanospheres

The last technique has been applied, upon coaxial jet breakup, to microencap-
sulate aqueous solutions. An outer jet of Somos 6120, a Du Pont photopolymer
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Fig. 5. Collection of near monodisperse capsules. Magnified views of two capsules
formed under different parametrical conditions are also given in the two pictures
on the right. In the upper one picture, the outer diameter is 10 µm, whereas the
diameter of the capsule shown in the lower one is 8 µm

and a coflowing water inner jet were generated as described before. Compound
droplets of water coated by Somos resulted from the jet breakup, so that a
spray of compound droplets was formed and collected on a plate damped with
water. In this case, the outer shell of the droplets was hardened with an ul-
traviolet light reactor. Before the hardening process, the charged aerosol was
neutralized by corona discharge, so that losses were minimized. The liquid flow
rates in this experiment were selected to obtain capsules in the micrometer
range, because capsules in this range can be optically recorded to allow for
visual observation, Fig. 5. Capsules of olive oil surrounding water of 150 nm
of mean diameter have been also obtained with this technique. Some examples
of applications of this approach to produce capsules include the encapsulation
of water-based flavours within oil-based substances, and the opposite (oil-
based flavours within water-based polymers) for food enrichment applications,
Bocanegra et al. (2005).

Also, combination with sol–gel chemistry has proven fruitful, Larsen et al.
(2003). In this case, the outer liquid was a sol–gel formulation, while the inner
one was a regular nonstructured or “regular” liquid (like oil, water, glycerine,
etc.). By adjusting the sol properties and the operating parameters, we have
been able of producing hollow spheres, with mean diameters ranging from
10 µm down to 0.4 µm, and with shell thickness between 1 µm and less than
50 nm. Some of these results are shown in Fig. 6. Although the capsules were
initially filled with the “regular” liquid, since the polymerization or gel transi-
tion forms porous solids, the inner liquid was easily solvent-extracted, so that
after solvent evaporation a void cavity was left. In any of the above cases,
the time of flight of the liquid capsules (that is the time from their formation
up to their collection on a collector) was controlled to allow for either phase
transition or polymerization (gelation). This can be easily done by reducing
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Fig. 6. Hollow spheres of SiO2. Both diameter and shell thickness can be controlled
by adjusting the flow rates

the charge level on the freshly formed capsules; this was accomplished in our
lab by setting up a corona discharge of opposite polarity in the surrounding
atmosphere.

3.2 Hollow Nanofibres and Coaxial Nanofibres

Another recent application of this technique relates to the production of
nanofibres, compound nanofibres and hollow nanotubes. There are many pro-
cedures to build nanotubes of different materials, other than the popular car-
bon nanotubes. In general, the vast majority of these procedures resort to
templates, Cepak and Mart́ın (1999). A solid nanotemplate (i.e. a nanofibre
or a pore membrane) is formed, around which nanotubes are grown. This
growth usually happens in liquid phase, and it resorts to self-assembly of the
proper molecules onto the surface of the template. The first complexity is due
to this self-assembly process, which unfortunately appears to be very chem-
istry dependant. Usually, the recipe that works for one particular precursor
does not work for another, even for very similar molecules. Once the shell
is built around the template, still the template itself must be removed. This
is typically done by degrading or decomposing the template thermically, or
chemically, etc. This necessarily requires the shell to be more “resistant” than
the template. In brief, the procedure is a multistep process, apart of the re-
striction imposed by the chemistry. One of the advantages of using compounds
nanojets to produce nanotubes resorts on the fact that self-assembly is not a
limiting step since the shape of the jet itself already constrain the material to
the proper cylindrical shape. But during the same process, the inner liquid,
which is also stretched to a cylindrical shape, plays the role of the template,
thus limiting the inner surface of the nanotube. Furthermore, the template is
not solid, but liquid, so that removing the template is much easier and much
less energy consuming. Therefore, if solidification (or polymerization, or gela-
tion) of the outer liquid occurs prior to the jet break up, then the nanotube
is form in just one step, Loscertales et al. (2004).



Synthesis of Micro and Nanoparticles from Coaxial Electrified Jets 45

Fig. 7. Examples of hollow nanotubes and compound nanofibres

Figure 7 shows some examples of hollow nanotubes and compound nanofi-
bres produced from electrified coaxial jets. Pictures have been taken with a
scanning electron microscope, except the right one, which was taken with
transmission electron microscope. The picture on the left shows nanotubes of
SiO2, with diameters of the order of 500 nm, and shell thickness of the order
of 70 nm. The one in the middle shows ZnO2 nanotubes, with diameters from
1 µm down to 400 nm; the wall thickness was of the order of 80 nm. Finally,
the right one shows a coaxial character compound nanofibre of poly-ethylene-
oxide (PEO) on the outside, and stained PEO in the inside. The outer and
inner diameters are of 100 and 15 nm, respectively.

3.3 Simple and Double Emulsions

Finally, another extension of the EHD atomization is that when the sur-
rounding atmosphere is not a gas nor vacuum, but a liquid insulator, Barrero
et al. (2004). The same atomization process is possible within a liquid, which
opens up the possibility of producing monodisperse micro- and nanoemulsions,
Maŕın et al. (2007). Although work is still on its way, we have investigated
the scaling laws for both the current and the size of the droplets. In this new
situation, the role of surfactants, emulsifiers, and polymers in solution may be
essential in order to stabilize such nanoemulsions. On top of that, the process
may be executed with a compound Taylor cone instead (Fig. 8), so that double
emulsions of nanometric size can be directly formed, still with a well controlled
mean size and small size dispersion. Finally, the charged nature of the dis-
persed phase can be an advantage to control their trajectories and to select
where to deposit them; this could be used to generate well controlled layers
of nanoparticles on top of macroscopic objects to emulate colloidosomes, see
for instance (Dinsmore et al. 2002).
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Fig. 8. Taylor cone of glycerol in a bath of hexane. The needle OD is 0.8 mm. The
hydrosol in this case is formed by droplets of two different sizes: the main droplets,
of 2 µm in diameter, and the satellite droplets, of about 0.8 µm in diameter

4 Conclusions

Some topdown methods to produce micro- and nanoparticles require one to
divide a macroscopic (i.e. millimetric) piece of liquid into tiny offsprings of
micro- or nanometric size. One of them uses electrical forces to generate coax-
ial jets with a diameter in the micro- and nanometric size ranges. Micro- or
nanocapsules are formed upon jet breakup, whereas if the jet solidifies coaxial
nanofibres or hollow nanofibres are obtained. This method can produce micro-
and nanoparticles with or without inner structure. Generally, it enables both
a precise control of the particle size and a narrow size distribution, which
makes it attractive and competitive with other existing techniques. A notice-
able feature of the method lies in the fact that the core-shell particles may be
obtained in just one step; this is a clear advantage over multistep processes
such as the emulsification techniques. However, the throughput of this EHD
method is usually too small for many industrial purposes, restricting their
use to some analytical applications. Increasing the production rate requires
the operation of parallel devices. The main problems when trying to operate
in parallel come from the shielding effect of the space charge created by the
highly charged aerosol and from the electric crosstalk between neighbouring
devices. Accordingly, the design of efficient approaches for operating paral-
lel devices will probably become a very active area of research in the near
future.
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11. Gañán-Calvo A.M., Dávila J., Barrero A. J. Aerosol Sci. 28, 249-75 1997.
12. Gilbert W. De Magnete (1600). Transl. P.F. Mottelay. Dover, UK. (1958)
13. Higuera F.J. J. Fluid Mech. 484, 303-327, 2003.
14. Larsen G., Velarde-Ortiz R., Minchow K., Barrero A., Loscertales I.G. J. Am.

Chem. Soc. 125, 1154-55, 2003.
15. Loo C., Lowery A., Halas N., West J., and Drezek R. Nanoletters 5, 4, 709-711,

(2005).
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Summary. This paper deals with mathematical modelling and numerical simulation
of induction heating furnaces for axisymmetric geometries. The mathematical model
presented consists in a coupled thermo-magneto-hydrodynamic problem with phase
change. We propose a finite element method and an iterative algorithm to solve the
equations. Some numerical results for an industrial furnace used for silicon purifica-
tion are shown.

1 Introduction

Silicon (Si) is the second most abundant element in the earth crust after
oxygen. In natural form, it can be found mainly as silicon dioxide (Silica,
SiO2) and silicates. In particular, quartz and sand are two of the most common
forms. Silicon is produced industrially by reduction of silicon dioxide, as quartz
or quartzite, with carbon by a reaction which can be written in a simple way
as follows:

Si O2 + 2C = Si + 2CO. (1)

Silicon has a wide variety of applications depending on its purity. Indeed,
silicon is referred to by the approximate percentage of silicon contained in the
material and the maximum amount of trace impurities present. Thus, silicon
metal (or metallurgical grade silicon) refers to the silicon which contains about
1% of other elements. Its main application is as alloying of other metals like
aluminum to produce cast parts, mainly for automotive industry. It is also a
basic material in chemical industry for silicones. Ferrosilicon can contain more
than 2% of other materials and represents the largest application of silicon.
Almost all ferrosilicon products are consumed by the iron and steel industries.

Pure elementary silicon when doped with traces of elements such as boron
and phosphorus is one of the best semiconductors. These substances have a
myriad of applications in modern technology, because they are the core of any
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analog or digital electronic circuit. The use of silicon in semiconductor devices
demands a much greater purity than afforded by metallurgical grade silicon.
In fact, it is the purest silicon used in industry; it is known as the 9-nines
silicon (99,9999999% of purity).

With the growing of the photovoltaic industry, there is a great request
of solar silicon, name given to the silicon suitable for use in photovoltaic
applications, such as solar cells. Solar silicon must be extremely pure, even if
the specifications of purity are less strict than for semiconductor silicon.

Induction heating techniques have been widely applied in the last years
in the metallurgical and semiconductor industry for the purification of silicon
ingots. Figure 1 illustrates the basic components of an induction heating sys-
tem: a power supply, an induction coil and a workpiece, which is the piece to
be heated. The power supply sends alternating current through the coil that
circulates around the coil generating a magnetic field. When the workpiece is
placed in the coil, the magnetic field induces eddy currents in it that, by the
Joule effect, produce heat. It is this heat which warms up the workpiece.

Based on the induction heating technique, various kinds of induction fur-
naces are employed for different purposes, such as metal smelting ([CETAL,
CRST93]), metal hardening ([CSL04, WKN94]) or crystal growing ([MR97,
KP03]). In this work we consider an induction melting furnace as the one rep-
resented in Fig. 2. It consists of a cylindrical vessel (usually called the crucible)

Fig. 1. Induction system

Fig. 2. Induction furnace
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made from a material such as graphite which is surrounded by an inductor coil
made of a very conductive material (copper, for instance). Silicon is placed
inside the crucible and the coil is supplied with an alternating current. The
goal is to melt the silicon that initially is introduced in solid state.

The idea for the purification process is based on the fact that if silicon is
melted and resolidified, the last parts of the mass to solidify contain most of
the impurities. Thus, in zone melting, the first silicon purification method to
be widely used industrially, rods of metallurgical grade silicon are heated to
melt at one end. Then, the heater is slowly moved down the length of the rod,
keeping a small length of the rod molten as the silicon cools and resolidifies
behind it. Since most impurities tend to remain in the molten region, when the
process is complete most of the impurities in the rod will have been moved into
the end that was the last to be melted. This end is then cut off and discarded,
and the process repeated if a still higher purity is needed. Usually, these
methods are combined with chemical ones which involve the injection of gasses
into (or onto) a molten silicon bath and are chosen to remove undesirable
elements through formation of solid of gaseous reaction products.

An important advantage of induction heating is that the melt is very
well stirred, since the Lorentz forces generated by the induced fields cause a
movement in the liquid material.

The inductive system can be designed to maintain the silicon in a liquid
state, control the shape of its free surface and to provide a strong electromag-
netic stirring, ensuring a rapid transfer of pollutants from the bulk liquid to
its surface. This stirring also aids in melting the charge since the moving fluid
transfers heat from the crucible wall to the solid. The numerical simulation
is used to control the design of the induction system, discussing, for instance,
the effect of the power and the frequency on the process. One of the important
items is the crucible.

From the mathematical point of view, the overall process is rather complex,
involving thermal, electromagnetic, hydrodynamic and mechanical phenom-
ena. In order to perform a numerical simulation of the furnace, the physi-
cal process is expressed as a coupled nonlinear system of partial differential
equations arising from the thermo-magneto-hydrodynamic problem. In the
last years several papers have been published which deal with the thermo-
electromagnetic problem ([BGMS1, BGMS2, CETAL, CRST93, KP03]), with
the magneto-hydrodynamic problem ([HSSH93,NEK99]) or with the thermo-
magneto-hydrodynamic problem, but not fully coupled ([HO94,KHT96]). The
authors have already dealt with the thermo-electromagnetic problem with
phase change, using a finite element method [BGMS1]. The present work starts
from the problem and the algorithms proposed in [BGMS1] and introduces the
hydrodynamic problem and the convective heat transfer in the heat equation.

The outline of this chapter is as follows. In Sect. 2 we present the cou-
pled mathematical model, assuming cylindrical symmetry. The equations of
the electromagnetic model are expressed in terms of the magnetic vector po-
tential. Moreover, the heat equations are written in terms of the enthalpy,
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to take into account the phase change. The hydrodynamic model is described
by the incompressible Reynolds-averaged Navier–Stokes equations, to handle
the effects of turbulence. In Sect. 3 we propose an iterative algorithm to solve
the coupled problem. Finally, in Sect. 4 we present some numerical results for
an industrial furnace devoted to the purification of silicon.

2 Statement of the Problem: Mathematical Modelling

We consider an induction furnace consisting of an induction coil surrounding a
workpiece as the one sketched in Fig. 3. The goal is to compute the distribution
of heat in the workpiece caused by the eddy currents, considering phase change
and convective heat transfer.

Let Ω0 be the radial section of the workpiece, and Ω1, Ω2, . . . , Ωm the
radial sections of the windings of the coil. In fact, to be able to consider
the problem in an axisymmetric setting, the induction coil is replaced by
m rings with toroidal geometry. Moreover, Ωa will denote the air around the
conductors, so that Ω = Ωa∪Ω0∪Ω1∪· · ·∪Ωm will denote the two dimensional
domain of the model (see Fig. 4). In principle, Ω is a half-plane and we should
impose “boundary conditions” at infinity. For the sake of simplicity, we cut
the domain far from the conductors and impose boundary conditions on the
artificial boundary (see [BGMS2] for a BEM–FEM method to deal with the
unbounded domain).

2.1 The Electromagnetic Model

Since we are considering alternating currents, all of the fields have the form:

F(x, t) = Re [eiωt F(x)], (2)

Symmetry
axis

Metal

Air

Coil section

Crucible

Fig. 3. Sketch of the induction furnace and diametral section
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where t is time, x ∈ R3 is the space position, ω is the angular frequency, i the
imaginary unit and F(x) is the complex amplitude of the field. Moreover, as
the induction furnace we are interested in works in a low-frequency regime,
the Maxwell’s equations can be reduced to the so-called eddy current model:

curlH = J, (3)

iωB + curlE = 0, (4)

div B = 0, (5)

div D = �, (6)

to which we have to add the equation imposing the intensity current, I, flowing
along the coil. In (3)–(6) H, J, B, E and D are the complex amplitudes as-
sociated with the magnetic field, the current density, the magnetic induction,
the electric field and the electric displacement, respectively, while � denotes
the charge density.

The system (3)–(6) needs to be completed by the constitutive relations

B = µH, (7)
D = εE, (8)

where µ is the magnetic permeability and ε is the electric permittivity. We
also need the Ohm’s law

J =
{
σE inside conductors,
0 in air, (9)

where σ is the electric conductivity.

Remark 1. In fact, the current density in the conductors is given by

J = σ(E + u×B), (10)

where u is the velocity field. In our problem the second term is only important
when the furnace works at low frequencies and very high intensities, so we are
neglecting it, for the sake of simplicity.

Due to the symmetry of the problem, we are interested in using a cylindri-
cal coordinate system (r, θ, z), with the z-axis coinciding with the symmetry
axis of the domain. Hereafter we denote er, eθ and ez the local orthonormal
basis associated with this system of coordinates. Now we assume cylindrical
symmetry, which means that no field depends on the angular variable θ. We
further assume that the current density field has nonzero component only in
the tangential direction eθ, namely

J(r, θ, z) = Jθ(r, z)eθ.
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A well-known result allows us to conclude from (5) that B is the curl of a
magnetic vector potential, denoted by A:

B = curlA. (11)

For the sake of uniqueness we take A to be divergence-free (Coulomb gauge),
and we can also conclude that A is of the form

A(r, θ, z) = Aθ(r, z)eθ. (12)

From (3), (4), (9) and (11) we deduce that there exist constants Ck ∈
C, k = 0, . . . ,m, such that

iωAθ + σ−1Jθ =
Ck

r
in Ωk, (13)

recalling that Ωk, k = 1, . . . ,m denotes each connected component of the
conductor, and thatΩ0 is the workpiece (see [BGMS1] or [BGMS2] for details).

The expression of the curl of a vector field in cylindrical coordinates and
equations (3), (7), (12) and (13) combined together yield

−
(
∂

∂r

(
1
µr

∂(rAθ)
∂r

)
+

∂

∂z

(
1
µ

∂Aθ

∂z

))
+ iωσAθ =

σ

r
Ck, (14)

in any connected component of the conducting domain, and

−
(
∂

∂r

(
1
µr

∂(rAθ)
∂r

)
+

∂

∂z

(
1
µ

∂Aθ

∂z

))
= 0 (15)

in the air.
To be able to solve equations (14)–(15) we assume that the current

intensities flowing in each ring are given data. Thus we add to the model
the following equations∫

Ωk

Jθ drdz = Ik, k = 1, . . . ,m,

Ik being the intensity traversing Ωk. For a further discussion about the model
one can see [BGMS1], [BGMS2] or [CETAL]. An explanation about the phys-
ical meaning of the constants Ck can be seen in [CETAL] or [RS96]. An
important result is that Ck must be zero in any simply connected region, in
particular C0 = 0 in the workpiece. From the mathematical point of view,
these constants can be considered as Lagrange multipliers associated with the
intensity constraints above.

Electromagnetic Boundary Conditions

As we have already said, the unbounded domain is cut far from the conductors
to have a bounded domain. We shall denote by ΓA the boundary of this
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AΩ1

Ωa

Ωm

Ω0

ΓD
A
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A

Symmetry
axis

Metal

Fig. 4. Computational domain for the electromagnetic problem

computational domain and set ΓA = ΓA
R ∪ ΓA

N ∪ ΓA
D (see Fig. 4). Following

[CETAL] the boundary conditions we impose are

∂(rAθ)
∂r

+Aθ = 0 on ΓA
R , (16)

∂(rAθ)
∂z

= 0 on ΓA
N , (17)

Aθ = 0 on ΓA
D . (18)

2.2 The Thermal Model

The above model must be coupled with the heat equation to study the ther-
mal effects of the electromagnetic fields in the workpiece. As the furnace is
designed to reach temperatures higher than the melting point of the metal we
shall use the heat transfer equation in transient state with change of phase.
Furthermore, since the molten metal is subject to electromagnetic and buoy-
ancy forces, we also need to consider convective heat transfer. Let us suppose
that we already know the velocity field u which is null in the solid part of the
workpiece, then the equation for energy conservation is(

∂e

∂t
+ u · grad e

)
− div(keff(x, T ) gradT ) =

|J|2
2σ

in Ω0, (19)

where e is the enthalpy, T is the temperature and keff is the effective thermal
conductivity, which is the sum of the turbulent and molecular conductivities,
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keff = k + kt. The turbulent thermal conductivity is computed by using the
formula

kt =
ηt

σt
, (20)

where ηt is the turbulent dynamic viscosity given by (39) below, and σt is the
turbulent Prandtl’s number, which is taken to be equal to 0.9.

We remark that the thermal conductivity k depends on temperature. We
also assume that other material properties as the electric conductivity σ, the
magnetic permeability µ and the dynamic viscosity η may depend on temper-
ature.

The coupling between the thermal and the electromagnetic submodels is
made by the heat released in the workpiece due to the Joule effect. This heat
is represented in (19) by the term on the right-hand side, involving J which is
obtained from (13). In fact, since the electromagnetic equations are expressed
in the frequency domain, the heat source is determined by taking the mean
value in a cycle (see [BGMS1]).

In (19) the terms between parenthesis on the left-hand side can be rewrit-
ten as the material time derivative of enthalpy, which we shall denote by ė.
Moreover, assuming cylindrical symmetry and the fact that T does not depend
on the angular coordinate θ, the heat equation becomes

ė− 1
r

∂

∂r

(
rk(r, z, T )

∂T

∂r

)
− ∂

∂z

(
k(r, z, T )

∂T

∂z

)
=
|Jθ|2
2σ

. (21)

Notice that, from (13), we obtain

Jθ = −iωσAθ in Ω0, (22)

because C0 = 0 in Ω0.

Thermal Boundary Conditions

The computational domain for the thermal problem is the workpiece, i.e. Ω0.
We shall denote its symmetry axis by ΓS, and by ΓT

R the part of the boundary
that is not on the symmetry axis (see Fig. 5). Then, (21) is completed with
the following radiation–convection condition on the boundary ΓT

R :

k(x, T )
∂T

∂n
= α(Tc − T ) + γ(T 4

r − T 4), (23)

where α is the coefficient of convective heat transfer, Tc and Tr are the external
convection and radiation absolute temperatures, respectively, the coefficient
γ is the product of emissivity by Stefan–Boltzmann constant, and n is the
outward unit normal vector to the boundary. Besides, on the axis ΓS we set

k(x, T )
∂T

∂n
= 0.
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Metal
to heat

Symmetry axis

ΓR
T

ΓR
T

ΓR
T

ΓS

Fig. 5. Computational domain for the thermal problem

2.3 The Hydrodynamic Model

Let Ωl(t) be the radial section of the molten metal, and Γx(t), Γd(t) and
Γn(t) the different parts of the boundary at time t (depicted in Fig. 6). We
assume that the fluid motion is governed by the incompressible Navier–Stokes
equations:

ρ(x, T )
(
∂u
∂t

+ u · ∇u
)
− div(η(x, T )D(u)) +∇p = f in Ωl(t), (24)

div u = 0 in Ωl(t), (25)

where ρ denotes the density, u is the velocity field, η is the dynamic viscosity,
p is the pressure and D(u) denotes the symmetric part of gradu, namely

D =
gradu + gradut

2
.

We remark that the hydrodynamic domain is the molten region of the
metal, which varies as the metal melts or solidifies, so it depends on time.
Moreover, both density and viscosity are material properties which depend
on temperature, so for the solution of the thermal problem is essential to
solve the hydrodynamic problem.

The right-hand side term f contains the forces supported by the fluid due
to natural convection (buoyancy forces) and those due to the electromagnetic
field (Lorentz force):

f = ρ(x, T )g + J×B, (26)

where g is the acceleration of gravity.
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Solid
metal

Molten metal

Γn

Γx

Γd

Ω l

Γd

Γd

Fig. 6. Computational domain for the hydrodynamic problem

The term representing the Lorentz force is obtained from the solution of
the electromagnetic problem. Since in the electromagnetic model we work in
the frequency domain, the Lorentz force is determined by taking the mean
value in a cycle, namely

ω

2π

∫ 2π/ω

0

J (x, t)×B(x, t) dt, (27)

where J and B denote the current density and the magnetic induction,
respectively, and ω is the angular frequency.

In (24) we can rewrite the terms into the parenthesis as the material time
derivative of the velocity. If we do so, and use cylindrical coordinates, we
obtain the equations we will use in our model:

ρu̇r −
1
r

[
∂

∂r

(
ηr
∂ur

∂r

)
+
r

2
∂

∂z

(
η

(
∂ur

∂z
+
∂uz

∂r

))
− ur

r2

]
+
∂p

∂r
= fr, (28)

ρu̇z −
1
r

[
∂

∂r

(
η
r

2

(
∂ur

∂z
+
∂uz

∂r

))
+ r

∂

∂z

(
η
∂uz

∂z

)]
+
∂p

∂z
= fz, (29)

1
r

∂

∂r
(rur) +

∂uz

∂z
= 0, (30)

where we recall that ρ = ρ(r, z, T ) and η = η(r, z, T ).

Initial and Boundary Conditions for the Hydrodynamic Model

Equations (28)–(30) are completed with the following initial and boundary
conditions
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u = 0 on Γd(t) , (31)
Sn = 0 on Γn(t) , (32)
Sn = 0 on Γx(t) , (33)
u = 0 in Ωl(0) , (34)

where S denotes the Cauchy stress tensor, S = 2ηD(u) − pI, and n is the
outward unit normal vector to the boundary.

An Algebraic Turbulence Model: Smagorinsky’s Model

We recall that the Reynolds number is a dimensionless quantity which gives
the ratio of inertial forces to viscosity forces. It is given by

Re =
ρVL

µ
.

When this number goes beyond a threshold the flow becomes turbulent, and
it makes practically impossible to model its behaviour using the Navier–
Stokes equations, due to the extremely fine required computational mesh.
For numerical simulation purposes the Navier–Stokes equations are replaced
with the so-called Reynolds-averaged Navier–Stokes equations (see [MP94]):

ρ(x, T )
(
∂ū
∂t

+ ū · ∇ū
)
−div(η(x, T )D(ū))− divR +∇p̄ = f in Ωl(t), (35)

div ū = 0 in Ωl(t), (36)

where ū denotes the mean velocity and p̄ the mean pressure. The tensor R
is called the Reynolds stress tensor, and it represents the contribution of the
turbulent part to the mean flow.

The Boussinesq assumption consists in taking the Reynolds tensor as

R = −1
3
tr(R)I + 2ηtD(ū), (37)

where I is the identity tensor and ηt is the turbulent viscosity. Using this
assumption we can now rewrite equation (35) as

ρ(x, T )
(
∂ū
∂t

+ ū · ∇ū
)
− div(ηeff(x, T )D(ū)) +∇p̄∗ = f in Ωl(t), (38)

where p∗ = p − 1
3 tr(R) and ηeff is the effective viscosity, which is given by

ηeff = η + ηt. Different models are obtained depending on the way in which
the turbulent viscosity ηt is computed. A very simple and easy to implement
model is the one proposed by Smagorinsky (see [MP94]), which consists in
taking

ηt = ρch2|D(ū)|, c ∼= 0.01 (39)

where h(x) is the mesh size of the numerical method around point x.
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3 Numerical Approximation

To obtain a suitable discretization of the material time derivative in (21) and
(28) we have used the characteristics method (see [PIR82]).

Electromagnetic and thermal problems have been spatially discretized by
a piecewise linear finite elements associated with a triangular mesh. The elec-
tromagnetic problem is solved in the workpiece, the inductors and the air,
while the heat transfer equation is only solved in the workpiece.

The hydrodynamic problem has been spatially discretized by the finite
element couple P1-bubble/P1, which is known to satisfy the inf–sup condition
(see [BF91]). We remark that the hydrodynamic problem is only solved in the
liquid domain Ωl, which must be determined at each time step.

We also notice that, at each time step, the three problems form a coupled
nonlinear system. Indeed, in the thermal problem the heat source depends on
the solution of the electromagnetic problem, while the convective heat transfer
needs from the hydrodynamic problem. Moreover, the Lorentz force in the
hydrodynamic problem needs the solution of the electromagnetic problem.
On the other hand, parameters k, σ, µ, ρ and η depend on temperature, and
so does enthalpy. Furthermore, the radiation–convection boundary condition
in the thermal problem depends on T 4. To handle the coupling between the
three problems we propose a fixed point algorithm which is schematized in
Fig. 7 below.

Loop (iterations 
in the nonlinear terms)

Loop (iterations 
of the coupled problem)

Time step 
loop

Program initialization

Resolution of the 
electromagnetic problem

Resolution of the 
thermal problem

Computation of the 
hydrodynamic domain

Resolution of the 
hydrodynamic problem

Post-processing and 
results writing

End

Fig. 7. Scheme of the algorithm
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Remark 2. As we have seen in Remark 1 the velocity term in the Ohm’s law
is not considered, so the electromagnetic problem does not need the solution
of the hydrodynamic problem. Moreover, in the thermal problem, the velocity
field comes from the solution at the previous time step. Thus, we are allowed
to solve the hydrodynamic problem segregated from the two other problems,
which saves much computational time.

4 Numerical Results

In this section we present some numerical results obtained by using the algo-
rithm introduced above, which has been implemented in a computer Fortran
program. More precisely we have applied the algorithm to simulate an indus-
trial furnace used for silicon purification.

We consider a workpiece consisting of a graphite crucible surrounded by an
alumina layer and containing silicon. Since solid silicon is not very conductive,
a graphite susceptor is required to heat the silicon charge; heating the silicon is
then done by conduction and radiation from the graphite until the silicon melts
and it conducts electric current. All of materials are initially at 30◦C. The
induction coil is made of water-cooled copper. The geometrical data of this
furnace are summarized in Fig. 8 and Table 1. A detail of the computational

B

A

E

F

C

D

I

G

H

J

P Q

Fig. 8. Sketch of the geometry
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Table 1. Geometrical data

A – Height of silicon: 0.45 m
B – Inner radius of crucible: 0.125 m
C – Outer radius of crucible: 0.225 m
D – Crucible height: 1.05 m
E – Crucible width: 0.05 m
F – Alumina layer width: 0.05 m
G – Turn diameter: 0.05 m
H – Turn height: 0.05 m
I – Distance between coil and crucible: 0.025 m
J – Distance between the turns: 0.01 m
Number of coil turns: 12
P, Q – Measure points

Fig. 9. Detail of the mesh

mesh can be seen in Fig. 9. The physical properties of the three materials in
the workpiece depend on temperature and have been obtained from literature.
Since we are not considering the thermal model in the coil, the electromagnetic
properties of copper are supposed to be constant. Several simulations have
been carried out, considering values of 100 Hz for the frequency and 5,500 Å for
the intensity.

Figure 10 shows the temperature field in the workpiece, for 30 min and
180 min, respectively. In Fig. 11 we represent the temperature in the silicon



62 A. Bermúdez et al.

Fig. 10. Temperature field for t = 30 min (left) and t = 180min (right)

Fig. 11. Silicon temperature for t = 30 min (left) and t = 180min (right)

for the same times. During the first 30 min, the temperature of the workpiece
increases and the silicon begins to melt (the melting point is 1,412 ◦C) and
after 180 min the silicon is completely liquid. Figure 12 shows the modulus of
current density also for 30 min and 180 min, respectively. Notice that, since
solid silicon is not an electric conductor, the induced current density concen-
trates in the graphite. As silicon temperature increases, so does its electrical
conductivity and the induced current density on its surface.
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Fig. 12. Modulus of current density for t = 30min (left) and t = 180 min (right)

Fig. 13. Temperature with and without convection term (t = 180 min)

Figures 13 and 14 illustrate the importance of considering convective heat
transfer when computing the temperature field. In Fig. 13 one can check how
neglecting the convection term in the heat equation could cause the materials
to reach very high and unrealistic temperatures that, in particular, would



64 A. Bermúdez et al.
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Fig. 14. Evolution of temperature at points P and Q
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Fig. 15. Velocity field t = 90min (left) and t = 180 min (right)

cause the crucible to melt. The same conclusions can be obtained from Fig. 14,
that shows the evolution in time of the temperature of two different points in
the silicon: a point P close to the symmetry axis and another point Q close
to the graphite crucible, considering or not the convection term.

We complete these results by representing, in Fig. 15, the velocity field for
times t = 90 and t = 180 min, respectively. We can appreciate the swirls due
to Lorentz forces.
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Summary. Epitaxy is the growth of a thin film by attachment to an existing sub-
strate in which the crystalline properties of the film are determined by those of
the substrate. In heteroepitaxy, the substrate and film are of different materials,
and the resulting mismatch between lattice constants can introduce stress into the
system. We have developed an island dynamics model for epitaxial growth that is
solved using a level set method. This model uses both atomistic and continuum scal-
ing, since it includes island boundaries that are of atomistic height, but describes
these boundaries as smooth curves. The strain in the system is computed using
an atomistic strain model that is solved using an algebraic multigrid method and
an artificial boundary condition. Using the growth model together with the strain
model, we simulate pattern formation on an epitaxial surface.

1 Introduction

Epitaxy is the growth of a thin film on a substrate in which the crystal proper-
ties of the film are inherited from those of the substrate. Since an epitaxial film
can (at least in principle) grow as a single crystal without grain boundaries
or other defects, this method produces crystals of the highest quality.

The geometry of an epitaxial surface consists of step edges and island
boundaries, across which the height of the surface increases by one crys-
tal layer, and adatoms which are weakly bound to the surface. Epitaxial
growth involves deposition, diffusion, and attachment of adatoms on the
surface. Deposition is from an external source, such as a molecular beam.
The principal dimensionless parameter (for growth at low temperature) is
the ratio D/(a4F ), in which a is the lattice constant and D and F are the
adatom diffusion coefficient and deposition flux. It is conventional to refer
to this parameter as D/F , with the understanding that the lattice constant
serves as the unit of length. Typical values for D/F are in the range of
104–108.
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2 Island Dynamics

Burton, Cabrera, and Frank [2] developed the first detailed theoretical descrip-
tion for epitaxial growth. In this “BCF” model, the adatom density solves a
diffusion equation with an equilibrium boundary condition (ρ = ρeq), and
step edges (or island boundaries) move at a velocity determined from the
diffusive flux to the boundary. Modifications of this theory were made, for
example in [11], to include line tension, edge diffusion, and nonequilibrium
effects. These are “island dynamics” models, since they describe an epitaxial
surface by the location and evolution of the island boundaries and step edges.
They employ a mixture of coarse graining and atomistic discreteness, since
island boundaries are represented as smooth curves that signify an atomistic
change in crystal height.

Adatom diffusion on the epitaxial surface is described by a diffusion equa-
tion of the form

∂tρ−D∇2ρ = F − 2dNnuc/dt (1)

in which the last term represents loss of adatoms due to nucleation, and des-
orption from the epitaxial surface has been neglected. Attachment of adatoms
to the step edges and the resulting motion of the step edges are described by
boundary conditions at an island boundary (or step edge) Γ for the diffusion
equation and a formula for the step-edge velocity v. The simplest of these is

ρ = ρ∗ (2)
v = D[∂ρ/∂n]

in which the brackets indicate the difference between the value on the upper
side of the boundary and the lower side. Two choices for ρ∗ are ρ∗ = 0,
which corresponds to irreversible aggregation in which all adatoms that hit the
boundary stick to it irreversibly, and ρ∗ = ρeq for reversible aggregation. For
the latter case, ρeq is the adatom density for which there is local equilibrium
between the step and the terrace [2]. Numerical details on implementation of
the level set method for thin film growth are provided in [5].

2.1 Nucleation

For the case of irreversible aggregation, a dimer (consisting of two atoms) is
the smallest stable island, and the nucleation rate is

dNnuc

dt
= Dσ1〈ρ2〉, (3)

where 〈·〉 denotes the spatial average of ρ(x, t)2 and

σ1 =
4π

ln[(1/α)〈ρ〉D/F ]
(4)



68 R.E. Caflisch

is the adatom capture number as derived in [1]. The parameter α reflects the
island shape, and α � 1 for compact islands. Expression (3) for the nucleation
rate implies that the time of a nucleation event is chosen deterministically.
Whenever NnucL

2 passes the next integer value (L is the system size), a new
island is nucleated. Numerically, this is realized by raising the level set function
to the next level at a number of grid points chosen to represent a dimer.

The choice of the location of the new island is determined by probabilistic
choice with spatial density proportional to the nucleation rate ρ2. This proba-
bilistic choice constitutes an atomistic fluctuation that must be retained in the
level set model for faithful simulation of the epitaxial morphology. For growth
with compact islands, computational tests have shown additional atomistic
fluctuations can be omitted [16].

Additions to the basic level set method, such as finite lattice constant
effects and edge diffusion, are easily included [17]. The level set method with
these corrections is in excellent agreement with the results of kinetic Monte
Carlo (KMC) simulations.

2.2 The Level Set Method

Within the level set approach, the union of all boundaries of islands of height
k + 1, can be represented by the level set ϕ = k, for each k. For example, the
boundaries of islands in the submonolayer regime then correspond to the set
of curves ϕ = 0. The function φ is the level set function that evolves according
to

∂φ

∂t
+ v|∇φ| = 0. (5)

All the physical information is in the normal component v of the velocity
function. Islands grow because atoms diffuse toward and attach to island
boundaries, and shrink because they can detach from an island boundary.

3 Discrete Elasticity

In heteroepitaxy, strain is introduced into the epitaxial system due to the
lattice mismatch between the two constituents of the material. Because of
the strain, atoms are displaced by a vector u from their lattice position. The
following discussion of atomistic strain and stress follows that in [19].

To describe the strain energy at each atom, i = (i, j, k), introduce the
translation operators, T±

k , and the discrete difference operators, D±
k , D0

k,
defined as follows:

T±
k f(i) = f(i± ek),

D+
k f(i) =

(T+
k − 1)f(i)

h
,
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D−
k f(i) =

(1− T−
k )f(i)
h

,

D0
kf(i) =

(T+
k − T−

k )f(i)
2h

,

where h is the lattice constant and ek is the vector in the kth direction for k =
1, 2, 3 with ‖ek‖ = h. Throughout this paper, we assume the lattice constant
h = 1 for simplicity. We use i for the depth-like index, with −∞ < i ≤ n.
Here n is the maximum height of the material. An ABC is sought at i = 0,
assuming that there is no force for i < 0.

Let u(i) = (uk(i))k=1,...,d be the displacement at the discrete point i
relative to an equilibrium lattice. The discrete strain components defined be-
low ((6) and (7)) can be used to describe the discrete elastic energy. For
k, � = 1, 2, 3 and p, q = ±,

S±
k	(u(i)) = D±

	 uk(i), (6)

Spq
k	 (u(i)) =

1
2
(Dq

	uk(i) +Dp
ku	(i)). (7)

The discrete energy density at a point i is then given by

E(i)(u,u) =
∑
k,p

αp
k(S

p
kk(u))2 +

∑
k �=	,p,q

{
2βpq

k	 (S
pq
k	 (u))2 + γpq

k	S
p
kk(u)Sq

		(u)
}
.

The total energy is the sum

E =
∑
i

E(i). (8)

The atomistic strain is determined by minimizing this energy with respect to
variations in u.

An effective numerical method for solving the atomistic strain equations
using an algebraic multigrid method was developed in [4]. Moreover an artifi-
cial boundary condition can be imposed in the substrate close to the interface
with the film, to greatly accelerate the computation [10].

4 Directed Self-Assembly

Regular patterns of nanoscale features, such as quantum dots [6,7,12], on an
epitaxial surface are of considerable interest for possible applications, ranging
from memory and logical devices to lasers. Features of this size are difficult to
obtain by standard “top-down” approaches, such as lithography. The sponta-
neous growth of quantum dot arrays is a promising “bottom-up” approach,
but it has proved difficult to control the size and spacing of quantum dots
obtained in this way. Directed self-assembly is an intermediate approach, in
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which formation of the desired patterns is guided by prepatterning of the
epitaxial system. For example, subsurface dislocation arrays have been sug-
gested as a prepatterning method [8,18]. These buried dislocations introduce
a long-range strain field, which alters the potential energy surface (PES) of
the system. Similarly, islands that are capped by a buffer layer of a different
material introduce a long-range strain field. It has been shown by density-
functional theory (DFT) calculations for metal systems [15] and semiconduc-
tor systems [14] that both the adsorption energy Ead and the transition energy
Etrans of the PES change upon strain.

We model epitaxial growth on a surface with a spatially varying, anisotropic
PES, using the following modification of the adatom diffusion equation (1)

∂ρ

∂t
= F +∇ · (D∇ρ)− 2

dN
dt

+∇ ·
(

ρ

kBT
D(∇Ead)

)
. (9)

In (9), D is a diffusion tensor where the diagonal entries are labeled Di(x)
and Dj(x), and correspond to diffusion along the two directions i and j.
For simplicity no other direction for diffusion is included (but could easily
be incorporated). The last term is the thermodynamic drift, where kB is the
Boltzmann constant, and T is the temperature. We enforce a boundary condi-
tion ρ(x) = ρeq(Ddet(x),x), where Ddet(x) is a (spatially varying) detachment
rate [3].

We assume a simple sinusoidal variation of Ead and Etrans. Figure 1 shows
the resulting patterns for PES with spatial variation that is one dimensional
(left) and two dimensional (right). These simulation results bear a striking
resemblance to the quantum dot patterns obtained in the experimental results
of [8].

Fig. 1. Pattern formation for monolayer height islands due to a spatially varying
PES, with sinusoidal variation in 1D (left) and 2D (right)
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Fig. 2. Morphologies at coverages Θ = 0.1 ML (left) and Θ = 0.3 ML (right) obtained
with a PES that has a much narrower variation

The morphologies shown so far were all obtained at a submonolayer
precoalescence coverage of Θ = 0.2 ML and with a PES that varies sinu-
soidally. Figure 2 shows the patterns that are obtained by a function that has
sharper peaks that those of a sine function. The resulting islands at coverage
Θ = 0.1 monolayer (ML) are highly aligned. Moreover, at Θ = 0.3 ML, all the
islands that are aligned along the j-direction have coalesced in this direction,
forming monolayer height “wires.” For more details on these computations,
see [13].

5 Conclusions

The island dynamics/level set method is capable of simulating epitaxial
growth with processes such as adatom detachment from islands that would
slow down other approaches. It can also be effectively combined with an atom-
istic strain code to simulate heteroepitaxial growth. The combined method can
be used to study pattern formation due to strain in self-assembly and directed
self-assembly.
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Summary. The subject of waves in fluids is addressed from three complementary
points-of-view: (Sect. 2) 60 mathematical forms of the acoustic wave equation in
fluids, applying to linear and non-linear, non-dissipative and dissipative, sound waves
in homogeneous or inhomogeneous, steady or unsteady media, at rest or in motion,
e.g. potential and vortical flows; (Sect. 3) the physical interactions between (i) sound
waves due to pressure fluctuations in a compressible fluid, with (ii) magnetic waves
in an ionized fluid under external magnetic fields, (iii) internal waves in a stratified
fluid under gravity and (iv) inertial waves due to Coriolis forces on a rotating fluid,
viz. magneto-acoustic-gravity-inertial waves; (Sect. 4) some engineering problems in
the area of aerocoustics, which has applications to aircraft, helicopters, rockets and
other aerospace vehicles, including acoustic fatigue, sonic boom, interior noise and
airport noise, concentrating on the last aspect.

1 Introduction

The classical wave equation describes the propagation of (i) linear (ii) non-
dissipative sound waves in a (iii) homogeneous and steady medium (iv) at
rest. There are many practical situations in which one or more of the assump-
tions (i)–(iv) do not hold, hence the importance to extend the acoustic wave
equation to (i) inhomogeneous and unsteady media, for which mean state
properties (such as mass density and sound speed), may depend, respectively,
on position and time; (ii) moving media, e.g. potential mean flows, or vortical
mean flows, such as shear flows or swirling flows; (iii) dissipation by thermal
conduction and bulk and shear viscosity and (iv) non-linear effects, either
weak or strong, depending on whether only second-order or also higher-order
non-linearities are included.

Acoustic waves occur in the low atmosphere and in the ocean, are impor-
tant in speech, hearing, music and high-fidelity sound reproduction and have
applications in ultrasonics (e.g. crack detection), as well as unwanted effects
(noise and acoustic fatigue). They are one (i) of the four types of waves in
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fluids, viz.: (ii) internal waves, in a stratified fluid under gravity occur in the
ocean and in the atmosphere of the earth and other planets; (iii) inertial waves
associated with the Coriolis force on rotating fluids, affect weather and climate
on the earth and occur on other rotating celestial bodies like planets and stars
and (iv) magnetic waves in an ionized fluid under an external magnetic field
occur in fusion reactors and magnetohydrodynamic generators, in the earth’s
molten core and high atmosphere (ionosphere) and in the plasma which con-
stitutes stars and permeates the interstellar medium. Their coupling leads to
magneto-acoustic-gravity-inertial waves.

Aeroacoustics is a major area of application of acoustics, since it is relevant
to many problems of aeronautics and astronauts e.g. (i) the noise of jet and
propeller engines at take-off and climb is a major contributor to airport noise;
(ii) at approach to land, with the engines at idle, the aerodynamic noise may
by comparable; (iii) the sonic boom of supersonic aircraft has so far restricted
commercial flight to subsonic speeds overland; (iv) the noise level of rockets
is high enough to cause acoustic fatigue of launcher structures and satellite
payloads and (v) the helicopter, due to the rotor and gearbox mechanisms it
uses, poses noise and vibration problems which limit the exploitation of its
ability to hover and fly low and slow near populated areas.

2 Sixty Acoustic Wave Equations

There are at least 60 forms of the acoustic wave equation in fluids (thus
excluding solids), which may be grouped in nine classes. The derivation of
the most general wave equation in each class can be made by elimination
among the equations of fluid mechanics; in some cases variational and other
methods can be used as alternatives. Thus, together with overlaps between
different classes, there may be several derivations of the same wave equation
and multiple cross-checks. In the present account one wave equation in each
class is indicated, often but not always the most general [1, 2]. The acoustic
wave equation has the same form for all acoustic variables (e.g. potential, gas
pressure, mass density and velocity perturbations) for linear non-dissipative
sound in an homogeneous steady medium, e.g. for the classical wave equation
in a medium at rest or convected wave equation in a uniform flow. In more
general conditions this is not usually the case and different acoustic variables
satisfy different wave equations, so it is reasonable to aim for the simplest.
Note also that non-linear waves are those with steep waveforms, viz. large am-
plitude waves are non-linear, but small amplitude waves with steep wavefronts
(‘ripples’) are also non-linear.

2.1 Nine Classes of Acoustic Wave Equations

The classical wave equation

c−2
0 φ̈−∇2φ = 0, (1)
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where φ is the acoustic potential, c0 the sound speed and dot denotes time
derivative φ̈ = ∂2φ/∂t2 assumes (i) an homogeneous and steady medium; (ii)
medium at rest; (iii) linear perturbations and (iv) no dissipation. Next will
be presented nine classes of acoustic wave equations, which generalize the
classical wave equation.

2.2 Class I: Linear, Non-dissipative Sound in a Potential
Mean Flow

The medium in assumed to be a potential flow of velocity v0, gas pressure p0,
mass density ρ0 and sound speed c0 which may depend on position (inhomo-
geneous medium) and/or on time (unsteady medium). Note that a potential
flow is homentropic; in this case there is an acoustic potential φ. The wave
equation can be deduced from equations of fluid mechanics [3, 4] or a varia-
tional method [5, 6]. The variational method uses the acoustic velocity and
pressure perturbations:

v = ∇φ, (2a)
p = −ρ0dφ/dt, (2b)

where d/dt is the material derivative for the mean flow:

d/dt = ∂/∂t+ v0 · ∇. (3)

The difference of the kinetic energy per unit volume (4a) and compression
energy (4b) in the quadratic approximation:

Ev = ρ0v
2 =

1
2
ρ0(∇φ)2, (4a)

Ep =
p2

2ρ0c20
=

1
2
ρ0c

−2
0 (dφ/dt)2, (4b)

specifies the acoustic Lagrangian:

£(φ, φ̇,∇φ;x, t) =
1
2

[
(∇φ)2 − c20(φ̇+ v0 · ∇φ)2

]
, (5)

which satisfies the principle of stationary action:

0 = δ

∫
d3x

∫
dt £(φ, φ̇,∇φ;x, t), (6)

leading to the Euler–Lagrange equation:

∂

∂t

∂£
∂φ̇

+∇ ·
[

∂£
∂(∇φ)

]
= 0. (7)

The substitution of (5) in the latter (7) specifies the wave equation in a po-
tential flow (W1–W9 – there are nine particular cases):
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d
dt

(
1
c20

dφ
dt

)
− 1
ρ0
∇ · (ρ0∇φ) = 0. (8)

In the case of an homogeneous, steady uniform flow it reduces to the convected
wave equation:

c−2
0 d2φ/dt2 −∇2φ = 0 (9)

and in the general case it has ten terms

φ̈− c20∇2φ− c20∇φ · ∇(log ρ0)− 2φ̇c−1
0 ċ0 + 2(v0 · ∇φ̇)

+(v̇0 · ∇φ)− 2φ̇v0 · ∇(log c0)− 2(v̇0 · ∇φ)c−1
0 ċ0

+(v0 · ∇)(v0 · ∇φ)− 2(v0 · ∇φ)v0 · ∇(log c0) = 0 (10)

as follows (i) the first two terms form the classical wave equation (1); (ii) the
third and fourth terms correspond to an inhomogeneous, unsteady medium
at rest; (iii) the fifth term accounts for uniform low Mach number convection;
(iv) the sixth to eighth terms includes inhomogeneous, unsteady low Mach
number mean flow; (v) the ninth term represents uniform high Mach number
convection and (vi) the tenth term includes non-uniform high Mach number
mean flow.

2.3 Class II: Non-linear, Non-dissipative Sound in a Potential
Mean Flow

The starting point is the exact continuity equation:

∇2Φ = ∇ ·V =
1
Γ

DΓ

dt
=

1
ΓC2

DP
dt

, (11)

where is Φ total potential, V the total velocity, P the total pressure, Γ the
total mass density and C the total sound speed:

C2 = c2∗ − (γ − 1)
[
Φ̇+

1
2
(∇Φ)2

]
, (12)

where c∗ denotes the stagnation sound speed. For homentropic flow with en-
thalpy H:

1
Γ

DP
dt

=
DH
dt

= Ḣ + V · ∇H = Ḣ +∇Φ · ∇H, (13)

the Bernoulli equation

H + Φ̇+
1
2
(∇Φ)2 = const, (14)

leads to the exact potential equation

Φ̈−
{
c2∗ − (γ − 1)

[
Φ̇+ (∇Φ)2/2

]}
∇2Φ +2Φ ·∇Φ̇+∇Φ · [(∇Φ · ∇)∇Φ] = 0,

(15)
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which includes non-linear terms up to the fourth-order. Assuming that the
mean flow is non-uniform but steady (it is not possible to distinguish non-
linear waves from a non-uniform, unsteady mean state), the exact wave equa-
tion is:

D
dt

(
δφ

δt

)
−
[
c2∗ − (γ − 1)

δφ

δt

]
∇2φ− c2∗∇φ · ∇(log ρ0) = 0, (16)

where the exact (17a) and self-convected (17b) material derivatives are used:

D
dt

=
∂

∂t
+ v0 · ∇+∇φ · ∇, (17a)

δ

δt
=

∂

∂t
+ v0 · ∇+

1
2
∇φ · ∇. (17b)

There are six particular cases (W10–W15) of the wave equation (16); it has
15 terms:

0 = φ̈− c20∇φ− c20∇φ · ∇(log ρ0) + 2(v0 · ∇φ̇)− 2φ̇v0 · ∇(log c0)
+(v0 · ∇)(v0 · ∇φ)− 2(v0 · ∇φ̇)v0 · ∇(log c0) + (γ − 1)∇2φ+ 2∇φ̇ · ∇φ
+∇φ [(v0 · ∇)∇φ] + v0 [(∇φ · ∇)∇φ] +∇φ [(∇φ · ∇)v0]

−(∇φ)2v0 · ∇(log c0) +
γ − 1

2
(∇φ)2∇2φ+∇φ · [(∇φ · ∇)∇φ] (18)

(i) the first three coincide with the classical wave equation for linear waves
in a steady inhomogeneous medium at rest; (ii) the fourth to seventh terms
apply to a linear waves, in a moving medium (10); (iii) the eighth to eleventh
terms account for quadratic non-linearities in a homogeneous medium; (iv) the
twelfth and thirteenth terms include quadratic non-linearities in an inhomo-
geneous medium and (v) the 14th and 15th terms show that the highest-order
non-linearities are cubic [7, 8].

2.4 Class III: Linear, Non-Dissipative Sound
in a Quasi-one-Dimensional Duct

Consider (Fig. 1) a straight duct with longitudinal coordinate x, non-uniform
cross-section A(x), steady shape (no coupling to elastic walls), containing a
one-dimensional mean flow (which is always potential).

The Lagrangian per unit length:

£∗ = A£ =
1
2
ρ0A

[
φ′2 − c−2

0 (φ̇+ v0φ
′)2
]
, (19)

where prime denotes derivative with regard to x, viz. φ′ ≡ ∂φ/∂x, leads to
the high-speed wave equation

d
dt

(
1
c20

dφ
dt

)
− 1
ρ0A

(ρ0Aφ
′)′ = 0, (20)
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Fig. 1. Quasi-one-dimensional propagation in duct of varying cross-section

which is similar to a one-dimensional form of Class I, replacing in (10) the
mass density ρ0 per unit volume by the mass of fluid per unit length ρ0A; it
has nine particular cases (W16–W24). It consists of 11 terms:

0 = φ̈− c20 [φ′′ + φ′(A′/A+ ρ′0/ρ0)]− 2φ̇ċ0/c0 + 2v0φ
′ + v̇0φ

′

−2φ̇v0c
′
0/c0 − 2v0φ

′c′0/c0 + v0(v0φ
′)− 2v2

0φ
′c′0/c0, (21)

namely (i) the first five apply to a horn [9–12] i.e. a duct of non-uniform
cross-section without flow and (ii) the last six to a nozzle [13–17], i.e. a duct
of non-uniform cross-section with mean flow.

2.5 Class IV: Non-Linear, Non-Dissipative Sound
in a Quasi-One-Dimensional Duct

The combination of non-linearity (Class II) with a duct of non-uniform cross-
section (Class III), leads to (Class IV) which has six particular cases (W25–
W30). The most general is non-linear high-speed nozzle wave equation:

D
dt

(
δφ

δt

)
−
[
c20 − (γ − 1)

δφ

δt

](
φ′′ + φ′A

′

A

)
− c20φ

′ ρ
′
0

ρ
, (22)

where (i) the first term involves the non-linear (17a) and self-convected (17b)
material derivatives; (ii) the second term has as a factor (12) the non-linear
sound speed; (iii) the remaining factor in the second term is the Laplacian
replaced by duct wave operator [9–12] and (iv) the last term applies to an
inhomogeneous medium. The most general wave equation (W30) of Class
IV is

0 = φ̈− c20φ
′′ − c20φ

′A′/A− c20φ
′ρ′0/ρ0 − 2φ̇v0c

′
0/c0 + v0(v0φ

′)′

−2v2
0φ

′c′0/c0 + 2φ̇φ̇′ + (γ − 1)φ′φ′′ + (γ − 1)φ̇φ′A′/A

+φ′(v0φ
′)′v0 + φ′φ′′ + (γ − 1)v0φ

′2A′/A− φ′2v0c
′
0/c0

+
γ − 1

2
φ̇φ′2 +

γ − 1
2

φ′2φ′′ +
γ − 1

2
φ′3A

′

A
, (23)

has 17 terms (i) the first four apply to linear waves in an inhomogeneous horn;
(ii) the terms five to seven concern linear waves in an inhomogeneous nozzle;
(iii) the terms eight to ten specify quadratic non-linearities in a horn; (iv) the
terms 11–14 represent quadratic non-linearities in a nozzle and (v) the terms
15–17 represent cubic non-linearities. Note that all all cases of potential flows
have been covered as shown in Table 1.
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Table 1. Acoustics of potential flows

Waves Free-space 1-D ducts

Linear Class I Class III
Non-linear Class II Class IV

2.6 Class V: Acoustic Waves in a Unidirectional Shear Flow

The acoustics of vortical flows is considered next, in the particular cases of
(Sect. 2.5) shear flows [18–24]; (Sect. 2.6) rotating flows [25–27]. In both cases,
since the mean flow is vortical, there is no acoustic potential; the scalar wave
equation is obtained for the acoustic pressure perturbation. In a potential
mean flow the are two acoustic modes plus decoupled vorticity (by Kelvin’s
theorem); in a vortical mean flow the sound couples to vorticity leading to a
third-order wave equation. The simplest shear flow is unidirectional (24a) and
leads to a material derivative (24b):

v0 = U(y, z)ex, (24a)
d/dt = ∂/∂t+ U(y, z)∂/∂x. (24b)

The acoustic wave equation, for acoustic pressure in unidirectional shear flow,
has four (W31–W34) particular cases and consist of four terms:

0 =
d
dt

[
1
c20

d2p

dt2
−∇2p

]
+

d
dt

[∇p · ∇(log ρ0)]

+2ρ0

(
∂U

∂y

∂2p

∂x∂y
+
∂U

∂z

∂2p

∂x∂y

)
(25)

as follows (i) the first two coincide with the convected wave equation (9) for
homentropic flow without shear; (ii) the third term applies to isentropic, non-
homentropic flow [compare with (10)] without shear and (iii) the fourth term
shows that the presence of shear in the mean flow leads to a third-order wave
equation.

2.7 Class VI: Acoustics of Sheared and Swirling Axisymmetric
Mean Flow

For a rotating fluid, assuming an axisymmetric mean flow and using cylindrical
coordinates, the mean flow velocity:

v0(r) = U(r)ez + rΩ(r)eθ, (26)

consists of an axial shear and azimuthal rotation. There are 12 forms of the
acoustic wave equation (W36–W60); the most general (W50) reduces in the
low Mach number swirl and shear approximation:

(Ω + dU/dr)2 
 r2[c0(r)]2 (27)
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to the form:

0 =
d
dt

[
1
c20

d2p

dt2
− 1
r

∂

∂r

(
r
∂p

∂r

)
− 1
r2

∂2p

∂θ2
− ∂2p

∂z2

]
+2

dU
dr

∂2p

∂z∂r
+ 2

dΩ
dr

(
∂2p

∂θ∂r
− 1
r

∂p

∂θ

)
+

d
dt

[
∂p

∂r

∂

∂r
(log ρ0)

]
+

2Ω
r

∂p

∂θ

∂p

∂r

∂

∂r
(log ρ0) (28)

consisting of five terms (i) the first term corresponds to the convected wave
operator (9) in cylindrical coordinates; (ii) the second term accounts for
sheared mean flow [compare with (25)]; (iii) the third term corresponds to
swirling mean flow and (iv) the fourth and fifth terms represent isentropic,
non-homentropic mean flow.

2.8 Class VII: Viscous and Resistive Dissipation of Linear Sound

The magnitude of the viscous dissipation of sound is comparable to that for
thermal conduction so both must be considered. The vorticity decouples and
satisfies diffusion equation

Ω ≡ ∇× v, (29a)
Ω̇ = ν∇2Ω, (29b)

showing that it is dissipated only by shear viscosity ν; thus it is sufficient
to consider a wave equation only for the dilatation Ψ = ∇ · v; the latter
is dissipated by shear viscosity ν, bulk viscosity β and thermal conductive
diffusivity α. There are two particular cases (W51 and W52) of the linear dis-
sipative acoustic wave equation in an homogeneous medium at rest; it consists
of five terms:

...

Ψ −c20∇Ψ̇ = (4ν/3 + β + α)∇2Ψ̈ − c20(α/γ)∇4Ψ − α(4µ/3 + β)∇4Ψ̇ (30)

(i) the first two correspond to the classical wave equation (1) differentiated
to the third-order in time; (ii) the third term corresponds to small diffusities
and is of the second-order in space and time; (iii) the fourth term is of the
fourth-order in space and involves the adiabatic exponent γ and (iv) the last
term involves the product of diffusivities, so it applies to large diffusivities
and is of the fourth-order in space and first-order in time.

2.9 Class VIII: One-dimensional Viscous Non-Linear Waves
in a Quasi-One-Dimensional Duct of Variable Area

The quadratic non-linearities are sufficient to lead to wave front steeping and
shock formation; the linear dissipation opposes this, leading to shock widening
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and decay. This is most readily demonstrated for simple wave (one Riemann
invariant zero) with viscous damping using as variable the group velocity.
There are four particulars cases (W53–W56) of viscous non-linear simple
waves [28–30] in a quasi-one-dimensional duct of variable cross-section. In
the most general case the wave equation is

∂W/∂t+W∂W/∂x = (2ν/3+β/2)∂2W/∂x2−[(γ + 1)/4]CD(logA)/dt, (31)

where exact material derivative (32a) is applied to the group velocity (32b):

D
dt

=
∂

∂t
+ V

∂

∂x
, (32a)

W ≡ V + C; (32b)

there are four terms is (31) (i) the first two are the exact material derivative at
group velocity and correspond to non-linear, non-dissipative simple waves (ii)
the third term leads to Burger’s equation involving shear and bulk viscosities
(iii) the fourth term is associated with variable cross-section, e.g. includes
cylindrical and spherical non-linear waves.

2.10 Class IX: Three-dimensional Non-linear Beam
with Thermoviscous Dissipation

The thermoviscous dissipation coefficient

ϑ ≡ β + 4ν/3 + (ζ/ρ0)(1/Cv − 1/Cp), (33)

involves the bulk β and shear ν viscosities and the thermal diffusivity ζ and
specific heats at constant volume Cv and pressure Cp. It appears in the equa-
tion of a non-linear acoustic beam with thermoviscous dissipation:

∇2p− 1
c20

∂2p

∂t2
+

ϑ

c40

∂3p

∂t3
=

γ + 1
2ρ0c40

∂2

∂t2
(p2). (34)

The particular cases are (i) without dissipation the Westerwelt equation [31]
and (ii) with viscous dissipation but no thermal dissipation the KZK-equation
[32,33]. The wave equation (34) consists of four terms (i) the first two are the
classical wave equation (1); (ii) the third corresponds (33) to weak thermovis-
cous dissipation with no products of diffusivities and (iii) the fourth accounts
for a weak quadratic non-linearity with no cubic terms.

In conclusion, without including chemical reaction or multi-phase flow,
60 forms of acoustic wave equation have been obtained in nine classes; this
is still far from an exhaustive combination of all effects of (i) non-linearity,
(ii) dissipation, (iii) mean flow and (iv) unsteady and inhomogeneous media.
Thus there is plenty of scope for further developments.
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3 Generation of Magneto-Acoustic-Gravity-Inertial
(MAGI) Waves

There are four types of volume waves in fluids indicated in Table 2 plus all pos-
sible interactions, several of which occur in nature and/or have technological
applications as shown in Table 3. Whereas for acoustic waves (Sect. 2) only
propagation and dissipation was considered, for coupled magneto-acoustic-
gravity-inertial waves generation and radiation will be considered as well
[34–39].

3.1 Five Fundamental Equations of Fluids Under External Forces

The five fundamental equations of fluid mechanics including external forces
are (i) the momentum equation for the velocity

ρ

[
dv
dt

+ 2Ω×V + Ω× (Ω×X) + Ω̇×X
]

+∇p

= ρg +
µ

4π
H× (∇×H) +

∂σij

∂xj
, (35)

including the inertia force (equal to mass density times acceleration), the
forces associated with rotation (Coriolis and centrifugal forces and unsteady
rotation), the pressure gradient and gravity and magnetic forces (µ is the
magnetic permeability); (ii) the continuity equation for the mass density

Table 2. Types of waves in fluids

Type of wave Restoring force Medium

Acoustic Pressure Compressible
Magnetic Magnetic Ionized
Internal Gravity Stratified
Inertial Coriolis Rotating

Table 3. Types of waves in fluids

Waves Relevance

Acoustic Sound, noise, speech, hearing, ultrasonics
Magnetic Cold plasmas, fusion reactors
Internal, inertial Ocean, atmosphere, weather
Acoustic-gravity Ocean, atmosphere, weather
Magneto-inertial Earth molten core, dynamo effect,

Magnetic field generation in planets and stars
Magneto-acoustic Cold plasmas, interstellar space
Magneto-acoustic-gravity Earth ionosphere, stars
Magneto-acoustic-gravity-inertial Most general (pulsars)
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0 = dρ/dt+ ρ∇ · v = ∂ρ/∂t+∇ · (ρv); (36)

(iii) the induction equation for the magnetic field

∂H/∂t+∇× (∇×H) = −∇× [χ(∇×H)] , (37)

including convection of the magnetic field and Ohmic diffusity χ; (iv) the
energy equation for entropy

ρTds/dt = −∇ · (k∇T ) + σij∂Vi/∂xj + (χ/4π)(∇×H)2 + f(ρ, T ), (38)

including heat conduction, viscous dissipation, electrical resistance and ther-
mal radiation and (v) the equation of state for gas pressure

dp/dt = c2dρ/dt+ αds/dt, (39)

involving the sound speed and entropy.

3.2 Perturbation of Non-uniform, Steady Mean State

The fluid velocity, mass density, gas pressure, magnetic field and displacement
vector

{V, ρ, p,H,X} (x, t) = {0, ρ0, p0,B, r}+ {v, ρ′, p′,h, ξ} (x, t) (40)

consist of (i) a mean state, which is a medium at rest stratified ρ0(x), p0(x)
under a non-uniform external magnetic field B(x) and (ii) an unsteady and
non-uniform perturbation. The mean state is given by (i) the equations of
continuity and state are trivially satisfied and (ii) the equations of induction
(41a) and momentum (41b):

0 = ∇× [χ(∇×B)] ; (41a)
∇p0 = ρ0g − (µ/4π)B× (∇×B)− ρ0 [Ω× (Ω× r)] ; (41b)

the latter specifies magneto-rotating-hydrostatic equilibrium. Subtracting out
the mean state, (41) from (35)–(39) the exact non-linear dissipative pertur-
bation equations are obtained.

3.3 Exact Non-linear Dissipative Perturbation Equations

The linear, non-dissipative terms are separated on the l.h.s., from non-linear
and/or dissipative terms on the r.h.s. in the Equations of (i) continuity (36):

∂ρ′/∂t+∇ · (ρ0v) = −∇ · (ρ′v) ; (42)

(ii) state (39)

∂p′/∂t+v·∇p0−c20ρ0(∇·v) = −v·∇p′+(ρ0c
2
0−ρc2)(∇·v)+α ds/dt ≡ Z, (43)

(iii) induction (37)

∂h/∂t+∇× (v ×B) = −∇× (v × h)−∇× [χ(∇× h)] ≡ Y, (44)
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(iv) momentum (35)

ρ0∂v/∂t + 2Ω× v + Ω× (v × ξ) +∇p′ − ρ′g

+ (µ/4π) [B× (∇× h) + h× (∇×B)]
= ρ′∂v/∂t− ρ(v · ∇)v − (µ/4π) [h× (∇× h)] + ∂σij/∂xj ≡ X. (45)

The elimination between the linear, non-dissipative terms is performed by
applying ∂/∂t to momentum equation (45) and substituting ∂p′/∂t from the
continuity equation (42), ∂p′/∂t from the equation of state (43) and ∂h/∂t
from the induction equation (44). The result is the MAGI wave equation with
sources.

3.4 Linear, Non-dissipative MAGI Wave Operator
in an Inhomogeneous Medium

The MAGI equation in an inhomogeneous medium at rest under rotation and
non-uniform gravity and non-uniform external magnetic field is specified by
the vector wave equation for the velocity perturbation:

Q ≡ ∂2v/∂t2 − ρ−1
0 ∇

[
ρ0c

2
0(∇ · v)

]
+ ρ−1

0 g∇ · (ρ0v)

+ρ−1
0 ∇ [ρ0(v · g)] + 2Ω× (∂v/∂t) + Ω× (Ω× v)

+ρ−1
0 ∇{ρ0v · [Ω× (Ω× r)]}+ (µ/4πρ0)B× {∇× [∇× (B× v)]}

+(µ/4πρ0) {v · [B× (∇×B)] + (∇×B)× [∇× (v ×B)]} , (46)

which involves eight terms (i) the first two correspond to sound waves [com-
pare (1)]; (ii) the third and fourth terms correspond to gravity waves; (iii) the
fifth to seventh terms apply to inertial waves and (iv) eight and ninth terms
concern hydromagnetic waves respectively in uniform and non-uniform exter-
nal magnetic fields. The remaining terms are non-linear and/or dissipative
and act as wave sources:

Q ≡ ρ−1
0 ∂X/∂t+ Ω {Ω× [(v · ∇)ξ]} − ρ−1

0 ∇Z
+ρ−1

0 g [∇ · (ρ′v)]− (µ/4πρ0) [B× (∇×Y) + Y × (∇×B)] . (47)

forcing the wave equation.

3.5 Interpretation of MAGI Wave Operator

The MAGI wave operator represents wave propagation in (46), and is inter-
preted readily in the case of (i) an medium at rest, i.e. no mean flow; (ii)
isothermal perfect gas, i.e. constant sound speed c0; (iii) an uniform exter-
nal magnetic field, i.e. no mean state electric current B = Bl and (iv) slow
rotation Ω2 
 ω2 relative to wave frequency ω. Note that the atmospheric
mass density and pressure are non-uniform ρ0(x), p0(x), and hence the Alfvén
speed:
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a(x) = B/
√

4πρ0(x) (48)

is not constant, in the MAGI wave operator:

0 = ∂2v/∂t2 − c20∇(∇ · v)− a2
[
(l · ∇)2v − (l · ∇)∇(v · l)

]
+2Ω× (∂v/∂t)−∇(v · g)− (γ − 1)g(∇ · v)
−a2 [∇(∇ · v)− l(l · ∇)(∇ · v)] , (49)

which is interpreted as follows (i) the first two terms correspond to sound
waves

0 = ∂2(∇× v)/∂t2, (50a)
0 =

{
∂2/∂t2 − c20∇2

}
(∇ · v) (50b)

since the vorticity is conserved (50a) and the dilatation satisfies (1) classical
wave equation (50b); (ii) the third and fourth terms correspond to Alfvén
waves, since the velocity perturbation along magnetic field conserved (51a):

0 = ∂2(v · l)/∂t2, (51a)
0 =

{
∂2/∂t2 − a2(l · ∇)2

}
[v − (v · l)l] , (51b)

and the transverse velocity perturbation (51b) propagates along magnetic
field lines at Alfvén speed; (iii) the fifth term corresponds to inertial waves
involving the angular velocity of rotation; (iv) the sixth term accounts for
internal waves, involving acceleration of gravity; (v) the seventh term concerns
acoustic-gravity waves by coupling gravity to the dilatation; (iv) the eighth
and ninth terms concern magneto-acoustic waves, coupling the dilatation and
the Alfvén speed.

3.6 MAGI Wave Sources I: Hydrodynamic Tensor (Sound Waves)

In the case of acoustics alone the source term is (52a):

Q
(1)
i = −ρ−1

0 ∂2Tij/∂t∂xj , (52a)
Tij = ρvivj + (p′ − c20ρ

′)δij + σij , (52b)

where (52b) is the Lighthill tensor [8, 40,41]. Using the notation:

Ai ∗Bj = AiBj +AjBi −
1
2
(A ·B)δij , (53)

its three terms are interpreted as follows (i) the first term is a quadrupole
representing turbulence as a source of waves:

1

T ij=
1
2
ρvi ∗ vj = ρvivj −

1
2
ρv2δij , (54)
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and consists of the Reynolds stresses minus the dynamic pressure; (ii) the
second terms is a dipole representing fluid inhomogeneities, i.e. regions of
different temperature or chemical composition:

2

T ij = (p− c20ρ
′)δij = αsδij ; (55a)

p = p− 1
2
ρv2 (55b)

and consist of non-isentropic terms in equation of state, i.e. entropy inhomo-

geneities and (iii) the third term is the viscous stresses
3

T ij= σij representing
viscous dissipation.

3.7 MAGI Wave Sources II: Hydromagnetic Tensor

The hydromagnetic tensor acts as source of magneto-acoustic waves [34–39]
and contains all terms involving magnetic field:

Q
(2)
i = −ρ−1

0 ∂2Rij/∂t∂xj (56)

and also has three analogous terms (i) the first term is a quadrupole repre-
senting wave generation by hydromagnetic turbulence

1

Rij= (µ/8π)hi ∗ hj = (µ/4π)hihj − (µ/8π)h2δij , (57)

viz. the magnetic stresses are analogous to Reynolds stresses (54); (ii) the
second term is a dipole modelling wave generation by ionized inhomogeneities:

2

Rij= (µ/4π)Bi ∗ [∇× (v × h)]j (58)

and is non-zero if velocity and magnetic field perturbations are non-parallel
[compare (55)] and (iii) the third term accounts for dissipation by Joule effect:

3

Rij= (χ/4π)Bi ∗
(
∇2h)

)
j

(59)

and corresponds to the viscous stresses.

3.8 MAGI Wave Sources III and IV: Hydrorotation
and Hydrogravity Tensors

The forcing term involving angular velocity:

Q(3) = Ω ∧ {Ω ∧ [(v · ∇)] ξ} , (60)

is quadratic in rotation velocity, and represents the hydrorotation tensor. All
the remaining source terms form the hydrogravity tensor, which has three
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terms, like the Lighthill and hydromagnetic tensors (i) The first is a dipole
term representing wave generation by turbulence:

Q41 = −∂2[(ρ′/ρ0)v]/∂t2. (61)

(ii) the second is a dipole term representing wave generation by fluid inhomo-
geneities:

Q42 = ρ−1
0 ∇2(p′v)+∇[(γ−1)p′(∇·v)]−(g/ρ0)∇·(ρ′v)+[γ/(γ−1)]T0∇s; (62)

(iii) the third is a dissipative term which involves the entropy:

Q43 = −ρ−1
0 ∇(αds/dt) = −ρ−1

0 ∇{[ρT/(γ − 1)]ds/dt}, (63)

where could be substituted from the energy equation (38).

3.9 Dispersion Relation and Possible Decouplings

For wavelength small compared to scale of non-uniformity of the medium, the
Fourier decomposition is used for the wave variable the viz. velocity ṽi and
wave source i.e. the forcing Qi:

vi, Qi(x, t) =
∫ ∫ ∫ ∫ +∞

−∞
ṽi, Q̃i(k, ω)ei(k·x−ωt)d3k dω, (64)

leading to the dispersion relation:

Dij(k, ω)ṽj = Q̃i(k, ω) (65)

involving the dispersion matrix:

Dij(k, ω) = −ω2δij + c20kikj + a2
[
kikj + (k · l)2δij − (k · l)(kilj + kj li)

]
+iωeijkΩk + kigj − i(γ − 1)gikj . (66)

The possible decouplings depend on four directions (i) the external magnetic
field l; (ii) gravity g; (iii) rotation Ω and (iv) wavevector k. The dispersion
matrix (66) consists of five terms (i) the first two correspond to sound waves,
which are isotropic and non-dispersive; (ii) the third corresponds to hydro-
magnetic waves which are non-dispersive and anisotropic and (iii) the fourth
and fifth–sixth terms correspond, respectively, to inertial and gravity waves,
which are both dispersive and anisotropic.

3.10 Radiation of MAGI Waves

Inverting the dispersion relation (65) and substituting in the first equation of
(64) leads to:
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vi(x, t) =
∫ ∫ ∫ ∫ +∞

−∞

[
D̄ij(k, ω)/Dij(k, ω)

]
Q̃j(k, ω)ei(k·x−ωt)d3k dω,

(67)
where D̄ij are the cofactors of dispersion matrix, Q̃j the source spectrum, and
D(k, ω) the determinant of dispersion matrix; its roots specify six modes or
three pairs of wave modes:

D(k, ω) = −
6∏

n=1

[ω − ωn(k)] (68)

and correspond to poles in dω integral in (67), which can be evaluated by
residues:

vi(x, t) =
M∑

m=1

∫ ∫ ∫ ∫ +∞

−∞
Fm
i (k, t)eik·xd3k, (69)

where the radiation vector

Fm
i (k, t) = 2πiDij(k, ω(k))Q̃j(k, ω(k))

⎧⎪⎪⎨⎪⎪⎩
6∏

n=1
n�=m

[ωm(k)− ωn(k)]

⎫⎪⎪⎬⎪⎪⎭
−1

e−iωm(k)t,

(70)
is valid at arbitrary distance.

3.11 Radiation to Observer in the Far-field

An observer in the far-field receives waves from points in the wavenumber
surface where the group velocity points to him; if these are regular points, a
quadratic approximation is valid:

k3 − km
30 =

1
2

2∑
s=1

εms (k3 − km
30), (71)

where εm1 , ε
m
2 are the principal curvatures of wave of wavenumber of wavenum-

ber surface of mode m. The dk1dk2 integrals can be evaluated by method of
stationary phase, leading to:

v(x, t) =
6∑

m=1

Gm(k01, k02,x, t)(2π/x3) |εm1 εm2 |−1/2

× exp
{
−i
[
−(x1)2εm1 + (x2)2/εm2

]
/2x3

}
exp

{
−π

4

2∑
s=1

sgn(εms )

}
(72)

which may be interpreted as follows (i) the first factor is the radiation vector
at the stationary point:



On Waves in Fluids 89

Gm(k01, k02,x, t) ≡
∫ +∞

−∞
Fm(k0, t) exp(ik0 · x)dk03

{
1 + O(|x|)−1

}
; (73)

(ii) the second factor is the decay with distance; (iii) the third factor shows
that the Gaussian curvature ε =

√
ε1ε2 of wavenumber surface determines

the beam aperture so that the energy flux εv2 ∼ const. is constant; (iv) the
fourth factor shows that the phase decays away from beam direction and (v)
the fifth factor is the phase, viz. −π/2 for a synclastic wavenumber surface
[two positive principal curvatures 1 = sgn(ε1) = sgn(ε2)], and π/2 for an
anti-clastic surface [negative principal curvatures of sgn(ε1) = sgn(ε2) = −1],
so that there is a phase jump of π when crossing a caustic.

3.12 Law of Intensity of Radiation of MAGI Wave

From an order-of-magnitude evaluation it follows that the intensity of radia-
tion of MAGI waves scales as

Q0 ∼ ρ0�
2c−1Q2, (74)

where ρ0 is mass density, � is the lengthscale of source region, c is the phase
velocity of waves and Q is the source strength. In aeroacoustics [8, 40–44]
the source strength for a monopole, dipole (55a) or quadripole (54) source,
respectively:

Q0 ∼ ρ0u
2
{
1, u/c, (u/c)2

}
(75)

leads to the Lighthill’s fourth, sixth and eighth-power laws of velocity:

I0 ∼ ρ0l
2c−1u4

{
1, (u/c)2, (u/c)4

}
. (76)

For MAGI waves the sources are the hydrodynamic, hydromagnetic, hydro-
rotation and hydrogravity tensors and lead to the radiation intensity:

I ∼ ρ0l
2c−1u4

[
u2 + µh2/4πρ0 +Ω2l2 + gl

]2
. (77)

For example the law (77) agrees with the solar radiation flux 3 × 1033

erg cm−2 s−1, and applies to stellar luminosities [34–39].

4 Some Problems in Aeroacoustics

Table 4 indicates some problems in aeroacoustics [8,44–47], of which we single
ou for more detailed consideration that marked with an asterisk [48,49] in the
Table 4.
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Table 4. Some problems in aeroacoustics

Problems in aeroacoustics

Linear acoustics

Large amplitude sound

Internal noise

External noise

Propulsion

Jets

Propellers

Rotors

Fans/compressors

Undercarriadge

Flaps

Boundary layer

Airframe

Design issues

Environmental aspects

Duct liners*

Combustion

Flight path optimization

Atmospheric propagation

Ground effects

Shielding
Operations

Structural fatigue

Shock noise

Engine surge

Sonic boom

Passive reducion

Active reduction

Systems (air conditioning, etc...)

4.1 Cylindrical or Coaxial Nozzles with Non-Uniform
Wall Impedance

Consider an annular (Fig. 2) or cylindrical (Fig. 3) nozzle with an azimuthally
varying wall impedance distribution. The reflection of a mode by a the wall
creates other modes, e.g. an axisymmetric mode m = 0 is reflected non-
axisymmetrically by an azimuthally varying wall impendence distribution.
Thus the attenuation of sound due to an uniform impedance distribution
is modified by intermodal scattering, which can be used to enhance noise
absorption.

4.2 Cylindrical Waves in an Axial Nozzle Flow

The convected wave equation in cylindrical coordinates (28) in an uniform
axial flow of velocity U with the acoustic pressure as variable is given by:
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Fig. 2. Annular nozzle with circumferential non-uniform impedance distributions
Z1(θ) and Z2(θ), respectively, over the inner and outer surfaces of the duct

Fig. 3. In the particular case of the cylindrical nozzle of radius r = R the cir-
comferentially varying impedance Z(θ) causes axisymmetric modes to be reflected
non-axisymmetricaly

{
1
c2

(
∂

∂t
+ U

∂

∂z

)2

−
[
1
r

∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2
+

∂2

∂z2

]}
p(r, θ, z, t) = 0,

(78)
where

0 ≤ r ≤ R, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ L, −∞ < t < +∞. (79)

Using a Fourier representation in θ, z, t

p(r, θ, z, t) =
+∞∑

m=−∞
eimθ

+∞∑
l=−∞

ei2πlz/L

∫ +∞

−∞
e−iωtPlm(r, ω)dω, (80)
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where m is the azimuthal wavenumber, ω the frequency and 2π�/L the axial
wavenumber, it follows that the radial dependence is specified by a Bessel
equation

r2P ′′ + rP ′ + (k2r2 −m2)P = 0; (81)

the solution for cylindrical nozzle which is finite at the centre is specified by
a Bessel function of first kind (82a):

Plm(r, ω) = AlmJm(kr), (82a)

k2 ≡ 1
c2

(
ω − 2πlU

L

)2

−
(

2πl
L

)2

, (82b)

with radial wavenumber (82b).

4.3 Rigid Wall Boundary Condition

The simplest boundary condition is taken for a start, viz. a rigid wall for which
the normal velocity is zero:

0 = ∂p/∂r|r=R ⇒ 0 = J ′
m(kR) (83)

so that the eigen-values are specified by the roots of the derivative of the
Bessel function:

J ′
m(jmn) = 0, (84a)

kmn = jmn/R. (84b)

The radial wavenumber and eigen-functions

Pm(r; k, ω) = Jm(jmnr/R) (85)

together with the frequencies of natural modes

ωlmn = 2πU/L± c
√

(2πl/L)2 + (jmn/R)2, (86)

appear in the total wave field as a superposition of eigen-functions:

p(r, θ, z, t) =
+∞∑

m=−∞
eimθ

+∞∑
l=−∞

ei2πlz/L
+∞∑
n=1

e−iωlmntAlmnJm(kmnr), (87)

with amplitudes determined:

Almn =
1
πL

[(
1− m2

k2
lmn

)
{Jm(klmnR)}2

]
×
∫ 2π

0

e−imθdθ
∫ L

0

ei2πlz/Ldz
∫ R

0

rJm(klmn)p(r, θ, z, 0)dr (88)

from initial wave field.



On Waves in Fluids 93

4.4 Uniform Impedance Boundary Condition

The total wave field (87, 88) applies to other boundary conditions, provided
that the eigen-values (84b) and hence the eigen-functions (85) and natural
frequencies (86) be modified. The eigen-values are determined next for uniform
(Sect. 4.4) and non-uniform (Sect. 4.5) wall impedance. The impedance relates
pressure and velocity spectra at wall (89a):

p̃(R, θ, z;ω) = Z̄(ω)ṽr(R, θ, z;ω), (89a)
Z̄(ω) = Z(ω)/ρc, (89b)

where the specific impedance, i.e. impedance divided by that of a plane wave
may be used (89b). The r-component of momentum equation(

∂

∂t
+ U

∂

∂z

)
vr(r, θ, z, t) +

1
ρ0

∂

∂r
p(r, θ, z, t) = 0, (90)

in terms of eigen-functions

ρ0(ω − 2πlU/L)iVlm(r;ω) = dPlm/dr. (91)

specifies the eigen-values or radial wavenumbers as the roots of

iZJ ′
m(kR) = αlJm(kR), (92a)

αl ≡
√

1 + (2πl/kL)2. (92b)

For a rigid wall, i.e. infinite impedance this leads to the roots of J ′
m(kR) = 0 as

before (83, 84a,b); for an impedance wall i.e. complex Z, this leads to complex
radial wavenumbers klmn and complex natural frequencies ωlmn:

ωlmn = 2πlU/L± c
√

(2πl/L)2 + k2
lmn, (93)

implying mode decay in time

exp(−iωlmnt) = exp [−i�(ωlmn)t] exp [�(ωlmn)t] , (94)

for �(ωlmn) < 0.

4.5 Circumferentially Non-Uniform Wall Impedance

A circumferentially non-uniform wall impedance can be represented by Fourier
series:

Z(θ;ω) =
+∞∑
−∞

Zm′(ω)e−im′θ (95)

with ‘impedance harmonics’ of amplitude Z ′
m(ω). The acoustic pressure per-

turbation spectrum
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p̃(r, θ, z;ω) =
+∞∑

m=−∞
eimθ

+∞∑
l=−∞

ei2πlz/L
+∞∑
n=1

AlmnJm(kr) (96)

and acoustic radial velocity perturbation spectra

ṽr(r, θ, z;ω) =
+∞∑

l=−∞
ei2πlz/L

+∞∑
m=−∞

eimθVlm(r;ω) (97)

are related by the wall boundary condition (91), viz.:
+∞∑

l=−∞
ei2πlz/L

[
+∞∑

m=−∞
AmeimθJm(kr) ∓

+∞∑
m,m′=−∞

1

iαl
AmZm′ei(m+m′)θJ ′

m(kr)

]
= 0,

(98)
re-arrangement of (4.5) shows that

+∞∑
m′=−∞

[
Jm′(kr)δmm′ ∓ Zm−m′

iαl
J ′
m′(kr)

]
Am′ = 0 (99)

and thus for the amplitudes to be not all zero the determinant of the term is
square brackets must vanish.

4.6 Coupling of Azimuthal Modes

From the preceding it follows that the radial wavenumbers klmn the roots of
infinite determinant:

D ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
.
..

.

..
.
..

.

..

· · · [J−1(kR) ∓ Z0

iαl
J ′
−1(kR)] ∓Z−1

iαl
J ′
0(kR) ∓Z−2

iαl
J ′
1(kR) · · ·

· · · ∓Z1

iαl
J ′
−1(kR) [J0(kR) ∓ Z0

iαl
J ′
0(kR)] ∓Z−1

iαl
J ′
1(kR) · · ·

· · · ∓Z2

iαl
J ′
−1(kR) ∓Z1

iαl
J ′
0(kR) [J1(kR) ∓ Z0

iαl
J ′
1(kR)] · · ·

.

.

.
.
.
.

.

.

.
.
.
.

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(100)
In the case I of uniform impedance the determinant is diagonal thus the eigen-
values klmn are roots of each diagonal element (92), and there is no coupling
of azimuthal modes. In the case II of non-uniform impedance

Z(θ;ω) = Z0(ω) + Z1(ω)eiθ + Z−1(ω)e−iθ + . . . (101)

with ‘impedance harmonics’ Z±s up to order s, the determinant (100) has
(2s+ 1) non-zero bands around the diagonal, implying the coupling of differ-
ent azimuthal modes by the non-uniform impedance. For example a symmet-
ric mode m = 0 is reflected by wall with non-uniform azimuthal impedance
Z(θ;ω) as a superposition of modes m = 0,±1, . . . ,±s.
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4.7 Axially Varying Wall Impedance

An axially varying impedance is also represented by a Fourier series:

Z(z;ω) =
+∞∑

l′=−∞
Zl′(ω)ei2πl′z/L, (102)

a function of z instead of θ in (102) instead of z in (95). Substituting the
acoustic velocity and pressure perturbation at the wall

+∞∑
m=−∞

eimθ

[
+∞∑

l=−∞
ei2πlz/LAlmJm(kr) −

+∞∑
l,l′=−∞

ei2π(l+l′)z/L Zl−l′

iαl′
AlmJ ′

m(kr)

]
= 0,

(103)

leads after simplification to
+∞∑

l′=−∞
Al′m

[
δl′lJm(kr)∓ Zl−l′

iαl′
J ′
m(kr)

]
= 0 (104)

showing that of for the amplitudes to be not all zero the determinant must
vanish

Em = det

{
δl′lJm(kr)∓ Zl−l′

iαl′
J ′
m(kr)

}
; (105)

the radial wavenumbers are roots of this single infinite determinant.

4.8 Two-dimensionally Varying Wall Impedance

In the most general case the wall impedance varies both axially and az-
imuthaly and is represented by double Fourier series:

Z(θ, z;ω) =
+∞∑

l=−∞
ei2πlz/L

+∞∑
−∞

e−im′θZl′
m′(ω). (106)

Substitution in the wall boundary condition leads to eigen-values klmn which
are roots of ‘double’ infinite determinant, i.e. an infinite determinant whose
elements are infinite determinants, viz. (i) the inner determinant is

D
l,l′ ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .
.
.
.

.

.

.
.
.
.

.

.

.

· · · [J−1(kR) +
Zl−l′

0

iαl′
J

′
−1(kR)]

Zl−l′
−1

iαl′
J

′
0(kR)

Zl−l′
−2

iαl′
J

′
1 · · ·

· · ·
Zl−l′

1

iαl′
J

′
−1(kR) [J0(kR) +

Zl−l′
0

iαl′
J

′
0(kR)]

Zl−l′
−1

iαl′
J

′
1 · · ·

· · ·
Zl−l′

2

iαl′
J

′
−1(kR)

Zl−l′
1

iαl′
J

′
0(kR) [J1(kR) +

Zl−l′
0

iαl′
J

′
1(kR)] · · ·

.

.

.
.
.
.

.

.

.
.
.
.

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(107)
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(ii) the outer determinant is

F (kR, α, Zl
m) = det

[
Dl−l′(kR, α, Zl

m)
]
. (108)

In all cases the eigen-values are computed by truncating determinants, and
the accuracy checked comparing ‘smaller’ and ‘bigger’ truncations.

4.9 Eigen-Values for Uniform and Non-Uniform Liners

The comparison is made between a uniform wall impedance Z0 and a non-
uniform wall impedance Z−1 = Z1, viz.

Z(θ) = Z0 + Z1eiθ + Z−1e−iθ = Z0 + 2Z1 cos θ, (109)

for the values indicated in Table 5.
A cylindrical nozzle without flow is chosen, for four values of the ratio of

length to radius µ = L/R = 1, 2, 5, 10. The plots of the real and imaginary
parts of the dimensionless radial wavenumber concern (i) the weakly non-
uniform (case A) wall impedance in Fig. 4 and (ii) the stronger non-uniformity
(case B) in Fig. 5.

Table 5. Uniform and non-uniform wall impedance

Impedances Z0 Z1 = Z−1

Case A 1 + i 0.1 + i0.1
Case B 1 + i 0.1 + i0.1

Fig. 4. Dimensionless radial wavenumbers for weakly non-uniform acoustic liner
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Fig. 5. Dimensionless radial wavenumbers for strongly non-uniform acoustic liner

4.10 Optimization of Non-Uniform Acoustic Liners

One method of optimization is to (i) calculate all eigen-values i.e. complex
radial wavenumbers kmn; (ii) for a given frequency calculate corresponding
axial wavenumbers Kmn

(1−M2)Kmn = −Mω/c±
∣∣(ω/c)2 − (1−M2)(kmn)2

∣∣1/2 , (110)

where M = U/c is the Mach number of the mean flow; (iii) since the axial
wavenumber are complex:

exp(iKlmnz) = exp[iz�(Kmn)] exp[−z�(Kmn)], (111)

the imaginary part determines acoustic wave decay along duct axis; (iv) the
slowest decaying mode is selected as the main contributor to noise and (v)
the non-uniform wall impedance is chosen so as to maximize the decay of this
mode.

4.11 Impedance Which Maximizes Decay of Slowest Decaying
Mode

Taking as example a wave of frequency f = 1kHz in a duct of radius R = 1m,
without mean flow for a sound speed c0 = 340 m s−1, the slowest decaying
mode is: kR = 8.03438 + i3.020068. For an azimuthally varying impedance
distribution:

Z(θ) = Z0(1− ε cos θ) , (112)
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Fig. 6. Spatial decay �(ζ) is slowest decaying mode plotted as a function of the
real �(ε) and imaginary �(ε) parts of the non-uniform impedance term ε, based on
the 3 × 3 determinant centred on mode 14

with constant term Z0 = 1 + i, the complex value of ε is chosen to maximize
the decay of the mode. The optimal ε turns out to be ε = 0.2− i 0.3, as shown
in Fig. 6.

A more general impedance distribution:

Z(θ) = Z0

[
1−

N∑
n=1

εn cos(nθ)

]
, (113)

allows choice of the N parameters to maximize the decay of N modes.

4.12 Minimization of Total Acoustic Energy

Optimizing for fastest decay of one or more modes can lead to energy transfer
to other modes. Thus it may be best to minimize total acoustic energy

Em(z) =
∑
n

Enme−2z(kmn), (114)

where the amplitude of modes can be obtained by (a) an equipartition hypoth-
esis that all modes have same energy, which is usually true for m (azimuthal)
and less so for n (radial) modes; (b) calculating the amplitudes from initial
wave field as in (88) and (c) calculating the amplitudes by forcing, i.e. wave
generation, leading to
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1
r

∂

∂r
r
∂

∂r
+

1
r2

∂2

∂θ2
+

∂2

∂z2
− 1
c2

(
∂

∂t
+ U

∂

∂z

)2
]
p(r, θ, z, t) = S(r, θ, z)eiωt ,

(115)

which is the forced convected wave equation in cylindrical coordinates (78)
with sound source of frequency ω and arbitrary spatial distribution.

4.13 Wave Forcing, Without or with Single and Double Resonance

The sound source is decomposed into cylindrical harmonics:

S(r, θ, z) =
+∞∑

l=−∞
ei2πlz/L

+∞∑
m=−∞

eimθ
+∞∑
n=1

Jm(kmnr)Slmn, (116)

with known amplitudes

Slmn =
1

2πL
2
R2

[(
1− m2

(klmnR)2

)
{Jm(kmnR)}2

]
×
∫ 2π

0

e−imθdθ
∫ L

0

ei2πlz/Ldz
∫ R

0

rJm(kmn)S(r, θ, z)dr. (117)

The forced acoustic field is then given (i) the absence of resonance by

Plmn(t) = ei(mθ−2πlz/L−ωt)Jm(kmnr)
c2

(ω − ωlmn)(ω + ωlmn)− 4πlU/L
,

(118)
(ii) for single resonance of type 1, i.e. ω = ωlmn by

Plmn(t) = −1
2
iteiωlmntei(mθ−2πlz/L)Jm(kmnr)

c2Slmn

ωlmn − 2πlU/L
, (119)

(iii) for single resonance of type 2, i.e. ω + ωlmn = 4πlU/L by

Plmn(t) = −1
2
itei(ωlmn−4πlU/L)tei(mθ−2πlz/L)Jm(kmnr)

c2Slmn

2πlU/L− ωlmn
,

(120)
(iv) for double resonance i.e. coincidence of types 2 ≡ 1, by

ω=ωlmn = 2πlU/L : Plmn(t)=−1
2
t2e−i2πlU/Lei(mθ−2πlz/L)Jm(kmnr)c2Slmn.

(121)

Note that impedance wall lead to complex natural frequencies excluding reso-
nance for real forcing frequencies. Resonance is possible only for forcing with
time decaying amplitude, but then the acoustic pressure would decay expo-
nentially in time, instead of increasing linearly in time for single (119) and
(120) or quadratically in time for in double (121) true resonance.
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4.14 Acoustic Modes in Non-Uniform Lined Nozzle

The ten acoustic modes in Table 6 are illustrated in Fig. 7 for a wave of
frequency f = 1kHz, in a nozzle of length L = 5m and radius R = 1m, in
the absence of flow (solid line) and for a mean flow Mach number M = 0.3
(dotted line). The wall impedance is non-uniform (109) with Z0 = 1 + i and
ε = 0.3 + i 0.2.

4.15 Mode Radiation Out-of-the Duct to the Far-field

The sound radiation out of a duct can be calculated in four cases (i) in the
case of a flanged duct the source distribution on duct exit disk

Table 6. Ten acoustic modes with m = 0

N 1 2 3 4 5 6 7 8 9 10

e 0 0 1 1 1 1 2 2 2 2
n 1 2 1 2 3 4 1 2 3 4

amplitude phase

Fig. 7. Acoustic modes in a non-uniformly lined duct with and without mean flow
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Table 7. Mode radiation out of duct

Panel a b c d

m 0 0 0 0
n 1 2 3 4

amplitude phase

Fig. 8. Mode radiation out of a nozzle with weakly or strongly non-uniform wall
impedance

p(r, θ, t) =
eiω(r/c−t)

4πr

+∞∑
m=−∞

+∞∑
n=1

Pmn(r, θ)Amn (122)

radiates to an observer in far-field, and the received duct modes are given by
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Pmn(r, θ) =
−2ikmn

α

{
1 + i

d
d(ωr/c)

}
×
∫ 2π

0

dα
∫ α

0

dR Rei(ωR/c) sin θ cosαeimαJm(kmnR); (123)

(ii) in the case of an unflanged duct the Wiener–Hopf technique is used to
account for diffraction by the nozzle lip [50]; (iii) in the case of a nozzle with
flow, the vortex sheet issuing from lip modifies sound diffraction [51, 52] and
(iv) in the case of a turbulent and irregular shear issuing from nozzle lip, there
is spectral and directional broadening of sound [53,54].

For the four modes in Table 7 the case 1 is chosen for illustration in Fig. 8,
by plotting the amplitude (left) and phase (left) vs. the angle θ of reception
with the duct axis. The duct has non-uniform wall impedance (109), with
Z0 = 2.5 − i 0.4 and two cases (i) weak non-uniformity ε = 0.1 + i 0.1 (solid
line) and (ii) stronger non-uniformity ε = 0.2− i 0.3 (dotted line).

5 Conclusion

The presentation has emphasized mathematical results, as comparison with
experiments was made elsewhere for aeroacoustics [8,45,46] and astrophysics
[36, 38, 39]. The mathematical, physical and engineering aspects of waves in
fluids were addressed each for one general issue: (Sect. 2) the classical and
convected wave equations have significant restrictions so there are many ap-
plications which need more general forms; (Sect. 3) fluids support not only
acoustic waves, but also magnetic, internal and inertial waves (water waves,
instability waves and chemical reactions were omitted), and there are analo-
gies and differences, relevant to mutual interactions; (Sect. 4) there is a wide
variety of problems in aeroacoustics, with practical motivations. One example
of the latter is the use of acoustic liners, which absorb noise but cause (i) a
weight penalty and (ii) a drag (or fuel consumption) increase. Non-uniform
liners try to maximize sound absorption for a given weight and drag penalty.
They are still a subject of discussion since the optimum impedance distribu-
tion depends on the combination of modes to be attenuated. The three parts
of this talk have also concentrated on three aspects of the physics of waves:
(Sect. 2) wave propagation for sound; (Sect. 3) wave generation for MAGI
waves; (Sect. 4) sound attenuation for aeroacoustics.
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Summary. In this chapter, we review the recent theory of quantum diffusion
models derived from the entropy minimization principle. These models are obtained
by taking the moments of a collisional Wigner equation and closing the resulting
system of equations by a quantum equilibrium. Such an equilibrium is defined as a
minimizer of the quantum entropy subject to local constraints of given moments. We
provide a framework to develop this minimization approach. The results of numeri-
cal simulations show that these models capture well the various features of quantum
transport.

1 Introduction

The goal of this paper is to give an introduction to the theory of quantum
diffusion models derived from the entropy principle. These lecture notes report
on previously published works [10–12,14,15].

These models are obtained by taking the moments of a collisional Wigner
equation and closing the resulting system of equations by a quantum equilib-
rium. Such an equilibrium is defined as a minimizer of the quantum entropy
subject to local constraints of given moments. We provide a framework to de-
velop this minimization approach and apply it to quantum diffusion models.
We also give some preliminary numerical results.

More precisely we consider a collisional Quantum Liouville equation

i�∂tρ = [H, ρ] + i�Q(ρ), (1)

where ρ is the density operator (i.e., a hermitian nonnegative trace-class oper-
ator of trace unity representing the statistical state of the quantum system).
� is the Planck constant and H is the Hamiltonian operator defined by
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Hψ = −�2

2
∆ψ + V (x, t)ψ, (2)

where V is an external potential (the case of mean-field Hartree potential can
be considered as well). The operator Q(ρ) is an unspecified collision operator
which describes the interaction of the particles with themselves and with their
environment and accounts for dissipation mechanisms. The only assumption
that will be used is that this operator dissipates entropy (see below).

Let W [ρ](x, p) denote the Wigner transform of ρ

W [ρ](x, p) =
∫

ρ

(
x− 1

2
ξ, x+

1
2
ξ

)
eiξ·p/� dξ, (3)

where ρ(x, x′) is the distribution kernel of ρ

ρψ =
∫

ρ(x, x′)ψ(x′) dx′.

We recall that the inverse Wigner transform (or Weyl quantization) is
given by the following formula:

W−1(w)ψ =
1

(2π)d

∫
w

(
x+ y

2
, �k

)
ψ(y)eik(x−y) dk dy (4)

and defines W−1(w) as an operator acting on the element ψ of L2. The func-
tion w is also called the Weyl symbol of ρ. W and W−1 are Isometries between
L2 (the space of operators such that the product ρρ† is trace-class, where ρ†

is the Hermitian conjugate of ρ) and L2(R2d):

Tr{ρσ†} =
∫

W [ρ](x, p)W [σ](x, p)
dxdp
(2π�)d

. (5)

Taking the Wigner transform of (1), we get the following collisional Wigner
equation for w = W [ρ]

∂tw + p · ∇xw +Θ�[V ]w = Q(w) (6)

with

Θ�[V ]w = − i

(2π)d�

∫ (
V

(
x+

�

2
η

)
− V

(
x− �

2
η

))
×w(x, q) eiη·(p−q) dq dη (7)

and Q(w) is the Wigner transform of Q(ρ).
In Sect. 2, we are going to make use of the entropy dissipation properties

of Q to derive quantum hydrodynamic models.

2 Quantum Energy-Transport Model

In this section, we report on the work [11,12].
In order to derive quantum diffusion model, we need to specify the colli-

sions operator Q in Quantum Liouville equation

i�∂tρ = [H, ρ] + i�Q(ρ) (8)
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or in the Wigner equation

∂tw + p · ∇xw +Θ�[V ]w = Q(w). (9)

In the absence of a precise definition of the physical collision mechanism,
the most simple choice is a relaxation operator also called BGK operator.
The collision operator expresses the relaxation of the collision operator to the
Local Thermodynamical Equilibrium, in our case, the quantum Maxwellian.
We want to investigate a case where this collision operator is written

Q(w)(p) = −ν(w − Exp(A+ C|p|2/2)), (10)

where we recall that Expw = W (exp (W−1w)) and exp is the exponential of
operators. The functions A(x) and C(x) are such that the operator Q locally
conserves mass and energy. More precisely, let us write

Mn,W = Exp(A+ C|p|2/2), (11)

the Quantum Maxwellian whose local mass at point x is n(x) and local energy
is W(x). Then, (A,C) is such that∫

Exp(A+ C|p|2/2)
(

1
|p|2/2

)
d̃p =

(
n
W

)
. (12)

In density operator form, the Quantum Maxwellian is written

ρn,W = W−1(Mn,W) = exp(W−1(A+ C|p|2/2)) (13)

with, for all test functions φ

Tr{ρn,W φ} =
∫

nφ dx, Tr{ρn,W φ|p|2/2} =
∫
Wφdx. (14)

The Quantum Maxwellian ρn,W = exp(W−1(A + C|p|2/2)) is a solution
of the entropy minimization principle: to find

min {H[ρ] = Tr{ρ(ln ρ− 1)}, subject to

Tr{ρn,W φ} =
∫

nφ dx , Tr{ρn,W φ|p|2/2} =
∫
Wφdx}. (15)

In Wigner form, the quantum entropy H[ρ] has the expression

H[ρ] = Tr{ρ(ln ρ− 1)} =
∫

w(Lnw − 1) dx d̃p, (16)

where the quantum logarithm is defined according to Lnw = W [ln(W−1(w))].
For a given Wigner distribution w, let us denote by Mw := Mn,W the

Quantum Maxwellian which possesses the same density n and energyW as w:
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Mw

(
1

|p|2/2

)
dp =

∫
w

(
1

|p|2/2

)
dp. (17)

Then, the quantum BGK operator is written

Q(w) = −ν(w −Mw). (18)

In density operator form, we shall denote the quantum Maxwellian which has
the same mass and energy as ρ by Mρ. Then the quantum BGK operator is
written

Q(ρ) = −ν(ρ−Mρ). (19)

The physical situation modeled by Q(w) is typically when the energy ex-
changes among the particles themselves are more efficient than with the sur-
rounding and that a different temperature than that of the background is
possible. In short channel transistors, the electron typical energy exceeds the
phonon energy by almost two orders of magnitude. Then, the phonon colli-
sions can be viewed as quasielastic and most of the energy exchanges are with
the other electrons via Coulomb interaction. In plasmas, a similar situation
arises between electrons and ions because of the very small electron to ion
mass ratio.

We observe that we need the two sets of variables: the conservative vari-
ables (n,W) and the entropic variables (A,C). The passage between (n,W)
and (A,C) is a functional change of variable which is done through the entropy
and its Legendre dual (see reference given above).

Let us now summarize the properties of Q:

(i) Mass and energy conservation∫
Q(w)

(
1
|p|2
)

dp = 0 (20)

(ii) Null set of Q (equilibria)

Q(w) = 0⇐⇒ ∃ (A,C) such that w = Exp(A+ C|p|2/2) (21)

(iii) Entropy decay ∫
Q(w)Lnw dx d̃p = Tr{Q(ρ) ln ρ} ≤ 0 (22)

Properties (i) and (ii) are obvious from definition (18) and the conservation
relations (12). The only delicate point is entropy decay (iii). In the classical
case, the proof uses that the logarithm is an increasing function. This is no
more true here in the case of the quantum logarithm. Indeed, because the
dependence between w and Ln(w) is functional, the statement that Ln(w) is
increasing w.r.t w is meaningless. So another proof must be developed. It uses
convexity argument [11].
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Now, we consider a diffusion scaling of the collisional Wigner equation

η2 ∂w
η

∂t
+ η(v · ∇xw

η −Θ(wη)) = Q(wη). (23)

This scaling is obtained through the change t → t/η and Q → Q/η which
means that the collision operator is large and that we are looking at long time
scales.

The limit η → 0 of (23) is the so-called quantum Energy-Transport model.
Indeed, as η → 0, wη −→ Exp(A+C|p|2/2) where (A,C) satisfy the Energy-
Transport model which consists of the mass and energy conservation equations

∂n

∂t
+∇x · jn = 0, (24)

∂W
∂t

+∇x · jW +∇xV · jn = 0, (25)

where (n,W) is related with (A,C) through∫
Exp(A+ C|p|2/2)

(
1

|p|2/2

)
d̃p =

(
n
W

)
(26)

and the fluxes (jn, jW) are given by

jn = −ν−1[∇Π + n∇V ], (27)

jW = −ν−1[∇Q + (W Id +Π)∇V − �2

8
n∇(∆V )] (28)

with the tensors Π(A,C) and Q(A,C) given by

Π(A,C) =
∫
Exp(A+ C|p|2/2) p⊗ p d̃p, (29)

Q(A,C) =
∫
Exp(A+ C|p|2/2) p⊗ p |p|2/2 d̃p. (30)

Like in the classical case (see, e.g., [4,5,9]), the system consists of balance
equations for the conservative variables (n,W), the fluxes of which are ex-
pressed in terms of the gradients of the entropic variables (A,C). The passage
(n,W) to (A,C) can be done through the use of the entropy functional or its
Legendre dual. However, by contrast with the classical case, there is no clear
symmetric positive-definite matrix structure relation between the fluxes and
the gradients of the entropic variables.

Let us now consider entropy decay. The fluid entropy is given by the kinetic
entropy evaluated for the equilibrium: S(n,W) = H(Mn,W) and has the
following expressions

S(n,W) =
∫
Mn,W (LnMn,W − 1) dx d̃p

=
∫
Exp(A+ C|p|2/2)(A+ C|p|2/2− 1) dx d̃p

=
∫

(n(A− 1) + CW) dx. (31)
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The quantum Energy-Transport model decreases the entropy:

d
dt
S(n,W) ≤ 0. (32)

The proof follows exactly the same arguments as for the hydrodynamic model
and is omitted.

We close this section about quantum Energy-Transport models by a few
remarks. The first one is that there is no rigorous proof neither for the exis-
tence of solutions nor for its derivation from the collisional Wigner equation.
Numerical simulations have not been performed yet either. In the literature,
quantum Energy-Transport models can be found but their derivation (and
the model itself) are different. For instance, we refer to the Energy-Transport
extension of the DG (Density-Gradient) model by Chen and Liu [8].

2.1 Quantum Drift-Diffusion Model

This section summarizes a series of works [10–12,14].
In the classical setting, the Drift-Diffusion model is a simplification of

the Energy-Transport model when the assumption of constant temperature is
made. To derive a Quantum-Drift-Diffusion model, we start by a discussion
of the appropriate BGK operator.

This operator will be defined as a relaxation to a quantum Maxwellian
with a fixed temperature, and can be expressed by

Q(w)(v) = −ν(w − Exp(A− |p|2/2)), (33)

where the function A(x) is such that the operator conserves mass. Here again,
we take a constant temperature equal to unity for the sake of simplicity.

For a given density n(x), the Quantum Maxwellian which has density n
in Wigner form is given by

Mn = Exp(A− |p|2/2), (34)∫
Exp(A− |p|2/2) d̃p = n. (35)

In density operator form it is written

ρn = W−1(Mn) = exp(W−1(A− |p|2/2)), (36)

with, for all test function φ

Tr{ρn φ} =
∫

nφ dx. (37)

This Quantum Maxwellian satisfies the free energy minimization principle:
ρn = exp(W−1(A− |p|2/2)) is a solution of the problem: to find
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min {G[ρ] = Tr{ρ(ln ρ− 1) +Hρ}

subject to: Tr{ρn φ} =
∫

nφ dx , ∀ test fct φ}, (38)

where H = |p|2/2 + V is the system Hamiltonian.
In Wigner form, the free energy is written

G[ρ] = Tr{ρ(ln ρ− 1) +Hρ} =
∫

[w(Lnw − 1) +Hw] dx d̃p (39)

with the quantum logarithm Lnw = W [ln(W−1(w))].
For a given Wigner distribution w, we denote Mw := Mn the Quantum

Maxwellian which has the same density n as w:∫
Mw dp =

∫
w dp. (40)

Then quantum BGK operator is finally written

Q(w) = −ν(w −Mw). (41)

In density operator formulation, we denote by Mρ the Quantum Maxwellian
associated with ρ, and the BGK operator is written:

Q(ρ) = −ν(ρ−Mρ). (42)

The situation modeled by Q(w) is that of a system where energy exchanges
between the particles and the surrounding relax the temperature to the back-
ground temperature.

Again, two variables appear, the conservative variable n and the entropic
variable A, with a functional change of variable between these two variables
which can be expressed through the free energy and its Legendre dual.

We now list the properties of Q

(i) Mass conservation ∫
Q(w) dp = 0, (43)

(ii) Null set of Q (equilibria)

Q(w) = 0⇐⇒ ∃A such that w = Exp(A− |p|2/2), (44)

(iii) Free energy decay∫
Q(w)(Lnw +H) dx d̃p = Tr{Q(ρ)(ln ρ+H)} ≤ 0. (45)

We now look at the Wigner equation under diffusion scaling
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η2 ∂w
η

∂t
+ η(v · ∇xw

η −Θ(wη)) = Q(wη), (46)

The limit η → 0 leads to the Quantum Drift-Diffusion model: More pre-
cisely, as η → 0, wη −→ Exp(A − |p|2/2) where A satisfies the Energy-
Transport model which consists of the mass conservation equation

∂n

∂t
+∇x · jn = 0 (47)

with ∫
Exp(A− |p|2/2) d̃p = n (48)

and the flux jn given by

jn = −ν−1[∇Π + n∇V ] (49)

with

Π(A) =
∫
Exp(A− |p|2/2) p⊗ p d̃p. (50)

Now, the fluid free energy is the kinetic free energy evaluated on the equi-
librium G(n) = G(Mn) and is given by

G(n) =
∫
Mn,W (LnMn,W − 1 +H) dx d̃p

=
∫
Exp(A− |p|2/2)(A− |p|2/2− 1 +H) dx d̃p

=
∫

n(A+ V − 1) dx. (51)

Then if either V is independent of t or V is given by Poisson’s equation

∆V = n, (52)

then
d
dt
G(n) ≤ 0 (53)

(in the latter case, we have to multiply the term nV by a factor 1/2).
We now give a more tractable expression of the pressure tensor Π than

(50), given by

∇Π(A) = n∇A. (54)

This leads to an equivalent formulation of the QDD model:

∂n

∂t
+∇x · jn = 0, (55)

jn = −ν−1(n∇(A+ V )), (56)∫
Exp(A− |p|2/2) d̃p = n. (57)



114 P. Degond et al.

The moment reconstruction problem (57) has also a simpler expression if
we suppose that the Hamiltonian H(A) = |p|2/2−A has a discrete spectrum
with eigenvalues λp(A) and eigenfunctions ψp(A), p = 1, . . . ,∞. Indeed, we
have

n(A) (x) =
∞∑
p=1

exp(−λp(A)) |ψp(A) (x)|2. (58)

The “final” expression of the Quantum Drift-Diffusion model is therefore

∂n

∂t
+∇x · jn = 0, (59)

jn = −ν−1(n∇(A+ V )), (60)

n(A) (x) =
∞∑
p=1

exp(−λp(A)) |ψp(A) (x)|2, (61)

with λp(A) and ψp(A) the eigenvalues and eigenvectors associated with the
modified Hamiltonian H(A) = |p|2/2−A.

Now, we would like to consider the equilibrium states of the QDD model,
defined by jn = 0. This obviously implies A = −V (up to a constant that we
take equal to zero). Therefore, the moment reconstruction problem becomes

n (x) =
∞∑
p=1

exp(−λp) |ψp (x)|2, (62)

with λp, ψp the eigenvalue and eigenvector associated with the “true” system
Hamiltonian H(−V ) = |p|2/2+V . If additionally, n is related with V through
Poisson’s equation (52), this leads to the well-known Schrödinger–Poisson
problem which characterizes equilibrium states.

Now, if we assume that we are close to equilibrium, we can make the
approximation A ≈ −V and replace A by −V in the moment reconstruction
problem (57), which leads to the following system

∂n

∂t
+∇x · jn = 0, (63)

jn = ν−1(n∇(A+ V )), (64)

n(A) (x) =
∞∑
p=1

exp(A+ V − λp(−V )) |ψp(−V ) (x)|2, (65)

in which case, the spectral problem to be solved is associated with the “true”
system Hamiltonian H(−V ) = |p|2/2 + V . This system is known as the
Schrödinger–Poisson-Drift-Diffusion and has been investigated by Sacco and
coauthors in [13,17,20].

We now investigate � expansions of the QDD model. Up to O(�2) terms,
the QDD model reads
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∂tn+∇ · jn = 0 , (66)

jn = −ν−1[∇n− n∇(V + VB[n])), (67)

VB[n] = −�2

6
1√
n
∆(
√
n). (68)

This model is called the Density-Gradient model and has first been proposed
by Ancona and coauthors [1–3]. We note that this is just the classical Drift-
Diffusion model with the addition of the Bohm potential (divided by a factor
3 as compared with the Bohm potential of the single-particle hydrodynamics).
Usually, this factor is treated as a fitting parameter in the simulation codes.

It is a remarkable fact that the Density-Gradient model has an entropy,
which is nothing but the free energy of the QDD model expanded up to O(�2)
terms:

G2(n) =
∫

Rd

n(lnn− 1 + V + VB[n]) dx. (69)

If V is independent of t it can be shown that

d
dt
G2(n) = −

∫
Rd

1
νn
|∇n+ n∇(V + VB[n])|2 dx ≤ 0. (70)

A similar expression would hold if V is solved through Poisson’s equation (52).
The proof can be found in [11].

The Density-Gradient model has been widely investigated in the litera-
ture. The mathematical theory has been settled first by Ben Abdallah and
Unterreiter in [6] and later by Pinnau [18]. Numerical methods have been
developed by Pinnau and Unterreiter [19] and Jngel and Pinnau [16]. The
present approach provides a derivation of the DG model from first principles
and proves (for the first time) that DG model is compatible with free energy
decay.

About the full QDD model (i.e., with no � expansion), there is no rigorous
proof, neither of existence nor of convergence.

We now present some numerical simulations. We look at open boundary
conditions. We first analyze the influence of the effective mass on the shape of
the current–voltage characteristic. The temperature is chosen equal to 77 K
and the mobility is supposed to be constant and equal to 0.85m2 V−1s−1. The
permittivity is also supposed to be constant and equal to 11.44 ε0. Figure 1
shows four different IV curves with different values of the effective mass inside
and outside the double barriers. These curves show a certain sensitivity of the
model to the value of the effective mass inside the barrier.

Figure 2 shows the time evolution of the density from the peak to the
valley when the effective mass is m2 = 1.5× 0.092me inside the barriers and
m1 = 1.5× 0.067me outside it (corresponding to the IV curve at the bottom
right of Fig. 1). To obtain this figure, we apply a voltage of 0.25 V and wait
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Fig. 1. Influence of the effective mass on the IV curve, m1 being the mass outside
the barriers, and m2 being the mass inside
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Fig. 2. Evolution of the density from the peak (applied bias: 0.25 V) to the valley
(applied bias: 0.31 V)
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Fig. 3. Density at the peak (applied bias: 0.25 V)

for the electrons to achieve the stationary state. Then we suddenly change the
value of the applied bias to 0.29 V and we record the evolution of the density.
As expected, the density inside the well grows significantly and the stationary
state is achieved at about 1,500 fs.

The next two figures (Figs. 3 and 4) display the details of the reconstruction
of the density from the eigenstates ψp (for p = 1, . . . , 6) of the modified
Hamiltonian H[A]. The density e−λp |ψp|2 corresponding to each eigenstate
is plotted for two values of the applied bias, respectively, corresponding to
the current peak (Fig. 3) and to the valley (Fig. 4). Table 1 shows the values
of the corresponding energies λp. Last, Fig. 5 shows the transient current at
the left contact (x = 0). A detailed discussion of these results can be found
in [10].

In Fig. 6, we show the results obtained with the Density Gradient model us-
ing the same parameters as defined for the QDD model. As we can see, results
are qualitatively similar but differ significantly. Even with a smoother exter-
nal potential (replacing the two step functions by two gaussians), it appears
that the current–voltage characteristics are still different for the two models
as suggested by Fig. 7. To finish, Fig. 8 shows the role of the temperature on
the current for an applied bias of 0.2 V and for the three models QDD, DG,
and CDD with a constant mass equal to 0.067me.
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Fig. 4. Density at the valley (applied bias: 0.31 V)

Table 1. Eigenvalues (energies [eV]) of the modified Hamiltonian H[A] at the peak
and at the valley

λ1 λ2 λ3 λ4 λ5 λ6 λ7

Peak 0.87 1.05 1.56 2.03 2.28 3.03 4.47
Valley 0.87 1.11 1.57 1.70 2.54 3.05 5.03
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Fig. 5. Transient current density
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Fig. 6. IV curves obtained with the DG model (m1 being the mass outside the
barriers, and m2 being the mass inside)
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3 Summary and Conclusion

In these notes, diffusion models have been derived by means of the entropy
minimization approach. We have first proposed a formulation of a quantum
BGK operator (which models a relaxation of the Wigner distribution func-
tion toward a quantum equilibrium). Then, we have performed a diffusion
approximation of the resulting Quantum Kinetic Equation and provided new
Quantum Energy-Transport or Drift-Diffusion models. The Quantum Drift-
Diffusion model has been analyzed in more detail. This model differs from
classical models by the reconstruction of the density from the chemical poten-
tial (through an eigenvalue problem). We can recover the Density-Gradient
(DG) model of Ancona, and Iafrate [2] as an O(�2) approximation, and the
Schrödinger–Poisson Drift-Diffusion (SPDD) model of Sacco et al. [13] in sit-
uations close to equilibrium. A large set of numerical simulations have been
realized and show that the qualitative behavior of the model is fairly satisfac-
tory, while a certain sensitivity to some physical parameters still needs to be
understood.

The quantum Energy-Transport model needs to be analyzed in the same
way. The first step would be to find a simplified expression of the model
(having local values of the pressure tensors in terms of the conservative and
entropic variables).
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Multidimensional simulations will require more computing power but are
within reach. A better account of the continuous spectrum of the operators
would certainly improve the results, notably close to the boundaries.

Of the overall approach, some other extensions and applications will re-
quire further developments. One would wish to introduce many particle effects
more accurately than through the use of the BGK collision operator. Using
this approach, phonon–electron collision operators for electrons in crystals
could be derived. Also, the introduction of confinement in one or more direc-
tions would lead to subband models which could be applied to systems such as
quantum wires or quantum dots. Following the same lines, Born–Oppenheimer
approximations in quantum chemistry could also be used in the framework
in these models and would lead to hybrid quantum-classical models, in the
spirit of [7]. Applications could span from reaction dynamics in chemistry to
biology problems such as ionic channels in cell membrane physiology.
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Summary. Here the theory of size functions is introduced and joined to some
statistical techniques in order to build confidence regions for a family of random
shapes. An algorithm for the computation of the discrete counterpart of the size
functions is also introduced. The method is applied to the quality control of shapes
impressed with a laser on a silicon wafer, in microelectronics. The robustness of
the size functions in the description of random shapes has led to good experimen-
tal results, and thus to the possibility of enclosing this method into an automatic
procedure for the quality control of electronic devices.

1 Introduction

In real applications, objects rarely have exactly the same shape within mea-
surement error; hence the randomness of shapes need to be taken into account.
Thanks to the development of information technologies, the last decade has
seen a considerable growth of interest in the statistical shape theory and its
application to various scientific areas.

The solution of the problem of describing a “shape” via functions taking
values in a finite dimensional space, without loosing important information, is
essential for a mathematical and statistical approach. Recently new geometri-
cal descriptors of shapes, called size functions, have been proposed [4]. These
functions are able to capture “globally” the topological and geometrical fea-
tures of an object, differently from landmarks [2,6] (which usually are specific
points, angles, distances, etc. on the object, chosen by an expert) which are
widely used in literature but whose results in a statistical context are strongly
dependent on their choice, leading to a sort of subjective quantitative analysis.

Size functions depend on the choice of a measuring function and usually
only a small number of choices can lead to different statistical results. A mea-
suring function takes into account the most relevant shape features of the
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object in the considered application and it is chosen on the basis of the invari-
ance properties that the geometrical descriptors must satisfy (e.g., invariance
with respect to rotations, translations, scaling, etc.).

The theory of size functions has been developed mainly in a determinis-
tic framework. A first attempt to join this theory with randomness is here
presented. In particular, we show how to combine size functions with some
well-known statistical techniques in order to obtain good results in random
shape recognition and classification [9].

Since in most of applications data are provided as digital images of the
shapes under study, preprocessing of such images (which should filter out the
undesired noise, perform edge detection, etc.) is a fundamental step toward
the computation of a discrete approximation of the size functions associated
with such shapes. Suitable algorithms may compute a graphical representation
of a (discrete) size function. Then, thanks to the robustness of this descriptor
and by applying some cluster analysis techniques (based on a suitable distance
between size functions), it is possible to find 2D confidence regions for a family
of shapes and to detect the presence of outliers, i.e., of shapes not belonging
to the family under study.

We applied this technique to some specific problems arising in microlitho-
graphy of electronic devices, like:

1. Introducing a suitable distance to compare the shapes of the impressed
structures

2. Specifying confidence regions for the geometries impressed using standard
process parameters

3. Testing the effects of changing some process parameters on the resulting
geometry

4. Looking for the most critical points (if any) in the impressed structures

The application of this methodology to experimental data has led to the
definition of a procedure that could be implemented to control in a power-
ful and automatic way the quality of the devices. For other applications, to
biomedical problems, see [7].

2 Size Functions and Shape Description

Let M be a finite union of compact arcwise connected and locally arcwise
connected subsets of an Euclidean space and let ϕ : M → R be a continuous
function, called measuring function. The pair (M , ϕ) denotes in a formal way
the shape of the object M . For every x ∈ R let M 〈ϕ � x〉 denote the set
{P ∈ M : ϕ(P ) ≤ x}. Thus we can introduce the following definition [4].

Definition 1. Consider the function l(M ,ϕ) : R× R → N ∪ {+∞} defined by
setting l(M ,ϕ)(x, y) equal to the number of equivalence classes into which the
set M 〈ϕ � x〉 is divided by the relation of 〈ϕ � y〉-homotopy, where two points
P,Q ∈ M are 〈ϕ � y〉-homotopic if and only if either P = Q or a continuous
path γ : [0, 1] → M , joining P and Q, exists in M such that ϕ(γ(t)) ≤ y for
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Fig. 1. Size function of an ellipse contour with respect to the distance from its
center of mass

every t ∈ [0, 1]. We shall call l(M, ϕ) the size function associated with the pair
(M , ϕ).

The size function l(M, ϕ) describes the shape of M through information
given by ϕ, whose choice depends on the specific application problem we are
interested in. An important property of size functions is that they inherit the
invariance properties, if any, of the chosen measuring functions. Thus it is
sufficient to take measuring functions with the desired invariance to obtain
invariant size functions.

The size function l(M ,ϕ) conveys relevant information about the pair under
study only in the half-plane x < y. Thus in the following we will consider
only this region. We point out that, for x < y, size functions have a simple
geometric interpretation: in such a case l(M ,ϕ)(x, y) is equal to the number of
arcwise connected components of M 〈ϕ � y〉 containing at least one point of
M 〈ϕ � x〉.

An example of size function is illustrated in Fig. 1. We show the size func-
tion of an ellipse contour M with respect to the measuring function ϕ(z)
which associates to each point z ∈M its distance from the center of mass of
M . More precisely, we represent the domain of l(M ,ϕ) with its discontinuities:
the number displayed in each region of the domain denotes the value of the
size function in that region.

The discontinuities of size functions are related to specifical points and
vertical lines in the real plane, each one with a multiplicity, called cornerpoints
and cornerlines respectively. We refer to [3, 4] for further details.

The abscissa of every cornerline corresponds to the global minimum taken
by ϕ on an arcwise connected component of M . Moreover, when M and ϕ are
sufficiently regular, it can be shown that the coordinates of each cornerpoint
(in the half-plane x < y) are couples of critical values for ϕ.

It can be proven that all and only the discontinuity points of a size func-
tion are generated by its cornerpoints and cornerlines, and the domain of the
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size function (for x < y) is divided by its discontinuities into overlapping
triangular regions (possibly of infinite area), each one of them related to a
cornerpoint or a cornerline (see previous Fig. 1). Moreover for x < y, corner-
points and cornerlines with their multiplicities uniquely determine the value
of l(M ,ϕ) almost everywhere, so that they contain all information conveyed by
the size function about the shape under study. This result has a fundamental
consequence: size functions can reduce the analysis of a shape to a finite di-
mensional problem, since its main features are described by a finite number
of cornerpoints and cornerlines.

3 Size Functions and Shape Comparison

The problem of comparing shapes can be dealt with by defining a suitable
distance between the size functions describing the considered shapes. An idea
is to compare two size functions by measuring the cost of moving and overlap-
ping the cornerpoints and cornerlines of one size function to those of the other
one, by minimizing the longest movement. Since, in general, the number of
cornerpoints of two size functions is different, we also enable the cornerpoints
to be transported onto the points of the diagonal ∆ with equation y = x. This
leads to the definition of the matching distance between size functions (see [1]
for further details).

In order to introduce the matching distance we need some new definitions.
In this section, for simplicity, we will assume that M is also arcwise connected
and the only cornerline x = x̄ for l(M ,ϕ) will be formally identified with the
point (x̄,∞). Let then S be the set {(x, y) ∈ R2 : x ≤ y} ∪ {(k,∞) : k ∈ R}.

Definition 2. Let l(M ,ϕ) be the size function associated with the pair (M , ϕ).
We shall call representative sequence for l(M ,ϕ) any sequence of points a :
N → S , briefly denoted by (ai), with the following properties:

1. a0 is the cornerline for l(M ,ϕ)

2. For each i > 0, either ai is a cornerpoint for l(M ,ϕ) or ai Belongs to ∆
3. If p is a cornerpoint for l(M ,ϕ) with multiplicity µ(p), then the cardinality

of the set {i ∈ N : ai = p} is equal to µ(p)
4. The set of indices for which ai belongs to ∆ is countably infinite

We now introduce the following pseudodistance d in order to assign a cost
to each displacement of cornerpoints and cornerlines.

Definition 3. Let d be the pseudodistance on S such that for every p = (x, y)
and p̄ = (x̄, ȳ)

d(p, p̄) := min
{

max{|x− x̄|, |y − ȳ|}, max
{y − x

2
,
ȳ − x̄

2

}}
, (1)

with the convention about ∞ that ∞−y = y−∞ = ∞ for y �=∞, ∞−∞ = 0,
∞/2 = ∞, |∞| =∞, min{∞, c} = c, max{∞, c} =∞.
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In other words, the pseudodistance d between two points p and p̄ compares
the cost of moving p to p̄ and the cost of moving p and p̄ onto the diagonal
and takes the smaller.

Definition 4. Let l1 and l2 be two size functions. If (ai) and (bi) are two
representative sequences for l1 and l2, respectively, then the matching distance
between l1 and l2 is the number

dmatch(l1, l2) := inf
σ

sup
i

d(ai, bσ(i)) ,

where i ∈ N and σ varies among all the bijections from N to N.

Theorem 1 states the fundamental property of stability of the matching
distance between size functions.

Theorem 1. Let us consider a pair (M , ϕ). For every real number ε ≥ 0 and
for every measuring function ψ : M → R such that maxP∈M |ϕ(P )−ψ(P )| ≤
ε, the matching distance between l(M ,ϕ) and l(M ,ψ) is smaller than or equal
to ε.

This result allows us to use size functions as robust shape descriptors in
presence of random perturbations on the considered shapes, often arising in
real applications due to noise, errors or intrinsic randomness. Thanks to this
property of robustness, the presence of randomness on a shape is revealed in
the domain of the corresponding size function by small displacements of its
cornerpoints and cornerlines and by the presence of small triangles near the
diagonal ∆. As an example, in Fig. 2 we show an ellipse contour perturbed
with noise and its size function with respect to the distance from its center of
mass.
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Fig. 2. Size function of a deformed ellipse contour with respect to the distance
from its center of mass
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Thus the cornerpoints which describe (with the cornerlines) the main char-
acteristics of the shape under study are those standing “sufficiently far” from
∆. Since they are always in a finite number [4], shape analysis and classifi-
cation are then reduced to the statistical study of the location of finite sets of
points and lines in the real plane.

4 Analysis of Random Shapes Impressed on Integrated
Devices

In this section, we will show how we applied the mathematical tools previously
described for the recognition and classification of random shapes in the field
of microlithography of electronic devices [8, 9].

During the lithographic process, structures with particular geometries are
impressed on silicon wafers on several overlapped levels (they show particular
shapes if looked at from above). In order to guarantee a correct working of the
final device, structures on different levels must be perfectly aligned. It is then
essential to control that their shapes are always well-impressed, that is showing
features satisfying the desired specifications. Size functions are powerful tools
which can be very useful to deal with these problems. We stress that, since
the shapes printed on wafers have an intrinsic randomness, as the lithographic
process often involves factors with unpredictable effects, size functions need
to be used in a statistical context.

We concentrated our analysis on four structures whose lithographic print-
ing seemed to be particularly crucial. Figure 3 shows SEM images of these
structures impressed with optimal process conditions. As an example we now
consider the first of them and we explain how its shape could be analyzed.

Let us take a sample of SEM images of this structure impressed with
standard process parameters. The first step to be performed consists of a
preprocessing in order to filter out the undesired noise and to detect the
edges of the displayed structures. An example of the patterns we get from
these preliminary operations is shown in Fig. 4. We then describe the shapes
of these patterns by computing the corresponding size functions with respect
to the distance from the center of mass.

1 2 3 4

Fig. 3. SEM images of the structures considered in our statistical shape analysis
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Fig. 4. Pattern of edges detected from a SEM image of the first structure (in the
center) and the corresponding size function with respect to the distance from its
center of mass (on the right)

4.1 Computation of Size Functions

Before studying our sample of size functions, it is interesting to understand
how we got it. Therefore, we briefly hint at how a discrete approximation
of a size function could be defined and how an efficient algorithm for its
computation could be implemented (see [3, 5, 9]).

Let us consider a pair (M , ϕ). We shall assume that M is a compact
connected and locally connected subset of R2 and the measuring function ϕ
is the restriction to M of a continuous function g : R2 → R, with modulus
of continuity ω(δ), δ > 0. Our first purpose is that of approximating the
considered pair (M , ϕ) with a new pair (G, ϕ̄), where G will be a finite graph
and ϕ̄ will be a (discrete) function defined on the set of its vertices.

Definition 5. Let P = {P0, P1, . . . , Ph} be a finite set of points of R2 and
let us denote by Bδ the set of the h + 1 open balls B(Pi, δ) of radius δ > 0
with center at the points of P. Let us assume that Bδ verifies the following
properties:

1. M is contained in
⋃h

i=0 B(Pi, δ)
2. for every i = 0 . . . h, B(Pi, δ) ∩M is a nonempty connected set

We shall call Bδ a δ-covering of M .

Let us assume that a δ-covering Bδ of M is given, with {P0, P1, . . . , Ph}
as the set of its centers.

Definition 6. We shall call size graph (G, ϕ̄) associated with Bδ the (finite)
labeled graph so that:

1. The set of vertices is V = {P0, P1, . . . , Ph}
2. Two vertices Pi, Pj in V are adjacent if and only if the set (B(Pi, δ) ∪

B(Pj , δ) ) ∩M is connected
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Fig. 5. A δ-covering and the corresponding graph associated with the object M
on the left

Fig. 6. On the left, an example of size graph (G, ϕ̄), where ϕ̄ is the height function
with respect to the lowest vertex. On the right, it is shown the subgraph G〈ϕ̄ � 0.8〉
of G. According to Definition 7, we have l(G,ϕ̄)(0.5, 0.8) = 3

3. We label each vertex Pi in V by the real number ϕ̄(Pi) := g(Pi) (thus ϕ̄ is
a discrete measuring function on V )

The size graph (G, ϕ̄) δ-approximates (Fig. 5) the considered pair (M , ϕ).
In our application, G will be the finite graph whose vertices are the centers of
the (ordered) pixels describing the edges of the considered structures displayed
in 2D digital images.

Now we have all the tools to introduce the definition of discrete size func-
tion. For every x ∈ R, let G〈ϕ̄ � x〉 be the subgraph of G obtained by erasing
all the vertices of G at which ϕ̄ takes a value strictly greater than x and all
the edges connected to these vertices.

Definition 7. We shall call discrete size function associated with the size
graph (G, ϕ̄) the function l(G,ϕ̄) : {x ≤ y} → N that associates to each point
(x, y) the number of connected components of G〈ϕ̄ � y〉 containing at least
one vertex of G〈ϕ̄ � x〉.

Thus, the discrete size function l(G,ϕ̄) (Fig. 6) approximates the size func-
tion l(M ,ϕ) when the considered object M is approximated by a finite set of
points. Furthermore the better this approximation is, the more precise is the
information about the size function we can get on the basis of its discrete
counterpart, as stated in Theorem 2.
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Theorem 2. Assume that a size graph (G, ϕ̄) is given, δ-approximating the
pair (M , ϕ). Then, for every x, y ∈ R and every ω̄ ≥ ω(δ) with x+ ω̄ ≤ y− ω̄,
the following inequalities hold:

(1) l(G,ϕ̄)(x− ω̄, y + ω̄) ≤ l(M ,ϕ)(x, y) ≤ l(G,ϕ̄)(x+ ω̄, y − ω̄)
(2) l(M ,ϕ)(x− ω̄, y + ω̄) ≤ l(G,ϕ̄)(x, y) ≤ l(M ,ϕ)(x+ ω̄, y − ω̄)

Using the good properties of the discrete size functions, we succeeded in
implementing an efficient algorithm for computing the size function associated
with a shape. Note that size graphs are usually very big, thus increasing
the costs involved in the computation of the discrete size functions. So the
problem of reducing the size graphs without changing the associated discrete
size functions is very important in order to use these tools for a statistical
shape analysis. We tackled this problem in our algorithm implementation,
using the L-reduction method (see [5]).

4.2 Statistical Shape Analysis

Now let us go back to the sample of size functions we computed from the
patterns whose shape we want to study. Thanks to robustness of size functions,
we expect that the location of the cornerpoints and cornerlines of each pattern
will be slightly different. Thus, after removing the small triangles near the
diagonal ∆, which are due to noise, we obtain clusters of points in the half-
plane x < y, each one related to a cornerpoint aside from ∆ of the computed
size functions. Similarly, if we identify each cornerline with its abscissa, we
get clusters of points on the x-axis.

Let us consider only the clusters of cornerpoints in the two-dimensional
plane, since the one-dimensional clusters of the abscissas of cornerlines can
be treated in a similar and even simpler way. Remember that cornerpoints
are linked to local critical values of the measuring function, thus bringing
more information than the location of cornerlines, which is only related to
the global minimum of the measuring function on each arcwise connected
component of M .

The clusters of cornerpoints must be identified, that is each point must
be assigned to one specific cluster. We identified them by applying a suit-
able cluster analysis technique, based on the matching distance between size
functions. A statistical analysis of such clusters can give precious information
about the shapes under study.

We built confidence regions for the clusters of cornerpoints obtained from
our family of shapes impressed with optimal process conditions, that is for
shapes which should have good features in order to guarantee the correct
working of the final device. Such regions can be constructed by specifying a
confidence region to detect the presence of outliers (i.e., of observations be-
longing to the queues of the distribution of the sample under study) in each
cluster of cornerpoints (see [9]). Figure 7 shows confidence regions at signifi-
cance level 0.95 for the clusters of cornerpoints, which can be used for testing
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Fig. 7. Confidence regions at significance level 0.95 for the clusters of cornerpoints

the effects of changing some process parameters on the resulting geometry.
More precisely, if most of the cornerpoints of the size function describing
a new observed shape (for the same structure) fall outside the regions, we
shall say that such a shape is “well-impressed” only with a probability of 5%.
On the other hand if (almost) all of them stand inside the regions, the chosen
shape could not be regarded as “far” from a shape printed in standard process
conditions.

4.3 Results

We applied the above procedure to the shapes of the first structure on a wafer
exposed with different values of exposure energy and focus offset. The results
we got are shown in Fig. 8: Positions in which the computed size functions
have all the cornerpoints (except for one at most) standing inside the specified
regions (which have been colored) are close to the central part of the wafer,
where standard process parameters have been used. This is consistent with
our expectations, that is with the existence of a quite large process window
which guarantees structures satisfying the desired specifications. Moreover,
the process window as obtained by this method is the same as deduced by
an expert engineer through current practices. Our results seem also to point
out that the impressed shapes are more sensitive to the focus offset changes
(along the horizontal direction on the wafer). Similar results were obtained
for the other structures depicted in Fig. 2.
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Fig. 8. Layout of a wafer exposed with variable process parameters. Positions
in which the computed size functions have all the cornerpoints (except for one at
most) standing inside the specified regions have been colored in light gray (the black
positions have not been exposed)

The analysis we carried out had the aim of improving the quality control
process of integrated devices. We point out that, differently from the local
measurements which are usually done on wafers (the location or distance
of specific crucial points or lines is usually measured), it takes into account
the whole topology of the structures under study and it is independent from
the subjective choice of the points to be measured. Thus the quality control
process can be improved, since it would automatically take into account also
parts on a structure which are generally regarded as less critical and therefore
ignored.

Moreover the application of the described methodology to experimental
data has led to the definition of a procedure that could be implemented to
automatically recognize and classify, from a probabilistic point of view, struc-
tures on wafers showing or not well-impressed shapes.

It is interesting to see that the implemented algorithm for computing size
functions allows us to identify which points on the considered pattern can be
regarded as the most critical ones, with respect to the shape description given
by the chosen measuring function. The choice of the measuring function, or
the choice of the part on the pattern to be analyzed, is crucial in the correct
identification of the critical points. Figure 9 shows an example. On the left a
pattern associated with the first structure is displayed with its critical points,
when it is described by the related size function with respect to the distance
from its center of mass B. Instead if we limit the analysis to the pattern
on the right and we use the distance from the fixed point P as a measuring
function, some (but not all!) of the critical points correspond to parts of the
structure which are known to be particularly sensitive to variations during
the exposition. Thus the other points can be regarded as other critical points,
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Fig. 9. Critical points on two patterns when using the distance from the center
of mass B (on the left) and the distance from the fixed point P (on the right) as a
measuring function

whose influence in the shape description may be not much evident to an
expert, which probably should be taken into account for a correct check of
the goodness of the impressed shape under study.
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Minisymposium “Flow Control in Aircrafts”
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Delaying laminar-turbulent transition in boundary layers attached to com-
mercial aircrafts has a significant impact in drag reduction, which in turn
contributes to reducing both fuel consumption and environmental impact.
This is a classical subtle problem in Fluid Mechanics that has received a con-
tinued attention during the last decades from both the experimental and the
theoretical points of view, and involves some fascinating open problems in
Applied Mathematics. The flavour of current European efforts in this direc-
tion can be appreciated in the various contributions below, which have been
selected to illustrate the multidisciplinary character of this field.

Carlo Cossu, from the École Polytechnique, Palaiseau, summarizes some
recent results on stabilizing Tollmien-Schlichting waves in a Blasius boundary
layer using nearly optimal streaks of moderate amplitude (larger streaks would
enhance transition). The streaks are effectively generated using appropriate
roughness elements placed near the leading edge of the plate. This provides
an effective and quite promising passive method to delay transition, as has
been experimentally checked.

Xuesong Wu, from Imperial College, describes the mathematical theory
involved in the analysis of nonlinear interaction between various planar and
oblique Tollmien-Schlichting modes. The associated perturbative scheme is
quite subtle and requires to consider several sublayers in the boundary layer
(five, in the example considered in the paper) and allows to uncover the cat-
alytic role of some of the modes in enhancing/suppressing spatial growth of
the remaining modes. Leading order results are given in terms of small frac-
tional powers (such as one tenth in the example considered in the paper) of
the Reynolds number R, which could make quantitative predictions problem-
atic at moderately large R. But the associated qualitative prediction provides
physical insight and can be extremely useful in the search for effective means
of controlling transition.

Eusebio Valero, from the Polytechnic University of Madrid, describes
some recent results in using mode interaction processes to stabilize Tollmien-
Slichting waves through parametric coupling of unstable modes with stable
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ones, and coupling to the associated mean flow. The idea is not new, but is
connected with related methods to suppress classical hydrodynamic instabili-
ties, such as the Rayleigh-Taylor instability. Effective stabilization is obtained
that in addition is fairly robust. The method is also connected with the mode
interaction processes involved in the two previous papers in this minisympo-
sium.

Paolo Luchini, from the University of Salerno, discusses some subtle con-
nections between flow topology and drag. In particular, he tells us three sto-
ries in connection to (a) the possibility of obtaining a lower-than-laminar drag
through a zero-mean blowing and suction; (b) the effect of wavy blowing and
suction in generating large scale vortices in an already turbulent flow, and the
effect of these on both drag and skin friction; and (c) the role of the steady
streaming flow produced by oscillatory blowing and suction in changing the
overall drag. When the three stories are put together, it becomes clear that a
distinction must be made between whether we are reducing drag or creating
trust when we act on the flow in an oscillatory manner. We believe that these
simple concepts can open new ways of looking for effective devices to reduce
the overall drag.

Peter Carpenter, from the University or Warwick, describes some recent
results on the effect of free stream turbulence on transition in a boundary
layer attached to a compliant wall. The conclusion is that compliant walls are
effective devices in flow control, even in environments with relatively high free
stream turbulence levels. Although, as he points out compliant walls are not
practical in aeronautical applications, they are of interests in related fields,
such as drag reduction in marine vehicles. Also, compliant walls appeared
from early studies of the way in which dolphins seem to manage to decrease
skin friction. This was the beginning of the intent of translating to industrial
devices some solutions that nature seems to have found to reduce friction drag
in swimming and flying animals.
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1 Introduction

In the absence of external perturbations, the boundary layer developing on
a flat plate is uniform in the spanwise direction and is well described by the
Blasius and Falkner-Skan similarity solutions (see, e.g. [Sch79]). These solu-
tions become linearly unstable when the Reynolds number Re =

√
U∞x/ν

based on the freestream velocity U∞, the streamwise distance from the lead-
ing edge of the plate x and the kinematic viscosity of the fluid ν exceeds a
critical value Rec (Rec = 304 for the Blasius solution). This primary linear
instability appears in the form of two-dimensional Tollmien–Schlichting (TS)
waves localized inside the boundary layer. As TS waves grow to amplitudes of
the order of 1% of the free-stream velocity, secondary instability sets in (for
a review see [Her88]), eventually leading to breakdown and transition to tur-
bulence. This scenario is today well understood and is often referred to as the
‘classical’ transition scenario of boundary layers in low noise environments.

In the two-dimensional boundary layer, however, small amounts of stream-
wise vorticity are very effective in pushing low momentum fluid away from the
wall and high momentum fluid towards the wall eventually leading to large
elongated spanwise modulations of the streamwise velocity called streamwise
streaks. The mechanism of streak generation, described above and known as
the ‘lift-up effect’ is based on an inviscid process and applies to shear flows
in general. The effect of viscosity eventually dominates rendering the growth
of the streaks only transient. The transient growth, that can be of the order
of Re2 [Gus91,RH93], can however, be very large and is related to the non-
normal nature of the linearised stability operator (for a review the reader may
refer to [SH01]). The most dangerous perturbations, leading to the ‘optimal
transient growths’, have been found to consist of streamwise vortices and have
been computed for a number of shear flows. In the presence of streaks, the
streamwise velocity profiles develop inflection points which may support invis-
cid instabilities for sufficiently large streak amplitudes (26% of the freestream
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velocity for optimal streaks in the Blasius boundary layer [ABBH01]). These
secondary streak instabilities typically lead to ‘bypass’ transition to turbu-
lence, i.e. transition without the primary TS instability. Optimal streamwise
vortices are therefore usually seen as ‘dangerous’ perturbations for the bound-
ary layer stability because they are capable of initiating the transition to
turbulence with extremely low initial energy.

In this contribution we will summarize the main results of recent studies
that have shown that the artificial forcing of streaks of moderate amplitude,
stable to secondary inflectional instabilities, has a stabilizing effect on the TS
waves instability [CB02, CB04]. The choice of an optimal forcing minimizes
the actuator input energy to levels of O(1/Re2). In this context non-normality
is therefore used as an efficient amplifier in the control protocol. Careful ex-
periments have validated this concept by demonstrating that stable moderate
amplitude nearly optimal streaks can be generated using appropriate rough-
ness elements [FBTC04] that these streaks have a stabilizing effect on low
amplitude Tollmien–Schlichting waves [FBTC05] and that they are indeed
able to effectively delay transition [FTBC06,Cho06].

2 Basic Flows

The basic flows considered in the two early theoretical studies, consist in zero
pressure gradient boundary layers with steady, nonlinearly saturated, span-
wise periodic streaks of different amplitudes. Optimal perturbations, consist-
ing of vortices aligned in the streamwise direction [ABH99, Luc00], are used
to generate the streaks with minimum input energy. Following [ABBH01], the
optimal perturbation computed by Andersson et al. [ABH99] is used as inflow
condition close to the leading edge and its downstream evolution is followed
till nonlinear saturation for different initial amplitudes. Direct numerical in-
tegrations are used to compute the basic flows and the evolution of the per-
turbations in the presence of forcing. The incompressible 3D Navier–Stokes
equations are integrated using a pseudospectral code described in Lundbladh
et al. [LBS+99]. The code uses Fourier expansions in the streamwise and
spanwise directions and Chebyshev polynomials in the wall-normal direction.
The time stepping scheme is a low storage third-order Runge–Kutta method
for the nonlinear terms and a second-order Crank–Nicolson method for the
linear terms. Dealiasing is used in the streamwise and spanwise directions.
A fringe region is employed to enforce inflow and outflow boundary condi-
tions in a periodic domain; in the case of ‘temporal’ simulations a volume
force is used to keep the basic flow parallel. For the computations presented
below we have used use a box with inlet at Re = 272 and dimensions of
1128 δ∗0×20 δ∗0×12.83 δ∗0, in the streamwise, wall-normal and spanwise direc-
tions, respectively, where 576×65×32 collocation points are used. We denote
by δ∗0 the boundary layer displacement thickness at the inlet. The spanwise
extension of the domain corresponds to one wavelength of the optimally grow-
ing streaks. Denoting by x, y and z the streamwise, wall-normal and spanwise
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Table 1. Streak amplitude for the computed basic flows

Case Inlet AST Maximum AST AST at Re = 609

A 0.0000 0.0000 0.0000
B 0.0618 0.1400 0.1396
C 0.0927 0.2018 0.2017
D 0.1235 0.2558 0.2558
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Fig. 1. Streamwise spatial evolution of the amplitude of streaks B, C and D (adapted
from [CB02])

coordinates, respectively, we use the following definition of the streak ampli-
tude [ABBH01]: AST(x) = [maxy,z(U − UB)−miny,z(U − UB)] /2U∞, where
U∞ is the free stream velocity, UB(x, y) is the Blasius solution, and U(x, y, z)
is the streamwise velocity of the streak. The four different cases considered are
listed in Table 1. Case A is nothing but the Blasius boundary layer without
streaks. In Fig. 1 the evolution of the amplitude of the streaks B,C,D vs. the
Reynolds number is displayed. Only streaks with amplitude AST > 0.26 are
subject to secondary inflectional instabilities [ABBH01], and therefore all the
considered basic flows are stable to this kind of instability.

3 Linear Stability of the Streaky Basic Flows

The spatial stability of the computed basic flows to the TS waves is tested
by forcing two-dimensional harmonic perturbations of dimensionless frequency
F = 2π106fν/U2

∞ into the boundary layer. The same computational
parameters adopted in the evaluation of the basic flows are used in this type
of simulations. The perturbation is induced by a two-dimensional time peri-
odic volume force localized at the inlet position, extending up to Re = 279, of
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Fig. 2. Spatial evolution of the amplitude of 2D perturbations in the Blasius bound-
ary layer without streaks (case A) and with streaks of increasing amplitude (cases
B to D) (adapted from [CB02])

amplitude small enough to ensure a linear evolution of the perturbations. The
computations were carried on for sufficiently large times to achieve converged
time periodic solutions in all the computational domain. In Fig. 2 we show
the downstream development of the amplitude, based on the energy density
norm of two-dimensional waves at the frequency F = 131.6 of the forcing.

In the Blasius boundary layer (case A) the perturbations decay until they
reach branch I of the linear neutral stability curve situated at Re = 369 in the
parallel flow approximation. After, they begin to grow till branch II is reached
at Re = 581. When the basic flow contains a low amplitude streak (case B)
an unstable domain still exists but the growth of the TS waves is attenuated.
Case C presents a region of marginal stability around Re = 436, where the
streak amplitude is about 0.17. In the case of largest amplitude streaks (case
D), the forced TS-waves are stable. Similar results apply to forcing frequencies
F = 160 and F = 200. The results of these spatial numerical simulations have
been confirmed by a modal stability analysis of the local streaky velocity
profiles [CB04]. The observed stabilization of the TS waves in the Blasius
boundary layer has been attributed to the modification of the main flow due
to growth of the finite amplitude streaks. The basic flow distortion ∆U(y, z) =
U(y, z)− UB(y) can be separated into its spanwise averaged part ∆U(y) and
its spanwise varying part ∆̃U(y, z) = ∆U(y, z)−∆U(y). Note that nonlinear
effects are essential to generate ∆U(y). In Fig. 3a, b we reproduce the spanwise
averaged velocity U(y) = UB(y) + ∆U(y) of the basic solutions at Re =
609 and the corresponding ∆U(y). It can be seen how the increase of the
streak amplitude leads to fuller U -profiles having a stabilizing effect on the
TS-waves.
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Fig. 3. (a) Spanwise averaged streamwise velocity profiles U(y), at Re = 609, of the
Blasius boundary layer (solid line) and of the streaky boundary layers B, C and D.
(b) Corresponding spanwise averaged basic flow distortion ∆U(y) = U(y) − UB(y)
(adapted from [CB02])
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4 Experimental Results

Experiments have been carried on in the Minimum-Turbulence-Level (MTL)
wind tunnel at KTH Mechanics in Stockholm. Nearly optimal streaks have
been generated using a spanwise array of equispaced cylindrical roughness el-
ements placed on the wall of a flat plate, near the leading edge. The reader is
referred to [FBTC04,FBTC05] for more details about the experimental appa-
ratus. These studies have confirmed that streaks of increasing amplitude have
an increasingly stabilizing effect on the TS waves (see Fig. 4). Experiments
have also shown that even with moderately stabilizing streaks like the ones
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Fig. 5. Smoke flow visualizations from above with flow from left to right. (a) and
(b) show the two-dimensional boundary layer, without streaks, with no excitation
and with excitation of 201 mV, respectively. The flow in (b) is turbulent. (c) shows
the streaky base flow with no excitation. In the presence of streaks with excitation
of 450 mV (d), the flow remains laminar. (e) shows a half-streaky boundary layer
obtained removing half the roughness elements and without forcing. With a forcing
at 157 mV (f) the streaky part of the boundary layer remains laminar while the
uncontrolled part undergoes transition (adapted from [FTBC06])

studied in [FBTC05] and that are roughly like the case B considered in the
numerical simulations, it is possible to delay transition to turbulence on a flat
plate [FTBC06] (see Fig. 5).

5 Conclusions

The scope of this paper was to show how optimal transient growth due to
non-normality can be used as an effective amplifier of a passive laminar flow
control. Optimal perturbations, usually seen as the most dangerous for tran-
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sition are here seen as the most effective for control. It is likely that the use
of optimal perturbations to modify the basic state at leading order with low
energy could be applied to other strongly non-normal systems on different
physical applications.

References

[ABBH01] P. Andersson, L. Brandt, A. Bottaro, and D. Henningson. On the break-
down of boundary layers streaks. J. Fluid Mech., 428:29–60, 2001.

[ABH99] P. Andersson, M. Berggren, and D. Henningson. Optimal disturbances
and bypass transition in boundary layers. Phys. Fluids, 11(1):134–150,
1999.

[CB02] C. Cossu and L. Brandt. Stabilization of Tollmien–Schlichting waves by
finite amplitude optimal streaks in the Blasius boundary layer. Phys.
Fluids, 14:L57–L60, 2002.

[CB04] C. Cossu and L. Brandt. On Tollmien–Schlichting waves in streaky
boundary layers. Eur. J. Mech./B Fluids, 23:815–833, 2004.

[Cho06] K. S. Choi. The rough with the smooth. Nature, 440:754, 2006.
[FBTC04] J. Fransson, L. Brandt, A. Talamelli, and C. Cossu. Experimental and

theoretical investigation of the non-modal growth of steady streaks in a
flat plate boundary layer. Phys. Fluids, 16:3627–3638, 2004.

[FBTC05] J. Fransson, L. Brandt, A. Talamelli, and C. Cossu. Experimental study
of the stabilisation of Tollmien–Schlichting waves by finite amplitude
streaks. Phys. Fluids, 17:054110, 2005.

[FTBC06] J. Fransson, A. Talamelli, L. Brandt, and C. Cossu. Delaying transition
to turbulence by a passive mechanism. Phys. Rev. Lett., 96:064501,
2006.

[Gus91] L. H. Gustavsson. Energy growth of three-dimensional disturbances in
plane Poiseuille flow. J. Fluid Mech., 224:241–260, 1991.

[Her88] Th. Herbert. Secondary instability of boundary-layers. Annu. Rev. Fluid
Mech., (20):487–526, 1988.

[LBS+99] A. Lundbladh, S. Berlin, M. Skote, C. Hildings, J. Choi, J. Kim, and
D. S. Henningson. An efficient spectral method for simulation of in-
compressible flow over a flat plate. Technical Report KTH/MEK/TR-
99/11-SE, KTH, Department of Mechanics, Stockholm, 1999.

[Luc00] P. Luchini. Reynolds-number independent instability of the boundary
layer over a flat surface. part 2: Optimal perturbations. J. Fluid Mech.,
404:289–309, 2000.

[RH93] S. C. Reddy and D. S. Henningson. Energy growth in viscous channel
flows. J. Fluid Mech., 252:209–238, 1993.

[Sch79] H. Schlichting. Boundary-Layer Theory. Mc Graw-Hill, New York, 1979.
[SH01] P. J. Schmid and D. S. Henningson. Stability and Transition in Shear

Flows. Springer, New York, 2001.



On the Catalytic Effect of Resonant
Interactions in Boundary Layer Transition

Xuesong Wu1, Philip A. Stewart2, and Stephen J. Cowley2

1 Department of Mathematics, Imperial College London, UK
x.wu@ic.ac.uk

2 DAMTP, Cambridge University, UK
ps57@damtp.ac.uk, s.j.cowley@damtp.ac.uk

Summary. This paper is concerned with a fascinating phenomenon in boundary
layer transition, namely, three-dimensional disturbances undergo rapid amplifica-
tion despite that they have smaller linear growth rates than two-dimensional ones.
Physical mechanisms are sought by considering two types of nonlinear interactions
between oblique and planar instability modes. The first is the well-known subhar-
monic resonance. The relevant mathematical theory and its main predictions are
briefly summarised. This mechanism, however, operates only among a very restric-
tive set of modes, and hence is unable to explain the broadband nature of the
amplifying disturbances observed in experiments. The second mechanism involves
the interaction between a planar and a pair of oblique Tollmien–Schlichting (T–S)
waves which are phase-locked in that they travel with (nearly) the same phase speed.
It is a more general type of interaction than subharmonic resonance since no further
restriction is imposed on the frequencies. Yet similar to subharmonic resonance, this
interaction also leads to super-exponential growth of the oblique modes, while the
planar mode remains to follow linear stability theory. The dominant planar mode
therefore plays the role of a catalyst, the implications of which for the eN -method
and for transition control are discussed.

1 Introduction

Laminar-turbulent transition is one of the unsolved fundamental problems in
classical physics since it in essence is concerned with how a simple system
becomes disordered and chaotic in both time and space through a sequence of
nonlinear processes. It is also a problem of technological importance in indus-
tries, where accurate prediction and effective control of transition are crucial.
For example, transition occurs in the flow over the wing and fuselage of an
aircraft, with the turbulent state exerting a much greater drag. Considerable
saving may be achieved if a laminar flow can be maintained in the whole or
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a large portion of the wing. Turbulence in the boundary layer also emits con-
siderable amount of noise. In such circumstances, it is desirable to suppress
turbulence.

At high speeds, turbulence crucially affects surface heat transfer, which is
of great concern in the re-entry phase of a space shuttle mission. In chemi-
cally reacting flows, it is necessary to enhance turbulence in order to achieve
complete reaction. This is especially important for the projected scramjet en-
gines, where effective mixing is vital for overcoming the difficulty of ignition
and combustion caused by short residence time of reactants.

Laminar-turbulent transition in boundary layers and other shear layers
are often initiated by amplification of two-dimensional disturbances. This is
well understood on the basis of linear stability theory, which predicts that
planar instability modes have larger growth rates. However, prior to onset
of turbulence, three-dimensional disturbances are invariantly observed to un-
dergo rapid development to overtake the initially dominant two-dimensional
perturbation, contradicting the linear stability theory. The mechanisms must
necessarily be inherently nonlinear. Yet the primary method of transition
prediction, the so-called eN -method, is based on the calculation of the accu-
mulated amplification as predicted by linear stability theory.

The present paper is concerned with three related questions:

1. What are the dominant mechanisms for inducing the rapid amplification
of three-dimensional disturbances?

2. Given that transition is caused by nonlinear mechanisms, can the current
eN -method be possibly justified?

3. How can an improved understanding of transition mechanisms guide con-
trol strategy?

As we shall see, central to these questions is that the dominant planar mode
plays the role of a catalyst in the sense that it promotes three-dimensional
disturbances while itself is little affected by nonlinearity. We shall examine
relevant experimental evidence before presenting mathematical theories.

2 Experimental Evidence of Catalytic Effect

The three-dimensional nature of boundary layer transition has long been
recognised since the experiments of Klebanoff, Tidstrom & Sargent (1962),
where a planar mode and oblique modes with the same frequency were ex-
cited simultaneously in a controlled fashion. While the former dominates the
early stage of the development, three-dimensional disturbances eventually pre-
vail to form alternating valleys and peaks along the spanwise direction. The
preferential amplification of the three-dimensional disturbances has been cus-
tomarily attributed to the so-called fundamental type of interaction between a
pair of oblique mode (α,±β, ω) and the planar mode (α0, 0, ω0), where α and
α0 are the streamwise numbers, β spanwise wavenumber, and ω the frequency.
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Fig. 1. Development of planar (cross) and oblique subharmonic T–S waves (circle)
(Herbert 1988)

Raetz (1959) was the first to show that a more powerful interaction, a
subharmonic resonance involving a triad of a planar wave (α0, 0, ω0) and a
pair of oblique waves (α,±β, ω) at the subharmonic frequency ω = ω0/2, may
take place in boundary layer. Its importance to transition was demonstrated
by Craik (1971), who derived the amplitude equations for three resonating
T–S waves. His work prompted the landmark experiments of Kachanov &
Levchenko (1984), who introduced both the planar and subharmonic oblique
waves in a controlled manner and measured their subsequent development.
Figure 1 is a typical measurement. It shows that the planar mode amplifies
according to local linear stability theory, whilst oblique modes hardly exhibits
any growth at all in the linear regime. However, they start to grow at a faster
rate to become dominant once the planar mode reaches a threshold amplitude.
Kachanov & Levchenko (1984) also mapped the downstream development
of the disturbance spectrum (Fig. 2). While the seeded planar and oblique
subharmonics appear as distinct peaks, a striking feature is that a broad
peak in the low frequency portion of the spectrum emerges downstream. A
similar phenomenon was observed by Corke & Mangano (1989), as is shown
in Fig. 3 taken from their paper. These evidences suggest that a broad band
of relatively low frequency waves undergo substantial amplification to attain
magnitudes comparable with the subharmonic modes.

Borodulin, Kachanov & Koptsev (2002) recently investigated the effect of
a harmonic forcing on the development of background disturbances. Unlike
previous experiments, where both planar and oblique modes are excited, they
simply excited a planar mode. Their key results are shown in Fig. 4, where the
response is compared with that without forcing. As is illustrated, the harmonic
forcing precipitated the growth of a broad band disturbances, which would
otherwise acquire minimal amplitudes. Figure 5 shows the development of
several selected components. They reach amplitudes which are about one order
of magnitude larger compared with the unforced case. The seeded planar mode
itself more or less follows local linear instability theory despite its considerable
size. In this sense, it acts as a catalyst. What is the most remarkable is that
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Fig. 2. Disturbance spectrum at different streamwise locations (Kachanov &
Levchenko 1984)

Fig. 3. Development of disturbance spectra at different y positions (Corke &
Mangano 1989). Left : upstream; right : downstream

Fig. 4. Comparison of the disturbance spectra with and without forcing (Borodulin,
Kachanov & Koptsev 2002)
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Fig. 5. Development of selected three-dimensional disturbances (Borodulin et al.
2002)

Fig. 6. Phase speeds of selected rapidly amplifying three-dimensional disturbances
with planar wave forcing (filled circle) (Borodulin et al. 2002)

the rapidly amplifying disturbances all share nearly the same phase speed
(Fig. 6), i.e. their phases are almost locked in a coordinate system moving
with the common phase speed.

We now present relevant mathematical descriptions of two mechanisms,
subharmonic resonance and phase-locked interaction, and demonstrate that
through these interactions a planar mode indeed plays a catalytic role.

3 Mathematical Formulation

The theory is based on consideration of mutual interactions between a planar
mode (which is usually taken to be the most unstable mode) and a pair of
suitable oblique waves. They may be expressed as

εA0(x1) ei(α0x−ω0t) +δA(x1) ei(αx−ωt)(ei βz +e− i βz), (1)

where ε and δ stand for the magnitudes of the respective waves, and the depen-
dence on the transverse coordinate y is suppressed for brevity. Depending on
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the relation between the wavenumbers α0, α and β, two particularly effective
interactions may occur.

We shall derive appropriate evolutions equations by using asymptotic
analysis based on the assumption that the Reynolds number

R = U∞δ∗/ν ! 1 (2)

where the reference length δ∗ is the boundary layer thickness at the location
of interest. The analysis is conducted for the upper-branch scaling regime
(Bodonyi & Smith 1981), in which

α0 ∼ α ∼ σ, β ∼ σ, ω0 ∼ ω ∼ σ2,

where σ = R−1/10. The viscosity-induced growth rate is of O(σ4), and hence
the slow variable x1 is defined as (Goldstein & Durbin 1986)

x1 = σ4x.

The linear instability acquires an asymptotic structure consisting of five layers.
Dominant nonlinear interactions takes place in the critical layer centred at yc,
where the base flow velocity UB(yc) = c = ω/α (to leading order).

4 Subharmonic resonant triad

The resonant-triad interaction is a universal mechanism taking place in a
three-wave system, when the sums of the wavenumbers and frequencies of the
two waves equal to those of the third wave respectively. In the case of upper
branch T–S waves, it follows from Squire’s transformation that the resonance
condition is satisfied for (Smith & Stewart 1987, Mankbadi, Wu & Lee 1993)

α = 1
2α0, β =

√
3

2 α0. (3)

A self-consistent description was given by Mankbadi et al. (1993), who showed
that the resonant interaction starts to affect the oblique modes when the
planar mode has reached the threshold magnitude

ε ∼ σ10. (4)

On assuming that the oblique modes have a sufficiently small amplitude, an
analysis of the interaction within the critical layer, which is viscosity domi-
nated and equilibrium at this stage, leads to evolution equations

A′(x1) = κA+ lBA∗, B′(x1) = κ0B. (5)

These equations indicate that the planar mode affects the oblique modes
through their mutual interaction at quadratic level, but the latter produce
no back effect on the former, which continues to follow linear stability theory.
This is referred to as parametric resonance stage. It has been shown that
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A ∼ exp (κx1 + a∞ eκ0x1) , as x1 →∞, (6)

where �(a∞) > 0, suggesting that while the planar mode remains linear, it
causes the oblique modes to amplify super-exponentially. This is a manifesta-
tion of catalytic effect.

However, the super-exponential growth of the form (6) cannot continue
forever. As was pointed out by Goldstein (1994, 1995), the rapid growth
of the oblique modes renders the critical layer non-equilibrium when x1 ∼
O(κ−1

0 lnσ−1), suggesting the introduction of the shifted coordinate

x̃ = x1 − κ−1
0 lnσ−1.

After this new effect is included, the evolution switches to super-exponential
growth of a different form, namely (Goldstein 1994)

A ∼ exp(b∞ eκ0x̃/4 /σ), as x̃→∞. (7)

The continued rapid growth of the oblique modes will eventually lead to a
fully-coupled stage, where the oblique waves react back on the planar wave
(Wu 1995). Depending on the size of δ, that might happen before or after the
planar wave becomes nonlinear.

5 Phase-Locked Interaction

Subharmonic resonance is rather restrictive in that it operates among a par-
ticular triadic set specified by (3). It follows that one planar mode can only
promote the growth of a specific pair of modes, or a narrow band of modes
close to that pair when the concept is generalised to include detuning. To
explain the experimental observation that a single planar enhances a broad
band of three-dimensional disturbances, we consider phase-locked interaction
between a planar and a single (or a pair of) oblique modes, which have nearly
the same phase speed. The concept of phase-locked modal interaction was first
proposed by Wu & Stewart (1996) for inviscid Rayleigh instability modes. We
shall show that the mechanism operates as well for viscous T–S waves, albeit
some new features arise due to different nature of the instability. From Squire’s
transformation, it can be inferred that the phase-locking requirement,

ω/α = ω0/α0, (8)

is met by any oblique mode provided its wavenumbers α and β satisfy

α2 + β2 = α2
0. (9)

This is a much less restrictive condition than (3). As a generalization, we allow
the phase speeds to differ by O(σ3), i.e.

c0 = c+ σ2∆

with ∆ = O(1) being the scaled phase-speed mismatch, the inclusion of which
is important, as will be shown shortly. The disturbance evolves through several
distinct nonlinear stages.
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Fig. 7. Real part of Landau coefficient lr, vs. phase-speed mismatching ∆. Curves
(i)–(iv) correspond to θ = 80◦, 70◦, 50◦ and 35◦, respectively

5.1 Stage I: Viscous (Equilibrium) Critical Layer

The first nonlinear stage commences when the planar mode reaches a
threshold amplitude

ε = σ17/2.

The critical layer is equilibrium and dominated by viscous effect. Analysis
yields the amplitude equations

A′(x1) = κA+ l|A0|2A, A′
0(x1) = κ0A0, (10)

where l is a function of ∆. The amplitude A has the solution

A = exp
(
κx1 + l(2κ0)−1 e2κ0x1

)
. (11)

In this equilibrium regime, the property of the solution is dictated by lr, and
only for lr > 0 do the oblique modes grow super-exponentially. The variation
of lr with ∆ is shown in Fig. 7. As is expected, lr → 0 as ∆ → ∞, implying
a diminishing effect when the phase is sufficiently de-locked. It is noted that
there exists an optimal mismatch at which lr attains its global maximum.
Interestingly, for perfect matching (∆ = 0), lr = 0.

5.2 Stage II: Non-Equilibrium Critical Layer

Owing to the super-exponential growth, the oblique waves evolve at an
increasingly rapid rate, and eventually the non-equilibrium effect becomes
important in the critical layer when σ4A′/A ∼ σ4 e2κ0x1 ∼ σ3 i.e. when
x1 ∼ κ−1

0 log σ−1/2, and hence we introduce variable x̃ by writing

x1 = κ−1
0 log σ−1/2 + x̃ with x̃ = O(1).
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Fig. 8. Oblique-modes growth rate Φ′ vs. κbx
† ≡ κ0x̃ for θ = 40◦ (curves (a)),

70◦ (curves (b)), showing the evolution from the equilibrium to non-equilibrium
stages. The dashed and dotted lines represent, respectively, the upstream (14) and
downstream (15) super-exponential growth

The oblique modes now evolve over a shorter length scale than the planar
wave, and its amplitude A takes the WKBJ form:

A = Ā eΦ(x̃)/σ . (12)

It is found that the function Φ′ satisfies a transcendental equation

Φ′(x̃) = l

[∫ ∞

0

Q(ξ, λ) e−Φ′(x̃)ξ d ξ
]2

e2κ0x̃ (13)

with the rather complex expression for Q(ξ, λ) being omitted. In the upstream
limit,

Φ→ l(2κ0)−1 e2κ0x̃ as x̃→ −∞. (14)

In the downstream limit x̃→∞,

Φ→ a∞ e2κ0x̃/7, A→ A∞ exp(a∞ e2κ0x̃/7 /σ), (15)

indicating that the oblique waves undergo a super-exponential growth, which
differs from that in the previous stage (11), but is the same as that for the
Rayleigh waves (cf. Wu & Stewart 1996). Figure 8 displays such a switch of
from the equilibrium to non-equilibrium dynamics.

5.3 Stage III: Fully-Coupled Stage

Owing to their fast super-exponential growth, the oblique modes eventually
react back on the planar wave as their amplitude reaches O(δ), i.e. at x̃s where
δ exp{(lr +Φ(x̃s))/σ} = σ7. The evolution then occurs on the O(σ−3) shorter
length scale and so we introduce

x̄ = (x̃− x̃s)/σ.
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The interaction is similar to that for the Rayleigh instability waves, and the
analysis leads to fully coupled amplitude equations

A′=
∫ ∞

0

Kp(ξ, η;∆)B(x̄−σ̂dξ)B∗(x̄−ξ−σ̂η)A(x̄−ξ−η) dξ dη

+
∫ ∞

0

Ka(ξ, η;∆)A(x̄−ξ)A(x̄−ξ−η)A∗(x̄−2ξ−η) dξ dη, (16)

B′=
∫ ∞

0

Kb(ξ, η;∆)A(x̄−ξ)B(x̄−ξ−η)A∗(x̄−νsξ−ν0η) dξ dη

+
∫ ∞

0

Kc(ξ, η;∆)B(x̄−ξ)A(x̄−ξ−η)A∗(x̄−νsξ−η) dξ dη, (17)

where the expression for Kp, Ka, Kb and Kc are omitted here for brevity.
Numerical solutions of above equations suggest that both amplitudes ter-

minate within a finite-distance at a singularity of the form

A(x̄)→ ãs(x̄s − x̄)−(3+iψa), B(x̄) → b̃s(x̄s − x̄)−(7/2+iψb). (18)

While the singularity is non-physical, its occurrence signals a rapid evolution
on the short scale comparable with the wavelength.

6 Concluding Remarks

We have presented two types of powerful interactions which promote rapid
amplification of certain three-dimensional disturbances in the form of super-
exponential growth. In particular, through phase-locked interaction, forcing
a planar mode can simultaneously enhance all oblique modes which have the
nearly the same phase speed. The planar mode on the other hand remains
linear. A fundamental physical insight that this theoretical result offers is
that the dominant planar mode acts as a catalyst.

Once three-dimensional disturbances evolve on a very short length scale,
transition is likely to complete within a relatively small distance. As a first
approximation the transition point may be taken to be at the streamwise loca-
tion where the dominant planar mode has acquired the threshold to activate
the catalytic effect. Since it remains essentially linear, the required amplifica-
tion factor to reach the threshold may be calculated by integrating the linear
growth rate. This may explain why the eN -method, which is based entirely on
linear instability concept, works quite well despite that transition is a highly
nonlinear process. The usual criticism that this method does not take into
account nonlinearity seems not entirely warranted. The primary limitation
of the eN -method is rather that predicting transition based on amplification
factor alone without considering receptivity means that it is applicable only
to situations where the ambient disturbance level is about the same.

The catalytic effect implies suppressing/enhancing planar T–S modes can
be a simple and yet effective means for delaying/hastening transition.
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1 Introduction

Decreasing skin friction in boundary layers attached to aircraft wings can
have an impact in both fuel consumption and pollutant production, which
are becoming crucial to reduce operation costs and meet environmental reg-
ulations, respectively. Skin friction in turbulent boundary layers is about
ten times that of laminar boundary layers. Thus, an obvious method to
reduce friction drag is to delay transition to turbulence, which is a fairly
involved process in real aircraft wings [J98]. Transition sis promoted either by
Tollmien–Schlichting (TS) and Klebanov (K) modes [K94], with the former
playing an essential role. Various methods (e.g., suction [SG00,ZLB04], wave
cancellation [WAA01,LG06]) have been proposed to reduce TS modes in lam-
inar boundary layers. Mode interaction methods have been successfully used
in fluid systems to control related instabilities, such as the Rayleigh–Taylor
instability [LMV01]. Here, we present some recent results on using these meth-
ods to control TS modes in a compressible, 2D boundary layer over a flat plate
at zero incidence. A given unstable TS mode can be stabilized by coupling
its spatial evolution with that of a second selected stable TS mode, in such
a way that the stable mode takes energy from the unstable one and gives a
stable coupled evolution of both modes. The coupling device is a wavetrain in
the boundary layer, with appropriate wavenumber and frequency, which can
be created by an array of oscillators on the wall, and promotes both (i) para-
metric coupling between the stable and unstable TS modes and (ii) a mean
flow that is also stabilizing. Three differences with wave cancelation methods
are relevant. Namely, (a) nonlinear terms play an essential role in the process;
(b) the unstable TS mode is stabilized (its growth rate is decreased), not just
canceled; and (c) stabilization does not depend on the phase of the incoming
wave, which implies that active control is not necessary.

This paper is devoted to analyzing the effect and is organized as follows.
After formulating the problem in Sect. 2, the stabilizing process is described in
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Sect. 3, where the relevant mode interactions are described. A short description
of the numerical tool used to calculate the non stationary flow in a boundary
layer attached to a flat plate, and the post processing tool developed to filter
the amplitudes of the various marginal modes involved is described in Sect. 4.
The numerically obtained results are described and discussed in Sect. 4. The
paper ends with some concluding remarks, in Sect. 5.

2 Compressible Navier–Stokes Equations

The continuity, momentum, and energy equations are nondimensionalized us-
ing the streamwise length x̂0, outer velocity û0, density ρ̂0, and temperature T0

as characteristic length, velocity, density, and temperature, respectively; time
and the modified pressure (= pressure−ρ̂0RT̂0) are nondimensionalized with
x̂0/û0 and ρ̂0û

2
0, respectively. With the usual notation, the resulting equations

are

∂ρ

∂t
+ ∇ · (ρv) = 0, 1 + B1p = ρT, (1)

∂v

∂t
+ (v · ∇)v = −∇p+

1
Re

[
∇ · [M(v + v�)]− 2

3
∇(M∇ · v)

]
, (2)

ρ
DT
Dt

= ∇ ·
[

M

PrRe
∇T

]
+ BDp

Dt
+

BM
Re

{∇ · [v · (∇v + ∇v�)]− v · ∇ · (∇v + ∇v�)}, (3)

in terms of the velocity v = (u, v), the density ρ, the modified pressure p,
and the temperature T , where the Re and Ma are the Reynolds and Mach
numbers based on the conditions at the outer flow, and Pr is the Prandtl
number, which can be considered as constant Pr = 0.72 for air.

B = (γ − 1)Ma2 and B1 = γMa2 (4)

are nondimensional measures of viscous dissipation and compressibility, re-
spectively, where γ = 1.4 for air. The function M , results from the depen-
dence of viscosity on temperature, assumed to obey a Sutherland formula,
which gives

M(T ) =
T 3/2(1 + s)

T + s
, (5)

with s = ŝ/T̂0 and ŝ = 110 K. Thus, e.g., s = 0.37 if T̂0 = 300 K. The
computational domain and the boundary conditions depend on the various
approximations made below.
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3 Mode Interaction; Parametric Forcing

In a boundary layer above a plate at zero incidence, with a local thickness

δ =
√
x/Re
 1, (6)

a self-similar, approximated steady state solution exists,

(ρS , uS , vS , TS , pS) = (ρ(ζ), u(ζ), δV (ζ), p, t(ζ), (7)

where
ζ = y/δ. (8)

Replacing these into (1)–(3) and neglecting O(1/R)-terms, where

R = Reδ ≡
√
xRe
 1 (9)

is the Reynolds number based on the local boundary layer thickness, we obtain
the following ODE system

− (ρu)′ + 2(ρV )′ = 0, ρT = 1, (10)
ρ(−ζu+ 2V )u′ = 2[M(T )u′]′, (11)

ρ (−ζu+ 2V )T ′ = 2Pr−1 [M(T )T ′]′ + 2BM(T ) (u′)2 . (12)

The boundary conditions are

u = v = T ′ = 0 at ζ = 0, uS = 1, T = Te at ζ = ∞, (13)

where the outer flow temperature Te is predetermined, and we are assuming
a thermally insulated wall, namely assuming that the steady state is reached
after a transient in which thermal equilibrium between the solid and the air
is reached.

The stability of this self-similar steady state is analyzed considering two
kinds of modes. K modes are, in some sense, the natural modes of the bound-
ary layer because they exhibit the same scaling (7)–(8) as the basic steady
state. These modes are nearly marginal (namely, exhibit a zero growth rate),
exhibit a power law growth along the streamwise coordinate [L00], and play
a secondary role in the transition process: they can either enhance [R01] or
delay [CB01] transition. TS modes, instead, exhibit a streamwise wavelength
comparable to the boundary layer thickness, and are analyzed setting

(ρ, u, v, T, p) = (ρ̃, ũ, ṽ, T̃ , p̃) +A(r, φ, δψ, θ, π)ei(
∫ x

0
ϕ dx−ωt)/δ + c.c., (14)

where c.c. stands for the complex conjugate, the complex wavenumber α =
ϕ′, and the complex amplitude A is allowed to depend slowly on x and t.
Substituting these into (1)–(3), linearizing and retaining O(1/R)-terms, we
obtain
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i(αũ− ω)r + (ρ̃ψ)′ + iαρ̃φ = 0, B1π = T̃ r + ρ̃θ, (15)

3iρ̃(αũ− ω)φ+ 3ρ̃ũ′ψ = −3iαπ +R−1
[
3(M̃φ′)′ + M̃

(
iαψ′ − 4α2φ

)
+3iαM̃ ′T̃ ′ψ + 3(M̃ ′ũ′θ)′

]
, (16)

3iρ̃(αũ− ω)ψ = −3π′ +R−1
[
4(M̃ψ′)′ + M̃

(
iαφ′ − 3α2ψ

)
+iαM̃ ′

(
−2T̃ ′φ+ 3ũ′θ

)]
, (17)

iρ̃(αũ− ω)θ + ρ̃T̃ ′ψ = (PrR−1)
[
(M̃θ′)′ − α2M̃θ + (M̃ ′T̃ ′θ)′

]
+ iB(αũ− ω)π + BR−1[2M̃ũ′(φ′ + iαψ) + M̃ ′(ũ′)2θ],

(18)

where M̃ denotes M(T̃ ). The appropriate boundary conditions are

φ = ψ = θ = 0 at ζ = 0,∞. (19)

Note that now (cf. (13)) we are assuming that the wall is isothermal, with
the steady state temperature. This is because (a) the heat capacity and the
thermal conductivity of the plate are both much larger than those of the air,
and (b) the characteristic time of the nonsteady flow (essentially, the period of
the Tollmien–Schlichting waves) is much smaller than the conductive time in
the plate. Also note that we are retaining small O(1/R)-terms, which account
for viscous effects and are essential to trigger the instability that promotes TS
waves; an asymptotic analysis as R → ∞ of (15)–(19) leads to a triple-deck
problem [S82], which requires to consider fractional powers of R−1 and yields
a poor approximation. Thus, the usual strategy is to retain O(R−1)-terms, as
we do here, and solve numerically the resulting stiff problem. This can be done
either discretizing the boundary value problem or using a shooting method
combined with a continuous orthonormalization method [D83]; we have done
the latter. In either case, the boundary conditions at ζ =∞ must be imposed
at a (large but) finite distance, treated conveniently [K76] to avoid large errors
due to wave reflection. Solving (15)–(19) yields marginal instability curves in
the planes α vs. R and ω vs. R that are tongues like those shown in Fig. 1,
where instability sets in when entering the tongues. Instability is convective
and thus it can be seen as a spatial instability [Ch05], which develops with a
fixed frequency (ω/δ=real=constant, see (15)). This means invoking (6)–(9)
moving along a straight line passing through the origin in the ω vs. Re pane
in Fig. 1.

Some remarks are now in order:

– As anticipated above, the real parts of α and ω (wavenumber and fre-
quency) are much larger than the imaginary parts (spatial and temporal
growth rates) inside the tongues in Fig. 1. This is illustrated in Fig. 2,
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Fig. 2. Wavenumber and damping rate vs. R = Re1/2 for fixed ω

where the real and imaginary parts of α are plotted vs. R for the in-
dicated values of ω and M . This means, in particular, that the spatial
evolution of these modes exhibit two well separated scales and can be de-
scribed as slowly modulated wavetrains, of the form (14), with ϕ and ω
real and the complex amplitude A satisfying a linear equation of the form

A′ = µA, (20)

where the growth rate µ is such that |µ| 
 ϕ′/δ.
– Parametric coupling between two TS modes, with frequencies and wave-

numbers ωj and κj for j = 1 and 2, is promoted through (quadratic)
nonlinear terms by a wavetrain in the boundary layer, with a frequency
ω and wavenumber κ, such that

ω = ω1 + ω2, κ = κ1 + κ2. (21)
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The complex amplitudes of both TS modes, A1 and A2 (which would obey
equations of the type (20) in the absence of parametric coupling) evolve
according to a system of coupled equations, of the form

A′
1 = µ1A1 + β1aĀ2, A′

2 = µ2A2 + β2aĀ1, (22)

where µ1 and µ2 are the growth rates of the TS modes (both small), a is
the (small) amplitude of the wavetrain, and the complex coefficients β1

and β2 are of order one. Thus, effective parametric forcing requires that
|a| ∼ |µj |, which according to our comment above requires that a be small,
of order 0.001 (see Fig. 2). This coupled evolution can be either more stable
or more unstable than the original uncoupled evolution, depending on the
coupling coefficients β1 and β2. Since the coupling coefficients depend on
x, this cannot be elucidated analytically, but can be illustrated in the
constant coefficient case, in which coupling stabilizes provided that the
real part of β1β̄2 be negative. It turns out that the wavetrain is stabilizing
in all situations that have been checked.

– The parametric forcing described above is not the end of the mode
interaction story. Once the two original TS modes and the wavetrain
are present, nonlinearities force infinitely many new modes, with fre-
quencies and wavenumbers (j − k)ω + (j1 − k1)ω1 + (j2 − k2)ω2 and
(j−k)κ+(j1−k1)κ1 +(j2−k2)κ2, for any natural numbers j, k, j1, k1, j2,
and k2; the amplitudes are γaj ākAj1

1 Ā
k1
1 Aj2

2 Ā
k2
2 , where a, A1, and A2 are

the (small) complex amplitudes of the wavetrain and the TS modes, and
the coefficient γ is O(1) if the excited mode is not a nearly marginal mode,
but can be large otherwise. The latter case is that in which the mode in-
teraction process is effective. For instance, in the parametric interaction
case above, j = 1, j1 = −1, k = k1 = j2 = k2 = 0 and the excited mode
is the second TS mode, which is nearly marginal. Some additional, not so
strong resonances can also appear, see Fig. 5 in Sect. 4. But there is an
additional resonance that is always present and is associated with a mean
flow. If

|A1| ∼ |A2| 
 a
 1, (23)

the mean flow is produced mainly by the wavetrain, and exhibits an am-
plitude that is of the order of Ra2 = a2, which can affect the stability of
the TS waves. It turns out that the effect of the mean flow is taken into
account replacing (22) by

A′
1 = (µ1 + β3Ra

2)A1 + β1aĀ2, A′
2 = (µ2 + β4Ra

2)A2 + β2aĀ1, (24)

with the complex coefficients β3 and β4 of order one. The coefficients
in this equation can be obtained via weakly nonlinear analysis, which is
omitted here. Instead, we use (24) to guess the order of magnitude of the
various amplitudes for these mode interaction be effective, namely

|µ1| ∼ |µ2| ∼ |a| ∼ Ra2 
 1. (25)

This will be used in the DNS analysis that is considered next.
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4 Direct Numerical Simulation

In a flat plate at zero incidence boundary layer, (1)–(3) should be integrated
in a domain close to the plate and extending streamwise to a position beyond
transition, which occurs at a fairly high Reynolds number (∼5×106). Since
the smallest scale associated with the viscous sublayer must be described,
this is quite costly numerically. Thus, we take a computational domain in the
streamwise direction covering only a portion of the boundary layer and impose
the steady profile at the entrance. Namely, the computational domain is

x0 < x < x0 + L, 0 < y < y0, (26)
with L 
 x0 but somewhat large as to include several wavelengths of the
relevant waves, and y0 somewhat large compared to the boundary layer thick-
ness. In this region, (1)–(3) apply, with the Reynolds number R based on the
distance from the leading edge to the entrance of the computational domain.
For convenience, we first calculate the steady state solution, (vs, ρs, Ts), with
boundary conditions

vs = ṽ(y), ρs = ρ̃(y), Ts = T̃ (y) at x = x0, (27)
u = 1, ∂v/∂y = ∂ρ/∂y = ∂T/∂y = 0 at y = y0, (28)
v = 0, ∂T/∂y = 0 at y = 0, (29)
∂v/∂x = 0, ∂T/∂x = 0 at x = x0 + L, (30)

where the plate is assumed to be thermically insulated, and (ṽ, ρ̃, T̃ ) is the
Blasius self-similar steady state solution at x = x0, given by (7).

The boundary conditions for the nonstationary problem are assumed to
be such that:

– The temperature of the plate (and the air just above the plate) is assumed
to remain at its steady state value. This is because the characteristic time
in the air (associated with TS oscillations) is much shorter than the heat
conduction time in the solid.

– The solution should match with the uniform flow outside the boundary
layer. When imposing boundary conditions at a finite distance from the
plate, spurious reflection of both acoustic and hydrodynamic waves must
be avoided.

– In order to generate a TS wave in the boundary layer, a vibrating mem-
brane can be used with a vibrating frequency equal to that of the TS
wave; see (33) and (35) below. The size of the membrane is not essential
(because the spatially parabolic character of the boundary layer). A size
similar to the wavelength of the TS wave is nevertheless convenient to
facilitate generation.

– In order to generate a wavetrain in the air, a wavetrain-like boundary
condition for the vertical velocity is imposed in the plate; see (33)–(36).
This can be achieved in practice using a periodic array of oscillators, one
at each period of the wavetrain, with a frequency ω and appropriate phase
shifts.
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– The boundary conditions at the exit are unessential (again, because of
the parabolic character of the boundary layer), but a buffer near the exit
(where the solution depends on the selected boundary conditions) must
be excluded from post processing.

With these ideas in mind, the boundary conditions for the nonstationary
problem are (cf. (27)–(30))

vs = ṽ(y), ρs = ρ̃(y), Ts = T̃ (y) at x = x0, (31)

u = 1, ∂v/∂y = ∂ρ/∂y = ∂T/∂y = 0 at y = y0, (32)

u = 0, v = v0(x, t)T = Ts(x, 0) at y = 0, (33)

∂v/∂x = 0, ∂T/∂x = 0 at x = x0 + L, (34)

where

v0(x, t) = ε sinκ1(x− x1) sinω1t if |x− x1| < π/κ1, (35)

v0(x, t) = a sin(κx− ωt) if x2 < x < x0 + L, (36)

v0(x, t) = 0 if either x0 < x ≤ x1 − π/κ1, or x1 + π/κ1 ≤ x < x0 + L.
(37)

Now, the numerical tool must be sufficiently precise as to give a precise de-
scription of the TS modes involved, which exhibit quite small amplitude and
growth rates; in particular, numerical viscosity must be quite small. Also, in
order to isolate the contribution of the various modes in the complete flow
field provided by the numerical tool, a temporal fast Fourier transform tool
is used that gives the components of the flow at various frequencies.

Now, we are in a position to simulate the mode interaction process ex-
plained in Sect. 3 and illustrated in Fig. 3.

To this end, we perform the following simulations at Ma = 0.3, Re =
1.96×107 (which gives Re � 4, 430 using (9)), Ω1 = ΩTSu = 90, κ1 = κTSu =
410 (frequency and wavenumber of an unstable TS mode, with growth rate
d = 29), Ω2 = ΩTSs = 150, κ2 = κTSs = 440 (stable TS mode, with d = −42),
ε = 2× 10−3, and various values of a.

If a = 0, then only the unstable TS mode is forced (Fig. 3 top). In order to
check the numerical approximation, the horizontal velocity profile of the TS
mode is compared in Fig. 4 top with its counterpart obtained from the linear
approximation. (15)–(19). If ε = 0, a = 0.001, Ω = 240, and κ = 850, then
we only generate a wavetrain (Fig. 3 middle). The numerical approximation is
now checked in Fig. 4 bottom, where the linear approximation of the wavetrain
is calculated using (15)–(19), except the boundary condition for the vertical
velocity at ζ = 0, which is replaced by ψ = a.

If both ε �= 0 and a �= 0, then since the frequencies and wavenumbers
satisfy the resonance relations (21), the stable TS is also forced parametrically
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Fig. 3. The mode interaction process. Top: unstable TS wave, TSu, generated with
an actuator. Middle: generation of a wavetrain, WT, at the bottom of the plate
(red). Bottom: the WT induces a nonlinear coupling between a stable TS (TSs) and
unstable TS, reducing spatial growth
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Fig. 4. Comparison of the horizontal velocity profiles provided by DNS and linear
stability for the unstable TS mode with Ω = 90 (top) and the wavetrain obtained
with Ω = 240 and κ = 850 (bottom)
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Fig. 5. Temporal fast Fourier transform (FFT), with frequency = Ω/30 in abscissa.
Thus the unstable and stable TSs, and the wavetrain correspond to frequencies 3,
5, and 8, respectively

 Time=98.43   Max=0.112   Min=-0.107

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

 Time=98.43   Max=0.082   Min=-0.107

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

 Time=98.43   Max=0.064   Min=-0.077

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

 Time=98.43   Max=0.042   Min=-0.049

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

Fig. 6. Streamwise perturbation velocity contours for the WT wave amplitudes
corresponding to the dots marked in Fig. 5 (a = 0, 0.0025, 0.004, and 0.005 from left
to right and top to bottom)

and its spatial evolution is coupled with that of the unstable TS, as explained
in Sect. 3. This is illustrated in the FFT plots in Fig. 5, where it is seen that
if a = 0 the unstable TS mode (with Ω = 90 and its harmonics appear
while for increasing values of a, both the wavetrain (with Ω = 240) and the
stable TS mode (with Ω = 150) are also present with increasing amplitude,
while the amplitude of the unstable TS mode decreases, meaning that the
latter is stabilized. In particular, at a = 0.005 the unstable TS mode has
been divided by three. Note that the mean flow corresponds to Ω = 0 and
remains small for all considered values of a. This is because since Re = 4, 430,
a2Re 
 1 for the considered values of a, and that term accounting for the
mean flow in (24) is much smaller than that term accounting for parametric
forcing. The mean flow seems to give additional stabilization at a = 0.005, but
this should be checked. This stabilization process is further illustrated in the
snapshots plotted in Fig. 6, where it is clearly appreciated that the strength
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of the unstable TS mode at a = 0 is strongly reduced by the presence of the
wavetrain. Thus, this mode interaction process is quite effective.

5 Concluding Remarks

We have applied a mode interaction process to stabilize TS waves in a com-
pressible, 2D boundary layer attached to a flat plate at zero incidence. In
order to stabilize a given unstable TS wave, a wavetrain is created in the
boundary layer that couples parametrically the spatial evolution of the unsta-
ble TS wave with the evolution of a stable TS wave, in such a way that the
stable takes energy from the unstable and stabilizes it. The process has been
explained qualitatively in Sect. 3, where the required order of magnitude of
the amplitude, frequency, and wavenumber of the stabilizing wavetrain was
anticipated. In addition, we also anticipated that the mean flow produced by
the wavetrain can also play a role. All these has been confirmed in Sect. 4,
where a battery of numerical simulation was performed. Additional DNS sim-
ulations, not presented here, show that the process is quite robust in the sense
that it is fairly insensitive to both the frequency and wavenumber of the wave-
train. This must be because of the stalibilizing effect of the wavetrain, which
does not depend on any resonance relation and seems to also contribute to
stabilizing the system. But the analysis of this is beyond the scope of this
paper.
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Acoustic Streaming and Lower-than-Laminar
Drag in Controlled Channel Flow

P. Luchini

Department of Mechanical Engineering, Università di Salerno, Italy

1 Introduction

This contribution is about an unforeseen connection that arose while studying
three seemingly unrelated research problems. For this reason I thought it
appropriate to be presented at a meeting on the applications of mathematics
to industry. I will follow the outline of the oral presentation and expose the
three stories first, to later comment about their connection.

1.1 Story #1: Lower-than-Laminar Drag

In “Flow Control: new challenges for a new Renaissance”, Bewley [1] discussed
among others the feasibility of a thought experiment in which roller-like span-
wise vortices, induced by external forces, “lubricate” a channel flow and reduce
friction at the wall. After examining various aspects of this problem, he con-
cluded that it was unlikely that a skin-friction reduction below laminar level
could be obtained if actuation to generate the vortices was applied in the form
of zero-mean blowing-and-suction at the wall and formulated the following

Conjecture. The lowest sustainable drag of an incompressible
constant mass-flux channel flow, in either 2D or 3D, when controlled
via a distribution of zero-net mass-flux blowing/suction over the chan-
nel walls, is exactly that of the laminar flow.

Several arguments make this conjecture reasonable. For instance:

– A zero-mean blowing and suction (v-velocity component) has zero mo-
mentum flux (〈uv〉 = 0, just because u = 0).

– It seems at first sight counter-intuitive that a pressure drop reduction (or
flow-rate increase) could be realized without any momentum transfer from
the wall.

– In a subsequent paper, Bewley could mathematically prove that heat
transfer cannot be reduced to lower-than-laminar levels by zero-mean
blowing and suction.
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The Numerical Counter-Example

Nonetheless the conjecture is untrue. A contribution presented at the 2005
Meeting of the APS – Division of Fluid Dynamics [2] (and later published
as [3]) contained a numerical experiment showing that below-laminar drag
could be sustained in a two-dimensional channel flow with surface blow-
ing/suction in the form of upstream travelling waves.

At the same meeting Bewley (from the audience) immediately recognized
that, just as not all conjectures are bound to be true, this one was not. Here we
shall work with our own version of the counter-example (Fig. 1). To exaggerate
the effect, we have chosen a large amplitude of 1 (i.e. a sinusoidal normal
velocity with an amplitude equal to the mean velocity of the longitudinal flow)
and a relatively low Reynolds number. The mean profile shown in the figure
corresponds to a flow-rate increase by 40% for the same pressure gradient and
leaves no doubt that a friction reduction has occurred.

We provisionally name this the
Puzzle #1:

– Pure blowing/suction (v �= 0, u = 0) has zero momentum flux at the wall
(〈uv〉 = 0); shear stress is unchanged.

– Flow rate is larger, pressure gradient is unchanged.
– How can a substantial flow-rate increase be sustained without any reaction

on the wall?
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0
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 1. A reconstructed numerical counter-example: Channel flow, Re = 100, wave-
length =2, wave amplitude =1, wave speed =0.3. Flow-rate increase: 40%



Streaming in Controlled Channel Flow 171

1.2 Story #2: Turbulent Flow over a Wavy Wall

In a totally separate line of thought, it was observed years ago that a wavy
blowing and suction at the wall can destabilize channel flow to longitudinal
vortices/streaks [4]. Stimulated by this idea, we started a research project (still
ongoing, actually) to investigate whether similar large-scale vortices/streaks
can be excited in an already turbulent flow. The signal we expected from the
generation of such vortices was a mixing and drag increase. Our first effort [5]
produced the table shown in Fig. 1.

In these direct numerical simulations of turbulence, the formation of vor-
tices and an increase in turbulent mixing and drag was expected. The vortices
were not unequivocally observed (higher Reynolds number may be needed),
but both drag increase and an unexpected skin-friction reduction were ob-
served depending on wave amplitude and wavelength. We shall name this the

Puzzle #2.

Table 1. Change in friction coefficient induced by different combinations of tran-
spiration intensity A and wavenumber αt. Qt is the resulting transpiration flow rate
over half wavelength. The values in wall units are computed with the friction velocity
of the reference case.

Case αt A 102Qt/Qx λ+
t A+ 103Cf %∆Cf

0 0 0 0.00 ∞ 0 8.15 0.0
1 0.5 0.03 9.00 2262 0.71 25.03 207.1
2 1.0 0.002 0.30 1131 0.05 8.23 1.0
3 1.0 0.005 0.75 1131 0.12 8.68 6.6
4 1.0 0.01 1.50 1131 0.24 10.48 28.6
5 1.0 0.02 3.00 1131 0.47 15.18 86.3
6 1.0 0.03 4.50 1131 0.71 19.50 139.2
7 1.0 0.04 6.00 1131 0.94 23.08 183.2
8 1.5 0.03 3.00 753 0.71 15.43 89.3
9 2.0 0.02 1.50 565 0.47 10.11 24.0
10 2.0 0.03 2.20 565 0.71 12.40 52.2
11 2.5 0.02 1.20 452 0.47 8.61 5.6
12 2.5 0.03 1.80 452 0.71 9.98 22.4
13 3.0 0.03 1.50 377 0.71 8.64 6.0
14 3.5 0.03 1.30 323 0.71 8.05 −1.2
15 4.0 0.03 1.10 283 0.71 7.91 −3.0
16 4.5 0.03 1.00 251 0.71 7.87 −3.5
17 5.0 0.005 0.15 226 0.12 8.12 −0.4
18 5.0 0.01 0.30 226 0.24 8.06 −1.2
19 5.0 0.02 0.60 226 0.47 7.95 −2.5
20 5.0 0.025 0.75 226 0.59 7.91 −3.0
21 5.0 0.03 0.90 226 0.71 7.85 −3.7
22 5.0 0.04 1.20 226 0.94 7.90 −3.0
23 5.0 0.05 1.50 226 1.18 7.93 −2.7
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Table 1. (Continued)

Case αt A 102Qt/Qx λ+
t A+ 103Cf %∆Cf

24 5.0 0.08 2.40 226 1.89 7.85 −3.7
25 5.0 0.10 3.00 226 2.36 7.71 −5.4
26 5.0 0.12 3.60 226 2.83 7.55 −7.3
27 5.0 0.16 4.80 226 3.77 7.26 −11.0
28 5.0 0.20 6.00 226 4.72 7.02 −13.9
29 5.5 0.03 0.80 206 0.71 7.90 −3.0
30 6.0 0.03 0.75 188 0.71 7.92 −2.8
31 6.5 0.03 0.69 174 0.71 7.91 −3.0
32 7.5 0.03 0.60 151 0.71 8.03 −1.4
33 9.0 0.03 0.50 126 0.71 8.11 −0.5
34 11.0 0.03 0.41 103 0.71 8.17 0.2
35 22.0 0.03 0.21 51 0.71 8.23 1.0

Fig. 2. Fluid-based ultrasonic motor

1.3 Story #3: Acoustic Streaming

The third, originally unrelated, line of thought arose as a study of acoustic
streaming as applied to ultrasonic motors (see Fig. 2).

Solid piezoelectric ultrasonic motors are a technological reality. They are
based on the nonlinearity of contact friction between two solid discs. Fluid-
based ultrasonic motors, instead, are experimental devices based on the non-
linearity of wave propagation in a fluid and more precisely on the phenomenon
known as acoustic streaming. In an effort to study this phenomenon, we [6]
adapted the theory of acoustic streaming to the situation where gap width
is comparable to boundary-layer thickness and compressibility effects cannot
be neglected. In doing so, particular attention was also paid to the effect of
temperature oscillations and of the elastic impedance of the vibrating wall.

In fact, streaming is not at all limited to compressible flow, and some of its
most important applications are in the domain of surface waves (see, e.g. [7]).
For this reason, it is also known as steady streaming or Rayleigh streaming.

2 Not Drag but Thrust

The unexpected connection among the three stories came about when we
realized that streaming can explain the sub-laminar drag reduction. In other
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Fig. 3. Pressure gradient off! Channel flow, Re = 100, wavelength=2, wave ampli-
tude =1, wave speed =0.3 upstream

words, the effect of a zero-mean blowing-and-suction at the wall is not a
(multiplicative) influence on the drag-producing mechanism driven by the
pressure gradient, but an (additive) pumping that pushes the fluid in one
direction or other independent of any mean pressure gradient applied. The
easiest way to verify this in our little numerical experiment was to turn the
pressure gradient off (Fig. 3).

The flow rate thus obtained is still as much as 50% of what was produced
by the pressure gradient in the absence of blowing/suction. If it is remembered
that the combination of the two had produced 140%, it can be seen that the
effect is nearly additive. Of course, if one were to judge Fig. 3 in terms of drag
reduction, he would have to admit that drag reduction can be 100% (non-zero
flow with zero pressure gradient). The only asymmetry that determines the
direction of flow is the direction of propagation of the applied travelling wave,
which here is upstream. Just as a check, one can reverse this direction, and a
specular reverse flow is obtained (Fig. 4).

Of course, pumping costs energy, and one has to realize that zero pressure
gradient does not imply zero energy expenditure. The work rate spent to
produce the blowing and suction alone, for the case of Figs. 3 and 4 is 500
times as much as necessary to produce Poiseuille flow. Although the balance
becomes less unfavourable at larger Reynolds number, it does not look like a
technique you want to use for practical drag reduction.

But, as far as proof of principle is concerned, the phenomenon is inter-
esting, and we must still illustrate the connection to our story #2, so stick
with us and let us see whether an effect is still there when the wave speed is
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Fig. 4. Downstream wave speed. Channel flow, Re = 100, wavelength=2, wave
amplitude =1, wave speed =−0.3 downstream
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Fig. 5. Wave speed off! Channel flow, Re = 100, wavelength =2, wave ampli-
tude =1, wave speed =0

zero (i.e. the pattern of blowing and suction is fixed to the wall). This case is
illustrated by Fig. 5.

We still see a flow-rate increase, precisely by 38% more w.r.t. Poiseuille flow
(and a work rate 145 times as large as Poiseuille flow). So was the travelling
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Fig. 6. Downstream wave speed. Channel flow, Re = 100, wavelength=2, wave
amplitude =1, wave speed =−0.3. Flow rate: 91% less w.r.t. Poiseuille flow. Work
rate: 5,500 times as much w.r.t. Poiseuille flow

wave an essential factor? The answer is that, since now we do have a pressure
gradient, the relative speed between wave and fluid is non-zero even if the
absolute wave speed is. In the previous examples, the wave had to move up-
stream in order to produce a downstream flow, and this is precisely the relative
direction in which the wave moves when fixed to the wall. In fact, if the wave
is made to move downstream (Fig. 6), a flow-rate reduction is effected.

So, part of the effect observed in [5] can be ascribed to streaming. (Another
part, as explained in that paper, is actual drag reduction due to the fact that,
in a turbulent flow, the outflow at the suction locations is turbulent while the
inflow at the blowing sites is laminar.)

3 Is the Absence of Reaction on the Walls
Counter-Intuitive?

It remains to be discussed what is there that is wrong with the arguments
in favour of the no-drag-reduction conjecture presented at the beginning of
this paper. Particularly counter-intuitive (but nevertheless true) is that the
streaming effect of a travelling wave can be produced without any reaction
force on the walls (nor on any other supporting pillar). In other words, it is in
principle possible, although not necessarily economically convenient, to push
oil through a pipeline without exerting any force on the pipeline itself. In order
to simplify matters the most and see how this is possible, let us suppose the
fluid immersed in an external force field (to which the streaming-producing
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Fig. 7. A simpler example: zero net force – zero wall shear – non-zero flow rate

External
force

Shear
stress

Velocity
profile

Pressure gradient applied

Fig. 8. An alternate view

average stress is equivalent). By a simple static balance, the reaction force
exerted by the fluid on the walls must equal the resultant of the external
forces. If, however, the force field has the distribution depicted in Fig. 7, the
resultant is zero. Yet, the flow velocity, produced by integrating the force
field twice according to the laws of Newtonian viscosity, has the distribution
reported in the same figure and clearly a non-zero integral (flow rate).

An alternate view of the same phenomenon is depicted in Fig. 8. Here a
stirring force in a closed container produces a wall stress with no net flow
rate. The force on the wall is balanced by a pressure gradient. Nobody will
probably find counter-intuitive this latter picture. If a fluid is stirred in a pipe
closed at one end, so as to produce a flow towards the closed end at the centre
and a backflow flush against the walls, the net effect will be a non-zero force
on the lateral walls and a non-zero pressure gradient, with zero flow rate. Yet
if this flow is linearly superposed (as allowed by the one-dimensional version of
the Navier–Stokes equations) to a Poiseuille flow with an equal and opposite
pressure gradient, the effect will be a non-zero flow rate with a zero pressure
gradient and wall friction. This is exactly what the streaming does.

4 Conclusion

A non-zero mean flow rate in a channel or pipe can persist in the absence of
any friction force on the wall (or other source of waves or force field). Through
this effect, lower-than-laminar skin friction can indeed be achieved through
zero-mean blowing and suction. However, the appropriate way to describe
this phenomenon is not as drag reduction but as additional thrust due to
Rayleigh streaming. The thrust can point in either direction independently
of the pressure gradient. The thrust costs energy, and in terms of energy
dissipation the budget is a definite loss.

In connection with the latter statement, it was pointed out to me by
Bewley that the power dissipation of Poiseuille flow is indeed an absolute
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minimum and cannot be reduced further by any sort of zero-mean blowing
and suction. A very neat proof of this is provided in [8]. It should be noted,
however, that this proof does not exclude the possibility for blowing-and-
suction to lower the energy dissipation of turbulent flow below the level of the
same turbulent flow on an impermeable wall. Some results of [3] point in this
direction.
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Summary. It has been known for some time that an appropriately designed
compliant wall (artificial dolphin skin) is highly effective for laminar flow control in
low-disturbance environments. Unfortunately, compliant walls are not really practi-
cal for aeronautical applications. Accordingly, we focus here on marine applications.
The marine environment tends to have much higher levels of freestream turbulence
than found in flight conditions typical of cruise. Herein, we explore the effects of
freestream turbulence on laminar–turbulent transition. In particular, we investigate
the velocity streaks generated in the boundary layer by freestream turbulence. Fur-
thermore, we carry out a numerical-simulation study of the effects of wall compliance
on the velocity streaks. We find that boundary layers over compliant walls are much
less receptive to streaks than those over a rigid surface. This implies that compliant
walls should be effective at laminar flow control even in environments with relatively
high levels of freestream turbulence.

1 Introduction

Interest in the use of compliant walls or artificial dolphin skins for laminar
flow control dates back to the seminal papers of Kramer [1, 2]. He achieved
drag reductions of up to 60% in experimental tests on bodies of revolution
covered with his specially designed compliant coatings. Kramer, himself, was
inspired by a belief that the flow over the dolphin (the bottle-nosed dolphin
Tursiops truncatus is the most commonly studied) remained laminar despite
the high Reynolds numbers. Accordingly, the design of his compliant coat-
ings was based closely on his interpretation of the structure of the dolphin
epidermis. His views on dolphin hydrodynamics arose partly from personal
observation and partly from the earlier seminal paper of Gray [3]. Gray, a
zoologist, estimated the specific power required from the dolphin’s propul-
sive muscles to allow it to swim at the, then accepted, maximum sustained
speed. He found that the resulting estimated specific power, assuming aerobic
metabolism, exceeded the mammalian norm by about sevenfold. This result
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became known as Gray’s Paradox (see Babenko and Carpenter [4] for a recent
review of dolphin hydrodynamics).

In theory, compliant walls could be used in air as well as in water. Unfortu-
nately, the large difference between the densities of air and typical elastomeric
materials leads to a mismatch in inertias except in the case of impractically
flimsy compliant walls. Accordingly, as explained in more detail by Carpenter
et al. [5] the use of compliant walls is not practical in aeronautical applica-
tions. It is entirely possible that understanding the flow physics that underlie
the good laminar-flow-control capability of appropriately designed compliant
walls will lead to alternative devices with similar benefits that can function
in air flow. One example of this is the passive porous wall [6]. However, for
the remainder of the paper we shall assume that the applications of compliant
walls lie in the marine environment. In this case, the principal sources of en-
vironmental disturbances that are responsible for creating the boundary-layer
perturbations leading to laminar–turbulent transition are freestream turbu-
lence, but at somewhat higher levels than seen in typical aeronautical appli-
cations, and suspended particulate matter. Here we shall concentrate on the
effects of freestream turbulence. Little is known about the effects of suspended
particles, particularly when the particles are small, i.e. of a dimension that is
a small fraction of the boundary-layer thickness.

2 The Effects of Freestream Turbulence on Transition

The creation of perturbations within the boundary layer by vortical and
acoustic perturbations is commonly known as receptivity [7]. Here we shall
confine our attention to vortical perturbations, in other words freestream
turbulence. There are many ways of modelling freestream vortical pertur-
bations. Our approach is based on the velocity-vorticity formulation of the
Navier–Stokes equations due to Davies and Carpenter [8]. This formulation
is based on three primary variables (ωx, ωy, w), namely the perturbation vor-
ticity components in the streamwise, x, and spanwise, y, directions and the
wall-normal velocity perturbation. These primary variables are governed by
three equations: two vorticity transport equations and a Poisson equation
for w. For the present study the perturbations are assumed to be small, so
the governing equations have been linearized. Furthermore, for simplicity, we
have confined attention to quasi-two-dimensional boundary layers without a
streamwise pressure gradient. To simplify further we have assumed a con-
stant boundary-layer thickness. In other words, we have made the well-known
parallel-flow approximation. This implies that the undisturbed velocity and
vorticity profiles correspond to the Blasius profile with wall-normal velocity
set to zero. The effects of freestream turbulence are modelled by adding vor-
ticity sources to the right-hand sides of the governing equations for ωx and
ωy. The vorticity sources take the form of derivatives of a fictitious body force
F = (Fx, Fy, 0)
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−∂Fy

∂z
= Gxeiβyδ(x− xf )δ(z − zf )H(t)eift (1)

∂Fx

∂z
= Gyeiβyδ(x− xf )δ(z − zf )H(t)eift (2)

where z is the wall-normal coordinate, t is time, and H(t) is the Heaviside
step function. Thus, the vorticity sources have amplitudes Gx and Gy and
vary sinusoidally in the spanwise direction with wavenumber β and vary, in
general, harmonically in time with frequency f . The sources are located at
(xf , zf ) where zf is located at the boundary-layer edge. All variables are non-
dimensionalized with respect to the boundary-layer displacement thickness
δ∗, the kinematic viscosity ν and the freestream velocity U∞. The Reynolds
number is defined as R = U∞δ∗/ν.

When the frequency f is non-zero then both types of vorticity source
generate waves in the free stream with a phase speed equal to U∞. These
waves have been seen in some other experimental and computational studies
and are mentioned by Saric et al. [7]. By a receptivity mechanism, as yet
not fully explained, in both cases these generate three-dimensional Tollmien–
Schlichting waves in the boundary layer. As the Tollmien–Schlichting waves
grow exponentially with propagation downstream the freestream waves de-
cay. The receptivity is much greater for the spanwise vorticity source. As
expected from hydrodynamic stability theory, the two-dimensional (β = 0)
Tollmien–Schlichting waves grow more rapidly than three-dimensional ones.
It is often argued [7] that there is a mismatch in wavelength between the
freestream disturbances and the Tollmien–Schlichting waves. It is thereby in-
ferred that a local geometric feature with the appropriate dimension, be it
strong boundary-layer growth near the leading edge or some sort of large-
scale roughness element, is required for the generation of Tollmien–Schlichting
waves. This is certainly a sound argument for acoustic disturbances, but for
the freestream vortical disturbances the ratio of the wavelength to that of the
Tollmien–Schlichting waves is at most three. And it turns out that all that is
needed to generate Tollmien–Schlichting waves is some sort of spatial inho-
mogeneity – in this case the sudden onset of the freestream waves at x = xs.
The results discussed above were presented by Kudar et al. [9].

When the frequency of the vorticity source is zero or very low, the bound-
ary layer is not receptive to spanwise vorticity. The streamwise vorticity source
of (1) with f = 0, however, generates a sheet of vorticity that extends down-
stream and varies sinusoidally in magnitude in the spanwise direction [9, 10]
(see Fig. 1). This can be considered as modelling the very low-frequency com-
ponents of streamwise vorticity seen in the free stream. These freestream
vortices of alternating sign generate elongated streak-like structures within
the boundary layer. Typical simulation results taken from Kudar [10] are de-
picted in Fig. 2. These streak-like flow structures are often termed Klebanoff
modes after the researcher who first observed them experimentally [11, 12].
Low-frequency sources corresponding to (1) also produce streak-like structures
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Fig. 1. Schematic sketches comparing the location of the vorticity source relative
to (a) the real growing boundary layer and (b) our simplified constant-thickness
boundary layer
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Fig. 2. Contour plots of streamwise velocity perturbation showing the Klebanoff
mode, as would be seen in a Blasius boundary layer, at t = 6, 400 viewed (a) in
the spanwise direction, (b) from above, and (c) as a cross-sectional view in the
streamwise direction. In views (a) and (b) the flow is from left to right, in (c) the
flow is going into the page. Dashed lines indicate negative contours. η is the Blasius
similarity variable, β = 0.34, f = 0, R = 1, 720 (taken from Kudar [10])
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but the receptivity drops sharply as frequency increases from zero [9, 12]. It
should be mentioned that our use of vorticity source of the form (1) is similar
to Fasel [12] except that he used a body force, rather than vorticity source, of
form (1), thereby generating a more complex dipole-like vortex sheet in the
free stream.

The results presented in this paper concerning the streak-like flow struc-
tures correspond to a Blasius boundary layer. The source strength, Gx, in (1)
is kept fixed, and the frequency is zero throughout. The vorticity source of (2)
is absent. Figure 3 shows how the maximum velocity perturbation varies with
time for cases where the forcing is only applied for a certain period of time and
for the case of constant forcing. The resulting flow structures at a particular
instant that were generated by constant forcing are illustrated in Fig. 2.

It can be seen from Fig. 3 that for the case of constant forcing the amplitude
of the velocity streak grows with time until it asymptotes to a constant value.
This steady-state value varies with the dimensionless spanwise wavenumber
β of (1), as illustrated in Fig. 4. It can be seen that the optimum value of
dimensionless wavenumber corresponds closely with the experimental value
measured by Klebanoff [11]. This is as expected because one would expect to
see only the strongest, most receptive, streaks in an experiment. Furthermore,
there is also close agreement between our simulation results and the previous
theoretical results of Bertolotti [13].
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Fig. 3. Variation of the maximum velocity amplitude of the streak (|umax|) with
time for a continuously forced streak (solid line), and for ones for which the forcing
is discontinued after t = 3, 200 (dashed line) and t = 1, 600 (dotted line), β = 0.34,
f = 0, Re = 1, 720 (taken from Kudar [10])
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Fig. 4. Maximum streak amplitude as a function of the dimensionless spanwise
wavenumber of the forcing for R = 1, 000. Our results (circle) are compared with
Bertolotti’s theory [13] (asterisk) and Klebanoff’s experiment [11] (diamond) (taken
from Ali [14])

Figure 2 gives an idea of the form of the Klebanoff mode after it has
reached its ‘steady state’. It can be seen that it takes the form of alternating
high- and low-speed velocity streaks in the spanwise direction. The maximum
steady-state streak velocity amplitude increases algebraically with Reynolds
number. This is evident to some extent from Fig. 5a. In the real spatially devel-
oped flow this corresponds to algebraic growth with x, as found by Fasel [12].
Even though, we have assumed a constant boundary-layer thickness, it is still
possible to predict this algebraic growth. All the dimensions in our simula-
tions scale with displacement thickness. In our simulations we find that the
maximum streak velocity amplitude varies as Reµ where µ is slightly greater
than 1. Bearing in mind that δ∗ ∝ √x, the variation found in our simulations
compares reasonably well with the experimental variation of

√
x found by

Boiko et al. [15].
For the low levels of freestream turbulence typically seen in flight con-

ditions at cruise, the streak-like flow structures are very weak. Under these
conditions, owing to their exponential growth, Tollmien–Schlichting waves
are the dominant route to transition. As the level of freestream turbulence
rise, the streak-like flow structures become stronger and become more evi-
dent in experimental studies. They now play an important role in transition.
Initially, this is through nonlinear interaction with the Tollmien–Schlichting
waves [12]. However, at even higher levels of turbulence they ‘bypass’ the
Tollmien–Schlichting waves completely and act as an independent route to
transition.
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Fig. 5. Variation of maximum streamwise velocity perturbation with dimensionless
spanwise wavenumber β of the forcing over (a) rigid surface and (b) Kramer-type
compliant wall at three values of Reynolds number; (solid line), R = 1, 414; (dashed-
dotted line), R = 1, 000; (dotted line), R = 707. In (a) for the rigid surface, data
points correspond to our simulations, continuous curves to Bertolotti’s theory [13]
(taken from Ali [14])

3 Effects of Wall Compliance on Tollmien–Schlichting
Waves

The stabilizing effects of compliant walls on Tollmien–Schlichting waves – the
precursors to laminar–turbulent transition in quasi-two-dimensional bound-
ary layers – were demonstrated theoretically by Benjamin [16] shortly af-
ter Kramer’s papers appeared. Benjamin also identified the presence of
other instabilities of a hydroelastic nature. Kramer’s concept of how his
compliant coatings damped Tollmien–Schlichting waves was inconsistent with
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Benjamin’s theory. And this, combined with the failure of other experimental-
ists to corroborate his high values of drag reduction, led to a certain amount
of disillusionment with Kramer’s ideas. However, Carpenter and Garrad [17]
later reviewed the experimental efforts aimed at replicating Kramer’s results,
and found them to be faulty. Furthermore, they developed a theoretical model
of Kramer’s compliant coatings and used it to show that they were capable of
postponing laminar–turbulent transition. Shortly afterwards Gaster [18] (see
also [19]) carried out a careful experimental study in which the growth of
instabilities over a compliant wall were measured and compared with theory.
The agreement was very good. In the case of two of his three compliant walls
transition was actually caused by the amplification of one of the flow-induced
wall instabilities – travelling-wave flutter (see [20]). Even in this case the ex-
perimental data for growth rate agreed well with theory (see [19]). This good
agreement between theory and experiment, and subsequent studies based on
theory and numerical simulation, established pretty much beyond doubt that
very effective laminar flow control could be achieved using compliant walls.

4 Effects of Wall Compliance on Velocity Streaks

We shall now turn to the effects of wall compliance on the velocity streaks
or Klebanoff modes. To model the dynamics of the compliant walls we use
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Fig. 6. Variation of maximum streamwise velocity perturbation with the dimen-
sionless spanwise wavenumber β of the forcing over surfaces of various levels of
compliance. R = 1, 000. (solid line), rigid; (dashed line), Kramer-type wall; (dashed-
dotted line), 0.5× stiffness of Kramer-type wall; (dotted line), 0.333× stiffness of
Kramer-type wall (taken from Ali [14])
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the plate-spring model introduced by Carpenter and Garrad [17] to model
Kramer’s [1, 2] compliant coatings. Figure 5 compares the variation of max-
imum streak velocity amplitude with spanwise wavenumber for a rigid wall
and a compliant wall with dimensionless wall parameters identical to the case
presented in [17] for a Kramer compliant coating having an elastic modulus of
500 kPa. In practice, at a given Reynolds number only streaks with the opti-
mum value of β, i.e. the value corresponding to the maximum streak velocity
amplitude, are likely to be seen experimentally or in real applications. It can
be seen that, measured by this maximum amplitude, the receptivity of the
compliant wall to Klebanoff modes is much reduced at all Reynolds numbers.
This is even more apparent in Fig. 6, where the maximum streak velocity am-
plitude is plotted against spanwise wavenumber for walls of varying degrees
of compliance.

5 Conclusions

We have investigated the effects of freestream turbulence on laminar–turbulent
transition. We have carried out a numerical-simulation study of the effects
of wall compliance on the velocity streaks (or Klebanoff modes) generated
in boundary layers by freestream turbulence. The results clearly demon-
strate that compliant walls are much less receptive to Klebanoff modes than
rigid walls and therefore should remain capable of postponing or suppressing
laminar–turbulent transition even in environments with relatively high levels
of freestream turbulence.
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Summary

Linear stability theory is concerned with the evolution of small-amplitude dis-
turbances superimposed upon a steady- or time-periodic so-called basic flow.
The vast majority of investigations during the second half of the last century
has dealt with the analysis of one-dimensional (“parallel”) basic flows. On the
other hand, Global flow instability deals with essentially non-parallel (as well
as with weakly non-parallel) flows [1] and is an emerging and highly active area
of research, to which a Minisymposium has been dedicated. Four invited con-
tributions from three countries were presented, one summarizing experimen-
tal work and the rest presenting alternative numerical methodologies to solve
the large eigenvalue problem resulting in the context of BiGlobal instability
analysis. Applications addressed ranged from laminar and turbulent separa-
tion control (Avi Seifert, Tel-Aviv University), vortex instabilities (Michael
Broadhurst, Imperial College London), and cavity flow hydrodynamic (Leo
González, School of Naval Engineering, UP Madrid) and aeroacoustic (Javier
de Vicente, School of Aeronautics, UP Madrid) instabilities. With the excep-
tion of the first author, whose contribution is outlined below, papers were
submitted describing in detail the contents of the talks delivered.

Avi Seifert explored the Relationship of global flow instability and flow con-
trol, based on experimental results in a wide variety of external aerodynamics
configurations. He discussed possible relationships between global instability
modes and control of separated regions. It was repeatedly found that the effec-
tive frequencies for control of separated flow on numerous configuration results
in a Strouhal number of order unity. This Strouhal number is based on the
length of the baseline separated flow region. Regardless of the turbulence level
upstream of separation, the curvature and the history of the boundary layer,
the effective frequency for reattaching a separated flow remains of order unity.
It was hypothesized that a feed-back loop exists between the reattaching flow,
sending upstream an acoustic wave that when coincides with the frequency of
the actuator causes enhanced effectiveness and receptivity of the excitation
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introduced by the actuator. It is hoped that global flow instability analysis
of a properly measured or computed baseline flow will enable to reproduce,
explain and eventually predict this type of resonance.

Michael Broadhurst, in collaboration with Spencer J. Sherwin, used
BiGlobal linear theory and Direct Numerical Simulation to discuss Helical
instability and breakdown of a Batchelor trailing vortex. The new perspective
offered concerned the relaxation of the restrictive assumption of azimuthal ho-
mogeneity, invariably used in earlier analyses of the same phenomenon. Their
main conclusions were that (a) helical instability is responsible for the onset of
spiral-type vortex breakdown and (b) pressure gradients were shown to exert
a strong influence on the evolution of vortex breakdown. In the latter respect,
they presented an extension of the Parabolized Stability Equations technique,
which is capable of addressing the issue of pressure-gradients in the axial flow
direction.

Leo González discussed A finite-element alternative for BiGlobal instabil-
ity analysis, as an alternative to well-established spectral methods for the
spatial discretization of the BiGlobal eigenvalue problem. Motivation for this
approach is provided by the desire to address instability in flows over or within
complex geometries. Low-order elements have been used (by contrast to the
high-order spectral-element used by the previous authors) and several valida-
tion cases in closed and open flows have established the ability of the method-
ology presented to address the problem at hand. The flexibility of the method
was exploited by analyzing, for the first time, a lid-driven cavity of triangu-
lar shape. From a numerical point of view, the key conclusion has been the
need for a high-order extension of the finite-element method, that is presently
unavailable for this class of stability problems.

Finally, Javier de Vicente, in collaboration with E. Valero and V. Theofilis,
presented Numerical considerations in spectral multi-domain methods for
BiGlobal instability analysis of open cavity configurations. They mainly fo-
cused on results of their parallelization efforts associated with the solution
of the sparse-matrix based BiGlobal eigenvalue problem. Both incompressible
and compressible flows can be addressed by the algorithms developed, respec-
tively corresponding to hydrodynamic and aeroacoustic instabilities. Target
application in this work has been the open cavity configuration, in the pres-
ence of model stores placed inside the cavity. The authors presented some
distributed-memory solutions to the eigenvalue problem; on the basis of the
associated convergence rates and CPU timings they concluded that shared-
memory solutions were an alternative worthy of exploration.

Discussion of key issues presented during the Minisymposium followed,
with a good degree of interaction between the speakers and the audience.
Flow control was singled out as a promising direction [2], in which the
tools presented in the Minisymposium may be applied. In this context, and
at the invitation of the organizer, the Minisymposium was concluded by
a short exposition by P. Luchini (a world-leading expert in the subject of
global flow instability) of the connection between adjoint-based flow-control
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methodologies and global flow instability. Readers interested in further infor-
mation on recent developments on the topic of global flow instability, may also
visit: http://www.aero.upm.es/es/departamentos/crete05/Home.html
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1 Introduction

A particular feature of swirling flows with a strong core vorticity is the phe-
nomenon of vortex breakdown. For vortices with an appreciable axial velocity
component, [Hall (1972)] defines vortex breakdown as, “an abrupt change in
the “vortex” structure with a very pronounced retardation of the flow along
the axis”. One factor that is known to influence vortex breakdown, reviewed
by [Leibovich (1984)], is the role of instability. This was also recognised by [Ash
and Khorrami (1995)], who describe a possible mechanism of breakdown as, ‘a
final outcome of vortex instability, with the caveat that vortex breakdown can
also be produced by external means’. External influences might include pres-
sure gradients. Consequently, the aim of the current research is to demonstrate
the relationship between instability and spiral-type breakdown of a Batchelor
vortex, and to assess the influence of pressure gradients on vortex stability
using the parabolised stability equations.

2 Numerical Methods

A combination of linear stability analysis and direct numerical simulation
has been used to investigate the role of instability in the incipience of vortex
breakdown. The stability analysis of flows governed by the Navier–Stokes
equations is based upon the decomposition of all flow variables into a steady
basic state solution of the equations upon which small amplitude disturbances
are permitted to develop (i.e. q = q̄ + q′). By allowing a mild dependence of
the base flow on the streamwise spatial coordinate z, an eigenmode Ansatz is
introduced, according to which

q′(x, y, z, t) = q̂(x, y, z) exp iΘ + c.c. (1)

Θ = Θ3D =
∫ z

z0

β(ξ)dξ −Ωt. (2)
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Applied to the linearised Navier–Stokes equations, this leads to the three-
dimensional parabolised stability equations (3D-PSE):

ûx + v̂y + iβŵ = −ŵz, (3)

{L − ūx} û− ūy v̂ − p̂x + iΩû = w̄ûz + ūzŵ −
2iβ
Re

ûz − i
dβ
dz

û, (4)

−v̄xû+ {L − v̄y} v̂ − p̂y + iΩv̂ = w̄v̂z + v̄zŵ −
2iβ
Re

v̂z − i
dβ
dz

v̂, (5)

−w̄xû− w̄y v̂ + Lŵ − iβp̂+ iΩŵ = w̄ŵz + w̄zŵ −
2iβ
Re

ŵz − i
dβ
dz

ŵ + p̂z. (6)

where L = 1

Re
{
∂xx + ∂yy − β2

}
− ū∂x − v̄∂y − iβw̄, and β(ξ) = β̄(ξ) + iσ(ξ)

is a complex wavenumber. Implicit in this derivation is that the disturbance
takes the form of a rapidly varying phase function and a slowly varying shape
function, for which second derivatives along with products of first derivatives
(with respect to z) can be neglected. For homogeneous flows in z, (3)–(6) form
a matrix system corresponding to the linearised incompressible Navier–Stokes
equations known as a BiGlobal stability analysis. This can be solved using a
suitable method, such as an exponential power method (see, for example,
[Barkley and Tuckerman (2000)]). For inhomogeneous flows, such as a vortex
developing in an external pressure gradient, (3)–(6) form a parabolic system,
that can be solved using a suitable marching procedure, analogous to the one
proposed by [Bertolotti et al. (1992) Bertolotti, Herbert, and Spalart] for the
two-dimensional parabolised stability equations.

3 Vortex Stability and Breakdown

Evaluated using a BiGlobal stability analysis, the most unstable perturbation
mode of a Batchelor vortex ([Batchelor (1964)]), with a swirl value of q = 0.8,
and a Reynolds number based on the vortex core radius of Re = 1, 000 is illus-
trated in Fig. 1, for jet-like and wake-like axial velocity profiles, respectively.
Direct numerical simulation (DNS) using N εκταr1 with a Fourier series ap-
proximation in the axial direction has been used to investigate the non-linear
development of the various modes of instability. Helical modes of instabil-
ity were found to cause a lateral expansion of the cross-section of the vortex
core, and a corresponding drop in axial velocity. Enforcing an axial period-
icity in the solution restricts how the streamwise component of the velocity
can change, limiting the extent of axial deceleration. To resolve this problem,
3D-DNS on the same Batchelor vortex has been conducted (see Fig. 2): as the
helical instability evolves, an abrupt axial deceleration develops – indicative

1A spectral/hp-element solver developed by [Karniadakis and Sherwin (2005)].
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(a) Jet-like profile

(b) Wake-like profile (c) 3D view (jet)

Fig. 1. Most unstable perturbation mode of a Batchelor trailing vortex; with Re =
1, 000, q = 0.8, β = 1.7. Visualised using iso-surfaces of axial vorticity magnitude.
The dark and light grey surfaces correspond to values of +0.2 and −0.2, respectively

t = 10 t = 20

t = 30 t = 40

t = 50 t = 60

Fig. 2. Evolution of vortex breakdown of an isolated Batchelor vortex; with q = 0.8
and Re = 1, 000. Visualised using iso-surfaces of λ2 = −0.4, shaded by the axial
velocity component

of vortex breakdown. This suggests a causal relationship between helical in-
stability and spiral-type breakdown. The mechanism by which this occurs is
discussed by [Broadhurst et al. (2006) Broadhurst, Theofilis, and Sherwin].

4 Influence of Pressure Gradients

A novel approach to analysing vortex stability, called the parabolised sta-
bility equations in three-dimensions (3D-PSE), has recently been validated,
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and – in conjunction with 3D-DNS – is currently being used to investigate
the influence of pressure gradients on vortex breakdown. The PSE concept,
discussed by [Herbert (1997)] for boundary layers, has been extended to
analyse three-dimensional vortical flows. Preliminary results, in agreement
with 3D-DNS, have indicated that an adverse pressure gradient is destabilis-
ing, whereas a favourable pressure gradient is stabilising. A pressure gradient
is applied by considering the potential flow around a circular cylinder. As the
flow approaches a circular cylinder, there is an associated adverse pressure
gradient caused by the stagnation point at the leading edge. Alternatively, a
favourable pressure gradient is obtained downstream of the trailing edge of
the cylinder. These pressure gradients can be realised by superimposing the
Batchelor vortex profile onto the relevant section of the potential flow around
a circular cylinder, with associated far field boundary conditions. The results
in an adverse pressure gradient are illustrated in Fig. 3, which demonstrates
how a pressure gradient modifies the growth rate of the most unstable helical
modes. For reference, the bold lines illustrate the growth rate of a vortex in
the absence of a pressure gradient, equivalent to a BiGlobal stability analysis.
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Fig. 3. Influence of an adverse pressure gradient on the stability of an isolated
Batchelor vortex. The bold lines illustrate the growth rate without a pressure gradi-
ent, and the arrow indicates the direction of increasing downstream distance: results
are illustrated for z = 0, 10, 20, 30, and 40. m is the azimuthal wavenumber
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5 Conclusions

The relationship between vortex instability and breakdown has been intro-
duced, and it is suggested that helical modes of instability are responsible
for the onset of spiral-type vortex breakdown. External pressure gradients
are known to significantly influence the onset and evolution of vortex break-
down (see, for example, [Sarpkaya (1974)]), with adverse pressure gradients
promoting vortex breakdown. A suitable technique to analyse the influence of
pressure gradients on vortex stability is a parabolised stability analysis, which
permits flows with a mild variation in the axial direction. The results agree
with experimental and numerical observations, and suggest that adverse pres-
sure gradients are destabilising, whereas favourable pressure gradients sup-
press vortex breakdown.
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Summary. Viscous linear three-dimensional BiGlobal instability analyses of incom-
pressible flows have been performed using finite-element numerical methods, with a
view to extend the scope of application of this analysis methodology to flows over
complex geometries.

1 Mathematical Formulation

The two-dimensional equations of motion are solved in the laminar regime at
appropriate Re regions, in order to compute steady basic flows (ūi, p̄) whose
stability will subsequently be investigated.

1.1 Eigenvalue Problem (EVP) Formulation and Solution
Methodology

The basic flow is perturbed by small-amplitude velocity ũi and kinematic
pressure p̃ perturbations, as follows

ui = ūi + εûi(x, y) eiβzeωt + c.c. (1)
p = p̄+ εp̂(x, y) eiβzeωt + c.c., (2)

where ε 
 1, c.c. denotes conjugate of the complex quantities (ũi, p̃), β is a
real wavenumber parameter, while ω is the complex eigenvalue sought. Intro-
ducing the ansatz into the linearized Navier–Stokes equations, the system is
transformed into a (complex) generalized eigenvalue problem for the determi-
nation of ω,

A

⎛⎜⎜⎝
û1

û2

û3

p̂

⎞⎟⎟⎠ = −ωB

⎛⎜⎜⎝
û1

û2

û3

p̂

⎞⎟⎟⎠ . (3)

The complex generalized eigenvalue problem (3) has either real or complex
solutions, corresponding to stationary (ωi = 0) or traveling (ωi �= 0) modes.
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2 Results

2.1 The Instability Analyses

The Rectangular Duct Flow

First, a square duct at low Reynolds number value Re = 100 is considered,
which is known to permit a relatively coarse resolution [Th04], such that
numerical experimentation is straightforward. The complex EVP (3) is solved
on O(104) nodes and varying the Krylov subspace dimension, m; the results
are presented in Table 1. Convergence of the leading eigenvalue is achieved at a
moderate Krylov subspace dimension, m = 20, using a well-acceptable 600 Mb
of in-core memory. The relative error of the eigenvalue obtained compared with
the spectral collocation result [Th04] of the same complex EVP is of O(10−6).

Also worth noting is that, on account of the increase of the (serial) com-
putational time as the Reynolds number increases, it becomes increasingly
inefficient to attempt a solution of the complex BiGlobal EVP at Reynolds
numbers beyond Re = O(103). This is to be expected, given the low formal
order of accuracy of the method.

On the other hand, computational efficiency considerations aside, once
sufficient resolution is provided, the method is capable of providing results
in very good agreement with the established spectral computations. The pre-
dictions of the leading eigenmode frequency at critical conditions as function
of the duct aspect ratio is shown in Table 2, where the relative error in this
quantity, compared with the spectral computations of [Th04], can be seen to
vary between 4× 10−3 at the lower two Reynolds numbers and 1.5× 10−2 at
the highest Re value. The eigenfunctions pertinent to the least-damped mode
at (Re, β) = (100, 1) at AR = 3.5 are presented in Fig. 1.

Rectangular and Triangular Regularized Lid-Driven Cavities

The instability problem in the regularized rectangular lid-driven cavity has
been solved employing the EVP methodology based on numerical solution

Table 1. Grid-dependence of eigenvalue results in square duct flow

Nodes Memory (Mb) Time (min) ωr ωi

Re = 100
5 129 680 17 −0.140498 0.594178
11 605 702 49 −0.140503 0.594177
60 465 1 950 280 −0.140507 0.594177

Re = 1 000
5 129 648 13 −0.078650 0.868472
11 605 642 43 −0.072671 0.862796
60 465 2 037 442 −0.070679 0.865575

Parameters used are β = 1; Krylov subspace dimension, m = 60.
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Table 2. Critical parameter (Re, β) values of the four most significant modes as a
function of duct aspect ratio [Th04] (m = 40)

AR Re β Nodes ωi

3.5 36 600 0.71 13 279 0.121660885
4 18 400 0.80 29 725 0.161186414
5 10 400 0.91 57 657 0.210532778

Fig. 1. Eigenfunction ŵ pertaining to the least-damped mode of a square duct flow
at Re = 100, β = 1.0

of (3). In addition, a spectral collocation algorithm [Th00, Th04] has been
used for comparisons. Attention is first focused on the stable test case
(Re, β) = (200, 2). The grid used for the basic flow calculations, compris-
ing O(2 × 104) (quadratic) velocity nodes, has been used for the instability
analyses. Interestingly, at this Reynolds number the regularization condition
results in a general stabilization of the global eigenmodes, especially at large
β values, when compared with the standard lid-driven cavity (LDC) flow, in
which the singular boundary condition ū(x, y = 1) = 1 is used. This result
is in line with the analogous prediction of Theofilis [Th00], who analyzed a
family of regularized profiles of the class discussed here.

A consequence of the difference in amplification/damping rates between
the two cavity configurations is the increase of the linear critical Reynolds
number pertinent to all known modes of the singular lid-driven cavity, S1,
T1, T2, and T3 [Th00]. The effect of the aspect ratio on the instability of
the regularized LDC has been examined. Four cases have been considered,
AR = 0.5, 1, 2, and 4, in order to be able to draw qualitative conclusions on
the effect of AR on the stability of the three-dimensional flow. The results for
A = 4 are shown in graphical form in Fig. 2.

The triangular cavity flow has been substantially less investigated, and
only from a basic flow point of view. However, it is clear that should a lin-
ear instability be present in the triangular cavity, the corresponding critical
Reynolds number will define the upper limit beyond which two-dimensional
numerical solutions of the basic flow problem will only be of academic value.
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Fig. 2. Neutral curves of the first four eigenmodes in the regularized square lid-
driven cavity at aspect ratio AR = 4. T: travelling modes

Fig. 3. Eigenfunction û pertaining to the least-damped mode of the triangular
cavity flow at Re = 1870, β = 6.73

Resolutions comprising up to O(2× 104) nodes were found to be adequate in
order to provide reliable amplification rate information.

A zero-crossing has been found to occur at the (near-) critical parameters

(Re, β) ≈ (1870, 6.73). (4)

The linearly unstable mode discovered is stationary; the amplitude func-
tions of its components have been found to comprise only real parts, shown
in Fig. 3. In contrast to the rectangular cavity examined earlier, within the
parameter range examined, no traveling (or other stationary) modes have been
found in the triangular cavity.

A Batchelor Vortex

Also results were obtained in the well-studied Batchelor vortex instability
problem [MP92]. The second-order FEM method discussed by González et al.
[LG06] is employed on this analytically-constructed basic flow and the system
describing linear perturbations from a BiGlobal point of view is solved in a
large domain of [−40, 40]2 (scaled with the Batchelor vortex radius), such that
homogeneous Dirichlet boundary conditions may be imposed on all amplitude
functions at the boundary of the domain. Two conclusions have been drawn,
first that the (low-order) FEM is capable of delivering accurate results, in a
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Fig. 4. Eigenfunction û pertaining to the least-damped mode of a single Batchelor
vortex at Re = 100, β = 0.418

manner analogous with that demonstrated in the closed and open flows dis-
cussed in reference [LG06]. Second, the mesh required in order for such results
to be obtained is prohibitively large; O(8 × 104) nodes were used to resolve
the cases presented, resulting in typical memory and runtime requirements
of O(4Gb) and O(10) CPU hours on an Intel P-IV at 3 GHz. The mesh used
and the amplitude function corresponding to the axial disturbance velocity
component, ŵ, are respectively shown in Fig. 4. In view of these results, two
possible approaches have been followed, parallelization of the low-order accu-
rate method, or implementation of a novel high-order hp-FEM algorithm for
the solution of the BiGlobal eigenvalue problem (3).
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[LG07] L.M. González, J. de Vicente, V. Theofilis: High-order finite element meth-
ods for global viscous linear instability analysis of internal flows. In: 18th
AIAA Computational Fluid Dynamics Conference. AIAA-2007

[Th04] V. Theofilis, P.W. Duck, J. Owen: Viscous linear stability analysis of
rectangular duct and cavity flows. J. Fluid. Mech., 505, 249–286 (2004)
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Summary. A novel approach for the solution of the viscous incompresible and/or
compressible BiGlobal eigenvalue problems (EVP) in complex open cavity domains
is discussed. The algorithm is based on spectral multidomain spatial discretization,
decomposing space into rectangular subdomains which are resolved by spectral collo-
cation based on Chebyshev polynomials. The eigenvalue problem is solved by Krylov
subspace iteration. Here particular emphasis is placed on aspects of the parallel
developments that have been necessary, on account of the high computing demands
placed on the solver, as ever more complex “T-store” configurations are addressed.

1 Theory

1.1 Spectral Collocation Approximation

A Chebyshev spectral expansion of the function u(x) is considered on the
Gauss–Lobatto nodes,

uN (x) =
N∑

j=0

hj(x)u(xj) (1)

being hj(x) the Lagrange interpolation functions. The unknowns become the
values of u(x) at the grid points. Differentiation is introduced by using the
interpolation polynomial which permits expressing derivatives as

U = DU, U (p) = D(p)U. (2)

Using this technique, the solution of an eigenvalue problem is reduced to con-
structing the matrix L of the differential operator and manipulate it properly
in order to impose boundary conditions. The extension of this one-dimensional
idea to several Cartesian spatial dimensions is straightforward.
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1.2 BiGlobal Theory

Linear stability analysis in the BiGlobal framework involves the substitution
of a decomposition of any of the independent flow variables into the equa-
tions of motion [Th03]. All quantities are considered to be composed of an
O(1) steady two-dimensional basic state and O(ε) unsteady three-dimensional
perturbations, according to the BiGlobal Ansatz

q(x, y, z, t) = q̄(x, y) + εq̂(x, y) exp i(βz −Ωt) (3)

for the determination of the complex eigenvalue Ω. Ωr ≡ �{Ω} represents a
frequency and Ωi ≡ �{Ω} is the amplification/damping rate of the distur-
bance, while barred and hatted quantities denote basic and disturbance flow,
respectively. Discretization of the linearized equations of motion lead to the
two-dimensional BiGlobal eigenvalue problem (EVP)

Ax = ΩMx. (4)

1.3 Spectral Multidomain Discretization

Multidomain spatial discretization divides the space into rectangular sub-
domains each resolved by spectral collocation. Once the two-dimensional
BiGlobal eigenvalue problem has been formed for each domain boundary and
interface conditions are imposed in order to form the global matrix discretizing
the eigenvalue problem. There are several choices in the eigenvalue recovering
algorithm. The storage of the matrix elements and the use of different parallel
machines determines the final algorithm, as schematically shown in Fig. 1.

Fig. 1. Computational choices for the solution of the BiGlobal EVP
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2 Results

2.1 Dense vs. Sparse Format

A key requirement for the numerical solution of the BiGlobal EVP is the
availability of sufficient resolution, for the eigenvector structures to be resolved
adequately, which translates into large memory requirements. In addition,
the multidomain spectral collocation technique generates matrices in which
sparsity is a special feature. This property may be exploited by making use
of specialized formats for storing and handling the data Compressed Column
Format (CCF) that has been chosen, due to its compatibility with most of
the libraries employed for parallel solution of linear systems. CCF stores the
sparse matrix in three arrays:

val[1:N] = Value of the nonzeros in column order. N , is the number
of nonzero elements.

rowindex[1:N] = Integer array containing the row index of the element.
sumcol[1:M+1] = Integer array that contains pointers to the beginning

of each column in rowindex and val.
M is the number of columns in the matrix.

So, let

A =

⎛⎜⎜⎜⎜⎝
1 0 0 2 0
0 1 −1 3 1
1 0 1 2 0
0 0 0 2 −1
2 0 1 0 0

⎞⎟⎟⎟⎟⎠ (5)

then
val(A) = 1, 1, 2, 1,−1, 1, 1, 2, 3, 2, 2, 1,−1
rowindex(A) = 1, 3, 5, 2, 2, 3, 5, 1, 2, 3, 4, 2, 4
sumcol(A) = 1, 4, 5, 8, 12, 14

Figure 2 shows a typical “T-store” configuration, in which a relatively
complex object is placed in the floor of the open cavity. Accordingly, spectral
multidomain is used to refine selective areas of the flow. The memory re-
quirement associated with such an EVP, if stored in dense format, is 8 Gb. By
contrast, using CCF only 0.5 Gb is required; this has been a strong motivation
for the sparse-path of EVP solution to be followed, as shown in Fig. 1.

Fig. 2. Example T-store configuration in the open cavity
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2.2 Parallel Approach

Once the matrix discretizing the EVP is stored in the CCF, it is solved by
Krilov subspace iteration in two stages. First the matrix is LU-decomposed
using SuperLU [LU], which is a general purpose library for the direct solution
of large, sparse, nonsymmetric systems of linear equations on high perfor-
mance parallel machines. The library routines also perform an LU decompo-
sition with partial pivoting, and triangular system solves through forward and
backward substitution. This LU-decomposition is fed into an Arnoldi iteration
to recover the leading eigenvalues. However, storing the LU-decomposition
is itself demanding in memory; that associated with the T-store configura-
tion shown in Fig. 2 requires an additional 2 Gbytes. Consequently, in all but
the lowest Reynolds numbers1, the LU decomposition must be performed in
parallel.

2.3 Hardware Considerations

Parallel performance broads in one side the scope of tackled problems, in-
volving, however, some new difficulties: new programming strategy compat-
ible with MPI structure and also a greater dependency on hardware in the
sense of not only processors features but net architecture and communica-
tions among processors. Example results for the solution of the (large) linear
system Ax = b have been obtained on two different clusters, one denoted
“Gigabit Ethernet,” and one denoted “Myrinet.” The characteristics of these
distributed-memory machines are summarized in Table 1; results obtained,
shown in Table 2, show the dependence of the performance of the SuperLU
algorithm on the architecture chosen. Analogous results have been obtained
on the Myrinet cluster, using one of the matrices from the validation suite of
the CCF format. Results shown in Table 3 show that the theoretical linear
speed-up is achieved as long as sections of the matrix are kept in the (shared)
memory of each computing node. This tendency stops as long as the number of
processors increases beyond two and communication amongst nodes becomes
the determining factor; Fig. 3 shows this result in graphical form.

These results for the solution of the linear system have led to the conclusion
that use of sparse linear solvers on distributed-memory machines may not be
as competitive as their counterparts on shared-memory architectures. Efforts
are currently underway to develop a new version of the EVP solver for the
BiGlobal instability problem in shared-memory parallel machines, such as the
one indicated in Table 1.

1Such cases have been presented elsewhere [JV06]
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Table 1. Computing cluster characteristics: Gigabit and Myrinet clusters feature
distributed-memory

Gigabit Cluster Myrinet Cluster
12 Intel Xeon compute nodes, 256 IBM BladeCenter JS20 compute nodes,

each featuring: each featuring:
• 2 single-core 32-bit Pentium • 2 single-core, 2.20 Ghz 64-bit PowerPC 970FX
• 2 GB DDR memory • 4 GB PC2700 ECC DDR memory
• Gigabit Ethernet • Dual Gigabit Ethernet with Myrinet interface

Shared-memory cluster
2 HP Integrity Superdome compute nodes, each featuring:

• 64 Itanium2, 1.5 Ghz
• 384 GB DDR memory

Table 2. Performance of the parallel LU-decomposition Ax = b, in which A features
O(1010) nonzero elements

# proc Processor Gigabit Cluster Myrinet Cluster
Distribution LU- LU- LU- LU-

decomposition decomposition decomposition decomposition
(s) (Flops) (s) (Flops)

1 1 × 1 0.14 56.14 0.11 57.14
2 1 × 2 10.14 5.19 0.24 25.49
2 2 × 1 12.29 2.19 0.13 48.16
4 1 × 4 13.11 0.42 1.90 3.17
4 2 × 2 23.69 0.50 1.34 2.36
4 4 × 1 11.13 0.42 0.41 14.57
8 1 × 8 – – 3.36 1.80
8 2 × 4 – – 2.56 2.36
8 4 × 2 – – 1.39 4.33
8 8 × 1 – – 0.34 17.62

Table 3. Performance of the Myrinet cluster on the parallel solution of Ax = b,
with dim(A) = 7 × 105 elements

# proc Processor Myrinet Cluster
Distribution LU-decomposition Solve Time LU-decomposition Solve

(s) (s) (Flops) (Flops)

1 1× 1 4.15 0.25 1159.12 86.56
2 1× 2 2.65 0.24 1815.61 88.70
2 2× 1 2.43 0.18 1981.04 117.86
4 1× 4 1.96 0.55 2451.85 39.13
4 2× 2 1.87 0.17 2570.00 127.75
4 4× 1 2.20 0.19 2184.66 113.46
6 1× 6 1.89 0.63 2548.34 34.57
6 2× 3 1.85 0.35 2599.90 6.80
6 3× 2 1.92 0.16 2506.08 13.17
6 6× 1 2.62 0.20 1834.86 110.03
8 1× 8 1.98 0.83 2434.88 25.98
8 8× 1 2.80 0.20 1722.45 108.89
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shown in red
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The ordinary day to day operation of current aircraft turbomachines involves
geometrically highly complex parts (bladed disks and vanes) working under
extreme mechanical and thermal conditions. The mathematical modeling of
these systems typically requires a compressible unsteady aerodynamic descrip-
tion of the fluid flow coupled to linear and nonlinear elastic models for the solid
structure. The idea of this minisymposium is to give some insight into various
interesting problems of industrial relevance associated with the modeling and
analysis of the dynamics and vibration of Turbomachinery structures. The
chapter by Berthillier et al. deals with a central problem in Turbomachinery
vibration: the problem of blade mistuning. Bladed disks are cyclic structures
in which a sector is repeated many times but, because of small unavoidable
imperfections (mistuning), all sectors are not identical and these small sector-
to-sector variations can give rise to very dangerous localized amplifications of
the vibration response that result in a severe increase of blade fatigue. On
the other hand, the chapter by Petrov presents some recent advances in the
numerical study of structures with friction contact interfaces, which give rise
to nonlinear elastic models for the vibration of the structure that can exhibit
multiplicity of solutions, hysteresis, sub and superharmonic resonances, etc.
And, finally, the last chapter by Corral and Gallardo describes a methodol-
ogy for the estimation of the vibration levels for aerodynamically unstable
Low-Pressure Rotor blades, where the saturation of the vibration amplitude
results from the friction at the fir-tree attachment.
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1 Introduction

For cyclic structures with aeroelastic coupling, coriolis, and other rotational
effects, the different eigen modes are traveling modes with constant interblade
phase angle. However, because of small imperfections, as manufacturing tol-
erances, bladed discs are only quasi-cyclic structures. As a consequence, the
dynamic behavior of actual bladed discs may be tremendously modified com-
pared to their cyclic idealization. These small imperfections are called detun-
ing or mistuning depending if they are or not deliberate. The eigen values are
usually slightly affected, but the modes shapes could become localized. The
vibrating energy is no more distributed along all the blades, but confined to
a limited number of blades. From an industrial point of view, the effects of
localization could be positive or negative. For example, in aeroelasticity, un-
stable rotors could be stabilized by the introduction of a judicious detuning
pattern. In contrary, mistuning can greatly increase the forced response level,
usually when localization occurs.

On the experimental side, the problem is that it is nearly impossible to
know in advance with enough accuracy which blade will exhibit the largest
vibration amplitude. As rotating instrumentation is necessarily limited, it is
a challenge for the monitoring of real machines with strain gages. For that
reason, techniques that allow the survey of all blades as Tip Timing methods
have been developed in the recent years. The exploitation methods for Tip
Timing signals are still in progress [LaI05], [Tuy83]. We present in this chapter
a method to identify the modal properties of mistuned bladed disc with time
domain signals, reconstructed from Tip Timing measurements. The method
for the signal reconstruction is not addressed here. The main difficulties that
we have to overcome are the unknown excitation forces and the very high
modal density.
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2 Mechanical Model

To validate the modal identification method, we developed a simple but real-
istic mistuned bladed disc model with 22 blades. This model will provide time
domain responses for identification and exact modal properties to compare
with. The structural part of the model is represented Fig. 1.

The equations of motion are of the form

M
··
q + C

·
q +Kq = Faeroelastic + Faerodynamic

where M , C, and K represent the structural, mass, damping and stiffness
matrices, and q the displacement vector composed of 2×22 degrees of freedom.
The stiffness coefficients have been chosen in order that the blades modes are
well separated from the disc modes (the blade modes family has frequencies
around 60 Hz, the lowest frequency for a disc mode is close to 500 Hz). This
tuned model is mistuned by the introduction of a different stiffness for each
blade Ka(j) = Ka(1 + δj) with j = 1, 22. Aeroelastic coupling has been
introduced, in the way of circulant matrices coefficients, considering only five
different coefficients [GGQ96]. The eigen values of the tuned and mistuned
model are presented in Fig. 2. These computed eigensolutions will be called

Fig. 1. Mechanical model
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exact solutions in the rest of the paper. We can note that the tuned system
is unstable and that the mistuned system is stable. Mistuning couple all the
tuned modes stabilizing the unstable ones by the others.

To generate the time forced response for identification, an asynchronous
white noise excitation Faerodynamic has been used. It is representative of tur-
bulent excitation of the blades. The time response is generated for all blades
using the convolution integral after diagonalization of the system.

3 Identification Algorithm

The continuous space state and observation equations of a second order dy-
namical system with stochastic excitations can be written for discrete time
series in the following subspace form [Nat86], [La200], [V99]:

zk+1 = Azk +Bek (discrete stochastic state equation)
yk = Czk + ek (discrete observation equation)

where the subscript k is for the time k∆t, yk is the vector of observation,
ek is the vector of stochastic innovations, zk is the vector of states, A is the
transition matrix, B is the Kalman gain matrix, and C is the observation
matrix.

The eigen values λ and eigen vectors Ψ of the transition matrix A are
related to the modal properties (frequency, critical damping ratio, and mode
shape) of the underlying second order dynamic system by the relations

ωi =
1

2∆t

√√√√[ln(λiλ∗
i )]

2 + 4

[
Arc cos

(
λi + λ∗

i

2
√
λiλ∗

i

)]2

ζi =

√√√√√√ [ln(λiλ∗
i )]

2

[ln(λiλ∗
i )]

2 + 4
[
Arc cos

(
λi+λ∗

i

2
√

λiλ∗
i

)]2
Φ = CΨ

The major step of the identification process is to determine the matrices A
and C from the measurements yk. For that we define the bloc Hankel matrix
H as the covariance matrix between the future and the past.

H = E
[
y+
k , y

−T
k−1

]
where E denotes the expectation operator, y+

k = (yT
k , y

T
k+1, ..., y

T
k+f−1)

T the
future data vector, and y−k = (yT

k , y
T
k−1, ..., y

T
k−p+−1)

T the past data vector.
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The bloc Hankel matrix H can be estimated from the blades time re-
sponses. To estimate the matrices A and C we factorize the bloc Hankel
matrix into its observability and controllability matrices, O and K:

H =

⎡⎢⎢⎢⎣
C
CA
...

CAf−1

⎤⎥⎥⎥⎦ [G AG · · · Ap−1G
]

= OK

The orthogonal-triangular (QR) decomposition of H = QR with R an
upper triangular matrix and Q a unitary matrix provides an estimation of the
observability matrix O. Finally, to estimate A, it is necessary to introduce the
following shifted observability matrices

O↓ =

⎡⎢⎢⎢⎣
C
CA
...

CAf−2

⎤⎥⎥⎥⎦ and O↑ =

⎡⎢⎢⎢⎣
CA
CA2

...
CAf−1

⎤⎥⎥⎥⎦
obtained by removing, respectively, the last bloc line and the first bloc line
of the matrix O. The following relation is obtained: O↑ = O↓A, consequently
A = O↓+O↓ where O↓+ is the pseudo inverse of O↓.

4 Evaluation of the Algorithm

The subspace modal identification algorithm presented in the preceding sec-
tion has been applied to the time responses generated from the model pre-
sented on Sect. 2. Time responses of 30 min 27 s with a time step of 710−3 s
have been used. The stability diagram plotting the evolution of the identified
eigen values for various orders of the system is presented in Fig. 3.

We find in the frequency band of the blades, 22 frequencies and damping
ratios. We can see that only one frequency and two damping ratios are not
stable. The identified modes shapes can be compared with the exact ones in
the following way: for each complex mode Φ, we define a real mode Φ̃ as the
deflection for the instant of time where the maximum amplitude is obtained.
Four of these modes as well as the MAC matrix for 22 modes are shown in
Fig. 4. The MAC matrix is defined as:

MACij =

∣∣∣Φ̃i
T
Φ̃j

∣∣∣√(
Φ̃i

T
Φ̃i

)(
Φ̃j

T
Φ̃j

)
with Φ̃i an exact mode shape and Φ̃j an identified mode shape. We can see
in Fig. 4 (MAC matrix) that two exact modes have not been found by the
identification process (modes number 6 and 17).
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Consequently, the identification found two spurious modes (number 9 and
18). One could be easily identify in the stability diagram as unstable, the other
duplicate another mode with nearly the same frequency. For the remaining
20 modes, the correlation between exact and identified modes is acceptable to
excellent. The relative differences between the exact and identified frequencies
are below 0.07%, and the relative difference for the damping ratios is below
10% except for mode number 8 for which it is of 27%.

5 Conclusion

We present a rather promising method to identify modal properties of bladed
discs in operation from time response measurements obtained for example
through a Tip Timing procedure. This method is a real improvement to the
traditional FFT that provides only a poor estimation of the modal frequencies
in the case of mistuned rotors. The main drawback is that rather long time
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responses have to be recorded, nearly 30 min for the case presented here. Fur-
ther work is to be done to reconstruct time signals with appropriate time step
from Tip Timing measurement. This work is a first step in the identification
of aeroelastic coupling, aerodynamic excitation, and mistuning pattern.
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Summary. A methodology for the prediction of the vibration levels of welded-in-
pairs low-pressure-turbine rotors is presented. It combines three-dimensional viscous
linear aerodynamic analyses with a simple friction model for the fir-tree attachment.
Results are presented for an existing rotor and compared with experimental data.

1 Introduction

Modern low pressure turbines (LPTs) are made up of very slender and thin
airfoils due to steady trend to design very efficient, low cost, low weight
turbomachinery. This is specially true for LPTs since the continuous trend
to increase engine’s by-pass ratio poses extraordinary difficulties to the LPT
design.

Cost and weight reductions in LPTs are obtained by reducing the part
count, increasing the lift per airfoil, and designing light, high aspect ratio air-
foils. The latter lowers the natural frequencies of the assembly, and therefore,
the reduced frequency k up to a point in which airfoils may become aerody-
namically unstable, giving rise to the onset of flutter. Nowadays flutter may
become a dominant constrain on the design of modern LPTs, precluding the
use of more efficient aerodynamic and structural configurations.

When the rotor airfoils are aerodynamically unstable, the blade vibration
grows up to a point in which the motion is nonlinearly saturated. Typically,
this is due to the dry friction that takes place in the fir-tree attachment,
although in principle other devices as under-platform dampers or cover plates
may contribute to increase the damping of the rotor. In any case what is
important at this point is to estimate the vibration level of the rotor, which
ultimately will determine the life of the component. The effect of friction on
aerodynamically unstable rotors from a conceptual point of view was first
studied by Sinha and Griffin [3,4].

To clarify some of the basic issues addressed in the present investigation,
it is interesting to review the main results obtained for a single degree of
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freedom (SDOF) problem. If the unsteady aerodynamics is linear, then the
unsteady pressure scales with the amplitude of vibration, δ, and hence the
aerodynamic work per cycle scales as the square of the amplitude, Waero ∝ δ2.
Dry friction scales with the amplitude in different ways, depending on the vi-
bration amplitude. For very small vibration amplitudes (δ < δoff−set) the blade
is stuck on the attachment and the work dissipated is null. For large vibra-
tion amplitudes there is a macro displacement of the rotor in the attachment.
The tangential force is constant and therefore the work dissipated per cycle is
proportional to the displacement, Wmacro ∝ δ. Between both situations there
is a regime known as microslip where only a fraction of surface in contact is
sliding. Different models exist to describe this behavior (see for instance the
Mindlin’s model [5] to describe the contact between two elastic spheres). At
this stage what is important to highlight is that the work dissipated per cycle
is of the form Wmicro ∝ δn, with n > 2, typically δ = 3.

The situation is depicted in Fig. 1, the balance between the aerodynamic
self-excitation and the dry friction provides either one or three situations,
depending on the relative value between them. The trivial solution, δ = 0, is
unstable and any small perturbation from δ = 0 moves the system towards
the solution 2, which is a stable cyclic limit. Solution 2 is an attractor and
any perturbation of the cyclic limit comes back to the solution 2 unless we
reach the amplitude δ3, which is an absolute stability limit, since the solution
3 is unstable. Alternatively, if the aerodynamic self-excitation is too large, or
the friction work too low, the only solution is the trivial one and the system
is unstable.

There are computational [2] and experimental evidences (see Fig. 2) that
indicate that some LPT welded-in pairs rotors are aerodynamically unsta-
ble. Under these circumstances we are interested in predicting the vibration
amplitude of the rotor to estimate the alternate stress field. Figure 2 shows
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Fig. 1. Energy balance for the SDOF model
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Fig. 2. SG readings for a aerodynamically unstable LPT rotor blade

engine measurements in a strain gauge located in the shank of a LPT ro-
tor. Apart from the synchronous excitation a nonsynchronous excitation of
a certain mode is clearly seen in the whole range of shaft speed. This is an
indication that this mode is probably aerodynamically unstable.

In this paper we will first describe the analysis methodology. Then we will
discuss the results for several LPT rotor blades and will compare them with
experimental data.

2 Analysis Methodology

2.1 Aerodynamic Damping

The aerodynamic damping is computed using a Navier–Stokes linearized un-
structured code known as MusT-L [6]. The main hypothesis is that the flow
may be decomposed into two parts: a steady or mean background flow, plus
a small and periodic unsteady perturbation, which in turn may be expressed
as a Fourier series in time. The approach assumes that the effect of the aero-
dynamics on the mode-shape is negligible and the structural model may be
precomputed, injected, and interpolated in the aerodynamic solver. The mode
displacements are imposed on the blade surface and a moving mesh approach
is used in the aerodynamic solver. When several blades are required to describe
the structural mode-shape (such as in welded-in-pairs rotors), several passages
are employed as well in the simulation. Phase-lagged boundary conditions are
used to analyze traveling waves with arbitrary spatial wave numbers (nodal
diameters) in a single passage.



Aeroelastic Instability of Low-Pressure Rotor Blades 217

Because of manufacturing tolerances there are slight variations in the char-
acteristics of the different rotor blades. This may involve a significant alter-
ation of the vibratory behavior of the row and its aeroelastic stability. To
account for this effect analyses based on the fundamental mistuning model
(FMM) [2] are performed.

Since the aerodynamics is linear the aerodynamic work per cycle is
quadratic with the vibration amplitude δa, i.e.,

Wa = W ′
aδ

2
a .

.
2.2 Friction Damping

Centrifugal forces give rise to very high contact pressure in the fir-tree contact
faces. On the other hand, the alternating stresses due to the vibration motion
are comparatively much smaller than the normal steady load. This implies
that dissipation in fir-trees is caused by microslip phenomena, where both
deformation and sliding of the contacting surfaces play a significant role. The
processes involved are not completely understood and different approaches
may be found in the literature to model this behavior. Most recent theories
are based on the presence of micro-asperities on the contacting surfaces. Here,
we will consider a simplified version of the model proposed by Sellgren and
Olofsson [9], where the hypothesis that the tangential displacements are small
is used. Similar results may be obtained however with other models.

By analyzing the hysteresis loop of the friction force we can relate the local
energy dissipation in a cycle with the (macroscopic) local tensional state in
the contact surface via an equation such as

W � K(σ)Acτ
3.

Here, K(σ) is a function of the static tensional state and the material
properties, Ac is the contact area, and τ is the alternate shear stress.

Following the hypothesis of small displacements in the contact surfaces,
this alternate shear stress may be related to the blade macroscopic vibration
amplitude δa by means of analyses with clamped boundary conditions at the
contact surfaces. Taking into account all the aforementioned considerations
the energy dissipated in a friction loop is

WF = W ′
Fδ

3
a .

By balancing the aerodynamic work added to the blade and the energy dissi-
pated by the friction, the equilibrium vibration amplitude (point 2 in Fig. 1)
may be determined. For a more detailed description of the methodology the
reader is referred to [10].
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Fig. 3. AF results from the methodology

3 Results

The methodology has been applied to several rotor rows from different stages
of several engines. Results can be seen in Fig. 3. One of the cases is used to
calibrate the contact properties for the friction model (red square). Dashed
line represents the ideal case where the predictions are coincident with the
experimental data.

The agreement between the simulations and the experiments is fairly good
in a wide range of vibration amplitudes. It is important to highlight that,
although all the blades are aerodynamically unstable, several of them exhibit
acceptably small vibration amplitudes and should be considered as admissible
designs.

4 Concluding Remarks

An attempt to predict strain-gauge readings associated to self-excited vibra-
tions has been presented. The aerodynamic damping is computed using a
3D linearized viscous method while the damping associated to dry friction is
estimated by means of a simple model.

The vibration amplitudes associated to the strain-gauge readings are re-
produced with the present method within engineering accuracy, what makes
it very attractive from a practical point of view.
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1 Introduction

Vast majority of machinery structures are assembled structures: they con-
sist of two or, usually, more components assembled together and these joined
components interact with each other at friction contact interfaces. The forces
acting at friction contact interfaces are generally strongly nonlinear. Among
many sources of the nonlinearity of the interaction are (1) unilateral contact
of interaction along directions normal to contact surfaces, when compression
normal stresses can act at these surfaces but tension stresses are not allowed;
(2) variation of contact areas during loading, including closing and opening
clearances and interferences resulting in contact-separation transitions over a
whole interface surface or over its some parts; (3) friction forces with their
magnitude and stick-slip transitions affected by contact-separation and nor-
mal stress variation. In this chapter recent developments in modeling and
numerical analysis of nonlinear vibration of structures with friction interfaces
are discussed.

This chapter is not intended to make a thorough review of the state of
art in this vast scientific field but is focused on developments recently made
by the author. Three major research directions are developed in order to
provide effective tools for analysis of practical structures with friction con-
tact and other nonlinear interfaces, namely (1) contact interaction modeling,
which include development of new friction theories and special contact inter-
face elements facilitating contact interaction modeling; (2) efficient methods
for analysis of nonsmooth dynamics of realistic structure, containing, possibly,
millions of degrees of freedom (DOFs); and (3) advanced tools for effective
design of nonlinear structures, which include such capabilities as sensitivity
analysis of nonlinear forced response, direct parametric analysis, optimiza-
tion of design parameters. A scheme of the capabilities developed is shown
in Fig. 1.
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Fig. 1. Capabilities developed for analysis of nonsmooth dynamics of structures
with friction contact interfaces

2 New Friction Constitutive Laws and Modeling
of Friction Contact Interfaces

Friction is one of the most important sources of damping in structures with
joints. The problem of developing friction models is one of the oldest in me-
chanics and the model developed by Coulomb in 1785 is widely used in struc-
tural dynamics owing to its simplicity. However, Coulomb’s friction model has
inherent limitations when attempting to capture experimentally observed fric-
tion effects found after Coulomb. For example, it does not take into account
effect of normal load variation on slip-stick transitions, cannot make adequate
modeling when a trajectory of relative motion is more complex than a simple
line and has a difficulty in microslip modeling.

New efficient models have been developed in [1]. These friction models
can model friction forces occurring at contact interfaces for arbitrary trajec-
tory of relative motion and under time-varying normal load, including cases
of separation. They allow for also time-varying friction contact parameters,
such as friction coefficient and contact stiffness coefficients; anisotropy and
variation of the friction characteristics over the contact surfaces. The capa-
bilities of the new friction models are demonstrated and effects of trajectory
of motion, anisotropy of friction characteristics and of variation in off-time
friction characteristics, and normal load are discussed.

Special friction contact elements have been developed in [2] and [3] for
a general case of multiharmonic steady-state vibrations. These friction con-
tact elements can be spread over area where friction contact interactions are
expected and actual contact area, possibly varying in time, is determined as
a result of calculation together with forced response levels, contact interac-
tion forces, and contact interfaces stiffness characteristics corresponding to
the response levels. Expressions for interaction forces and stiffness matrix are
derived analytically. Owing to this, exact and very fast calculation can be
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made for any types of relative motion of contacting surfaces, including clos-
ing/opening gaps/interferences.

In [4] analytical expressions for first and second order sensitivity coeffi-
cients for the contact forces and tangent stiffness matrices with respect to
parameter of the friction contact such as gap value, friction coefficient, sta-
tic normal stress value, stiffness coefficients of the contact surface have been
derived for the first time.

3 Methods for Analysis of Nonsmooth Nonlinear
Dynamics of Large-Scale Finite Element Models
of Structures

3.1 Frequency-Domain Analysis of Steady-State Forced Response

A steady-state, periodic vibration response is often of major interest, and
therefore, displacements’ variation in time can be represented by a restricted
Fourier series. The total number of harmonics kept in such multiharmonic ex-
pansion of displacements and selection of harmonics numbers are dependent
on accuracy of calculation required. It should be noted that all major types
of periodic vibration, which are possible for strongly nonlinear structures,
can be found, including (1) major resonances; (2) superharmonic resonances;
(3) subharmonic resonances; and (4) combination resonances. The multihar-
monic representation allows transformation of nonlinear equations of motion
from time domain to frequency domain; therefore, instead of time-consuming
integration of differential equation of motion the algebraic nonlinear equations
are obtained with respect to coefficients of harmonics.

Methods for solution of such equations, for a case of realistic models com-
prising possible millions of degrees of freedom, continuation approaches and
condensation methods are developed and discussed in [2, 5, 6].

3.2 Use of Cyclic Symmetry in Analysis of Strongly Nonlinear
Structures

Many practical structures are designed to be cyclically symmetric, i.e., to
have a repetitive, “cyclic” part of the structure, which can form the whole
structure by simple rotations of this part (called also “a sector”) around its
symmetry axis. For strongly nonlinear structures a general method allowing
for cyclic symmetry has been proposed and validated for different types of non-
linearities in [5]. The method allows exact calculation of steady-state forced
response for a whole structure using its single sector, with special boundary
conditions applied at surfaces where this sector is attached to the rest of the
structure. Types of excitation and boundary conditions which allow use of
cyclic symmetry in nonlinear forced response analysis are formulated. For a
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case of structures with violations of the cyclic symmetry, so-called “mistuned”
structures, efficient analysis methods are proposed in [7].

3.3 Analysis of Sensitivity, Uncertainty, and Stochastic
Characteristics of the Nonlinear Forced Response

To make a justified choice of design parameters there is a need to determine
how sensitive predicted response levels are to variations of the design parame-
ters. Sensitivity characteristics of the forced response facilitate choosing the
optimal parameters for a structure and allow assessment of robustness and
fidelity of the calculated forced response levels in the presence of inevitable
variability of the design parameters

In [4] a method is proposed to calculate sensitivity of nonlinear forced
response levels to variation of parameters of the friction contact interfaces
and gaps. The effectiveness of the method allows the first and second order
sensitivity coefficients to be calculated simultaneously with calculation of the
forced response in wide frequency ranges. The method is based on analytical
derivation of the friction contact elements that provide highly accurate and
extremely fast calculations of the forced response sensitivity.

Methods of calculations of uncertainty, stochastic characteristics, and
probability density function of the nonlinear forced response of structure with
stochastic friction contact parameters are proposed in [8].

3.4 Concept and Methods for Direct Parametric Analysis
of Strongly Nonlinear Structures

In design practice there is usually a need to understand how forced response
levels are dependent on the choice of design parameter values when they can
vary in wide ranges. Customary multivariant calculations of the forced re-
sponse calculated for discrete, a priori selected sets of the contact parameters
values require significant computation expense and in many cases do not pro-
vide information required.

An effective method for direct parametric analysis of nonlinear forced re-
sponse for structures with friction contact interfaces has been developed in [6].
The method allows, for the first time, forced response levels to be calculated
directly as a function of contact interface parameters such as the friction coef-
ficient, contact surface stiffness, clearances, interferences, and normal stresses.
As a result of the calculation, the functional dependency of the forced response
level on each design parameter separately, or, on their simultaneous variation,
is determined for wide ranges of parameter variation. In [9] the method has
been extended to allow the direct parametric analysis for resonance peak am-
plitudes and frequencies. The method provides a unique capability to calculate
dependencies of resonance frequencies and amplitudes for strongly nonlinear
structures.
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4 Conclusions

A methodology has been developed for efficient analysis of forced response
for strongly nonlinear structure with friction, gap, and impact interfaces. The
methodology allows using realistic, large-scale models of practical structures
with millions of DOFs.

Development of the analytical formulation for friction contact interfaces
elements ensures unprecedented speed and accuracy of calculation and pro-
vides a breakthrough in analysis of the nonlinear forced response for structures
with friction and gaps. Original methods for advanced analysis of nonlinear
forced response have been proposed, including allowing for cyclic symmetry,
sensitivity analysis of the forced response, direct parametric analysis, and
determination of response uncertainty and probabilistic characteristics.
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Summary. In this work, we propose a new family of high order finite volume meth-
ods for stiff balance laws. These methods are characterized by an explicit integration
of the nonlinear convective terms, while the possibly stiff source is computed implic-
itly with a novel approach that avoids cell coupling. For this reason, the methods
enjoy a favorable stability restriction, without requiring the solution of large non-
linear systems of equations.

1 Introduction

Consider the system of balance laws

ut + fx(u) =
1
ε
g(u), (1)

where ε > 0 is a stiffness parameter and f is hyperbolic, i.e., the Jacobian of f
has real eigenvalues and a complete system of eigenvectors, for all u. Systems
of the form (1) arise in several applications, for instance dynamics of gas
mixtures with chemical reactions or change of phases, multiphase flows, kinetic
systems for rarefied gases, extended thermodynamics, hydrodynamical models
for semiconductor devices, continuous models for traffic flow, and granular
flow, to mention just a few (see, for example, [4] and references therein. In
several applications, the stiffness parameter ε is very small, so that the source
term can be very large and the system becomes stiff. On the other hand, the
convective term fx(u) has to be discretized by a nonlinear method, even in
the case of linear flow, because the space discretization calls for nonlinear
algorithms to prevent the onset of spurious oscillations. Thus, it is convenient
to use implicit time integrators on the stiff term to avoid the use of very
small time steps forced by the stability restriction, but it is also convenient
to integrate explicitly the convective term to avoid the need to solve large
nonlinear algebraic systems of equations.
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Several applications require a nonuniform unstructured grid in order to
concentrate degrees of freedom where the solution exhibits a complex struc-
ture, and/or to fit the grid to a computational domain Ω which may not
be accurately covered with a uniform, cartesian mesh. In both cases, a finite
difference discretization is not possible: high order finite differences in fact
require a regular of a smoothly varying grid [6], and are difficult to use onto
a domain with a generic shape. For such reasons finite volume methods are
sometimes preferred, since they can be adapted to unstructured grids.

A finite volume formulation of (1) can be written as

d
dt
ūk = − 1

m(Tk)

∫
∂Tk

f(u)n+
1
ε
〈g(u)〉k, (2)

where Tk is the generic element of the mesh, i.e., a triangle or quadrilateral
with measure m(Tk), ūk denotes the cell average of the solution u on the
element Tk, and 〈g(u)〉k ≡ (

∫
Tk
g(u))/m(Tk) denotes the average of the source

on the element Tk.
We note that an implicit treatment of the source term couples the elements

Tk together since, for a high order scheme, 〈g(u)〉k �= g(ū)k.
In this work, we propose a family of finite volume methods based on a

staggered grid which overcomes the difficulty inherent in the construction
of high order finite volume methods with an implicit source term. The key
ingredient is to adapt to the present framework the construction of Central
Runge Kutta (CRK) schemes proposed in [3].

2 IMEX CRK Schemes

For the sake of simplicity, from now on we will consider a one-dimensional
problem on a uniform grid, with nodes xj and uniform mesh spacing h. The
finite volume formulation now reads

d
dt
ū(x) = − 1

h
(f(u(x+ h/2, t)− f(u(x− h/2, t))) +

1
ε
〈g(u)〉|x . (3)

Starting from the cell averages ūn
j at time tn, we reconstruct the piecewise

polynomial function U(x, tn), which is discontinuous at the cell edges located
in xj±1/2 = xj ± h/2. Next, (3) is integrated in time with a ν stage IMEX
Runge–Kutta scheme, as in [4], on the staggered grid [xj , xj+1]. Let b̃i, ãi,l
and bi, ai,l, with i, l = 1, . . . ν be the coefficients in the Butcher tableaux
of the explicit and implicit Runge Kutta schemes forming the IMEX pair,
respectively. Then the numerical cell averages at time tn+1 are given by

ūn+1
j+1/2 = ūn

j+1/2 −
∆t

h

ν∑
i=1

b̃i
(
f i
j+1 − f i

j)
)

+
∆t

ε

ν∑
i=1

bi〈g(U (i))〉j+1/2, (4)
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where f i
j ≡ f(U (i)

j ), while the stage values U (i)
j are computed pointwise with

the following equations:

U
(i)
j = Un

j −
∆t

h

i−1∑
l=1

ãi,l∂xf(U (l)
j ) +

∆t

ε

i∑
l=1

ai,lg(U
(l)
j ). (5)

Since the reconstructed function U (i) is smooth at the grid points xj , all
quantities appearing in the equation above are well defined. We remark that
the evaluation of the stage values is performed pointwise on the primitive grid.

A discrete approximation of the space derivative of the flux appearing in
(5) is performed by a suitable Central WENO reconstruction [2]. A similar
reconstruction is used to compute the pointwise value U (1)

j from cell averages
in (5) and the staggered cell average ūn

j+1/2 in (4).
In the computation of the new stage value, (5), at each stage one has

to solve one nonlinear equation for U
(i)
j , which can be solved cell by cell,

since at this level all cells are decoupled. The solution is then updated in the
sense of cell averages in (4), and here the cell averages of the source term can
be explicitly computed by quadrature, using the stage values U (i)(x) found
through a suitable reconstruction technique. For more details, see [2, 3, 5].

Results
We demonstrate the performance of this class of schemes on the Broadwell

model, which is a toy model for kinetic problems. The system is of the form
(1) with [4]

u = (ρ,m, z)T , f = (m, z,m)T , g = (0, 0, (ρ2 +m2)/2− ρz)T . (6)

As ε→ 0, the system relaxes to a 2×2 system of conservation laws for ρ and m,
while the variable z becomes a function of the other variables. We test schemes
of order 1 (CRK1: the IMEX scheme is simply formed by the explicit and
the implicit Euler schemes, with piecewise constant reconstruction), order 2
(CRK2: second order IMEX scheme used in [5], piecewise linear reconstruction
with MinMod limiter), and order 4 (CRK4: third order IMEX scheme as in [5],
with 4th order central WENO reconstruction, see [2]).

First we show the convergence of the schemes for various values of the
stiffness parameter ε on the smooth test problem with periodic initial data:
ρ(x, 0) = ρ0 = 1+aρ sin(2πx/L), v(x, 0) = v0 = 1/2+av sin(2πx/L), z(x, 0) =
az

1
2

(
ρ0 + ρ0v

2
0

)
, where v is the velocity, v = m/ρ. The computational region

is L = 20. The system has eigenvalues µ = 0, µ = ±1, thus the mesh ratio λ
was chosen as λ = 0.9/2. The computation was stopped at T = 20. Figure 1
shows the order of accuracy of the second and fourth order schemes as a
function of ε, computed against a reference solution. The figure shows clearly
that full accuracy is reached only for very small values of ε or for ε = O(1).
However, it is noteworthy that the higher order scheme has always a much
higher accuracy than the lower order IMEX-CRK2 scheme.
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Fig. 1. Accuracy of CRK-IMEX schemes of order 2 (lower curve) and 4 (upper
curve) in the L1 (left) and L∞ (right) norms

Table 1. Error in the L1 norm for the second order CRK2 scheme (left table) and
CRK4 (right table)

ε N = 50 N = 100 N = 200 N = 400 N = 50 N = 100 N = 200 N = 400

1. 0.556e−2 0.307e−2 0.149e−2 0.656e−3 0.118e−4 0.577e−6 0.280e−7 0.166e−8
0.1 0.234e−1 0.177e−1 0.107e−1 0.541e−2 0.139e−4 0.767e−6 0.573e−7 0.575e−8
0.01 0.301e−1 0.269e−1 0.216e−1 0.156e−1 0.104e−4 0.168e−5 0.283e−6 0.423e−7
1e−3 0.172e−1 0.163e−1 0.149e−1 0.123e−1 0.712e−5 0.175e−5 0.485e−6 0.115e−6
1e−4 0.236e−2 0.195e−2 0.177e−2 0.153e−2 0.360e−5 0.399e−6 0.130e−6 0.527e−7
1e−5 0.794e−3 0.264e−3 0.177e−3 0.137e−3 0.328e−5 0.181e−6 0.195e−7 0.576e−8
1e−6 0.681e−3 0.152e−3 0.457e−4 0.187e−4 0.326e−5 0.163e−6 0.918e−8 0.949e−9
1e−7 0.670e−3 0.142e−3 0.363e−4 0.929e−5 0.326e−5 0.161e−6 0.817e−8 0.499e−9

A comparison between left and right tables in Table 1 show clearly that
the higher order scheme is by far superior even on coarse grids and that the
decay of accuracy on moderately stiff values of ε does not translate in large
errors. Both second and fourth order scheme show a pronounced degradation
of the accuracy for intermediate values of the stiffness parameter ε. The main
reason is that we used initial conditions which are not “well prepared,” i.e., the
parameter az = 0.2 is not 1. With this choice we want to show that the IMEX
numerical schemes that we used are robust enough to recover full accuracy
for both very small and very large values of the stiffness parameter, even in
presence of an initial layer.

The effect of degradation of accuracy for intermediate values of ε and the
techniques to overcome it obtaining uniform accuracy are studied in detail in
the PhD thesis [1].

Note that CRK4 is actually third order accurate in time. However, fourth
order accuracy appears at the resolution used in the test, because space error
is usually dominant than time discretization error at such resolutions.

We end with a Riemann problem, with data [ρ,m, z] = [2, 1, 1] for x < 0.2
and [ρ,m, z] = [1, 0.13962, 1] for x > 0.2, on the computational domain [−1, 1],
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Fig. 2. Riemann problem for the Broadwell model. Left : comparison of schemes of
order 1, 2, and 4 for ε = 1. Right : comparison of several grid spacings for the high
order CRK4 scheme with ε = 10−8

with free flow boundary conditions. Figure 2 shows a comparison of several
schemes of the CRK family (orders 1, 2, and 4) for ε = 1, while on the right the
solution of the CRK4 scheme with ε = 10−8 is shown. In the figure, all three
components of the solution are shown in different shades of grey. We note the
increase in accuracy as the order is increased, and the high and nonoscillatory
resolution obtained with the high order scheme on the discontinuities resulting
from the stiff problem.
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1 Introduction

In this research work we address the issue of the use of slope limiters to design
high order reconstruction procedures when combined with shock capturing
schemes for the approximation of hyperbolic conservation laws.

We compare WENO ([JS96]) reconstruction procedure with the Weighted
PowerENO one introduced in [SM04] defined as a result of applying a weaker
slope limiter (powereno limiter) on second order differences than the one
(mineno limiter) used by WENO. We compute with both methods the so-
lution of the compressible Rayleigh–Taylor instability where complex struc-
ture appear. The growth of this instability is sensitive to numerical diffusion;
therefore, reduced viscosity and high resolution of the contact discontinuity is
important [MOS92,SZS03]. Weighted PowerENO resolves fine structure with
reduced viscosity compared with WENO.

2 Power Limiters and Weighted PowerENO Method

The main goal of high order methods is to reduce smearing at discontinu-
ities with high accuracy along smooth regions of the flow avoiding Gibbs
phenomena.

ENO procedures [HEOC] use the smoothest polynomial interpolation by
choosing the divided differences of smallest size following a tree-like algorithm.
This selection procedure consists of a limiter function (mineno limiter) acting
on the successive divided differences of the data.

For methods of order of accuracy larger than two, as parabolic ENO meth-
ods, second order differences need to be limited to ensure local total variation
bounded property [HEOC, SM04]. However, when limiting second order dif-
ferences, small scales may be destroyed if a very strong limiter, like the one
used for ENO methods, is applied. The main effect on the numerical solution
is the increasingly smearing across contact discontinuities as time advances.
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In Serna and Marquina [SM04] a new class of limiters, the so-called power
limiters, were introduced to be applied on neighboring second order differences
to define new five point stencil ENO parabolic reconstruction procedures.

Power limiters are functions of two variables based on an average (power
mean) of two nonnegative numbers. The powerp(x, y) mean for x > 0, y > 0,
and p a positive integer is defined in [SM04] as

powerp(x, y) =
(x+ y)

2

(
1−
∣∣∣∣x− y

x+ y

∣∣∣∣p). (1)

The corresponding limiters are defined for any x and y as

powermodp(x, y) =
(sgn(x) + sgn(y))

2
powerp(|x|, |y|), (2)

powerenop(x, y) = minsign(x, y) powerp(|x|, |y|), (3)

where sgn(x) is the sign function, and

minsign(x, y) =
{
sgn(x), |x| <= |y|,
sgn(y) otherwise.

The following inequalities are satisfied for any x > 0 and y > 0 and for
0 < p < q [SM04]:

min(x, y) = power1(x, y) ≤ powerp(x, y) ≤ powerq(x, y) ≤
x+ y

2
.

The minimum is the strongest average among all powerp for p > 1. A
limiter based on powerp mean is weaker as larger p is chosen.

Power ENO reconstruction procedure [SM04] is a third order accuracy
method defined as a correction of third order ENO method by applying the
powereno3 limiter on second order differences. Weighted PowerENO is a fifth
order accuracy reconstruction procedure written as a convex combination of
the third order accurate Power ENO parabolas. In a similar way as WENO
procedure is designed in [JS96], Weighted PowerENO results uniformly fifth
order accurate in smooth regions.

Weighted PowerENO presents substantially reduced smearing near dis-
continuities and good resolution of corners and local extrema compared with
WENO [SM04]. The reduced viscosity of Weighted PowerENO is due to the
use of a weaker limiter on second order differences. This behavior is impor-
tant to capture fine structure generated at contact discontinuities along the
evolution of complex flows.

3 Numerical Method

Let us consider a system of conservation laws of the form

ut + (f(u))x + (g(u))y = S(u), (4)

with the initial data u(x, y, 0) := u0(x, y).
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We introduce the computational grid xj = j∆x, yk = k∆y, (∆x and
∆y are the spatial steps), tn = n∆t, the time discretization, (∆t is the time
step), Ixj = [xj− 1

2
, xj+ 1

2
], and Iyk = [yk− 1

2
, yk+ 1

2
] are the spatial cells, and

Cn
jk = Ixj × Iyk × [tn, tn+1] is the computational cell, where xj+ 1

2
= xj + ∆x

2

and yk+ 1
2

= yk + ∆y
2 .

Let un
jk be an approximation of the mean value in Ixj × Iyk

1
∆x∆y

∫ x
j+ 1

2

x
j− 1

2

∫ y
k+ 1

2

y
k− 1

2

u(x, y, tn) dxdy (5)

of the exact solution u(x, y, tn) of the initial value problem (4) obtained from
a finite difference scheme in conservation form:

un+1
j,k = un

j,k−
∆t

∆x
(f̃j+ 1

2 ,k
− f̃j− 1

2 ,k
)− ∆t

∆y
(g̃j,k+ 1

2
− g̃j,k− 1

2
)+∆t S(un

j,k), (6)

where the numerical fluxes, f̃ and g̃ , are functions of 2l variables

f̃j+ 1
2 ,k

= f̃(un
j−l+1,k, · · ·un

j+l,k) and g̃j,k+ 1
2

= g̃(un
j,k−l+1, · · ·un

j,k+l)

that are consistent with the fluxes of (4), f̃(u, · · · ,u) = f(u) and g̃(u, · · · ,
u) = g(u).

To approximate the numerical fluxes at cell interfaces, we use the Marquina
flux formula (MFF) [DM96]. MFF prescribes the appropriate viscosity to be
stable and to develop the physically consistent features of the shock wave
phenomena. This flux formula computes the numerical flux FM (ul,ur) by
performing a characteristic field decomposition at ul and ur, using Godunov’s
method for nontransonic local characteristic fields and local Lax–Friedrichs
method for transonic ones. Thus, the first order scheme based on MFF is

un+1
jk = un

jk −
∆t

∆x

(
FM (un

jk,u
n
j+1,k)− FM (un

j−1,k,u
n
j,k)
)

(7)

−∆t

∆y

(
GM (un

jk,u
n
j,k+1)−GM (un

j,k−1,u
n
j,k)
)

+ ∆t S(un
jk),

with u0
jk = u(xj , yk, 0), FM (u,u) = f(u), and GM (u,u) = g(u) .

Higher order of accuracy in space is obtained by applying fifth order ac-
curate reconstruction procedures on local characteristic variables and local
characteristic fluxes extrapolating them to the left and right states of cell
interfaces following the so-called Shu–Osher “flux formulation,” [SO89]. We
integrate in time using the third order Runge–Kutta method [SO89]. The
scheme is stable under a CFL restriction.

3.1 Rayleigh–Taylor Instability

Rayleigh–Taylor instability is generic to a wide range of physical phenomena,
([MOS92] and references there in). This type of instability is generated as a



234 S. Serna

consequence of a heavy fluid driven into a light one under the acceleration
of a gravitational field. In the initial state of the Rayleigh–Taylor instability
an unstable interface separates two fluids of different densities. A persistent
acceleration (gravity field) causes the perturbation to grow as the heavier
fluid pushes through the perturbation. Long spikes of the heavier fluid fall
into the lighter fluid at the same time as bubbles of the lighter fluid rise into
the heavier one. The perturbation grows exponentially in time.

Rayleigh–Taylor instability can be described by means of the two-
dimensional Euler equations of compressible gas dynamics, (4), with

u =

⎡⎢⎢⎣
ρ
ρu
ρv
E

⎤⎥⎥⎦ f(u) =

⎡⎢⎢⎣
ρu

P + ρu2

ρuv
u(E + P )

⎤⎥⎥⎦g(u) =

⎡⎢⎢⎣
ρv
ρuv

P + ρv2

v(E + P )

⎤⎥⎥⎦S(u) =

⎡⎢⎢⎣
0
0
ρg
ρvg

⎤⎥⎥⎦ ,
where ρ is the density, u and v are the components of the velocity in both
directions, P is the pressure, g is the constant gravity field, and E is the total
energy, E = P

(γ−1) + 1
2ρ(u

2 + v2). We consider the ideal gas equation of state
to compute the pressure P = (γ − 1)ρε.

The numerical experiments are performed on a rectangular domain
[0, 0.25]× [0, 1], with the initial data
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Fig. 1. Left : MFF-WENO. Right : MFF-Weighted PowerENO
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(ρ, u, v, P ) =
{

(2, 0,−0.25 · c · cos(8πx), 2y + 1) 0 ≤ y < 0.5
(1, 0,−0.25 · c · cos(8πx), y + 1.5) 0.5 ≤ y < 1,

where c =
√

γP
ρ is the sound speed. In this experiment we consider γ = 5

3 ,
g = 1 and evolve until time t = 1.95.

Reflective boundary conditions are imposed for the left and right boun-
daries. At the top boundary, (y = 1), the flow values are set as (ρ, u, v, P ) =
(1, 0, 0, 2.5) and at the bottom boundary, (y = 0), as (ρ, u, v, P ) = (2, 0, 0, 1).

Both experiments have been implemented using a grid of 200× 800 points
and a CFL factor of 0.6. Along the evolution, the small initial sinusoidal
perturbation grows into a mushroomshaped object and develops side rolls
as displayed in Fig. 1. We observe much better resolution for the Weighted
PowerENO method in complicated solution structure than WENO method. In
particular the Kelvin–Helmholtz vortex structure appearing in the evolution
is better resolved for the Weighted PowerENO method.

Acknowledgements

Grant MTM2005-07708 is acknowledged.

References

[DM96] Donat, R. and Marquina, A. Capturing Shock Reflections: An improved
Flux Formula, J. Comput. Phys. 125 (1996) 42–58.

[HEOC] Harten, A., Engquist, B., Osher, S. Chakravarthy, S: Uniformly high order
accurate essentially non-oscillatory schemes III, J. Comput. Phys. 71 (2)
1987, 231–303.

[JS96] Jiang, G.S., and Shu, C.W.: Efficient implementation of weighted ENO
schemes, J. Comput. Phys. 126 (1996) 202–228.

[MOS92] Mulder, W., Osher, S., Sethian, J.A.: Computing interface motion in com-
pressible gas dynamics. J. Comput. Phys., 100, 209–228, (1992)

[SM04] Serna, S., Marquina, A.: Power ENO methods: A fifth-order accurate
Weighted Power ENO method. J. Comput. Phys., 194, 632–658 (2004)

[SZS03] Shi, J., Zhang, YT., Shu, CW.: Resolution of high order WENO schemes
for complicated flow structures. J. Comput. Phys., 186, 690–696 (2003)

[SO89] Shu, CW, Osher, SJ: Efficient Implementation of Essentially Non-Oscilla-
tory Shock Capturing Schemes II, J. Comput. Phys. 83, 1989, 32–78.



A Comparison Between Relaxation
and Kurganov–Tadmor Schemes

Fausto Cavalli1, Giovanni Naldi1, Gabriella Puppo2, and Matteo Semplice1

1 Dipartimento di Matematica, Universit di Milano, Via Saldini 50, 20133 Milano,
Italy
{cavalli, naldi, semplice}@mat.unimi.it

2 Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi,
24, 10129 Torino, Italy
gabriella.puppo@polito.it

Summary. In this work we compare two semidiscrete schemes for the solution of hy-
perbolic conservation laws, namely the relaxation [JX95] and the Kurganov Tadmor
central scheme [KT00]. We are particularly interested in their behavior under small
time steps, in view of future applications to convection diffusion problems. The
schemes are tested on two benchmark problems, with one space variable.

1 Motivation

We are interested in the solution of systems of equations of the form

ut + fx(u) = Dpxx(u), (1)

where f(u) is hyperbolic, i.e., the Jacobian of f is provided with real eigen-
values and a basis of eigenvectors for each u, while p(u) is a nondecreasing
Lipschitz continuous function, with Lipschitz constant µ and D ≥ 0.

We continue the study of convection diffusion equations with the aid of
high order relaxation schemes started in [CNPS06] for the case of the purely
parabolic problem.

In many applications, such as multiphase flows in porous media, p(u) is
nonlinear and possibly degenerate. In these conditions, an implicit solution
of the diffusion term can be computationally very expensive: in fact it may
be necessary to solve large nonlinear algebraic systems of equations which,
moreover, can be singular at degenerate points, i.e., where p(u) = 0. For this
reason, it is of interest to consider the explicit solution of (1). This in turn
poses one more difficulty. An explicit solution of (1) requires a parabolic CFL
condition, that is, stability will restrict the possible choice of the time step
∆t to ∆t ≤ C(∆x)2, where ∆x is the grid spacing. In other words, it may
be necessary to choose very small time steps. But conventional solvers for
convective operators typically work at their best for time steps close to a
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convective CFL, i.e., ∆t ≤ C∆x. When the time step is much smaller, they
exhibit a very large artificial diffusion of the form O((∆x)2r/∆t), where r is
the accuracy of the scheme, see for instance [KT00]. Clearly in these conditions
artificial diffusion becomes very large for ∆t→ 0.

As a first step to the numerical solution of problem (1), we concentrate
on semidiscrete schemes for the solution of the convective part of (1). Such
schemes enjoy an artificial diffusion which depends weakly on ∆t, and are
therefore particularly suited for the solution of convection–diffusion equations.

We will compare two semidiscrete methods for the integration of systems
of hyperbolic equations. We are interested in the representation of solutions
which can be characterized by strong gradients, and in the degenerate case,
even by discontinuities. Moreover, we are interested in comparing the behavior
of the schemes for small values of ∆t, and for such small values of the time step,
we will investigate the resolution of discontinuous solutions and the behavior
of the error in a few test problems.

The schemes analyzed in this work are the Kurganov Tadmor central
scheme proposed in [KT00], and the relaxation scheme proposed in [JX95].
These methods discretize the equations starting from very different ideas;
however, they share some interesting properties. First of all, they are both
semidiscrete schemes. Therefore, they require separate discretizations in space
and time, which is the key to the fact that artificial diffusion depends mainly
on space discretization. Secondly, they are both Riemann solver free methods.
The Kurganov–Tadmor scheme is based on a central approach: the solution of
the Riemann problem is computed on a staggered cell, before being averaged
back on the standard grid. In this fashion, the numerical solution is updated
on the edges of the staggered grid, where it is smooth, and can be computed
via a Taylor expansion, with no need to solve the actual Riemann problem.
The relaxation scheme instead moves the nonlinearities of the convective term
to a stiff source term, and the transport part of the system becomes linear,
with a fixed and well known characteristic structure. Thus again there is no
need to use approximate or exact Riemann solvers.

For these reasons both schemes can be applied as black-box methods to a
fairly general class of balance laws.

2 Results

For the Kurganov–Tadmor (KT) scheme we have followed the componentwise
implementation of the method described in [KT00]. The scheme is written in
conservation form, with numerical flux

Fj+1/2(t) = 1
2

[
f(u+

j+1/2(t)) + f(u−j+1/2(t))

−aj+1/2(t)
(
u+
j+1/2(t)− u−j+1/2(t)

)]
,

(2)

where u+
j+1/2(t) and u−j+1/2(t) are the boundary extrapolated data, computed

at the edges of each cell with a piecewise linear reconstruction at time t, and
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aj+1/2(t) is a measure of the maximum propagation speed at the cell edge.
For the case of systems of equations, in particular in the nonconvex case, this
value must be carefully tuned, and it is the same for all components, when
the scheme is implemented componentwise.

On the other hand, the relaxation scheme requires an accurate choice of
the subcharacteristic velocities A2. The relaxation system is⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u
∂t

+
∂v
∂x

= 0

∂v
∂t

+A2 ∂u
∂x

= −1
ε

(v − f(u)) .

(3)

As ε → 0, the system (3) formally relaxes to the original conservation laws,
provided the subcharacteristic condition holds, namely that (A2− (f ′(u))2) is
positive-definite.

For a scalar conservation law, we take A2 = max(|f ′(u)|) as in [JX95],
while for the Euler system of gas-dynamics we take A2 to be the diagonal
matrix with entries maxj(|uj − cj |), maxj(|uj |), and maxj(|uj + cj |). Here u
is the velocity and c is the speed of sound. We update these quantities at each
time step, so that A2 can be chosen as small as possible (in the paper [JX95] A2

was chosen as a constant diagonal matrix but this results in a larger numerical
diffusion).

Because of the diagonal form of A2, the convective operator is block diag-
onal with 2×2 blocks. Each block is independently diagonalized and we com-
pute the numerical fluxes using a second order ENO reconstruction [HEOC87].

We use the second order Heun Runge–Kutta method for the time integra-
tion of both the KT and the relaxation schemes.

Table 1 shows the errors in the L1 norm for the linear advection equation
ut + ux = 0 with initial data u(x, 0) = sin(2πx). We use the standard con-
vective CFL condition ∆t = C∆x and the parabolic CFL, ∆t = C(∆x)2. We
note that the errors are almost the same for the two schemes for the convective
CFL, while the relaxation scheme seems superior for the parabolic CFL.

Table 1. Linear advection of a sine function

Convective CFL Parabolic CFL

KT Relax KT Relax

20 2.03E−1 2.16E−1 6.19E−1 1.02E−1
40 7.58E−2 7.66E−2 2.04E−1 4.58E−2
80 2.71E−2 2.73E−2 9.10E−2 1.34E−2
160 8.22E−3 8.25E−3 2.67E−2 3.82E−3
320 2.29E−3 2.29E−3 7.62E−3 1.03E−3
640 6.11E−4 6.12E−4 2.06E−3 2.77E−4
1280 1.61E–4 1.61E–4

Errors in L1 at t = 1.
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A key requirement for a numerical scheme for conservation laws is the
ability to pick the entropy solution in nonconvex problems. Here we show
a Riemann problem for the nonconvex flux f(u) = (u2 − 1)(u2 − 4)/4, as
in [KT00]. The Riemann problem breaks into two shocks connected by a
rarefaction wave. The results are shown in Fig. 1. Clearly both schemes are
able to resolve the correct discontinuities and they have approximately the
same resolution, the KT scheme being slightly less diffusive.

Figure 2 shows the density component of the Lax Riemann problem in
gas dynamics. The accurate choice suggested above for the matrix A2 in the
relaxation system yields a slightly higher resolution than KT.
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3 Concluding Remarks

We have compared two semidiscrete schemes for conservation laws. We find
that although the schemes are constructed with very different philosophies,
they yield comparable results on some significant test problems. We think
that the relaxation scheme is slightly more robust, since it results from the
relaxation of a viscous profile, provided the subcharacteristic condition is sat-
isfied. Also, the actual errors obtained with a parabolic CFL in Table 1 seem
to favor the relaxation scheme.

We also wish to mention higher order extensions of the schemes stud-
ied in this work: namely the third order central upwind scheme described
in [KNP01], endowed with a more carefully crafted artificial diffusion with
respect to [KT00] and the third order extension of the relaxation scheme pro-
posed in [Sea06].
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Summary. Adaptivity is a crucial prerequisite for efficient and reliable simulations.
In multibody dynamics, adaptive time integration methods are standard today, but
the treatment of elastic bodies is still based on an a priori fixed spatial discretization.
This contribution introduces a basic algorithm in the fashion of the reverse method
of lines that is able to adapt both the spatial grid and the time step size from step
to step. The example of a catenary with a moving pantograph head illustrates the
approach.

1 Introduction

Flexible multibody systems are aimed at the growing simulation demands
in vehicle dynamics, robotics, and in air- and spacecraft development. These
mixed systems contain both rigid and elastic bodies as well as the usual inter-
connections like joints that constrain the motion of pairs of bodies or springs
and dampers that act as compliant elements.

The mathematical model of a flexible multibody system consists of a set
of ordinary differential equations (ODEs) or differential-algebraic equations
(DAEs), which are coupled with some partial differential equations (PDEs).
The PDEs are the equations of elasto dynamics for the deformation of bodies
while the ODE or DAE part describes the so-called gross motion, i.e., spatial
translations and rotations. Beams are the most frequent elastic members, but
plates and shells and even full 3D structures have also become widespread in
multibody formalisms. We refer to [S98, S06] for an extensive survey on the
underlying mathematical models.

Simulation methods for flexible multibody systems typically employ first
a space discretization of the PDEs. This reduces the overall equations to
an extended system of ODEs or DAEs. Standard interfaces between finite
element and multibody codes facilitate this step considerably. The resulting
semidiscretized system involves two types of state variables, namely, those for
the gross motion and those for the deformations.
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From the point of numerical analysis, flexible multibody systems lead to
two key problems that deserve particular attention:

1. Good approximation of elastic deformation and low system dimension are
contradictory goals. In particular, in complex applications, the result of
the semidiscretization in space depends strongly on engineering judgement
since adaptive grids are not available so far.

2. Gross motion and elastic deformation may have widely different time
scales, and this turns the time integration into a challenging problem.

This chapter addresses mainly problem (1). We propose an algorithm in the
fashion of the reverse method of lines in order to combine adaptivity in time
and space. The time integrator in this approach, however, has to cope with
problem (2), which means that stability and numerical dissipation are impor-
tant features.

This chapter is organized as follows: As a starting point, Sect. 2 summarizes
the equations of motion both in the rigid and elastic case. Section 3 introduces
the time integration scheme along with a sketch of the reverse method of lines,
and finally in Sect. 4 simulation results for a catenary system with moving
pantograph head are presented.

2 Equations of Motion

As a point of departure, we consider a mechanical system composed of rigid
bodies only and denote by the vector q(t) ∈ Rnq the position coordinates of all
bodies depending on time t. According to Euler and Lagrange, the equations
of constrained mechanical motion read

M q̈ = f(q, q̇, t)−GT (q)λ, (1a)
0 = g(q). (1b)

Here, M stands for the mass matrix, f for the applied forces, g for the
holonomic constraints, and G = ∂g/∂q for the constraint Jacobian. Besides
the position coordinates q, the Lagrange multipliers λ(t) ∈ Rnλ , nλ < nq,
are also unknowns. The equations of motion (1) form a system of index 3 if
the constraint Jacobian G has full rank, which is equivalent to the min–max
condition

min
λ

max
v

λTGv

‖λ‖2‖v‖2
= σmin(G) > 0

with minimum singular value σmin.
In case of elastic bodies, the mathematical model involves a coupling of the

above equations of motion with the PDEs that govern the deformation. How-
ever, in the engineering literature on flexible multibody systems, mathematical
modeling and numerical treatment are often intertwined. The elastic body is
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first discretized in space, which results in a finite dimensional structure. There-
after, the equations of motion and the coupling conditions are formulated in
terms of certain shape functions or finite element displacements.

If we consider a single elastic body occupying the domain Ω ⊂ R3 and
neglect the gross motion for the moment, i.e., assume the setting of linear
elasticity, Cauchy’s equations are

ρü = divσ(u) + β in Ω (2)

with boundary conditions u = u0 on Γ0 and σ(u)n = τ on Γ1. The dis-
placement field u(x, t) ∈ R3 satisfies thus a generalized wave equation where
ρ denotes the mass density, β(x, t) the density of body forces, σ(u) ∈ R3×3

the stress tensor, u0(x, t) the Dirichlet boundary conditions, and τ (x, t) the
surface tractions with normal vector n(x). Hooke’s law relates stress tensor
σ and strain tensor ε = 1/2(∇u + ∇uT ) via σ(u) = C · ε(u) with elasticity
tensor C. Note that the bounday condition u = u0 on Γ0 is a constraint in the
multibody context since u0 = u0(q) may depend on the motion of neighboring
bodies. For a more detailed discussion of this aspect and the corresponding
saddle point problem formulation see [S06].

Using a floating frame of reference approach, we take rotation and trans-
lation in space into account via

ϕ(x, t) = y(t) + A(α(t))(x+ u(x, t)). (3)

Here, ϕ(x, t) ∈ R3 is the motion of a material point of the elastic body,
y(t) ∈ R3 is the translation between the inertial and the floating frame, and
A(α) ∈ SO(3) is a rotation matrix that depends on the angles α.

A space discretization is introduced by the Galerkin projection

u(x, t) .= Nu(x) · qe(t) (4)

where Nu(x) ∈ R3×nqe is a matrix of known global shape functions and
qe(t) ∈ Rnqe is the vector of corresponding displacement coefficients. The
equations of motion of a flexible multibody system follow now from the same
variational principle as in the rigid body case, and we obtain a differential-
algebraic system that has the same structure as (1). The unknowns q split
into q = (qr, qe) with rigid motion variables qr and elastic displacements qe.

3 Time Integration and Reverse Method of Lines

Our choice of the time integration scheme for the equations of motion (1) is
inspired by the following requirements:

– Both position constraint 0 = g(q) and velocity constraint
0 = G(q)q̇ = G(q)v are used to stabilize the discretization.

– The acceleration constraint need not be evaluated.
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– The computational effort is comparable to a BDF method for the stabi-
lized equations of motion.

– Adjustable numerical dissipation is available.

As described in [LS06], the following method meets these requirements and
is particularly suited for applications in flexible multibody dynamics. One
time step of the α-RATTLE method for position qn+1, velocity vn+1, and
acceleration an+1 is given by

M
pn+1 − pn

h
= M

(
vn + h(

1
2
− β)an + hβan+1

)
− h

2
GT

n+1λn+1 , (5a)

M
vn+1 − vn

h
= M ((1− γ)an + γan+1)−

1
2
GT

nλn+1−
1
2
GT

n+1τn+1 , (5b)

(1− αm)Man+1 = αffn + (1− αf )fn+1 − αmMan , (5c)
0 = Gn+1vn+1 , (5d)
0 = gn+1 . (5e)

Both position and velocity constraints are thus enforced at each step. The
method coefficients should satisfy the conditions γ = 1/2−αm+αf for second
order and −1 ≤ αm ≤ 1

2 for zero-stability. Thus, the remaining parameters
αm, αf , and β can be used to adapt the method to special requirements, in
particular to specify numerical dissipation.

Though the time integration method (5) has been formulated for the semi-
discretized equations of motion, we may also apply it formally to the corre-
sponding infinite dimensional problem and reverse the order of time and space
discretization. In this way, the spatial grid can be adapted from time step to
time step as proposed in [BS98]. The main challenge in our setting here is the
saddle point structure and the presence of constraints.

In short, one time step n � n + 1 of the reverse method starting with
mesh Tn and given data M ,fn,Gn reads

1. solve (5) for qn+1,vn+1,an+1,λn+1,µn+1;
2. compute embedded solution q̃n+1;
3. estimate spatial error errx of qn+1;
4. if errx > tolx: adapt mesh Tn; project qn; go to 1.);
5. estimate time error errt;
6. if errt > tolt:

decrease time stepsize h; project qn if necessary; go to 1.)
else accept step;

Clearly, this algorithm is only a rough sketch of an actual implementation,
and several details like the combination of space and time errors require a
more elaborate discussion that will be published in a forthcoming paper.
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Fig. 1. Snapshot of contact wire with adapted grid (left) and time stepsizes (right)

4 Simulation Example

Finally, we present first results of the above reverse method of lines for the
simulation of a catenary system with moving pantograph. We take the setting
of the simple benchmark problem with two droppers as described in [AS00]
and apply the α-RATTLE method (5) as time integrator. The contact wire of
the catenary is discretized by cubic beam elements, and the averaging error
estimator [C05] is used to adapt the spatial grid. Figure 1 shows a snapshot
of the dynamic simulation and the time stepsize history for this simulation.

In conclusion, we would like to stress that the reverse method of lines
represents a promising approach in flexible multibody dynamics. However,
the interplay of time and space error control requires further investigations,
and the implementation in a more general setting needs still to be done.
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Summary. We present a model of flexible rods – based on Kirchhoff’s geometrically
exact theory – which is suitable for the fast simulation of quasistatic deformations
within VR or functional DMU applications. Unlike simple models of “mass & spring”
type typically used in VR applications, our model provides a proper coupling of bend-
ing and torsion. The computational approach comprises a variational formulation
combined with a finite difference discretization of the continuum model. Approxi-
mate solutions of the equilibrium equations for sequentially varying boundary condi-
tions are obtained by means of energy minimization using a nonlinear CG method.
The computational performance of our model proves to be sufficient for the inter-
active manipulation of flexible cables in assembly simulation.

1 Introduction

The handling of flexible objects in multibody simulation (MBS) models is
both a long term research topic [1, 2] as well as an active area of current
research within the MBS community [3–5]. A standard approach supported
by most commercial software packages represents flexible bodies by means
of vibrational modes (e.g. of Craig–Bampton type [6, 7]) computed by modal
analysis within the framework of linear elasicity. The modal representation of
a flexible structure usually yields a drastic reduction of the degrees of freedom
and thereby provides a reduced model. However, such methods are suitable
(as well as by definition restricted) to model forced oscillations effecting small
deformations within a flexible structure.

If the flexible bodies of interest possess special geometrical properties char-
acterising them as slender (or thin) structures (i.e. rods, plates or shells), their
overall deformation in response to moderate external loads may become large,
although locally the stresses and strains remain small. Therefore, models suit-
able to describe such large deformations of slender structures must be capable
to account for geometric nonlinearities. Compared to object geometries that
require fully three-dimensional volume modelling, the reduced dimensional-
ity of rod or shell models is accompanied by a considerable reduction in the
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number of degrees of freedom, which makes the inclusion of appropriately dis-
cretised versions of the full models (in contrast to modally reduced ones) into
a MBS framework [4] computationally feasible even for time critical simulation
applications.

Modelling of Flexible Structures in VR Applications

The application aimed at within the framework of this article is the modelling
of flexible cables or tubes (e.g. those externally attached to manufacturing
robots) such that quasistatic deformations occurring during sufficiently slow
motions of these cables can be simulated in real time. This capability is crucial
for the seamless integration of a cable simulator module within VR (virtual
reality) or FDMU (functional digital mock up) software packages used for
interactive simulation (e.g. of assembly processes).

Although the dominant paradigm to assess the quality of an animation
or simulation within these application areas – as well as related ones like
computer games or movies – seems to be “. . . It’s good enough if it looks good
. . . ” [8], such that a mere “fake” [9] of structure deformation is considered
to be acceptable (at least for those applications were “. . . fooling of the eye
. . . ” [8] is the main issue), the need for “physics based” approaches increases
constantly, and the usage of models that are more [12] or less [10,11,13] based
on ideas borrowed from classical structural and rigid body mechanics is not
uncommon, especially if the primary concern is not visual appearance but
physical information (see e.g. [14]).

2 Cosserat and Kirchhoff Rod Models

In structural mechanics slender objects like cables, hoses, etc. are described
by one-dimensional beam or rod models which utilise the fact that, due to
the relative smallness of the linear dimension D of the cross-section compared
to the length L of a rod, the local stresses and strains remain small and the
cross sections are almost unwarped, even if the overall deformation of the rod
relative to its undeformed state is large. This justifies kinematical assumptions
that restrict the cross sections of the deformed rod to remain plane and rigid.

In the following we give brief introduction to rod models of Cosserat and
Kirchhoff type, the latter being a special case of the former. We do not present
the most general versions of these models, which are discussed at length in the
standard references [16] and [18]. The approach we finally use as a basis for the
derivation of a generalized “mass & spring” type model by finite difference
discretisation is an extensible variant of Kirchhoff’s original theory [15] as
presented in [17] (see part II, 16–19) for a hyperelastic rod with symmetric
cross-section subject to a constant gravitational body force.
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2.1 Kinematics of Cosserat and Kirchhoff Rods

A (special) Cosserat rod [18] is a framed curve [21] formally defined as a
mapping s �→ (ϕ(s), F̂(s)) of the interval I = [0, L] into the configuration
space R3×SO(3) of the rod, where L is the length of the undeformed rod. Its
constituents are (i) a space curve ϕ : I → R3 that coincides with the line of
centroids piercing the cross sections along the deformed rod at their geometri-
cal center, and (ii) an “curve of frames” F̂ : I → SO(3) with the origin of each
frame F̂(s) attached to the point xs = ϕ(s). The matrix representation of the
frame F̂(s) w.r.t. a fixed global coordinate system {e(1), e(2), e(3)} of R3 may
be written as a triple of column vectors, i.e. F̂(s) =

(
d(1)(s),d(2)(s),d(3)(s)

)
,

obtained as d(k)(s) = F̂(s) · e(k). By definition d(3) coincides with the unit
cross section normal vector located at ϕ(s).

For simplicity we assume the undeformed rod to be straight and prismatic
such that its intial geometry relative to {e(1), e(2), e(3)} is given by the direct
product A × I with a constant cross section area A parallel to the plane
spanned by {e(1), e(2)}. Introducing coordinates (ξ1, ξ2) in the plane of the
cross section A relative to its geometrical center, we may parametrise the
material points X ∈ A× I of the undeformed rod geometry by X(ξ1, ξ2, s) =∑

k=1,2 ξke
(k) + s e(3), and the deformation mapping X �→ x = Φ(X) is given

by the formula x(ξ1, ξ2, s) = ϕ(s) +
∑

k=1,2 ξkd
(k)(s). The kinematics of a

framed curve as presented above determine the possible deformations of a
Cosserat rod. These are stretching (in the direction of the curve tangent),
bending (around an axis in the plane of the cross section), twisting (of the
cross section around its normal) and shearing (i.e. tilting of the cross section
normal w.r.t. the curve tangent).

Following Chouaieb and Maddocks [21] we denote a frame F̂(s) as adapted
to the curve ϕ(s) if d(3)(s) coincides with the unit tangent vector t(s) =
∂sϕ(s)/‖∂sϕ(s)‖ along the curve. An adapted frame satisfies the Euler–
Bernoulli hypothesis, which states that the cross sections remain always or-
thogonal to the centerline curve in a deformed state also. Curves with adapted
frames describe the possible deformations of (extensible) Kirchhoff rods. Com-
pared to Cosserat rods the kinematics of Kirchhoff rods are further restricted,
as they do not allow for shear deformations. The inextensibiliy condition
‖∂sϕ‖ = 1 constitutes an additional kinematical restriction.

Measuring the slenderness of a rod of cross-section diameter D and length
L in terms of the small parameter ε = D/L and assuming (hyper)elastic ma-
terial behaviour one may show that the potential energy terms corresponding
to bending and torsion are of the order O(ε4), while the energy terms corre-
sponding to stretching and shearing scale are of the order O(ε2). In this way
the latter effectively act as penalty terms that enforce the kinematical restric-
tions ‖∂sϕ‖ = 1 and d(3)(s) = t(s). This explains how Kirchhoff rods appear
as a natural limit case of Cosserat rods subject to moderate deformations
provided ε is sufficiently small.
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2.2 Hyperelastic Kirchhoff Rods with Circular Cross-Section

As we are interested in a rod model that is suitable for the simulation of mod-
erate cable deformations, both the Cosserat as well as the Kirchhoff approach
would fit for our purpose. A characteristic feature of the Cosserat model con-
sists in the description of the bending and torsion of the rod in terms of the
frame variables, while the bending of the centerline curve ϕ(s) is produced
only indirectly via shearing forces that try to align the curve tangent to the
cross section normal. In contrast to that, Kirchhoff’s model [20] encodes bend-
ing strain directly by the curvature of ϕ(s) and therefore provides a direct
pathway to mass & spring type models formulated in terms of (discrete) dof of
the centerline.

Averaging the normal Piola–Kirchhoff tractions and corresponding torques
over the cross-section surface of the deformed rod located at ϕ(s) yields stress
resultants f(s) and stress couples m(s), i.e. resultant force and moment vectors
per unit reference length [19]. If the rod is in a static equilibrium state, these
vectors satisfy the differential balance equations of forces and moments

∂sf + G = 0 , ∂sm + ∂sϕ× f = 0 , (1)

where G represents a (not necessarily constant) body force acting along the
rod, and we assumed that no external moment is applied in between the rod
boundaries.

In the case of an extensible Kirchhoff rod which in its undeformed state
has the form of a straight cylinder with circular cross section, the assumption
of a hyperelastic material behaviour yields the expression [17]

m(s) = EI t(s)× ∂st(s) + GJ Ωt t(s) (2)

for the stress couple, where E is Young’s modulus, G is the shear modulus,
I measures the geometrical moment of inertia of the cross section (I = π

4R
4

for a circular cross section of radius R) and J = 2I. The quantities EI and
GJ determine the stiffness of the rod w.r.t. bending and torsion. The strain
measure related to the bending moment is given by the vector

t× ∂st =
∂sϕ× ∂2

sϕ

‖∂sϕ‖2
= ‖∂sϕ‖κb (3)

which is proportional to the Frenet curvature κ(s) of the centerline and (if
κ > 0) points in the direction of the binormal vector b(s). The strain measure
related to the torsional moment is determined by the twist

Ωt(s) = t(s) · [d(s)× ∂sd(s)] , (4)

where d(s) is any unit normal vector field to the centerline given as a fixed
linear combination d = cos(α0)d(1) +sin(α0)d(2) of the frame vectors d(1)(s)
and d(2)(s) for some constant angle α0. Note that the special constitutive
relation (2) implies that in equilibrium the twist Ωt is constant.
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As a Kirchhoff rod is (by definition) unshearable, only the tangential com-
ponent of the stress resultant f(s) is constitutively determined by the tension

t(s) · f(s) =: T (s) = EA (‖∂sϕ‖ − 1) (5)

related to the elongational strain (‖∂sϕ‖ − 1). The resistance of the rod
w.r.t. stretching is determined by EA where A = |A| is the size of the cross-
section area (in our case A = πR2). The shearing force acting parallel to the
cross section is given by fsh(s) = f(s) − T (s) t(s). It is not related to any
strain measure but has to be determined from the equilibrium equations a
Lagrange parameter corresponding to the internal constraint d(s) · t(s) = 0.

To determine the deformation of the rod in static (or likewise quasistatic)
equilibrium one has to solve the combined system of the equations (1)–(5) for
a suitable set of boundary conditions, e.g. like those discussed in [20]. (This
issue will not be discussed here.) Equivalently, one may obtain the centerline
ϕ(s) and the unit normal vector field d(s) that represents the adapted frame
of the rod by minimization of the potential energy

Wpot[ϕ,d] =
∫ L

0

wel(s) ds −
∫ L

0

G(s) ·ϕ(s) ds. (6)

According to (2)–(5) the elastic energy density is a quadratic form in the
various strain measures given by

wel(s) =
EI

2
(t× ∂st)

2 +
GJ

2
Ω2

t (s) +
EA

2
(‖∂sϕ‖ − 1)2 (7)

and determines the stored energy function Wel[ϕ,d] =
∫ L

0
wel(s) ds contain-

ing the internal part of Wpot. A specific choice of boundary conditions may
be accounted for by modified expressions for wel(0) and wel(L), which are
obtained from (7) by fixing combinations of the kinematical variables ϕ(s)
and d(s) and their derivatives at prescribed values (as required by the b.c.)
and substituting these into wel(s).

3 Discrete Rod Models of “Mass & Spring” Type

The final step of our approach towards a model of flexible rods suitable for the
fast computation of quasistatic rod deformations is the discretisation of the
potential energy by applying standard (e.g. central) finite difference stencils to
the elastic energy density (7) and corresponding quadrature rules (e.g. trape-
zoidal) to the energy integrals (6). (Boundary conditions are treated in the
way described at the end of the previous section.)

This procedure results in a discrete model of an extensible Kirchhoff rod
that has a similar structure like the simple “mass & spring” type models
presented in [11] and [13]. However, as a benefit of the systematic derivation
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procedure on the basis of a proper continuum model, our discrete rod model is
able to capture the rather subtle coupling of bending and torsion deformation.

We compute approximate solutions of the equilibrium equations for se-
quentially varying boundary conditions by a minimization of the discrete po-
tential energy using a nonlinear CG method [22]. The computational efficiency
of our approach is illustrated by the typical results shown in Fig. 1 above.
As the calculation times are comparable to those mentioned in Gregoire and
Schomer [13], we estimate that our model is suitable for the interactive manip-
ulation of flexible cables in assembly simulation (as indicated by preliminary
tests with a software package developped at FCC.)

Fig. 1. Sequential deformation of a discrete, hyperelastic Kirchhoff rod of symmetric
cross section: (a) Starting from a circle segment, the tangents of the boundary frames
are bent inward to produce (b) an (upside down) Ω-shaped deformation of the rod
at zero twist. To demonstrate the effect of mutual coupling of bending and torsion
in the discrete model, the boundary frame at s = L is twisted counterclockwise
by an angle of 2π while the other boundary frame at s = 0 is held fixed. The
pictures (c)–(f) show snapshots of the deformation state taken at multiples of π/2.
The overall deformation from (a)–(f) was split up into a sequence of 25 consecutive
changes of the boundary conditions defined by the terminal frames of the rod. For a
discretization of the cable into 10 segments, the simulation took 150ms on 1 CPU of
an AMD 2.2 GHz double processor PC, which amounts to an average computation
time of 6 ms per step



Fast Simulation of Quasistatic Rod Deformations for VR Applications 253

References

1. W.O. Schiehlen: Multibody system dynamics: Roots and perspectives, Multibody
System Dynamics 1, p. 149–188 (1997)

2. A.A. Shabana: Flexible multibody dynamics: Review of past and recent devel-
opments, Multibody System Dynamics 1, p. 189–222 (1997)

3. B. Simeon: Numerical Analysis of Flexible Multibody Systems, Multibody Sys-
tem Dynamics 6, p. 305–325 (2001)

4. P. Betsch: Computational Methods for Flexible Multibody Dynamics, Habilita-
tionsschrift (2002)

5. A.A. Shabana: Dynamics of Multibody Systems (Third edition), Cambridge Uni-
versity Press (2005)

6. R.R. Craig Jr. and M.C.C. Bampton: Coupling of Substructures for Dynamic
Analysis, AIAA Journal Vol. 6, No. 7, July 1968

7. R.R. Craig: Structural Dynamics, Wiley (1981)
8. D. Roble and T. Chan: Math in the Entertainment Industry, p. 971–990 in

B. Engquist and W. Schmidt (ed.): Mathematics Unlimited — 2001 and Beyond,
Springer (2001)

9. R. Barzel: Faking dynamics of ropes and springs, IEEE Comput. Graph Appl.
17(3), p. 31–39 (1996)

10. D. Baraff and A. Witkin: Large steps in cloth simulation, p. 43–54 in Proceedings
of SIGGRAPH 98, Computer Graphics Proceedings ed. by M. Cohen, Addison
Wesley (1998)
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13. M. Gregoire and E. Schömer: Interactive simulation of one-dimensional felxible
parts, ACM Symposium on Solid and Physical Modeling (SPM’06), p. 95–103
(2006)

14. H. Baaser: Längenoptimierung von Bremsschläuchen und deren FE–Analyse auf
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1 Introduction

In automotive industry complex multi channel servo-hydraulic test rigs are
used for physical testing of suspensions. Typically, wheel forces measured on
a test track (target loads) are to be reproduced on the test rig. Most of
the traditional rigs use one hydraulic actuator for one DOF, i.e. an actuator
for the vertical force, one for the longitudinal force, etc. In [Wie02], a new
concept for suspension test rigs based on the hexapod technology has been
proposed. (see Fig. 2 in Sect. 3). Here six actuators are driving a platform
(parallel kinematics) which is attached to the wheel hub.

In 2004 Volkswagen decided to introduce this concept into its suspension
testing environment. The hexapods have been developed by MOOG-FCS in
the Netherlands. A project has been initiated to set up a model and a sim-
ulation environment for the new testing system in order to accompany the
introduction of the system, optimise the design and give support during the
preparation of future suspension tests on the system.

The model of the system should be capable of simulating an entire physical
test including the hydraulics and the control mechanisms. It is divided into
three subsystems, namely the suspension model (M1), the mechanics of the
hexapod (M2) and a model for the hydraulics and the controlling (M3). These
subsystems are assembled to the entire testing environment as sketched below.

Hexapod mech. M2 ↔ Susp. model M1 ↔ Hexapod mech. M2

� �
Hydr./Control M3 ←→ Target loads ←→ Hydr./Control M3

In this paper, the application of the model to the derivation of the require-
ments for the actuators and the improvement of the first design of the hexapod
is described. More technical details about the model, some applications and
the implementation (multibody simulation code, additional subroutines, etc.)
can be found in [Spe06].
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2 The Suspension and Test Rig Models

2.1 The Suspension Model M1

A front and a rear suspension taken from an elasto-kinematically validated
database at Volkswagen have been chosen for this project. Both suspension
models contain rigid bodies for most of the suspension components, flexible
beam elements for the stabilizers and joints and non-linear bushing elements
to connect the different parts. The entire model leads to a system of differen-
tial algebraic equations (DAE). See [Sch99] for an introduction to multibody
simulation and its numerical aspects.

The loads for the suspension simulations are taken from measurements on
a test track containing rough road profiles, curves and braking events. Vertical
displacements and the accelerations of the wheel hub during the simulations
have been compared to the measurements in order to check the quality of the
suspension model and the numerical solution. Some slight modifications of the
damping parameters have been done to improve the agreement between mea-
surements and simulation. See [Spe06] for more details about the suspension
models and the measurement data and [Eic00,Kap02] for more details about
the general application of multibody simulation in the vehicle development.

2.2 The Multibody Model M2

As can be seen in Fig. 2, one hexapod consists of a base and a top platform,
which are connected via six identical actuators. The joints between the actu-
ators and the platforms have two rotational degrees of freedom (DOFs). One
actuator is composed of the piston and the cylinder, which in turn are con-
nected using a cylindrical joint. This construction has six DOFs, namely the
displacements ∆li of the pistons or equivalently the distances li of the joints.
They uniquely define the position xR and the orientation αR of the wheel
centre (called tool centre point TCP). This relation cannot be expressed in
closed form, however, the inverse relation li = li(xR, αR) can be written down
explicitly.

In [Spe06], the equations of motion of the hexapod are derived. Since there
are six DOFs, they can be written as six coupled second order differential
equations for the TCP variables xR, αR. Besides the inertia terms for the
bodies, they contain the forces and moments at the TCP and the hydraulic
or actuator forces fi. These equations are linear in the scalar actuator forces
fi. Thus, the forces can be calculated easily if the motion of the top platform
(xR, αR as functions of time) is given. Usually, the motion is unknown and a
result of the simulation. However, in this context, the wheel motion has been
predicted using only the suspension models and the linear equations have been
used to calculate the actuator forces as described in Sect. 3.
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Fig. 1. Sketch of the data flow

2.3 The Model M3 for Hydraulics and Control

Figure 1 roughly shows the data flow of the complete system. The target
loads, i.e. the wheel forces as measured on the test track are fed into the con-
troller together with the actual wheel forces (response) during the simulation.
Based on their deviation, a control signal (valve setpoint vi) is calculated for
each actuator. The controller is modelled as a system of differential algebraic
equations relating the actuator state variables, the target loads, the response
forces and the valve setpoints. See [Gla00] or [Fri96] for more about controlling
strategies.

The valve setpoints vi are input for the hydraulic model, which consists out
of the valve model (often a first or second order linear differential equation)
and the hydraulic model (see [Dro97] for a simple example). Again, this gives
a more or less complex system of differential algebraic equations.

2.4 The Complete Model

The suspension model M1, the mechanical model M2 for the hexapod and
the model M3 for the hydraulics and control can be combined to a model of
the complete testing system (see [Spe06] for implementation details). Figure 2
shows an assembly for a rear suspension. With this simulation environment
all steps, which have to be performed during a physical suspension test, can
be simulated.

3 Improving the Design of the Hexapod

Since the purpose of the test rig is to simulate test track driving including
rough road profiles, there will be high accelerations needed at the wheel hub.
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Fig. 2. Old (left) and new (right) design of the hexapod

The actuators have to excite the suspension accordingly, leading to high actu-
ator forces. The models M1 and M2 have been used to calculate these actuator
forces. To this end, the suspension models M1 have been excited with the tar-
get loads and the wheel displacements (reference displacements) have been
logged.

Using the explicit model of the hexapod mechanics (Sect. 2.2) the actuator
forces have been calculated from the target loads and the reference displace-
ments. They contain very sharp peaks, which are implied by high accelera-
tions. Using smoothed reference displacements (low pass filtering) strongly
decreases the accelerations and thus the actuator forces. However, it has been
shown in [Spe06], that the actuator forces calculated from the smoothed ref-
erence displacements lead to almost similar response of the suspension with
respect to displacements and the forces at the wheel hub. This fact has been
taken into account during the formulation of the requirements and the design
of the hexapod.

The force calculation has been performed for several configurations. The
radius of the base and top platform, the neutral actuator length and the dis-
tance of the joints at the top platform were modified. In addition, the actuators
have been strengthened, the mass of the top platform has been reduced and
the whole base platform has been tilted, leading to the configuration as shown
in Fig. 2 which meanwhile is operational at Volkswagen in Wolfsburg.

4 Summary and Future Work

The goal of the project, namely the development of a complete simulation
environment for suspension testing on the hexapod concept, has been reached.
All models are integrated into an ADAMS/Car environment and can thus be
used in the development and testing process at Volkswagen.
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The control mechanism has been redesigned at MOOG-FCS in the mean-
time and the new concept will be integrated into the simulation environment.
The hydraulic model used in this project has not been finally validated. Both
topics are subject to ongoing work.

The multibody model of the hexapod has successfully been applied to the
improvement of the hexapod design. The separation of the complete assem-
bly into the suspension and the hexapod model and the consideration of the
reference displacements has proven to be an effective way to optimise the
configuration.

The mathematical framework for the system simulation is DAE solving.
In this case, the commercial tool MSC/ADAMS has been used for modelling
as well as for solving. The stabilized index 2 formulation has been used,
see [ADA03] and [Sch99] for details. Since the valve input signals, which are
needed for the execution of a certain test, are not known in advance, sys-
tem identification (typically frequency based) and iterative learning control
algorithms (see [Lju99] and [Moo93]) will play an important role in the future.
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The first presentation in this minisymposium Optimal Station Keeping for
Geostationary Satellites with Electric Propulsion Systems Under Eclipse Con-
straints by P. Romero discusses the possible implementation of an optimal
strategy to satisfy the constraints imposed by the occurrence of eclipses on the
geostationary orbit. The second presentation by M. Folgueira and coworkers,
the International Reference Systems for Astrodynamics and Space Geodesy,
discusses different Earth rotation models in the proposal recently adopted by
the IAU and IUGG. Finally, the new post-Newtonian covariant measurement
formulations for SLR, SST and GPS and their possible implementation are
discussed by J.M. Gambi and coworkers in the third presentation.
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Summary. In order to keep geostationary satellites within the prescribed bound-
aries to satisfy mission requirements, orbital station keeping manoeuvres are per-
formed periodically to compensate natural perturbations on the satellites.

The propulsion systems currently used to modify the orbit are of chemical nature
(usually, hydrazine) but new trends in spatial propulsion point towards the use of
electric systems. The use of these systems introduces new problems such as the
impossibility to perform manoeuvres at eclipse epochs.

A procedure is proposed here to analyze the implementation of optimal strategies
in terms of electric energy consumption to satisfy the additional constraints imposed
by the use of these kind of systems.

1 Introduction

A satellite in geostationary orbit is subjected to various forces which tend to
move it from its assigned orbital position. Station keeping manoeuvres are
therefore required and implemented by on-board thrusters. The use of elec-
tric propulsion systems for station keeping [GFJ00,Klu04] is lead to achieve
important reductions of the total amount of the satellite’s masses. But the
implementation of these systems makes it necessary the revision of the strate-
gies for the station keeping due to two reasons: first, the limitations in magni-
tude of the impulses provided by these systems; and second, the impossibility
to perform manoeuvres during long time periods at eclipse epochs because of
the high electric energy consumption.

In this paper, in order to check if optimal strategies minimizing the mag-
nitude of impulses (needed to control geostationary satellites) satisfy the
additional constraints imposed by the use of electric propulsion systems, a sim-
ulation of the station keeping process is carried out and the numerical results
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are analyzed. The station keeping technique implemented uses analytical ex-
pressions to determine long-term variations in the orbit evolution, as well as
linearized equations to compute the correction manoeuvres (see, e.g. [Soo94]).

2 Problem Specification and Modelling

A satellite in geostationary orbit is intended to be at rest with respect to the
rotating Earth. But natural perturbations tend to shift the satellite from its
assigned position at a nominal longitude ls (see Fig. 1).

The different models needed to describe the orbit evolution to compute ma-
noeuvres, as well as the eclipses determination, are described in this Section.

2.1 Geostationary Orbit Evolution

The perturbed satellite motion is determined by the differential equations
ẍi + µxi

xi
3 = Fi, i = 1 − 3, where Fi are the perturbing forces. The method

of variation of the constants of the unperturbed motion (Fi = 0) leads to
the Lagrange equations. Since the orbit is geostationary, to avoid numeri-
cal indetermination, the following set of orbital elements are considered (see,
e.g. [EP03]): the semi major axis, a; the two-dimensional inclination vec-
tor, i = (ix = i cosΩ, iy = i sinΩ); the eccentricity vector, e = (ex =
e cos(Ω+ω), ey = e sin(Ω+ω)) and the mean longitude, l = Ω+ω+M−ϑG; i
being the orbital inclination with respect to the equatorial plane, Ω the right
ascension of the ascending node, e the dimensionless eccentricity, ω the argu-
ment of the perigee, M the mean anomaly and ϑG the Greenwich sidereal time.

The evolution of these elements is obtained by means of the following
linearized Lagrange equations [Cne80]
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Fig. 1. Monthly evolution of a satellite at a nominal longitude of ls = 30◦W
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where n is the mean motion; R1 is the terrestrial perturbing potential; R2 is
the potential due to the lunisolar attraction and R3 is the potential due to
the solar radiation pressure.

To analyze the strategies satisfying the eclipse constraints, we have con-
sidered the evolution of mean orbital elements when the perturbing function
only contains those terms causing long period perturbations. Thus, the evo-
lution of the mean longitude is a parabola, the annual evolution of the mean
eccentricity vector can be approximated by a circle, and the evolution of the
mean inclination vector has a secular drift in a direction, Ωsec, with periodic
components superimposed (for a detailed description, see [RGP06]).

2.2 Linear Equations for the Station Keeping Manoeuvres
and Optimal Strategies

In the east/west station keeping (EWSK) an impulse tangent to the orbit
modifies both the longitude drift and the eccentricity. Two tangential burns
∆V1 and ∆V2, separated half a sidereal day, have to be implemented to main-
tain the satellite within the specified limits in longitude. On the other hand,
in the north/south station keeping (NSSK) the inclination correction is per-
formed by means of a normal impulse ∆Vn. The effects on the corresponding
elements are given by the following equations [Soo94]:

∆e = e + − e − =
2
V

(∆V1 −∆V2)
(

cos sb
sin sb

)
, (4)

∆l = l(t)− l− = − 3
V

(∆V1 + ∆V2)
[
Ω⊕ (t− tb)− 90◦

]
, (5)

∆i = i + − i − = −∆Vn/V

(
cos sb
sin sb

)
, (6)

where sb is the sidereal mean time at the satellite that corresponds to the
thrust time tb; Ω⊕ is the Earth’s angular velocity and V is the geosynchronous
velocity.

The challenge in planning the manoeuvres is to design optimal strategies to
minimize the magnitude of the impulses. The secular mean line (SML) strat-
egy is usually chosen to plan the NSSK. With this strategy the correction is
applied in the direction of the secular drift for the long-term evolution of the
inclination vector [SDB88]. For the EWSK manoeuvres the optimal direction
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Fig. 2. Shadow ellipse and satellite orbit

is obtained by pointing the perigee of the satellite orbit towards the Sun, i.e.
according to the strategy called Sun pointing perigee (SPP) [KW82]. It is char-
acteristic of these optimization strategies that they define the direction of the
manoeuvres (which, in turn, determines the time of the day for the thrusts).

2.3 Eclipses

To determine the time and duration of eclipses, we have modelled the shadow
of the Earth as the semi-ellipse obtained by the intersection of the shadow
cone with the orbital plane of the satellite (see Fig. 2). Then, the initial and
final points of an eclipse correspond to the solutions, (x1, y1) and (x2, y2), of
the system describing the satellite orbit and the semi-ellipse of shadow,

x2 + y2 = a2,
x2

L2
+

y2

R2
= 1, (7)

where L = R/ sin b (with R, the Earth radius and b, the Sun elevation angle
above the orbit plane).

3 Numerical Results

Numerical simulations have been carried out to evaluate the cited manoeuvres
required in the NSSK and EWSK process. In order to ensure simplicity in the
operations, weekly manoeuvres cycles of 14 days have been chosen to check
the possibility of their implementation. To this end, a satellite located at
ls = 30◦W has been considered.

For 2006, this satellite is under eclipse during 90 days, being the starting
and final dates of eclipses 02/25/2006− 04/10/2006 for the spring epoch, and
08/31/2006−10/14/2006 for the autumn epoch. The maximum durations are
1h9m24s (spring) and 1h9m25.5s (autumn) plus 4m of penumbra. Figure 3
shows the results for the spring eclipse epoch for 2006 at 30◦W with the time
of implementation for the four NSSK manoeuvres determined with the SML
strategy and the eight EWSK manoeuvres determined with the SPP. As a
result, it can be seen why those optimal strategies can be implemented (Fig. 3).



264 P. Romero et al.

Fig. 3. Manoeuvres at eclipse epoch in spring
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1 Introduction

The fields of Astrodynamics and Space Geodesy research are experiencing
continuous growth. Advancements in science and technology are enabling mis-
sions with much more challenging goals. In response, many new techniques
have been introduced to solve these demanding new mission design problems
with a high precision.

Many physical, astronomical and geodetic models related to such problems
assume the availability of a unique reference system to establish the equations
of the problem. In practice, and in accordance with the advance of physical
theories, observational methods and measuring devices, one faces a multitude
of historical concepts, which have undergone continued revisions up to the
present date.

Following this introduction, Sect. 2 is devoted to the review of the different
international reference systems, the related conventions and the Earth rota-
tion models adopted by international organizations (IAU and IUGG) which
are employed in the fields of Geodesy and Astrodynamics. Section 3 deals with
the modelling of the rotation undertaken in the European DESCARTES-
NUTATION sub-projet entitled: “Advances in the integration of the equa-
tions of the Earth’s rotation in the framework of the new parameters adopted
by the IAU 2000 Resolutions”. It is followed in the last section by a brief
discussion about the state of art of this problem.
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2 International Reference Systems in Geodesy
and Astrodynamics

Geodesy and Astrodynamics frequently need a precise positioning of points
on and outside the Earth’s surface. Such positions are determined using two
reference frameworks: the terrestrial frame, fixed in relation to the Earth’s
crust and rotating synchronously with the planet, and the celestial frame,
which is immobile in space. Traditionally, celestial reference frames have been
tied to the rotational and translational motion of the Earth. In 1997, the IAU
decided to establish a new International Celestial Reference System (ICRS):

1. Origin: the solar system barycentre within a relativistic framework
2. Their axes fixed with respect to distant extragalactic radio objects
3. The fundamental plane: closely aligned with the mean equator at J2000
4. The origin of right ascension: defined by an adopted right ascension of the

quasar 3C 273B

The practical realization of the ICRS is the International Celestial Refer-
ence Frame (ICRF). The IAU has charged the IERS with the responsibility
of monitoring the International Celestial Reference System (ICRS) and main-
taining its current realization, the International Celestial Reference Frame
(ICRF), and links with other celestial reference frames. Starting in 2001, these
activities are run jointly by the ICRS Centre (Paris Observatory and US Naval
Observatory) of the IERS and the International VLBI Service for Geodesy and
Astrometry (IVS), in coordination with the IAU Working Group on Reference
Systems. Complementary to the ICRS, the International Terrestrial Reference
System (ITRS) provides the conceptual definitions of an Earth-fixed reference
system:

1. It is geocentric, the centre of mass being defined for the whole earth,
including oceans and atmosphere.

2. The unit of length is the metre SI. This scale is consistent with the TCG
time coordinate for a geocentric local frame, in agreement with IAU and
IUGG (1991) Resolutions. This is obtained by appropriate relativistic
modelling.

3. Its orientation was initially given by the BIH orientation at 1984.0.
4. The time evolution of the orientation is ensured by using a no-net-rotation

condition with regards to horizontal tectonic motions over the whole
Earth.

The ITRS is realized by estimates of the coordinates and velocities of a set
of stations observed by Laser Ranging (SLR), Lunar Laser Ranging (LLR),
Global Positioning System (GPS) and Very Long Baseline Interferometry
(VLBI) and DORIS. Its name is International Terrestrial Reference Frame
(ITRF). General documentation on terrestrial reference systems and frames is
available at the ITRS Centre of the IERS: http://hpiers.obspm.fr/ and also
in [McCarthy & Petit, 2003].
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The transformation from the International Celestial Reference System to
the International Terrestrial Reference System is expressed in this way:

[ITRS] = W (t)R(t)C(t) [ICRS] = M(t) [ICRS], (1)

which represents a dynamical tie between the International Celestial and Ter-
restrial Reference Systems. This relation includes, by means of the matrix
M(t), precession, nutation -C(t)-, sidereal time -R(t)- and polar motion
parameters -W (t)-. In the representation using the ‘non-rotating origin’, C(t)
equals to [Capitaine, 1990]:

C(t) = R3(−s) .

⎛⎝ 1− aX2 −aXY −X
−aXY 1− aY 2 −Y
X Y 1− a(X2 + Y 2)

⎞⎠ (2)

(X,Y ) being the rectangular coordinates of the Celestial Intermediate Pole
(CIP) unit vector in the ICRS, which have the advantage of being directly
related to VLBI observations. s is a small quantity: ṡ = a(Y Ẋ −XẎ ), a =
1/(1 + Z) and Z =

√
1− (X2 + Y 2). The CIP is defined by the motions of

Tisserand mean axis of the Earth with periods greater than two days in the
celestial reference system [IAU Transactions, 2000].

From the expressions (1) and (2), the accuracy in the transformation
between International Celestial and Terrestrial Reference Systems will depend
directly on the precision of the algorithms for computing the Celestial Inter-
mediate Pole’s position. There are now algorithms for computing CIP position,
in the form of new expressions for precession and nutation. That is to say, in a
indirect way. The new nutation has been generated by [Mathews et al., 2002]
by the convolution of the MHB 2000 transfer function with the rigid Earth
nutation series REN 2000 of [Souchay et al., 1999]. It has provided the com-
ponents of the nutation in longitude and in obliquity: ∆ψ and ∆ε. These new
nutation series used together the P03 precession development of [Capitaine
et al., 2003] yield the computed path of the Celestial Intermediate Pole.

The main goal in the above project, mentioned in Sect. 1, is to provide a
new precise theoretical development for computing directly the instantaneous
motion of the Celestial Intermediate Pole. For this purpose, our approach
will consist in developing the equations for Earth rotation using explicitly the
(X,Y ) coordinates with the aim of providing the precession-nutation model
directly in the form recommended by the IAU 2000 Resolutions.

3 Modelling

3.1 Approaches for the Rigid Earth

The choice of variables is an important point to be taken into account in
the description of the Earth’s rotation as well as in many different problems
of Space Geodesy and Astrodynamics. In this problem, the equations of the
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rotational motion of the rigid Earth can be formulated in terms of angular
variables either canonical or non-canonical:

– The rectangular components (ω1, ω2, ω3) of the angular velocity vector −→ω
along the principal axes of inertia, or alternatively the Euler angles between
the figure axes and a fixed reference plane, are basic non-canonical vari-
ables that are classically used for writing the Euler dynamical equations.
These variables can be expressed as functions of the rectangular coordi-
nates of CIP what will provide us the rotational equations of the Earth as
functions of (X, Y ) [Capitaine et al., 2006]⎧⎨⎩

F1Ẍ + F2Ÿ + F3Ẋ
2 + F4 Ẏ

2 + F5 ẊẎ + F6 Ẋ + F7 Ẏ = L
Ā

G1 Ẍ + G2 Ÿ + G3 Ẋ
2 + G4Ẏ

2 + G5 ẊẎ + G6 Ẋ + G7 Ẏ = M
Ā
,

(3)

where (L,M) are the components of the external torque in the celestial
reference system, Ā = A+B

2 with A, B are the Earth’s equatorial principal
moments of inertia and Fi and Gi are functions of (X, Y ).

– Two sets of canonical variables can be used in the Hamiltonian ap-
proach. These variables are represented by the amplitude of the angular-
momentum vector (

−→
L ), the X- and Y- components of this vector with

respect to the inertial reference system, the x- and y-components of
−→
L

with respect to the figure axes and their canonically conjugate vari-
ables [Folgueira et al., 2006].

3.2 Methods of Integration

We have investigated the appropriate methods of integration to this study
and the solutions for the X and Y variables in the axially symmetric case:

• Non-canonical variables:
– Numerical integration → Fifth-order adaptive step size Runge-Kutta-

Fehlberg algorithm: numerical solution
– Semi-analytical integration → Method of variation of constants: semi-

analytical solution

• Canonical variables:
– Analytical integration→ Hori-Deprit’s averaging perturbation method:

analytical solution

4 Conclusions

The achieved objectives of our work may be summarized as follows:

1. The selection of the set of variables appropriated to our study.
2. The obtention of the equations of the Earth rotation problem considering

directly the Earth Rotation Parameters.
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3. The study of the different integration methods to be carried out, which
include analytical, semi-analytical and numerical approaches, in order to
obtain the solution with microarcsecond accuracy.

4. To test the efficiency of these methods of integration.
5. To obtain the results according to the level of accuracy of IAU 2000

Resolutions.
6. The comparison between the new solutions and those obtained indirectly

from the classical solutions for ∆ψ and ∆ε.
7. The discussion about the step: rigid Earth −→ elastic Earth.
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1 Introduction

Most spatial current high precision geodetic techniques, like those used in the
Global Positioning System, have led to widely consider the assumption of a
slightly curved space-time in the vicinity of the Earth (according to the gen-
eral theory of relativity) as the essential basis to build geometric models for
measurements formulations that allow correct interpretations of the results, at
least up to the level of accuracy required at the present and near-future time.
In this contribution, Synge’s world function for the local geometric models
associated to a global model of that space-time is used to give a flexible and
structured set of covariant two-way local formulations for the four basic kind
of measurements involved in Space Geodesy. Both local and global models are
made compatible by using local and global Fermi coordinates, respectively.
The measurements formulations are one-to-one general (weak) relativistic ver-
sions of the local classical formulations currently implemented in altimetry,
satellite laser ranging and satellite-to-satellite tracking on the one hand, and
on the other, of the classical version of the ballistic problem.

2 Modelling Assumptions

The local geometric models correspond to local Fermi coordinates, X(α), as-
sociated to reference frames given by observers, O, and Fermi transported
tetrads, λi

(a), along O [Syn60]. (Latin index runs from 1 to 4, and Greek, from
1 to 3). Up to the second order of approximation in v and mE/r (c = 1), these
metrics are given by

g(αβ) = δαβ +
1
2
SO(αβµν)X

(µ)X(ν)

g(α4) = SO(α4µν)X
(µ)X(ν)

g(44) = −1− 2bOBO(γ)X
(γ) +

3
2
SO(44µν)X

(µ)X(ν), (1)
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where bOBO(γ) is the first curvature of O, and SO(abµν) = − 1
3

(
RO(aµbν) +

RO(aνbµ)

)
are the relevant terms of the symmetrized Riemann tensor calcu-

lated at O up to this order of approximation. Essentially, it may be said that
bOBO(γ) is, from the classical point of view, −−→g , and SO(abµν) the tidal poten-
tial of the external bodies (e.g. Sun and Moon) calculated at O. SO(abµν) is de-
rived with the global geometric model for the vicinity of the Earth, which here
is built similarly to the model by Ashby and Bertotti is constructed [AB86].

In terms of global Fermi coordinates, xα (with classical standard nota-
tions), the global metric at any point of the vicinity of the Earth results to
be

gαβ = δαβ

{
1 + 2

mE

r

[
1−
(a1

r

)2

J2P2(cos θ)
]}

−1
3

[
M�
R3

�

(
2δαβδµν − 2δανδβµ + 3δαν

Rµ
�R

β
�

R2
�

+3δβµ
Rα

�R
ν
�

R2
�

− 3δαβ
Rµ

�R
ν
�

R2
�

− 3δµν
Rα

�R
β
�

R2
�

)

+
ML

R3
L

(
2δαβδµν − 2δανδβµ + 3δαν

Rµ
LR

β
L

R2
L

+3δβµ
Rα

LR
ν
L

R2
L

− 3δαβ
Rµ

LR
ν
L

R2
L

− 3δµν
Rα

LR
β
L

R2
L

)]
xµxν

gα4 = −Ωαµx
µ

g44 = −1 + 2
mE

r

[
1−
(a1

r

)2

J2P2(cos θ)
]

+Ω2
[
(x1)2 + (x2)2

]
−
[
M�
R3

�

(
δµν − 3

Rµ
�R

ν
�

R2
�

)
+
ML

R3
L

(
δµν − 3

Rµ
LR

ν
L

R2
L

)]
xµxν . (2)

Therefore, since taking into account the expressions for λi
(a) at O (see, for

example, [Sof89]) it results that RO(abµν) = ROijkmλ
i
(a)λ

j
(b)λ

k
(µ)λ

m
(ν) = ROabµν

up to the second order, then we have that

RO(αµβν) = −mE

r3

(
2
[
δανδµβ − δαβδµν

][
1− 3

(a1

r

)2

J2P2

(
cos θ

)]
− 3
r2

[
δανx

µxβ + δµβx
αxν − δαβx

µxν − δµνx
αxβ
]

×
[
1− 5

(a1

r

)2

J2P2

(
cos θ

)])
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−M�
R3

�

(
2
[
δανδµβ − δαβδµν

]
− 3
R2

�

[
δανR

µ
�R

β
� + δµβR

α
�R

ν
�− δαβR

µ
�R

ν
�− δµνR

α
�R

β
�

])

−ML

R3
L

(
2
[
δανδµβ − δαβδµν

]
− 3
R2

L

[
δανR

µ
LR

β
L + δµβR

α
LR

ν
L − δαβR

µ
LR

ν
L − δµνR

α
LR

β
L

])
RO(αµ4ν) = 0 (3)

RO(4µ4ν) =
mE

r3

(
δµν

[
1− 3

(a1

r

)2

J2P2

(
cos θ

)]
−3

xµxν

r2

[
1− 5

(a1

r

)2

J2P2

(
cos θ

)])

−δµνΩ
2(µ, ν �= 3)+

M�
R3

�

(
δµν− 3

Rµ
�R

ν
�

R2
�

)
+
ML

R3
L

(
δµν− 3

Rµ
LR

ν
L

R2
L

)
.

The world function Ω(X(i1), X(i2)) is defined as half the square of the
measure of the geodesic joining the points P1 (X(i1)) and P2 (X(i2)) [Syn60],
and for the metrics (1) it takes the form

1
2
∆X(α)∆X(α)

−1
2
∆X(4)∆X(4) +

1
4
SO(αβµν)X

(µ1)X(ν1)∆X(α)∆X(β) + SO(α4µν)

X(µ1)X(ν1)∆X(α)∆X(4)

+
1
2

(
−2bOBO(γ)X

(γ1) +
3
2
SO(44µν)X

(µ1)X(ν1)
)
(∆X(4))2. (4)

3 Relative Distance

In terms of the world function (4), the relative position of the particle O2 with
respect to O1 for the observer O at P is given by

rO1O2|OP (α)(sO) = −Ωi1(P1, P2)λi1
(α), (5)

where Ωi1 is the covariant derivative of Ω(X(i1), X(i2)) with respect to X(i1)

calculated with the metric (1); P1(X(i1)) is the event of O1 with the same
O-proper time, sO, than P ; P2(X(i2)) is the event of O2 with the same O1-
proper time than P1 and λi1

(α) are given by the finite expressions of any Fermi
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transported triad along O1 calculated with the metric (1) [Gar04]. The final
result is

rO1O2|OP (α)(sO) = ∆X(β)
(
δαβ +

1
4
SOP (αβµν)X

(µ1)X(ν1) − 1
2
vα1vβ1

−1
4
SOP (αµβγ)X

(µ1)∆X(γ)
)
, (6)

where vα1 is the relative velocity of O1 with respect to O at P . Therefore, the
corresponding relative distance is

σO1O2|OP
(sO) =

(
rO1O2|OP (α)(sO)r(α)

O1O2|OP
(sO)

)1/2 =
(
∆X(α)∆X(β)

)1/2

·

[
δαβ − vα1vβ1 +

1
2
SOP (αβµν)X

(µ1)X(ν1) − 1
2
SOP (βγαµ)X

(µ1)∆X(γ)
]1/2

. (7)

4 Local Measurement Procedures

Let s1O1
be the O1-proper time corresponding to the instant Q1 at which an

electromagnetic signal is emitted from O1 and let s2O1
the O1-proper time

corresponding to the instant Q2 at which the signal is received by O1 after
the signal is bounced at P2 ∈ O2. Then, by straightforward calculations, it
can be deduced the expression that gives the distance (7) in terms of s1O1

and
s2O1

. This is

σO1O2|OP
(sO) =

s2O1
− s1O1

2

[
1+

1
2
bO1B

(α)
O1

∆X(α)− 1
4
SOP (44αβ)∆X(α)∆X(β)

]
.

(8)
In particular, when bO1 = 0 the following expression corresponds to the

local measurement model for Satellite-to-Satellite Tracking (SST)

σ =
s2O1

− s1O1

2

[
1− 1

4
SOP (44αβ)∆X(α)∆X(β)

]
. (9)

When O ≡ O1, the following expression can be applied to Satellite Laser
Ranging (SLR)

σ =
s2O − s1O

2

[
1 +

1
2
bOB

(α)
O X(α2) − 1

4
SO(44αβ)X

(α2)X(β2)

]
; (10)

and, finally, for measurements in Altimetry we have

σ =
s2O1

− s1O1

2

[
1− 1

4
SOP (44αβ)X

(α1)X(β1)

]
. (11)
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For the general formulae (8), the directions of emission and reception with
respect to λi1

(α) at Q1 and Q2, respectively, result to be

θ(α1) = µ(α)

[
1 +

1
4
SOP (44βγ)∆X(β)∆X(γ)

]
−1

2
SOP (44αβ)∆X(β)

(
∆X(γ)∆X(γ)

)1/2
+

1
2

[
SOP (α4βγ) + SOP (αδβγ)v

δ1 − 1
2
SOP (44αβ)v

γ1

−1
2
SOP (44αγ)v

β1 + SOP (44βγ)v
α1

]
∆X(β)∆X(γ) (12)

θ(α2) = µ(α)

[
1 +

1
4
SOP (44βγ)∆X(β)∆X(γ)

]
−1

2
SOP (44αβ)∆X(β)

(
∆X(γ)∆X(γ)

)1/2
−1

2

[
SOP (α4βγ) + SOP (αδβγ)v

δ2 − 1
2
SOP (44αβ)v

γ2

−1
2
SOP (44αγ)v

β2 + SOP (44βγ)v
α2

]
∆X(β)∆X(γ). (13)

5 The Ballistic Problem

The following formulae, which correspond to the targeting directions of an
object O2 at P1 ∈ O1 are, in a certain sense, the inverse of (12) and (13). The
direction of the line-of-sight with respect to O at P is

θ(α1) = −rO2O1|OP (α)− σO2O1|OP
(vα2 − vα1)− 1

2
σ2
O2O1|OP

SOP (α44γ)r
(γ)
O2O1|OP

;

(14)
the pointing direction is

θ(α2) = −rO2O1|OP (α) + σO2O1|OP
(vα2 − vα1)− 1

2
σ2
O2O1|OP

SOP (α44γ)r
(γ)
O2O1|OP

,

(15)
and the angle of advance is

cos θ′ = 1−2(vα2−vα1)2+2
rO2O1|OP (γ)rO2O1|OP (δ)

σ2
O2O1|OP

(vγ2−vγ1)(vδ2−vδ1), (16)

so that when O ≡ O1 we have that

θ(α1) = X(α2) − σvα2 +
1
2
σ2SO1(α44γ)X

(γ2) (17)

θ(α2) = X(α2) + σvα2 +
1
2
σ2SO1(α44γ)X

(γ2) (18)

cos θ′ = 1− 2(vα2)2 + 2
X(γ2)X(δ2)

σ2
vγ2vδ2 , (19)
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where X(α2) is the relative position of O2 with respect to O1 at P1 (see (6)),
and σ is the relative distance of O2 with respect to O1 at P1 (see (7)).

These magnitudes, relative position and distance, will be the result of a
chain of iterations between (9), and (17) and (18) so that, at some step they
must be predicted by using another formulation giving at least the same order
of approximation (for example, those given in [ZGR02] and [Bah01]).
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Among fossil fuels (coal, oil and gas), world proved reserves of coal are the
largest and, at the current consumption rates, they would last for over two
hundred years. Then, all along the current century, coal is expected to con-
tinue playing a key role, as a vital primary fuel for energy generation pur-
poses. At present, coal combustion is a rather mature technology; nevertheless,
advanced conversion processes are continuously being developed in order to
reduce gaseous atmospheric emissions and other pollutants from coal power
plants. Additional environmental concerns have recently emerged, as some
health impacts are correlated to trace metal emissions and submicronic air-
borne particles. Moreover, the former indications of a potential global impact
of emissions of greenhouse gases on climate change are becoming evidences.
Scientific research and technological development on coal energy utilization
are mainly focused on improving the understanding of the combustion and
gasification underlying basic processes, as well as designing thermal cycles at
higher pressures and temperatures. Efforts are aimed at increasing efficiency,
reducing emissions and at separating the carbon dioxide from the flue gases
for its possible subsequent storage.

The proceedings of this minisymposium include a summary of the talks
presented by A. Linan and J.L. Ferrin devoted to the mathematical simulation
of coal particles in pulverised coal furnaces; an analytic combustion model is
incorporated into the governing equations, leading to a convenient Eulerian–
Lagrangian mixed formulation, and to numerical integration via an efficient
algorithm. The second contribution, by J.L. Castillo and P.L. Garcia-Ybarra,
reviews post-combustion processes related to the transport and deposition
of ash and soot particles which generate problems of fouling and emissions.
The third contribution, by N. Fueyo et al., develops a comprehensive – fully
Eulerian – mathematical description of a multiphase flow model to cope with
the topic of flue-gas desulphurization by wet scrubbers. Finally, the work by
J. Jimenez and J. Ballester describes experimental techniques in a drop tube
furnace for correlating the data on kinetic parameters of solid fuel particle
combustion with an Arrhenius rate.
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1 Introduction

The purpose of this paper is to contribute to the mathematical modelling
of the combustion of coal particles in pulverised coal furnaces, and also to
propose an algorithm for its numerical solution. The mathematical model
includes two coupled phases: the solid phase, for the coal particles, where a
Lagrangian description is used and an Eulerian description for the gas phase,
where the effects of the combustion of coal particles are homogenised.

2 Mathematical Model

The mathematical model take into account the simultaneous processes of mois-
ture evaporation and devolatilisation together with the heterogeneous gasifi-
cation reactions of the char. These processes can take place in a kinetically
or diffusion-controlled way. For the gas phase reactions, the Burke–Schumann
analysis for very fast reactions will be generalised to account for the compe-
tition for oxygen of CO, H2 and the volatiles.

The validity of the model is dependent on the inequalities L! lc ! lp !
a, between the length scales, L of the burner, lc of the computational cell, lp
of the interparticle distance and a the radius of the coal particle. A detailed
derivation can be seen in [BFL].

2.1 The Combustion Model

The simplified kinetic model we are going to consider consists of the follow-
ing physico-chemical processes within the porous particles, expressed by the
heterogeneous reactions
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1 C(s) + CO2 → 2CO + (q1)

2 C(s) + 1
2O2 → CO + (q2)

3 C(s) + H2O → CO + H2 + (q3)

4 V(s) → V(g) + (q4)

5 H2O(s) → H2O(g) + (q5)

and the gas phase reactions

6 CO + 1
2 O2 → CO2 + (q6)

7 V(g) + ν1O2 → ν2CO2 + ν3H2O + ν4SO2 + (q7)

8 H2 + 1
2O2 → H2O + (q8),

where index s denotes the solid phase and index g the gas phase, whereas
qi is the heat released by reaction i per unit of gasified mass. For simplicity,
all the volatiles are represented by a single molecule V(g) = Cκ1Hκ2Oκ3Sκ4

of molecular mass Mvol, with coefficients deduced from the ultimate analysis
of the coal. The molar stoichiometric coefficients νi are given in terms of the
composition of the volatile molecule.

For the generation of volatiles and moisture evaporation, we shall use a
simple kinetic model given by

w4 = B4e
−E4/RT ρV, (1)

w5 = B5e
−E5/RT ρH2O, (2)

where ρV and ρH2O are the local values within the coal particle of the density
of volatiles and H2O remaining in condensed form. For the char gasification
reactions, as well as for the gas phase reactions, we could adopt similar expres-
sions for the overall reaction rates per unit volume. However, in our analysis
we shall consider that these reactions are either frozen or that the limit of
infinite reaction rates applies.

2.2 Gas Phase Model

The coal particle combustion model to be developed in the following section
has to be coupled with a gas phase model, which establishes the local average
conditions of the gas where the coal particles are burnt. They are represented
by mean field values, denoted by the subscript or superscript g, of the mass
fractions, temperature and velocity of the gaseous mixture.

In our analysis we shall consider that the limit of infinite reaction rates
applies to reactions 6, 7 and 8, leading to the non-coexistence with O2 of
CO, V and H2, independently of the detailed form of the rates. Therefore, in
order to obtain equations without the gas phase reaction terms we consider
the following conserved scalars:
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βg
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Mvol
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Then, the conservation equations of the gaseous species and energy are
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Lg(Hg) = f e + q6f
m
CO + q7f

m
V + q8f

m
H2
−∇ · qrg, (12)

with Lg being the differential operator defined by

Lg(u) =
∂(ρgu)
∂t

+∇ · (ρguvg)−∇ · (ρgD∇u), (13)

where D is a gas phase diffusion coefficient which, for simplicity, will be con-
sidered to be the same for all species and equal to the thermal diffusivity. The
effects of the particles gasification and combustion appear in the right-hand
side of those equations as homogenised sources which will be calculated later
after analysing the distribution of temperature and concentrations within the
individual particles and in the gaseous neighbourhood of each particle.

The solution of the previous conservation equations provides the tempera-
ture and the mass fractions of the species in the gas mixture, with the gaseous
domain in two regions: ΩO, defined by βg

1 > 0, where there is oxygen in the
gaseous environment of the particles with zero concentration of the volatiles,
H2 and CO generated by the gasification, because they will react with the
oxygen in a diffusion flame sheet inside the particle, or outside in its vicinity.
In a second region ΩF , defined by βg

1 ≤ 0, the mass fraction Y g
O2

is zero, so
the particles are gasifying in an oxygen free environment. In the first region
the particles do not represent sources of CO, volatiles or H2 for the mean val-
ues of the bulk interstitial gas. In the second region the volatiles, CO and H2

join, without locally burning, the homogenised gas phase and, if we assume
combustion reactions 6, 7 and 8 to be infinitely fast, these species will burn,
in the form of group combustion, where they meet the oxygen, in a gaseous
diffusion flame.
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2.3 Particle Gasification Model

We shall deal with coal particles that contain a significant fraction of ashes not
lost during the devolatilisation or char oxidation stages. Thus we shall con-
sider in our model that the apparent radius of each particle remains constant,
although the density of H2O, volatiles and char will change with time.

The density of the coal particle is given by ρp = ρH2O + ρV + ρC + ρash.
In order to model the particle gasification, we must provide equations for the
evolution of ρH2O, ρV and ρC and also for the temperature of the particle, Tp.

The evolution of ρH2O, ρV and ρC, with the radial coordinate r and time
t, will be given by

∂ρV

∂t
= −w4,

∂ρH2O

∂t
= −w5,

∂ρC

∂t
= −wC, (14)

in terms of the mass rates, per unit volume and time, of generation of volatiles
w4, water vapour w5 and char gasification wC, given by (1)–(2) and wC =
w1 +w2 +w3. For the following description of the char gasification reactions,
they are considered to be infinitely fast.

Depending on the region where particle burns, the analysis of its gasifica-
tion changes considerably. Thus, if the particle lies in ΩF there is no oxygen
inside the particle and the gas phase reactions terms w6, w7 and w8 disappear
from mass conservation equations. In that case, the corresponding analysis,
which is given later in this section, simplifies considerably. However, analysing
the situation where the particle lies in ΩO and, in particular, when the oxy-
gen reaches the particle surface (βs

1 > 0), is more complicated; the details are
given in [BFL].

When the particle lies in region ΩF , and therefore the oxygen does not
reach the particle surface, the mass conservation equations describing the
radial distribution of the gas phase mass fractions YCO2 and YH2O, within the
pores of the particles, are

1
r2

∂

∂r
(r2ρgvgYCO2)−

1
r2

∂

∂r

(
r2ρgDe

∂YCO2
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3
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1
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∂
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r2
∂
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(
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∂YH2O

∂r

)
= −3

2
w3 + w5. (16)

These equations can be integrated once, in the limit of Damköhler numbers
Dai = (a2/De)Bie

−Ei/RTp ! 1, for i = 1, 3, (which is applicable at high
particle temperatures) to give

r2ρgvgYCO2 − r2ρgDe
∂YCO2

∂r
= −11

3
m′′

1r
2
c , (17)

r2ρgvgYH2O − r2ρgDe
∂YH2O

∂r
= −3

2
m′′

3r
2
c + w5

r3

3
, (18)
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for rc < r < a, with the boundary conditions

YCO2 = YH2O = 0 at r = rc, (19)

leading to

11
3
λ1

λ
=
{
Y s

CO2
+

11
3
λ1

λ

}
eλ

D
De

(1− a
rc

), (20)

3
2
λ3

λ
− λ5

λ
=
{
Y s

H2O +
3
2
λ3

λ
− λ5

λ

}
eλ

D
De

(1− a
rc

), (21)

written in terms of the nondimensional reaction rates defined by

λ =
5∑

i=1

λi, λi =
ṁi

ρgaD
, (22)

where 4πṁi is the mass gasification reaction rate, due to the heterogeneous i
reaction. Moreover, Y s

CO2
and Y s

H2O
are the surface values of YCO2 and YH2O

to be calculated later using the gas phase analysis.
The time evolution of rc, the radius of the shrinking core, is determined

from the time evolution equation of the char density as

ρ0
C

ρgaD
r2c

drc
dt

= −(λ1 + λ3), (23)

where we have neglected the changes in ρC within the char core, during the
first stage of the kinetically controlled char gasification, so we have approxi-
mated ρC by its initial value ρ0

C for r < rc.
Finally, the time evolution of the temperature of the particle, considered

to be uniform, is given by the equation

4
3
πa3ρpcs

dTp

dt
= 4πa2(q′′p + q′′r ) + 4πρga2D(q1λ1 + q3λ3 + q4λ4 + q5λ5), (24)

where 4πa2q′′p and 4πa2q′′r are the rates of heat reaching the particle by con-
duction and radiation.

In order to determine the values of the mass fractions and the heat flux at
the surface of the particle, we need to model the gas environment outside the
particle. The mass and energy conservation equations are of the form (15) and
(16), with the exception that now vg is the true velocity of the gas phase and
De must be replaced by the gas phase diffusion coefficient D, and no sources in
their right-hand sides. Again, we solve the corresponding system of equations
in the limit of infinite Damköhler numbers for the gas phase reactions by
introducing the same Schvab–Zeldovich combinations defined by (3)–(7).

Thus, as an example, if particle lies in the region ΩF by integrating the
conservation equations with appropriate boundary conditions we obtain
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q′′p =
k

acp
(hg

T − hs
T )

λ
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. (27)

In order to close the model, expressions for the homogenised sources in
the gas phase per unit volume and time, at each point x of the boiler, can be
obtained from the individual sources of one particle by

fα(x) =
Ne∑
j=1

Np∑
i=1

q̃j
pij
100

∫ tij
f

0

Fα
ij(t)δ(x− xij

s (t))dt, (28)

where Fα
ij(t) denotes the contribution of one individual particle of type i

introduced through inlet j, at instant t, xij
s (t) is the position occupied by

this particle at instant t, δ(x) is the Dirac measure at point 0, tijf is the time
needed for the particle to be completely burned or to leave the furnace, q̃j
is the mass flow of coal through inlet j, pij is the percentage of particles of
type i through inlet j, and Ne and Np are the number of inlets and types of
particles, respectively.

Expressions for the mass and energy sources in the case of an individual
particle burning in region ΩF are
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Dai << 1, i = 1,2,3 Dai >> 1, i = 1,2,3

If Y
g
 > 0O2If Y

g
 = 0O2

Fig. 1. Algorithm

3 Numerical Solution

Once given the ambient gas conditions, the algorithm proposed for solve the
mathematical model introduced in the previous section (and detailed in [BFL])
can be seen in Fig. 1.

The validation of the numerical algorithm and some numerical results can
be seen in [Saa06].

References
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1 Introduction

In coal combustion processes, a large amount of nonvolatile material is emitted
as particular matter carried by the gas stream. Moreover, some condensable
vapors (usually sulfates and nitrates) are formed by reaction in the flue gases.
The control of these particles and vapors is a key factor in clean coal con-
version technologies. Thus, the formation of soot and fly ash deposits and
the condensation of vapors over heat exchanger tubes and exhaust lines re-
duce the heat transfer efficiency and promote corrosion problems, leading to
shorter lifetimes of the equipment and increasing the production and main-
tenance costs. Also, the emission of submicron particles to the ambient air is
an environmental issue of capital importance. Moreover, the bulk (porosity,
hardness) and surface (roughness) properties of the formed deposit depend
on the particle arrival dynamics. Therefore, the analysis of particle and vapor
transport under controlled conditions and the study of deposit formation from
particle laden gases are problems of wide practical implications in coal com-
bustion. In particular, there is a need of theoretical analysis on the dynamics
of particles in gases under strong temperature differences and intense radia-
tive fluxes, as well as on the behavior of particles near obstacles to evaluate
the deposition rates. Some model problems linked to the behavior of particles
and vapors in gases and deposit formation will be discussed here.

2 Dynamics of Particle in Gases

The transport properties of particles in gas streams (soot and flying ash in
the case of combustion environments) determine their distribution in the gas,
as well as their resident time and thus, the coagulation, condensation, and
deposition processes undergone for the particles in the system. Thus, particle
accumulation regions may appear in the gas (where the particles concentrate
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around prescribed trajectories inducing a local enhancement of the coagula-
tion rate) due to the competition of different transport mechanisms. In gen-
eral, small particles in gases do not follow the gas streamlines [16], the main
causes being: inertia of particles in rapidly varying flows [11], thermophore-
sis (drift of particles in a gas down a temperature gradient) [8, 10, 15, 16, 18],
photophoresis (caused by inhomogeneous surface temperatures induced by
radiative fluxes) [2], buoyancy, electrophoresis, external forces, and Brownian
diffusion. In general, the mean particle velocity vp can be written as

vp = v + vrel, (1)

here v is the local gas velocity and vrel is the average particle velocity relative
to the gas which may have several contributions. Due to the high temperature
gradients involved in coal combustion, thermophoresis may become the leading
diffusive transport for intermediate soot and flying ash particle sizes (from
submicron to micron sizes) pushing the particles away from the hotter regions.
This thermophoretic velocity is

vT = − αTD
∇T
T

, (2)

where αT is the thermal diffusion factor and D the diffusion coefficient. The
particle dynamics depends mainly on two dimensionless parameters, the ther-
mal diffusion strength α, and the Schmidt number Sc

α =
αTD

ν
Sc =

ν

D
(3)

with ν the gas kinematic viscosity. For sufficiently large particle, Sc takes on
very large values and Brownian diffusion may become negligible whereas for a
wide range of particle sizes, the value of α is quite insensitive to particle size
and form [15,16]. Moreover, the presence of intense radiative fluxes may lead
to a photophoretic drift of the particles in the gas [2].

Usually the particles form large aggregates which can be simulated as
continuous porous particles. Recently [9], we have obtained the drag on an
aggregate composed by a large number of unitary spheres N of radius R1,
distributed in a fractal manner with a cumulative monomer number distribu-
tion given by

N(r) = β

(
r

R1

)Df

, (4)

where r is the distance to the aggregate center, Df is the fractal dimension,
and β is a the fractal prefactor of order unity. The aggregated was modeled
as a fractal porous sphere with variable porosity, using a low permeability
asymptotics; that is, in the limit

k1/2 ≡ [χ(R)]1/2

R

 1 (5)
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where χ is the particle permeability and R is the aggregate radius. The drag
on a moving aggregate can be estimated by matching the solutions in three
different regions: An outer region (the fluid Stokes region) and an inner region
(the porous particle core governed by a Darcy law), both connected through
a transition region at the surface (governed by a Brinkman equation). The
solution of this multilayered problem leads to the drag force on the aggregate

F = −6πµRU
{

1− k1/2 + k

[
(χ′/χ)r=R

4
− 3 + δ

2 + δ

]
+O

(
k3/2,

)}
(6)

χ′ denotes the derivative of the particle permeability with the distance to the
particle center, being a negative quantity. Moreover,

δ ≡
√
D2

f + 8(3−Df)−Df

2
. (7)

Therefore, the Stokes drag is reduced by the particle permeability due to the
possibility for the fluid to pass through the aggregate.

3 Behavior of Particles Near Obstacles Under Strong
Temperature Differences

The knowledge of the particle dynamics is needed to analyze the distribution
of these particles around the surfaces confining the gas stream and to obtain
the particle deposition rates on these surfaces. In a previous work [8], we
studied the behavior of particles around obstacles when there exists a large
temperature difference between the solid and the gas stream. For cold surfaces
in hot gases, the thermophoretically induced mass flux of a dilute aerosol
toward the body surface was obtained and the results were compared with
some available experimental measurements [11]. In most practical cases, a
simple empirical law may correlate the deposition rate

J ≈ b1

[
1− exp

(
−b2 α

T∞ − Tw

Tw

)]
, (8)

with T∞ and Tw denoting the mainstream temperature and the wall temper-
ature, respectively, and b1, b2 are correlation constants of order unity.

On the other hand, for hot plates in cold streams, thermophoresis pushes
the particles away from the plate. In the absence of Brownian diffusion a dust
free region appears above the hot surface and the thickness of the dust free
region increases with the temperature difference. However, Brownian diffusion
induces a leakage of the particles across the dust free region and leads to a
deposition rate on the solid surface

J ≈ a

Sc1/2

[
α
Tw − T∞

Tw

]1/4
exp

[
−b Sc

(
α
Tw − T∞

Tw

)3/2
]
, (9)

which is exponentially small for large values of the Schmidt number Sc.
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In some applications involving particle laden gases, there is a need to avoid
the particle deposition to confining surfaces. The particle transport properties
may be used to reduce the arrival and deposition of particles to surfaces and
the efficiency of these methods lies on the generation of a particle rejection
field near the surface, but one has to account for Brownian diffusion which
is always present, and produces a diffusive transport of the particles against
this rejection field. Due to thermophoretic effects that drifts the particles away
from heated bodies, heating the surface may be used as a repulsion method to
reduce the particle arrival to worthy surfaces [1, 7, 17]. Some other repulsion
methods can be devised; as for instance, blowing through the surface which
generates a local gas flow field away from the surface opposing the arrival of
particle to the wall [1, 13].

4 Monte Carlo Simulation of Deposit Growth Dynamics

Once the particle become in contact with the surface, they may form deposits
that evolve with time. The bulk properties (hardness, porosity, permeability,
effective thermal conductivity) and the surface structure (roughness, rigidity,
reactivity) of the generated deposits will affect the temperature field and the
velocity field around them. These deposit properties are primarily controlled
by the way the particle reach the deposit. The particle motion near the de-
posit can be split into two additional contributions; namely, a mean particle
velocity, U , and a random motion with a characteristic diffusion coefficient, D.
Thus, the motion is characterized by a Peclet number, Pe = Ua/D, where a
is the particle diameter. The Peclet number provides the relative importance
of the deterministic motion to the Brownian motion for the particles. In a
recent work [14], a Monte Carlo model for the simulation of particle deposit
growth by advection and diffusion toward a flat surface has been proposed.
The model allows to follow the evolution of the deposit and to determine the
main morphological and structural features of the generated deposits, depend-
ing on the transport properties of the arriving particles. The deposit structure
is characterized by its interface (mean height and surface roughness) and bulk
(density) properties. Numerical correlations, fitted by simple expressions for
these magnitudes were obtained, relating them to time (number of deposited
particles), and Peclet number. The density profiles inside the deposit show
three different layers: a near wall region (affected by the presence of the –
flat and smooth – initial solid body), a plateau region (with a constant mean
density), and an active growth layer (with decreasing density) at the surface.
Decreasing Peclet numbers lead to deposits characterized by a lower mean
density in the plateau region and a larger width of the active growth region
at the surface, presenting more open structures which are less compact and
easier to remove.
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5 Vapor Deposition

On the other hand, vapors present in the gas streams may condensate on cold
surfaces or on preexisting particles, or even nucleate in cold regions. The de-
position of vapors and particles on surfaces has been studied focusing on some
model problems. Thus, in [3–6, 12] the deposition of vapors on cold surfaces
was studied allowing for vapor condensation within the thermal boundary
layer. When the dew point is reached inside this layer, vapors either nucleate
and form new particles or condensate on already existing particles. Then, the
total deposition of material on the surface is obtained as the addition of the
transport of vapors by diffusion and the vapor condensated on the arriving
particles.

6 Final Remarks

Problems related to transport of particles and vapors, vapor nucleation, con-
densation of vapors on particles, deposition of vapors and particles on surfaces,
and formation of structured deposits have wide practical implications in com-
bustion processes. A few simple model problems have been discussed here.
In actual combustion systems, the particle cloud is formed by condensable
vapors and a broad distribution of particles sizes, interacting between each
other. Inertia will play a key role for the larger particle sizes whereas the
dynamics of the smaller particles will be controlled by diffusive processes (as
thermophoresis or Brownian diffusion). Further advances on these lines require
the availability of experimental results (under well controlled conditions), to-
gether with analytical studies of typical flow configurations and the use of
integrated computational tools to study the long time evolution of deposits
large enough to modify the flow field around them and the heat exchange
processes between the gas and the deposits.
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1 Flue-gas Desulfurization

When burned to produce energy, sulfur-containing fossil-fuels, such as coal
or oil, often generate sulfur dioxide (SO2). SO2 is known to be damaging to
humans (at high concentration levels) and to the environment, being one of
the main precursors of acid rain. Coal is the most abundant fossil fuel, with
reserves estimated to be in excess of 150 years at current consumption rates.
Thus, technologies aiming at minimising the environmental impact of coal
utilization are subject of vigourous research worldwide. Among these, flue-gas
cleanup, such as Flue-gas desulfurization (FGD), is perhaps the one offering at
present the lowest technological risk, and the fastest route to implementation.
FGD can be achieved using a number of technologies [3], but the vast majority
of currently-installed capacity is for wet scrubbers. Wet scrubbers combine
high SO2 removal efficiency, high reagent utilization, and compact designs.

Wet scrubbing is a complex mathematical problem. It involves multiphase
flow, with the contact between the scrubbing agent and the flue gas being the
driving force of the process. There is mass-transfer between the phases, and
chemical reactions within each phase. Limestone is the most most-widely used
scrubbing agent. It consists mostly of calcium carbonate (CaCO3), and is plen-
tiful and inexpensive. Further, wet scrubbers using limestone as the absorber
can produce gypsum as a by-product. This can be sold to the construction in-
dustry, thus generating revenue and avoiding landfilling fees. The production
of gypsum requires the addition of an oxidation tank to the scrubber, with
adds to the complexity of the mathematical model.

The integration of chemistry and fluid dynamics in a single, comprehen-
sive, mathematical model is the aim of the present paper. The model equations
for the multiphase flow can be solved only numerically, and in this paper this
is done using Computational Fluid Dynamics techniques. Further, we model
simultaneously both the scrubber and the oxidation tank as two separate
domains, with similar physicochemical models, linked through boundary con-
ditions.
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2 Multiphase, Multidomain Model

As outlined above, the mathematical model required is multidomain and mul-
tiphase. The two domains are the scrubber (or absorber) and the tank. In the
scrubber, the flue gases are showered with limestone slurry, often in the form
of a spray. SO2 in the flue gases is transferred to (absorbed into) the limestone
slurry. The clean flue gases are directed to the plant stack, while the limestone
slurry with the dissolved SO2 falls by gravity onto the oxidation tank; here,
additional air is injected, in the form of bubbles, to completely oxidise the
gypsum (which is usually later de-watered and sold). The process is outlined
in Fig. 1.

The flow, either in the scrubber or the tank, is also made up of two dis-
tinct phases. In the scrubber, the flue gas is a continuous phase exchanging
properties with the disperse slurry-phase. In the tank, the situation is the
reciprocal one, with the liquid slurry being the continuous phase and the air
injected through the spargers being the disperse one. An Eulerian–Eulerian
multiphase model has been employed to simulate each domain. This model
treats both phases (disperse and continuum) as Eulerian continua. They can
coexist at each point with a certain volume fraction (or probability of pres-
ence) and each will generally have distinct properties which are accounted for
by their own set of equations. The model considers conservation equations for
the local amount of phase, its momentum and the within-phase concentration
(mass fraction) of all the relevant chemical species.

The conservation of mass for each phase α is governed by its volume-
fraction equation

∂ (ραrα)
∂t

+∇ · (ραrαvα)−∇ · (Γα∇rα) = ṁβα , (1)

where ρα is the density of phase α, rα is the volume fraction of the phase,
vα = (vα1 , vα2 , vα3) is the velocity vector, Γα is the phase-diffusion coefficient

Fig. 1. (Left) Plant schematic; (Right) gas-phase velocity-vectors and slurry volume-
fraction in the scrubber
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(accounting for turbulent mixing in the present model), and ṁβα represents
the mass-transfer rate from phase β into phase α. The volume fractions add
to unity: rα + rβ = 1.

The momentum equation for the ith component of the phase velocity-
vector vα is

∂

∂t
(ραrαvαi)+∇·(ραrαvαivα)−∇·(Γαvαi∇rα)−∇·(µαrα∇vαi) =−rα

∂P

∂xi
+Sα,

(2)

where Sα represents different source terms, such as drag or body forces.
Finally, the species conservation equation is, for species A in the phase α

∂
(
ραrαY

A
α

)
∂t

+∇·
(
ραrαY

A
α vα

)
−∇·

(
ΓαY

A
α ∇rα

)
−∇·

(
ΓY A

α
rα∇Y A

α

)
= SA

α , (3)

where Y A
α is the mass fraction, ΓY A

α
is the diffusion coefficient for the species,

and SA
α represents different source terms, such as absorption or chemical

reaction.
Turbulence is represented with a two-equation k–ε model in the continuous

phase (i.e., gas in the scrubber and slurry in the tank). The model is a standard
one [4], with turbulence-modulation corrections to account for the effect of the
disperse phase [7].

3 Chemical Model

The chemical model implemented calculates the local mass fractions of the
main species involved in the desulfurization process, in both the scrubber
and the tank, through transport equations such as (11). For the flue gas
in the scrubber, these species are SO2, O2, and CO2. For the slurry phase,
the relevant species are SO2, HSO3

−, and SO3
2−, which are modeled to-

gether as a single variable named SS (for sulfurous species); CO2, HCO3
−,

and CO3
2− which are treated similarly as a single variable CS (for carbon

species); Ca2+; SO4
2−; CaCO3(s); and CaSO4 · 2H2O(s). Both limestone and

gypsum (CaCO3(s) and CaSO4 · 2H2O(s)) are treated as species in the liq-
uid phase, as in [5], and not as third, solid phase. The main difference in
the equation for each species is the source term, which represents absorption,
desorption, and chemical reaction. The corresponding source terms for each
species are indicated in Table 1; their rationale is briefly discussed below. (In
the expressions shown, the equilibrium constants and solubility products are
taken from [1], and Henry’s law constants from [8]. Aint is the interface area
between gas and slurry per unit volume, k are mass-transfer coefficients, E
are enhancement factors due to chemical reaction, H is Henry’s constant, W
are molecular weights, and C are molar concentrations.)
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Table 1. Source terms for the chemical species

Source Value

SSO2
g WSO2Aint

(
1/kSO2

g + HSO2/kSO2
l ESO2

)−1 (
CSO2

g − HSO2CSO2
l

)
SO2

g WO2EO2Aintk
O2
l

(
CO2

g /HO2 − CO2
l

)
SCO2

g WCO2ECO2Aintk
CO2
l

(
CCO2

g /HCO2 − CCO2
l

)
SSS SSO2

g − SO2
g 2WSO2/WO2

SCaCO3
l WH+

(
SSO2

g /WSO2 + SO2
g /WO2

)
/2

SCS
l SCaCO3

l − SCO2
g

SCaSO4
l 1.1 10−4AgyprlWCaSO4·2H2O (RS − 1)

SCa2+

l SCaCO3
l − SCaSO4

l

SSO4
2−

l SO2
g 2WSO2/WO2 − SCaSO4

l

SO2(g) is absorbed by the slurry in the scrubber, and the source term in the
equation is, therefore, the absorption rate [6]. The mass-transfer coefficients k
are calculated from the Sherwood number-correlations. O2(g) is absorbed in
the tank and in the scrubber. The source term is similar to the source term for
SO2(g), but it is considered that the absorption or desorption rate is controlled
by mass transfer on the liquid side [6]. CO2(g) can be absorbed or desorbed
in the scrubber and in the tank. The source term is similar to that for O2(g),
because the absorption or desorption rate is controlled by the mass transfer
on the liquid side [6]. The compound-species SS is formed in the scrubber,
where the absorption of SO2(g) takes place, and it is consumed in the tank
with the oxidation of HSO3

− to SO4
2−. The respective molar concentrations

of SO2, HSO3
−, and SO3

2− depend on the pH (pH= − log(CH+
)).

4 Results

The mathematical model outlined above has been used to simulate an actual
FGD plant, viz that in operation at the ENDESA Teruel powerstation in
Spain (schematic in Fig. 1, left). The FGD plant has been designed for a high-
sulfur coal (4.5%) and for a desulfurization efficiency better than 90%. The
combined limestone consumption is approximately 100 Ton h−1, for a gypsum
production of 180 Ton h−1.

The plant is of the two-pass kind, with a co-current and a counter-current
section. The flue gas enters the plant through the co-current section, where it
is showered with the limestone slurry injected through the limestone nozzles.
At the bottom of the scrubber there is a slurry oxidation and neutralisation
tank. The co-current slurry droplets disengage from the gas flow and fall to
the tank, while the gases turn 180◦ toward the counter-flow section of the
scrubber, where it is further sprayed with limestone slurry.

The appropriate operational data have been obtained from the plant, both
for the definition of the scenarios simulated in the model and for model
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validation. The main operational parameters for the plant for a flue-gas
mass-flow-rate of 1,257,364 Nm3 h−1, a coal sulfur contents of 3.5%, and
a design desulfurization efficiency of 95% are: fresh-slurry mass-flow-rate,
112,886 kg h−1; fresh slurry limestone concentration, 333 g l−1; recycled-slurry
mass-flow-rate, 56,073,600 kg h−1; oxidation-air flow-rate, 35,300 N m3 h−1.

Because of space limitations, only a fraction of the results is presented.
Figure 1 shows the flue-gas velocity pattern with superimposed slurry volume-
fraction. Thus the flue gas enters the absorber through the co-current section,
where it is showered with the slurry, and then performs a U-turn toward the
counter-current section, where it is again sprayed.

Figure 2 displays contours of SO2 concentration in the flue gas on a verti-
cal plane in the scrubber. SO2 levels decrease as it is absorbed into the slurry.
Most of the absorption takes place in the co-current section. This agrees with
observations at the plant, and also with results from other double-loop scrub-
bers [2]. In the counter-current section, the SO2 concentration in the flue gas is
smaller, and a grid is installed to enhance the contact between the phases and
therefore the mass-transfer. The figure also indicates that the concentration
of SO2 is not uniform across the exit plane, reflecting the effect of the different
residence times: the flue gas exiting close to the outer wall has a lower SO2

level. The predicted overall flue-gas desulfurization efficiency is 90.1%, which
can be compared with the actual efficiency of 95%.

Fig. 2. (Left) Contours of SO2 (ppmv, dry basis) in the scrubber; (Right) contours of
limestone concentration (g l−1) in the slurry on a vertical plane across the scrubber
and tank
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1 Introduction

The correct simulation of industrial plants firing pulverized fuels (pf: coal,
biomass, etc.) by means of commercial CFD codes relies on a number of sub-
models for the various processes, including, e.g. heat transfer (radiation, con-
duction through deposits, etc.) and particle combustion. The latter is of major
importance in the design of the combustion chamber and the selection of the
mills or, conversely, regarding the feasibility of burning a new fuel in an exist-
ing boiler. In the last decade, the introduction of new, internationally traded
coals and alternative fuels into the power market has motivated renewed in-
terest in the experimental and theoretical characterization of the combustion
of these fuels. Regarding experimentation, it is generally accepted that the
‘reactivity’ of a fuel can not be determined in desktop analytical instruments;
instead, drop tube furnaces or entrained flow reactors (EFR) must be used in
order to reproduce the high temperature, high heating rate conditions found
in a real pf combustion chamber [1]. Several alternative experimental proce-
dures have been developed in the past and are still used (see, e.g. [2, 3]). On
the other hand, two general approaches are used in the literature to model
pulverized coal/biomass char combustion: one intends to characterize the evo-
lution of the pores inside the burning particle, and considers both internal
and external diffusion, whereas the kinetics for the basic homogeneous and
heterogeneous reactions are taken from low temperature analysis or funda-
mental knowledge of the chemistry involved (e.g. [4]); the other one, followed
here, makes use of an apparent kinetics based on the outer particle surface,
and includes external diffusion [5]. In the latter case, two parameters govern-
ing an Arrhenius-like kinetics are the main unknowns to be determined from
the experiments performed in an EFR. The aim of this paper is to discuss
some aspects of the mathematical procedure for the determination of those
parameters.
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2 Char Oxidation Model

The ‘single film’ model first proposed by Field et al. [5], the most extended
among commercial codes, describes the oxidation of a char particle by means
of apparent oxidation kinetics based on the outer surface of the particle. The
equality of oxygen diffused from the bulk atmosphere surrounding the particle
and that consumed in the oxidation results in the following equation [2, 5]

DO2 ·WO2

R · Tg
(PO2,g − PO2,s) =

2
3
dp ·Ac · Pn

O2,s · e
− Ec

R·Tp (1)

where the subscripts g refers to the bulk gas and s to the particle surfaces, n
is the reaction ratio, and Ac and Ec represent the frequency factor and the
activation energy of the apparent kinetics, respectively. These parameters are,
essentially, the only ones to be determined from experiments. This pseudo-
empirical formulation has proved its applicability to a wide range of fuels
and combustion conditions in the pulverized range, and overcomes the great
difficulties found by other approaches which intend to model the internal
diffusion of gases through the pores of the particle [4].

3 Deconvolution Procedures

Figure 1 presents the experimental data obtained at the EFR, in terms of
unburnt fraction as a function of the length travelled by the particles along
the reactor and the combustion conditions (gas and wall temperature, oxy-
gen concentration) [2]. The curves shown correspond to a Spanish anthracite,
thoroughly sieved in the range 53–63 µm. The traditional procedure for ob-
taining the kinetic parameters from these data includes the representation of
the burnout rates in Arrhenius plots (i.e. in logarithmic scale, as a function
of 1/T), and the fit of the results to linear regressions, whose slope should be
Ec. In order to calculate the particle temperature, quasi-stationary conditions
must be assumed [5], which is a reasonable hypothesis in a wide range of sit-
uations, including those corresponding to Fig. 1. However, due to the evident
‘curvature’ of the burnout curves, very different burnout rates for roughly
similar particle temperatures are obtained depending on the range of burnout
levels considered along the curves. Figure 2 explicitly shows how the experi-
mental rates span over more than one order of magnitude for each combustion
condition considered. This fact poses serious problems for the correct adjust-
ment of the data to a linear fit. Little information has been traditionally given
in the literature on the details of the fitting, which nevertheless may lead to
significantly different kinetic parameters depending on the number of points
(or range of burnouts) considered from each curve. For example, Fig. 2 shows
two different fits to the data of Fig. 1, considering alternatively only the first
two points in each curve, and all of them. The activation energies so derived
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Fig. 1. Unburnt fraction of the coal along the EFR length, for the five combustion
conditions used
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Fig. 2. Arrhenius plot derived from the experimental results, and different lines
ks = Ac exp(−Ec/RTp): Fit 1 – Ac =7×10−4 g m−2 s−1 Pa−1, Ec =9.2 kJ mol−1

(all data points); Fit 2 – Ac =0.43, Ec =76.4 (two upper points); Fit 3 – Ac =1.4,
Ec =99 (best fit with the new procedure)

vary from 76.4 to 9.2 kJ mol−1, which illustrates the relevance of this choice
in the result obtained. The best fit with the new procedure is also included in
Fig. 2 for comparison (Ec= 99 kJ mol−1).

Moreover, the calculation of the combustion curves corresponding to a
monosized sample of fuel particles results in straight lines; in order to explain
the reduction of burnout rate observed in the experimental results, several
‘passivation factors’ that affect the ‘reactivity’ of the particle at the last stages
of combustion have been proposed in the past (see, e.g. [6]).

Most of the uncertainties associated to this procedure are avoided if the
particle size distribution (PSD) is recognised as polidisperse, as it always
is (even after iterative sieving), and the measured distribution used in the
deconvolution procedure [2]. As a drawback, an analytical treatment of the
data is impossible, and ab initio calculations which simulate the combustion
history of the whole distribution must be accomplished. This new method
has been applied to the data of Fig. 1: the fuel PSD was measured by means
of laser diffractometry, and the combustion of the particles in the EFR was
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simulated from injection to collection at the different sampling points for a
certain pair of parameters Ec, kc. The difference between simulations and
experimental data was computed for each curved and stored. By iterating the
simulations for a wide range of Ec, Ac values, an optimum pair is found (i.e.
those values for which the ‘error’ is minimal). In this case, Ec= 99 kJ mol−1,
Ac= 1.4 g m−2 s−1 Pa−1.

The simulations correctly predict the combustion curves, and specifically
most of their ‘curvature’ is reproduced with this approach. Figure 3 illustrates
the effect of considering the multiple size classes included in the fuel PSD,
by comparing an experimental curve with the predictions corresponding to
hypothetical monosized samples and to the actual PSD used. As expected,
carbon consumption is nearly linear with residence time (or length travelled)
for each size class, but the weighed sum correctly fits the experimental data
for most of the burnout range studied. This is of practical importance, since
the prediction of the burnout fractions at lower end of the combustion curve
is crucial for the minimization of carbon losses in real systems.

Several minimization algorithms could be applied to the search of the
optimal kinetic parameters in the framework of this procedure (e.g. genetic
algorithms); however, the massive (‘square boxes’) method used provides some
insight into the dependence of the error with both parameters. A ‘valley’ of
minima is always found, with steep side slopes but considerably flat along its
centreline, so that a continuum of pairs Ec,Ac is found to adequately fit the
experimental data; nevertheless, as mentioned above, an optimal pair is found
in this case.

Compared to the traditional method, which is essentially based on the first
derivate of the data and thus considerably sensitive to experimental uncer-
tainties, the new approach has a greater tolerance to noise. Also, it is most
suitable for the introduction of variations in the sub-models embedded in the
char oxidation model (e.g. evolution of particle diameter with burnout, etc.).
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Fig. 3. Predictions of U vs. path along the EFR, for different particle sizes (con-
ditions of Run D, Ac = 1.4 g m−2 s−1 Pa−1, Ec = 99 kJ mol−1) (experimental results
for Run D are also presented, as well as the best fit)
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4 Conclusions and Further Work

It has been shown that the traditional procedure, based on the representation
of the data in Arrhenius plots, entails significant errors essentially due to the
inherent assumption of monodispersity of the fuel tested. If, on the contrary,
the distribution of sizes is measured and considered, the ‘analytical’ treatment
of the data is impossible, and a direct calculation of the combustion history
of the whole distribution must be done. A simple (massive) algorithm is used
to find the ‘optimal’ kinetic parameters (i.e. those for which the fitting error
is minimal) [2]. This general procedure is found to better fit the experimental
data available, and its tolerance to noisy data is much higher, compared to
the traditional method.

Several research lines for ongoing and future work are indicated in the
following:

– The extension of the searching algorithm to the devolatilization process,
also described by Arrhenius kinetics, and to other fuels, such as pulver-
ized biomass. In this case, the suitability of the char oxidation sub-model
used must be confirmed, since biomass particles are typically in the range
of hundreds of microns, where the condition of thermally thin particles,
assumed for pulverized coal, might not be applicable.

– The introduction of variations in the fuel combustion model to account
for phenomena such as fragmentation, which could be of great practical
relevance in the prediction of carbon losses in real boilers.

– Further analysis of the numerical procedure would be needed in order to
establish the minimal number and characteristics of the tests required to
allow deriving reliable kinetic parameters from experimental data. This
is also of practical importance, since a reduction of the number of tests
would imply a decrease in the experimental effort and cost to characterize
a particular fuel.
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In recent years the need of exploiting reservoirs of oil of lesser quality has
pushed the research of the chemical, physical and rheological behaviour of oils
particularly rich in heavy hydrocarbons. The latter category includes a large
class of n-alkanes, collectively termed “wax”, up to the so-called asphaltenes.
Asphaltenes may develop a tendency to aggregate and to precipitate. Wax can
segregate at sufficiently low temperatures and also give rise to the phenom-
enon of molecular diffusion induced by thermal gradients. The outcome of all
such phenomena is the formation of deposits, which can reduce the lumen of
pipelines, possibly leading to obstruction. Therefore it is quite obvious that
the possibility of predicting the rate of precipitation of asphaltenes or the rate
of wax deposition has a great economic impact.

This minisymposium was dealing precisely with this subject. Three talks
were presented, concerning the problem of asphaltene precipitation (S. Correra)
and problems of wax migration (M. Primicerio) and deposition in pipelines (L.
Fusi). They well represent the state of the art in the mathematical modelling
of these phenomena. Starting from a sound theoretical background, the mod-
els are formulated and the corresponding theories are developed to the point of
producing simulations. Validation is obtained by comparison with laboratory
or field data. Of course the models are based on approximations, sometimes
limiting their range of applicability. The situation in these processes is so
complicated that this research area is still in full expansion and a lot of theo-
retical and experimental work has already been planned. As a matter of fact,
the relative importance of several simultaneous processes (e.g. wax migration,
segregation, gelification, ablation, ageing of deposits, etc.) going through dif-
ferent stages is presently not completely understood, so that there is a strong
expectation that the global view of the physical picture may greatly improve
in the next future.
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1 Introduction

Asphaltenes constitute the heaviest, most polar fraction of crude oil [1]; they
form heavy organic deposits in oil production ducts, inducing flow rate reduc-
tions. The principle of economy (Ockham’s razor) was employed to develop
onset-constrained colloidal asphaltene model (OCCAM) [2]. It is a partic-
ularisation of the Flory–Huggins model [3]; a binary system is considered,
constituted by the solvent mixture (pseudocomponent 1), grouping together
components and solvents (possibly) added, and the asphaltene (pseudocom-
ponent 2). At the onset of asphaltene precipitation, the following relationship
is fulfilled:

V1

RT
(δ1 − δ2)

2 = χcr, (1)

where

V1 = molar volume of solvent mixture
R = gas constant
T = absolute temperature
δ1 = solubility parameter of the solvent mixture
δ2 = asphaltene solubility parameter
χcr = critical value of the interaction parameter.

The parameters of the model are tuned by fitting experimental data of onset
of asphaletene separation and the model can be employed to predict asphal-
tene instability conditions [4], [5]. It only needs a few, physically well-defined
parameters, easy to estimate with relatively cheap measurements. Here, the
lattice approach is re-examined in order to take into account self-aggregation.

2 The Lattice Description

For a polymer the lattice description leads to the well-known Flory–Huggins
expression for the entropy of mixing:
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∆SM

k
= −n2 lnφ2 − n1 lnφ1, (2)

in which

n1 = number of solvent molecules (each one is able to fill a single site of
the lattice);
n2 = number of polymer molecules (each one is able to fill r sites of the
lattice);
φ1 = volume fraction occupied by the solvent;
φ2 = volume fraction occupied by the solute

In (2) the dominant term is n1 lnφ1; this is why expression (2) was adopted
without modifications.

3 Enthalpy of Mixing

A honeycomb lattice is considered, of order z = 6; asphaltene molecules are
mixed with the solvent, and each solvent molecule occupies a single site. The
asphaltene molecule is constituted by an aromatic plate, which occupies m
sites, and c paraffinic chains, each of them occupying q sites. The total number
of sites of the lattice is:

no = n1 + rn2, (3)

in which:

no = total number of lattice sites;
n1 = total number of solvent molecules;
n2 = total number of asphaltene molecules;
r = number of sites occupied by an asphaltene molecule.

It is considered that a single asphaltene molecule occupies r sites:

r = m+ cq, (4)

in which:

m = number of sites occupied by the aromatic “core” of the asphaltene
molecule;
c = number of paraffinic chains;
q = length (in number of sites) of a single paraffinic chain.

The mixing can be considered as a quasi-chemical reaction between solvent
and asphaltene, in which two solvent-asphaltene contacts replace a couple of
solvent–solvent and asphaltene-asphaltene contacts. If p of these contacts are
formed and neglecting all volume changes on mixing, the enthalpy of mixing
is obtained:

∆HM = ∆UM + ∆(PV ) ≈ ∆UM = psol-asp∆usol-asp.
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Here, separate contributions from paraffinic chains and aromatic core are
considered.
Paraffinic chains. For a single chain, the contacts are (z − 2)q + 1 ≈ zq;
therefore, for c chains, there are czq contacts.
Aromatic core. An approximate expression is used for aromatic plate-solvent
bonds:

2
mz

2
+
z

2
νz ≈ mz.

Overall change. The probability that a given cell is occupied by the solvent is
just φ1. This leads to:

∆HM = n2φ1(cqz∆usol-chains +mz∆usol-core)
= n2φ1(cqχsol-chains +mχsol-core)kT. (5)

Two interaction parameters (χ) have been introduced. Now, an asphaltene
aromaticity factor ξ is defined

ξ =
m

m+ cq
. (6)

Then

∆HM = n1φ2[(1− ξ)χsol-chains + ξχsol-core]kT = n1φ2χkT. (7)

Expressing the two χ in terms of solubility parameters, the following relation-
ship is obtained:

ξ =
(δ2 − δ1)2 − (δchains − δ1)2

(δcore − δ1)2 − (δchains − δ1)2
. (8)

4 The Free Energy of Mixing

The free energy of mixing is obtained from (2) and (7); it allows to calcu-
late phase equilibrium compositions. With typical values of the parameters
(Tables 1 and 2) and ξ = 0.65, a mass of heptane equal to 2.28 times the
mass of oil is able to destabilize a 50− 50%w mixture of oil and toluene.

5 Asphaltene Aggregation

Aromatic cores of asphaltene molecules form stacks, with the aliphatic tails
that make a sort of paraffinic boundary. If asphaltene molecules form a stack,
the following replacements are to be considered:
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Table 1.

Property Mw ρ V δ

(g mol−1) (g cm−3) (cm3 mol−1) ((cal cm−3)1/2)

oil 300 0.85 352.9 8.60
toluene 92 0.86 106.8 8.89
n-pentane 72 0.61 116.2 7.09
asphaltene 2,000 1.25 1,600.0 9.70

Table 2.

Parameter δ χ

((cal cm−3)1/2) –

chain 6.5 0.34
core 10 1.14

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n2 −→ n2

s ,

ξ −→ m
m+scq = 1

1+s(cq/m) = 1
1+sλ , λ = cq

m ,

φ1, φ2, n1 not varied.

In this way:

∆GM = kT

{
n1 lnφ1 +

n2

s
lnφ2 + +n1φ2[

sλ

1 + sλ
χsol−chains +

1
1 + sλ

χsol−core

]}
(9)

6 Results and Conclusions

By employing (9) it is possible to show that aggregation tends to lower the
free energy of mixing. With the same values of parameters, but varying the
aggregation level, the model was employed to describe the stabilising effect of
aggregation. Results are shown in Fig. 1, in which the ratio (weight of paraffin
at the onset)/(weight of oil) is reported versus the stack aggregation numbers.
Clearly, the more the system aggregates, the more stable it becomes, as a limit
to aggregation is not yet present in the model.
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Fig. 1. Ratio (weight of paraffin)/(weight of oil) at the onset vs. the aggregation
number
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Summary. This work presents a model for the turbulent flow of a waxy crude oil
in a pipeline, in which deposition is taken into account. Waxy crude oils (WCO’s)
are mineral oils with high content of heavy molecular weight compounds, usually
called waxes. When a sufficiently low temperature is reached (cloud point, Tcloud)
waxes begin to solidify, entrapping the oil in a gel-like structure.

The presence of solid waxes may lead to the formation of a deposit layer on the
pipe walls during transportation at low temperatures. This phenomenon has impor-
tant consequences, such as the increase of pressure requirements and, in the worst
scenario, the blockage of the line. Deposition can be due to different mechanisms
(see [1]), although there is a general agreement on considering that molecular diffu-
sion is the dominant one. Diffusion refers to the radial mass flow of dissolved waxes
towards the pipe wall due to a concentration gradient.

In the model presented herein, molecular diffusion is taken as the only deposition
mechanism. The model is also based on the assumption that the deposit thickness is
small compared to the pipe radius, as explained elsewhere [2]. Moreover, the effects of
ablation, ageing and desaturation are also addressed in the model. Ablation refers to
the removal of part of the deposit by the fluid shearing. On the other hand, ageing
is a phenomenon that decreases the oil fraction in the deposit. Finally, desaturation
takes into account the fact that the fluid is being depleted of waxes.

1 The Thermal Field

Let us analyze the following case: a fluid is circulating in a cylindrical pipe of
radius R and length L in turbulent regime. The thermal field is homogeneized
over cross sections except in a thin thermal boundary layer where it can be
written as

T (r, z) = (To − Te) exp
{
−2πhR

ρcQ
z

}
·
{

1− hR

k
ln
( r
R

)}
+ Te, (1)
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with
∂T (r, z)

∂r
= − (To − Te) exp

{
−2πhR

ρcQ
z

}
· hR
kr

. (2)

In (1) h is the heat transfer coefficient, k is the heat conductivity, ρ is the den-
sity, c is the heat capacity, Q is the volumetric flow rate, To is the temperature
of the oil at the inlet and Te the temperature of the surroundings. Expres-
sion (1) is compatible with the assumption that heat transfer is quasi-steady
and takes place mainly in the radial direction. The thickness of the bound-
ary layer can be obtained from the momentum boundary layer by means of
classical correlations. The momentum boundary layer is determined imposing
balance between the drag and propulsive forces in a unit length portion of the
pipe. Indeed, denoting with σm the momentum boundary layer thickness and
introducing the ratio εm = σm/R, such a balance is expressed by

FD =
2ηQ
εmR

= FP = ∆PπR2, (3)

where η is the viscosity of the oil and P is pressure. Relation (3) allows us to
calculate εm. Then the correlation (see [3]) εT = εm× 0.41 is used to evaluate
the thermal boundary layer thickness σT = εTR.

The temperature of the turbulent core Tc is obtained writing the energy
balance

ρcπR2V (Tc(z)− Tc(z + dz)) = −
∫ z+dz

z

2πRk
∂T

∂r
(R, z)dz, (4)

where V = Q/R2π is the velocity in the turbulent core. In the limit dz → 0

dTc

dz
=

2πhR(To − Te)
ρcQ

exp
{
−2πhR

ρcQ
z

}
. (5)

Integrating with Tc(0) = To the following solution is obtained

Tc(z, t) = (To − Te) exp
{
−2πhR

ρcQ
z

}
+ Te. (6)

2 The Deposition Equation

The reduced pipe radius is denoted by ν = R − σd
1 and we assume ν ≈ R.

When the bulk is saturated, the wax solubility is an increasing function of
temperature Cs(T ) (assumed linear in T , i.e. dCs/dT = β = const. > 0). The
deposition rate is

jdep = −D
ψ

dCs

dT
∂T

∂r

∣∣∣∣
r=ν

=: −Dβ
ψ

∂T

∂r

∣∣∣∣
r=ν

, (7)

1σd is the deposit thickness.
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where ψ is the solid fraction of the deposit and D is the dissolved wax diffu-
sivity. At this stage ψ is assumed to be constant; in Sect. 4 an expression for
the evolution of ψ with time is proposed. The rate of removal by ablation is
proportional to the shear stress at the deposit front

jabl = −Aτ
ψ
, (8)

where A is the ablation coefficient. Since τ = (ηQ)/(πR2εmν),

jabl = − AηQ

πR2ψεmν
, (9)

The deposition equation is obtained by writing

d
dt

∫ z+dz

z

ρπ(R2 − ν2(ξ, t))dξ =
∫
Σ

(jdep · n− jabl · n)dS (10)

where Σ is the deposition surface and n its outward normal. Supposing enough
regularity for the function ν (10) becomes

ρ
∂ν

∂t
=

Dβ

ψ

∂T

∂r
(ν, z) +

AηQ

πεmψν3
. (11)

Recalling (2) it is possible to integrate the above equation with ν(z, 0) = R.
This leads to

σd = R− ν =
Dβt
ψρR

[
hR(To − Te)

k
exp
{
−2πhR

ρcQ
z

}
− AηQ

πεmDβR2

]
+

·H(Tcloud − Tw), (12)

where [..]+ is the positive part, Tw is temperature at the wall and H is the
Heaviside function (which guarantees that deposition is effective only after
temperature at the wall has fallen below Tcloud). For deposition to occur the
quantity in square brackets must be nonnegative, i.e. the molecular flux by
diffusion must exceed the ablation rate.

3 The Deposition Segment

It can be proved that deposition occurs only in the interval [zf , ze], where

zf =
Qρc

2πhR
ln
[

To − Te

Tcloud − Te

]
, (13)

ze =
Qρc

2πhR
ln
(

(To − Te)πεmhDβR3

kAηQ

)
. (14)

In fact zf (obtained imposing Tw = Tcloud) is the axial position from which
deposition may start and ze is the axial position from which ablation is domi-
nant over deposition (the quantity in the square brackets in (12) is negative).
Obviously the model makes sense only if zf < ze.
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4 Ageing

The phenomenon of ageing consists in the gradual release of oil from the
deposit. This causes an increase of ψ according to some kinetics. For the sake
of simplicity the following is herein proposed

∂ψ

∂t
=

1
ta

(1− ψ), (15)

where ta is a characteristic consolidation time and ψ depends only on time.
Such an equation can be integrated to get

ψ = 1− (1− ψo) exp
(
− t

ta

)
, (16)

where ψo is the initial deposit wax fraction.

5 The Total Mass of Deposit

The total mass of deposit (with oil inclusion) at a certain time t will be given
by

Mtot =
∫ ze

zf

ρπ(R2 − ν2(z, t))dz. (17)

Assuming that zf < ze and that ψ is given by (15), from (12) we get

Mtot = 2taDβ ln
{

1
ψo

[
exp
(
t

ta

)
− 1
]

+ 1
}

·
[

AηQ

πεmDβR2
(zf − ze) + (To − Te)

Qρc

2πk

·
(

exp
{
−2πhRzf

ρcQ

}
− exp

{
−2πhRze

ρcQ

})]
. (18)

6 Desaturation

Denoting with G(z, t) the concentration of segregated solid wax in the bulk it
is possible to write the balance{

∂G

∂t
+ V

∂G

∂z

}
πν2 = 2πν

{
Dβ

∂T

∂r
+

AηQ

πεmν3

}
. (19)

Imposing the steady state solution Ĝ(z) we get

Ĝ(z) = Go +
2π
Q

∫ z

zf

{
νDβ

∂T

∂r
+

AηQ

πεmν2

}
dz′, (20)
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where Go denotes the value of G at z = zf . Integrating (20) we get

Ĝ(z) = Go+
[

2Aη
εmR2

(z − zf)

+
Dβ(To − Te)

α

(
exp{−2παz

µQ
} − exp{−2παzf

µQ
}
)]

, (21)

which represents the concentration of the segregated phase for z > zf .
Desaturation may be achieved at a distance zdes such that Ĝ(zdes) = 0, that
is

Go +
[

2Aη
εmR2

(zdes − zf)

+
Dβ(To − Te)

α

(
exp{−2παzdes

µQ
} − exp{−2παzf

µQ
}
)]

= 0.

Obviously the interesting case is when zdes < ze. For z > zdes deposition
continues with the same rate as long as wax concentration c(z, t) in the oil
stays above the value of saturation concentration corresponding to the wall
temperature. Thus, when Cs(Tw(z)) < Cs(Tc(z)), we write{

∂c

∂t
+ V

∂c

∂z

}
πν2 = 2πν

{
Dβ

∂T

∂r
+

AηQ

πεmν3

}
, (22)

Referring once more to the steady state ĉ we have

ĉ(z) = Cs(Tc(zdes)) +
2π
Q

∫ z

zdes

{
νDβ

∂T

∂r
+

AηQ

πεmν2

}
dz′, (23)

The oil will be completely depleted of solid wax at zs. This is given by

ĉ(zdes) = Cs(Tw(zs)), (24)

i.e. there is no concentration gradient of dissolved wax and, consequently, no
deposition.
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Summary. We simulate the Doi model for suspensions of rigid rod-like molecules.
This model couples a microscopic Fokker–Planck type equation (the Smoluchowski
equation) to a macroscopic Stokes equation. The Smoluchowski equation describes
the evolution of the distribution of the rod orientation. It is a drift-diffusion equation
on the sphere in every point of physical space. The drift term in the microscopic
equation depends on the local macroscopic velocity gradient. Furthermore, the mi-
croscopic orientation of the rods leads to elastic effects which affect the rheological
properties of the macroscopic flow.

For sufficiently high macroscopic shear rates the coupled problem shows the
spurt phenomena, which describes a sudden increase in the volumetric flow rate. In
this regime the drift term in the Smoluchowski equation is dominant and thus a
numerical method appropriate for transport dominated PDEs is used.

1 Introduction

There is a fast growing literature on the physics of liquid suspensions, since
these kind of materials occur in a large variety of applications. The trend is
away from ad-hoc macroscopic models to models with a more detailed de-
scription of the microscopic behavior. The reason is that there is no single
macroscopic model which may capture the entire wealth of potentially rele-
vant phenomena on the micro-scale. A detailed mathematical model requires
a description of the microscopic molecular orientations and the macroscopic
rheological response. Such a micro-macro model, the so-called Doi model, is
considered here (see Sect. 2).

The coupled micro-macro system shows interesting phenomena, in particu-
lar the spurt phenomenon. Spurt describes a sudden increase of the volumetric
macroscopic flow rate at a critical stress. This phenomenon had long been ob-
served experimentally. For the Doi model, the occurrence of spurt was recently
analyzed by Otto and Tzavaras in [5]. In [3], we presented a numerical method
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for the approximation of the micro-macro model. Using this numerical method
we further investigated the spurt phenomenon in different regimes.

In order to simulate the Smoluchowski equation, we use a finite volume
type discretization which is motivated by methods for transport dominated
problems. The Smoluchowski equation is a drift-diffusion equation on the
sphere. In [3], the sphere was discretized by a longitude-latitude grid. This is
appropriate for flow situations where the drift term vanishes at the poles. For
general flow situations this is not the case and we therefore now use a dis-
cretization of the sphere (introduced in [1]) which avoids the pole singularity.

2 The Mathematical Model for Suspensions
of Rod-Like Molecules in the Dilute Regime

Doi and Edwards [2] derived kinetic models for suspensions of rod-like mole-
cules in different regimes (dilute, semidilute, and concentrated). Here we
restrict our considerations to the dilute regime, where the rods are well sepa-
rated.

The microscopic model is described by a local probability distribution
ψ(t,x,n)dn. It gives the time dependent probability that a rod with cen-
ter of mass at x has an axis in the area element dn. The evolution of ψ is
given by the Smoluchowski equation

∂tψ(t,x,n) + u(t,x) · ∇xψ(t,x,n)+∇n · (Pn⊥∇xu(t,x)nψ(t,x,n))
= Dr∆nψ(t,x,n).

(1)

Here the second term describes advection of the centers of mass by the
macroscopic velocity u, the third term describes the rotation of the axis
due to a macroscopic velocity gradient ∇xu and the term on the right
hand side models rotational diffusion. Gradient, divergence, and Laplacian
on the sphere are denoted by ∇n, ∇n· and ∆n, while gradient and diver-
gence in macroscopic physical space are denoted by ∇x and ∇x·. The term
Pn⊥∇xun := ∇xun−(n · ∇xun)n denotes the projection of the vector ∇xun
on the tangent space in n.

A velocity gradient ∇xu distorts an isotropic distribution ψ which leads
to an increase in entropy. Thermodynamic consistency requires that this is
balanced by a stress tensor σ(t,x) given by

σ(t,x) =
∫
S2

(3n⊗ n− id)ψ(t,x,n)dn. (2)

Here, σ plays the role of an elastic stress arising as additional term in the
Stokes equation that models the macroscopic flow.
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The macroscopic equation has the form

∇x ·
((
∇xu(t,x) +∇t

xu(t,x
)
− p(t,x)id + σ(t,x)

)
= −Fext

∇x · u(t,x) = 0,
(3)

where u is the macroscopic velocity, p the pressure and Fext is an externally
imposed volume force.

3 A Numerical Method for the Smoluchowski Equation

Numerical approximations of the coupled micro-macro system were discussed
in [3]. There the Smoluchowski equation was discretized on a longitude-
latitude grid. Here, we present an alternative discretization of the
Smoluchowski equation which avoids time step restrictions due to a pole sin-
gularity. We now consider

∂tψ(t,n) +∇n · (Pn⊥∇xuextnψ(t,n)) = Dr∆nψ(t,n) (4)

with suitable initial values ψ(t0,n) and a fixed externally imposed macroscopic
velocity gradient ∇xuext. Note that we also require

∫
S2 ψ(t,n)dn = 1 for all

times t, if it is satisfied initially.
We use a logically rectangular quadrilateral grid where a single rectangular

computational domain is mapped to the sphere in such a way that the ratio
of the largest to the smallest grid cell is about 1.7, i.e., the pol singularity of
a longitude-latitude mesh is avoided. This sphere grid was introduced in [1]
and is indicated in Fig. 1.

We discretize (4) by using an operator splitting approach in which we solve
the subproblems

∂tψ(t,n) +∇n · (Pn⊥∇xuextnψ(t,n)) = 0 (5)

and
∂tψ(t,n) = Dr∆nψ(t,n) (6)

separately during each time step.

Fig. 1. Computational mesh and the sphere grid from [1]
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There are two general ways to discretize partial differential equations on
mapped grids. We can either transform the PDE into an equation in com-
putational coordinates and discretize the transformed equation, or we can
discretize the PDE directly in physical space and work with reference to a
Cartesian frame. We use the latter approach to discretize (5) and the former
approach to discretize (6). We use LeVeques wave propagation algorithm for
curvilinear grids [4, Sect. 23] which is implemented in the clawpack software.
Note that in [3], we discretized the Smoluchowski equation on a longitude-
latitude grid. For this we transformed the equation to computational coordi-
nates and discretized the transformed equations. For several important flow
situations the drift term in the Smoluchowski equation vanishes at the poles.
In such cases (to which we restricted our considerations in [3]) a longitude-
latitude grid is appropriate. The method outlined here is more general since
it can efficiently be used for any externally imposed velocity gradient.

A finite volume method for (5) has the general form

Ψn+1 = Ψn − $t|C|

N∑
j=1

hjF̆
n
j , (7)

where F̆n
j represents the average normal flux across the j-th side of the grid

cell C, hj is the length of the j-th interface and N is the number of sides. A
finite volume method on a quadrilateral mesh cell can be written in the form

Ψn+1
ij = Ψn

ij − frac$tκij$xc

(
Fi+ 1

2 ,j
− Fi− 1

2 ,j

)
− $t
κij$yc

(
Gi,j+ 1

2
−Gi,j− 1

2

)
(8)

with

κij = |Cij |/$xc$yc, Fi− 1
2 ,j

= γi− 1
2 ,j
F̆i− 1

2 ,j
, γi− 1

2 ,j
= hi− 1

2 ,j
/$yc, (9)

where $xc and $yc describes the length and the width of a grid cell in
computational space. To obtain first order accurate fluxes we calculate

si− 1
2 ,j

= (∇xun− n · (∇xun)n)i− 1
2 ,j
· νi− 1

2 ,j
,

where νi− 1
2 ,j

is the normal vector at the interface (i− 1
2 , j) in the local tangent

plane. This gives us the fluxes

F̆i− 1
2 ,j

=
{
si− 1

2 ,j
Ψn
i−1,j : si− 1

2 ,j
≥ 0

si− 1
2 ,j
Ψn
i−1,j : si− 1

2 ,j
< 0

Furthermore, second order correction terms are included in the update as
described in [4].

In order to approximate the heat equation (6), we transform the equation
to computational coordinates and discretize the transformed equation in the
form of a finite volume method (8) using analytical formulas for the metric
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Fig. 2. Solution of the coupled flow problem showing the spurt phenomenon (left).
The microscopic solution of the Smoluchowski equation for small and large Deborah
number is also indicated (we show contour lines for the density ψ of the probability
distribution of rod orientation)

terms, see [1]. For the time discretization the RKC-method, an explicit solver
for parabolic PDEs, is used.

We now consider a macroscopic shear flow of the form u = (u(y), 0, 0)T

for y ∈ [− 1
2 ,

1
2 ] with no slip boundary conditions u(−1/2) = u(1/2) = 0. The

first plot in Fig. 2 shows a macroscopic velocity profile in the spurt regime.
Along the boundary layer the microscopic solution structure corresponds to
solutions of the Smoluchowski equation in the large Deborah number regime
(De := |∇xuext|/Dr) where the molecules strongly align in flow direction (see
the second plot in Fig. 2). In this regime the drift term in the Smoluchowski
equation is dominant and thus the finite volume approach presented here
leads to accurate results. We can also use the method for the Smoluchowski
equation in the diffusion dominated regime of small Deborah number, which
we observe in the bulk of the flow domain. In this regime the orientation of the
rod-like molecules is almost isotropic with a slight preference of orientations
in a 45◦ angle to the flow direction (see the last plot in Fig. 2).
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Minisymposium “Flow in Porous Media”

Nils Svanstedt

Chalmers University, Sweden

In this minisymposium we consider computational and theoretical modeling
of a variety of problems with complicated microstructure. As the title of this
minisymposium says we present modeling of filtration problems in porous
media. In his talk I. S. Pop derives upscaled Buckley–Leverett equations for
two-phase flow in a porous medium with application to oil recovery. The up-
scaled equation is derived by the use of classical homogenization techniques.
He also presents numerical results on the effective saturation. In the talk by
N. Neuss he considers the Dirichlet problem for the Poisson equation with ho-
mogeneous boundary data in a domain Ωε with rapidly varying boundary ∂Ωε.
He uses homogenization to derive an approximate solution u to the solution
uε. Here u solved an effective Dirichlet problem for the Poisson equation with
homogeneous boundary data in a domain Ω with nonoscillatory boundary
∂Ω. He also presents numerical simulations of this very nice approximation
technique. The third talk is by C. Timofte and concerns thermal diffusion
with nonlinear lower order terms and nonlinear flux laws. The application
in mind is the thermal transmission between two substances embedded in
complicated microstructures. Using mathematical homogenization theory she
derives effective laws for systems of nonlinear thermal diffusion equations. In
particular she points out two cases of practical importance, the Langmuir and
the Freundlich kinetics. In the fourth presentation N. Svanstedt considers a
convection-diffusion model with possibly highly oscillatory random convection
field and diffusion matrix. By combining tools from stochastic homogenization
and reiterated homogenization he derives an effective convection enhanced dif-
fusion model. He also presents some numerical simulations of the cell solutions
for some two-dimensional convection-diffusion examples.



Multiscale Stochastic Homogenization
of Convection-Diffusion Equations

Nils Svanstedt
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1 Introduction

In this short communication we consider the homogenization problem for the
following initial-boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂uω
ε

∂t
+

1
ε3
B(T3(

x

ε3
)ω3) ·D(uω

ε )

−div
(
a
(
T1( x

ε1
)ω1, T2( x

ε2
)ω2, t

)
Duω

ε

)
= f in Q,

divB = 0 in Q,
uω
ε (x, 0) = u0(x) in Ω,
uω
ε (x, t) = 0 in ∂Ω × (0, T ),

(1)

where Ω is an open bounded set in Rn, T is a positive real number and
Q = Ω×(0, T ). We also assume that ε1 and ε1 are two well separated functions
(scales) of ε > 0 which converge to zero as ε tends to zero. Well separatedness
means

lim
ε→0

ε2
ε1

= 0.

We also assume that the scale ε3 is well separated from one of the scales
ε1 and ε2 but might coincide with the other. The conditions on the field B
and the map a are given in Definition 1. With these conditions it is well-
known that for given data f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ L2(Ω) there
exists a unique solution uω

ε ∈ L2(0, T ;H1
0 (Ω)) to (1) with time derivative

∂uε

∂t ∈ L2(0, T ;H−1(Ω)) for every fixed ε > 0 and almost all random variables
(ω1, ω2, ω3) ∈ X1 ×X2 ×X3.

The multiscale stochastic homogenization problem for (1) consists in
studying the asymptotic behavior of the solutions uω

ε as ε tends to zero [1,2].
The main result is that the sequence of solutions {uω

ε } to (1) converges in the
sense of G-convergence [3] to the solution u to a homogenized problem of the
form
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∂u

∂t
− div (B (t,Du)) = f in Ω × (0, T ),

u(x, 0) = u0(x) in Ω,
u(x, t) = 0 in ∂Ω × (0, T ),

(2)

where the convection enhanced effective diffusion matrix B depends on t but
is no longer oscillating in space with ε. For a detailed version of the result in
this communication we refer to [5].

2 Homogenization of the Convection-Diffusion Equation

Let {(Xk,Fk, µk)}Mk=1 denote a family of probability spaces, where each Fk is
a complete σ-algebra and each µk is the associated probability measure. We
assume that for each x ∈ Rn, Xk is acted on by the dynamical system

Tk(x) : Xk → Xk

We are interested in the asymptotic behavior (as εi → 0, i = 1, 2, 3) of the
sequence (1) of initial-boundary value problems. Since divB = 0 there exists
a skew-symmetric matrix S such that divS = B. In space dimension two we
get:

S

(
T3

(
x

ε3

)
ω3

)
=

⎛⎝ 0 s
(
T3( x

ε3
)ω3

)
−s
(
T3( x

ε3
)ω3

)
0

⎞⎠ . (3)

where s is the stream function corresponding to the field B. We define the
map

Aω
ε (x, t) = A

(
T1

(
x

ε1

)
ω1, T2

(
x

ε2

)
ω2, T3

(
x

ε3

)
ω3, t

)

=

⎛⎜⎜⎝
a(T1( x

ε1
)ω1, T2( x

ε2
)ω2, t) −s

(
T3( x

ε3
)ω3

)
s
(
T3( x

ε3
)ω3

)
a(T1( x

ε1
)ω1, T2( x

ε2
)ω2, t)

⎞⎟⎟⎠ .

Before we state the main theorem we also define the appropriate class of
coefficients:

Definition 1 We say that C(ω1, ω2, ω3, t) = (C(ω, t)ij) ∈ S2 if for 0 < α <
β <∞ we have

α|ξ|2 ≤ C(ω, t)ijξjξi ≤ β|ξ|2

for all ξ ∈ Rn a.e. in X1 ×X2 ×X3 × (0, T ).

We can now write (1) as a diffusion problem and state the following theorem:
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Theorem 1 Consider the sequence of diffusion equations:⎧⎪⎪⎨⎪⎪⎩
∂uω

ε

∂t
− div(Aω

ε (x, t)Duω
ε ) = fε in Q,

uω
ε (0) = uω

0 , in Ω,

uω
ε ∈ L2(0,T;H1

0 (Ω)),

Assume that Aω
ε ∈ S2 and that

|Aω
ε (x, t)−Aω

ε (x, s)| ≤ η(t− s)

where η is the modulus of continuity function. Also assume that the underlying
dynamical systems T1(x), T2(x) and T3(x) are ergodic and that the scale ε3 is
the fastest (strong convection). Then

uω
ε (·, t) ⇀ u in L2(0, T ;H1

0 (Ω))

and
Aω

ε (·, t)Duω
ε ⇀ B(t)Du in L2(0, T ; [L2(Ω)]n)

where u is the solution to the homogenized problem{
∂u

∂t
− div(B(t)Du) = f in Q,

u ∈ L2(0, T ;H1
0 (Ω)).

(4)

For a fixed ξ ∈ Rn the operator B(t) is defined as

B(t)ξ =
∫
X1

B1(ω1, t)(ξ + zξ1(ω1, t)) dµ1(ω1)

where zξ1(ω1, t) ∈ Vpot(X1) is the solution to the ε1-scale local problem

〈B1(ω1, t)(ξ + zξ1(ω1, t)), Φ1(ω1)〉 = 0

for all Φ1(ω1) ∈ Vpot(X1), t ∈ [0, T ]. The operator B1(ω1, t) is defined as

B1(ω1, t)ξ =
∫
X2

B2(ω1, ω2, t, ξ + zω1,ξ
2 (ω2, t)) dµ2(ω2)

where zω1,ξ
2 (ω2, t) ∈ Vpot(X2) is the solution to the ε2-scale local problem

〈B2(ω1, ω2, t)(ξ + zω1,ξ
2 (ω2, t)), Φ2(ω2)〉 = 0

for all Φ2(ω2) ∈ Vpot(X2) a.e. ω1 ∈ X1, t ∈ [0, T ]. The operator B2(ω1, ω2, t)
is defined as

B2(ω1, ω2, t)ξ =
∫
X3

A(ω1, ω2, ω3, t, ξ + zω1,ω2,ξ
3 (ω3, t)) dµ3(ω3)
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where zω1,ω2,ξ
3 (ω3, t) ∈ Vpot(X3) is the solution to the ε3-scale local problem

〈A(ω1, ω2, ω3t)(ξ + zω1,ω2,ξ
3 (ω3, t)), Φ3(ω3)〉 = 0

for all Φ3(ω3) ∈ Vpot(X3) a.e. ω1 ∈ X1, ω2 ∈ X2, t ∈ [0, T ].

Proof The proof is completely analogous to the proof of Theorem 7 in [4]. Just
choose p = 2 and perform one more reiterated homogenization.

3 Some Cell Solutions of the Convection Field

As a simple illustration we solve two cell problems for periodic diffusion with
and without oscillating convection fields, see Figures 1 and 2. The numerical
computations are as well as the theoretical modeling in 2D. We have chosen
the diffusion map

a(x, y) = 2 + sin(2πx) sin(2πy).

Fig. 1. Periodic cell solution (no convection)

Fig. 2. Periodic cell solution (large convection)
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The forcing f and the convection field B are chosen as analogous periodic
functions and fields, respectively. According to the definition of the classical
cell problem we choose

f(x, y) = 2π cos(2πx) sin(2πy).
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1 Introduction

In physical problems, interesting phenomena often occur at boundaries or
interfaces between different media. Often these phenomena are complicated
due to the nature of the process or due to the intricate geometry of the inter-
face. Therefore, they are usually described by effective boundary or interface
laws.

In this contribution, we will discuss a model cases in a quasi-periodic
setting, where the parameter function in an effective boundary condition can
be calculated from the microscopic setting. Theoretically, this case was treated
in [5]. Practical computations can be found in treatment of this case was done.
First, we construct a suitable approximation and give a priori estimates for the
error. Second, we consider the efficient numerical calculation of the effective
law, and its use for approximating the solution to the original problem.

2 The Model Problem

We consider the model problem described in [5]. Let Ω ⊂ IRn be a domain
with smooth boundary ∂Ω ⊂ IRn, which has a tubular neighborhood Tδ of
width δ > 0. Let Ωε be another domain such that its boundary ∂Ωε lies inside
the tubular neighborhood and is described in local charts {ϕi : Ui → ∂Ω} with
open sets Ui ⊂ IRn−1 as a graph of the form

γε(x) = εγi(ϕ−1
i (x),

ϕ−1
i (x)
ε

) (1)

with smooth functions γi : Ui×IRn−1 → IR which are 1-periodic in the second
variable where ε is assumed to be small.

On Ωε, we are given the problem

−∆uε(x) = f(x) , x ∈ Ωε , uε(x) = 0 , x ∈ ∂Ωε . (2)
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Now, this problem is difficult to handle numerically due to the intricate struc-
ture of ∂Ωε, such that it is very desirable to find an approximation which is
easier to compute. For achieving this, we assume that the right-hand side f
is extended to Ω ∪ Ωε (either by 0, or such that ‖f‖L∞(Ωε\Ω) is bounded).
Then the solution u to the Poisson problem

−∆u(x) = f(x) , x ∈ Ω , u(x) = 0 , x ∈ ∂Ω (3)

approximates uε up to order O(ε) in the L2(Ω)-norm. This is a sufficiently
good approximation only for small ε.

However, it is possible to obtain a better approximation by computing a
corrector η ∈ H1(Ω) satisfying

−∆η = 0 , x ∈ Ω ,

η(x) = cbl(x)
∂

∂ν
u(x) , x ∈ Γ ,

(4)

Then u+ η satisfies the interior estimate

‖uε − (u+ εη)‖L2(Ω′) ≤ C(f,Ω′)ε2 (5)

for every domain Ω′ which is compactly embedded in Ω.

3 The Two-Dimensional Case

ForΩ ⊂ IR2, the situation simplifies considerably, see, e.g. [3], [1]. Especially, it
is a reasonable simplification that we have to use only one chart φ:(0, L)→ ∂Ω
which is a parametrization of ∂Ω by arclength, and γε : (0, L) → IR is a
periodic map with γε = γ(s, s

ε ) where γ : (0, L) × (0, 1) is L-periodic in the
first variable and 1-periodic in the second variable. Here, for evaluating the
function cbl at a position x ∈ ∂Ω, it is necessary to solve for each x ∈ ∂Ω
the cell problem:

Find βx ∈ H1(Z̄) with

Z = {y ∈ (0, 1)× IR : y2 < γ(x, y1)} (6)

such that

−∆yβx(y1, y2) = 0 0 �= y2 ≤ γ(x, y1) (7)
βx(y) = 0 y2 = γ(x, y1) (8)
βx(y) → 0 y2 → −∞ (9)

βx(0, y2) = βx(1, y2) y2 ∈ IR (10)[
∂βx

∂n

]
(y) = 1 y2 = 0 . (11)

y
2

y
1

Z
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In [5] it is shown that the solution βx exists, that it decays exponentially
fast, and that its norm and the norm of its derivatives are bounded in terms
of the smoothness of γ. Consequently, also the function

cbl : ∂Ω → IR , x �→
∫ 1

0

βx(y1, 0) dy1 (12)

satisfies
‖Dkcbl‖∞ ≤ C (13)

where C depends only on the smoothness of γ. The evaluation of cbl at a
point x ∈ ∂Ω involves solving the elliptic cell problem (7)–(11) together with
computing the average (12).

4 Numerical Approximation of the Cell Problems

Since βx is smooth for y ∈ Z \ ({y : y2 = 0} ∪ {y : y2 = γx(y1)}, an effi-
cient numerical approximation requires a method of high discretization order.
Additionally, the method must be capable of dealing with curved boundaries
and the unbounded cell domain Z.

Our method of choice is a finite element method of order p on a conform-
ing mesh which is adaptively refined. The coarsest mesh covers only a finite
part Z−1 = Z ∩ {y : y2 > −1} and is conforming, i.e. it uses nonlinear cell
mappings to fit the curved boundary given by y2 = γ(x, y1) precisely. Solving
the cell problem on this truncated domain yields an approximation βh, and
the application of a residual type error estimator where the dual problem is
solved with a method of order p + 1 computes an error distribution which
is used to guide mesh refinement. If the bottom cell with boundary y2 = l
is refined, the computational domain is automatically extended to become
Zl−1. This is an admissible approach, because the fast decay of β and βh guar-
antees that the error ‖∇(β̃h − β)‖L2(Z\Zl) of a suitable extension β̃h of βh to
Z\Zl can be shown to be much smaller than the error ‖∇(β̃h−β)‖(0,1)×(l,l+1).

Remark 1. In the model situation considered here, the use of distorted meshes
could be avoided by transforming the domain Zl itself into a rectangular
domain. However, this would not be possible for more complicated shapes of
the boundary, e.g. the case where γ(x, ·) is not a function graph (cf. [1]).

5 Numerical Approximation of cbl

Inside a discretization of (4), it is necessary to evaluate the function cbl which
can be computed solving the cell problems as described in the previous section.
However, we still have to establish how accurate this approximation should be.
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It is reasonable to connect the approximation accuracy of cbl to the
accuracy with which u and η are approximated. Thus, if the mesh TH for
the discretization of (3) is such that an a-posteriori error estimate shows

‖uH − u‖∞ = E(H) (14)

we compute c̃bl such that

ε‖cbl − c̃bl‖∞‖
∂uH

∂n
‖L∞(∂Ω) ≤ E(H) (15)

which ensures (using a discrete maximum principle) that we have on the same
mesh TH the estimate

‖εη − εηH)‖ ≤ CE(H) (16)

where C is a moderate constant depending on the mesh quality and the finite
element degree.

Remark 2. Since the calculation of cbl involves solving the system (7)–(11), it
can be worthwhile to separate its calculation from its use in discretizing the
corrector problem (4). For example, if cbl is very smooth, an interpolation of
cbl from relatively few sample points is already good enough for obtaining an
approximation c̃bl satisfying (15).

6 Numerical Test

We consider the specific example of Ω being the unit circle B1(0), and Ωε

being described by

ϕ �→ γ
(
ϕ,

ϕ

ε

)
= 6ε sin2(ϕ) sin

(ϕ
ε

)
(17)

for ε = 1
40 in the tubular neighborhood

(ϕ, r) �→ r

(
cosϕ
sinϕ

)
. (18)

Now we consider problem (2) with right-hand side f ≡ 1. For a prescribed
meshsize h, we obtain a mesh T ε

h for Ωε using the program Triangle, see [6].
For discretizing and solving on T ε

h , the finite element library Femlisp was
used, see [2, 4]. We obtain an approximate solution uε

h using a discretization
of quadratic finite elements of Lagrange type, see Figure 1. For studying point-
wise convergence, we look at the value at the origin. On a mesh with about
10000 cells, we obtain a value uε

h(0) = 0.22044 . . ..
Of course, using f ≡ 1 in (3), we have u = 1

4 (1 − ‖x‖2) from which we
see that u(0) = 0.25. This smooth function can be easily approximated to
very high accuracy on a coarse mesh TH . On the other hand, 0.25 is only a
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Fig. 1. Ωε with the initial mesh T ε
h and uε

h

rather bad approximation to uε
h(0). The corrector problem (4) now reads as

follows: find some function η which solves a Laplace problem with a boundary
condition η(x) = ∂u

∂n (x)cbl(x) = 1
2c

bl(x) for x ∈ ∂Ω where cbl is computed as
described in Sect. 5. Solving this Dirichlet problem we obtain ηH(0) = −0.028
such that in total we obtain uH(0)+εηH(0) = 0.222. Thus, it becomes obvious
that the inclusion of the first order corrector ηH significantly improves the
approximation while the numerical effort is much smaller than the effort for
computing uε

h. It is clear that the effect would become even more pronounced
for smaller ε.
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1 Introduction

The general question which will make the object of this paper is the ho-
mogenization of some nonlinear problems arising in the modelling of thermal
diffusion in a two-component composite. We shall consider, at the microscale,
a periodic structure formed by two materials with different thermal proper-
ties. We shall deal with two situations: in the first one, we assume that we
have some nonlinear sources acting in both components and that at the inter-
face between our two materials the temperature and the flux are continuous,
while in the second problem we shall address here, we assume that the flux is
still continuous, but depends in a nonlinear way on the jump of the tempera-
ture field. In both cases, since the characteristic sizes of these two components
are small compared with the macroscopic length-scale of the flow domain, we
can apply an homogenization procedure.

As usual in homogenization, we shall be interested in obtaining a suitable
description of the asymptotic behavior, as the small parameter which charac-
terizes the sizes of our two regions tends to zero, of the temperature field in
the periodic composite.

Using the so-called energy method introduced by L. Tartar (see [Tar77]), in
the first case we can prove that the limit problem will be a new nonlinear ellip-
tic boundary-value problem, with extra zero-order terms capturing the effect
of the nonlinear sources acting in our two parts of the domain. The asymptotic
behavior of the solution of the second problem will be governed by a new non-
linear system, similar to the famous Barenblatt’s model (see [BZK60]), with
extra zero-order terms capturing the effect of the interfacial barrier and of the
nonlinear sources.

Our results constitute a generalization of those obtained in [BZK60], [3]
and [EP02], by considering nonlinear sources and nonlinear transmission con-
ditions. For detailed proofs of the results of this paper, we refer to [Tim06].
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The structure of our paper is as follows: in Sect. 2 we analyze the case
of classical transmission boundary conditions. The case of partially fissured
media with interfacial thermal barrier is addressed in Sect. 3.

2 Classical Transmission Boundary Conditions

Let Ω be a bounded domain in Rn (n ≥ 3), having the boundary of class
C2. In the first problem we address in this paper, we consider that Ω is an
ε-periodic structure, consisting of two parts: a fluid phase Ωε and a solid
skeleton (grains), Ω \ Ωε

, ε representing a small parameter related to the
characteristic size of the grains. We consider periodic structures obtained by
removing from Ω, with period εY , where Y = (− 1

2 ,
1
2 )n, an elementary hole T ,

with boundary Γ of class C2, which has been appropriated rescaled and for
which T ⊂ Y . More precisely, for each ε and for any k ∈ Zn, set T ε

k the
translated image of εT by εk and denote by T ε the set of all the holes contained
in Ω, T ε =

⋃{
T ε
k | T ε

k⊂Ω, k ∈ Zn
}
. Let Sε = ∪{∂T ε

k | T ε
k⊂Ω, k ∈ Zn}. So,

∂Ωε = ∂Ω ∪ Sε. Also, let Ωε = Ω \ T ε, Y ∗ = Y \ T and θ = |Y ∗|.
Let us consider a family of inhomogeneous media occupying the region Ω,

parameterized by ε and represented by n × n matrices Aε(x) of real-valued
coefficients defined on Ω. The positive parameter ε will also define a length
scale measuring how densely the inhomogeneities are distributed in Ω. We
shall deal with periodic structures, defined by Aε(x) = A(x

ε ). Here A = A(y)
is a smooth matrix-valued function on Rn which is Y -periodic. We use the
symbol # to denote periodicity properties. We shall assume that⎧⎨⎩

A ∈ L∞
# (Ω)n×n,

A is a symmetric matrix,
For some 0 < α < λ, α |ξ|2 ≤ A(y)ξ · ξ ≤ λ |ξ|2 ∀ξ, y ∈ Rn

and we shall denote the matrix A by A1 in Y ∗ and by A2, respectively, in T .
As already mentioned in Introduction, in such a domain we shall study a

thermal diffusion problem modelling the transmission of temperature between
our two components, with an unknown flux on the boundary of each grain.
A simplified version of this kind of models can be formulated as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−div (Aε
1∇uε) + β(uε) = f in Ωε,

−div (Aε
2∇vε) + ag(vε) = 0, in Πε

Aε
1∇uε · ν = Aε

2∇vε · ν on Sε,
uε = vε on Sε,
uε = 0 on ∂Ω.

(1)

Here, Πε = Ω \Ωε, ν is the exterior unit normal to Ωε, a > 0, f ∈ L2(Ω) and
β and g are continuous functions, monotonously non-decreasing and such that
β(0) = 0 and g(0) = 0. We shall suppose that there exist a positive constant
C and an exponent q, with 0 ≤ q < n/(n− 2), such that
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|β(v)| ≤ C(1 + |v|q) (2)

|g(v)| ≤ C(1 + |v|q). (3)

These two general situations are well illustrated, for instance, by the following
important practical examples:

(a) g(v) =
δv

1 + γv
, δ, γ > 0 (Langmuir kinetics)

and
(b) β(v) = |v|p−1v, 0 < p < 1 (Freundlich kinetics).

Let us consider the functional spaces

V ε =
{
v ∈ H1(Ωε) | v = 0 on ∂Ω

}
,

Hε =
{
wε = (uε, vε)

∣∣ uε ∈ V ε, vε ∈ H1(Πε), uε = vε on Sε
}
,

with ‖wε‖2Hε = ‖∇uε‖2L2(Ωε) + ‖∇vε‖2L2(Πε).
The variational formulation of problem (1) is the following one:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Find wε ∈ Hε such that∫
Ωε

Aε
1∇uε · ∇ϕdx+

∫
Πε

Aε
2∇vε · ∇ψdx+

∫
Ωε

β(uε)ϕdx

+a
∫
Πε

g(vε)ψdx =
∫
Ωε

fϕdx ∀(ϕ,ψ) ∈ Hε.

(4)

By classical existence and uniqueness results (see [Bre72]), we know that (4)
is a well-posed problem. Then, the main result of this section is given by:

Theorem 1. One can construct an extension P εuε of the solution uε of the
variational problem (4) such that P εuε ⇀ u, weakly in H1

0 (Ω), where u is
the unique solution of⎧⎨⎩−div(A0∇u) + β(u) + a

|T |
|Y ∗|g(u) = f in Ω,

u = 0 on ∂Ω.

Here, A0 = ((a0
ij)) is the homogenized matrix, whose entries are defined by:

a0
ij =

∫
Y

(
aij + aik

∂χj

∂yk

)
dy,

in terms of the functions χ
j
, j = 1, ..., n, weak solutions of the cell problems

⎧⎨⎩−div(A∇(yj + χ
j
)) = 0 in Y,

χ
j
− Y periodic.
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Let us notice, too, that if we denote by ṽε the extension by zero of vε to
the whole of Ω, then ṽε ⇀ |T |u, weakly in L2(Ω).

In (1) we took the ratio of our diffusion coefficients to be of order one.
However, a much more interesting problem would arise if we consider different
orders for the diffusion in the “obstacles” and in the “pores”. If one takes the
ratio of the diffusion coefficients to be of order ε2, then the limit model will
be the so-called double-porosity model. This scaling preserves the physics of
the flow inside the grains, as ε → 0. The effective limit model includes two
equations, one in T and another one in Ω, the last one containing an extra-
term which reflects the influence of the grains (see [1], [2]).

3 Diffusion in Partially Fissured Media

For describing the second problem, we consider that the domainΩ is a periodic
structure formed by two connected components representing two materials
with different thermal features. So, we assume this time that both Ωε and Πε

are connected, but only Ωε reaches the external fixed boundary of the domain
Ω. In such a domain, we shall analyze the asymptotic behavior of the solutions
of the following nonlinear system (for the linear case, see [3] and [EP02]):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−div (Aε
1∇uε) + β(uε) = f in Ωε,

−div (Aε
2∇vε) = f, in Πε

Aε
1∇uε · ν = Aε

2∇vε · ν on Sε,
Aε

1∇uε · ν = aεg(vε − uε) on Sε,
uε = 0 on ∂Ω.

(5)

Hence, we assume that at the interface between our two materials the flux is
continuous and depends in a nonlinear way on the jump of the temperature
field. Here, f ∈ L2(Ω), a > 0, β is a continuous function, monotonously
non-decreasing and such that β(0) = 0 and g is a continuously differentiable
function, monotonously non-decreasing, with g(0) = 0. Also, β and g satisfy
the conditions (2)–(3). In fact, due to the compactness injection theorems in
Sobolev spaces, it would be enough to assume, in both problems we address
here, that β satisfies the growth condition (2) for some 0 ≤ q < (n+2)/(n−2).

If, in this case, we take Hε = {wε = (uε, vε) | uε ∈ V ε, vε ∈ H1(Πε)},
with ‖wε‖2Hε = ‖∇uε‖2L2(Ωε)+‖∇vε‖

2
L2(Πε)+ε‖uε−vε‖2L2(Γ ε), the variational

formulation of problem (5) is the following one:⎧⎪⎪⎨⎪⎪⎩
Find wε ∈ Hε such that∫
Ωε

Aε
1∇uε · ∇ϕdx+

∫
Πε

Aε
2∇vε · ∇ψdx+

∫
Ωε

β(uε)ϕdx

+aε
∫
Γ ε

g(uε − vε)(ϕ− ψ)dσ =
∫
Ωε

fϕdx+
∫
Πε

fψdx ∀(ϕ,ψ) ∈ Hε.
(6)

By classical existence and uniqueness results (see [Bre72]) we know that (6) is a
well-posed problem. Then, we can prove the following result, which represents
a generalization to the nonlinear case of Barenblatt’s model (see [BZK60]):
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Theorem 2. One can construct two extensions P εuε and P εvε of the solu-
tions uε and uε of problem (6) such that P εuε ⇀ u, P εvε ⇀ v, weakly in
H1

0 (Ω), where{
−div (A

1∇u) + θβ(u)− ag(v − u) = θf in Ω,

−div (A
2∇v) + ag(v − u) = (1− θ)f in Ω.

Here, A
1

and A
2

are the homogenized matrices, defined by:

A
1

ij =
∫
Y1

(
aij + aik

∂χ1j

∂yk

)
dy,

A
2

ij =
∫
Y2

(
aij + aik

∂χ2j

∂yk

)
dy,

in terms of the functions χ
1k
∈ H1

per(Y1)/R, χ2k
∈ H1

per(Y2)/R, k = 1, ..., n,

weak solutions of the cell problems⎧⎨⎩−∇y · ((A(y)∇yχ1k
) = ∇yA(y)ek, y ∈ Y1,

(A(y)∇yχ1k
) · ν = −A(y)ek · ν, y ∈ Γ,⎧⎨⎩−∇y · ((B(y)∇yχ2k

) = ∇yB(y)ek, y ∈ Y2,

(B(y)∇yχ2k
) · ν = −B(y)ek · ν, y ∈ Γ.
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Summary. We consider a two-phase flow model in a heterogeneous porous column.
The medium consists of many homogeneous layers that are perpendicular to the flow
direction and have a periodic structure resulting in a one-dimensional flow. Trapping
may occur at the interface between a coarse and a fine layer. An effective (upscaled)
model is derived by homogenization techniques.

1 Introduction

We consider the flow of water and oil in a heterogeneous porous medium.
The model studied here is relevant for the water-drive oil recovery, when
water is injected into reservoirs to drive oil towards production well. The
presence of rock heterogeneities will decrease the efficiency of the recovery
process. This becomes obvious if paths of high permeability are encountered
from injection to production wells. Then water will flow essentially through
these paths, leaving much of the oil behind in the reservoir. Furthermore,
if the heterogeneities are perpendicular to flow, oil may be trapped at the
interfaces separating high and low permeability layers. This situation was
analyzed mathematically in [DM95], and studied experimentally in [vL98].

In case of small scale heterogeneities, the complexity of the model rules
out computations that take into account the model in full detail. Therefore it
becomes necessary to have effective parameters or constitutive relationships,
accounting for the averaged behavior of the system on a larger scale. Such
models can be derived in various ways, and we refer to [WG96] and [Far02]
for overviews. Here we consider a periodic medium consisting of alternating
homogeneous layers of high an low permeability. These layers are assumed
transversal to the flow direction, so the problem can be reduced to one spatial
dimension. We employ homogenization techniques (see [Hor97]) to derive the
effective flow equations. As shown for example in [NC05], this technique gives
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good results in the case of unsaturated flows. The present work is strongly
related to [DM02]. It gives an alternative effective model to the one derived
there for the case when the capillary forces dominate the viscous ones. Having
in mind the presentation in [DM02], in Sect. 2 we shortly discuss the model and
give the governing equations and interface conditions, and derive the effective
equations. We conclude the paper with a numerical experiment. More details
will appear in a forthcoming work (see also [DE05]).

2 The Model

In this section we briefly describe the heterogeneous model, and proceed with
the derivation of the corresponding macro scale model. In doing so we refer to
the detailed discussion in the first two sections of [DM02]. The medium con-
sists of homogeneous layers of constant thickness. For simplicity we assume
that all the characteristics of the medium are homogeneous, excepting the
absolute permeability. This is location dependent, with values that jump be-
tween K+Kref (in a highly permeable layer) and K−Kref (in a low permeable
one). Kref is a constant and dimensional reference absolute permeability.

By u we denote the reduced oil saturation: 0 ≤ u ≤ 1. Then the water
saturation is 1 − u. We assume that the injection flow rate is constant in
time. Since the model is one dimensional, the total specific discharge q > 0
is constant. The underlying mass and momentum equations can be combined
into a single transport equation for one saturation only (see [DM95] or [DM02]
for details). The typical nonlinearities of the model are kw and ko, the relative
permeabilities of the fluid phases, as well as pc, the capillary pressure. For
these characteristics we use the Corey and Leverett expressions:

kw = kw(u) = (1− u)2, ko = ko(u) = u2, and

pc(x, u) = σ
√
Φ/(K(x)Kref)J(u) with J(u) = (1− u)−1/2.

(1)

Here Φ is the porosity of the medium, σ the interfacial tension between the
phases in the pores, and J the Leverett function. The extension to other
cases is straightforward. The x-dependence of pc is induced by the variable
dimensionless component of the absolute permeability, K(x) = K±. Note that
J(0) = 1 > 0, implying the existence of an oil entry pressure: a pressure
pc(x, 0) has to be exerted on the oil before it can enter a fully water saturated
medium (see [Hel97]).

In dimensionless form the oil-transport equation can be brought to

∂tu+ ∂xF (u) = ∂tu+ ∂x (f(u)−NcK(x)λ(u)∂xpc(x, u)) = 0, with

pc(x, u) = J(u)√
K(x)

, f(u) = ko(u)
ko(u)+Mkw(u) , and λ(u) = krw(u)f(u).

(2)

Notice the occurrence of the two dimensionless numbers: the capillary number
Nc and the viscosity ratio M . Both are assumed to be of moderate order, O(1).
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2.1 The Interface Conditions

The absolute permeability K is discontinuous at any interface separating two
homogeneous layers. This makes the definition of (2) across such interfaces
impossible, where instead matching conditions are defined. Without loss of
generality, we consider the interface located at x = 0, with the coarse material
(K+) inside the halfspace x < 0, and the fine material (K− < K+) appearing
for x > 0. Then the continuity of flux reads

F (t) = F (0+, t) = F (0−, t), for all t > 0. (3)

This condition is completed by the extended pressure condition (see [DM95]):{
u(0−, t) < u∗ implies u(0+, t) = 0 ,

u(0−, t) ≥ u∗ implies J(u(0−,t))√
K+ = J(u(0+,t))√

K− .
(4)

The threshold saturation u∗ in (4) is uniquely defined by:

J(u∗)/
√
K+ = J(0)/

√
K−. (5)

The capillary pressure is continuous only if oil is present on both sides of the
interface. If the fine medium contains no oil, the entry pressure model implies
a discontinuous capillary pressure. This is the mechanism for oil trapping in
the coarse (K = K+) material, see [DM95] for details.

2.2 The Upscaling

We turn now to the medium consisting of periodically repeating homogeneous
layers, having the thickness Ly. This represents the micro scale. With Lx

being the (macroscopic) column length, we define ε = Ly/Lx and seek for the
effective equations as ε↘ 0. To do so we assume all quantities depending on
two spatial variables: the macro scale x, and the micro scale y = x

ε . Then we
expand all quantities asymptotically in ε and equate terms of the same order
in ε. In this way, the multiscale oil saturation uε reads:

uε(x, t) = u0(x, y, t) + εu1(x, y, t) + ε2u2(x, y, t) . . . , (6)

where each uk is periodic in y = x/ε. To make the periodicity explicit, consider
two adjacent layers. We have K+ for y ∈ (−1, 0) (coarse layer), and K− for
y ∈ (0, 1) (fine layer). For the multiscaled flux Fε = F (uε) we assume the
continuity of fluxes on all scales at y = 0, as well as at the end points y = ±1:

F k|y=0+ = F k|y=0−, and F k|y=1− = F k|y=−1+ for all k > 0. (7)

For the second condition we first notice that for pc(uε) we have:

p0
c = J(u0)/

√
K, and p1

c = u1J ′(u0)/
√
K. (8)
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Then the condition (4) is imposed periodically for p0
c , in the spirit of (7). As

shown in [DM02], this is only possible if the lowest order saturation u0 is
constant in each layer. To be specific, if u0 > 0 in both layers, we have:

u0(y) =
{
c > u∗, for − 1 < y < 0,
c̄, for 0 < y < 1, (9)

where c and c̄ in (0, 1] are related by

J(c)
√
K+ = J(c̄)/

√
K−. (10)

Further, if u0(y > 0) = 0, then u0(y < 0) = c ≤ u∗. Then the oil cannot flow
into the fine layer, and trapping occurs at the interface y = 0.

To derive the effective equation, we need an additional condition at the
interface between layers. In [DM02] the continuity of u1 was assumed:

u1(y = 0+) = u1(y = 0−), and u1(y = 1−) = u1(y = −1+). (11)

Notice that this assumption refers to the O(ε) quantity, u1. In the present
work we consider another possibility, the continuity of p1

c . By (8) this gives:

u1(0−)
J ′(c)√
K+

= u1(0+)
J ′(c̄)√
K−

, and u1(−1+)
J ′(c)√
K+

= u1(1−)
J ′(c̄)√
K−

. (12)

Defining the effective oil saturation as U(x, t) = (c+ c̄)/2, we can use (10) to
express c and c̄ in terms of U whenever c̄ > 0. The case c̄ = 0 is trivial, since
then U = c/2 ≤ U∗ := u∗/2. With (12), the effective model becomes ([DE05])

∂tU + ∂x [F(U)−NcΛ(U)∂xPC(U)] = 0. (13)

Whenever 0 ≤ U ≤ U∗ = u∗/2, F(U) = Λ(U) = 0. Further, F(1) = 1 and
Λ(1) = 0. For U∗ < U < 1, implying 0 < c̄ < 1 and u∗ < c < 1, we have

F(U) =
1

K+kw(c) + 1
K−kw(c̄)

1
K+kw(c)f(c) + 1

K−kw(c̄)f(c̄)

, and Λ(U) =
2

1
K+λ(c) + 1

K−λ(c̄)

. (14)

By (10) the upscaled capillary pressure is continuous in the nontrivial case:

Pc(U) = J(c)/
√
K+ = J(c̄)/

√
K−. (15)

Remark 1. Note that the above effective model is degenerate for 0 ≤ U ≤
U∗ = u∗

2 , showing that oil cannot flow oil unless its effective saturation U
does exceed U∗. Therefore up to the threshold saturation U∗ the oil will be
trapped in the reservoir.
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For neither of the choices (11) and (12) we have a rigorous mathematical
proof of the convergence of the homogenization process. We refer to [Sch06]
for first results in this sense. There the micro scale oil saturation is assumed
strictly positive. In this way the capillary pressure becomes continuous across
interfaces. The additional O(ε) assumption in [Sch06] involves the averaged
slopes for u in the adjacent homogeneous layers, leading to an upscaled model
that is equivalent to the one derived here.

In the absence of a rigorous mathematical proof for the convergence of
the homogenization process, the choice between (11) and (12) is suggested by
numerical experiments. Though referring strictly to terms that are O(ε), the
two assumptions (11) and (12) lead to different effective models, as follows
by comparing the effective coefficients in (14) – (15) with the ones in (2.20)
of [DM02]. For the effective equation obtained in the former case, a numerical
evidence of convergence was difficult to achieve unless capillary effects are
becoming strongly dominant, e.g. Nc > 1. As revealed by the experiment
below, the present approach yields an effective solution that agrees well with
the averaged solution of the micro scale model also for moderate values of Nc.

In Figure 1 below, we display the two different effective solutions and the
solution of the full (heterogeneous) model. The computations are performed
in MUFTE-UG [BH99]. For comparing the results, the fine scale solution is
averaged over the micro scale cells consisting of two adjacent layers, coarse
and fine. In all computations we assume that the the reservoir is initially fully
oil saturated u(t = 0) = 1 and we set u = 0 and u = 1 at the left and
the right boundary. Further we take Nc = 1, and the dimensionless interval
of computation is (0, 2). The fine scale solutions are computed for different
numbers of layers, yielding ε = 1/20, 1/40, or 1/80. We use the nonlinear
functions given in (1), with K+ = 1 and K− = 0.5.

In the left figure we present the solutions of the two effective models,
computed at t = 0.8. Obviously, the two solutions are not identical. To show
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Fig. 1. Left : Effective solutions, obtained at t = 0.8 for the present approach (solid)
and the approach in [DM02] (dashed). Right : Effective saturation (solid) computed
assuming p1

c - continuous, and averaged saturations at t = 0.8.



338 C.J. van Duijn et al.

the appropriateness of the present approach, in the right figure we compare
the effective solution obtained assuming (12) with the averaged small-scale
solution for different values of ε. A clear convergence is encountered as ε↘ 0.

Conclusions and Acknowledgment

We have employed homogenization techniques to derive an effective two-phase
flow model for a periodically layered medium. Trapping effects are occurring
due to the difference in the micro scale entry pressures. The model strongly
depends on the assumed behavior of the higher order terms at the interfaces
separating the homogeneous layers. The resulting effective model is a nonlinear
parabolic problem of degenerate type, incorporating convection, where the
effective functions are weighted harmonic means of the corresponding small
scale ones. These functions vanish whenever the effective saturation is below
a threshold saturation, representing the maximal amount of trapped oil.
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1 Introduction

We are concern with ADER [3] high-order numerical methods for the time-
dependent two-dimensional non-linear shallow water equations [2] in the
framework of finite volumes (FV) and discontinuous Galerkin (DG) finite
elements methods using non-structured triangular meshes.

High order in space and time is obtained by (1) a high-order spatial dis-
tribution of the solution in each element, (2) the solution of the derivative
Riemann problem (DRP) [4] and (3) an accurate computation of the numer-
ical flux and volume integrals. Regarding the high-order spatial distribution
of the solution, in the FV method one requires cell average reconstructions [1]
at each time step; in the case of DG the high-order representation of the data
is built into the scheme to the desired order and no reconstruction is needed.
However, in the presence of high gradients numerical oscillations arise in the
DG case, which requires the implementation of special reconstruction.

We assess the methods by comparing numerical solutions with exact so-
lutions. The rest of the chapter is organized as follows: Sect. 2 describes the
governing equations and the hyperbolic character. In Sect. 3 we construct the
numerical method. In Sect. 4 we describe the ADER approach. Test problems
are presented in Sect. 5 and conclusions are drawn in Sect. 6.

2 The Two-Dimensional Shallow Water System

The two-dimensional shallow water equations with source term due to bottom
variation can be written as follows:

∂t (h) + ∂x (hu) + ∂y (hv) = 0 ,

∂t (hu) + ∂x
(
hu2 + 1

2gh
2
)

+ ∂y (huv) = −ghbx ,
∂t (hv) + ∂x (huv) + ∂y

(
hv2 + 1

2gh
2
)

= −ghby ,
(1)
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where h(x, y, t) is the depth, u(x, y, t) and v(x, y, t) are the component of the
particle velocity in the x and y direction, respectively, b(x, y) is the bathymetry
and g is the gravity force. Here we consider a reference level z = 0 with
z = b(x, y) > 0 and z = b(x, y) + h(x, y, t) the free surface.

The system (1) can be written in vector form, where the unknown vector
Q contains the conservative variables.

Qt + F(Q)x + G(Q)y = S(Q) , (2)

with

Q =

⎡⎣ h
hu
hv

⎤⎦ , F(Q) =

⎡⎣ hu
hu2 + 1

2gh
2

huv

⎤⎦ , (3)

G(Q) =

⎡⎣ hv
huv

hv2 + 1
2gh

2

⎤⎦ , S(Q) =

⎡⎣ 0
−ghbx
−ghby

⎤⎦ . (4)

In order to verify the hyperbolic character of the system we express (1) in
quasi-linear form expanding the Jacobian matrices A(Q) = ∂F(Q)/∂Q and
B(Q) = ∂G(Q)/∂Q.

Qt + A(Q)Qx + B(Q)Qy = S(Q) . (5)

System (5) is said to be hyperbolic if for any vector n = [nx, ny] the matrix
C = nxA+nyB has real eigenvalues and a complete set of linear independent
eigenvectors. This can be easily verified for (1). For more details see [2].

In the next section we construct the numerical method.

3 Numerical Method

The numerical method is constructed for a computational domain obtained
by a conforming triangulation of the physical domain Ω ∈ R2. The control
volume considered is a triangular element Tm ∈ Ω. In what follows we will
use the divergence form of (2).

∂tQ +∇ ·H(Q) = S(Q) , (6)

where ∇ = [∂x, ∂y] and H(Q) = [F(Q),G(Q)]T.
Finite element discontinuous Galerkin numerical methods are constructed

considering that the unknown vector Q(x, t) is approximated numerically by
the vector Qh(x, t) given by a linear combination of spatial polynomial basis
functions φl(x) ∈ R2 of order o− 1, where o is the order of the method, and
temporal scalar degrees of freedom q̂l(t) ∈ R. In contrast with FV schemes,
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where cell averages are evolved, Discontinuous Galerkin schemes evolve the
degrees of freedom q̂l(t).

q(x, t) ≈ qh(x, t) ≡
N∑
l=0

q̂l(t)φl(x) . (7)

Considering one component of (6), we multiply by the basis function φk(x)
and integrate over the control volume Tm. Using the product rule, the Gauss’s
divergence theorem and introducing (7), we project the continuous function q
into the discrete space qh. Considering the orthogonality of the basis functions,
we obtain,

∂tq̂k

∫
Tm

φkφk dx +
∫
∂Tm

φk H(q) · n̂ dx−
∫
Tm

∇φk ·H(q) dx =
∫
Tm

φk S(q) dx.

(8)
Integrating (8) within time interval [tn, tn+1] and rearranging the terms,

we obtain the expression for the time evolution for the degrees of freedom q̂k:

q̂n+1
k = q̂nk −

1
|J |mk

⎡⎢⎣ tn+1∫
tn

∫
∂Tm

φk H(q) · n̂ dx dt

−
tn+1∫
tn

∫
Tm

∇φk ·H(q) dx dt−
tn+1∫
tn

∫
Tm

φk S(q) dx dt

⎤⎥⎦.
(9)

Equation (9) give us an explicit one-step evolution equation for the degrees
of freedom q̂k inside the triangle Tm from time tn to time tn+1. The particular
case where only one basis function φ0 = 1 is used in (7), (9) gives the finite
volume numerical scheme.

Depending on the order of the approximation q ≈ qh in (7) for DG meth-
ods, and the order of a spatial reconstruction used for FV, the space integrals
in (9) are computed using a quadrature rule of suitable order. In the presence
of strong discontinuities, non-oscillatory spatial reconstructions are used. Here
we use the one presented in [1].

4 ADER Schemes

The ADER approach originally proposed by Toro et al. [3] allows us to cons-
truct arbitrary high order accuracy numerical methods in the framework of
FV and DG. This is obtained by constructing a time-dependent function that
approximates the time evolution of the vector Q(xh, τ) for a particular spatial
point xh, following the Cauchy–Kowalewski method

Q(xh, τ) = Q(xh, 0) +
r−1∑
k=1

τk

k!
∂

(k)
t Q(xh, 0) . (10)
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This expansion is a Taylor’s time series expansion around the leading term
Q(xh, 0) with high order derivatives terms with coefficients ∂(k)

t Q(xh, 0).
Assuming that a continuous and differentiable polynomial space distrib-

ution of the unknown vector Q(x,0) is available in the element Tm at local
time τ = 0, for a given spatial integration point xh ∈ Tm/∂Tm we can eval-
uate the function Q(xh,0) and all space derivatives. Using the balance laws
(2) and the Cauchy–Kowalewski procedure we can transform the space deriva-
tives into time derivatives. If the spatial point xh ∈ ∂Tm the function Q(xh,0)
and its derivatives are discontinuous, considering that the neighbour triangle
has a different polynomial representation of the data, then we use derivative
Riemann problem (DRP) solvers in order to compute the leading term and all
high order derivatives. Here we implement the DRP solver presented in [4].

Once the time evolution function (10) is obtained, time integrals in (9) are
computed numerically with the required order, evaluating the function (10)
at the designed integration point.

5 Convergence Test

Normally, exact solutions for two-dimensional problems with source term
are unknown. It is possible to construct an exact solution as follow. We set the
solution of the problem Q̃(x, y, t), then we evaluate (1) finding a new source
term S̃(x, y, t). Defining the exact solution Q̃ as b(x, y) = exp(−8(x2 +y2))/5,
u(x, y, t) = (1 + sin(xπ))/10, v(x, y, t) = (1 + sin(yπ))/10 and H(x, y, t) =
h(x, y, t) + b(x, y) = exp(t/10), we evaluate (2) to find S̃(x, y, t).

S̃(x, y, t) = ∂tQ̃ + ∂xF(Q̃) + ∂yG(Q̃)− S(Q̃) , (11)

Solving the following initial value problem we can measure the error of the
numerical solution.

PDEs: ∂tQ +∇ ·H(Q) = S(Q) + S̃ , x ∈ [−1,1]× [−1,1] , t > 0 ,

IC: Q(x, y, 0) = Q̃(x, y, 0)

}
(12)

We set periodic boundary conditions and final time t = 1 s. The errors
and convergences order are presented in Tables 1–3 for the second component
of Q. The expected order of convergence is reached for all methods.

Table 1. Convergence rates test: second-order method

Mesh L1 Error O1 L2 Error O2 L∞ Error O∞

h/2 1.34 × 10−2 1.80 9.76 × 10−3 1.77 3.79 × 10−2 1.17
h/4 2.45 × 10−3 2.48 1.94 × 10−3 2.35 1.45 × 10−2 1.40
h/8 4.66 × 10−4 2.41 3.59 × 10−4 2.45 4.30 × 10−3 1.77



ADER DG and FV Schemes for Shallow Water Flows 345

Table 2. Convergence rates test: third-order method

Mesh L1 Error O1 L2 Error O2 L∞ Error O∞

h/2 4.07 × 10−3 2.62 3.07 × 10−3 2.58 2.50 × 10−2 1.41
h/4 4.13 × 10−4 3.33 3.17 × 10−4 3.31 1.07 × 10−3 4.60
h/8 5.59 × 10−5 2.90 4.20 × 10−5 2.93 1.16 × 10−4 3.23

Table 3. Convergence rates test: fourth-order method

Mesh L1 Error O1 L2 Error O2 L∞ Error O∞

h/2 1.37 × 10−3 3.58 8.96 × 10−4 3.64 2.13 × 10−3 3.75
h/4 5.31 × 10−5 4.74 4.44 × 10−5 4.38 2.13 × 10−4 3.36
h/8 3.96 × 10−6 3.78 3.27 × 10−6 3.79 2.05 × 10−5 3.40

6 Conclusions and Further Work

We have solved the non-linear shallow water system on a two-dimensional
unstructured grid with a high order ADER-type numerical method. Derivative
Riemann Problem solutions are used to evaluate accurately the numerical
fluxes. High order space reconstruction was used to reconstruct cell average
values. The expecting convergence rate was reached for the test presented.
Further developments in the treatment of the friction terms and wet/dry fronts
are subject of current investigation by the authors.
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1 Introduction

In this work we study high order finite volume methods by state recon-
structions. We apply it to beload sediment transport problems. For the
hydrodynamical component we consider Shallow Water Equations, for the
morphodynamical component we consider a continuity equation. The final
system of equations can be re-written as a 2D non-conservative system

∂W

∂t
+A1(W )

∂W

∂x1
+A2(W )

∂W

∂x2
= 0, (1)

where W (x, t) : O × (0, T ) → Ω ⊂ RN , O is a bounded domain of R2, Ω is a
convex subset of RN , Ai : Ω →MN×N regular and locally bounded matricial
functions.

We define, for a given vector η = (η1, η2) ∈ R2: A(W,η) = A1(W )η1 +
A2(W )η2. And we suppose that system (1) is strictly hyperbolic, that is, for
all W ∈ Ω ⊂ RN and ∀ η ∈ R2, matrix A(W,η) has N real and different
eigenvalues: λ1(W,η) < · · · < λN (W,η), being Rj(W,η), j = 1, . . . , N the
associated eigenvectors. Consequently A(W,η) is diagonalizable: A(W,η) =
K(W,η)L(W,η)K−1(W,η), where L(W,η) is the diagonal matrix whose coeffi-
cients are the eigenvalues of A(W,η) and K(W,η) is the matrix which columns
are the vectors Rj(W,η), j = 1, . . . , N .
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2 Shallow Water Equations with Sediment Transport

We consider the system,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂h

∂t
+
∂q1
∂x

+
∂q2
∂x

= 0,

∂q1
∂t

+
∂

∂x1

(
q2
1

h
+

1
2
gh2

)
+

∂

∂x2

(q1q2
h

)
= gh

∂S

∂x1
− ghSf,x1 ,

∂q2
∂t

+
∂

∂x1

(q1q2
h

)
+

∂

∂x2

(
q2
2

h
+

1
2
gh2

)
= gh

∂S

∂x2
− ghSf,x2 ,

∂S

∂t
− ξ

∂qb,x1

∂x1
− ξ

∂qb,x2

∂x2
= 0,

(2)

where the unknowns are the height of the water column h(x, t), the discharge
q(x, t) = (q1(x, t), q2(x, t)) and S(x, t) = H(x) − zb(x, t), where H is the
bathimetry of the fixed bottom and zb is the height of the sediment layer
column. By qb,x1 and qb,x2 we denote the solid transport discharge for the
two components x1 and x2, respectively. The definition of qb depends on the
considered model. In this work we present Grass’ model and Meyer-Peter and
Müller’s model. Sf,x1 and Sf,x2 are the Manning’s friction laws.

The system of equations (2) can be rewriten under the structure of a 2D
non-conservative hyperbolic system (1).

The definition of qb,x1 and qb,x2 for the particular cases of Grass and
Meyer-Peter & Müller are:

1. Grass’ model :
qb,x1 = Agu1(u2

1 + u2
2),

qb,x2 = Agu2(u2
1 + u2

2);
(3)

where u1 = q1/h and u2 = q2/h. Being Ag the interaction constant bet-
ween the fluid and the sediment (0 ≤ Ag ≤ 1).

2. Meyer-Peter & Müller’s model :

qb,x1 = 8
√

(G− 1)gd3
i sgn (u1) (τ∗,x1 − τ∗,c) ,

qb,x2 = 8
√

(G− 1)gd3
i sgn (u2) (τ∗,x2 − τ∗,c) ;

(4)

where τ∗ and τ∗c are the non-dimensional shear stress and the critical
shear stress. The definition of τ∗ is

τ∗,x1 =
γη2|u1|

√
u2

1 + u2
2

(γs − γ)diR
1/3
h

, τ∗,x2 =
γη2|u2|

√
u2

1 + u2
2

(γs − γ)diR
1/3
h

.

Where γ denotes the specific weight of the fluid, γs denotes the specific
sediment weight, η is the Manning’s coeffient corresponding to the sedi-
ment layer, di is the mean diameter. τ∗c is usually set to 0.047.
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3 2D High Order Finite Volume Methods by State
Reconstructions

We consider the 2D non-conservative system
∂W

∂t
+A1(W )

∂W

∂x1
+A2(W )

∂W

∂x2
= 0. (5)

Our objective is to use a high order finite volume method based on state
reconstructions for (5).

We suppose that the computational domain is subdivided in cells or control
volumes, Vi ⊂ R2, that we suppose to be defined by a closed poligone. We use
the following notation: for a given control volume Vi, Ni is the set of index j
such that Vj is a neighbour of Vi, Eij is the common edge between the two
control volumes Vi and Vj , and |Eij | is its length, ηij = (ηij,1, ηij,2) is the
unitary normal vector to the edge Eij outward to Vi.

For a given control volume Vi we denote by Pi the state reconstruction
operator over it. And for a given vector ηij from Vi to Vj and normal to the
edge Eij , we denote by W−

ij (t,xij) and W+
ij (t,xij) ∀xij ∈ Eij , the limit of Pi

(Pj respectively) when x tends to xij by the interior of Vi (Vj respectively).
We suppose that Pi is order p over the boundary of Vi, it is order q at the

interior of the control volume Vi and ∇Pi is an approximation of order m of
the gradient of the solution (see [3]).

3.1 High Order 2D Finite Volume Method

We consider the following numerical scheme (see [3]):

W
′
i (t) = − 1

|Vi|

⎡⎣∑
j∈Ni

|Eij |
n(r̄)∑
l=1

wlA−
ij,l(W

+
ij,l,W

−
ij,l, ηij)(W

+
ij,l −W−

ij,l)

+
∫
Vi

(
A1(Pi(x))

∂Pi

∂x1
(x) +A2(Pi(x))

∂Pi

∂x2
(x)
)

dx

⎤⎦ ,
(6)

where wl, l = 1, . . . , n(r̄), are the weights of a quadrature formula associate to
the 1D integral over the edge Eij . If by xl we denote the points over the edge
Eij of the quadrature formula then W±

ij,l = W±
ij (xl). In practice this formula

is chosen in function of the order of the state reconstruction: if by r̄ we denote
the order of the quadrature formula, then r̄ > p.

By Aij we denote Roe matrix associated to the 1D non-conservative
projected problem over ηij . The non-conservative product A(W )Wx of the
projected 1D problem makes difficult the definition of weak solutions for this
kind of systems. After the theory developed by Dal Maso, LeFloch and Murat,
a definition of non-conservative products as Borel measures is introduced,
which is based on the selection of a family of paths in the phases space. Also
a family of paths in this case must be chosen in order to define Roe matrix
(see [Pares04]).
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4 Numerical Test

In this section we present an experiment where we simulate sediment layer
evolution over a soil which is not eroded. The experiment has been performed
in a channel of length 15 m and width 0.5 m, of Hydraulic Laboratory from
Escuela Superior de Ingenieros de Caminos, Canales y Puertos of A Coruña
University. The experiment presented in this chapter was made by E. Peña
González (see [Peña02]).

The experimental test was developed introducing a sand layer in central
part of laboratory channel, and inducing hydrodynamic conditions to erode
the sand layer, until to get steady state. The channel has a very small slope of
0.052%. Sand layer was situated in the interval [4.5 m, 9 m], with a thickness
of 4.5 cm; being media diameter grain equal to 1 mm.

For numerical simulation we have used a mesh with 6,008 finite volumes.
As CFL condition we consider 0.8. For boundary conditions, upstream we
impose a discharge equal to 0.0285m2 s−1, and downstream it is fixed the
thickness of column water to 0.129m. Sediment porosity is equal to 0.4. Fric-
tion between fluid and bed is modeled using a Manning’s law with coefficient
equal to 0.0125, that is discretized semi-implicitly. Friction coefficient between
fluid and sediment layer is 0.0196. As boundary conditions we impose an in-
coming mass-flow equal to 0.0285m2 s−1 upstream, while downstream is fixed
thickness fluid equal to 0.129 m. We use a state reconstruction operator of
second order of MUSCL type (see [3]).

As this test is basically one-dimensional, so we compare 2D solution with
solutions obtained by 1D generalized Roe scheme and Roe-Weno2 scheme (see
[Castro06], [CFF06]). In Fig. 1 is shown comparison at instant t = 120 min, of
2D solution (continuous line with stars), with solution obtained using genera-
lized Roe scheme (continuous line) and Roe-Weno2 scheme (dotted line). We
also compare in Fig. 2 with experimental data. The model that we are using
does not include pressure forces, so the sediment does not fall by its own weight
due to gravity effects, but it must reproduce at least, the downstream sand
slope and the median profile of the sediment layer. This behavior is reflected
in Fig. 2.
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Fig. 1. Sediment layer evolution at t = 120 min. Euler-Roe 1d (continuous line).
Weno2-Rk2 1d (dotted line). Euler-Roe 2d (continuous line with stars)
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1 Introduction

The development of numerical models for the simulation of marine hydro-
dynamics together with the increment in computational capacity of the new
computers and the collaboration amongst interdisciplinary research groups,
is slowly allowing to catch up with the delay of oceanic forecasting in com-
parison to other research areas like meteorology. Thanks to the knowledge
gained in relation to oceanographic processes and the interaction between
the ocean and atmosphere, new forecasting tools are being developed. These,
comprise models of currents and waves, pollutant drift and aging, interaction
between physical and biological processes with application to the management
of fishing resources, or models for environmental impact assessment of coastal
activities and uses (submarine outfalls, aquaculture cages, spill of dredged
material, etc.). This chapter shows some examples of several applications of
numerical models to regional and local scale areas.

2 Sinking of the Prestige

The sinking of the oil tanker Prestige off the coast of Galicia (in the north-
western part of Spain), on the 19th November 2002, was the base to establish
in the Bay of Biscay an Operational Oceanography System. This system in-
cluded data analysis of in situ tracked buoys and oceanic and meteorological
stations, satellite and visual observations of the sea, and numerical model pre-
dictions (Fig. 1). At regional scale, the drifting of the Prestige pollutant at sea
surface from the sinking area to the affected regions was the final result from
the combination of a large number of interacting factors: the local wind stress,
acting directly on the fuel oil patches or indirectly through the Ekman layer,
the density-driven circulation and the development of mesoscale structures
such as surface eddies and fronts [Alv06], [Gon06].



352 L. Ferrer et al.

Fig. 1. Operational Oceanography System established during the Prestige event
to follow the pollutant: (a) Satellite observation of the oil spill. (b) Wind fields
obtained from meteorologic numerical modelling. (c) Trajectory of a drifting buoy
released at the time of the oil spills. (d) Oil location derived by the TRIMODENA
modelling system in February 2003

During the Prestige event, hydrodynamic and particle dispersion models
included in the TRIMODENA modelling system [Gon01], were used to predict
the current fields and the trajectories of the visualised oil slicks which were not
recovered or controlled at sea. On the basis of the data sets obtained and the
derived predictions, daily reports were provided to the local administrations,
for decision-making regarding the deployment of the fishing fleet at sea (190
vessels, ranging in length from 9 to 30 m, and approx. 1,100 fishermen) and
experts and volunteers on land. In total 21,000 tonnes of fuel, approximately,
were retrieved at sea by the Basque fishing fleet, representing a ratio of 6.6
tonnes recovered at sea per tonne on land. The recovey patterns of the oil
were consistent with the numerical model predictions.
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3 Fish Recruitment

An important effort has been directed by marine research institutes to analyse
the physics of the ecosystem in the Bay of Biscay; this is due to the large
economical importance of the fisheries sector in this area. Physical variables
as temperature, salinity, currents at the upper layers of the water column, and
main river runoff have a fundamental role in the selection of the spawning areas
by the different species, in the fish dispersion, retention and growth, especially
during the early life stages (eggs and larvae), and in the future recruitment.
Numerous studies have been undertaken in the last years, involving physical
aspects like: hydrological sampling, current meters and drifter deployments,
air and sea surface temperature measurements, and satellite data analysis
(e.g. [Alv06], [Gon06], [KL96], [PL92]).

Nevertheless, the complexity of the system showed by the drifting buoys at
sea surface during the Prestige event, was such, that numerous questions are
still open. The buoy data provided evidence that wind was the most important
mechanism affecting the surface water movement [Gon06]. Nowadays, high
order and resolution hydrodynamic models, as ROMS model (Regional Ocean
Modelling System, [SM05]), are the direction chosen to explore the physical
processes affecting fish recruitment. The results of ROMS simulations (Fig. 2)
confirm the variability and weakness of the general oceanic circulation in the
Bay of Biscay, and the frequent presence of eddies [KL96]. These physical
aspects, combined with the biological ones, determine the egg distribution of
anchovy in the months of May and June in the Bay of Biscay.

Fig. 2. Current and temperature fields derived by the ROMS model for 15th April
2003 (left), and spatial relative egg abundance of anchovy (Engraulis encrasicolus)
in May–June obtained from field data between the years 1999 and 2002 (right)
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4 Coastal Regions

The local authorities have a series of responsibilities and functions on their
coastal regions which are defined by the Law of the different countries.
Amongst their main responsibilities is the control of the environment pol-
lution caused by the high anthropogenic pressure, especially that caused by
economic and commercial activities, which can modify the water quality and
its natural characteristics. Generally, these water changes affect the adjacent
areas which use to have public or fishing interests. These activities of nega-
tive environmental impact use to occur inside harbours or estuarine zones. The
control on these areas can be done through an exhaustive data recovery (water
quality, hydrodynamic, sediment analysis, etc.) and numerical modelling.

Another kind of impacts are those generated by extreme natural events,
as can be high waves in heavy sea and strong wind conditions. In these cases,
the simulation of the wave propagation, as well as the induced currents and
sediment transport can be done with softwares as SMC (Coastal Modelling
System). This was developed by the Coastal Engineering and Oceanography
Group (University of Cantabria) with the Coastal and Environmental Depart-
ment of the Spanish Government. The model uses the parabolic solution of
the mild-slope equations for the wave propagation [KD83]. On Fig. 3, it can
be seen a wave propagation image inside La Concha bay estimated by the
SCM model, with the results of the wave impacts on Ondarreta beach [Lir06].

Fig. 3. Extreme wave conditions on the coast of San Sebastin (Spain): (a) High wave
impact at the promenade around Urgull mount. (b) Remains of artificial structures
at Ondarreta beach. (c) Gravel and rocks at Ondarreta beach during the low tide.
(d) Monochromatic wave fronts inside La Concha bay estimated by SMC model,
with the Urgull mount on the right side and Ondarreta beach on the left side
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5 Conclusions

Operational Oceanography can be defined as the activity of systematic and
long-term routine measurements of the seas, oceans, and atmosphere, and
their rapid interpretation and dissemination. Following this definition, the
new trends in oceanographic modelling are the development and use of high
order numerical models in order to generate data products, including warn-
ings (coastal floods, ice and storm damage, harmful algal blooms and con-
taminants), hydrodynamics, climate variability, living resources, etc. These
models, together with the increment in computational capacity of the new
poweful computers and an exhaustive data acquisition, must be prepared to
work in real-time in an operational way.
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[Gon01] González, M., Espino, M., Comerma, E., Gyssels, P., Hernáez, M., Uriarte,
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Ad.: Morphodynamic study of the Ondarreta Beach in San Sebastián
(Spain). Environmental Problems in Coastal Regions VI, WIT Transac-
tions on Ecology and the Environment, 88, 183–192 (2006)

[PL92] Pingree, R.D., Le Cann, B.: Three anticyclonic Slope Water Oceanic
eDDIES (SWODDIES) in the southern Bay of Biscay in 1990. Deep Sea
Res., 39, 1147–1175 (1992)

[SM05] Shchepetkin, A.F., McWilliams, J.C.: The regional oceanic modeling sys-
tem (ROMS): a split-explicit, free-surface, topography-following-coordinate
oceanic model. Ocean Model., 9, 347–404 (2005)



Study and Development of Numerical Models
for the Simulation of Geophysical Flows:
The DamFlow Project

M.J. Castro, A.M. Ferreiro, J.A. Garćıa, J.M. González, and C. Parés
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Summary. The goal of this chapter is to describe briefly the DamFlow project
whose goal is the efficient implementation of a numerical parallel solver to simulate
geophysical flows. This chapter focuses on the numerical solution of shallow water
systems by means of finite volume methods. A technique to develop a high level C++
small matrix library that takes advantage of SIMD registers of modern processors is
introduced. A visualization toolkit specifically designed for the pre and post-process
of the simulated problems is also presented. Finally, some numerical results are
shown.

1 Equations and Numerical Scheme

We consider the shallow water system:
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Here, D ⊂ R2 represents the plane projection of the volume occupied by
the flow; H(x) is the depth function measured from a fixed level of reference;
g is the gravity; h(x, t) and q(x, t) = (qx(x, t), qy(x, t)) are, respectively, the
thickness and the mass-flow of the water layer at the point x at time t, and
they are related to velocity u(x, t) = (ux(x, t), uy(x, t)) through the equation:

q(x, t) = u(x, t)h(x, t).

The term Sf(W ) parameterize the friction, wind and Coriolis effects.
The discretization of (1) is performed by means of a finite volume scheme.

The computational domain is divided into discretization cells or finite volumes.
At the edges of each cell, a projected one-dimensional Riemann Problem in the
normal direction to the edge is considered, whose solution is approached by a
Roe-type first order well-balance numerical scheme (see [1], [2] for details).

2 A Brief Description of the Implementation

This scheme is parallelized in a PC cluster by using MPI. A domain decom-
position technique is used to break the domain into pieces that are sent to
each node of the cluster. For each piece of the domain, the computations are
performed in its corresponding node of the cluster, and a communication pro-
cedure among the nodes is performed at the end of each computational time
step. In order to reduce the data transfer, a specific buffer structure has been
developed. The implementation has been carried out with MPI and C++.

Even if very good speed-up results are obtained, the nature of our targeted
problems demands more computing power: for example, 2D tidal simulations
of months or years in the Strait of Gibraltar can lead to days or even weeks
of CPU time in a PC cluster. Most of this CPU time is spent on performing
a huge number of small matrix computations, similar to those carried out in
multimedia software and hardware. Modern CPU’s (for example Pentium IV
processors) are provided with specific SIMD units devoted to these purposes.
We introduce a technique to develop a high level C++ small matrix library
that takes advantage of SIMD registers, hiding the difficulties related to the
use of very low level coding (mostly assembler) needed to develop an efficient
SIMD implementation. This has been implemented in a 8 dual Intel Xeon
EM64T cluster. Each Xeon EM64T processor has 16 SSE2 registers that pro-
vide to the processors with an SIMD parallel architecture. To develop a high
level C++ library without loosing the efficiency of a low level SSE imple-
mentation, several high level techniques have been used: templates, operator
overloading, function inlining, etc. (see [4] for details).
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3 Numerical Performance of the Matrix Library

We consider a shallow layer of water flowing in a rectangular channel of 1 m
width and 10 m long with a bump placed at the middle of the domain given by
the depth function H(x1, x2) = 1−0.2 e−(x1−5)2 . Three meshes of the domain
are constructed with 2,590, 5,162 and 10,832 volumes, respectively. The initial
condition is q(x1, x2) = 0, and:

h(x1, x2) =

{
H(x1, x2) + 0.7 if 4 ≤ x1 ≤ 6,
H(x1, x2) + 0.5 other case.

(3)

The numerical scheme is run in the time interval [0, 10] with CFL = 0.9.
Wall boundary conditions q·η = 0 are considered. Table 1 shows the CPU time
for each run. As it can be seen in Fig. 1, the speed-up of the parallelization
using SSE noticeably diminishes for meshes 1 and 3 in the one layer case, with
respect to the case in which they are not used. The reason of this phenomena
is that, due to the great efficiency of the SSE parallelization, the calculus time
for each iteration in each node is very small compared to the time spent in
communications. The efficiency of mixing both kinds of parallelism increases
with the mesh size. To show this behaviour, we consider a fourth mesh much
finer than mesh number 3 (mesh 4, with 244.163 volumes) to compute again
test 1 and compare the speed-up (see Table 2).
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(a) Mesh 1: SIMD speed-up
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(b) Mesh 3: SIMD speed-up

Fig. 1. Speed-up for meshes 1 and 3: one layer model

Table 1. Speed-up: meshes 3 and 4

Mesh 1 Mesh 2 Mesh 3

CPUs SSE NON-SSE SSE NON-SSE SSE NON-SSE

1 0 m 18.507 s 4m 52.201 s 0 m 51.764 s 14 m 16.735 s 3 m 5.985 s 50 m 21.319 s
2 0 m 10.685 s 2m 32.606 s 0 m 29.066 s 7m 6.800 s 1 m 38.830 s 25 m 25.037 s
4 0 m 6.876 s 1m 17.556 s 0 m 17.078 s 3m 38.655 s 0 m 53.459 s 12 m 43.717 s
8 0 m 4.340 s 0m 40.120 s 0 m 10.032 s 1m 51.360 s 0 m 29.315 s 6 m 26.135 s
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Table 2. Speed-up: meshes 3 and 4

N. CPUs. 1 2 4 8

Time for mesh 4 25m 26.436 s 12m 53.427 s 6m 34.203 s 3m 24.476 s
Speed-up for mesh 3 1 1.8818 3.4790 6.3443
Speed-up for mesh 4 1 1.9736 3.8722 7.4651

Fig. 2. Screenshot of the post-processing tool

4 A Brief Description of the Visualization Toolkit

A specific post-processing tool has been developed in order to analyze the
results of our models. The main characteristics of this tool are (more details
in [3]):

– Ability to visualize results in non-structured finite volume meshes.
– Flexibility for the treatment of very large computational files (several

Gigabytes files).
– Visualization of each computed physical magnitude (velocities, fluxes,

sediments...).
– Ability to join in real time results coming from different processors of the

cluster in order to visualize the complete domain.
– Ability to visualize results from a remote machine avoiding the transfer of

data to the visualization computer.

This post-processing tool has been developed using Python as basis lan-
guage. The 2D and 3D visualization kernels are based in MatplotLib and
VTK, respectively. Finally some functionalities are implemented in C++ in
order to get better performance. A screenshot is shown in Fig. 2.
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Fig. 3. Mero river flood simulation

5 Numerical Examples

The model has been applied to the simulation of the Mero river floods
(A Coruña – Spain), see Figure 3. We have validated the model by compar-
ing our computational results with experimental data provided from a model
of the Mero river made to scale by CITEEC in the University of A Coruña
(Spain). We have been provided with experimental data of velocities, flows,
water depth, etc. in different sections of the computational domain.

Experimental and computational data has been compared obtaining a very
good agreement (see [4] for more details).
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1 Introduction

We address two problems related to variational data assimilation (VDA) [1]
as applied to river hydraulics (1D and 2D shallow water models). In real
cases, available observations are very sparse (especially during flood events).
Generally, they are very few measures of elevation at gauging stations. The
first goal of the present study is to estimate accurately some parameters such
as the inflow discharge, manning coefficients, the topography and/or the initial
state. Since the elevations measures (eulerian observations) are very sparse, we
develop a method which allow to assimilate extra lagrangian data (trajectory
particles at the surface, e.g. extracted from video images). The second goal
aims to develop a joint data assimilation - coupling method. We seek to couple
accurately a 1D global net-model (rivers net) and a local 2D shallow water
model (zoom into a flooded area), while we assimilate data. This “weak”
coupling procedure is based on the optimal control process used for the VDA.
Numerical twin experiments demonstrate that the present two methods makes
it possible to improve on one hand the identification of river model parameters
(e.g. topography and inflow discharge), on the other hand an accurate 1D–2D
coupling combined with the identification of inflow boundary conditions.

1.1 The 2D Forward Model

The 2D forward model considered rely on the shallow water equations (SWE)
(h is the water elevation, q = hu the discharge, u the depth-averaged velocity):⎧⎨⎩∂t h+ div(q) = 0 in Ω×] 0, T ]

∂t q + div( 1
hq⊗ q) + 1

2g∇h2 + gh∇zb + g n2‖q‖
h7/3 q = 0 in Ω×] 0, T ]

(1)
with initial conditions (h0,q0) given, g the magnitude of the gravity, zb the
bed elevation, n the Manning roughness coefficient. Boundary conditions are:
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at inflow, the discharge q̄ is prescribed; at outflow, either the water elevation z̄s
is prescribed or incoming characteristics are prescribed; and walls conditions.
Given the control vector c = (h0,q0, n, zb, q̄, z̄s), the state variable (h,q) is
determined by solving the forward model.

2 Assimilation of Lagrangian Data

Lagrangian DA consists in using observations described by lagrangian coor-
dinates in the DA process. Here, we consider observations of particles trans-
ported by the flow (e.g. extracted from video images). The link between the
lagrangian data made of N particle trajectories denoted by Xi(t) and the clas-
sical eulerian variables of the shallow water model is made by the following
equations, see [4]:{

d
dtXi(t) = γ u

(
Xi(t), t

)
∀ t ∈ ]t0i , t

f
i [

Xi(t0i ) = x0
i ,

for i = 1, . . . , N (2)

where t0i and tfi are the time when the particle enter and leave the observation
domain, γ is a multiplicative constant. We consider two kinds of observations
(classical eulerian observations hobs(t) and trajectories of particles transported
by the flow Xobs

i (t)). Then, we build the following composite cost function:

j(c) =
1
2

∫ T

0

∥∥Ch(t)− hobs(t)
∥∥2 dt+

αt

2

N∑
i=1

∫ tf
i

t0
i

∣∣Xi(t)−Xobs
i (t)

∣∣2 dt (3)

where αt is a scaling parameter, C the observation operator.

2.1 Numerical Results

Particle trajectories associated with local water depth measurements are used
for the joint identification of local bed elevation zb and initial conditions
(h0,u0). A constant discharge q̄ is prescribed at inflow, Fig. 1a. A vertical cut
of the fluid domain in the longitudinal plane in Fig. 1 b shows the bed and
the free surface elevation for this configuration.

Twin DA experiments are carried out: observations are created by the
model from the reference steady flow described above. Water depth is recorded
continuously in time at the abscissae x1 = 15m and x2 = 70m, for the whole
width of the domain. These measurements are used as observations denoted by
hobs
i (y; t) for i = 1, 2. With regards to the creation of trajectories observations,

virtual particles are dropped in the reference steady flow and transported by
a turbulent surface velocity ut = γu + up , where γ = 1 and up is a Gauss–
Markov process. A total of Nobs = 640 particles is released in the flow.
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Fig. 1. Flow configuration
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Fig. 2. Joint identification of the topography and the initial conditions using water
depth measurements and particle trajectories with αt = 1 × 10−4

We seek to identify jointly the reference topography and the reference
initial conditions (water depth h0 and velocity u0) used to create the obser-
vations, from the a priori hypothesis that the bed is made of a longitudinal
slope of without bump and the initial conditions correspond to the steady
state obtained with the modified topography. To that purpose, we carry out
DA using cost function (3). As shown in Fig. 2 a, the identified topography
is close to the reference, with a good recovery of the bump. As for the initial
conditions, we can see in Fig. 2 c,d that it reproduces the same main features
as the reference.

3 A Joint Assimilation-Coupling Procedure

Operational models used in hydrology are generally net-models based on the
1D Saint–Venant equations with storage areas. Here we shortly describe a
method which superpose locally the previous 2D SWE along the 1D channel,
see [3]. The first issue is to nest properly the local 2D model into the 1D global
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Fig. 3. (a) Problem layout (b) Assimilation of data (h) by the JAC algorithm:
W1(t) after k iterations

model. To this end, we specify incoming characteristics at lateral boundary
conditions (BC), Fig. 3:

(x, y) ∈ Γ3 :
q + (c− u)h = w1(x, y, t)
p− vh = w3(x, y, t), ∀u > 0,

(4)

(x, y) ∈ Γ4 :
q − (c + u)h = w2(x, y, t)
p− vh = w3(x, y, t), ∀u < 0,

(5)

where the coefficients in (4) and (5) are: c = (gh|t−τ )1/2, u = (q/h)|t−τ , v =
(p/h)|t−τ and τ is a time shift, which is taken equal to the time integration
step in the numerical implementation; w1, w2 and w3 (depending on the sign
of u) are the incoming characteristic variables that must be specified based
on their counterparts W1,W2 from the global model defined as follows:

Q + (c− u)H = W1(x, t), Q− (c + u)H = W2(x, t), (6)

where H,Q are variables of the “dimensional” 1D SWE problem (i.e. scaled
by the main channel width assuming the rectangular cross-section) and c =
(gH|t−τ̃/b)1/2, u = (Q/H)|t−τ̃ .

The feedback from local to global model is achieved by computing a gener-
alized defect correction term, which will be a source term to the global model
equations, see [3] for more details. Another issue is that we couple two differ-
ent models (1D and 2D). The problem is formulated as a DA problem, while
the local model boundary conditions are considered as unknown controls. The
coupling conditions in this formulation become penalty terms of the extended
objective function J = (γJ∗ + J1 + J2) with J∗ =

∑
i

∫ T

0
(Ui − Ûi)2 dt and

Jk =
∫ T

0
(
∫

Γk+1wkdΓ −Wk|Γk+1)
2, while as constraints we consider the one-

way relaxed model described by the following steps: (a) given current approxi-
mation wk solve the 2D SWE local problem; (b) compute “defect correction”;
(c) given current approximation (or known values) W1(0), W2(L) and the

(a)

(b)
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“defect correction” computed at previous stage solve the 1D SWE problem;
(d) compute extended objective function J . We refer to this method as to a
“joint assimilation-coupling method” (JAC).

In the numerical examples [2] given below we solve DA problem for the
1D section (main channel) looking for the unknown inflow BC (characteristic
W1(t, 0)), while data is measured in the area covered by the 2D local model
and is assimilated into this model correspondingly. The control problem for
J is solved using the adjoint [4, 5] of the one-way relaxed model described
by steps (a)–(c). Data is collected in two points as shown in Fig. 3a. The
reference value is chosen to cause a “flooding event”, i.e. massive overflowing
of the main channel in the area where the 2D local model is superposed. (Rem.
Under these conditions assimilation of measurements from sensor A into the
1D model alone may fail to produce meaningful results because this model is
not adequate. Data from sensor B cannot be assimilated in principle).

In the following assimilation examples, Fig. 3b, we can see the reference BC
(in dashed line) and the retrieved value after k iterations of the JAC algorithm
(in sharp solid lines). A line that corresponds to k = 0 is the initial guess.
This example shows that the JAC method converges and allows retrieving
the unknown BC of the 1D model, while data is assimilated into the weakly
connected local 2D model.
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Over the past years, Mathematical Materials Science has become an impor-
tant discipline, with a significant impact both on mathematics and materials
science. Modeling many properties of materials involves describing phenom-
ena taking place in a wide range of scales, from the nanoscale up to the
macroscale. One of the big challenges nowadays is to develop the tools to
handle multiscale problems and understand how dynamics on one scale affect
the others. Experimental, computational and theoretical advances provide a
better understanding of materials, making it easier to design new materials
with desired properties.

This minisimposium is focused on mechanical properties, defects and
growth in Materials Science. It contains selected contributions containing
modeling, analysis, computation and experimental results for some cutting
edge problems.

Y. Farjoun addresses growth phenomena in a model of aggregation which
combines surface activated and diffusion limited growth. A continuum approx-
imation produces an asymptotic solution showing three stages: nucleation,
growth and coarsening. Late coarsening in this model selects the discontinu-
ous similarity solution of the Lifshitz–Slyozov equation.

O. Rodŕıguez de la Fuente presents some experimental and computational
results on nanoindentation tests in gold crystals. Atomistic simulations repro-
duce the experimentally observed plastic mechanisms of dislocation nucleation
and motion. The strengths of surfaces are compared.

I. Plans discusses formation of misfist dislocations in heteroepitaxial
growth using a simple nearest neighbour model to predict the number of film
layers needed for an edge misfit dislocation network to appear in InAs/GaAs
heteroepitaxy. Numerical results agree reasonably well with experiments.

P. Ariza presents a study of dislocation newtworks in BCC crystals using
“discrete crystal elasticity” models derived through discrete differential calcu-
lus and algebraic geometry applied to crystal lattices. A method to compute
dislocated structures solving integer optimization problems is discussed.
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J. Ockendon describes an asymptotic method for the analysis of dislocation
pile-ups. The dislocation density for particular geometries is easily found in
the continuum limit. This method allows to recover the dislocation positions
knowing the dislocation density.



An Asymptotic Solution of Aggregation
Dynamics

Yossi Farjoun1 and John Neu2

1 MIT, Cambridge, Massachusetts, USA
yfarjoun@mit.edu

2 UC Berkeley, Berkeley, California, USA

Summary. We present a model of aggregation, whereby clusters are created
according to the Zeldovich nucleation rate and subsequently undergo diffusion lim-
ited growth as in the classic Lifshitz–Slyozov (LS) model. The mathematical formu-
lation of this model as an advection PDE signaling problem is singular in the small
super-saturation limit. Using singular perturbation methods, we find three succes-
sive eras: Nucleation, growth and coarsening. The long-term limit of the coarsening
era solution converges to the discontinuous similarity solution of the LS PDE.

1 Introduction

Aggregation of identical particles (monomers) into large clusters is a universal
phenomenon throughout physics, chemistry, and biology. Two classical models
have been proposed and they are well suited for their respective domains. The
Becker–Döring (BD) model [1] of surface activated reactions compares the
rate at which particles leave the surface of a cluster with the rate at which
particles surrounding the cluster join it. The BD model is used primarily for
deriving the Zeldovich rate [11] of nucleation, which describes the rate at which
clusters overcome a free energy barrier. Lifshitz and Slyozov (LS) proposed a
model [5] in which the growth of the clusters is controlled by the diffusive flux
of monomers. The LS model is used to describe the growth of clusters after
they are nucleated.

After setting up the aggregation signaling problem using a continuum
approximation, we present its asymptotic solution. It exhibits three successive
and distinct eras: Nucleation, growth, and coarsening, with increasingly larger
time-scales. During the nucleation era, the clusters are created and they start
growing. No more clusters are being formed during the growth era, but the
existing ones grow and deplete the monomer around them. In the coarsening
era, the monomer density is so depleted, that the growth of the large clusters
is only possible by the evaporation of the smaller ones. The t → ∞ limit of
the coarsening era solution converges to the discontinuous similarity solution
of the LS PDE.



An Asymptotic Solution of Aggregation Dynamics 369

The current chapter only skims through a partial set of the results and
refers the interested reader to a future article by the authors for the full
derivation and more results.

2 Aggregation Model

The standard derivation of the nucleation and growth models suffices for our
purposes. Thus, we cite the results needed for the description of the model,
and forgo any explanation or derivation. For a complete description of the
aggregation model see, for example [2, 7–10].

2.1 Super-Saturation and the Nucleation Rate

The cluster size distribution has an equilibrium solution when the density of
monomers is smaller than the saturation density, fs. When f1, the monomer
density is greater than fs an equilibrium solution does not exist. In this case
the creation and growth rates of the clusters are controlled by the super-
saturation, η,

η ≡ f1 − fs

fs
, (1)

The small cluster-sizes have a quasi-equilibrium distribution, however, due to
thermal fluctuations, a small fraction of clusters grow beyond a free energy
barrier, i.e. nucleate. Zeldovich showed that the rate of nucleation per unit
volume is

j = Ωe−
σ3

2η2 , Ω ≡ ωfs

√
σ

6π
, (2)

for 0 < η 
 1. Here, ω is the rate constant for any particular “surface” particle
to evaporate from the cluster, and σ is the energy per unit area of the surface
of a cluster (in units of kBT ). It is assumed that ω and σ are asymptotically
constant for large clusters.

2.2 The Growth Rate of Clusters

Large clusters, grow according to the Lifshitz–Slyozov growth rate

ṅ = d
(
ηn1/3 − σ

)
, d = (3 · 16π2)1/3

Dfs
v2/3

, (3)

where D is the diffusion constant of monomers outside the clusters and v is
the volume per particle in the bulk of the cluster.
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3 The Signaling Problem and the Three Eras

To follow the changing clusters sizes, a continuous function r(n, t) is intro-
duced. It specifies the density of clusters of size n at time t. The aggregation
dynamics are then rewritten as a PDE for r(n, t),

∂tr + ∂n(ur) = 0 in n > 0, u = d(n
1
3 η − σ), (4)

η =
f − fs

fs
− 1

fs

∫ ∞

n∗
n r(n, t) dn, (5)

r(n, 0) ≡ 0. (6)

The super-saturation is determined via (5) which states that particles are
either monomers, or part of large clusters, this is an approximation we use
here. PDE (4) is the translation of the growth rate of an individual cluster
to the advection of the cluster-size density, r. Equation (6) states the initial
condition: no clusters and monomer of density f .

Throughout the analysis we use the initial value of η, f−fs
fs as a gauge

parameter, ε. By analyzing the small ε limit we find that the signaling problem
(4)–(6) has three distinct “eras”, or scalings. In the following subsections we
present the three eras, their reduced equations, and solutions.

3.1 Nucleation

The characteristic cluster size n in the nucleation era has n ! n∗ =
(

σ
η

)3

(as will be shown shortly). Thus, (3) reduces to

ṅ = dηn
1
3 ,

and the size distribution r(n, t) satisfies advection PDE

∂tr + ∂n(dηn
1
3 r) = 0 (7)

in n > 0. Outgoing characteristics from n = 0 require boundary conditions,
corresponding to the rate nucleation rate of clusters. For this we use the
Zeldovich rate:

dηn1/3r → j ≡ Ωfse−σ3/2η3
, as n → 0. (8)

Since the nucleation rate (8) depends strongly on the super-saturation,
the change in super-saturation, ∆η ≡ ε− η, is introduced. The nucleation era
lasts until the rate of nucleation diminishes to a small fraction of the original
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rate. The dominant balance relations in (5), (4, and (8) for the nucleation era
results in the scales in the following table.

Variable η n t r ∆η

Unit ε

(
dfsε4

Ωσ3 e
σ3

2ε2

)3/5 (
ε

dσ2

)3/5 ( Ω
fs

)−2/5
eσ3/5ε2

(
Ω2σ

d2f
1/3
s ε3

e
− σ3

ε2

)3/5

ε3

σ3

We note that, as expected, the characteristic cluster size is much larger
that n∗.

Using these scales we find the reduced equations for the nucleation era:

∂tr + ∂n(n
1
3 r) =0, in n > 0, (9)

j = n
1
3 r →e∆η, as n → 0+, (10)

∆η =−
∫ ∞

0

nr dn, (11)

r(n, 0) =0. (12)

By using the characteristics of (9), we obtain an integral equation for ∆η:

∆η(t) = −
∫ t

0

(
2
3
(t− τ)

) 3
2

e∆η(τ) dτ, (13)

A solution to (13) is found by numerical integration, and r(n, t) is recon-
structed using the characteristics. Figure 1 shows a succession of “snap-shots”
of the cluster-size density r(n, t) at various values of t. The (scaled) total
density of clusters created during the nucleation era emerges from the numer-
ical solution:

R ≡
∫ ∞

0

r dn =
∫ ∞

0

j(ϕ) dϕ ≈ 1.34.

0 5 10 15 20
0

0.5

1

1.5

t=1

t=5
t=10

r(n, t)

n

Fig. 1. The cluster-size density, r(n, t), for various values of t
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3.2 Growth

At the tail-end of the nucleation era, clusters are being nucleated at a van-
ishingly small rate. The characteristic cluster size [n] here is still much larger
than n∗, and so the simple growth rate, ṅ = dηn

1
3 , is still a good approxima-

tion. The leading order dynamics of the cluster-size distribution is described
by its width and the size of the largest clusters, a and N . Using N and a, we
define an “inner variable” x, and a corresponding “inner density” q(x, t):

x =
n−N(t)

a(t)
, q(x, t) =

a(t)
R

r(N(t) + a(t)x, t). (14)

Choosing N and a so that,

Ṅ = N
1
3 η, ȧ =

1
3
N− 2

3 aη, (15)

causes the dynamics of q(x, t) to be trivial to first order. That is ∂tq ≡ 0.
The remaining problem is an ODE system for N . A dominant balance of the
equations finds the growth era scales:

Variable N η t a

Unit τ−3 1 τ−2 τ−1
, τ = R

1
3 ε

2
3

σ

These scales are relative to the nucleation era. So, for example, the largest

cluster, N , is scaled with σ3

Rε2

(
dfsε

4

Ωσ3 e
σ3

2ε2

)3/5

, and η remains scaled with ε.

Using the scales above and taking the ε, τ → 0 limit, results in an ODE for N :

Ṅ = N
1
3 (1−N), ∂tq ≡ 0, η = 1−N, a = CN

1
3 . (16)

The solution to (16) is shown in Fig. 2. The function q and constant C are
determined by asymptotic matching with the nucleation era solution:

q(x, t) =
C

R
j (−Cx) , C =

1
R

∫ ∞

0

t j(t) dt ≈ 0.81.

Here, j(t) is the nucleation flux found during the nucleation era.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

N=1−A e−t

N=(2/3 t)3/2

N(t)

t

N

Fig. 2. The size of the largest cluster, N(t), during the growth era. The two dashed
lines show asymptotic behaviors of N(t). A ≈ 2.1
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3.3 Coarsening

The end of the growth era is marked by a vanishing super-saturation and
a stationary distribution, Ṅ = 0. For such a small super-saturation, the
approximation made in the two previous eras, that σ 
 ηn

1
3 is no longer

valid. Another way of looking at it is that the critical cluster size, n∗, “catches
up” with the distribution during the coarsening era. Thus, we use the full
advection velocity from (4)

u = d(n
1
3 η − σ) (17)

in the advection PDE. At n = 0 the characteristics are incoming, and so no
boundary conditions are required (the incoming characteristics correspond to
the final breakup of clusters into monomers). Since the initially narrow distri-
bution widens during the coarsening era, we use a new independent variable
y = n

N , and define q(y, t) appropriately.
The scales of the coarsening era are listed in the following table.

Variable N η t w q
Unit τ−3 sτ 1

sτ3 sτ3 1
, τ ≡ R

1
3 ε

2
3

σ , s ≡
(

d6fsε
9

Ωσ8 e
σ3

2ε2

)− 1
5

These scales are with respect to the nucleation scaling, thus for example, the
resulting scale of N , the largest cluster size, is the same in the coarsening and
growth eras. The reduced equations for the coarsening era are disentangled
with some algebra:

0 = qt + (wq)y, for 0 ≤ y ≤ 1, η =
M1/3M0

M1/3
, (18)

w = M

(
M0

M1/3

(
y1/3 − y

)
+ (y − 1)

)
, N =

1
M

. (19)

The moments M,M0, and M1/3 are defined by

M =
∫ 1

0

y q dy, M0 =
∫ 1

0

q dy, M1/3 =
∫ 1

0

y1/3q dy.

We solved PDE (18) and (19) for q numerically using clawpack [4]. Effective
initial conditions were found by linearizing the advection velocity and follow-
ing the widening of the narrow distribution over a time period of −6 log τ .
Shifting the origin of time by this amount causes the coarsening era solutions
for different values of ε to collapse onto a single solution, which is used as
the effective initial condition. As t → ∞, the distribution q converges to the
discontinuous similarity solution of the PDE. Figure 3 shows snapshots of the
solution and the similarity solution. In Fig. 4, the original distribution r(n, t)
is plotted instead of q(y, t).
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0 0.2 0.4 0.6 0.8 1

0.5
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1.5

2
q(y, t)

y

Fig. 3. The (normalized) numerical solution q(y, t). On the right at t = −10, and
indistinguishable from the discontinuous similarity solution (dark line) at t ≈ 4
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Fig. 4. The numerical solution r(n, t). The dark curve is the effective initial condi-
tion, at t = −10

4 Conclusions

Three eras — nucleation, growth, and coarsening — emerge from the asymp-
totic analysis of the aggregation model. In the small super-saturation limit
they are characterized by increasingly larger times scales. Starting with pure
monomer, the distribution relaxes to the discontinuous similarity solution. The
solution is accompanied by previously unknown physical scales, and amount of
clusters generated, R. We predict that other phenomena, such as the ignition
transient [3, 6] will smooth the discontinuity in a larger characteristic time.
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1 Introduction

We know since decades that, to exploit and control mechanical properties of
materials, a profound knowledge of the defects generated during deformation is
required. The advent of nanotechnologies and the maturity of surface science
have catalysed the development of nanoindentation techniques. Nanoinden-
tation experiments, with both high spatial and load resolution, allow to
determine defects emerging at the surface, and their relationship with discon-
tinuities in the load vs. penetration curve. But sub-surface defect morphology
generally remains hidden, and quite often only indirect conclusions can be
inferred. Simulations are then a very valuable tool to unveil defect configu-
rations. Among the present challenges regarding nanoindentation, one is the
origin and correct interpretation of the piled-up material, i.e. the material dis-
placed from the indentation point. Another problem is the role of the surface
roughness on the mechanical properties at the nanoscale.

2 Methodology

All simulations in the present work are atomistic. The interatomic poten-
tial used is the embedded atom method [DB84] for gold, which belongs to a
wide and extensively used class of potentials, suitable for metallic systems.
Simulation cells, with lateral periodic boundary conditions and (001) or (111)
top surface orientations contain up to a few million atoms, depending on the
specific simulation. The bottom layer is kept rigid, so that the whole system is
not displaced downwards during indentation. Cell lateral dimensions are con-
tinuously scaled to keep the diagonal components of the stress tensor equal
to zero. The nanoindentor is simulated as a spherical purely repulsive poten-
tial, ignoring all possible attractive forces during approach and contact. The
indenter radius varies between 30 and 300 nm. In every indentation step the
nanoindentor position is lowered in steps of 0.01 Å. The whole system is then
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fully relaxed in this new configuration with a conjugate gradient minimization
algorithm until system energy is minimized. To visualize the simulated system
the software AtomEye [LJ03] is used.

3 Results

In previous publications [OR02] we have reported the results of experimen-
tal nanoindentations performed on gold surfaces. Although we just observe,
to be more precise, the intersection with the surface of emerging disloca-
tion lines in different configurations, we have proposed models explaining the
complete sub-surface structure, as well as the generation and displacement
mechanisms of these defects. Atomistic simulations are as well helpful to in-
terpret some of these defects and their generation mechanisms. In very general
terms, and referring to a Au(001) surface, we can classify the defect config-
urations in two large classes: dislocation half-loops with total Burgers vector
(a) parallel to the surface and (b) with a component perpendicular to the
surface. The former were called mesas and the later screw loops. We have
recently performed more extensive atomistic simulations, which we present
here. Apart from mesas, other types of dislocations are nucleated below the
indenter. Simulations generally show the nucleation of a tiny half-loop with
screw character, which expands ands grows under the stress applied by the
indenter. These very incipient events are associated with an abrupt fall in the
applied force. Dislocation lines glide following compact crystallographic [011]
directions, leaving a step on the surface. In fact, this step is a trace on the sur-
face of the subsurface trajectory of the dislocation as it glides. As penetration
increases, dislocations grow and new ones are nucleated.

Figure 1 shows a view of the dislocation network formed under the inden-
tation point. Some surface steps created during the indentation process are
visible. One of the steps ends at the emergence point of a screw dislocation.
In previous publications we have proposed that, at a given distance, the dis-
location line cross-slips to another glide plane (this is due to the anisotropic
stress distribution around the indentation point and is explained in detail in a
previous publication [CE04]). Present simulations support previous proposals
about the origin and nature of the piled-up material around nanoindentations.
In the meanwhile, other recent works strongly suggest, for different kinds of
solids (gold thin films [AA06], barite [AA] and KBr [FT06]), the same kind
of mechanism. It can be inferred that the formation of the piled-up mater-
ial around a nanoindentation by means of nucleation, glide and cross-slip of
screw dislocations (giving rise to crystallographic superimposed terraces) can
be considered to be a quite general mechanism.

An analogous study has been carried out on defective surfaces. As a
first approach we can consider a stepped surface, with regularly separated
monoatomic steps. Several simulations have been performed on surfaces with
different density of steps. Figure 2 shows the force vs. penetration curve for
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Fig. 1. (a), (b) Sub-surface views of defect configurations generated during nanoin-
dentation in Au(001). Just surface and defective atoms are shown. Most of the de-
fects are mesas in a, and screw dislocations intersecting the surface in b (where just
a setion of the whole simulation cell is visualized). (c) Top view of a Au(111) surface,
in false grey scale, showing the formation of small terraces around the indentation
point (piled-up material) due to a dislocation mechanism

Fig. 2. Force vs. penetration curve on one flat and two stepped surfaces (with
different step separations). On the right, a sub-surface lateral view of the simulation
cell during nanoindentation is shown. Dislocation loops stem from the steps along
the same set of (111) slip planes

three of the simulations carried out. It is clear that a lower force is necessary to
penetrate the same distance into the material when it is stepped, and that
the higher the defect density, the lower the surface stiffness. An analysis of the
intermediate states of the crystal shows that the first dislocations below the
flat surface do not appear before the first drop in the force (around 8.8 Å for
the case shown in the figure). But for the case of stepped surfaces, dislocations
nucleate below the indenter shortly after mechanical contact, and it does not
necessarily produce a drop in the force, as shown in the curve. This kind of
discontinuities are usually considered a clear sign of formation of the first plas-
tic defects in high force resolution nanoindentation experiments. In apparent
contradiction, we note here that, in stepped surfaces, plastic defects can be
generated with no apparent drop in the indenter force. Discontinuities in the
force curve thus should not be considered as a good indicator of plastic activity
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in rough surfaces. Additionally, stepped surfaces show two peculiarities with
respect to the nucleation site and geometry of the dislocations. In a fcc solid,
there exist four equivalent (111) slip planes. For flat surfaces, the exact region
where dislocations are generated and their orientation (slip plane) are not
completely determined, and any of these planes can be activated as stress is
applied. But, according to our results, dislocation loops in a stepped surface
are generated just at the step, and they slip and glide along the same family
of slip planes: the ones parallel to the step line and lying below the higher part
of the step (see Fig. 2). Just one of the four slip planes is activated, and the
result is that all generated loops are parallel. There exist two main reasons
explaining these peculiarities. The indenter pressure on a step is higher due to
the reduced contact area, as shown in [ZJ01] (the indenter, initially, does not
contact the lower part of the step). This fact favours dislocation nucleation
at these sites. But, additionally, atoms in a step has a reduced number of
neighbours. To create a dislocation, atomic bonds need to be broken before
the displacement and rebonding of the atoms involved in the slip process.
According to this, atoms with a reduced number of neighbours should be
easier to displace (a fewer number of bonds have to be broken and less en-
ergy is required). And it is because of the asymmetric distribution of bonds
around an atom in a step that displacement is favoured along one specific
direction (below the upper part of the step), and dislocations are activated
in the same slip plane. Moreover, and speaking in terms of final energy bal-
ance, less energy is required to form a dislocation loop below a step (since this
step segment is partially eliminated) than in a flat surface (since a new step
segment is created). Finally, we have performed nanoindentations on surface
three-dimensional structures like the one shown in Fig. 3. They are stepped
pyramids and simulate the real asperities or mounds present at the nanoscale
in rough surfaces. Like in the case of steps, one can tune the roughness by
varying the distance between the steps. Simulations show that results on the
steps can be extended to the nanopyramids. The force curves (not shown)

Fig. 3. Simulated protusion before (left) and after (right) nanoindentation. After
plastic deformation, the upper levels have disappeared. The displaced material has
been split aside (traces are visible) and no dislocations remain below
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reveal that, the steeper the pyramid, the less stiff it is. And, due to the par-
ticular morphology of these structures, the very initial dislocation structures
glide in the directions parallel to the surface, meet adjacent steps and finally
disappear. They are annihilated by the sides, which act as dislocation sinks,
and do not penetrate into the bulk. Thus, these kind of structures are able
to absorb very incipient plastic deformation through self-deformation, leav-
ing the material below with no defect trace. This could have an influence on
subsequent deformations, since no dislocations are present.

4 Conclusions

Atomistic nanoindentation simulations on gold surfaces reproduce and extend
previous experimental observations. Incipient plasticity consists of the emis-
sion of dislocation loops, some of which glide and cross-slip giving rise to
the piled-up material around the indentation point. Simulations on stepped
surfaces show a peculiar plastic behaviour, revealing an active role of sur-
face defects at the onset of plasticity. Surface steps lower the stress threshold
for nucleating dislocations, and determine their orientation. Indentations on
nanoscale surface protrusions show analogous properties as for steps, with an
additional characteristic: their stepped faces act as dislocation sinks, leaving
the subsurface region undefective after plastic deformation.
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Summary. A two-dimensional discrete elasticity model is used to compute the crit-
ical thickness at which interfacial pure edge dislocations are energetically preferred
to form in the InAs/GaAs(110) heteroepitaxial system. The calculated critical thick-
ness of six monolayers, is fairly close to the measured value in experiments, five.

1 Introduction

Heteroepitaxial growth of InAs on GaAs(110) [1] has been examined in detail
using different techniques, including scanning tunneling microscopy (STM)
and transmission electron microscopy (TEM). The strain relief mechanisms
depend strongly on the orientation of the substrate over which layers are being
grown. In the case of a (110) substrate, growth of the InAs film occurs in three
different stages, depending on the film thickness, hf :

– 1 ≤ hf ≤ 3 monolayers (ML). A uniform network of very small 1 ML high
InAs islands is formed.

– 3 ≤ hf ≤ 200 ML. The islands formed during the first stage coalesce and
the film grows layer by layer so that no three-dimensional (3D) structures
on top of the last layer are created. Early on, for 3 ≤ hf ≤ 5 ML, an array
of pure edge misfit dislocations (90◦ MDs) is formed at the interface, and
it induces a lattice distortion that is visible at the surface. The dislocation
lines have the [100] direction, whereas their Burgers vectors lay along the
[11̄0] direction. This stage is called the [11̄0]-relaxed stage.

– hf ≥ 200 ML. The [001] direction is also relaxed by an array of 60◦ MDs
directed along [11̄0]. This array is perpendicular to the previous one, and
thus a complete dislocation network has been formed at the interface [2].

In this chapter, we consider the second stage of film growth. According to
experiments [3,4], the first interfacial dislocations are found for hf = 3 ML, and
a complete array of 90◦ MD has been formed when h∗

f,exp ∼ 5 ML. By using
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energy arguments and a discrete elasticity model of heteroepitaxial growth
in InAs/GaAs(110), we compute the critical film thickness h∗

f necessary to
create the MD array. We find h∗

f = 6 ML.

2 The Model

We model atoms on a plane perpendicular to the dislocation lines (parallel
along [001]) that contains the Burgers vector of MDs (along [11̄0]). Each layer
of the resulting 2D square lattice comprises two layers of the 3D zincblende
structure of the material. We choose the slice of InAs/GaAs (110) so that
indium atoms are grown on a Ga substrate, both on square lattices that have
different lattice constants. Cartesian axes on our 2D lattice will be chosen
along [11̄0] and [110], as indicated in Fig. 1. The elastic constants and the
lattice constant referred to these axes are related to those in the [100] direction
according to the formulas [(13)–(43) in [5], H = 2C [100]

44 + C
[100]
12 − C

[100]
11 is

the anisotropy factor]:

C
[11̄0]
11 = C

[100]
11 + H/2, C

[11̄0]
12 = C

[100]
12 −H/2, C

[11̄0]
44 = C

[100]
44 −H/2, (1)

a[11̄0] = a[100]/
√

2. (2)

Our computational domain comprises M layers: layers 1, ..., p, correspond
to the substrate, and layers p+1, ...,M, to the film. Each computational layer

Fig. 1. Extracting a plane of atoms from the three-dimensional (3D) zincblende
lattice results in a two-dimensional (2D) square lattice. Each layer of the 2D lattice
represents 2 ML of the real crystal

Table 1. Elastic constants in 109 N m−2 and lattice parameters in Å

C
[100]
11 C

[100]
12 C

[100]
44 a[100] C

[11̄0]
11 C

[11̄0]
12 C

[11̄0]
44 a[11̄0]

InAs 83 45.0 39.5 6.05 C+
11 = 103.50 C+

12 = 24.50 C+
44 = 19.00 a+ = 4.28

GaAs 118 53.5 59.0 5.65 C−
11 = 144.75 C−

12 = 26.75 C−
44 = 32.25 a− = 4.00
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represents two physical monolayers, as shown in Fig. 1. A cell in the square
lattice, labeled by indices (l,m), contains one atom located at coordinates
xi(l,m; t), i = 1, 2 at time t. The side of a square cell containing a substrate
atom is a(l,m) = a− (m ≤ p), and it is a(l,m) = a+ for a cell containing a
film atom (m > p). The lattice misfit is ε = (a+ − a−)/a+ = 7%.

In our model, we consider a discrete energy V ({xi(l,m; t)}),

V =
∑
l,m

a3(l,m)W (l,m; t) =
1
2

∑
l,m,i,j,r,s

a3(l,m) cijrsgijgrs, (3)

in which the strain energy density W depends on the tensor of elastic constants
cijrs and on displacement differences that become ∂ui/∂xj in the continuum
limit (ui is the displacement field):

gii = g

(
D+

i xi(l, m; t)

a(l, m)
− 1

)
∼ ∂ui

∂xi
, gij = g

(
D+

j xi(l, m; t)

a(l, m)

)
∼ ∂ui

∂xj
, i = j, (4)

i, j = 1, 2. Here D+
1 xi(l,m; t) = xi(l+1,m; t)−xi(l,m; t) and D+

2 xi(l,m; t) =
xi(l,m + 1; t) − xi(l,m; t) and g(x) ∼ x for small x. Note that the xi

are absolute coordinates, not displacements from equilibrium positions. The
atoms at the top layer do not have any other ones above them, so that
D+

2 xi(l,M ; t) = 0, which represents a free surface boundary condition. In
the continuum limit, W agrees with anisotropic linear elasticity:

W (l, m; t) → Cα
11

2

(
∂u1

∂x1

)2

+
Cα

11

2

(
∂u2

∂x2

)2

+ Cα
12

∂u1

∂x1

∂u2

∂x2
+

Cα
44

2

(
∂u2

∂x1
+

∂u1

∂x2

)2

(5)

Here α = −,+ depending on whether cell (l,m) belongs to the substrate
(m ≤ p) or to the film (m > p), respectively.

3 Methodology

The potential energy V yields a force −∂V/∂xi on the atom located at xi and
Newton’s second law provides the equations of motion for our model. Local
equilibrium configurations can be found from stationary solutions or from
energy minima. It is computationally more efficient to seek for stationary con-
figurations of the equations of motion by solving the overdamped equations:

β
dxi(l,m; t)

dt
= − ∂V

∂xi(l,m; t)
, i = 1, 2, (6)

where β = 1 is the damping coefficient. The relaxation method starts from an
initial guess {xi(l,m; t0)} and (6) are solved until a stationary configuration
{xi(l,m; t∞)} is reached. Then its energy density is the corresponding energy
V in (3) divided by the sample volume. We will compare the energy densities
of the coherent (i.e., without dislocations) and dislocated configurations.
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Initial conditions are chosen as close as possible to a stationary solution
to which the system is observed to relax. The substrate is set so as to have its
equilibrium lattice constant a− as bond length. In the coherent configuration,
epilayer atoms are set to be vertically aligned to those in the substrate, and
they have their own lattice spacing a+ in the dislocated configuration. The
difference between the substrate and film lattice constants causes the forma-
tion of a MD array at the interface. At both sides of the domain boundary
conditions are periodic, atoms in the substrate lower layer (m = 1) do not
move, and the top layer is a free surface; cf. Sect. 1.

To ensure that the depressions at surfaces are found right above disloca-
tion cores, we need to relabel atoms in dislocated configurations. The right-
hand side of (6) includes the coordinates of first and second neighbors of the
atom (l,m). These neighbors determine a stencil of dependence, which may
be updated. When dislocations are present at the interface, we compute the
lists of neighbors, upper-neighbor(l) and lower-neighbor(l), for atoms at layers
p and p + 1, respectively. The upper neighbor of a given atom (l, p) will be
that minimizing |x1(upper-neighbor(l), p+1; t)−x1(l, p; t)|. Similarly, an atom
(l, p+1) will find its first neighbor at the layer p by minimizing |x1(l, p+1; t)−
x1(lower-neighbor(l), p; t)|. This allows to update the stencil of dependence.
The corresponding change in the energy V is introduced by redefining the
gradients at layer p: D+

2 xi(l, p; t) = xi(upper-neighbor(l), p + 1; t)− xi(l, p; t).
The critical thickness h∗

f is the minimum number of film layers for which the
dislocated configuration has lower stationary energy density than the coherent
one. Recall that each computational layer in hf,2D represents 2 ML of the 3D
crystal (Figs. 1 and 2).

In our simulations, we inserted eight dislocations (Nx = 121 columns of
atoms for the substrate, only 113 for the film) and 15 substrate layers. This
value is similar to the inter-dislocation distance, hence the substrate may be
considered infinitely extended. No dependence of h∗

f on the system size was
observed.
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Fig. 2. Partial view of (a) coherent and (b) dislocated relaxed configurations with
g2(x) = tan−1(πx)/π. The arrows point towards the valleys formed above disloca-
tion core regions. Three computational layers hf,2D = 3 represent six 3DMLs
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Fig. 3. Energy density vs. film thickness for (a) the linear case, g1(x) = x, and (b)
for g2(x) = tan−1(πx)/π

4 Results and Conclusions

Figure 3 shows our results. We inserted two different functions: the first one,
g1(x) = x, is purely linear, and g2(x) = tan−1(πx)/π, is anharmonic. The
simulations with both functions yield qualitatively similar results: the energy
density of the dislocated configuration increases as the epilayer thickness
increases, whereas the energy density of the coherent configuration decreases.
Besides, in the relaxed dislocated configurations (see Fig. 2), valleys are formed
above the dislocation lines, in agreement with the experimental observations.

In the linear case, the energy density of the dislocated configuration is lower
than that of the coherent one starting from a critical thickness h∗

f,2D,1 = 5,
that corresponds to h∗

f,1 = 10 ML. For the other function, we have h∗
f,2D,2 = 3,

h∗
f,2 = 6 ML. The latter is closer to the experimental value, h∗

f,exp ∼ 5, as
shown in Fig. 2b.

To summarize, we used a simple 2D discrete elasticity model to com-
pute the critical thickness at which it is energetically preferred for the
InAs/GaAs(110) heteroepitaxial system to form interfacial pure edge disloca-
tions. Despite its simplicity, the model provides qualitatively correct critical
thickness (6 ML to experimentally observed 5 ML), and coherent and dislo-
cated energy densities as functions of film thickness.
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1 Introduction

We present a study of 3D dislocation dynamics in BCC crystals based on
discrete crystal elasticity. Ideas are borrowed from discrete differential cal-
culus and algebraic geometry to construct a mechanics of discrete lattices.
The notion of lattice complexes provides a convenient means of manipulating
forms and fields defined over the crystal. Atomic interactions are accounted
for via linearized embedded atom potentials thus allowing for the application
of efficient fast Fourier transforms. Dislocations are treated within the the-
ory as energy minimizing structures that lead to locally lattice-invariant but
globally incompatible eigendeformations. The discrete nature of the theory
automatically eliminates the need for core cutoffs. The quantization of slip
to integer multiples of the Burgers vector along each slip system leads to a
large integer optimization problem. We suggest a new method for solving this
NP-hard optimization problem and the simulation of large 3D systems.

2 Stored Energy of Discrete Dislocations

In order to provide a point of reference, before presenting the details of the
discrete theory, we recall first some well-known notions from the classical
continuum theories. Within the harmonic approach, the energy of a crystal is a
convex function of the displacement field. The underlying crystalline structure
however allows for displacements that leave the lattice invariant. The total
energy of a crystal is thus a non-convex function of the displacements when
crystallographic slip is allowed. This deficiency can be remedied by recourse
to the theory of eigendeformations [Mur87,OP99]. The plastic distortion in a
slipped crystal is constrained by crystallography and may be written as

βij =
N∑

α=1

γαsαi mα
j , (1)
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the sum in α running over all the available slip systems in the crystal. Thus the
plastic distortion is built from lattice preserving deformations such as crystal-
lographic slip and is referred to as an eigendeformation. The elastic energy of
the crystal is a functional of the displacement field and the eigendeformation
and is given by

E[u, β] =
∫
V

1
2
Cijkl(ui,j − βij)(uk,l − βkl)dV , (2)

which is now quadratic in the elastic distortion field βe
ij = ui,j − βij and

piecewise quadratic in ui,j where Cijkl are the usual elastic moduli. This
approach will be employed in an analogous manner to accommodate crystal-
lographic slip within the discrete formulation.

2.1 Eigendeformations in Discrete Lattices

The energy of a harmonic crystal admits the representations [AO05]

E(u) =
1

(2π)n

∫
[−π,π]n

1
2
〈Ψ̂ (θ)d̂u(θ), d̂u∗(θ)〉dnθ, (3a)

E(u) =
1

(2π)n

∫
[−π,π]n

1
2
〈Φ̂(θ)û(θ), û∗(θ)〉dnθ, (3b)

where Ψ and Φ are the force-constant fields of the lattice. We write

〈Ψ̂ (θ)d̂u(θ), d̂u∗(θ)〉 ≡
N∑

α=1

N∑
β=1

Ψ̂ik

(
θ

α β

)
d̂ui(θ, α)d̂u

∗
k(θ, β) (4a)

〈Φ̂(θ)û(θ), û∗(θ)〉 ≡ Φ̂ik(θ)ûi(θ)û∗
k(θ) (4b)

for shorthand. The preceding representations show that the force-constant
fields are related as

Φ̂ = Q†
1Ψ̂Q1 (5)

Q1 being the matrix of the Fourier representation of the differential of a 1-form
(see [AO05]).

In the spirit of the eigendeformation theory, the elastic energy may be
assumed to be of the form

E(u, ξ) =
1
2
〈B(du− β), du− β〉, (6)

ξ ∈ Z is the integer-valued slip field corresponding to every slip system.
Equation (6) replaces (3b) in the presence of crystallographic slip. Clearly,
if β = dv, i.e., if the eigendeformations are compatible, then the energy-
minimizing displacements are u = v and E = 0. However, because slip is
crystallographically constrained, β is not compatible in general. By virtue
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of this lack of compatibility, a general distribution of slip induces residual
stresses in the lattice and a nonvanishing elastic energy, or stored energy.

If the distribution of eigendeformations is known, and in the absence of
additional constraints, the energy of the lattice can be readily minimized with
respect to the displacement field. Suppose that the crystal is acted upon by a
distribution of forces f : E0 → Rn. The total potential energy of the lattice
is then

F (u, ξ) = E(u, ξ)− 〈f ,u〉. (7)

Minimization of F (u, ξ) with respect to u yields the equilibrium equation

Au = f + δBβ, (8)

where δBβ may be regarded as a distribution of eigenforces corresponding to
the eigendeformations β. The equilibrium displacements, are, therefore,

u = A−1(f + δBβ) ≡ u0 + A−1δBβ, (9)

where u0 = A−1f is the displacement field induced by the applied forces
in the absence of eigendeformations. Conditions under which the minimum
problem just described is well-posed and delivers a unique energy-minimizing
displacement field have been given in [AO05]. The corresponding minimum
potential energy is

F (β) =
1
2
〈Bβ,β〉 − 1

2
〈A−1(f + δBβ), f + δBβ〉

=
1
2
〈Bβ,β〉 − 1

2
〈A−1δBβ, δBβ〉 − 〈A−1δBβ, f〉 − 1

2
〈A−1f , f〉

=
1
2
〈Bβ,β〉 − 1

2
〈A−1δBβ, δBβ〉 − 〈Bβ, du0〉 −

1
2
〈Au0, u0〉.

(10)

The first two terms

E(β) =
1
2
〈Bβ,β〉 − 1

2
〈A−1δBβ, δBβ〉 (11)

in (10) give the self-energy of the distribution of lattice defects represented by
the eigendeformation field β, or stored energy; the third term in (10) is the
interaction energy between the lattice defects and the applied forces; and the
fourth term in (10) is the elastic energy of the applied forces.

Recall that the crystal under consideration possesses M slip systems and
its eigendeformations admit a representation in terms of an integer-valued slip
field ξ ≡ {ξs, s = 1, . . . , M}. Then, the stored energy (11) can be written in
the form

E(ξ) =
1
2
〈Hξ, ξ〉, (12)
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where the operator H is defined by the identity

〈Hξ, ξ〉 = 〈Bβ,β〉 − 〈A−1δBβ, δBβ〉, (13)

Hξ represents the resolved shear-stress field resulting from a slip distri-
bution ξ, and therefore H may be regarded as an atomic-level hardening
matrix.

Finally, we require to find the slip distribution ξ that minimizes the po-
tential energy F (ξ). This is an integer optimization problem and is known to
be NP complete – solving it is thus an entirely non-trivial task. In Sect. 3 we
illustrate the minimization procedure with a concrete example.

3 Applications

In order to verify the efficacy and computational advantages of this approach
we have conducted numerical tests on a variety of BCC metals. Details about
these applications can be found in [RAO].

3.1 Core Structure of BCC Screw Dislocations

The core-structure of dislocations is widely believed to be responsible for
plastic deformation at low temperatures in BCC metals. Figure 1 shows the
DD map of the core structure that has the threefold rotational point-group
symmetry about the [111] axis. It compares well with the easy core structure
obtained by [IA00] among others.

3.2 Point of Dilatation

We have applied the solution procedure presented in [RAO] to the case of a
point of dilatation. In Fig. 1 we show the slip distribution as a result of the
equilibration process.

Fig. 1. Differential displacement map of Mo screw dislocation using a quadrupolar
cell
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Fig. 2. Simulation cell containing one million Vanadium atoms. Slipped atoms after
equilibration
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Summary. A new asymptotic approach for analysing pile-ups of large numbers of
dislocations is described. As an example, the pile-up of n identical screw or edge
dislocations on a single slip plane under the action of an external loading in the
direction of a locked dislocation in that plane is considered. As n → ∞ the continuum
number density of the dislocations can be easily obtained whereas direct evaluation
of the discrete dislocation positions from the set of force balance equations is not
straightforward. However, in the framework of our method these positions can be
revealed using the corresponding dislocation density.

Introduction

The development of coarse-grain models that do not lose the essential details
is a real challenge in the scope of new computational techniques to study and
understand the behaviour of dislocations in structural materials. Because the
relevant number density can run up to 109−−1013 cm−2, the accurate discrete
consideration of dislocation networks at linear scales suitable for engineering
applications can only be done using high-performance computing facilities.
A conventional way to treat dislocations in structural materials is to work
in terms of a continuum dislocation density that can be obtained relatively
easy. Although the latter approach provides an adequate insight concerning
the macroscopic stress and displacements, it fails at a scale at or below the
separation between neighbouring dislocations.

Alternatively, by reducing the system of nonlinear force balance equations
to an ordinary differential equation (ODE) in the vicinity of each dislocation,
Eshelby et al. [1] found the equilibrium positions of dislocations in certain
particular cases. However, this powerful technique did not develop further
because it required the use of an indeterminate “force balance-to-ODE” pro-
cedure, which is the main issue of this chapter. As a model system, we will
consider the simplest configuration of a pile-up of screw or edge dislocations on
a single slip plane stressed against a locked dislocation by a constant applied
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stress. Using the corresponding continuum number density, we obtain the
equilibrium distribution of dislocations in the pile-up and compare it to the
results of [1].

1 Governing Equations

We aim to find the equilibrium configuration of n identical straight disloca-
tions in the slip plane y = 0 located at positions x = xi > 0, i = 1, . . . , n,
piling up against a locked dislocation with the same Burgers vector at the
origin by an constant stress, σext. The normalised stress on y = 0 due to such
a configuration is

σ(x) =
n∑

j=1

1
x− xj

+ σ0(x),

where σ0(x) = 1/x − σext. In equilibrium the regular part of σ, obtained by
subtracting the dislocation self-stress, must be zero at each xi, giving the set
of n equations of equilibrium

n∑
j=1, j �=i

1
xi − xj

+ σ0(xi) = 0. (1)

This problem has been previously considered by Eshelby et al. [1], who
introduce the polynomial

f(x) =
n∏

i=1

(x− xi), (2)

whose zeros, xi, i = 1, . . . , n , correspond to the dislocation positions. In terms
of f (x) the force balance (1) can thus be written

lim
x→xi

(
f ′(x)
f(x)

− 1
x− xi

+ σ0(xi)
)

= 0 or
f ′′(xi)
2f ′(xi)

+ σ0(xi) = 0, (3)

on expanding f(x) in a Taylor series near each xi. Eshelby et al. [1] proceed
by considering the ordinary differential equation

f ′′(x) + 2σ0(x)f ′(x) + q(x, n)f(x) = 0, (4)

where q is to be determined. If q can be chosen so that this equation has a
polynomial solution, and q is not singular at the zeros xi of f (x), then the
force balance (3) is satisfied, and the problem is solved.

2 The Continuum Approximation

Finding the function q for a general dislocation pile-up problem is nontrivial.
For the moment let us assume that q is known and use (4) to determine the
continuum dislocation density in the limit n →∞. The substitution
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f(x) = v(x)e−
∫ x

σ0(x
′) dx′

(5)

reduces (4) to its normal form

v′′(x) + κ2v(x) = 0, (6)

where
κ2 = q(x, n)− σ′

0(x)− σ2
0(x) (7)

and the zeros of v(x) coincide with those of f(x). Rescaling ξ = x/n reduces
(6) to

v′′(ξ) + n2κ2(ξ, n)v(ξ) = 0. (8)

With the assumed expansion

κ2(ξ, n) ∼ κ2
0(ξ) + 2κ0(ξ)κ1(ξ)n−1 + · · · (9)

as n →∞, we can make the wkb expansion, see [2],

v(ξ) ∼ �
{

einφ(ξ)
∞∑

k=0

Ak(ξ)
nk

}
. (10)

Substituting (10) in (8) and equating coefficients as n →∞ gives the eikonal
equation

−[φ′(ξ)]2 + κ2
0(ξ) = 0 (11)

and leading-order amplitude equation

2A′
0(ξ)φ

′(ξ) + A0(ξ)φ′′(ξ)− 2iκ0(ξ)κ1(ξ)A0(ξ) = 0. (12)

Hence

v(ξ) ∼ Cκ0(ξ)−
1
2 exp

(
in

∫ ξ

0

κ0(ξ′) dξ′ + i

∫ ξ

0

κ1(ξ′) dξ′
)

+ c.c., (13)

where c.c. denotes complex conjugate, and C = Reiχ is a complex constant,
with R and χ real.

3 Dislocation Density in wkb Region

The total stress in the wkb region can be expressed in terms of f ′ (x) /f (x)
as well as in terms of v′ (x) /v (x). However, v (x) is a linear combination
of two exponentials in the dislocation region where κ2 > 0, whereas in the
dislocation-free zone the same wkb analysis holds but κ(ξ, n) is imaginary, and
the exponents of exponentials are real. In order to avoid exponential growth
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as ξ → ∞, we have to keep the decaying term only. So, in dislocation-free
zone we have

f ′

f
=

n∑
j=1

1
ξ − ξj

∼ −nσ0 + inκ0 − iκ1 −
κ′

0

2κ0
+ . . . =

v′

v
− nσ0. (14)

In order to use the Euler–Maclaurin approximation formula for the sum we
define g(ξ, ξ′) = 1/(ξ − ξ′) and introduce the transformation z = z(ξ′) such
that the dislocations are equally spaced in z, that is zi = z(ξi) = i/n. Then,
setting g(ξ, ξ′) = G(ξ, z) we have

n∑
i=1

G(ξ, zi) = n

∫ 1

0

G(ξ, z) dz − G(ξ, 0)
2

+
G(ξ, 1)

2
+ · · · .

Returning to the original variable we have

n∑
i=1

1
ξ − ξi

= n

∫ ξ∗

0

ρ(ξ′)
ξ − ξ′

dξ′ − 1
2ξ

+
1

2(ξ − ξ∗)
+ · · · ,

where ξ∗ = ξn is the position of the last dislocation, and ρ = dz/dξ′ is the
dislocation density, which clearly satisfies∫ ξ∗

0

ρdξ′ = [z]ξ
∗

0 = z(ξn) = 1. (15)

Hence, in the dislocation free zone, ξ > ξ∗, we get

n

∫ ξ∗

0

ρ(ξ′)
ξ − ξ′

dξ′− 1
2ξ

+
1

2(ξ − ξ∗)
+ · · · ∼ −nσ0 +inκ0− iκ1−

κ′
0

2κ0
+ . . . . (16)

Analytical continuation to the region ξ < ξ∗ gives

n−
∫ ξ∗

0

ρ(ξ′) dξ′

ξ − ξ′
+nπiρ (ξ)− 1

2ξ
+

1
2(ξ − ξ∗)

+· · · ∼ −nσ0+inκ0−iκ1−
κ′

0

2κ0
+. . . .

(17)
Expanding σ0(ξ), ρ(ξ) and ξ∗ as n →∞

σ0(ξ) ∼ σ00 +
σ01

n
+ . . . ; ρ(ξ) ∼ ρ0 +

ρ1

n
+ . . . ; ξ∗ ∼ ξ∗0 +

ξ∗1
n2/3

+ . . . (18)

and equating real and imaginary parts of coefficients of powers of n we obtain
the leading order equations for dislocation density

−
∫ ξ∗0

0

ρ0(ξ′)
ξ − ξ′

dξ′ = −σ00, (19)

πρ0 = κ0. (20)
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Equation (19) is the well-known singular integral equation for continuum dis-
location density, see [3], whereas (20) provides the relationship between the
continuum dislocation density and, from (7), the leading order approxima-
tion for the unknown function q. In the case of the pile-up stressed against a
locked dislocation σ00 = σext and the solution of 19), in accordance with the
inversion theorem [4], is given by

ρ0 =
1
π

√
2σext

ξ
− 2σext

ξ∗0
, (21)

where ξ∗0 = 2/σext in accordance with (15). Taking into account (7) q =
2σext/ξ to leading order as n → ∞. Hence, in terms of the new variable
x = t/(2σext) (4) becomes

tf ′′(t) + (2− t)f ′(t) + nf(t) = 0, (22)

which is a particular case of the associated Laguerre differential equation, with
the required polynomial solution

f(t) = L1
n(t); (23)

hence L1
n(t) is the associated Laguerre polynomial (the other independent

solution is U(n, 2, t), a confluent hypergeometric function of the second kind,
which is not polynomial). The positions of the dislocations in a pile-up against
a lock to leading order are given by the zeros of L1

n(t) in agreement with the
solution obtained by Eshelby et al. in [1]. However, our approach has not
required us to guess information concerning q.

4 Conclusions

We have described the procedure for finding the dislocation density in a pile-up
against a lock when ξ = O (1). As a byproduct, our method gives a systematic
derivation of the lowest order approximation of the q function arising in [1]
as n →∞.
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Summary. In this chapter we examine the accuracy and efficiency of the simplified
PNapproximations of radiative transfer for natural convection problems in a square
enclosure. A Boussinesq approximation of the Navier–Stokes equations is employed
for the fluid subject to combined natural convection and radiation. Coupled with the
simplified PNmodels, the system of equations results into a set of partial differential
equations independent of the angle variable. Numerical results for different Rayleigh
numbers are presented.

1 Introduction

Due to the high numerical complexity of simulations including radiative effects
there is presently a whole hierarchy of approximate models available which
allows to reduce the numerical costs significantly and still reproduces the main
physical phenomena. The reduced models range from half space moment ap-
proximations over full space moment systems to the diffusive-type simplified
PN(SPN) systems [3,4,8]. The latter were developed recently and tested exten-
sively for various radiative transfer problems [7]. They were successfully used
to simulate many high temperature applications, like glass cooling, the design
of combustion chambers for gas turbines, or crystal growth processes [1,2,6].

Another interesting application is the simulation of a glass melting fur-
nace, where one needs to include conduction, convection and radiation into
the model. This additional radiative heat exchange appearing in the energy
balance poses severe numerical problems for CFD simulations due to the
enhanced complexity of the model leading to a high dimensional discrete
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phase space. Without radiation the melting furnace might be modelled by
natural convection in a differentially heated cavity (see [5] and the references
therein). There, the main focus is on the understanding of the Rayleigh–
Bérnard convection due to temperature gradients and on its adequate numer-
ical resolution.

Here, we will present first results on the applicability of the SPN hierar-
chy in the context of coupled radiation, convection and diffusion problems in
a square enclosure. The vertical walls of the enclosure are heated with uni-
form different temperatures and the other walls are adiabatic. A Boussinesq
approximation of the Navier–Stokes equations is employed for the fluid subject
to combined natural convection and radiation. Coupled with the SPN mod-
els, the system of equations results into a set of partial differential equations
independent of the angle variable.

The chapter is organized as follows. In the next section we state the model
equations consisting of a coupled PDE system and in Sect. 3 numerical results
are presented.

2 The Model for Natural Convection–Radiation

The physical system consists of a square enclosure with sides of length L
subject to a thermal variation (TH − TC), where TH and TC are temperatures
of the hot and cold boundary walls. The enclosure consists of a gray, absorbing,
emitting, and non-scattering fluid surrounded by rigid black walls. The fluid is
Newtonian and all the thermophysical properties are assumed to be constant,
except for density in the buoyancy term that can be adequately modelled by
the Boussinesq approximation [5] and that compression effects and viscous
dissipation are neglected. The system we want study reads in dimensionless
form

∇ · u = 0,
Du
Dt

+∇p− Pr∇2u = RaPrTe, (1)

DT

Dt
−∇2T = − κ

P l
∇ ·QR,

where e is the unit vector and Dw/Dt is the material derivative. The variables
are the velocity vector u, the temperature T and the pressure p. The para-
meters are the Prandtl number Pr, the Planck number Pl and the Rayleigh
number Ra as well as the absorption coefficient κ. The dimensionless radiative
heat flux is given by

∇ ·QR =
1
τ2

(
ϕ−B(T )

)
, (2)

where ϕ is the total incident radiation, which will be computed via the SPN

approximations, and τ is the optical thickness. The scaled Planck function
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is given by B(T ) = (T + 1)4. To formulate a well-posed problem, equations
(1) have to be solved in a bounded domain Ω with smooth boundary ∂Ω and
subject to given initial and boundary conditions. We have ∂Ω = Γ1∪Γ2∪Γ3∪
Γ4, where Γ1 and Γ2 represent the hot and cold walls, respectively, whereas
Γ2 and Γ4 are adiabatic walls. Hence, the boundary conditions are

u(t, x̂) = 0, x̂ ∈ ∂Ω, (3)

for the flow, and

T (t, x̂) = TH, x̂ ∈ Γ1,

T (t, x̂) = TC, x̂ ∈ Γ3, (4)
n(x̂) · ∇T (t, x̂) = 0, x̂ ∈ Γ2 ∪ Γ4,

for the temperature. In (4), n(x̂) denotes the outward unit normal in x̂ with
respect to ∂Ω. Now, we shortly present the first models in the SPN hierarchy,
which are used in the upcoming simulations. For details of their derivation we
refer to [3]. In the present work, we consider only the SP1 and SP3 approxi-
mations and our techniques can be straightforwardly extended to other SPN

approximations.

The SP1 approximation is given by

B(T ) = ϕ− τ2

3κ2
∇2ϕ +O(τ4),

yielding

− τ2

3κ
∇2ϕ + κϕ = κB(T ). (5)

Further, the SP3 approximation is given by

B(T ) =
(

1− τ2

3κ
∇2 − 4τ4

45κ4
∇4 − 44τ6

945κ6
∇6

)
ϕ +O(τ8),

and its associated equations are

−τ2

κ
µ2

1∇2ϕ1 + κϕ1 = κB(T ),
(6)

−τ2

κ
µ2

2∇2ϕ2 + κkϕ2 = κB(T ).

The new variables ϕ1 and ϕ2 in (6) are related to the total incident intensity by

ϕ =
γ2ϕ1 − γ1ϕ2

γ2 − γ1
. (7)

Once the mean intensity ϕ is obtained from the above SPN approximations
the radiative heat flux is formulated as in (2). The boundary conditions for
the SP1equation (5) are
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τ

3κ
n(x̂) · ∇ϕ(t, x̂) + ϕ(t, x̂) = B (TH) , x̂ ∈ Γ1,

τ

3κ
n(x̂) · ∇ϕ(t, x̂) + ϕ(t, x̂) = B (TC) , x̂ ∈ Γ3, (8)

n(x̂) · ∇ϕ(t, x̂) = 0, x̂ ∈ Γ2 ∪ Γ4.

For the detailed boundary conditions for the SP3equations (6) we refer to [9].

3 Numerical Results

The model system is discretized in space and time using a characteristic-
Galerkin method and a splitting algorithm is used to advance from one
time step to the next one (for details on the discretization and the split-
ting algorithm we refer to [9]). In the following computations we used a grid
size ∆x = 1/64, the time step ∆t is fixed to 0.05 and steady-state solutions
are displayed. We used the following criteria∥∥Tn+1 − Tn

∥∥
L2 ≤ 10−6,

to stop the time integration process. All the linear systems of algebraic equa-
tions are solved using the conjugate gradient solver with incomplete Cholesky
decomposition (ICCG). For the simulations we used the following parameters:

TC = −0.5, TH = 0.5, P r = 0.71, κ = 1, P l = 1, τ = 1.

In Fig. 2 we depict the computed temperature along the line y = 0 for the
system without radiation and with radiation modelled by the SP1 and the
SP3 approximation. Note the larger temperature in the interior due to the
additional radiative energy. As expected this effect is more pronounced for a
lower Rayleigh number. To get an expression how the flow field is affected, we
depict the corresponding streamlines for Ra = 107 in Fig. 2.
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Fig. 1. Cross-section of the temperature
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Fig. 2. Results for no radiation (first column), SP1 (second column) and SP3 (right
column)
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Minisymposium “Nonlinear Charge and Spin
Transport in Semiconductor Nanostructures”

G. Platero
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In this minisymposium the electronic and transport properties of different
low-dimensional nanodevices have been discussed. In these devices, the inter-
play between charge, spin and vibrational degrees of freedom determines their
main electronic and transport features. Moreover, the number of atoms in the
system determines the more suitable theoretical framework and numerical
techniques for each particular system.

In the first contribution, Prof. A.P. Jauho reviews different mathematical
and computational tools useful to study different low-dimensional systems.
He discusses first principles electronic structure methods that are appropriate
for systems with a large number of atoms, such as semiconducting nanowires.
Other theoretical frameworks based in the density matrix renormalization
group can be used to describe strongly interacting systems.

Quantum dots in the Kondo regime belong to the class of strongly cor-
related systems. Dr. R. López studies the transport properties of a double
quantum dot inserted in an Aharonov–Bohm interferometer, where interac-
tions play a main role. Two limits are analyzed: low interdot Coulomb interac-
tion, where spin fluctuations play the main role, and strong interdot Coulomb
interaction.

In the case where the quantum dot is attached to superconducting con-
tacts, the interplay between the Josephson and the Kondo effects has to be
considered. Prof. A. Mart́ın-Rodero has developed a comprehensive analysis of
the interplay between Josephson effect, Kondo and antiferromagnetic coupling
in a double quantum dot system attached to superconducting leads.

Nanoelectromechanical devices, as movable single electron transistors, are
systems where the interplay between the charge and the mechanical degree of
freedom determines the nonlinear transport properties. In particular, in the
shuttle regime, a quantum dot oscillates, transfering one electron per cycle
from one contact to another. Dr. A. Donarini presents a numerical technique
for solving the generalized master equation and described the different oper-
ating regimes of the shuttle devices.
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Spintronics is a very alive ramification of electronics, where the spin instead
of the charge plays the main role. Recent transport experiments in double
quantum dots show the important role played by the Pauli exclusion prin-
ciple in current rectification. Spin blockade is observed at certain regions of
dc voltages, and the interplay between Coulomb and spin blockade can be
used to block the current in one bias direction while allowing it to flow in
the opposite one. Then these devices could behave as externally controllable
spin-Coulomb rectifiers with potential application in spintronics as spin mem-
ories and transistors. Spin decoherence and relaxation induced by hyperfine
interaction have shown to reduce spin blockade producing a leakage current.
Dr. J. Iñarrea presents a theoretical model based in rate equations for the
charge occupations and nuclei polarizations which accounts for hyperfine and
electron–phonon interaction and which allows to describe the spin blockade
regime and the nuclear and electron spin dynamics.

In double quantum dots, it is possible to pump spin polarized electrons
by means of external ac voltages. This is described by Dr. R. Sánchez using
a theoretical model based in the density matrix formalism and the Markov
approximation. He shows how to control the spin current polarization by tun-
ing the ac frequency and intensity. He also shows how the spin blockade could
be removed by photoassisted tunneling through the system and how the spin
decoherence time could be inferred from the tunneling current.

In a clean semiconductor quantum wire the Rashba interaction affects the
energy bands, modifying the wire magnetization and the linear conductance
curves. Prof. Ll. Serra has calculated the spectral and transport properties of
ballistic quasi-one dimensional systems in the presence of spin–orbit (Rashba)
coupling. For a wire with local spin–orbit coupling, he predicts the occurrence
of Fano lineshapes. He also shows that the local Rashba interaction acts in
a strictly one-dimensional channel as an attractive impurity, leading to the
formation of purely bound states. In a quasi-one dimensional system these
bound states couple to the conduction ones through the Rashba intersubband
mixing, giving rise to pronounced dips in the linear conductance plateaus.

Diluted magnetic semiconductors are very suitable materials to be incor-
porated as compounds in normal semiconductor nanodevices. They can be
used for instance, as spin injectors and therefore, they are frequently used for
spintronic purposes. Dr. D. Sánchez presents a theoretical model for analyz-
ing spin-dependent transport in magnetically doped II–VI resonant tunneling
diodes. He discusses spin transport for different diode configurations: mag-
netic or normal contacts and magnetically doped or normal semiconductor
quantum wells.

Dr. Rossier has analyzed transport through a CdTe magnetically doped
(with Mn) quantum dot doped. Using the density matrix formalism, he has
shown that, under certain conditions, single electron transport through a sin-
gle atom magnet can result in hysteretic behavior of the linear conductance
versus gate voltage.
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Summary. Nanowires, i.e., systems with a diameter of the order of 1–10 nm, and
length up to microns, form a subclass of modern nanoscale systems, which hold a
great promise for future technologies. For example, they could be used as intercon-
nects in future’s nanoelectronics, or they could form the basis of extremely sensitive
sensors. In addition to their possible practical applications, nanowires exhibit a wide
range of physical properties, which are of their own intrinsic interest. The theoret-
ical scientist attempting to model charge transport in these systems faces many
challenges. The number of atoms or active charge carriers requiring a microscopic
treatment may vary from a few to several millions. The transport may be coherent,
or dominated by interaction effects. No single formalism can capture all the different
facets, and in this article a review of a few selected modern techniques, operative
at different length scales, is given. Specifically, we shall be considering four different
physical systems: (1) semiconducting nanowires; (2) gold atomic wires; (3) molecular
electronics, and (4) one-dimensional strongly correlated chains.

1 Semiconducting Nanowires

1.1 Introduction

Semiconductor nanowires can be grown by a number of methods, and present
technology allows one to change the chemical composition of the nanowire
essentially within on lattice spacing. Figure 1 shows an example of a nanowire
fabricated at Lund University. Since the different chemical compounds com-
prising the sample of Fig. 1 have different band-gaps, it is possible fine-tune the
functionality of a given nanowire by a judicious choice of the potential energy
landscape in which the carriers move. The narrowest wires have cross-sections
of the order of 10 nm×10 nm, and their lengths can reach to micrometers, and
hence they consist of tens of thousands or millions of atoms. Even though
the quality of these wires is very high, they nevertheless contains imperfec-
tions, such as defects, surface roughness, or intentionally introduced dopants.
A fully first-principles approach, for example Density Functional Theory, is not
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Fig. 1. A semiconductor nanowire grown at Lund University. The different colors
indicate different materials, with different band-gaps. From [Sam03]

feasible, because the computational effort scales as O(N3). Thus one needs
some approximative methods which less stringent computational demands,
but which nevertheless use parameters which are determined microscopically.

1.2 Theory

One possible way to proceed is to use a first-principles electronic structure
method, which outputs some effective tight-binding parameters, thereby yield-
ing an effective Hamiltonian

Ĥ =
∑
i

⎡⎣εi|i〉〈i|+
∑

j=n.n

(
tij |j〉〈i|+ t∗ij |i〉〈j|

)⎤⎦ , (1)

It should be emphasized that despite of the simple appearance of (1), its
parameters contain information about a self-consistent first-principles calcu-
lation, thereby allowing a detailed, microscopic study of the effects of various
dopants, impurities, or defects. There are a number of methods of how to eval-
uate the transport properties of a system described by a Hamiltonian such
as (1). In our recent work [MRBJ06] we have used the SIESTA-code [SAG02]
to evaluate the tight-binding parameters for a number of different disordered
Si-nanowires, and then studied transport by either using a quantum diffusion
approach (which we also call the Kubo method, see below) [Roc97], or the
recursive Green function technique [Tod96], and in what follows we give some
representative results for both of these methods, and discuss their relative mer-
its and drawbacks. The basic set-up for the two methods is sketched in Fig. 2.

The idea behind the method of [Roc97] is to evaluate the energy resolved
conductance G(E,L) of a device of length L via the diffusion constant, DE(τ),
obtained from the Kubo formula (which explains the chosen nomenclature):

G(E,L) = 2e2πn(E)
DE(τ)

L
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Fig. 2. Top: Schematic time evolution of a random phase state initially located
in the central region of the nanowire. Middle: the geometry in the Kubo method
consists only of a large device region. Bottom: in the Green function approach a
device region is connected to two semi-infinite leads

DE(τ) =
∑

i〈i(τ)|X̂δ(E − Ĥ)X̂|i(τ)〉
Tr{δ(E − Ĥ)}

1
τ

, (2)

where X̂ is the position operator, and the |i(t)〉 is the time-propagated state:

|i(t)〉 = e||−iĤt/�|i(0)〉. (3)

In order to evaluate the trace, one must generate a set of states which sam-
ples the available space of all states sufficiently densely. This can be carried
out quite effectively by choosing a relatively modest number of random-phase
states, all localized in the central part of the device, and then allowing them
evolve in time to compute DE(τ) via (2) (see Fig. 2). The procedure is repeated
until convergence is achieved; however there is no a priori knowledge of how
many times this must done, and it is a matter of trial and error to find the
optimal parameter values. The computationally most demanding task consists
of the repeated evaluations of the time-propagated states |i(t)〉. An efficient
way to carry this out is to expand the time-evolution operator in terms of the
Chebyshev polynomials, which have very appealing computational properties
because of the recurrence relations they obey. Figure 3 compares the conver-
gence of the Chebyshev method and a straightforward Taylor expansion of
the time-evolution operator.

The recursive Green function method, our second approach in this section,
is described in detail in many references, see. e.g. [Tod96]; we summarize it
only very briefly here. In short, one first generates the “surface Green func-
tions” for the isolated leads, and then uses these to “grow” the device, one
unit cell at a time, making efficient use of the previously calculated results.
Once the sample has reached the desired length L, the resulting conductance
(obtained via Landauer formula) is recorded. In case of a disordered system,
one needs to generate several realizations of the disorder, and then perform
an ensemble averaging.
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Fig. 4. Conductance of an ideal (5,5) nanotube calculated with the quantum diffu-
sion method

1.3 Physical Examples

As a first bench-mark we compute the conductance an ideal carbon nanotube
with the Kubo method. For a pristine nanotube the conductance should have a
strict staircase form: each one-dimensional subband contributes to the conduc-
tivity by 2e2/h×(degeneracy). The overshoots seen in Fig. 4 at the transition
edges are spurious and indicate that Kubo method does not yield accurate
results for one-dimensional ballistic systems close to an opening or closing of a
conduction channel. This problem can be traced to the singular behavior of the
one-dimensional density of states at the band-edge, which should be exactly
canceled by the vanishing band-velocity; the numerics however have difficul-
ties in achieving this. On the other hand, for disordered or higher-dimensional
systems, which are more relevant from the practical point of view, and are
also the focus of our study, these spurious effects do not play a significant role.
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Fig. 6. Mean free path computed with three methods: solid line: Kubo method;
boxes: recursive Green functions; dashed : Fermi Golden rule (not discussed here,
see, however, [MRBJ06]). The Green function results are averaged over 200 different
realizations of the disorder, while the Kubo results are mean values of 10 different
samples

In Fig. 5 we show the time-dependent diffusion constant, (2), for two dif-
ferent type of Anderson disorders: the on-site energies of either the bulk or
the surface atoms are given a random increment. As is seen from the figure,
the bulk disorder has hardly any effect – the wire stays ballistic with a diffu-
sion constant that increases linearly with time, while the edge disorder leads
to an ohmic behavior. This is easily understood because the extended states,
which carry the current, lie close to the surface, and are therefore much more
sensitive to disorder.

In Fig. 6 we show a comparison of the Kubo method and the recursive
Green function method. As is seen, the two methods are in general in reason-
able agreement; the main discrepancy at E = 0.24 eV is due to the inherent
difficulty of the Kubo method to deal with sharp densities of states, discussed
in connection with Fig. 4. Based on a large number of calculations similar to
those reported in Fig. 6, and described in detail in [MRBJ06], we conclude
that the Kubo method is advantageous if one needs the transport properties
at many different energies, since the energy resolved results are obtained in
just one calculation, while the Green function method requires a full calcu-
lation for each energy. On the other hand, if one needs only a few energies,
such as in metallic systems where only energies close to the Fermi energy are
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relevant, then the Green function method with its higher inherent accuracy is
to be preferred.

We have also studied the effect of Hydrogen adatoms on the conductance
of a Si-wire. Depending on the density of the adatoms one may observe either
a ballistic behavior (the resistance is a linear function of the system length),
or localized behavior (the resistance grows exponentially with length). An
example is shown in Fig. 7; many other disorder effects are considered in our
recent paper [MRBJ06], to which the reader is referred.

2 The Density Functional: Nonequilibrium Green
Function Paradigm

2.1 Formalism

In this section we give a brief introduction to the computational schemes
that combine some ab initio electron structure theory and the nonequilib-
rium Green function theory. In the rapidly growing literature one can find
several implementations; here we use the code developed in [BMOTS02] as an
illustrative example.

Most electronic structure calculations are restricted in the sense that the
geometry must be finite, or periodic, and that the electronic system is in equi-
librium. The present situation is very different: now a small subsystem, i.e.,
the nanowire, lacking translational invariance couples to semi-infinite leads
and the electronic subsystem can be far from equilibrium. Ideally one should
describe the whole system (the central region and electrodes) on equal foot-
ing. As is well-known, the Density Functional Theory gives the exact elec-
tronic density and total energy, if the exact exchange-correlation functional
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was known. Since this is not the case, one must resort to approximate forms
of the functional, such as the local-density approximation (LDA), or the gen-
eralized gradient approximation (GGA), or something else. There is no theory
to say which (approximate) functional is the best, rather the choice is made
based on painstaking tests, and comparisons in some limits where alternative
methods, or experiments, can give benchmarks. In an attempt to extend DFT
to nonequilibrium situations one must go one step further: the Kohn–Sham
single-particle wave-functions ψKS(x) are used when calculating the current.
This implies a leap of faith: as is well-known, the ψKS are useful mathematical
objects used in the construction for the ground-state density, but which have
no immediate physical interpretation. Nonperturbative many-particle effects,
such as the Kondo effect, are excluded from the treatment. On the other hand,
inelastic effects can be included, as discussed below. A further development
of the present approach could conceivably be reached by the current-density
formalism [VK96], or time-dependent density-functional formalism [RG84].

At the core of the DFT-NEGF implementation described in [BMOTS02]
is the SIESTA code [SAG02] for calculating the electronic properties for large
numbers of atoms. This approach has many technical advantages because
of the employed finite range orbitals for the valence electrons: not only do
the numerics get faster but also the system partitioning into leads and the
central region becomes unambiguous. The SIESTA approach can be extended
to nonequilibrium by using a nonequilibrium electron density as an input.
In nonequilibrium Green function theory [HJ96] the nonequilibrium density
readily follows from the lesser Green function,

n(x) = −iG<(x = x′, t = t′) =
∫

dε

2πi
G<(x = x′, ε). (4)

G< follows directly from the Keldysh equation, because the self-energy is a
known function for mean-field theories (such as DFT): Σ< = i(ΓLfL+ΓRfR),
and consequently G< = iGr(ΓLfL + ΓRfR)Ga. Hence, all that one needs
are the retarded and advanced Green functions, and these are obtained by
evaluating

Gr,a(E) = [EI± iη −H]−1
, (5)

where

H =

⎛⎝HL + ΣL VL 0
V†

L HC VR

0 V†
R HR + ΣR

⎞⎠ (6)

The semi-infinite left and right leads are accounted for by the self-energies
ΣL/R, see, e.g., [Datta]. The matrices VL/R give the coupling of the leads
to the central region, described by the Hamiltonian HC . Importantly, to
determine VR, VL, or HC one does not need to evaluate the density ma-
trix outside the L−C −R region, if the L−C −R region is defined so large
that all screening takes place inside it.
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Summarizing, and somewhat simplifying, the TRANSIESTA iterative loop
consists of the steps

initialn(x) ⇒ SIESTA⇒ ψKS(x) ⇒ NEGF⇒ new n(x), (7)

and the iteration is repeated until convergence is achieved for the desired
quantity, such as the current for a given voltage difference. For a detailed des-
cription of many of the technical details suppressed here we refer to the paper
by Brandbyge et al. [BMOTS02]. The scheme outlined above, and similar par-
allel implementations, have been applied by a large group of researchers to
many specific physical systems. Occasionally the agreement with experiments
reaches a quantitative level, which is indeed very satisfying, while sometimes
the predicted current can be orders of magnitude too large. At present, there
is no consensus of whether the discrepancies are due to poorly controlled
experiments, bad implementations of the DFT-NEGF scheme, or due to an
inadequacy of the entire concept. A possible cause for the discrepancy has
very recently been identified in [TFSB05], who suggest that self-interaction
corrections (which are not included in the GGA-LDA underlying most theoret-
ical work) could remedy some of the problems. Nevertheless, a lot of research
remains to be done.

2.2 Vibrational Effects in Atomic Gold Wires

The issue of vibrational effects in molecular electronics has recently drawn
a lot of interest because inelastic scattering and energy dissipation inside
atomic-scale conductors are of paramount importance for device characteris-
tics, working conditions, and their stability [KLP04,WLKR04, SUR04, F04].
Inelastic effects are important, not only because of their potentially detri-
mental influence on device functioning, but also because they can open up
new possibilities and operating modes. Vibrational effects are often visi-
ble in the measured conductances of nanoscopic objects; here we focus on
recent experimental studies on free standing atomic gold wires. Agräıt and
co-workers [AURV02] used a cryogenic STM tip to first create an atomic-
scale gold wire (lengths up to seven gold atoms have been achieved), and
then measured its conductance as a function of the displacement of tip, and
the applied voltage. The data showed clear drops of conductance at a certain
voltage, and the interpretation was that an excitation of an inelastic mode
was taking place, leading to enhanced back-scattering, and hence drop in the
conductance. It should be pointed out that opening a new vibrational mode
in the atomic scale conductor does not necessarily lead to a decrease in con-
ductance (one can envisage various assisted processes), and a proper theory
should be able to predict conductance enhancement as well, whenever the
physics dictates so.

Here I will briefly describe our recent work [FBLJ04,FPBJ06] on inelastic
effects in the kind of wires studied by Agräıt et al. [AURV02]. An important
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aspect of our work is that we go beyond lowest order perturbation theory in the
electron-vibration coupling, and therefore polaronic effects can be included.
However, as we shall discuss below, this approach is computationally very
expensive, and physically motivated approximation schemes are of paramount
importance if one wishes to describe more complicated systems than few-atom
metallic nanowires. We also address the issue of phonon heating, albeit within
a phenomenological model, as discussed below.

The calculational method consists of three steps. (1) The mechanical nor-
mal modes and frequencies of the gold chain are evaluated. (2) The electronic
structure and electron-vibration coupling elements are evaluated in a localized
atomic-orbital basis set. (3) The inelastic transport is evaluated using NEGF
by using a self-consistent Born approximation self-energy in the Dyson and
Keldysh equations for the respective Green functions. The electrical current
and the power transfer are then evaluated with (here, for the left lead; for a
detailed derivation, see [FPBJ06])

IL =
e

h

∫
dε tL(ε) (8)

PL =
∫

dε

2π�
εtL(ε) (9)

tL(ε) = Tr
{
Σ<

L (ε)G>(ε)−Σ>
L (ε)G<(ε)

}
, (10)

where Hartree and Fock parts of self-energy components are

ΣH,r = i
∑
λ

2
Ωλ

∫
dε′

2π
MλTr[G<(ε′)Mλ] (11)

ΣH,< = 0 (12)

ΣF,r(ε) = i
∑
λ

∫
dε′

2π
Mλ[Dr

0(ε− ε′)G<(ε′)

+Dr
0(ε− ε′)Gr(ε′) + D<

0 (ε− ε′)Gr(ε′)]Mλ (13)

ΣF,<(ε) = i
∑
λ

∫
dε′

2π
MλD<

0 (ω − ω′)G<(ε′)Mλ. (14)

Here the vibrational modes are labeled by λ, and Ωλ is the corresponding
eigenfrequency. It is worth noting that the lack of translational invariance
makes the retarded Hartree term non-zero, and potentially important. Also,
at this stage the phonon propagators are undamped – an approximation that
merits further investigation. The coupled equations are iterated until conver-
gence is achieved, and in the following we give some representative results.

We have considered a number of atomic gold wires under different states
of strain, as shown in Fig. 8. We calculate the phonon signal in the nonlinear
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Fig. 8. Generic gold wire supercells containing 3–7 atoms bridging pyramidal bases
connected to stacked Au(100) layers

differential conductance vs. bias voltage for two extremal cases: the energy
transferred from the electrons to the vibrations is either (1) instantaneously
absorbed into an external heat bath, or (2) accumulated and only allowed
to leak via electron–hole pair excitations. These limits are referred to as the
externally damped and externally undamped cases, respectively.

Since a typical experiment is done at low temperatures, the mode occu-
pation in the externally damped case vanishes, Nλ ≈ 0. In the externally
undamped case the mode occupation Nλ is an unknown parameter entering
the electron–phonon self-energy, and additional physical input is necessary to
determine this parameter. We argue as follows. Since the system is in a steady
state, the net power transferred from the electrons to the device must vanish,
i.e., PL + PR = 0. Using (9) one then obtains the required constraint on Nλ.
This procedure works in a straightforward way if there is only a single active
mode, but if several modes are present, a more detailed theory of how the
phonon modes equilibriate would be needed.

When comparing to the experiments of Agräıt et al. [AURV02] (Figure 9),
one sees that the externally undamped model is in near quantitative agreement
with the data: the conductance drop at the onset of inelastic scattering, and
the slope after the drop are very well reproduced. We view this as strong
evidence of the presence of heating in the experiment, but at the same time
recognize the need for a detailed microscopic theory including phonon–phonon
interactions.

2.3 More Complicated Systems: The Lowest Order Expansion
(LOE)

The numerical task of solving the SCBA equations (10)–(14) is prohibitive
for all but the simplest systems. However, for systems where the electron–
phonon coupling is weak, and the density of states varies slowly with energy,
a much more efficient scheme has been developed recently by Paulsson and
co-workers [PFB05], to be referred to as the LOE method. The idea here is to
get rid of the time-consuming numerical energy-integrations in (10)–(14). This
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can be achieved by appealing to the above-mentioned weak energy dependence
and the weakness of the electron–phonon interaction, which allows an ana-
lytic integration after an expansion in the electron–phonon matrix element
has been carried out. We do not reproduce the rather lengthy expressions
here (in fact, Mathematica was essential in obtaining them), and merely state
that they allow a very efficient numerical evaluation, cutting the computa-
tional time down by orders of magnitude. For a fuller discussion, we refer
to [PFB05] and [FPBJ06]. As an illustrative example, we reproduce here
results from [PFB06], where the transport properties of a number of con-
jugated and saturated hydrocarbon molecules between gold electrodes were
evaluated. The motivation for this work was provided by the recent experi-
ments of [KLP04], who reported detailed experimental data for these systems.
In particular, Fig. 10 compares the experimental and theoretical inelastic elec-
tron tunneling spectroscopy spectra for one of these molecules. Quite interest-
ingly, the main features are in good agreement, and with the help of the theory
one thus can identify the few specific vibrational modes that are important
for the transport properties.
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3 The Density Matrix Renormalization Group
Applied to Transport

In the sections above we have discussed systems which can be treated with
perturbation theory methods. However, a very interesting subclass of sys-
tems does not yield to this approach: systems where the correlations are so
strong that the actual ground state is not adiabatically connected to the
noninteracting ground states. Examples of such systems include the Kondo
phenomenon, Luttinger liquids, charge–density waves, and several others. To
evaluate the transport properties of strongly correlated systems is one of the
most challenging and most active fields of research in condensed matter the-
ory. A variety of methods are available, and here we describe one of them
– our recent attempts to bring the Density-Matrix Renormalization Group
(DMRG) out of equilibrium. The DMRG method was introduced by S. White
about 15 years ago [White92,White93], and it has been proven to be an ex-
tremely successful method for determining ground state properties of strongly
correlated systems. In fact, in the few cases where exact solutions are known
by analytical means, such as the Bethe Ansatz method, the results obtained
by DMRG are extremely accurate. The method is quite subtle and a proper
discussion is not appropriate in the present context. Very shortly, the DMRG
algorithm systematically optimizes the basis set used to describe the inter-
acting system; the optimization process can be formulated as a variational
principle for the system density matrix. Depending on the problem under in-
vestigation, one can choose a number of physical properties for which optimal
solution is sought, these are called the target states. The DMRG method has
a number of limitations, though. It becomes numerically very expensive, if
one tries to move away from one dimension. It is essentially a ground-state
formalism (in this sense it is plagued by similar problems as one faces when
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applying DFT to nonequilibrium). Also, it is very numerical in its nature –
the final results are not always easy interpret in physical terms. Nevertheless,
the potential rewards in having (numerically) exact results for transport prop-
erties for (some) strongly interacting systems are so large, that many groups
are presently working to achieve this goal.

The ultimate goal would be to calculate the full nonlinear IV-curve, for
example with the Meir–Wingreen formula [MW92,HJ96],

I =
e2

h

∫
dε

ΓLΓR

ΓR + ΓL
A(ε)[nF (ε− µL)− nF (ε− µR)], (15)

where A(ε) is the interacting spectral function for the central region.
A straightforward DMRG evaluation of this formula, however, is not possible,
because DMRG finds the lowest energy state(s), and in a biased structure
all particles would accumulate in the low-bias region. How to overcome this
problem is one of the outstanding issues. On the other hand, linear response
conductance can be evaluated with DMRG, and here we describe some recent
results obtained by D. Bohr and co-workers [BSW06].

In linear response one may use the Kubo formula to obtain formal expres-
sions for the electrical conductance. Bohr et al. [BSW06] have recently shown
that the conductance calculation boils down to the evaluation of either of the
following correlation functions:

gJiN = −e2

h
〈Ψ0|Jni

4πiη
(H0 − E0)2 + η2

N |Ψ0〉

gJJ =
e2

h
〈Ψ0|Jn1

8πη(H0 − E0)
[(H0 − E0)2 + η2]2

Jn2 |Ψ0〉. (16)

Here, Ψ0 is the exact interacting ground-state, Jni
is the current operator at

site ni, N is the occupation number operator, and η is cut-off parameter that
must have finite, yet small value in the numerical calculations. Equations (16)
are in a form that can be evaluated with the DMRG algorithm. They are
equivalent, and they have both their merits and dismerits in the numerical
work (see [BSW06] for a fuller discussion). In what follows we shall display
some numerical results to illustrate the utility of these formulas.

As explained above, due to the numerical nature of the DMRG approach it
is always very important to bench-mark it against some known results. Since
analytical results for an interacting result are rare, we have carried out a num-
ber of comparisons against exactly solvable noninteracting systems. Figure 11
shows the conductance of a noninteracting single-level system, computed both
with the DMRG (the curves denoted by g), and via an exact diagonalization
(the curves denoted by f). Several interesting conclusions can be drawn from
Fig. 11.

The figure clearly demonstrates the numerical exactness of the DMRG
approach: the DMRG results (crosses) are essentially indistinguishable from



Electronic Transport in Nanowires at Different Length Scales 417

Ug

g[
e2
/h
]

Ug

g

gJJ
gJ1N

fJJ

fJ1N

L

0.0

0.2

0.4

0.4

0.6

0.6

0.8
0.8

1.01.0

−4 −2 0 2 4

−1 0 1

Fig. 11. The conductance of a single-level system as a function of the gate voltage.
The curves labeled with g are DMRG results, while those labeled with f are exact
diagonalization results. Also shown (label L) is the Lorentzian conductance for a
system with semi-infinite leads. Inset : conductance close to zero gate voltage

Ug

g[
e2
=
h
]

gGF
gJJ

gJ1N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−0.5 0.0 0.5 0.1 1.5 2.0 2.5
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gate voltage. Continuous line: exact results obtained with Green functions; crosses:
numerical results obtained with DMRG

the exact diagonalization results (continuous lines). Also, we conclude that for
this particular case the current–density correlation function performs better
than the current–current correlation function. Neither method obtains at res-
onance the full unit conductance of a system with semi-infinite leads. This
is related to subtle finite-size effects which always are present in a numerical
approach. It is a matter of considerable difficulty to optimize the various cut-
offs so that the finite-size effects are minimized, and typically one is forced to
proceed with a trial-and-error approach. Another bench-mark against an ex-
actly solvable model is shown in Fig. 12, where we compare the DMRG results
against a Green function calculation for a system, where the central region
consists of seven sites. Again, the general agreement is very good, except for
conductance peaks, where finite-size effects lead to a slight suppression.

Very importantly one should bear in mind that the DMRG calculation
could also have been carried out at the same numerical cost for an interacting
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system, for which exact results cannot be obtained. We conclude by displaying
results obtained for an interacting system (Figures 13 and 14), where the cen-
tral region consists of seven sites, and the spinless fermions interact with the
neighboring sites with a Hubbard interaction [BSW06]. We see that both the
resonance widths and positions are strongly affected by the interaction effects
(see Fig. 12). The results shown in these figures form an important proof-of-
principle demonstration. However, much work remains to be done in order to
extend these calculations to more realistic situations. Special attention should
be devoted to spinfull systems, more realistic description of the leads, and to
Aharonov–Bohm geometries, and work is in progress along this direction.
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4 Conclusion

We have reviewed a number of methods for computing the conduction proper-
ties of nanowires. Depending on the goals of the investigation one may choose
mean field models capable of treating millions of atoms, in one extreme, or
numerically exact methods restricted to one-dimensional and rather small sys-
tems, in the other extreme. In our presentation we have also tried to identify
open problems and unresolved issues, and areas for further improvement. We
have not discussed experimental issues in detail, but emphasize that in our
opinion the real driving force is provided by new experiments which place the
theoretical models under stringent tests.
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Summary. We investigate theoretically the transport properties of a closed
Aharonov–Bohm interferometer containing two quantum dots in the Kondo limit.
We find two distinct physical scenarios depending on the strength of the interdot
Coulomb interaction. For negligible interdot interaction, transport is governed by
the interference of two Kondo resonances, whereas for strong interdot interaction
transport takes place via simultaneous correlations in both spin and orbital sectors.

1 Introduction

Progressive advance in nanofabrication technology has achieved the realiza-
tion of tiny droplets of electrons termed quantum dots (QDs) with a high-
precision tunability of the transport parameters [1]. One of the most exciting
features of a QD is its ability to behave as a quantum impurity with spin 1/2.
At temperatures lower than the Kondo temperature (TK), the localized spin
becomes strongly correlated with the conduction electrons and consequently
is screened [2]. Experimentally, the formation of the resulting singlet state
[having SU(2) symmetry] is demonstrated by a narrow peak at zero bias in
the differential conductance [3].

A natural step forward is the understanding of the magnetic interactions
of two artificial Kondo impurities [4]. The study of double QDs is mainly mo-
tivated by the possibility that they may represent the key stone to implement
a tunable spin two-qubit circuit [5]. When the two QDs are interacting, the
orbital degrees of freedom come into play as a pseudo-spin, as shown experi-
mentally in [6], which may give rise to exotic physical scenarios. In particular,
it was recently found that when the interdot Coulomb interaction (U12) is
large, there arises a Kondo correlated state possessing a SU(4) symmetry.
This unusual Kondo state involves entanglement between the (real-)spin and
pseudo-spin [7] leading to a great enhancement of TK. In this work, we consider
a double quantum dot (DQD) embedded in a prototypical mesoscopic inter-
ferometer threading a magnetic flux Φ. Our motivation is twofold: (1) striking
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effects such as Fano resonances arise already in the noninteracting case and,
more interestingly, (2) as the interdot interaction gets stronger, the local den-
sity of states (DOS) on the DQD changes drastically [8]. Here, we provide a
unified picture of the combined influence of wave interference, Kondo effect,
and interdot interaction on the electronic transport through a DQD in and
out of equilibrium. Of particular interest is the behavior of the transmission
through this system. When the interdot Coulomb energy is negligible each
QD can accomodate one electron and both spins become screened. We find
that each QD develops a Kondo resonance at the Fermi level EF = 0. Their
interference causes a very narrow dip in T except at φ = Φ/Φ0 ≈ 0 (mod 2π)
with Φ0 = h/e the flux quantum. For large U12 only one electron lies in the
DQD system. Remarkably, for φ = π (mod 2π) a single Kondo state emerges
with total SU(4) symmetry [7]. The screened magnitude is now the hyperspin
M ≡∑i,j(S

i + 1/2)(T j + 1/2), where Si (T j) is the ith (jth) component of
the real- (pseudo-) spin. As a result, T shows a peak instead of a dip.

2 Theoretical Approaches: Scaling Analysis
and Numerical Renormalization Group

In this section we present the different theoretical approaches used to treat
this system. Firstly, we employ the “scaling approach” and then we apply
a more sophisticated technique, the numerical renormalization group (NRG)
to confirm our previous predictions. When U12 is vanishingly small (and yet
U1, U2 → ∞), the two dots are both singly occupied: 〈n1〉 = 〈n2〉 ≈ 1. Each
dot can thus be regarded as a magnetic impurity with spin 1/2. A Schrieffer-
Wolff transformation [2] gives a Kondo-like Hamiltonian (the total Hamil-
tonian is H = H0 + HK):

HK =
J1

4
S ·
[
ψ†

1σψ1 + ψ†
2σψ2

]
+
J2

4
S ·
[
ψ†

1σψ2 + h.c.
]

+
J3

4
(S1 − S2) ·

[
ψ†

1σψ1 − ψ†
2σψ2

]
− IS1 · S2 , (1)

where σ denotes the Pauli matrices and ψµ =
∑

k ψµ,k with ψµ,k =[cµ,k,↑ cµ,k,↓]
(µ = 1, 2) the spinor. Here we have taken the canonical transformation
c1(2),k,σ =

(
e±iπ/4cL,k,σ + e∓iπ/4cR,k,σ

)
/
√

2 for clearer interpretation. In (1),
Si = ψ†

i σψi is the spin operator on the dot i, where ψi = [di,↑ di,↓] (i = 1, 2),
and S = S1 + S2. The physical values for the coupling constants in (1) are:
J1 = 2|V |2/|εd|, J2 = J1 cos(φ/2) and J3 = J1 sin(φ/2). The normalized
I = ρ0J

2
1/2 corresponds to a ferromagnetic RKKY coupling (ρ0 the DOS in

the leads). Under the renormalization group (RG) transformation (or scaling
analysis) [2], the Kondo couplings scale to strong coupling according to the
scaling equation dJ1/d� = 2ρ0J

2
1 , where � = − logD and D is the bandwidth.

Other Kondo couplings keep the relations J2/J1 = cos(φ/2), J3/J1 = sin(φ/2)
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under RG transformations(details are provided in [9]). For φ � 0 the Kondo
temperature reads T SU(2)

K = D exp (−1/2ρ0J1). When I ! T
SU(2)
K , the strong

RKKY interaction makes S a triplet, which is eventually screened following
a two-stage procedure [10]. An exception is for φ exactly 0, where S1 and
S2 are coupled only to a single conduction band through the RKKY inter-
action and therefore they are underscreened at T → 0 [10]. Nevertheless, in
an actual experimental situation [11] the QDs are far apart and the RKKY
interaction may be negligible. Then, for φ � 0 (mod 2π) and T = 0 the ground
state is always a Fermi liquid. In the limit of U12 → ∞ the system proper-
ties change completely. Now, only one electron is acommodated in the whole
DQD system, i.e., 〈n1 + n2〉 ≈ 1 having either spin ↑ or ↓. The orbital de-
grees of freedom (pseudo-spin) play as significant a role as the spin, and the
DQD behaves as an impurity with four degenerate levels with different tun-
neling amplitudes depending on the applied flux. Due to the orbital degrees
of freedom involved in the interference, the symmetry of the wavefunction is
crucial. Therefore, in this limit, it is more useful to work with a representation
in terms of the symmetric (even) and antisymmetric (odd) combinations of
the localized and delocalized orbital channels. Then the field operators are
ψ†

d = [d†e,↑ d
†
e,↓ d

†
o,↑ d

†
o,↓] for the DQD and ψ†

k = [c†e,k,↑ c
†
e,k,↓ c

†
o,k,↑ c

†
o,k,↓] for

the leads. To examine the low-energy properties of the system, we obtain for
all values of φ the following effective Hamiltonian:

HK =
J1

4

[
S · (ψ†σψ) + S · (ψ†στzψ)T

z
]
− J5T

z
+
J2

4

[
S · (ψ†στ⊥ψ) ·T⊥

+(ψ†τ⊥ψ) ·T⊥]
+
J3

4
(ψ†τzψ)T

z
+
J4

4

[
S · (ψ†στzψ) + S · (ψ†σψ)T

z
]
, (2)

where T = ψ†
dτψd (with τ being the Pauli matrices in the pseudo-spin

space) is the pseudo-spin operator on the DQD and ψ =
∑

k ψk. Notice
that in the even/odd basis the DQD pseudo-spin is rotated: T x → T

z
,

T y → −T y
and T z → T

x
. The effective coupling constants are: J1 =

J3 = 2|V |2/|εd|, J2 = J1 sin(φ/2) and J4 = J1 cos(φ/2). The bare value of
J5 = 4ρ0|V |2 cos(φ/2) ln |(εd +D)/(εd−D)| gives almost zero when |εd| 
 D.
Importantly, we show now that the system exhibits a crossover from 0-flux
to π-flux. Near the 0-flux [φ ≈ 0 (mod 2π)], the DQD odd orbital is com-
pletely decoupled from the odd-symmetric lead. The Kondo-like model in-
volves only the spin in the even orbital: HK = JSe · (ψ†

eσψe)(1 + T
z
) +

(J/4)(ψ†
eψe)T

z − J5T
z
, where J = 2|V |2/|εd|. For this model the ground

state corresponds to a Fermi liquid with a greatly enhanced Kondo temper-
ature TK = D exp(−1/4ρ0J) and a frozen orbital pseudo-spin due to the
second term (J5 does not flow to the strong coupling regime) [9]. Near the
π-flux [φ ≈ π (mod 2π)], one obtains the Kondo-like Hamiltonian

HK =
J

4

[
S · (ψ†σψ) + (ψ†τψ) ·T + S · (ψ†στψ) ·T

]
. (3)
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Fig. 1. NRG results: Top panel : Transmission probability vs. flux for (a) both
dot levels are at εd = −7Γ (with Γ being the lead-dot tunneling coupling, we set
the same for both dots) and their intradot Coulomb interactions are respectively
U1 = U2 = 5D. Case for negligible interdot Coulomb interaction U12 = 0, and (b)
εd =−14Γ , U1 = U2 =5D, with a very strong Coulomb interaction U12 = 5D. We set
Γ = D/60. Bottom panel (U12 = 5D): (c) Spin susceptibility (in an arbitrary unit)
in the limit of strong interdot interaction. (d) The peak position of the susceptibility
as a function of the flux φ

This is the SU(4) Kondo model, the spin and the orbital degrees of freedom be-
ing entangled due to the third term. The RG equation reads dJ/d� = 4ρ0J

2,
leading to T

SU(4)
K = D exp(−1/4ρ0J). As the flux departs from π, the de-

generacy of the even and odd orbitals is lifted and the SU(4) symmetry is
broken. The crossover from the SU(4) to the SU(2) Kondo model occurs at
a given critical flux φc. From our NRG calculation (see below) we estimate
φc ≈ 0.75π. Our results for the NRG calculations are plotted in Fig. 1. The
case of U12 → 0 is considered in Fig. 1a where the transmission is shown. Here,
T displays always a dip except for φ = 0 (mod 2π). When φ = 0 (mod 2π)
the DOS of each dot has a resonance exactly at EF leading to a constructive
interference. However, for φ �= 0 (mod 2π),T can be written as a combination
of a Breit-Wigner resonance at EF plus a Fano antiresonace [12]. A dip in the
transmission is then obtained. We focus now on Fig. 1b, where U12 →∞. We
find that the transmission consists of a peak for any flux value. Besides, the
peak does not change appreciably for some φ < φc [corresponding to SU(2)
Kondo physics], and for φ > φc [corresponding to SU(4) Kondo physics] the
peak decreases very rapidly. The value of φc is the last ingredient we have
to explain. Fortunately, φc can be extracted from the position of the spin
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suceptibility χ(ω) peak, which yields a reasonable value of the Kondo tem-
perature. Figure 1c shows the evolution of χ when φ increases. Remarkably,
when the flux enhances, at some point the position of the peak moves toward
higher frequencies. By tracing the peak position as a function of φ we plot
Fig. 1d. We observe that TK(φ) is almost constant when φ goes from zero
to φc ≈ 0.75π. This fact allows us to establish a criterium for the crossover
between the SU(2) and SU(4) Kondo states in the DQD system around the
critical value of φc ≈ 0.75π.

3 Conclusions

We have analyzed the transport properties of a DQD inserted in a Aharonov–
Bohm interferometer when interactions play a dominant role. We have demon-
strated that crucial differences arise in the limits of negligible and large
interdot Coulomb interaction, and that they can be measured directly in a
transport experiment. In the former case, only spin fluctuations matter and
the transmission shows a dip. For large interdot Coulomb interaction, this is
quenched with increasing flux. Here, the Kondo state changes its symmetry,
from SU(2) to SU(4) as φ approaches π.
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Summary. Double quantum dot (DQD) structures provide a good system for
studying the competition between the Kondo effect and the antiferromagnetic cou-
pling of the electrons in the dots [2]. Such a system can be realized not only in
semiconducting heterostructres but also in structures consisting of molecules and
nanotubes attached to metallic electrodes [1, 4]. If the latter are superconducting
then the interplay between the Josephson and the Kondo effects has to be taken
into account. In the case of a single quantum dot placed between two superconduc-
tors, the energy gap in the density of the states may lead to a suppression of the
Kondo effect and the appearance of an unscreened magnetic moment. This leads to
the so-called π-phase with a reversal of the sign of the Josephson current [3]. In the
case of a DQD the situation is more complicated since besides the Josephson and the
Kondo effect one should also take into account the magnetic interaction between the
dots. Here we provide a comprehensive analysis of the interplay between Josephson
effect, Kondo and antiferromagnetic coupling in a S-DQD-S systems. We analyze
the phase diagram and the appropriate correlation functions for a broad range of
parameters. Like in the single S-QD-S system we identify phases in which the sign
of the Josephson coupling is reversed.

The system under consideration is depicted in Fig. 1 and consists of
two coupled quantum dots in series placed between two superconducting
electrodes. The electronic degrees of freedom are represented by a double
Anderson model associating a single spin degenerate level with each QD. The
corresponding Hamiltonian is given by

Hel =
∑
i,σ

εiσn̂iσ + U
∑
i

n̂i↑n̂i↓

+H12 +H1L +H2R +HL +HR (1)

The index i denotes the dot (i = 1, 2). The terms HL and HR describe
the uncoupled leads as BCS superconductors; H12 is the coupling term be-
tween the dots given by H12 =

∑
σ tc

†
1σc2σ + h.c., and the last two terms
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tL t tR

ε ε
L R

Fig. 1. Schematic view of the DQD structure

describe the coupling between dot 1 (2) and the left (right) electrode, i.e.
H1L =

∑
kσ tLc

†
1σckLσ +h.c. and H2R =

∑
kσ tRc

†
2σckRσ +h.c.. In the last ex-

pressions t, tL and tR are the corresponding hopping amplitudes. The Coulomb
interaction within each dot is described by the U term.

Our aim is to determine the ground state of the system for a given set of
parameters. We consider the most interesting case of strong coupling between
the QD’s, i.e. t ! ∆ and distinguish four different states: the pure 0 and π
states for which the energy as a function of the superconducting phase φ has a
minimum at φ = 0, π respectively; and two mixed phases, which are designed
as 0′ and π′ depending of the relative stability of the minima [3]. In a first ap-
proach we consider the zero bandwidth limit (ZBWL) for the superconducting
electrodes [3, 5]. In this case we can diagonalize numerically Hel. In a second
approach we use the slave-boson mean field (SBMF) approximation [Col93,7].
It is worth mentioning that in order to describe the main features of the DQD
system, i.e. different superconducting phases and competition between AF
and Kondo regimes, it is convenient to use the more general representation
of [7], which is valid for finite values of U . We will see that both the ZBWL
and the SB lead to similar results.

1 Exact Diagonalization

The main results in the ZBWL are sumarized in Fig. 2 which shows the (U, ε)
phase diagram for t = 10∆ and two different values of tR,L = 2∆ (panel (a))
and tR,L = 2.5∆ (panel (b)). The range of ε is chosen to show only the region
where the transition occurs, which corresponds to a charge per dot between
0 and 1. Due to the particle-hole symmetry an identical picture is obtained in
the region of lower ε when the charge per dot is between 1 and 2 (not shown
here).

One can see from Fig. 2 that for tL = tR = 2 all phases 0, 0′, π′ and π,
represented by different colors, appear at the transition region. It is interesting
to analyze the spin correlations functions <σ1σ2> and for example <σLσ1>.
We choose the line in the phase diagram which corresponds to U = 800∆
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Fig. 2. Phase diagram obtained by exact diagonalization (from [8])

and show these correlation functions in panel (c) of Fig. 2 together with the
occupation number n↑,↓ for each spin projection per dot. The main conclusions
are:

– Charge evolution along this line shows an overall a jump 0→ 1/2 per spin
in the π region.

– The appearance of a magnetic moment S = 1/2 for the full S-DQD-S sys-
tem is signaled by the broken symmetry n↓ �= n↑. The function <σ1σ2>
measures the spin correlations between the electrons in the two dots. As
one can see it evolves continuously from 0 to −3/4. The latter value cor-
responds to a complete antiferromagnetic (AF) correlation.

– The superconducting state leads to a partial suppression of the Kondo
correlations. The latter are best described in this simple model by the
functions <σLσ1> or <σRσ2> which correspond to spin correlations
between dots and leads. The Kondo regime corresponds for example to
<σLσ1>→ −3/4, i.e. to the formation of a singlet state between the lead
and the dot. As can be observed in the lower panel of Fig. 2c the Kondo
correlations are strongly suppressed by superconductivity compared to the
normal case (dashed line).

– If the coupling between the leads and the dots is larger then it is more
difficult for the superconductivity to suppress the Kondo correlations. As
one can see from Fig. 2b already for tL = tR = 2.5 the system shows
only three phases (0, 0′ and π′). Further increase of the coupling with the
electrodes will lead to a complete suppression of the π′ state and so on.

2 Slave Boson Mean Field

So far we have presented the results within the ZBWL for the electrodes.
We now go beyond this approach and consider a finite bandwidth W . An
exact solution of the problem described by the Hamiltonian (1) cannot be
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obtained easily. We will use the slave-boson representation in its general form
valid for a finite U [7], which allows the possibility of magnetic solutions. The
auxiliary Bose fields are designed by ei (empty state), piα (single occupied
state corresponding to spin σ) and di (double occupied state) and we define
the operator ziσ = (1− d2

i − p2
iσ)−1/2(eipiσ + piσ̄di)(1− e2i − p2

iσ̄)−1/2, where
i = 1, 2 denotes dot 1 or 1. In the enlarged space the Hamiltonian (1) has the
form

H = HL +HR +
∑
iσ

εiz
†
iσziσniσ +

∑
i

Ud†idi

+
∑
σ

t(z†1σz2σf
†
1σf2σ + h.c) +

∑
k,σ

tL(R)(z
†
1(2)σf

†
1(2)σckL(R)σ + h.c.)

−
∑
i

αi(e
†
iei + d†di +

∑
σ

p†iσpiσ − 1)

−
∑
iσ

βiσ(f†iσfiσ − p
†
iσpiσ − d†di) (2)

where the fiσ are fermionic operators and αi, βiσ are the Lagrange multipliers
corresponding to the constrains e†iei + d†di +

∑
σ p

†
iσpiσ = 1 and f†iσfiσ =

p†iσpiσ + d†di.
In the mean field approximation we replace the Bose operators by their

expectation values. Thus, in the mean field Hamiltonian the parameters
should be renormalized according to εσi = εi − βiσ, t̃σ = tz1σz2σ and
t̃L(R)σ = tL(R)z1(2)σ. The expectation values of the Bose operators must be
determined self-consistently from the equations obtained by variation of the
effective action minimizing with respect to the fields e, d and pσ [7]. As a first
check of this approximation we have compared the results obtained by exact
diagonalization and the SBMF in the ZBWL limit. As can be seen in Fig. 4,
the SBMF technique provides an excellent estimation of the ground state

Fig. 3. Comparison of the exact diagonalization (dashed line) and the SBMF (solid
line) in the ZBWL limit. We have taken tR = tL = 3, t = 10 and ε = −10. All
energies are given in units of ∆
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Fig. 4. The current-phase relation for t = 10∆, U = 800∆, ΓL = ΓR = 2.25 (upper
panel) and ΓL = ΓR = 4 (lower panel) (from [8])

energy both in the U → 0 and U → ∞ limit. It also provides a satisfactory
description of the energy evolution in the intermediate regime.

We have solved numerically the mean field equations and computed the
Josephson current through the DQD system for a certain set of parameters.
In Fig. 4 we show the current-phase dependence for U = 800, t = 10 and
two different values of the parameter ΓL,R = t2L,R/W . We see that for ΓL =
ΓR = 2.25 and ε = −5 the system is in the 0 state. By increasing the value
of ε the system passes through the mixed and the π state, until the ground
state corresponds again to a 0 junction (ε = 7). In the case of larger coupling,
ΓL,R = 4, the π state never takes place. These results are, at least qualitatively,
in agreement with those obtained in the ZBWL.
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Summary. Shuttle devices are a class of nanoelectromechanical systems generically
described as movable single electron transistors. They exhibit an electromechanical
instability from the standard tunnelling regime to the shuttling regime in which
the quantum dot oscillates and transfer one electron per cycle. I present a theory
for the device in which both the electrical and mechanical degrees of freedom are
quantized. The different operating regimes are detected by analyzing current, noise
and Wigner function distributions. The calculation of the stationary solution for the
Generalized Master Equation which describes the system dynamics is the starting
point for the evaluation of these quantities and represents a numerically challenging
problem due to the size of the Hilbert space necessary to capture the tunnelling to
shuttling transition.

1 The Archetypal Model

The archetypal shuttle device (SD) consists of a movable quantum dot (QD)
suspended between source and drain leads. One can imagine the dot attached
to the tip of a cantilever or connected to the leads by some soft ligands or
embedded into an elastic matrix. In the model the nanoparticle is confined
to an harmonic potential. We give a schematic visualization of the device in
Fig. 1.

Due to its small diameter, the QD has a very small capacitance and thus a
charging energy that exceeds the thermal energy kBT . For this reason we as-
sume that only one excess electron can occupy the device (Coulomb blockade)
and we describe the electronic state of the oscillating dot as a two-level system
(empty/charged). Electrons can tunnel between leads and dot with tunnelling
amplitudes which are exponentially dependent on the position of the central
island. This is due to the exponentially decreasing/increasing overlapping of
the electronic wave functions.

The Hamiltonian of the model reads:

H = Hsys +Hleads +Hbath +Htun +Hint, (1)
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tLexp(−X / λ) tRexp(X / λ)
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QDSource
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Fig. 1. Schematic representation of a shuttle device: electrons tunnel from the left
lead at chemical potential (µL) to the quantum dot and eventually to the right
lead at lower chemical potential µR. The position dependent tunnelling amplitudes
are indicated. X is the displacement from the equilibrium position. The springs
represent the harmonic potential in which the central dot can move

where

Hsys =
p̂2

2m
+

1
2
mω2x̂2 + (ε1 − eE x̂)c†1c1

Hleads =
∑
k

(εlkc
†
lk
clk + εrk

c†rk
crk

)

Htun =
∑
k

[Tl(x̂)c
†
lk
c1 + Tr(x̂)c†rk

c1] + h.c.

Hbath +Hint = generic heat bath

(2)

Using the language of quantum optics we call the movable grain alone the
system. This is then coupled to two electric baths (the leads) and a generic
heat bath. The system is described by a single electronic level of energy ε1 and
a harmonic oscillator of mass m and frequency ω. When the dot is charged the
electrostatic force (eE) acts on the grain and gives the electrical influence on
the mechanical dynamics. The electric field E is generated by the voltage drop
between left and right lead. In our model, though, it is kept as an external
parameter, also in view of the fact that we will always assume the potential
drop to be much larger than any other energy scale of the system (with the
only exception of the charging energy of the dot). The operator form x̂, p̂ for
the mechanical variables is due to the quantum treatment of the harmonic
oscillator. The leads are Fermi seas kept at two different chemical potentials
(µL and µR) by the external applied voltage (∆V = (µL−µR)/e ). The oscil-
lator is immersed into a dissipative environment that we model as a collection
of bosons and is coupled to that by a weak bilinear interaction:

Hbath =
∑
q

�ωqdq
†dq

Hint =
∑
q

�g(dq + dq
†)(d+ d†)

, (3)

where the bosons have been labelled by their wave number q. The coupling
to the electric baths is introduced by the tunnelling Hamiltonian Htun. The
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tunnelling amplitudes Tl(x̂) and Tr(x̂) depend exponentially on the position
operator x̂ and represent the mechanical feedback on the electrical dynamics:

Tl,r(x̂) = tl,r exp(∓x̂/λ), (4)

where λ is the tunnelling length.

2 The Dynamics: Generalized Master Equation

The Hamiltonian for the shuttle device includes terms describing (1) the elec-
tronic part of the movable QD, (2) its mechanical motion (which is quantized),
(3) the position dependent coupling of the QD and the leads, (4) the leads
(treated as noninteracting fermions), and (5) coupling to environment, which
damps the mechanical motion [1–4]. Since we are only interested on the dy-
namics of the quantum dot, we integrate out the environmental degrees of
freedom (the lead electrons, and a generic heat bath) to obtain a General-
ized Master Equation for the “system” (= QD + quantized oscillator) density
operator:

σ̇(t) = Lσ(t) = (Lcoh + Ldriv + Ldamp)σ(t). (5)

Here Lcoh,Ldriv and Ldamp are superoperators corresponding to the coher-
ent evolution, coupling to leads, and damping of the QD. In the spirit of the
classical master equation, it is sufficient to consider the diagonal electronic
components (i.e., an empty and an occupied QD, respectively), since the elec-
trical coherences are rapidly damped by the macroscopic leads. Nevertheless
a generalization of the original concept that maintain the mechanical coher-
ences is necessary to capture the electromechanical correlation characterizing
the shuttle instability. The resulting equation of motion for the reduced den-
sity matrix reads:

σ̇00(t) =
1
i�

[Hosc, σ00(t)]−
ΓL

2
(e−

2x
λ σ00(t)

+σ00(t)e−
2x
λ ) + ΓRe

x
λσ11(t)e

x
λ

+Ldamp σ00(t) ,

σ̇11(t) =
1
i�

[Hosc − eEx, σ11(t)] + ΓLe−
x
λσ00(t)e−

x
λ

−ΓR

2
(e

2x
λ σ11(t) + σ11(t)e

2x
λ )

+Ldamp σ11(t). (6)

where
Ldampσ = − iγ

2�
[x, {p, σ}]− γmω

�
(N̄ + 1/2)[x, [x, σ]] .

The physical parameters defining the quantum shuttle are thus the (bare)
tunnelling rates between QD and leads ΓL/R, the oscillator frequency ω,
the damping rate of the oscillator γ, the temperature T , and the tunnelling
length λ.
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3 Stationary State: A Mathematical Challenge

The master equation generally describes the irreversible dynamics due to the
coupling between the system and the infinite number of degrees of freedom
of the environment. It is reasonable to require that in absence of a time de-
pendent driving mechanism the system tends asymptotically to a stationary
condition defined by the equation:

Lσstat = 0. (7)

3.1 A Matter of Matrix Sizes

We calculate the stationary matrix σstat numerically: we have to find the null
vector of the matrix representation for the Liouvillean super-operator L. The
challenge arises from the matrix size. If N represents the size of the truncated
Hilbert space of the harmonic oscillator that we consider in our calculation,
2N × 2N is the size of the reduced density matrix σ and 2N2 × 2N2 the
corresponding size of the Liouvillean matrix (remember we neglect electrical
coherences).

The description of the SD dynamics requires (especially in the shuttling
regime) amplitude oscillations of the vibrating dot between 5 and 10 times
larger than the zero point fluctuations. For this reason, we are left to study
the null space of matrices of typical size of 2 · 104 × 2 · 104. We solved this
numerical problem using the iterative Arnoldi scheme.

3.2 The Arnoldi Scheme

The Arnoldi scheme is an efficient numerical method for the calculation of the
null space, since (1) it allows to work with operators on the system Hilbert
space only, and (2) it requires to look for the best approximation to the null
vector in spaces which are typically much smaller that the Liouville space.

The central rôle in the Arnoldi scheme is played by Krylov spaces. For a
given Liouvillean L and a temptative matrix σ of the Liouville space we define
the Krylov space as:

Kj(L, σ) ≡ span(σ,Lσ, . . . ,Lj−1σ), (8)

where j is a small natural number. It is important to note that for the con-
struction of the Krylov space all what we need are the matrices σ,Lσ,L2σ, . . .
and not explicitly the superoperator L. The method proceeds by looking for
the best approximation of the null vector for the matrix representation of the
Liouvillian within the Krylov space Kj(L, σ). We call this vector σ′. This min-
imization is operated into a space of size j + 1, is much less demanding than
the one required in the original problem and is performed using singular value
decomposition (SVD) [5]. If the criterion ‖Lσ′ < ε for a given threshold value
ε is not satisfied, we restart the procedure with the improved guess σ = σ′,
otherwise we accept the solution. A schematic representation of the Arnoldi
iterative method is presented in Fig. 2.
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Fig. 2. Schematic representation of the iterative Arnoldi scheme

3.3 Preconditioning

The Arnoldi scheme is iterative and can suffer from convergence problems. It is
not a priori clear how many iterations one needs to converge and fulfill the con-
vergence criterion. A possible answer to a non-convergent code is, though, to
reformulate the problem into an equivalent and (hopefully) convergent form.
The basic idea is to find a regular operator M on the Liouville space, invert-
ible, easy to implement, such that the original problem L[σstat] = 0 can be
recast into the form:

M[L[σstat]] = 0 (9)

and that the finite version of the operatorML gives rise to a (fast) convergent
iteration scheme. The operator M is also known as the preconditioner.

The Arnoldi scheme is particularly efficient in finding the best approxima-
tion of the eigenvalues and corresponding eigenvectors for those eigenvalues
that are separated from the rest of the spectrum. Since we want to calculate
the null vector it is important that the preconditioner moves the non-vanishing
part of the spectrum far from the origin. For the problem (7) of the stationary
solution of our GME, a good preconditioner is represented by the operator
M = L−1

Sylv where

LSylv = Aσ + σA† =
[
A00σ00 + σ00A

†
00 0

0 A11σ11 + σ11A
†
11

]
(10)

and

A00 = − i
�
Hosc −

ΓL

2
e−

2x
λ − iγ

2�
xp− γmω

�

(
nB +

1
2

)
x2

A11 = − i
�
(Hosc − eEx)− ΓR

2
e

2x
λ − iγ

2�
xp− γmω

�

(
nB +

1
2

)
x2

(11)

where nB is the average occupation number of the energy states of the har-
monic oscillator in equilibrium with the bath.
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4 The Three Regimes

Once the static density matrix is found, the current is readily calculable from

Istat = eTrosc{ΓRe2x/λσstat
11 }

= eTrosc{ΓLe−2x/λσstat
00 }. (12)

Also the noise [2], and even the higher cumulants [4], can be calculated with
similar methods. In particular, we find that the Fano factor F = S(0)/2eI
(here S(0) is the zero-frequency component of the noise spectrum) can be
expressed as

F = 1− 2eΓR

I
Trosc

{
e2x/λ

[
QL−1Q×

(
ΓRex/λρstat

11 ex/λ0
)]

11

}
. (13)

Here Q is a projection operator that projects away from the stationary
state. Very importantly, the pseudoinverse R of the Liouvillean, defined as
QL−1Q ≡ R is tractable by similar numerical methods as used in the eval-
uation of the current (we use the generalized minimum residual method
(GMRes)). Before showing results for the current and noise, we discuss an
important visualization tool.

We have found that Wigner functions are an excellent investigation tool
for the numerical results obtained for the stationary density matrix. The in-
tuitive picture comes from the well-known results in the classical limit: the
Wigner representation (or, equivalently, the phase-space representation) of a
regularly moving harmonic oscillator is a circle. On the other hand, irregular
motion under the influence of external noise gives rise to a Gaussian proba-
bility distribution centered at the origin. Since the QD can be either empty
or occupied, it is advantageous to introduce charge resolved Wigner functions
(n = 0 corresponds to an empty dot, while n = 1 represents the occupied
dot), defined as

W stat
nn (q, p) =

∫ ∞

−∞

dξ
2π�

〈
q − ξ

2
|σstat

nn |q +
ξ

2

〉
exp
(
i
pξ

�

)
. (14)

The behavior of the total Wigner distribution as a function of the me-
chanical damping shows precisely a smooth transition between the dot and
the circular structure at high and low damping, respectively. The threshold
for this transition is given by the effective tunnelling rates of the electrons.

The following picture arises: every time an electron jumps on the movable
grain the latter is subject to the electrostatic force eE that accelerates it
towards the right. Energy is pumped into the mechanical system and the
dot starts to oscillate. If the damping is high compared to the tunnelling
rates the oscillator dissipates this energy into the environment before the
next tunnelling event: on average the dot remains in its ground state. On
the contrary for very small damping the relaxation time of the oscillator is
long and multiple “forcing events” happen before the relaxation takes place.



Quantum Shuttle 437

Fig. 3. Phase space picture of the tunnelling-to-shuttling transition. The respec-
tive rows show the Wigner distribution functions for the discharged (W00), charged
(W11), and both (Wtot) states of the oscillator in the phase space. (Γ = 0.05, λ = 1)

Fig. 4. Particle stationary current (left) and Fano function (right) of the SD plotted
as a function of the damping rate

This continuously drives the oscillator far from equilibrium and a stationary
state is reached only when the energy pumped per cycle into the system is
dissipated during the same cycle in the environment.

It is not difficult to realize that, like for a macroscopic swing, in order to
sustain the motion one needs coordination between forcing (here related to
the electrical dynamics) and oscillations. This coordination is revealed by the
charge resolved Wigner distributions W00 and W11. The ring that appears in
the total distribution is asymmetrically shared by the empty and charged-dot
distributions (Fig. 3).

We study also the current as a function of the mechanical damping (left
panel of Fig. 4). At low damping the current saturates, at the “magic” value
I ≈ 0.16ω (the frequency of the harmonic oscillator ω/2π). This value is
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independent of the others parameters of the model. Increasing the damping
the stationary current drops, more or less rapidly, to a plateau, dependent
this time on both the bare tunnelling rate and length. Further increase of the
damping does not change the scenario.

If we compare the current results with the Wigner function distribu-
tion we can recognize a correspondence between the shuttling charge-position
(momentum) correlation and the saturation point, as well as a progressive
disappearing of the ring structure in correspondence with the current transi-
tion. The high damping plateau in the current sets in when the mechanical
oscillator lays into its ground state and the Wigner distribution function is
reduced to a fuzzy spot close to the origin of the phase space.

In the right panel of Fig. 4 we present the Fano factor as a function of
the mechanical damping γ for different values of the bare injection rate Γ
and tunneling length λ. We recognize common features in the three curves.
At high damping the Fano factor is of order 1 and (at least for the “most
classical” set of parameters λ = 2x0 and Γ = 0.05ω, 0.01ω) close to what we
expect from a resonant tunneling system. The discrepancies from the symmet-
ric double barrier are due to the quantum fuzziness in the position of the dot
that influences the injection and ejection rates and to the charge dependent
equilibrium position of the dot. Diminishing the damping the Fano factors
encounter a more or less pronounced maximum and drop finally to very low
values for small damping. The maximum at intermediate damping rates is
more pronounced and sharper the more classical are the parameters and can
reach values of F ≈ 600 for the most classical case.

A comparison with the current curves (Fig. 4) shows that the peak in the
Fano factor corresponds to the transition region from the tunneling to the
shuttling current. Similarly the correspondence can be established also with
the Wigner function distribution: the region of damping in which tunneling
(dot in Wtot) and shuttling (ring in Wtot) features coexist is associated with
a super-poissonian Fano factor. The very low (F ≈ 0.01) Fano factors for low
damping are a signature of the deterministic transport that takes place in the
shuttling regime. It is interesting to note that this regularity persists also deep
in the quantum regime as can be seen for Γ = 0.05 and λ = 1. The relative
uncertainty in the amplitude of the oscillation (see Figure 4) does not seem
to influence the current noise.

5 Conclusions

In conclusion, we have presented a numerical technique for solving the gen-
eralized Master equation governing an archetypal model of shuttle device.
The obtained numerical results are interpreted with the help of phase space
representations and allow to identify three operating regime of the SD. We
believe that the methods discussed here are also applicable to many other
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quantum transport situations, where the matrix representations of the rele-
vant operators are very large, but where only certain extremal eigenvalues are
important.
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1 Introduction

Recent transport experiments in vertical double quantum dots (DQDs) show
that Pauli exclusion principle plays an important role [1, 2] in current rectifi-
cation. In particular, spin blockade (SB) is observed at certain regions of dc
voltages, and the interplay between Coulomb and SB can be used to block the
current in one direction of bias while allowing it to flow in the opposite one.
Then DQDs could behave as externally controllable spin-Coulomb rectifiers
with potential application in spintronics as spin memories and transistors.
Spin de-coherence and relaxation processes [3, 4] induced by spin–orbit (SO)
scattering [5] or hyperfine (HF) interaction [6], have shown to reduce SB pro-
ducing a leakage current in the voltage region where the blockade occurs. We
theoretically analyze recent experiments of transport through two weakly cou-
pled vertical QDs [1]. In these experiments current flow is allowed when the
electrons in each QD have antiparallel spins and a finite gate voltage allows
one electron in the left dot to tunnel sequentially to the right one. However,
there is a similar probability for the electron coming from the left lead to be
parallel or antiparallel to the electron spin occupying the right dot. In the
first case, the electron cannot tunnel to the right dot due to Pauli exclusion
principle and SB takes place, presenting a plateau in the I/VDC curve.

2 Theoretical Model

The theoretical model presented here has been carried out in the frame of rate
equations for the electronic charge occupations and for nuclei polarizations
in both QDs which are coupled via electron and nuclei spin interaction and
which we solve self-consistently. The electron and nuclei spin interactions (HF)
brings to the Overhauser effect, which is also called flip-flop interaction. In
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our theoretical model we include a microscopic description of the spin electron
and nuclei interaction and its effect on the electron dynamics. According to
measurements on QDs by Fujisawa et al. [3] the sf time, τsf > 10−6s, is much
longer than the typical tunnelling time, τtun = 1− 100 ns, or the momentum
relaxation time, τmo = 1−10 ns, meaning that sf processes due to HF interac-
tion are important mostly in the SB region. Our system consists of a vertical
DQD under a DC voltage in the presence of a magnetic field parallel to the
current. We consider a hamiltonian:H = HL+HR+HLR

T +Hleads+H
l,D
T where

HL(HR) is the hamiltonian for the isolated left (right) QD and is modelled
as one-level (two-level) Anderson impurity, HLR

T (H l,D
T ) describes tunnelling

between QDs (leads and QDs) and Hleads is the leads hamiltonian. The basis
considered has 20 states: |1〉 = |0, ↑〉; |2〉 = |0, ↓〉; |3〉 = | ↑, ↑〉; |4〉 = | ↓, ↓
〉; |5〉 = | ↑, ↓〉; |6〉 = | ↓, ↑〉;
|7〉 = |0, ↑ ↑∗〉; |8〉 = |0, ↓ ↓∗〉; |9〉 = |0, ↑↓〉; |10〉 = | ↑, 0〉; |11〉 = | ↓, 0〉;
|12〉 = |0, ↑∗〉; |13〉 = |0, ↓∗〉; |14〉 = | ↑, ↑∗〉; |15〉 = | ↓, ↓∗〉; |16〉 = | ↑, ↓∗〉;
|17〉 = | ↓, ↑∗〉; |18〉 = |0, 0〉; |19〉 = |0, ↓, ↑∗〉; |20〉 = |0, ↑ ↓∗〉
We have considered two levels, the ground state and the first excited level, in
the right QD. Those states marked with (*) correspond to the excited state
in the right QD. The time evolution equations for the electron charge occupa-
tions are: ρ̇(t)ss =

∑
m �=sWsmρmm −

∑
k �=sWksρss where ρss consists of the

charge occupation of the electronic s-state. Wi,j is the transition rate from
the j-state to the i-state due to different mechanisms: coupling with the elec-
tric baths (contacts), phonon scattering or spin flip (sf) scattering due to HF
interaction. We calculate Wi,j by means of the Fermi Golden Rule (FGR).
The inter-dot transition rate should account for both the elastic and inelas-
tic current between the dots. For inelastic transitions, energy is exchanged
with phonons in the environment. This contribution has been measured by
Fujisawa et al. [7] and theoretically analyzed by Brandes et al. [8]. In order to
calculate the inelastic transition rate W ph

1,2 we have considered the theoretical

model in [8]: W ph
1,2 = πT 2

12
�

[
αpie
ε + ε

�2w2
ξ

] [
1− wd

w sin w
wd

]
where αpie is a piezo-

electric coupling parameter, ε = �w = µ1 − µ2, wd = c/d being c the sound
velocity and d the inter-dot distance. Finally, 1

w2
ξ

= 1
π2c3

Ξ2

2ρMc2�
where ρM is

the mass density and Ξ is the deformation potential.
In order to calculate the electronic spin-flip scattering rate W sf

i,j we have
developed a microscopical model starting from the HF hamiltonian in the pres-
ence of an external magnetic field (B) plus the electronic Zeeman term: Ĥ =
geµBS·B+ A

N

∑N
i=1

[
SzI

i
z + 1

2 (S+I
i
− + S−Ii+)

]
where we have considered that

the hyperfine constants for all the nuclei are equal: Ai = A/N , Ai being the i-
nuclei hyperfine constant,N is the number of nuclei within the electronic enve-
lope function (A = 90µeV for GaAs). Ĥ can also be written as: Ĥ = Ĥz+Ĥsf

where Ĥz = geµBS·B+ A
N

∑N
i=1

[
SzI

i
z

]
is the part of the hamiltonian respon-

sible for the electronic Zeeman splitting due to external B and the induced nu-
clear magnetic field BN and Ĥsf = A

N

∑N
i=1

[
1
2 (S+I

i
− + S−Ii+)

]
is responsible
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for the sf of a nucleus and of an electron. The sf time is calculated with the
FGR: 1

τsf
= 2π

�
| < Ĥsf > |2 γ

E2
ST+γ2 γ being the electronic state broadening,

EST = J −∆Ze, for the triplet state |3〉 = | ↑, ↑〉 and EST = J + ∆Ze for the
triplet state |4〉 = | ↓, ↓〉. ∆Ze = geµBB + A

2 (P1/2 + 3P3/2) is the total elec-
tronic Zeeman splitting, including the one produced by the effective nuclear
field. P1/2 and P3/2 are the corresponding nuclear spin polarizations for the
nuclear spin Iz=1/2 and Iz=3/2: P1/2 = N1/2−N−1/2

N ;P3/2 = N3/2−N−3/2

N
For example, for the sf process | ↓, ↓〉 → | ↑, ↓〉 there are three dif-

ferent sf rates: W sf
5,4;(IZ :3/2→1/2) = 1

τsf (3/2→1/2)

[
N3/2

N

]
W sf

5,4;(IZ :1/2→−1/2) =
1

τsf (1/2→−1/2)

[
N1/2

N

]
W sf

5,4;(IZ :−1/2→−3/2) = 1
τsf (−1/2→−3/2)

[
N−1/2

N

]
where

N3/2 (N1/2) is the number of nuclei with IZ = 3/2 (IZ = 1/2). There are
similar equations for sf in the right QD. The equations that describe the time
evolution of the nuclei spin polarization, for example for P1/2 for the left QD
have the form:

Ṗ1/2 = 2W sf
6,3(−1/2→1/2)ρ3 − 2W sf

5,4(1/2→−1/2)ρ4 +W sf
5,4(3/2→1/2)ρ4

−W sf
6,3(1/2→3/2)ρ3 −W sf

6,3(−3/2→−1/2)ρ3 +W sf
5,4(−1/2→−3/2)ρ4 −

P1/2

τrelax
(1)

where τrelax is the nuclear spin relaxation time (≈ ms [9]). The rate equation
for the charge occupation of the state |3〉 = | ↑, ↑〉 is:

ρ̇3 = W3,1ρ1 +W3,7ρ7 +W3,11ρ11 − (W1,3 +W7,3 +W11,3 +W sf
5,3(1/2→3/2)

+W sf
5,3(−1/2→1/2) +W sf

5,3(−3/2→−1/2) +W sf
6,3(1/2→3/2) +W sf

6,3(−1/2→1/2)

+W sf
6,3(−3/2→−1/2))ρ3 (2)

The system consisting of time evolution equations for the electronic states
occupations ρi and for nuclei polarization for each QD is self-consistently
solved and from that we calculate the stationary current through the system.

3 Results

Experiments [1] show, for B �= 0, stationary I/VDC curve for different B.
We observe an additional peak at finite B which moves to lower VDC as B
increases. A finite B parallel to I, produces an energy shift experienced by the
Fock-Darwin states due to its coupling with the electronic orbital momentum
(B couples with the electronic orbital angular momentum of the first excited
state of the right QD (l = 1)). Increasing B the first excited state of the right
QD (0, ↑↑∗) enters in the transport window and comes into resonance with the
ground state of the left QD, opening a new transport channel, and thus I flows
through the device and SB is lifted. In Fig. 1 we present the stationary I/VDC

curve calculated for different B. We observe an additional peak at finite B
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-

Fig. 1. Stationary I/VDC curve for different B. Single line: both elastic (direct
tunneling) and inelastic (phonon-assisted) contributions. Dotted line: only elastic
transitions

which moves to lower VDC as B increases, as in the experiments by Ono [1]: for
different values of B, the resonance condition: |3〉 = | ↑, ↑〉 ⇒ |7〉 = |0, ↑ ↑∗〉
and |4〉 = | ↓, ↓〉 ⇒ |8〉 = |0, ↓ ↓∗〉, occurs at different values of VDC. In
this figure, the single line corresponds to the situation where both elastic
(direct tunneling) and inelastic (phonon-assisted) contributions are considered
and the dotted line means that only elastic inter-dot transitions are taken
into account. The results presented in Fig. 1 are in good agreement with the
experimental curve by Ono et al. [1].

Work supported by the MCYT (Spain), grant MAT2005-06444 (J.I. and
G.P.), by the Ramón y Cajal program (J.I.) and by the EU Human Potential
Programme: HPRN-CT-2000-00144.
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Summary. We study the dynamics of the reduced density matrix for coupled
quantum dots systems under the influence of time-dependent ac potentials. By
disregarding non-resonant processes, we find analytical expressions for the stationary
charge current in different regimes.

Solid state quantum dot (QD) systems have become probes for different
and very assorted phenomena predicted for quantum systems. Concretely,
two-level systems have been successfully developed and manipulated in double
quantum dots (DQD) with one level each, coupled one to each other and to
fermionic leads by tunnel barriers. Thus, by transport measurements, it is
possible to access the quantum behaviour of electrons.

The probability of finding the electron of a closed two-level system shows
a sinusoidal behaviour strongly dependent on the energy difference between
the two states [1] and maximum when they have the same energy. A spacially
resolved version of these Rabi oscillations appear in a DQD [2] when a level of
each QD is in resonance with the other. Here, the interdot tunnel barrier plays
the role of the coupling between the two levels and the electron is delocalized
between both sites while the coupling to the fermionic environment causes the
damping of the oscillations.

The introduction of a time dependent potential connects non-resonant lev-
els if the ac frequency fits the energy diference between them [3, 4]. Thus, as
we will see, the interaction with the field gives the electron enough energy to
jump to the other level performing photon-assisted Rabi oscillations [5] in a
mechanism reminiscent of ESR experiments.

1 Model

We will consider a system consisting in two QDs connected in series to
two electron reservoirs which can be described by the Hamiltonian Ĥ =
Ĥ0 + ĤL⇔R + ĤT + Ĥac(t), where Ĥ0 describes the uncoupled DQD plus
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leads system. The inter-dot coupling, ĤL⇔R =
∑

l,r τlr ĉ
†
l ĉr + h.c., connects

coherently two states, |l〉 and |r〉, in the left and right dots, respectively, while
the coupling to the leads, ĤT =

∑
lε{L,R},k γld̂

†
lk ĉl + h.c., is considered weak

and will be treated perturbatively. The time-dependent ac potential, is intro-
duced as an oscillation of opposite phase on the energy of the levels of the
QDs: Ĥac(t) = Vac

2 cosωt(n̂L − n̂R) where Vac and ω (in units where � = 1,
e = 1) are the amplitude and frequency of the applied field, respectively. For
simplicity, we do not consider the spin of the electron.

The dynamics of the system can be described by the reduced density op-
erator, ρ̂ = trRχ̂, obtained by tracing all the reservoir states in the density
operator of the whole system, χ̂. The Liouville equation, ˙̂ρ(t) = −i[Ĥ(t), ρ̂(t)],
gives us the time evolution of the system.

1.1 Photon-Assisted Tunneling

In order to derive the master equation for the density matrix elements, it is
convenient to remove the time dependence from the energy of the QD levels.
This is made by applying a unitary transformation, Û(t) = ei Vac

2ω sinωt(n̂L−n̂R)

to the Hamiltonian: Ĥ ′(t) = Û(t)
(
Ĥ − i∂t

)
Û†(t) = Ĥ0 + Ĥ ′

L⇔R(t) + Ĥ ′
T (t).

The time dependence is now included in the coupling terms:

Ĥ ′
L⇔R(t) =

∞∑
ν=−∞

∑
l,r

τlr(−1)νJν

(
Vac

ω

)
eiνωtĉ†l ĉr + h.c. (1)

where Jν(x) is the νth order Bessel function of the first kind and, similarly:

Ĥ ′
T(t) =

∞∑
ν=−∞

∑
lε{L,R}k

γl(−1)νJν

(
Vac

2ω

)
eiνωtd̂†lk ĉl + h.c. (2)

Note that the argument of the Bessel function is twice in the interdot term
than in the coupling to the leads. This is because the expected value of n̂L−n̂R

changes in ±2 when an electron tunnels from one QD to the other and in ±1
when it tunnels through the contact barriers.

Therefore, the influence of the ac potential, though applied only to the
levels of the DQD, affects not only the interdot transitions but also the tun-
neling of electrons through the contact barriers [6–10]. As we will see, the
transformed tunneling term (2) gives a modification in the tunneling rates,
which now include the possibility that the electron get from the absorption or
emission of ν photons with frequency ω enough energy to tunnel through the
contact barriers. In the hopping term, responsible for the coherent dynamics
inside the DQD, we can keep only the terms that put in resonance the states of
both dots, an approximation reminiscent of the rotating wave approximation
used in Quantum Optics [11–14], disregarding non-resonant oscillating terms.
For instance, if the energy difference between the states, |l〉 and |r〉 fits the
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energy absorved from n photons: ωrl ≈ nω, the hopping Hamiltonian can be
simplified to1:

Ĥ ′
L⇔R =

∑
l,r

(−1)n
Ω

(n)
lr

2
einωtĉ†l ĉr + h.c.. (3)

We have defined the Rabi frequency of the n-photon-assisted delocalization
process: Ω(n)

lr = 2Jn
(
Vac

2ω

)
τlr.

The time evolution of the system is given by the Liouville equation:
˙̂ρ(t) = −i[Ĥ, ρ̂(t)]. Assuming the Markov and Born approximations [15], we
obtain, after some algebra [16,17], the master equation for the relevant density
matrix elements:

ρ̇jj(t) =
∑
k �=j

Γjkρkk(t)−
∑
k �=j

Γkmjρjj(t) (4)

ρ̇ll(t) = (−1)n+1Ω
(n)
lr �ρlr(t) +

∑
k �=l

Γlkρkk(t)−
∑
k �=l

Γklρll(t) (5)

ρ̇rr(t) = (−1)nΩ(n)
lr �ρlr(t) +

∑
k �=r

Γrkρkk(t)−
∑
k �=r

Γkrρrr(t) (6)

ρ̇lr(t) = i(ωrl − nω)ρlr(t)− (−1)ni
Ω

(n)
lr

2
(ρrr(t)− ρll(t))− Λlrρlr(t). (7)

Γmn are the photon-assisted tunneling rates for transitions through the contact
barriers:

Γjk =
∞∑

ν=−∞
J2
ν

(
Vac

2ω

)
ξjk(ωjk + νω), (8)

where

ξjk(ε) = 2π|γl|2
{
fl(ε)δNj ,Nk+1δN l

j
,N l

k
+1 + f̄l(ε)δNj ,Nk−1δN l

j
,N l

k
−1

}
(9)

are the non-driven tunneling rates. Nk =
∑

j N
j
k is the number of electrons

in the DQD in state |k〉, f̄l(ε) = 1 − fl(−ε), fl(ε) = 1/
(
1 + e(ε−µl)β

)
is

the Fermi distribution function of the lead l involved in the transition, with
β = 1/kBT and chemical potential µl. The interaction with the reservoirs
induces decoherence in the Rabi oscillations, Λlr, which can be written as a
function of the transition rates: �Λlr = 1

2

(∑
k �=r Γkr +

∑
k �=l Γkl

)
.

The current that flows through the right contact is obtained with the
relation IR =

∑
j,k (Γkjρjj − Γjkρkk) δNR

j
−1,NR

k
.

1In this approximation the renormalization of the resonant frequency is lost [3,9].
However, this is small if τlr � |ωrl|. Our results are exact in strict resonance.
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2 Example: Two Interacting Electrons

Let us study a DQD that can be occupied by up to two extra electrons.
We consider a charging energy, U , due to the interdot Coulomb repulsion,
while the intradot Coulomb repulsion is supposed to be high enough to avoid
the double occupation of a single QD. The system can then be described by
the four state basis: |0〉, |L〉, |R〉, |2〉, if it is empty, contains one electron in the
left, in the right or in each QD, respectively.

After writing the master equation for this system, we can treat analyti-
cally different configurations by varying the parameters of the system as, for
instance, chemical potentials of the leads.

2.1 Pumping Regime

If εL + U < µL and µR < εR + U [16], the transport will be blocked unless
we introduce a resonant ac potential which breaks the equilibrium by the
absorption of n photons (ωRL = nω). Then, PAT processes contribute to
the transport through the interdot and the contact barriers. In the unbiased
low temperature case, if γL = γR, the tunneling rates for the processes that
contribute to the current from left to right are equal (Γ0R = ΓL0 = ΓL2 =
Γ2R = Γ+) and so are the ones that contribute to the current from right to left,
which involve the absorption of one photon (ΓR0 = Γ0L = Γ2L = ΓR2 = Γ−).
Then, the stationary current can be written, by doing ρ̇(t) = 0:

Ipump =
1
2Ω

2 (Γ+ − Γ−)

Ω2 + (Γ+ + Γ−)2 + (ωRL − ω)2
(10)

which, since it is proportional to the Rabi frequency, Ω = 2τJn(Vac

ω ), is
quenched when Jn

(
Vac

ω

)
= 0 is satisfied (n-photons-assisted dynamical lo-

calization [5], see Fig. 1 for n = 1). Furthermore, in the ideal case of having
infinite width conduction bands, Γ+−Γ− is proportional to J2

0

(
Vac

2ω

)
, leading

to a suppression of the net current when the Bessel function is zero.
The current is also strongly suppressed for high ac intensities.

2.2 High Bias Regime

If µL ! εL +U and µR 
 εR +U , the processes contributing to the current to
the left would need the absorption of a large number of photons to occur, so
we can neglect them (ΓR0 = Γ0L = Γ2L = ΓR2 = 0). On the other hand, from
the normalization condition for the Bessel functions, we have: Γ0R = ΓL2 =
2π|γR|2 ≡ ΓR and ΓL0 = Γ2R = 2π|γL|2 ≡ ΓL, obtaining a stationary current:

Ih−b =
Ω2ΓLΓR (ΓL + ΓR)

(Γ 2
L + Γ 2

R)Ω2 +
(
2Ω2 + (ΓL + ΓR)2 + 4(ωRL − ω)2

)
ΓLΓR

, (11)
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Fig. 1. Stationary current in resonance (ω = ωRL) for the high bias (solid) and
pumping (dashed) regimes in the symmetric case: γL = γR = γ and tLR ∼ 2π|γ|2.

that shows photon-assisted dynamical localization, cancelling the transport in
spite of the high bias voltage applied to the contacts, see Fig. 1.
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Summary. We review the application of the quantum-transmitting-boundary
algorithm to compute electronic currents in the presence of localized spin–orbit
couplings. As specific physical realization we choose a semiconductor quantum wire
containing a Rashba spin–orbit dot. The Rashba dot leads to the formation of quasi-
bound states and to Fano profiles in the energy dependence of the wire conductance.

1 Introduction

The description of electronic transport at a microscopic scale requires solving
the Schrödinger equation for current-carrying states. In the so-called ballis-
tic transport regime this implies finding the single-electron wave functions
impinging on and being scattered off a given potential inhomogeneity. The
boundary conditions for these scattering states are considerably more involved
than for bound states. Indeed, while the latter just require the wave function
to vanish asymptotically, the former involve finding transmission and reflec-
tion coefficients that are unknown a priori and, thus, amount to selfconsistent
boundary conditions [1, 2].

An efficient algorithm to obtain scattering states is the quantum-
trasmitting-boundary method (QTBM) proposed by Lent and Kirkner [3]. As
noted by these authors, in dimensions higher than one the scattering problem
cannot be solved as an initial value problem, where one recursively finds the
wave function at one point in terms of the wave function at the preceding
ones, but has to be transformed into a coupled linear system of equations
yielding the wave function at all points in a single step. This implicit scheme
is the essence of the QTBM and we shall discuss below its application to com-
pute the conductance of a semiconductor quantum wire containing a region
of spin–orbit Rashba coupling.

Interest in spin–orbit effects in semiconductors is mostly due to the tun-
ability of the Rashba coupling by means of external electric gates. This
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tunability is expected to allow the controlled manipulation of electron spins,
a central requirement of any spintronic device. We shall prove that for specific
energies the electron wavefunction resonates, manifesting a strong localization
inside the Rashba dot – the region with Rashba spin–orbit coupling. These
quasibound states interfere with the direct transmission along the wire to the
extent that the conductance completely vanishes for some specific Rashba
dot lengths and coupling intensities. In general, we obtain wire conductances
whose energy dependence follows a generalized Fano profile, a mechanism
we have named the Fano–Rashba effect in [4] and [5]. Also relevant to this
work are the discussion in terms of matching methods in [6–8]. The Chapter
is organized as follows: Sect. 2 presents the physical system, Sect. 3 details
our implementation of the QTBM while the results are discussed in Sect. 4.
Finally, Sect. 5 is devoted to conclusions and outlook.

2 Physical System

We assume the effective-mass model for the conduction band states of a two-
dimensional electron gas in GaAs and consider a parabolic confinement in the
y direction, yielding a ballistic quantum wire along x. The system Hamiltonian
reads

H =
p2
x + p2

y

2m
+

1
2
mω2

0y
2 +HR . (1)

The Rashba Hamiltonian HR that we consider is characterized by an intensity
α(x) essentially vanishing everywhere except for −�/2 < x < �/2 where it
takes the value α0. In detail, HR reads

HR =
α(x)
2�

(pyσx − pxσy) + H.C. , (2)

where σx and σy are the Pauli matrices and the Hermitian conjugation is
used to ensure Hermiticity. In the numerical applications we take a smoothed
variation α(x) = α0[f(x− �/2)− f(x+ �/2)], with f(x) = 1/(1 + ex/σ) and σ
a small diffusivity. The results are not very sensitive to the precise value of σ
provided σ < �. Figure 1 shows a simple sketch of the physical system under
consideration.

3 The QTBM

We consider a uniform discretization of the xy plane in a grid of points as
indicated in Fig. 1. The QTBM requires as many equations as grid points in
order to obtain a closed system of equations determining the wave function
Ψ(x, y, η) (where η = ↑, ↓ is the spin variable) for all grid points. The grid
is divided in a central subset (C) containing the Rashba dot and two lateral
subsets, left (L) and right (R), which are in the translationally invariant as-
ymptotic regions. For each point in subset C we use the Schrödinger equation
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Fig. 1. Sketch of the physical system and the uniform grid. Light gray region corre-
sponds to the quantum wire and the dark gray square indicates the position of the
Rashba dot. The grid points are separated in subsets L, C, and R, for which different
equations are applied. Incident (a), reflected (b), and transmitted (b′) waves are also
indicated. xL and xR indicate the x value for the points in C closest to the left and
right boundary, respectively

HΨ = EΨ , with H given by (1) and E the given energy of the incident elec-
tron. The width of the lateral regions L and R is determined by the number
of points nd used for the finite difference discretization of the Laplacian op-
erator as nd/2. We typically use nd = 5 or 7, which corresponds to a width
of 2 or 3 points, respectively. For points exceeding the grid in the y direction
the wavefunction is assumed to vanish identically.

It remains now to specify the equations to be used for grid points in
subsets L and R. In these regions it is particularly adequate to expand
the full wave function in the oscillator transverse modes {φn(y), εn} and
spin eigenstates χs(η), s = ±. These are the solutions of the 1D problem
(− �2

2m
d2

dx2 + 1
2 mω

2
0y

2)φn(y) = εnφn(y) with εn = (n− 1/2)�ω0, n = 1, 2, . . . ,
and the spin up and down eigenstates in a given arbitrary direction, respec-
tively. For definiteness, the expansion for the points in subset L reads

Ψ(x, y, η) =
∑
ns

anseikn(x−xL)φn(y)χs(η) +
∑
ns

bnse−ikn(x−xL)φn(y)χs(η)

+
′∑
ns

bnseκn(x−xL)φn(y)χs(η). (3)

The first two contributions in (3) are the incident and reflected propagating
waves having εn ≤ E and wavenumbers kn =

√
2m(E − εn)/�. The third

contribution corresponds to the sum of evanescent states, for which εn > E
and κn =

√
2m(εn − E)/�, which is truncated for a large enough n. We have

defined xL as the x coordinate of the grid points of region C lying closest to
region L (see Fig. 1). The set of incident amplitudes {ans} is a known input
to the problem and the {bns} coefficients can be related to the wave function
in region C:

bns =
∑
η

∫
dy φ∗n(y)χ∗

s(η)Ψ(xL, y, η)− ans . (4)
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The ans amplitude is obviously absent when applying (4) to evanescent states.
Now, the combination of (3) and (4) gives a closed expression in terms of the
grid that we can apply for each point of subset L. Similar expressions are easily
found for the R subset noting that, in this case, the {ans} coefficients vanish
since we only consider incidence from the left, and making the replacements
kn → −kn, κn → −κn, and xL → xR in (3) and (4). The final result is a
set of linear equations whose only inputs are the energy E and left incident
amplitudes {ans}. The system is highly sparse and can be effectively solved
using standard numerical routines [9], yielding the wave function as well as
the transmission and reflection amplitudes from which one obtains the linear
conductance [1].

4 Results

Figure 2 shows the linear conductance of the wire as a function of E for a
specific Rashba dot. Energies and lengths are given in units of the transverse
oscillator energy �ω0 and length �0 =

√
�/mω0. A small diffusivity σ = 0.2�0

has been used to smooth the Rashba coupling steps. In absence of Rashba dot
the conductance is quantized with abrupt changes of e2/h, the conductance
quantum, every time a transverse mode becomes propagating. Focusing on
the first plateau shown in Fig. 2a, we note that the Rashba inhomogeneity
produces smooth conductance oscillations at the beginning of the plateau as
well as a conspicuous asymmetric dip for E ∼ 1.32�ω0. While the oscillations
are usual in quantum scattering, the existence of the dip with asymmetric line
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Fig. 2. (a) Conductance for a Rashba dot of � = 8�0 and α0 = 0.7�ω0�0. The thin
gray line is the result in absence of the Rashba dot. (b) and (c) Probability density
for a left-incident spin-up wave along y of energy E = �ω0 (b) and E = 1.32�ω0

(c). Darker color means higher probability density and the rectangle indicates the
position of the Rashba dot
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shape is due to the formation of a Fano resonance. Indeed, the interference
between a transmitting channel and a quasibound state can severely quench
the conductance for specific energies.

The existence of a resonating quasibound state is proved in Figs. 2b, c by
showing the probability density associated with a spin up wave, with spin
along +y, in the lowest transverse mode impinging on the Rashba dot from
the left. Indeed, at the energy of the conductance asymmetric dip the wave
function is strongly localized to the Rashba dot [panel (c)] while in other cases
it clearly extends to the asymptotic wire regions [panel (b)].

5 Conclusions

The QTBM allows to obtain the wave function and linear conductance of a
quantum wire containing inhomogeneities. Here we have reviewed the general
formulation of the QTBM for a wire with a Rashba dot, where a spin–orbit
coupling of Rashba type is active. The scattering problem is formulated as an
implicit system of linear equations, yielding the wave function for all the grid
points as well as the transmission and reflection coefficients. The transmis-
sion coefficients for all incident modes at a given energy determine the wire
linear conductance. The Rashba dot sustains quasibound states that inter-
fere with the direct transmission path along the wire and lead to an energy-
dependence of the linear conductance displaying oscillations and asymmetric
Fano-resonance dips.

We acknowledge R. López for valuable discussions. This work was sup-
ported by the Grant No. FIS2005-02796 (MEC) and the “Ramón y Cajal”
program.
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Summary. We investigate electron transport through resonant tunneling diodes
doped with magnetic impurities. Due to exchange interaction between impurities
and carriers, there arises a giant Zeeman splitting which dominates the I–V curves.
We discuss a simple model which accounts for spin effects in these systems and
examine its applicability in realistic samples.

1 Introduction

Spintronic devices make use of the electron’s spin degree of freedom for infor-
mation processing. A basic requirement of these devices is their all-electrical
ability to create [1, 2] and detect spin-polarized currents. Possible candidate
materials for full on-chip integration are diluted magnetic semiconductors
(DMSs) which are doped with magnetic (Mn) impurities [3, 4]. These im-
purities decrease the sample mobility but recent progress in II–VI compounds
(e.g., CdTe or ZnSe) [5] has reduced Mn scattering while, at the same time,
spin effects are maximized. As a result, large spin-splittings in the electron
conduction band are observed [1] in the presence of a relatively small magnetic
field. Since carriers, which arise from n-doping, move in the conduction band
spin-orbit effects can be neglected and spin relaxation times as large as 1 ns
are possible to achieve.

We are here concerned with DMS resonant tunneling diodes (RTD) which
show strong spin effects due to the combination of negative differential con-
ductance, giant Zeeman splitting, and low dimensionality. These systems have
recently received attention [6–11]. A RTD is a well known quantum semicon-
ductor device [12] formed by two tunnel junctions in a series, see Fig. 1. The
double barrier confines the electrons in the growth direction and their lon-
gitudinal energy become discretized in the quantum well comprising energy
subbands. The well between the barriers couples to electron reservoirs and
current flows when a dc voltage bias is applied. Since the bias rises the emit-
ter band bottom relative to the well level ε0, the RTD exhibits a resonance
behavior in the current–voltage I–V characteristics.
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Fig. 1. Schematic representation of the energy landscape of a RTD with a single
energy level in the quantum well, ε0, attached to two electron reservoirs with Fermi
energy EF. The quantum level and the emitter band bottom may be spin split due
to an external magnetic field

2 Theoretical Model

The giant Zeeman splitting is due to the exchange interaction between d Mn
local moments and itinerant s electrons, favoring parallel alignment. Then, the
exchange can be modeled asHsd

int = J̃sd
∑

I SI ·s(rI), with I labels the position
of the Mn impurities and J̃sd is the coupling constant. We now make use of
the virtual crystal approximation combined with a mean-field theory [4] to
simplify the Hamiltonian: Hsd

int = Jsd〈Sz〉
∑

i sz(ri), where Jsd ≡ xJ̃sd. Here,
we have placed a Mn impurity at each lattice site and J̃sd is thus reduced by
a factor x. Then, each Mn spin is replaced with its average along the direction
of the field. Hence, the DMS quantum well is a paramagnetic system where
spin–spin interaction gives rise to an effective magnetic field. The resulting
spin splitting given by

∆ = NMnJsdS0BS

(
SgµBB

kB(T + Teff)

)
, (1)

where NMn is the concentration of S = 5/2 Mn spins, BS(x) = (1 +
0.5/S) ch[(S+0.5)x]−0.5S ch(0.5S) is the Brillouin function with g the Landé
factor, B is the applied magnetic field, T is the temperature, and S0 and Teff

are the Mn effective spin and temperature, respectively. At large B the split-
ting reaches saturation and the s-spins become fully polarized. When the Mn
impurities are placed in the emitter, the giant Zeeman splitting is denoted
with h to distinguish it from the splitting ∆ in the well.

We neglect orbital effects due to B as spin effects are independent of the
B direction. Further, we disregard spin-relaxation effects for the moment,
thereby the current is carried by spins up (σ = +) and spins down (σ = −) in
parallel. As a result, the resonant tunneling current J = J+ +J− through the
double barrier system depicted in Fig. 1 is determined within the transmission
formalism [12]:

Jσ =
em

4π2�3

∫ ∞

eV −σh/2

dEzdE⊥ Tσ(Ez, ε0, V )[fL(Ez+E⊥)−fR(Ez+E⊥)], (2)
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with V the bias voltage applied to the structure. The Fermi functions fL and
fR describe the distribution of electrons with total energy Ez +E⊥ in the left
and right leads with electrochemical potentials µL = EF + eV and µR = EF.

We first consider the case of a magnetic injector and a normal quantum
well. To simplify (2) we consider an infinitely narrow resonance (δ-resonance),
T (Ez) = 2π(ΓLΓR/Γ )δ(Ez − ε0) where ΓL(R) are the partial hybridization
widths associated to the decay rate of electrons localized in the well. The
total linewidth is Γ = ΓL + ΓR. When E0 > EF we find at zero temperature
Jσ(V ) = eνΓLΓR(EF + eV − ε0)/�Γ for ε0 − EF < eV < ε0 + σh/2 and zero
elsewhere (ν = m/2π�2). We infer that the maximum value attained by the
total current J = J↑ + J↓ is independent of the splitting h. For E0 < EF, the
spin-dependent current is Jσ(V ) = e2νΓLΓRV/�Γ for 0 < eV < ε0 + σh/2.
Hence, the peak current is also h-independent.

For more realistic modeling we use the Breit-Wigner approximation, which
is a good approach for RTDs close to resonance [13]:

T (Ez) =
ΓLΓR

(Ez − ε0)2 + Γ 2/4
. (3)

In contrast to the δ-resonance, the dependence of the electric current on
voltage and h is nonlinear. This leads to predictions that differ from the
δ-resonance. For instance, consider for simplicity the case of a resonance dom-
inated by Γ either because EF and temperature are quite small or due to
strong interface roughness or disorder. Then, we can expand (2) in pow-
ers of 1/Γ . We find for small spin splittings that the resonance peaks at
eVres = ε0 − EF/3 + h2/3EF. Clearly, this expression shows a shift of Vres

with increasing h. Inserting this result in (2) we find to leading order in 1/Γ
that the current peak Jp = (eν/π�)E2

F(1 + h2/4E2
F) is, in fact, an increasing

function of the magnetic field. In Fig. 2 we show numerical simulations for the
parameters ε0 = 21 meV, EF = 10 meV, Γ0 = 15 meV, and kBT = 4 K (con-
sistent with a Zn0.94Mn0.06Se/Zn0.7Be0.3Se/ZnSe/Zn0.7Be0.3Se/ZnSe RTD),
taking into account the energy dependence of Γ . We observe that the peak
current increases with h in agreement with the discussion above. Thus, this
effect allows to generate high peak current peaks, which arise from spin ef-
fects only and which can be tuned with an external magnetic field without
changing the sample parameters.

We now focus on the case of a normal injector and a DMS well. In the
δ-resonance limit, we find Jσ(V ) = eνΓLΓR(EF + eV − E0 + σ∆/2)/�Γ for
max(EF, E0−EF−σ∆/2) < eV < E0−σ∆/2. This simple expression predicts
a splitting of the I–V curve as observed in the experiment [7]. The maximum
current for each spin channel is Jmax

σ = (eν/�)(ΓLΓR/Γ )EF. The total current
peak is given by Ip = 2eνEF(1−∆/2EF)/�Γ , which decreases with increasing
∆, as expected.

At low magnetic fields, the giant Zeeman splitting in the well is much
larger than the Zeeman splitting in the normal injector, ∆ ! h, where h
is now gµBB. However, at large B the well magnetization saturates and the
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Fig. 2. Theoretical I–V curves at 4K for a RTD with a spin-polarized injector
increasing the spin splitting from h = 0 to h = 2EF in steps of h = 0.2EF (from
bottom to top)

Zeeman splitting in the injector starts to play a role. In the I–V curves,
which show two peaks corresponding to transport for each spin channel,
there should be an increase (reduction) of the current amplitude for spin
up (down) carriers due to the spin polarized population in the injector as
B grows. (Here, we have taken spins up as the majority spins). Including
this effect in the expressions above is easy. In the low kBT limit one finds
that the maximum current per spin, Jmax

σ = (eνA/�)(ΓLΓR/Γ )(EF + σh/2),
increases (decreases) for spins up (down). Therefore, for small Γ , Jmax

σ is
a linear function of the applied field. Defining the relative current peak
change, ξσ(h) = [Jmax

σ (h)− Jmax
σ (0)]/Imax

σ (0), we find that ξσ(h) = σh/2EF.
Now, for free electrons we approximate the spin polarization N↑ − N↓ =∫ EF

−h/2
D(E) dE−

∫ EF

h/2
D(E) dE ≈ D(EF)h, whereD(E) is the density of states

in the injector. Thus, the injector polarization, p = (N↑−N↓)/(N↑+N↓) ≈ ξ↑,
can be extracted from the increase or reduction of the I–V spin-splitting
peaks.

In Fig. 3 we present numerical simulations of (2,3) for a magnetic RTD
increasing both B and kBT in such a way that ∆ remains constant (1) and
h increases. The I–V curves show the giant Zeeman splitting and an en-
hancement (reduction) of the majority (minority) spin resonance for increas-
ing Zeeman splitting in the leads. The expected polarization detected by the
RTD is plotted in the inset, which reinforces the idea that the polarization
can be measured via the change of the peak height.

We note that our model deals with free electrons. In reality, electrostatic
interactions induce bistable current solutions for a given V , which may lead to
domain formation in extended systems [14]. In addition, spin relaxation, which
tends to equilibrate the spin subsystems avoiding spin bottleneck effects, may
become important in particular situations and it would be then desirable
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Fig. 3. Theoretical I–V curves for a II–VI DMS RTD with a 4%-Mn doped quantum
well. The parameters are EF = 10 meV, ε0 = 54meV, Γ0 = 2meV. Inset : Relative
change in the current amplitude of the majority spin peak as a function of the
injector spin polarization

to include these effects in modeling RTD I–V curves. We follow Ref. [15]
and establish rate equations for the spin-dependent density in the quantum
well nσ:

dnσ

dt
=
Jσ
iw − Jσ

wc

e
− ν µσ − µσ̄

τsf
(4)

where Jσ
iw and Jσ

wc are the well currents from the injector and toward the
collector, µσ is the electrochemical potential in the well associated to spins
σ, and τsf is a phenomenological spin-flip time. This equation must be solved
self-consistently with a mean-field approach for the potential drops along the
RTD in terms of Poisson equations [15]. Thus, we see that there is considerable
latitude for model improvements in future research.

3 Conclusions

We have discussed a theoretical model for spin-dependent transport in mag-
netically doped II–VI resonant tunneling diodes. Interestingly, we found that
a magnetic injector increases the current peak and that this enhancement is
tunable with a magnetic field. Further, when the quantum well is a magnetic
semiconductor the I–V curves become split due to giant Zeeman splitting.
We demonstrated that the splitting peaks change in amplitude when the field
further increases and that this amplitude change can be used for detection of
spin polarized currents.
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Summary. We consider single electron transport through a II-VI semiconductor
quantum dot doped with a single Mn atom. The spin dynamics of the Mn atom is
controlled by the carriers electrically injected in the dot. We find that the charge-
vs.-gate curve can display hysteretic behaviour when the Mn-carrier interaction is
anisotropic. We discuss the origin and implication of this result.

1 Introduction

The interplay between spin dynamics and spin-polarized transport in nano-
metric devices results in a variety of interesting physical phenomena, like
magneto-resitance and spin transfer [1]. The fabrication of single electron
transistors (SET) that permit current flow through a single molecule magnet
opens new perspectives in this field [2,3]. A new direction in the single-electron
control of nanomagnet comes from the recent fabrication of self-assembled
CdTe quantum dots (QD) doped with a single Mn atom [4, 5] embedded in
an electrically active circuit [6]. Substitional Mn in (Cd,Mn)Te has a +2 ox-
idation state with spin S = 5/2 associated to the localized d electrons [7].
Single exciton spectroscopy of a single Mn in a QD [4–6] provides a very good
undertanding of the effective spin Hamiltonian for the Mn and the carriers in
the dot [8] and makes it possible to model single electron transport through
such interesting system [9]. These advances are promising steps towards the
fabrication of a SET based on Mn doped II-VI QD, widely studied from the
theory side [9–15].

We have recently studied the single electron transport through a CdTe
QD, doped with a single Mn atom and charged by a gate voltage, VG. We
found that, in some instances, the charge Q vs. gate VG curve was different
depending on whether the dot was being charged or discharged. Consequently,
the linear conductance G0(VG) also presents hysteretic behaviour. Here we



SET in Single Atom Magnet 461

further explore this phenomenon. We argue that a hystereticG0(VG) curve can
be a finger-print to characterize transport through single-molecule magnets.

2 Formalism

We consider a QD weakly coupled to two metallic and non-magnetic electrodes
(source and drain). The dot can be gated so that the average charge can vary
between 0 and +1 (injection of a single valence-band hole). Other charge
states have been considered elsewhere [9]. The total Hamiltonian reads H =
HQD+HC+HL+HR+VL+VR. Here HQD features a single orbital level, with
twofold Kramers degeneracy, exchanged coupled to a spin M. In this paper
we take M = 5/2, adequate for a single Mn atom. The applied magnetic
field is zero. In analogy with previous work [9, 10, 16–19], we make use of a
quantum master equation for the dissipative dynamics of the reduced density
matrix ρNM (t) written in the basis of many-body states of the dot, |N〉.
Importantly, this quantum master equation includes the combined dynamics
of both populations and coherences. The second quantization Hamiltonian of
the isolated dot reads

HQD = ε0
∑
σ

f†σfσ +
∑

a=x,y,z

JaMaS
a
σ,σ′f†σfσ′ . (1)

Here f†σ injects a hole with (pseudo)spin σ in the quantum dot. Different
choices of Ja reflect the interplay between spin–orbit interaction, shape of the
dot and orbital origin of the valence band [5, 8, 9]. For the first hole level in
a dot with cylindrical symmetry, we have Jz >> Jx = Jy. In the absence of
light hole heavy hole mixing, we have J⊥ ≡ Jx = Jy = 0. We shall consider
both the J⊥ = 0 and J⊥ �= 0 cases. For Q = 0 HQD has 2S+1 = 6 eigenstates
describing the Mn spin. For Q = +1 HQD has 12 eigenstates describing both
the Mn spin and the hole (iso-)spin. We label them as HQD|N〉 = EN |N〉.

The metallic electrodes are described byHL =
∑

σ,k εka
†
kσakσ andHrmR =∑

σ,p εpb
†
pσbpσ whereas VL =

∑
σ,k,α Vσ,k,αf

†
αakσ +h.c. and VR =

∑
σ,p,α Vσ,k,α

f†αbpσ + h.c. are the standard spin-conserving tunneling Hamiltonian that
couple the metallic reservoirs and the dot. Here α labels the isospin of the
QD state. Assuming that the quantum dot is weakly coupled to the elec-
tronic reservoirs (sequential tunneling), the dissipative dynamics of the density
matrix is governed by a Markovian kernel, ρ̇(t) = Aρ(t), fully character-
ized by the rates ΓN,M =

∑
r∈L,R Γrnr(EN − EM )

∑
σ |〈N |fσ|M〉|2. Here

f+
σ ≡ f†σ, f−σ ≡ fσ, n+

r is the Fermi function of reservoir r and n−r =1-n+
r .

The notation Γ±
N,M implies that states M with charge Q are connected with

states N with charge Q ± 1. The coupling to the leads is parameterized by
ΓL,R = 2π

�
|VL,R|2NL,R, where NL,R is the DOS of the metallic reservoir. For

a given value of gate, bias voltage and temperature we find the steady state
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density matrix ρ̃ (namely, Aρ̃ = 0), from which we can compute the aver-
age charge, magnetization and current. Importantly, the current expression
includes both diagonal and non-diagonal terms in the density matrix [9].

3 Results

We now consider the charging and discharging process of the Mn-doped QD.
The VG is varied so that the charge changes from 0 to +1 or vice-versa. We
take the temperature equal to 0.05 meV = kBT = 5ΓL = 5ΓR. In standard
SET the G0(VG) curve is independent of whether the dot is being charged
or discharged and has a single peak at the VG for which the ground state
energies of the manifolds with 0 and 1 carriers are the same. In a previous
work we reported that this is no longer the case for Mn-doped quantum dots
[9]. Here we present some details to provide additional insight of this new
phenomena. The initial condition for the solution of the master equation is
a thermal density matrix. We choose the inital VG so that the charge state
is either 0 or +1. The master equation is solved and the steady state DM is
obtained for each VG. Importantly, as the gate is ramped the initial condition
for the density matrix is the steady state of the previous run. Because the
only Mn spin-relaxation mechanism included in our approach comes from
the combined action of exchange interaction with the hole and single-hole
tunneling events, sometimes our simulations reach a steady state different
from the thermal equilibrium. This simulates an experiment in which the
gate is ramped at a pace faster than the spin relaxation mechanisms not
included in the calculation, i.e. those operating in (Cd,Mn)Te. Importantly,
the relaxation time of Mn in CdTe reaches ≈ 10−3 s in the dilute limit [20]
and it might be even longer in quantum dots. We expect that the G(VG) curve
will be different depending on the pace at which the gate voltage is ramped.
This resembles the M(H) curves of single molecule magnets, which depend
on the pace at which the external field is applied [21].

In our first simulation we consider the case J⊥ = 0 for which the charg-
ing curve shows three peaks, whereas in the isotropic case (not shown here),
Jz = J⊥, the results are identical to the standard case [9]. In the upper (lower)
panels of the figure we plot the population (linear conductance) of the QD
as a function of VG for two cases (charging and discharging the QD) and two
values of the transverse interaction J⊥. In both cases we take Jz = 0.6 meV
whereas J⊥ = 0 in panels (a–d). A very small bias voltage (0.005 meV) is
applied so that current flows. The eigenstates of the QD Hamiltonian with
Q = +1 are split in six doublets. The eigenstates of the lowest energy dou-
blet are |Mz = ±5/2, σ = ∓〉. The results in panels (b) and (d) are quite
standard: the dot starts in an equilibrium situation, with the two states of
the Q = +1 ground state doublet equally occupied and all the other states
with either Q = +1 and Q = 0 with zero occupation. As the gate brings
the states Q + 1 with |Mz| = 5/2 into resonance with the Q = 0 states, the
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Fig. 1. (a-d) QD with J⊥ = 0. (e-h) QD with J⊥ = 0.1Jz. Upper panels: Steady
state values of the QD occupations as a function of gate voltage for charging (a, e)
and discharging (b, f) the QDs. Lower panels: the corresponding linear conductances
for charging (c, g) and discharging (d, h) the QDs

populations are transferred from the charged to the neutral states, always
conserving the Mn spin. A single peak in the linear conductance occurs at the
degeneracy point. The non-standard results are shown in panels (a) and (c),
corresponding to charging the QD. At the initial gate, the six Q = 0 states
are equally populated (they are degenerate) and all the Q = 1 states are high
above in energy and their occupation is zero. As the gate is ramped so that
the charged states are closer in energy, a first transfer of population from neu-
tral to charged states occurs in the Mz = ±5/2, corresponding to the lowest
energy doublet of the Q = +1 states. Notice that the population of the two
Q = 0 doublets with Mz �= ±5/2 remains unaffected. Only when the second
charged doublet Q = +1,Mz = ±3/2 becomes in resonance with the neutral
states, population transfer occurs, resulting in a second conductance peak.
Notice that the steady state occupations reached when the dot is charged
(panel a) are different from those of equilibrium (VG = 5.2 meV in panel b).

The anomalous behaviour is related to the strict conservation of the Mn
spin along the growth axis Mz. We now explore what happens when Mn spin
flip terms are included in the Hamiltonian. To do that we take J⊥ = 0.1Jz,
with the same Jz than before. This choice of Ja corresponds to weak LH-HH
mixing [9]. Because of J⊥ �= 0, the states with Q = +1 are not eigenstates
of Mz anymore and instead of six doublets, the spectrum has five doublets
and two singlets [9]. The results of our simulations are shown in the panels
(e–h) of the figure, for integration times much larger than 1/Γ . As in the
preceeding case, the removal of the hole from the dot yields a single peak in
the G0(VG) curve. The injection of the hole, however, results in two peaks,
different both from the standard one peak result and from the anomalous three
peak result obtained for the J⊥ = 0 case. We see that strict conservation ofMz

is not necessary to obtain hysteretic G0(VG) curves. Panel (e) shows how the
population of the initially occupied Q = 0 states is transferred to the initially
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empty Q = +1 states. In contrast with the pure Ising case, the depletion of
the |Mz| = 3/2 doublet occurs via transfer both to the ground state doublet
and the first excited state of the Q = +1 manifold. The latter also depletes the
Q = 0 |Mz| = 1/2 doublet. As a result G0(VG) has only two peaks associated
to the resonance condition for the Q = +1 first two doublets. A single peak
is recovered only if the integration time goes to infinity. The fact that Mz is
not conserved is also seen during the reverse process of hole ejection from the
dot, in panel (f).

As a final remark, we note that according to our simulations we can filter
electrically the Mn spin. For instance, if we start with an equilibrium distrib-
ution with Q = 0 the six Mn spins are equally populated. We now charge the
dot (panels a and e) and wait until thermal equilibrum is reached. At that
point, the occupied states have zero (or small) overlap with the Mz �= ±5/2
sector. If the gate is reversed so that the hole is removed from the dot the final
density matrix is different from the initial one and only the occupation of the
|Mz| = 5/2 doublet is significantly larger than that of the others (panels b
and f). This result shows a possible protocol of electrical manipulation of the
quantum state of a single Mn spin.

4 Conclusions

We have shown that single electron transport through a single atom mag-
net can result in hysteretic behavior of the linear conductance vs. gate. The
anomalous result occurs when the following conditions are met: (1) the effec-
tive Hamiltonian of the nanomagnet is strongly modified by the addition of a
single carrier (2) The exchange interaction is anisotropic and (3) the charged
nanomagnet can reach a (quasi)-steady state different from equilibrium at
time scales shorter than the slow spin relaxation times of the neutral Mn [20].
Observability of the hysteretic linear conductance requires ramping the gate
faster than this time scale.
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Minisymposium “Ferromagnetic Carbon
Nanostructures”
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The discovery of nanostructured forms of molecular carbon has led to renewed
interest in the varied properties of this element. Recent experiments and theo-
retical studies have suggested that electronic instabilities in pure graphite
may give rise to superconducting and ferromagnetic properties, even at room
temperature. Magnetic carbon could be used to make inexpensive, metal-
free magnets for applications in medicine and biology, nanotechnology and
telecommunications. The following topics in the invited presentations to the
minisymposium have been included in these proceedings: The state of the
art of magnetism in nanographite is reviewed in two papers from the point
of view of experimentalists (T. Makarowa and M.A. Ramos). The theoretical
support is presented in the report by M.P. Lopez-Sancho, M.A.H. Vozmediano,
F. Stauber, and F. Guinea. A. Cortijo discusses the electronic properties of
topological defects in graphene, and F. Guinea presents a transistor effect in
bilayer graphene. An additional presentation by L. Pisani on numerical studies
of graphene nanoribbons could not be included in this volume.
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Introduction

Carbon nanostructures are regarded as all-carbon structures with the nanome-
ter size. Building blocks of the future, building blocks of future information
and energy technologies – here are the permanent epithets for carbon nano-
structures. Scientific interest, sparked by the discovery of fullerenes [1], re-
focused on carbon nanotubes [2] and other exotic structures like nanofibers,
nanoribbons, nanohoops, nanocones and nanohorns [3], toroids [4] and heli-
coidal tubes [5], onions and peapods [6], Schwarzites and Haeckelites [7]. More
recently, it was discovered that the two-dimensional building block for creat-
ing the nanostructures of any other dimensionality, graphene, itself possesses
unique electronic properties: ballistic electron transport, constant velocity for
the electrons confined in the graphene sheets (massless particle behaviour),
half-integer shift in the quantum Hall effect and quantized minimum conduc-
tivity [8–10]. The linear dependence of the energy on momentum in graphene
leads to unusual features, not encountered in other materials [11].

Detailed understanding of the structure, electronic properties and poten-
tial applications of carbon nanostructures is the basis for a new technology,
which will modify their properties in a targeted way. Carbon nanostructures
offer record values of strength and flexibility, can exhibit ballistic conductiv-
ity, superconductivity and superlubricity. Magnetic properties are less inves-
tigated [12]. It is well known that small amounts of carbon are capable of
destroying the strong exchange interactions between iron atoms in stainless
steel. Can one expect exchange interactions in all-carbon structures?

Nanosized Carbon Structures

Carbon nanostructures exhibit a wide variety of unusual structural and elec-
tronic properties. An important feature of graphitic structures is 2D itiner-
ant π- electron system, which is responsible for high conductivity and large
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diamagnetism. Nearly all (probably, excluding nanodiamonds and tetrahed-
rally bonded amorphous carbon) carbon nanostructures could be constructed
from an ordinary hexagonal graphene layer by cutting, bending, rolling and
zipping. These carbon structures can be closed or open, singlewalled or mul-
tiwalled, and can have zero, positive or negative Gaussian curvature.

Rolled graphene sheets, fullerenes and carbon nanotubes possess closed
π-electron systems. These systems do not have open edges, or the influ-
ence of the open edges is negligible. They are characterized by negative dia-
magnetic susceptibility [13]. More complicated hypothetical close-shell pure
carbon nanostructures such as corrugated nanotori constructed from coales-
cent fullerenes [14] may exhibit positive magnetic susceptibility (paramag-
netism). Carbon nanotori with magic numbers have colossal paramagnetic
response [15], perforated fullerenes and nanoporous graphitic structures, ex-
hibiting negative Gaussian curvature which behave as strong paramagnets
experiencing large magnetic moments when an external magnetic field is ap-
plied [16]. A giant magnetoconductance is predicted to occur in twisted nan-
otubes in presence of an applied magnetic field [17].

Diamagnetism of nanographenes can be understood in terms of diamag-
netic ring currents. Defects in graphite always reduce the diamagnetic signal.
In a simplified picture, vacancies, adatoms, pores and bond rotations enhance
local paramagnetic ring currents and produce local magnetic moments [18].

Nanographite, a stack of nanosized graphene layers, is a nanosized π-
electron system with open edges. The periphery of a nanographite pattern
can be described as a combination of zigzag and armchair edges (Fig. 1).
In the open-edge systems, the edges around their boundary produce distinctive
electronic features, namely, the zigzag edges produce strongly spin-polarized
states, which are spatially localized around the edges. The presence of these
states modifies the electronic structure of nanographite as a whole: It produces
edge-inherited non-bonding π-electronic state (edge state) in addition to the

Fig. 1. Nanographene
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π- and π*-bands, giving entirely different electronic structure from bulk
graphite. These so-called ‘peculiar’ states are extended along the edges but
at the same time are localized at the edges [19]. These states produce large
electronic density of states at the Fermi level and play an important role in
the unconventional nano-magnetism.

An important difference exists between so-called graphitic and nongra-
phitic nanocarbon. Graphitic nanocarbon is characterized by the three-
dimensional order in the direction perpendicular to the planes; the presence
of the defects in the planes is not taken into account. In the case of random
distribution of the packets of the graphite-like layers, the material is called
‘nongraphitic carbon’ [20]. Formally, the sp2/sp3 ratio is not relevant; how-
ever, general trend in the electronic properties of graphitic and non-graphitic
nanocarbon is the following: The increase in the sp2/sp3 ratio leads to the
clusterization of the sp2 sites and to establishing the long range structural or-
der. This favours the formation of the itinerant π-electron system; therefore,
graphitic nanocarbon is usually characterized with larger diamagnetism than
non-graphitic carbons. However, even sp2-rich disordered carbon may remain
non-graphitic, and the simplest examples of this are the fullerene solids or
carbon nanofoam [21].

A particular case of a graphene modification is the Stone–Wales defects,
or topological defects, caused by the rotation of carbon atoms which leads
to the formation of five- or sevenfold rings. A novel class of curved carbon
structures, Schwarzites and Haeckelites, has been proposed theoretically [22].
Schwarzite is a form of carbon containing graphite-like sheets with hyperbolic
curvature, so far, periodic schwarzites have not been realized experimentally;
however, there is experimental evidence that random Schwarzite structures
are present in a cluster form in such carbon phases as spongy carbon [23]
and carbon nanofoam [24]. Haeckelite is a theoretically predicted material in
which pentagons, hexagons and heptagons are equally considered as regular
building blocks. Calculations have shown that this structure is energetically
more favourable than fullerenes [25]. Haeckelite structures (nanostructures
containing non-hexagonal rings) were produced on the HOPG (highly ori-
ented pyrolitic graphite) substrate: Y-branched carbon nanotubes and coiled
carbon nanotubes [26]. It was shown theoretically that the schwarzite carbon
structures which do not contain under-coordinated carbon atoms carry a net
magnetic moment in the ground state. In the systems with negative Gaussian
curvature, unpaired spins can be introduced by sterically protected carbon
radicals [27].

Intrinsic Magnetic Defects in Nanocarbon

Electronic structure of nanocarbon is controlled by the defects [28]. It has been
shown theoretically [29] that the interplay of disorder and interactions in a
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2D graphene layer gives rise to a rich phase diagram where strong coupling
phases can become stable. Local defects can lead to the magnetic ordering.

The examples of intrinsic carbon defects are the lattice defects, vacancies
and voids in the graphene structure, which give rise to localized states at
the Fermi energy, and the number of these states roughly scales with the de-
fect perimeter [30]. The repulsive electron–electron interaction leads to spin
polarization and to the formation of localized moments which interact ferro-
magnetically. However, under the reasonable assumptions on the defect con-
centration, the exchange integral is low, and the estimated Curie temperature
does not exceed 1 K.

Topological defects in graphene lead to the presence of curvature in the
samples of this material. The formation of the heptagon–pentagon defects in-
troduces corrections to the local density of states, and the spatial extent of the
correction is such that the relative intensity decays to 10% in approximately
20 unit cells [31].

The key problem in graphite magnetism is the nature and stability of the
defects and the range of the magnetic interaction (J) between the localized
spins of the defects. It is important that disorder increases J [32].

A specific case of defects is the presence of the first raw elements, although
they cannot be unambiguously classified as intrinsic carbon defects. The most
important defect is hydrogen: Unsaturated valence bonds at the boundaries of
graphene flakes are filled with stabilizing elements; among these stabilizers hy-
drogen atoms are the common ones. The entrapment of hydrogen by dangling
bonds at the nanographite perimeter can induce a finite magnetization. A
theoretical study of a graphene ribbon in which each carbon atom is bonded
to two hydrogen atoms at one edge and to a single hydrogen atom at the
other edge shows that the structure has a finite total magnetic moment [33].
Combination of different edge structures (by hydrogenation, fluorination or
oxidation) is proposed as a method to design magnetic nanographite [34].

Other elements that may strongly influence magnetic behaviour of car-
bon are boron and nitrogen. Border states in hexagonally bonded BNC
heterosheets have been predicted to lead to a ferromagnetic ground state,
a manifestation of flat-band ferromagnetism [35]. In heterostructured nan-
otubes, partly filled states at the interface of carbon and boron nitride
segments, may acquire a permanent magnetic moment. Depending on the
atomic arrangement, heterostructured C/BN nanotubes may exhibit an itin-
erant ferromagnetic behaviour owing to the presence of localized states at the
zigzag boundary of carbon and boron nitride segments [36].

Magnetic Properties of Nanocarbon

Magnetic susceptibility χtotal of nanocarbon may be generally described by
the following formula:

χtotal = χcore + χorb + χvv + χp + χL + χc
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where χcore is the diamagnetic contribution from the core electrons which
can be estimated from the sum of Pascal’s constants [37], χorb is the orbital
diamagnetism arising from the inter-band transition between graphitic lin-
ear bands, χvv is the paramagnetic van Vleck term originating from virtual
magnetic dipole transitions between the valence and conduction bands, χp is
the Pauli paramagnetism of itinerant electrons which depends on the density
of states around the Fermi energy, χL is the Landau diamagnetism of the
itinerant electrons and χc is the temperature-dependent Curie–Weiss term
χc = C/(T − Θ) where C and Θ stand for the Curie constant and the Weiss
temperature, respectively.

Experimentally, various types of magnetic behaviour were discovered in
nanocarbon derived from graphite. Theoretical predictions have been con-
firmed by strong experimental evidence that the edge states in nanographite
disordered network govern its magnetic properties. Normally the nanocarbons
are diamagnets, and diamagnetism competes with the Curie–Weiss behaviour
and the Pauli paramagnetic temperature-independent term. In highly disor-
dered structures a paramagnetic behaviour was observed, and the presence of
non-bonding π-electrons at the edges of nanosized graphene was invoked for
the explanation of the paramagnetism [38]. Unusually strong paramagnetism
was found in dense graphitic filaments formed via thermal decomposition of
mesitylene in an applied electric field [39].

Unconventional magnetic properties, including anti-ferromagnetic interac-
tions, spin–glass state, disordered magnetism, magnetic switching phenom-
enon have been described in nanocarbons. In non-graphitic but sp2-rich
disordered carbons prepared by pulsed laser deposition the presence of anti-
ferromagnetic interactions between the localized spins has been identified from
the negative Weiss temperature and from the magnetization curves, which
did not follow the expected Brillouin curve for non-interacting spins with
S = 1/2 at low temperatures [40]. The average distance between the localized
spins has been calculated under the assumption of the homogeneous distri-
bution of the spins. The estimated 17 Å value sufficiently exceeds the one
expected for the direct exchange interaction. Similar effects were observed
on nanographite obtained from the heat treatment of nano-diamond parti-
cles [41]. Strong anti-ferromagnetic coupling has been found between the spins
localized on the surface of the particles. Hydrothermal treatment sufficiently
enhances the exchange interactions. The exchange coupling between the spins
becomes appreciable in the range of 40 K, and after the hydrothermal treat-
ment in supercritical water this range increases to 200 K (Fig. 2) [42]. Again,
the strength of anti-ferromagnetic interactions is significantly larger than that
simply expected from the average spin–spin distance.

Another example of open-shell carbon nanostructures is ACF (activated
carbon fibers), which can be considered as a three-dimensional random net-
work of nanographitic domains with characteristic dimensions of several
nanometers [43]. Temperature dependencies of the susceptibility taken in zero
field cooled regime indicate the presence of a quenched disordered magnetic
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Fig. 2. The downturn of curves (χ − χ0) · T vs. T manifests the onset of anti-
ferromagnetic interactions between the spins. Reprinted with the permission from
Osipov et al. [42]

structure like a spin glass state [44]. This effect appears in the vicinity of the
metal–insulator transition, where the coexistence of the edge-state localized
spins and the conduction π-electrons causes the magnetic state in which the
exchange interactions between the localized spins are mediated by the con-
duction electrons. The range of exchange interaction is estimated as 2–3 nm,
and such a long-range nature of the exchange interaction proves that the
nanographite magnetism is sui generis.

An important proof for the edge-state inherited unconventional magnetism
is the magnetic switching phenomenon, which has been found in the activated
carbon fibers. Physisorption of water drastically changes magnetic proper-
ties, although water itself is nonmagnetic [45]. Water molecules compress the
nanographite domains, reducing the interlayer distance in a stepwise manner.
This leads to the enhancement of the anti-ferromagnetic exchange interaction
of the edge-state localized spins at the adjacent nanographene layers [46].

Ferromagnetism in Carbon Nanostructures

Magnetic ordering at high temperatures in carbon-based compounds has been
persistently reported since 1986. In some cases the reported experimental data
give convincing proof for the intrinsic origin of the effect. This is the case of the
proton-irradiated carbon structures, where the ultimate purity of the material
is proved by simultaneous measurements of the magnetic impurities [47]. In
other cases the carbonaceous materials do contain 0.001–0.1% iron, whereas
the measured magnetization values several times exceed the value expected
from the impurities assuming all iron is in its ferromagnetic form. This notice-
able surplus as well as the absence of superparamagnetic behaviour, which is
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typical for iron–carbon composites with iron concentrations ranging up to sev-
eral at. % [48–50] suggests that impurities either do not contribute to magnetic
properties or their role is far from trivial. Nontrivial origin of magnetic behav-
iour in contaminated carbon-based materials may result from catalytic [51]
or template [52] properties of transition metal atoms, and it was shown that
ferromagnetic properties of carbon preserve after washing out the transition
metal ions [53]. The effect of triggering carbon magnetism by the presence of
transition metals was reported on graphite [54], carbon nanotubes [55] and
C/Fe layers [56]; however, this effect was not found in graphite–magnetite
composites [57] and fullerene-like Ni-C nanostructures [58]. Eventually, there
is growing evidence that carbon does not need iron to become magnetic.

Figure 3 shows the magnetization loop for the ultra pure spectral graphite
rod. The concentration of impurities in this sample is the following:
B = 0.03 ppm, Si = 0.1 ppm, Fe = 0.03 ppm, Mg < 0.03 ppm, Ti = 0.03 ppm,
Al < 0.03 ppm, V = 0.03 ppm, Ca < 0.03 ppm, Cu < 0.03 ppm. Maximum
magnetization value for the extrinsic (iron-conditioned) magnetization could
be 6.6 ×10−6 emu g−1; the measured value is 1.2 ×10−3 emu g−1, i.e. 180 times
higher. Remanence magnetization is 1.2 ×10−4 emu g−1, coercive force is 160
Oe. A diamagnetic contribution −6.59 × 10−6 emu (G g)−1 was subtracted
from the original data. At room temperature no signs of nonlinearity were
detected (empty circles in Fig. 1). Although we operate with very small values
of both magnetization and metal content, fairly large mass of the analyzed
sample (156 mg) reduces the mistakes to minimum.

Similar signals were found in high purity HOPG samples from NTI-Europe,
ZYA quality [59].The authors discard the possibility that this behaviour is
due to magnetic impurities, since the PIXE (particle induced X-ray emission)
experiments performed on some of these samples always gave concentrations
several times less than needed for the measured magnetization. We believe
that the occurrence of the weak signal of magnetic ordering in ultra-pure

Fig. 3. M(H) at 1.9 K (full circles) and at 298 K (open circles) for the ultra pure
spectral carbon
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metal-free graphite rod and high purity HOPG samples manifests a defect-
related magnetism. However, the signals are very weak, and it is not possible
to attribute these signals to any of defects described above: edge states, or
bond defects, or interstitial or surface states. More importantly, the nature of
the ordering mechanism remains to be determined.

Conclusions

Carbon materials that exhibit ferromagnetic behaviour have been predicted
theoretically and reported experimentally in recent years. The initial surpris-
ing experiments were confirmed by the independent groups. The fact that
carbon atoms can be magnetically ordered at room temperature was con-
firmed by the direct experiment: an element-sensitive method X-ray magnetic
circular dichroism [60]. However, it is still a challenge to demonstrate exp-
erimentally the paramagnetic and ferromagnetic properties of bulk carbon
materials.

We envisage that magnetism in different families of nanostructures will be
playing a key role in the development of emerging technologies in the present
century. Single-molecule transistors, all-carbon integrated circuits, molecular
actuators, flat displays all could be produced on the basic of carbon nanostruc-
tures. An extension of these possibilities to spintronic devices is a tempting
opportunity.
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1 Introduction

Pure graphite, the stable crystalline allotrope of carbon at room temperature
and ambient pressure, is known to exhibit a strong and anisotropic “textbook”
diamagnetism, due to its delocalized π electrons. Nevertheless, in the last
two decades several researchers have reported more or less clear evidences of
ferromagnetic behavior in carbon at room temperature. We might mention
the work by japanese groups [Mur91,Mur92], who observed it in amorphous
carbon (relatively rich in hydrogen). The origin of this ferromagnetic behavior
could be theoretically justified as arising from the mixture of sp2 and sp3

bonding in carbon structure [Ovc88]. More recently, new findings of this kind
have appeared in the literature, as the presence of ferromagnetic signals in
some polymerized fullerenes reported by Makarova et al. [Mak01], or that
found in proton-irradiated highly-oriented pyrolitic graphite (HOPG) by the
group led by Esquinazi [Esq02,Han03]. In the latter experimental work, the
analysis of possible magnetic impurities has been much more rigorous as to
overcome the natural skepticism arose by the former experiments. Moreover,
several theoretical works seem to support the importance of disorder [Voz04]
and/or of vacancy-hydrogen complexes [Leh04] for the appearance of magnetic
moments in graphite.

The interest in the possibility of producing organic materials with mag-
netic properties is obvious. Therefore, we have undertaken a joint research
line to study this subject, by making use of the 5 MV tandem ion-accelerator
hosted by the CMAM in the Universidad Autónoma de Madrid. At the same
time of the ion implantation, the PIXE technique allows to determine in
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situ the amount of magnetic impurities in the sample, a crucial issue given
the weakness of the reported ferromagnetic signals. The possible existence of
the latter have been studied through SQUID magnetometry, Magnetic Force
Microscopy (MFM) and magneto-optic Kerr effect (MOKE).

2 Experimental

High purity HOPG was used (NTI-Europe, ZYA quality, 0.4◦ ± 0.1◦ rocking
curve). Proton and/or carbon irradiations were conducted in a 5 MV tandem
ion-accelerator (HVEE, using a Cockroft-Walton power supply system). Par-
ticle induced X-ray emission (PIXE) measurements allowed us to assess the
amount of local concentration of heavier impurities. In some cases, we emplo-
yed a fine square mesh of copper (G2000HS, SPI, with a pitch of 12.5 µm, with
separating copper bars of 5 µm and squared holes of 7.5 µm each side) as a
mask onto the irradiation area. Measurements of the total magnetic moment of
the samples were performed with a SQUID magnetometer from quantum de-
sign. Possible ferromagnetic behavior at the surface of the irradiated samples
was studied by means of a magnetic force microscope (MFM) from Nanotec
Electronica S.L., operating under externally applied magnetic field [Ase00] at
ambient temperature. In all experiments, a double-step procedure was em-
ployed: First, a simple topographic scan is taken by maintaining a constant
amplitude of oscillation of the cantilever, very close to the surface. Afterwards,
long-range interactions are measured in a second scan with no feedback, fol-
lowing the topography of the sample and measuring the frequency shift that is
proportional to the magnetic force gradient. This second scan is performed by
retracing the tip tens of nanometer from the sample in order to avoid the topo-
graphic interaction. We have also conducted magneto-optic measurements by
using a high resolution vectorial Kerr set-up [Cam05].

3 Results and Discussion

First of all, we cut HOPG samples with a typical surface area of 5× 3.3mm2

and 0.2–0.3 mm thick, using clean diamond wire. We conducted ion-beam
irradiation of H+ protons of 3 MeV energy, in high vacuum. Montecarlo SRIM
simulations indicate a corresponding implantation depth of 75.3± 1.3 µm for
the H+ ions. Spot size was here always about 1 mm2. In Fig. 1, we show the
measured magnetization of the samples, with magnetic fields applied paral-
lel to graphene planes, after subtracting the linear (negative) diamagnetic
background, expected for bulk, pure graphite. Total irradiated doses ranged
40–1,000 µC. As can be seen, in all cases a (weak) ferromagnetic curve is ob-
served, with the sample of intermediate irradiation dose, 200 µC exhibiting
the higher ferromagnetic signal. Nevertheless, we found somewhat surpris-
ingly that also a nonirradiated HOPG sample exhibit some ferromagnetic
signal, comparable with the samples of lesser magnetization. We discard the
possibility of all this behavior being due to magnetic impurities, since our
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Fig. 1. SQUID measurements of the total magnetic moment of differently irra-
diated HOPG samples. See legend for ion-doses implanted. A linear diamagnetic
background has been subtracted in all curves to show up the ferromagnetic contri-
bution

PIXE experiments performed on some of these samples always gave concen-
trations below 10± 4 ppm of Fe element, and indetectable for other magnetic
impurities. We believe that these observations simply confirm the findings of
ferromagnetic behavior in many nonirradiated HOPG samples, with differ-
ent kinds of preparation quality, structural vacancies or disorder, as found by
Esquinazi and coworkers [Esq02]. However, our first experiments using MFM
on these proton-irradiated samples, as on other ones irradiated in air with
ion-beam spots smaller than 100 µm, provided no clear evidence of magnetic
behavior at the surface of proton-irradiated regions, in contrast to earlier re-
ports [Esq02,Han03]. MOKE experiments performed in the same samples also
gave negative results, always a pure linear diamagnetic curve was obtained.
This is not too surprising, since the found ferromagnetic contributions super-
imposed on a large diamagnetic signal are very weak. Moreover, it is not clear
what should be its relative strength at the superficial regions probed by these
techniques.

In order to improve the layout of the samples surface to have a better
contrast for MFM studies, we decided to use a grid or mask of copper. Thus,
we put several grids of a fine copper mesh on one 1 cm2 HOPG sample to be
irradiated. The squared holes were of 7.5×7.5 µm2 with copper separating bars
of 5 and 20 µm thick. In the experiments shown here, all studied sample regions
were first irradiated with a dose of 150 µC of C4+ carbon ions impinging on
the sample with an energy of 25 MeV, the spot size being around 1 mm2.
Hence the carbon ions were to stop at the middle of the depth of the copper
separating bars. Through the holes of the grid, however, these carbon ions
will penetrate the HOPG sample with a calculated implantation range of
20.3 µm. In one region of the sample, a second irradiation was then conducted.
A dose of 225 µC of H+ protons was implanted, with an energy of 1.25 MeV
chosen, so that the protons also stop at mid depth of the copper separating
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Fig. 2. Topographic profile of a HOPG sample irradiated with a copper mask with a
dose of 150 µC of C4+ carbon ions of 25 MeV, and 225 µC of H+ protons of 1.25 MeV
(see text for details)

Fig. 3. Topographic image (left picture) and corresponding magnetic-contrast image
(right picture) taken after applying an external magnetic field of 3 kOe to the same
sample shown in Fig. 2

bars, whereas through the holes the penetration into the HOPG sample would
be of about 20.0 µm. The surface topography of the latter sample after both
consecutive ion irradiations and removing of the mask is shown in Fig. 2,
where the topographic modifications induced by the irradiations are seen to
clearly follow the pattern of the copper grid. Figure 3 shows a clear magnetic-
contrast pattern in the ion-irradiated spots. In contrast to this case, in the
region of the sample were only the first carbon irradiation was performed, no
magnetic features were observed, as can be seen in Fig. 4. MFM probes with
different magnetic moment [Ase06] have been used in order to enhance the
tip–sample interaction. This seems to support the relevant role played by H+

ions in promoting ferromagnetism in carbon.

4 Summary and Conclusions

We have presented some representative experimental results found in proton-
and carbon-irradiated HOPG samples, aiming to confirm or disregard the ex-
istence of ferromagnetic behavior in pure carbon. To address that, we have
combined macroscopic, bulk magnetic measurements (SQUID) with micro-
scopic ones (MFM, MOKE). In brief, we have confirmed the existence of
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Fig. 4. Topographic images (left picture) and corresponding magnetic-contrast im-
ages (right picture) taken on a HOPG sample irradiated through a copper mask,
with a dose of 150 µC of C4+ carbon ions of 25 MeV by using (a) a Mesp-LM MFM
probe and (b) a MESP MFM probe from Veeco

ferromagnetic features, both at macroscopic and microscopic scales. Never-
theless, the produced effects are still so weak, and the variables involved so
many and unknown, that much more systematic studies are needed.
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1 Introduction

Magnetic correlations in carbon-based materials have been reported for many
years, but the lack of reproducibility have aroused scepticism about this topic.
However, in recent years, the improvement of the characterization techniques
has allowed the observation of ferromagnetism and the precise measurement
of the impurity amounts in different samples of HOPG and Kish graphite [1].
Besides the ferromagnetic hysteresis loops [2] reported at room tempera-
ture, the enhancement of ferromagnetic behavior by proton bombardment
of graphite has been observed in samples with an amount of impurities much
lower than that needed to produce the saturation magnetization measured [3].
Irradiation induced magnetism in carbon nanostructures has been reported
by N and C implantation [4]. A relation between the magnetic properties of
pure bulk ferromagnetic graphite and the topographic defects introduced in
the pristine material have been reported by comparison of atomic force mi-
croscopy (AFM) images and magnetic force microscopy (MFM) [5]. Soft X-ray
dichroism spectromicroscopy has been used to analyze the magnetic order of
metal free carbon films. A clear evidence of intrinsic ferromagnetic order at
room temperature has been obtained in these carbon films that have been
irradiated by a focused proton beam [6]. All these experiments suggest that
there is a relation between topological defects in the lattice induced by irradia-
tion and the ferromagnetic correlations [6]. We will study the ferromagnetism
in a two-dimensional graphene plane by considering disorder, vacancies, and
defects in the atomic network.

The graphene sheet is described by a tight binding model including the π
orbitals, perpendicular to the planes. The bands of graphite are well described
by this model, including only nearest neighbor coupling. The conduction and
valence bands obtained are degenerate at the six corners of the hexagonal
Brillouin zone (BZ). At half-filling the Fermi level lies at the mid point of the
bands; therefore, the Fermi surface is reduced to the six K points located at
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the BZ corners, only two of then are inequivalent. In the proximity of these
points, the dispersion relation is linear and the low energy excitations can be
studied taking the continuum limit at these points. The effective Hamiltonian
obtained turns out to be the Dirac operator [8, 9]. The density of states of
these linear bands vanishes at the Fermi level.

2 Inclusion of Disorder

The disorder may have an important influence in the occurrence of ferromag-
netism in 2D graphene. On the other hand, vacancies, dislocations, edges, or
cracks are present in most of the samples specially after irradiation with pro-
tons. We will study the formation of local moments near extended defects in
the continuum approximation. It is known that disorder significantly changes
the states described by the two-dimensional Dirac equation [10], and usu-
ally, the density of states at low energies is increased. Lattice defects, such as
pentagons and heptagons, or dislocations, can be included in the continuum
model by means of a non-abelian gauge field [9, 11] that reproduces the ef-
fects of the curvature of the lattice and the possible exchange of Fermi points.
Within the same theoretical scheme it has also been shown that certain types
of disorder randomly distributed in the graphene lattice enhances the effect
of the interactions [6] and can stabilize new phases. In addition, a graphene
plane can show states localized at interfaces [5], which in the absence of other
types of disorder lie at the Fermi energy.

The tight binding model defined by the π orbitals at the lattice sites can
have edge states when the sites at the edge all belong to the same sublattice [5]
(zigzag edge). These states lie at zero energy which for neutral graphene planes
correspond to the Fermi energy. In the continuum model described earlier,
these localized states are normalizable solutions (Ψ1(r), Ψ2(r)) of the Dirac
equation for ε = 0:

(i∂x ± ∂y)Ψ1(r) = i∂z,z̄Ψ1(z, z̄) = 0

(i∂x ∓ i∂y)Ψ2(r) = i∂z̄,zΨ2(z, z̄) = 0, (1)

where z, z̄ = x±iy. These equations are satisfied if Ψ1(r) is an analytic function
of z and Ψ2(r) = 0, or if Ψ1(r) = 0 and Ψ2(r) is an analytic function of z̄.

We now consider a semi-infinite honeycomb lattice with an edge at y = 0
and which occupies the half plane x > 0. A possible solution that decays as
x→∞ is

Ψ1(x, y) ∝ e−kz = eikye−kx, Ψ2(r) = 0 .

These solutions satisfy the boundary conditions at y = 0 if the last column
of carbon atoms belong to the sublattice where the component Ψ1 is defined.
Then, the next column belongs to the other sublattice, where the amplitude
of the state is, by construction, zero.

This kind of solutions can be generalized to describe other types of ext-
ended defects that will be produced in experiments where graphite samples



Ferromagnetism and Disorder in Graphene 485

f(z)=0

Fig. 1. Elongated crack in the honeycomb structure. The crack is such that the sites
in the upper edge belong to one sublattice, while those at the lower edge belong to
the other. Bottom: approximate cut in the complex plane which can be used to
represent this crack at long distances

are bombarded by protons. In a strongly disordered sample, large defects
made up of many vacancies can exist. These defects will give rise to localized
states, when the termination at the edges is locally similar to the surfaces
discussed above. Only possible localized states can exist at zero energy, where
the density of extended states vanishes. The wave functions obtained from the
Dirac equations will be normalizable and analytic functions of the variables
z = x + iy or z̄ = x − iy of the form Ψ(z) ≡ [f(z), 0] obeying the boundary
conditions imposed by the shape of the defect.

Extended vacancies with approximate circular shape can support solutions
of the type f(z) ∝ z−n, n > 1. By using conformal mapping techniques,
solutions can be found with the boundary conditions appropriate to the shapes
of different defects.

A simple case is the elongated crack depicted in Fig. 1, which we assume
to extend from x = −a to x = a, and to have a width comparable to the
lattice constant along the y axis. The analytic function f(z) associated with
localized states near a crack of this shape should satisfy Ref(z) = 0 at the
crack edges, because the boundaries of the crack include atoms from the two
sublattices. Hence, the boundary of the crack leads to a branch cut in the
complex function f(z). Labeling edge states by a quantum number n, we find
that the function Ψ can be written for these states as

Ψn ≡
{

Re
[

A

zn
√
z2 − a2

]
, 0
}
.

A similar solution is obtained by exchanging the upper by the lower spinor
component and replacing z ↔ z̄. Because of the discreteness of the lattice,
the allowed values of n should be smaller than the number of lattice units
spanned by the crack. We have checked numerically the existence of these loc-
alized states by diagonalizing the tight binding hamiltonian in finite lattices
of different sizes. It is found that the states closest to ε = 0 show a dependence
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Fig. 2. Density of states of a 24×24 cluster with periodic boundary conditions and
three contiguous vacancies: (left) the on-site interaction term is U = 0, (right) with
an on-site interaction U = 0.5t

εloc ∝ L−2, which suggest a power law localization, in agreement with the pre-
vious analysis. The total density of states of a given cluster is shown in Fig. 2.

In the presence of a finite local repulsion, the flat band of localized states
will tend to become polarized, leading to a a ferromagnetic alignment of the
electrons in these states. We have checked the formation of local moments
near cracks and similar defects by performing Hartree–Fock calculations in
finite clusters, and modeling the electron–electron interaction by an on site
repulsive term U . Typical total density of states for the unpolarized state
of a cluster with 24 × 24 unit cells, three contiguous vacancies, and periodic
boundary conditions are shown in Fig. 2. A small, but finite repulsive term
U = 0.5t � 1.4 eV leads to the splitting of a central peak, as shown in the
righthand side of Fig. 2. The total polarization of the cluster is also small, Sz =
3/2, indicating that only the electrons from the states around the impurity
contribute to the formation of a local moment. These local moments interact
with the extended states, which will mediate a RKKY like interaction between
local moments at neighboring defects. The change in the wavefunction of the
extended electrons can be calculated using perturbation theory, in terms of
the spin susceptibility of a clean system. The susceptibility per unit area was
calculated in [9], and can be written at small momenta as

χ(q) ∝ |q|
vF
. (2)

The total potential induced around a defect is proportional to the length
of the perimeter of the defect and U . This potential is distributed over an
area comparable, or larger, to the surface of the defect, Ad ∼ L2

d. We obtain

JRKKY(r) ∼ U2N2
da

4

∫
|k|�L−1

d

d2k eikr |k|
vF
∼ U2N2

d

a4

vF |r|3
, (3)

where a is the lattice constant.
Due to the absence of a finite Fermi surface, the RKKY interaction in

(3) does not have oscillations and the magnetic moments will tend to be
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ferromagnetically aligned. The total polarization per unit area at low temper-
atures is proportional to c×Nd, where c is the concentration of defects, and
Nd is proportional to their average size [6].

3 Conclusions

We have shown that, under very general circumstances, lattice defects, vacan-
cies, and voids in the graphene structure give rise to localized states at the
Fermi energy. The number of these states scales roughly with the perimeter
of the defect. Repulsive electron–electron interactions lead to the polarization
of these states and to the formation of local moments. The RKKY interaction
mediated by the valence electrons decays as r−3, where r is the distance bet-
ween defects, and shows no oscillations, due to the absence of a finite Fermi
surface in a graphene layer. The interaction is ferromagnetic, and the system
cannot show the frustration effects and spin glass features observed in other
disordered systems with local moments. On the other hand, the Curie tem-
perature estimated assuming a random distribution of local moments is low,
TC ∼ 1K, for reasonable values of the defect concentration. It may happen
that percolation effects and the finite extension of the localized states which
give rise to the local moments will increase the value of TC.
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9. González, J., Guinea, F., and Vozmediano, M.A.H., Phys. Rev. B 73, 134421

(2001); Nucl. Phys. B 406 771 (1993).
10. Horovitz, B. and La Doussal, P., Phys. Rev. B 65, 125323 (2002).
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Summary. In this work we will focus on the effects produced by topological dis-
order on the electronic properties of a graphene plane. The presence of this type of
disorder induces curvature in the samples of this material, making quite difficult the
application of standard techniques of many-body quantum theory. Once we under-
stand the nature of these defects, we can apply ideas belonging to quantum field
theory in curved space-time and extract information on physical properties that can
be measured experimentally.

1 Introduction

Graphene is a two-dimensional material formed by isolated layers of carbon
atoms arranged in a honeycomb-like lattice. Each carbon atom is linked to
three nearest neighbors due to the sp2 hybridization process, which leads to
three strong σ bonds in a plane and a partially filled π bond perpendicular
to the plane. These π bonds will determine the low energy electronic and
transport properties of the system.

It is possible to derive a long wavelength tight binding hamiltonian for the
electrons in these π bonds [3]. This hamiltonian is

H = −ivF
∫

d2rΨ̄(r)γj∂jΨ(r), (1)

where vF being a constant with dimensions of velocity (vF ∼ 103 m s−1). The
wave equation derived from the hamiltonian (1) is the Dirac equation in two
dimensions with the coefficients γj being an appropriate set of Dirac matrices.
We can set for instance, γ1 = 1⊗σ1 and γ2 = τ3⊗σ2, where the σ, τ matrices
are related to the sublattice and Fermi point degrees of freedom, respectively.
The unexpected form of the tight-binding Hamiltonian comes from two special
features of the honeycomb lattice: first, the unit cell contains two carbon atoms
belonging to different triangular sublattices, and second, in the neutral system
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at half filling, the Fermi surface reduces to two nonequivalent Fermi points.
We will study the low energy states around any of these two Fermi points. The
dispersion relation obtained from (1) is ε(k) = ±vF|k|, leading to a constant
density of states, ρ0(ω) = 8

π |ω|.

2 A First Model for the Topological Defects in Graphene

Several types of defects like vacancies, adatoms, complex boundaries, and
structural or topological defects have been observed experimentally in the
graphene lattice [2] and studied theoretically (see, for example, [3–5]).

Topological defects are produced by substitution of an hexagonal ring of
the honeycomb lattice by an n-sided polygon with any n. Their presence
impose nontrivial boundary conditions on the electron wave functions, which
are difficult to handle. A proposal made in [6] was to trade the boundary
conditions imposed by pentagonal defects by the presence of appropriate gauge
fields coupled to the spinor wave function. A generalization of this approach to
include various topological defects was presented in [7]. The strategy consists
of determining the phase of the gauge field by parallel transporting of the
state in suitable form along a closed curve surrounding all the defects.

Ψ(θ = 0) = TCΨ(θ = 2π) ⇔ Ψ(θ = 0) = exp
(∮

C

AaT
adr
)
Ψ(θ = 2π), (2)

where Aa are a set of gauge fields and T a a set of matrices related to the
pseudospin degrees of freedom of the system.

When dealing with multiple defects, we must consider a curve surrounding
all of them, as the one sketched in Fig. 1:

Fig. 1. Prototypical curve enclosing multiple defects in which the state will be
parallel transported
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The contour C is made of closed circles enclosing each defect and straight
paths linking all the contours to a fixed origin. The parallel transport operator
PC associated to the closed path is thus a composition of transport operators
over each piece:

P = Pγ1 · P1 · P−1
γ1 · · · · · PγN · PN · P−1

γN . (3)

As explained in [7] the total holonomy turns out to be1

P = (i)N (τ2)N exp
(

2πi
6

(N+ −N−)σ3

)
exp

⎛⎝2πi
3

N∑
j=1

(nj −mj)τ3

⎞⎠ . (4)

From (4) we see that we have in principle three different gauge fields to
incorporate into the Dirac equation, which couple to the matrices σ3, τ2, and
τ3 and whose associated fluxes are adjusted from (2).

3 Generalization of the Model

In spite of its elegance, the model presented in the previous section does not
contain the effects due to the curvature of the layer in the presence of these
defects. The model can be generalized to account for curvature effects [6, 8]
by coupling the gauge theory obtained from the analysis of the holonomy in
a curved space.

The substitution of a hexagon by a polygon with n < 6 sides gives rise
to a conical singularity with deficit angle (2π/6)(6 − n), which is similar to
the singularity generated by a cosmic string in general relativity. The Dirac
Equation for a massless spinor in a curved spacetime is [9]

iγµ(x)(∂µ − Γ (T )
jµ )ψ = 0, (5)

where Γ (T )
jµ is a set of spin connections related to the pseudospin matrices in

(4) and γµ(x) are generalized Dirac matrices satisfying the anticommutation
relations

{γµ(x), γν(x)} = 2gµν(x). (6)

The metric tensor in (6) corresponds to a curved spacetime generated by
an arbitrary number of N parallel cosmic strings placed in (ai, bi) (here we
will follow the formalism developed in [10]):

ds2 = −dt2 + e−Λ(x,y)(dx2 + dy2), (7)

1The usual chiral lattice real vector basis for the honeycomb lattice is used in
this derivation.
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with Λ(x, y) =
∑N

i=1 4µi log([(x−ai)2 +(x− bi)2]1/2). The parameters µi are
related to the angle defect or surplus by the relationship ci = 1− 4µi in such
manner that if ci < 1(> 1) then µi > 0(< 0).

From equation (5) we can write down the equation for the electron prop-
agator, SF(x, x′):

iγµ(x)(∂µ − Γ (T )
jµ )SF(x, x′) =

1√−g δ
3(x− x′). (8)

The local density of states N(ω, r) is obtained from the solution of (8) by
Fourier transforming the time component and taking the limit r′ → r:

N(ω, r) = ImTrSF(ω, r, r). (9)

Provided that we only consider the presence of pentagons and heptagons,
the parameters µi are all equal and small (µi ≡ µ = 1/24). We will solve
equation (8) perturbatively in µ.

When dealing with (8) we will reduce the number of spin connections de-
rived in the previous section by the following considerations: First, we will
consider a scenario where the number of pentagonal and heptagonal defects
is the same – so the total number of defects is even. This suppresses the con-
tribution from the first exponential in (4). If we consider that pentagonal and
heptagonal defects come in pairs as usually happens in the observations, we
can neglect the effect of mixing of the the two sublattices that each individual
odd-sided ring produces and hence eliminate the spin connection related to
τ2 from (8). Furthermore, we can disregard the spin connection related to τ3
by the following argument: We will solve (8) perturbatively to first order of
the parameter µ. In general, if S0

F is the unperturbed Dirac propagator and
V̂ (ω, r) the perturbation potential, the first term of such solutions is

S1
F(ω, r, r′) = µ

∫
d2r′′S0

F(ω, r, r′′)V̂ (ω, r′′)S0
F(ω, r′′, r′), (10)

and we trace S0
F(ω, r, r) in order to get the first contribution to the density of

states δN(ω, r). The trace operation eliminates all the terms appearing in (10)
which are proportional to a traceless matrix, including the matrix related to
τ2. In fact, up to this order in perturbation theory, the only term that survives
will be the one proportional to γ0. With all this in mind, the relevant spin
connection terms are

Γ1(r) = −1
2
γ1γ2∂yΛ, Γ2(r) = −1

2
γ2γ1∂xΛ. (11)

After all these simplifications we can write (8) in a more suitable form.
Expanding the terms in (11) in powers of µ we get the potential V̂ (ω, r)

V̂ (ω, r) = −2Λγ0ω + iΛγj∂j +
i
2
γj(∂jΛ). (12)
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Fig. 2. First order correction to the local density of states in a region around two
pairs of heptagon–pentagon defects located out of the image for increasing values of
the energy

As we said, expression (10) gives us the first correction to the local density of
states in real space. In Fig. (2) we present an example of the results obtained.
We show the first order correction to the local density of states coming from
two pairs of heptagon–pentagon defects located out of the image for increasing
values of the energy. What we see is that as the frequency increases, the local
density of states is enhanced and inhomogeneous oscillations are observed in a
wide area around the defects. The spatial extent of the correction is such that
the relative intensity decays to 10% in approximately 20 unit cells. The model
described in this work can be applied to other configurations of defects, such
as simple pairs or stone-Wales defects. These results can be found in [11].
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1 Introduction

Single layer graphene and stacks of graphene layers have recently attracted
a great deal of attention, because of their unusual electronic properties and
potential applications [1, 2].

The low energy band structure is well described by the two-dimensional
Dirac equation [3]. This result leads to many anomalous electronic properties,
such as localized states at the energy of the Dirac point [4–9], new Landau
levels in the presence of a magnetic field [8,10], antilocalization effects [11–13],
or a pseudodiffusive behavior at zero energy [14–16], unusual channel quanti-
zation at finite energies and confinement properties [17].

We analyze here the electronic transport across a graphene potential step,
or a potential barrier (a graphene transistor). A related calculation can be
found in [18]. A more involved calculation, which analyzes transport from
single layer graphene to a double layer system is given in [19].

2 The Model

We discuss the transport properties of a clean graphene stripe where a gate
voltage is applied to a part of it. The two situations considered are shown in
Fig. 1: the transmission across a square potential step and the transmission
across a square potential barrier. In the following, we use units such that the
Fermi velocity vF = 1.

2.1 Potential Step

We consider a Dirac quasiparticle with energy ε, reaching the potential barrier
at an angle θ. The incoming wavefunction can be written as
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Fig. 1. Sketch of the models analyzed in the text. Left: step potential. Right: square
barrier

V

IR T

k

Fig. 2. Sketch of the matching conditions at the barriers described in the text

Ψinc(r) ≡ eikr

(
1
eiθ

)
, (1)

where k = |k| = ε. The current in the direction perpendicular to the barrier
is 〈σx〉 = + cos(θ). The collision with the step leads to a reflected and a
transmitted wave. If ε− V > 0, the transmitted wave is electron like, and we
can write

Ψref(r) ≡ Re−ikr

(
1

−e−iφk

)
,

Ψtrans(r) ≡ T eik′r
(

1
eiφk′

)
, (2)

where k′ = |k′| = ε − V , φk′ = arctan(ky/kx) = θ, k′y = ky and k′φk′ =
arctan(k′y/k

′
x) = arcsin[(k sin(θ)/(k − V )]. The matching conditions are

sketched in Fig. 2.
The wavefunction has to be continuous at the position of the potential

step, x = 0, leading to the equations

1 +R = T,

eiφk −Re−iφk = T eiφk′ , (3)
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so that

T =
2 cos(φk)

e−iφk + e−iφk′ . (4)

The ratio of the transmitted current to the incoming current is

Jtrans(θ)
Jinc(θ)

=
|T |2 cos(φk′)

cos(φk)
=

2 cos(φk) cos(φk′)
1 + cos(φk − φk′)

. (5)

It is worth noting that the transmission is 1 for normal incidence, θ = 0, in a
similar way to the lack of backscattering in nanotubes.

We set Jinc(θ) = 1 and define the conductance of the step as

σ =
∫ π/2

−π/2

Jtrans(θ)dθ . (6)

The previous analysis has been performed for electron like transmitted qua-
siparticles. For V ≥ ε the transmitted wave is hole like. Performing a similar
analysis, we obtain

Jtrans(θ)
Jinc(θ)

∣∣∣∣
hole

=
|T |2 cos(φk′)

cos(φk)
=

2 cos(φk) cos(φk′)
1 + cos(φk + φk′)

. (7)

2.2 Potential Barrier

We now analyze the potential barrier of length L sketched in Fig. 1b. The
matching conditions now are

1 +R = T1 +R1,

eiφk −Re−iφk = T1eiφk′ −R1e−iφk′ ,

T1eik′
xL +R1e−ik′

xL = T,

T1eik′
xLeiφk′ −R1e−ik′

xLe−iφk′ = T eiφk , (8)

which lead to

T1eik′
xL(e−iφk′ + eiφk′ = T (e−iφk′ + eiφk),

R1e−ik′
xL(e−iφk′ + eiφk′ = T (eiφk′ − eiφk),

eiφk + e−iφk = T1(e−iφk + eiφk′ ) +R1(e−iφk − e−iφk′ ). (9)

The transmission coefficient across the barrier, T , can be written as

T =
2 cos(φk) cos(φk′)

e−ik′
xL[2 + 2 cos(φk + φk′)] + eik′

xL[−2 + 2 cos(φk − φk′)]
, (10)

leading to the current
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Fig. 3. Conductance of the two types of devices analyzed in the text. The energy
of the incident wave is ε = 0.05, and the length of the barrier is L = 25

Jtrans(θ)
Jinc(θ)

=
2 cos2(φk) cos2(φk′)

[1− sin(φk) sin(φk′)]2 + cos2(φk) cos2(φk′) + cos(2k′xL)

× 1
[1− sin(φk) sin(φk′)]2 − cos2(φk) cos2(φk′)

. (11)

As in the case of a step barrier, the transmission is perfect for θ = 0.
A similar derivation leads for the case of hole like transmission, V ≥ ε to

Jtrans(θ)
Jinc(θ)

∣∣∣∣
hole

=
2 cos2(φk) cos2(φk′)

[1 + sin(φk) sin(φk′)]2 + cos2(φk) cos2(φk′) + cos(2k′xL)

× 1
[1 + sin(φk) sin(φk′)]2 − cos2(φk) cos2(φk′)

. (12)

3 Results

Results for the integrated current over angles are shown in Fig. 1. The con-
ductance follows approximately the V -shaped density of states of the region
where the gate potential is applied. The transmission is always finite, in agree-
ment with the suppression of backscattering at normal incidence. In addition,
we find Fabry–Perot interference patterns, with resonances where the total
transmission is equal to one.
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16. E. Prada, P. San-José, B. Wunsch and F. Guinea, cond-mat/0611189 (2006).
17. N. M. R. Peres, A. H. Castro Neto and F. Guinea, Phys. Rev. B 73, 241403

(2006).
18. M. I. Katsnelson, K. S. Novoselov and A. K. Geim, Nature Physics 2, 620 (2006).
19. J. Nilsson, A. H. Castro Neto, F. Guinea and N. M. R. Peres, cond-mat/0607343

(2006).



Minisymposium “PDAE Modelling
and Multiscale Simulation in Microelectronics
and New Technologies”

G. Al̀ı and R. Pulch

1 Consiglio Nazionale delle Ricerche, Napoli, Italy
2 Bergische Universität Wuppertal, Germany

Mathematical models of physical systems form the basis of numerical simu-
lations used for industrial applications. The continuous advancement in tech-
nical design demands refined models, where more effects have to be included.
Thus sophisticated analysis as well as efficient numerical methods have to be
tailored to the arising complex systems. On the one hand, modelling dynamical
systems by partial differential equations (PDEs) may involve singular matri-
ces, which yield partial differential algebraic equations (PDAEs) in the sense
of singular PDEs. On the other hand, a coupling of time-dependent systems of
differential algebraic equations (DAEs) with PDEs describing spatial effects
is called a system of PDAEs, too. Both cases represent concepts required in
advanced simulation of technical processes. The systems often include a multi-
rate behaviour with largely differing time scales. Hence, multiscale simulation
using the underlying structure has to be performed for achieving an efficient
technique. In particular, the design of electronic circuits is based on numer-
ical simulation of DAE models resulting from a network approach, which
specifies the evolution of node voltages and branch currents in time. Due
to down-scaling, parasitic effects can not be neglected in the modelling any
more. Thus, spatial physical phenomena like heat distribution, electromag-
netic interaction or complex semiconductor behaviour are considered, where
corresponding PDE models apply. The arising systems of PDAEs become
more and more important in microelectronics to enable a realistic simulation.
Furthermore, a specific signal model for oscillators yields singular PDEs in
microelectronics. Nevertheless, PDAE models apply in other applications like
chemical engineering, biology, mechanical engineering, hydrodynamics, etc.,
too. In the minisymposium, we have presented approaches based on PDAEs
in the field of microelectronics and chemical engineering. Thereby, the empha-
sis has been on PDAEs in the sense of coupled systems of DAEs and PDEs.
Mathematical modelling, analysis and numerical aspects have been addressed.
Concerning the design of electronic circuits, the topics of PDAE modelling
and multiscale simulation are present in the new Marie Curie Research Train-
ing Network COMSON (COupled Multiscale Simulation and Optimization in
Nanoelectronics) supported by the European Commission.
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1 Introduction

This paper is meant to be the continuation of the previous work [1] where
a coupled ODE/PDE method for the simulation of semiconductor devices
was introduced. From a strictly mathematical viewpoint, analytical results on
coupled PDE/ODE systems (as arising in integrated circuit simulation) can
be found in [2]. In particular, in the present paper, we investigate numerically
new algorithms of Domain Decomposition type for the simulation of circuits
containing distributed devices (Sect. 2) as well as semiconductors in which
some part is modeled with lumped parameters (Sect. 3). The results presented
here have been investigated in the seminal work [3], while a more extended
analysis is ongoing [4].

2 Extra Device Approach

The approach that we present here is devoted to circuit analysis. Suppose
we have to deal with a complex circuit network where, however, only few
devices are critical with respect to the behavior of the network. On the one
hand, the use of a complex PDE model to describe the whole network may
be unnecessary and, even though very accurate, it would also require a lot
of resources, thus undermining the overall efficiency. On the other hand, us-
ing some “black box” method to model the critical devices would possibly be
quite inaccurate. What we propose here is to use the PDE model only where
strictly needed, keeping the lumped circuit model for the other parts. In the
literature, this kind of heterogeneity is usually addressed as mixed-mode de-
vice simulation, and a Newton-like numerical procedure is implemented in
the simulator MINIMOS-NT [5]. Our approach is instead based on Domain



Domain Decomposition Techniques for Microelectronic Modeling 501

Decomposition techniques that suitably allows for the coupling of distributed
devices, modeled by PDEs, with external circuits described by ODEs. With
this aim we have employed a suitable extension of the Dirichlet/Neumann
algorithm [6] to enforce the continuity of both currents and node potentials
at the device–circuit interface.

For simplicity, suppose that there is only one device that requires a PDE
description like, for example, a pn junction diode. We can consider the circuit
viewed from the diode terminals as a generic bipole: thus the circuit is divided
in two separate subdomains, i.e., the PDE-diode and the ODE-bipole. To ap-
ply the Dirichlet/Neumann algorithm it is necessary to figure out how to treat
the boundary conditions (b.c.). We have chosen to use Neumann b.c. (i.e.,
current-operated) for the ODE-circuit and Dirichlet b.c. (voltage-operated)
for the PDE-diode. To fix some notation, suppose that the distributed and
the lumped models are described by the two problems

∂u

∂t
+D(u, V ) = 0 in Ω × (0, T ], and

dw
dt

+ L(w, I) = 0 in (0, T ], (1)

respectively, where u = u(x, t) represents the internal (state) variable of the
PDE part, with x ∈ Ω and t ∈ (0, T ], w = w(t) those of the ODE, while
V = V (t), I = I(t) are the vectors of the potentials and of the currents,
respectively, at the boundary of the device occupying the domain Ω. The
quantities D,L are suitable differential operators and proper boundary and
initial conditions are understood. Let us first introduce a partition {tn} of
[0, T ] into N subintervals such that 0 = t0 < t1 < . . . < tN−1 < tN = T .
We want to advance the solutions u(x, t), w(t) from t = tn until t = tn+1, for
n = 0, 1, . . . , N − 1. The Dirichlet/Neumann algorithm can be thought of as
a fixed point iteration for the potentials V (·)|(tn,tn+1]. For this purpose, set
the iteration counter j ← 0. Then given some initial guess V (j), the algorithm
comprises the following steps:

1. Solve ∂u
∂t

(j+1)
+D(u(j+1), V (j)) = 0 in Ω × (tn, tn+1] for u(j+1)(x, t);

2. Compute I(j+1) = I(u(j+1), V (j));
3. Solve dw

dt

(j+1)
+ L(w(j+1), I(j+1)) = 0 in (tn, tn+1] for w(j+1)(t);

4. Compute V (j+1) = θ V(w(j+1), I(j+1)) + (1− θ)V (j);
5. Check for convergence: if ‖V (j+1) − V (j)‖(tn,tn+1] < ε then finish, else
j ← j + 1 and go to 1.

Note that the functions I = I(u, V ), V = V(w, I) return the output cur-
rent of the device and the potentials at the circuit terminals, respectively,
while 0<θ < 1 is a suitable relaxation parameter, and ε a given tolerance.
In practice, the fixed point mapping is understood with respect to the final
value V (tn+1) only, and spatial/temporal discretization schemes have to be
employed as well. This algorithm admits also a very interesting circuit inter-
pretation, see Fig. 1 (left). As we can identify Neumann b.c. with the currents



502 G. Al̀ı et al.

V

I

PDEs
G

D

S

NMOS

RLC-network

ODEs

Vdd

Cout

Rpol

Vout

Rload

Rin
Cin

Vin

Diode

Fig. 1. Example of the Domain Decomposition approach for network analysis (left)
and scheme for the attenuator of the model problem (right)

Table 1. Numerical data used for the extra device test case

Diode P zone N zone

Doping (uniform) NA = 1017 cm−3 ND = 1017 cm−3

Length 5 µm 5 µm
Minority carrier lifetime 10 ns 10 ns
Simulation time 1 µs
Time step 5 ns

Circuit

Rin = 100 kΩ Rpol = 100 kΩ Rload = 1kΩ
Cin = 10 nF Cout = 10 nF
VDD = 5 V Vin = sin (2πft) mV f = 1 MHz

at the diode terminals, and Dirichlet b.c. with the values of the corresponding
potentials, we have to deal at each time step with a voltage-operated PDE
device and with a current-operated ODE circuit. We point out that this proce-
dure is implementable without any knowledge about the internal codes of both
the PDE and the ODE solvers. Actually, one can use these particular solvers
as building blocks for implementing the Domain Decomposition algorithm.

We carry out a sensitivity analysis with respect to the relaxation para-
meter of the Dirichlet/Neumann algorithm for the transient simulation of a
small signal circuit, i.e., an attenuator (Fig. 1, right). The diode is treated as
a 1D device and is described by the Drift-Diffusion (DD) transport model [7].
The data used in the simulation are gathered in Table 1. The circuit is
solved via the Tableau analysis [8]. The sensitivity for both the Dirichlet
and the Neumann b.c. are shown in Fig. 2, where the number of iterations
vs. time and relaxation parameter are shown. Notice that under-relaxation
is needed for convergence with an optimal parameter of about 0.15 in both
cases.
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Fig. 2. Sensitivity for Dirichlet b.c. (left) and Neumann b.c. (right)
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Fig. 3. Example of ODE/PDE coupling for a single device (left) and basic building-
block for the circuit extraction technique (right)

3 Intra Device Approach

The second approach we present is focused on the simulation of a single dis-
tributed device. In this case we treat with a PDE model a particular region of
interest of the device at hand and with an ODE model the other parts. As in
the extra device case, the terminal current and voltage continuity is enforced
via the Dirichlet/Neumann approach. In Fig. 3 (left) we see a possible appli-
cation of this procedure to a MOSFET where only the channel (green box)
is modeled with PDEs. For the derivation of a suitable ODE model we have
used a technique proposed in [1,9] that allows for the extraction of a compact
physics-based circuit model from dc device simulations. We have also improved
the model, deriving the constitutive relations for the currents from a lineariza-
tion of the very well-known Scharfetter-Gummel formulas [10]. This has the
advantage of being mathematically consistent with the PDE model, where the
current continuity equations are also discretized via the Scharfetter-Gummel
formulas, and eliminates the degree of freedom in the choice of the conduc-
tances that characterizes the approach in [9]. In particular, the expressions of
the conductances for the electrons read
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Gk+1/2
mn = −qµn

h

[
Ḃ(∆kψ)nk+1 + Ḃ(−∆kψ)nk

]
,

Gk+1/2
rn =

qµn

h
B(∆kψ)nk+1, G

k+1/2
fn = −qµn

h
B(−∆kψ)nk,

where q is the absolute value of the electron charge, µn the electron mobil-
ity, h the length of a typical grid element, nk, ψk the electron concentration
and electric potential at the k-th grid point, ∆kψ = ψk+1−ψk

Vth
, B(·), Ḃ(·) the

Bernoulli function and its derivative, while Vth is the thermal voltage.
The algorithm that we propose is in some way similar to the one adopted in

the extra device case, except that we have to guarantee that the ODE system
be consistent with the PDE model. This is why we have used a physics based
circuit extraction that calibrates the lumped model from dc device simulations
only. Basically, this procedure allows us to describe a semiconductor region of
finite size with the basic circuit block shown in Fig. 3 (right).

We have tested our algorithm on a model problem, i.e., a voltage-operated
1D diode. We use the lumped model only in the quasi neutral zones, while
the PDE model (based on the DD equations) is employed for the depletion
region. This choice is motivated by the consideration that this region is where
most of the physically relevant processes take place, so that it represents the
part of the device needing a more accurate description.

We carry out a sensitivity analysis with respect to the relaxation parameter
for a transient simulation. The Gummel map [11] is employed for the solution
of the DD equations. The data used in the simulation are collected in Table 2.
The lumped circuits are solved with the MNA analysis [8,12]. The sensitivity
results are displayed in Fig. 4, through the number of iterations vs. time and

Table 2. Numerical data used in the simulation

Diode P zone N zone

Doping NA = 1016 cm−3 ND = 1016 cm−3

Mobility 1,000 cm2/(V s) 1,000 cm2/(V s)
Length 5 µm 5 µm
Polarization 0.6 V No generation/recombination
AC signal sin (2πft) mV f = 100 kHz
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Fig. 4. Sensitivity analysis for the coupled model with fifth- (left) and tenth-order
circuits (right)



Domain Decomposition Techniques for Microelectronic Modeling 505

relaxation parameter, and where the order of the circuits refers to the number
of blocks used for modeling each quasi neutral zone. The relaxation refers only
to the Neumann boundary conditions. As in the extra-device case, under-
relaxation is required for convergence and the optimal parameter is about
0.007.

4 Conclusions

We have presented and validated a Domain Decomposition procedure for sim-
ulating extra-device as well as intra-device structures modeled by coupled
PDE/ODE systems. So far, only simple devices and circuits have been tested.
We plan to extend the numerical technique to more complex circuits and to
multidimensional devices.
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Summary. The design of electronic circuits is based on numerical simulation of cor-
responding mathematical models. Systems of differential algebraic equations (DAEs)
reproduce the time behaviour of idealised electric networks. In nanoelectronics,
miniaturisation causes parasitic effects, which can not be neglected any longer.
These spatial phenomena yield models consisting of partial differential equations
(PDEs). Thus the circuit’s behaviour is given by partial differential algebraic equa-
tions (PDAEs), which couple DAEs in time and PDEs in time/space. We present
a rough concept for classifying existing PDAE models in nanoelectronics. The cat-
egorisation rests primarily upon the physical background in each model.

1 Introduction

The mathematical model of dynamical systems often results from some net-
work approach, which yields time-dependent systems of differential algebraic
equations (DAEs). That is, we consider ideally joint lumped elements, without
spatial coordinate, but with the topology information given by the incidences
of these elements. In contrast, spatial physical effects are described by partial
differential equations (PDEs) in space or time/space. Thus an enhanced model
requires a coupling of DAEs and PDEs, which yields systems of so-called par-
tial differential algebraic equations (PDAEs). Such systems of PDAEs arise in
many technologies like mechanical engineering as coupled multibody systems
with sole or flexible/plastic systems, see [5], in nanoelectronics (see below)
and others.

Furthermore, the wording PDAE is also used for singular implicit PDEs,
i.e. where singular matrices arise in front of partial derivatives, see [8], for
example. In case of electronic circuits, a specific multivariate model yields
an efficient representation of amplitude and/or frequency modulated signals
including widely separated time scales. The introduction of different time
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variables (for the occurring scales) transforms the circuit’s DAE into a PDAE
in the sense of a singular PDE, see [9].

In this paper, we focus on PDAE models in nanoelectronics setting with
PDE-enhancement of DAE models, rather than singular PDEs. Modified
nodal analysis yields large systems of DAEs for ideal circuits, see [7]. We
write such a system in the general form

f : Rk × Rk × I → Rk, f(y, ẏ, t) = 0, t ∈ I := [0, T ], (1)

where y : I → Rk denotes unknown node voltages and branch currents. A
consistent initial value y(0) = y0 completes the usual electric network model.
In addition, we formulate schematically a system of PDEs corresponding to a
parasitic effect via an operator

L : D × I × V → Rm, L(x, t,v) = 0, x ∈ D ⊂ Rd, t ∈ I (2)

with a solution v : D × I → Rm in some function space V . Initial and/or
boundary conditions have to be specified appropriately. Coupling the sys-
tems (1) and (2) using some variables/functions results in a PDAE. The cou-
pling can be done via artificial variables, source terms, boundary conditions
(BCs) or even more sophisticated constructions.

Since, the mathematical structure of PDAEs is rather complex, we can not
derive a universal classification of all existing PDAE models. Alternatively,
we introduce a rough concept to categorise some important models arising in
ongoing research within the field of nanoelectronics.

2 PDAE Models

Each spatial physical phenomenon requires a corresponding modelling via a
PDE. The following aspects arise due to miniaturisation in chip design. We
distinguish two general types of coupling.

2.1 Refined Modelling

Usually semiconductors, transmission lines and other components with spatial
distribution are given by subcircuits of lumped electric elements (companion
models). To obtain a somewhat more precise model (also considering down-
scaling phenomena), we replace one or several of these subcircuit descriptions
by a PDE model for the corresponding electric effect in the network. These
can be one or several semiconductor elements, which behave critical in an
electronic network, and where it makes sense to simulate these elements more
detailed. Another possibility is to replace a transmission line model based on
DAEs by an according PDE. This is a natural way, which bypasses a huge
number of more or less artifical parameters of the companion model.
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This approach is called refined modelling. It has a special type of coupling.
Boundary conditions for the Ohmic contacts of the PDE model are the node
potentials of the connect network nodes (Dirichlet condition). At the remain-
ing boundaries in multiple dimensions, where there is no electric contract, one
may have von-Neumann conditions with no flux or field conditions at insu-
lated contacts. On the other hand, the output of the PDE model is an electric
current, which is eventually a source term to the network’s DAE. Abstractly,
we obtain systems of the type

Aut + LDu− h(u, t) = 0 (PDE in I ×D)

u|Γ1
= g(y) (Dirichlet BC)

∂
∂nu
∣∣
Γ2

= h(y) (von-Neumann BC)

f(y, ẏ, t) = λ(u) (DAE in I),

(3)

where LD represents a differential operator with respect to space. The in-
volved PDE can be of mixed type (elliptic, hyperbolic, parabolic). Thereby,
the coupling is performed via the input λ and the boundary conditions g
and h (where we have a decomposition of the boundary: ∂D = Γ1 ∪Γ2). Fur-
thermore, analysing complex systems (3) may yield simpler but still highly
accurate companion models for the underlying component.

In nanoelectronics, the PDAE systems, which have been considered in the
literature or are part of ongoing research, can principally be categorised into
the following cases:

Semiconductors: Here transistors are described by drift-diffusion or quan-
tum mechanical equations coupled with the electric network. Existence and
uniqueness results for nonstationary and stationary drift-diffusion network
systems are found in [1,2], for an index analysis of the arising PDAE, we refer
to [4]. Currently, efficient numerical codes are being developed.

Transmission line effects: Also down-scaling causes a decreasing distance
of transmission lines and thus an undesired interaction arises. Telegrapher’s
equation describes the underlying physical effect. The coupling of PDEs and
DAEs accords to the form (3). Now the involved PDE is exclusively of hyper-
bolic type, which implies a specific numerical treatment, see [6] for details.

Electromagnetic fields: The DAEs (1) result from a network approach to
avoid a simulation of the complete circuit using Maxwell’s equations. However,
if some crucial parts of the circuit demand a refined model, a separation from
the network can be done. Thus we apply Maxwell’s equations to represent the
small part, whereas we use the network DAEs for the major part.

2.2 Multiphysical Extension

This modelling is much more complex, since we do not add a physical dimen-
sion to the electric network, but have a distributed additional effect:
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Thermal aspects: The increase of the clock rate in chips causes a higher
power loss in the electronic network. Thus we have to consider heat distribu-
tion and conduction between the circuit’s elements. In contrast to the effects
described above, the heat evolution runs in parallel to the time-dependence
of voltages and currents. Thus a thermal network can be associated to the
electric network. In the thermal part, specific 0D elements can be refined into
elements with spatial distribution or elements can be located in macro struc-
tures. Combining the heat equation for the spatial elements with the network
yields

Aut + LDu− h(u, t) = s(x) (PDE in I ×D)

u|∂D = g(x) (BC)

f(y, ẏ, t,µ(u)) = 0 (DAE in I) .

(4)

In this case, the included PDE is of parabolic type (Fourier law). The coupling
is present in the source terms and boundary conditions s, µ, g: Here dissi-
pated power is not only entering the boundary conditions, but is also a source
term for the evolution equation; on the other hand, the temperature enters
the electric network as parameter and thus causes a more general dependence.
For further details, we refer to [3].

Electromagnetics: In principle, one can interpret an electromagnetic field
influencing the complete circuit as a multiphysical case, too. Consequently, the
contribution of the field to each component has to be modelled appropriately.

3 Illustrative Example

We consider the electric circuit given in Fig. 1. In the refined description,
where the diode is modelled by semiconductor equations, we have:
a) electric network: (current through voltage source jV , node potential u1, u2)

jV +
u1 − u2

R
= 0,

u2 − u1

R
+ jd + C

d
dt
u2 = 0, u1 − v(t) = 0. (5a)

b) 1D drift-diffusion: (electron/hole density n/p, electrostatic potential V –
currents jp, jn)

u 2u 1

v ( t)

C

u 0 = 0

jV jd

R

Fig. 1. Example circuit
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−q∂tn+ ∂xjn = qR, jn = −q {−Dn∂xn+ µnn∂xV } , (5b)
q∂tp+ ∂xjp = −qR, jp = q {−Dp∂xp− µpp∂xV } , (5c)

−ε∂2
xV − q(C + p− n) = 0, jd =

ε

l

d
dt
u2 +

1
l

∫ l

0

{jn + jp}dx, (5d)(
V (0, t)−Vbi

V (l, t)−Vbi

)
=
(
u2

0

)
, n(0, t) = n(l, t) = n0, p(0, t) = p(l, t) = p0. (5e)

This involves parameters: resistance R, capacity C, input v(t) for the network
equations; the diode is defined on a 1D-line segment ([0, l]) with mobilities
µn, µp, diffusivities Dn, Dp, unit of charge q, permittivity ε, doping profile
C : [0, l] → R and according built-in potential Vbi : [0, l] → R. Furthermore,
jd specifies the output current of the diode and therefore our coupling quantity.

The boundary conditions for the carrier densities (n0, p0) are obtained
from equilibrium assumptions, see [1] for more details. As a further refine-
ment of this example, one could image telegrapher’s equation for the parallel
connection of the diode and the capacitor.

4 Conclusions

In nanoelectronics, a sophisticated modelling of physical effects leads to sys-
tems of PDAEs. An elementary classification of some crucial models has been
presented, which considers the type of the underlying PDEs and especially the
physical nature of the coupling: models can be (i) refined, replacing simple
(0D) descriptions by (more advanced) spatial models, or (ii) multiphysically
extended, adding a new layer of effects.

Acknowledgements. This work is part of the MCA-RTN project COMSON (COu-
pled Multiscale Simulation and Optimisation in Nanoelectronics) supported by the
European Union.
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1 Introduction

Problems that exhibit multiple time scales arise naturally in many scien-
tific and engineering fields. For transient, distributed process systems, the
corresponding models consist of partial differential equations (PDEs), possi-
bly coupled to ordinary differential equations (ODEs) or differential-algebraic
equations (DAEs) that describe lumped processes or are used as boundary
conditions.

Particularly popular for the numerical solution of time-varying problems
in one spatial dimension is the so-called method of lines (MoL) [6], which
yields a large-scale DAE system by discretizing one of the independent vari-
ables of the original system, usually the spatial variable. One of the main
reasons for this popularity lies in its relative simplicity and the fact that
state-of-the-art numerical solvers can be used to integrate the resulting DAEs
accurately. But, when applied to problems with a wide range of time-scales,
the MoL often results in prohibitive computational times because shocks and
fronts can develop and move around the spatial domain, which need very fine
spatial discretizations and give rise to stiff DAEs. These difficulties can be
alleviated by moving mesh or mesh refinement techniques, possibly combined
with shock capturing schemes, although the complexity of the MoL is then
significantly increased. Reliability issues also arise from the challenging task
of consistently initializing large-scale DAEs, which happen to be a serious
obstacle for embedding the simulation into an optimization problem.

In this paper, we propose an alternative solution method for a particular
class of one-dimensional PDAEs with a separation of time scales where (i) the
fast variables are spatially distributed, and (ii) the slow variables are lumped.
Recent studies in micro-chemical and micro power generation processes sug-
gest that many systems of practical interest are well approximated by this
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formulation, yet such problems have remained largely unexplored in the
literature. In Sect. 2, we formulate the problem and discuss its approxima-
tion in the light of the theory of singular perturbations. Then, we show how
the special structure of these problems can be exploited to compute an ap-
proximate solution of the PDAEs, both reliably and efficiently, in Sect. 3. The
proposed approach is demonstrated on an application related to the start-
up of micro-scale chemical processes for portable power generation in Sect. 4.
Finally, Sect. 5 concludes the paper.

2 Problem Formulation and QSS Approximation

Consider the system of one-dimensional, first-order, quasi-linear PDAEs

ut + A(t, x,u)ux = r(t, x,u), (1)

where t and x stand for the independent variables, (t, x) ∈ Ω := [t0, tf] ×
[a, b]; u(t, ·) ∈ H([a, b], IRnu) denotes the dependent variable; A(t, x,u) and
r(t, x,u) are a nu × nu matrix and a nu vector, respectively, whose elements
are sufficiently smooth functions of t, x and u.

Assumption 1. A natural partition of u into slow and fast subsets of vari-
ables

(
us(t),uf (t, x)

)
∈ IRns+nf exists for the PDAEs (1). Moreover, the slow

variables us(t) are lumped, and the fast variables uf (t, x) are hyperbolic, with
all the characteristics pointing in the same direction.

Under these assumptions, the PDAEs (1) may be rewritten in the form of
a singularly perturbed model:

us
t(t) = rs[t,us(t),uf (t, b), ε] (2)

εuf
t(t, x) + Af [t, x,us(t),uf (t, x), ε]uf

x(t, x) = rf [t, x,us(t),uf (t, x), ε], (3)

where ε stands for the perturbation parameter, 0 < ε 
 1. The initial and
boundary conditions for the slow and fast variables are specified as

us(t0) = ηf (ε) (4)

uf (t0, x) = ηf (x, ε), ∀x ∈ (a, b]; ξf (uf (t, a), t, ε) = 0, ∀t ∈ [t0, tf], (5)

where ηf and ξf are sufficiently smooth functions of their arguments. A num-
ber of remarks are in order:

Remark 1. For the sake of clarity, the equation (2) giving the slow variables
shows dependence on the fast variables at x = b only. However, the approach
can be readily extended to the case where (2) depends on any functional of
uf (t, ·).
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Remark 2. The fast variables being hyperbolic, the Cauchy problem should be
well-posed for the fast subsystem [4]. Moreover, the eigenvalues of Af should
be all real and have the same sign since the characteristics point in the same
direction. Here, the Cauchy data (5) assume that the eigenvalues of Af are
nonnegative.

On setting ε = 0, the fast model (3) reduces to the DAEs

Af [t, x,us, ūf (x), 0]ūf
x(x) = rf [t, x,us, ūf (x), 0]; ξf (ūf (a), t, 0) = 0, (6)

for each t,us. By analogy to the classical theory of singular perturbations [3],
we say that (2)(3) is in standard form if a solution ūf (x) := hf (x; t,us) to
the initial value problem (6) exists and is unique on [a, b], for each t,us. The
so-called quasi-steady-state (QSS) model is then obtained as

ūs
t(t) = rs

[
t, x, ūs(t),hf (b; t, ūs(t)), 0

]
; ūs(t0) = ηs(0). (7)

Note that the number of equations in the state model reduces from ns +nf to
ns under the QSS approximation. Conditions under which the QSS solution
provides a O(ε) approximation of the PDAE solution can be obtained upon
extending Tikhonov’s theorem [3] to hyperbolic fast subsystems. In particular,
a crucial requirement is that the boundary layer system be exponentially
stable around 0 at x = b, uniformly in t,us.

3 Solution of ODEs with IVP-DAEs Embedded

For most practical applications, the fast subsystem (6) cannot be solved explic-
itly. A numerical procedure is therefore needed for calculating the right-hand
side of the slow subsystem (7). That is, the QSS model corresponds to an
initial value problem (IVP) in ODEs (in time), the right-hand side of which
depends on the solution of an IVP in DAEs (in space),

ūs
t(t) = rs

[
t, x, ūs(t), ūf (b; t, ūs(t)), 0

]
; ūs(t0) = ηs(0)

s.t. Af [t, x, ūs(t), ūf (x), 0]ūf
x(x) = rf

[
t, x, ūs(t), ūf (x), 0

]
; ξf (ūf (a), t, 0) = 0.

We shall refer to such problems as ODEs with IVP-DAEs embedded herein.
The numerical solution of ODEs with IVP-DAEs embedded proceeds by

integrating the n−s ODEs (outer system), forward in time; at each time step,
a full integration of the nf DAEs (inner system) is then performed, forward
in space. In this work, we used the numerical solver DSL48S in the software
package DAEPACK [5] for solving either subsystems, which implements a multi-
step BDF method [1] and has built-in sensitivity analysis capabilities. The
Jacobian matrix ∇ūs(t)rs can be calculated by forward sensitivity analysis as
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∇ūs(t)rs = ∂rs

∂ūs(t) + ∂rs

∂ūf
∂ūf

∂ūs(t)

∣∣∣
x=b

with: Af
(

∂ūf

∂ūs(t)

)
x

=
(

∂rf

∂ūf − ūf
x

T ∂Af

∂ūf

)
∂ūf

∂ūs(t) +
(

∂rf

∂ūs(t) − ūf
x

T ∂Af

∂ūs(t)

)
;

∂ξf

∂ūf
∂ūf

∂ūs(t)

∣∣∣
x=a

= 0.

Note that, unlike MoL, the need for making an a priori discretization of
either the time or the spatial coordinate is removed, for both the time and
space steps are adapted by the numerical solver directly. Moreover, since the
inner and outer systems can both be solved to a high accuracy, based on the
error control mechanism of the numerical solver, one can guarantee a high
accuracy for the solution of the QSS system. Further, this approach solves a
system of nf DAEs repeatedly, instead of (nf +n−s)×N DAEs at once in the
MoL approach (N being the number of lines). The issue of initializing a large
number of DAEs is thus dramatically alleviated, which makes the solution
process more reliable. We shall also see below that the proposed approach
compares favorably with the MoL from a computational viewpoint.

4 Application to Micro Power Generation

We consider an application of the QSS approach to the start-up simulation of
a micro power generation system employing a high-temperature fuel cell. The
fuel cell stack is coupled to a small battery that heats up the fuel cell stack
and meets the power demand until the fuel cell is fully operational.

Assuming a uniform temperature in the fuel cell stack (fabricated from
silicon), the energy balance equations yield a set of ODEs

dE bat

dt
= −Pbat

out −Pbat
heat + P fc

rech − Q̇bat
loss

dT
dt

=
1

V dev cdev
p

[
Ḣdev

in − Ḣdev
out −P fc

out −P fc
rech + Pbat

heat − Q̇dev
loss

]
,

where T and E bat denote the fuel cell stack temperature and the remaining
energy in battery, respectively. On the other hand, mass and species balance
equations in each unit of the fuel cell stack correspond to one-dimensional,
quasi-linear PDAEs:

1
V

∂F

∂x
=

1
T

dT
dt

+
1
ρ

nr∑
j=1

nc∑
i=1

νi,jrj

∂yi
∂t

+
F

V

∂yi
∂x

=
1
ρ

nr∑
j=1

[
νi,jrj − yi

nc∑
k=1

νk,jrj

]
i = 1 . . . nc, (8)
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Fig. 1. Comparison of the ODEs with IVP-DAEs embedded approach with the MoL
approach. Left: Accuracy of MoL vs. number of lines; Right: CPU time comparison.

where V , F , yi and rj stand for the volume, the molar flow rate, the molar
fraction of gas species i = 1, . . . , nc, and the rate of reaction j = 1, . . . , nr,
respectively; ρ = P

RT is the molar density. See [2] for details on the fuel cell
stack and the kinetic rates. For this system, the state variables are naturally
split up into slow (T , Ė bat) and fast (F , yi) subsets. The QSS model is simply
obtained by zeroing the time derivatives ∂yi

∂t in (8).
The temperature profiles obtained with the MoL approach are shown in

Fig. 1 (left), for a typical start-up scenario. Note that obtaining an accuracy of
about 1 K requires that around 100 lines be considered (in each unit). On the
other hand, it was found that the accuracy of the QSS approach is within 1 K
of the PDAE solution. Computationally, the proposed approach takes about
the same time as the MoL approach for about 75 lines (Fig. 1, right), and thus
compares favorably for achieving the desired accuracy.

5 Conclusions

Modeling and simulation of dynamic systems with a separation of time-scales
leads naturally to singular perturbation models. In this paper, we have con-
sidered a special class of PDAEs where (i) the slow variables are lumped, and
(ii) the fast variables are hyperbolic with all the characteristics pointing in
the same direction. Under these conditions, the QSS model yields a system
of ODEs with IVP-DAEs embedded, and a numerical integrator can be used
to solve for the spatial profile of the fast variables at each time step for the
slow variables. The ability to use an adaptive spatial mesh is highly advanta-
geous to the reliability and accuracy of the simulation, as was demonstrated
on an application related to the start-up of micro-scale chemical processes for
portable power generation.
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Summary. In this paper we demonstrate model order reduction of a nonlinear aca-
demic model of a diode chain. Two reduction methods, which are suitable for nonlin-
ear differential algebraic equation systems are used, the trajectory piecewise linear
approach and the proper orthogonal decomposition with missing point estimation.

1 Introduction

The dynamics of electrical circuits at time t can be generally described by
the nonlinear, first order, differential-algebraic equation (DAE) system of the
form:

d
dt

q(x) + j(x) +Bu(t) = 0, (1)

where x ∈ Rn represents the unknown vector of circuit variables in time t,
the vector-valued functions q, j : R × Rn → Rn represent the contributions
of, respectively, reactive elements (such as capacitors and inductors) and of
nonreactive elements (such as resistors) and B ∈ Rn×m is the distribution
matrix for the excitation vector u : R → Rm. There are several established
methods, such as sparse-tableau, modified nodal analysis, etc. which generate
the system (1) from the netlist description of electrical circuit. The dimension
n of (1) is of the order of the number of elements in the circuit, which means
that it can be extremely large, as today’s VLSI circuits have hundreds of
millions of elements.

Mathematical model order reduction (MOR) aims to replace (1) by a sys-
tem of much smaller dimension, which can be solved by suitable DAE solvers
within acceptable time. At present, however, only linear MOR techniques are
well-enough developed and properly understood to be employed [1]. To that
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end, we either linearise the system (1) or decouple it into nonlinear and lin-
ear subcircuits (interconnect macromodeling or parasitic subcircuits [2]). The
nonlinear MOR techniques are less developed and less understood than the
linear ones. In this paper we present the application of two most promising
nonlinear reduction methods on an academic diode chain model. These are
the trajectory piecewise linear approach (TPWL) [3] and the proper orthog-
onal decomposition (POD) [4] supported by missing point estimation (MPE)
technique [5].

2 Trajectory Piecewise Linear Model Order Reduction

The idea behind the TPWL method is to linearise (1) several times along a
training trajectory (corresponding to some typical input). The local systems
are then used to create a global reduced subspace. The final TPWL model is
constructed as a weighted sum of all local linearised reduced systems.

2.1 Creating the Local Linearised Models

The disadvantage of standard linearisation methods is that they deliver good
results, only in the surrounding of the chosen linearisation tuple (LT)(x(ti), ti).
To overcome this, in TPWL approach several linearised models are created.
This guarantees the quality of the results whenever the solution stays close to
one of the chosen LTs. The procedure for selection of LTs can be described
by the following steps:

1. Set an absolute accuracy factor ε > 0, set i = 1.
2. Linearise the system around the i-th LT (xi, ti). This implies:

Ciẋ +Gix +Biu(t) = 0 (2)

with Ci = ∂
∂xq(t,x)

∣∣
xi,ti

and Gi = ∂
∂x j(t,x)

∣∣
xi,ti

, where xi stays for x(ti).
Save Ci, Gi and Bi.

3. Reduce the linearised system to dimension r 
 n with an appropriate lin-
ear MOR method, like “Poor Man’s TBR” [6] or Krylov-subspace meth-
ods [7]. This implies:

Cr
i ż +Gr

i z +Br
i u(t) = 0 (3)

where Cr
i = V �

i CiV , Gr
i = V �

i GiVi, Br
i = V �

i B with Vi ∈ Rn×r, z ∈ Rr

and x ≈ Viz. Save the local projection matrix Vi.
4. Integrate both, the reduced system (3) and the original system (1) choos-

ing the same time-steps tk. When ||Viz(tk)−x(tk)||
||x(tk)|| > ε chose (x(tk), tk) as

i+ 1-th LT. Set i = i+ 1. Go to step 2.

The steps 2–4 are repeated until the end of the given trajectory has been
reached. In this way, s local reduced subspaces with bases V1, . . . , Vs are
created.
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2.2 Creating the Global Reduced Subspace

All local reduced subspaces are merged into the global reduced subspace and
each local linearised system (2) is now projected onto this global subspace.
The procedure can be described by the following steps:

1. Define Ṽ = [V1, . . . , Vs].
2. Calculate the SVD of Ṽ : Ṽ = UΣW� with U = [u1, . . . , un] ∈ Rn,
Σ ∈ Rn×rs and W ∈ Rrs×rs.

3. Define new global projection matrix Vg as [u1, . . . , ur].
4. Project each local linearised system (2) onto Vg.

2.3 Creating the TPWL Model by Weighting

All local reduced linearised reduced systems are combined in a weighted sum
to build the global TPWL model:

s∑
i=1

wiV
�
g CiVgż +

s∑
i=1

wiV
�
g GiVgz +

s∑
i=1

wiV
�
g Biu(t) = 0. (4)

A weight wi determines the influence of the i-th local system to the global
system. The weights can be chosen by making them distance depending, which
means that wi is chosen large if the solution z of (4) is close to the i-th LT,
else the weight should be small. For more details on how to chose weights,
see [8].

3 Proper Orthogonal Decomposition
Combined with Missing Point Estimation

The idea behind POD is to directly project the original nonlinear system (1)
onto some subspace with smaller dimension. As this, however, does not lead
to the reduction of the computational time, MPE is used to speed up the
simulation.

3.1 “Classical” POD

The POD projection basis VPOD is an orthonormal basis, which is derived
from the collected “snapshots” at the time points ti:

X = [x(t1) . . .x(ts)] (5)

The POD basis is found from the SVD of X: X = UΣW� with U =
[u1, . . . , un] ∈ Rn, Σ ∈ Rn×s and W ∈ Rs, as VPOD = [u1, . . . , ur] with
r << n. Finally the original system is replaced by the following Galerkin
projection

d
dt
V �

PODq(VPODz) + V �
PODj(VPODz) + V �

PODBu(t) = 0. (6)
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3.2 Missing Point Estimation

In the projection schemes, usually the original numerical model is projected
onto the chosen subspace. In the case of linear systems, i.e. when q(x) = Cx
and j(x) = Gx the projections V T

PODq(VPODz) and V T
PODj(VPODz) can be

computed “in advance” and will deliver the matrices of the reduced system
(as in (3)). For the nonlinear systems however, the projection requires the
complete evaluations of q and j and hence, the solution of (6) will not be
faster than the solution of (1). In order to speed it up, a so called missing
point estimation can be applied. Assume that:

VPOD ≈ P�PṼPOD, (7)

where P ∈ {0, 1}g×n is a selection matrix with PP� = Ig. Now introduce
the restricted basis VMPE = PṼPOD. Then V T

PODq(VPODz) ≈ Ṽ T
PODP

�Pq
(P�PṼPODz) = V T

MPEPq(P�VMPEz) and similar for j. Hence, only g elements
of q and x have to be evaluated, which is much cheaper than evaluating q
and j if g 
 n.

We use an iterative version of the greedy algorithm [5] in order to find a
selection matrix P with minimal dimension g, such that

cond(V �
PODP

�PVPOD) < TOL (8)

is fullfiled.

4 Numerical Results

We considered the academic diode chain model shown in Fig. 1, which is des-
cribed through the following equations:

V1 − Uin(109t) = 0,

iE − g(V1, V2) = 0,

g(V1, V2) − g(V2, V3) − CV̇2 − 1
R

V2 = 0,

.

.

.

g(VN−1, VN ) − g(VN , VN+1) − CV̇N − 1
R

VN = 0,

g(VN , VN+1) − CV̇N+1 − 1
R

VN+1 = 0,

g(Va, Vb) ={
(Ise

Va−Vb
VT − 1) if Va − Vb > 0.5

0 otherwise

Uin(t) =

{
20 if t ≤ 10

170 − 15t if 10 < t ≤ 11

5 if t > 11

R C~ R C R C

Uin

V2 V300V1

Is=1e-14 A
VT=0.0256V
R=1e4
C=1e-12

Fig. 1. Structure of the test circuit
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Fig. 3. Relative errors over all nodes for the reduced models created by TPWL
(left) and by POD (right)

Figure 2 (left) shows the numerical solution (nodal voltage in each node)
of the original model, computed by the Euler Backward method with fixed
step sizes of 0.1 ns. It further indicates (right) the redundancy of the model,
as most of the eigenvalues of the correlation matrix 1

nXX
T can be neglected.

Figure 3 shows the relative errors over all nodes in the time interval [0, 70 ns],
defined as εr = ||V z−x||

||x|| , for the reduced models of different orders constructed
by TPWL (left) and POD (right). For TPWL the relative error is most of the
time lower then the chosen error bound ε = 0.025. Furthermore, for higher
order reduced models, a smaller number of LTs has been used than for the
reduced models with lower order, as the local systems with higher orders are
more accurate. For, e.g. a reduced model of order 100 we have used 42 LTs
and for smaller reduced models 60 LTs. The POD models are, as expected,
more accurate, but much slower to simulate than the TPWL models (see the
corresponding extraction and simulation times in Table 1). A significant speed
up has been achieved by combining the POD with MPE.
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Table 1. Comparison of extraction and simulation times in seconds

Model r Extr. time Sim. time Model r g Extr. time Sim. time

Original 302 0 142 POD 10 302 142 168
TPWL 10 290 1.1 POD 25 302 142 182
TPWL 25 285 1.5 POD + MPE 10 32 146 74
TPWL 50 206 2.3 POD + MPE 25 55 151 123

5 Conclusion and Outlook

The TPWL method seems to be a promising technique to reduce the simula-
tion time for nonlinear DAE systems. It’s main advantage is the application of
well-developed linear model reduction techniques. The POD method delivers
reduced models which are more accurate but also much more expensive to
compute. Hence, the missing point estimation is necessary to achieve a reduc-
tion of simulation time at all. Both techniques offer a good starting point for
further research on MOR of non-linear dynamical systems.

Finally, we would like to thank Dr. B. Tasić for his help with the diode
chain model and to acknowledge the EU support through the COMSON RTN
project.
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Summary. The distribution function based on the maximum entropy principle
(MEP) in the case of 8 moments is compared with the direct solution of the
Boltzmann transport equation in typical one dimensional benchmark problems for
semiconductor silicon devices. The energy bands are assumed to be described by the
Kane dispersion relation.

1 Kinetic Model

In the semi-classical approximation the charge transport in semiconductors is
described by a Boltzmann equation for the one particle distribution function
f(t,x,k)

∂f

∂t
+ v(k) · ∇xf −

q

�
E · ∇kf = C[f ]. (1)

t and x are time and space coordinates and k the crystal momentum of the
electron.

The electron velocity v(k) is related to the electron energy E(k) by the
relation

v(k) =
1
�
∇kE(k).

In general, the expression of E(k) (the so called band structure) depends
on the material and is very complicated. Reasonable approximation for the
applications is Kane’s dispersion relation which takes into account the non-
parabolicity at high energies

E(k) =
1

1 +
√

1 + 2 α
m∗ �2|k|2

�2|k|2
m∗ =

√
1

4α2
+

�2|k|2
2αm∗ −

1
2α
, k ∈ R3

where m∗ is the effective mass and α the non-parabolicity parameter.
The absolute value of the electron charge is denoted by q. The electric field

E is related to the electron distribution by Poisson’s equation
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E = −∇φ, ε∆φ = −q(ND −NA − n),

where φ is the electric potential, ε the permittivity of the semiconductor, ND

and NA donor and acceptor density, and n the electron density

n(t,x) =
∫

R3
f(t,x,k) dk.

C[f ] is the collision operator, which takes into account scattering of the elec-
trons with acoustical and optical phonons and with impurities [JaLu89]. In
the non degenerate case the collision term is written in the linear approxi-
mation

C[f ](kA) =
∫

R3
[P (kB,kA)f(kB)− P (kA,kB)f(kA)] dkB

with P (kA,kB) transition rate from the state with wave-vector kA to the
state with wave-vector kB. In this article we will consider a silicon semicon-
ductor.

The direct solution of the semiclassical Boltzmann transport equation
(BTE) is a daunting computational task and mainly it is based on a sto-
chastic approach (Monte Carlo simulations). Recently deterministic solutions
of BTE have been obtained in [Ga05, CGMS06, GM06] by using a fifth or-
der conservative finite difference WENO scheme combined with a third order
TVD Runke-Kutta time discretization.

The results give a very accurate description of the electron dynamics in
the device. However, the CPU time is still not adequate for CAD purposes in
electronics engineering, although some attempts of parallelization [MCM06].
This has prompted the development of macroscopic models.

2 The Maximum Entropy System for Electrons
in Semiconductors

Besides the electron density n, other physically relevant macroscopic quanti-
ties are

u =
1
n

∫
R3

v(k)f dk the average electron velocity u relative to the
crystal,

W =
1
n

∫
R3
E(k)f dk the average electron energy,

S =
1
n

∫
R3

v(k)E(k)f dk the flux of energy.

Multiplying (1) with weight functions a = (a1, . . . , am)T and integrating over
k, we obtain equations for the moments
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∂ρ

∂t
+

3∑
j=1

∂

∂xj
〈f vj a〉 = 〈(C[f ] + γE · ∇kf)a〉 , γ = q/�, (2)

where 〈·〉 means k integration. The system would be closed if

f(t,x,k) = F (ρ(t,x),k) .

In the maximum entropy approach F (ρ,k) is taken as solution of the problem

maximize H(f) = −〈f (log f − 1)〉 with f ≥ 0 and 〈f a〉 = ρ (3)

We introduce the Lagrange functional

L(f,λ) : = H(f)− λ · (ρ− 〈f a〉)

where λ is the vector of Lagrange multipliers. The necessary condition that
all directional derivatives vanish in the maximum fλ leads to

0 = δL(fλ,λ) = (− log fλ + λ · a) δfλ so that fλ = exp(λ · a).

Finally, the Lagrange multipliers λ are chosen in such a way ρ = 〈fλ,a〉 are
satisfied and one can now close the moment system (2)

∂ρ

∂t
+

∂

∂xj
Gj(ρ) = P (ρ) (4)

where Gj(ρ) = 〈F (ρ) vja〉 , P (ρ) = 〈(C[F (ρ)] + γE · ∇kF (ρ))a〉.
The solvability of the maximum entropy problem has been proved in [JR05]

when the Kane dispersion relation is used.
Assuming n,V ,W,S as fundamental variables, in [AR99, RO00, RO01,

AMR03] the MEP 8-moment model, which describes the electron as a heat-
conducing gas, has been deduced and investigated obtaining the relations
between Lagrange multipliers and basic moments by an expansions in terms
of a small anisotropy parameter.

The corresponding MEP distribution reads

fME = exp
(
−λ− λV · v − λWE − E λS · v

)
(5)

with the following characterisation of the moment cone

Λ =
{

λ =
(
λ,λV , λW ,λS

)
: λ ∈ R8, λW > 0 and v∞|λS | < λW

}
,

where v∞ = 1/
√

2αm∗ is the asymptotic value of v(E). The MC results justify
the ansatz of small anisotropy and fME is approximated as

fME � exp
(
− 1
kB

λ− λWE
)[

1−
(
λV · v + E λS · v

)]
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where λW , λV and λS are functions of W , u and S (see [AMR03] for the
explicit relations and details).

After having expressed k in terms of its unit vector l and E , the zeroth
and first harmonics of fME are given by

f
(0)
ME(E) =

∫
S2
fME(E , l) g(E) dΩ, fME(E) =

∫
S2

v(E)fME(E , l) g(E) dΩ

where g(E) =
√

2(m∗)3/2 �−3
√
E(1 + αE)(1 + 2αE) is the density of states

and dΩ the element of solid angle (the same symbol fME has been used for
the MEP function expressed in the new variable). The dependence on space
and time is through the lagrangian multipliers that in turn depend on the
macroscopic variables n,V ,W,S. Therefore once the balance equations (4),
coupled to the Poisson equation, are solved, fME is obtained as well.

3 Comparison Between the MEP Distribution Function
and the Direct Solution of the Boltzmnn Equation

As first test we consider a one dimensional homogeneous silicon device under
several values of the applied electric field. In the table we compare the results
for the macroscopic velocity and energy for several electric fields.

E BTE velocity MEP velocity BTE energy MEP energy
(kV cm−1) (105msec−1) (105msec−1) (eV) (eV)

10 0.059915 0.6579 0.060655 0.06037
20 0.079029 0.8546 0.087296 0.09069
30 0.087372 0.9355 0.11733 0.1237
40 0.091356 0.9744 0.14899 0.1581
50 0.093176 0.9964 0.18118 0.2222

The zeroth order harmonics of fME and of the direct solution of the Boltzmann
equation are compared in Fig. 1 for the electric field E = 10 kV cm−1 and
E = 50 kV cm−1.

As second test we consider a one dimensional n+ − n − n+ silicon diode,
with total length 0.6 micron, channel length 0.4 micron, doped as follows

ND(x)−NA(x) =
{

1018 cm−3 in the n+ region
1016 cm−3 in the n region

under an applied voltage of 2 Volt.
The zeroth and first order harmonics of fME and the direct solution of

the Boltzmann equation are compared in Figs. 2 and 3 along the device. A
reasonable agreement is observed.
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Summary. We present a deterministic solver to the Boltzmann-Poisson system
for simulating the electron transport in silicon MOSFETs. This system consists
of the Boltzmann transport equations (BTEs) for free electrons and for the two-
dimensional electron gas (2DEG) formed at the Si/SiO2 interface. Moreover, the
Poisson equation is coupled to the BTEs. Eigenenergies and wave functions of the
2DEG are dynamically calculated from the Schrödinger-Poisson system. Numerical
studies prove the applicability and the efficiency of the proposed numerical technique
for simulating ultrasmall semiconductor devices.

1 Introduction

The increasing miniaturization in semiconductor technology leads to semicon-
ductor devices, which are strongly influenced by quantum mechanical effects.
In such devices, the motion of electrons is often confined in quantum wells.
Hence, these carriers are termed two-dimensional electron gas. The considera-
tion of 2DEGs is very important, since they occur in modern heterostructure
devices as well as in conventional silicon MOSFETs [1].

In this paper, we simulate the electron transport in a silicon MOSFET
including the quantization effects. So far, such simulations on a kinetic level
have mainly been performed by means of Monte Carlo techniques [2,3]. How-
ever, our work concerning the 2DEG transport in homogeneous channels [4,5]
have shown that deterministic solvers to the transport equations are an in-
teresting alternative to the usual stochastic schemes. Hence, we adopt these
schemes in order to properly describe the 2DEG dynamics in inhomogeneous
channels as they are found in realistic devices.

This paper is organized as follows. In Sect. 2, we present the Boltzmann–
Poisson-Schrödinger (BPS) system, on which our simulations are based.
Section 3 deals with the numerical scheme, which is used to solve this sys-
tem. Finally, some numerical results are given in Sect. 4.
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2 Boltzmann-Poisson-Schrödinger System

In this section, we shortly summarize the basic equations of our Si-MOSFET
simulation. A schematic illustration of the considered device is displayed in
Fig. 1. We assume that notable quantum effects only occur in a domain be-
tween the suitably chosen positions x1 and x2. In this region, we solve the
effective mass Schrödinger equation,[

−�2∂yy + 2m∗U(t, x, y)
]
ϕν(t, x, y) = 2m∗εν(t, x)ϕν(t, x, y), (1)

in order to obtain the eigenvalues εν and envelope wave functions ϕν as func-
tions of the position (x, y) at time t. The subband index ranges between
ν = 1, 2, . . . , γ, where γ is a chosen integer. The boundary values of ϕν are
set to ϕν(x, 0) = 0 and ϕν(x, ly) = 0 for x ∈ [x1, x2]. The potential energy U
in [0, lx]× [0, ly] is related to the electrostatic potential V by U = −eV with
the elementary charge e. For determining V , we solve the Poisson equation in
the Si and the SiO2 region,

∂x[ε0εr∂xV (t, x, y)]+∂y[ε0εr∂yV (t, x, y)]=−e[ND(x, y)−n(t, x, y)] (2)

with the dielectric constant ε0εr and the donor density ND. The electron
density n is found as the zero-order moment of the distribution function of
3D electrons and those of 2D electrons fν . The evolution of the distribution
functions is governed by Boltzmann equations. For 2D electrons, it reads

∂tfν + vνx∂xfν −
e

�
Eν

x∂kx
fν =

∑
µ
Cν,µ[fν ], (3)

where kx is the x-component of the 2D wave vector k. The group velocity of
electrons in x-direction is given by vνx(k) = ∂kx

Eν(k)/� with the energy Eν

related to a 2D electron with wave vector k in the subband ν. The effective
electric field acting on these electrons is obtained from Eν

x(t, x) = ∂xεν(t, x)/e.
The collision term Cν,µ[fν ] involves intrasubband scattering (ν = µ) and in-
tersubband scattering (ν �= µ) by acoustic and optical phonons and it includes
electron degeneracy. For more details, we refer to [1, 3, 4, 6].
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Fig. 1. Schematic illustration of the simulated Si-MOSFET
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The equations (1), (2), (3) together with a Boltzmann equation for 3D
electrons form the BPS system. For a realistic simulation of a MOSFET,
strongly influenced by quantum effects, they must be solved self-consistently.

3 Numerical Scheme

To begin with, we specify the region of the phase space in which 2D transport
takes place. Therefore, we introduce a border energy Eb, which is set to Eb =
εγ . All of the electrons with total energy lower than Eb are described by BTEs
for 2DEG, the others by means of a 3D BTE. In real space, the 2D region is
given by [x1, x2]× [Eb(x) = U(x, y), ly].

For numerically approximating the 2D BTEs, we transform them into a
conservative form with the change of variables kν(E,ϕ) = kν(E)(cosϕ, sinϕ),
where kν(E) = [2m∗(E − εν)]1/2/� and E ∈ [εν , Eb], ϕ ∈ [0, 2π]. Hence,
we express the 2D wave vector in terms of energy E and angle ϕ based on
a parabolic energy-momentum dispersion relation. Rewriting Eq. (3) with
fν = fν(t, x, E, ϕ) leads to

∂t (Zνfν)+∂x (a1Zνfν)+∂E (a2Zνfν)+∂ϕ (a3Zνfν)=
∑

µ
C̃ν,µ[Zνfν ] (4)

with Zν(E) = m∗Θ(E − εν)/(2π�)3 and the Heaviside step function Θ. The
function aν2 is defined, for instance, by aν2 = −e�Eν

x(t, x) kν(E) cosϕ/m∗.
Next, we introduce the discretization of energy Eν

i = εν + i∆E, i =
0, 1, . . . , Nν , and angle ϕj = j∆ϕ, j = 0, 1, . . . , R, ∆ϕ = π/2R, R ∈ N

and the ansatz

Zν(E)fν(t, x, E, ϕ) ≈
∑Nν

i=1

∑R

k=1
nν
ij(t, x)Zν(E)χE

i (E)χϕ
j (ϕ). (5)

Here, Nν(x) are integer numbers so that ENν−1 < Eb ≤ ENν , while χE
i (E)

and χϕ
j (ϕ) are characteristic functions defined, for instance, by χE

i = ∆E−1

for E ∈ [Ei−1, Ei] and χE
i = 0 otherwise. The ansatz (5) is inserted in

the BTE (4) and the result is successively integrated over the cells Zij =
[Ei−1, Ei] × [ϕj−1, ϕj ]. This procedure together with an upwind scheme and
a MinMod slope limiter for determining the coefficients nν

ij at cell boundaries
leads to a set of multigroup equations, which are partial differential equations
in x and t. The spatial derivative is approximated by a fifth-order WENO
scheme [7] and the resulting set of ordinary differential equations is solved by
a TVD Runge-Kutta method with time steps so that the CFL condition is
fulfilled.

The BTE of 3D electrons based on a non-parabolic dispersion law is
solved in a similar way. For details, we refer to [6, 8]. Transitions between
the 2D and 3D electrons by scattering and advection are handled as follows.
We treat the transfer between them classically, although our model contains
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sharp borders between 2D and 3D region. In a real device, such sharp bor-
ders, which normally demand a quantum mechanical description, are not
found, since 3D behaviour changes gradually into 2D behavior. Hence, we
demand classical conversation of electron number (∆n3D = −∆n2D), momen-
tum (k3D

x = k2D
x , k3D

z = k2D
z ) and total energy E3D = E2D, when transferring

the outflow of one region into the inflow of the other.

4 Results

In this section, we present some results of our simulation of a Si-MOSFET. The
used geometry is found in Fig. 1. The donor densities are set to N=1011 cm−3

and N+=1018 cm−3. The applied voltages are set to VS=0 at source, VG=1 V
at gate and VD=1 V at drain. The material parameters used are the same
as given in [8]. The 2DEG is built up by γ = 10 subbands. Starting from an
initial equilibrium distribution, we solved the BPS system up to 5 ps, where
the stationary state is almost reached.

In Fig. 2, we display the total electron density in the simulated Si-
MOSFET. The high electron density at the Si/SiO2 interface forming the
conduction channel is clearly visible. An interesting detail can be seen in the
given contour plot of the electron density. We observe that the maximum
density is not found at the Si/SiO2 interface, as it would be the case for a
semiclassical simulation, but it is shifted inside the device.

Figure 3 shows the distribution function of 3D electrons averaged over
one angle and that of electrons in the first 2DEG subband. In a pure 3D
simulation, the 3D distribution would also be filled at low energies. This part
of the 3D distribution function is zero in our case, since these low energy
electrons are treated as 2D electrons. Hence, they are contained in fν . Finally,
we note that the presented distribution functions are very smooth as they can
only be obtained with a deterministic scheme at affordable computational
costs.
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Fig. 3. Distributions of 3D electrons F (left) and 2D-electrons in the first subband
f1 (right) vs. kinetic energy ε and angles µ and ϕ at x = 105 nm and y = 98 nm

5 Conclusion

We simulate the electron transport in silicon MOSFETs by means of a deter-
ministic solver to the BPS system. Numerical studies prove the applicability
and the efficiency of the proposed numerical technique. In order to allow a
more realistic device simulation, our scheme should be extended in the future.
For instance, non-spherical energy bands and further scattering mechanisms
like impurity scattering and surface roughness scattering must be incorpo-
rated. In addition, hole transport should also be regarded. However, the results
we have obtained so far are promising, and we believe that our approach will
become an important tool for sophisticated semiconductor device simulation.
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Thanks to the development of information technologies, the last decade has
seen a considerable growth of interest in the statistical theory of shape and
its application to many and diverse scientific areas.

In applications, bodies rarely have exactly the same shape within mea-
surement error; hence randomness of shapes need to be taken into account.

Often the diagnosis of a pathology, or the description of a biological process
mainly depend on the shapes present in images of cells, organs, biological
systems, etc., and mathematical models which relate the main features of
these shapes with the correct outcome of the diagnosis, or with the main
kinetic parameters of a biological systems are still not present.

From the mathematical point of view, shape analysis uses a variety of
mathematical tools from differential geometry, geometric measure theory, sto-
chastic geometry, etc. As far as applications are concerned, we emphasize here
topics which are relevant in medicine and biotechnology. We deal with direct
and inverse problems.

Among direct problems, spatio-temporal pattern formation deals with the
analysis of how patterns are created and developed in biology. An example of
application to growth of plants is here presented.

Among inverse problems, some stochastic geometric techniques of shape
analysis and mathematical morphology are here proposed to measure in a
quantitative way the random variability of objects and perform automatic
classification. Recent methods of image analysis include optical imaging of
objects in turbid media, which can be used as a non-invasive technique for
the detection of tumors in the body. An example of study of x-ray tomographic
data (Schlieren data) is here also presented.
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Summary. Here the Theory of Size Functions is introduced and joined to some
statistical techniques of discriminant analysis, to perform automatic classification
of families of random shapes. The method is applied to the classification of normal
and malignant tumor cell nuclei, described via their section profiles. The results here
reported are compared with other techniques of shape analysis, already applied to
the same data, showing some improvements.

1 Introduction

The solution of the problem of describing a “shape” via functions taking
values in a finite dimensional space, without loosing important information,
is essential for a mathematical and statistical approach. Recently new geo-
metrical descriptors of shapes, called size functions, have been proposed [4].
These functions are able to capture “globally” the topological and geometri-
cal features of an object, differently from landmarks [2, 8] (usually these are
specific points, angles, distances, etc., on the object, chosen by an expert)
which are widely used in literature but whose results in a statistical context
are strongly dependent on their choice, leading to a sort of subjective quan-
titative analysis.

Size functions depend on the choice of a measuring function and usually
only a small number of choices can lead to different statistical results.

The theory of size functions has been developed mainly in a deterministic
framework. Here, we join this theory with randomness and with suitable sta-
tistical techniques in order to obtain good results in random shape recognition
and classification.

This technique has been here applied to the automatic classification of
normal and tumor cell nuclear profiles, as observed in electron microscope
sections of human epithelial tissue samples.
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2 Size Functions and Shape Description

Let M be a finite union of compact arcwise connected and locally arcwise
connected subsets of an Euclidean space and let ϕ : M→ R be a continuous
function, called measuring function. The pair (M, ϕ) denotes in a formal way
the shape of the object M.

For every x ∈ R let M〈ϕ � x〉 denote the set {P ∈M : ϕ(P ) ≤ x}. Thus,
we can introduce the following definition [4].

Definition 1. Consider the function l(M,ϕ) : R× R → N ∪ {+∞} defined by
setting l(M,ϕ)(x, y) equal to the number of equivalence classes into which the
setM〈ϕ � x〉 is divided by the relation of 〈ϕ � y〉-homotopy, where two points
P,Q ∈M are 〈ϕ � y〉-homotopic if and only if either P = Q or a continuous
path γ : [0, 1] →M, joining P and Q, exists in M such that ϕ(γ(t)) ≤ y for
every t ∈ [0, 1]. We shall call l(M,ϕ) the size function associated with the pair
(M, ϕ).

The size function l(M,ϕ) describes the shape of M through information
given by ϕ, whose choice depends on the specific problem we are interested
in. An important property of size functions is that they inherit the invariance
properties, if any, of the chosen measuring functions.

The size function l(M,ϕ) conveys relevant information about the pair under
study only in the half-plane x < y. Furthermore for x < y size functions have
a simple geometric interpretation: in such a case l(M,ϕ)(x, y) is equal to the
number of arcwise connected components of M〈ϕ � y〉 containing at least
one point of M〈ϕ � x〉.

An example of size function is illustrated in Fig. 1. We show the size func-
tion of the contour of an ellipse M with respect to the measuring function
ϕ(z) which associates to each point z ∈ M its distance from the center of
mass of M. More precisely, we represent the domain of l(M,ϕ) with its dis-
continuities: the number displayed in each region of the domain denotes the
value of the size function in that region.
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Fig. 1. Size function of an ellipse with respect to the distance from the center of
mass
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2.1 Cornerpoints and Cornerlines

The discontinuities of size functions are related to specific points and vertical
lines in the real plane, each one with a multiplicity, called cornerpoints and
cornerlines, respectively. We refer to [3, 4] for further details.

The abscissa of every cornerline corresponds to the global minimum taken
by ϕ on an arcwise connected component of M, while the coordinates of the
cornerpoints are couples of critical values for ϕ.

It can be proven that all and only the discontinuity points of a size function
are generated by its cornerpoints and cornerlines (whose number is a.s. finite);
viceversa, cornerpoints and cornerlines with their multiplicities uniquely de-
termine the value of l(M,ϕ) almost everywhere, so that they contain all infor-
mation conveyed by the size function about the shape under study.

2.2 Matching Distance

In order to compare different shapes a suitable distance between the repre-
sentative size functions must be introduced. An idea is indeed to compare size
functions by measuring the cost of moving and overlapping the cornerpoints
and cornerlines of one size function to those of the other one, by minimizing
the longest movement. Since, in general, the number of cornerpoints of the
two size functions is different, we also enable the cornerpoints to be trans-
ported onto the points of the diagonal ∆ with equation y = x. This leads to
the definition of the matching distance between size functions (see [1] for the
definition and further details).

The matching distance between size functions has the fundamental prop-
erty of stability with respect to small perturbations of the shape. This result
allows us to use size functions as robust shape descriptors in presence of ran-
domness. The presence of randomness on a shape is revealed in the domain
of the corresponding size function by small displacements of its cornerpoints
and cornerlines and by the presence of small triangles near the diagonal ∆.
As an example, in Fig. 2 we show an ellipse perturbed with noise and its size
function with respect to the distance from the center of mass.
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Fig. 2. Size function of a deformed ellipse with respect to the distance from the
center of mass
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Thus the cornerpoints which describe (with the cornerlines) the main
characteristics of the shape under study are those standing “sufficiently far”
from ∆. Since, for sufficiently regular shapes, they are (a.s.) in a finite num-
ber [4], shape analysis and classification are then reduced to the statistical
study of the location of finite sets of points and lines in the real plane.

3 Application to the Classification of Tumor
and Normal Cells

The nearest neighbor method for nonparametric discriminant analysis (see [6]
for an introduction to the method) has been applied to the automatic recogni-
tion of tumor and normal cells, by analyzing the shape of their nuclear profiles
via the size functions. Usually the pathologist classifies the cells by direct vi-
sual analysis of the nuclear profile, according to the symmetry, smoothness,
and regularity of the contour, which are significantly different between the
majority of the elements of the two classes, tumor and normal.

We used a data set consisting of 1,337 images of nuclear profiles of cells
coming from electron microscope sections of oral epithelium samples; 637 out
of the analyzed images came from seemingly normal tissues free of pathology,
while 700 nuclear profiles came from invasive oral squamous cell carcinoma
(the commonest malignant tumor in oral tissues). The same data had already
been analyzed in [7] using three asymptotic fractal parameters as descriptors
of nuclear shape. Discriminant analysis applied to these descriptors led to a
correct classification of 78.8% of the cells (88% of the normal cells and 70.2%
of the tumor cells). In [8] the data were analyzed using landmarks located on
points of maximum curvature of the contour, leading to a correct recognition
of the 76.6% of the cells.

Here we have applied the nearest neighbor method to the size functions,
computed using the distance from the centroid of the nuclei as measuring
function. We used the matching distance to build the discriminant function.
The computation of the matching distance between two size functions having
n cornerpoints involves n! comparisons of couples of cornerpoints [4]; this leads
rapidly to an explosion of the computational costs when the number of cor-
nerpoints due to noise increases. Thus, we filtered out the noise by considering
for each size function only the m cornerpoints which are the furthest apart
from the diagonal. The constant m is a bandwidth which must be properly
chosen. The nearest neighbor method is also based on the choice of another
bandwidth, the number K of nearest neighbors which are considered for each
new object that must be classified. The values of K and m have here been
chosen empirically on the basis of the results obtained on our already classified
data set.

The results obtained for different choices of the bandwidths are reported
in Table 1. The results look better than the ones obtained in [8] using land-
marks, and are comparable with the ones obtained in [7] using the asymptotic
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Table 1. Percentages of correct classification with the nearest neighbors method

.Chosen bandwidths Tumor nuclei (%) Normal nuclei (%) Total (%)

K = 17, m = 3 71.21 80.79 76.00
K = 15, m = 3 70.53 83.28 76.90
K = 11, m = 3 71.62 82.55 77.08
K = 15, m = 2 70.53 83.72 77.12
K = 11,m = 2 72.31 82.55 77.43
K = 7, m = 2 71.62 80.65 76.13

K = number of considered nearest neighbors; m = number of cornerpoints used
for each size function. The leave one out method has been used to compute the
percentage of correct recognition. The best result is reported in bold

fractal dimension; in particular an improvement can be observed in the correct
recognition of tumor cells.

Further improvements could perhaps be obtained by changing the mea-
suring function. The problem of finding a method for the automatic selection
of the best measuring function from a given family is still open and under in-
vestigation. The solution of this problem is crucial and may lead to standard
procedures for automatic diagnosis.
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35, rue Saint-Honoré, 77300 Fontainebleau, France
jesus.angulo@ensmp.fr, http://cmm.ensmp.fr/∼angulo

1 Introduction: Context and Motivation

Morphological analysis of cells (size, shape, texture, etc.) is fundamental in
quantitative cytology. Anomalies and variations from the typical cell are asso-
ciated with pathological situations, e.g. useful in cancer diagnosis, in cell-based
screening of new active molecules, etc.

Mathematical morphology is a nonlinear image processing technique based
on minimum and maximum operations [SER82], i.e. the basic structure is
a complete lattice [HEI94]. This contribution aims to apply mathematical
morphology operators to quantify the shape of round-objects which present
irregularities from an ideal circular pattern. More specifically we illustrate, on
the one hand, the application of morphological granulometries for size/shape
multi-scale description and on the other hand, the radial/angular decompo-
sitions using skeletons in polar-logarithmic representation. We discuss also
the aspects related to the properties of invariance of these tools, which is
important to describe cell shapes acquired under different magnifications, ori-
entations, etc.

The performance of these mathematical shape descriptors is shown by
means of examples from haematological cytology [ANG06] (to classify red
blood cells) and from cell-based high-content screening assays [LEM06] (to
quantify the populations of hepatocytes), see Fig. 1.

Let E, T be non-empty sets. We denote by F(E, T ) the power set T E ,
i.e. the set of functions from E onto T . Typically for the digital 2-D images
E ⊂ Z2. Let f be a grey level image, f(x) ∈ F(E, T ) (x ∈ E is the pixel
position), in the case of discrete image values T = {tmin, tmin + 1, · · · , tmax}
(in general T ⊂ Z or R, or any compact subset of Z or R) is an ordered set of
grey-levels. We suppose here that a binary image f (sometimes denoted X)
is a two-levels image, i.e. tmin = 0 and tmax = 1.
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Fig. 1. Microscopic cell images (left), segmented cell shapes to be analysed (right)

2 Multi-Scale Shape Descriptors Using Granulometries

Given a grey level image f ∈ F(E, T ), the two basic morphological operators
are dilation: δnB(f(x)) = {f(y) : f(y) = sup[f(z)], z ∈ n(Bx)}, and erosion:
εnB(f(x)) = {f(y) : f(y) = inf[f(z)], z ∈ n(Bx)}, where B is a subset of Z2

and n ∈ N a scaling factor. n(Bx) is called structuring element (shape probe)
B of size n (homotetic of factor n) centred at point x. Here we suppose that
B is plane, symmetric and compact convex. Typically, nB are families of
disks (isotropic) or of segments (orientated). Note that δ(f), ε(f) ∈ F(E, T ).
Erosion shrinks positive peaks. Peaks thinner than the structuring element
disappear. As well, it expands the valleys and the sinks. Dilation produces
the dual effects.

The two elementary operations of erosion and dilation can be com-
posed together to yield a new set of operators having desirable feature ex-
tractor properties which are opening : γnB(f) = δnB(εnB(f)), and closing :
ϕnB(f) = εnB(δnB(f)). Opening (closing) removes positive (negative) struc-
tures according to the predefined size and shape criterion of the structuring
element (smooth in a nonlinear way).

A granulometry is a size distribution based on a pyramid of morphological
operators. Formally, it can be defined as an one-parameter family of openings
[MAT67] Γ = (γλ)λ≥0 such that: (1) γ0 is the identity mapping, i.e. γ0(f) = f ;
(2) γλ is increasing, i.e. f ≤ g ⇒ γλ(f) ≤ γλ(g),∀λ ≥ 0, ∀f, g; (3) γλ is anti-
extensive, i.e. γλ(f) ≤ f,∀λ ≥ 0, ∀f ; (4) γλ follows the absorption law, i.e.
∀λ ≥ 0,∀µ ≥ 0, γλγµ = γµγλ = γmax(λ,µ). Moreover, granulometries by
closings (or anti-granulometry) can also be defined as families of increasing
closings Φ = (ϕλ)λ≥0.

The morphological openings, γnB , B compact convex, satisfies the four
granulometric postulates. They also satisfy two fundamental properties: (5) the
γnB are translation invariant; (6) γn(f) = γ1( 1

nf), i.e. there is a unit sieve
γ1, and any other sieve in the process can be evaluated by first scaling the
image by the reciprocal of the parameter, filtering by the unit sieve, and then
rescaling.

Let m(f) be the Lebesge measure of a discrete image f . Performing the
granulometric analysis is equivalent to mapping each opening of size λ with
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Fig. 2. Left, cell population based high content toxicity biosensor, three examples of
toxic concentration. Right, pattern spectra, PS(f, n), with openings (for size/shape
description) and closing (for aggregation study) of size n = −30 to 30

a measure of the opened image γλ(f). The granulometry curve or pattern
spectrum [MAR89] of f with respect to Γ is defined as the following (nor-
malised) mapping: PSΓ (f, n) = PS(f, n) = m(γn(f))−m(γn+1(f))

m(f) , n ≥ 0.
PSΓ (f) maps each size n to some measure of the bright image structures
with this size: loss of bright image structures between two successive open-
ings. PSΓ (f) is a probability density function (a histogram): a large impulse
in the pattern spectrum at a given scale indicates the presence of many image
structures at that scale. By duality, the concept of pattern spectra extends
to anti-granulometry curve PSΦ(f) by closings, PSΦ(f,−n) = PS(f,−n) =
(m(ϕn(f))−m(ϕn−1(f)))/m(f), and is used to characterise the size of dark
image structures. The pattern spectrum can be directly used to compare
shapes. Moreover different parameters (moments, partial sums, etc.) can be
derived from the pattern spectrum to measure the complexity, dispersion, etc.,
of the shape [SIV97] [BAT97].

Granulometric analysis is very useful to describe the shape of individual
cells (see for instance in [ANG06] the cytoplasmic profile classification using
the partial sums of PSΓ (f, n)). Figure 2 shows an example of application of
granulometric analysis to characterise three classes of cell populations (control
and two values of toxicity). In this case, the pattern spectra PS(f, n) of seg-
mented cells allow us to classify the populations according to the size/shape
of cells (with the family of openings) or with respect to their aggregation
(closings).

3 Radial/Angular Decompositions Using Skeletons
in Log-Polar Coordinates

It is difficult to take advantage of radial/angular properties of round-objects
(definition of neighbourhood, adapted structuring elements, etc.) when math-
ematical morphology operators are defined in F(E, T ) (space E corresponds
to Cartesian coordinates). The conversion into logarithmic polar coordinates
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as well as the derived cyclic morphology, recently studied by [LUE05], appears
to be a way that provides interesting results to obtain inclusion (extrusion) de-
compositions by means of angular/radial closings (openings) and to describe
shape angularities by computing radial skeletons.

The log-polar transformation converts the cartesian image function f(x, y):
E → T into another log-polar image function f◦(ρlog, θ) : Eρlogθ → T , where
the angular coordinates are placed on the vertical axis and the logarithmic
radial coordinates are placed on the horizontal one. More precisely, with re-
spect to a central point (xc, yc): ρ =

√
(x− xc)2 + (y − yc)2, ρlog = log(ρ),

0 ≤ ρlog ≤ R; θ = arctan
(

y−yc

x−xc

)
, 0 ≤ θ < 2π. The support is the space Eρlogθ,

(ρlog, θ) ∈ (Z×Zp) (discrete period of p pixels equivalent to 2π). A relation is
established where the points at the top of the image (θ = 0) are neighbours
to the ones an the bottom (θ = p − 1). The choice of (xc, yc) is relatively
critical. We propose to use the maxima of the distance function or ultimate
erosion [SER82]. The image f◦ ∈ F(Eρlogθ, T ) presents two properties useful
for shape analysis: (1) rotations in the cartesian image f(x, y) become vertical
cyclic shifts in the transformed log-pol f◦(ρlog, θ); (2) the changes of size in f
become horizontal shifts in f◦.

The use of classical structuring elements in the log-pol image is equivalent
to the use of ‘radial–angular’ structuring elements in the original image, e.g.
g◦ = δB(f◦) where B is a vertical structuring element corresponds in g to
the dilation by an arc. (a square in g◦ corresponds to a circular sector in g).
This property yields a method for extracting inclusions/extrusions from the
contour of a relatively rounded shape with vertical openings or closings. The
proportion of the vertical size from the structuring element with respect to
the whole vertical size represents the angle affected in the original cartesian
image. With respect to a standard extraction in E, the choice of size in Eρlogθ

is not as critical.
The morphological skeleton by homotopic thinning of a binary image,

skel(f), is a transformation which produces a connected medial axis of the
shape [SER82] [HEI92]. However, the skeleton of a round object in E is usu-
ally biased and for these kind of shapes is more appropriate to work in Eρlog,θ.
Two definitions are possible. The radial inner skeleton skelin(f◦) is the skele-
ton obtained by an homotopic thinning from the log-pol transformation of
an object. In the invert transformation to cartesian coordinates, the branches
of the radial inner skeleton have radial sense and tend to converge to the
centre (ρ = 0). The radial outer skeleton skelout(f◦) is obtained from the neg-
ative image of the log-pol image and in the corresponding cartesian image,
the branches tend to diverge to an hypothetical circumference in the infinity
(ρ −→∞).

Figure 3 gives an approach to extract the extrusions/intrusions of red
blood cells which is used to classify them according to their shape. The
approach for extrusions is composed of several steps: (1) f→ f◦, (2) residue of
vertical opening f◦1 = f◦−γBvert(f

◦), (3) radial outer skeleton f◦2 = skelout(f◦),
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Fig. 3. Erythrocyte shape analysis: morphological algorithm for detecting extrusions
(left) and intrusions (right)

(4) reconstruction to extract the connected components associated to the
skeleton f◦3 = γrec(f◦1 , f

◦
2 ) and (5) f◦3 → f3. The algorithm for the intrusions

is the same changing the opening by a closing and the radial outer skeleton
by a inner skeleton.
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Summary. In order to ensure safety and optimal performance of medical ultra-
sound transducers it is necessary to measure the acoustic pressure fields of trans-
ducers. For the estimation of such pressure fields we use light intensity data that
is obtained by a Schlieren system. Schlieren data corresponds mathematically to
squared x-ray tomographic data. Acoustic pressure fields attain positive and nega-
tive values, but only the square of the line integrals are provided by the Schlieren
system. Therefore the signs of the line integrals are not known, and Schlieren data
cannot be reduced to data of classical x-ray CT. For the numerical estimation of
pressure fields we used the loping Landweber–Kaczmarz method.

1 Schlieren Optical System and Data Acquisition

Given is a tank that is filled with water and that lies within a Schlieren optical
system (see Fig. 1). A rotatable ultrasound transducer is mounted at the center
of the top side of the tank with vertical rotation axis. The aim of a Schlieren
optical system is to measure approximately the first order diffraction pattern
of the laser light passing through the tank. In this case the light intensity
measured by a Schlieren optical system is proportional to the square of the
line integral of the pressure along the light path.

The problem of Schlieren tomography is to reconstruct the pressure field
within the tank that was generated by the transducer from Schlieren data
gathered from different angles σj , j = 0, . . . , N − 1 of rotation of the trans-
ducer.

For more details on Schlieren data we refer to [1–3,7–10].

2 A Mathematical Model for Schlieren Tomography

Let q denote the pressure field within the water tank (at fixed altitude z and
at fixed time T ) generated e.g. by an ultrasound transducer.
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transducer

laser

screen

Schlieren stopabsorberlenses

aperture tank
aperture

Fig. 1. Schlieren optical system. The Schlieren stop can be considered as a black
dot on a transparent screen that reduces the diffraction pattern of order zero. The
aim of the system is to reduce the diffraction patterns of order larger than one

Let D := {x ∈ R2 | |x| < 1} and J := {0, 1, . . . , N − 1}. For j ∈ J let
σj ∈ S1 and Iδj denote the recording angle of the Schlieren system and the
corresponding measured intensity function, respectively. The goal of Schlieren
tomography is to reconstruct the pressure field q : D → R for each altitude z
at fixed time T from the Schlieren data (Ij)j∈J .

We define the parameter-to-data map of our problem by

F : H1
0 (D) → L2([−1, 1])N , q �→ (F0, . . . , FN−1)T (1)

with

Fj(q)(s) :=
(∫

R

q(sσj + rσ⊥
j ) dr

)2

, s ∈ [−1, 1] . (2)

Here, s denotes the signed normal distance of the line Lj(s) := sσj + Rσ⊥
j

from the origin of D and q is considered as the function continued from D to
R2 by zero. Schlieren tomography is concerned with the solution of the system
of equations

Fj(q) = Iδj (j ∈ J) (3)

for Schlieren data (Iδj )j∈J .

2.1 Properties of the Parameter-to-Data Map

Let q ∈ H1
0 (D) be arbitrary but fixed. Again we consider q as the function

continued from D to R2 by zero. It can be shown that each map Fj is Fréchet
differentiable at q with

F ′
j(q)(h) = 2Rj(q)Rj(h) for all h ∈ H1

0 (D) ,

where Rj(q)(s) :=
∫
R
q(sσj + rσ⊥

j ) dr for s ∈ [−1, 1]. The adjoint of F ′
j(q)

is given by
F ′
j(q)

∗ : L2([−1, 1]) → H1
0 (D), f �→ g(f) , (4)
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whereby g(f) is the solution of

(Id−∆) g(f) = 2R 
j(Rj(q)f) . (5)

Here, ∆ denotes the Laplace operator on H1
0 (D) and R 

j denotes the adjoint
of Rj considered as an operator Rj : L2(D) → L2([−1, 1]), i.e.

R 
j : L2([−1, 1]) → L2(D), v �→ (x �→ v(〈σj ,x〉)) . (6)

3 The Loping Landweber–Kaczmarz Method

The Landweber–Kaczmarz method reads as

qδn+1 = qδn − ω F ′
j(q

δ
n)∗(Fj(qδn)− Iδj ) (7)

with j := n mod N and relaxation parameter ω satisfying ‖ω F ′
i (qn)‖L2 ≤ 1

for all n.
We use the following stopping rule: If ‖Fj(q) − Iδj ‖L2 < τδj then the jth

update in the actual cycle is not performed. The cycle-iteration is stopped as
soon as N successive updates have been omitted.

According to this stopping rule, (4) and (5), the loping Landweber–
Kaczmarz method for Schlieren tomography reads as

qn+1 = qn − 2ωn(Id−∆)−1R∗
j

(
Rj(qn)((Rj(qn))2 − Iδj )

)
, (8)

with

ωn :=

{
ω if ‖(Rj(q))2 − Iδj ‖L2 > τδj ,

0 otherwise
. (9)

4 Numerical Experiments

The numerical simulations of the Landweber–Kaczmarz method were per-
formed without the smoothing operator (Id−∆)−1, because the Landweber–
Kaczmarz method itself performs smoothing. For the implementation we
represented each function defined on D or [−1, 1] by linear splines and used
N = 250, τ = 2.2 and q0(x) = 0.01 = const.. The synthetic data (Iδj )j∈J

was generated by adding 0.01% normal distributed random noise to the exact
data. All simulations were performed with MATLAB.

The numerical experiment was performed for a piecewise constant pressure
function. (We note that the results for the smoothed version of this pressure
function was very similar.)

In Fig. 2, we compared the results from the loping Landweber–Kaczmarz
method and the reconstruction via a filtered backprojection (FPB) algorithm
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Fig. 2. The pictures in the first row show the exact pressure function q and the num-
ber of updates per cycle of the loping Landweber–Kaczmarz method. The pictures
in the second row show the results obtained from the loping Landweber–Kaczmarz
method and the reconstruction with a filtered backprojection algorithm for the in-
verse Radon transformation

for the inverse Radon transformation (with the square root of the Schlieren
data as data). The reconstruction with the inverse Radon transformation was
performed with the MATLAB build in function iradon(.).

In contrast to the FPB algorithm the loping and Landweber–Kaczmarz
methods is able to reconstruct the positive and negative part of q.

The upper right image in Fig. 2 shows that the number of updates per-
formed in each loping Kaczmarz cycle is rapidly decreasing.

Reconstructions of a transducer pressure field from real measurement data
are shown in Fig. 3.

4.1 Remark

If q is a solution of our system (3), then −q is also a solution of the system. Our
numerical experiments showed that a strictly positive (negative) initial guess
q0 leads to a numerical reconstruction with positive (negative) mean value.

The local tangential cone condition (cf. [4–6]) that guarantees stable
convergence of the (loping) Landweber–Kaczmarz method is in general not
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Fig. 3. Positive and negative part of a 3-D transducer pressure field with a pulse
of 30 cycles. The reconstruction is performed with the loping Landweber–Kaczmarz
method and the data is provided by GE Medical Systems Kretz Ultrasound

satisfied for Schlieren tomography. According to our numerical experiments
the loping Landweber–Kaczmarz method is convergent except for special cases.
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1 Introduction

In this work, we use the results of plant developmental biology (such as mole-
cular biology of pattern formation and cell cycle progression) and of plant
physiology to develop a mathematical model of plant growth. Trying to de-
scribe the most essential features of growth mechanisms, we do not model
some particular plant organs but the entire plant though with many simpli-
fications, in particular, without taking into account root growth, leave and
flower formation, or the biochemistry of photosynthesis.

The main processes which will be taken into account are related to the
interaction of plant growth with the regulation of cell proliferation (cell cycle
progression) and with fluxes of nutrients and metabolites. In plants, prolif-
erating cells are localized in the tips of growing shoots and roots and in the
cambium. Axial growth of shoots is provided by proliferation of cells in the
narrow external layer called apical meristem. Outside this layer, cells differ-
entiate, they do not divide any more and serve to transport nutrients and
metabolites.

We suppose that the apical meristem, which consists only of several cell
layers, is much smaller than the whole plant. Therefore, we can consider it as a
mathematical surface and describe plant growth as a free boundary problem.
The speed of the free boundary corresponds to proliferation rate. Proliferation
of cells, in its turn, depends on available nutrients and is regulated by plant
hormones, which are produced in the apical meristem or in the other growing
plant tissues.

We develop in this work three different but related to each other models.
These models allow us to study formation of plant organs, various growth
modes, in particular, oscillating growth, apical domination, and other biolog-
ical questions. On the other hand, there are many related mathematical and
numerical questions including nonlinear dynamics, pattern formation, struc-
tural stability.



554 N. Morozova et al.

2 Main Principles and Assumptions (1D Model)

In the simplest 1D case without taking into account root growth, we have the
following model for the axial shoot growth:

∂C

∂t
+ u

∂C

∂x
= d

∂2C

∂x2
(1)

h
dR
dt

= g(R)C − σR, (2)

where 0 ≤ x ≤ L(t), L(t) is the shoot length, C is the concentration of nu-
trients coming from the root, u = L′(t) is the convective speed of nutrients
determined from the continuity equation for the incompressible fluid. The
concentration of growth and mitosis factor (GMF) R is defined at the grow-
ing end x = L(t) which corresponds to the apical meristem. Equation (1)
describes diffusive and convective transport of nutrients through the plant,
(2) describes the production and consumption or destruction of the GMF
in the apical meristem. Growth and mitosis factor is a generic name for a
number of bio-chemical products related to cell cycle. Its production is self-
accelerating, which determines the specific form of the function g(R). System
(1), (2) should be completed by boundary conditions for C at x = 0 (supply
of nutrients) and at x = L(t) (flux of nutrients to the meristem),

x = 0 : C = 1, x = L(t) : d
∂C

∂x
= −g(R)C, (3)

and by the additional relation L′(t) = f(R) which shows how the growth rate
depends on the GMF. We consider f as a piece-wise constant function equal
to 0 if R is less than a critical value cf and equal some positive constant f0
if R is greater than cf . This means that growth begins if the concentration of
the plant growth factor exceeds some critical value.

These assumptions are consistent with plant morphogenesis. It is well
known, for example, that auxin, produced in the apex, stimulates mitosis
and cell proliferation. Kinetin is also known to stimulate cell proliferation.
Production of mitosis factors can be self-accelerating [1].

There are two directions of the development of this model: 1D model with
branching and 2D model.

3 1D Model with Branching

To study branching patterns in plants, we need to specify the conditions of the
appearance of new branches. We use the experimental observations on shoot
and root growth from callus: if the concentrations of two hormones, auxin
and cytokinin (which we denote by A and K, respectively) are in a certain
proportion, then shoots will appear. For a different proportion, not shoots but
roots will grow [2, 3].
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Hormone A is produced in growing parts of the plant (leaves, shoots); hor-
mone K in either roots or in growing parts. In our model, A will be produced
at the moving boundary x = L that corresponds to the apical meristem. The
rate of its production is proportional to the growth rate. Hormone K will
either be supplied solely through the stationary end of the interval x = 0 (the
root) or will also be produced at the moving boundary.

The concentrations of nutrients C, and of hormones A and K are described
by the diffusion equations with convective terms:

∂C

∂t
+ V

∂C

∂x
= dC

∂2C

∂x2
− βC, (4)

∂K

∂t
− VK

∂K

∂x
= dK

∂2K

∂x2
− µK, (5)

∂A

∂t
− VA

∂A

∂x
= dA

∂2A

∂x2
− µA. (6)

The convective speed V in the first equation is determined as the speed of
growth:

dL
dt

= V, V = f(R). (7)

Here dC , dK , dA and µ are parameters; the space variable x is defined inde-
pendently for each branch. The convective speed VA in equations (5) and (6)
can be different in comparison with equation (4). It corresponds to transport
in the phloem in the direction from top (meristem) to bottom (root).

The rate of production of the GMF at x = L(t) is given by the equation

h
dR
dt

= F (A,K) g(R) C − σR, R(0) = R0. (8)

Here F (A,K) = F1(A)F2(K). The form of the functions F1(A) and F2(K) is
chosen in accordance with the biological observations that there are optimal
concentrations of plant hormones. The model should be completed by the
initial and boundary conditions.

We define next the branching conditions. A new branch appears at x = x0

and t = t0 if

A(x0, t0) = Ab, K(x0, t0) = Kb, (9)

where Ab and Kb are some given values. Appearance of a new branch means
that there is an additional interval connected to the previous one at its
point x0.

A typical example of plant growth in the 1D model with branching is
shown in Fig. 1. We can see that new buds appear but remain dormant while
the main branch continues growing. When it stops growing, lateral buds can
give new branches. This is related to apical domination.
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Fig. 1. Evolution of the plant structure in time, h = 0.0005, R0 = 0.12

Fig. 2. 1D model with branching. Branching patterns for different values of para-
meters in the branching conditions

Two different final branching patterns are shown in Fig. 2. They corre-
spond to some specific plant families (e.g., Boraginaceae, Gramineae).

4 2D Model

We formulate the 2D model of plant growth based on the same assumptions as
for the 1D model presented above. Apical meristem in this case corresponds
to the outer surface of the growing domain. Numerical realization of this
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Fig. 3. 2D simulations. Nutrients are supplied through the internal rectangle (left)
or through the internal circle: model without merging (center), model with merging
(right)

model encounters essential difficulties because the free boundary can have a
complex form with singularities and points of self-intersection. The growing
plant fills the domain between two closed curves. For the examples in Fig. 3
(at the center and from the right) the internal curve Γi is a circle of a fixed
radius r with the center at the origin, the external curve Γe represents the
moving boundary Nutrients are supplied through the internal curve, while
the meristem corresponds to the external boundary. Its motion describes the
plant growth. The region between the two curves is considered as a porous
medium.

We define now the motion of the discretized boundary Γe(ti). Let Ck be
a grid cell from Γe(ti) and Sk1, Sk2, and Sk3 its sides common with the outer
grid cells. We consider a flow from the cell Ck to the neighboring outer cells
through the sides Skj . The flow speed is determined by the value Rk(ti) in Ck.
It can be interpreted as a motion of the intervals Skj in the normal direction.
When an outer cell is completely filled by the flow, it becomes an inner cell. An
outer cell is filled through all its boundaries common with inner cells. Thus,
the motion of the discrete boundary is defined in terms of local flows. This
approach is applicable for any shape of the boundary.

Figure 3 (left) presents the example of 2D modeling where nutrients are
supplied through the internal rectangle. It corresponds to the process of plant
embryogenesis or growth of a vegetative or of a floral bud. Figure 3 (center)
presents an example of 2D modeling without merging. This means that differ-
ent parts of the growing plant remain separated when they touch each other.
This situation can occur in embryogenesis when different parts of the embryo
form different embryogenic tissues and organs. The right picture corresponds
to the specific conditions allowing merging. It can be growth of the meristem-
atic tissue without tissue differentiation.
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1 Introduction

Within the wide field of classification on the Machine Learning discipline,
Bayesian classifiers are very well established paradigms. They allow the user
to work with probabilistic processes, as well as, with graphical representations
of the relationships among the variables of a problem.

Bayesian classifiers assign the corresponding predicted class of a certain
pattern as the one that has the highest a posteriori probability. This a poste-
riori probability is computed by means of the Bayes theorem in conjunction
with assumptions about the density of the patterns conditioned to the class.

In this work three of these classification paradigms are applied to a DNA
microarray database of control, systemic lupus erythematosus and antiphos-
pholipid syndrome samples. The number of genes from which the models are
induced is considerably reduced by means of a novel consensus filter gene
selection technique.

Combining a nonparametric bootstrap resampling technique and the k de-
pendence Bayesian classifier paradigm, we propose a new method to obtain
gene interaction networks of high reliability. These gene networks can be seen
as a tool to study the relationships among the genes of the domain. In fact,
some of the previous knowledge about both pathologies is confirmed by the
new approach.

2 Bayesian Classifiers

A supervised classifier is a function that assigns labels to observations,
γ : (x1, . . . , xn) → {1, 2, . . . ,m},
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where x = (x1, . . . , xn) ∈ Rn conforms the observation and {1, 2, . . . ,m}
are the range of possible values for the class variable. The main assumption
is the existence of an unknown underlying probability joint distribution
p(x1, . . . , xn, c) where the observations come from:

p(x1, . . . , xn, c) = p(c|x1, . . . , xn)p(x1, . . . , xn) = p(x1, . . . , xn|c)p(c).
In practice, this joint probability distribution p(x1, . . . , xn, c) is estimated

from a random sample,
{
(x(1), c(1)), . . . , (x(N), c(N))

}
.

The näıve Bayes (NB) classifier [6] is based on two assumptions over the
predictive variables and the class to predict: the class variable C can only take
one of its m possible values c1, . . . , cm; and, if this class value is known, the
knowledge of some predictive variables is independent from the knowledge of
the rest ones. Therefore, the search for the most probable class value, c∗, once
all the variables’ values are known, can be reduced to look for

c∗ = arg max
c
p(c)

n∏
i=1

p(xi|c).

The conditional independence assumption of the näıve Bayes paradigm
can be a very restrictive condition. So as to overcome this limitation, there
are classification paradigms that allow conditional dependencies among the
variables. One of them is the tree augmented network (TAN) [3], in which a
tree-like classification modelization and the Bayesian classification paradigm
comes together; first, a tree structure among the predictive variables is built,
and then, the class node is related to all the variables.

The metric to configure edges between variables is based on the mutual
information conditioned to the class variable,

I(X,Y |C) =
t∑

i=1

w∑
j=1

m∑
r=1

p(xi, yj , cr) log
p(xi, yj |cr)

p(xi|cr)p(yj |cr)
,

where X and Y are two discrete predictive variables and C is the class label.
The complete learning algorithm is discussed in [3] and makes use of the
Kruskall algorithm to build the maximum weight spanning tree.

In order to go trough the wide spectrum from the näıve Bayes to a com-
plete Bayesian network, Sahami (1996) [7] presents an algorithm called k de-
pendence Bayesian classifier (kDB). The algorithm has its basis on a näıve
Bayes structure that allows each predictive variable to have a maximum num-
ber of parent variables. The algorithm extends the TAN algorithm allowing a
variable to have a number of parents, excluding the class variable C, bounded
by k. In Fig. 1 graphical examples of the three paradigms are gathered.

3 Consensus Gene Selection

Bayesian classifiers deal only with discrete data. This restraint makes it nec-
essary to translate the microarray data from continuous to discrete value-
domains. This translation can make the original data lose precision, even



562 R. Armañanzas et al.
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Fig. 1. Graphical structures of a näıve Bayes (a), tree augmented näıve Bayes
(b) and k dependence Bayesian (c) classification models

degrading its original quality. Thus, if a discretization process has biased the
original data, this bias affects all posterior knowledge discovery processes.
Therefore, the search for a robust solution makes us rely on several rather
than on a single discretization method.

Let O be the original microarray dataset with continuous features and
S1, . . . , SD the results of D different discretizations of the O set. Using a filter
subset selection method, N different feature selections are performed on the
basis of the S1, . . . , SD discrete datasets, producing the following subsets of
genes: G1, . . . , GD. The final consensus gene subset Γ is the intersection of all
of them, that is Γ =

⋂D
i=1Gi, with |Γ | = m � mini=1,...,D|Gi|. The complete

formulation of this consensus approach can be reviewed in [1].

4 Knowledge Discovery by Means of Bayesian Classifiers

For the final process of knowledge inference, the application of a suited tech-
nique that contributes certain level of reliability is crucial. For this purpose,
we propose the application of a technique known as bootstrap, firstly presented
by Efron (1979).

The bootstrap procedure allows us to compute a confidence level for each
feature under study on a probabilistic graphical model. These confidence levels
are calculated after repetitive runs of the induction algorithm, but, instead of
inducing the models in basis of the original dataset, for each run, the original
dataset is substituted by N randomly sampled instances with replacement
from the original ones. The knowledge discovery process is centered in the
detection of the same edges along the different induced graphical models,
because this high confidence edges are expected to have a direct biological in-
terpretation. The nonparametric bootstrap algorithm approach implemented
for the present study can be found in [4].

5 Results

Both systemic lupus erythematosus (SLE) and antiphospholipid syndrome
(APS) are autoimmune diseases with unknown origin. SLE is mainly an
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inflammatory disease with clear autoimmune features, and it can affect multi-
ple organs and body systems. Related to the genetic basis of the disease, more
than 100 genes are now thought to be involved in SLE genetic susceptibility.
APS, also known as “sticky blood” syndrome, is another immunological dis-
ease characterized by the repeated appearance of thrombosis, a high number
of miscarriages in the second and third gestation quarters, and thrombopenia
or hemolytic anemia.

There is no clear diagnosis methodology for SLE and APS: different criteria
have to be evaluated in order to assess its presence. Therefore, the study of
genes that present different expression profiles among SLE, APS and control
subjects is medically and biologically of great interest.

5.1 Data Preprocess

The biochip model used is the Affymetrix® HGU133A. The marking and
hybridization processes are performed using peripheral blood obtained from
12 different Caucasian women: two with primary APS, four with SLE, and
six healthy people, used as controls. Four different criteria are measured to
evaluate the biochips reliability: the presence of spike control BioB, the 3′/5′

relation of the GAPDH housekeeping control, the percentage of present probes
in the array and the dChip1 array outlier percentage. From the original 12
biochips, one of them does not reach a sufficient quality level in three out of
the four criteria, consequently, it is removed from the dataset.

Filtering the data by the Affymetrix® detection algorithm, the amount of
valid probes decreases from 22,067 to 8,808; these probes form our starting
set of predictive variables. There are a total of 40 comparisons between the
samples and the reference microarray ratios, divided in three phenotypes or
classes: ten correspond to the control arrays among themselves, another ten
between the five control and the two APS patient arrays, and the last 20
correspond to the control and SLE arrays.

5.2 Gene Selection Step

Three different discretization policies are used in the consensus selection: equal
width, equal frequency and entropy discretization [2]. Correlation-based fea-
ture selection [5] is used as the feature selection method, and the overall
process returns eight variables. These genes are considered statistical proto-
types of gene families showing different behavior profiles over the original data.
The members of each family are computed by the classical mutual information
metric, obtaining a total set of 150 relevant variables.

1DNA-chip analyzer from Harvard University available in http://biosun1.

harvard.edu/complab/dchip/
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Fig. 2. Dependent structures for a 90% confidence level found by the bootstrap
approach over the kDB (k=4) classification models

5.3 Classification Step

By means of the Elvira2 platform for Bayesian networks, we induce five differ-
ent models: näıve Bayes, TAN, and kDB with k values of 2, 3 and 4. Each of
these models is validated using a leaving one out cross validation. The induced
models by näıve Bayes, TAN, or kDB for its three k values, achieve a 100.0%
classification accuracy. Due to the low number of instances in the problem,
these good results in classification may come from an overfitting effect of the
classifiers to the data.

5.4 Knowledge Discovery Step

Starting from the 150 relevant variables identified in the previous process and
in basis of the entropy discretization dataset, we perform 1,000 loops in the
bootstrap procedure. Thus, 1,000 of random samplings are performed, and
2,000 kDB models are induced (three and four are taken as values for the k
parameter).

A total of three different edges are configured always (100% confidence),
for both k values. When decreasing the confidence to 90%, the k=4 models
configure 18 edges while the k=3 models configure only 13 of them. Notice
that the edge between the class and the nodes in the graph is not taken into
account. These edges allow us to construct networks of high reliability with
respect to their graphical dependencies. Fig. 2 shows the structures found
for a k value of four and a 90% of confidence. A deep discussion about the
identified genes is collected in [1].
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1 Introduction

With the advent of genomic technologies it has become possible to perform, in
a routinely manner, new types of experiments to analyze simultaneously the
behavior of thousands of genes or proteins in different conditions. A common
trait in these type of studies is the fact that they generate huge quantities of
data what has lead to using the term “high-throughput” to describe them.
There are different types of high-throughput experiments, but we will refer
from now on to the most well known ones: microarray experiments.

A typical microarray experiment is one who looks for genes differentially
expressed between two or more conditions. That is, genes which behave differ-
ently in one condition, for instance healthy or untreated cells, than in another,
for instance tumor or treated cells. Such an experiment will result very often
in long lists of genes which have been selected using some criteria, such as a
t-test, to assign them statistical significance.

Most of the times the biological interpretation of the list is not obvious.
Sometimes the number of items selected as being statistical significant is very
high and it seems reasonable to (try to) synthesize them looking at what the
list means from the biological point of view. Sometimes, instead, the selected
items do not show any statistical significance, but even so, it is expected – or
it seems clear – that, biologically, they “mean something”, probably related
to the process being analyzed.

In whatever of the previous situations we find, the usual way to proceed
is to shift the focus from “statistical” to “biological” significance. There is a
clear agreement about what does statistical significance mean. However there
is no consensus definition of biological significance at all. Although everyone
talks about it...
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1.1 So, What Does Biological Significance Mean?

Interestingly what many authors do to define biological significance is to re-
define it in terms of statistical significance. This can be clearly seen in [1] who
describes it as:

... to understand the biological relevance of statistical differences in
gene expression data by examining significant differences in the dis-
tribution of (GO) terms related to biological processes or molecular
function.

This is not however the only possible definition. For instance GeneSifter
(http://www.genesifter.net/web/) a company presenting their goals as to
“ ... make it easier to understand the biological significance of your microarray
data” does not give any definition of the term. The nearest explanation of what
they mean by this is the following:

... to characterize the biology involved in a particular experiment, and
to identify particular genes of interest ... combining the identification
of broad biological themes with the ability to focus on a particular
gene ...

In any case, it is clear that whatever they mean by Biological Significance
they do not relate this to Statistical Significance.

In short. Establishing the biological significance of high throughput exper-
iments is an important step for their success and many efforts are addressed
to this. Less efforts, it seems, than to clarifying what the term exactly means.

1.2 The Gene Ontology

Attempts to perform a biological interpretation of high throughput experi-
ments are often based on the Gene Ontology (GO), an annotation database
created and maintained by a public consortium, the Gene Ontology Consor-
tium1, whose main goal is, citing their mission, to produce a controlled vocabu-
lary that can be applied to all organisms even as knowledge of gene and protein
roles in cells is accumulating and changing. The GO is organized around three
principles or basic ontologies: (1) Molecular function (MF), which describes
tasks performed by individual gene products; (2) Biological process (BP),
which describes broad biological goals, such as mitosis (cell division) and
(3) Cellular component (CC) describing subcellular structures, locations, and
macromolecular complexes such as nucleus, or other organelles. A given gene
product may represent one or more molecular functions, be used in one or
more biological processes and appear in one or more cellular components.
Each ontology (MF, BP or CC) consists of a high number of terms or cat-
egories hierarchically related from least (top) to most (bottom) specialized

1www.geneontology.org
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Fig. 1. A hypothetical example of GO annotations for the gene “INNER NO
OUTER”. Every gene is annotated in the three ontologies, MF, BP and CC

characteristics. Ontologies are indeed direct acyclic graphs (DAG) and graph
theory is clearly one possible, although not yet generalized, approach for their
study. Most genes are annotated in one or more categories. Annotations are
made as specific as possible. As a consequence a gene is associated not only
with its annotations but also with all the less specific terms associated with
them. This altogether configures a network of terms for each gene integrated
in the bigger network which is the GO (see Fig. 1).

2 From Biological to Statistical Significance:
Gene Enrichment Analysis

In recent years there have been developed many methods intended to quantify
Biological Significance (BS from now on) in terms of Statistical Significance
(SS from now on). Draghici et al. ([2]) consider as many as 15 related applica-
tions which perform in different but related ways. In this chapter we will not
even attempt to compare or offer a panoramic view of the existing methods,
although in the appendix we describe a tool that we have developed precisely
with this goal in mind. Instead we will center on what is possibly the most
well-known and most used approach to obtaining BS from SS.

Assume that we have the results of a typical microarray experiment where
we have selected K “interesting” genes from a wider population or Universe,
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of size N . Each gene is annotated to one or more GO categories so that we end
up with a subset {A1, A2, ...AG} of annotated categories. Gene Enrichment
Analysis (GEA) consists of performing a statistical test separately for each
category Ai, i = 1, ...G to decide if the proportion of genes in the sample
which have been annotated in category Ai is the same as those in the Universe
belonging to the same category. If this is so one can interpret that this category
is not related to the biological phenomenon that led to select the genes in the
sample. Oppositely if the proportion of genes in the sample appearing in
category Ai is greater (enriched) or smaller (impoverished) that those in the
Universe one can assume that this category is Biologically Significant. GEA
can easily be formulated in terms of hypergeometric sampling allowing to use
the hypergeometric distribution to compute p-values for the test having null
hypothesis: H0 The GO category Ai is equally represented in the Universe
than in the group of differentially regulated genes. Details of this test can be
found for instance in [2].

3 Discussion: Drawbacks and Limitations

Keeping in mind that, for the sake of centering on the difference between
SS and BS, we have adopted a simplified view it is clear that the previous
approach shows some limitations.

By one side, and this is applicable mainly to GEA, the method selects cat-
egories separately, without explicitly caring for relations between them. This,
jointly with the fact that it relies on a statistical filtering criteria, suggests
that is useful to highlight biologically relevant “hot spots” but it does not offer
a global picture of what is happening in the biological side of the experiment.

Instead of looking at more and more methods checking their virtues and
defaults (but see the appendix and [4]) it is good perhaps to remark another
important flaw: When we rely in SS to define BS we depend on p-values at one
or two levels, that is those p-values that have been used to select the genes, and
those p-values computed to check the significance of the categories. However
p-values are not free from criticisms (see [3]). They depend on underlying
probability models and are often subject to misinterpretation as well as used
to justify otherwise unjustifiable cutoffs. In short using p-values to define BS
we risk to translate into it the abuse that has sometimes been observed with
its use to define SS.

3.1 Towards a New Definition of Biological Significance

Our goal in the previous lines has been mainly to emphasize that simply
relying on statistical significance to define biological significance can be as
misleading as just using but not defining the term. And the interesting point
is precisely this: biological significance is not an entelechy. An expert in a
given biological field will often be able to distinguish between two sets of re-
sults and chose those that can be considered more relevant. The challenge
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for mathematicians, statisticians and other scientists working in parallel with
those experts is to develop an approach which tells a story which is, at the
same time, as objective as possible, but also as near to the biologist’s choice
as can be obtained. Probably it will requires approaches that integrate in-
formation from several sources and are able to combine weak nonsignificant
evidences with more objective results into relevant conclusions that can be
considered biologically significant, not because somewhere a p-value is tiny,
but because they really mean something.

Appendix

In this work we have explicitly avoided making comparisons between the ex-
isting methods or tools. It is not an easy task because there exists dozens of
them and they are not free of redundance at all.

This is in itself a barrier for a potential user because even if she understands
clearly what she is looking for she will be faced to choose between many similar
tools.

To help users in this decision process we have developed SerbGO (for
Searching the best GO tool). It is a free web based tool that can be used in
any two directions: One can ask for the desired functionalities and find out
which are the programs that include them or one can simultaneously analyze
several tools to find out which functionalities are implemented and which are
missing.

SerbGO is available at http://estbioinfo.stat.ub.es/apli/serbgo/.
The program has proven useful not only to users who wish to find the tool

they need or who want to compare several tools. It has helped also to classifiy
the tools by their functionalities showing some interesting results such as,
for example, the fact that in spite of the apparent redundance between tools
most of them perform slightly different tasks, suggesting that they all may be
useful, or at least that redundance is more apparent than real.
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Summary. In the last few years, several analysis methods have been proposed to
assist in the functional interpretation of genome-wide data. To this aim, we explore
the use of non-negative Independent Component Analysis (nnICA) for the classifi-
cation of genes based on their associated functional annotations.

1 Introduction

Several statistical and machine learning techniques have been developed and
applied in bioinformatics. Among them, matrix factorization techniques are
used in order to reduce the dimensionality, discover patterns and aid in the
interpretation of biological data. In particular, two factorization methods
have been applied to the analysis of functional information in a genome-wide
context: Singular Value Decomposition (SVD) and Non-negative Matrix Fac-
torization (NMF). These factorizations have been used to create and compare
gene [1, 2] and cellular process [3] profiles constructed from their associated
literature, as well as to perform different analysis on gene functional annota-
tions [4–6].

In this work we explore an alternative matrix factorization model for
the classification of genes/proteins based on their functional annotations:
non-negative ICA [7, 8]. Our hypothesis is that gene annotations can be
represented, by means of nnICA, as a linear combination of statistically in-
dependent sources, which are a useful representation from which to classify
genes. In order to assess the validity of our approach, we have analyzed the
functional annotations provided by the Gene Ontology (GO) [9] in the context
of a model organism (baker’s yeast). Finally, we compare the results obtained
by nnICA with those obtained by NMF (previously proposed for this task
in [6]).
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2 Methods

2.1 Data Representation

The complete functional annotations of the gene set are represented using a
n ×m matrix X similarly as in [4]. Xij is equal to 1, if and only if the ith-
gene is involved in the jth-function. In any other case, Xij is equal to 0. In
this work, functional annotations included the three broad GO categories (i.e.
biological process, molecular function and cellular component), as provided
by the Saccharomyces Genome Database (SGD) (version 10/20/2006). To
construct X, a gene is considered to be involved in the functions described by
direct GO annotations, as well as all those described by their corresponding
ancestor terms in the GO hierarchy.

2.2 Factorization

Non-negative ICA estimates the m-dimensional source vectors S = (s1, . . . , sk)
and the mixing matrix A in the linear generative model:

X = AS

with X = (x1, . . . , xn) and k ≤ min(n,m), where the sources are non-negative,
i.e. Pr(si < 0) = 0, and independent, i.e. p(sisj) = p(si)p(sj) if i �= j. Here
Pr(·) denotes the probability function and p(·) denotes probability density
function.

We assume, as several of the algorithms for performing non-negative ICA
do (see [7]), that the sources are well-grounded, i.e. Pr(s < λ) > 0 for any
λ > 0. Note that well-groundness is a valid assumption in our case since we
expect each source not to be involved in all functions.

We use the algorithm proposed in [8]. Briefly, the first step is to reduce the
dimension and whiten the data. This is done using the eigenvector–eigenvalue
decomposition of CX, the covariance matrix of X, to determine a k×m matrix
V and Z = VX such that CZ = Ik where Ik denotes the identity matrix of
order k. We do not remove the mean of the data in the whitening process,
since we do not want to lose information about non-negativity of the sources.

Next we need to find a k × k orthogonal matrix W ∈ O(k), i.e. WTW =
WWT = Ik for which Y = WZ is a permutation of S, which is equivalent to
find one for which Y is non-negative [7]. To do this we search W ∈ O(k) that
minimizes the cost function:

J =
1
2
‖Y −Y+‖2F

where [Y+]ij = max{Yij , 0} and ‖ · ‖F denotes the Frobenius norm.
The matrix W is initialized as the identity and, at each iteration, is

multiplicatively updated by an orthogonal rotation matrix R ∈ SO(n), i.e.
R ∈ O(n) and det(R) = 1. R is determined by finding a Newton-like up-
date step using a first order Fourier expansion of the cost function along the
steepest-descent geodesic.
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2.3 Clustering

Similarly as in [6], genes are grouped following a winner-takes-all approach: a
gene is assigned to the source j for which [AN ]ij = max{[AN ]il, l = 1, . . . , k}
where AN is the normalized mixing matrix A. For each gene cluster, the
significance of its functional annotations is tested against a reference set (in
this work, the whole genome), using the hypergeometric test.

3 Results

Results for a test set containing 575 genes are reported. The set was con-
structed in [2], and comprises genes of eight broad categories (namely “cell
cycle”, “cell wall organization and biogenesis”, “DNA metabolism”, “lipid
metabolism”, “protein biosynthesis”, “response to stress”, “signal trans-
duction” and “transport”). Therefore, an analysis with k=8 factors was
performed.

Significant GO terms were selected for each cluster (p-value < 10−6), and
their corresponding precision (P), recall (R) and F11 values were calculated
using the complete gene set as reference. Clusters were labeled according to the
GO term with highest F1 value among the significant terms. See Table 1 for
average values within each cluster. As shown, clusters reveal some of the broad
categories in the set (e.g. “cell cycle”, “protein biosynthesis”, “transport”)
while hiding others (e.g. ‘signal transduction’, “lipid metabolism”).

In order to measure the performance of nnICA, we analyzed the same gene
set using NMF (as proposed in [6]). Results are shown in Table 2. Some func-
tional annotations are revealed by both approaches (e.g. “mitotic cell cycle”,

Table 1. Clustering results obtained by nnICA (ordered by decreasing F1): number
of genes, average precision (P), average recall (R) and average F1

Cluster Genes Avg.P Avg.R Avg.F1

(92.0) “ATPase activity, coupled to
transmembrane movement of substances” 25 69.26 56.96 48.97
(77.4) “Translation” 49 49.61 68.38 34.87
(97.3) “Protein targeting” 57 38.37 69.74 32.34
(86.8) “Transcription, DNA-dependent” 67 34.23 64.31 31.60
(69.3) “Mitotic cell cycle” 48 28.97 70.24 30.25
(81.1) “DNA repair” 95 23.92 71.28 23.64
(49.6) “Catalytic activity” 93 24.84 66.78 22.06
(57.6) “Membrane” & (57.5) ‘transport’ 141 13.78 79.13 17.55

Average 72 35.37 68.35 30.16

Clusters are labeled with the GO term with highest F1 value (shown in brackets)

1F1 = 2PR
P+R
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Table 2. Clustering results obtained by NMF (ordered by decreasing F1): number
of genes, average precision (P), average recall (R) and average F1

Cluster Genes Avg.P Avg.R Avg.F1

(76.2) “Transcription” 75 34.27 66.66 32.13
(71.6) “Ion transporter activity” 59 29.88 78.45 31.78
(70.3) “Protein targeting” 72 26.57 65.10 26.32
(66.7) “DNA repair” 72 27.05 65.03 24.77
(67.3) “Secretory pathway” 59 24.77 68.01 24.10
(51.7) “Mitotic cell cycle” 75 19.96 75.26 23.25
(51.3) “Signal transduction” 96 18.85 71.76 21.33
(50.9) “Hydrolase activity, acting on ester bonds” 67 24.14 65.75 20.63

Average 72 25.69 69.50 25.54

Clusters are labeled with the GO term with highest F1 value (shown in brackets).

“DNA repair”, “protein targeting” and “transcription”), although clusters are
dissimilar in size. On average, nnICA obtained similar results in terms of re-
call, although precision values are higher, providing therefore higher F1. This
means that nnICA produced, on average, more homogeneous clusters.

4 Discussion and Conclusions

In recent years, a significant number of methods have been proposed to per-
form a functional interpretation of experimental data. In this work we have
explored the use of nnICA to perform a functional classification and assess-
ment of a gene set using functional annotations. In order to demonstrate the
validity of our approach, we analyzed a number of sets from a model organ-
ism, S. cerevisiae, and compare the results with those obtained by NMF (as
in [6]).

ICA produces a linear transformation that minimizes the statistical depen-
dence between basis vectors, producing a decomposition of data that seems
to reveal truly biological functional independence. Functional classification by
nnICA analysis was able to obtain similar results as NMF in terms of aver-
age cluster recall, while providing more homogeneous clusters (with higher
average precision). These results encourages us to extend this study also to
functional classification based on literature analysis.
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1 Replications of the Same Statistical Test

Most analyses carried out using high throughput data consist of the repetition
of the same statistical test for all genes in the dataset. As a result of such repli-
cated analysis we get, for each gene, several estimates of statistical parameters:
statistics, p-values or confidence intervals. Being aware that most statistical
methods were developed to test for a single hypothesis, researchers will usu-
ally correct p-values for multiple testing before choosing a cut-off that will
indicate the rejection of the null hypotheses, whichever it is. Once chosen the
genes with alternative pattern (meaning different form the one stated in the
null hypothesis) the next step is to biologically interpret such departure from
hypothesis. Different repositories of functionally relevant biological informa-
tion such as Gene Ontology [1], KEGG [2] or Interpro [3] are available and
can be used for the functional annotation of genome-scale experiments. Thus
the functional properties of the selected genes can be analysed.

The trouble of this approach is that, by discarding genes with p-values
above the cut-off, we loose most of our information. Not only we loose the
measurements taken over the genes but also the functional annotation that
could be linked to them from repositories, making it difficult the biological
interpretation of results.

2 Blocks of Functional Genes

Aiming to prevent such waste of information, some authors have recently pro-
posed to directly analyse the behaviour of blocks of functionally related genes
in a whole-genome context. The Gene Set Enrichment Analysis (GSEA) [4,5],
the FatiScan [6,7] or the Global Test [8,9] constitute examples of this type of
approach inspired from systems biology. This three methodologies address the
issue of whether the general expression pattern of a group of genes, for example
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a GO term or a KEGG pathway, changes across biological conditions. Here we
will discus just some particular aspects of these methods but a more general
view of this and similar methods can be found in Dopazo’s revision of 2006 [10].

The Global Test uses generalised linear models to study the relationship
between the expression of the genes of the block of interest and a characteristic
associated to each biological sample. Such characteristic may be a categorical
condition, like the class of the microarray in the context of differential gene
expression, or a continuous variable such as a level of a metabolite. In this
approach we can see a change in the philosophy of the analysis. The unit of
interest is not any more a single gene but a block of genes with a common
biological meaning. This new way of looking at the data provides, among
others, obvious advantages for the biological interpretation of results and for
the p-value adjustment. We just need to correct by the number of blocks,
usually smaller than the number of genes.

3 The Overall Approach

The block of genes is also the unit of interest of the GSEA and the FatiScan.
These two methods are similar to the Global Test in that they are also used
to discover groups of genes which overall expression pattern changes across
biological conditions. Nevertheless, GSEA and FatiScan consider all genes in
the data when analysing each of the blocks. They compare the pattern of
the genes of one block with the general pattern of the genes in the whole
dataset. GSEA is particularly designed for the two class comparison context
while FatiScan may be applied in a wider range of studies.

The rationale underlying both methodologies is that, if a property of genes
can be described using a continuous index, then the statistical distribution of
such index within a functional block of genes can be compared to the general
distribution of the index across all genes in the data. We can therefore asses
whether the property described by the index depends on the characteristic
that defines the block of genes.

As said before GSEA is developed for the two class comparison. In this
methodology, a signal-to-noise ratio comparing mean expression across classes
is computed for each gene in the dataset. This statistic can be seen as a con-
tinuous index that ranks the genes according to their differential expression,
from those more expressed in one of the biological conditions to those more
expressed the second condition, passing through those genes non differentially
expressed. Then, given a block of genes, for instance a functional class that we
may be interested in, we can compare the distribution of the signal-to-noise
ratio of the genes in the block to the distribution of the same statistic in the
remaining genes. If the values of the signal-to-noise ratio are, for instance,
systematically higher in the genes of the block compared to the genes in the
whole dataset, we will conclude that, as a block, the genes of the functional
class of interest are overexpressed in one of the biological conditions. GSEA
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uses a modification of the Kolmogorov–Smirnov test to asses differences be-
tween the signal-to-noise ratio in the class of interest and in the rest of the
genes. Significance of the modified Kolmogorov–Smirnov statistic is computed
in GSEA using permutations of the expression data. The original expression
data is permuted several times, the signal-to-noise ratios are calculated over
each permuted expression dataset and the modified Kolmogorov–Smirnov sta-
tistic is computed over each new distribution of the signal-to-noise ratio. Thus
GSEA can estimate the random variability of the Kolmogorov–Smirnov sta-
tistic and test its significance in the original data.

4 Detaching Concepts and Algorithms

FatiScan follows the same analytical philosophy than GSEA but with a more
general and flexible approach. FatiScan implements a segmentation test which
checks for asymmetrical distributions of biological labels associated to genes
ranked by any index. The main difference is that FatiScan does not imple-
ment a permutation test to asses such asymmetry. Therefore, the algorithm
that computes the index and the algorithm that analyses the distribution of
the index are completely separated so the calculations can be done in two
different steps. This means that FatiScan can be used to study the relation-
ship between biological labels associated to genes and any type of experiment
whose outcome is a sorted list of genes or a variable that can be used to rank
genes according to some characteristic of interest. Block of genes sorted by
differential expression between two experimental conditions can be studied as
it would be done using GSEA. But with FatiScan we can also consider many
other gene properties or characteristics.

We can easily explore the correlation between gene expression and a clin-
ical continuous variable such as the level of a metabolite. First, for each gene
we will compute the correlation between its expression measurements and the
levels of the metabolite. Thus we can range the genes from those which ex-
pression is more positively correlated to the levels of the metabolite to those
inversely correlated, passing by genes which expression does not correlate
with the clinical variable. In a second step, FatiScan explores the distribution
of such correlation measurements, testing whether the distribution of corre-
lations within a block of genes is different from the overall distribution of
correlation in the dataset.

We can fit a Cox proportional hazard model to each gene in our data in
order to study the relationship between gene expression and survival times.
The estimates of the slope coefficients may be used as an index that ranks
genes from those which increased expression is associated with long time sur-
vival to those which increased expression is associated to an early death. After
computing this rank-index, FatiScan will find those blocks of genes for which
the distribution of the slopes differs from the global distribution of the slopes.
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The complete separation of the two steps in FatiScan analysis is the key
point which provides its flexibility to the method. Such flexibility makes pos-
sible to handle many different sources of information, not only microarray
gene expression data. Any lists of genes ranked by any other experimental
or theoretical criteria can be studied. Genes can be for example arranged by
physico-chemical properties, mutability, structural parameters and so on. In
order to understand whether there is some biological feature, characterised by
the blocks of genes, which is related to the experimental parameter studied.

5 Coda

The three methodologies here mentioned illustrate two of the main new con-
ceptual trends in the analysis of functional genomic data.

The first one is the change of the descriptive unit used to address biological
studies, shifting from gene to functional class. Gene still remains the unit of
measured information, as what we record at the end is gene expression. But the
conceptual entity over which biological interpretation is done, is the functional
class of genes. New analytical strategies, like those above mentioned, should
consider this fact in order to use the available information in the most efficient
an meaningful way.

The second one is probably more subtle but not less important. Usual
genomic studies follow the classical statistical approach in which one or sev-
eral hypotheses are stated, estimate statistics and p-values are computed from
data and finally, hypotheses are accepted or rejected depending on such es-
timated values. The analytical approach explicit in FatiScan an implicit in
GSEA shows how estimated values provided by one first statistical analysis
are not directly interpreted in terms of acceptance or rejection of hypotheses.
Instead they are treated as variables quantifying some characteristic of the
genes under study. This new variables may then be analysed using statisti-
cal methodologies. Thus, statistical results of one step of the analysis become
themselves a new dataset which needs to be explored in a second analytical
step. As we see, modular implementations of complex data analysis strategies
like FatiScan, seem to be both, conceptually useful for the analysis of biolog-
ical data and computationally advantageous, calling for the development of
the theoretical framework within which combinations of statistical methods
can be properly done.
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The wide field of Inverse Problems plays an important role nowadays in indus-
trial applications of applied mathematics. This minisymposium is intended to
present some selected topics which have received much attention lately.

One main theme of the minisymposium is the multi-scale approach for solv-
ing inverse problems. In the chapter by D. Franceschini, M. Donelli, R. Azaro
and A. Massa, the authors present and discuss an iterative multi-scaling ap-
proach with applications in inverse scattering. Furthermore, a multi-scale level
set approach is presented in the chapter by I. Berre, M. Lien and T. Mannseth
for the application of characterizing petroleum reservoirs.

A second main theme of the minisymposium is the investigation of fast
adjoint techniques for finding descent directions (or updates) for shape-based
inverse solvers in a variety of applications. Here, the chapter by N. Irishina,
M. Moscoso and O. Dorn investigates a level set adjoint field approach for the
early detection of breast cancer from microwave data. Microwave imaging is
also the focus of the chapter by O. Dorn, M. El-Shenawee and M. Moscoso,
which presents a shape-based adjoint field technique in 3D for the early
detection of breast tumours. A method of moments is employed for the forward
(and adjoint) modelling of the microwave fields. Another example from med-
ical imaging is given in the contribution by A. Zacharopoulos, O. Dorn, S.R.
Arridge, V. Kolehmainen and J. Sikora. It investigates an efficient adjoint-field
approach for simultaneously updating shape parameters of simple geometric
objects (such as ellipsoids) in the application of Diffuse Optical Tomography
in 3D. The chapter by R. Villegas, O. Dorn, M. Moscoso and M. Kindelan
presents a shape-based approach (with initializations obtained from geostatis-
tics) for the history matching problem in petroleum reservoir engineering. It
uses adjoint fields for calculating iterative updates for the level set function de-
scribing the unknown shapes. Finally, the chapter by N. Polydorides discusses
the use of logarithmic barrier functions for regularizing high-contrast inverse
problems of electrical impedance tomography with applications in biomedical
imaging and industrial process tomography.
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Summary. The accuracy and the robustness of the iterative multi-resolution strat-
egy in dealing with inverse scattering problems involving multiple objects configu-
rations has been enhanced by introducing a suitable morphological processing. In
an iterative fashion, a set of scatterers are reconstructed by progressively increasing
the resolution level in the Regions-of-Interest (RoIs), where the objects are localized,
identified through suitable morphological operations. Selected numerical results are
presented and discussed in order to assess the accuracy and effectiveness of the
morphological-based processing.

1 Introduction

In several applications (e.g., [1]), there is the need of retrieving unknown
objects by processing the scattered electromagnetic radiation collected in a
non-invasive fashion outside the domain under investigation.
However, although an accurate spatial resolution is required, unfortunately the
information content of the data is limited [2]. In order to satisfy the accuracy
requirements exploiting the limited amount of available information, different
kinds of multiresolution approaches have been proposed [3, 5].

In this framework, the Iterative Multi-scaling Approach (IMSA) has shown
a satisfactory robustness [5] in dealing with single-scatterer geometries. Suc-
cessively, it has been extended to multiple objects [6] allowing the detection
of non-connected RoIs by means of a Clustering Procedure [6]. However, such
an implementation showed a reduced effectiveness in dealing with some com-
plex configuration. Consequently, an improved procedure for the detection of
the RoIs is needed for enhancing the reconstruction accuracy. Towards this
end, a bare thresholding of the retrieved profile (with the risk of omitting the
weakest scatterers of the scenario) has been substituted in this chapter by a
more effective set of morphological operations.
An outline of the chapter is as follows. The key features of the morphological-
based processing are presented in Sect. 2. Successively, a preliminary robustness
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analysis is carried out in Sect. 3 by considering a numerical benchmark.
Eventually, some conclusions will be drawn in Sect. 4.

2 Mathematical Formulation

Referring to a two-dimensional geometry, a cross-section of an inhomogeneous
investigation domain D invariant along the ẑ axis is illuminated by a set
of monochromatic incident electric fields TM -polarized impinging from V
different directions [Einc

v (x, y)ẑ, v = 1, ..., V ].
The electromagnetic interactions among the scatterers modeled through

the following object function:

τ (x, y) = εr (x, y)− 1− j σ (x, y)
2πfεo

, (1)

where εr (x, y) and σ (x, y) are the relative permittivity and conductivity of
the medium, and the incident fields are estimated by collecting the scattered
field values Escatt

v

(
xm(v), ym(v)

)
at m(v) = 1, ...,M(v), v = 1, ..., V positions

belonging to the measurement domain DM located outside D. These data are
related to the contrast function τ (x, y) by means of two integral equations,
the so-called “Data equation”and “State equation” (for further details see [5]
and the references cited therein).

Usually, the electromagnetic inversion of these integral equations is per-
formed by looking for a finite representation of the unknowns [i.e., τ(x, y) and
Etot

v (x, y) in D]. Because of the intrinsic bound of the information collectable
from the scattering experiments, an effective choice of the basis function is
mandatory for obtaining a finer resolution in the RoIs of D.

Likewise other multi-scaling approaches [5,6] and because of the non linear
nature of the problem at hand and its intrinsic ill-posedness, the proposed
inversion scheme (M-IMSA) recasts the reconstruction to the minimization
of a suitable multi-resolution cost function [6] by means of a multi-step (s =
1, .., Sopt) procedure. At each step of the minimization procedure, the supports
Ω

(s)
i , i = 1, ..., I(s) of the I(s) RoIs are determined applying a morphological

processing to the contrast function. This set of operations begins with a noise
filtering stage where the gray-level representation of the reconstructed profile
is processed in order to deblur the image from the noise thus avoiding an
overestimate of the number of RoIs. Accordingly, a new distribution of the
object function τ (s)

nf

(
xnr(i) , ynr(i)

)
is determined

τ
(s)
nf

(
xnr(i) , ynr(i)

)
=
{

0 if τ (s)
(
xnr(i) , ynr(i)

)
≤ ηnf

τ (s)
(
xnr(i) , ynr(i)

)
if τ (s)

(
xnr(i) , ynr(i)

)
> ηnf

(2)

(
xnr(i) , ynr(i)

)
being the center of the nth discretization cell of the ith RoI

at the rth resolution level and ηcl = αmax
{
τ (s)
(
xnr(i) , ynr(i)

)}
where α is a

threshold to be heuristically calibrated.
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Successively, in order to smooth the object function and reduce the occur-
rence of isolated artifacts, the contrast τ (s)

nf is further processed for defining
the following distribution

τ
(s)
lpf

(
xnr(i) , ynr(i)

)
=

1∑
p=−1

1∑
t=−1

Λ(p, t)τ (s)
nf

(
xnr(i)+p, ynr(i)+t

)
(3)

Λ(p, t) being a spatial averaging mask defined as

Λ(p, t) =
{
γ if p = j = 0
δ otherwise

p = −1, ..., 1
t = −1, ..., 1 (4)

where
γ = 1− β + 20

100

δ =
β + 20

100
1

(LB−1)

(5)

β being a calibration parameter and LB is the number of neighborhood pix-
els. Then, the identification of the RoIs is carried out firstly performing the
thresholding of τ (s)

lpf

τ
(s)
T

(
xnr(i) , ynr(i)

)
=

⎧⎨⎩ 0 if τ
(s)
lpf

(
xnr(i) , ynr(i)

)
≤ ηT

1 if τ
(s)
lpf

(
xnr(i) , ynr(i)

)
> ηT

(6)

where ηT = β max
{
τ

(s)
lpf

(
xnr(i) , ynr(i)

)}
, and successively eroding τ

(s)
T by

means of a structuring element Bnr(i) [located at
(
xnr(i) , ynr(i)

)
and defined

over a window WB of LB = 3× 3 neighborhood pixels]. These morphological
operations provide the binary image τ (s)

E

τ
(s)
E

(
xnr(i) , ynr(i)

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if

[
τ

(s)
T

(
xnr(i) , ynr(i)

)
= 1
]

and[
1∑

p=−1

1∑
t=−1

τ
(s)
T

(
xnr(i)+p, ynr(i)+t

)
= 1

]
0 otherwise

(7)

and the seeds (i.e., the isolated pixel) of the objects determine the origin of the
square area (the RoI Ω(s)

i ) whose contour has zero intersection with the object
function τ (s)

lpf . Eventually, a suitable set of finer basis functions is allocated into
the I(s) regions, thus increasing the spatial resolution in the RoIs of D and
consequently the accuracy of the reconstructions1. The M-IMSA terminates
when the stationary condition for the reconstruction, defined in [6], is verified.

1The minimization of the multi-resolution cost function is iteratively performed
with a conjugate-gradient procedure as in [6].
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3 Numerical Results

The accuracy of the M-IMSA has been preliminary assessed by considering two
set of experiments concerned with the scatterer configuration shown in Fig. 1a.
The reference scenario is composed by three 0.60λ0-sided square homogeneous
dielectric (τ̃1 = τ̃2 = τ̃3 = 1.0) objects located at (x̃(1)

0 = ỹ
(1)
0 = 0.385λ0),

(x̃(2)
0 = −ỹ(2)

0 = −0.385λ0), and (x̃(3)
0 = 0.0λ0, ỹ

(3)
0 = −0.385λ0) in a square

investigation domain LD = 3.0λ0-sided and illuminated by V = 8 plane waves.
The computational domain D has been initially partitioned into N(1) = 144
square sub-domains and at each view (V = 8) M(v) = 15 data have been
collected on a circular measurement domain of radius ρ = 4λ0.

As far as the numerical assessment is concerned, a robustness test against
noise and aspect-limited data has been carried out. In the first case, the data
have been blurred with a gaussian noise characterized by a signal-to-noise
ratio in the range 5 dB ≤ SNR ≤ 30 dB, while the second set refers to an
aspect-limited configuration characterized by blind angle 0◦ ≤ θb ≤ 120◦.
These tests are aimed at obtaining some indications on the robustness of
the morphological operations2 also in the presence of systematic errors in the
scattering data or when the measurement setup is not able to collect the whole
set of available information coming from scattered data.

Figure 1b shows the distribution retrieved through the M-IMSA when
SNR=20 dB. As it can be observed, the RoIs are rightfully detected and a
satisfactory reconstructionof scatterers is reached.On the contrary, thepresence
of a blind angle of θb = 90◦ (Fig. 1c) notably reduces the inversion accuracy.

In order to verify such indication, the results of a wider numerical analysis
has been summarized in Fig. 2 in terms of the quantitative error figures as
defined in [5]. As it can be observed, the total reconstruction error is εtot< 20%
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Fig. 1. Multiple scatterers [SNR =20 dB]. (a) Reference distribution of the object
function. Reconstructed distributions (at Sopt = 2) when (b) θb = 0◦ and (c)
θb = 90◦

2The parameters α = 15 and β = 25 have been heuristically calibrated.
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Fig. 2. Multiple scatterers. Behavior of the quantitative error figures vs. the (a)
signal-to-noise ratio and (b) θb [SNR =20dB]

whatever the analysis. However, the sensitiveness to θb is greater than that to
SNR, as suggested by the behaviour of the internal errors. As a matter of fact,
when θb enlarges, the accuracy in retrieving each single scatterer decreases.

4 Conclusions

A preliminary assessment of the morphological-based IMSA for the detec-
tion of multiple and non-connected RoIs have been carried out. The results
from the numerical analysis points out the robustness of the M-IMSA vs. the
noise level, while the aspect limited nature of the measurement system seems
to be a more critical issue to be carefully addressed for obtaining accurate
reconstructions.
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Summary. Our goal is to develop an inversion algorithm for reconstructing the
shape of 3D breast tumors using electromagnetic data. The method of moments
(MoM) forward solver is used to calculate the electric and magnetic equivalent sur-
face currents at the tumor interface and consequently the scattered electromagnetic
fields. Using a so-called “adjoint scheme” for gradient calculation, the mismatch
between calculated and measured fields at the receivers is used as new sources at
all receiver locations and is back-propagated towards the tumor. The gradient is
calculated then simultaneously for all nodes of the guessed tumor surface in order
to obtain a correction displacement of each individual node of the surface which
points into a descent direction of a least-squares cost functional. This process is
repeated iteratively until the cost has decreased satisfactorily. Numerical results
in 3D are presented based on the proposed technique using multiple transmitting
sources/receivers at multiple microwave frequencies.

1 Introduction

Microwave tomographic imaging is showing significant promise as a new tech-
nique for the early detection of breast cancer. Its physical basis is the high
contrast between the dielectric properties of the healthy breast tissue and
the malignant tumors at microwave frequencies [Gabriel et al. (1996)]. As a
consequence, microwave imaging systems which aim at detecting, localizing
and characterizing tumors in the breast are being developed. Among them,
we mention for example confocal imaging and near-field tomographic recon-
structions (see [Fear et al. (2002)] and references therein).

Mathematically, microwave medical tomography amounts to solving a non-
linear inverse problem for some form of Maxwell’s equations in which a given
cost functional is minimized via an iterative algorithm. Traditional iterative
algorithms, well suited for nonlinear inverse problems and based on pixel
reconstruction techniques suffer from several drawbacks in this application,
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amongst them the need of strong regularization for stabilizing the algorithms
which typically is done by adding a Tikhonov–Philips term to the cost func-
tional. This, however, has the effect of severely smoothing out interfaces bet-
ween tumors and surrounding tissue. Therefore, new approaches that avoid
these difficulties need to be investigated. We will present here a shape-based
approach for this application which allows to reconstruct quite general shapes
by moving each individual surface node until a given cost functional is min-
imized. For more details on shape-based reconstruction schemes in various
applications see for example the discussion led in [El-Shenawee et al. (2006),2].

2 Shape Reconstruction in Microwave Imaging

Dropping out the time dependence eiωkt, we consider the system of Maxwell’s
equations

∇×Ejk(x)− αk(x)Hjk(x) = 0 (1)
∇×Hjk(x)− βk(x)Ejk(x) = 0 (2)

in a domain Ω ⊂ R3, where βk(x) = σ(x) + iωkε(x) and αk(x) = −iωkµ(x)
and where ωk, k = 1, . . . , k, are the different (angular) frequencies of the
applied fields. We will assume that αk(x), βk(x) are constant outside some
sufficiently large ball, with values denoted by αk,0 and βk,0, respectively. With
this assumption, we can apply the standard radiation condition outside this
ball. The index j in (1), (2) indicates the different incoming radiation patterns
(plane waves).

We will consider here the situation that the coefficient functions αk(x) and
βk(x) contain discontinuities along closed interfaces Γm ⊂ Ω, m = 1, . . . ,m,
such that we add standard interface conditions to (1), (2). Given incoming
plane waves corresponding to index jk, we can write the total field in the
medium as

Etot
jk = Einc

jk + Escat
jk , Htot

jk = Hinc
jk + Hscat

jk (3)

where Einc
jk and Hinc

jk satisfy (1), (2) with αk = αk,0 and βk = βk,0. Let us
assume that we have l receivers available at locations dl, l = 1, . . . , l. At these
receiver positions, we can decompose the scattered electric fields as

Escat(dl) = Er(dl)r̂ + Eθ(dl)θ̂ + Eφ(dl)φ̂. (4)

Here, r̂, θ̂ and φ̂ are the polar unit vectors at the points dl. With this, we can
define the linear measurement operators Mjkl by

MjklEjk = Eθ
jk(dl)θ̂ + Eφ

jk(dl)φ̂ (5)

which measure the “plane wave components” of the scattered fields at the
given receiver location. We will assume in the following that the coefficient
αk is fixed and known to be αk = αk,0. We will write then MjkEjk(βk) for
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the vector of all measured fields which correspond to the parameter β, the
frequency ωk and the incoming plane wave with index j. Furthermore, gjk
will denote the corresponding physically measured (“true”) data. With this
notation, we can define the least squares cost functional

Jjk(βk) =
1
2
‖Rjk(βk)‖2 (6)

where Rjk(βk) = MjkEjk(βk) − gjk is the residual operator for indices (jk).
In the shape inverse problem, we assume that

βk(x) =
{
βi for x ∈ D,
βe for x ∈ Ω\D. (7)

When deforming in a given step of the iterative inversion scheme the current
shape D by a vector field v (i.e., each point x ∈ D is displaced according
to x → x + v(x)) then the fields and therefore also the least squares cost
will change. We want to find a vector field such that J is reduced by the
corresponding deformation. It has been shown in [2] that the deformation of
the boundary Γ = ∂D by a sufficiently small vector field v gives rise to a
change in the cost

δJjk = Re
∫
∂D

[R′
jk(βk)

∗Rjk(βk)]βi − βev(x) · n(x) ds(x) (8)

where Re denotes ‘real part’, R′
jk(βk)

∗ denotes the formal adjoint operator of
the linearized residual operator R′

jk(βk) and n(x) is the normal direction to
the boundary Γ in the point x. Therefore, it is sufficient to find a vector field
in the normal direction to the boundary vd(x) = Fd(x)n(x) which points into
a descent direction of the cost J. Obviously, we can choose

Fd(x) = −γRe
{
R′

jk(βk)
∗Rjk(βk)βi − βe

}
(9)

for a sufficiently small positive step size γ > 0. Plugging v = vd into (8)
shows us that then the cost is reduced. The expressions R′

jk(βk)
∗Rjk(βk) are

calculated by an efficient “adjoint scheme” as explained for example in [Dorn
et al. (1999)]. This scheme requires us to run just one forward and one adjoint
simulation for a given frequency and incoming wave in order to evalute the
gradient expressions (9) at all nodes simultaneously.

3 Numerical Experiments

In our numerical experiment shown here the true object is a sphere of radius
1 cm located at the center of the computational domain of 20× 20× 20 cm3.
Inside the object, the relative dielectric constant is 50− j12, and in the back-
ground it is 9− j1.2. The total number of transmitters (receivers) is 30 with
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5 of them being located at each plane of constant azimuth angle (starting at
θ = 0.1π and ending at θ = 0.9π) with ϕ between 0 and 2π . Two frequencies
are used here, namely f = 3 GHz and f = 5 GHz (ω = 2πf). Plane waves are
used to excite the object with incident polarization in the θ-direction. The
results shown here are for the co-polarization case, where both the incident
and scattered plane waves are in the θ-direction. Synthetic data is generated
using the method of moments, where the surface of the object is discretized
into surface nodes and triangular patches similar to the work of [El-Shenawee
et al. (2006)]. The number of discretization points in the θ- and ϕ-directions
are 8 and 16, respectively, for the true object, while the object generated at
each inversion iteration is discretized into 10 and 16 points, respectively. The
gradient-based algorithm using adjoint fields is implemented such that the lo-
cation of each surface node will be corrected into the normal direction of the
current boundary by an amount given in (9) for each node using a fixed small
step-size factor γ (being 10−5 at 3 GHz and 10−3 at 5 GHz). A regulariza-
tion step is applied after each update which amounts to filtering neighbouring
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Fig. 1. Reconstruction of a small sphere. The true object is displayed in gray colour,
and the reconstructed object by black colour in each iteration. Top left : after one
iteration; top right : after 100 iterations; bottom left : after 500 iterations. The bottom
right shows the evolution of the cost
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nodes by an averaging filter in order to obtain a smooth surface. This smooth-
ing operation will be discussed in more detailes in a forthcoming publication.

In this work, the main focus is on reconstructing the shape of the object
assuming the knowledge of its position and electrical properties. The initial
guess in this case is a sphere of radius 2 cm located at the same position as
the true object. Figure 1 shows the true object (gray) and the guessed object
(black) at iteration numbers 1 (top left), 100 (top right) and 500 (bottom
left), where the latter one corresonds approximately to the lowest cost value
which we could achieve during our reconstruction. The evolution of the total
cost (summed over all indices) is displayed in the bottom right image of the
figure. We mention that the reconstruction at the final iteration number 900
looks quite similar to that one at number 500. We conclude that our algorithm
has converged in a stable way to the correct sphere.
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Summary. In this chapter we analyze the potential of a shape-based model based
on a level-set technique for the early detection of breast cancer tumors from mi-
crowave data. A reconstruction using a shape-based model offers several advantages
like well-defined boundaries and the incorporation of an intrinsic regularization that
reduces the dimensionality of the inverse problem whereby at the same time stabi-
lizing the reconstruction. In this chapter, we present a novel strategy that is able
to detect very small tumors compared to the wavelength used for illuminating the
breast.

1 Introduction

The use of microwaves for the early detection of breast tumors shows great
promise as an alternative technique to the more traditional use of X-rays. The
physical basis of microwave imaging in this application is the high contrast
between the dielectric properties of the healthy breast tissue and the malignant
tumors at microwave frequencies [Gabriel et al. (1996)]. The goal in microwave
imaging is therefore to detect, localize and characterize hidden tumors in the
breast.

Mathematically, microwave tomography constitutes a nonlinear inverse
problem in which a given cost functional is minimized via an iterative al-
gorithm. Traditional iterative pixel-based algorithms turn out to suffer from
several drawbacks related to the smoothing property of standard regulariza-
tion techniques (like Tikhonov–Philips) in this application. In particular, they
do not allow for representing the sharp discontinuities that exist between tu-
mors and the healthy tissue. Therefore, our group has developed recently a
novel shape-based reconstruction technique for microwave imaging which uses
a level set representation of shapes for representing the basic features in the
medium, like skin, fatty tissue and tumors. See [Irishina et al. (2006), 2].

In this chapter we present an adaptation of our level set approach for the
early detection of small breast tumors. Our algorithm is able to start without
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any pre-specified starting guess for the location, being able to create shapes
at any position of the domain and thereby avoiding the often encountered
problem of local minima. It does so during the early iterations taking into
account the data and the sensitivity structure of the inverse problem. Once
a good first approximation for the shape is found, the algorithm continues
in a completely automatic way with optimizing this shape, until the data
least-squares data misfit (cost functional) is sufficiently reduced.

2 Mathematical Model

In this chapter we consider a heterogeneous 2D medium Ω, embedded in a
layer of skin as shown in the top left image of Fig. 1, and illuminated by TM
waves. In this case, the scalar Helmholtz equation

∆u + κ(x)u = q(x) in Ω (1)

is a good approximation for describing the non-zero component of the electric
field u. In (1), κ(x) = ω2µ0ε0

[
ε(x) + iσ(x)

ωε0

]
is the complex wave number,

where ε is the relative dielectric constant and σ is the conductivity. q is the
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Fig. 1. Top left : realistic true model. Top right : final reconstruction ε = 36. Bottom
left : final reconstruction ε = 20. Bottom right : final reconstruction ε = 45
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source. In the shape-based approach we assume that κ(x) is a piecewise con-
stant function that can be written as

κ(ψ(x)) =
{
κi inside S where ψ(x) ≤ 0
κe outside S where ψ(x) > 0 (2)

where ψ(x) is a sufficiently smooth level set function which represents the
shape S of the tumor. The boundary of the tumor, δS, consists of all the
points where ψ(x) = 0. Here, we focus on the shape reconstruction problem
assuming that the electrical properties of the tumor and the healthy tissue are
given. The goal is to find an evolution law for the unknown level set function
ψ which reduces, and eventually minimizes, the cost functional

J (ψ) =
1
2

∥∥R(κ(ψ))
∥∥2 . (3)

In (3), R(κ(ψ)) denotes the mismatch between the true boundary data and
those calculated by the forward model using the parameter distribution κ(ψ).
In order to obtain an evolution of the unknown function ψ, we consider the
evolution law

dψ
dt

= f(x, t) (4)

with some forcing term f(x, t) which still needs to be specified. Formally
differentiating the least squares cost functional J (κ(ψ(t))) with respect to
the artifical time t and applying the chain rule yields

dJ
dt

= Re

∫
Ω

R′
l(κ)

∗R(κ) (κe − κi)δ(ψ) f(x, t) dx , (5)

where Re indicates the real part of the corresponding quantity and R′
l(κ)

∗

denotes the formal adjoint of the linearized residual operatorR′
l(κ). Obviously,

the following choice of the forcing term

f(x) = − Re ((κe − κi)R′
l(κ)

∗R(κ)) for all x ∈ Ω (6)

defines a descent direction for the least squares cost. It can be computed
efficiently by using an adjoint scheme [Irishina et al. (2006)]. We note that
our search direction f(x, t) has the property that it can be applied even if
there is no initial shape available when starting the algorithm. Therefore, it
allows for the creation of objects at any point in the domain, by lowering
a positive level set function until its values arrive at zero. This property is
useful for avoiding certain types of local minima which often occur in level set
formulations which are solely based on the propagation of an already existing
shape. See the discussion in [2].

Numerically discretizing (4) by a straightforward finite difference time-
discretization with time-step τ > 0 and interpreting ψ(n+1) = ψ(t + τ) and
ψ(n) = ψ(t) yields the iteration rule

ψ(n+1) = ψ(n) + τf(x), ψ(0) = ψ0. (7)
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3 Numerical Experiments

Our numerical setup is a 2D tomographic configuration. We have a set of
40 transducers which are equidistantly located around the 12-cm-diameter
breast. They illuminate the breast using different frequencies. Here we use
the iterative algorithm for five frequencies, namely 500, 800, 1, 000, 1, 500
and 2, 000 MHz. In our reconstruction algorithm we assume that the only
unknown is the relative permittivity inside the tumor to which we assign
different values (εin ∈ {20, 36, 45}) for the search of shape and location. The
value of the true tumor is ε = 36. We use a mesh of 160 × 160 pixels of size
1×1 mm2 each. In the following we briefly summarize the algorithm explained
above.

Our realistic model consists of the surrounding medium with εliquid = 2.5,
σliquid = 0.04 Siemens per meter (S m−1), the breast tissue with εe = 9.0, σe =
0.4 S m−1, the skin layer with εs = 34.0, σs = 4.0 S m−1, and the tumor with
εin = 36.0, σin = 4.0 S m−1. To simulate the heterogeneity of human breast
tissue we add random variation to the background parameter distribution of
up to ±5%, distributed over 4 × 4 mm2 squares. The data in the detectors
are perturbed by 5% white Gaussian noise. We suppose that all the dielectric
constants of the breast and surrounding medium are known (except of the
ramdom perturbations), as well as the conductivity value of the tumor. The
tumor is 118 pixels size and situated at 12 pixels depth. We start with a level
set function equal to one in all the domain. In the first experiment we assign
εin = 36.0 to the reconstructed tumor. We perform a loop of 20 iterations
in which we use boundary data corresponding to 5 frequencies (between 500
and 2, 000 MHz) one after the other. During this loop, the level set function
is iteratively updated, and the location of the tumor is finally found along
with an approximation of its shape. In order to investigate the performance
of our algorithm in the situation where we do not know the correct value of
the permittivity of the tumor, we repeat the above experiment using instead
of the true permittivity value εin = 36.0 two incorrect approximations during
the reconstruction, namely εin = 20.0 and εin = 45.0. Figure 1 shows on the
top left the true model and on the top right the final reconstruction when
assuming the correct permittivity value εin = 36.0. On the bottom left and
bottom right are shown the final reconstructions when assuming εin = 20.0
and εin = 45.0 instead, respectively. The evolution of the cost during these
three reconstructions is displayed in Fig. 2. The solid line corresponds to
εin = 36.0, the dash-dotted line to εin = 20.0 and the dashed line to εin = 45.0.
We see that in all reconstructions the correct location of the tumor is recovered
in an efficient and stable way even in this realistic case of noisy data, unknown
fluctuations in the background and incorrectly assumed permittivity value.
Certainly, some ghost objects can occur in this situation which, however, are
significantly smaller than the tumor. The size of the reconstructed tumor
seems slightly depending on the choice of the permittivity value which is
used for the reconstruction. Avoiding the ghost objects and reconstructing
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Fig. 2. Evolution of cost during shape reconstruction. Solid : εin = 36.0, dash-dotted :
εin = 20.0, dashed : εin = 45.0

the correct permittivity values together with shape and location of the tumor
will be the focus of our future work.
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Summary. In the chapter we discuss the use of sequential Gaussian simulations in
order to create geostatistical initial guesses for an earlier introduced level set based
shape reconstruction algorithm for the history matching problem in reservoir charac-
terization. We present and discuss numerical results which compare the performance
of the reconstruction algorithm for these different initial guesses.

1 Introduction

In the water-flooding process of secondary oil recovery, water is injected under
high pressure into so-called injection wells in order to enhance oil production
at the production wells. In order to optimize the oil production, in the history
matching problem it is attempted to use the measured production data of
the water-flooding process in order to estimate the physical properties (in
our case permeability) inside the reservoir. The corresponding mathematical
inverse problem is severely ill-posed and underdetermined such that strong
regularization tools need to be employed during the inversion. Our group
has recently introduced a novel shape-based reconstruction techniques which
aims at reconstructing regions of different rock-types (and if necessary also
smoothly varying internal profiles inside these regions) from production data.
In order to represent the different geological regions, a level set technique is
employed in this algorithm [Villegas et al. (2005),Villegas et al. (2006)]. In the
current chapter we will concentrate on discussing the use of different initial
guesses in order to start the iterative inversion algorithm for reconstructing the
unknown interfaces. In particular, we will investigate the use of geostatistical
techniques for constructing initial realizations of reservoirs.

Our simplified model for describing two-phase flow of oil and water in the
Earth (modeled as a porous medium) is

−∇ ·
[
T∇p

]
= Q in Ω × [0, tf ] (1)
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φ
∂Sw

∂t
−∇ ·

[
Tw∇p

]
= Qw in Ω × [0, tf ] (2)

for the two unknowns p (pressure) and Sw (water saturation). In the following,
the subindices w and o will always indicate “water” and “oil”, respectively.
Ω ⊂ Rn (n = 2, 3) is the modeling domain with boundary ∂Ω, and [0, tf ] is
the time interval for which production data is available. We denote by φ(x)
the porosity, and by To, Tw and T the transmissibilities, which are known
functions of the permeability K and the water saturation Sw:

Tw = K(x)
Krw(Sw)
µw

; To = K(x)
Kro(Sw)
µo

; T = Tw + To . (3)

Here, the relative permeabilities Krw(Sw) and Kro(Sw) are typically available
as tabulated functions, and µw and µo denote the viscosities of each phase.
The quantities Qo, Qw and Q = Qo +Qw represent the flows (oil, water, and
total, resp.) at the few injection and production well locations in the reservoir.
They define the measured data of our inverse problem. Equations (1)–(3) are
solved with appropriate initial conditions, and a no-flux boundary condition
on ∂Ω.

In the shape inverse problem we assume now that the parameter K has
the following specific form

K(x) =
{
Ki(x), where ψ(x) ≤ 0
Ke(x), where ψ(x) > 0 . (4)

In this representation, ψ(x) is the describing level set function. The two regions
D (shale) and Ω\D (sand) are accordingly given as D = {x ∈ Ω : ψ(x) ≤ 0}
and Ω\D = {x ∈ Ω : ψ(x) > 0}. The boundary of D (denoted as Γ = ∂D)
is defined by the zero level set of the level set function ψ, i.e., ∂D = {x :
ψ(x) = 0}. For solving the inverse problem, we define an evolution of the level
set function

dψ
dτ

= f(x, τ) (5)

for the level set function ψ such that upon convergence of this evolution the
corresponding shape will minimize a suitably chosen cost functional (in our
case the least-squares data misfit). An adjoint technique is used in order to
calculate the forcing term f(x, τ) in each step of this shape evolution. For
more details regarding this level set based shape evolution algorithm we refer
to [Villegas et al. (2005),Villegas et al. (2006)].

2 Sequential Gaussian Simulation for Constructing
Initial Guesses

Sequential Gaussian Simulation (SGS) is used for estimating the reservoir
characteristics (in our case permeability) in regions where these values are
not available by taking into account the measurements of the values at the
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well positions. This procedure uses statistical assumptions on the distribution
of the parameters in the reservoir which are expressed in a so-called semivar-
iogram. Using this information, SGS creates a family of Gaussian realizations
of the reservoir which are all equiprobable and honor the measured values at
the well locations. By applying a threshold to these realizations, we obtain
realizations of a binary reservoir (i.e. consisting of exactly two lithofacies).
These realizations are used in order to calculate the corresponding level set
functions as signed distance functions for these realizations, which are then
used as initial level set functions for our shape evolution approach. Figure 2
shows in the upper three images of the left column three of these different (bi-
nary) realizations which have been generated by using the SGSIM program
of the GSLIB Fortran library [Deutsch et al. (1997)] and thereafter applying
a threshold.

In the following we briefly list the basic steps of our SGS process:

1. Generate a random path through the grid nodes of the reservoir.
2. Visit the first node along the path and use kriging to estimate a mean
µ and standard deviation σ for the parameter at that node based on the
available (measured or already estimated) values of this parameter at a
set of close grid points.

3. Select a value at random from the corresponding (Gaussian) distribution
of type (µ, σ) and put this value at the given grid node as parameter.

4. Visit each successive node in the random path and repeat the process,
taking into account already estimated values inside a sufficiently small
neighborhood of the current node.

For more details, see for example [Deutsch et al. (1997)].

3 Numerical Experiments and Discussion

Given the measured permeability values at the wells, we first create a semi-
variogram as described above and create a family of thresholded Gaussian
realizations. Each of them can be used as initial guess for the level set
reconstruction. In order to investigate the behavior of the cost during the
reconstruction process in dependence of these initial values we have displayed
in Fig. 1 the corresponding evolution of the cost for three choices of initial
guesses. The selection has been made in dependence of the initial cost of these
realizations when plugged into a reservoir simulator such as ECLIPSE. See the
bottom left image of Fig. 1 for the initial cost values of a small selection of nine
Gaussian realizations (numbers 1–9) and of our standard deterministic initial
guess for the reservoir (number 10). Out of this selection, we have chosen fur-
thermore three realizations (number 4, number 3 and number 8 representing
the maximal, an intermediate and the minimal cost value, respectively) in or-
der to run a shape reconstruction for each of them independently. In addition,
we have run a reconstruction using our standard deterministic initial guess
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Fig. 1. Upper left : reference permeability distribution, shale (dark gray) and sand
(light gray). Upper right : evolution of cost using Gaussian realizations 3 (solid),
4 (dashed), 8 (dash-dotted) and deterministic case 10 (dotted). Bottom row : Initial
(left image) and final (after 150 iterations, right image) cost values for nine Gaussian
realizations (columns 1–9) and one deterministic case (column 10)

based on well information. Figure 2 shows the corresponding initial realiza-
tions (left column) and the final reconstructions (right column) for these four
choices.

We observe that our level set reconstruction technique yields good results
for each of the Gaussian initializations. Gaussian simulations can provide us
therefore with good initial guesses for our level set reconstructions. We men-
tion that Gaussian initializations can also be used in order to design interesting
alternative ‘adjoint-free’ statistical reconstruction techniques, which we plan
to address in our future research.
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Fig. 2. Left column: Upper three images examples of Gaussian realizations (numbers
3, 4 and 8 of Fig. 1). Bottom image: deterministic initial guess (number 10). Right
column: corresponding final reconstructions at iteration number 150



602 R. Villegas et al.

References

[Deutsch et al. (1997)] C. V. Deutsch and A. G. Journel, GSLIB: Geostatistical
Software Library and User’s Guide, Applied Geostatistics Series, Oxford Uni-
versity Press, 1997

[Villegas et al. (2005)] R. Villegas R, O. Dorn, M. Moscoso and M. Kindelan, Shape
reconstruction from two-phase incompressible flow data using level sets, Proc.
International conference on PDE-based image processing and related inverse
problems, CMA, Oslo: August 2005 (Springer: to appear) (2006).

[Villegas et al. (2006)] R. Villegas R, O. Dorn, M. Moscoso, M. Kindelan and
F. J. Mustieles, Simultaneous characterization of geological shapes and per-
meability distributions in reservoirs using the level set method, Proc. SPE
Europec/EAGE Annual Conference and Exhibition, Vienna: June 2006 in press
(2006).



Reconstruction of Simple Geometric Objects
in 3D Optical Tomography Using an Adjoint
Technique and a Boundary Element Method

A. Zacharopoulos1, O. Dorn2, S.R. Arridge1, V. Kolehmainen3,
and J. Sikora4

1 Department of Computer Science, UCL, Gower st. London, WC1E 6BT, UK
A.Zacharopoulos@cs.ucl.ac.uk

2 Universidad Carlos III de Madrid, Madrid, Spain
3 University of Kuopio, Kuopio, Finland
4 Warsaw University of Technology, Warsaw, Poland

Summary. In this paper we consider the recovery of ellipsoidal 3D shapes with
piecewise constant coefficients in Diffuse Optical Tomography (DOT). We use an
adjoint scheme for calculating gradients for the shape parameters defining the un-
known ellipsoids, and a Newton-type optimisation process for the minimization of a
least squares data misfit functional. A boundary integral formulation is used for the
forward modelling. An advantage of the proposed method is the implicit regularisa-
tion effect arising from the reduced dimensionality of the inverse problem. Results
of a numerical experiment in 3D are shown which demonstrate the performance of
the method.

1 Introduction

In this paper, we explore an adjoint technique for the retrieval of the internal
boundaries of 3D ellipsoidal regions in frequency domain Diffusive Optical To-
mography (DOT), [1]. The optical parameters of interest in this application
are µa being the absorption coefficient, µ′

s being the (reduced) scattering co-
efficient, and their combination D = 1

3(µa+µ′
s) being the diffusion coefficient.

If the distribution of these optical parameters inside the body Ω is arranged
into L disjoint regions Ω	 with piecewise constant optical properties, the prop-
agation of light can be described by a set of coupled Helmholtz equations [3]

−∇2Φ	 + k2
	Φ	 = qj inΩ	 , (1)

with interface conditions

Φ	+1 = Φ	 , D	+1
∂Φ	+1

∂ν
= D	

∂Φ	

∂ν
onΓ	 , (2)

Φ1 + 2αD1
∂Φ1

∂ν
= 0 on ∂Ω . (3)
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Here, α models the refractive index difference at the boundary ∂Ω and the
respective (complex) ‘wavenumbers’ are k2

	 (ω) = µa,�+
iω
c

D�
. We consider in this

paper the case that the domain of interest can be divided into two different
zones, namely a background distribution and an embedded object whose shape
can be approximately described by an ellipsoid.

2 Solution Strategy for the Inverse Problem

Discretising our forward problem (1)–(3) by the Boundary Element Method
(BEM), the shapes and locations of the boundaries are described by finite
sets of shape coefficients γ. In our case these shape coefficients are derived
from a much smaller set of parameters {fk}, k = 1, . . . , 6, namely locations
and semi-axes of the ellispoids, which are defined in the following section and
which uniquely determine our ellipsoids during the reconstruction. In other
words, we have γ = γ({fk}). Using the BEM, we construct a linear matrix
equation of the form T(γ)f = q. Introducing the measurement operator M,
we have the residual operator

R({fk}) = K({fk})− g = MT−1(γ({fk}))q− g, (4)

where g are the physically measured data and K({fk}) denotes the nonlinear
forward operator which maps unknown ellipsoidal parameters to the corre-
sponding measurements [1]. The least squares data misfit (cost) is given as

J ({fk}) =
1
2
‖R({fk})‖2. (5)

A typical way to minimise such a cost function is a Newton-type method,
where we search for a minimum for J ({fk}) by iterations of local linearisation
and Taylor expansion around the current estimate {fk}(n) as

{fk}(n+1) = {fk}(n) + (JT
nJn + Λ)−1JT

n (g −K({fk}(n))). (6)

Here, the Jacobian Jn in step n of the algorithm is a discretized version of
the descent directions (10), (13) derived further below (see also [3] for more
details) and Λ is a Levenberg-Marquandt control term. In our implementation,
we take Λ to be the identity. In addition, a quadratic fit line search method is
applied in order to avoid detours in the downhill direction and speed up the
optimisation.

3 Calculating Gradient Directions by an Adjoint Scheme

The boundary of an ellipsoid with center w = (wx, wy, wz) and semi-axes
a = (ax, ay, az) which is aligned with the cartesian axes is given by the implicit
representation
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Φ(x;a,w) =
(x− wx)2

a2
x

+
(y − wy)2

a2
y

+
(z − wz)2

a2
z

− 1 = 0 (7)

with x = (x, y, z). In our inverse problem, we will transform an initial ellipsoid
of this form into a final one which best fits the sought object according to some
criterion. During the movement of the ellipsoid the distribution of the optical
parameters b = (µa, D)T changes (where T means ‘transpose’) inside Ω and
with it the cost functional (5). The basic idea of our algorithm will be to
define an evolution law (in artificial time t) for each of the six parameters
fk ∈ {wx, wy, wz, ax, ay, az}, k = 1, . . . , 6, of the form

∂fk
∂t

= hk(t),

such that (5) is minimized upon convergence of this scheme. As shown in [2],
finding such an evolution for each of the six parameters amounts to finding ve-
locity fields Vk(x, t), k = 1, . . . , 6, in the domain of interest which deform the
given shapes (ellipsoids) in a controlled fashion, i.e., maintaining the shape of
an ellipsoid. In order to find these different velocity fields for our case, we define

Vk(x, t) = Fk(t)ek (8)

for k = 1, 2, 3 where e1 = ex, e2 = ey and e3 = ez are the direction vectors
of the cartesian axes x, y and z in IR3. Here, Fk(t) is a scalar function to
be chosen properly. This velocity field V(x, t) is in fact independent of the
position x ∈ Ω, such that the argument x is not active. Motion of an object
by these velocity fields corresponds to a simple translation along the three
cartesian coordinate axes. Following arguments given in [2] we see that the
response of the cost due to these velocity fields is described by

∂J (b)
∂t

=

(∫
∂S(t)

[R′(b)∗R(b)] (bi − be)ek · n(x)ds

)
Fk(t), (9)

such that we find the steepest descent directions

Fk(t) = −
(∫

∂S(t)

R′(b)∗R(b)(bi − be)ek · n(x)ds

)
(10)

for k ∈ {1, 2, 3}. Here, R′(b)∗ is the formal adjoint to the linearized residual
operator R′(b) which takes into account the correct interface conditions (3).

In addition to the above described translation, we can furthermore deform
a given ellipsoid into another one by changing one or more of the individual
semi-axes. For this purpose we define the following three velocity fields

Vs,l(x, t) = Fsl(t)
l − wl

al
el, (11)

with l ∈ {x, y, z} corresponding to k ∈ {4, 5, 6}, respectively. These three
velocity fields define an evolution law in the space of ellipsoids by evolving
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the three semi-axes al. In particular, we get the corresponding response of the
cost due to this evolution

∂J (b)
∂t

=
∫
∂S(t)

[R′(b)∗R(b)] (bi − be)
l − wl

al
el · n(x)dsFsl(t). (12)

Therefore, the steepest descent directions for the three semi-axes are given as

Fsl(t) = −
∫
∂S(t)

R′(b)∗R(b)(bi − be)
l − wl

al
el · n(x)ds. (13)

The extraction of the Jacobians Jn and of the descent directions (6) using
these adjoint expressions for Fk(t) and Fsl(t) in the framework of our BEM
implementation follows then the guidelines described in details in [3].

4 Results from 3D Simulations

In our experimental setup, a geometric model for an infant’s head is cre-
ated and treated as a homogeneous domain with an embedded inhomo-
geneity, which we try to recover. The optical parameters chosen for the
homogeneous background are µa = 0.01 cm−1 and µs = 1 cm−1, and for the
unknown embedded region (a tilted ellipsoid) Ω2 we have µa = 0.05 cm−1 and
µs = 2.0 cm−1. See Fig. 1.

Using this geometric setup, we assign 20 sources and 20 detector positions
at the surface of the head. The modulation frequency of the sources is set to

Fig. 1. Our numerical experiment for recovering an unknown object (here a tilted
ellipsoid) from noisy DOT data. Light gray: the target inhomogeneity. Dark gray:
the probing ellipsoid during its evolution. Upper row from left to right: iterations 1,
2, 3. Bottom row: iterations 6, 10, 15 of the Newton-type scheme evolving location
and semi-axes of the probing ellipsoid which is aligned with the three cartesian axes
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100 MHz. Synthetic data are then collected at the 20 detectors using our BEM
forward modelling scheme. We split this data into real and imaginary parts of
its logarithm to get the data vector g, see [3]. Gaussian random noise with a
standard deviation of 1% of the measured signal is added to these data. For
starting the reconstruction we select a random initial ellipsoid. The algorithm
follows the residual minimization technique described above. Some steps of
the evolution and the final reconstructed boundary are displayed in Fig. 1. As
can be seen, the location and the approximate shape of the unknown object
has been approximated with good accuracy by the reconstructed ellipsoid.

5 Conclusion

In the paper we have proposed an adjoint scheme for recovering a 3D
ellipsoidal shape which best fits a given object in DOT. By using such a
low-parameterized model we incorporate in our scheme a strong implicit reg-
ularisation which helps stabilizing the inverse problem. The adjoint scheme
uses just one forward and one adjoint BEM simulation in each iteration for
calculating gradient directions for all unknown parameters simultaneously.
Even for our small set of six parameters this scheme for calculating gradient
directions is significantly faster than the usually employed finite-differences
scheme for parameterized representations. In our numerical experiments we
have demonstrated that our scheme is able to reconstruct in a stable and ef-
ficient way a 3D ellipsoidal shape from few noisy data which approximates
well an unknown object which is not representable in the space of search
parameters due to the lack of rotation angles during the search.
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1 Introduction

In Electrical Impedance Imaging (EII) a finite number of electrodes are
positioned at the boundaries of closed conducting domains [LPB05]. Typically
some of the electrodes are used to inject low-frequency current patterns into
the domain, while others sample the induced voltage potential at the bound-
ary. In the image reconstruction problem, the interior admittivity distribution
must be recovered using the acquired noise-infused boundary measurements.
This nonlinear problem is ill-posed and therefore a regularization scheme is
necessitated in order to yield a stable and unique solution.

2 The Forward Electrostatic Problem

In order to solve the inverse problem, one firstly attends to the forward prob-
lem of computing the boundary Dirichlet data when the domain’s interior
electrical properties and the excitation boundary conditions are known. This
involves the solution of Maxwell’s electrostatic equations according to the com-
plete electrode model boundary conditions. In the discrete sense, one usually
approximates the forward problem on finite dimensional models where the
nonlinear forward operator F := X → Y relates the parameters of interest
x ∈ X to their corresponding boundary observations y ∈ Y like

F (x) = yexact + ε = y (1)

assuming y are measurements contaminated with a noise signal ε of level
w so that 0 < ‖y − F (x∗)‖2 ≤ w and y /∈ R(F ). In this work we focus
attention to the case where F is twice Fréchet differentiable with non-closed
range.
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3 The Primal and Dual Inverse Problems

In a finite domain Ω with k degrees of freedom, given m noise contaminated
boundary measurements y ∈ Rm, the bounds lj , uj ∈ R for j = 1, . . . , k, with
0 < lj ≤ xj ≤ uj < +∞, the inverse problem is to find a solution x∗ ∈ X
that satisfies

x∗ = arg min
x∈F

f(x) subject to F =
{
x | lj ≤ xj ≤ uj , j = 1, . . . , k

}
, (2)

where f : X → R is the twice continuously Fréchet differentiable in the
interval [l, u] cost function resembling the Euclidian norm of the model misfit
according to the data

f(x) =
1
2

∥∥F (x)− y
∥∥2. (3)

If the prior information on the solution is cast in terms of the quadratic
constraints

cj(x) = (uj − xj)(xj − lj) exp(θ) ≥ 0, j = 1, . . . , k, (4)

where θ = −2 log
(
(uj − lj)/2

)
is a scalar calibration parameter that preserves

the non-negativity of the barrier, then one defines the logarithmic barrier
function β : X → R ∪ {∞}

β(x, µ) = f(x)− µ
k∑

j=1

log cj(x), (5)

where log is the natural logarithm. The formulation of the composite mini-
mization functional β encompassing the misfit in the measurements according
to F and the prior information constraints is differentiable for nonzero values
of the barrier parameter, while for µ approaching zero the barrier term be-
comes singular at the bounds. The key idea behind this strategy is embodied
in the interior point algorithms, where one identifies the global minimum of
the regular-convex β in a Newton-Raphson methodology. This is also known
as sequential unconstrained minimization process, which begins with a strictly
feasible estimate on x∗ in the interior of the feasible region F , and then lin-
earizes and solves a sequence of ν subproblems

xν = arg min
x∈F

β(x, µν) for ν = 1, 2, . . . (6)

each time reducing the value of µ. This creates a sequence of unconstrained
local minima which form a continuously differentiable path leading to the
optimal solution x∗ at the limit µ → 0+. The required optimal solution will
be adjacent to the boundary of F at a distance analogous to the level of noise
in the data. Convergence criteria and properties of interior point methods can
be found in the review article [FGR02]. In essence, the process implies that
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the optimum solution is the point where the data misfit is minimum and the
constraints are just binding, which in principle is equivalent to regularization.

If the set of unconstrained minimizers of the barrier function is nonempty,
then any sequence in this set has at least one convergent subsequence whose
limit point is the optimal constrained solution [BER04]. If {xν} is such a
convergent subsequence, then the sequence of multipliers

λν
j (µ) = µ/cj(xν) (7)

is bounded. Moreover, dual multipliers provide estimates for the Lagrange
multipliers at the optimum limν→∞ λν

j (µ) = λ∗j where λ∗j is the Lagrange
multiplier associated with the jth constraint. Next we proceed to formulate
the inverse problem treating x and λ as dependent primal and dual variables.

4 Primal–Dual Newton Equations

Relaxing the standard KKT conditions by µ we obtain the primal-dual
Newton equations where the unique point (xν , λν) that satisfies

∇f(xν(µ))−∇c(xν(µ))λν(µ) = 0, (8)

c(xν(µ)) · λν(µ)− µ1 = 0, (9)

c(xν) > 0 and λν(µ) > 0, (10)

where 1 is the ones vector. In a matrix notation the above are expressed as

DB(x, µ) =
(
DB1

DB2

)
= 0, (11)

where
DB1 = Df −ATλν and DB2 = Cλν − µ1. (12)

Allowing p, l ∈ Rk to be the primal and dual Newton directions respectively,
then applying Newton’s method to the system (11) leads to the primal-dual
formulation of the problem as HB

(
p l
)T = −DB(

Hf + IθΛ −AT

ΛA C

)(
p
l

)
= −

(
DB1

DB2

)
, (13)

which for a step length t yields a solution update (xν+1, λν+1) ←− (xν +
tp, λν + tl) where Iθ = 2 exp(θ) I, and I is the identity matrix. The Hessian
is full rank and invertible only when the diagonal of the Lagrange multipliers
is strictly positive, thus yielding unique and bounded updates in the primal
and dual directions. We prove that following the proof of Lagrange multiplier
theorem using a penalty approach. As the bound constraints are mutually in-
dependent, for ν sufficiently large the Jacobian of the constraints A = ∇c(x)
has full column rank, and hence (ATA) is invertible. At the regularized solu-
tion the dual multipliers satisfy
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λ∗j =
(
∇cj(xν)T∇cj(xν)

)−1∇cj(xν)TDf (x∗), (14)

where Df (x∗) is the gradient of the objective cost term. Since x∗ satisfies
Morozov’s discrepancy principle, then at the optimum constrained point

Df (x∗) = F ′(x∗)T
(
yexact − y

)
�= 0

the right-hand side of (14) is bounded from below by the level of noise in the
data, and thus λ∗j > 0 for all j. Recalling that C, Λ and A are commuting
diagonal matrices and iterates are strictly feasible c(x) > 0, the block (2, 2)
of the Hessian in (13) can be eliminated to yield the equivalent condensed
system

Hc(x, λ) p = −
(
Df (x)−ATλ

)
, (15)

where the condensed primal-dual Hessian matrix at the νth iteration is ex-
pressed as

Hν
c = Hf (xν)−

∑
j∈K

µν

c(xν)
Hg(xν) + µν∇c(xν)Tc−2(xν)∇c(xν). (16)

In the neighborhood of the optimum point ν →∞ the Hessian becomes

Hc,∗ = H∗ + γAT
∗A∗ +M, (17)

where H∗ = Hf (x∗) −∑λ∗Hg(x∗), γ > 0, and M a positive semi-definite
matrix. As the Hessian of the objective term Hf is effectively rank deficient
and ill-conditioned, the Hessian of the constraints is Hg = −2Iθ ≺ 0, then
it follows that Hc,∗ is positive definite only if H∗ + γAT

∗A∗ , 0. Since Hg is
essentially a constant multiple of the identity, then H∗ is positive definite in
a Tikhonov regularization sense. Moreover, at the regularized point (x∗, λ∗)
the multipliers are strictly positive due to the impact of Morozov’s principle
on Df (x∗). The positive definiteness of the condensed Hessian follows from
Debreu’s lemma for any positive coefficient γ given that the gradient of the
constraints matrix A∗ is full rank positive definite diagonal.

5 Numerical Results

Two inhomogeneities with magnitudes at 3 S m−1 and 6 S m−1 are immersed
into an otherwise homogeneous cylindrical domain of background of 1 S m−1,
planes of which are illustrated in left of Fig. 1. For the system a set of 464
boundary voltage measurements were simulated and subsequently infused
with 0.1% Gaussian noise based on the maximum voltage reading. The con-
tact impedance for the electrodes was fixed at 100 Ωm−1, while adjacent pair
drive currents were used in the excitation of the domain. Setting the lower
and upper bounds on conductivities at l = 1 S m−1 and u = 6 S m−1 respec-
tively, a logarithmic barrier function was constructed and calibrated using
an offset θ = −1.8326. The box-constrained solver was provided with an
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Fig. 1. Planes of the simulated (left) and reconstructed (right) conductivity distri-
butions

initial value of the barrier parameter of µ0 = 10−8 and an initial homo-
geneous guess on the solution of x0 = 3.5 S m−1. After 325 interior point
iterations, at a barrier parameter value µ ≈ 10−40 the algorithm reached
convergence at a primal solution as shown in the right of Fig. 1. At this
point the upper and lower bounds in the computed primal solution are
xmin = 1.0013 S m−1 and xmax = 5.9966 S m−1, while the dual solution is
bounded within λmin = 2.1669 × 10−9 and λmax = 5.5643 × 10−7. The for-
ward computations have been implemented numerically using the EIDORS
3D toolbox.

6 Conclusions

A regularized formulation for high-contrast electrical impedance tomography
was presented where regularization is enforced by imparting upper and lower
bounds on the conductivities. The inverse problem was solved using a primal-
dual interior point algorithm and the numerical results presented indicate that
nonlinear imaging with enhanced quantitative resolution is feasible. The tech-
nique is particularly suitable in recovering discontinuous conductivity profiles.
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We present three articles in this minisymposium on three areas of mathematical
finance. We open up with Klaus Schmitz on simulation-based valuation where
a new scheme is presented that values exotic options that possesses better
convergence properties than existing schemes and is therefore more efficient.
This is then followed by Helen Haworth on structural default risk modelling.
A credit contagion framework is presented that captures the interdependency
of firms under the consideration of credit risk and economic reality. Finally,
Eric Yu demonstrates the valuation of a selection of elementary exotics with
strike price resets under the same framework that keeps the valuation problem
two-dimensional and is therefore competitive over existing methods.

Pricing Exotic Options with Strong Schemes: In finance, the strong conver-
gence properties of discretisations of stochastic differential equations (SDEs)
are very important for the hedging and valuation of exotic options. We show
how the use of the Milstein scheme (vector case) and an orthogonal transfor-
mation can improve the convergence of the multi-level Monte Carlo method,
so that the computational cost to achieve an accuracy of O(ε) is reduced to
O(ε−2) for a Lipschitz payoff. We present examples of pricing exotic options.

Credit Contagion in a Structural Framework: We provide a multi-name
structural credit model and use it to price credit products in the presence
of default contagion. Based on economic fundamentals, structural models are
attractive, modelling corporate default as the first time that firm value hits
a lower barrier. Despite the proliferation in multi-name credit products, how-
ever, there has been little work extending the framework to multiple firms. Our
results illustrate a meaningful relationship between the dependence structure
and spreads.

The Valuation of Elementary Exotics with Strike Resets: We demonstrate
the valuation of a selection of elementary exotic options with strike price
resets in this article using a simple change of variable that keeps the valuation
problem two-dimensional.
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Summary. In finance, the strong convergence properties of discretisations of
stochastic differential equations (SDEs) are very important for the hedging and
valuation of exotic options. In this paper we show how the use of the Milstein
scheme can improve the convergence of the multilevel Monte Carlo method, so that
the computational cost to achieve an accuracy of O(e) is reduced to O(ε−2) for a
Lipschitz payoff. The Milstein scheme gives first order strong convergence for all
one-dimensional systems (one Wiener process). However, for processes with two or
more Wiener processes, such as correlated portfolios and stochastic volatility models,
there is no exact solution for the iterated integrals of second order (Lévy area) and
the Milstein scheme neglecting the Lévy area gives the same order of convergence
as the Euler-Maruyama scheme. The purpose of this paper is to show that if certain
conditions are satisfied, we can avoid the calculation of the Lévy area and obtain
first convergence order by applying an orthogonal transformation. We demonstrate
when the conditions of the two-dimensional problem permit this and give an exact
solution for the orthogonal transformation. We present examples of pricing exotic
options to demonstrate that the use of both the orthogonal Milstein scheme and the
multilevel Monte Carlo give a substantial reduction in the computation cost.

1 Introduction

We begin with a two-dimensional Itô stochastic differential equation (SDE)
with a two-dimensional Wiener process

dx = µ(x)(x, y) dt+ σ(x, y) dŴ1,t (1)

dy = µ(y)(x, y) dt+ ξ(x, y) dŴ2,t ρ dt =
〈
dŴ1,t,dŴ2,t

〉
.

Alternatively, in vector form

dZ(t) = A0 (t, Z) dt+
2∑

k=1

Ak (t, Z) dŴk,t Z ∈ R2.
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This is in fact, only a symbolic representation for the stochastic integral equa-
tion

Z(t) = Z(t0) +
∫ t

t0

A0(s, Z) ds+
2∑

k=1

∫ t

t0

Ak(s, Z) dŴk,s.

The first integral is a deterministic Riemann integral and the second is a
stochastic integral [7].

Using the definition of correlation we can represent our system (1) in vector
form with independent noise

d
[
x
y

]
=
[
µ(x)(x, y)
µ(y)(x, y)

]
dt+

[
σ(x, y)
ρ ξ(x, y)

]
dW1,t +

[
0
ρ̂ ξ(x, y)

]
dW2,t (2)

〈dW1,t,dW2,t〉 = 0 ρ̂ =
√

1− ρ2.

The Milstein approximation is[
xt+∆t

yt+∆t

]
=
[
xt

yt

]
+
[
µ(xt)

µ(yt)

]
∆t+

[
σ
ρξ

]
∆W1,t +

[
0
ρ̂ξ

]
∆W2,t (3)

1
2

[
σσx + ρξσy

ρσξx + ρ2ξξy

](
(∆W1,t)

2 −∆t
)

+
1
2

[
0
ρ̂2ξξy

](
(∆W2,t)

2 −∆t
)

+
1
2

[
ρ̂ξσy

ρ̂σξx + 2ρρ̂ξξy

]
(∆W1,t∆W2,t) +

1
2

[A1, A2]
[
L(1,2)

]t+∆t

t
,

where subscript x and y denote partial derivatives, L(1,2) is the Lévy area
defined by

[
L(1,2)

]t+∆t

t
=
∫ t+∆t

t

∫ S+∆t

t

dW1,UdW2,S −
∫ t+∆t

t

∫ S+∆t

t

dW2,UdW1,S ,

and [A1, A2] is the Lie bracket defined by (∂Ai
is the Jacobian matrix of Ai)

[A1, A2] = (∂A2A1 − ∂A1A2) =
[
−ρ̂ξσy

ρ̂σξx

]
.

The numerical difficulty is how to calculate the Lévy area L(1,2) . The tech-
nique of Gaines and Lyons [6] can be used to sample the distribution for
L(1,2) conditional on ∆W1, ∆W2. However there is no generalisation of this
to higher dimensions apart from the approximation of [9], which has a signifi-
cant computational cost.
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2 Orthogonal Transformation

If we make an orthogonal transformation of the uncorrelated Wiener processes
in (2), we do not change the distribution and we obtain

dx̃ = µ(x̃)(x̃, ỹ) dt+ σ(x̃, ỹ) d˜̂W 1,t, (4)

dỹ = µ(ỹ)(x̃, ỹ) dt+ ξ(x̃, ỹ) d˜̂W 2,t,

where ⎡⎣d˜̂W 1,t

d˜̂W 2,t

⎤⎦ =
[

1 0
ρ ρ̂

] [
cos θ − sin θ
sin θ cos θ

] [
dW1,t

dW2,t

]
.

If we compute the Lie bracket for the new orthogonal process using indepen-
dent Brownian paths W1,t,W2,t, we have

[A1, A2] =

[
−ρ̂ξσ

ỹ
− σ2θ

x̃
− ρσξθ

ỹ

ρ̂σξ
x̃
− ρσξθ

x̃
− ξ2θ

ỹ

]
.

To avoid having to simulate the Lévy area, we need the Lie brackets to be
identically zero [1], i.e., we need to impose the following conditions

−ρ̂ξσ
ỹ
− σ2θ

x̃
− ρσξθ

ỹ
= 0,

+ρ̂σξ
x̃
− ρσξθ

x̃
− ξ2θ

ỹ
= 0.

Simplifying we get

Φ
.=
∂θ

∂x̃
=
−1
ρ̂

(
ξσ

ỹ

σ2
+
ρξ

x̃

ξ

)
, (5)

Ψ
.=
∂θ

∂ỹ
=

1
ρ̂

(
ρσ

ỹ

σ
+
σξ

x̃

ξ2

)
.

If we want to find a solution for θ, we must first determine when the system
is consistent, or integrable. This requires that

∂Φ

∂ỹ
=

∂2θ

∂x̃ ∂ỹ
=
∂Ψ

∂x̃
(6)

and the solution for θ is

θ(x̃, ỹ) =
∫ (x̃,ỹ)

(Φdx̃+ Ψ dỹ ) . (7)
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However, because not all SDEs satisfy condition (6), we also obtain the fol-
lowing SDE for θ

dθ =
∂θ

∂x̃
dx̃+

∂θ

∂ỹ
dỹ =

(
Φµ(x̃) + Ψµ(ỹ)

)
dt+ σΦd˜̂W 1,t + ξΨd˜̂W 2,t.

If we choose to define θ in this way even when condition (6) is not satisfied
then our system becomes a three-dimensional Itô process with two Wiener
process inputs (θ− scheme)⎡⎣dx̃

dỹ
dθ

⎤⎦ =

⎡⎢⎣ µ(x̃)

µ(ỹ)

Φµ(x̃) + Ψµ(ỹ)

⎤⎥⎦dt+

⎡⎣σ0
σΦ

⎤⎦d˜̂W 1,t +

⎡⎣0
ξ
ξΨ

⎤⎦d˜̂W 2,t. (8)

If we compute again the Lie brackets with independent noise, we obtain

[A1, A2] =

⎡⎢⎢⎢⎣
0

0

ρ̂σξ

(
∂ Ψ

∂x̃
− ∂Φ

∂ỹ

)
⎤⎥⎥⎥⎦ . (9)

Note that when condition (6) is satisfied this Lie bracket (9) is identically zero.
In the remainder of the paper we investigate when particular applications
satisfy condition (6), in which case one can discretise either (4) or (8) and
when they do not, in which case one can only discretise (8) or the original
untransformed SDE (1). Our objective is to try to achieve higher order strong
convergence without the simulation of the Lévy areas.

When the Lie bracket is not equal to zero, the important question to be
considered is how precisely does θ need to be calculated to obtain first strong
order convergence in x̃ and ỹ? For example, does neglecting the Lie bracket
affect the accuracy of θ but not x̃ and ỹ?

3 Strong Convergence

If we apply any discrete approximation scheme to our system (1) and we want
to numerically evaluate the strong convergence order of our approximations
X̂, an exact solution is normally required. However, at present, there are
no solutions available for many SDEs. Because we are only interested in the
distribution of the solution, we can use the next theorems [8] to determine
the order of convergence for our discrete time approximation without an exact
solution.

Most models can be described through a SDE of the form

dx(t) = µ (x, t) dt+ σ (x, t) dW (t) x(0) = x0 (10)
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with W a M -dimensional Brownian motion, µ mapping RN × [0,∞) into RN ,
σ mapping RN × [0,∞) into RN×M and x0 a random N -dimensional vector
independent of W .

Theorem 1 (Existence and Uniqueness of Strong Solutions).

Suppose E
[
||x0||2

]
is finite and that there is a constant K for which for

all t ∈ [T0, T ] and all x, y ∈ Rd the following conditions are satisfied:

‖µ (x, t)− µ (y, t)‖+ ‖σ (x, t)− σ (y, t)‖ ≤ K ‖x− y‖ (Lipschitz condition)

‖µ (x, t)‖+ ‖σ (x, t)‖ ≤ K (1 + ‖x‖) (Linear growth condition)

Then the SDE (10) admits a strong solution x and satisfies(
E
[
||x(t)||2

]
<∞

)
.

This solution is unique in the sense that if x̂ is also a solution, then

P (x(t) = x̂(t). ∀t ∈ [0, T ]) = 1.

Proof. Proofs and additional explanation can be found in [2] and [5].

Theorem 2 (Convergence Order without an Exact Solution).
A) If a discrete approximation x̂ of (10) with time step ∆t has strong

convergence order η, i.e., there exist a constant C1 such that

E [ |x(T )− x̂(T,$t)| ] ≤ C1$tη (11)

Then there exist a positive constant, C2, such that

E

[ ∣∣∣∣x̂(T,$t)− x̂(T, $t2
)∣∣∣∣ ] ≤ C2$tη. (12)

B) Conversely, if it is known that the discretisation is strongly convergent
and (12) holds for some positive constant C2, then the strong convergence
order is η.

Proof. A) If (11) is true for all ∆t, then

E

[ ∣∣∣∣x(T )− x̂
(
T,
$t
2

)∣∣∣∣ ] ≤ C1

($t
2

)η

. (13)

Using the triangle law ( |A−B| ≤ |A|+ |B| ) and adding (11) and (13), we
get

E

[∣∣∣∣x̂(T,$t)− x̂(T, $t2
)∣∣∣∣] ≤ C1

(
1 +
(

1
2

)η)
$tη.

B) Using the triangle law
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E [ |x(T )− x̂(T,$t)| ] ≤ E

[ ∣∣∣∣∣x(T )− x̂
(
T,

(
1
2

)M

$t
)∣∣∣∣∣
]

+
M−1∑
m=0

E

[ ∣∣∣∣∣x̂
(
T,

(
1
2

)m+1

$t
)
− x̂
(
T,

(
1
2

)m

$t
)∣∣∣∣∣
]
.

Due to strong convergence

lim
M→∞

E

[ ∣∣∣∣∣x(T )− x̂
(
T,

(
1
2

)M

$t
)∣∣∣∣∣
]

= 0.

Hence, using (12)

E [ |x(T )− x̂(T,$t)| ] ≤
∞∑

m=0

C2

(
1
2

)m η

$tη =
C2

1−
(

1
2

)η $tη.
4 Stochastic Volatility Models

In this section we consider three different stochastic volatility models. All
three have the following generic form

dx = µ(x)dt+ αxγ1yλ1dŴ1,t ρdt =
〈
dŴ1.t,dŴ2.t

〉
dy = µ(y)dt+ β xγ2yλ2dŴ2,t.

The integrability condition (6) becomes

λC λ1 β
2 y2λC = −γC γ2 α

2 x2γC (14)

γC = γ1 − γ2 − 1; λC = λ2 − λ1 − 1

so then, for α, β, γ2, λ1 �= 0, we can conclude that θ is integrable if, and only
if, λC = γC = 0, in which case the solution is

θ =
1
ρ̂

((−ργ2α− λ1β

α

)
log x+

(
ρλ1β + γ2α

β

)
log y

)
. (15)

4.1 Quadratic Volatility Model (Case 1)

The first case we consider is

dx = xµdt+ x y dŴ1,t, (16)

dy = k (!−y) dt+ β y2dŴ2,t,

with parameters T =1; ρ=0.30; µ=0.05; k=1.8; !=0.26; β=1 and initial
conditions x(0)=1; y(0)=0.21.
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Fig. 1. Convergence test for Case 1

Table 1. Convergence orders η for all cases (N/A = not applicable)

Scheme Description C-1 C-2 C-3

Euler scheme set �t=dt, ∆Wi=dWi in (2) 0.49 0.49 0.48
Milstein scheme (L =0) Milstein–(3), set L(1,2) =0 0.56 0.56 0.51
Milstein scheme Milstein–(3), simulate L(1,2) 0.99 0.99 0.95
2D−θ scheme Milstein–(4) with (15) 0.98 N/A N/A
3D−θ scheme (L = 0) Milstein–(8), set L(1,2) = 0 0.98 0.87 0.52
3D−θ scheme Milstein–(8), simulate L(1,2) 0.98 0.98 0.91

Because λC = γC = 0, we can use either equation (4) together with (15), or
the three-dimensional θ scheme (8). Because of the orthogonal transformation,
neither requires the calculation of the Lévy area. Figure 1 and Table 1 show
that, as expected, the Euler scheme and the Milstein scheme with zero Lévy
areas (setting L(1,2) =0 in (3)) give strong convergence order 0.5. On the other
hand, the Milstein scheme (3) with a proper value for the distribution of the
Lévy area (through simulating the Lévy area using N subintervals within
each timestep) gives 1.0 order strong convergence, as do the three orthogonal
θ−schemes.

Variance Model (Case 2)

The second case we consider is the following stochastic variance model.

dx = xµdt+ x
√
y dŴ1,t, (17)

dy = k (!−y) dt+ β y dŴ2,t.

The parameters and initial conditions are the same except for β = 0.5; ! =
0.262; y(0)=0.212, which are chosen so that x and y will have approximately
the same relative volatility as in Case 1.
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Fig. 2. Convergence test for Case 2

In this case λC =0.5, and since the integrability condition is not satisfied
it is not possible to use the 2D – θ scheme. Figure 2 and Table 1 show that the
only schemes that achieved first order convergence are the Milstein schemes
which simulate the Lévy area in the simulation. However, Fig. 2 shows there
is a remarkable difference between the original and the orthogonal scheme
without the simulation of the Lévy area, not the improved order of conver-
gence achieved in the first case (Table 1) but a much improved constant of
proportionality.

Heston Model (Case 3)

A particularly bad case for the orthogonal transformation is the Heston
model [4]

dx = xµdt+ x
√
y dŴ1,t, (18)

dy = k (! − y) dt+ β
√
y dŴ2,t.

The parameters and initial conditions are the same as in Case 2 except for
β=0.25; this is again chosen so ensure that x and y will have approximately
the same relative volatility as in the first two cases.

In this case, λc=1. Figure 3 and Table 1 show that neither of the Milstein
schemes in which the Lévy areas are set to zero performs very well. Both
have order 0.5 strong convergence, and the constant of proportionality is not
much better than for the Euler scheme. When the Lévy areas are simulated
correctly, the two Milstein schemes do exhibit the expected first order strong
convergence. This demonstrates the importance of the Lévy areas in this case.

5 Pricing Exotic Options Using ML-MC

Usually, it is the weak convergence properties of numerical discretisations
which are most important, because in financial applications one is mostly
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Fig. 3. Convergence test for Case 3

concerned with the accurate estimation of expected payoffs. However, in the
recently developed multilevel Monte Carlo path simulation method (ML-
MC [3]), the strong convergence properties play a crucial role.

The key idea in the ML-MC approach is the use of a multilevel algorithm
with different timesteps ∆t on each level. Suppose level l uses 2l timesteps
of size ∆tl = 2−l T , and define Pl to be the numerical approximation to the
payoff on this level. Let L represent the finest level, with timesteps so small
that the bias due to the numerical discretisation is smaller than the accuracy
ε which is desired. Due to the linearity of the expectation operator, we can
express the expectation on the finest grid as

E [PL] = E [P0] +
L∑

l=1

E [Pl − Pl−1] .

The quantity E [Pl−Pl−1] represents the expected difference in the payoff
approximation on levels l and l− 1. This is estimated using a set of Brownian
paths, with the same Brownian paths being used on both levels. This is where
the strong convergence properties are crucial. The small difference between
the terminal values for the paths computed on levels l and l− 1 gives a small
value for the payoff difference. Consequently, the variance

Vl = V [Pl − Pl−1]

decreases rapidly with level l. In particular, for a European option with a
Lipschitz payoff, the order with which the variance converges to zero is double
the strong order of convergence.

Using Nl independent paths to estimate E [Pl−Pl−1], if we define the
level 0 variance to be V0 = V [P0] then the variance of the combined multilevel
estimator is

∑L
l=0N

−1
l Vl. The computational cost is proportional to the total

number of timesteps:
∑L

l=0Nl∆t−1
l . Varying Nl to minimise the variance for

a given computational cost gives a constrained optimisation problem whose
solution is Nl = C

√
Vl∆tl. The value for the constant of proportionality, C,
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is chosen to make the overall variance less than the ε2, so that the r.m.s. error
is less than ε.

The analysis in [3] shows that in the case of an Euler discretisation with a
Lipschitz payoff, the computational cost of the ML-MC algorithm is O(ε2 log),
which is significantly better than the O(ε3) cost of the standard Monte Carlo
method. Furthermore, the analysis shows that first order strong convergence
should lead to an O(ε2) cost for Lipschitz payoffs; this will be demonstrated
in the results to come.

5.1 European Option

The first set of numerical results are for a European put option with strike K
and maturity T , for which the payoff is given by

P = max (K − x(T ), 0) .

Using the Case 1 volatility model (16), with the same set of parameters as
before and strike K = 1.1, we obtain the ML-MC results in Fig. 4. The top
left plot shows the weak convergence in the estimated value of the payoff as
the finest grid level L is increased. All of the methods tend asymptotically to
the same value. The bottom left plot shows the convergence of the quantity
Vl = V [Pl − Pl−1]. The 3D – θ scheme exhibits second order convergence due
to the first order strong convergence. The Milstein approximation (3) with
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Fig. 4. European put option, Case 1. Top left: convergence in option value with grid
level. Bottom left: convergence in the ML-MC variance with grid level. Top right:
number of Monte Carlo paths Nl required on each level, depending on the desired
accuracy. Bottom right: overall computational cost as a function of accuracy ε
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the Lévy areas set equal to zero, and the Euler discretisation both give first
order convergence, which is consistent with their 0.5 order strong convergence
properties.

The top right plot shows three sets of results for different values of the
desired r.m.s. accuracy ε. The ML-MC algorithm [3] uses the correction ob-
tained at each level of timestep refinement to estimate the remaining bias
due to the discretisation, and therefore determine the number of levels of re-
finement required. The results illustrate this, with the smaller values for ε
leading to more levels of refinement. To achieve the desired accuracy, it is also
necessary to reduce the variance in the combined estimator to the required
level, so any more paths (roughly proportional to ε−2) are required for smaller
values of ε. The final point to observe in this plot is how many fewer paths are
required on the fine grid levels compared to the coarsest grid level for which
there is just one timestep covering the entire time interval to maturity. This is
a consequence of the variance convergence in the previous plot, together with
the optimal choice for Nl described earlier.

The final bottom right plot shows the overall computational cost as a
function of ε. The cost Cε is defined as the total number of timesteps, summed
over all paths and all grid levels. It is expected that Cε will be O(ε−2) for the
best ML-MC methods, and so the quantity which is plotted is ε2Cε vs. ε.
The results show that ε2Cε is almost perfectly independent of ε for the 3D – θ
scheme, and varies only slightly with ε for the Milstein scheme. The Euler ML-
MC scheme shows a bit more growth as ε → 0, which is consistent with the
analysis in [3] which predicts that Cε = O(ε−2(log ε)−2). The final comparison
line is the standard Monte Carlo method using the Euler discretisation, for
which Cε = O(ε−3).

The use of fewer Monte Carlo paths NL is reflected directly in the com-
putational cost of the process. For the most accurate case, ε = 0.00001, the
Euler, Milstein and 3D – θ version of the ML-MC scheme are roughly 50, 150
and 300 times more efficient than the standard Monte Carlo method using
the Euler discretisation.

Figures 5 and 6 show the corresponding results for Cases 2 and 3, corre-
sponding to the variance model (17) and the Heston model (18) respectively.
For Case 2, the computational savings from using the ML-MC method are
similar to Case 1, while for Case 3 the savings from the Euler, Milstein and
3D – θ versions of the ML-MC scheme are roughly 20, 40 and 40 in the most
accurate case.

5.2 Digital Option

The payoff for a digital option is given by

P = H (x(T )−K) ,

where H(x) is the Heaviside function (H(x) = 1 if x > 0, else H(x) = 0).
Figure 7 shows the results using the Case 2 variance model (17) and strike
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K = 1. Because this payoff is not Lipschitz continuous, it shows the poorest
benefits from the ML-MC approach. For the most accurate case, ε = 0.0001,
the Euler, Milstein and 3D – θ versions of the ML-MC scheme are roughly 3, 60
and 90 times more efficient than the standard method using the Euler scheme.
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5.3 Asian Option

The payoff for an Asian call option is given by

P = max (x(T )−K, 0) ,

where x is the arithmetic average which can be approximated numerically as

x(T ) =
1
T

∫ T

0

x(t)dt ≈ ∆t
2T

N∆t∑
n=1

(x̂n + x̂n−1) .

Using the Case 2 variance model (17), with strike K = 1, Fig. 8 shows that for
the most accurate case, ε = 0.00001, the Euler, Milstein and 3D – θ versions
of the ML-MC scheme are roughly 50, 80 and 110 times more efficient than
the standard method using the Euler scheme.

5.4 Variance Swap Option

The payoff for a variance swap option is given by

P = N (y(T )−Kvar) ,

where N is the nominal price and y(T ) is the average of the variance in the
time interval [0, T ] which can be approximated numerically in the same way
as y(T ) in the previous example.
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Using the Case 2 variance model (17), Kvar = 0.262 and N = 10, Fig. 9
shows that for the most accurate case, ε = 0.00001, the Euler, Milstein and
3D – θ versions of the ML-MC scheme are roughly 150, 380 and 360 times
more efficient than the standard method using the Euler scheme. In this case,
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the Milstein method gives first order strong convergence for y, whereas the
three-dimensional θ scheme gives similar accuracy initially but is tailing off
towards order 0.5 strong convergence on the finest grids.

6 Conclusions

In finance, stochastic variance and volatility models are very important for
the valuation of exotic options. We have shown that the use of the orthogonal
θ scheme can achieve the first order strong convergence properties of the
Milstein numerical discretisation without the expensive simulation of Lévy
areas. In combination with the recently introduced multilevel Monte Carlo
method it can reduce substantially the computational cost in pricing exotic
options, reducing the cost to achieve an r.m.s. error of size ε from O(ε−3) to
O(ε−2).

The ML-MC works without any problems with all schemes and does not
depend on the value of the parameters of the system. However, when a specific
orthogonal transformation (θ scheme) is applied to a two-dimensional SDE it
is only possible under certain conditions to avoid calculation of the Lévy area.
The bias or error in the computation of the rotation angle θ that makes the
Lie bracket equal to zero in the orthogonal scheme is crucial to obtain a better
convergence order. When the conditions for integrability are satisfied, we can
use the formula for θ to obtain the value of the rotation angle and obtain first
order strong convergence. Otherwise, we have to use the three-dimensional
transformation and check the magnitude of the Lie brackets to decide if it is
likely to give computational savings in the solution of our system.

The numerical results demonstrate considerable computational savings
when the orthogonal transformation is applied to either the quadratic volatil-
ity model (16) or the stochastic variance model (18). Unfortunately, similar
savings are not achieved with the Heston model, and so the orthogonal trans-
formation is not recommended in this case.
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1 Introduction

Credit risk, often thought of as the risk arising from a company default, is the
risk that an obligor does not honour its obligations. It is the reason the multi-
trillion dollar credit derivatives market exists and its influence is pervasive
across global financial markets. As multi-asset credit products have increased
in popularity, the need for models incorporating a realistic dependence struc-
ture between companies has grown.

We consider the structural framework in which a firm’s assets are mod-
elled as a geometric Brownian motion with default as the first first hitting
time of an exponential default barrier. Originally proposed by [4] and [1],
these models are attractive, based as they are on economic fundamentals, and
enabling debt and equity to be valued as contingent claims on firm value.
The extension to two correlated firms is considered in [5] to calculate default
correlations. We extend this framework to incorporate default contagion and
derive results for bond yields and CDS spreads. Firm values are modelled
as correlated geometric Brownian motions, reflecting a common influence on
corporate strength whilst default contagion represents a direct link between
the fortunes of both companies. The result is a model that incorporates de-
fault causality and is asymmetric with regard to default risk, a significant
improvement on prior models. Further details of the methodology and results
are in [2].

2 Two-Firm Model

We consider two companies, firm values Vi, i = 1, 2. Each company issues
equity and a single homogeneous class of debt, assumed to be a zero coupon
bond, Ci(t, T ), par value Ki, maturity T . For each company, firm value is
assumed to follow a geometric Brownian motion, with default as the first time
that the value of the firm hits a lower default barrier bi(t). As in [4] and [1],
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we assume that a firm’s value can be constructed from tradable securities and
so in the risk-neutral pricing measure, for i = 1, 2,

dVi(t) = (rf − qi)Vidt+ σiVidWi(t),

where the risk-free rate, rf , dividend yields, qi, and volatilities, σi, are con-
stants, Wi(t) are Brownian motions and cov(W1(t),W2(t)) = ρt for constant
correlation ρ. We assume that each company has an exponential default bar-
rier, bi(t) = Kie−γi(T−t), reflecting the existence of debt covenants.

To value credit spreads we use the joint survival probability density func-
tion and the resultant joint survival probability, P (t), as derived in [3] for the
valuation of double lookbacks,

P (t) = P(X1(t) ≥ B1, X2(t) ≥ B2) (1)

=
2
βt

ea1B1+a2B2+bt
∞∑

n=1

e−r2
0/2t sin

(
nπθ0
β

)∫ β

0

sin
(
nπθ

β

)
gn(θ) dθ,

where Xi(t) = ln
(

Vi(t)
Vi(0)

e−γit
)
, Bi = ln

(
bi(0)
Vi(0)

)
≤ 0, Xi(t) = min0≤s≤tXi(s),

αi = rf − qi − γi − 1
2σ

2
i , I( nπ

β )

(
rr0
t

)
is a modified Bessel’s function and

gn(θ) =
∫ ∞

0

re−r2/(2t)eA(θ)rI( nπ
β )

(rr0
t

)
dr

a1 =
α1σ2 − ρα2σ1

(1− ρ2)σ2
1σ2

, a2 =
α2σ1 − ρα1σ2

(1− ρ2)σ1σ2
2

b = −α1a1 − α2a2 +
1
2
σ2

1a
2
1 + ρσ1σ2a1a2 +

1
2
σ2

2a
2
2

tanβ = −
√

1− ρ2

ρ
, β ∈ [0, π]

r0 =
1√

1− ρ2

(
B2

1

σ2
1

− 2ρB1B2

σ1σ2
+
B2

2

σ2
2

)1/2

tan θ0 =
σ1B2

√
1− ρ2

σ2B1 − ρσ1B2
, θ0 ∈ [0, β]

A(θ) = a1σ1 sin(β − θ) + a2σ2 sin θ .

2.1 Bond Yield Calculation

We calculate bond yields, yi(0, T ) = − ln(K1/C1(0, T ))/T from the discounted
expected values of the default and maturity payments,
Payment at maturity = min(ω1V1(T ),K1), provided τ1 > T, τ2 > T
Payment on default = ω1K1e−rf (T−τ), where τ = min{τ1, τ2},
τi denotes the default time of company i and 0 ≤ ω1 ≤ 1 represents the
fact that a portion of a defaulting company’s value is lost to bondholders.
Using (1) we obtain analytical formulae for yields as outlined in [2] which we
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evaluate by numerical quadrature using a sparse grid. Default contagion arises
from the assumption that company one defaults on its outstanding debt the
first time that the value of either company reaches its default barrier. Default
can then be triggered in two ways – either as a direct result of the company’s
specific circumstances, or due to links with another company. An example
of such a scenario would be if company two was the only supplier of a key
component in company one’s business, with company one unable to operate
without it. Company two need not default automatically if company one does.
It can continue to operate regardless of the financial viability of company one
with dependence solely through the asset correlation, ρ. As a result, the model
is asymmetric with respect to default risk, in contrast with the majority of
previous models incorporating a credit dependence structure.

Figures 1–4 illustrate the sensitivity of yields to correlation, the shape
of the default barrier and firm volatility. Initial credit quality is the initial
distance of the firm from its default barrier. Since default is less likely with
increasing correlation (the probability of at least one company defaulting is
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σi = 0.2, K1 = 100, rf = 0.05, ω1 = 0.7, qi = 0,
initial credit quality = 2; γi = 0.03 in Fig. 1, T=5 in Fig. 2
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γi = 0.3, K1 = 100, rf = 0.05, ω1 = 0.7, qi = 0, initial credit quality = 2, T=5.

higher when they are negatively correlated), yields decline as correlation in-
creases since the bond is less risky, increasing the price and reducing the yield.

Figures 3 and 4 illustrate the impact of volatility on yields. The volatility of
both firms is changed simultaneously in Fig. 3, whilst in Fig. 4, σ1 = 0.2 is fixed
and company two’s volatility is increased. In both cases, higher volatility leads
to a higher likelihood of default and higher yields; in the latter situation this is
purely due to the correlation between the two companies and the possibility of
default contagion since we are considering the yield on company one’s bonds.

2.2 CDS Spread Calculations

Using a similar approach to that in Sect. 2.1, we evaluate first and second-
to-default credit default swap (CDS) spreads for a two-company basket. The
buyer of a kth-to-default CDS on this underlying basket pays a premium,
the CDS spread, for the life of the CDS – until maturity or the kth default,
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whichever happens first. In the event of default by the kth underlying reference
company, the buyer receives a default payment and the contract terminates.
For bond recovery on default, R, and continuous spread payments, c, the
kth-to-default CDS spread is

ck =
(1−R)

{
1− e−rfT P(τk > T )−

∫ T

0
rfe−rfsP(τk > s) ds

}
∫ T

0
e−rfsP(τk > s) ds

. (2)

Figures 5–8 show the impact of correlation, maturity and volatility on first
and second-to-default CDS spreads. As correlation between the reference enti-
ties increases, first-to-default CDS spreads decrease, whilst second-to-default
spreads increase since the probability of at least one company defaulting is
higher for negative correlations, whilst the probability of both defaulting is
greater for positive correlations. Spreads increase with maturity and volatility
as expected.
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3 Conclusion

We have incorporated default contagion within the structural framework for
the first time, valuing bond yields and CDS spreads in a 2-dimensional first
passage model. The result is a credit model that is asymmetric with respect
to default risk and which has a dependence structure based on both long-
term asset correlation and default contagion. Future work includes modelling
larger baskets of companies and incorporating a more realistic specification of
default contagion. A company default does not usually cause outright default
at a related company, but a ripple of credit weakness at related companies.
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Summary. We demonstrate the valuation of a selection of elementary exotic op-
tions with strike price resets in this article using a simple change of variable that
keeps the valuation problem two-dimensional.

1 Introduction

In the 1990s, a path-dependent feature known as resets appeared in the mar-
kets where the strike prices of call and put options may be reset at some
prespecified dates with reference to the history realised by the underlying
asset thus far. This feature can be especially appealing to investors if used
for portfolio insurance purposes as it saves investors from having to adjust
positions in the option in the event of adverse market movements, provide
the reset is to the investor’s interests. If the reset is against the investor’s
interests, the reset serves to encourage early exercise if permitted.

The literature on reset options was initiated by Gray and Whaley [GW97,
GW99] who value bear warrants and put options with a single reset. A
straightforward analytic solution involving bivariate integrals was derived for
the European case; for the American case, solution was via a multi-layer
version of the well-known binomial tree of Cox et al. [CRR79]. Subsequent
contributions include analytic extensions to multiple resets of Cheng and
Zhang [CZ00] and Liao and Wang [LW03], time-dependent parameters of Li
and Li [LL06], and Li et al. [LLS06] where the short rate is governed by the
Hull White extended Vasicek process. Numerical methods were lattice-based
with an extra dimension, see Kwok and Lau [KL01] and Haug and Haug [3].

Reset options are quite similar to convertible bonds with conversion price
resets, to which similar valuation methods were presented in the literature.
There are lattice-based methods of Connolly [Con98, ch 9], Nelken [Nel98] and
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Berger et al. [BKL00]; finite difference method of Wilmott [Wil98, p 472] based
on the framework of Dewynne and Wilmott [DW93]; numerical integration
of Shaw and Bennett [SB98] and simulation-based methods of Shaw and
Bennett [SB98] and Kimura and Shinohara [KS06].

The above mentioned methods are three-dimensional in essence, except for
Hoogland et al. [HND01] and Yu [Yu05] who achieved a similar reduction in
the valuation of reset convertible bonds by a change of variable by exploiting
first-degree homogeneity. In a subsequent contribution, Yu and Shaw [YS06]
employ the same change of variable as Yu [Yu05] to value both reset options
and reset convertible bonds that keeps the problem two-dimensional.

The resets considered in the above mentioned references, on which we will
focus, are snapshot resets where the the new strike/conversion price on reset
depends only on the share price and the prevailing strike/conversion price
just before a reset is due. In practice, the strike/conversion price is reset with
reference to some function of the share price attained during a short window
period prior to reset. These are window resets and require more effort to
model. Note that snapshot resets is a special case of window resets with the
length of the window period set to zero. For short window periods, it may
be valid to simplify the modelling by approximating window resets with their
snapshot equivalents. Refer to Yu and Shaw [YS06] for a review of window
resets in the literature.

This article is, in essence, a quick and straightforward extension of Yu and
Shaw [YS06] where we apply a simple change of variable to value a selection
of elementary exotics. The next section sets the stage by defining our proto-
type reset and briefly outlining the framework of Yu and Shaw [YS06]. The
third and final section demonstrates the valuation of a selection of elementary
exotics with strike resets.

2 Background

The analysis throughout is under the usual assumptions of Black and Scholes
[BS73] and Merton [Mer73]. The risk-neutral dynamics of the value of the
underlying asset, S, is governed by

dSt = (r − q)Stdt+ σStdWt, (1)

where the risk-free short rate r, continuous dividend yield q and volatility of
the underlying σ are assumed to be constant and Wt is a Wiener process. We
can, of course, extend the forthcoming analysis with little additional effort if
r, q and σ are time-dependent. In particular, we can make the yield dividend
discrete by incorporating delta functions. The payout structure of the under-
lying is governed solely by the continuous dividend yield q and the exercise
structure is European. The value H of a derivative that depends on the value
of the underlying and time and is paid for upfront satisfies the well-known
Black–Scholes equation
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∂H

∂t
+

1
2
σ2S2 ∂

2H

∂S2
+ (r − q)S ∂H

∂S
− rH = 0 (2)

for S ∈ [0,∞) and t < T where T is the expiry date. The specification of the
payoff H(S, T ) completes the valuation problem and uniquely identifies the
derivative.

In general, valuation is to be performed numerically as analytics is rela-
tively rare. If the finite difference method is used, upper and lower boundary
conditions are to be specified along the S direction. The condition along the
lower boundary is simply (2) with S = 0 and the upper boundary condition
can be generally specified as

lim
S→∞

∂2H

∂S2
= 0

as the payoff is expected to be linear in S when the share price is very
high [Wil98, p 624].

2.1 Snapshot Resets

A reset is given by the definition of g, it typically takes the form

g(Ku− , Su−) =

⎧⎨⎩αKu− if Su− > aKu− ,
γSu− if bKu− ≤ Su− ≤ aKu− ,
βKu− if Su− < bKu− ,

where α, β and γ are strictly positive and finite constants, and 0 ≤ b ≤ a. We
also insist that a = b if b = ∞ or a = 0. The values of β when b = 0 and
α when a = ∞ are irrelevant. If a = b = 0 or a = b = ∞, the reset would
be deterministic in the sense that the reset variable would be the same and
known for all values of the share price at the reset time and so is not of much
interests to us.

By no arbitrage, the value of the RD is continuous across a reset date so
that

H(Su− , u−;Ku−) = H(Su, u; g(Ku− , Su−)) = H(Su, u;Ku). (3)

2.2 Similarity Reduction

Following the analysis of Yu and Shaw [YS06], let us define, as usual, the
moneyness at time t ≤ T as

Mt =
St

Kt
,

where K is the strike/conversion price; it can be shown that if S satisfies (1)
then so does M except at reset times when K changes. Moreover, the pricing
equation (2) transforms to

∂H

∂t
+

1
2
σ2M2 ∂

2H

∂M2
+ (r − q)M ∂H

∂M
− rH = 0. (4)



640 E.C.K. Yu

Across a reset date, the moneyness changes:

Mu(Mu−) =

⎧⎨⎩Mu−/α if Mu− > a,
1/γ if b ≤Mu− ≤ a,
Mu−/β if Mu− < b.

(5)

On changing the variable from S to M , the reset g at time u can be
regarded as a jump condition give by the function f : (0,∞) → (0,∞) with
f(Mu−) = Mu defined as per (5). The no arbitrage condition (3) becomes

H(M,u−) = H(f(M), u). (6)

A change of variable on H may be required depending on the nature of the
payoff. Note that the upper and lower spatial boundary conditions are un-
altered. We simply solve (4) backwards in time and apply a jump condition
equivalent to (6) on reset dates. Refer to Yu and Shaw [YS06] for further
details.

3 Elementary Exotics with Resets

It is well known that an European call option C with strike K can be regarded
as an asset-or-nothing call A with a short position in K digital calls B with
the same strike [RR91b]:

C(S, T ) = (S−K)θ(S−K) = Sθ(S−K)−Kθ(S−K) = A(S, T )−KB(S, T ).
(7)

As we can value a reset call option with the method described in Sect. 2.2,
we have reasons to believe that we can price asset-or-nothing and digital calls
with strike resets.1 If we make the change of variable

A(S, t) = KtĀ(M, t) and B(S, t) = B̄(M, t),

we see that the payoffs become

Ā(M,T ) = Mθ(M − 1) and B̄(M,T ) = θ(M − 1)

as θ(S − K) = θ(M − 1). We can therefore proceed with valuation as per
Sect. 2.2. Note that asset-or-nothing and digital calls no longer synthesises
call options in that (7) ceases to hold when there are strike resets.

The linearity (7) is, however, preserved in some cases. Consider a gap call
option [RR91b] CG with payoff

CG(S, T ) = (S −X)θ(S −K),
1The value of a reset binary call, when multiplied by the accumulation factor

er(T−t), gives the probability of finishing in-the-money and may therefore be of
interest.
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where X is an absolute number that can be either side of and does not depend
on the strike; the relation (7) becomes

CG(S, T ) = A(S, T )−XB(S, T ),

which can be shown to hold when there is a reset on the strike K. On the other
hand if we have X = xK at all times, we can define CG(S, t) = KtC̄G(M, t)
so that C̄G(M,T ) = (M − x)θ(M − 1) and we can proceed with valuation as
before.

Our final example, similar to Haug and Haug [3], concerns standard con-
tinuously monitored barrier options [RR91a] where the barrier X is related to
the strike via X = xK at all times. We focus on a reverse up-and-out call op-
tion with X > K; its value in the classical Black–Scholes world, CUO(S, t), is

CUO(S, t) = C(S, t;K)− C(S, t;X)− (X −K)B(S, t;X)

−(S/X)k(C(X2/S, t;K)− C(X2/S, t;X)

−(X −K)B(X2/S, t;X)),

where k = 2(r − q − σ2/2)/σ2. We can proceed as per with asset-or-nothing
calls in defining

CUO(S, t) = KtC̄
UO(M, t)

so that

C̄UO(M, t) = C̄(M, t; 1)− C̄(M, t;x)− (x− 1)B̄(M, t;x)

−(M/x)k(C̄(x2/M, t; 1)−C̄(x2/M, t;x)− (x− 1)B̄(x2/M, t;x))

for valuation. Likewise for the other options with “out” barriers, the incorpo-
ration of M - or t-dependent rebates is straightforward.

We have obtained satisfactory agreements amongst the results using the
finite difference method as per Sect. 2.2 and numerical integration.2 In the
scenarios we calculated, we observed that a barrier option with a less generous
reset may worth comparatively more over a range of share price levels. This
is because although the reset may be expected to lower the moneyness, the
loss in expected moneyness is more than compensated by a lower likelihood
of being knocked out.

The valuation of reset options with “in” barriers requires a clear speci-
fication of the strike price in the event that the option is knocked-in after
the reset time. Valuation is only slightly more complicated in that we may
need to simultaneously value the contract the option can be knocked into at
anytime.

2Specimen results are available from the author on request.
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of Multivariate Passport Options”

Jörg Kampen
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American, and Passport Options. These options are modelled by free bound-
ary equations and optimal stopping problems, and by HJB-equations and sto-
chastic optimal control problems. A Bermudean Option contract allows early
exercise only at discrete values of time prescribed in the contract. Bermudean
Options are popular in high-dimensional fixed income markets and treated
typically by Monte–Carlo simulations. At each possible date of expiration the
holder of a Bermudean Option has to decide between the value of the prod-
uct upon exercise and the value of the product upon non-exercise. The latter
value is given in terms of conditional expectations. The approximation by con-
ditional estimators involves Monte–Carlo errors. Christian Fries investigates
the foresight bias of the Bermudean Option which he interpretes as an Op-
tion on the Monte–Carlo error of the conditional estimator. He shows how to
apply an analytical correction on the foresight bias which allows for simplifi-
cations in coding and more efficient pricing. As the number of exercise dates
increase and the maximal distance of two consecutive exercise times decreases,
Bermudean Options approach American Options which can be exercised at
any time up to expiration. The contribution of Etienne Chevalier provides a
lower bound for the difference between the value function of a multivariate
American Option and the payoff function. From this he obtains a conver-
gence rate of the Bermudean exercies region to the American one. This result
is important because up to now we have to rely on Monte–Carlo methods
in order to price and exercise higher-dimensional American Options. A uni-
form approach for American options and some related early exercise problems
is presented in the contribution of John Chadam. He summarizes a bunch
of recent works concerning analytical and numerical treatment of American
options, prepayment of mortgages, and shows that that the underlying ap-
proach can also be applied to the inverse first crossing problem of a default
barrier. The approach is based on the representations of prices of early ex-
ercise options by fundamental solutions. The fundamental solution plays also
a fundamental role in the contribution by Jörg Kampen. He determines the
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optimal strategy of a multivariate call option on a traded account where the
option holder pays a premium upfront and is allowed to choose short and
long positions of a portfolio within certain position limits. The so-called pass-
port options is modelled by HJB-equations and optimal stochastic control
problems.
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Summary. We provide a definition and an analytic formula for the so called fore-
sight bias that may appear in the Monte–Carlo pricing of Bermudan and compound
options if the exercise criteria is calculated by the same Monte–Carlo simulation as
the exercise values. The analytical correction for the foresight bias is then applied
to the Monte–Carlo pricing of a Bermudan option (Bellman’s principle), resulting
in better prices, especially for very low number of paths.

1 Bermudan Option Pricing, Bellman’s Principle

Let {Ti}i=1,...,n denote a set of exercise dates and {Vunderl,i}i=1,...,n a corre-
sponding set of underlyings. The Bermudan option is the right to receive at one
and only one time Ti the corresponding underlying Vunderl,i (with i = 1, . . . , n)
or receive nothing. From Bellman’s principle we have that the value of the
Bermudan option is given recursively by

Vberm(Ti, . . . , Tn;Ti) := max
(
Vberm(Ti+1, . . . , Tn;Ti) , Vunderl,i(Ti)

)
, (1)

where Vberm(Tn;Tn) := 0 and Vunderl,i(Ti) denotes the value of the underlying
Vunderl,i at exercise date Ti.

Let N(t) denote the time t value of a chosen numraire and QN the cor-
responding pricing measure, see [2]. From the universal pricing theorem we
have that the N(Ti)-relative value of Vberm(Ti+1, . . . , Tn;Ti) is given by the
conditional expectation (w.r.t. the pricing measure) theN(Ti+1) relative value
of Vberm(Ti+1, . . . , Tn;Ti+1). Defining relative prices Ṽunderl,i(Tj) := Vunderl,i(Tj)

N(Tj)

and Ṽberm,i(Tj) := Vberm(Ti,...,Tn;Tj)
N(Tj)

, we have

Ṽberm,i(Ti) = max
(
Ṽberm,i+1(Ti) , Ṽunderl,i(Ti)

)
,

with Ṽberm,i+1(Ti) = EQN (
Ṽberm,i+1(Ti+1) | FTi

)
and Ṽberm,n ≡ 0, where {Ft}

denotes the filtration.
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1.1 Bermudan Option as Optimal Exercise Problem

The recursive Definition (1)represents the optimal exercise strategy in each
exercise time. For a given path ω ∈ Ω let T (ω) := min{Ti : Vberm,i+1(Ti, ω) <
Vunderl,i(Ti, ω)}. T gives a description of the exercise strategy as a stopping
time. With the definition of the optimal exercise strategy T it is possible to
define a random variable which allows to express the Bermudan option value
as a single (unconditioned) expectation. With Ũ(Ti) := Ṽunderl,i(Ti) i =
1, . . . , n denoting the relative price of the i-th underlying upon its exercise
date Ti we have for the Bermudan value Ṽberm(T0) = EQ

(
Ũ(T )

∣∣ FT0

)
.

The random variable Ũ(T ) may be derived through the backward algo-
rithm (Bellman’s principle), given the exercise criteria (1), i.e. the conditional
expectation. Induction start: Ũn+1 ≡ 0. Induction step:

Ũi =

{
Ũi+1 if Ṽunderl,i(Ti) < EQ(Ũi+1|FTi

)
Ṽunderl,i(Ti) else.

(2)

Fromthetower lawwehaveby inductionEQ(Ũi+1|FTi
) = EQ(Ṽberm,i+1(Ti)|FTi

)
and thus Ṽberm(T1, . . . , Tn, T0) = EQ(Ũ1|FT0) and Ũ1 = Ũ(T ). Since in the
Monte–Carlo simulation the calculation of unconditional expectations is just
the average value across all Monte–Carlo samples, the only missing part is the
determination of the exercise criteria (2).

2 Conditional Expectation Estimators

One approach to determine the exercise criteria (2) is to give an estima-
tor for the conditional expectation involved. If the SDE is in a Markovian
form, then expectation conditional to FT1 is a function of time T1 state vari-
able Z (and possibly other model parameters known in T1). Thus we have
EQN

(U(T2) | FT1) = EQN

(U(T2) | Z).
A standard method to obtain an estimate for the conditional expecta-

tion operator is to perform a regression against a suitable set of predictors
X := (X1, . . . , Xp), where the Xi’s are FT1 measurable random variable (basis
functions), e.g. monomials in Z. Let Û , V̂ , X̂i denote the n-vectors given by
evaluating the random variables U , V , Xi on the Monte–Carlo sample paths
ω1, . . . , ωn. In case of a linear regression an estimate of E(U |X) is given by
X̂α∗ with α∗ = (X̂TX̂)−1X̂TÛ . See [1, 2] an references therein.

In [1] we derive an estimate for the local Monte–Carlo error of the re-
gression estimate X̂α∗ of the conditional expectation operator E(V | X). Let
Ĥ := X̂(X̂TX̂)−1X̂T, then the Monte–Carlo error of the regression estimate is∑

j Ĥ
2
i,jE(ε̂2j

∣∣ X̂), where εj denote the residuals of the estimate, i.e. the value
of V −Xα∗ on the i-th sample path. We obtain the conditional variance of the
residuals by using regression once again on ε2 = (V −E(V |X))2 ≈ (V −Xα∗)2.
See [1] for further details.
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3 Foresight Bias: Classification, Calculation & Removal

The foresight bias is an option on the Monte Carlo error of the conditional
expectation estimator. The standard deviation of the Monte Carlo error is the
volatility of that option and the foresight bias is always non-negative.

Consider the optimal exercise value max(K,E(Ṽ | Z)) where the condi-
tional expectation estimator has a Monte Carlo error which we denote by ε.
Then the foresight bias is given by:

E
(
max(K,E(Ṽ |Z) + ε)

∣∣Z) = max(K,E(Ṽ |Z)) + foresightbias.

Here and in the following we will consider the exercise criteria max(K,E(Ṽ |Z)),
i.e. with the notation used in the previous section Ṽ stands for Ũi+1 andK stands
for Ṽunderl,i(Ti) for some i. The conditional expectation estimator (e.g. binning,
regression) will be denoted by Eest in place of E, i.e. Eest(Ṽ |Z) = E(Ṽ |Z) + ε.

3.1 Estimation of the Foresight Bias

We want to asses the foresight bias induced by a Monte–Carlo error ε of
the conditional expectation estimator E(Ṽ |Z), i.e. we consider the optimal
exercise criteria

max(K,E(Ṽ |Z) + ε).

Conditioned on a given Z = z∗ we have from central limit theorem that ε has
normal distribution with mean 0 and standard deviation σ for fixed E(Ṽ |Z).
Then we have the following result for the foresight bias:

Lemma 1. (Estimation of Foresight Bias) Given a conditional expectation
estimator of E(Ṽ |Z) with (conditional) Monte–Carlo error ε having normal
distribution with mean 0 and standard deviation σ will result in a bias of the
conditional mean of max(K,E(Ṽ |Z) + ε) given by

σ · φ(−µ−K
σ

)︸ ︷︷ ︸
foresight bias︸ ︷︷ ︸
biased high

+ (µ−K) ·
(
1−Φ(−µ−K

σ
)
)

+K︸ ︷︷ ︸
smoothed payout

−max(K,E(Ṽ |Z))︸ ︷︷ ︸
true payout︸ ︷︷ ︸

diffusive part, biased low

,

(3)
where µ := E(Ṽ |Z), φ(x) := 1√

2π
exp(− 1

2x
2) and Φ(x) =

∫ x

−∞ φ(ξ) dξ.

Proof. (of Lemma 1) Let ε have Normal distribution with mean 0 and standard
deviation σ. For a, b ∈ R we have with µ∗ := b− a

E(max(a, b+ ε)) = E(max(0, b− a+ ε)) + a = E(max(0, µ∗ + ε)) + a

=
1
σ

∫ ∞

0

x · φ
(
x− µ∗

σ

)
dx+ a =

1
σ

∫ ∞

−µ∗
(x+ µ∗) · φ(

x

σ
) dx+ a

=
∫ ∞

−µ∗
σ

(σ · x+ µ∗) · φ(x) dx+ a = σ · φ(
µ∗

σ
) + µ∗ ·

(
1− Φ

(
−µ

∗

σ

))
+ a.
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The result follows with b = E(Ṽ |Z), a := K, i.e. µ∗ = µ−K.

The bias induced by the Monte-Carlo error of the conditional expectation
estimator consists of two parts: The first part in (3) consists of the systematic
one sided bias resulting from the non linearity of the max(a, b+ x) function.
The second part is a diffusion of the original payoff function. The first part
should be attributed to super-optimal exercise due to foresight, the second
part to sub-optimal exercise due to Monte–Carlo uncertainty.

We define the first term in (3) as the foresight bias correction β(µ, σ) :=
σ · φ(−µ−K

σ ) and the second term in (3) as the suboptimal exercise correction
γ(µ, σ) := (µ−K) ·

(
1−Φ(−µ−K

σ )
)
−max(0, µ−K), where µ := E(Ṽ |Z) and

σ2 is the variance of the Monte–Carlo error ε of the estimator µ.

3.2 Analytical Removal of Foresight Bias

We modify the backward algorithm and correct for the foresight bias by sub-
tracting the term βest := β(µest, σest) and γest := γ(µest, σest) from the pay-
out on each path, where µest := Eest(Ṽ |Z) and σest is the estimator for the
Monte–Carlo error ε.

Ũi := −βest − γest +

{
Ṽunderl(Ti) if Ṽunderl(Ti) > Eest(Ṽ | Z)
Ũi+1 else.

4 Numerical Results

Our Benchmark model is a simple Black–Scholes model for an asset S where
S follows dS = µSdt+ σSdW , with S(0) = 1.0, σ = 20%, and assuming the
risk free asset dB = rBdt with r = 5%. Our benchmark product is a simple
Bermudan option on S paying Ni · (S(Ti) − Ki) upon exercise in Ti with
exercise dates T1 = 1.0, T2 = 2.0, T3 = 3.0, notionals Ni = 1.0 and strikes
K1 = 0.95,K2 = 1.0,K3 = 1.10. The regression polynomial of the conditional
expectation estimator is order 5 in S.

4.1 Aggregation of Monte–Carlo Prices

We setup m independent Monte–Carlo simulation with n/m paths and calcu-
late the average price of a Bermudan option price over the set of Monte–Carlo
simulations. We vary m from m = 1, i.e. a single Monte–Carlo simulation
with a huge number of paths, to m = 2048, i.e. many small Monte–Carlo
simulations. The aggregated prices have similar Monte–Carlo errors and for
an European option the different methods should result in (almost) identical
prices. For a Bermudan option the different methods of aggregation are not
equivalent. The foresight bias is a systematic error being O(

√
m/n).
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Option price by aggregation (204800 paths total, polynomial regression)

Foresight not removed Foresight removed numerically
Foresight removed analytically
Foresight and suboptimality removed analytically
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Fig. 1. Aggregation of Monte–Carlo Prices with or without Removal of Foresight

Figure 1 shows that the numerical removal of the foresight bias and our
analytical removal of the foresight bias give very similar results. For m large
a single Monte–Carlo simulation has a low number of paths, thus a larger
foresight-bias. If foresight bias is removed the price will slowly become lower.
This is due to the fact that the optimal exercise is smeared out by the diffusive
term in (3).
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Summary. American options valuation leads to solve an optimal stopping prob-
lem or a variational inequality. These two approaches involve the knowledge of a
free boundary, boundary of the so-called exercise region. Numerical methods ex-
ist to solve this kind of problems but these methods are not very efficient in high
dimension because some information on the free boundary is needed. To improve
our knowledge of the value function near its exercise region, we give here a lower
bound for the difference between the value function and the pay-off function near
the free boundary. This result can be used, for instance, to get some estimation for
the convergence rate of the Bermudean option exercise region to the American one.

1 American Options

An American option is a financial product which gives to its owner the right
to earn a specific amount of money at any time he wishes between the initial
date 0 and the maturity T . This amount of money, so-called the option pay-
off, is very often based on the values of one or several underlying assets. The
two main problems of the American option theory are then to give a price to
this product and to determine the optimal strategy for the owner: the optimal
time to exercise his right is assumed to be the time for which his gain is greater
as possible.

The first step to solve these two linked problems is to make assumptions
on the market. We will assume that the market is composed by d risky assets
and denote by Si

t their respective value at time t. We assume that (St)0≤t≤T

is solution of the following stochastic differential equation:

dSt = diag(St)((rI− δ)dt+ σdWt) (1)

where I = (1)1≤i≤d, r > 0 is the interest rate of the market, δ ∈ [0,+∞)d

is such that δi is the dividend rate of the asset i, σ ∈ Rd × Rd is called
the market volatility and (Wt)0≤t≤T is a standard Brownian motion on Rd.
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Moreover, we assume that σ satisfies the following hypothesis which insures
the non degeneracy for the infinitesimal generator of the diffusion S:

H1 : ∃M > m > 0, ∀x ∈ Rd, m‖x |2 ≤ x∗σσ∗x ≤M‖x‖2.
We denote by F the filtration associated toW and for x ∈ [0,+∞)d, (Sx

t )0≤t≤T

is the solution of the stochastic differential equation (1) such that Sx
0 = x.

Our goal here is to study a specific class of options, called basket options.
These options offer a pay-off which is the positive part of the difference be-
tween a positive constant (the strike price) and a linear combination of several
assets. We define the pay-off function f such that:

∀x ∈ [0,+∞)d, f(x) = (K − 〈α, x〉)+ ,
where K > 0 is the strike price, α ∈ Rd, and 〈., .〉 is the usual scalary product
on Rd.

In this setting, the option theory (see [B84] and [K88]) asserts that at time
t ∈ [0, T ], the price of the American option associated with the pay-off f is
P (T − t, St) where:

P (t, x) = sup
τ∈T0,t

E[e−rτf(Sx
τ )], ∀x ∈ [0,+∞)d,

where T0,t is the set of F-stopping times with values in [0, t].
At this point two approaches enable us to get information on the value

function P . First the optimal stopping theory (see [EK81]) asserts that the
supremum is attained and more precisely, we have:

P (t, x) = E

[
e−rτ∗

f(Sx
τ∗)
]
,

where τ∗ = inf {t ≥ 0 : P (T − t, Sx
t ) = f(Sx

t )} ∧ T.
A second point of view gives a variational characterisation for P . We know
(see [BL82] and [JLL90]) that P is the solution of the following variational
inequality{

(MP − rP ) ≤ 0, f ≤ P, (MP − rP ) (P − f) = 0 a.s.

P (0, x) = f(x) on R+,

where we set:

Mh(t, x) = −∂h
∂t

+
1
2

d∑
i,j=1

(σσ∗)i,jxixj
∂2h

∂xixj
+

d∑
i=1

(r − δi)xi
∂h

∂xi
.

A specific region of (0,+∞)× [0,+∞)d appears in these two approaches, it is
called the exercise region:

E =
{
(t, x) ∈]0, T )× [0,+∞)d : P (T − t, x) = f(x)

}
.

In fact if we know this region we would be able on one hand to compute τ∗, on
the other hand to compute P as a solution of a partial differential equation.
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From a financial point of view, this region is very interesting because it deter-
mines the optimal strategy the option owner has to follow. Our goal here is to
give an estimation of this region and more specifically of its temporal sections:

∀t ∈ (0, T ], Et = {x ∈ [0,+∞)d : P (t, x) = f(x)}.

Indeed, we are not able to get a closed formula for the price of an American
option and to determine its exercise region so a lot of numerical methods have
been developed to compute American options prices. The first idea is to solve
the variational inequality satisfied by the value function thanks to a finite
differences method. However, for problems with high dimension this approach
become very difficult to implement. In this case, we solve the optimal stop-
ping problem with Monte-Carlo methods (see [BG97], [LS01] and [BP03]). For
that, we consider a Bermudean option, this is an American one which can be
exercised only at a finite number of dates. From a financial point of view, it
gives less rights to its owner than an American option then its price is lower
than the price of the corresponding American option. However, if the number
of exercise opportunities goes to infinity, it is well known that the Bermudean
option price tends to the American one.

Some estimations of the convergence rate have been found (see [BP03]).
Since, the Bermudean option value function is the solution of an optimal
stopping problem which can be seen as a free boundary problem, our goal is
then the estimation of the convergence rate of the Bermudean free boundary to
the American one when the number of exercise opportunities goes to infinity.

2 Lower Bound for the Value Function
Near its Exercise Region

In this section we present our main result and give the ideas of the proof.

Theorem 1. Let x∗T ∈ ΓT where ΓT is the boundary of the continuation re-
gion. There exists ε > 0 and C > 0 such that

∀y ∈ (0,+∞)d − ET such that ‖y − x∗T ‖ ≤ ε P (T, y)− f(y) ≥ C‖y − x∗T ‖2.

When d = 1, this result is quite easy to get. Indeed, thanks to the variational
inequality satisfied by P in the exercise region, we can prove that there exists
C > 0 such that

∂2P

∂x2
(t, z) ≥ C,

for all z ∈ (x∗T , x
∗
T + ε). We conclude the proof by integrating two times

between x∗T and y and using the continuity of ∂P
∂x .

In the case d > 1, we can not get such control for the second space deriva-
tives of P . We then follow ideas of the proof of Proposition 18.1 in [C04] and
overcome this difficulty by using the following maximum principle (see [F75]).
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Let D a bounded domain of (0, T )×Rd. We define the parabolic boundary
of D by δpD = δD − {(t, x) ∈ δD : t = T} where δD is the boundary of D
and introduce the operator M̃ such that M̃h =Mh− rh.
Let u a function defined on [0, T ]× Rd, continous on D̄ and such that

u ∈ C1,2(D), M̃u ≥ 0onD and u ≤ 0 on δpD.

Then we have u ≤ 0 on D.
To prove Theorem 1, we introduce a bounded domain D included in

the continuation region of the American option and such that its bound-
ary contains x∗T . Then we assume that for C > 0 small enough, there exists
y ∈ (0,+∞)d−ET such that ‖y−x∗T ‖ ≤ ε and P (T, y)−f(y) ≤ C‖y−x∗T ‖2. Un-
der this assumption we can construct a function β ∈ C2(D) such that P−f−β
satisfies the parabolic maximum principle and such that, for (t, x) ∈ D close
to the exercise region, β(t, x) = 0. That leads to a contradiction, because the
maximum principle would allow us to write 0 < [P − f ](t, x) ≤ β(t, x) = 0.

3 Application to the Bermudean Approximation
of American Options

At time t, the price of a Bermudean option which offers n exercise opportuni-
ties {T1, . . . , Tn}, with a pay-off function f and a maturity T is Pn(T − t, St)
with:

Pn(t, x) = sup
τ∈T n

0,t

E[e−rτf(Sx
τ )],

where T n
0,t is the set of stopping times with values in {T1, ..., Tn} ∧ t

It is well known that when n goes to infinity, Pn tends to P the value
function of the corresponding American option. Some estimations on the con-
vergence rate have been found in [BP03]. More precisely, it have been proved
that there exists a constant C > 0 such that for al (t, x) ∈ (0, T )× (0,+∞)d,

0 ≤ P (t, x)− Pn(t, x) ≤ C

n
.

As in the American case, we can define the exercise region of a Bermudean
option by

En = {(t, x) ∈ [0, T )× (0,+∞)d : Pn(T − t, x) = f(x)}.

It is also easy to see En tends to E when n goes to infinity. Now we will see
that Theorem 1 allows us to give an estimation for the convergence rate.

Let u ∈ (0,+∞)d such that ‖u‖ = 1. As the temporal sections of E and
En are convex and contain 0, we can introduce the following quantities:

s(t, u) = inf{λ ∈ R : P (t, λu) = f(λu)}
sn(t, u) = inf{λ ∈ R : Pn(t, λu) = f(λu)}.
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Now, we are able to define a convergence rate for the exercise region by
sn(t, u)− s(t, u) because we know that sn(t, u) ≥ s(t, u). We apply Theorem 1
near s(t, u)u. Let ε > 0 defined as in Theorem 1. As sn(t, u) tends to s(t, u)
when n goes to infinity, for n great enough we have 0 ≤ sn(t, u)− s(t, u) ≤ ε
and then we can conclude that there exists γ > 0 such that

γ (sn(t, u)− s(t, u))2 ≤ P (t, sn(t, u))− f(sn(t, u))
= P (t, sn(t, u))− Pn(t, sn(t, u)).

Using the estimation on the convergence rate for the value function, we obtain

0 ≤ sn(t, u)− s(t, u) ≤
√

C

γn
.
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John Chadam
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Summary. We provide a unified approach to studying a wide variety of free bound-
ary problems that arise in modern mathematical finance. For the most part, the main
ideas will be presented in the simplest case of the early exercise boundary for the
American put option on a geometric Brownian motion. In addition to discussing
the existence and uniqueness of the solution to the problem, and the convexity of
the free boundary, we will describe several fast and accurate numerical and analyt-
ical approximations for the location of these early exercise boundaries. The same
approach can be used to treat similar problems with more general underliers such as
jump diffusion processes. We will also show how the techniques can be carried over
to treat other classes of free boundary problems such as the inverse first crossing
problem of the default barrier of a credit process as well as the pricing of mortgage
prepayment options. Various parts of this work are joint efforts with Xinfu Chen
(Pittsburgh) and David Saunders (Pittsburgh and Waterloo) as well as our recent
Ph.D. students Lan Cheng, Ge Han and Dejun Xie.

1 American Put Option

In this section we shall outline our methods for studying free boundary prob-
lems in finance in the context of the prototypical case of the American put
with the underlying asset following a geometric Brownian motion

dS
S

= µdt+ σdW (t) (1)

The classic result of Black, Scholes and Merton risk-neutral pricing theory
says that the value of the American put option satisfies the free boundary
problem

pt +
σ2

2
pSS + rSpS − rp = 0, Sf (t) < S, 0 < t < T, (2a)

p(S, t) = K − S on S = Sf (t), 0 ≤ t < T, (2b)

pS(S, t) = −1 on S = Sf (t), 0 ≤ t < T, (2c)



656 J. Chadam

p(S, t) → 0 as S →∞, (2d)

p(S, T ) = max(K − S, 0), S > Sf (T ) = K. (2e)

where K is the strike price and T is the expiry time of the contract and
S = Sf (t) is the early exercise boundary. Letting τ = σ2

2 (T − t) (the scaled
time to expiry) and x = �n(S/K), then the scaled option price price

pnew =
{

1− S/K S < Sf

p/K S > Sf
)

satisfies the transformed Black, Scholes, and Merton (BSM) problem (drop-
ping the subscript)

pτ − {pxx + (k − 1)px − kp} = kH(xf (τ)− x) (3)

p(x, 0) = max(1− ex, 0) (4)

where k = 2r/σ2, H is the Heaviside function, xf (τ) = �n(Sf/S), and the
coefficient k appears because the intrinsic payoff, p0(x) = 1− ex satisfies

p0τ − {p0xx + (k − 1)p0x − kp0} = k. (5)

The solution to problem (3,4) can be written in terms of the free boundary
xf (τ) and the fundamental solution of the BSM pdo on the lhs of (3),

Γ (x, τ) =
e−kτ

2
√
πτ
e−(x+(k−1)τ)2/4τ (6)

in the form

p(x, τ) =
∫ 0

−∞
p0(y)Γ (x− y, τ)dy + k

∫ τ

0

∫ xf (u)

−∞
Γ (x− y, τ − u)dydu (7)

Rather than following the usual approach in the free boundary literature of
using one of the conditions

p(xf (τ), τ) = 1− exf (τ) (8a)

px(xf (τ), τ) = −exf (τ) (8b)

which are the transformed versions of the usual smooth pasting conditions on
the early exercise boundary, and follow from problem (3,4), we instead use a
trick here, based on financial considerations, to notice that pτ (xf (τ), τ) = 0.
Thus, from (7)

pτ (x, τ) = Γ (x, τ) + k

∫ τ

0

Γ (x− xf (u), τ − u) ẋf (u)du (9)

which, upon evaluation on the early exercise boundary, provides the following
non-linear integral equation for xf (τ)
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Γ (xf (τ), τ) = −k
∫ τ

0

Γ (xf (τ)− xf (u), τ − u)ẋf (u)du. (10)

Careful estimates [1-4] show that the integral on the rhs of (10) tends to −1
as τ → 0, resulting in the near expiry estimate

e−kτ

2
√
πτ

e−(xf (τ)+(k−1)τ)2/4τ ∼= e−xf (τ)2/4τ

2
√
πτ

= k (11)

which leads to

xf (τ) ≈ 2
√
τ
√
−�n(4πk2τ)1/2 as τ → 0. (12)

Writing xf (τ) = −2
√
τ
√
s(τ) then the near expiry behavior (12) can be

written as
s(τ) ≈ −1

2
�n(4πk2τ) = −ξ

2
as τ → 0 (13)

where ξ = �n(4πk2τ).
Using the above machinery, one can obtain [1,2] more precise analytic esti-

mates valid for intermediate and large times. For example, using Mathematica
to iterate (13) through (10), one obtains

s(τ) = −ξ
2
− 1
ξ

+
1

2ξ2
+

17
3ξ3

− 51
4ξ4

− 1148
15ξ5

+
398
ξ6

+ · · · (14)

One can also imagine using (10) to express ξ as a function of s. One finds [1,2]
for arbitrary, a,

−ξ
2

= s+ ln

[
1− 1/2

s+ a
− a/2

(s+ a)2
+

(1− a)2
2(s+ a)3

+ · · ·
]
. (15)

or equivalently, on exponentiation,

√
τes
[
1− 1

2(s+ a)
− a

2(s+ a)2
+

(1− a)2
2(s+ a)3

+ · · · )
]

= 1/
√

4πk2, (16)

allowing for truncation, for example by taking a = 1. By interpolating es-
timates like (14, 15) above with Merton’s infinite horizon solution (Sf =
Kk(k + 1)−1), we obtain accurate estimates valid for all times [1–4].

We conclude this section with a discussion of how our results relate to the
work of other contributors in the area and make some comments about our
proofs. The first rigorous estimate for the near expiry behavior of the early
exercise boundary was given by Barles et al. [5]:

Sf (t) ≈ K

[
1− σ

√
(T − t)ln(T − t)|

]
, t ∼ T. (17)

where, recall, Sf (t) = Ke−2
√

τ
√

s(τ), τ = σ2

2 (T − t). Others [6,7] including the
much earlier work of Barone-Adesi and Whaley [8], have provided estimates
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for intermediate times as well as near expiry. These estimates, near expiry,
can be summarized in the present notation as

√
τ
√
ses ≈ 1/

√
4πk2 [8] (18a)

√
τ ses ≈ 1/

√
9πk2 [7] (18b)

√
τ
√
ses ≈

(
(1− 1

2

(
k

1 + k

)2)
/4k2

)−1/2

[6] (18c)

where k = 2r/σ2. Our corresponding estimate, from (12) or (16) is
√
τ es ≈ 1/

√
4πk2 [1, 2] (18d)

One notices that all versions of (18) agree with the Barles et al. result (17),
that (18a-c) all lead to �n �n corrections while our result (18d) through the
integral equation (10) leads to corrections with inverse powers of ξ (14) and
our near expiry estimate (18d) is the only one that is compatible with the
implicit estimate (15) derivable from (10).

Our first rigorous derivation of the near expiry estimate (12, 18d) appeared
in [3]. Several expressions, equivalent to (10), were obtained in [3], whose so-
lution for xf (τ) when inserted into (7) provided the existence and uniqueness
of the solution to the original problem (2,3,4) for the American put. The most
interesting of these was the integro-differential equation for xf (τ)

ẋf (τ) =
xf (τ)
2kτ

Γ (xf (τ), τ)
[
1 +m(τ)

]
, (19a)

where

m(τ) = k

∫ τ

0

[
xf (τ)− xf (u)

τ − u
2τ

xf (τ)
− 1
]
Γ (xf (τ)− xf (u), τ − u)

Γ (xf (τ), τ)
ẋf (u)du

(19b)

that is to be solved with xf (0) = 0. In [3] we provided a rigorous proof of
the existence and uniqueness of the solution xf (τ) to problem (19), which,
as mentioned above, when substituted in (7) solved (3, 4). We believe this
to be the first proof in this integral equation formulation of the existence
and uniqueness to the problem (2) for the American put. It should be noted
that a probabilistic proof by Karatzas and Shreve [9] appeared much earlier
and that an alternate, independent proof by Peskir [10] appeared during the
revision of our manuscript [3]. It should be pointed out that our proof [3] does
not rely on the convexity of the early exercise boundary and, as such, may
serve as a prototype for problems for which the free boundary is not convex.
The derivations in [3] are also provide an alternate proof of existence and
uniqueness for (2,3) using variational methods and, in addition, we establish
that the early exercise boundary is C1 away from expiry. In [4] we provide a
rigorous proof of the convexity of the early exercise boundary based on the
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methods of Friedman and Jensen [11]. Using the convexity we provide [4] a
much simpler proof of the near expiry behavior (12, 18d) than that in [3]. We
point out that during the revision of our manuscript [4] an independent proof
of convexity was obtained by Ekstrom [12]. Equations (19) provide a fast and
accurate iterative scheme for numerically approximating the location of the
boundary. The first iteration obtained by taking m = 0 in (19a) can be solved
numerically with Mathematica for the entire boundary, instantaneously. Each
successive iteration takes approximately one minute with Mathematica and
the third iterate results in a 10−5 relative change from the second up to one
year from expiry. We find this iterative scheme based on (19) to be the most
efficient and accurate of our numerical estimates.

We have also begun a program to extend these integral equation methods
to jump-diffusion models. Specifically, letting X = �n(S/K), we assume that
the transformed asset follows the process

X(t) = (µ− σ2/2)t+ σW (t) +N(t) (20)

where N(t) is a Poisson process with rate λt and having jumps of size ±ε with
equal probability. In terms of the modified BSM pdo

Lp = pτ − {pxx + (k − 1)px − kp}+ λ {p(x+ ε, τ)− 2p+ p(x− ε, τ)} , (21)

(3, 4) becomes
Lp = L(1− ex)H(xf (τ)− x), (22a)

p(x, 0) = max(1− ex, 0). (22b)

The analog of the integral equation (10) becomes

Γ (xf (τ), τ) = −
∫ τ

0

(k + λ{2− eε − e−ε}exf (u)Γ (xf (τ)− xf (u), τ − u)ẋf (u)du

+λ
∫ ε

0

(1− ey−ε)Γ (xf (τ)− y, τ)dy. (1)

from which we obtain the near expiry estimate
√
τes ≈ 1

√
4πk̃2, τ → 0 (24)

with k̃ = k + λ(1− e−ε). This agrees with the results obtained by Pham [13]
using other methods. With D. Saunders (Waterloo) we are developing the
rest of the program outlined above in the context of the simple jump model
(20), and extending it to more general cases including the degenerate case of
vanishing diffusion, as well as in the context of geometric Brownian motions
with stochastic volatility and variance gamma processes studied by Madan
and collaborators (see, for example [14]).

Finally, we just mention that our student, Ge Han, has obtained in his doc-
toral dissertation [15] the

√
τ
√
−�nτ behavior near expiry for the American

put on the sum of geometric Brownian motions. He also established the con-
vexity of the price as a function of the share price.
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2 Credit Default

These methods can be carried over to firm value (structural) models for credit
processes. Suppose X(t) is a stochastic process for the default index of a com-
pany (rather than triggering changes in credit rating) satisfying an Uhlenbeck–
Orstein process

dX(t) = adt+ σdW (t), X(t) = x0, (25)

(equivalently the log of such an index that originally satisfied a geometric
Brownian motion). Default occurs the first time τ that X(t) falls below a
pre-assigned value, b. The survival pdf, u(x, t), defined by

u(x, t)dx = Pr[x < X(t) < x+ dx | t < τ ]. (26)

is known to satisfy the following problem for the Kolmogorov forward equa-
tion:

ut =
σ2

2
uxx − a ux, b < x <∞, 0 < t < T (27a)

u(x, t) = 0, x = b, 0 < t < T (27b)

u(x, t) → 0 as x→∞, 0 < t < T (27c)

u(x, 0) = δ(x− x0). (27d)

The survival probability at time t = T, pT , is then given by

pT =
∫ ∞

b

u(x, T )dx. (28)

Merton [16] (see also the related work of Black and Cox [17]) posed and solved
this problem (given b, find u(x, t) and hence pT ) as well as the inverse problem
(given pT find u(x, t) and b, such that (28) holds). In this single time horizon
setting, everything follows from knowing the Greens function in the half space
b < x <∞.

In recent work [18] our student, Lan Cheng, solved the time dependent
version of the inverse first passage problem: given p(t), 0 < t, T , find the time
dependent absorbing boundary, b(t), in (27b) such that

p(t) =
∫ ∞

b(t)

u(x, t), dx (28)

is satisfied for all 0 < t < T . Using viscosity solution methods she proved
existence and uniqueness for this free boundary problem as well as establishing
small time estimates for the location of the default barrier, b(t), in terms of
the default probability q(t) = 1− p(t):

lim
t→0

b(t)√
−4t�n(q(t))

= −1 (29)
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She has also derived integral equations for b(t) (the analog of (10)) of the form

Γ (b(t), t) =
∫ t

0

Γ (b(t)− b(τ), t− τ)q̇(τ)dτ, (30)

where Γ (x, t) is the fundamental solution of the pdo in (27a). This can be
used to provide an alternate derivation of the analytical estimate (29) as well
as to develop a fast and accurate numerical scheme. Specifically, solving

F (x, t) = Γ (x, t)−
∫ t

0

Γ (x− b(τ), t− τ)q̇(τ)dτ = 0 (31)

for x = b(t), using (29) as the first step in a Newton-Raphson scheme results
in the iteration

b(t)new = b(t)old − F (b(t)old, t)
q̇(t)/2

(32)

where in computing Fx in the denominator of (32) we use

q̇(t)
2
∼= Γx(b(t)old, t)−

∫ t

0

Γx(b(t)old − b(τ)old, t− τ)q̇(τ)dτ, (33)

All of our numerical simulations suggest that the boundary is concave for ap-
propriate survival probabilities (e.g., p(t) = t,

√
t, 1− e−t result in boundaries

that are concave up and for p(t) = e−1/2t the boundary is concave down; the
limiting case of a linear boundary is the only one that can be solved explic-
itly). It would be satisfying to prove the appropriate convexity result in this
situation. Our work on this problem was motivated by that of Avellaneda and
Zhu [19] and Zucca, Sacardote and Peskir [20] and our numerics have been
compared with theirs in [18]. We anticipate that this fully dynamic setting
(b(t) depends on p(s) and b(s) for all 0 < s < t) versus the single time horizon
setting (t = T ) will provide a much richer structure for the important is-
sue of default correlations among many firms (see, for example, Schoenbucher
[Chaps. 9, 10, 21] for a nice treatment of existing results).

3 Mortgage Prepayment Options

We provide one further example to show that these methods can carry over
to treat free boundary problems for which the underlier is the short-term rate
of interest, r(t), that is assumed to follow a process of the type

dr = u(r, t)dt+ w(r, t)dW (t) (34)

is a risk-neutral world. The contingent claim (financial derivative) to be stud-
ied here is the American style contract providing the holder the right to prepay
the outstanding balance of a mortgage
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M(t) =
m

c
(1− ec(t−T )) (35)

where T is the time that the mortgage is paid off (i.e., M(T ) = 0), c is the
(continuous) fixed rate of the mortgage and m is the (continuous) rate of
payment of the mortgage (i.e., mdt is the premium paid in any time interval
dt). Suppose the mortgage holder (borrower) would like to purchase a contract
that allows for the prepayment of the current value, M(t), of the mortgage
at any time t up to T . Clearly the value of the contract, V (r, t), depends not
only on M(t) but also on the rate of return, r(t), that can be obtained by
investing M(t) in other instruments (re-mortgage, equities, bonds, etc). The
BSM risk-neutral pricing of the contract V (r, t) is obtained by solving the
problem (the analog of (2))

Vt+
w(r, t)2

2
∂2V

∂r2
+u(r, t)

∂V

∂r
+m−rV = 0, R(t) < r <∞, 0 < t < T (36a)

V (r, t) = M(t), r = R(t), 0 < t < T (36b)

Vr(r, t) = 0, r = R(t), 0 < t < T (36c)

V (r, t) → 0 r →∞, 0 < t < T (36d)

V (r, T ) = M(T ) = 0 (36e)

The optimal strategy for the mortgage holder is to exercise the option to pay
off the mortgage the first time that the rate r falls below R(t) at time t.

Recent work on this problem (36) by Jiang et al. [22] for the Vasicek model
for the investment rate r(t) (i.e., u(r, t) = (η − θr) and w(r, t) = w, constant
in (34)) established existence and uniqueness using variational methods and
provides the short-term behavior

R(t) = c− σκ̄
√
T − t, κ̄ = 0.47386 · · · (37)

using asymptotic analysis in the framework of similarity solutions. Our stu-
dent, Dejun Xie, has recast the problem in the current integral equation
framework [23]. Specifically, after a sequence of changes of dependent and
independent variables (too complicated for this summary), problem (36) in
the Vasicek case (u(r, t) = (η − θr), w(r, t) = w) can be written as

us −
1
4
uxx = f(x, s)H(x− xf (s))−∞ < x <∞, s > 1 (38a)

u(x, s) = 0, x ≤ xf (s), s > 1 (38b)

u(x, s) > 0, x > xf (s), s > 1 (38c)

u(x, 1) = 0, −∞ < x <∞.. (38d)

where f(x, s) is a specific function resulting from the transformations and
xf (s) is the transformed free boundary. By analogy with (7) and (10), the
solution of (38) can be written as
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u(x, s) =
∫ s

1

[∫ ∞

xf (τ)

Γ (x− y, s− τ)f(y, τ)dy
]
dτ (39)

in terms of the fundamental solution Γ (x, s) = 1√
πs

e−x2/s of the heat operator
∂s− 1

4∂
2
xx, and xf (s) is determined from (38b, c) as the solution of the integral

equation ∫ s

1

dτ
∫ ∞

xf (τ)

Γ (xf (s)− y, s− τ)f(y, τ)dy = 0, (40)

In his Ph.D. dissertation [23] written under our supervision, Dejun Xie,
has proven the existence of a unique solution to (40) which, as mentioned
earlier, when substituted into (39) provides a unique solution to (38), the
transformed version of (36). He also obtained from (39), along the lines of
Sect. 1 (convexity was not used; in fact has not yet proven in this case) the
near expiry estimate (37). He also used (40) along the lines of Sect. 2 to obtain
a numerical scheme to determine xf (s) in the form

xf (s)new = xf (s)old +
Q(xf (s)old, s)

2f(xf (s)old, s)
. (41)

where Q(x, s) is the rhs of (39). Finally, by careful analysis of the infinite
horizon solution to (38), Dejun Xie was able to obtain precise new estimates
on the behavior of R(t) as t→ −∞ of the form

R(t) ∼ R∗ + ρ∗e−c(T−t) as t→ −∞. (42)

This was combined with the near expiry estimate (37) to give the global
analytic estimate

R(t) ≈ c− σκ̄√
2c

√
2− e−2c(T−t) + ρ∗

[
e−c(t−t) − 1

]

+
[
R∗ − c+

σκ̄√
2c

+ ρ∗
][

1− e−2c(T−t)

]
, (43)

It is quite surprising that this extremely simple expression (43) agrees quite
well for all 0 < t < T with estimates obtained numerically from (41).

In conclusion, we have summarized a unified approach to studying free
boundary problems in Mathematical Finance. The methods are suitable for
studying basic existence and uniqueness questions, convexity and smoothness
of the free boundary as well providing analytical and numerical estimates for
the free boundary. The methods are applicable to a wide variety of problems
with the randomness arising from the full spectrum of underliers.
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Summary. Passport options are options on traded accounts with payoff structure
of a Call. Optimal strategies are naturally linked not only to hedging but also to
evaluation of this type of options. We use recent results on mean stochastic com-
parison of [5, 6] in order to determine optimal strategies for multivariate passport
options. Especially, we find that optimal strategies depend on the correlations of
returns and are related to the Greeks.

1 Multivariate Passport Options

An option on a traded account consisting of a portfolio with several assets is a
contract which allows the holder of the option to choose his position for each
asset, subject to certain position limits, and where short and long positions
are allowed. The holder of a passport option pays a premium upfront and ac-
cumulates gains and losses resulting from his trading up to expiration T where
he gets the value of the traded account if it is positive and has a zero net posi-
tion otherwise. Univariate passport options have been investigated intensively
(cf. [1, 3, 4, 7] and the references therein). In this paper we consider optimal
strategies of multivariate passport options. We use a multivariate extension
of Hajek’s result (cf. [2,5,6]). Consider n underlyings S = (S1, · · · , Sn), where

dSi

Si
= µidt+ σidWi. (1)

Here, W is an n-dimensional Brownian motion with

d [Wi,Wj ] = ρijdt, (2)

and ρij are constant correlations between the returns of the assets. We shall
allow σ and µ to be dependent on the underlyings S. The trading account has
the increment

dΠ(t) = µΠΠdt+
∑

i qi(dSi − Siνidt)

= (µΠΠ +
∑

i qi(µi − νi)Sidt+
∑

i qiσiSidZi) .
(3)
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Here, µΠ is the rate of return of the traded account, which is part of the
contract and does not depend on the underlying market and νi are the cost of
carry of the ith underlying, also part of contract. We take |qi| ≤ 1 as position
limits (which is no essential restriction). The payoff function P depends only
on the portfolio value and is defined by

P (Π) = max{Π, 0} =: Π+. (4)

In order to design a hedging portfolio we make two assumptions on the strat-
egy q = (q1, · · · , qn)

• qi(.) = qi(S, π, t) are Markovian strategies,
• q is instantaneously constant, i.e. we have the return qidSi of the holder

of qi underlyings Si.

The value function at time t will depend on (S(t),Π(t) alone (not on the
whole history) and may be denoted by (t, S(t),Π(t)) → V q(t, S(t),Π(t)) with
increment

dV q = ∂V q

∂t dt+
∑

i
∂V q

∂Si
dSi + ∂V q

∂Π dΠ + 1
2

∑
ij

∂2V q

∂Si∂Sj
[dSi, dSj ]

+
∑

i
∂2V q

∂Si∂Π
[dS, dΠ] + 1

2
∂2V q

∂Π2 d [Π,Π] .
(5)

The hedging portfolio becomes:

Π = V q −
∑
i

∆iSi, with ∆i =
∂V q

∂Si
+ qi

∂V

∂Π
. (6)

The existence of a riskfree selffinancing duplicating strategy determines the
value of V q under the risk neutral measure Q to be

V q(t, s, p) = E
(t,s,p)
Q

[
e−r(T−t)Π(T )+

]
, (7)

assuming a flat yield curve. The value of the passport option V then becomes

V (t, s, p) = max
|qi|≤1

V q(t, s, p) = max
|qi|≤1

E
(t,s,p)
Q

[
e−r(T−t)Π(T )+

]
, (8)

and, by the Bellmann principle, the option value is characterized by the fol-
lowing Cauchy problem

∂V
∂t + maxqi∈[−1,1]

{∑
i

1
2σ

2
i s

2
i

(
∂2V
∂s2

i

+ 2qi ∂2V
∂si∂p

+ q2i
∂2V
∂p2

)

+
∑

i�=j σiρijσjsisj

(
∂2V

∂si∂sj
+ qi

∂2V
∂si∂p

+ qj
∂2V
∂sj∂p

+ qiqj
∂2V
∂p2

)

− (µΠp+
∑

i(r − δi − νi)qiSi) ∂V
∂p

}
+
∑

i(r − δi)si ∂V∂si
− rV = 0,

(9)
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with the boundary condition

V (T, s, p) = p+. (10)

In the following we shall consider the so-called symmetric case, where there
is no directional bias incorporated in the contract, i.e.

• the cost of carry of the underlyings Si are νi = r − δi,
• the rate of return of the money account equals the interest rate r, i.e.

µΠ = r is risk-neutral reinvestment rate.

2 Two Mean Stochastic Comparison Results

The following extension of Hajek’s result to stochastic sums is used to obtain
optimal strategies for multivariate passport options.

Theorem 1. Let n, T > 0, f ∈ C (R) be convex, and assume that f satisfies
an exponential growth condition. Furthermore, let X,Y be semimartingales
with x = X(0) = Y (0) ∈ Rn, where

X(t) = X(0) +
∫ t

0

σ(X(s))dW (s), Y (t) = X(0) +
∫ t

0

ρ(Y (s))dW (s),

with n × n- matrix-valued bounded continuous functions x → σσT (x) and
y → ρρT (y). If σσT ≤ ρρT , then for all 0 ≤ t ≤ T

Ex

(
f

(∑
i

Xi(t)

))
≤ Ex

(
f

(∑
i

Yi(t)

))
.

The following theorem could be used o extend results to more general
models of passport options than considered in this paper.

Theorem 2. Let T > 0, f ∈ C (R) nondecreasing, convex, and satisfying an
exponential growth condition, X,Y semimartingales with x = X(0) = Y (0) ∈
Rn, where

X(t) = X(0) +
∫ t

0

µ(X(s))ds+
∫ t

0

σ(X(s))dW (s),

Y (t) = X(0) +
∫ t

0

ν(Y (s))ds+
∫ t

0

ρ(Y (s))dW (s),

with n×n- matrix-valued functions x→ σσT (x) and y → ρρT (y), which have
bounded continuous component functions σσT

ij and ρρTij respectively. If µ ≤ ν

are bounded continuous functions, and σσT ≤ ρρT , then for all 0 ≤ t ≤ T

Ex

(
f

(∑
i

Xi(t)

))
≤ Ex

(
f

(∑
i

Yi(t)

))
.

For more information and proof of both theorems consider [5, 6].
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3 Optimal Strategies of Multivariate Passport Options

Writing fq
1 =

∑
i qiSi we observe that

Z(t) =
∫ t

0

1{q1>0 or q2>0}
1√
[fq

1 ]
dfq

1 +
∫ t

0

1{qi=0}dB(s) (11)

is a Brownian motion on a suitable increased probability space (if B(t) is a
Brownian motion (the indicator function 1{qi=0} equals 1 if for some i the
value qi = 0). Hence, the portfolio increment is

dΠq = rΠdt+
∑

i qiσiSidWi

= rΠqdt+
√∑

ij qiqjρijSiSjdZ =: rΠqdt+ σB(Sq)dZ,
(12)

with the basket volatility σB(.) (cf. [5, 6], and where we abbreviate Sq =
(q1S1, · · · , qnSn). Define X(t) = e−rtΠ(t) and consider the case n = 2 for
simplicity. Then the result of the previous section implies that the optimal
strategy qopt maximizes

q → EQ(X+
q (T )). (13)

Hence,

qopt
1 = signqopt

1 = signqopt
2 if ρ ≥ 0, qopt

1 = signq1 = −signq2 if ρ < 0. (14)

We consider the case ρ > 0. Define qs = signq1 = signq2. Changing to Zqs
=

Πqs

f1
we find

dZqs
= − (Zqs

− qs)
df1
f1

+ (Zqs
− qs)

[
df1
f1

]
, (15)

where
[f1](t) = v11S

2
1 + v12S1S2 + v22S

2
2 > 0. (16)

We change the measure to R, where

dR
dQ

(T ) = exp

(∫ T

0

σB(S(s))dW̃ (s)− 1
2

∫ T

0

σ2
B(S(s))ds

)
. (17)

Then

Ŵ (t) = W̃ −
∫ t

0

σB(S(s))ds (18)

is a Brownian motion with respect to the new measure. Since q is assumed to
be a Markovian strategy

dZq(s) = −(Zq(s) − q(s))σB(S(s))dŴ . (19)

Hence, it suffices to maximize
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q → EQ

(
Z+

q

)
= EQ

(
Zq(0)+

)
+

1
2
E
(
L0

Zq
(T )
)
, (20)

the maximizing strategy qopt in case ρ > 0 which is

qopt
1 (t) = sign(qopt

1 (t)) = sign(qopt
2 (t)) = −sign(Π(t)). (21)

Note that the extensions of Hajek’s result together with (9) imply in case
ρ > 0 immediately that the mixed Gammas’ (second derivatives with respect
to the ith underling and the portfolio variable) have the same sign as the qopt

i

for each i.
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During the last years, very intensive efforts have been devoted to develop
meshfree methods that eliminate the need of element connectivity in the so-
lution of PDEs. These methods are very flexible numerical tools and do not
require the labor intensive step of mesh generation. At present, the fundamen-
tal theory of meshfree methods has been developed and considerable advances
have been made in the implementation of the different methods which have
been proposed. However, its use as a practical alternative to conventional fi-
nite element methods is still pending. In fact, many challenges still remain
both in the mathematical analysis and in the practical implementation of the
methods. The objective of this minisymposium is to review some of the most
promising meshfree methods and analyze its application to relevant problems.
In particular, the Finite Pointset Method (FPM) and the Radial Basis Func-
tion (RBF) method are reviewed and applied to relevant industrial modeling
problems. Also, a new family of meshfree schemes based on local maximum-
entropy approximants is proposed.
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1 Introduction

A large number of important physical processes involve heat conduction and
materials undergoing a change of phase. Examples include nuclear reactors,
casting of metals, semiconductor manufacturing, geophysics, and industrial
applications involving metals, oil, and plastics. These problems are often called
Stefan’s or moving boundary value problems.

Several numerical methods have been developed to solve various Stefan’s
problems. Crank [1] provides a good introduction to the Stefan’s problems
and presents an elaborate collection of numerical methods for these problems.
We follow front-tracking methods (moving grid method) which use an explicit
representation of the interface, given by a set of points lying on the interface
location, which must be updated at each time-step.

Heat treatment of metals is often used to optimize mechanical proper-
ties. During heat treatment, the metallurgical state of the alloy changes. This
change can involve the phase present at a given location or the morphology of
the various phases. In our case, we will study solid state phase transformation
problem in binary metallic alloys.

The meshless method (e.g., radial basis functions (RBFs) – multiquadrics
(MQ) approach [2]) has been widely investigated in the past and emerged
as a new category of computational methods. One of its advantages is that
no mesh generation is required to solve differential equations numerically.
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The numerical solutions will be compared with analytical solutions. Actu-
ally, in our work we will examine usefulness of radial basis functions for one-
dimensional Stefan’s problems. The position of the moving boundary will be
simulated by moving data centers method.

2 Radial Basis Function Methods

A radial basis function is a function φj(x) = φ(‖x − xj‖), which depends
only on the distance between x ∈ Rd and a fixed point xj ∈ Rd. Here,
φ is continuous and bounded on any bounded sub-domain Ω ⊆ Rd. Let r
denote by the Euclidean distance between any pair of points in the domain
Ω. The commonly used RBFs are linear, cubic, thin-plate spline, Gaussian,
multiquadric and inverse multiquadric.

To introduce RBF collocation methods, we consider a PDE in the form of

Lu = f(x) in Ω ⊂ Rd, (1)

B u = g(x) on ∂Ω, (2)

where u is concentration, d is the dimension, ∂Ω denotes the boundary of the
domain Ω, L is the differential operator on the interior, and B is an operator
that specifies the boundary conditions of the Dirichlet, Neumann or mixed
type. Both, f and g, are given functions mapping Rd → R.

The solution, u, to the PDE is approximated by linear combination of
RBFs and polynomials

u ≈ U(x) =
N∑

j=1

αjφj(x) +
M∑
l=1

γlvl(x), (3)

where φj(x) = φ(‖x− xj‖), and φ can be any radial basis function from the
list, v1, . . . , vM ∈ Πd

m is a polynomial of degree m or less, M :=
(
m−1+d

d

)
[3]

and ‖ · ‖ indicates the Euclidean norm. Let {(xj)}Nj=1 be the N = NI + NB

collocation points in Ω ∪ ∂Ω. We assume the collocation points are arranged
in such a way that the first NI points are in Ω, whereas the last NB points
are on ∂Ω. To solve for the N + M unknown coefficients, N + M linearly
independent equations are needed. By choosing N distinct collocation points
XI = {x1, . . . ,xNI

} ⊂ Ω and XB = {xNI+1, . . . ,xN} ⊂ ∂Ω and ensuring
that U(x) satisfies (1) and (2) at the collocation points results in a good
approximation of the solution u. The first N equations are given by

N∑
j=1

αj Lφj(xi) +
M∑
l=1

γl Lvl(xi) = f(xi) for i = 1, . . . , NI ,

N∑
j=1

αj B φj(xi) +
M∑
l=1

γlB vl(xi) = g(xi) for i = NI + 1, . . . , N. (4)
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The last M equations could be obtained by imposing some extra condition
on v(·)

N∑
j=1

αjvk(xj) = 0, k = 1, . . . ,M. (5)

In our study, we have used a general multiquadric MQ RBF. The gen-
eralized form of the MQ basis function is φj(x) = [(x− xi)2 + c2i ]

β , where
x, xi ∈ Rd, and β is a noninteger ≥ −1/2.

The choice of basis function is another flexible feature of RBF methods.
RBFs can be globally supported, infinitely differentiable, and contain a free
parameter, c, called the shape parameter. This leads to a full coefficient matrix
or a dense interpolation matrix. The shape parameter affects both the accu-
racy of the approximation and the conditioning of the interpolation matrix.
The optimal shape parameter c is still an open question. In our case, we used
an iterative mode by monitoring the spatial distribution of the residual errors
in Ω and ∂Ω as a function of c. The iterations are terminated when errors are
smaller than a specified value. This map is then used to guide the search of
the optimal shape parameter c which gives the best approximate solution.

3 The Problem

3.1 The Mathematical Model

We consider the domain Ω to be the union of Ωdp where dp represents the
diffusion phase and Ωcc where cc represents constant composition. The par-
ticle dissolves due to Fickian diffusion in the diffusive phase. The governing
equations and boundary conditions of this problem are

∂u

∂t
(x, t) = D∆u(x, t), x ∈ Ωdp(t), t > 0, (6)

u(x, t) = ucc, x ∈ Ωcc(t), t ≥ 0, (7)
u(x, t) = usol, x ∈ Γ (t), t ≥ 0, (8)

(ucc − usol)vn(x, t) = D
∂u

∂n
(x, t), x ∈ Γ (t), t > 0, (9)

where x is coordinate vector of a point in Ω, D means the diffusivity constant,
n is the unit normal vector on the interface pointing outward with respect to
Ωcc(t), usol is the interface concentration and vn is the normal component
of the velocity of the interface. The initial concentration u(x, 0) inside the
diffusive phase is given. We assume no flux of the concentration through the
boundary

∂u

∂n
(x, t) = 0, x ∈ ∂Ωdp(t)\Γ (t), t > 0, (10)

hence mass is conserved.
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4 The Numerical Solution Methods

In our model the motion of the interface is determined by the gradient of con-
centration, which can be computed from the solution of the diffusion equation.
Here we present an interpolative moving data center method, in which the
data centers (make a global substitution) are computed for each time-step
and the solution is interpolated from the old data centers to the new. The
equations are solved with collocation methods using MQ RBF. The position
of the points depend on time. An outline of the algorithm is

– Compute the concentrations profiles solving (6)–(8) and (10)
– Predict the position of boundary s1 at the new time-step: s1(t+∆t) using

boundary condition (9)
– Once the boundary is moved, the concentration u can be computed in the

new region using (6). The solution is interpolated from the old grid to the
new

5 Numerical Example

In numerical experiments, we will compare our numerical solutions with the
analytical solutions (see [4]) which exist for the problem presented in Chap. 3.

For the simulations, we used data from [4]: the concentration inside the
part where the material characteristics remain constant ucc = 0.53, the con-
centration on the interface usol = 0, the initial concentration of the diffusive
phase u0 = 0.1, the diffusivity constant D = 1, the domain length l = 1 and
the initial position of the interface s0 = 0.2. In numerical experiments we will
include MQ exponent, β as additional parameter needs to be optimized.

On the left side of the Fig. 1 we show the results obtained by shape para-
meter c based on residual error calculated at collocation points, and on the

0 0.2 0.4 0.6 0.8 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

P
os

it
io

n 
of

 t
he

 m
ov

in
g 

bo
un

da
ry

Movement of the interface

analytic

beta=0.5

beta=1.5

0 0.2 0.4 0.6 0.8 1
0.2

0.25

0.3

0.35

0.4

0.45

Time

Po
si

tio
n 

of
 th

e 
m

ov
in

g 
bo

un
da

ry

Movement of the interface

analytic

beta=0.5

beta=1.5

Fig. 1. Interface position versus time simulated with MQ
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right side of the Fig. 1 we show the results obtained by shape parameter c
based on residual error calculated at other points (those which lie between
collocation points). During the time simulation steps the shape parameter c
had values between 0.01 and 0.09. In the case of the collocation points the
tolerance for residual error was ε = 10−8. On the other hand, in the case of
other points the tolerance for residual error was ε = 0.4.

6 Discussion and Conclusions

Comparison of positions of the moving boundary calculated with MQ (β =
0.5) and MQ (β = 1.5) (Fig. 1) shows that MQ (β = 1.5) determines the
position of the interfaces much more accurately than MQ (β = 0.5). The
simulations have also show that the value of the shape parameter c which
was computed by residual error procedure was in range between 0.01 and
0.09. This confirms the fact that for a fixed number of centers N , smaller
shape parameters produce the more accurate approximations. The results
have shown that β should be greater than 0.5 if we want to get reasonable
results. Probably reasons for bad results in Fig. 1 (right side) could be found
in the facts that some centers were clustered (too close to each other).

This study presents modeling of moving boundary value problems using
a MQ RBF. Simulations show that MQ (β = 1.5) scheme give good results.
In this case the method of evaluation was verified by comparing results with
the analytical solutions. We explore the residual error from the equation as
an indicator which provides a road map to the optimal selection of the shape
parameter value c. In our future work, we will employ a Lagrangian approach
and level set methods to track-capture the movement of the moving boundary
and transform the problem to a time-independent domain.
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Summary. In a previous chapter [F. Bernal and M. Kindelan An RBF Meshless
Method for Injection Molding Modelling, Lecture Notes in Computational Science
and Engineering, Springer (2006)], a novel meshless approach was proposed for solv-
ing the Hele-Shaw flow which models plastic injection molding, in the case of a New-
tonian fluid. Here, we have extended this idea to non-Newtonian Hele-Shaw flow via
a Newton algorithm for the resulting nonlinear PDE.

1 Introduction

In this chapter, we address the simulation of injection molding, a process
of industrial relevance whereby molten polymer is driven into a cavity (the
mold) in order to manufacture small plastic parts. If the polymer viscosity
obeys a power law and the mold is thin compared to its planar dimensions,
the classical mathematical model of injection molding is the Hele-Shaw ap-
proximation [4]. In the remainder of this chapter, we will restrict ourselves
to isothermal Hele-Shaw flows, which physically arise whenever the fluid vis-
cosity does not depend on temperature. In this case it suffices to solve the
following 2D, nonlinear, elliptic equation

div( |∇p|γ ∇p) = 0, (1)

whose solution yields the pressure distribution p(x, y) in the filled region of
the mold. Exponent γ completely characterizes the polymer rheology, and is
typically about 0.5. If the pressure profile is set (pIN) along the injection gates
by the injection machine, the boundary conditions are

p = pIN (injection gates) ∂p/∂n = 0 (walls) p = 0 (front). (2)

From this pressure field, the average planar velocity can be computed and the
location of the advancing front can be updated. In dimensionless units

< v >= − |∇p|γ ∇p. (3)
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Therefore, the numerical simulation of the Hele-Shaw flow requires coupling
(a) some method for solving (1) at every time-step with (b) some technique
to advance the front to its new position, until the mold domain has been
completely filled.

In the state-of-the-art approach (a) is accomplished through finite elements
(FEM), whereas for (b) the volume-of-flow method is used, or the nodes along
the front are tracked to their new positions. The latter option entails remesh-
ing around the front at every time-step, while the former avoids it at the price
of forgoing a sharp frontline. In [1], an alternative, meshless framework was
introduced for solving this problem in the linear (Newtonian) case, namely
combining the method of asymmetric Radial Basis Function (RBF) colloca-
tion for pressure with Level Sets for capturing the front motion. Although
such approach is still under research, it has the potential to overcome some
difficulties inherent to finite elements. In this chapter, we have extended these
ideas to the non-Newtonian flow. However, and due to space limitations, we
cannot treat Level Sets here. Instead, we refer the reader to [7].

2 Asymmetric RBF Collocation

2.1 Kansa’s Method

The idea of using RBFs to solve PDEs was first introduced by Kansa [5, 6].
Consider the BVP L(u) = f(x) in domain Ω with boundary conditions along
∂Ω given by B(u) = g(x), where L and B are linear operators. Ω is discretized
into a set of N = NI +NB scattered nodes χ = {xi ∈ Ω, i = 1...NI }∪ {xj ∈
∂Ω, j = NI + 1, . . . , NI +NB } (called centers) and an approximate solution
to the PDE is sought in the form of a linear combination of RBFs {φk(x), k =
1...N} centered at each of them,

u(x) =
N∑

k=1

αk φk(x), φk(x) ≡ φ(‖ x − xk ‖). (4)

Having L and B operate on the RBF, the unknown coefficients αk are deter-
mined by appropriate collocation of either the PDE or the BC on N points,
which usually – but not necessarily – are the same set of centers

N∑
k=1

αk Lφk(xi) = f(xi), i = 1, . . . , NI , (5)

N∑
k=1

αk Bφk(xj) = g(xj), j = NI + 1, . . . , NI +NB . (6)

Among the many RBFs available, we have chosen the multiquadric (MQ),
which has been extensively used both for interpolation and for the solution of
PDEs. The MQ–RBF depends on a tunable parameter c2 (the shape parame-
ter) which can be the same for each RBF in the set or vary among them.
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2.2 PDE Collocation on Boundary (PDEBC)

Accuracy can be greatly improved by enforcing the PDE on the boundary
nodes also [3]. In this case, expansion (4) must be supplemented with NB

extra RBF centers {xm ,m = N + 1, . . . , N +NB} in order to match the NB

new collocation equations. Since these centers are not to be collocated on,
they may lie outside the PDE domain. With them, the RBF interpolant takes
on the form

u(x) =
N∑

k=1

αk φk(x) +
N+NB∑
m=N+1

αm φm(x). (7)

2.3 Operator-Newton Scheme

Although Kansa’s method is intended for linear operators, it can be used to
solve nonlinear PDEs through iteration or continuation [3]. Instead, we have
adapted an operator-Newton algorithm with MQs introduced by Fasshauer
(see [2] for details).

• Let Hu = 0 be the nonlinear PDE in Ω and L a linearization of it
• Pick an initial guess u0 of solution. We seek w such that H(u+ w) = 0
• For k = 1, 2... until convergence

– Compute residual Rk = −Huk−1

– Solve Lkwk = Rk by Kansa’s method, where Lk = L(uk−1)
– Update the previous iterate, uk = uk−1 + wk

3 Non-Newtonian Flow

In this section, we will show our preliminary results concerning the solution
of non-Newtonian Hele-Shaw flow with MQs. There are a number of quali-
tative differences between this problem and the test problem analyzed in [2].
First, the nonlinearity is a differential operator rather than a function of the
solution. Secondly, both Dirichlet and Neumann BCs must be enforced, in-
stead of only Dirichlet. Finally, the highest gradients take place along the
boundary. In order to meet the latter two features, we have slightly modi-
fied Fasshauer’s algorithm to incorporate PDEBC, seeking better performance
along the boundary.

Let us define flow fluidity as S(p) = |∇p|γ so that (1) may be rewritten
as H(p) := div(S(p)∇p) = 0. In order to linearize this equation, we observe
that, to first order in |∇w| / |∇p|, S(p+w) ≈ S(p)+γ |∇p|γ−2 (∇p ·∇w). Now
define
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K(p) =
(
K(x)(p),K(y)(p)

)
= γ |∇p|γ−2∇p, (8)

J(p) =
(
∇p · ∇K(x)(p) , ∇p · ∇K(y)(p)

)
, (9)

Q(p)w =
(
∂p

∂x
K(p)

)
· ∂∇w
∂x

+
(
∂p

∂y
K(p)

)
· ∂∇w
∂y

. (10)

After some calculus and keeping only terms to order |∇w| / |∇p|:

H(p+ w) = div
(
S(p+ w)∇(p+ w)

)
≈ H(p) + S(p)∇2w + Q(p)w + [∇S(p) + (∇2p)K(p) + J(p)] · ∇w. (11)

In this work we are primarily interested in the performance of Fasshauer’s
algorithm, rather than in front motion, and have therefore restricted ourselves
to solving (1) in a square [0, 1]×[−1/2, 1/2]. The front is the side x = 1
and the injection segment is x = 0, |y| < E, E=0.25, while the remainder
of the boundary are walls. This domain has been modeled by 190 scattered
collocation nodes, along with 45 extra RBF centers (needed for PDEBC).
Such extra centers are placed at a distance λ = 0.05 of the boundary along
the outward normal (see Fig. 1). Moreover, we have set γ = 0.6, and c = k/

√
N

for the MQ–RBF, where k = 5 and N = 135. For monitoring purposes, (1) has
been solved on a FEM mesh of 2,715 vertices with the following BCs (which
give rise to a smooth pressure field)

∂p/∂n = 10(1− (y/E)2) (injection) ∂p/∂n = 0 (walls) p = 0 (front).
(12)

Fig. 1. RBF solution of the test case. Also shown is the pointset used to compute
the solution.
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Table 1. Convergence of Newton iterations

Iteration RMS(CR) RMS(IR) RMS(CE) RMS(IE)

0 0.8063 0.2308 0.0051 0.0013
1 0.1372 0.1024 0.0003 9.5 × 10−5

2 0.0062 0.0621 0.0002 6.5 × 10−5

3 6.9 × 10−5 0.0603 0.0002 6.4 × 10−5

4 1.2 × 10−8 0.0603 0.0002 6.4 × 10−5

5 7.9 × 10−16 0.0603 0.0002 6.4 × 10−5

From the resulting FEM approximation we interpolate the values of p
along the injection segment, pIN = pFEM(0, |y| < E). Now we have solved a
Laplace equation (γ = 0) with BCs like in (2) as the initial guess p0 to trigger
Newton iterations. At every Newton step we have solved the linearized PDE
for w with homogeneous BCs and computed the RBF approximation on the
collocation nodes and the root mean square (RMS) values of the residual
to (1) and the error (to FEM solution). They are denoted as CR and CE
(collocation residual/error). Since the PDE has been collocated on such nodes,
residuals on them are lower than anywhere else. A far better estimation of the
goodness of the approximation is got if the RBF interpolant is evaluated on
non-collocation points. We have also done this on the vertices of the FEM
mesh, and called them IR/IE (interpolation residual/error). These values are
listed in Table 1.

From Table 1, it can be seen that the operator-Newton idea basically
works. Residual on collocation nodes drops within very few iterations below
machine error, which amounts to solving the nonlinear PDE. On the other
hand, error (both CE and IE) and interpolation residual drop fast at the begin-
ning but soon level off even though CR continues to decrease. This threshold
is the bottomline of the numerical approximation, which depends on the size
and distribution of the support, and the shape parameter of the MQ (which
has not been optimized). For comparison purposes, it is interesting to notice
that, if the FEM solution is RBF-interpolated with the same parameters, the
error RMS as computed on the FEM mesh is 1.12× 10−5.

4 Conclusions

A operator-Newton algorithm introduced by Fasshauer has been used to solve
the isothermal nonlinear Hele-Shaw equation. Certain modifications of the al-
gorithm have been carried out in order to meet the problem features. The
method has then been tested against a FEM approximation. Results are pre-
liminary yet promising, showing fast convergence.
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Minisymposium: “Mathematical Models
for the Textile Industry”

T. Götz

TU Kaiserslautern, Germany

Nowadays artificial fibres made of polymers or glass are of increasing indus-
trial importance. Worldwide a total amount of 37.9 million tons of chemical
fibres was produced in 2004 and the production still increases by around 5%
annually.

The textile industry and especially the production of artificial fibres in-
volves a vast number of different processes which present modelling challenges
to mathematicians. Aiming to a mathematical description of the complete
production cycle for artificial fibres, different subprocesses can be identified:

• Extrusion of polymer melt through a nozzle
• Fibre formation during the cooling of the polymer melt in ambient air,

solidification and crystallisation
• Entanglement of fibres in turbulent air streams and lay-down on a conveyor

belt

Further problems arise in the use of fibres (both natural and man made)
and there has been a recent surge in the use of fibre assemblies for industrial
purposes. Fibre assemblies represent a multiscale problem and several different
models have been proposed. One is to treat the structure as a hyperelastic
membrane at the macroscale and as three-elastica with frictional interactions
at the micro- and mesoscale. Continuum models have also been derived to
deal with dynamic deformations of fibre assemblies which in tension behave
somewhat like a anisotropic viscoelastic material.

Another approach is to geometrically and statistically model the woven or
non-woven textile and to compute properties such as flow resistivity or filter
efficiency based on a three-dimensional realisation of the model.

Polymer fibres like Nylon are produced in a melt spinning process. Thereby,
hot, molten polymer is pressed through narrow nozzles and solidifies after-
wards while being cooled by air. A mathematical description of this fibre
formation process typically starts from a full three-dimensional model for
the flow of the visco-elastic polymer including the energy exchange with the
ambient air. Based on the – typically small – slenderness ratio of the fibre,
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asymptotic expansions allow the derivation of a simplified one-dimensional
model of balance equations. Including phenomena like crystallisation yields
a highly non-linear system of differential equations which has to be treated
numerically.

When the fibre is completely solidified, further production steps can be
taken into account. For the production of non-wovens a turbulent air stream is
blown against bundles of fibres. Due to aerodynamic forces the fibres entangle
and form a fleece laid down on a conveyor belt.

Based on a mathematical model reflecting all the above mentioned pro-
cesses involved in the fibre production, optimisation methods can be used to
maximise the output of a production plant or to design the process parameters
resulting in the production of fibres with specified properties.

The minisymposium contains presentations by

1. A. Wiegmann (Fraunhofer ITWM, Kaiserslautern, Germany)
2. N. Marheineke (TU Kaiserslautern, Germany)
3. T. Götz (TU Kaiserslautern, Germany)
4. M. Günther (Fraunhofer ITWM, Kaiserslautern, Germany)
5. H. Ockendon (OCIAM Oxford, UK)
6. P. Potluri (Manchester, UK)

and gives an overview of the research recently carried out on this non-standard
application of industrial mathematics.
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Summary. This work deals with the modeling and simulation of the dynamics of a
curved inertial viscous Newtonian fiber. Neglecting surface tension and temperature
dependence, the fiber flow is modeled as a 3D free boundary value problem (BVP)
via instationary incompressible Navier–Stokes equations (NSE). From regular as-
ymptotic expansions in powers of the slenderness parameter leading-order balance
laws for mass and momentum are derived that combine the unrestricted motion of
the fiber center-line with the inner viscous transport. The form of the 1D fiber model
results from the introduction of the intrinsic velocity characterizing the convective
terms. For the numerical simulations of the fiber evolution a finite volume approach
is applied.

1 Motivation

In the glass wool production, hot molten glass is pressed through narrow
nozzles of a rotating cylindrical drum by the acting centrifugal forces. Thereby,
thin fibers are formed that break into filaments due to the surrounding air
flow and fall down onto a conveyor belt, see Fig. 1.

Focusing on the spinning process, we consider a single slender curved vis-
cous fiber in motion. Neglecting temperature dependence and surface tension,
the fiber medium is modeled as an incompressible Newtonian fluid and the
fiber forming as 3D free BVP in terms of incompressible NSE with inflow
boundary and stress-free surface conditions. The slender fiber geometry en-
ables its asymptotic reduction to an 1D fiber model for mass and momen-
tum. The demand on this work is the systematic derivation analogously to [4]
without any restrictions on the center-line shape and motion nor on the inner
viscous transport, which is an extension to [1, 3, 4, 6].



686 S. Panda et al.

molten glass

air

spinneret

glass wool

conveyor belt
−10

−5
0

5
10

−5
0

5
10

−15

−10

−5

0

γ3γ1

γ 2

t=4.0
t=7.0
t=10.0

Fig. 1. Glass wool production: plant, sketch, simulated fiber motion

2 Systematic Asymptotic Derivation of the Model

2.1 Free Boundary Value Problem

Let the flow domain at time t ∈ R+ be Ω(t) ⊂ R3 and its boundary
∂Ω(t) = Γfr(t) ∪ Γin with Γfr(t) ∩ Γin = ∅. Here, Γfr(t) and Γin prescribe the
time-dependent free surface and the time-independent planar inflow boundary
(nozzle), respectively. The nondimensionalized model for the BVP reads

∇r · v(r, t) = 0

∂tv(r, t) +∇r · (v ⊗ v)(r, t) = ∇r · ST(r, t) + f(r, t) r ∈ Ω(t)

S = −p I +
1
Re

(∇rv + (∇rv)T)

(v · n)(r, t) = w(r, t), (S · n)(r, t) = 0 r ∈ Γfr(t)
v(r, t) = vin(r) r ∈ Γin

with Reynolds number Re. Apart from the unknown field variables for veloc-
ity v and hydrodynamic pressure p, the BVP determines the geometry Ω(t)
specified by the outer normal vectors n and the scalar speed w of Γfr(t). By
choosing homogeneous dynamic boundary conditions for the stress tensor S
the effects of surface tension are neglected. Body forces f complete the BVP.

The radius of the nozzle is comparably small to the typical length of the
spun fiber, thus we introduce a slenderness parameter ε. Due to the scaling,
the dimensionless inflow velocity profile vin at the nozzle satisfies

|Γin|1/2 = ε
 1,
∫
Γin

vin · τ0 dA =
∫
Γin

dA = ε2,

where |Γin| =
∫
Γin

dA. and τ0 inner normal vector of Γin.

2.2 Coordinate Transformation

For the asymptotic reduction, we transform the free BVP into general coor-
dinates being specified as scaled curvilinear. These coordinates can be under-
stood as generalization of cylindrical ones along an arbitrary curve for which
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the fiber center-line is taken. Scaling leads to inflow conditions independent of
the slenderness parameter ε, instead ε occurs explicitely in the balance laws.
So, the free BVP is embedded into a family of self-similar problems with fixed
inflow domain and fixed inflow velocity.

Definition 1 (General Coordinate Transformation). A function r̆ de-
fined by r̆(·, t) : Ω̂(t) ⊂ R3 �→ Ω(t) ⊂ R3 for t ∈ R+ is called time-dependent
general coordinate transformation if r̆ ∈ C2 and if r̆(·, t) are bijective.

Related to r̆, we introduce the following characteristic quantities: coordinate
transformation matrix F = ∇xr̆, functional determinant J = det(F), inverse
matrix G = F−1 and coordinate velocity q = ∂tr̆. Then, the governing equa-
tions of the free BVP in general coordinates x ∈ Ω̂(t) read

∂tJ(x, t) +∇x · (Ju)(x, t) = 0,

∂t(Jv)(x, t) +∇x · (u⊗ Jv)(x, t) = ∇x ·TT(x, t) + (Jf)(x, t)
u = (v − q) ·G
T = JS ·G.

The physical and geometrical properties of the observables are kept under
the transformation [7]. The intrinsic velocity u describes the transport of the
unknowns, whereas the velocity v is associated with the original momentum,
i.e., transported quantity. Their relation is expressed in the coupling condition.

Definition 2 (Scaled Curvilinear Coordinate Transformation). For a
given smooth, arc-length parameterized, time-dependent curve γ in Ω(t) ⊂ R3

and a fixed parameter ε ∈ R+ the special choice of a time-dependent general
coordinate transformation

r̆(x, t) = γ(s, t) + ε x1η1(s, t) + ε x2η2(s, t) with s = x3

is called scaled curvilinear coordinate transformation, if r̆(·, t) is bijective for
t ∈ R+. The normal vectors η1, η2 form an orthonormal basis with τ = ∂sγ.

The curve γ and the scaling factor ε of Definition 2 are specified as fiber
center-line and slenderness parameter, Fig. 2. This choice has some crucial
consequences for the logical structure of our problem. As the dynamics
of the center-line depends on the solution of the free BVP, the coordi-
nate transformation becomes part of the problem. We assume that Ω̂(t) is
given by the fiber length L(t) and the smooth, 2π-periodic radius function
R(·, t) : [0, 2π)× [0, L(t)) �→ R+ in such a way that Ω̂(t) = {x = (x1, x2, s) ∈
R3 | (x1, x2) ∈ A(s, t), s ∈ [0, L(t))} with cross-sections A(s, t) = {(x1, x2) ∈
R2 |x1 = # cos(ψ), x2 = # sin(ψ), # ∈ [0, R(ψ, s, t)], ψ ∈ [0, 2π)}. Then the
fiber domain is described by L, γ, R.
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Fig. 2. Scaled curvilinear coordinate transformation

2.3 Asymptotic Analysis

The derivation of the 1D model from the 3D free BVP is based on the cross-
sectional averaging of the balance laws. Thereby, the regular power expansions,
e.g., vε = v(0) + εv(1) + O(ε2), in zeroth and first order yield the necessary
cross-sectional profile properties of the unknowns.

Theorem 1 (Cross-Sectional Averaged Balance Laws). Let a solution
of the fiber family BVP exist. Denote 〈f〉Aε(s,t) =

∫
Aε(s,t)

f(x1, x2, s, t)dx1dx2.
Then the following cross-sectional integral relations hold [4]

∂t〈Jε〉Aε(s,t) + ∂s〈Jε(uε · e3)〉Aε(s,t) = 0,
∂t〈Jεvε〉Aε(s,t) + ∂s〈Jε(uε · e3)vε〉Aε(s,t) = ∂s〈Tε · e3〉Aε(s,t) + 〈Jεfε〉Aε(s,t).

From the full model we derive in zeroth and first order [7]

u(−1) = 0, u
(0)
3 = u

(0)
3 (s, t), v(0) = u

(0)
3 ∂sγ

(0) + ∂tγ
(0),

T(0) = T(1) = 0, T(2) · e3 =
3
Re

∂su
(0)
3 ∂sγ

(0).

Abbreviating u = u
(0)
3 , A = |A0| and dropping the superscripts of leading

order, we hence obtain the following result.

Theorem 2 (Asymptotic Fiber Model). The spinning of a slender curved
inertial viscous Newtonian fiber is modeled by

∂tA+ ∂s(uA) = 0,

∂t(vA) + ∂s(uvA) =
3
Re

∂s(∂su∂sγA) + fA

v = u∂sγ + ∂tγ,

dL(t)
dt

= u(L(t), t), L(0) = 0, ∂su(L(t), t) = 0,

|A(0, t)| = 1, u(0, t) = 1, γ(0, t) = γ0, ∂sγ(0, t) = τ 0, ‖∂sγ‖ = 1.
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Fig. 3. Evolution of fiber, cross-sectional area, Re = 4, Fr = 2. Top: Rb = 1;
Bottom: Rb = 10

The model coincides with the experiments by Trouton [8] in the factor 3 of
the Trouton viscosity. In the rotational spinning process the body densities f
stem from gravitation and rotation with Froude Fr and Rossby number Rb

f = Fr−2eg − 2Rb−1(eω × v)−Rb−2(eω × (eω × γ)).

3 Numerical Results

The numerical results for the evolution of the fiber in Fig. 3 show an artificial
boundary layer in the cross-sections that comes from the momentary neglect of
surface tension ∂su(L(t), t) = 0. This leads with dL(t)/dt = u(L(t), t) and the
conservation of mass to a constant bottom surface since dA(L(t), t)/dt = 0. In
particular, together with the chosen initial condition it gives A(L(t), t) = 1.

The planned incorporation of surface tension in this framework will cause
a source term in the averaged momentum equations and a reasonable change
in the boundary conditions at the free fiber end.
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1 Introduction

In our life-world non-woven products play an important role. Many products
such as wipes, filters (air conditioning, cleaner, oil, . . .), hygiene products,
floor-covering, etc., are made out of non-woven. New needs require improve-
ment and development of new products which constitutes a permanent task.
Modeling and numerical simulations can support the development.

There are several production processes to manufacture non-woven. In melt-
spinning processes granular material (e.g., polypropylen or polyethylen) is
melted and pressed through nozzles in a spinneret (Fig. 1). The resulting fil-
aments solidifies and are extruded (close to the nozzles or in some distance)
by high speed air flow along the fiber. Finally, the filaments are deposited
with support of a suction unit onto a conveyor belt such that a continuous
non-woven is generated and removed. There exists usually a lay-down unit
that gives a better control on the deposition of the filaments (Fig. 2).

One manufacture method of fibers for glass wool is based on a rotational
principle (Fig. 3). A liquid glass beam falls into a rotating disk. Due to cen-
trifugal forces the glass flows outwards and is pressed through the outer wall
containing many holes. The filaments formed outside the disk are extruded by
air drag forces caused by a hot gas stream and rotation. The glass filaments
cool down and break at a certain distance from the disk. The hot gas stream
is also used to heat up the rotating disk.

Simulations of the fiber dynamics can give new insights into the processes
and can help to improve the processes and products. The modeling of the fiber
dynamics in the following is based on an asymptotic approach [Pan06] where
the fiber is regarded as a one-dimensional curve. It considers the balancing of
effecting forces along the fiber. The effect of turbulent flows is considered by
stochastical forces [Mar05].
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Fig. 1. Scheme of a melt-spinning process

Fig. 2. Result of fiber dynamics simulation for the lay-down process

Fig. 3. Scheme of glass fiber spinning
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The fiber dynamics and material laws can be simplier described in Euler
than in Lagrange form. Unfortunately, numerical simulations basing on the
Euler description show problems under industrial conditions. Therefore, in
Sect. 2 we show the derivation of the Lagrange description from the Euler
form. The resulting model is applied on the glass fiber spinning.

Usually, the effect of the fibers onto the fluid can be neglected. In the
case of many fibers the complete interaction of fibers and fluid flow has to be
considered which we demonstrate in the last section.

2 Fiber Modeling in Euler and Lagrange Description

A fiber will be considered as a time-dependant sufficient smooth curve in R3.
There are mainly two parameter representations which are called Eulerian
and Lagrangian representations.

In the Euler descriptionX(s, t) ∈ R3 is a fiber point at time t ∈ R+
0 and arc

length s ∈ R, i.e., we have ‖X ′‖ = 1. In the Lagrange description Y (l, t) ∈ R3

is a fiber point at time t with parameter l ∈ R, which is assigned to that
material point for all times. The transformation between both descriptions is
realized by a function S(l, t) with

Y (l, t) = X(S(l, t), t).

Additionally, we choose S(l, t) such that S(l, 0) = l, i.e., parameter l and arc
length s are identical at time t = 0. The function S arises from the solution
of the differential equation

Ṡ(l, t) = u(S(l, t), t), withS(l, 0) = l.

Here, we denote the function u(s, t) ∈ R as transport velocity inside the fiber
geometry. It will be determined later by a coupling condition.

The fiber dynamics is modeled by balancing of mass and momentum. The
balancing of energy is neglected. For the Euler description we obtain

σ̇E + (σE u)′ = 0, (1)
(σE vE)· + (σE vE u)′ = Q′

E + fE , (2)

where σE(s, t) denotes the line density, vE(s, t) ∈ R3 is the Eulerian fiber
velocity, QE ∈ R3 represents the stresses and fE ∈ R3 are the outer forces.

The Lagrangian quantities are defined as follows:

σL(l, t) = S′(l, t)σE(S(l, t), t) vL(l, t) = vE(S(l, t), t), (3)
QL(l, t) = QE(S(l, t), t) fL(l, t) = S′(l, t) fE(S(l, t), t). (4)

The mass balance equation is obtained by σ̇L(l, t) = d
dt [S

′(l, t)σE(S(l, t), t)].
Simple computation shows σ̇L(l, t) = 0 or

σL(l, t) = σL(l, 0).

In order to receive the Lagrange representation for the momentum we regard
v̇L(l, t) = v̇E(S(l, t), t) + u v′E(S(l, t), t). By (2)–(4) this gives
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σL v̇L = Q′
L + fL. (5)

Up to now, the geometric description of the fiber in R3 is not coupled on the
balance equations, i.e., we have no definition for u. In the sense of a material
description this is simply given by vL = Ẏ . Transforming this equation into
the Euler description, we obtain

vE = uX ′ + Ẋ or u = (vE − Ẋ) ·X ′

by using ‖X ′‖ = 1.
For the constitutive equations we consider visco-elastic material laws and

outer forces of the form

QE = N(u′, σE , σE(·, 0))X ′ fE = f(X,X ′, vE , σE , σL).

Using the transformations between Euler and Lagrange description we receive

QL =N

(‖Y ′‖•
‖Y ′‖ ,

σL

‖Y ′‖ , σL

)
Y ′

‖Y ′‖ fL=f
(
Y,
‖Y ′‖
‖Y ′‖ , Ẏ ,

σL

‖Y ′‖ , σL

)
‖Y ′‖. (6)

3 Interaction of Fibers and Fluid Flow

The interaction of fibers and fluid flow consists in an exchange of momen-
tum and heat. As long as there are only a few fibers with moderate velocity
the effect of them onto the flow can be neglected. This assumption fails in
situations with many fibers where we have some influence onto the flow.

Due to the amount, diameter and dynamics of fibers it is not possible to
compute numerically the fluid flow around the fibers. Therefore, an alternative
modeling of the interaction of fluid and fibers has to be found.

A possibility is given by an iteration procedure of computing the fluid
flow and the fiber dynamics. First, a numerical simulation of the fluid flow
without the presence of fibers is performed. Using the obtained velocity and
temperature distribution of the fluid the outer forces and heat transfer for
the fibers can be determined and the fiber dynamics computation can be
performed. The effect of the fibers onto the flow can be determined by a
homogenization strategy. Considering a representative volume V of the flow
domain (e.g., a grid cell from the fluid flow computation) the momentum mi

and heat transfer rate hi of all fibers i covered by the volume can be averaged,

m̄ =
∑
i

1
V

∫
V

mi(x) dx h̄ =
∑
i

1
V

∫
V

hi(x) dx. (7)

Then, the resulting momentum m̄ and heat transfer rate h̄ can be used as ad-
ditional sources in the momentum and heat equation of the fluid flow. Finally,
a fluid flow simulation can be done and the procedure can be repeated.
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4 Example: Spinning of Glass Wool Fibers

In this section, the simulation of fiber dynamics using the Lagrange description
and the interaction of fluid flow and fibers is shown by the spinning process
of glass wool production.

4.1 Steady-State of Viscous Fibers

Outside the rotating disk there is an interaction between the gas flow and
fiber dynamics. The flow extrudes the filaments and forces them to move
downwards (Fig. 1). Since many thousands filaments are created they have
also an effect onto the flow. The large number of filaments generates a flow
resistance and deflects the gas flow. Additionally, there exists a heat exchange
between flow and filaments.

Changing the reference frame to the rotating system we receive a steady-
state situation because the boundary conditions are constant in time, i.e., we
have u = u(s) and X = X(s). Using the parametrization Ṡ(t) = u(S(t)) with
S(t) = 0 the fiber dynamics is described by

Ω Ÿ = Q̇L + fL, (8)

where Y (t) = X(S(t)) and mass flow Ω = σE(0)u(0).
In the spinning process the filaments are liquid and can be extruded. The

viscous tension in (8) is given by QL = 3 ν Ω Ẏ ·Ÿ
‖Ẏ ‖4 Ẏ [Pan06] with fluid vis-

cosity ν. Additionally, surface tension, gravitation, air drag, coriolis and cen-
trifugal forces effect the fiber dynamics.

4.2 Simulation and Numerical Results

The simulation of the fiber dynamics is done by the software tool FIDYST
developed at Fraunhofer-ITWM. For the fluid flow simulation the commercial
software tool FLUENT is used.

The results of the iterated simulation of the fluid flow and fiber dynamics
can be seen in Fig. 4. The results show the temperature distribution at differ-
ent iteration steps in front of the rotating disk. First, the temperature without
considering filaments is shown. Then, the temperature of the iteration steps
can be seen. It is obvious that there is a fast convergence. Already after the
third iteration the simulation becomes nearly stationary.

The result for the temperature without filaments shows a hot gas stream
close to the side wall of the rotating disk. The gas flow is not deflected by
fibers and there is a good heat exchange between flow and disk. The final
result shows some deflection and the hot gas does not anymore flow closely
to the side wall. The filaments cool down the gas which can be seen by the
reduced dark colored domain in front of the disk.
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Fig. 4. Iteraction between flow and fiber movement with respect to the temperature
distribution: convergence over the number of iteration steps, beginning with a flow
without fibers

The numerical simulation shows the influence of the filaments onto the
flow. Considering the interaction, this enables to obtain the correct under-
standing of the extruding process. It allows to explore the process by changing
process parameters and to find an improved production.
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Thomas Götz1, Axel Klar1, and Andreas Unterreiter2

1 Dept. of Mathematics, TU Kaiserslautern, Germany
goetz, klar@mathematik.uni-kl.de

2 Dept. of Mathematics, TU Berlin, Germany
unterreiter@math.tu-berlin.de

Summary. We consider a model for the production of glass fibers in a rotating
spinning device. The model depends on two small parameters, namely the Reynolds-
number δ and the Rossby-number ε. For small Rossby-numbers, i.e., a fast rotating
spinning drum, numerical difficulties arise. To overcome this problems, asymptotic
expansions are carried out for the stationary, inviscid case δ = 0 as well as for the
instationary, viscous case δ = O(1).

1 The Problem

The following model for the motion of viscous, isothermal glass fibers in an
rotation spinning process was derived by S. Panda, see [Pan06]. The model
includes the conservation of mass and momentum, where inertial, viscous,
Coriolis and centrifugal forces are taken into account.

Ȧ+ (Au)′ = 0 A(t, 0) = 1, (1a)

v̇τ + uv′τ − vn(v′n + vτα
′) = δ

(Au′)′

A
+

2
ε
vn +

1
ε2
γ · τ

u(t, 0) = 1

u′(t, L) = 0,
(1b)

v̇n + uv′n + vτ (v′n + vτα
′) = δu′α′ − 2

ε
vτ +

1
ε2
γ · n vn(t, 0) = 0, (1c)

α̇+ uα′ − (v′n + vτα
′) = 0 α(t, 0) = 0, (1d)

u′ − (v′τ − vnα′) = 0 vτ (t, 0) = 1, (1e)

γ′ = (cosα, sinα) γ(t, 0) = (1, 0). (1f)

Here, A denotes the cross-sectional area of the fiber, u the intrinsic velocity of

the molten glass, vτ and vn the tangential and the normal component of the
centerline velocity and γ the position of the fiber’s centerline. By α we denote
the angle between the tangent of the centerline and the x-axis. Furthermore,
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Fig. 1. Numerical solution for the angle α for different Rossby-numbers. Note the
instability close to s = 0

ḟ = ∂tf denotes the time derivative and f ′ = ∂sf the derivative with respect
to the arc-length parameter s. The system is given in an Eulerian frame fixed
at the rotating spin drum. Lateron in the analysis we will also make use of a
Lagrangian description.

The parameters δ and ε are related to the Reynolds and Rossby number.
Both, the Reynolds-number Re = 3/δ and the Rossby-number ε can be
small in application relevant cases. In his work, Panda faced severe numeri-
cal difficulties when solving the above system for small Rossby-numbers, e.g.,
ε ∼ 10−3. An example, where oscillations due to numerical instabilities arise, is
given in Fig. 1. The purpose of this work is to investigate the limiting behavior
of the above system for small ε, both in the inviscid case δ = 0 as well as in
the viscous case δ > 0.

In Sect. 2, we will analyze the limit ε→ 0 for the stationary, inviscid case
δ = 0 and Sect. 3 is devoted to the instationary, viscous case δ > 0.

2 The Stationary, Inviscid Case

In the stationary, inviscid case, the continuity equation (Au)′ = 0 separates
and we immediately obtain A = 1/u. For the centerline velocities vτ and vn,
we get in the stationary case the solutions vn ≡ 0 and vτ ≡ u. Hence the
remaining system reads as

uu′ =
1
ε2
γ · γ′ u(0) = 1, (2a)

u2α′ = −2
ε
u+

1
ε2
γ · n α(0) = 0, (2b)

γ′ = (cosα, sinα) γ(0) = (1, 0). (2c)

Next, we introduce polar coordinates (r, φ) for the centerline γ = r(cosφ, sinφ)
and the angle β = α− φ between the centerline and the tangent. Solving the
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Fig. 2. Phaseportrait of (3). The solution is given by the solid line and the dash-
dotted line is the asymptotic expansion for β � 1

velocity (2a) explicitely, i.e., u2 = C + (r/ε)2 with C = 1 − 1/ε2, we end up
with a reduced system which has a regular limit for ε→ 0.

r′ = cosβ r(0) = 1, (3a)

β′ = − 2√
r2 − 1

− 2r2 − 1
r2 − 1

sinβ
r

β(0) = 0. (3b)

We consider this equation in the phase-space (r, β) ∈ D = [1,∞)× [−π/2, 0],
see Figure 2. Note, that r is increasing and β is decreasing in D. For the
parameter s→∞, the solution tends to (r, β) = (∞,−π/2).

The solution to the above system (3) is given by

r(s) =
√

2s+ 1 β(s) = −
√

2s− arctan
√

2s cos
√

2s− sin
√

2s
cos
√

2s+
√

2s sin
√

2s
. (4)

This solution has a singular slope at s = 0. To resolve this singularity, we
carry out an asymptotic expansion for β 
 1 and get β � −

√
2s.

3 The Instationary, Viscous Case

In this section, we will analyze the instationary, viscous case of the glass fiber
spinning equations in the limit of vanishing Rossby-number ε → 0 and fixed
Reynolds-number δ > 0. Contrary to the stationary, inviscid case a treat-
ment in Eulerian coordinates seems to be quite difficult. Hence, we transform
the equations into a Lagrangian frame moving with the fiber. The arc-length
parameter S can now be obtained as the solution of the ODE

∂tS(t, λ) = u(t, S(t, λ)), S(t, t) = 0, (5)

where the Lagrangian parameter λ ∈ [0, t] denotes the time, when the fluid
particle leaves the nozzle. The centerline of the fiber, i.e., the trajectory of the
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fluid particles, is denoted by ξ(t, λ) = γ(t, S(t, λ)). We rescale t∗ = t/ε, λ∗ =
λ/ε and ξ∗ = ξ/

√
ε and seek similarity solutions of the form w(s) = ξ(t−λ, λ)

for s = t − λ being the time since a fluid particle has left the nozzle. Now w
solves

w′′ = δ

(
w′ · w′′

|w′|4
w′
)′

+ 2(w′)⊥ + w (6)

subject to w(0) = (1/
√
ε, 0), w′(0) = (

√
ε, 0) and w′(0) · w′′(0) =

√
ε3z0.

Introducing polar coordinates w′ = x(s) (cosφ(s), sinφ(s)) and accord-
ingly w = r(s) (cosφ(s), sinφ(s))+q(s) (− sinφ(s), cosφ(s)) yields the system

φ′ = −x2 2x− q
x3 − δz φ(0) = 0, (7a)

r′ = x− qx2 2x− q
x3 − δz r(0) =

1√
ε
, (7b)

q′ = rx2 2x− q
x3 − δz q(0) = 0, (7c)

x′ = z x(0) =
√
ε, (7d)

δz′ = x2z + 2δ
z2

x
− rx2 z(0) =

√
ε3z0. (7e)

The artificial initial condition z(0) =
√
ε3z0 ∈ [0, 1/δ) leads to φ′(0) ≤ 0.

Numerical simulations show, that the solution is almost independent of the
initial value z0.

The numerical simulations also indicate, that there exists a boundary layer
at s = 0 (see Fig. 3) of thickness s = O(ε) for φ, q and z, while q and x are
O(
√
ε) uniformly in s, see Fig. 3. Inside the boundary layer, we find φ = O(ε),

r = 1/
√
ε + O(

√
ε3) and z = O(

√
ε3). Outside the boundary layer, we have

φ = O(ε), r = 1/
√
ε+O(

√
ε) and z = O(

√
ε).

To resolve the boundary layer, we rescale τ = s/ε, φ = εΦ, q =
√
εβ,

x =
√
εX, z =

√
ε3Z and r = 1/

√
ε+

√
ε3ρ. In this inner scaling the leading

order of the solution is given by
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Fig. 3. Numerical simulation for φ and z with boundary layers at s = 0
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Φ0(τ) = − 2τ
1− δz0 + τ

, (8a)

ρ0(τ) = τ − 3
(

τ

2− δz0 + τ

)2

, (8b)

β0(τ) =
2τ

1− δz0 + τ
, (8c)

X0(τ) = 1, (8d)

Z0(τ) = z0 −
τ

δ
. (8e)

To determine the conditions needed lateron for matching the inner and
outer expansion, we undo the inner scaling and obtain for s
 1

φ ∼ −2ε , q ∼ 2
√
ε , x ∼

√
ε , r ∼ 1√

ε
+
√
εs , z ∼

√
ε
s

δ
+
√
ε3 (9)

For the outer expansion, we use the scalings φ = εΦa, q =
√
εβa, x =√

εXa, z =
√
εZa and r = 1/

√
ε+
√
ερa. In this new scaling, the leading order

solution reads as

Φa(s) = −2

√
2δ arctan s√

2δ

s
, (10a)

ρa(s) =
√

2δ arctan
s√
2δ
, (10b)

βa(s) = 2

√
2δ arctan s√

2δ

s
, (10c)

Xa(s) =
2δ

s2 + 2δ
, (10d)

Za(s) = − 4δs
(s2 + 2δ)2

. (10e)

Figures 4 and 5 show an excellent agreement of the inner and outer ex-
pansion with the numerical solution of (7).
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Fig. 4. Comparison of the numerical solution and inner expansion for φ and z
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Fig. 5. Comparison of the numerical solution and outer expansion for φ and z
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1 Introduction

In knitted and woven fabrics, inter-yarn forces at the crossover regions tend to
compress the yarns thus affecting their mechanical properties. Hence the need
to relate lateral forces and yarn cross-sectional deformation. Some theoretical
analysis [1, 2] assumed filaments are elasticas and forces are applied at discrete
points [1, 2] or uniformly distributed [3] on the filaments. Harwood et al. [4]
have proposed a model of yarn compressibility by extending the work of van
Wyk [5] to oriented fibres. The present chapter is concerned with compression
of continuous filament yarns. The filaments are assumed to be elasticas and
follow helical paths in the yarn. The theory of three-dimensional elastica is
developed from differential geometry of curves and is applied to lateral defor-
mation of a single helix. Finally, a yarn geometrical model and the algorithm
for yarn compression are described.

2 Differential Geometry of Centreline of Elastica

The objective is to describe the shape of the centreline of an elastica, generally
a space curve, subjected to external forces and moments. The obvious way of
doing so would be in terms of a moving trihedron (t, n, b), where t is the
tangent to the curve, n the principal normal and b the binormal vector. The
derivatives of the moving trihedron with respect to arc-length s are the Serret–
Frenet equations [6] which define the curvature, k, and torsion τ of a curve.
However these parameters are purely geometrical quantities. For the study of
an elastica we require measures which relate to both geometry and mechanical
properties. A new moving trihedron (u, v, w), with n.u = b.v = cosλ and
w = t is defined [4]. In practical situation, the vectors u and v represent the
principal directions of the elastica cross-section and vector w is the tangent of
the centreline. With this change of local coordinates the following differential
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equations can be derived to express the geometry of a curved elastica in three
dimensions in terms of cross-section parameters and twist.

du
ds

= σn− qw, (1)

dv
ds

= pw − σu, (2)

dw
ds

= qu− pv. (3)

where p and q are components of curvature in the u and v directions and σ
is the twist, the relative displacement of two neighbouring cross-sections.

3 Constitutive Equations

The elastica is assumed to be inextensible, of constant cross-section and un-
affected by shear. In that case the elastica shows resistance to bending and
torsion according to Love’s ‘Ordinary Approximate Theory’:Mu = A (p− po);
Mv = B (q − qo) and Mw = C (σ − σo). The parameters M u and M v are the
components of internal moments and constants A and B are the bending
rigidities while Mw is the internal torque and C is the torsional rigidity. The
curvatures po, qo and twist σo refers to the undeformed elastica.

4 Equilibrium Equations

The vector form of equations of equilibrium of forces and moments on the
small element, Fig. 1, within a moving basis, such as the (u, v, w) are as
follows:

dM
ds

+ M×ψ + w × F + m = 0, (4)

dF
ds

+ F×ψ + f = 0. (5)

Ms+ds

Fs+ds

Ms

Fs

t

m

f

Fig. 1. Forces and moments on a small element of elastica
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M and m are concentrated and distributed moments. F and f are concentrated
and distributed forces. Vector ψ = pu + qv + σw. Combining (4) and (5)
with the constitutive equations relate the geometric parameters, curvature
and twist, to external loads and moments. Hence the complete mathematical
model of three-dimensional elastica consists of (1)–(3), (4) and (5) modified
by the constitutive model and the orientation-coordinate equation w = dr

ds . In
scalar form the model consists of 18 first-order linear differential equations.

5 Single Helix Compression Model

The model for three-dimensional elastica can be solved by numerical methods
such as Runge–Kutta. Nine scalar equations, (1)–(3) in vector form, relate
to direction cosines. These equations are not strictly independent and judi-
cious choice of only three initial values lead to specification of the other six.
In the case of the helix the following initial direction cosines are defined:
ux (0) = − cos θ; wx (0) = − sin θ; wy (0) = 0 where θ is the helix angle. If
radial deformation of the helix is specified then the objective is to solve a
boundary value problem with four unknown initial values: p, q, σ and lat-
eral force Fy. The methodology adopted is illustrated in Fig. 2. The length of
the elastica over which the integration is performed is half the helix length
L. The four boundary values are: y (L/2) = δ; y (L/4) = 0; x (L/2) = 0;
z (L/2) = 0.5L cos θ where δ is the yarn radial deformation and (x, y, z ) are
the fixed Cartesian coordinates.

Guess
values:

Fy,
p,q,σ

Numerical
Integration

Compute
Boundary

Values

Within defined
precision?

Newton-
Raphson

Procedure

Improved
Initial

Values

Linear
Equations

Solver

StopYesNo

Fig. 2. Flowchart of boundary value solution procedure
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6 Yarn Compression Model

The model is based on the deformation of helices under forces applied perpen-
dicular to the helix axis. In addition a model that describes the distribution
of filaments in the yarn is required.

6.1 Geometrical Model of Filament Yarn

The filaments are arranged in concentric layers as illustrated in Fig. 3. Each
filament follow a helical path along the yarn length. Layer n = 1 surrounds
the core. The helix radius, rn of a filament in layer n is 2rn. Helix angle
θ = arctan (2π × rnT ) and length L = 2π×rn

sin θ . The twist per unit length, T, is
assumed to be the same for all the filaments. The deformation of each filament
is assumed to vary linearly with distance from yarn centre. If a deformation δ
is imposed on the yarn then a given filament within the yarn will be deformed
by ζ = δ rn

R−r .

6.2 Algorithm for Yarn Compression Simulation

The following procedure is used to obtain the force-compression behaviour of
filament type yarns.

1. Apply defined deformation, δ perpendicular to yarn axis.
2. Calculate filament deformation, ζ for each filament.
3. Use single helix compression model to compute energy required.
4. Compute total energy required to deform all the filaments in the yarn.
5. Repeat steps 1–4 for different yarn deformation values.
6. From total energy versus yarn deformation relationship, the force-

deformation characteristic of the yarn is simulated.

The force in step 6 is the force acting over a length z (L/2) = 0.5L cos θ. Fig. 4
indicates that the simulation results compares favourably with experimental
data.

R=(2n-1)* r=5*r

R : Yarn Radius
r : Filament Radius
n : Layer Number

Fig. 3. Yarn cross-section
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7 Conclusions

A mathematical model for three-dimensional elastica has been presented and
its application to the compression of yarns discussed. Though the model makes
a number of simplifying assumptions the results are not too far from experi-
mental data. To improve the usefulness of the model for practical applications,
friction between filaments has to included as well. This part of the research is
still ongoing.
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Summary. Nonwoven are technical textiles that may be described as random col-
lections of straight fibers. Infinitely long fibers have the disadvantage that periodicity
can not be ensured. We give a short fiber model with two anisotropy parameters
that allows to account for periodicity and compute the nonwoven’s permeability for
some such models.

1 Introduction

Spun-bond nonwoven are textiles of significant commercial interest. They are
produced by spinning fibers directly onto a moving conveyor belt. This results
in a strongly anisotropic distribution of random fiber directions. First, fibers
tend to lie parallel with the transporting belt. Second, the motion of the belt
induces different probabilities of the fiber directions in this plane. Schladitz [3]
introduced an infinite fiber model using only the porosity, fiber diameter, and
fiber direction distribution. Here, we consider a more general anisotropy and
introduce short fibers mostly in order to be able to generate periodic nonwoven
representations. Such periodic representations are helpful for the computation
of effective material properties from microstructure simulations [2,4], because
the (Navier-) Stokes solver codes may use periodic boundary conditions as
assumed in homogenization theory for the computation of effective properties
[1]. Finally, the influence of the anisotropy, fiber diameter, and porosity on
the permeability tensor of the nonwoven are studied.

2 Nonwoven Model

The nonwoven model consists of two components, Sect. 1 dealing with indi-
vidual fibers and Sect. 2 dealing with the discrete representative elementary
volume, or discrete REV.
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2.1 Fiber Diameter, Length, Position, and Direction

Fibers considered here are idealized to cylinders with flat end or capped by
a half-sphere. Fiber crimp is not considered, as it often can be neglected as
occurring on the scale of millimeter to centimeter, while the fiber diameter is
on the order of micrometer. A fiber is a 9-tuple

F : (x, y, z, l, r, nx, ny, nz, b),

where (x, y, z) is the center of gravity of the fiber, l and r are half the length of
the cylinder and half the diameter of the fiber, n = (nx, ny, nz) with ||n|| = 1
is the direction of the fiber and b ∈ {0, 1} indicates a half-sphere (1) or flat
cap (0). Note that the representation is not unique because n and −n yield
the same fiber, and that this representation also includes spheres.

The length 2l, diameter 2r, and end shape b are usually specified by the
manufacturer, and the position (x, y, z) is usually uniformly distributed in
either the original or an enlarged image, so the most interesting parameter
from a mathematical point of view is the distribution of fiber directions n.
Due to the manufacturing process, not all directions occur with the same
probability. In [3], a one-parameter model was used that accounts for the fiber
spinning process by orienting fibers “almost parallel to an axis” or “almost
parallel to a plane.”

Algorithm 1: Φ := rand([0, 2π])
z := rand([−1, 1])

q :=
√
z2 + β2 − z2β2

nx :=
√
β2 − z2β2/q sinΦ

ny :=
√
β2 − z2β2/q cosΦ

nz := z/q

The probability density for (nx, ny, nz) in this case is

β sin θ
2(1 + (β2 − 1) cos2 θ)3/2

,

where β ∈ (0,∞) governs the compression or stretching perpendicular to the
z-direction and (Φ, θ) are the angles in standard spherical coordinates.

Here, we add the additional parameter α ∈ (0,∞) to govern an additional
compression or stretching only in the y-direction.

Algorithm 2: Φ := rand([0, 2π])
z := rand([−1, 1])

x := β
√

1− z2 sinΦ

y := βα
√

1− z2 cosΦ

n :=
(x, y, z)

||(x, y, z)||2



710 A. Wiegmann

Lemma 1. If α = 1 and Φ and z agree with those from Algorithm 1 then the
direction n also agrees with the one from Algorithm 1.

Proof. First, q = ||(x, y, z)| |2 since

β2(1− z2) sin2 Φ+ β2(1− z2) cos2 Φ+ z2 = β2 − β2z2 + z2.

This also implies that z has the same meaning in both algorithms. Second,
x =

√
β2 − z2β2 sinΦ since

β2(1− z2) sin2 Φ+ β2(1− z2) cos2 Φ = β2 − β2z2.

Similarly, y =
√
β2 − z2β2 cosΦ.

2.2 Domain Periodicity, Overlap, and Porosity

For sake of simplicity and efficiency, the fibers are discretized into three-
dimensional images, or parallelepipeds with some Nx×Ny ×Nz cube-shaped
volume elements or voxels. A voxel is set to 1 to represent volume occupied
by a fiber and set to 0 to represent an empty volume.

Due to the typical scales of the fibers of about 10 µm, the 3D model can
only represent about 1 mm3 at a resolution of 2 µm, the minimum required to
get somewhat round fibers. This yields already 5003 voxels or grid points, a
formidable challenge beyond the capabilities of most flow solvers.

To have some flexibility when discretizing given objects from, for example,
CAD systems, a discrete REV is defined by an 11-tuple

D : (x0, y0, z0, h, imin, jmin, kmin, imax, jmax, kmax, I),

where (x0, y0, z0) is a reference point in space, h is the length of a voxel,
(imin, jmin, kmin) indicates the left front bottom voxel center with coordinates
(x0 + iminh−h/2, y0 +jminh−h/2, z0 +kminh−h/2) and (imax, jmax, kmax) in-
dicates the right back top voxel center with coordinates (x0+imaxh−h/2, y0+
jmaxh−h/2, z0+kmaxh−h/2). I is the Nx×Ny×Nz dimensional binary image
with Nx = imax − imin + 1, Ny = jmax − jmin + 1, and Nz = kmax − kmin + 1.
This choice ensures that the simplified discrete REV

D : (h,Nx, Ny, Nz, I) = (0, 0, 0, h, 1, 1, 1, Nx, Ny, Nz, I)

is a discretization of the parallelepiped [0, Nxh]× [0, Nyh]× [0, Nzh] into Nx×
Ny×Nz voxels. Unless noted otherwise, we usually consider this simpler type
of REV and use Lx = hNx, Ly = hNy, and Lz = hNz.
Periodicity. In the periodic case, the center of gravity of a fiber is generated as
three uniformly distributed random numbers in [0, Lx]×[0, Ly]×[0, Lz]. Then,
a fiber is viewed as the 27 copies with centers of gravities (x+dx, y+dy, z+dz)
that result from dx ∈ {−Lx, 0, Lx}, dy ∈ {−Ly, 0, Ly}, and dz ∈ {−Lz, 0, Lz}.

In the non-periodic case, the center of gravity of a fiber is generated as
three uniformly distributed random numbers in [−l, Lx + l] × [−l, Ly + l] ×
[−l, Lz + l] to avoid boundary artefacts in the local porosity.
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Fig. 1. Discrete REV with periodic copies of fibers. A fiber exits the REV on the
right, so the copy shifted to the left enters into the discretization. The dotted lines
illustrate the area where centers of gravity may be placed in the non-periodic case.

Fiber discretization. A voxel (i, j, k) in the image I is considered to belong to
the fiber if the voxel center (xi, yi, zi) = ((i− 1

2 )h, (j− 1
2 )h, (k− 1

2 )h) lies within
the radius r of the center line of the fiber axis given by (x, y, z) + tn, and if
the projection point on this line has a line coordinate tp with tp ∈ [−l, l].

For semispherical cap on the fiber ends, also voxels with center coordinates
within the radius r of the fiber end points are considered to lie in the fiber.

Nonwoven porosity. The porosity p of an image I is
∑i=Nx,j=Ny,k=Nz

i=1,j=1,k=1 I(i, j, k)/
(NxNyNz). p is evaluated after a fiber is discretized, and if the desired poros-
ity is not reached, another fiber is randomly generated and discretized. p can
attain only a discrete set of values, and so an interval of desired porosity must
be specified. If the porosity reaches a value below the lower end of this interval,
the process must be started again with an empty discrete REV (Fig. 1). After
a fixed number of tries the algorithm decides that the porosity requirement
cannot be achieved.

Fiber overlap. To achieve realistic, nonoverlapping fibers, the 27 copies of a
fiber are not discretized into the original image right away. Instead, all voxels
that would be occupied by a newly entered fiber are checked for availability,
and the fiber is discretized into an auxiliary image. By testing voxels also with
r1 > r, but only entering those for r, it is also possible to achieve a minimum
distance between fibers.
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Table 1. Anisotropy, porosity, fiber radius, and computed permeabilities

Parameters κxx κyy κzz

( µm2) ( µm2) ( µm2)

β = 10, α = 3, p = 0.95, r = 4 µm 9.3 12.0 8.0
β = 0.1, α = 1, p = 0.95, r = 4 µm 8.2 7.9 12.4
β = 10, α = 1, p = 0.95, r = 4 µm 10.3 10.8 8.0
β = 10, α = 1, p = 0.93, r = 4 µm 4.0 4.0 6.7
β = 10, α = 1, p = 0.91, r = 4 µm 2.8 2.9 4.8
β = 10, α = 1, p = 0.95, r = 3 µm 5.5 4.8 8.7
β = 10, α = 1, p = 0.95, r = 5 µm 10.4 12.1 19.5

3 Computed Permeability

To compute the permeability of the nonwoven, the Stokes problem with pe-
riodic boundary conditions on the image boundaries and nonslip boundary
conditions on the fiber surfaces is solved for a given pressure drop and fluid
viscosity 1. Then, material permeability in the direction of the pressure drop
is the quotient of the average velocity over the pressure drop [2, 5]. Table 1
illustrates nicely that the resulting permeabilities depend in an intuitive way
on the selected nonwoven parameters. By judicious choice of the nonwo-
ven parameters, good agreement with measurements has been observed with
measurements on real nonwoven in several industrial projects at Fraunhofer
ITWM.
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The two fields of computer aided design (CAD) and algebraic geometry deal
with curves and surfaces defined by algebraic equations, but the objects are
studied using different approaches. On the one hand, algebraic geometry has
developed impressive results for understanding the theoretical nature of these
objects. On the other hand, the CAD community focuses on practical appli-
cations of virtual shapes defined by algebraic equations, and the curves and
surfaces are typically represented with limited precision, using floating point
numbers.

The two fields can benefit from mutual interaction, e.g., the need for ana-
lyzing singularities occurs frequently when dealing with results of offsetting,
which is one of the fundamental operations in CAD. Also, the applicability of
results from algebraic geometry can be enlarged by using the novel technique
of approximate implicitization [Dok2]. These and similar interactions were
explored in the European project IST 2001-355121 GAIA II.

The minisymposium on Approximate Algebraic Techniques for Curves and
Surfaces at ECMI 2006 presented results related to this project, by discussing
topics such as offset curves and surfaces, symbolic-numerical algorithms, and
approximate implicitization. More information about the results of the GAIA
II project, which include scientific publications and software prototypes, are
described in [Dok1].
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Summary. A new seminumerical algorithm for computing the intersection curve
between a plane and the offset of a parametric surface is presented. The correspond-
ing implementation and the performed experimentation are also reported.

1 Introduction

Given a rational surface S in R3 presented by their parametric equations,

x = f(s, t), y = g(s, t), z = h(s, t)

a point (x, y, z) ∈ R3 is in the offset surface to S at a distance d > 0 (see for
example [Ho90]) if there exists (s, t) ∈ R2 such that

(x− f(s, t))2 + (y − g(s, t))2 + (z − h(s, t))2 = d2

fs(s, t)(x− f(s, t)) + gs(s, t)(y − g(s, t)) + hs(s, t)(z − h(s, t)) = 0
ft(s, t)(x− f(s, t)) + gt(s, t)(y − g(s, t)) + ht(s, t)(z − h(s, t)) = 0

where the subscripts denote partial differentiation.
The purpose of this note is to introduce a new method to compute the

intersection curve C between a plane Π and the offset to distance d > 0 of a
surface S presented parametrically (by polynomial functions). This is a critical
problem in computer aided design arising in many practical situations such as
tool path generation, 3D NC machining, etc. (see, for example, [Ma99,Stu76]).

The algorithm here presented includes the use of several symbolic tools
(like polynomial manipulations) together with several seminumerical tech-
niques such as the determination of the topology of a real algebraic plane
curve presented implicitely.

The generation of the points in the searched intersection curve is to be per-
formed numerically by applying a Runge–Kutta scheme on a very controlled
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way (in the sense that the shape of the final result is known in advance due
to the previous topology determination).

2 The Algorithm

The points in the intersection curve between a plane Π and the offset to
distance d > 0 of a surface S presented parametrically can be characterized
in the following way: if Π is presented by

X(u, v) = a1u+ a2v + a3

Y (u, v) = b1u+ b2v + b3

Z(u, v) = c1u+ c2v + c3

(ai, bi, ci ∈ R) then the point (X(u, v), Y (u, v), Z(u, v)) is in the searched
intersection curve if there exists (s, t) ∈ R2 such that

(X(u, v)− f(s, t))2 + (Y (u, v)− g(s, t))2

+(Z(u, v)− h(s, t))2 − d2 = 0 (1)
fs(s, t)(X(u, v)− f(s, t)) + gs(s, t)(Y (u, v)− g(s, t))

+hs(s, t)(Z(u, v)− h(s, t)) = 0 (2)
ft(s, t)(X(u, v)− f(s, t)) + gt(s, t)(Y (u, v)− g(s, t))

+ht(s, t)(Z(u, v)− h(s, t)) = 0 (3)

Note that the considered points in the offset of S to distance d belong to
one of the two components of the offset defined depending on which normal
direction to S is taken.

The linearity of u and v in (2) and (3),

fs(s, t)(a1u+ a2v + a3 − f(s, t)) + gs(s, t)(b1u+ b2v + b3 − g(s, t))
+hs(s, t)(c1u+ c2v + c3 − h(s, t)) = 0

ft(s, t)(a1u+ a2v + a3 − f(s, t)) + gt(s, t)(b1u+ b2v + b3 − g(s, t))
+ht(s, t)(c1u+ c2v + c3 − h(s, t)) = 0

allows to describe them in terms of s and t:

u = U(s, t) v = V (s, t).

Replacing these expressions into (1) the following equation is obtained:

W (s, t) = (a1U(s, t) + a2V (s, t) + a3 − f(s, t))2

+(b1U(s, t) + b2V (s, t) + b3 − g(s, t))2
+(c1U(s, t) + c2V (s, t) + c3 − h(s, t))2 − d2 = 0

(4)

representing the set of points in the st–domain whose lifting to S provides
a curve C providing the intersection curve between Π and the offset of S
to distance d. This is done by merely evaluating these points into U(s, t)
and V (s, t), providing the plane parameters whose evaluation at the plane
parameterization (X(u, v), Y (u, v), Z(u, v)) produces the points on the plane
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corresponding to the searched intersection curve. Note that in this way the
intersection curve between the offset and the plane is determined without
computing any explicit description or approximation of the offset surface.

If the normal vector to the surface is contained in the sectioning plane,
then we cannot describe u and v as an expression of s and t. But, in this case
the searched intersection curve between the offset to the surface and the plane
can be determined by computing the offset to distance d of the intersection
curve between the surface and the plane, which is an easier problem.

Difficulties can arise when analyzing the curve defined by W (s, t) = 0. An
exact computation requires a big amount of time due the way singularities like
critical or isolated points are handled. The algorithm introduced in [GN02] to
compute in a very efficient way the topology of W (s, t) = 0 will be used for
determining the points of the curve W (s, t) = 0. This will be the main tool to
get in an easy and fast way the topology or shape of the curve W (s, t) = 0 in
the st domain, providing the searched intersection curve between Π and the
offset of S to distance d.

3 Implementation and Experimentation

The first step of the algorithm manipulates equations (1), (2), and (3) in
order to get the resulting expression (4). This is a completely symbolic task.
Second step computes the topological graph of W (s, t) = 0. Itself constitutes
a seminumerical procedure as described in [GN02]. There is described that if
it is required, coordinate changes are carried out on W (s, t) = 0 until obtain
the curve in generic position.

Third step concerns with the numerical integration from the outgoing in-
formation from the topological graph W (s, t) = 0, which is done by using a
Runge–Kutta like method on

Ws(s, t)
Wt(s, t)

+
dt(s)
ds

= 0

This is a very fast and simple procedure because all the points inside of the
integration interval are free of singularities of any kind or vertical tangent
points (thanks to the performed topological analysis). In the forth step, the
obtained points (note that if coordinate changes were done at the second
step, they must me reversed here) are substituted into the expressions of
u = U(s, t) and v = V (s, t) and the outgoing information is used to find the
points (X(u, v), Y (u, v), Z(u, v), that is, the points of the searched intersection
curve.

The above sketched algorithm has already been implemented in the com-
puter algebra system Maple. Next, one example is presented and Table 1 shows
the computing time and how it is distributed between the topological graph
computation, the integration process, and the required manipulations needed
to get the offset intersection curve.
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Table 1. Computing time (in seconds)

Topology of W (s, t) = 0 Integration Polynomial and point manipulations

2.715 4.993 2.425

Fig. 1. The surface S and the plane Π (left). The curve W (s, t) = 0 (right)

Example 1. Let S be the surface defined by the parameterization

x = st+ 1, y = st+ s, z = s2 + t2 + s,

Π the plane with equation z = 1 and d = 1. For this case W (s, t) is (see (4)):

W (s, t) = 20 s3t+ 19 s2t4 + 38 s3t2 − 10 s2t2 − 8 st3 + 8 st4 + 8 s2t5 − 8 s3t3

− 20 s5t− 8 s6t+ 10 s4t2 − 24 s3t4 − 8 s4t3 − 16 s4t4 − 8 s5t2

+ 12 st5 + 8 st6 + 2 s3 − 16 st2 + 8 t3 + 8 t7 + 8 t8 + 24 s7 + 8 s8

− 16 t5 − 12 t6 − 18 s5 + 11 s6 + 2 s2 + 4 t2 − 4 st− 11 s4.

Figure 1 shows the surface S and the plane Π together with the curve
W (s, t) = 0.

The curveW (s, t) = 0 contains two self-intersection points and one isolated
point. This isolated point, (0, 0) in the (s, t) domain, is an extraneous point
due to its singularity since the considered surface has no normal vector at the
corresponding point: (1, 0, 0).

Figure 2 shows the topology of W (s, t) = 0 together with the inner and
outer offset sections. The different segments in the graph providingW (s, t) = 0
are those guiding the integration step since they are free of singularities of
any kind. Note that the self-intersection points of W (s, t) = 0 correspond
necessarily to self-intersection points of the intersection curve but they can
come from the intersection between the inner and outer offset sections.
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(a) Topological graph (b) Inner offset section (c) Outer offset section

Fig. 2. Topology of W (s, t) = 0 and inner and outer offset sections

4 Conclusions and Further Work

The introduced algorithm to compute the intersection curve between a plane
and the offset of a parametric surface to distance d mixes symbolic and nu-
merical techniques in order to guarantee that the final result is topologically
reliable and that no components are missed.

The consideration of implicit surfaces, instead of parametric ones, is in
progress and the intersection of offsets with other simple surfaces, instead of
planes, is currently being analyzed by using a similar approach to the one
introduced here.
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Summary. The support function (SF) representation of surfaces is useful for anal-
yzing curvatures and for representing offset surfaces. After reviewing basic properties
of the SF representation, we discuss several techniques for approximating the SF of
a given surface.

1 Introduction

Robust and efficient methods for dealing with offset curves and surfaces are
one of the major challenges in computer aided design. Offset to (piecewise)
rational curves and surfaces (i.e., NURBS) are not rational and need to be
approximated. Also, singularities and self-intersections can easily be generated
and have to be dealt with [Mae].

Certain subsets of the set of rational curves and surfaces are closed under
offsetting, or even under the (more general) convolution operator [PP]. In
particular, such subsets can be obtained by using the support function (SF)
representation, where the support functions vary in the space of polynomials
[SGJ1]. The SF representation is one of the classical tools in the field of
convex geometry, see e.g., [Gro]. Its application to problems in computer aided
design can be traced back to a classical paper of Sabin [Sab]. It does not only
provide computational advantages for dealing with offsets, but also leads to
particularly simple expressions for quantities and mappings governing the
differential geometry of surfaces.

2 Support Function Representation of Surfaces

For any smooth surface Σ in three-dimensional space, the so-called Gauss
map γ : Σ → S2 assigns to each point x ∈ Σ the associated unit normal
n(x), which is identified with a point on the unit sphere, cf. Fig. 1. It can be
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Σ ⊂ R3

S2

n
the tangent space

n

xthe Gauss map γ

h(n) = x · n
support function

h(n)n

∇S2h

Fig. 1. The Gauss map and the SF of a surface

used to analyze the curvature of the surface. In particular, the Weingarten
map equals −dγ and the principal curvatures and principal directions are
its eigenvalues and eigenvectors, respectively. The Gaussian curvature is the
product of the principal curvatures, i.e., the determinant of the Weingarten
map. So if the Gaussian curvature does not vanish, then the Weingarten map
is invertible and Gauss map is locally invertible.

Consequently, any surface with nonvanishing Gaussian curvature can
locally be described by its inverse Gauss map. Since the Gauss map is geo-
metrically significant, many geometric constructions simplify if its inverse is
explicitly known. The function

h0 : Σ → R : x �→ x · n(x) (1)

associates with each point the distance of its tangent plane to the origin.
The support function (SF) h : S2 → R is then obtained by composing this
function with the inverse Gauss map, h = γ−1 ◦ h0. Under certain technical
assumptions, the surface can be reconstructed from its SF (cf. [Gra,SGJ1]):

Theorem 1. Let U be an open subset of the unit sphere and h ∈ Ck(U,R),
where k > 2. Define xh ∈ Ck−1(U,R3) by

xh(n) = h(n)n + ∇S2h|n , (2)

where ∇S2 denotes the intrinsic gradient. If det(HessS2(h) + h id) does not
vanish in U , where HessS2(h) denotes the intrinsic Hessian of h, then

1. The image xh(U) is a Ck-surface and its SF is h.
2. The Weingarten map of the surface is −(HessS2(h) + h id)−1.
3. If λ is an eigenvalue of HessS2(h) and e the associated eigenvector, then
−1/(h+λ) is a principal curvature and e is a principal curvature direction.

4. The Gaussian and the mean curvatures are

K =
1

det(HessS2(h) + h id)
, M =

− tr(HessS2(h) + h id)
2 det(HessS2(h) + h id)

(3)
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5. Point-wise the absolute value of h and the norms of its gradient and xh

are related by
‖xh(n)‖2 = h(n)2 + ‖∇S2h(n)‖2, (4)

6. The L2 norms of h and xh are related by ‖xh‖22 = ‖h‖22 + ‖∇S2h‖22.
7. The maximum norms satisfy ‖xh‖2∞ ≤ ‖h‖2∞ + ‖∇S2h‖2∞. In particular,

if U = S2 and the surface xh is regular everywhere, then this inequality
becomes an equation.

The SF of a surface behaves nicely under geometrical transformations.
Translation and offsetting correspond to adding linear and constant functions,
respectively, while rotations have to be composed with h. Consequently, the
maximum allowed offsetting distance that does not introduce self-intersections
or singularities can be computed by analyzing the eigenvalues of the Hessian.

Note that the mapping h → xh is linear; it introduces an isomorphism
between the linear spaces Ck(U,R) and its images, where the addition in the
image spaces is given by the so-called convolution (in the sense of [SPJ]) of
surfaces, see [SGJ2].

The linearity implies in particular that the norm estimates above are in-
variant under offsetting.

If k = 1, then the Hessian cannot be used to analyze the regularity. How-
ever, if h is globally C1 and piecewise C2 and the sign of det(HessS2(h)+h id)
is the same on each patch, then the surface is of class C1, see [Gra,SGJ1].

3 Approximation of Surfaces

According to results 6 and 7 of the theorem, we can translate questions con-
cerning approximation of surfaces with nonvanishing Gaussian curvature to
questions concerning the approximation of scalar fields on S2, cf. [ANS].

Approximation by Harmonic Expansions. If we consider a surface whose
support is either defined or can smoothly be extended to S2, then it is possible
to apply the tools from harmonic analysis. Note that the harmonic expansion
leads to rational surfaces with rational offsets. Indeed, by composing the har-
monic expansion with a rational parameterization of the sphere, (2) gives a
rational parametric representation, which complies with the CAD standard.

This applies immediately to closed convex surfaces, which are studied in
convex geometry (see Example 22 of [SGJ1]). Here we present a nonconvex
one. We consider a one-sheeted hyperboloid of revolution with the support
function h0 =

√
x2 + y2 − z2. In order to approximate this surface and its

offsets, we restrict h0 to the sphere zone |z| ≤ 1
2

√
2 − ε, where ε is a small

constant, and extend the restriction to a function h∗ ∈ C3(S2,R). The results
are shown in Fig. 2.

Approximation by piecewise linear functions. Another very interesting way
to approximate the SF h is by using a piecewise linear function h defined over
a triangulation of (a part of) the unit sphere. Each vertex ni defines the plane
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Fig. 2. Support function of a nonconvex surface of revolution (the concave region
between the vertical grey bars) and its C3 smooth extension (left). Approximation
of the surface and of its offsets (right). In both cases, only the intersections with the
plane y = 0 are shown, and the support function is parameterized by the angle

Fig. 3. Approximations constructed via the SF

x·ni = hi = h(ni) in R3. Each triangle defines a point v ∈ R3 where the linear
function v · n interpolates the values of the SF in the corners of the triangle.
Clearly v is the point of intersection between the three planes defined by the
corners of the triangle.

The triangles around a vertex define a polygon in the plane defined by
the vertex. We obtain a graph embedded in R3 with planar faces, which is
the dual to the triangulation. Figure 3 left shows a photograph of a physical
model of a surface with planar faces approximating half of an ellipsoid. The
technique can be applied to nonconvex surfaces too, see [SGJ1].

Note that the planar faces may have self-intersections (“swallowtails”).
In order to avoid these problems, the spherical triangulation may have to be
modified by “edge flipping.”

Least-squares fitting. In many cases the SF is not (explicitly) available and
only a surface patch or point cloud may be given. For these cases we propose
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the following approximation scheme, which is to be applied to a given surface
represented by sample points Xi, possibly with associated normals ni.

1. Sample points Xi and associated unit normals ni from the patch. If the
points Xi are the input, then estimate the normal ni (e.g., based on local
planes of regression).

2. Consider a suitable1 finite-dimensional space H of support functions with
basis hj .

3. Find the SF h =
∑

j αjhj such that the associated surface xh approx-
imates the data in the least-squares sense, by minimizing the objective
function

N∑
i=1

((
Xi · ni −

∑
j

αjhj(ni)
)2

+
∥∥∥Xi − (Xi · ni)ni −

∑
j

αj∇S2hj

∣∣
ni

∥∥∥2).
As an example, we approximated the support function of a biquadratic patch
by a support function of degree 9, see Fig. 3, right. In this case, 256 sample
points were used in order to define the objective function. In the same pic-
ture two offsets are also depicted and it is an important fact that they are
approximated by exactly the same precision as the surface itself.

References

[ANS] Alfeld, P., Neamtu, M., Schumaker, L. L., Fitting scattered data on sphere-
like surfaces using spherical splines, J. Comput. Appl. Math., 73, 5–43 (1996).

[Gra] Gravesen, J.: Surfaces Parametrised by the Normals. Computing, to appear.
[Gro] Groemer, H. Geometric Applications of Fourier Series and Spherical

Harmonics Cambridge University Press, Cambridge, 1996.
[Mae] Maekawa, T., An overview of offset curves and surfaces, Comput.-Aided Des.

31, 165-173 (1999).
[PP] Peternell, M., and Pottmann, H., A Laguerre geometric approach to rational

offsets, Computer Aided Geometric Design 15, 223–249 (1998).
[Sab] Sabin, M.: A Class of Surfaces Closed under Five Important Geometric

Operations, Technical Report, British Aircraft Corporation Ltd. (1974)
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Summary. Starting from the modelling requirements of the early design phase of
the product development, the paper will show a possible strategy to overcome some
limitations of current CAS/CAD systems. In fact, the styling stage involves both
technical knowledge and fuzzy and dynamic aspects, which have to be taken into
account for a proper management. The paper focuses on high-level modelling tools
developed to deform surfaces with semantic (aesthetic) constraints, i.e. the crucial
design elements for the stylist. Furthermore, the communication among the other
actors of the design process is consequently facilitated.

1 Introduction

The styling stage of the product development process differs from the down-
stream product design activities since fixing the aesthetics of an object inv-
olves not only a technical knowledge but also fuzzy and dynamic aspects, such
as creativity and subjectivity. Unfortunately, currently available CAS/CAD
systems address mainly the geometry of the product shape, while do not sup-
port the direct management of the aesthetic knowledge [Pie05].

Our research activity aims at developing modelling tools able to act di-
rectly on the design elements relevant to the perception of the object, the ones
stylists have in mind when creating a new product. In this way, the modelling
phase takes directly into account the semantics of the context, thus facilitating
also the communication among the different actors of the design process.

To enrich geometric models with semantics, the strategy adopted in
mechanical CAD has been designed by features, where features are groups
of geometric entities treated as a single unit, significant in the application
context [SM95]. Due to the nature of styling products, an analogous concept
to form features should be related to the shape of the object, where the shape
features influencing the customer’s eye have to be characterised. The iden-
tification of such entities and their incorporation into a high-level semantic
modelling process have been the goal of the European projects FIORES and
FIORES II [FIOR].
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From the projects, we learnt that there are two main aspects to take into
account when proposing innovative CAS/CAD tools for the conceptual design
phase. The first one is that stylists generally use 2D curves in their sketch to
give a certain character to the product designed. Moreover, also when the first
digital model is created directly in 3D, curves have a leading role during the
modelling phase. This induces to consider a curve-driven methodology as the
most appropriate for shaping an object. Product style semantics is expressed
through a special use of such characteristic curves, which we called aesthetic
key lines. In fact, from the geometrical point of view, such curves will be the
complex entities constraining the deformation process together with few side
numerical parameters.

The second aspect to consider is that the early phase of the design is dom-
inated by uncertainty. A modelling tool supporting sketching should incorpo-
rate the possibility not to constrain the shape univocally, possibly producing
undesired effects, but giving some freedom in the areas with less visual im-
pact, e.g. at the boundary of a local modification. In this context the most
central issue is the visual perception of the object as a whole rather than
its precise geometry, which is instead needed in the subsequent phases of the
development process.

In the paper, ad-hoc feature-based modelling approaches have been out-
lined, working on NURBS and subdivision surfaces, respectively. In fact, while
NURBS are the standard in CAS/CAD modelling, subdivision surfaces can
be considered as a valid alternative geometric representation. Therefore, two
different methods have been developed starting from the same feature con-
ceptualisation. In Sect. 2 the Fully Freeform Deformation Features (δ − F 4)
applied to NURBS will be described, while in Sect. 3 Sweep-like Features acting
on subdivision surfaces will be treated. Finally, Sect. 4 outlines the semantic
environment we have been developing more recently and concludes the paper.

2 Fully Freeform Deformation Features

Since in the styling activity shapes are generally arbitrary and different alter-
natives are often needed, the concept of δ−F 4, Fully Free-Form Deformation
Features has been detailed [PF*05], by defining a styling feature as a subset
of the shape having an aesthetic meaning and obtained through a set of sur-
face deformation operations guided by the aesthetic key lines drawn by the
designer [FGM00].

Implemented through a deformation technique applicable not only to the
standard NURBS representations but also to tessellated representations, such
styling features establish a link between the geometric and semantic level,
thus making the integration of the stylist’s intent during the whole design
process easier. The adopted deformation approach is based on the force density
method and applied to a bar network coupled with the control network of the
NURBS surface. The bar network used is made by nodes (coincident with
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Fig. 1. (Left) Fully freeform deformation features, and (Right) Sweep-like features
inserted on a car model

the surface control points) and bars joining the nodes to which a force is
applied, determining the equilibrium status. Due to the association between
the mechanical model and the surface, finding the correct position of the
surface control points coincides with finding the new equilibrium configuration
of the bar network depending on the given curve constraints.

To be suited for a sketching environment, the shape features generated by
the designer can be constrained also with numerical parameters, e.g. dimen-
sion, relative positions, as well as tangency conditions if higher-order accuracy
is needed. On the other hand, the designer’s input may also introduce some
inaccuracies and inconstancies because the mental shape perception is not
always consistent with the input parameters monitoring the shape feature
generation. Therefore, the capability of tuning the shape in accordance with
the user’s intent through a progressive shape refinement process becomes very
helpful.

Moreover, users can also prescribe a predefined behavior corresponding to
a planar area and introduce sharp edges. Finally, they can indicate a tendency
for the surface, thanks to different minimisation criteria for the geometric and
mechanical parameters used [CC*05]. In Fig. 1 (left) the insertion of a pattern
of δ − F 4 and planar areas are shown on a car model.

3 Sweep-Like Features

The second application of the concept of aesthetic feature to 3D product mod-
els has been provided for subdivision surfaces. It is clear that the integration
among the different phases is a key issue for the optimisation of the whole de-
velopment process, and subdivision surfaces have been gaining attention as an
alternative geometric representation moving to this direction [CS*02,BRB05].
Moreover, several activities – such as reverse engineering, rapid prototyping
and tooling, FEM analysis, virtual inspection and navigation – require a dis-
crete model. Certainly, suitable and effective modelling tools are needed in all
the phases where a continuous model is adopted such as styling.
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Among the detail features defined in [FGM00], Sweep-like features have
been implemented [Cat05]. Such a class of features can be obtained by per-
forming a sweep operation of a given profile s (section), possibly varying in
the size, along a specific curve d (directrix).

The semantic parameters of this class of features are the two driving curves
s and d; according to the properties and the position of the parameters with
respect to the surface, a classification has been formalised. Moreover, the
possibility of scaling the section arbitrarily along the directrix have been given
to users to support free shaping, while a friendly interface assists the intuitive
insertion of the features.

The algorithm elaborates the parameters of the feature in order to create
the feature surface and adjusts the shape according to the evolution of the
section along the directrix and the behaviour of the surface in the area affected
by the feature. Then, a local remeshing is performed to merge the feature sur-
face with the reference model. The Catmull–Clark scheme has been adopted
in the insertion algorithm of the sweep-like features, since it is an extension
of cubic B-Splines: the initial tessellation is quadrangular almost everywhere,
similarly to a NURBS control polyhedron, and it converges to a bi-cubic at
the limit. In this way, the new geometry can be understood and manipulated
by designers in an easier way.

The algorithm does not work directly on the dense final mesh, but on a
coarser version, so that the computation results much faster. After the inser-
tion, the refinement rules lead to a very smooth mesh together with the new
feature added. Also in this case, the visual effect of the product aesthetics is
more important than the precision of the geometry. In Fig. 1 (right) differ-
ent types of sweep-like features and patterns of sweep-like features have been
inserted in the same car model as in Fig. 1 (left), after a conversion from a
trimmed NURBS surface to a subdivision one.

4 Conclusions

In this paper, the authors summarised part of their research activity on sem-
antic modelling tools for industrial design, particularly the ones related to the
aesthetic features.

On the other hand, the increasing demand for accessing and sharing digi-
tal shapes enhances the needs of structuring the shape and design knowledge
at any step of the design workflow, thus making a mapping process among
the various stages also possible. The most recent activity goes in this direc-
tion [CC*06], devising an ontology to formalise the knowledge embedded in
car styling. It also provides the basic framework of a design environment for
2D digital sketches and 3D digital shapes in which the traditional modelling
systems may be completed by semantic-based and context-aware tools; in this
way, stylists and engineers are allowed to create and manipulate shapes more



728 C.E. Catalano et al.

intuitively. As a natural future activity, a semantic modeller handling the aes-
thetic key lines and features will be coupled with this aesthetic environment,
integrating the geometric representation inside the ontology.
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Modeling and mathematical technologies are a vital resource for R&D and
innovation in Europe. Ingenious exploitation of mathematics means oppor-
tunity to achieve competitive edge in effective design process, accelerate test
cycles, support systems integration schemes, redesign production models.

Virtual technologies and digital educational environments are a viable
media to facilitate innovative intellectual processes and organize knowledge
transfer. It enables learning, brings solutions to training and educational
processes, helps to facilitate distributed and concurrent planning and de-
velopment processes, share software, and provide remote access to software
libraries.

An evolution of educational methods, materials, and means of delivery is
taking place. Traditional textbook will in some cases be replaced by an inter-
active cross-media environment. Advantages are easy access and portability,
flexible updates, dynamic edition and the benefits of media technology, hyper-
text properties, links and navigation, animations, interactive exercises. This
creates also challenge for educational research on learning processes.

In this Minisymposium we discussed the challenge of web based solutions
in organizing education in modeling and applied mathematics. We shared
experience, described examples of virtual courses and technologies used for
web based delivery and publication of interactive documents.

Knowledge in industrial mathematics is dispersed in small nodes. There
is an obvious need for collaboration, knowledge sharing, and retrieval from
the scattered pockets of expertise in Europe. The long term goal would be a
service portal containing an integrated network of software libraries, menu of
up-to-date educational products, training environments, and flexible network
services.

A vision of the future is a Netcampus of educational services, a menu of
profession level courses built on the concepts of current eLearning technolo-
gies. Flexible access to an integrated library of contemporary and proto-level
scientific software in modeling, numerical methods, and scientific computing.
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Many interesting pathfinder projects are underway in the community of
applied mathematics in Europe. Some of those projects are presented in this
section. The time seems to be mature for launching a more systematic Euro-
pean collaboration. We aim at a collaborative project involving several uni-
versities who will develop forefront technology in building digital environment
for applied mathematics. Based on an up-to-date assessment of user needs in
universities and industry such a consortium could produce important added
value for the academic and industrial community.

Included are the following contributions. Simona Runci described an in-
tegrated framework for production of interactive documents and distant
education materials. Giuseppe Ali described “An e-learning system for appli-
cations of mathematics to microelectronic industry.” Matti Heilio presented a
“Web-based system for graduate studies – optimization, games, and markets,”
describing a virtual learning environment developed by professor Mockus,
consisting of several course modules, interactive features, case examples, etc.
Finally a web based course and learning module “Web-tool on Differential
Equations” by Peep Miidla was presented.



An Industrial Application of an Integrated
Framework for Production of Interactive
Documents

G.M. Grasso1, C.L.R. Milazzo2, and S. Runci3

1 Department of Physics, University of Messina
ggrasso@informatica.unime.it

2 Department of Mathematics and Computer Science, University of Catania
cmilazzo@dmi.unict.it

3 Catania Research Consortium
simona.runci@yahoo.it

Summary. In this paper we will show an industrial application of a new framework,
called LATEX2WeB, which translates LATEX material into an interactive Web-based
document. The more important characteristic of LATEX2WeB is the possibility of
integrating, in the Web-based document, external programs produced in every lan-
guages. We exploited LATEX2WeB to create an interactive Web-based manual, which
illustrates a new software for the multiobjective optimization applied to the parame-
ter extraction in circuit design. Thanks to LATEX2WeB it was possible to simulate
the algorithms written in C, C++, and FORTRAN, used in the multiobjective opt-
imization software.

1 Introduction

Today, most universities and an increasing number of companies and indus-
tries all over the world feel the need to offer virtual Web-based courses to
educate their students or employees. The main reason of this trend is the
suitability of Web for publishing material of educational nature at very low
cost and with a high degree of reachability. Due to the fact that setting up
virtual Web-based courses has become very popular among teachers and edu-
cators, many of them are in search of a complete instrument to create virtual
and interactive documents for the Web from text based scripts and books,
used for traditional lectures.

Hyper Text Markup Language (HTML) is a predominant markup language
for the creation of web pages. It provides a means to describe the structure of
text-based information in a document and to supplement texts with interac-
tive forms, embedded images, and other objects. HTML can also describe, to
some degree, the appearance and semantics of a document, and can provide
additional cues, such as embedded scripting language code, that can affect
the behavior of web browsers and other HTML processors. HTML’s exact
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rendering is not specified by the document that is published but is, to some
degree, left to the discretion of the browser. It recognizes that the window
size, resolution, or shape on which a document is viewed will vary from reader
to reader, and that therefore layout, font size, and other choices for good read-
ability should be at least partly up to the reader, not the author. The result
is that well designed HTML is excellent for browsing and for this reason it is
well suited for virtual courses.

LATEX is a typesetting system which is very popular with computer sci-
entists, engineers, mathematicians, physicists etc. It is especially good for
mathematical work, but is also used by many nonscientists. It is well suited
for producing electronically publishable documents, and it is capable of ex-
tremely detailed page layout, specifying precisely where on the page symbols
go. Most scientists utilize LATEX to produce their research papers and all their
teaching materials, but often they are not very familiar with the implemen-
tation method of material on the Web. Therefore, they need a simple method
to convert their LATEX documents into HTML, in order to publish it on the
Web. Softwares that allow the translation of a LATEX source document into
HTML already exist, and some of them are Latex2Html, HEVEA, and TTH.

Latex2Html is a Perl program that translates LATEX source code into
HTML source code. Latex2Html extends LATEX by supporting arbitrary hyper-
text links and symbolic cross-references between evolving remote documents.
Latex2Html replicates the basic structure of a LATEX document as a set of
interconnected HTML files which can be traversed like any hypertext docu-
ment. All of the parts of typical LATEX documents are translated into their
hypertext equivalent, including chapters, sections, formulas, pictures, etc.

TTH translates TEX into HTML. Document structure, using either the
Plain or LATEX macro packages, is also translated and incorporated in the form
of hyperlinks. TTH produces more compact, faster viewing, web documents
than other converters, because it really translates the equations, instead of
converting them to images. The disadvantages of this choice for representing
equations are that it depends on having the symbol font accessible on the
browser, and that the equation layout is not as compact or elegant as LATEX’s.

HEVEA is a translator whose input language is a fairly complete subset
of LATEX and the output language is HTML. HEVEA translates various math
symbols used in LATEX, almost the entire set of math symbols, including the
amssymb ones, are correctly rendered.

A great drawback of all of this LATEX translators is the fact that they do
not include interactivity, which would be a desirable feature for a document
available through the Web. In fact, without interactivity the consultation of
an HTML document is equivalent to turning over the pages of a book, except
it appears on a computer screen.

Recently, a new software called LATEX2WeB has been realized from our
research group. It does not only allows the translation of a document from
LATEX into HTML, but also makes it interactive. This new framework is capa-
ble of creating a Web-based document which includes the links to external
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programs, written in C, C++, MatLAB, Fortran, etc. As a result it is possible
to execute them directly on the Web server. It makes use of LATEX2Html and
of the dynamic PHP language, which is a software package installed on web
servers to provide scripting capabilities. In the following sections is illustrated
this new framework LATEX2WeB and is shown an industrial application of it.

2 LATEX2WEB

The LATEX2WeB has one important charateristic: in a single LATEX source
there are both the source of the traditional printable version of the document
and the tags for the automatic generation of the navigation tools and links
that produce interactivity. By introducing a few command lines into the LATEX
document it is also possible to create a Web-based document with different
learning paths. In this way the students can decide among these different
paths, and therefore they can follow a very personalized mode of learning,
approach a new subject at the elementary level, and gradually add details,
applications and exercises. For this purpose the LATEX2WeB has an embedded
mechanism to define different paths through the same document. To realize
this it is sufficient, as previously mentioned, to insert in the LATEX document,
for each section and subsection, tags which define a pointer to the next relevant
section. To define paths in the TEX document it is sufficient to insert a tag
such as the following:

\nextnode{path-name}{next-section-name}\vspace*{-2pt}

With this new command, LATEX2WeB adds a new path to the HTML doc-
ument every time it encounters a new path-name definition and appends
nodes to the same path. Also the introduction of interactivity can be pro-
duced with few command lines in the LATEX source. Reading these commands,
LATEX2WeB provides an integrated way to add links to external programs
that can be written in C, C++, MatLAB, Fortran, and any other language, in-
cluding shell script. To add a link to an external program it is sufficient to write
in the LATEX document some command lines such as the following example:

\proglink{esegui_paes}{\progarg{depth}{depth}{6}
\progarg{geni}{genes}{20}\progarg{archivio}{archive}{440}
\progarg{iterazioni}{iterations}{50000}\progarg{pm}{pm}{0.03}
\progarg{seme}{seed}{42344}}{gif}

The above example automatically generate the Web form.
This link returns a gif picture as specified in the corresponding proglink

tag, see Figure 1. The arguments can be changed by the user interactively,
and when the RUN button is pressed the computed results are shown, as can
be seen in Fig. 2.

The translation of LATEX documents into HTML is done by means of the
Latex2Html, which is publically available software. This software has many
characteristics of LATEX but moreover it is capable of creating a Web-based
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Fig. 1. Web form generated by LATEX2WeB

Fig. 2. The graphical plot of the Pareto front of a multiobjective optimization
obtained by using a genetic algorithm

document with the same structure as the LATEX document. All the navigation
links are generated automatically on the basis of the initial contents of the
LATEX source. In this way LATEX2WeB creates not only the links that permit
going forwards or backwards, to the beginning or to the end of the document,
but also an applet Java which produces a tree of the entire document, and all
the links to external programs. Only LATEX documents and executable files
are necessary for the Web-maker. For this reason the usage of LATEX2WeB is
very simple.

3 An Industrial Application of LATEX2WEB

LATEX2WeB has been exploited in order to create an interactive manual,
which illustrates new software for the parameter extraction in integrated
circuit design.
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This software is the result of work carried out by the Applied Mathematics
research group at the Department of Mathematics and Computer Science at
University of Catania. The software is aimed at industrial use. This project has
been realized in cooperation with ST-Microelectronics Catania and Consorzio
Catania Ricerche.

The software realized by the applied mathematics research group includes
a software library of programs for the global multiobjective optimization. The
optimization algorithms included in this software library will be used, as pre-
viously mentioned, as a support for the parameter extraction for integrated
circuits design.
Since this optimization software will be employed by analysts and engineers,
the creation of an instruction manual is crucial.
The manual that has been realized with the aid of LATEX2WeB contains the
entire documentation related to the structure as well as the functioning of the
software. A user who wishes to know how to make use of the optimization
software not only has the opportunity to read the manual as a simple book,
but also he can try the optimization algorithms on the remote server, using
the default parameters or changing them by the special forms produced by
LATEX2WeB; in this way any user can choose the algorithm they think is best
for their personal optimization problem, with the optimal parameters, and
they can do it without interfering with the performance of their computer.
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1 Introduction

The European project CoMSON (Coupled Multiscale Simulation and Opti-
mization in Nanoelectronics) is an FP6 Marie Curie RTN (Research and
Training Network) action. This project involves five universities (“Bergische”
University of Wuppertal, “Politehnica” University of Bucharest, University of
Calabria, University of Catania, TU Eindhoven) and three microelectronics
companies, (NXP-Philips, Qimonda, STMicroelectronics).

The key objective of the CoMSON project is to realize an experimental
demonstrator platform (DP) in software code (see Fig. 1), which comprises
coupled simulation of devices, interconnects, circuits, EM fields, and thermal
effects in one single framework [ALI06]. The basis is the development and
validation of appropriate mathematical models to describe the coupling of
different physical effects, their analysis (well-posedness), and related numerical
schemes. The DP will be interfaced with an e-Learning platform (e-LP) for
micro- and nanoelectronics. The aim is the education and training of young
researchers in mathematics applied to technology, both from a theoretical and
a practical viewpoint.

In this paper we describe the main platforms foreseen by the project,
concentrating on the concept design of the CoMSON e-LP.

2 The Demonstrator Platform and the e-Learning
Platform

The main components of DP (see Fig. 1; for more details, see [DEF06]) are
(1) A library of test examples and experimental measurements to be used as
benchmarks for any new method. (2) A set of modules consisting each of a
collection of functions providing the basic functionality of the single domain
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Fig. 1. The demonstrator platform architecture

simulators. (3) A control programming language that enables to connect the
aforementioned functions and form simulation algorithms.

From the CoMSON web server (http://www.comson.org), maintained at
the University of Calabria, is possible to access both to the source code of
DP components, which is developed in a CVS (Concurrent Versions System),
and to the main development and testing system. The DP documentation is,
in part, inside the source code. The rest of the documentation is maintained
in the form of LaTeX documents and is shared through the CVS reposi-
tory. In addition to the CVS server,the DP will be also distributed via live
CD/DVD, containing DP and all the libraries it depends on.

DP provides a natural test bench with state-of-the art models and parame-
ters from different domains rather than academic simplifications, which will
prove very precious for educating and training young researchers by hands-on
experience. For this purpose, this experimental platform will be interfaced
with an e-LP, by means of a visual programming language (VPL).

The e-LP will include the principal aspects of the learning-by-doing
theory, which emphasizes the active role of the student in building his/her
knowledge. The active dimension of learning is realized by means of virtual
laboratories, which allow to visualizing (with animation) and manipulating
interactively, step by step, metaphoric representations of the functions, mod-
ules, and coupling paradigms of DP, for a deeper understanding of them. In
particular, the e-learning environment foresees the development of a new gen-
eration of educational tools (e.g., 3D visualization, intelligent agents, etc.).
This approach is supported by a full integration between virtual tools and
remote simulation by DP technology.

The learning materials [MOR04] such as web pages, Acrobat documents,
Video, animation, and Java file source code will be included within a repos-
itory denominated Learning Content Management System (LCMS) and can
be used freely by the students enrolled in the course. The system will allow
the teachers to create, register, store, assemble, reuse, and publish digital
learning material for delivering by web. Also, the environment will offer dif-
ferent strategies of interaction, such as video-lesson, presentation of contents,
practice, feedback, and self-evaluation methodology.
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3 Innovative e-Learning Methods

The e-LP environment will allow students to interact by using information and
communication technologies. This environment is based on the constructivist
paradigm [PAP80, Tuy83], which asserts that learning environments should
support multiple perspectives or interpretations of reality, knowledge con-
struction, context-rich, experience-based activities [SAA01]. The construc-
tivist paradigm guides learners to conduct and manage their personalized
learning activities, and encourage collaborative and cooperative learning for
critical thinking and problem-solving. The knowledge is constructed through
interaction with the environment in which a process of personal interpreta-
tion of the perceived world and the negotiation of meaning from multiple
perspectives takes place.

In our system, learners and teacher can interact with different technologies,
which support the students in the acquisition of skill on specific topics. The
integration of different tools allows to applying innovative e-learning methods
and technologies based on the following aspects:

– Definition and development of educational plans for all researchers, in-
cluding internal training: using the “CoMSON Virtual Working Place,”
a web-supported documentation and transfer-of-knowledge system

– Adaptation of the DP to training and educational needs: developing suit-
able graphical interfaces which highlight coupling paradigms, important
modeling issues, algorithmic issues, and all other issues analyzed in the
training and educational plans

– Creation of a virtual educational system, which transfers traditional class-
rooms on electronic environment based on remote access for all system
users, direct interaction between students and lecturers/tutors, support to
communication among students

– A continuing education environment supplying information about the
materials and some general documentation of the platform: annual progress
reports on the project, software, on-line lectures, communication tools

These technologies allow to create and to manage courses, and support the
students in the learning process. The teacher can design many events, and can
be asked for additional support.

4 Design of the e-Learning Platform

In order to realize the e-LP, we have adopted a methodology based on a user-
centered approach, starting by the following:

– Identifying the potential users and educational goals of the e-LP
– Designing of the authoring
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– Identifying the principal aims of the system (collaborative and communi-
cation tools) and possible integration with specific software (tools for the
simulation of electronic circuit, etc.)

– Designing preliminary architecture of the e-LP (conceptual model)

To this aim, we have delivered a questionnaire to each responsible of a CoM-
SON node, to gather information on the required e-LP specifications. The
questionnaire consists of six sections: (1) Users of the e-LP; (2) Authoring;
(3) Educational aims of the e-LP; (4) General architecture of the e-LP; (5)
General characteristics of the e-LP; and (6) Standards. Subsequently, the res-
ults of the questionnaire, with the exception of sections (5) and (6), have been
discussed jointly by all partners.

From analysis of the answers to the questionnaire, we have identified the
main components of the e-LP. The functional specification of the e-LP, which
describes the educational contents and the architecture of the environment,
are the following ones:

Users of the e-LP. The final users of the e-LP will be “students” in micro-
electronics, but the system will be usable by microelectronics companies
for training employees. At this stage of the project, e-LP users are CoM-
SON researchers, ERs (Experienced Researchers), and ESRs (Early-Stage
Researchers) as “testing people,” before making the e-LP available to the
more general audience described above.
Authoring. The underlying problems are production of didactic materials; col-
lection of existing materials; standardization of the material (post-production);
definition of standards. All CoMSON partners agree on the following points:
Each contributing professor can decide whether to take, or not, authoring
responsibility. If some contributing professor does not want to take the au-
thoring responsibility, that is fine, but he/she should provide the contributed
material in the correct format. The professors will have the responsibility of
the written contents (even if researchers will collaborate to write them). The
writers will own the copyright of the written documents. CoMSON has to
certificate the quality of the contents of the Learning Units, by university
standards (certification of quality).
Educational aims of the e-LP. The main aims of the e-LP are Fostering res-
earch in Mathematics dedicated to industrial needs; Training to use the main
simulation tools in micro- and nanoelectronics; Design Flow. The users’ fu-
ture professional career will be advanced modelling and simulation expert and
Designer.
General architecture of the e-LP. The e-LP will be a multiplatform, inde-
pendent of the operative system of the final user. The operative system will
be optimized for RedHat/Linux and Windows XP. The system will offer a
friendly graphical user interface (GUI) and will be based on Java language.
The didactic contents should be importable by the main e-learning platform
used by microelectronic companies, according to the standards of IEEE P1484
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and SCORM 1.2 [CHU04]. No specific software is required to be known by
the user in advance. The e-LP should provide for tutorials on simulation steps
(process, device, circuit, EM, optimization), including related software pack-
ages as examples. In general, no prerequisite topics are required to be known
by the user, but each learning unit has its own prerequisites. The full list
of prerequisite topics is modelling of semiconductor devices; introduction to
electrical circuits; electromagnetism; interconnects; Basic numerical analysis;
Numerical methods for DAEs. The educational contents have been split in two
categories, Basic and Advanced contents. Each content will consist of a mini-
mal number of learning units (modules). Each node will provide the modules
on specific topics.

5 Conclusions

In this paper we have presented an e-LP for the European CoMSON project,
which includes a collaborative virtual environment to deliver educational
content. Also, we have described the methodology used to specify users,
authoring, educational aims, and general architecture of e-L. We are currently
implementing a prototype of the e-LP, which includes different technologies in
order to satisfy the needs of different user groups (University and Industry).
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1 Introduction

The well known results of algorithm complexity show the limitations of exact
analysis. That explains popularity of heuristic algorithms. It is well known
that efficiency of heuristics depends on the parameters. Thus we need some
automatic procedures for tuning the parameters of heuristics. That helps to
compare results of different heuristics. This enhance their efficiency, too.

The paper shows how optimization models can be implemented and upda-
ted by graduate students themselves. That reflects the usual procedures of
the open source development. This way students not just learn the underlying
model but obtain the experience in the development of open source software.
The step-by-step improvement of the model and software is at least as impor-
tant as the final result.

Doing this we accumulate some experience in the completely new field of
education when all the information can be easily obtained by internet. The
internet users are filtering and transforming the information to meet their own
objectives, to build their own models. Here creative approach is needed. No
well defined patterns and no well tested models exist yet. The natural way of
research is by computer experimentation. This approach is natural and conve-
nient for scientific collaboration, too. To simplify the task all the algorithms
are implemented as platform independent Java applets or servlets. Readers
can easily verify and apply the results for studies and for real life optimiza-
tion models. All the examples of economic, social, and engineering models
are regarded as optimization problems. Simplified versions of the models are
presented for better understanding.

No “perfect” examples are presented in these websites. Improvement of
“nonperfect” models is useful both for students and for colleagues. The main
objective of this paper is to help establish scientific collaboration in the
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Internet environment with distant colleagues and students by creating an
environment of e-education and scientific collaboration in the fields related to
optimization.

2 Heuristics

In the Internet environment computer simulation is the main tool of exper-
imental research. The well known results of algorithm complexity show the
limitations of exact analysis. That explains popularity of heuristic algorithms.

Investigating heuristic algorithms subjective factors are important. It is
well known that efficiency of heuristics depends on some parameters. Thus the
published results reflects not just the quality of proposed heuristic method but
authors experience, too. Thus we need some automatic procedures for tuning
the parameters of heuristics. That helps comparison of different heuristics.
This enhance their efficiency, too. It is difficult to regard the problem in gen-
eral. Therefore, we investigate a set of relevant examples.

To make this a part of more general e-education environment we need a
theoretical background and some basic software tools first. All the examples
should be united by some general concept. In this paper that is Bayesian
heuristic approach. Therefore, we shall discuss the theory and applications
of the Bayesian heuristic approach. Examples of Bayesian approach to auto-
mated tuning of heuristic parameters will be regarded.

3 Bayesian Heuristic Approach

An initial presentation of the basic ideas is in [1]. Preliminary results of dis-
tance graduate studies are in [2,3]. We regard various examples as optimization
models. That is a general concept. First we investigate heuristic algorithms
that reflects real life conditions. Comparing various heuristics and improving
the efficiency we need specific optimization methods. A convenient theoreti-
cal concept is the Bayesian approach. We apply this approach for automatic
tuning of heuristic parameters and for search of optimal mixtures of heuristics.

The traditional numerical analysis considers optimization algorithms that
guarantee some accuracy for all functions to be optimized. Limiting the max-
imal error requires a computational effort that often increases exponentially
with the size of the problem [4]. An alternative is the average analysis where
the expected error is made as small as possible [5]. The average is taken over
a set of functions to be optimized. The average analysis is called the Bayesian
approach (BA) [6]. Application of BA to optimization of heuristics is called
the Bayesian heuristic approach (BHA) [1].

Possibilities of application are illustrated by several examples designed
for distance graduate studies in the Internet environment. All the algorithms
are implemented as platform independent Java applets or servlets; therefore,
readers can easily verify and apply the results for studies and for real life
heuristic optimization problems.
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4 Improving Expert Heuristics

The main objective of BHA is to improve any given heuristic by defining the
best parameters and the best “mixtures” of different heuristics. The examples
indicate that heuristic decision rules mixed and adapted by BHA often out-
perform the best individual heuristics. In addition, BHA provides almost sure
convergence. However, the final results of BHA depend on the quality of the
specific heuristics, including the expert knowledge. Therefore, the BHA should
be regarded as a tool for enhancing the heuristics but not for replacing them.

Many well known optimization algorithms, such as genetic algorithms [7]
and Tabu search [8], may be regarded as metaheuristics that can be improved
using BHA.

In optimization problems, theory and software are interconnected. The
final results depend on the mathematical theory of optimization and the soft-
ware implementation. Thus we have to regard them both.

Representing different examples as a part of some general set-up we need
basic theoretical and software tools. The examples should be united by some
common framework. We call that GMJ (Global Minimizer by Java). The
Bayesian heuristic approach is a proper theoretical concept. We apply this
approach both for automatic tuning of heuristic parameters and for search of
optimal mixtures of heuristics.

That is just an initial part of the GMJ. Important is to make GMJ open
for development by users. Users contribute their own optimization methods in
addition to the Bayesian ones. User optimization models are included as GMJ
tasks. The results of optimization are represented by GMJ analysis objects.
A minimal set of methods, tasks, and analysis objects is implemented by
default. The rest depends on users.

5 Distance Studies

The video-conferencing is regular: each Friday from 8:00 until 9:30 EET
(EEST). Broadcasting is in Lithuanian if no foreign students are connected.
However, essential part of the web-site is in English so the English broadcasts
are used, too.

The example is a joint Lithuanian-Finnish video-conference:
http://distance.ktu.lt/vips/join.php?sr=242 2006-05-05 record. Figure 1
shows a snapshot of the Finish view. Figure 2 shows a snapshot of the
Lithuanian students.
There is the main web-site: http://pilis.if.ktlu.lt/̃jmockus and five mirror-
sites. The theoretical background and the complete description of the software
is in the section “General Description” of the websites. Software tools are
in the section “Software Systems” Examples of continuous global optimiza-
tion are in “Global Optimization.” The section “Discrete Optimization” is for
examples of discrete optimization and linear and dynamic programming.
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Fig. 1. Distance studies, Finnish view

Fig. 2. Distance studies, Lithuanian students

5.1 Suggestions by Viewers

The significance of the voice channel in theoretically intense presentation is
crucial. One blurred word or few missing syllables will destroy a sentence
and then you loose the story line. A crude rule of thumb estimate is that the
written material/slides will carry 40% of the message, voice track another 40%
and the live picture will carry 20% and support the attention, give socially
amicable atmosphere, etc.

More effort is needed to improve the sound transfer. Perhaps one should
use gadgets familiar from TV-studios, where the speakers have personal micro-
phone attached to clothing or a headset. Also in the receiving side the sound
managements and proper loudspeakers are important.
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Regarding the realtime demos with the software some added illustrative
effects would be useful. The computational performance happens mostly in
the background. When you see (1) the initial values given to the parameters
and then seconds later (2) the output numbers appear, then one would hope
to see some sort of visualization, sequence of intermediate steps or something
else to get a grasp of the computational journey.

6 Conclusions

1. An objective of the paper is to start the scientific collaboration with col-
leagues on similar lines.
2. The growing power of internet presents new problems and opens new
possibilities for distant scientific collaboration and graduate studies. There-
fore, some nontraditional ways for presentation of scientific results should be
defined.
3. The results of optimization show the possibilities of some nontraditional
ways of graduate studies and scientific collaboration by creating and using a
specific environment for e-education.
4. Examples of applications of the Bayesian heuristic approach show the effi-
ciency of automated tuning of heuristics.
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1 Introduction

This paper introduces the principles of creating the web-tool on differential
equations. It can be used to support European Master Program for Mathe-
matics in Industry. Such a Program is working already on the leading partner
universities of ECMI and now the use of e-study as an innovational step is
being discussed.

Differential equations are very important tools of continuous mathematical
modeling and so they are in great importance also in postgraduate program on
Industrial Mathematics of ECMI. Web-based learning is one of the tools of the
broader term “e-learning” with which education might to be delivered. In the
educational system of ECMI this form of learning would have an important
place because of the need of collaboration of academic institutions in this
educational system.

Beside of e-learning the second part of e-study, e-teaching and with those
two parts also the communication between professor and student must be
under consideration. For a profound overview of e-study (e-learning and teach-
ing) see [2].

2 Strategy of e-Study

Many Universities have approved already some strategy of e-study and fixed
the general aims of this. Following ideas are taken from the document [6] and
those are appropriate to be in the basis also for ECMI e-study system. In
2010, e-study must be natural component of education in the University of
Tartu and why not also in the ECMI educational system.

The general aim of the developing of e-study is to create a modern, flexible,
and internationally open educational process supportive of efficient and inde-
pendent learning centered on student. E-study has to become a natural part of
the learning process, ensuring the quality and flexibility of studies, supporting
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involvement of new target groups, and internationalization of the education.
This purpose contributes to the planning of the development of e-study and
international cooperation and will be used to assess todays achievements.
The goals will be implemented in cooperation with all member-Universities of
ECMI educational system.

In order to achieve the established objective, the following strategic tasks
in developing of e-study are useful.

A. Support high-quality studies of high levels of interactivity centered on
the student and involvement of new target groups.

This means development of efficient and high-quality combined models of
e-learning and traditional learning (so called blended learning, see [4]) and
implementation of these models in the studies in cooperation with ECMI
Universities through involvement of lecturers and joint courses. The demand
of high quality brings along the need of a system for ensuring and auditing the
quality of e-learning courses, including quality criteria for e-study, continuous
internal evaluation of the courses, quality signs, etc. Technically new will
be the creating of multimedia objects for independent learning and ensure
their realization with modern solutions of Information and Communications
Technology (ICT). To broaden the circle of users it is useful from the very
beginning to develop and update web-based in-service training courses besides
of students also for various other target groups (specialists working in industry,
teachers, etc.) and ensure active marketing of these courses.

B. Increase the e-teaching competence of the teaching staff, students, and
assistance personnel and develop cooperation models for e-teaching (education
of educators).

This means to introduce to the teaching staff the usage opportunities of
e-learning and e-teaching in the study process. This means also development
of the ICT skills of professors, teachers, tutors, and students to enable their
effective participation in e-study, as well as development of their teaching and
learning skills through training, guidelines, and counseling. Promote acquisi-
tion and use of modern teaching skills and innovation in the study process.
Offer to the teaching staff methodological and technological support in con-
ducting e-study. Develop and implement a cooperation model for the teaching
staff, education technologists, tutors, and programme managers in the devel-
opment and guide of e-study.

C. Ensure high level of infrastructure and support services for e-learning.
To ensure the perfect technical conditions for e-study is the care of each

single university but there are some common recommendations to the par-
ticipating academic organizations. It is desirable to install wireless Internet
connections in each study building and dormitory of the universities. Also it
is reasonable to develop the library as the central e-learning environment
with integrated traditional and e-learning both for individuals and group
work. Ensure the use of functional e-learning environments that offer optimal
tools and support international standards (Instructional Management Sys-
tems IMS [9], Sharable Courseware Object Reference Model SCORM [1,10]).



748 P. Miidla

Develop in cooperation with other ECMI universities a virtual learning por-
tal to support the magister prorgam on Industrial Mathematics, which would
collect all necessary course databases, tutor databases, and e-portfolios of
universities. Develop in cooperation with all ECMI universities a collection
of electronic learning objects and principles for its usage (including copyright
issues, see [7]). Ensure required exchange of data between different informa-
tion systems (course database, e-learning environment, database of learning
objects, tutor database) and develop global authentication system (university
computer network, e learning environment). Ensure the possibility for storing
large video and audio files in a special media server.

Web-based learning systems are generally housed administratively in a
special “distance education” department alongside other at-distance delivery
methods. All such tools seek to serve learners at some distance from their
learning facilitator, these attempt to serve learners interacting with the learn-
ing source at different chronological times. E-education is often referred to as
those delivery modalities that seek to reduce the barriers of time and space
to learning, thus the frequently used phrase “anytime, anywhere learning”.

This might to be the background for creating all web-tools in the frame-
work of introduced by ECMI the postgraduate program in Industrial Mathe-
matics, among this the one on Differential Equations.

3 Design of the Tool on Differential Equations

The final fixed program of the course on differential equations is a topic to
consultations between partner universities and is not considered here. Instead
some more general aspects are discussed. The first thing to do is the choice
of e-study environment. Today many appropriate frameworks are available.
Some of them are commercial, but there are also free learning environments.
Maybe the most famous is Blackboard/WebCT (see [3]), which is a commercial
software, but is highly evaluated and so appropriate for development of web-
tool on Differential Equations. Let us mention also Moodle, a good example
of freeware. It would be reasonable to develop all e-courses for ECMI post-
graduate program in the same environment.

There are several types of e-learning tools: discussion, portfolio, group-
work, learning material, testing, management, community building, etc. For
presentation of differential equations it seems reasonable to use the ideas of
blended learning, which is designed to offer a number of tested ways that in-
tegrate traditional learning methods with methods offered by new technology
(see [4]). Blended learning allow to benefit from good sides of both traditional
and new ways of learning, make innovation in otherwise traditional university
teaching easier and acceptable. Integrating research and practical examples
offers a good bases for initiating change in universities that by definition are
based on research.
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The design of an e-course means in addition to establishing the environ-
ment of the course, adding neccessary tools, objects, and instruments to this
environment and establishing the settings of the course. Naturally the de-
signer must be acquainted with the environment of e-study and aware about
the possibilities of this. In the case of WebCT the course will be introduced
by the Homepage of this, where one can find all neccessary links to the parts
of the e-course.

The structural components of the web-tool on differential equations are
following.

Official documents. ECMI centres are universities that have joined the
network and fulfilled certain criteria in their educational programme. Orien-
tation towards real life applications and industrial problems must be visible
in educational style and contents. The educational principles of ECMI during
some last years allow the partner Universities to keep their specifity and the
Educational Committee does not intervene in the local educational habits.
Various implementations of industrial mathematics programmes are available
at the ECMI partner universities. Although the course on differential equa-
tions is classical in some sense, the corresponding syllabuses are quite similar
in Universities. The students can chose between two lines of study, the first
one is technomathematics and the second one is economathematics (see [5]).
The course of ordinary and partial differential equations belong to the tech-
nomathematical branch (Syllabus, Program, schedule, etc.). The registration
system and rules, individualization of access and assessment, management of
user names and passwords are also the parts of this section of web-tool.

Lecture notes and tutorial texts. Open CourseWare system allows use of
existing and available Web files, but these are usable as additional material.
For ECMI purposes we need to rewrite all lectures to obtain unified notations
and style. The language is English.

Exercises and examples. There exists a Web-tool in Estonian [8]. This is
a good starting point to complete the set of exercises in English, also corre-
sponding tutorial texts and examples for ECMI purposes. However, this tool
must be extended and revised.

Self-training. Very important part of the web-tool because it allows learn-
ing in the suitable time and place. Self-training learning objects are texts,
exercises, audio and video files, examples and case studies, and also the
instruments designed for self-control. Here it is observed the possibility for
interactive communication with server and with corresponding part of evalu-
ation of the results obtained by student after solving training exercises.

Consultation. Here the interaction between student and professor or tutor
is needed. The questions and answers may be transferred in real time con-
ditions, but also via protocols like e-mail and others. In the first case the
videoconference is a good possibility of realization.

Demos, simulations. There are many possibilities to illustrate the course on
differential equations. Various software solutions, demo programs, and exam-
ples are available in the Internet.
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Testing of students. The most responsible part of the tool. Final testing
and evaluation of students’ knowledge after passing the course must be in
maximum objectivity and neutrality. Here unification of requirements through
ECMI is needed.
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Summary. The aim of this study is to test numerically the influence that incom-
pressible flow pulsation has on heat transfer in configurations, such as the backward
facing step, that appear in micro-electro mechanical systems (MEMS) and that are
not very efficient from the thermal point of view. Two control parameters have been
used to increase heat transfer: velocity pulsation frequency and pressure gradient
amplitude at the inlet section. The working fluid is water with temperature depen-
dent viscosity and thermal conductivity. The results obtained show that the time
averaged Nusselt number grows when using appropriate flow pulsations.

1 Introduction

The objective of this study is to assess numerically the influence that flow
pulsation has on heat transfer behind a backward facing step. This configu-
ration appears in practical applications of micro-industrial products such as
micro-motors, micro-cooling devices and power MEMS.

This work deals with the low Reynolds number, unsteady, 2D, incompress-
ible flow regime. Two-dimensional flow is ensured because the onset of three-
dimensional effects appears at higher Reynolds numbers (of the order of 800)
in this type of configuration, Armaly et al. [ADP83], Durst and Pereira [DP88],
Kaiktsis et al. [KKO91], Barkley et al. [BGH02]. Temperature dependent fluid
properties (viscosity and thermal conductivity) have been used in this analysis
so as to simulate realistic configurations. It is to be noted that water viscosity
changes by a factor of 3 in the range from 20 to 80◦C that is typical of cooling
devices.

The use of pulsating flows to enhance heat transfer in several types of con-
figurations has been addressed previously, see, for instance Yu et al. [YLZ04].
The outcome of these previous studies has been somewhat controversial
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Fig. 1. Geometry of the problem

because some authors report heat transfer increase while others report no
enhancement at all. Nevertheless, to our knowledge, there are no previous
studies dealing with the geometry, boundary conditions, and flow regime that
is addressed is this paper.

2 Problem Description

This study focuses on 2D, laminar, incompressible, and unsteady flows. The
cooling fluid (water in this study) enters the channel at 20◦C. Dimensionless
step height is taken to be 0.5. All walls are adiabatic except a portion of length
equal to 5 just downstream of the channel where temperature is prescribed to
be 80◦C. Distances are made dimensionless using the hydraulic diameter of
the inlet channel. Nusselt number is measured in a smaller region of length 2
(see Fig. 1). This length is selected to accommodate the size of the expected
unsteady recirculation region.

Pulsating flow moves from left to right in the computational domain and
the presence of the step induces unsteady recirculation regions that appear
and disappear periodically.

3 Governing Equations and Boundary Conditions

Dimensionless equations that govern the problem under consideration are
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In which variables are made dimensionless by using their upstream values.
The dimensionless viscosity and thermal conductivity are temperature

dependent and follow experimental laws:

µ =
µ′

µ293K
= 1− 5.646(T − 1) + 12.259(T − 1)2 (5)

k =
k′

k293K
= 1 + 0.786(T − 1) + 1.176(T − 1)2 (6)

Boundary conditions are of the unsteady Poiseuille type:
Inlet section:

u(y, t) = u1(y) + u2(y, t) (7)

where
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∂x2
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∂2T

∂x2
= 0 (13)

Walls:

u = v = 0, T = Twall for 5 ≤ x ≤ 10,
∂T

∂n
= 0 for any other wall (14)

Concerning pressure, momentum equations are solved at the wall with one
sided derivatives.

The spatial discretization of the equation has been carried out by using
the finite point formulation developed by the authors of this paper in previous
works (Méndez and Velázquez [MV04]). Time integration used in this work
is the standard semi-implicit pseudo-compressibility approach described by
Tannehil [TAP97]. The cartesian grid used for this numerical study contains
32,051 points with spatial discretization of ∆x = ∆y = 0.2. The dimensionless
time step used in the temporal integration is 2.5e-4.
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4 Results

The local time-dependent Nusselt number is defined as follows:

Nux(t) =
hx(t)Dh

kwall
=

Dh

∆x′
T ′

wall − T ′
wall+1(t

′)
T ′
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∞
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(15)

Where hx(t) is local the convection coefficient. The time-averaged Nusselt
number is defined as

Nuaverage =

t=tc∫
t=0

⎛⎝1
2

x=7∫
x=5

Nux dx

⎞⎠ dt (16)

Three different cases have been computed and results are presented in the
following table. For all the cases Prandtl and average Reynolds number, based
on the inlet channel hydraulic diameter, at the inlet section of the channel are
6.62 and 100, respectively.

The Nusselt number in the steady case is 5.83, so inlet pulsation (Case
A) can increase this figure by a factor of 44%. Figure 2 shows velocity con-
tours and streamlines (Case A) for several equally spaced instants along the
pulsating cycle.

Table 1. Cases studied

ω a2 Nusseltaverage

Case A 0.15 1.50 8.41
Case B 0.15 0.75 7.22
Case C 0.15 0.25 6.05

Fig. 2. Velocity contours and streamlines for Case A
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5 Conclusions

Forcing flow pulsation at the inlet section of a channel containing a backward
facing step produces a heat transfer enhancement. This increase of the rate
of heat exchanged depends on the value of the two control parameters that
are the frequency of the velocity pulsation and amplitude of the oscillating
pressure gradient at the inlet section. For the two cases presented in this work
the maximum Nusselt number obtained is for the bigger amplitude and is 44%
higher that the one obtained in the steady case.

In addition, flow pulsation has a large impact on the flow topology behind
the backward facing step. Especially, it is worth mentioning the appearance
and disappearance of several recirculation regions downstream of the step
that is strongly related to the increase of heat transfer. Remember that in
the steady case a single recirculation region appears after the step and its size
depends exclusively on the Reynolds number. This fact suggests the existence
of a strong coupling between thermal effects and fluid dynamics parameters.
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Summary. The starting jet produced by the discharge of a submerged fluid stream
through a circular orifice is investigated both numerically and experimentally for
moderately large values of the jet Reynolds number, Re. Low-amplitude sinusoidal
perturbations were superimposed to the jet exit velocity to reproduce the effect
of flow perturbations on the trailing jet and leading vortex ring dynamics. While
the trailing jet is strongly modified by flow perturbations, the evolution of the total
circulation, as well as the leading vortex dynamics, remain relatively unaffected, and
thus can be considered as more robust indicators of the dynamics of starting jets.

1 Introduction

The initial development of a jet produced by the discharge of fluid into a
quiescent atmosphere involves the roll-up of the shear layer into the leading
vortex ring followed by a column of fluid subject to shear instabilities [3].
Starting jets can be found in several industrial applications: intake of reactants
into combustion chambers, gas flows produced by sprays in diesel engines, or
cracks in pressurized vessels. Moreover, starting jets also appear in a large
variety of natural flows: tidal jets, animal propulsion (e.g., squids), or the
blood entering the heart. In addition, in laboratory scale, starting jets are
used to generate vortex rings.

Previous studies have addressed the study of transient jets. For example,
Gharib et al. [1] tested a range of piston stroke to diameter ratios (L/D), and
velocity programmes and demonstrated the existence of a ratio (about 4) after
which the vortex ring pinches off from the trailing jet. Rossenfeld et al. [4]
and Zhao et al. [5] found a strong dependence on the velocity profile and a
weak but significant dependence on the velocity program. Iglesias et al. [2]
studied the effect of temperature ratio (Tj/To) in the dynamics of the jet.
In the present paper we analyze the effect of the perturbations generated in
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Fig. 1. Flow visualization at t∗ = 11

the trailing jet on the global characteristic of the leading vortex from the
experimental and numerical point of view.

2 Experimental Set-Up

To perform the experiments, a transient water jet was generated using a
piston–cylinder mechanism [3]. The piston pushed the water inside the cylin-
der through a circular nozzle of exit diameter D=2 cm into a quiescent water
pool. The motion of the piston was controlled by a computer, which allowed us
to test at various jet velocities (Uj= 4.2, 6.3, 8.3, 10.4, and 12.5 cm s−1). The
walls of the tank were made of plexiglas, enabling measurements with non-
intrusive techniques such as digital particle image velocimetry (DPIV) and
laser induced fluorescence (LIF). Figure 1 shows a LIF visualization of a well
developed leading vortex followed by a trailing jet with secondary instabilities
at nondimensional time t∗ = t Uj/D = 11. These secondary vortices develop a
rich dynamics that include vortex pairing and ingestion by the leading vortex.

3 Numerical Simulation

The experimental results were compared with numerical simulations carried
out with a commercial CFD code. The flow was simulated with a finite-volume
discretization of the incompressible axisymmetric Navier–Stokes equations,
which were solved with a segregated solver using a second-order up-wind
scheme to discretize the convective term and a central-differenced second-
order scheme for the diffusion term. A second-order implicit temporal discreti-
zation scheme was used with a staggered control volume method. At time
t = 0 the flow inside the computational domain was assumed to be at rest. A
nonslip condition was imposed at the wall boundary, while the pressure was
specified at the lateral and downstream boundaries. The size of the compu-
tational domain was rmax = 20D and xmax = 40D. An adaptive grid was
used to follow the jet evolution: the initial size of the grid was around 30,000
cells. In addition a grid sensitivity analysis was performed to ensure that the
grid size was appropriate for this problem. Three different velocity programes
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were specified at the inlet to show their effect on the trailing jet and vortex
head. First, the piston was programmed to give an (uniform) impulsive ve-
locity for t > 0 as given by (1). Second, an accelerated model, given by (2),
was proposed with an initial moderate acceleration, until it reached constant
speed at t = T . Finally, we superimposed an impulsive motion and an oscil-
latory perturbation of small amplitude (3), only 1% of the maximum velocity
and a dimensionless frequency of 0.5.

u(t) = Uj (1)

u(t) =
{
Ujt/T t < T

Uj t > T
(2)

u(t) = Uj(1 + δ cosωt) (3)

4 Analysis

The most relevant features of the transient jet obtained experimentally (such
as the location of the vortex core, the stagnation point, or the total circulation)
were compared with the results of the numerical simulations. Figure 2 shows
the vorticity contours at t∗ = 11 for the accelerated and the forced case.
Comparing the numerical results with the flow visualization shown in Fig. 1 it
can be observed that in the accelerated case the vortex front location compares
well with the experimental value. However, only the forced case is able to
reproduce appropriately the trailing secondary vortices.

To describe the time evolution of the leading stagnation point (or vortex
front), its axial position, xf , was optically determined from the experiments,
while it was defined as the point of maximum pressure along the axis in
the numerical simulations. Figure 3 shows the comparisons between the three
numerical models and the experiments. The accelerated case compares the
best since the piston started with an initial acceleration as well. The position
of the stagnation point given by the impulsive and forced cases are nearly
the same during the initial instants. However, for longer times the stagnation
point obtained for the forced case is ahead of that given by the impulsive one
due to the pairing between the leading vortex and the trailing vortices.
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Fig. 2. Vorticity contours at t∗ = 11 for the impulsive (left), accelerated (center),
and pulsed (right) cases
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Fig. 3. Nondimensional position of the stagnation point as a function of time. Solid
line indicates the impulsive case, dotted line represents the forced case, and dashed
line corresponds to the accelerated case. The experiments are shown with symbols
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Other important features of the experimentally generated transient jets
were also identified, i.e., the position of the leading vortex. For example,
the axial position was calculated using two integral magnitudes, Qr =∫ rmax

0
ur r dr and Jx =

∫ rmax

0
u2
x r dr, that are zero and maximum at the vortex

location, respectively and where ur and ux are the radial and axial veloci-
ties. Similarly, the radial location was calculated with two additional magni-
tudes that are both zero at the radial vortex center, QR

r =
∫ xv

xv+Li
ur dx and

JR
x =

∫ xv−Li

xv+Li
u2
x dx, where xv is the axial vortex position and Li = 0.75D. The

vortex position was calculated numerically as the point of minimum pressure.
Figure 4 shows the axial vortex position, xv, and the vortex diameter, Dv,

as a function of time. It can be observed that, as in the front location, the
accelerated case provides the best comparison with the experiments in terms
of the axial position. However, the vortex diameter of the three numerical
simulations compares fairly well with the experimental data. The impulsive
and accelerated models show a monotonic increase of the vortex diameter,
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Fig. 5. Temporal evolution of the total circulation. Legend as in Fig. 3

while the vortex diameter given by the forced case starts increasing with time
until the vortex pairing between the leading vortex and a pair of vortices from
the trailing jet. The total circulation of the starting jet is calculated through
the integral of the vorticity in the whole domain, Γ =

∫
Σ

� ∧ u(r, x) dσ, see
Figure 5. The values for the forced and impulsive simulations are coincident
and again the accelerated model compares the best with the experiments.

5 Discussion

The computations for the impulsive velocity program show a time lag between
the experimental values and the numerical simulation, and no vortices in the
trailing jet appear. The effect of the secondary instabilities on the axial vortex
position, stagnation point, or total circulation lacks of importance compared
to the effect of the initial acceleration; however, the radial vortex position
seems to be affected by these vortices specially after a pairing.
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Summary. This chapter is concerned with the modelling and computer simulation
of a dynamic failure development in the thin-walled automotive structural compo-
nents made from the laminated polymer composite materials reinforced with fabric
layers. The scope of the work includes geometrically non-linear numerical structural
analysis coupled with the progressive damage material modelling and applicable to
structures with complex geometries. Impact crash simulation of a scaled-down auto-
motive composite spare-wheel compartment has been performed using the explicit
finite element code (PAM-CRASH). Simulation results are compared to experimen-
tally recorded data, and the predicted deformation states and failure patterns show
good agreement with the experimental data.

1 Introduction

The progressive damage modelling is required to predict the material and
structural response up to the point of ultimate failure. The non-linear explicit
finite element analysis code, PAM-CRASH, is used in this work for simulation
of the dynamic structural response of thin-walled composite components to
a crushing load. Progressive damage modelling of fibre composite materials
is integrated into mathematical models using continuum damage mechanics.
The present work aims to model, simulate and predict the dynamic response
of the composite structural components with complex shape and geometry to
the crushing loads.

2 Progressive Damage Modelling

The bi-phase model is a heterogeneous material model adapted to unidirec-
tional continuous fibre reinforced composites or composite fabrics. Damage
law for the bi-phase model is implemented by a reduction in stiffness C(d) =
C0 × (1 − d), where C is the instantaneous stiffness matrix, C0 is the initial
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undamaged stiffness matrix and d is a dimensionless scalar damage parameter,
which is a function of strain. Damage function is separated into volumetric and
shear components d(ε) = dv(εv) + ds(εs), where dv is the volumetric damage
as a function of volumetric equivalent strain and ds is a shear induced damage
as a function of equivalent shear strain [2]. The damage functions are deter-
mined by choosing the critical damage points from the relevant stress–strain
diagram [2].

3 Structural Prototype and Model Development

The geometry of the structural prototype is selected to be representative of an
automotive compartment typically used to house a spare wheel 1. The lami-
nated demonstrator is constructed using 8 layers of 290 g m−2 twill weave glass
fabric in an Ampreg 20 epoxy resin system. With each fabric layer represented
according to its warp direction, the following stacking sequences were obtained
during prototype manufacture (orientation code as per ASTM D6507):

FLATS(φ1) : [0]8 SIDEWALL(φ2) : [045]2S

The prototypes were manufactured using a hot vacuum bagging process
together with hand layup of resin and fabric patterns [3]. A four node quadri-
lateral shell element has been employed for modelling of the prototype geome-
try. Application of the bi-phase model for shell elements in the PAM-CRASH
code corresponds to Material Type 130, which is a multi-layered material
tailored for the description of orthotropic laminates. In order to represent the
experiment, the velocity in the x-direction (see Fig. 1) of the moving edge is
set to equal to the velocity of loading for the experimental case concerned.

4 Prototype Testing and Model Verification

Testing of the laminated prototype was completed using an MTS servo hyd-
raulic dynamic testing rig. A comparison of the real, schematic and simulated
failure patterns is provided in Fig. 2. The real failure pattern (Fig. 2a) is a

y

x
– Fibre orientation
    angle for flats 

(a) (b)

– Fibre orientation
 angle for sidewall

f1

f2

Fig. 1. Definitions of fibre orientation for flats (a) and sidewall (b)
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(a) (b) (c)

Fig. 2. Comparison of the prototype failure patterns: (a) real, (b) schematic, (c)
simulated

photographic record of the component after testing and shows the location
of the major cracks and fold lines that develop during the crushing process.
The schematic failure pattern (Fig. 2b) is a representation of the real failure
pattern, where the three major cracks (numbered 1–3) that have been ob-
served during the crushing experiment are indicated. The areas of damage
reported from the simulation that correspond to the major failures observed
from testing are numbered accordingly (Fig. 2c). The comparison of the real,
schematic and simulated failure patterns shows the areas of damage reported
from simulation that correspond to failure in the real component.

5 Simulation of Impact Loading

Simulation of the laminated prototype’s response to a case of impact load-
ing has been undertaken in order to demonstrate the capability of the model
to simulate the crash response of laminated structures. For the crash simu-
lation, an added mass of 1,000 kg is applied and distributed over the nodes
that make up the moving end of the component. The nodes with added mass
are then assigned an initial velocity in the x-axis direction (see Fig. 1) and
the two cases investigated: for an initial velocity of 1 m s−1 and an initial
velocity of 5 m s−1, respectively. For implementation of the prototype crash
models, alternative boundary conditions are applied to the FE model previ-
ously developed for simulation of the laminated component’s response to a
constant velocity crushing load. One edge of the structure is fixed and has
all nodal degrees of freedom constrained and the row of nodes at the inside
edge of the fixed end are defined as a section for reporting the reaction force.
The moving end is allowed to translate in the x-direction and has all other
degrees of freedom fixed. Loading applied to the moving end consists of an
added mass of 1,000 kg, distributed over the constrained nodes, and an initial



766 E.V. Morozov and V.A. Thomson

Fig. 3. Simulated crash response for the laminated component (1,000 kg added mass
impact)

velocity of either 1 or 5 m s−1, depending on the case being investigated, is
applied to the same nodes. The results obtained from the crash simulation
in the form of a force–displacement plot (Fig. 3) show how an increase in the
initial velocity results in an increase in the peak load reached, as well as more
noticeable oscillations in the force displacement response. New deformation
modes are predicted for the crash simulation of the laminated prototype (see
Fig. 3) when compared to the simulated deformation obtained for lower veloc-
ity loading (Fig. 4), accounting for the significantly varied load–displacement
behaviour. For the crash simulation at 1 m s−1, complete folding of the base
plate occurs, which accounts for the abrupt drop in load carrying capability
between 8 and 10 mm of displacement. For the 5 m s−1 crash, a high peak load
is predicted (just over 14 kN) and folding at the sides of the cylindrical shell,
as well as large oscillations in the load transmitted to the fixed support, are
predicted.
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Fig. 4. Comparison of deformation modes with increased loading rate

6 Conclusions

Modelling the crush response of a laminated structural component with
complex geometry has been undertaken using the bi-phase material model
included with the PAM-CRASH analysis tool. Development of the modelling
methodology has been completed to a level that results in simulated deforma-
tion states showing good resemblance to the real deformation states recorded
during the crushing experiment. Critical regions of failure have been predicted
effectively as indicated by the onset and further development of damage in
those elements of the discretised structure where failure occurs in the real
component. Simulation of the demonstrator’s response to the impact loading
indicates alternative deformation modes and failure patterns when compared
to deformation modes and failure patterns observed through simulation of the
demonstrator’s response to lower velocity loading.
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1 Introduction

The interaction between premixed flames and acoustic perturbations of the
gas velocity leads to combustion noise. In order to design noise-free combus-
tion devices, one needs to understand the detailed mechanism by which the
combustion noise is produced. The conical Bunsen flame is an excellent model
for theoretical studies of the combustion noise.

The response of a Bunsen flame to velocity perturbations is evaluated in
terms of the flame transfer function (TF), which is the ratio of the heat release
rate perturbation to velocity perturbation in the frequency domain. The main
features of the flame dynamics can be described with the G-equation model.
In this model, the flame is treated as a surface (flame front) that separates
the burnt from the unburnt gas. The dynamics of the flame front is then des-
cribed by the G-equation, whose solution gives the instantaneous position of
the flame front. The perturbation of the heat release rate can be considered
proportional with the area of the flame. As a consequence, the first step in
evaluating the flame TF involves computing the area of the flame. This req-
uires the solution of the G-equation. To overcome the difficulties arising from
the G-equation being nonlinear, a set of constraints can be used to derive a
linear form of the G-equation. For example, linear G-equations were obtained
by assuming very long flames parallel with the stream lines [Fleifil96], or that
the laminar burning velocity has a constant direction, normal to a stationary
position of the flame [DDC00]. These linear models (Fleifil96, DDC00) predict
the correct behavior of the magnitude of the flame TF (low pass filter), but fail
in describing the phase of the TF. Unlike the phase of the measured TF which
increases linearly with the increase in the excitation frequency, the phase of
the theoretical TF saturates to a level of π/2 (DDC00).

To understand the origin of the discrepancy between experiments and the-
ory in describing the behavior of the phase TF, here we extend the kinematic
models proposed previously in [Fleifil96,DDC00]. Here we consider flames that
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have an arbitrary cone angle and a burning velocity whose direction relative
to the stationary flame front position is allowed to change.

2 Flame Model

The flame front is described by the G0 level set of some combustion variable,
i.e., G(r, z, t) = G0, where r and z are the axial and the radial coordinates,
respectively, and t is time. The flame front moves under the action of the per-
turbed gas velocity v and of the laminar burning velocity SL, which is assumed
to be constant. Assuming that the flame front is not locally vertical and that
the flame and the flame front oscillations are axisymmetric implies that the
flame axial location above the burner rim, z, is a single-valued function of the
time and radial coordinate, i.e., z = ζ(r, t). The movement of the flame front
is given by the following kinematic relation:

∂ζ(r, t)
∂t

+ u
∂ζ(r, t)
∂r

− v + SL

√
1 +
(
∂ζ(r, t)
∂r

)2

= 0, (1)

where u(r, z, t) and v(r, z, t) are the radial and the axial components of the
gas velocity, respectively. For the mean gas velocity we assume as in [Fleifil96]
a Poiseuille profile, i.e.,

u(r) = 0, v(r) = v0

(
1−
(
r

R

)2)
, (2)

where v0 > 0 and R are the maximum velocity at the centerline and the radius
of the duct, respectively. The perturbation of the gas velocity is modeled by

u′(r, t) = 0, v′(r, t) = εv0 sin(ωt), (3)

where ω and ε are the frequency and the amplitude of the velocity oscillation,
respectively. Here we consider as in [DDC00,Fleifil96] that the amplitude ε is
small. To find the response of the flame to velocity perturbations, (1) needs
to be solved. Equation (1) cannot be solved analytically for ε �= 0. Instead,
we derive a system of linear advection equations which can be easily solved
numerically by applying the following asymptotic expansion for ζ:

ζ(r, t) ≈ ζ0(r, t) + εζ1(r, t) + ε2ζ2(r, t) + · · · . (4)

The G-equation model assumes that the flame is attached to the burner rim
(r = R), i.e., ζ(R, t) = 0. In reality the flame is not attached, but there is
a stand off distance between the flame and the burner rim. The attachment
of the flame implies that at the point r = R the slope at the flame front is
given by

SL
∂ζ

∂r
(R, t) = −

√
v(R, t)2 − S2

L. (5)
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Then, the attachment of the flame at the burner rim r = R can be imposed
only if the square of the gas velocity is larger than the square of the burning
velocity, requiring the fulfillment of the condition v(R, t)2 − S2

L ≥ 0. In our
case this latter condition implies

(v0ε sin(ωt)− SL)(v0ε sin(ωt) + SL) ≥ 0. (6)

Condition (6) cannot be satisfied for an ε independent of t. Thus, we compute
the maximum interval [0, rε(t)] on which condition v(r, t)2−S2

L ≥ 0 is fulfilled
and thus the slope at the flame front is well defined. To avoid the difficulties
of working on the time dependent interval [0, rε(t)] we restrict the domain to
[0, δε] where,

δε = R

√
1− ε− SL

v0
, (7)

under the condition ε < (v0 − SL)/v0. In the following we will derive the
analytical solution of (1) by imposing ζ(δε, t) = 0.

3 Location of the Flame Front

The following dimensionless variables are introduced, r∗ := r/R, t∗ := t/τ ,
z∗ := z/R, τ := R/SL, ω∗ = ωR/SL, and v̂ := v0/SL. Substituting expression
(4) into (1) and collecting terms of the same order leads to a system of equa-
tions. The small amplitude assumption allows us to take into consideration
only the leading and the first order equations resulting in the following system
(we omitted the ∗)

∂ζ0
∂t
− v̂(1− r2) +

√(
∂ζ0
∂r

)2

+ 1 = 0, (8)

∂ζ1
∂t
−
√
v̂2(1− r2)2 − 1
v̂(1− r2)

∂ζ1
∂r

= v̂ sin(ωt). (9)

To simplify the calculations, we assume that the perturbation in the gas velo-
city is introduced after the stabilization of the flame above the burner rim,
so that the leading order term in (4) can be replaced by the steady solution
of (8). The steady solution ζ0 can be expressed in terms of elliptic integrals
[BMTB05]. The expression for ζ0 is rather lengthy and will be omitted here.
Equation (9) along with the boundary condition, ζ1(δε) = 0, and the initial
condition, ζ1(r, 0) = 0, 0 ≤ r ≤ δε, is integrated using the Laplace transform
to yield

ζ1(r, t) =
v̂

ω

(
cos(ω(−B(δε) +B(r) + t))− cos(ωt)

)
, (10)
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where
B(r) :=

1√
v̂
√
v̂ + 1

((v̂ + 1)E (θ(r), χ)− F (θ(r), χ)) . (11)

Here

θ(r) := arcsin

(
r
√
v̂√

v̂ − 1

)
, χ :=

√
v̂ − 1
v̂ + 1

, (12)

and E and F are the elliptic integrals of first and second kind, respectively
(see [BF71]). The first order solution ζ1 is similar to the first order solution ζf

derived in [Fleifil96] after transforming (1) into a linear equation by approxi-
mating the square root term with −∂ζ/∂r. This leads to (in our notation)

ζf1 =
v̂

ω

(
cos(ω(−Bf (1) +Bf (r) + t))− cos(ωt)

)
, (13)

where Bf (r) = r.
The difference between the functions B and Bf above leads to differences

between the TF obtained with our model as compared to the simpler models
from [Fleifil96,DDC00].B is a nonlinear function that increases almost linearly
with increasing r, and a simple analysis show that

max
r∈[0,δε]

|B(r)−Bf (r)| < |B(δε)− δε| < |B(δ)− δ|, (14)

where δ =
√

1− 1/v̂. Using Lemma 6.1 from [BMTB05] we can prove that
B(δ) ∈ [1, 1.1107]. The parameter v̂ is typically in the interval v̂ ∈ [2, 10],
which implies that the difference |B(r) − Bf (r)| is small, and hence a small
improvement in the flame TF is to be expected. The difference |B(r)−Bf (r)|
reaches its maximum at the boundary where the flame is attached.

4 Transfer Function

Assuming that the heat release rate is proportional with the area of the flame
the transfer function of the flame H(ω) is given by

H(ω) =
A′

A0

v0
v′

(ω), (15)

where A0 and A′ are the mean value of the flame area and its variation, res-
pectively. The area is computed by evaluating numerically with the composite
trapezoid rule the following expression:

A(t) = 2π
∫ δε

0

r

√(
∂ζ

∂r

)2

+ 1 dr. (16)
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Fig. 1. The phase difference (left) and the magnitude (right) of the transfer function
as function of dimensionless frequency. ∗ our model; solidlines model from [Fleifil96].
The following parameters were used: v̂ = 8, ε=0.1, δε = 0.8803

The TF derived with our model is depicted in Fig. 1 along with the TF derived
in [Fleifil96]. In agreement with experiments, in both models the magnitude
of the TF has a low pass filter behavior. The phase of both models agrees well
with the experiments up to the dimensionless frequency ω = 6, [DDC00], but
the linear increase of the phase with the increase of the excitation frequency
is not captured. Nevertheless, due to the difference |B(r) − Bf (r)| at the
boundary, our model gives a value for the saturation of the flame TF that is
slightly larger than π/2. The better description of the flame TF provided by
our model suggests that the discrepancy between the theoretical models and
the experiments might reside in the boundary conditions that force the flame
attachment.

5 Conclusion

Here we extended the previous flame kinematic models ([Fleifil96, DDC00])
by addressing flames with arbitrary cone angles, and a burning velocity with
variable direction relative to the stationary flame front. An analytic expression
of the perturbed flame front position was derived in terms of elliptic integrals.
Compared to the previous models [Fleifil96], the model proposed here imp-
roves the description of the front close to the boundary, and consequently, of
the phase behavior. This suggests that better flame models should account
for more realistic boundary conditions.
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1 Introduction

Thin-film flows occur in a variety of physical contexts including, for example,
industry, biology and nature, and have been the subject of considerable theo-
retical research. (See, for example, the review by Oron, Davis and Bankoff [4].)
In particular, there are several practically important situations in which an
external airflow has a significant effect on the behaviour of a film of fluid, and
consequently there has been considerable theoretical and numerical work done
to try to understand better the various flows that can occur. (See, for exam-
ple, the studies by King and Tuck [2] and Villegas-Dı́az, Power and Riley [6].)
The flow of a rivulet on a planar substrate subject to a shear stress at its
free surface has been investigated by several authors, notably Myers, Liang
and Wetton [3], Saber and El-Genk [5], and Wilson and Duffy [9]. All of these
works concern a non-perfectly wetting fluid; the flow of a rivulet of a per-
fectly wetting fluid in the absence of a shear stress at its free surface has been
treated by Alekseenko, Geshev and Kuibin [1], and by Wilson and Duffy [7,8].
In the present short paper we use the lubrication approximation to obtain a
complete description of the steady unidirectional flow of a thin rivulet of a
perfectly wetting fluid on an inclined substrate subject to a prescribed uniform
longitudinal shear stress at its free surface.

2 Problem Formulation

Consider the steady unidirectional flow of a thin rivulet with constant semi-
width a and constant volume flux Q of a perfectly wetting fluid subject to a
prescribed uniform longitudinal shear stress τ at its free surface on a planar
substrate inclined at an angle α to the horizontal. Cartesian axes Oxyz are
chosen with the x-axis down the slope, the y-axis parallel to the substrate
z = 0, and the z-axis normal to the substrate. The fluid is assumed to be
Newtonian with constant density ρ, viscosity µ, and surface tension γ. The
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velocity u = u(y, z)i and pressure p = p(x, y, z) of the fluid are governed by
the familiar mass-conservation and Navier–Stokes equations subject to the
usual normal and tangential stress balances and the kinematic condition at
the free surface z = h(y), and no slip at the substrate z = 0. Since the fluid is
perfectly wetting the contact angle is zero at the contact lines y = ±a (where,
by definition, the rivulet has zero thickness).

We consider a thin rivulet with a small transverse aspect ratio ε 
 1; in
this case it is appropriate to non-dimensionalise y and a with l, z and h with
εl, u with U = ρgε2l2/µ, Q with εl2U = ρgε3l4/µ, p − p∞ and τ with ρgεl,
where l = (γ/ρg)1/2 is the capillary length, g is acceleration due to gravity,
and p∞ is the uniform atmospheric pressure.

Since the flow is unidirectional, the mass-conservation equation and kine-
matic boundary condition are satisfied identically, and at leading order in ε
the Navier–Stokes equation reduces to

0 = sinα+ uzz, 0 = −py, 0 = −pz − cosα, (1)

which can readily be solved subject to boundary conditions of no slip at the
substrate, u = 0 on z = 0, balances of normal and tangential stress at the
free surface, p = −h′′ and uz = τ on z = h, and appropriate conditions at
the contact lines, h = 0 and h′ = 0 at y = ±a, where the prime denotes
differentiation with respect to argument, to give the solution

u =
sinα

2
(2h− z)z + τz, p = (h− z) cosα− h′′. (2)

Substituting the solution for p into the second equation in (1) yields a third-
order ordinary differential equation for the free surface profile h, namely (h′′−
cosα h)′ = 0 to be solved subject to h = h′ = 0 at y = ±a. This elementary
problem was solved by Wilson and Duffy [7] who showed that there is no
solution for h when 0 ≤ α ≤ π/2 (i.e. no solution corresponding to a sessile
rivulet or a rivulet on a vertical substrate), but that there is a solution when
π/2 < α ≤ π (corresponding to a pendent rivulet), namely

a =
π

m
, h =

hm

2
(1 + cosmy) , (3)

where m =
√
| cosα| and hm = h(0) is the maximum height of the rivulet.

The volume flux down the rivulet Q is given by

Q =
∫ +a

−a

∫ h

0

u dz dy =
π

24m
(5 sinα hm + 9τ)h2

m. (4)

If the flux takes the prescribed value Q = Q̄, then (4) determines the appro-
priate value(s) of hm. Once hm is known the rivulet solution given by (2) and
(3) is completely determined. In the special case of no prescribed shear stress,
τ = 0, and in the limit of large prescribed shear stress, |τ | → ∞, we obtain
the simple explicit solutions
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Fig. 1. Sketch of Q as a function of hm

for τ > 0, τ = 0 and τ < 0, showing
when the different types of flow pattern
occur
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Fig. 2. Sketch of the five different types
of flow pattern. Regions of downward
flow are shaded and regions of upward
flow are unshaded

hm =
(

24mQ̄
5π sinα

)1/3

and hm =
(

8mQ̄
3πτ

)1/2

, (5)

respectively.

3 Rivulet Solutions

Figure 1 shows a sketch of Q given by (4) as a function of hm for τ > 0, τ = 0
and τ < 0. For τ ≥ 0,Q is a monotonically increasing function of hm tending to
infinity as hm →∞. In contrast, for τ < 0, Q initially decreases monotonically
to a minimum value Q = Qmin, where Qmin = 9πτ3/50m sin2 α (< 0), at hm =
hmin = −6τ/5 sinα, before increasing monotonically through the value Q = 0
at hm = hm0, where hm0 = −9τ/5 sinα, and eventually tending to infinity as
hm →∞. The number of solutions for hm thus depends on the sign of τ and
the value of Q̄. When τ ≥ 0, there is one solution when Q̄ > 0, but there are
no solutions when Q̄ ≤ 0. When τ < 0, there is one solution when Q̄ ≥ 0 with
hm ≥ hm0 and there are two solutions when Qmin < Q̄ < 0, a “thin” solution
with 0 < hm < hmin and a “thick” solution with hmin < hm < hm0; when
Q̄ = Qmin there is a single solution hm = hmin, and when Q̄ < Qmin there are
no solutions.

4 Classification of Flow Patterns

Figure 2 shows a sketch of the five different types of cross-sectional flow pat-
terns that can occur; regions of downward flow (i.e. u > 0) are shaded and
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regions of upward flow (i.e. u < 0) are unshaded. When τ > 0 the prescribed
shear stress acts down the substrate in cooperation with the effect of gravity.
As a result, the flow is downward throughout the rivulet (we refer to this flow
pattern as type I; see Fig. 2a). When τ < 0, the prescribed shear stress acts up
the substrate in opposition to the effect of gravity, which leads to more inter-
esting behaviour than in the case τ ≥ 0. In particular, we find that although
the velocity can be downward within the rivulet, it is always upward near
the contact lines. When hm > hIII = −2τ/ sinα there is both upward and
downward flow on the free surface (type II, Fig. 2b). When hm = hIII the flow
is upward on the free surface except at y = 0 and z = hm, where the velocity
is zero (type III, Fig. 2c). When hV < hm < hIII, where hV = −τ/ sinα, the
flow is always upward on the free surface (type IV, Fig. 2d) but is downward
within part of the rivulet. Finally, when hm ≤ hV the effect of the prescribed
shear stress dominates that of gravity and the flow is upward throughout the
rivulet (type V, Fig. 2e). Figure 1 summarises when the different types of flow
pattern occur.

5 Solutions for Prescribed τ and Varying α

Figure 3 shows a plot of hm as a function of α/π when τ = 1 and is typical of
all such plots for τ > 0. When Q̄ > 0 there is a single solution for hm for all
π/2 < α ≤ π and all solutions are of type I. Figure 4 shows a plot of hm as a
function of α/π when τ = −1 and is typical of all such plots for τ < 0. When
Q̄ ≥ 0 there is a single solution for hm (≥ hm0) for all π/2 < α ≤ π. However,
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Fig. 3. Plot of hm as a function of α/π
when τ = 1 for Q̄ = 1, . . . , 5. Note that
all solutions are of type I
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when Q̄ < 0 there can be no, one or two solution(s) for hm (< hm0). When
Qc < Q̄ < 0, where Qc = 9π51/4τ3/40 � 1.0570τ3 (< 0), there is a thick and
a thin solution for all π/2 < α ≤ π. When Q̄ = Qc these solutions coincide
at α = αc = π − tan−1 2 � 0.6476π and hm = hmc = hmin(αc) = −3τ/

√
5 �

−1.3416τ , while for Q̄ < Qc there are two disconnected branches of solutions,
each consisting of a thick and a thin solution which coincide on the curve
hm = hmin. Figure 4 also shows how the curves hm = hIII and hm = hV divide
the α–hm plane into regions in which different types of flow pattern occur.

6 Conclusions

We have obtained a complete description of the steady unidirectional flow of
a thin rivulet of a perfectly wetting fluid on an inclined substrate subject to
a prescribed uniform longitudinal shear stress at its free surface. In ongoing
work we are analysing the stability of such a rivulet to small perturbations and
investigating when it is energetically favourable for it to split into sub-rivulets.
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1 Introduction

The evaporation of liquid droplets is of fundamental importance to industry,
with a vast number of applications including ink-jet printing, spray cool-
ing and DNA mapping, and has been the subject of considerable theoretical
and experimental research in recent years. Significant recent papers include
those by Deegan [1], Deegan et al. [2], Hu and Larson [3], Poulard et al. [4],
Sultan et al. [5], and Shahidzadeh-Bonn et al. [6].

New experiments that we have conducted recently using a variety of liq-
uids and substrates show that the thermal conductivity of the substrate can
have a significant effect on the total evaporation rate, behaviour not captured
by the widely used theoretical model of Deegan et al. [2] (hereafter referred
to simply as “the Deegan model” for brevity). In this short paper a math-
ematical model for the quasi-steady diffusion-limited evaporation of a thin
axisymmetric sessile droplet of liquid with a pinned contact line is formulated
and solved. This model generalises the Deegan model to include the effect
of evaporative cooling on the concentration of vapour at the free surface of
the droplet. The results presented here show that the predictions of this new
model are in good qualitative, and in some cases also quantitative, agreement
with the new experimental results.

2 Mathematical Model

Consider the quasi-steady diffusion-limited evaporation of a thin axisymmet-
ric sessile droplet of Newtonian fluid with constant viscosity, density ρ, surface
tension, and thermal conductivity k on a thin horizontal substrate of constant
thickness hs with constant thermal conductivity ks. Referred to polar coordi-
nates (r, φ, z) with origin on the substrate at the centre of the droplet with
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R

Fig. 1. Geometry of the problem

the z axis vertically upwards, the shape of the free surface of the droplet is
denoted by z = h(r, t), the upper surface of the substrate by z = 0, and the
lower surface of the substrate by z = −hs, as shown in Fig. 1.

Motivated by the experimental results we assume that the contact line
of the droplet is pinned by surface roughness (or other) effects so that the
droplet radius R remains constant, and that the droplet is sufficiently small
that surface tension effects dominate gravitational effects and hence that the
droplet has the simple quasi-static shape h = θ(R2 − r2)/2R with volume
V = V (t) and contact angle θ = θ(t) related by θ = 4V/πR3. The total
evaporation rate is given by

ρ
dV
dt

= −2π
∫ R

0

J(r, t) r dr, (1)

where J = J(r, t) (>0) is the local evaporative mass flux from the droplet.
The atmosphere surrounding the droplet and the substrate is assumed to

be at a constant ambient temperature Ta. Since both the droplet and the
substrate are thin, their temperatures, denoted by T = T (r, z, t) and T s =
T s(r, z, t), satisfy ∂2T/∂z2 = 0 and ∂2T s/∂z2 = 0, respectively. The mass flux
from the droplet satisfies the local energy balance LJ = −k∂T/∂z on z = h for
z < R, where L is the latent heat of vaporisation. Hence, assuming that both
the temperature and the heat flux are continuous between the droplet and the
wetted part of the substrate, and that the lower surface of the substrate is at
the ambient temperature Ta, we have

T = Ta − LJ
(
z

k
+
hs

ks

)
, T s = Ta −

LJ

ks
(z + hs), (2)

showing clearly the evaporative cooling of both the droplet and the substrate.
Assuming that transport of vapour in the atmosphere is solely by diffu-

sion, the concentration of vapour, denoted by c = c(r, z, t), satisfies Laplace’s
equation, ∇2c = 0. At the free surface of the droplet we assume that the
atmosphere is saturated with vapour and hence, since the droplet is thin, that
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c = csat(T ) on z = 0 for r < R, where the saturation value of the concentration
csat = csat(T ) is assumed to be a linearly increasing function of temperature
given by

csat(T ) = csat(Ta) +
dcsat
dT

∣∣∣∣
T=Ta

(T − Ta). (3)

On the dry part of the substrate there is no mass flux, i.e. ∂c/∂z = 0 on
z = 0 for r > R, and far from the droplet the concentration of vapour ap-
proaches its ambient value, i.e. for acetone and methanol c → 0 while for
water c→ Hcsat(Ta), where H is the relative humidity of the atmosphere, as
(r2 + z2)1/2 → ∞. Once c is known the mass flux from the droplet is given
by J = −D∂c/∂z on z = 0 for r < R, where D is the diffusion coefficient of
vapour in the atmosphere.

In the special case when dcsat/dT |T=Ta is negligible, the saturation concen-
tration constant and the Deegan model is recovered. In this case the problem
for c is independent of the temperature, and the solution for c (not repeated
here for brevity) is well known and yields

J =
2D(1−H)csat(Ta)

π
√
R2 − r2

for r < R (4)

and hence
ρ
dV
dt

= −4RD(1−H)csat(Ta), (5)

and so, in particular, the evaporation rate is proportional to the radius of the
droplet but independent of the thermal conductivity of both the liquid and the
substrate. In general, the problem for c depends on the temperature and has
to be solved numerically. This was done using the MATLAB-based numerical
analysis package COMSOL (formerly FEMLAB).

3 Comparison with Experiments

Physical experiments were undertaken to investigate the effect of the ther-
mal conductivity of the substrate on the evaporation of small droplets of
three different liquids (specifically, acetone, methanol and water) on thin sub-
strates of thickness 1 mm made of two materials with very different thermal
conductivities, namely aluminium (Al) (ks = 237 W m−1 K−1) and PTFE
(ks = 0.25 W m−1 K−1). The values of the relevant physical parameters for
the three liquids used are listed in Table 1. Both substrates were coated with
a very thin (3 µm) layer of Al to ensure that they had the same surface energy
and roughness properties. The experiments were conducted in a controlled
atmosphere with fixed temperature Ta = 295 K, pressure 99.8 kPa, and rel-
ative humidity H = 0.4. Droplets with various volumes ranging from 0.5 to
8 µ l were deposited on the substrates and left to evaporate spontaneously.
The evaporation rates were measured using a KRUSS DSA 100 contact-angle
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Table 1. Values of the relevant physical parameters for the three liquids used at
temperature Ta = 295 K and pressure 99.8 kPa

Parameter Units Acetone Methanol Water

ρ kg m−3 788 790 998
L J kg−1 5.49 ×105 1.20 ×106 2.45 ×106

k W m−1 K−1 0.161 0.203 0.604
csat kg m−3 0.637 0.186 1.94 × 10−2

dcsat/dT kg m−3 K−1 2.84 × 10−2 9.47 × 10−3 1.11 × 10−3

D m2 s−1 1.06 ×10−5 1.50 ×10−5 2.46 ×10−5

dV
dt

(nl s− )

(mm)
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Al Theory

PTFE Theory
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Fig. 2. Comparison between the experimentally measured values of the average
evaporation rate for droplets of various radii and the corresponding theoretical pre-
dictions of the present model and the Deegan model given by (5)

analyser, and the accuracy of the results obtained was confirmed by using a
micro-balance technique.

Figure 2 shows the comparison between the experimentally measured val-
ues of the average evaporation rate for droplets of various radii and the corre-
sponding theoretical predictions of the present model and the Deegan model
given by (5). Figure 2 shows that there is good qualitative agreement be-
tween the experimental and theoretical results. For acetone and methanol
there is good quantitative agreement for the Al substrate, but the theory
under-estimates the evaporation rate for the PTFE substrate. For water the
theory under-estimates the evaporation rate for both substrates. Nevertheless,
in view of the many assumptions made in deriving the model, the agreement
is remarkably good, especially as there are no “fitting” parameters in the the-
ory, and no “tuning” of the values of the physical parameters has taken place.
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Perhaps the most satisfying aspect of the agreement shown in Fig. 2 is the
manner in which the present model reproduces the significant difference in
evaporation rate between droplets of the same liquid on different substrates.
Figure 2 also shows that the predictions of the Deegan model are close to
those of the present model for the Al but not the PTFE substrate. This is
because Al is a much better conductor than PTFE and hence the evaporative
cooling of a droplet on Al is much less than that of a droplet on PTFE, and
hence the saturation concentration of vapour at the free surface is much closer
to the constant value of csat(Ta) assumed in the Deegan model.

4 Further Work

The present work is restricted to the special case of a thin droplet on a thin
substrate. In ongoing work we are currently extending the model to the gen-
eral case of a non-thin droplet on a non-thin substrate, and preliminary results
indicate that this generalisation significantly improves the quantitative agree-
ment between the theoretical predictions and experimental results for acetone
and methanol, but still leads to an under-estimation of the evaporation rate
for water. A possible explanation for this latter under-estimation may be, as
suggested recently by Shahidzadeh-Bonn et al. [6], that because water vapour
(unlike acetone or methanol vapour) is lighter than air, buoyancy effects may
play a significant role in enhancing the diffusion of vapour away from the
droplet in this case.
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1 Introduction

Shallow flows are widespread in nature and engineering. Examples include
shallow wakes (flows behind obstacles such as islands), shallow mixing layers
(flows at river junctions) and shallow jets. Shallow flows, where the transverse
length scale of the flow, d, is much larger than water depth, h, i.e., d/h! 1, are
very different from deep water flows. This difference is associated with the fact
that bottom friction plays an important role in suppressing flow instability. In
addition, limited water depth prevents the development of three-dimensional
instabilities.

Different methods of analysis of two-dimensional structures in shallow
water flows are considered in a recent review [1]. Methods of linear stabil-
ity theory are widely used in the analysis of shallow flows. Different aspects of
the linear stability of shallow flows are analyzed in [2–6]. Experiments in [2]
showed that the following three flow regimes can be identified in shallow wake
flows: steady bubble, unsteady bubble and vortex street. Theoretical studies
in [4–6] demonstrated that these regimes are related to convective/absolute
instabilities in the shallow water layer.

Two-phase shear flows can be found in many engineering applications.
Examples include gas–solid particle flows, gas–droplet flows and liquid–gas
bubble flows. Several simplifying assumptions are used in stability analyses
of two-phase flows (see [7] and [8]). These assumptions are as follows. First,
the particle distribution is assumed to be uniform. Second, it is assumed that
small perturbations imposed on the flow have no effect on the particles during
the initial moment. The case of a dynamic interaction of particles with the
base flow is considered in [9].

Stability of shallow water flows is usually analyzed under the assumption
that the base flow is parallel. It is well-known, however, that the width of shal-
low mixing layer and the width of shallow wake are not constant and are slowly
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changing with respect to the longitudinal coordinate (see, for example, [10]).
The goal of the present paper is to take into account slow variation of the flow
in the longitudinal direction and construct an asymptotic scheme where the
local parallel stability results appear as the leading-order approximation. The
analysis is performed for two-phase flows under some simplifying assumptions
(see [8]). Such schemes have been already applied to spatial stability studies
of slowly diverging single-phase shear flows in deep water (see [11]) and are
based on the WKB approach.

2 Weakly Nonlinear Spatial Instability
of Two-Phase Flows

Consider the two-dimensional shallow water equations of the form

∂u

∂x
+
∂v

∂y
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
+
cf
2h
u
√
u2 + v2 −B(up − u) = 0, (2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+
∂p

∂y
+
cf
2h
v
√
u2 + v2 −B(vp − v) = 0, (3)

where u and v are the depth-averaged velocity components in the x and
y-directions, respectively, up and vp are particle velocities, h is water depth,
cf is the friction coefficient, p is the pressure and B is the particle loading pa-
rameter (see [7,8]). Introducing the stream function ψ(x, y, t) by the relations

u = ψy, v = −ψx (4)

and using the simplifying assumptions [7, 8] we rewrite the system (1)–(3) in
the form

(∆ψ)t + ψy(∆ψ)x − ψx(∆ψ)y +
cf
2h

∆ψ
√
ψ2

x + ψ2
y

+
cf

2h
√
ψ2

x + ψ2
y

[ψ2
yψyy + 2ψxψyψxy + ψ2

xψxx] +B∆ψ = 0. (5)

Assuming that the normal velocity component is small in comparison with
the streamwise component and that the base flow quantities are weakly vary-
ing functions of the streamwise coordinate, we introduce a slow streamwise
coordinate X = εx, where the small parameter ε = λ/L 
 1 represents the
degree of non-parallelism of the flow. Here λ is the instability wavelength and
L is the length scale which is associated with streamwise inhomogeneities of
the base flow.

The stream function of the flow is represented in the form

ψ(x, y, t) = ψ0(y,X) + ψf (x, y, t), (6)
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where the first and the second term on the right-hand side of (6) represent
the base flow and the perturbed flow, respectively. In this case ψf (x, y, t) in
(6), in general, is not small. Linearizing (5) in the neighborhood of the base
flow, dropping the subscript “f” and retaining only the terms of order ε we
obtain

∂

∂t

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+ U

∂

∂x

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
− ∂ψ

∂x

∂2U

∂y2
+B

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+
cf
2h

[
U

(
∂2ψ

∂x2
+ 2

∂2ψ

∂y2

)
+ 2

∂U

∂y

∂ψ

∂y

]
+ ε

[
∂2U

∂y∂X

∂ψ

∂y
+ V

∂

∂y

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+
cf
2h

(
2
∂U

∂X

∂ψ

∂x
− 2V

∂2ψ

∂y∂X
+
∂U

∂y

V

U

∂ψ

∂x

)]
= 0, (7)

where U = ψ0y and V = −ψ0X .
We decompose the perturbation stream function ψ(x, y, t) into a slowly

varying amplitude function ϕ(y,X, ω) and a fast varying phase function
θ(X,ω)/ε:

ψ(x, y, ω, t) = ϕ(y,X, ω) exp
[
i
(
θ(X,ω)

ε
− ωt

)]
. (8)

Next, the function ϕ(y,X, ω) is expanded into a power series in ε in the form

ϕ(y,X, ω) = ϕ1(y,X, ω) + εϕ2(y,X, ω) + · · · (9)

Substituting (8) and (9) into (7) and collecting the terms that do not contain
ε we obtain

Lϕ1 = 0, (10)

where

Lϕ1 = ϕ
′′
1 − k2ϕ1 −

U
′′

U − cϕ1 +
cf i

2hk(U − c)

(
−k2Uϕ1

+ 2Uϕ
′′
1 + 2U

′
ϕ

′
1

)
+B

ik
U − cϕ1 = 0, (11)

and c = ω/k. The primes in (11) denote the derivatives with respect to y and
k = k(X,ω) = θX . Equation (11) is the modified Rayleigh equation which is
obtained in [12] under parallel flow assumption. Equation (11) together with
zero boundary conditions forms an eigenvalue problem (where the eigenval-
ues are k = k(X,ω)). Temporal linear stability calculations for several wake
profiles in shallow water are performed in [12]. It is shown that growth rates
of the most unstable mode decrease as the particle loading parameter B in-
creases. Calculations show that the critical values of the parameter character-
izing bottom friction decrease almost linearly as the parameter B increases.
The eigenvalues k = k(X,ω) = θX can be also obtained as a result of the
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numerical solution of the spatial stability problem. Note that the coordinate
X appears in (11) as a parameter.

In order to derive the amplitude evolution equation under the assumption
of weak non-parallelism of the flow we assume that

ϕ1(y,X, ω) = A(X,ω)Φ(y,X, ω), (12)

where A(X,ω) is an unknown complex amplitude and Φ(y,X, ω) is a normal-
ized eigenfunction of the linear stability problem.

Substituting (8), (9) and (12) into (7) and collecting the terms containing
ε we obtain

Lϕ2 = g, (13)

where

g =
i

kU − ω
dA
dX

(
2ωkΦ− 3Uk2Φ+ UΦ

′′ − ΦU ′′
+
cf
2h

2ikUΦ+ 2ikBΦ
)

+
i

kU − ωA
[
2ωk

∂Φ

∂X
+ ωΦ

dk
dX

− 3Uk2 ∂Φ

∂X
− 3UkΦ

dk
dX

+ U
∂Φ

′′

∂X

− U ′′ ∂Φ

∂X
+
cf
2h

(
2ikU

∂Φ

∂X
+ iUΦ

dk
dX

+ 2ikΦ
∂U

∂X
− 2ikV Φ

′
)

+
∂2U

∂y∂X
Φ

′ − V k2Φ
′
+ V Φ

′′′
+B

(
2ik

∂Φ

∂X
+ iΦ

dk
dX

)]
. (14)

In accordance with the Fredholm’s alternative, (13) has a solution if and only if
the function g in (14) is orthogonal to all eigenfunctions Φ̃ of the corresponding
adjoint problem. Thus, ∫ ∞

−∞
gΦ̃dy = 0. (15)

The equation for the function A(X,ω) is obtained from (15) in the form

M(X,ω)
dA
dX

+N(X,ω)A = 0, (16)

where

M(X,ω) = i
∫ ∞

−∞

1
kU − ω

(
2ωkΦ− 3Uk2Φ+ UΦ

′′

− ΦU ′′
+
cf
2h

2ikUΦ+ 2ikBΦ
)
Φ̃dy (17)
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N(X,ω) = i
∫ ∞

−∞

1
kU − ω

[
2ωk

∂Φ

∂X
+ ω

dk
dX

Φ− 3Uk2 ∂Φ

∂X

− 3UkΦ
dk
dX

+ U
∂Φ

′′

∂X
− U ′′ ∂Φ

∂X
+
cf
2h

(
2ikU

∂Φ

∂X
+ iUΦ

dk
dX

+ 2ikΦ
∂U

∂X
− 2ikV Φ

′
)

+
∂2U

∂y∂X
Φ

′ − V k2Φ
′
+ V Φ

′′′

+B

(
2ik

∂Φ

∂X
+ i

dk
dX

Φ

)]
Φ̃dy. (18)

Thus, the leading order approximation of the stream function ψ(x, y, ω, t) is

ψ(x, y, ω, t) ∼ A(X,ω)Φ(y,X, ω) exp
[
i
(

1
ε

∫ X

0

k(X,ω) dX − ωt
)]
. (19)

Formula (19) provides the connection between local parallel flow approxi-
mations and takes into account slow streamwise variation of the base flow.
It follows from (19) that each of the three terms on the right-hand side of
(19) contain information related to the amplitude and phase of perturbations
(see [13]). It can also be shown from (19) that the growth rate and phase
speed of the perturbation at any given station x downstream are different
for different choices of the perturbed quantities and even depend on cross-
stream location at which they are evaluated. Following [13] we define a local
wavenumber k̄ for any flow variable Q as follows

k̄(x, y|Q) = −i
∂

∂x
lnQ(x, y). (20)

The real and imaginary parts of k̄ can be interpreted as the local phase speed
and the local spatial growth rate. In order to make a meaningful comparison
between experimental data and theory one needs to select a particular flow
quantity Q (for example, pressure, velocity, etc.), measure it at a particular
point (x, y) and evaluate the right-hand side of (20) at the same point. Finally,
using the weakly nonlinear model (19) one can calculate the right-hand side
of (20) and compare the results with experimental data. This means that in
order to test the validity of the proposed model either detailed experimental
data or numerical solution of full nonlinear two-dimensional shallow water
equations are needed.
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1 Introduction

By the end of 2007, the “Lignitos de Meirama” open pit coal mine will cease
its extraction activities definitively and a lake is expected to develop due
to the hydrological conditions of the region. Its possible connection to a
reservoir which supplies water to the city of A Coruña (NW Spain) enforces
the mining company to fulfill the Spanish water quality standards. In this
frame, a numerical model to predict the future lake water quality has been
developed. The water quality of a lake generated by filling a former open pit
coal mine depends on several factors, such as the presence of iron sulfides at
the pit walls and the environmentally hazardous consequences of their oxi-
dation (heavy metals release and water acidification), the establishment of a
flow regime on the future lake as a result of the water discharges on the pit
and the possible stratification of the water column due to seasonal changes of
the solar radiation [2].

The concurrence of all these phenomena makes the water quality mod-
elling a difficult task in which hydrodynamic, thermal and geochemical con-
siderations have to be studied in a coupled way. For this reason Mike 3 Flow
Model FM software package from DHI Water and Environment (Denmark)
was selected. Mike 3 comprises three modules, two of which were used
in this work: the hydrodynamic module (HD), based on the solution of
the three-dimensional shallow water equations considering the temperature
evolution, and the Ecolab module, that allows the implementation of any
environmental problem in which the evolution of the state variables can be
described by means of a system of ordinary differential equations (ODEs, from
now on).
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2 Model Development

As it was stated before, Mike 3 is a 3D model in which the evolution of the
concentration of a chemical species can be written as

∂yi
∂t

+
∂uyi
∂x

+
∂vyi
∂y

+
∂wyi
∂z

= Fyi
+

∂

∂z

(
Dv

∂yi
∂z

)
+ yisS + φi, (1)

where yi represents the concentration of species i, (u, v, w) are the flow velo-
cities in the (x, y, z) directions respectively, Fyi

is the horizontal diffusion
term, Dv is the vertical diffusion coefficient, S is the rate flow of the water
sources, yis is the concentration of the i-th species in the water sources and
φi is a term representing the rate of change in concentration due to pro-
duction/consumption mechanisms which, in this case, are related to (bio)
geochemical phenomena [Mike 3 HD (2005)].

The current velocities and temperature distribution of the future lake,
which are needed to solve (1), were estimated using Mike 3 HD.

This paper will be focused on the calculation of φi. In other words, for
the sake of simplicity in the exposition, the lake will be treated as if it were a
stirred tank.

2.1 Geochemical Model

This part of the work started with a literature review regarding all the envi-
ronmentally relevant chemical reactions related to the existence of iron sulfides
and silicates at the pit walls (Table 1).

On this basis, sixteen chemical species (twelve of them dissolved species
and four precipitates) were chosen to define the future lake water quality.
Table 2 collects all these species together with the adopted notation for each
one. Iron, protons, aluminium and manganese represent the most important
ones in terms of environmental hazard.

Let us represent the L chemical reactions involving our dissolved chemical
species Ei by

ξl1E1 + · · ·+ ξl12E12 −→ ζl1E1 + · · ·+ ζl12E12, l = 1, . . . , L (2)

ξi and ζi being the stoichiometric coefficients. The evolution of the concentra-
tion of these chemical species due to geochemical processes (term φi in (1)),
would be represented by a system of ODEs:

dyi
dt

=
L∑

l=1

(ζli − ξli)vrl
, i = 1, . . . , 12, (3)

vrl
being the velocity of the l-th chemical reaction,which is generally expressed

by an empirical law
vrl

= hl(y1, . . . , y12) (4)

for some functions hl, l = 1, . . . , 12.
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Table 1. Most relevant chemical reactions at Lignitos de Meirama coal mine

1. Pyrite oxidation via O2: FeS2(s) + 7/2O2(aq) + H2O −→ Fe2+(aq) + 2SO4
2−(aq) + 2H+(aq)

2. Pyrite oxidation via Fe3+: FeS2(s) + 14Fe3+(aq) + 8H2O −→
15Fe2+(aq) + 2SO4

2−(aq) + 16H+(aq)

3. Chalcopyrite oxidation via O2: CuFeS2(s) + 4O2(aq)−→Fe2+(aq) + Cu2+(aq) + 2SO4
2−(aq)

4. Chalcopyrite oxidation via Fe3+:

CuFeS2(s) + 16Fe3+(aq) + 8H2O −→ 17Fe2+(aq) + Cu2+(aq) + 2SO4
2−(aq) + 16H+

5. Ferrous ion oxidation: Fe2+(aq) + 1/4O2(aq) + H+(aq) −→ Fe3+(aq) + 1/2H2O(aq)

6. Chlorite weathering∗:

(MgaFeb
2+Fec

3+Mnd)Al2Si3O10(OH)8(s) + 16H+ −→
aMg2+ + bFe2+ + cFe3 + dMn2+ + 2Al3+ + 3SiO2(s) + 12H2O

7. Muscovite weathering: KAl3Si3O10(OH)2(s) + 10H+ −→ K+ + 3Al3+ + 3SiO2(s) + 6H2O

8. Plagioclase weathering: NaeCafAlSi3O8 + 4H+−→ eNa+ + fCa2+ + Al3+ + 3SiO2(s) + 2H2O

9. Microcline weathering: KAlSi3O8 + 4H+ −→ K+ + Al3+ + 3SiO2 + 2H2O

10. Biotite weathering :

K(Feg
2+,Mgh)3(All,Fem

3+)Si3O10(OHq,Fr)2 + 2(2q + 10)H+ −→
K+ + 3gFe2+ + 3hMg2+ + lAl3+ + mFe3+ + 2rF− + 3SiO2 + (2q + 10)H2O

11. Kaolinite weathering: Al2Si2O5(OH)4 + 6H+ −→ H2O + 2H4SiO4 + 2Al3+

∗The exact composition of Chlorite, Plagioclase and Biotite is not known, so subindexes a, b, c,
d, e, f, g, h, l, m and q have been used to express the composition with respect to certain species.

Table 2. Studied chemical species and notation

Not. Chem.sp Not. Chem.sp Not. Chem.sp

y1 [Fe2+] y7 [Ca2+] y13 [Fe(OH)3]
y2 [Fe3+] y8 [Mn2+] y14 [Al(OH)3]
y3 [O2] y9 [Na+] y15 gypsum
y4 [H+] y10 [K+] y16 manganite
y5 [Cu2+] y11 [Mg2+] y17 [SO4]L
y6 [Al3+] y12 [SO4] y (y1,. . . ,y17)

In addition to reactions on Table 1, some of the selected dissolved species
are subjected to restrictions derived from the solubility equilibria they
establish with secondary minerals. This means that, if one of these species
overcomes a certain threshold concentration, a precipitate will form. For
example, if manganese concentration is higher than a limit (the saturation
concentration), then manganite will precipitate. Mathematically, this implies
that certain constraints should be satisfied:

gr(y) ≤ 0; r = 1, . . . , 4. (5)

Following the example above, the restriction function for manganese (y8,
Table 2) is

g4(y) = y8 − y8sat ≤ 0, (6)

where y8sat is the manganese saturation concentration.
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Taking into account all the considerations above and following notation
on Table 2, the evolution of manganese concentration could be written as

dy8
dt

=
Γchl S
V

d(kclo1y
0.5
4 + kclo2)− kadsmn

y8
α+Keq y17

[hydroxide]− pmn, (7)

where the first term on the right is the rate of manganese production due
to reaction 6 in Table 1 (Γchl is the fraction of chlorite at the rock surface
(S), V is the lake volume, d is the stoichiometric coefficient of the reaction
and kclo1 and kclo2 are the rate constants). The second term represents the
rate of manganese adsorption onto hydroxides (kadsmn is the rate constant
for this reaction, α is a function of y4 and Keq is an equilibrium constant)
and the last term accounts for the rate of manganese consumption due to
manganite precipitation. Equations like (7) were obtained for the rest of
the species. Summarizing, the future lake water quality is determined by

(P)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dyi
dt

= fi(y)−
4∑

r=1

pr
∂gr(y)
∂yi

+ yisS, 1 ≤ i ≤ 12, (8)

dyjr

dt
= pr

12∑
i=1

∂gr(y)
∂yi

+ yjrs
S, r = 1, . . . , 4, (9)

F (y) = 0, (10)

pr = max{0, pr +
1
λ
gr(y)} ∀λ > 0, r = 1, . . . , 4, (11)

y(0) = y0. (12)

Equation (8) represents the evolution of the dissolved species, with pr(t) the
Lagrange multiplier subjected to restriction gr(y) (see (11) obtained from [1]).
Term fi(y) is equal to the right-hand side of (3). Equation (9) accounts for
the evolution of the precipitates (jr = 12 + r); (10) is an algebraic equation
for the calculation of y17, and finally, the initial conditions of the problem are
included in (12).

Reminding that Mike 3 EcoLab (cf. [Ecolab DHI (2005)]) only allows the
implementation of ODEs to describe an environmental problem, further work
was required in order to adapt problem P to the software constraints. A more
precise description of the model can be found in [Garcia (2005)].

3 Model Results

Results for some hydrodynamic and geochemical parameters are shown in
Fig. 1. Figure 1b displays a typical summer vertical density profile (arrows
representing current velocities) corresponding to the section depicted onto the
lake bathymetry (Fig. 1a). As it can be seen, the densities at the surface are
lower than at the bottom, as it is expected for this time of the year. Figures 1c



794 A. Bermúdez et al.

Fig. 1. Model results

and d show results for one of the most important environmental parameters,
the pH (a measure of the water acidity). Figure 1c represents a vertical pH
profile in which we can observe that the pH is higher at the surface than at
the bottom. These results are consequence of sulfide oxidation at the bottom
and the entrance of polluted sources. Focusing on a point located at the south
of the lake (very close to the place where the water would be diverted to the
water reservoir) and considering the complete filling period (approximately
five years), we see in Fig. 1d that, after two years of filling, surface water
quality would be good enough to satisfy the Spanish water quality standards.
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1 Introduction

Coastal areas are continually exposed to land-based sources of pollution
resulting from domestic and industrial activities including oil spills, discharge
of sewage and industrial effluents, among others. These contaminants arrive in
the sea through wastewater discharges from sewage farms where contaminant
concentrations are reduced by means of biological or chemical processes.

Biological processes are commonly used to treat domestic or combined
domestic and some specific industrial wastewater. The basic idea is to repro-
duce the same processes that would occur naturally in the receiving water
(river, estuary, etc.), but under controlled conditions, so that the cleansing
reactions are completed before the water is discharged into the environment.
The objective is, therefore, to provide an optimum environment for the micro-
bial population to decompose the organic matter.

Microorganisms utilize the organic matter for the production of energy
by cellular respiration and the manufacture of new cells. As the pollution
increases, the Biochemical Oxygen Demand (BOD) also increases and, as a
result, the Dissolved Oxygen (DO) decreases. This damages the marine life
and causes the organic matter decomposition by means of anaerobic processes,
which do not use oxygen but produce sulphide of hydrogen and methane, both
having a nauseating smell. To avoid this problem, we have to guarantee a min-
imum level of DO and a maximum level of BOD in each region to be protected.

Is, therefore, of the highest interest to implement a wastewater treatment
system that is able to assure water quality standards, corresponding to pol-
lution concentrations lower than a certain allowed value imposed by the re-
gional legislation. Note, however, that the economic cost of the process may
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be excessively large, depending on both the purification cost at each plant
and the distance from the plant to the outfall (design cost).

The authors have recently considered, both from the theoretical and the
numerical point of view, two related optimization problems. The first problem
was devoted to determine the optimal level of the oxygen discharges in order
to minimize the global purification cost (see Mart́ınez et al. [5, 6]), and the
second was aimed to obtain the optimal locations for the wastewater outfalls,
assuming constant oxygen discharges (see Alvarez-Vázquez et al. [1, 2]) while
keeping, in both cases, the constraints on the water quality.

This work addresses, for the first time to the authors knowledge, the
combined design and operation optimization problem. This problem can be
formulated as finding the optimal design (outfall locations) and the optimal
operation conditions (that is, the optimal oxygen discharge levels) which min-
imize the total economic cost of the system while guarantying the above men-
tioned constraints on the water quality.

Note that this is a two-objective problem: in one hand, one would be inter-
ested in minimizing the initial cost due to the installation of the outfalls and
in other hand it is also desirable to minimize the expenses of the purification
process which will be repeated along time. The simultaneous optimization
of multiple, usually competing, objectives, deviates from the single objective
case in that it does not admit an unique optimal solution. Instead, a num-
ber of solutions, the so-called Pareto-optimal solutions, may be found that
must be considered equivalent in the absence of information concerning the
relative importance of the different objectives. In contrast to single-objective
optimization, multi-objective optimization problems require the involvement
of a decision maker who has to select one Pareto solution from the set.

This work proposes the use of a classical approach, the weighted sum
method, to combine the two objectives in a single-objective with the aim of,
from the theoretical point of view, obtaining the optimality conditions and
demonstrating the existence of a solution, for any given set of weights. From
the numerical point of view, a Pareto front is obtained for the two-objective
case, using a control vector parametrization approach to approximate the
control variables and an evolutionary algorithm to deal with the non-convex
character of the resultant nonlinear programming problem.

2 Optimal Operation and Design: Problem Formulation

A domain Ω ⊂ R2 occupied by shallow waters, for instance an estuary, is
considered. The sewage is dumped into the domain Ω through N submarine
outfalls, each of them located at a point bj ∈ Ω (that must be determined),
and connected to a purification plant, located at a point aj , which discharges
an amount mj(t) (also to be determined). Moreover, there are M areas in Ω,
denoted by Ai, for example beaches or fish nurseries, that must be protected
guarantying that the levels of pollution are bellow previously fixed thresholds.
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As it was stated in the introduction two of the most important parame-
ters used to control pollution levels are the dissolved oxygen (DO) and the
biochemical oxygen demand (BOD). As the pollution increases, the oxygen
demand also increases and, as a result, the dissolved oxygen decreases with
undesirable environmental consequences. To avoid this problem, we have to
guarantee a minimum level ζi of DO and a maximum level σi of BOD in
each region Āi to be protected. The evolution of the concentrations of BOD
(ρ1(x, t)) and DO (ρ2(x, t)) in the domain Ω along the time interval [0, T ] is
governed by a complex system of partial differential equations coupled with
the shallow water equations (see, for instance, Mart́ınez et al. [5]). The pair
(m, b) formed by the set of optimal discharges m = (mj)Nj=1 and the set
optimal locations b = (bj)Nj=1 are the control variables of the problem.

Now, we assume that inside the domain Ω there are M protected zones
Āi where a maximum level of BOD and a minimum level of DO must be
ensured, that is,

ρ1|Āi×[0,T ] ≤ σi, ρ2|Āi×[0,T ] ≥ ζi, ∀i = 1, . . . ,M. (1)

Moreover, taking into account technological limitations, the j-th discharge
must verify that mj ≤ mj(t) ≤ mj , ∀t ∈ (0, T ), and the j-th outfall must be
placed in a suitable region Uj , where Uj ⊂ Ω\ ∪M

i=1 Āi is a compact, convex,
polyhedral set representing all the admissible points to locate the outfalls.
Thus, the optimal pair (m, b) must verify mj ≤ mj(t) ≤ mj , bj ∈ Uj , ∀j =
1, . . . , N. If we define Uad = {m ∈ [L∞(0, T )]N : mj ≤ mj(t) ≤ mj , ∀t ∈
(0, T ) ∀j = 1, . . . , N}×ΠN

j=1 Uj , technological constraints can be written in
the simpler way:

(m, b) ∈ Uad. (2)

Consider now that the purification cost in each plant is given by J1(m, b) =∑N
j=1

∫ T

0
fj(mj(t)) dt, where function fj represents the cost of the purification

in the j-th plant; and that the design cost depends on the distance from the
farm to the outfall in the following manner J2(m, b) = 1

2

∑N
j=1 ‖bj − aj‖2.

In contrast to the single objective cases where an unique objective was
pursued, the aim in this contribution is to solve the two-objective case, finding
good compromises between the two different objectives. The notion of optimal
solution is substituted by the notion of Pareto-optimal solution: a solution is
said to be Pareto-optimal if there exists no feasible solution which would
decrease one objective without causing a simultaneous increase in the other.

Under certain conditions the weighted sum method can be used to ob-
tain the set of Pareto-optimal solutions. This method transforms the original
multi-objective case into a single-objective optimization problem in which the
objective function is a weighted sum of the original objectives. In practice,
the objectives are usually scaled and combined to form a composite objective:

J(m, b) =
N∑

j=1

∫ T

0

fj(mj(t)) dt+
α

2

N∑
j=1

‖bj − aj‖2, (3)

where α > 0 is a weight parameter.
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Therefore the problem, denoted by (P), consists of finding the time varying
discharges mj(t), j = 1, . . . , N, and the points bj , j = 1, . . . , N, to minimize
the cost function J subject to the system dynamics, the state constraints
(1) and the control constraints (2). This is a parabolic optimal control problem
with non-convex pointwise state constraints, which makes difficult its analysis
and resolution.

By using minimizing sequences we can prove that the optimal control
problem has, at least, one solution. We are also able to obtain, introducing
the adjoint state, a first order optimality system satisfied by the solutions of
the optimal control problem (see the details in Alvarez-Vázquez et al. [3]).

3 Numerical Solution

The usual approach to solve optimal control problems is to transform the orig-
inal infinite dimension problem into a finite dimension nonlinear programming
(NLP) problem. With this aim, the control vector parametrization approach
proceeds by dividing the duration of the process [0, T ] into a reduced number
of non-equidistant intervals and approximating the control variables (mj) us-
ing low order Lagrange polynomials within each interval. As a result, a NLP
problem is obtained where the vector of decision variables includes the co-
efficients in the polynomials, the switching times, and the time independent
parameters (outfall locations, in our case). We must remark that the calcula-
tion of the objective function requires the solution of the state system, that
in this work is approached using a characteristics-finite element method.

As it was stated in previous sections the weighted sum method transforms
the original two-objective case into a single-objective optimization problem in
which the objective function is a weighted sum of the original objectives. The
Pareto front can then be generated by varying the weight α in the objective
expression (3) and solving the corresponding nonlinear programming problems
with a suitable technique.

The optimization literature offers a large number of methods to solve non-
linear programming problems: local and global strategies, deterministic and
stochastic methods. . . (cf. [4] and the references therein). In this work, a evo-
lutionary global optimization method, Differential Evolution (DE) [7], will
be used due mainly to its efficiency in solving real valued multimodal ob-
jective functions. DE is basically a parallel, population-based, direct search
algorithm. In addition to its good convergence properties some of its main
advantages are its conceptual simplicity and ease of use.

Numerical results (Pareto front and optimal control profiles for a particular
Pareto solution) for a realistic problem posed in the ŕıa of Vigo (Spain) are
shown, respectively, in Figs. 1 and 2. More details can be found in [3].
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Summary. State estimation is necessary in diagnosing anomalies in Water Demand
Systems (WDS). In this paper we present a neural network performing such a task.
State estimation is performed by using optimization, which tries to reconcile all the
available information. Quantification of the uncertainty of the input data (teleme-
try measures and demand predictions) can be achieved by means of robust estate
estimation. Using a mathematical model of the network, fuzzy estimated states for
anomalous states of the network can be obtained. They are used to train a neural
network capable of assessing WDS anomalies associated with particular sets of mea-
surements.

1 Introduction

Water companies use telemetry systems for control and operation purposes.
By considering the data provided by telemetry, the engineer on duty makes
operation decisions trying to optimize the system utilization. Nevertheless, the
system complexity does not permit but to take a few real-time measures, which
only incompletely represent the network state. They give indication of only
certain aspects of the system, leaving out other more specific or “less relevant”
ones. Thus, suitable techniques that allow for more accurate network health
estimation are necessary so that anomalies can be detected more rapidly, and
light anomalies, which develop progressively and insidiously, can be identified.
This will enable to control their consequences in earlier stages, thus avoiding,
among other things, losses of water, which can be of great importance.

The state of a WDS is obtained by interrelating different measures within
a mathematical model of the network, [Mar95]. Different tools to analyze
water networks have been developed in the last years, SARA [GMF98], and
EPANET [Ros97], among others. But state estimation cannot be accurately
performed if there are missing or uncertain data. Thus, system operators need
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error limits for the state variables. Yet, data are abundant since they are per-
manently received. Therefore, operators cannot evaluate errors easily or in real
time. It is expected that suitable techniques borrowed from Artificial Intelli-
gence (AI) could encapsulate the necessary knowledge to assess the network
state.

In this paper, we present an approach for the diagnosis and decision making
process which is necessary on a neural network for clustering and pattern clas-
sification. First, the mathematical model, a state estimation procedure and a
mechanism for treating uncertainties, already presented in [Izq04] and [Izq05],
are briefly presented. The state estimator, together with the error limits will
be used as a surrogate of the real WDS to generate data to train and check the
neural network (NN). Then, the inherent procedures to neural techniques will
be described. Specifically, the NN architecture, the classification and cluster-
ing mechanisms of both, crisp and fuzzy, patterns and the training technique
will be presented.

2 Mathematical Model and State Estimation

Analyzing pressurized water systems is a complex task, especially for big sys-
tems. But even for moderately sized cities, it involves solving a big number
of non-linear simultaneous equations. The complete set of equations may be
written by using block-matrix notation,(

A11(q) A12

At
12 0

)(
q
H

)
=
(
−A10Hf

Q

)
, (1)

where A12 is the so-called connectivity matrix describing the way demand
nodes are connected through the lines. Its size is L×Np, Np being the number
of demand nodes and L the number of lines; q is the vector of the flow rates
through the lines, H the vector of unknown heads at demand nodes; A10 is an
L × Nf matrix, Nf being the number of fixed-head nodes with known head
Hf , and Q is the Np-dimensional vector of demands. Finally, A11(q) is an
L× L diagonal matrix. System (1) is a non-linear problem whose solution is
the state vector x = (q,H)t of the system.

The non-linear relations describing the system balances are complemented
by the specific telemetry measurements. These measurements are integrated
into the model by expanding system (1) to a new system, typically overdeter-
mined: ⎛⎝A11(q) A12

At
12 0

A31 A32

⎞⎠( q
H

)
=

⎛⎝−A10Hf

Q
Mt

⎞⎠ . (2)

The components A31 and A32 in system (2) were introduced to account for
additional telemetry measurements Mt with uncertainties in the demand pre-
dictions. System (2) is usually solved using least-square methods for a state
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estimation by an over-relaxation iterative process applied to a linearized ver-
sion of (2):⎛⎝A′

11(q
(k)) A12

At
12 0

A31 A32

⎞⎠( ∆q
∆H

)
=

⎛⎝−A10Hf −A11(q(k))q(k) −A12H
(k)

Q−A21q
(k)

Mt −A31q
(k) −A32H

(k)

⎞⎠ , (3)

where A′
11 is the Jacobian matrix corresponding to A11.

3 Error Limit Analysis

Error limit analysis is a process to determine uncertainty bounds for the state
estimation originated by the lack of precision of measurements and data. To
put it in a nutshell, the question is what is the reliability of the estimated
state x∗, if measurement vectors y are not crisp but may vary in some region,
[y − δy, y + δy]?

Different techniques may be used to estimate this unknown but bounded
error, [Mil96], [Nor86], [Kur97]. We use a variant of the so-called sensitivity
matrix analysis, [Bar03], which uses the state estimator presented above.

In [Izq05], it is proved that a component by component bound, e∗, for δx∗

can be obtained by means of

e∗ =
∣∣ (A∗t

k WA∗
k

)−1
A∗t

k W
∣∣ ∣∣δy∣∣, (4)

where W is a diagonal matrix that weights the equations according to the
nature of the right-hand sides, and the vertical bars indicate absolute values of
all matrix and vector entries. Because of linearity, the bounds calculated by (4)
are symmetrical and the error limit may be expressed as a multidimensional
interval (see cell definition in next section) [x∗] in the state space

[x∗] =
[
x∗inf , x

∗
sup

]
=
[
x∗ − e∗, x∗ + e∗

]
. (5)

4 The Neural Network

A neural network for clustering and classification is a mechanism for pattern
recognition. Here, we use multidimensional cells, [Sim92], [Lik94]. Voronoi
diagrams are used in [Ble97].

A cell C is a region of the pattern space of n-dimensional vectors obtained
as the intersection of n pairs of half-spaces of the form mi ≤ xi ≤ Mi, for
i = 1, 2, . . . , n, where mi and Mi are real numbers. Vectors m = (mi, i =
1, . . . , n) and M = (Mi, i = 1, . . . , n) are called min and max points of C
and completely determine C. Membership of patterns to a cell is defined from
fuzzy grounds. For fuzzy patterns, P =

[
P inf , P sup

]
, like the ones obtained

in (5), membership values are given by the membership function
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c(P ) = max
i=1,...,n

{
max

{
ϕi (P sup

i −Mi) , ϕi

(
mi − P inf

i

)}}
, (6)

where each ϕi(x) controls the cell fuzziness.
Values taken by membership function (6) are used during the operation

phase to decide the membership degree to the class associated with a cell
exhibited by certain pattern presented to it and, as a consequence, to recognize
the potential anomalous state of the water distribution system corresponding
to the associated label of each class. Patterns presented to the network during
the training phase are ordered pairs (P, l), where l is a label associated to
pattern P describing the type of anomaly it represents.

The NN implementing the classification process is a three-layer network
that grows adapting itself to the problem characteristics. The input layer has
2n neurons, two for any of the dimensions of the patterns P =

[
P inf , P sup

]
.

When a new pattern is presented to the network through the input layer, the
components of vectors P inf and P sup are compared, respectively, with those
of the minimum point, m, and the maximum point, M , of the J existing cells.
Specifically, numbers in the inner brackets of (6) are calculated.

This way, each neuron on the hidden layer has two n-dimensional vectors
ϕ inf and ϕ sup as its input, formed by numbers between 0 and 1, ready to be
processed, first component by component with the max operator, and then
with the max operator, but now through all the components. Specifically,

c(P ) = 1− max
i=1,...,n

{
max

{
ϕ sup

i , ϕ inf
i

}}
is calculated for each cell. This process gives the membership degree of P to
every one of the cells. Thus, membership functions may be considered as the
transfer or activation functions for all the J existing hidden neurons. And the
values of the minimum and maximum points of those existing cells, which
will be adjusted during the training phase, must be regarded precisely as the
synaptic weights between the input and the hidden layer.

The values produced by the membership functions of the existing cells
constitute the outputs of the hidden layer. These values must be operated
with the weights between the hidden and the output layers. This process will
produce a class, a diagnosis of the hydraulic system represented by pattern P .
This procedure facilitates the decisions to be made by the system managers.

5 Conclusions

The described neural procedure does not fit into any standard paradigm,
since it is made of several sub-nets that evolve by accumulating experience as
new loads (peak, valley, seasonal-dependent, etc.) are observed, which mimics
human knowledge acquisition. From the reduced number of tests performed
we conclude that the classification ability of the NN is excellent. Since the
response given by the NN is graded, as a consequence of its fuzziness, the
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information it provides is not only qualitative (pointing out an anomaly)
but also quantitative (weighting the distributed importance of the problem).
The tool presented here, once completed, calibrated and implemented, will
provide WDS managers with a decision support mechanism allowing early
identification of anomalies and, as a consequence, better Integrated Water
Management.
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Summary. We study the evolution of charged droplets of a conducting viscous
liquid. The flow is driven by electrostatic repulsion and capillarity and may lead
to the breakup of the droplets. These droplets are known to be linearly unstable
when the electric charge is above the Rayleigh critical value. Here we investigate the
nonlinear evolution that develops after the linear regime.

1 Introduction

The formation of singularities on charged masses of fluid is relevant in a variety
of physical and technological situations, such as the breakup of water droplets
in thunderstorms, electrospraying, electrospinning, an electropainting. The
interest in the shape of electrified drops dates back to Lord Rayleigh [Ra],
who showed that if the electric charge is larger than some critical value, the
spherical drop becomes unstable. For a drop with total charge Q, surface ten-
sion coefficient γ, and radius R suspended in a medium of dielectric constant
ε0, this critical value is Qc =

√
32γπ2ε0R3. After de drop becomes unstable,

it disintegrates into droplets of smaller size. However, in recent experiments
(see [Duf]) it has been noticed that, previous to drop disintegration, the drop
evolves into a prolate spheroid which, after a finite time, develops conical tips
from which thin jets emerge.

Here we describe the numerical method used to solve the PDE system
that models the drop behavior. We implement boundary element methods to
compute: 1) the velocity field inside the drop and 2) the electrostatic potential
anywhere in the space as well as the surface charge density. The methods are
complemented with suitable iterative procedures to accurately compute the
mean curvature of the drop surface.
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2 The Model Equations

We assume that the drop occupies a region Ω(t) and the liquid of the drop is
a perfect conductor with infinite conductivity. Hence the electric potential V
is constant inside and at the drop surface, and all the electric charge will be
located at the boundary ∂Ω, and since the surrounding medium is a dielectric,
the total charge Q remains constant. The electric field E outside the drop is
given by E = −∇V where ∆V = 0 in R3\Ω, V = C on ∂Ω and V decays
at infinity. At the surface of a conductor, the surface charge density σ is given
by the normal derivative of the potential, σ = −ε0 ∂V

∂n , so that the repulsive

electrostatic force per unit area is Fe = Eσ
2 = ε0

2

(
∂V
∂n

)2
n = σ2

2ε0
n, where n is

the outward normal to the surface.
The fluid velocity u and the fluid pressure p inside the drop satisfy the

Stokes equations −∇p + µ1∆u = 0 in Ω(t) and ∇ · u = 0 in Ω(t); where
µ1 is the viscosity of the liquid inside the drop. Similar equations must be
satisfied by the velocity and the pressure outside of the drop, R3\Ω(t), with
µ1 replaced by µ2, the viscosity of the surrounding liquid.

The boundary condition for the stress is (T (2) − T (1))n =
(
γκ− σ2

2ε0

)
n

on ∂Ω(t), where κ is the mean curvature of the surface and T (k) is the
stress tensor inside (k = 1) or outside (k = 2) the drop, given by T

(k)
ij =

−pδij + µk

(
∂ui

∂xj
+ ∂uj

∂xi

)
, k = 1, 2. The boundary condition expresses the bal-

ance between viscous stress, capillary forces and electrostatic repulsion.

3 The Numerical Method

Our numerical method to compute the evolution of the drop is based on the
boundary integral method for the Stokes system (see [Poz] for a comprehensive
explanation). In this method, the equation for the velocity at ∂Ω(t) is written
in integral form as

uj(rp) = − 1
4π

1
µ1 + µ2

∫
∂Ω(t)

fi(r)Gij(r, rp)dS(r)

− 1
4π

µ2 − µ1

µ2 + µ1

∫
∂Ω(t)

ui(r)Tijk(r, rp)nk(r)dS(r) , (1)

where Gij(r, rp) = δij

|r̂| + (r̂i)(r̂j)

|r̂|3 , Tijk(r, rp) = −6 (r̂i)(r̂j)(r̂k)

|r̂|5 and fi(r) =

[γκ(r)− ε0
2 (∂V

∂n )2(r)]ni(r) with r̂ = r− rp.
The equation for the charge density is

V (rp) =
1

4πε0

∫
∂Ω(t)

σ(r)
|r− r0|

dS(r). (2)



808 S.I. Betel et al.

This integral equation must be inverted numerically to obtain the charge
density. V (rp) is a constant along the surface, and it is determined by the
condition

Q =
∫
∂Ω(t)

σ(r)dS(r). (3)

Both integral equations (1) and (2) are coupled through the charge den-
sity σ. First we invert numerically the potential equation for the surface charge
density. Once σ is known we calculate the mean curvature κ at the nodes.
When σ and κ are known we can obtain the balance force term f , replace it
in (1) and solve the equation in order to get the velocity u. Given the velocity
u, we move the points of the surface using an Euler explicit scheme. In the
following subsections we explain with detail this procedure.

3.1 Charge Density

At any given time t > 0, we approximate the free boundary ∂Ω with a tri-
angular mesh. The mesh is made up of N vertices and M (triangular) faces.
On each face, we approximate the various physical quantities that are defined
in the surface (curvature, surface charge density, velocity) with elementwise
constant functions over a “virtual” element centered in each node with an area
equal to 1/3 of the total area of the elements that share the node (see [Zin]).
We obtain the charge density from equations (2) and (3). From (2) and taking
into account that the potential is constant on the surface of the drop we get:

4πε0V (ri) = C1 =
∫
∂Ω(t)

σ(r)
1

|r− ri|
ds(r) i = 1, . . . ,M, (4)

where ri is the barycenter of the mesh element i and M is the number
of mesh elements. We approximate the integral that appears in (4) as fol-
lows:

∫
∂Ω(t)

σ(r) 1
|r−ri|ds(r) ≈

∑Ne

j=1 λijσj , with λij =
∫
Tj

1
|r−ri|ds(r) and

σj = σ(rj). Two cases are considered when calculating λij :
Potential created by one element onto himself, i = j: λii can be calculated

exactly dividing the element Ti in six subtriangles joining ri with the three
vertices of Ti and splitting these three triangles with the lines that join ri
with its projection in each edge of Ti,

λii =
∫
Ti

ds(r)
|r− ri|

=
∫ ∫

Ti

1
ρ
ρdρdθ =

6∑
k=1

∫ ∫
Tik

dρdσ

=
6∑

k=1

ak ln(sec(αk) + tan(αk)),

where αk are the angles with vertex ri and ak are the lengths of the lines that
join ri with its projection (a1 = a2, a3 = a4, a5 = a6).
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Potential created by element j onto element i, i �= j: in this case we
subdivide the element Tj in a variable number of subelements. If we suppose
that all the charge of an element is concentrated in its center of gravity:
λij =

∑Ns

k=1 λij,k with λij,k =
ATjk

|bi−bjk| , where ATjk
= area of subelement Tjk,

bjk = barycenter of subelement Tjk , bi = barycenter of element i and Ns =
total number of subelements Tjk of Tj .

Once all the coefficients λij are known, we calculate a fictitious charge
density proportional to the actual charge density solving the system

Ne∑
j=1

λijσj = C1 i = 1, . . . ,M, (5)

where an arbitrary value is given to C1. From (3) we get Q =
∑Ne

i=1 σiAi

and Q =
∑Ne

i=1 σiAi. We can use these two identities to scale the fictitious
charge density σ, obtaining the actual charge density σ corresponding to a
total charge Q: σi = Q

Q
σi i = 1, . . . ,M . Finally we get the charge density in

each node of the mesh as an average of the charge densities of all the elements
that share that node.

3.2 Curvature

We calculate the mean curvature in each node p of the mesh following a
method proposed in [Zin]. The algorithm is based on the following idea. If the
z′ axis of the local cartesian coordinates (p, x′, y′, z′) was directed along the
normal vector n(p), then z′ as a quadratic function of x′ and y′ would be a
good local representation of the surface ∂Ω. This quadratic function can be
obtained finding a paraboloid which passes through p, has its axis parallel to
z′ and best fits its neighbors by the least-squares method. However n(p) is
not known a priori, and so the method is iterative.

Also we will use this algorithm to calculate the normal to the surface
(n(p)) in each node of the mesh.

3.3 Velocity

Once the curvature and the surface charge density are known in each node of
the mesh, we are able to evaluate the balance force term f and thus, replacing
f in equation (1), calculate u in each node of the mesh.

Both integrals in (1) are singular in r = rp. We will remove both singu-
larities with a well known technique proposed, for example, in [Poz], which is
based in the fact that∫

∂Ω(t)

Gij(r, rp)ni(r)dS(r) = 0 and
∫
∂Ω(t)

Tijk(r, rp)nk(r)dS(r) = −4πδij .

(6)
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Using (6) we get an equivalent equation to (1):

uj(rp) = −λS

∫
∂Ω(t)

(b(r) − b(rp)) ni(r)Gij(r, rp)dS(r)

−λD

∫
∂Ω(t)

(ui(r) − ui(rp)) Tijk(r, rp)nk(r)dS(r) + 4λDπui(rp)δij , (7)

where λS = 1
4π

1
µ1+µ2

, λD = 1
4π

µ2−µ1
µ2+µ1

and f(r) = b(r)n(r).
The integrals in (7) are approximated by a trapezoidal rule that requires

the integrands only at nodes of the mesh:
∫
∂Ω

φ(x)ds(x) =
∑N

i=1 φ(xi)Si,
where Si is the area of the virtual element associate to node i. Applying this
rule to the discretization of (7) we get:

(1− 4πλD)uj(rp) + λD

N∑
l=1
l �=p

(ui(rl)− ui(rp))Tijk(rl, rp)nk(rl)Sl

= −λS

N∑
l=1
l �=p

(b(rl)− b(rp))ni(rl)Gij(rl, rp)Sl. (8)

The equation (8), for all values of p ∈ {1, . . . , N} and j ∈ {1, 2, 3}, forms a
linear system of 3N equations in the 3N unknown velocity components uj(rp)
at the nodes. After solving the system, we move the nodes of the surface with
an euler explicit scheme: ri(tn+1) = ri(tn) + ui(tn+1)$t, i ∈ {1, . . . , p}.

4 Results and Conclusions

We have implemented the numerical method explained in Sect. 3 in a computer
code written in Matlab. It is important to note that this code is a fully 3D
code, i.e. it can handle non-axisymmetric initial configurations. Nevertheless
we are going to show two results with initial axisymmetric configurations in
order to compare them with the results obtained with a different 1D program
that solves the axisymmetric formulation of the problem (see [BFKV]). We
will simulate the time evolution of a drop that initially is a prolate spheroid
(a = c = 0.8, b = 1). The inner fluid of the fluid has a viscosity of µ1 = 0.4 and
the outer fluid a viscosity of µ2 = 1. We will consider two cases, the first one
with total charge Q = 1.27Qc and the second one with total charge Q = 2Qc.
The results are depicted in Fig. 1.

Figure 1 provides evidence of formation of finite time singularities in both
cases but with different shapes. In the case Q = 1.27Qc there is a cone-
like singularity that appears in both tips of the drop. This result matches
the experimental result obtained in [Duf] just before the drop emits a thin
jet from both tips. In the second case a “neck” singularity appears in both
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Fig. 1. On the left : shape of the drop just before breakup with Q = 1.27Qc On the
right : shape of the drop just before breakup with Q = 2Qc

sides of the drop, but not in the tips, It seems that the drop will break into
three smaller drops. Another important conclusion is the agreement with the
axisymmetric results which validates the axisymmetric program and supports
the hypothesis of the axisymmetry of the singularities.
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Summary. A model for charge transport in photoexcited undoped semiconductor
superlattices is proposed and analyzed. Under dc voltage bias, self-sustained oscil-
lations of the current due to repeated homogeneous nucleation of pairs of charge
dipole waves inside the sample, followed by wave splitting and motion in opposite
directions are among the numerical solutions of the model.

1 Introduction

Semiconductor superlattices (SL) are used as fast-oscillator nanodevices in
communications and are the basis of quantum cascade lasers [1]. The latter
cover all the mid-infrared spectrum with the same material and are used in
industrial applications such as environmental sensing and pollution monitor-
ing, combustion control and catalytic converter diagnostics in the automotive
industry, as breath analyzers in medical applications, etc. Nonlinear electronic
transport in weakly coupled undoped photoexcited type-I SL is well described
by spatially discrete drift-diffusion equations [2]. Nonlinear behavior at high
fields include formation and dynamics of electric field domains, self-sustained
oscillations of the current through voltage biased SL, chaos, etc [1].

In this work, we show that the electron-hole recombination coefficient dec-
reases with increasing electric field by using a simple model that takes the
overlap integral between electron and hole wave functions into account. The
consequences for the nonlinear dynamics of electric field domains appearing
inside the SL may be striking. With field-independent recombination, there
are two values of the electric field that can be used to form profiles with coex-
istence of two domains, a low-field domain and a high-field domain. Under a
dc voltage bias and depending on the laser intensity (which excites electron-
hole pairs), these profiles can be stationary and stable or they can become
unstable, and self-sustained oscillations of the current may appear as a conse-
quence of domain wall dynamics [2]. With field-dependent recombination and
high laser intensity, it is possible to find only one stable electric field domain.
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Under dc voltage bias and for high conductivity contacts, the resulting field
profiles giving rise to self-oscillations of the current comprise dipole waves
resembling the action potential in nerve impulses [3]. Numerical simulations
of the model show homogeneous nucleation of two of these dipole waves in-
side the SL. They then split and one resulting dipole wave moves toward the
injector and the other toward the collector contact.

2 Model Equations

The equations governing nonlinear charge transport in a weakly coupled pho-
toexcited undoped SL are [2]

ε (Fi − Fi−1) = e (ni − pi), (1)

ε
dFi

dt
+ Ji→i+1 = J(t), (2)

dpi
dt

= γ(I)− r(Fi, I)nipi, (3)

1
N + 1

N∑
i=0

Fi = φ ≡ V

l (N + 1)
, (4)

Ji→i+1 =
eniv(Fi)

l
− eDi(Fi)

ni+1 − ni

l2
, (5)

J0→1 = σ F0, JN→N+1 =
nN

ND
σ FN . (6)

Here −Fi, ni, pi are the average electric field, electron and hole surface densi-
ties at the ith period of the SL. The periods i = 0 and i = N+1 represent the
injecting and collecting contacts of the SL. Equation (1) is the averaged Pois-
son equation, in which −e < 0, ε and l are the electron charge, the average
permittivity and the period of the SL, respectively. Equation(2) is a form
of Àmpere’s law, yielding the total current density J(t) as sum of the dis-
placement current and the tunneling current from period i to period (i+ 1),
Ji→i+1. We are assuming that only the electrons may tunnel across barriers.
Then, at high temperature, the tunneling current is a function of Fi, ni and
ni+1 given by (5), which has the form of a discrete drift-diffusion equation [1].
Equation(4) establishes that the change in the hole density per unit time
is due to photogeneration of electron-hole pairs (at a rate γ which depends
on the laser intensity I) and to recombination thereof (with coefficient r).
The electron drift and diffusion and the recombination coefficient are func-
tions of the electric field illustrated in Fig. 1. The expressions for v(F ) and
D(F ) can be found in [1], whereas we explain how to calculate r(F, I) below.
Equation(4) is the voltage bias condition, indicating that the voltage drop be-
tween injecting and collecting contacts of the SL is V . The tunneling current
at the contacts J0→1 and JN→N+1 are approximated by Ohm’s law (with a
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Fig. 1. Drift velocity, diffusion and recombination coefficients as functions of field
for a 4 nm Al0.3Ga0.7As/10 nmGaAs SL under a laser intensity of 60 mW at a
frequency 4.56 ×1015 Hz

contact conductivity σ) and by a linear function of the field, respectively [1].
ND is the doping at the collecting contact. In (1) and (3), i goes from 1 to
N, whereas i goes from 0 to N in (2). Then (1) to (3) are 3N+1 equations for
the 3N+2 unknowns ni, pi (i = 1, . . . N), Fi (i=0,1,. . . N) and J , provided the
expressions (5) and (6) are taken into consideration. The bias condition (4)
yields the missing equation. To solve (1) to (6), initial conditions for Fi and
pi should also be given.

Note that time differencing (2) and using the Poisson equation (1), we
obtain the equation of charge continuity for the charge density e (ni − pi).
The coefficients γ and r(F, I) require additional modeling. γ = Iα3Dw/(�ωo),
where α3D, w and ωo are the 3D absorption coefficient, the width of the GaAs
layer (quantum well) and the laser frequency, respectively [4]. r(F, I) is

r(F, I) =
n2
r

n2
inπ

2c2

∫ ∞

0

α2D(ω, F )ω2

exp
(

�ω
kBT

)
− 1

dω. (7)

Here nr is the SL refraction index, nin is the density of intrinsic charge carriers
in a quantum well. For large I, nin ≈ γnrLy/c, where c and Ly are the
velocity of light and the SL lateral extension, respectively. The 2D absorption
coefficient α2D in (7) is proportional to the modulus square of the overlap
integral

∫ l/2

−l/2
ΨeΨhdx [4], in which Ψe and Ψh solve the stationary Schrödinger

equation inside one SL period −l/2 < x < l/2 for the electrons and holes,
respectively. In this equation, the electric field F is considered constant, and
Ψ(±(w+ lp)/2) = 0. lp is a penetration length inside the AlAs layer (quantum
barrier), which depends self-consistently on the energy eigenvalue [5]. The
resulting recombination coefficient is depicted in Fig. 1.
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3 Numerical Results

In the phase plane of hole density and electric field (for space independent solu-
tions), the curve dFi/dt = 0 has three branches whereas the curve dpi/dt = 0
has only one. With the parameters we are using (high laser intensity), we
find that only one critical point in which both curves intersect is outside the
middle branch of the curve dFi/dt = 0; cf. Fig. 2. The resulting dipole waves
depicted in Fig. 3 for constant J resemble the action potential waves in nerve
impulses [3]: it comprises regions of slow variation of the electric field bound
by moving wave fronts in which the electric field varies rapidly. In the wave
fronts, the hole density is constant whereas the field jumps abruptly from one
stable branch to the other one in the curve dFi/dt = 0.

Under dc voltage bias and for high conductivity contacts, there are self-
sustained oscillations of the current through the SL triggered inside the sam-
ple, as in Fig. 4. At an interior point, two dipole waves are created, split and
each move to one of the contacts. When they reach the contacts, a new pair of
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Fig. 2. Nullclines dFi/dt = 0 and dpi/dt = 0 for the parameter values in Fig. 1
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Fig. 3. Electric field profile of the pulse corresponding to the phase plane in Fig. 2
for J = 132 kA cm−2
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Fig. 4. Electric field profiles during self-oscillations in a dc voltage biased 61-period
undoped SL having a configuration as in Fig. 1. The voltage between the two ends of
the SL is 1.765 V and the contact resistivities are 9.07 (i = 0) and 8.87 Ωcm (i = N)

dipole waves is created inside the sample and the process repeats itself. Other
unusual spatio-temporal patterns are observed [5]. At low laser intensity, cur-
rent self-oscillations involve the dynamics of two electric field domains, which
resembles more the case of doped SL [1]. An interpretation of the numerical
results can be given using the construction of dipole domains under current
bias and the difference in time scales as building blocks of the theory [5].

Support from the MEC grant MAT2005-05730-C02-01 and the Universidad
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Summary. This paper deals with a coupled system of non-linear elliptic differential
equations arising in electrodeposition modelling process. We show the existence and
uniqueness of the solution. A numerical algorithm to compute an approximation of
the weak solution is described. We introduce a domain decomposition method to
take in account the anisotropy of the solution. We show the domain decomposition
method convergence. A numerical example is presented and commented.

1 Introduction

Electrodeposition of alloys based on the iron group of metals is one of the
most important recent developments in the field of alloy deposition. In
[Nat86], [Tuy83] Pritzker et al have proposed a model which involves the
one-dimensional steady-state transport of the various species with simulta-
neous homogeneous reactions. The concentration of different species that are
involved satisfies a system of non-linear differential equations. In this paper
we are concerned with a reduced problem arising in one step of an iterative
method solving the whole system. More precisely we consider the following
system: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−dv′′ + b(x)v′ −m(vΦ′)′ = f in (0, δ)
v(δ) = v∗

−dv′(0)−mv(0)Φ′(0) = −γ v(0)
−[p(v)Φ′]′ = q(v) in (0, δ)
Φ(0) = V0, Φ(δ) = 0,

(1)

where v is the concentration, Φ is the potential, f denotes the production
rate, d is the diffusion coefficient, m is the electrical mobility, δ is a fixed
nonnegative real, v∗, V0, γ are constants, p, q are nonnegative functions and
b(x) = −ax2 is the fluid velocity vector, with a a nonnegative constant.
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In Sect. 2 we give a proof of existence and uniqueness of the solution (v, Φ)
of system (1) in C2([0, δ])× C2([0, δ]).
The numerical solution of the system considered in the electrodeposition are
characterized by stiff variations near the boundary x = 0. In order to take
account of the anisotropy of the solution we introduce in Sect. 3 a general-
ized version of the two domain decomposition method due to F. Gastaldi,
L. Gastaldi and A. Quarteroni (see [GGQ96]). We give a sketch of the proof
for the convergence in the new case of non constant coefficients and Robin
boundary conditions in x = 0. In Sect. 4 we present and discuss the result of
a numerical example.

2 Existence and Uniqueness Result

Let ε > 0. We introduce the following assumptions:
H01) p ∈ C1(R) and there exist nonnegative constants η0 and η1 such that:
η0 ≤ p ≤ η1.
Let k1 > 0 such that | p(x)− p(y) |≤ k1 | x− y | ∀x, y ∈ [0, v∗ + ε].
H02) There exist two nonnegative constants k2 and η2 such that −η2 ≤ q ≤ η2
and | q(x)− q(y) |≤ k2 | x− y | ∀x, y ∈ [0, v∗ + ε].
H03) The constant d is such that:

1. d > γδ +
2aδ3

3
+
m(V0 + 2η2δ2)((v∗ + ε)k1 + η1)

η2
0

+
2m(v∗ + ε)k2δ

2

η0
.

2. d ≥ 1
min(v∗, ε)

{
‖ f ‖ δ2 +

(
γδ +

2aδ3

3
+
mV0

η0
+

2mη2δ2

η0

)
(v∗ + ε)

}
.

Theorem 1. Under assumptions H01–H03 the system (1) has a unique solu-
tion (v, Φ) ∈ C2([0, δ])× C2([0, δ]).
Proof. Let Π the map defined from C([0, δ]) to C([0, δ]) by Πv = u, where
for x ∈ [0, δ]

u(x) = v∗ +
γ

d
(x − δ)v(0) +

1

d

x∫
δ

⎡⎣(bv)(y) −
y∫

0

(b
′
v)(t)dt −

y∫
0

f(t)dt

⎤⎦dy

−m

d

x∫
δ

⎧⎨⎩ v(y)

p(v)(y)

⎡⎣−V0

δ
+

1

δ

δ∫
0

t∫
0

q(v)(s)dsdt −
y∫

0

q(v)(t)dt

⎤⎦⎫⎬⎭ dy. (2)

By integration of (1) it follows that a solution of the system is a fixed point
of application Π. We set D = {u ∈ C([0, δ]), 0 ≤ v ≤ v∗ + ε} equipped with
the uniform norm. Using hypotheses H01-H03 we prove that the map Π is a
contraction from D into itself. By Banach fixed point theorem it comes that
Π has a unique fixed point v ∈ D and by (2) v ∈ C2([0, δ]). Then (1) has a
unique solution (v, Φ) ∈ C2([0, δ])× C2([0, δ]). With

Φ(x) = −
x∫

δ

⎧⎨⎩ 1
p(v)(s)

⎛⎝V0

δ
+

1
δ

δ∫
0

y∫
0

q(v)(t)dtdy −
s∫

0

q(v)(y)dy

⎞⎠⎫⎬⎭ds. (3)
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3 Numerical Methods

For convenience we introduce the following new unknowns:

ψ(x) = Φ(x)− V0

δ
(δ − x) and w(x) = v(x)− v∗ for all x ∈ [0, δ]. (4)

System (1) is then equivalent to the following systems:{
L1w = F (w,ψ) in (0, δ),
w(δ) = 0, −dw′(0) = G(w,ψ)(0). (5)

and {
−[p(w + v∗)ψ′]′ = q(w + v∗) in (0, δ)
ψ(0) = 0, ψ(δ) = 0, (6)

where: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
L1w = −dw′f ′ +B0(x)w′, B0(x) = b(x) +m

V0

δ
x ∈ (0, δ).

F (w,ψ) = m[(w + v∗)ψ′]′ + f x ∈ (0, δ).

G(w,ψ) =
[
m

(
ψ′(0)− V0

δ

)
− γ
]

(w(0) + v∗) x ∈ (0, δ).

(7)

The iterative method considered to solve this coupled problem first solves the
equation (5) for a given potential ψn and then using the same algorithm solves
equation (6) for a given concentration wn. Let w0 be the solution of (5) with
F = 0 and then for any n ∈ N , wn+1 is the solution of the linear system:{

L1w = F (wn, ψ) in (0, δ),
w(δ) = 0, −dw′(0) = G(wn, ψ)(0). (8)

The existence and uniqueness of a solution of problem (8) is trivial in
C2([0, δ]).

3.1 Iterative Method to Solve the Equation (8)

Let c ∈ (0, δ) be fixed. To solve equation (8) using the iterative domain de-
composition method we decompose the set (0, δ) in two non-overlapping sub-
domains, Ω1 = (0, c) and Ω2 = (c, δ). In the subdomain Ω1 we consider a finer
mesh structure than in Ω2.

Let n ∈ N , A and B two reals parameters such that AB ≤ 0, A �= B.

Given w1,0 = w2,0 = wn and λ0 = d(w2,0)′(c)−
(

1
2
B0(c) +A

)
w2,0(c), for

each k ≥ 0 we have to solve⎧⎪⎪⎨⎪⎪⎩
L1w1,k+1 = F (wn, ψ) in H1(0, c),
−d(w1,k+1)′(0) = G(wn, ψ)(0),

d(w1,k+1)′(c)−
(

1
2
B0(c) +A

)
w1,k+1(c) = λk,

(9)
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and then ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L1w2,k+1 = F (wn, ψ) in H1(c, δ),
w2,k+1(δ) = 0,

d(w2,k+1)′(c)−
(

1
2
B0(c) +B

)
w2,k+1(c)

= d(w1,k+1)′(c)−
(

1
2
B0(c) +B

)
w1,k+1(c),

(10)

with

λk+1 = d(w2,k+1)′(c)−
(

1
2
B0(c) +A

)
w2,k+1(c). (11)

Thanks to the Lax-Milgram Theorem we can able to prove the:

Proposition 1. If A ≤ 0, then the problem (9) has a unique solution w1,k+1 ∈
C2([0, c]) and if B ≥ 0, then the problem (10) has a unique solution w2,k+1 ∈
C2([c, δ]).

We will now give a sketch of the proof of convergence of the subdomain decom-
position algorithm (9) and (10) applied to the solution of the linear problem
(8) taking in account an anisotropic advective field and non constant absorp-
tion terms.

Proposition 2. Let c ∈ (0, δ) such that 2d >| B0(c) + A + B |. Then the
sequence (w1,k, w2,k) converge to (v, v) in C(0, c)× C(0, c).

Proof. Let us define the errors ej,k = v − wj,k; j = 1, 2, and study their
behavior as k grows. We can prove the following inequality:

‖ e1,k+1 ‖∞≤ γ0 ‖ e1,k ‖∞ and ‖ e2,k+1 ‖∞≤ γ0 ‖ e2,k ‖∞, (12)

with γ0 > 0. Conditions A < B and 2d >| B0(c) +A+B | imply that γ2
0 < 1

which finish the proof.

4 Numerical Result

The algorithm introduced in the previous section has been implemented nu-
merically for one example of problem (1) with δ = 11341 ∗ 10−9, c =
δ/10, m = 52133 ∗ 10−12, d = 68 ∗ 10−11, γ = 0.05, v∗ = 1, V0 = −0.85 and

a = 660.45, p = 1 +
1

x2 + x+ 1
, q =

1
| x | +1

and
10δ
m+ x

. This is a nonlinear

system with nondifferentiable second member. The numerical concentration
was plotted in Fig. 1.

We remark that the variation rate of v is very strong near the boundary 0.
This property justifies the use of the domain decomposition method and the
choice of the fictitious boundary c near 0.

The algorithm (9)–(10) converges with N1 = 70 finite element at the sub-
domain [0, c] and N2 = 50 finite element at the sub-domain [c, δ]. We stop
when the error is of order 10−19.
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Fig. 1. Numerical concentration solution for f = 10 ∗ δ/(m + x)
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1 Introduction

This chapter is concerned with the matter of mathematically modelling and
computationally simulating the thermo and fluid dynamical phenomena oc-
curing in the workpiece during a gas metal arc welding (GMAW) process, and
does so by employing a continuum mechanical approach and a finite element
formulation for approximating the solution of equations expressing the conti-
nuity of mass, the balance of linear momentum, the conservation of energy and
the motion of the weld pool surface. GMAW is an electrode arc fusion weld-
ing process. The designation arc fusion signifies that an electric arc is struck
between the welding electrode and the workpiece, and this causes the base ma-
terial to melt on either side of the joint. During the subsequent solidification
this will cause fusion between the workpiece parts. The electrode consist in a
filler metal, and it is hence consumed during the process and molten droplets
are, under the influence of electromagnetical and gravitational forces, trans-
ferred to the liquid weld pool. Mass is thus added to the workpiece and this
causes a reinforcement of the joint.

Weld pool simulations may be used for predicting the interior geometry
and reinforcement geometry of the resulting weld. The aim of this study is to
provide a tool for predicting such quantities as weld penetration depth and
weld toe radii. The weld toe radius is determined by the outer geometry of
the weldment, and this is why we are required to model the motion of the
freely moving surface of the weld pool. The simulation will also output the
thermal history of the workpiece, which can be input to further simulations
concerning the microstructure of the workpiece.

The arc affects the workpiece not only by generating heat at the weld
surface, but also by exerting forces on the pool surface. In this study the action
of these forces, as well as the influence of the energy source, are hypothesized
and incorporated via boundary conditions for the governing equations.

2 Mathematical Modelling

We begin by deriving a generic semi-weak balance equation which is then
instantiated for the mass density ρt, the fluid momentum density ρtut, and
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the energy density Ht. We also propose an equation for the workpiece motion
{ωt}t, which is based on physical modelling.

The workpiece will at every time instant t be identified with a subset Ω(t)
of �3. The electrode tip travels at the constant velocity v and at constant
height over the base plate. The generic equation for analyzing the weld pool
behaviour was derived, developed and applied in [1] and [2], and we now
present it in its entirety. We consider an arbitrary physical quantity X , the
density distribution of which at time t is represented spatially by the function
X t : Ω(t) → �. We let the total flux qt

tot and the source density F t be func-
tions such that, for every t ∈ [0, tend], the conservation of X in any open control
volume W fixed in the interior of Ω(t) is expressed by the following relation:

d
dt

∫
W

X t = −
∫
∂W

qt
tot · nt +

∫
W

F t

By assuming that for every physical quantity X , including the flux, it is
valid that X t(x, y, z) = X t− z−Z

v (x, y, Z!) for any fixed Z! ∈ �, where v = |v|,
and considering space-time material motions on the form ω!(X,Y,Z, t̂) =
[ω1(X,Y, t̂), ω2(X,Y, t̂), Z, t̂ + Z−Z

v ]T , where [X,Y,Z]T are the coordinates
of an arbitrary point in the reference domain Ω0, we find that all material
representations (hatted) are independent of Z. Hence it suffices to solve only
for the plane Z = Z! where transformed and untransformed time coincide.
By applying a change of coordinates in the integrals, and transforming the
derivatives accordingly, we arrive at an equation posed on the two dimensional
computational domain ΩZ = {[X,Y ] : X ∈ Ω0, Z = Z!}, in which the
influence of ω! is via the motion ω(X,Y ; t) = [ω1(X,Y, t), ω2(X,Y, t)]T of
ΩZ , and via its 2× 2 Jacobian for fixed t;∫

ΩZ

∂

∂t̂

[
X̂ − q̂3 + X̂ û3

v

]
φ̂|Jω| +

∫
ΩZ

∇(X,Y )X̂J−1
ω (

[
û1

û2

]
− ∂ω

∂t̂
)φ̂|Jω|

+

∫
ΩZ

∂ω

∂t̂
· ∇(X,Y )

q̂3 + X̂ û3

v
J−1

ω φ̂|Jω| = −
∫

ΩZ

X̂∇(X,Y )

[
û1

û2

]
:Jω

−T φ̂|Jω|

+

∫
ΩZ

[q̂1, q̂2]·∇(X,Y )φ̂J−1
ω |Jω|−

∫
∂ΩZ

[−q̂2, q̂1]Jω t̂φ̂+

∫
ΩZ

F̂ φ̂|Jω|, ∀φt∈V (X t),

where t̂ is the positively oriented unit tangent to ∂ΩZ , qt
tot = qt +X tut and

V (X t) is the weighting space for X t. When disregarding q̂3, and incorporating
the pointwise incompressibility constraint, we arrive at∫

ΩZ

∂

∂t̂
X̂ φ̂|Jω| +

∫
ΩZ

∇(X,Y )X̂J−1
ω

([
û1

û2

]
− ∂ω

∂t̂

)
φ̂|Jω|

= +

∫
ΩZ

[q̂1, q̂2] · ∇(X,Y )φ̂J−1
ω |Jω| −

∫
∂ΩZ

[−q̂2, q̂1]Jω t̂φ̂ +

∫
ΩZ

F̂ φ̂|Jω| (1)

We now instantiate (1) for the mass density, i.e. we take X t = ρt. No in-
terior sources of mass are present, however by assuming that the amperage
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of the welding current is high enough (c.f. [3]) for the process to operate in
spray transfer mode, that is, the metal droplets transferred to the weld pool
are quite small and frequent, we may specify the flux across the workpiece
boundaries such that it models the addition of filler metal. By incorporating
the Boussinesq approximation and relaxation terms (c.f. [2]), we obtain

0 = −ρref
∫
Ω0

∇(X,Y )û : Jω
−T ˆ̄p|Jω| − ε

∫
Ω0

∇(X,Y )p̂Jω
−1Jω

−T∇T
(X,Y )

ˆ̄p|Jω|

−ε2
∫
Ω0

p̂ ˆ̄p|Jω|+ M̂ t
[
ˆ̄p
]
,∀p̄ ∈ V (pt)

where M t : V (pt) −→ � is a boundary source of mass density such that
M [1] =: M is an approximation of the deposition rate, i.e. the mass added
to the workpiece per unit time. By taking the computational domain Ω0 as
a rectangle, the part Γw

0 of the boundary ∂Ω0 that is mapped on a subset of
the welding surface is a subset of the Y = 0 line, and we may write

M̂ t [p̄] =
M

πb2

∫
Γw

0

f ◦T̂ (X, 0, t) exp
(−||(ω1(X, 0, t), P3(t))||2

b2

)
∂ω1

∂X
(X, 0, t)ˆ̄pdX

where b is the spot radius of the spray, P3(t) is the coordinate of the electrode
tip in the welding direction, and the local liquid fraction f has been incorpo-
rated in order to avoid adding mass to the solid workpiece. If the weld pool
is wider than b

√
− ln(0.01), the theoretical deposition rate does not deviate

more than 1% from M .
The instantiation of equation (1) for X t = ρtut and X t = Ht is as in [2].
The equation for the workpiece motion is defined in such a fashion that

it mimics the motion of an inertia-less fluid constrained by the kinematic
condition. By taking the viscosity µmesh of this pseudo-fluid to depend upon
the element domain size h, small elements are less distorted, and convergence
is speed up. We have experienced that µmesh(h) = 1 − h is a good choice in
our applications. We thus require that the relation

0 = −
∫
Ω0
µmesh

[
∇x

∂ω

∂t
Jω

−1

]
:
[
∇x

¯̇ωJω
−1
]
|Jω|+ Γ̂ω [¯̇ω] ,

holds for every ¯̇ω in V (∂ω
∂t ), where Γ̂ω : V (∂ω

∂t ) → � is the material formu-
lation of the total force acting on the surface of the pseudo-fluid. This force
is determined via a Lagrange multiplier for the kinematic constraint. As an
alternative to having the surface move as a result of adding mass in the conti-
nuity equation, one may modify the velocity of the boundary in the expression
for Γ̂ω. This way, the motion of the free surface is not a result of simulating the
response of an incompressible material to a mass source, but the the motion of
the “freely” moving surface is somewhat forced. The two approaches produce
different outputs. We have experienced that the approach we have described
above computationally outperforms the approach employing a modified Γ̂ω.
As an example, we notice that the alternative approach does not converge for
the case depicted by the rightmost circle in Fig. 2. What more is, we think
that the current approach is more physically reasonable.
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3 Computational and Numerical Modelling

We discretize the governing equations in space using a finite element method
employing Taylor–Hood triangles for the Navier–Stokes equations, and sec-
ond order Lagrange triangles for the other unknowns except for the multplier
for the kinematic constraint, for which first order one-dimensional elements
are used. One may expect that a first order geometrically continuous repre-
sentation of the surface shape would improve the convergence with respect
to the surface tension forces. Since the surface is represented by a parame-
trization determined by the FE approximation, triangular Hermite elements
would achieve this due to the continuity of the derivatives of the approxi-
mation at the nodes. However, using Hermite elements for the motion makes
the computations perform much worse, possibly due to a poor combination of
element types.

A numerical method was implemented using the software Comsol Script,
which applies the DASPK algorithm [4,5] for solving the differential-algebraic
system. The reason we employ the formulation based on space-time material
motions instead of the equivalent three dimensional steady state formula-
tion is that it is generally easier to obtain convergence when applying the
DASPK algorithm for time-dependant problems, than for the corresponding
static problems.

4 Qualitative Behaviour of the Model

Investigations into the qualitative behaviour of the model were performed.
Even though this includes quantitative predictions of pool temperatures and
melting efficiency, validations of these results are not included in this chapter.

A study with respect to the assumption that the total flux vanishes in the
welding direction was performed, and the important features were reported
in [2]. We now add to this study a parameter study of the effect of the electrode
tip travel speed on the maximum pool temperature predicted by the simplified
formulation, measured as a percentage of the maximum temperature predicted
by a three dimensional static simulation. Figure 1 shows that the maximum
temperature is predicted quite well even for low values for v.

In order to quantify the influence of the heat input to the workpiece that
is due to the addition of filler metal, and compare it to the significance of the
boundary source term in the energy equation, we study the melting efficiency
predicted by the simulation. We define the melting efficiency of a steady-
state linear welding process as the ratio of the theoretical minimum amount
of energy required to establish the weld pool and mushy zone, to the total
amount of thermal energy contained in the workpiece. This ratio was calcu-
lated for a number of typical linear bead-on-plate welding processes (on steel
316 plates), the parameter settings of which were the same, except that we
beteween the runs modified the deposition rate. This way we may study the
dependence of the melting efficiency on the reinforcement cross-sectional area.
We obtained nine data points in the range 0–4 mm2, see Fig. 2. Our model
behaves qualitatively correct in that the melting efficiency increases with the
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Fig. 1. Maximum pool temperatures
(percent) vs. arc speed (mm s−1).
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Fig. 2. Melting efficiencies (percent)
vs. reinforcement cross-sectional area
(mm s−2)

actual heat input to the workpiece (c.f. [6]) which is strongly affected by the
deposition rate. By extrapolating a quadratic fit, we find that the performed
parameter study predicts that, for greater M , our model would simulate a
melting efficiency the size of which agrees with what is usually experienced
during non-autogenous arc welding (40-50%), see for example [6].

5 Conclusions and Future Work

We have defined a tool for simulating the dynamical behaviour of an arc fusion
weld pool with respect to fluid and thermo dynamical phenomena. Parame-
ter studies were performed, and the tool behaves qualitatively according to
physical expectations.

The author would like to thank the following companies; Volvo Construc-
tion Equipment, ESAB AB, SSAB Tunnpl̊at AB, Volvo Aero Corporation.
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1 Introduction

Let D := (−1, 1), and the following non-local elliptic boundary value problem:

w′′(x) + λ
f(w(x))(∫

D
f(w)dx

)2 = 0 ∀x ∈ D, (1)

w′(1) + aw(1) = 0, w′(−1)− aw(−1) = 0, (2)

where w = w(x;λ) and λ is a dimensionless parameter(see, e.g., [3,6,7]). The
problem (1) and (2) models the steady state temperature profile of the ther-
mistor device (see [2,6]). We will focus in the case of the Negative Temperature
Coefficient thermistor (NTC-thermistor), where the electrical resistivity de-
creases with temperature, e.g. f(s) = e−s or f(s) = (1 + s)−p. It is has been
proved that if f(s) > 0, f ′(s) < 0, f ′′(s) > 0 for s > 0, and

∫∞
0
f(s) ds <∞,

then the problem (1) and (2), has at least one classical (regular) solution for
the critical value of the parameter λ, say λ∗, has no solution for λ > λ∗, and
for λ < λ∗ attains at least two regular solutions (w, w) where w(x) < w(x)
for x ∈ D, w is stable and w is unstable for λ close to λ∗. In addition we may
scale f so that

∫∞
0
f(s) ds = 1, and then λ∗ < 8. For the (1) but with Dirichlet

b.c.s, w(±1) = 0, we have that λ∗ = 8 (if
∫∞
0
f(s)ds = 1). For λ < λ∗ we

have a unique stable solution w, while for λ ≥ λ∗ we have no solution. For
f(s) = e−s the analytical solution for problem (1) and (2) is known (see [4]).
It holds that w(x) = 2γ

α tan(γ) + 2 ln( cos(γx)
cos(γ) ) where γ solves the equation

λ = 8 sin2(γ) exp
(
−2γ
α

tan(γ)
)

for λ, a known. Also for α = 1, λ∗ can be computed and is found to be
λ∗ � 1.1239. When the Dirichlet b.c.s, w(±1) = 0, imposed to (1) with
f(s) = e−s, then w(x) = 2 ln

[
cos(γx)
cos(γ)

]
for
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γ = sin−1

(
λ

8

)1/2

.

These analytical solutions can be used for the comparison with the numerical
results presented in this work. The accurate knowledge for the steady solution
is needed, in order to obtain estimates for the evolutionary problem and for
the practical point of view of applications (cf. [2, 4, 5]).

In the chapter at hand, in order to approximate the solution of (1) with
Robin or Dirichlet b.c.s, we construct a finite element and a finite volume
method based on piecewise continuous piecewise quadratic functions. In par-
ticular, the proposed finite volume method extends a new finite volume
method derived recently in [8] for general linear two-point boundary value
problems. Both methods leads to a nonlinear system of algebraic equations
that we solve by applying an iterative method. In the case of the Robin bound-
ary conditions (2), when we start the iterative method below this solution,
e.g., from zero, it is expected that we approximate the solution belonging
to the stable branch of the response diagram (minimal solution w) which is
the situation of interest regarding the application of the model (see, e.g., [1]).
Apart from this it is useful to compare the finite element method and the finite
volume method for a nonlinear elliptic problem, since the general theory for
finite volume methods is not as extensive as for the finite element methods.

2 Formulation of the Numerical Methods

We consider a partition of D with J+1 nodes {xj}Jj=0 where J ≥ 3, x0 = −1,
xJ = 1 and xj < xj+1 for j = 0, . . . , J − 1. Then, set Ij := (xj−1, xj) for
j = 1, . . . , J , xj+z := xj + z (xj+1 − xj) for j = 0, . . . , J − 1 and z ∈ [0, 1],
and ξj : Ij → [0, 1] by ξj(x) := x−xj−1

xj−xj−1
for x ∈ Ij and j = 1, . . . , J . Let I =

(yL, yR). Then, we denote by XI the characteristic function of the interval I,
and we write [[v]]∂I = v(y−R )− v(y+

L ), where v(x±) := limε→0+ v(x± ε).
The methods we propose construct an approximation of the solution of

problem (1) and (2) from the space S2
R consisting of functions which are

continuous on [−1, 1] and reduce to polynomials of degree less than or equal
to 2 on each I ∈ {Ij}Jj=1. When we consider the (1) with Dirichlet boundary
conditions the methods construct an approximations of the solution from the
space S2

D := {φ ∈ S2
R : φ(±1) = 0}. We note that dim(S2

R) = 2J + 1 and
dim(S2

D) = 2J − 1.

2.1 The Finite Volume Method

Let ρ ∈ (0, 1) be a real parameter, and {∆j}2J+1
j=1 be control volumes given by

∆2	 := (x	−1, x	) for j = 1, . . . , J ,∆2	+1 := (x	−1+ρ, x	+ρ) for j = 1, . . . , J−1,
∆1 := (x0, x0+ρ) and ∆2J+1 := (xJ−1+ρ, xJ). The proposed finite volume
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method (FVM) (cf. Proposition 3.7 in [8]) is formulated as follows: find wh ∈
S2

R such that

−
[
w′

h(x0+ρ)− awh(x0)
]

= V (wh;∆1)

−
[
w′

h(x1)− awh(x0)
]

= V (wh;∆2),
− [[w′

h]]∂∆j
= V (wh;∆j), j = 3, . . . , 2J − 1, (3)

−
[
− awh(xJ)− w′

h(xJ−1)
]

= V (wh;∆2J ),

−
[
− awh(xJ)− w′

h(xJ−1+ρ)
]

= V (wh;∆2J+1)

where V (wh;∆) := λ

∫
∆

f(wh(x)) dx(∫
D

f(wh(x)) dx
)2 · Using the auxiliary functions φ̂0(x) :=

2−3ρ
1−ρ (1 − x2) + 2ρ−1

1−ρ (1 − x) , φ̂ 1
2
(x) := 6x(1 − x), φ̂1(x) := 3ρ−1

ρ x2 + 1−2ρ
ρ x

(see [8]), we construct a basis BFV
R = {ϕj}J+1

j=1 ∪ {ϕj− 1
2
}Jj=1 of S2

R by

ϕ1(x) = φ̂0(ξ1(x))XI1(x), ϕj− 1
2
(x) = φ̂ 1

2
(ξj(x))XIj

for j = 1, . . . , J , ϕj(x) =

φ̂1(ξj−1(x))XIj−1
(x) + φ̂0(ξj(x))XIj

(x) for j = 2, . . . , J , and ϕJ+1(x) =
φ̂1(ξJ (x))XIJ

(x). Hence, wh =
∑J+1

i=1 β
FV
i ϕi +

∑J

i=1 β
FV
J+1+i ϕi− 1

2
, where

β = {βFV
i }2J+1

i=1 is the coefficients vector to be determined. Then, (3) is equiv-
alent to a nonlinear system of algebraic equations of the form AFVβFV =
F FV(βFV), where AFV ∈ R(2J+1)×(2J+1) is a matrix and F FV : R2J+1 → R2J+1 is
a nonlinear map defined by (F FV(y))i :=V

(∑J+1

j=1 yjϕj+
∑J

j=1 yJ+1+j ϕj− 1
2
;∆i

)
for y ∈ R2J+1 and i = 1, . . . , 2J + 1. We solve the obtained nonlinear system
by an iterative process based on Broyden’s method with initial approximation
βF V

(1) = 0 ∈ R2J+1. When, we consider the (1) with Dirichlet boundary condi-
tions, the finite volume method is formulated as follows: find wh ∈ S2

D such
that:

−[[w′
h]]∂∆j

= V (wh;∆j), j = 2, . . . , 2J.

To formulate the analogous nonlinear system of algebraic equations,
we choose the basis BF V

D = {ϕj}J
j=2 ∪ {ϕj− 1

2
}J
j=1 of S2

D. In the numerical

experiments, we choose ρ = 1
2 −

√
3

6 because, according to the error analysis
in [8], this is one of the values which, in the linear case, ensure an optimal
order of convergence in the L2, H1 and L∞ norms.

2.2 The Finite Element Method

The finite element method (FEM) for problem (1) and (2) is formulated as
follows: find wh ∈ S2

R such that

a
[
wh(1)φ(1) + wh(−1)φ(−1)

]
+ (w′

h, φ
′)0,D = W (wh, φ) ∀φ ∈ S2

R, (4)

where W (wh, φ) := λ
(f(wh),φ)0,D(∫

D
f(wh) dx

)2 · In the numerical experiments we use

a basis BFE
R = {φj}2J+1

j=1 of S2
R determined by φJ+1+j(x) = φ̂ 1

2
(ξj(x))XIj

(x)
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for j = 1, . . . , J , φ1(x) = φ̂0(ξ1(x))XI1(x), φj(x) = φ̂1(ξj−1(x))XIj−1
(x) +

φ̂0(ξj(x))XIj
for j = 2, . . . , J , and φJ+1 = φ̂1(ξJ (x))XIJ

, where φ̂0(x) := 1−x,
φ̂ 1

2
(x) := 4x (1 − x) and φ̂1(x) := x. Thus wh =

∑2J+1

i=1 βFE
i φi, where βFE =

{βF E
i }2J+1

i=1 is the coefficients vector to be specified. It is easily seen that (4) is
equivalent to a nonlinear system of algebraic equations of the form AFEβFE =
F FE(βFE), where AFE ∈ R(2J+1)×(2J+1) is a matrix and F FE : R2J+1 → R2J+1

is a nonlinear map defined by (F FE(y))i := W (
∑2J+1

j=1 yj φj , φi) for y ∈ R2J+1

and i = 1, . . . , 2J +1. As in the FVM the resulting nonlinear system is solved
by an iterative process based on Broyden’s method. When we consider the (1)
with Dirichlet boundary conditions, the FEM is formulated as follows: find
wh ∈ S2

D such that:

(w′
h, φ

′)0,D = W (wh, φ) ∀φ ∈ S2
D.

The corresponding nonlinear system of algebraic equations, is obtained choos-
ing the basis BFE

D = {φj}J
j=2 ∪ {φj− 1

2
}J
j=1 of S2

D.

3 Numerical Results and Comparison

In this section we present results of numerical experiments performed with
the numerical methods presented in Sect. 2. All numerical schemes were im-
plemented in a MATLAB program. The problem was solved numerically on a
uniform grid with J + 1, and using tolerance TOL = 10−10 in the Newton-
type method. Also, we choose a = 1, λ = 1 and f(s) = e−s, i.e., λ is chosen
so that λ < λ∗. The L2 and H1 norms of the error w − wh were computed
using Simpson’s rule, and the L∞ norm of the error was estimated by a finite
sampling at the abscissae of the aforementioned quadrature rule. The results
are summarized in Tables 1 and 2 indicating that the computational order of
convergence agrees with the order of convergence in the linear case (see [8]),
which is equal to 3 in the L2 and L∞ norms, and 2 in the H1 norm.

In Tables 1 and 2 are shown that using the same uniform partition, the
FEM for (1) with Robin b.c.’s is more accurate and faster than the FVM.

In Tables 3 and 4 we see that, in the case of Dirichlet b.c.’s, the methods
are similarly accurate with error of the same order, however the error of the
FVM is slightly bigger. This difference with the corresponding results for the

Table 1. Rates of convergence of the FEM for (1) with Robin b.c.’s

J + 1 ‖w − wh‖0,D Rate ‖w − wh‖1,D Rate ‖w − wh‖∞,D Rate

20 1.513(−6) 6.847(−5) 2.585(−6)
40 1.595(−7) 3.13 1.647(−5) 1.98 2.953(−7) 3.02
80 1.933(−8) 2.99 4.042(−6) 1.99 3.626(−8) 2.97
160 2.265(−9) 3.07 1.001(−6) 2.00 4.360(−9) 3.02
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Table 2. Rates of convergence of the FVM for (1) with Robin b.c.’s

J + 1 ‖w − wh‖0,D Rate ‖w − wh‖1,D Rate ‖w − wh‖∞,D Rate

20 3.648(−5) 5.743(−4) 3.169(−5)
40 4.659(−6) 2.86 1.428(−4) 1.94 3.975(−6) 2.89
80 5.546(−7) 3.02 3.643(−5) 1.94 4.765(−7) 3.00

160 6.063(−8) 2.93 9.664(−6) 1.90 6.063(−8) 2.95

Table 3. Rates of convergence of the FEM for (1) with Dirichlet b.c.’s

J + 1 ‖w − wh‖0,D Rate ‖w − wh‖1,D Rate ‖w − wh‖∞,D Rate

20 4.171(−7) 2.427(−5) 7.112(−7)
40 4.831(−8) 2.99 5.846(−6) 1.98 8.514(−8) 2.95
80 5.815(−9) 2.99 1.435(−6) 1.99 1.041(−8) 2.98

160 7.133(−10) 3.00 3.556(−7) 1.99 1.288(−9) 2.99

Table 4. Rates of convergence of the FVM for (1) with Dirichlet b.c.’s

M ‖w − wh‖0,D Rate ‖w − wh‖1,D Rate ‖w − wh‖∞,D Rate

20 4.206(−7) 2.431(−5) 7.403(−7)
40 4.866(−8) 2.99 5.848(−6) 1.98 8.691(−8) 2.98
80 5.855(−9) 2.99 1.435(−6) 1.99 1.052(−8) 2.99

160 7.182(−10) 3.00 3.556(−7) 1.99 1.295(−9) 3.00

problem with Robin b.c.’s, may be, is related with an error increased in the
boundary volumes when the FVM is used with Robin b.c.’s.
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1 Introduction

The goal of this chapter is to analyze a finite element method to solve the
magnetostatic problem in terms of scalar potentials. Several FEM have been
developed to solve the magnetostatic problem in the last decades, because of
its application in engineering; see, for instance, [BAL96,MSP98,PAL91,ST79,
ST80]. The main difference in the numerical methods lies in the choice of the
primary unknowns (vector potential, magnetic field or scalar potentials). The
published numerical results ([MSP98,PAL91]) show that the combination of
two different potentials, the so called reduced scalar potential and total scalar
potential, seems to be the most effective in terms of accuracy and computer
cost. This formulation, was introduced by Simkin and Trowbridge in [ST79]
and is very well known in the engineering literature; however, to the best of
the author’s knowledge, the approximation of this formulation in bounded
domains by standard finite elements has not been analyzed from a mathemat-
ical point of view. This is the aim of the present chapter in the context of
three-dimensional domains.

2 Scalar Formulation of the Magnetostatic Problem

The classical magnetostatic model is obtained by neglecting the time deriv-
atives in Maxwell equations. Thus, given a divergence-free stationary source
current density J , the magnetic field H satisfies the following equations:

curlH = J , (1)
div (µH) = 0, (2)

where µ is the magnetic permeability which satisfies 0 < µmin ≤ µ ≤ µmax.
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Case ΓJ = ∅

The typical magnetostatic problem involves magnetic materials with per-
meability µ �= µ0 (µ0 > 0 being the magnetic permeability of vacuum), current
sources, and eventually magnets. In particular, we are interested in solving
the problem (1) and (2) in a bounded 3D domain Ω containing prescribed cur-
rents and magnetic materials. This domain is assumed to be simply connected
with a Lipschitz-continuous connected boundary Γ .

We denote by ΩM an open subset of Ω containing all the magnetic mate-
rials and by ΩJ another open subset of Ω such that ΩJ contains the support
of the current source J in Ω. We assume that ΩM ∩ΩJ = ∅ and the set ΩM is
assumed to be connected although in general not simply connected. We also
assume that the boundary of ΩM is connected and that ΩM ⊂ Ω. However,
our analysis covers problems in which the domain Ω contains all the source
currents (closed circuits), as that shown in Fig. 1, and also problems in which
there is a current flow through a part ΓJ := ∂ΩJ ∩ Γ of the boundary (open
circuits), as that shown in Fig. 2.

To pose the magnetostatic problem in the bounded domain Ω, we add to
(1) and (2), the following boundary condition:

µH · n = g on Γ,

where g is a given data function and n the outward unit normal vector to Γ .
Simkin and Trowbridge have introduced in [ST79,ST80] a formulation of

this problem based on two scalar potentials defined in different regions of the
domain. The aim of this chapter is to analyze this formulation and a finite
element method to compute its solution in the three-dimensional case.

To introduce the scalar potentials, we start noticing that the Biot-Savart
law allows us to compute a vector field T such that curlT = J and div T = 0
in Ω (see [BRS06] for further details). Thus, since Ω is simply connected,
there exists a scalar potential φR such that

H = T − gradφR in Ω.

The scalar field φR is known as the reduced scalar potential.
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In the domain ΩM we are going to introduce another scalar potential. To
do this, we denote ΩR := Ω \ ΩM, ΓI := ∂ΩR ∩ ∂ΩM and ν the unit normal
vector to ΓI pointing outwards ΩM. The domain ΩM is in general not simply
connected, but we assume that there exists a finite number of open connected
surfaces Σj , j = 1, . . . , J , such that Σj ⊂ ΩM, ∂Σj ⊂ ∂ΩM, Σj ∩Σk = ∅, for
j �= k, and the open set Ω̃M := ΩM \

⋃j=J
j=1 Σj is simply connected ( [AAL98]).

For any function ψ̃ ∈ H1(Ω̃M), we denote by [[ψ̃]]Σj
the jump of ψ̃ through

Σj . The gradient of ψ̃ in D′(Ω̃M) can be extended to L2(ΩM)3 and will be
denoted by gr̃ad ψ̃. Let Θ be the subspace of H1(Ω̃M) defined by

Θ =
{
ψ̃ ∈ H1(Ω̃M) : [[ψ̃]]Σj

= constant, j = 1, . . . , J
}
.

For all function G ∈ H(curl, ΩM) such that curlG = 0 in ΩM, there exist
ψ̃ ∈ Θ such that G|ΩM = −gr̃ad ψ̃ (see again [AAL98]). Then, since J |ΩM =
0, we can write H|ΩM = −gr̃ad φ̃ with φ̃ ∈ Θ and the scalar multivalued
function φ̃ is known as the total scalar potential. Then, we consider:

H =

{
−gr̃ad φ̃, in ΩM,

T − gradφR, in ΩR.

We introduce the space X := Θ/R × H1(ΩR)/R, endowed with the norm∥∥(ψ̃, ψR
)∥∥

X :=
(∥∥gr̃ad ψ̃

∥∥2
0,ΩM

+
∥∥gradψR

∥∥2
0,ΩR

)1/2

. Taking into account
that H × n and µH · n does not have jumps across ΓI, we introduce the
closed linear manifold of X

V(T ) :=
{(
ψ̃, ψR

)
∈ X : gradψR × ν − gr̃ad ψ̃ × ν = T × ν on ΓI

}
,

and the weak problem in terms of scalar potentials reads as follows:
Problem P. Find

(
φ̃, φR

)
∈ V(T ), such that∫

ΩM

µgr̃ad φ̃ · gr̃ad ψ̃ +
∫
ΩR

µ0 gradφR · gradψR

=
∫
Γ

µ0T · nψR −
∫
ΓI

µ0T · ν ψR −
∫
Γ

gψR ∀
(
ψ̃, ψR

)
∈ V(0).

Theorem 1. Problem P has a unique solution.

3 Finite Element Discretization and Numerical Results

In this section we introduce a discretization of Problem P, state an error
estimate and show some numerical results. We assume that Ω, ΩM and ΩR are
Lipschitz polyhedra and consider a family {Th} of regular tetrahedral meshes
of Ω, such that each element K ∈ Th is contained either in ΩM or in ΩR.
We define T ΩR

h :=
{
K ∈ Th : K ⊂ ΩR

}
and T ΩM

h :=
{
K ∈ Th : K ⊂ ΩM

}
;
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each Σj is assumed to be a union of faces of tetrahedra for each mesh Th. We
introduce the following finite element spaces:

Lh(Ω̃M) :=
{
ψ̃h ∈ H1(Ω̃M) : ψ̃h|K ∈ P1(K) ∀K ∈ T ΩM

h

}
,

Θh :=
{
ψ̃h ∈ Lh(Ω̃M) : [[ψ̃h]]Σj

= constant, j = 1, . . . , J
}
,

Lh(ΩR) :=
{
ψR

h ∈ H1(ΩR) : ψR
h |K ∈ P1(K) ∀K ∈ T ΩR

h

}
,

Xh := Θh/R× Lh(ΩR)/R.

We define the finite-dimensional approximation of V(T ) as follows:

Vh(T ) :=
{(
ψ̃h, ψ

R
h

)
∈ Xh : gradψR

h × ν − gr̃ad ψ̃h × ν = T N × ν on ΓI

}
,

where T N denotes the Nédélec interpolant of T ; to approximate the normal
component of T we will use its Raviart–Thomas interpolant, denoted by T RT

(see [Mon03] for further details about these interpolants). We obtain the fol-
lowing discrete version of Problem P:

Problem DP. Find
(
φ̃h, φ

R
h

)
∈ Vh(T ) such that∫

ΩM

µgr̃ad φ̃h · gr̃ad ψ̃h +
∫
ΩR

µ0 gradφR
h · gradψR

h

=
∫
Γ

µ0T RT · nψR
h −

∫
ΓI

µ0T RT · ν ψR
h −

∫
Γ

gψR
h ∀

(
ψ̃h, ψ

R
h

)
∈ Vh(0).

Theorem 2. Problem DP has a unique solution
(
φ̃h, φ

R
h

)
. If the solution of

Problem P is such that H|ΩM = −gr̃ad φ̃ ∈ Hr(ΩM)3 and H|ΩR = T |ΩR −
gradφR ∈ Hr(ΩR)3, with 0 < r ≤ 1, then there exists C > 0 such that,∥∥(φ̃− φ̃h, φ

R − φR
h

)∥∥
X ≤ Chr

(∥∥H∥∥
r,ΩM

+
∥∥H∥∥

r,ΩR
+ ‖J‖0,Ω

)
.

Notice that the numerical solution of Problem DP requires to impose
somehow the constraint on ΓI appearing in the definition of Vh(T ). We have
imposed this condition in a weak sense, by means of a Lagrange multiplier
defined on ΓI; in this way, we increase the number of unknowns but with the
advantage that the computer implementation is quite straightforward.

We have developed a MATLAB code which implements the method de-
scribed above. Next, we show the numerical results obtained in the simula-
tion of a typical axisymmetric electromagnet: a ferromagnetic cylindrical core
(iron), surrounded by a toroidal coil (copper) with a rectangular cross section
(see Fig. 3). A stationary uniform current with intensity I = 1A flows through
the coil. The magnetic permeabilities are µ0 for the air and the copper coil
(ΩR) and 104µ0 for the iron core (ΩM). Figure 4 shows the intensity of the
magnetic induction field, |B| = |µH|, on a plane containing the symmetry
axis.
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Fig. 3. Electromagnet. Axial section of
the domain

Fig. 4. Electromagnet. Intensity of the
magnetic induction field, |B| in Ω
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Summary. Indoor location systems using 802.11 standard, based on the compar-
ison of the received and predicted levels of the received signals from the Access
Points, are a very interesting research area. The location information is computed
by searching the nearest neighbour of the measured signal strength within the ra-
dio map. In this chapter, we apply a global optimization algorithm to obtain the
Access Points location distribution that yields the best performance of these location
systems.

1 Introduction

The wireless networks based on 802.11 standard, which operate in ISM band
(destined for industrial, scientific and medical issues), have been greatly de-
veloped in the last years. They are designed for the deployment of small local
area network inside buildings.

User location service for context-aware applications built on a general pur-
pose 802.11 data network is a very interesting research area. In RADAR like
algorithm [1, 2], the signal strength is measured when transmitting beacon
packet between the mobile host and the transmitter antennas, located at Ac-
cess Points (APs). Prior to the real-time localization, RADAR-like algorithm
needs to build up a radio map for the area interested by doing random or
uniform sampling in that area. After that the location information is com-
puted by searching the nearest neighbour of the measured signal strength
within the radio map. Usually, at least three APs are used to carry out the
communication task with the mobile host and at the same time they act as
the fixed location reference points.

The accuracy of these location systems depends on many factors, such
as: accuracy of the propagation model, measurement system and geometrical
location of the APs.
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In this chapter, we present a global optimization method based on a
Differential Evolution algorithm to obtain the optimization of the geometrical
locations of the transmitter antennas (APs). This kind of optimization method
has been successfully used in other related wireless problems [3–5].

The developed optimization software takes into account that the propa-
gation inside buildings is influenced by building’s characteristics and, conse-
quently, the propagation models [6] must include these characteristics, like
building’s layout (number of walls and their locations), the materials that
have been used on its construction (they own different dielectric’s charac-
teristics, attenuations and reflection coefficients) and the building type. Any
propagation model could be used to compute the cost function in the opti-
mization procedure. In this chapter, the simulation results have been done for
a simple model [6] which computes the propagation losses with the distance d
between the transmitter and receiver position using an average loss parameter
γ obtained in different measurement campaigns and the number of intermedi-
ate walls that the ray, starting in the transmitter and ending in the receiver,
crosses. The following equation summarizes the received potency:

P (d)[dBm] = P (d0)[dBm]− 10γ log
(
d

d0

)
− nw∆

where γ is the average loss factor (it ranges from 0.9 to 1.3), d is the distance
between receiver and transmitter position, nw is the number of walls and ∆
is the attenuation in dB for each wall transmission (the recommended value
for ∆ is between 2 and 3 dB).

2 The Optimization Method

We have to solve a nonlinear programming problem corresponding to the max-
imization of a cost function measuring the good design of the wireless system
(in our case, the design variables are the locations a1, a2, a3 of the three APs).
The main factor in the good performance of this indoor strategy consist of as-
suring that the received potencies in all the reference points {xi, i = 1, . . . , N}
be as different as possible, in order to avoid identification problems. This
fact leads us to consider as the objective function a linear combination
(with a weight parameter α > 0) of the two objective functions f1 and f2,
given by:

f1(a1, a2, a3) =
2

N(N + 1)

3∑
k=1

N∑
i<j=1

|pk(xi)− pk(xj)|

the mean of all the differences between the received potencies, and f2 the
minimum of them:
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f2(a1, a2, a3) = min
i<j=1...N

3∑
k=1

|pk(xi)− pk(xj)|

where the function pk(xi) represents the potency received at reference point
xi corresponding to transmitter location ak.

Thus, the problem can be formulated as the maximization of function f =
f1 +αf2, where α is a weight parameter. The problem under consideration is
a nonlinear programming problem whose solution corresponds to the location
of the three APs which maximize an objective function related to the received
potency. Unfortunately, this objective function is nonsmooth and multimodal,
therefore a local optimization method may get trapped into a suboptimal
solution (suboptimal design). The use of a global optimization method may
help to surmount this difficulty.

Regarding global optimization methods for nonsmooth functions, several
alternatives are available in the operations research literature. However, pop-
ulation based strategies, which generate several solutions in each iteration, are
becoming more and more popular due to their ability to build up an overall
picture of the search space and to locate the vicinity of the global solution
with reasonable effort.

In this work an evolutionary strategy, Differential Evolution [7], will be
used mainly due to its efficiency in solving real valued multimodal objective
functions (codes and reports on results might be found in http://www.icsi.
berkeley.edu/~storn). In addition to its good convergence properties some
of its main advantages are its conceptual simplicity and ease of use.

Differential evolution is a direct search method which utilizes a population
for each generation, that is, for each iteration a number of vectors of decision
variables are explored and the corresponding objective value calculated. The
initial population is chosen randomly and should try to cover the entire search
space uniformly. Basically, the method generates a perturbed vector by adding
the weighted difference between two population vectors to a third vector.
If the resulting vector yields a better objective value than a predetermined
population member, the newly generated vector replaces the vector with which
it was compared, in the next generation; otherwise, the old vector is retained.

3 Numerical Results

In our computational experiences, which we have completely developed in
MATLAB, we have obtained a good performance that we assure by comparing
the initial results for the random data with the highly improved ones for the
optimal locations achieved by the Differential Evolution algorithm. We have
used a plant of 80× 40 m (see Fig. 1). For the reference points we have tried
two different grids: a triangular grid (Fig. 1) and a rectangular grid (Fig. 2).
For both grids the results have been similar, but slightly better for the latter.
We present the results for both grids.
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Fig. 1. Optimal locations (cross) for a plant with triangular grid of reference points
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Fig. 2. Optimal locations (cross) for a pslant with rectangular grid of reference
points (plus)

Applying our algorithm to the cost function f for parameter value α =
100 (we emphasize the importance of the minimum over the mean value), in
the case of a triangular grid of N = 58 reference points, we pass, after 273
iterations, from a random initial low cost f1 = 14.978 and f2 = 0.617 to the
maximum cost f1 = 18.380 and f2 = 3.172, corresponding to the optimal
locations a1 = (28.46, 10), a2 = (44.60, 50), a3 = (74.83, 10), as can be seen
in Fig. 1.

In the case of a rectangular grid of N = 55 reference points, we reach, after
499 iterations, the slightly better maximum cost f1 = 17.810 and f2 = 3.409,
corresponding to the optimal locations a1 = (30.78, 10), a2 = (49.25, 50), a3 =
(74.46, 10), as shown in Fig. 2.

4 Conclusions

The Differential Evolution algorithm, in addition to its easier implementation,
appears to be the most robust method with respect to the optimality of the
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achieved final solution. Moreover, the method improves the results previously
obtained by the authors [8] by other direct search methods (Nelder–Mead,
Hooke–Jeeves. . . ) which are basically local maximization methods and, con-
sequently, not powerful enough for global maximization tasks.
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1 POAG in Human Eyes

Primary Open Angle Glaucoma (POAG) is a major cause of blindness, affect-
ing 65-70 million sufferers worldwide ([ERC04]). The eye produces aqueous
humour (AH: a water-like substance secreted by the ciliary body) which flows
behind the iris, through the pupil aperture, out into the anterior chamber
(AC) and drains from the eye via the drainage angle. From the drainage angle
the AH passes through a biological filter (the trabecular meshwork or TM)
into the canal of Schlemm (SC), the main drainage route from the eye, and
finally exhausts into “collector channels”. POAG occurs when this drainage
mechanism is somehow compromised [FW92]. Essentially the AH cannot be
removed quickly enough and as a result the intraocular pressure (IOP) in-
creases in the eye. Contrary to popular belief, glaucoma and elevated IOP are
not synonymous. Though very often associated with elevated IOP, glaucoma
is, in reality, an optic nerve neuropathy. Notwithstanding this, elevated IOP
is always regarded as potentially harmful to the eye. In the current study we
therefore seek to model the flow of AH from the AC through the TM and into
the SC and to couple this flow to predictions of changes in IOP.

2 Governing Equations

2.1 Fluid Modelling

The flow of AH through the TM, into the SC and out into the collector
channels was studied in [JK83], [TA89] and [AS06]. None of these studies
appeared to realise that the flows involved may be thought of as lubrication
theory flows. Though in each case the final equations were very similar to
the equations derived in Sect. 2.3 below, none of these studies attempted to
couple the SC flow to a model for the evolution of overall IOP changes, which
is the main aim of the current study.
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Fig. 1. Schematic diagram of flow through the TM into the SC

The SC typically has half-length (i.e. length between a symmetry axis and
a collector channel) L = 600µm, ([JK83]) undeformed depth h0 = 25µm
([JK83]) and breadth B = 300µm ([JK83]). The aspect ratio ε = h0/L
is thus about 0.04. Using the values µ = 0.75 × 10−3 Pa s ([JK83]) and
ρ = 1, 003 kg m−3 ([FW92]) for the density and dynamic viscosity respec-
tively, the Reynolds number is Re = LU/ν ∼ 4 and the reduced Reynolds
number ε2Re ∼ 0.004. The lubrication theory equations may therefore indeed
be used (see, for example [Ock95]). The BVP to be studied (see Fig. 1 for
nomenclature) is therefore

px = µuzz, pz = 0, ux + wz = 0 (x ∈ [0, L], 0 ≤ z ≤ h(x)) (1)

with boundary conditions

u(x, 0) = w(x, 0) = 0, u(x, h(x)) = 0, w(x, h(x)) = wh(x),

px(0, z) = 0, p(L, z) = pout, (2)

Here p denotes pressure, q = (u(x, z), w(x, z)) fluid velocity, subscripts denote
derivatives, wh is the flow speed through the TM and pout ∼ 9 mmHg ([JK83])
is the IOP at a collector channel.

2.2 Friedenwald’s Law

To close the model we must relate the eye’s AH production and removal to
the IOP. It has long been accepted that the volume and IOP of a human eye
are related by Friedenwald’s law [F37]. This states that two IOPs p1 and p2

are related to respective ocular volumes V1 and V2 (measured in µ�) via

K(V1 − V2) = log10 p1 − log10 p2
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where K ∼ 0.025/µ� [FW92] is a known constant. Denoting normal conditions
using a subscript n (pn ∼ 14 mmHg ∼ 1, 867Pa ([BRM05])) and altered
conditions using a subscript i, we therefore find that pi = pn exp(K̃(Vi− Vn))
where K̃ ∼ 5.75646× 107/m3. Differentiation now shows that

dpi
dt

= K̃pi(V̇in − V̇out) (3)

where V̇in (∼ 2µ�/min ([BRM05])) and V̇out (m3/sec) denote the respective
total amounts of fluid flowing in and out of the eye.

2.3 Fluid Flow/IOP Evolution Equations

We assume that the temporal changes in the IOP take place on a much longer
time scale than that associated with the passage of an individual fluid particle
from the AC to a collector channel, so that the flow may be treated as quasi-
steady. The flow problem (1) and (2) may now be solved to yield

u =
px
2µ

(z2 − hz), w =
pxx
2µ

(
hz2

2
− z3

3

)
+
pxhxz

2

4µ
,

where the flow pressure p(x) satisfies(
pxh

3

12µ

)
x

= wh(x) (p(L) = pout, px(0) = 0).

In general both wh(x) and h(x) are unknown and must be determined. The
outflow V̇C (m3/s) from a single collector channel is therefore

V̇C =
∫ h(L)

0

Bu |x=L dz = − B

12µ
(h3px) |x=L

so that V̇out = NV̇C whereN is the total number of collector channels (N ∼ 30
for a human eye ([ERC04])) and the IOP pi(t) is determined by (3) with
pi(0) = pio.

3 Results

We now examine a number of different cases, relating aqueous outflow to
changes in IOP for various structure submodels.

3.1 Simple Modelling Cases

First we consider the (unrealistic) case where h(x) ≡ h0 and wh(x) ≡ α < 0
are both constant. We find that
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p = pout −
6αµ
h3

0

(L2 − x2), V̇out = −NBαL

and thus
dpi
dt

= K̃pi(V̇in +NBαL) (pi(0) = pio).

Thus pi = pio exp(βt) where β = K̃(V̇in + NBαL). The IOP thus in-
creases/decreases exponentially depending on whether the quantity −α is less
than/greater than V̇in/NBL. A “worst-case” scenario arises if all aqueous out-
flow ceases so that V̇out suddenly becomes zero. The IOP rises exponentially,
on a timescale (K̃V̇in)−1 ∼ 520s. Starting from a normal IOP of 14 mmHg,
the IOP rises to a dangerous value of 30 mmHg in just under seven minutes.

3.2 Flow Through TM Determined by Darcy’s Law

The previous case is unrealistic: the TM is acts as a porous filter, so that the
speed wh(x) of the flow into the SC is determined by both the IOP in the
AC and the flow pressure. Assuming that h(x) is still given by the constant
h0, we therefore now consider the consequences of using Darcy’s law q ∝ ∇p
to model the flow through the TM by setting wh = − k

dµ (pi − p). Here d is
the width of the TM and the (constant) permeability k (dimensions m2) has
been measured for the TM in the form of a “TM resistance” RT = µd/(kBL)
(dimensions kg s−1 m−4) where d is the width of the TM. Thence

pxx − β2p = −β2pi

(
β2 =

12k
dh3

0

)
,

the total outflow is given by

V̇out = N
Bβh3

0

12µ
(pi − pout) tanhβL,

and the IOP is therefore governed by

dpi
dt

= pi(A+Bpi) (pi(0) = pi0), (4)

where

A = K̃

(
V̇in +

N tanh(βL)pout

RTβL

)
, B = −K̃N tanh(βL)

RTβL
.

Equation (4) has two steady states: an unphysical one at pi = 0 and another
(which may easily be shown to be stable) at pi = −A/B. Normally the IOP
remains constant at pi = pn = 14 mmHg ∼ 1, 867Pa say. Thence

pn = −A
B

= pout +
V̇inRTβL

N
coth(βL).
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We can now “back out” a value for RT . Using the parameter values previously
considered, we find that RT ∼ 1.96×1013 kg s−1 m−4, in very close agreement
with measured values ( [JK83], [ERC04]). Equation (4) has exact solution

pi(t) =
Api0

(A+Bpi0)e−At −Bpi0
.

A TM blockage thus causes the IOP to rise on a timescale 1/A to its new
elevated value. It is now easy to calculate the IOP rise that would occur if
collector channels become blocked or the TM resistance should increase for
some reason (such as blockage by particles).

4 Conclusions and Further Work

We have neglected both the effects of uveoscleral outflow which is another
(much weaker) AH drainage mechanism, and “pseudofacility”, whereby the
production of AH by the ciliary body is suppressed at elevated IOP. Both
could be included if desired. Further study will include cases where (1) the
TM is deformable and (2) The permeability K in Darcy’s law is not constant
(the pores in the TM close as the pressure difference across it increase).
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Summary. An isothermal single-phase 3D/1D model for liquid-feed direct methanol
fuel cells (DMFC) is presented and validated against experimental results. 3D mass,
momentum and species transport in the anode channel and gas diffusion layer is
modelled using a commercial CFD code complemented with user supplied subrou-
tines. The 3D model is locally coupled to a 1D model that imposes a physically
sound boundary condition for the velocity and the methanol concentration field at
the anode gas-diffusion-layer/catalyst-layer interface. The 1D model assumes non-
Tafel kinetics to account for the complex kinetics of the (multi-step) methanol oxi-
dation reaction at the anode, and includes the mixed potential induced by methanol
crossover due to diffusion and electro-osmotic drag. Polarization curves obtained for
various methanol feed concentrations, temperatures, and methanol feed velocities
show good agreement with recent experimental results.

1 Introduction

Direct methanol fuel cells (DMFCs) are electrochemical devices that convert
the chemical energy of methanol directly into electricity, according to reactions

Anode : CH3OH + H2O→ CO2 + 6H+ + 6e− (1)

Cathode : (3/2)O2 + 6H+ + 6e− → 3H2O (2)
Overall (Cell) : CH3OH + (3/2)O2 → CO2 + 2H2O (3)

with standard reduction potentialsE0
a = 0.02 V,E0

c = 1.23 V, andE0
cell = 1.21 V

vs. SHE at 298 K, respectively.
Liquid-feed DMFCs use liquid methanol as energy carrier, which makes

them good candidates as small autonomous power sources due to the high
energy density of methanol. However, DMFCs suffer from two fundamental
problems: the slow kinetics of the methanol electro-oxidation reaction, and the
ability of methanol to permeate through the polymeric membrane from the an-
ode to the cathode (methanol crossover). The above difficulties, together with
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additional technological problems concerning auxiliar devices, such as pumps,
fuel storage tanks, power conditioning devices, etc. have motivated a large
amount of work on this field during the last decade, combining mathematical
and numerical modeling with detailed experimental research. In particular,
the progress in DMFC modeling has been significant. An extensive review
of this work can be found elsewhere [1, 2] and will not be repeated here for
brevity.

2 Mathematical Model

2.1 Cell Geometry

For simplicity we shall assume a parallel channel geometry for the anode cur-
rent collector. Therefore, when describing the flow in a single channel we shall
use periodic boundary conditions at the channel/rib mid-planes to reduce the
computational cost. Figure 1 shows a sketch of the physical domain under
consideration. The cell is divided into seven regions: anode channel (ac), an-
ode gas diffusion layer (agdl), anode catalyst layer (acl), polymeric membrane
(mem), cathode catalyst layer (ccl), cathode gas diffusion layer (cgdl), and
cathode channel (cc). Since we are not solving neither the electric field nor
the temperature field, we omit from the computations both the anode current
colector (acc) and the cathode current colector (ccc).

2.2 Model Assumptions

– The flow is laminar, steady, isothermal, and monophasic.
– The reactant concentrations are constant across the catalyst layers.
– The concentration of methanol is sufficiently small in the anode to consider

the liquid phase to be a diluted methanol aqueous solution.

Fig. 1. Cross-section of the cell geometry
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– The methanol that crosses-over from the anode to the cathode is com-
pletely oxidized at the cathode catalyst layer.

– The membrane is fully hydrated and is impermeable to gases.
– The pressure gradient across the different cell layers is neglected.
– Negligible ohmic losses in gas diffusion layers, channels and bipolar plates.

2.3 3D Model

The complete Navier–Stokes equations, complemented with the conservation
equation for methanol, are solved in a three-dimensional (3D) domain with a
control volume based discretization to obtain the velocity and pressure distri-
butions, as well as the concentration of methanol, in the anode channels and
gas diffusion layer. The governing equations are

∇ · u = 0,
ρ

ε2
(u · ∇)u = −∇p+

µ

ε
∇2u + Su (4)

∇ · (uCm) = Deff
m ∇2Cm, (5)

where u is the (superficial) velocity, ε is the porosity of the porous matrix, Cm

is the methanol concentration field,Deff
m is the effective diffusivity of methanol,

ρ and µ are the density and viscosity of water at the operating temperature,
T , and ε is the porosity of the medium (1 in the ac and 0.6 in the agdl). The
momentum source term appearing in (4) is Su = (µ/K)u in the agdl and 0 in
the ac, with K = 10−12 m−2 being the hydraulic permeability of the porous
layer.

In integrating (4) and (5), the only non-trivial boundary condition is that
imposed at the gas-diffusion-layer/catalyst interface, where we prescribe the
normal velocity and the molar flux of methanol

u|y=0 · n =
(

1
6

+ nw
d

)
i

F

Ww

ρ
(6a)

(
uCm −Deff

m ∇Cm

)∣∣
y=0

· n = Nm (6b)

Here F is Faraday’s constant, nw
d is the electroosmotic drag coefficient of

water, Ww is the molecular weight of water, and n is the unit normal vector
pointing outward from the computational domain. Once we know the local
methanol concentration at a given point of the acl, Cm,acl = Cm|y=0, and
the overall cell voltage, V , the 1D model presented below provides the local
current density, i, and the local molar flux of methanol reaching the catalyst
layer from the acl, Nm, thus closing the mathematical problem through (6).

2.4 1D Model

The 1D model is composed by the following equations
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NO2 = α2(CO2,amb − CO2,ccl) (7)

i+ ip = (aci0,c)δccl
CO2,ccl

CO2,ref
exp
(
αcF

RT
ηc

)
(8)

ia = j δacl = (aai0,a)δacl
κCm,acl exp

(
αaF

RT
ηa

)
Cm,acl + λ exp

(
αaF

RT
ηa

) (9)

ip = 6FNcross, Ncross = nm
d

i

F
−Deff

m,mem

dCm

dy

∣∣∣∣
mem

(10)

NO2 =
i

4F
+

3
2
Ncross, Nm =

i

6F
+Ncross (11)

where i0 is the exchange current density (different for anode and cathode), κ
and λ are two experimentally fitted constants [3], and nm

d is the electroosmotic
drag coefficient of methanol. Equation (7) models the convective-diffusive
transport of oxygen from the ambient air (amb) to the ccl through an overall
mass transfer coefficient α2, (8) and (9) model the electrochemical kinetics
of the cathodic and anodic reactions [3, 4], (10) expresses the molar flux of
methanol that crosses-over the membrane as sum of that due to electroos-
motic drag and that induced by molecular diffusion, and (11) are the oxygen
and methanol mass balances at the catalyst layers.

Appropriate manipulation of (7)–(11) yields analytic expressions for the
unknowns i, ηc, ηa, Ncross, ip, NO2 , CO2,ccl as a function of Nm and Cm,acl.
Substituting these expressions in the equation for the cell voltage provides the
following non-lineal relation between Nm, Cm,acl, and V :

f(Nm, Cm,acl) ≡ Ecell − V − ηa(Nm, Cm,acl)

− ηc(Nm, Cm,acl)− i(Nm, Cm,acl)
δmem

σmem
= 0 (12)

which can be readily solved for Nm using a Newton–Raphson method for given
values of Cm,acl and V . After solving for Nm, the remaining unknowns can be
obtained using the analytic formulae.

3 Results and Discussions

Figure 2 shows the effect of inlet methanol concentration Cm,in in the pola-
rization curve of a DMFC with parallel channels. The figure also shows the
experimental results of Sundmacher et al. [5] under similar operating con-
ditions. As can be observed, after a careful selection of the electrochemical
parameters, the mathematical model was able to reproduce the experimen-
tally observed trends published in the literature.
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Fig. 2. Comparison of the experimental results of [5] (symbols) and the results
provided by the mathematical model (solid lines) under similar operating conditions
and different methanol feed concentrations. �, 0.125 M; �, 0.25 M; ©, 0.5 M; ♦, 2M

4 Conclusions

A new hybrid 3D/1D isothermal, single-phase, mathematical model has been
developed for liquid-feed direct methanol fuel cells. The model was integrated
using a commercial CFD software package, yielding polarization curves for dif-
ferent methanol feed concentrations, temperatures, and volumetric methanol
flow rates that are in qualitative agreement with the experimental results
found in the literature.
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Summary. Two mathematical models for an electrochemical biosensor are proposed
and compared with a view to determining the ratio of two immobilized enzymes
which maximizes the amperometric signal amplitude.

1 Introduction

Biosensors are devices in constant development due to their wide use in bio-
medical diagnostics and environmental monitoring. Of particular interest to
developing electrochemical immunosensors are enzyme channelling systems,
where two enzymes are brought in close proximity to an electrode surface
thus facilitating the fast conversion of initial substrate to final product. More-
over, cascade schemes, where an enzyme is catalytically linked to another can
produce signal amplification and therefore increase the device sensitivity.

This work investigates a biosensor employing the enzymes glucose oxidase
(GOX) and horseradish peroxidase (HRP), immobilized on an electrode mod-
ified with a conducting polymer. After the immobilisation, the electrode is in-
serted in a flow-cell for an amperometric flow-injection analysis where glucose
solutions at different concentrations are passed over the electrode and the sig-
nals recorded (see [KZZ99]). A mathematical model was proposed in [MKA07]
and numerical simulations were carried out in order to determine the ratio of
the two enzymes which maximizes current amplitude. In this chapter, the
optimal ratio of HRP and GOX, ξmax, is further investigated as a function of
the kinetic rate constants and two different parameter regimes are identified,
characterized by different qualitative behaviour of ξmax. A simplified model
is also introduced, which allows for an explicit formula for ξmax to be derived
and compared with the numerical simulations of the previous model.
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2 Spatially Extended Model

The flow effects are not explicitly modelled and the existence of the con-
vective zone (where the glucose concentration is constant) is only reflected
in the boundary conditions imposed at the top of the diffusion layer. The
immobilized enzymes form a monolayer so all reactions can be assumed to
take place at the lower boundary of the diffusion domain. The equations
are one-dimensional, where the variable x measures the distance from the
electrode.

A cascade reaction takes place at the electrode. Glucose oxidase cataly-
ses the oxidation of glucose to gluconic acid, with production of hydrogen
peroxide (H2O2). HRP is oxidised by H2O2 and then subsequently reduced
by electrons provided by the electrode. We model these reactions by a stan-
dard Michaelis–Menten kinetics scheme, (1), and we use the notation E1(t) =
first enzyme (GOX) concentration, E2(t) = second enzyme (HRP) concentra-
tion, S1(x, t) = first substrate (glucose), S2(x, t) = second substrate (H2O2),
C1(t) = first complex, C2(t) = second complex, P (x, t) = final product,

E1 + S1

k1

�
k−1

C1
k2−→E1 + S2, E2 + S2

k3

�
k−3

C2
k4−→E2 + P. (1)

We now write down the differential equations governing the behaviour
of the relevant chemical species. The two substrates, glucose and hydrogen
peroxide are free to diffuse throughout the domain, hence

∂Si

∂t
= Di

∂2Si

∂x2
, i = 1, 2, 0 ≤ x ≤ L, t ≥ 0 (2)

S1(L, t) = S0; S2(L, t) = 0, (3)

and the following boundary conditions hold on x = 0

D1
∂S1

∂x
(0, t) = k1E1S1 − k−1C1, (4)

D2
∂S2

∂x
(0, t) = k3E2S2 − (k2 + k−3)C1, (5)

dE1

dt
= −k1E1S1 + (k−1 + k2)C1,

dE2

dt
= −k3E2S2 + (k4 + k−3)C2, (6)

dC1

dt
= k1E1S1 − (k2 + k−1)C1,

dC2

dt
= k3E2S2 − (k4 + k−3)C2, (7)

dP
dt

= k4C2. (8)

The initial conditions are

S1(x, 0) = S0(x), S2(x, 0) = 0, P (x, 0) = 0,

E1(0) =
ξe

1 + ξ
, E2(0) =

e

1 + ξ
, C1(0) = 0, C2(0) = 0, (9)
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where e is the total amount of enzyme present on the electrode and S0(x) = S0

if x = L and 0 otherwise. The purpose of this study is to determine ξ, the
ratio of GOX to HRP on the electrode, which maximizes the signal at the
electrode. The measured current is given by the electron transfer rate, which
can be assumed proportional to the rate of formation of product P from (8).

3 Simplified Model

In order to obtain an analytical expression for the dependence of the opti-
mal enzyme ratio on other system parameters, we consider a simplified model
which focuses on the kinetic surface processes, while neglecting transport of
chemical species to and from the electrode. The main limitation in this case
is failing to model the possibility of H2O2 to diffuse away from the electrode
therefore assuming that all the product from the first reaction is readily avail-
able for the second.

With the assumption that the concentration of glucose is maintained con-
stant at the reaction point, S1(t) = S0 for all t ≥ 0, the model in the previous
section now reduces to the following set of ordinary differential equations

dC1

dt
= − (k1S0 + k−1 + k2) C1 +

ξek1

1 + ξ
S0 (10)

dC2

dt
=

ek3

1 + ξ
S2 − k3S2C2 − (k−3 + k4)C2 (11)

dS2

dt
= k2C1 + k−3C2 −

ek3

1 + ξ
S2 + k3S2C2, (12)

with the initial conditions C1(0) = C2(0) = S2(0) = 0. There is a unique
equilibrium point at (C∗

1 , C
∗
2 , S

∗
2 ), where

C∗
1 =

ξe

1 + ξ

k1S0

k1S0 + k−1 + k2
, C∗

2 =
ξe

1 + ξ

k1k2S0

k4 (k1S0 + k−1 + k2)
,

S∗
2 =

ξk1k2(k−3 + k4)S0

(k1k4S0 + k−1k4 + k2k4 − ξk1k2S0) k3
.

The necessary condition for this equilibrium to be stable and positive is

ξk1k2S0 < k4 (k1S0 + k−1 + k2)

and so, the value of ξ which yields the highest C∗
2 value is

ξmax =
k4

k2

(
1 +

K1
M

S0

)
, (13)

where K1
M = (k−1 + k2)/k1 is the Michaelis constant of the first reaction.

Hence, the simplified model shows that the optimal GOX:HRP ratio depends
on the ratio of the turnover rates for the two consecutive reactions, as well as
the number 1 +K1

M/S0 (the factor by which the velocity of the first reaction
differs from its maximal velocity).
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4 Numerical Simulations and Discussions

Numerical simulations were carried out to establish how different kinetic pa-
rameters affect the current magnitude and optimal enzyme ratio. The system
of equations (2)–(9) were integrated numerically using a standard finite dif-
ference method. In Fig. 1 we plot the steady state values of dP

dt , a measure
of the amperometric signal, for different values of the molar ratio ξ, reaction
speed ratio k4/k2 and various orders of magnitude of K1

M/S0. The optimal
GOX:HRP ratio, ξmax, is then plotted in Fig. 2 as a function of k4/k2.

When K1
M/S0 
 1 (see Fig. 1a), the signal amplitude will increase with ξ,

reach a maximum and then decrease. This is due to the fact that when the
concentration of GOX increases, more H2O2 is produced. However, with in-
creased production of hydrogen peroxide (as well as the reduced amount of
HRP at higher values of ξ), there is a point where diffusion effects will dom-
inate the second reaction and the resulting signal will decrease. This decay
is faster when the second reaction is slow (small k4) which explains why the
lower curves in Fig. 1a are steeper than the higher ones. As a consequence, for

Fig. 1. Dependence of current on ξ (electrode GOX:HRP ratio). From bottom to
top, the curves correspond to k4/k2 = 0.1, 0.5, 0.9, 2.1, 4.1 for K1

M/S0 = 0.001 and
k4/k2 = 0.1, 0.18, 0.26, 0.5, 4 for K1

M/S0 = 5

Fig. 2. Optimal GOX:HRP ratio as a function of k4/k2. Comparison of simplified
model (straight line) and spatially extended model (curve)
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high k4, the optimal enzyme ratio is less relevant and the signal is not very
sensitive to the concentrations of immobilized enzymes. For large K1

M/S0 in
Fig. 1b the optimal ξ value seems to be the same for most values of k4. This
can be explained by noting that since GOX is already idle, due to a rela-
tively low amount of substrate, increasing its concentration will not result in
increased production of hydrogen peroxide and will therefore not improve the
efficiency of the system, regardless of how fast the second reaction is.

The main conclusion of these numerical simulations is the existence of two
parameter regimes, K1

M/S0 
 1 and K1
M/S0 = O(1), characterized by differ-

ent qualitative behaviour of the current amplitude and optimal enzyme ratio,
ξmax, as functions of the kinetic system variables. Moreover, for K1

M/S0 
 1,
there is good agreement between the one-point model and the spatially ex-
tended model, as the optimal ratio increases almost linearly with k4/k2. The
slight divergence of results observed in Fig. 2a is only apparent since, for high
values of k4/k2 it is more appropriate to speak of optimal ξ intervals, rather
than values. A rigorous asymptotic study of these parameter regions will be
published separately.

Mathematical modelling is an excellent tool for biosensor design as it pro-
vides a theoretical framework through which to explore all the variables of
a system without immediate recourse to experiment. For example, the high
substrate concentration regime, K1

M/S0 
 1, is more difficult to achieve ex-
perimentally due to limitations imposed by the physical solubility of glucose.
In addition, our model can also assist in establishing values for constants that
are difficult to establish experimentally. For instance, although an enzyme
may possess a known ideal kinetic rate constant from solution-phase studies,
this may change significantly when the enzyme is deposited on a surface.
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Summary. This work presents a method for the segmentation of breast nodules
in ultrasonography. Speckle noise is reduced using an anisotropic filter for which
texture is described using Gabor filters. Afterwards, an initial segmentation is ex-
tracted using a front propagation scheme. Finally, the initial segmentation is refined
using active contours. In order to delimit the nodules not only by means of image
intensity, but also by texture pattern, we introduce certain terms in the classical
active contours equations.

1 Introduction

Breast cancer early diagnosis is based on clinical examination, medical imaging
and biopsy. Although the latter is the most reliable test, it is time-consuming,
very invasive and expensive. Consequently, different medical imaging tech-
niques are used to reduce as much as possible the number of biopsies which
are carried out. These techniques include mammography, ultrasonography and
magnetic resonance imaging. This work focusses on ultrasonography, for which
a series of criteria have been described to help distinguish benign from malig-
nant lesions. These factors are related to the shape of the nodule, the regularity
of its contour and the contrast between certain areas [1].

In order to improve the analysis of the ultrasound images, we propose a
semi-automatic segmentation of the nodules, in such a way that the physicians
can determine the presence, absence or coincidence of the different criteria in
a more robust, reproducible and reliable way. Furthermore, this will simplify
an automatic extraction of the different measurements. To this aim, the first
phase consists in the reduction of the characteristic speckle noise of ultra-
sound images, which makes it very difficult to apply directly an automatic
segmentation method. Afterwards, an initial pre-segmentation is obtained by
means of a front propagation scheme. Finally, this segmentation is improved
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using active contours. Since the difference between two adjacent regions, e.g.
a nodule and the surrounding tissues, may be based not only on intensity, but
also in texture, we include a set of texture descriptors to improve the iden-
tification of the borders. Furthermore, as the dissimilarities may be different
along the contour, we transform the global descriptors into local ones, so that
it is easier to find contours which are not uniform.

2 Image Filtering

In order to reduce speckle noise, we apply an anisotropic filtering. A typical
anisotropic filter applied to an image I0 is given by the solution I(t, x, y),
t > 0, (x, y) ∈ Ω, of Perona–Malik equation [2].

∂I

∂t
= div (c(‖∇I‖)∇I) ,

where c(r) is a monotonic decreasing function of r > 0, such as, for example

c(r) = e−( r
k )2

, and k is a constant which determines the contrast of the edges
to preserve. In this scheme, it is the magnitude of intensity gradient that
determines how strongly the diffusion is performed and what region bound-
aries must be preserved. Since there may also be differences in the texture,
we introduce Gabor descriptors to measure the gradient between the regions,
so that the resulting scheme is as follows: let R(x, y) be the vector formed
by the responses of a family of Gabor filters applied to the image I0 at point
(x, y), we use the following anisotropic diffusion equation:

∂I

∂t
= div (c(‖∇R‖)∇I) (1)

where ‖∇R‖2 = trace((∇R)t∇R) (if A is a matrix, At denotes the transpose
matrix of A). Note that diffusion is inhibited at large values of ‖∇R‖, i.e. at
points where there is a rapid transition of the texture characteristics of the
image.

3 Front Propagation

Once the image has been filtered, it is necessary to determine the boundaries
of the nodule. To avoid the tedious and variable task of a manual delineation,
we ask the physicians to select a single inner point of the nodule. From this
point, we apply a front propagation approach to reach an initial segmentation.
We introduce an evolving function u(t, x, y) whose zero level set is the curve
C(t) (positive inside and negative outside C(t)) and we write the geometric
evolution for C in terms of u as

∂u

∂t
= F ‖∇u‖ . (2)
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Fig. 1. Example of the evolution of the front propagation using the gradient-guided
scheme

To discretize it, we have used the following numerical scheme:

un+1
i,j − un

i,j

τ
= Fi,j ‖∇uij‖ , (3)

where Fi,j is the discretization of F (x, y), and ‖∇uij‖ is calculated as in [3].
We intend to make the front evolve faster where low gradients are found,

and reduce its speed where high gradients are present. For this reason we
make F (x, y) depend on the inverse of the gradient, which is calculated in a
robust way [4].

In these equation, τ represents the time discretization step and h1, h2 the
pixel dimensions (τ, h1, h2 > 0; in our experiments, we consider h1, h2 = 1).
Figure 1 displays an example of the evolution of the front for a breast nodule.
Once a whole contour with high enough gradients is reached or the maximum
number of iterations have been performed, the process is stopped and the final
front is used as initial approximation for the active contours technique.

4 Active Contours

The initial segmentation obtained by means of the front propagation described
above is not always as accurate as desired. Thus, we use active contours to
improve our results [5]. If we consider image intensity to separate two regions,
we can use the basic active contours equation, given by:

∂u

∂t
= gσ (I) ‖∇u‖div

( ∇u
‖∇u‖

)
+∇u∇gσ (I) , (4)
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where gσ (I) is a stopping function, such as:

gσ (I) =
1√

1 + α ‖∇Iσ‖2
(5)

and Iσ is a smoothed version of the image. In (4), the first term aims at
obtaining a rounded contour, while the second one attracts the contour to the
higher gradients. However, as in the case of image filtering, texture can be
helpful to find more representative boundaries and a vector descriptor can
represent the regions in a better way [6], [7]. Consequently, we have included an
additional term which allows considering the information provided by Gabor
descriptors in order to obtain more accurate limits. Thus, we obtain the PDE:

∂u

∂t
= ‖∇u‖div

(
gσ (I)

∇u
‖∇u‖

)
+ ‖∇u‖MG (I, u) (6)

in which we use a separation term given by:

MG (I, u) (x, y) =
∑

1≤i≤m

λi
−

∫
Ω∩B(x,y)

∣∣Ii(x, y)− ci−(x′, y′)
∣∣ dx′dy′

− ∑
1≤i≤m

λi
+

∫
Ω∩B(x,y)

∣∣Ii(x, y)− ci+(x′, y′)
∣∣ dx′dy′,

Fig. 2. Manual segmentations (black) and semi-automatic segmentations (white)
for a sample set of nodules
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where Ii(x, y) is the response of the ith filter at point (x, y) and ci+(x, y),
ci−(x, y) are the median values of the Gabor channel Ii around (x, y) inside and
outside the curve C, respectively. This local formulation can be used because
we have previously calculated an initial approximation, and we assume we
are close to the final contour. Figure 2 shows some examples of the results of
the automatic segmentations and those performed by the radiologists.

5 Conclusion

We have presented a combined method to extract the contours of breast nod-
ules in ultrasound images. The process we have described consists of a filter-
ing phase to reduce speckle noise, a front propagation scheme which allows
extracting an initial rough segmentation, and an adaptation of the active con-
tours technique to improve the results when dealing with this kind of images.
This combination provides quite satisfactory results, and these are even better
when texture information is included. Furthermore, if the information is local,
we can tackle the problem of non-uniform or diffuse contours.

The results have been tested using manual segmentations performed by
different specialists, and the numerical comparisons show the accuracy of our
method. Furthermore, the contours which are obtained are suitable for a fur-
ther examination of the shape of the nodule which can help in the computer-
aided diagnosis of breast cancer.
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Summary. We consider a contrast invariant approach to motion estimation which
uses the direction of the gradient fields. The approach is region-based and assumes
an affine motion model for each region. We propose to check if the estimated motion
parameters fit properly the apparent motion of the region by a motion significance
analysis. Moreover, we propose a motion field improvement which consider those
regions that are not properly estimated according to the significance analysis and
reassign them a motion model of a properly estimated neighboring region.

1 Introduction

Most known motion estimation methods employ the intensity constancy
assumption, however, global or local illumination changes may violate this
assumption and prevent the correct motion to be estimated. In [1] a con-
straint based on spatial gradient’s constancy is proposed [2]. The direction of
the spatial gradient is invariant with respect to global light changes and is
insensitive to changes in illumination direction [3]. The work presented in [4]
is based on the last property. The contrast invariance is incorporated in our
approach [5] by the assumption that the shapes of the image move along the
sequence.

In this work we present a hypothesis testing analysis approach that allows
to measure how well the motion has been correctly estimated. This measure
is used to validate the estimated motion parameters. Moreover, the validation
output is used to reassign to the not properly estimated regions a motion
model of a neighboring region which has been properly estimated.

The chapter is organized as follows: Sect. 2 summarizes our motion estima-
tion approach and presents the motion validation approach, Sect. 3 introduces
the motion model reassignment approach, Sect. 4 presents some results and
Sect. 5 ends up with the conclusions and future research work.
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2 Motion Estimation and Significance Analysis

2.1 Region-Based Contrast Invariant Motion Estimation

Let I:Ω → R be a given image, where Ω is the image domain. The shapes of
the image are identified with the family of its level lines which is a contrast
invariant geometric description of the image [6]. The main assumption is they
move along the image sequence (with possible deformation).

Motion is estimated between two frames of the sequence, denoted by I0
and I1, and φ(x) denotes the coordinates of the point at image I1 whose
coordinates are x at image I0. Using the unit normals to describe the level
lines, we propose to compute the optical flow φ by aligning the unit normal
vector field Z1(x) to the level lines of I1 with the transformed vector field of
Z(x) by the map φ, denoted by Zφ = (Dφ)† Z/‖(Dφ)† Z‖ if (Dφ)†Z �= 0 and
0 otherwise. (Dφ)† denotes the cofactor matrix associated to Dφ, see [5].

Moreover we follow a region-based strategy, assuming that the motion
fields can be expressed locally by a six parameter affine model. Let R be a
partition into disjoint connected regions of the image I0 bounded by level lines.
The partition may be computed for instance with a segmentation algorithm
like the Mumford-Shah functional subordinated to the topographic map [7].

Motion is estimated by minimizing the energy functional:

ER(φ) :=
1
NP

NP∑
j=1

ERj
(φ) :=

1
NP

NP∑
j=1

1
NRj

∑
x∈Rj

Ψ

(
1
4

IIZ1(φ(x))− Zφ(x)
II2
)
,

(1)

where Ψ(.) may represent a robust function, the factor 1/4 is used to normalize
the cost term to the range [0, 1], NP = card(R), and NRj

= card({x ∈ Rj}).
Motion is estimated using a gradient descent technique applied over ER for
each region R. For more details on this issue we refer to [5].

2.2 Motion Significance Analysis

The minimization of ER to estimate the motion parameters φR for any par-
ticular region R will always find a certain minimum, be it local or global. We
cannot ensure that such minimum corresponds to the correct motion. Our
purpose is to give a measure of the degree in which the motion has been cor-
rectly estimated. Let R ∈ R be a region of the image I0. We consider the
following hypotheses (which will be interpreted below): H0: “the motion field
of R is correct” and H1: “the motion field of R is not correct”.

2.3 Hypothesis Testing

Given a statistical model of the population, the observed sample is analyzed
in order to see if it can be explained by it. If the observation diverges too
much from the statistical model, the observation is rejected as belonging to
the population.
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For each region R, let φR the estimated motion parameters, and {xi}R =
{xi ∈ R/ ‖∇I1(φ(xi))‖ > γ}, and L = card({xi}R). The threshold γ is used
to ensure that the gradient orientations are not much affected by the presence
of noise. We assume that the points in {xi}R are “independent” [8]. For each
xi ∈ {xi}R we consider the unitary vectors Z1(φ(xi)) as a random variable
and thus Yi(φ) = Ψ(1/4

IIZ1(φ(xi))−Zφ(xi)
II2

) may be interpreted as a
random variable measuring the alignment of the two normal vectors. As in [8],
we may consider that the vectors Z1(φ(xi)) and Zφ(xi) are not aligned if they
form an angle larger than a given threshold. We define the random variable
ER = 1

L

∑L
i=1 ρ

(
Yi(φ)

)
, where ρ : [0,+∞[→ [0,+∞[ is an increasing function.

Since Yi(φ) is directly related to the angle forming the two unitary vectors,
its non-alignment can be subsumed into ER by taking ρ(x) := ρβ(x) = 1 if
x > β, and 0 otherwise. In that case, ER is a measure of the number of non-
alignments for a given region R. We denote ER(φR) the observed value of ER
corresponding to the data. The motion field φR assigned to R is correct if the
error ER(φR) is “sufficiently” small. Our purpose in this work is to define the
region of rejection or acceptance using probability theory. If we assume that
H0 is true, the rejection region is of the form [ER ≥ δ], δ > 0 [9], but instead
of computing the value of δ for a given level of significance as is usually done
in hypothesis testing, we compute the probability P[ER ≥ ER(φR)|H0] which
corresponds to the probability of miss-detection or error of type I (to reject
H0 erroneously) for the observed value δ = ER(φR).

The probability that at least k0 non-alignments occur is given by the
binomial tail: P[ER ≥ k0/L] = B(p0, k0, L), where the probability of non-
alignment p0 is computed from the empirical data. Thus, the validation can
be based in the expected number of miss-detections which is defined as follow.

The number of miss-detections (NMD) of a region is defined as NMD
(R,φ) = NP ·P [ER ≥ ER(φR)|H0], where NP is the number of tested regions.

For a given region R, we reject H0 if NMD(R,φ) < ε0. In that case we say
that the motion of R is not properly estimated. Assuming that the motion
model has been correctly estimated, the differences

IIZ1(φ(xi))−Zφ(xi)
II

(and therefore also Yi(φ)) should be interpreted as noise. The probability
p0 is computed by p0 ≈ ∑NP

j=1

∑Lj

i=1 ρβ(Y i(φRj
))/
∑NP

j=1 Lj , where Lj =

card({xi}Rj
) and Y i = Ψ(1/4

IIZ1(φ(xi))− Zφ(xi)
II2

).

2.4 A Contrario Model

The contratio models were introduced in [8] as a tool for Gestalt’s detection.
In this context, as it is usual in this type of approach, we check that our
observations cannot be explained by random selection of the motion model,
that is, the number of coincidences between both vector fields Z1(φ(x)) and
Zφ(x) is too large to be explained by a fortuite coincidence. In this case, we
reject H1 and we consider the motion model to be validated. For the precise
details of this approach, we refer to [10].
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3 Application: Motion Reassignment

An interesting application of the previous validation analysis is the enhance-
ment of the overall motion estimation field. We propose to reassign to the not
properly estimated regions the motion models of neighboring regions which
have been correctly estimated. Neighboring regions may belong to the same
moving object and thus they may have similar motions. The NMD(R,φ) may
be used to compare the different motion models that can be assigned to R.
The higher the NMD is the better does the motion model explain the region
movement. For each not properly estimated region the neighboring motion
model leading to the highest NMD is assigned.

4 Results

In all experiments below Ψ(r) =
√
r2, two vectors are aligned if they form an

angle below 16o and ε0 = 0.1 for the statistical models.
Figure 1 (top) shows frames #9 and #10 of the vectra sequence. The appar-

ent motion of the car is zero while the background translates from right to left.
The partition and the resulting motion vector field are shown in Fig. 1 (bot-
tom). Some regions in the boundaries of the image and others near the car
have an incorrect estimated motion field. A validity process becomes nec-
essary to detect these errors. Figure 2 displays the outcome of each of the
strategies presented in Sect. 2. Regions that are found as wrongly (resp. well)
estimated are grey-shaded (resp. white). We have set the modulus gradient
threshold γ to 7. Note that the validation strategies have been able to detect
most of the wrongly estimated regions. It can be seen that the contrario model
is more demanding than the hypothesis testing one. The contrario model can
be considered a validation method, whereas the hypothesis testing model only

Fig. 1. Region-based motion example. From left to right and top to bottom. Original
frame I0, original frame I1, partition of original frame I0, recovered motion field
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Fig. 2. Validation and reassignment example. From left to right. Validation using
hypothesis testing and the contrario model. Motion reassignment for the Vectra
sequence

performs an error control. The obtained motion field after the reassignment
can be seen in Fig. 2 (right). We can identify different coherent moving regions
of the scenes in these motion field.

5 Conclusions

Following [5], we interpret the image sequence as a set of moving level lines
and we compute the optical flow as generated by a deformation between the
level lines of two consecutive frames. We have introduced a motion signifi-
cance measure based on hypothesis testing. These measures are useful both
to detect the possible motion estimation errors and as a basic criterion for
motion reassignment. Some issues have to be further developed in the future:
automatic selection of the modulus gradient threshold γ, and the sensibility
of the validation analysis to motion bias with respect the correct motion.
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Summary. Multiple sequential recurrences are one of the most important charac-
teristics of superficial transitional cell carcinoma (TCC) of the bladder. Many investi-
gations have been done to identify predictive factors for the first recurrence, but very
few studies have investigated multiple recurrences of this cancer and its clinicopatho-
logic factors associated. We consider counting process methods for analysing time-
to-event data with recurrent outcomes using the models developed by Andersen and
Gill and, Prentice, Williams, and Peterson. A postoperative nomogram is developed
to predict recurrences based on those predictive factors.

1 Introduction

Bladder carcinoma is the fourth most frequent solid tumor among men and
the seventh most frequent solid tumor among women, with more than 350,000
new cases diagnosed annually worldwide [1]. Approximately 80% of patients
with newly diagnosed bladder carcinoma have superficial transitional cell car-
cinoma (TCC), which can be managed with transurethral resection (TUR),
surgical endoscopic technique used to remove the macroscopic tumor from
the inner of the bladder. However, more than 50% of the patients will have
recurrences (reappearance of a new tumor) [2].

Many investigations have been done to identify prognostic factors for the
first recurrence of superficial TCC of the bladder after initial treatment [3,4],
very few studies have investigated multiple recurrences of this cancer. An
analysis of the patterns of multiple recurrences of bladder carcinoma and its
clinicopathologic factors associated could help us better to understand the
disease course and to select patients into risk groups of good, intermediate,
and poor prognosis for a right treatment.

The current article describes multiple sequential recurrences patterns
among superficial bladder carcinoma patients and identifies clinicopathologic
factors associated. Finally, a postoperative nomogram is proposed as a method
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that avoids the arbitrary division of patients into risk groups and can be used
to predict 1, 3, and 5-year disease recurrence probability.

2 Material and Methods

2.1 Patient Population

La Fe University Hospital of Valencia (Spain) provided us with the TUR
database containing detailed information on superficial TCC of the bladder
(patient characteristics and pathologic details). Clinicopathologic data were
collected at the time of TUR for all 380 patients, between January 1995
and January 2006, and included stage and grade tumor, size, and number
of tumors. The treatment consisted of a randomized trial of three groups: no
treatment, a single dose of adriamicine or mitomicine 48 h post TUR and a
chemoteraphy (multiple instillations starting at 15 days post TUR, weekly for
4 weeks and monthly for 1 year).

The TNM system (classification of 1997) is generally used to establish the
stage of the bladder tumors [5]: stages Ta and T1 (superficial tumors limited to
the mucosa with tendency to produce recurrences of similar stage) and, stages
Tis and T2–T4 (tumors that invade the bladder muscle, highly aggressive, and
with a strong potential to metastatize). The histologic grade identifies three
cases according to the World Health Organization 1999 classification [5] of low
aggressiveness to high aggressiveness: G1, G2 and G3 (grade I, II, and III).

All tumors were graded in G1 and G2. We have eliminated the combina-
tion T1 G3 because it is a very aggressive tumor with a particular and spe-
cific treatment. Indicator or dummies variables are generated for the analysis.
For treatment (three categories) two dummies are defined: single dose and
chemotherapy. Sex, grade (G1 and G2), number (one and two or more), size
(≤3 cm and >3 cm) and stage (Ta and T1) are dichotomic variables. The ref-
erence individual is a man with a mean (SD) age of 64.63 (11.99) years, with
Ta stage and G1 grade, with one tumor of size minor or equal than 3 cm. He
was assigned to the no treatment group after TUR.

2.2 Statistical Analysis

For multiple sequential recurrences of bladder carcinoma we suggest two mod-
els: Andersen and Gill (AG) model [6] and Prentice, Williams, and Peterson
(PWP) model [7]. Both methods model each of the sequential recurrences by
a Cox proportional hazard model [8], taking into consideration correlation
among patient multiple recurrence times. The effect of an individual factor in
the presence of other factors is determined by the statistic −2 log likelihood.
All statistical analysis were performed using S-Plus software (PC Version 2000
Professional; Insightful Corp, Redmond, WA) with additional functions (called
Design) added [9].
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If we assume that the risk of recurrence remains constant regardless of the
previous number of recurrences, we consider the AG model, but if we assume
that after experiencing the first recurrence, the risk of the next recurrence may
increase, this suggests the use of the stratified model PWP or AG method with
an appropriate time-dependent covariate (previous number of recurrences) to
capture the dependence between recurrences of the same patient. We use the
counting process style of data input for both models, where each subject is
represented as observations with time intervals of (entry time (TUR), first
recurrence], (first recurrence, second recurrence], . . . , (mth recurrence, last
followup]. For the AG model, the risk set at the time of the kth recurrence
would be all patients who are under observation and, for the PWP model all
patients who are under observation and have had k-1 recurrences.

3 Results

Age, grade, number, size, and treatment were significant at the 5% level
(Table 1). Including previous number of recurrences (up to 5), the value of
the statistic −2 log L̂ is reduced in 79.002 on 1 d.f., statistically significant at
the 1% level (AG model). We conclude that patients with previous number
of recurrences presents an increasing risk (47.3%) of experiencing the next
recurrence.

Patients with grade G2 have a risk of recurrence 51.7% with respect to
patients with grade G1 (PWP model), and patients with more than one tumor
have a risk 76.8% bigger than patients with only one tumor. Individuals with
tumor size larger than 3 cm were 1.64 times likelier to have recurrences. The
hazard ratio for a patient on chemoteraphy group is reduced about 28% com-
pared to patients with no treatment.

Table 1. Relative risk and 95% CI of tumor recurrences from the AG and PWP

Variable β̂ se(β̂) Robust se z p value RR Lower.95 Upper.95

AG model with previous number
Age 0.012 0.005 0.005 2.567 0.010 1.012 1.003 1.022
Grade 0.339 0.115 0.111 3.065 0.002 1.404 1.130 1.744
Number 0.602 0.159 0.149 4.044 0.000 1.825 1.364 2.444
Size 0.441 0.162 0.166 2.662 0.008 1.554 1.123 2.150
Single dose 0.026 0.164 0.157 0.165 0.870 1.026 0.754 1.396
Chemotherapy −0.498 0.123 0.115 −4.317 0.000 0.608 0.485 0.762
Prev. num 0.387 0.041 0.038 10.116 0.000 1.473 1.367 1.588
PWP model
age 0.010 0.005 0.005 2.24 0.025 1.010 1.001 1.019
grade 0.417 0.119 0.114 3.65 0.000 1.517 1.212 1.897
number 0.569 0.163 0.151 3.78 0.000 1.768 1.316 2.375
size 0.498 0.166 0.163 3.05 0.002 1.645 1.195 2.265
Single dose 0.079 0.168 0.170 0.47 0.640 1.082 0.776 1.510
Chemotherapy −0.321 0.135 0.119 −2.69 0.007 0.726 0.574 0.917

CI: confidence interval; RR: relative risk
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Fig. 1. Nomogram for superficial bladder carcinoma recurrences (AG model)

We construct a postoperative nomogram from the AG model. We do not
include treatment because the aim is providing a graphical and simple tool
for the physician and patient to decide the protocol of follow-up and the more
adapted treatment to the situation of his (her) disease. The nomogram is
used by first locating a patient’s position on each predictor variable scale (see
Fig. 1). Each scale position has corresponding points (Points). A patient with
a G2 tumor contributes 13 points approximately, determined by comparing
the location of G2 on the grade axis to the points scale above and drawing a
vertical line between the two axes. The point values for the other predictor
variables are determined in a similar manner. They are summed to obtain a
total points value that is located on the Total Points axis. A vertical line drawn
from the total points axis straight down to find the patient’s probabilities of
recurrence at 1, 3, and 5 years. So, a 50 years old patient with G2 grade,
size minor than 3 cm, with only one tumor and two previous recurrences has
20+13+0+0+40 = 73 total points, which implies about 63% of disease free
probability at 1 year, 20% at 3 years and 11% at 5 years.

To assess model accuracy at 1, 3 and 5 years, Harrell’s bias corrected
concordance index c was calculated [9]. This index is the percentage of patients
pairs in which the predicted and observed outcomes are in agreement; i.e.,
the probability that for two patients chosen at random, the patient who had
the event first had a higher probability of having the event according to the
model. c = 0.5 represents agreement by chance; c = 1 represents perfect
discrimination [10]. In our analysis the concordance index was 0.67.
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4 Conclusions

We have used two counting process methods (AG and PWP) to analyse the
multiple sequential recurrences, that although is one of the most important
characteristic of superficial TCC of the bladder, there are a few studies about
this. Both models give the same predictor variables and similar relative re-
currence risks. As in the clinic practice it arises the need for getting together
every crumb of information in a graphic tool we have constructed a nomogram
on the basis of the AG model because it is the simplest method to visualize
since PWP is a stratified model.
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Summary. Let the homogeneous of L degree function g(x) be defined in N -
dimensional space, and let the function G(y) be its Fourier transform in the dis-
tribution sense. The theorem that allows to present the function G(y) using only
the values of function g(x) on the unit sphere is proved in the chapter for the case
L > −N . The case N=3 and L = −1 corresponds to the properties of beam trans-
form in 3D space. In the chapter it is shown how the theorem may be used for
creation of numerical algorithms for cone-beam tomography.

Let the homogeneous of L degree function g(x) be defined inN -dimensional
space, and let the function G(y) be its Fourier transform. In view of homo-
geneity, the function g(x) and its Fourier transform in sense of distributions
are defined by their values on the unit sphere [GS00]. We will prove the theo-
rem that allows to present the function G(y) using only the value of function
g(x) on the unit sphere for the case L > −N .

Theorem 1. Let the function G(ξ) be the Fourier transform in sense of dis-
tributions of homogeneous function g(α) of λ degree, where λ > −N and
λ �= 0,±1,±2, . . . ,±(N − 1), N, (N + 1), . . ., then

G(ξ) = iΓ (λ+N)× [exp(i(λ+N)(π/2))
∫
|β|=1

g(β)(β, ξ)−(λ+N)
+ d(N−1)β

− exp(−i(λ+N)(π/2))
∫
|β|=1

g(β)(β, ξ)−(λ+N)
− d(N−1)β] (1)

If λ = 0,±1,±2, . . . ,±(N − 1), N, (N + 1), . . ., then

G(ξ) = i(n+N)[(n+N − 1)!
∫
|β|=1

g(β)(β, ξ)−(n+N)d(N−1)β

+(−1)n+N iπ
∫
|β|=1

g(β)δ(n+N−1)((β, ξ))d(N−1)β]. (2)
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Here β is the point on the N − 1 dimensional unit sphere, and symbol
dN−1β means integration on this sphere.

For rigorous proof, it is appropriate to use the functions gτ (α)=g(α)e−τ |α|,

Gτ (ξ) =
∫
g(α)e−τ |α| exp(−2iπ(α, ξ))dα,

and formulas for the Fourier transforms of distributions [GS00].
The case N=3 and λ=-1 corresponds to properties of beam transform in

3D-spase. For this case the theorem was proved in [Tr04].
Let the function f(x) = f(x1, x2, x3), the point S = (s1, s2, s3) and the

vector α = (α1, α2, α3) be given. The beam transform of function f(x) is the
function

(R+
1 f)(α, S) =

∫∞
0
f(tα+ S)dt.

The function (R+
1 f)(α, S) is the integral of function f(x) along the beam that

comes out from the point S in the direction of the vector α.
From mathematical point of view, the task of cone-beam tomography is

a determination of the function f(x), if the function (R+
1 f)(α, S) is known.

The set of points for which the beam-transform is known, usually is the set
of points of some curve, which is the trajectory of X-ray source.

Let the curve Φ(λ) = (Φ1(λ), Φ2(λ), Φ3(λ)) be given, λ ∈ Λ, Λ is some
interval in R1 . For α = (α1, α2, α3) and λ ∈ Λ we have the function

g+(α, λ) = (R+
1 f)(α,Φ(λ)) =

∫ ∞

0

f(tα+ Φ(λ))dt.

The function g(α, λ) is the integral of function f(x) along the beam that
comes out from the point Φ(λ) in the direction of the vector α. If λ is fixed,
the function g+(α, λ) is homogeneous function with respect to α with homo-
geneous degree −1:

g+(α, λ) =
1
|α|

∫ ∞

0

f

(
Φ(λ) +

α

|α|

)
dt (3)

The following inverse formula for beam transform was presented in [Tuy83]

f(x) =
∫ 2π

0

∫ π
2

−π
2

cosφ
1

2iπ(Φ′(λ), β)
∂G+(β, λ)

∂λ
dφdθ (4)

If the parameter λ is fixed, the function G+(β, λ) is the Fourier transform
of function g+(α, λ) with respect to variable α. The vector β is β(φ, θ) =
(cos θ cosφ, sin θ cosφ, sinϕ). The parameter λ in formula (8) depends on x,
and β and satisfies to the conditions: the scalar product (β, x) is equal to
(Φ(λ), β), but (Φ′(λ), β) �= 0 . The function f(x) may be determined in the
point x if such λ exists for any β(Kirillov–Tuy’s conditions). From geometrical
point of view, it means that any plane that intersects the point x, intersects
also the curve Φ(λ) transversally (so that denominator in (4) does not equal
to zero).
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If the support of function f(x) belongs to the unit ball, the union of two
unit circles having the centers in the point (0, 0, 0) and belonging to planes
Z = 0 and Y = 0 satisfies to Kirillov–Tuy’s conditions.

Creating of numerical algorithms on the base of formula (4) directly is
difficult [Nat86].

The point is that the Fourier transform in the distributions sense is used
in (4), and the Fourier transform of function g+(α, λ), in classical sense

G+(ξ, λ) =
∫ ∞

−∞
g+(α, λ) exp(2iπ(α, ξ))dα,

diverges (i.e. does not exist), because the function g+(α, λ) is homogeneous
with respect to α and therefore has the order 1/|α| on infinity.

To use the formula (4) for the numerical algorithms, it is necessary to show
that the function G+(ξ, λ) may be determined as a regular function, and to
have formulas that connect the functions g+(α, λ) and G+(ξ, λ).

Now we will get over to the receipt of corresponding formulas.
From the theorem proved above, we have the following

Corollary. If G(ξ) is the Fourier transform in the distributions sense of
homogeneous function g(α) in 3D space, then

G(ξ) = (−1/4π2)
∫
|β|=1

g(β)[(β, ξ)−2 − iπδ′((β, ξ))]d2β. (5)

In tomography tasks the functions f(x) are real ones; only imaginary part
of G(ξ) is used in formula (4):

ImG(ξ) = (i/4π)
∫
|β|=1

g(β)δ′(β, ξ)d2β. (6)

Here d2β means the integration along the circle that is the intersection of
unit sphere and the plane (β, ξ) = 0.

Using the formula (6) and δ-sequences of regular functions, it is possible
to create the numerical algorithms on the base of formula (4).

If the function g(α) is smooth, then it is possible to derive the inverse formula
forbeamtransformthatusesonly standardoperationsofdifferentiationand inte-
gration of measured functions. The following formula was presented in [Tr04]:

ImG(ξ) = (i/4π)
∫
S(ξ)

L(ξ,D)g(α)Ω(α).

Here S(ξ) = (α ∈ S2|(ξ, α) = 0), L(ξ,D) =
∑3

k=1 ξk
∂
∂yk is the derivative in

the direction ξ. Symbol Ω(α) means integration along the circle S(ξ).
Substituting the function G+(β, λ) in formula (8), we obtain:

f(x) = f(x1, x2, x3)

=
−1
8π2

∫ 2π

0

∫ π/2

−π/2

cosφ
1

(Φ′, β)
∂

∂λ

[∫
S(β)

L(β,D)g+(α, λ)Ω(α)

]
dφdθ. (7)
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Fig. 1. Numerical simulation

Here S(β) is the circle that is the intersection of the unit sphere and the plane
P (β). The plane P (β) intersects the point (0, 0, 0) and is orthogonal to vector
β. As we said above, the symbol Ω(α) means integration along the circle S(β),
operator L(β,D) means the differentiation of function g(α) in the direction
of vector β:

L(β,D)g+(ξ, λ) = β1
∂

∂ξ1
g+(ξ, λ) + β2

∂

∂ξ2
g+(ξ, λ) + β3

∂

∂ξ3
g+(ξ, λ),

parameter λ depends on β and x, and is fixed, the vector β = β(θ, ϕ) =
(cos θ cosφ, cos θ sinφ, sin θ). The parameter λ = λ(θ, φ) = λ(x, β) is found
from the conditions: (β, x) = (β, Φ(λ)) and (Φ′(λ), β) �= 0, here (., .) means
the scalar product. Only the regular functions are used in (7). This formula
can be used in numerical algorithms for full 3D reconstruction.

The results of three-dimensional tomography reconstruction on base of
formula (7) are presented on Figure 1. The model object is the sphere with a
cavity. Different sections are presented (z=0, and z=0.096).
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1 Introduction

The proportional rule has a long tradition in collective problems where some
kind of utility (costs, profits, savings) is to be shared among the agents. How-
ever, while its (apparent) simplicity might be a reason for applying it in pure
bargaining affairs, where only the whole and the individual utilities matter,
it seems much more questionable in the case of general cooperative problems,
where all marginal contributions should be taken into account. We will con-
trast the proportional rule with the Shapley value in this kind of problems.

2 Cooperative Affairs

Let N = {1, 2, . . . , n} be a set of agents (players). Each subset S ⊆ N is
a coalition. A cooperative game on N (a game, for short, in the sequel) is a
function u that assigns to each coalition S a real number u(S), which is inter-
preted as the worth or utility that coalition S is able to obtain independently
of the behavior of the outside players (the members of N\S). The only con-
dition imposed to u is that u(∅) = 0, where ∅ denotes the empty coalition. A
game u is (a) additive if u(S ∪ T ) = u(S) + u(T ) whenever S ∩ T = ∅ and (b)
symmetric if u(S) depends only on the cardinality of S for all S ⊆ N .

Usually, u represents profits or savings arising from cooperation between
the members of any coalition. In other cases, u may well represent costs.
Rather than on the individual strategic possibilities of the agents, the cooper-
ative theory is merely based on the amounts of utility that coalitions can get.
The main question related to the problems represented by cooperative games
is the way to share among the players, in a rational way, the total utility of the
grand coalition, that is, u(N), in such a manner that all players agree and be-
come satisfied with the outcome. In this respect, an essential notion, of great
relevance in economics, should be the following: the marginal contribution of
a player i ∈ N in a game u to a coalition S containing i is u(S)− u(S\{i}).
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It will also be of interest to have in mind that i ∈ N is a null player in a
game u on N if all his marginal contributions vanish, i.e., if u(S∪{i}) = u(S)
for every S ⊆ N\{i}, and i, j ∈ N are equivalent players in a game u on N
if their marginal contributions to each coalition coincide, i.e., if u(S ∪ {i}) =
u(S ∪ {j}) for every S ⊆ N\{i, j}. The set GN of all cooperative games on a
given player set N becomes a vector space of dimension 2n − 1 endowed with
the natural linear operations for real-valued functions defined by (u+v)(S) =
u(S) + v(S) and (λu)(S) = λu(S) for all S ⊆ N , u, v ∈ GN and λ ∈ R (set of
real numbers). We will pay special attention to the sum of games.

3 The Proportional Rule

A well-known method to share u(N) is given by the so-called proportional
rule. The amount that this rule allocates to each agent i ∈ N in game u is

πi[u] =
u({i})

u({1}) + u({2}) + · · ·+ u({n})u(N). (1)

Although an obvious “advantage” of the proportional rule is the easiness
of its calculation, a first problem arises since the rule can be applied only if

u({1}) + u({2}) + · · ·+ u({n}) �= 0, (2)

so that its domain is limited to the class of cooperative games on N that
satisfy this condition. This is by no means a trivial restriction.

4 An Axiomatic Approach to a Value Notion

In a seminal work [Sha53] (also in [Rot88]), Shapley addressed the sharing
problem in completely general terms and introduced the axiomatic method in
game theory. Indeed, he stated the problem of finding a value, that is, a map

f : GN −→ RN

which would assign a payoff vector f [u] = (f1[u], f2[u], . . . , fn[u]) to every
game u on N . This payoff vector should be viewed as the solution to the
problem represented by game u.

Of course, there are infinitely many ways to define such a map. Shapley
stated four appealing conditions that a value f should satisfy. They are:

1. Efficiency.
∑
i∈N

fi[u] = u(N) for every u ∈ GN .

2. Null player property. If i ∈ N is a null player in a game u ∈ GN then
fi[u] = 0.
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3. Symmetry. If i, j ∈ N are equivalent players in a game u ∈ GN then
fi[u] = fj [u].

4. Additivity. For all u, v ∈ GN , f [u+ v] = f [u] + f [v].

These properties deserve to be called “axioms” because of their elegant
simplicity. It is hard to claim that they are not compelling... Efficiency means
that the players are going to share the total amount available to them. The
null player property states that if a player does not contribute anything to all
coalitions to which belongs then this player must get 0. Symmetry establishes
that two players that are equally interesting as coalition partners should re-
ceive the same payoff. Finally, additivity implies that the allocation in the
sum game has to coincide with the sum of allocations in each game. Maybe,
in spite of its simplicity and mathematical tradition, this latter property is,
in principle, the least clear one: the reason is that one does not capture easily
the meaning of the sum game in practice.

In his chapter, Shapley proved that there is one and only one function f
that satisfies these four axioms (a logically independent system). He denoted
it by ϕ and found that its expression is, for arbitrary i ∈ N and u ∈ GN ,

ϕi[u] =
∑

S⊆N : i∈S

(s− 1)!(n− s)!
n!

[u(S)− u(S\{i})], (3)

where s = |S| for each S ⊆ N .
Of course, the subsequent literature has been referring to ϕ as the Shapley

value. Notice that, in fact, the Shapley value becomes a linear map from GN
to RN . Also notice that all marginal contributions of a player matter when
computing the Shapley value for this player. This implies a great deal of
strategic sensibility on the side of the Shapley value that should be highly
appreciated by practitioners.

5 Checking the Proportional Rule

The framework established by Shapley allows us to evaluate any allocation
rule and, in particular, to compare the proportional rule and the Shapley
value. The relevant points are the following:

1. As was pointed out before, a first essential failure of the proportional rule
is its restricted domain, defined by condition (2). Instead, the Shapley
value applies without any restriction to all cooperative games.

2. A second important problem is that the proportional rule does not take
into account most of the marginal contributions; this becomes more and
more critical as the number of players increases and results in the very
low sensibility already mentioned. On the contrary, the Shapley value is
always concerned with all marginal contributions without exception and
enjoys therefore a nice sensibility with regard to the problem data.
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3. It is instructive to put together formulas (1) and (3) for two-player games.
If i and j are these players (so that {i, j} = {1, 2}) then we have

πi[u] = u({i}) +
u({i})

u({i}) + u({j}) [u({i, j})− u({i})− u({j})] (4)

and
ϕi[u] = u({i}) +

1
2
[u({i, j})− u({i})− u({j})]. (5)

The procedures look partially similar: first, each player is allocated his
claim (say, u({i}) in case of player i); then, the remaining worth is shared
among both. However, it is worthy of mention that the Shapley value
simply shares the residual utility equitably, whereas the proportional rule
shares it proportionally to the individual utilities. This means that the pro-
portional rule is, conceptually, more complicated than the Shapley value
and includes a hardly justified double discriminatory level that rewards
twice the player that individually can get the highest utility by his own.
The phenomenon extends to more than two players.

4. In which cases do both allocation rules coincide? It is not difficult to see
that, in the two-player case, the Shapley value and the proportional rule
coincide on a game u (such that u({1}) + u({2}) �= 0, of course) if and
only if this game satisfies some of the following conditions:
(i) u({1}) = u({2}) (symmetric game).
(ii)u({1, 2}) = u({1}) + u({2}) (additive game).
In general (arbitrary n), for any additive game u satisfying (2) we have
ϕ[u] = π[u] (in fact, the i–component of both values coincides with u({i})
for each i ∈ N). Also for any symmetric game u satisfying (2) we get
ϕi[u] = πi[u] = u(N)

n for all i ∈ N .
5. As to Shapley’s axioms, it is easy to check that, in its restricted domain

defined by inequality (2), the proportional rule satisfies the axioms of
efficiency, null player and symmetry.

6. This leaves us with the lack of additivity for this rule (otherwise, it would
coincide with the Shapley value by the uniqueness of the value). Then,
although the proportional rule satisfies π[λu] = λπ[u] for all game u in its
domain and all λ ∈ R, the proportional rule is not linear. Let us raise the
following question: is this failure important or, on the contrary, additivity
is simply a standard mathematical property, just of a technical nature,
without special relevance for practitioners? The answer is quite surprising.
From the lack of additivity, serious inconsistencies of the proportional rule
derive when applying it to certain problems.

6 Conclusions

So far we have analyzed the proportional rule, from the axiomatic view-
point established by Shapley when defining the value notion for cooperative
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games but also from a practical viewpoint. Several properties and failures of
the proportional rule have been remarked (items 1–6 in Sect. 5) and, espe-
cially, practical implications of the non-additivity of this rule might be evi-
denced that result in a serious inconsistency when dealing with costs-savings
related problems and added costs problems. (For space reasons, we have not
included any example.)

Summing up, it might be said that, in spite of its greater difficulty of
calculus (easily solved by using computer programs or approximative methods
for a high number of players), the Shapley value should replace in practice the
proportional rule in cooperative affairs where coalitions of intermediate size
(1 < |S| < n) matter, but also in pure bargaining problems.

We would like to end the chapter by mentioning several references. First,
the material included here might be completed with references [ACM01]
and [ACM06], where additional information is provided. Applications of co-
operative games to economic problems may be found in [BF99] and [Raf99],
and even in (the chapters on cooperative games of) [Owe95], a great classical
book on game theory. For an attempt to give to the proportional rule a greater
relevance in cooperative games, see [Ort00].
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Summary. Game Theory provides suitable tools to share the total utility among
the economic agents or players when the possibilities of cooperation enable obtain-
ing the utility of each group or coalition. The semivalues are solution concepts for
situations of competence–cooperation that assign to each player a weighted sum of
his/her marginal contributions to the coalitions, where the weights only depend on
the coalition size. The Shapley value and the Banzhaf value are semivalues. The
solutions introduced here are modifications of the semivalues when we consider a
priori coalition blocks in the player set. A computation procedure is also offered.

1 Introduction and Preliminaries

A cooperative game with transferable utility is a pair (N, v), where N is a
finite set of players and v : 2N → R is the so-called characteristic function,
which assigns to every coalition S ⊆ N a real number v(S), the utility or
worth that the coalition S can obtain in the situation described by the game,
independently of the remaining players. The function v should satisfy the
natural condition v(∅) = 0. From now on we suppose N = {1, . . . , n} and we
denote with GN the set of all cooperative games on N . Given N , we identify
each game (N, v) with its characteristic function v.

A central problem of Game Theory consists of distributing the total utility
by using acceptable allocation rules. Ideas as fairness, equity or equal treat-
ment appear in this context. Several solutions can be proposed according to
these ideas are expressed by means of mathematical formulations.

A solution on the set of cooperative games GN is an allocation rule that
assigns a payoff to each game player, i.e., a function Ψ : GN → RN , where
Ψ [v] = (Ψ1[v], . . . , Ψn[v]). It represents a method to measure the negotiation
strength of the players in the game. In order to calibrate the importance of
each player i in the different coalitions S, we can look at his/her marginal
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contribution v(S) − v(S \ {i}). If these marginal contributions are weighted
by means of coefficients depending only on the coalition size, we arrive at the
solution concept known as semivalue.

The semivalues (Dubey et al., 1981 [DNW81]) are characterized by means
of four axioms:

A1. Additivity. Ψ [u+ v] = Ψ [u] + Ψ [v] ∀u, v ∈ GN .
A2. Symmetry. Ψπi[πv] = Ψi[v] ∀v ∈ GN , ∀i ∈ N, ∀π permutation of N ,

where game πv is defined by (πv)(πS) = v(S) ∀S ⊆ N .
A3. Positivity. Game v monotonic [S ⊆ T ⊆ N ⇒ v(S) ≤ v(T )] implies

Ψi[v] ≥ 0 ∀i ∈ N.
A4. Projection. Ψi[v] = v({i}) ∀v ∈ AN , whereAN denotes the set of additive

games in GN : games v such that v(S ∪ T ) = v(S) + v(T ) if S ∩ T = ∅
and S, T ⊆ N.

Theorem 1 (Dubey et al., 1981 [DNW81]). (a) Every weighting vector
(p1, p2, . . . , pn) verifying conditions

n∑
s=1

(
n− 1
s− 1

)
ps = 1 and ps ≥ 0 for 1 ≤ s ≤ n (1)

defines a semivalue ψ : GN → RN whose allocations are given by

ψi[v] =
∑

S⊆N : i∈S

ps[v(S)− v(S \ {i})] ∀i ∈ N (where s = |S|).

(b) Conversely, every semivalue defined on GN is of this form, so that, there
exists a one-to-one map between the semivalues on GN and the vectors (ps)ns=1

that verify conditions (1).

Definition 1. A semivalue on GN is called binomial semivalue if its weighting
coefficients are in geometric progression.

The binomial semivalues are related with the numbers α ∈ (0, 1). Given a
number α ∈ R, 0 < α < 1, we call α-binomial semivalue ψα to the semivalue
on GN whose weighting coefficients are pα,s=αs−1(1−α)n−s for 1 ≤ s ≤ n.

The extreme cases of binomial semivalues correspond to values α = 0
and α = 1. For α = 0 we obtain the dictatorial index ψ0, with coefficients
(1, 0, ..., 0), whereas for α = 1 we obtain the marginal index ψ1, with coeffi-
cients (0, ..., 0, 1). The Banzhaf value is the binomial semivalue for α = 1/2.

Definition 2. The family of semivalues on GN {ψj}nj=1, with respective
weighting coefficients (pj,s)ns=1, 1 ≤ j ≤ n, forms a reference system of
Sem(GN ) if, and only if, the family of points {Pj (pj,s)ns=1}nj=1 forms a ref-
erence system of the hyperplane of Rn with equation

∑n
s=1

(
n−1
s−1

)
ps = 1.

Theorem 2 ([Gim01], [AG03]). For n > 1, given n real numbers αj ∈ [0, 1],
such that αj �= αk if j �= k, the family of binomial semivalues {ψαj

}nj=1 forms
a reference system of Sem(GN ) (n = |N |).
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Fixed a reference system of binomial semivalues {ψαj
}nj=1 in Sem(GN ), for

each semivalue ψ defined on GN there exists a unique family of real numbers
λj , 1 ≤ j ≤ n, such that

ψ =
n∑

j=1

λjψαj
with

n∑
j=1

λj = 1.

The components of semivalue ψ in the reference system {ψαj
}nj=1 are

grouped according to the following notation:

Λt = (λ1 λ2 · · · λn). (2)

Definition 3 (Owen, 1972 [Owe72]). The multilinear extension (MLE, in
the sequel) of a game v ∈ GN is the function fv : [0, 1]n −→ R defined by

fv(x1, x2, . . . , xn) =
∑
S⊆N

∏
i∈S

xi

∏
j∈N\S

(1− xj)v(S).

Theorem 3 ([Gim01], [AG03]). Let fv = fv(x1, x2, . . . , xn) be the MLE of
game v ∈ GN .
(a) The payoff vector that the binomial semivalue ψα assigns to the players of

game v ∈ GN is
ψα[v] = ∇fv(α) ∀α ∈ [0, 1] where α = (α, . . . , α).

(b) The payoff vector that every semivalue ψ assigns to the players of game
v ∈ GN is

ψ[v] = BΛ,

where the matrix B = ( bij ) depends on each reference system of semival-
ues {ψαj

}nj=1,

bij = (ψαj
)i[v] =

∂fv
∂xi

(αj), 1 ≤ i, j ≤ n.

Λ is the matrix of the components of ψ in the reference system (as in (2)).

2 Mixed Modified Semivalues

Definition 4. Let ψn be a semivalue onGN with weighting coefficients (pns )ns=1.
The family of induced semivalues by ψn on sets of games with less than n
players is

{ψm ∈ Sem(GM ) with 1 ≤ m ≤ n and m = |M | },

where the respective weighting coefficients are recursively obtained according
to the Pascal triangle (inverse) formula

pms = pm+1
s + pm+1

s+1 1 ≤ s ≤ m < n.
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We can find the above definition in [Dra99]. By convenience, we have
included the initial semivalue in its induced family. It is not difficult to see
that the induced semivalues of the Shapley value, the Banzhaf value or, in
general, the α-binomial semivalues are of the same initial types.

Definition 5. Let us consider cooperative games v defined on a given finite
set of players N . A structure of coalition blocks in the player set is a partition
of N , B = {B1, . . . , Bm}. With BN we denote the set of all coalition structures
defined in N . A solution for cooperative games with coalition structure is a
function Ψ : GN × BN → RN that assigns a payoff to each player, Ψ [v;B] =
(Ψ1[v;B], . . . , Ψn[v;B]).

Let us suppose that two semivalues ψn and ϕn are defined on games with
n players (eventually ϕn = ψn). The consideration of induced semivalues
allows us to define a concept of mixed modified semivalue for games with
coalition structure following a similar process to which Owen uses to derive
the coalition value [Owe77] from the Shapley value [Sha53] or the modified
Banzhaf value for games with coalition structure [Owe81] from the Banzhaf
value [Ban65,Owe75].

Theorem 4. Let v be a game on N and let ψn, ϕn be two semivalues de-
fined on GN with respective weighting coefficients (pns )ns=1 and (qns )ns=1. Given
a coalition structure B = {B1, B2, ... , Bm}, the payoff to any player i in a
coalition block Bj ∈ B according to the mixed semivalue ψn/ϕn modified by
B is(
ψn/ϕn

)
i
[v;B] =

∑
S⊆Bj\{i}

∑
T⊆M\{j}

q
bj

s+1 p
m
t+1

[
v
( ⋃
t′∈T

Bt′∪S∪{i}
)
−v
( ⋃
t′∈T

Bt′∪S
)]
,

where pmt+1 =
∑n−m

h=0

(
n−m

h

)
pnt+1+h (t = |T |) and qbj

s+1 =
∑n−bj

h=0

(
n−bj

h

)
qns+1+h

(s = |S|).

3 Computation Procedure of Mixed Modified Semivalues

Definition 6. Let B = {B1, . . . , Bm} be a coalition structure in N and let
M = {1, . . . ,m} be the set of classes in N according to the coalition structure
B. From the MLE fv of game v, a modified multilinear extension for each
coalition block Bj ∈ B can be obtained by means of the following rules:

(1) For each t ∈ M , t �= j, and each u ∈ Bt replace in fv the variable xu

with yt.
(2) In the above function, reduce all exponents that appear in yt to 1, i.e.,

replace yrt (r > 1) with yt, obtaining another MLE

fv,j(xk, yt) k ∈ Bj and t ∈M \ {j}.
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Theorem 5. Let us assume that {ψn
αk
}nk=1 is a reference system of binomial

semivalues in Sem(GN ). If v is a cooperative game on N , ψn and ϕn are
two semivalues on GN with respective expressions ψn =

∑n
k=1 λkψ

n
αk

, ϕn =∑n
l=1 λ̃lψ

n
αl

and B = {B1, . . . , Bm} is a structure of coalition blocks defined in
N , then the allocation to each player i in block Bj according to the modified
solution ψn/ϕn can be computed by means of the following expression

(ψn/ϕn)i[v;B] = ΛtA(i) Λ̃,
where the matrix A(i) = (akl(i)) depends on the reference system of Sem(GN )
and can be obtained from the MLE of block Bj,

akl(i) = (ψn
αk
/ψn

αl
)i[v;B] =

∂fv,j
∂xi

(αl, αk), 1 ≤ k, l ≤ n.

Λ and Λ̃ are, respectively, the matrices of the components of semivalues ψn and
ϕn in the reference system {ψn

αk
}nk=1: Λ

t = (λ1 · · · λn), Λ̃t = (λ̃1 · · · λ̃n).
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Summary. In the context of offshore oil production, we are interested in accurate
and fast computation of two-phase flows in pipelines. A one-dimensional model of hy-
perbolic equations is solved numerically by an explicit Lagrange-projection method.
This chapter shows that adaptive multiresolution techniques can speed up the com-
putation significantly. Even more so when local time-stepping enhancement is used.

1 Modeling of the Physical Problem

In this short chapter we restrict ourselves to a homogeneous model for two-
phase flows. The density ρ, velocity u and the gas mass fraction Y of the
mixture of oil and gas are related through a PDE system⎧⎨⎩∂t(ρ) + ∂x(ρu) = 0,

∂t(ρY ) + ∂x(ρY u) = 0,
∂t(ρu) + ∂x(ρu2 + P ) = 0

(1)

where the thermodynamical closure law P (ρ, Y ) can be in practice very costly
to evaluate. This system is hyperbolic with three distinct eigenvalues u− c <
u < u+c. The intermediate eigenvalue corresponds to the slow transport wave
and will linearly degenerate, the two others are much bigger and correspond
to genuinely nonlinear acoustic waves.

Improving the previous numerical treatments of the system (1) (see [1,5]),
the scheme we present here enables the obtention of a maximum principle on
the density and gas mass fraction and it can be expressed as a flux scheme,
which makes local time-stepping techniques applicable. The main idea consists
in decomposing the flux in an acoustic part – associated with the genuinely
nonlinear waves and a transport part associated to the linearly degenerated
waves. This is introduced for instance in [6] using Lagrangian coordinates
for gas dynamics and detailed in [4] in the case of our complex system of
equations. Eventually the Lagrangian step where we deal with the acoustic
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part of the flux will be treated implicitly, which will enable us to use a larger
time step. The slow transport phenomenon will still be treated explicitly for
better accuracy. In this chapter, we concentrate on the adaptive grid and local
time-stepping extensions and restrict ourselves to the explicit version of the
scheme.

2 Numerical Scheme

The Lagrange-projection (LP) splitting is performed at the numerical level
in a two-step scheme that we briefly present in this section referring to [4]
for the details. In the framework of adaptive schemes on nonuniform grids we
discretize the domain in N cells Ωi = [xi−1/2, xi+1/2] of size ∆xi such that∑N−1

i=0 ∆xi = L. We denote by Un
i = (τni , Y

n
i , u

n
i ) the solution on cell Ωi at

time n, and by U
n 
i = (τn 

i , Y n 
i , un 

i ) the solution at the end of the Lagrangian
step.

Explicit scheme for the Lagrangian step gives

τn 
i = τni + ∆t

ũn
i+ 1

2
− ũn

i− 1
2

ρni ∆xi
, Y n 

i = Y n
i , u

n 
i = ui −∆t

P̃n
i+ 1

2
− P̃n

i− 1
2

ρni ∆xi
,

where ũn
i− 1

2
and P̃n

i− 1
2

are built from the solution of the Riemann problem
between states Un

i−1 and Un
i :

P̃n
i− 1

2
=
Pn
i−1 + Pi

2

n

− au
n
i − un

i−1

2
, ũn

i− 1
2

=
un
i−1 + un

i

2
− Pn

i − Pn
i−1

2a
. (2)

In (2), a is a stabilizing coefficient coming from the relaxation formulation of
problem (1), as described in [2].

In the Euler projection step we advect the intermediate conservative state
Wn = (ρn , (ρY )n , (ρu)n )T with the edge velocities ũn

i± 1
2
. Combining the

two steps together provides the locally conservative flux formulation

Wn+1
i = Wn

i −
∆t
∆xi

(
Fn 

i+ 1
2
− Fn 

i− 1
2

)
, (3)

where

Fn 

i− 1
2

= (0, 0, P̃n
i− 1

2
)T + (ũn

i− 1
2
)+Wn 

i−1 + (ũn
i− 1

2
)−Wn 

i . (4)

In the above definition of the fluxes, the superscript (.)+ (respectively (.)−)
denotes the positive (respectively negative) part. Imposing maximum principle
on ρ and Y leads to the following stability criterion

∆t ≤ min
i

min(∆xi,∆xi−1)∣∣∣ũn
i− 1

2

∣∣∣ . (5)
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3 Adaptive Multiresolution

In the context of hyperbolic equations, where the solutions exhibit localized
singularities, it is of course natural to discretize the solution finely in the re-
gion of these singularities and more coarsely elsewhere where it is smooth. In
answer to this observation, we have adapted the multiresolution techniques
established in [3] and based on ideas introduced in the context of systems of
conservation laws by Harten at the beginning of the nineties. The multiscale
analysis of the solution is used to design an adaptive grid by selecting the cor-
rect level out of a hierarchy of nested grids according to the local smoothness
of the solution. This non-uniform grid evolves with time, with a strategy based
on the prediction of the displacement and formation of the singularities in the
solution. The wavelet basis used to perform the multiscale analysis enables to
reconstruct the solution at any time back to the finest level of discretization,
within an error tolerance controlled by a threshold parameter.

The coupling of multiresolution with a semi-implicit Euler relaxation
scheme is detailed in [5] for the non-drift model and in [1] for the com-
plete model with drift and friction. The adaptation of the method to our
new Lagrange-projection scheme is straightforward, at least in the explicit
case, and we present here some simulation, referring to [4] for the details of
the implementation.

The test case consists of a Riemann problem set in a 16 km-long pipeline.
At the initial time the density of the mixture is 400 kg m−3 until x=8km
and 500 kg m−3 beyond. The gas mass fraction is respectively 0.4 and 0.2 and
the speed is respectively -10 and +10m s−1. The contact discontinuity moves
slowly towards the right at a speed 20m s−1 given by Rankine Hugoniot while
two acoustic waves are visible on the density and speed components moving
in opposite directions at roughly ± 254m s−1. Figure 1 displays the density,
gas mass fraction and velocity fields obtained using the Lagrange-projection
method on a uniform grid of 8,000 cells, along with the multiresolution solu-
tion, obtained using a hierarchy of 7 levels. On each graph the straight line
indicates the initial solution, the dash line the uniform grid solution at time
t = 15s, and the dotted line the multiresolution solution at time t = 15s.
The crosses × indicate the level of resolution used locally at this final time.
It is numbered from 1 to 7 on the right axis. The uniform and multiresolu-
tion solutions are basically undistinguishable even on the gas mass fraction
graph which is zoomed-in in the unique region of variation. This computation
is done by throwing away all details in the multiscale basis that fall below
1‰. For this threshold ratio, we gain a factor 8 in CPU between the uniform
and adaptive computations, and the number of calls to the state law (in our
case P (ρ, ρY ) = a2

g(ρlρY /ρl − ρ(1− Y ))) is 27 times less in the adaptive case.
This means that when we use the scheme for realistic test cases with expensive
state laws, the multiresolution will be more advantageous yet.

The fourth graph labelled (d) on the figure displays the error with respect
to the uniform solution and also a reference solution computed on a four times
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Fig. 1. Multiresolution for the Lagrange-projection scheme (a) ρ(x, t = 15)
(b) Y (t = 15) (c) u(x, t = 15) (d) error

finer uniform grid, as a function of the CPU gain. Each point on the two curves
corresponds to different threshold ratio in the multiscale smoothness analysis.
This parameter study shows that the error introduced by the multiresolution
is negligible compared to the discretization error for CPU gains up to 10.

In the previous simulation the time step is dictated by the size of the
smallest cell in the adaptive grid which enters into the stability condition (5).
However, an important advantage of the Lagrange-projection scheme is that
it is locally conservative and can therefore be used in the framework of a local
time-stepping multiresolution method such as the one proposed in [7]. It is
impossible in the allotted space to describe the algorithm; the general idea is
to define now a macro time step which will be used on the cells of the adaptive
grid belonging to the coarsest level. The solution on the cells belonging to the
finer resolution levels is advanced using intermediate time steps, in order to
synchronize the solution at the end of each macro time step.

We present in Fig. 2 the density fields and adaptive grids of a very promis-
ing simulation. Using first-order fluxes and constant global time step through-
out the simulation we get a factor of 5 in CPU gain with the standard
multiresolution and a factor of 15 using local time-stepping.
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Fig. 2. Density field and adaptive grid using (a) multiresolution (b) local time-
stepping enhancement
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Summary. The finite pointset method is a meshless Lagrangian particle method. In
the application to incompressible viscous fluid flow the solution of Poisson problems
on the cloud of particles is a fundamental subproblem. A valuable property of finite
difference approximations to the Laplace operator is the positivity of stencils, i.e.,
all weights of neighboring points are positive. Classical least squares approaches
do not guarantee positive stencils. We present a new approach, based on linear
minimization, which enforces positivity of stencils and additionally yields a minimal
number of nonzero stencil entries. The resulting system matrices are M-matrices,
which is of particular interest with respect to multigrid solvers.

1 Introduction

The finite pointset method (FPM) was introduced [3] as a generalization of
smoothed particle hydrodynamics (SPH) [6]. It is a meshless Lagrangian par-
ticle method, i.e., all computations are performed on a point cloud which is
moving with the flow. Incompressible viscous flows can be computed with the
FPM [4], using a projection method [1]. This requires the solution of at least
one Poisson problem in each time step. Since the particles move with the flow,
the Poisson equation has to be solved on the point cloud. In Sect. 2 we outline
the general meshless finite difference approach. Classical least squares meth-
ods are presented in Sect. 3. In Sect. 4 we present a new approach, which
yields minimal positive Laplace stencils. We present in Sect. 5 that the re-
sulting system matrices are M-matrices, which is of advantage for multigrid
solvers. Section 6 shows numerical results.

2 Meshless Finite Differences for Poisson Equation

Consider a smooth function u and a point cloud on a domain Ω ⊂ Rd. To
an interior point x0 consider all points x1, . . . ,xm in a circular neighborhood,
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i.e., ‖xi−x0‖2 < r. Define x̄i = xi−x0. The function value at each neighboring
point can be expressed by a Taylor expansion

u(xi) = u(x0) +∇u(x0) · x̄i + 1
2∇

2u(x0) :
(
x̄i · x̄T

i

)
+ ei. (1)

The colon denotes the matrix scalar product A : B =
∑

i,j AijBij , and ei is
the error in the expansion, which is of order ei = O(r3). A linear combination
with coefficients (s0, . . . , sm) equals

m∑
i=0

siu(xi) = u(x0)

(
m∑
i=0

si

)
︸ ︷︷ ︸

=r0

+∇u(x0) ·
(

m∑
i=1

six̄i

)
︸ ︷︷ ︸

=r1

(2)

+∇2u(x0) :

(
1
2

m∑
i=1

si
(
x̄i · x̄T

i

))
︸ ︷︷ ︸

=R2

+

(
m∑
i=1

siei

)
︸ ︷︷ ︸

=e

For expression (2) to approximate the Laplacian, the above terms must satisfy
r0 = 0, r1 = 0 and R2 = 2I. Such a stencil s in denoted consistent. The total
error e shall be small. Due to the constant constraint r0 = 0, the central
entry s0 equals minus the sum of all other entries. The linear and quadratic
constraints can be written as a linear system V · s = b, where V ∈ Rk×m is
the Vandermonde matrix, and s ∈ Rm is the sought stencil. In 2d the system
reads as

V =

⎛⎜⎜⎜⎜⎝
x̄1 . . . x̄m

ȳ1 . . . ȳm
x̄1ȳ1 . . . x̄mȳm
x̄2

1 . . . x̄2
m

ȳ2
1 . . . ȳ2

m

⎞⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎜⎝
0
0
0
2
2

⎞⎟⎟⎟⎟⎠ (3)

One has k = d(d+3)
2 constraints. In general, r is chosen large enough such that

m > k. A minimization problem is formulated to single out a unique stencil.

3 Least Squares Methods

Classical approaches formulate a quadratic minimization problem to select a
unique consistent stencil. Examples are the local and the moving least squares
method. A comparison of such methods for the meshless approximation of the
Poisson equation is given in [7, Chap. 5]. The local least squares method, for
instance, yields the following quadratic minimization (QM) formulation

min
m∑
i=1

s2
i

wi
, s.t. V · s = b. (4)
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The weights decrease with the distance to the central point, e.g., wi = ‖x̄i‖−4
2 .

The solution can be given explicitly in terms of Lagrange multipliers (s =
WV T

(
VWV T

)−1
b), where W is a diagonal matrix containing the wi. Ap-

proximating the Poisson equation by QM requires for each interior point a
small (9× 9 in 3d) linear system to be set up and solved.

Of particular interest for the Laplace operator are positive stencils, i.e., all
non-central entries are non-negative. QM formulations do in general not yield
positive stencils: Consider a central point x0 = (0, 0), and six neighboring
points xi = (cos(π

2 ti), sin(π
2 ti)), where (t1, . . . , t6) = (0, 1, 2, 3, 0.1, 0.2). As

the points lie of the unit circle, the weights wi do not influence the result. QM
yields the solution s = (0.846, 1.005, 0.998, 1.003, 0.312,−0.164), the stencil is
not positive. However, there is a positive stencil solution, namely the regular
five-point stencil s = (1, 1, 1, 1, 0, 0).

4 Minimal Positive Stencils

As a new approach we enforce positive stencils, i.e., we search for solutions
contained in the polyhedron P = {s ∈ Rm : V · s = b, s ≥ 0}. Point clouds
exist which do not admit a positive stencil: Consider a central point in the
origin, and all other points in the right half plane (xi > 0). The first row
of system (3) cannot be satisfied with all si ≥ 0 in any feasible way. In [7]
conditions on the geometry are provided under which positive stencils exist:
If the maximum hole size in the point cloud is d, then considering all points
in a radius r = γd in the LM problem (5) guarantees the existence of a
positive solution (γ =

√
4 + 2

√
2 ≈ 2.6 in 2d, γ =

√
7 + 2

√
6 ≈ 3.4 in 3d).

In simulations, the maximum hole size is controlled by particle management.
Points close to the domain boundary require special treatment. Now we select
a unique stencil by formulating a linear minimization (LM) problem

min
m∑
i=1

si

wi
, s.t. V · s = b, s ≥ 0 . (5)

As for QM, the weights are chosen to decay with distance to the central point.
The sign constraints impose bounds on the stencil entries, thus making the
LM formulation feasible. The following facts support the LM approach:

– L-matrix property : If a positive stencil s ≥ 0 can be obtained for every
point, then the resulting system matrix is an L-matrix.

– Error in Taylor expansion: The error in approximation (2) is
∑m

i=1 siei,
where ei are the local errors of the Taylor expansion. In the worst case,
when the local errors accumulate, minimizing the total error equals the
LM formulation (5) with distance weight function wi = ‖x̄i‖−3.

– Minimal stencil : Problem (5) is a linear program in standard form. If the
constraints admit a solution, then due to the fundamental theorem of linear
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programming [2] there is a basic solution, in which only k of the m stencil
entries si are different from zero, where k is the number of constraints.

The resulting approach is denoted minimal positive stencil (MPS) method.

5 M-Matrices and Multigrid Solvers

The MPS guarantees a positive stencil for every approximation point, thus
yielding an L-matrix structure. Under relaxed conditions on the matrix graph
the system matrices are M-matrices. Note that the finite difference matrices
are in general not symmetric, thus the M-matrix property does not imply
positive definiteness. Still, it has various beneficial implications. M-matrices
are inverse-positive, i.e., they satisfy a discrete maximum principle. A Gauß-
Seidel iteration is guaranteed to converge, which is of interest for multigrid
solvers. In [5] it is shown that the M-matrix structure is sufficient for the
convergence of a two-grid AMLI method. The main advantage of the MPS
matrices, however, is their sparsity. In 3d problems, least squares approaches
yield about 50 nonzero entries per row, while the LM approach yields merely
10 entries. Since linear solvers rely on applying the sparse matrix to a vec-
tor, computation speed increases significantly. In addition, less memory is
consumed.

6 Numerical Results

Figure 1 shows the run times of generating the Poisson system matrices in
dependence on the number of unknowns, on the one hand with a least squares
approach (solid), on the other hand with the MPS method (dashed). The
latter is slightly more expensive. However, this higher expense is more than
made up for with the speedup in solving the linear system. Figure 2 shows the
run times for solving the arising systems with a BiCGstab method. Figure 3
shows the corresponding run times when solved with SAMG, an algebraic
multigrid solver developed by the Fraunhofer Institut für Algorithmen und
Wissenschaftliches Rechnen. The dash-dotted line shows the computation
times for MPS matrices without zeros from non-basis entries removed. It can
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be observed that the M-matrix structure itself does not result in a higher
convergence rate. The sparsity of the MPS matrices, however, yields a signifi-
cant speedup compared to least squares approaches. One can further observe
that multigrid solvers run fast and efficient on the arising MPS matrices.

7 Conclusions and Outlook

Classical least squares finite difference approaches do not guarantee positive
stencils when approximating the Laplace operator. The presented MPS ap-
proach does. Additionally, it yields minimal stencils. The approach can be
interpreted as a method to select a suitable minimal number of neighboring
points. The resulting matrices are M-matrices, which can be efficiently solved
with algebraic multigrid approaches. On the other hand, the MPS method
has various drawbacks: The resulting matrices are not reciprocal. Also, the
selected stencil does not depend continuously on the point positions. This as-
pect, however, could not be observed to have a significant negative impact.
Numerical experiments indicate that least squares matrices are, although not
M-matrices, often times inverse positive, which can be an explanation for their
good convergence rate. The speedup due to the sparsity of the MPS matrices,
however, cannot be beaten by classical least squares approaches. A deeper
discussion of these aspects is provided in [7].
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Summary. We combine the Lagrangian and Eulerian models of linear diffusion
phenomena in a coherent differential-geometric framework. This approach is applied
to the diffusion–advection equation and its implications are discussed.

1 Introduction

Fluid dynamics and diffusion phenomena govern the behavior of liquids and
gases alike, and are a field of broad impact in physics, engineering, and me-
teorology. For their full understanding and conceptual development adequate
mathematical tools and techniques are essential. Differential-geometric meth-
ods are particularly well-suited for this task.

In this work, we deal with one interesting aspect of fluid behavior, focussing
on an inherently covariant treatment of the diffusion–advection equation on
a smooth manifold. For this purpose, we introduce a general Lagrangian den-
sity L for a dissipative system describing the diffusion process over a properly
defined configuration bundle. This will make it possible to derive the cor-
responding diffusion equations (equations of motion) on the manifold via a
simple variational principle. Further, we can show that underlying symmetries
of L directly relate to certain symmetry properties of the associated diffusion
tensor.

The discussion continues with various other implications, dealing for ex-
ample with energy and mass conservation, and the static-metric assumption
in connection with the divergence of the fluid on the manifold. This leads
to Eulerian and Lagrangian dispersion models, which both solve the same
diffusion–advection equation with identical solutions, but in different coordi-
nate representations. We demonstrate how both of these models are combined
in a coherent differential-geometric framework, and finally conclude with an
outlook on practical applications of this approach.
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2 The Geometry of Diffusion

Diffusion is the spontaneous intermingling of particles or fluid elements of two
or more distinguishable substances as a result of random motion. Advection
is usually defined as a horizontal movement of the diffusing substance due to
local changes in the properties of the diffusing medium.

The diffusion–advection equation which governs these phenomena is a non-
homogeneous parabolic partial differential equation:

∂C

∂t
= ∇·

(
D∇C

)
− u · ∇C + S, (1)

where C : R3 × R → R is the concentration of the diffusing substance and
D : R3 × R → M3×3(R) a general diffusion matrix. In this description, we
also include a velocity field u : R3 × R → R3 and the possibility for creation
or destruction of the diffusing substance by a source density S : R3 → R.
Note that the physical condition of energy conservation imposes S to be time-
independent.

Many analytical or even numerical models dealing with the diffusion–
advection (1) restrict themselves to the case where u is constant. In more
realistic scenarios, however, the methods of differential geometry may help to
tackle the general case considering a variable velocity field u = u(x, t).

In the Eulerian coordinate representation, one obtains the solution of the
diffusion–advection equation with respect to a fixed grid. In the Lagrangian
coordinate representation, on the other hand, the local coordinates move with
the elements in the medium, so in principal it can be chosen such that the
transport term u vanishes locally.

For this purpose, we need to set up a general differential-geometric frame-
work with a smooth manifold M and a local vector field u = X(p) ∈ Tp(M)
(i.e. element of the associated tangent space) in every point p ∈M .

In the following, it will be necessary to “geometrize” the diffusion equation,
neglecting advection for the time being, from its Euclidean form

∂C

∂t
= ∇·

(
D∇C

)
+ S (2)

to its curvilinear equivalent allowing for an underlying curved geometry

Ċ =
(
DijC;i

)
;j

+ S, (3)

where D : (T ∗
pM)2 → R is the molecular diffusion tensor and the semicolon

denotes as usual the covariant derivative. Here, being (M, g) a Riemannian
manifold with metric g, T ∗

pM is the associated dual tangent space in p ∈M .
Then, in local coordinates xi(p), i = 1, 2, 3 (for the three-dimensional case),
one has

D = Dij ∂

∂xi
⊗ ∂

∂xj
. (4)
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The corresponding base space is B = M × R+, representing space–time with
coordinates (x1, x2, x3, t). Then, concentration and source density are in gen-
eral functions of type C : B → R and S : M → R.

3 Lagrangian Formalism

For dissipative systems with diffusing fluids one requires an additional “mirror-
image” concentration to compensate for the energy which would otherwise be
removed [Mor53]. Hence, we introduce a mirror concentration C∗ : B → R.
The ambient space P is then described in terms of the parameters (C,C∗) (see
e.g., [Lew03]). Then, the configuration space is defined as the product space
N = B × P with coordinates (x1, x2, x3, t, C,C∗), representing all physical
observables.

In classical mechanics, for the construction of the Lagrangian function L,
which describes a deterministic system completely, it suffices to define L on a
tangent bundle TM (identical with the corresponding phase space). Figure 1
represents the tangent bundle TM consisting of manifold M and its tangent
spaces TpM for all p ∈M .

For the diffusion case, we also require the partial derivatives of a configu-
ration with respect to all space–time coordinates. This leads to a jet bundle
J1N with coordinates (C,C∗, Ċ, Ċ∗, C ;i, C

∗
;i) � R10 as natural extension of

the tangent bundle.
The Lagrangian function for diffusion will then in general be a mapping

L : J1N → R, (5)

and specifically we define

L = −DijC ;i C
∗
;j − 1

2

(
ĊC∗ − CĊ∗)+ S

(
C + C∗). (6)

With the additional constraints D∗ = D and S∗ = S, the Lagrangian will also
possess mirror symmetry, i.e., s L∗ = L. It is not difficult to see that mirror

M

p

TpM

TM

Fig. 1. Usual tangent bundle for geometric mechanics
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symmetry relates to time reversal t↔ −t, so that the mirror symmetry of L
itself implies temporal forward–backward invariance of L, i.e., C and C∗ will
only change their respective rôles.

The equations of motion are readily derived from the action integral over
a bounded and closed set V ⊂M

L =
∫
V

L√g dτ, (7)

where
√
g dτ is the invariant volume element. After a lengthy but straightfor-

ward calculation, the variations δL/δC = δL/δC∗ = 0 yield:

Ċ =
(
DijC ;i

)
;j

+ S, Ċ∗ = −
(
DijC∗

;j

)
;i
− S, (8)

which is exactly (3) and its time-reversed counterpart. This shows that (6)
indeed represents the Lagrangian function which fully describes diffusion phe-
nomena.

4 Energy and Mass Conservation

For the Lagrangian (6) to represent a viable physical model, several require-
ments have to be fulfilled. Prime requisites are energy and mass conservation,
which we show can in fact be derived from it.

Knowing the Lagrangian, a standard procedure of geometric mechanics is
to apply Hamilton’s formalism (see e.g. [Cal05]) and directly work with the
HamiltonianH, which represents the total energy of the system. Hence, energy
conservation is expressed as Ḣ ≡ 0. However, Noether’s Theorem allows for
a more elegant description: Symmetry properties of L manifest themselves
as conservation laws. Here, the time invariance of L corresponds to energy
conservation. In fact, assuming Dij = Dji (isotropy) and adding (8) yields
Ċ + Ċ∗ = 0, and for an incompressible medium with ∂

√
g/∂t = 0 it follows

L̇ =
d
dt

∫
V

L√g dτ =
∫
V

L̇√g dτ. (9)

After substituting (8) into integral (9) and using vanishing boundary integrals
over ∂V , one finds

L̇ = 0 and H =
∫
V

[
DijC ;i C

∗
;j − S

(
C + C∗)]√g dτ, (10)

where the H is readily obtained from a Legendre transformation and repre-
sents the constant total energy of the system. Note that the integrand of (10)
contains a kinetic and potential energy contribution, displaying a quadratic
term in the concentration gradients and a linear term in the concentrations,
respectively.
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Mass conservation can be demonstrated in a similar fashion. The first
(physical) equation of motion (8) serves as a starting point. Taking its integral
over the bounded and closed set V ⊂M gives∫

V

[
Ċ −

(
DijC;i

)
;j
− S
]√

g dτ = 0, (11)

which can be further manipulated by integration by parts and Gauss’ Theorem
with vanishing boundary conditions (Cu)|∂V = 0, meaning that either con-
centrations and/or velocities on the contours are negligible. Here, the vector
field u arises by transforming Euclidean coordinates xi(p) at the point p ∈M
to a new set of coordinates xi �→ x̄i. Then, with the shorthand ūi = ˙̄xi, it can
be shown that

∂
√
g/∂t =

√
g ūi

;i (12)

which is the covariant equivalent of the Convection Theorem [Mey71].
A straightforward but tedious calculation gives for the total mass rate

Ṁ =
d
dt

∫
V

C
√
g dτ −

∮
∂V

DijC;i
√
g dσj +

∫
V

uiC;i
√
g dτ −

∫
V

S
√
g dτ = 0.

Each term has an immediate physical interpretation. The term uiC;i accounts
for the translation of the material due to a moving coordinate frame with local
velocity u. This advection term naturally enters in the calculation by using
(12). In the Lagrangian system, where we do not observe any relative motion
of the medium, it is u = 0. On the other hand, for an observer in a particular
Eulerian system, it is u �= 0.

5 Conclusion and Outlook

We have presented a basic differential-geometric framework for the diffusion
process of fluids on a manifold. This general coordinate-free formulation in
terms of a fundamental Lagrangian on arbitrary geometries combines effec-
tively Eulerian and Lagrangian models. Energy and mass are shown to be
conserved. In the future, this framework could serve as an interesting starting
point for numerical models of diffusion on curved surfaces or volumes.
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Summary. A novel hierarchical approach based on decision diagrams (DD) to mod-
elling digital systems is introduced. Two new contributions are proposed: a new class
of structurally synthesized binary DDs for modelling structural aspects of digital cir-
cuits, and DDs for high-level modelling of systems. Combination of both types of
graphs allows to implement uniform formal approach to low- and high-level diag-
nostic modelling with increased efficiency of fault simulation and test generation for
digital systems.

1 Introduction

The drawback of traditional multi-level and hierarchical approaches to di-
agnostic modelling of digital systems lies in the need of different languages
and models for different levels. Most frequent examples are logic expressions
for combinational circuits, state transition diagrams for finite state machines
(FSM), abstract execution graphs, system graphs, instruction set architec-
ture (ISA) descriptions, flow-charts, hardware description languages (HDL,
VHDL, Verilog, etc.), Petri nets for system level description, etc. All these
models need different manipulation algorithms and fault models which are
difficult to merge in hierarchical test methods. Better opportunities for hi-
erarchical diagnostic modelling of digital systems provide decision diagrams
(DD) [1,2]. In this chapter, a multi-level method for diagnostic modelling dig-
ital systems with DDs is used. DDs serve as a basis for a general theory of test
design for mixed-level representations of systems. The fault model defined on
DDs represents a generalization of the classical stuck-at fault model [2].

2 Modelling Digital Systems by Binary Decision
Diagrams

DDs can serve as a basis for a uniform approach to diagnostic modelling and
test generation for mixed-level representations of systems, similarly as we use
the Boolean algebra for the plain logic level.
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In [2] structurally synthesized BDDs (SSBDD) as a special class of BDDs
[1] was introduced to represent the topology of gate-level circuits in terms of
signal paths. Unlike the traditional BDDs [1], SSBDDs directly support test
generation for gate-level structural faults without representing these faults
explicitly. The advantage of the SSBDD based approach is that the library of
components is not needed for structural path activation. This is the reason
why SSBDD based test generation do not depend on whether the circuit is
represented on the gate level or on the macro-level whereas the macro means
an arbitrary single-output gate-level subcircuit of the network. Moreover, the
test generation procedures for SSBDDs can be easily generalized for higher
level DDs to handle digital systems represented at higher levels [2].

In the following, we use graph-theoretical definitions instead of tradition-
alite expressions [1] because all the procedures defined further for both types
of DDs are based on the topological reasoning rather than on graph symbolic
manipulations as traditionally in the case of BDDs.

Definition 1. A BDD that represents a Boolean function y = f(Z), Z =
(z1, z2, . . . , zn), is a directed acyclic graph Gy = (M,Γ,Z) with a set of
nodes M and a mapping Γ from M to M . A terminal node mT ∈ MT =
{mT,0,mT,1} is labelled by a constant e ∈ {0, 1}, while nonterminal nodes
m ∈ MN are labelled by variables z ∈ Z, and have exactly two successors.
Denote by m0 the successor of m for z(m) = 0 and m1 is the successor of m
for z(m) = 1. For z(m) = e, e ∈ {0, 1}, we say the edge between nodes m ∈M
and me ∈ M is activated. Let all z ∈ Z are assigned by a Boolean vector
Xt ∈ {0, 1}n to some value. The edges activated by Xt form an activated
path l(m0,m

T ) ⊆ M from the root node m0 to one of the terminal nodes
mT ∈MT . We say that a BDD Gy = (M,Γ,Z) represents a Boolean function
y = f(Z), iff for all the possible vectors Xt ∈ {0, 1}n a path l(m0,m

T ) ⊆ M
is activated so that y = f(Xt) = z(mT ).

Definition 2. Consider a BDD Gy = (M,Γ,Z), where Z is the vector of
literals of a function y = P (Z) represented in the equivalent parenthesis form,
the nodes m ∈ MN are labelled by z(m), where z ∈ Z and | M |=| Z |. The
BDD is called a structurally synthesized BDD (SSBDD) iff there exists one-
to-one correspondence between literals z ∈ Z and nodes m ∈ MN given by
the set of labels {z(m) | z ∈ Z,m ∈ MN}, and iff for all the possible vectors
Xt ∈ {0, 1}n a path l(m0,m

T ) is activated, so that y = f(Xt) = z(mT ).
For synthesis of SSBDDs for a given gate network, the graph superpo-

sition procedure can be used [2]. Unlike the traditional BDDs [1], SSBDDs
[1,6] support structural representation of gate-level circuits in terms of signal
paths. By superposition of DDs [2,5,7], we can create SSBDDs with one-to-
one correspondence between graph nodes and signal paths in the circuit. The
one-to-one correspondence between nodes m in a SSBDD and paths l(m) in
the corresponding gate-level circuit is the direct result of the synthesis proce-
dure of SSBDDs. Using SSBDDs, it is possible to rise from the gate-level to a
higher macro level without loosing accuracy of representing gate-level signal
paths.
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Fig. 1. Test generation for the node m with SSBDD

Test generation with SSBDDs. Consider a combinational circuit as a net-
work of gates, which is partitioned into interconnected tree-like subcircuits
(macros). Each macro is represented by a SSBDD where each node corre-
sponds to a signal path from an input of the macro to its output.

Test generation for a node m in SSBDD Gy, which represents a function
y = f(Z) of a tree-like subcircuit (macro), is presented in Fig. 1a and is carried
out by Algorithm 1:

1. Activate a path lm from the root node of SSBDD to the node m.
2. Activate two paths lm,e consistent with lm, where e ∈ {0, 1}, from me of
m to the terminal nodes mT,e.

All the values assigned to node variables (to variables of Z) build the local
test pattern T (Z, y) (input pattern of the macro) for testing the node m in Gy

(for testing the corresponding path l(m) on the output y of the given tree-like
circuit).

3 Modelling Systems by a Single DD on Higher Levels

Test generation methods developed for SSBDDs have an advantage com-
pared to other logic level methods. Namely, that they can be easily gener-
alized to handle test generation at higher system levels. Consider a digital
system S = (Z,F ) as a network of components where Z is the set of vari-
ables (Boolean, Boolean vectors or integers), which represent connections be-
tween components, inputs and outputs of the network. Denote by X ⊂ Z
and Y ⊂ Z, correspondingly, the subsets of input and output variables. V (z)
denotes the set of possible values for z ∈ Z, which are finite. Let F be the
set of digital functions on Z : zk = fk(zk,1, zk,2, . . . , zk,p) = fk(Zk) where
zk ∈ Z, fk ∈ F and Zk ⊂ Z. Some of the functions fk ∈ F , for the state
variables z ∈ ZSTATE ⊂ Z, are the next state functions.

Definition 3. A DD is a directed acyclic graph G = (M,Γ,Z) where M is a
set of nodes, Γ is a relation in M , and Γ (m) ∈M denotes the set of successor
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Fig. 2. Test generation for the node m with SSBDD

nodes of m ∈M . The nodes mare labelled by z(m). The labels can be either
variables z ∈ Z, or algebraic expressions fm(Z(m)), Z(m) ⊆ Z, or constants.
For non-terminal nodesm ∈MN , an onto function exists between the values of
z(m) and the successors me ∈ Γ (m) of m. The edge (m,me) which connects
nodes m and me is called activated iff there exists an assignment z(m) =
e. Activated edges, which connect mi and mj make up an activated path
l(mi,mj) ⊆M . A DDGz,k represents a function zk = fk(zk,1, zk,2, . . . , zk,p) =
fk(Zk), zk ∈ Z iff for each value v(Zk) = v(zk,1) × v(zk,2) × · · · × v(zk,p), a
full path in Gz,k to mT ∈MT is activated, so that zk = z(mT ) is valid.

In Fig. 2, an RTL data-path and its DD is presented. Variables R1, R2

and R3 represent registers, IN represents the input bus, integer variables
y1, y2, y3, y4 represent control signals, M1,M2,M3 are multiplexers, and the
functions R1 + R2 and R1 × R2 represent an adder and a multiplier, re-
spectively. Each node in DD represents a subcircuit of the system (e.g. the
nodes y1, y2, y3, y4 represent multiplexers and decoders). The DD describes
the behaviour of the input logic of the register R2.

In test pattern simulation, a path is traced in the graph, guided by
the values of node variables until a terminal node is reached, similarly
as in the case of SSBDDs. In Fig. 2 the result of simulating the vector
(y1, y2, y3, y4, R1, R2, IN) = (0, 0, 3, 2, 10, 6, 12) is R2 = R1 × R2 = 60 (bold
arrows mark the activated path). Instead of simulating by a traditional ap-
proach all the components in the circuit, in the DD only three control variables
are visited during simulation (y4, y3, y2), and only a single data manipulation
R2 = R1 ×R2 is carried out.

A test for such a RT level data path represented by a single DD as shown
in Fig. 1b can be created in two parts [2], as a conformity test (test for non-
terminal nodes) which makes sure that the different working modes chosen
by control signals are properly functioning, and as a scanning test (test for
terminal nodes), which makes sure that the different functional blocks are
working correctly.

Conformity test. Consider a nonterminal node m labelled by a control
variable z(m) in DD Gz, k, representing a digital system with a function
zk = fk(Zk), Let Z = (ZC, ZD) where ZC is the vector of control variables
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and ZD is the vector of data variables. To generate a test for m means to
generate a test for the control variable z(m) ∈ ZC . Suppose that z(m) may
have n =| z(m) | different values. For testing z(m), we have to activate and
exercise all the proper working modes controlled at least once by each value
of z(m). At the same time, for each of such a working mode a current state
of the system should be generated, so that every possible faulty change of
z(m) should produce a faulty next state which is different compared to the
expected next state for the given working mode.

Denote by me the successor node of the node m for the value z(m) = e,
where e = 1, 2, . . . , n. For generating a test for m we use Algorithm 2:

1. Activate a path l(m0,m) \m ⊆ M by assigning proper values z(m)∗ at
nodes m ∈ l(m0,m) \m;

2. Activate for all neighbours me of m nonoverlapping paths l(me,me,T ) by
assigning values z(m)∗ at m ∈ l(me,me,T );

3. Find the proper set of data, by solving the inequality z(mT,1) �= z(mT,2) �=
. . . �= z(mT,n), where n =| v(z(m)) |.
The test of terminal nodes can be considered as a scanning test [2]. In terms

of DDs the scanning test can be regarded as a special case of conformity test.
Example. Generate a test program for testing the node m labelled by y3 in

Fig. 2. First, we activate the path l(m0,m) \m, which results in y3 = 2. Then
we activate four paths l(m,me,T ) for each value e = 1, 2, 3, 4 of y3, which
results in y1 = 0 and y2 = 0. Two of the four paths for values y3 = 1 and
y3 = 2 are automatically activated since the successors of the node y3 for
these values are terminal nodes. The test data R1 = D1, R2 = D2, IN = D3

are found by solving the inequality: R1 +R2 �= IN �= R1 �= R1 ×R2.

4 Experimental Results and Conclusions

The feasibility and advantages of using DDs in diagnostic modelling of digital
systems was demonstrated by using the test generator DECIDER [3]. The
results (Table 1) were compared with other known test generators HITEC

Table 1. Comparison of test generators

Circuit No. of HITEC GATEST DECIDER
faults

Fault Fault Fault
cover (%) Time (s) cover (%) Time (s) cover (%) Time (s)

gcd 454 81.1 170 91.0 75 89.9 14
sosq 1,938 77.3 728 79.9 739 80.0 79
mult 2,036 65.9 1,243 69.2 822 74.1 50
ellipf 5,388 87.9 2,090 94.7 6,229 95.0 1,198
risc 6,434 52.8 49,020 96.0 2,459 96.5 151
diffeq 10,008 96.2 13,320 96.4 3,000 96.5 296
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and GATEST from the University of Illinois. The experiments were run on
a 366 MHz SUN UltraSPARC 60 server with 512 MB RAM under SOLARIS
2.8 operating system. The experimental results show the high speed of the
DECIDER.

Current chapter describes a novel multi-level diagnostic modelling ap-
proach based on using DD. Differently from known methods, both, higher
and lower design abstraction levels are handled in a uniform topological man-
ner. Joint formal basis for gate- and higher level descriptions allowed the first
time to adopt and generalize gate-level methods to high-level ones. The feasi-
bility and advantages of the model for using it in hierarchical test generation
were demonstrated by experimental research. It was shown that high fault
coverages of generated tests can be very quickly achieved compared to other
methods.
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Summary. Multidimensional integrals arise in the bayesian approach to positioning
using measurements from satellites, mobile phone networks, wireless data networks,
etc. Measurement geometries and nongaussian measurement errors produce distinc-
tive features such as multiple peaks and curved ridges. In this chapter compare
several subregion adaptive simplicial cubature methods and a Monte Carlo method
for typical positioning situations. We find that subregion adaptive methods give the
best accuracy for the same number of samples in many two- and three-dimensional
problems but that in four dimensions the dimensionality effect favors the Monte
Carlo method.

1 Bayesian Positioning

Positioning and tracking are interesting scientific problems that have many
commercial and industrial applications. The requirements of positioning meth-
ods are problem specific but often the computing has to be done online in
limited computing environment. One of these applications is mobile phone
positioning which is a widely studied problem [1]. The positioning can be done
using signals from various sources such as satellites, mobile phone base stations
and wireless local area networks. It is important that we use all the available
information as efficiently as possible because often we have barely sufficient
number of measurements. If we are to use a wide range of measurements, we
have to take into account that the measurements can be strongly corrupted by
noise. This is why we need to represent uncertainties with statistical models.

In the bayesian approach [2] we represent the state estimate of the object to
be located, referred to as the mobile station (MS), with a posterior probability
density function. It is the normalized product of the measurement likelihood
function and prior probability density function. In a typical positioning model
the state includes position coordinates and possibly some other data such
as velocity. Measurement likelihood function includes the information of the
obtained measurement and the prior represents our subjective knowledge of
the state.
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Let
yi = hi(x) + vi (1)

be the measurement model that links the state x to the observed measure-
ment yi. The measurement function hi(·) can be for example a range mea-
surement or a restrictive measurement that bounds the state to a certain part
of the state space.

If the random measurement error vi has a probability density pvi
then the

probability density of an event that we have observed yi while we are in the
state x is

p(yi|x) = pvi
(yi − hi(x)). (2)

If we have obtained multiple measurements yi, i = 1, . . . , n and take the errors
in measurements to be independent, we can combine these measurements into
y = [y1, . . . , yn]� as

p(y|x) =
n∏

i=1

p(yi|x). (3)

Considering (3) as a function of x, it gives the chances that MS is at x when
we have observed y. This is the likelihood function of the model. Given our
beliefs of the state in the form of a prior distribution p(x) we can form the
posterior density of the state

p(x|y) =
p(y|x)p(x)∫
p(y|x)p(x)dx

(4)

To represent the position with a single point, we can use for example the
maximum or the mean of the posterior. Finding the maximum point of the
posterior when it has multiple peaks can be a difficult task. If we use the mean

x̂ =
∫

xp(x|y)dx, (5)

we have to solve an integral that has as many dimensions as the state vector x.
This integral is frequently analytically intractable and this is why we have to
consider numerical methods to approximately solve it.

2 Integration Methods

To solve integrals of the form (5), different approximate methods have been
considered. In this work we consider only numerical approximations although
analytical approximations could also be applied. Multidimensionality of the
problem makes Monte Carlo methods an attractive choice because they are
not affected by the dimensionality effect. In addition, we consider different
subregion adaptive methods. All methods considered here approximate inte-
grals using weighted sums of the integrand evaluations∫

f(x)dx ≈ Qnf =
n∑

k=1

ckf(xk), (6)

where xk are chosen using different criteria. Monte Carlo methods use random
samples drawn from certain importance distributions. Deterministic numerical
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integration rules are often designed to be exact for N -variate polynomials of
degree at most d integrated over some standard region.

Subregion adaptive methods first divide the integration region into sub-
regions with disjoint interiors dynamically according to the behaviour of the
integrand. In practice this can be done for example by estimating the error in
each subregion and then subdividing the region with largest error.The integral
is computed in each subregion separately using a quadrature rule of low order
accuracy. In this chapter integration region was taken to be polygonal so we
used a simplex as a basic block into which the integration region was divided.

3 Numerical Results

We tested the integration methods with a positioning scenarios similar to one
arising in a mobile phone positioning. The tested integration methods were
plain Monte Carlo (mc) and subregion adaptive methods with accuracy of
degree d = 1, 2, 7 (Qn1 , Qn2 , Qn7). Degree 1 rule uses the vertices of simplex as
nodes, 2nd degree rule the vertices and midpoints of edges and degree 7 rule
is Grundmann–Möller cubature rule [3]. We simulated range measurements
with restrictive information in form of sector information as illustrated in
Fig. 1. The gaussian noise in the measurements were taken to have a randomly
generated variance as given in Table 1. We generated 200 test cases with
uniform prior distribution in closed region and 200 cases with gaussian prior
distribution. No clear difference between the different priors was found so they
are combined in the results. As a reference result we computed the integral
using adaptive method with very high number of function evaluations.

BS1

Sector info

p(y1 x)

(a) Measurements to
base station 1

BS2

Sector
infop(y2 x)

(b) Measurements to
base station 2

BS1

BS2

p(y x)

Sector info

(c) All measurements

— —

—

Fig. 1. Combination of all available measurements

Table 1. Test cases

Case 1 Case 2

σ1, σ2 ∈ [50, 100] [100, 150]
3D: σ3 ∈ [25, 35] [75, 85]
4D: σ3, σ4 ∈ [15, 25] [45, 55]
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(a) 2D : How the error is distributed to inter-
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(b) 3D : How the error is distributed to intervals

[0, 5), [5, 10) and [10, 20) when 700 function evalu-
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(c) 4D : How the error is distributed to intervals

[0, 5), [5, 20) and [20, 50) when 2000 function eval-

uation were allowed.

Fig. 2. The distribution of errors to fixed intervals when fixed amount of function
evaluation is allowed in integration formula

Results show that subregion adaptive methods perform much better than
the basic Monte Carlo integration in this kind of scenario. Adaptive methods
almost always give accuracy better than 5 m with as low as 200 abscissas as
seen from Fig. 2a.

In three-dimensional tests we added an altitude as a third dimension to
two-dimensional tests. We also added a new measurement to the model rep-
resenting an altitude measurement. We restricted the integration region with
an altitude bound |x3|≤ 100. Figure 2b shows that the dimensionality effect
is beginning to show as we have to increase the number of abscissas to obtain
good accuracies.

For four-dimensional tests we added two velocity dimensions to the model.
We also simulated two velocity measurements in each velocity dimension. We
bounded velocity dimensions by taking ‖ [x3, x4]� ‖∞≤ 100. Maximum-norm
was taken to simplify the model, although velocity bounded by euclidian norm
would be more realistic choice. The dimensionality effect is clearly shown in
Fig. 2c.

4 Conclusions

Four different numerical integration formulas were compared in different po-
sitioning scenarios. The results show that adaptive methods are much more
efficient than the plain Monte Carlo method in two- and three-dimensional
tests as expected as seen from Fig. 2 and Tables 2 and 3. In four-dimensional
tests the dimensionality effect has clearly an influence on the results. This can
be seen from Fig. 2 and Table 4. Even though the best adaptive method still
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Table 2. 2D: How many times (%) each method gave the best answer

Case 1 Case 2

pts Qn1 Qn2 Qn7 mc Qn1 Qn2 Qn7 mc

200 33 53 7 7 32 60 8 0
400 23 46 32 0 9 32 60 0
600 16 45 39 0 4 23 74 0
800 9 34 57 0 2 16 82 0
1000 6 29 65 0 0 13 87 0
1200 4 20 76 0 1 10 90 0

Table 3. 3D: How many times (%) each method gave the best answer

Case 1 Case 2

pts Qn1 Qn2 Qn7 mc Qn1 Qn2 Qn7 mc

300 40 12 7 42 58 16 5 21
700 51 21 3 25 70 19 4 7
1100 55 23 4 19 56 34 5 6
1500 46 30 8 17 47 39 10 5
1900 41 42 6 12 34 56 7 3
2300 36 46 6 12 27 65 6 2

Table 4. 4D: How many times (%) each method gave the best answer

Case 1 Case 2

pts Qn1 Qn2 Qn7 mc Qn1 Qn2 Qn7 mc

1000 33 8 0 59 37 13 0 50
2000 35 15 4 46 46 14 4 36
3000 36 21 4 40 56 10 2 32
4000 41 19 5 35 56 14 2 28
5000 37 25 3 35 58 14 3 26
6000 36 30 3 31 59 14 3 24

gives slightly more accurate results, the Monte Carlo method would be the
method of choice in four dimensions because of its greater simplicity compared
to adaptive methods.
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1 Introduction

We are concerned with the following boundary value problem (BVP):

∆u + g(x, u)|Du|2 + f(x, u) = 0 in D, (1)

u > 0 in D, u = 0 on ∂D. (2)

We will look for classical solutions u ∈ C2(D)∩C(D̄), supposing that D is a
bounded regular domain of Rn, while f(x, t) and g(x, t) are smooth functions
in D × (0,+∞). Moreover, f will be positive function with a singularity at
the origin and g may have or not such a singularity.

Problems of this kind arise, for instance, in the theory of non-Newtonian
fluids, see Nachman and Callegari [NC80], and also of heat conduction in
electrically conducting materials, see Cohen and Keller [CK67].

A long series of papers have been devoted to positive solution of the Dirich-
let problem for the semi-linear equation

Lu + f(x, u) = 0 (3)

for a linear second-order elliptic differential operator L. See for instance Fulks
and Maybee [FM60], Stuart [Stu76], Lazer and McKenna [LMK91], Crandall,
Rabinowitz and Tartar [CRT97]. A nonlinear convection term is considered
by Zhang and Yu [ZY00] and by Giarrusso and Porru [GP06].

In the last chapter existence and uniqueness results together with bound-
ary estimates have been shown for the problem

∆u + g(u)|Du|q + f(u) = 0 in D, u > 0 in D, u = 0 on ∂D, (4)

with an almost-quadratic gradient term (0 ≤ q < 2).
Actually, our attention is concentrated on the limit case q = 2 exploring

in depth the influence of the convection term. This is the subject of a research
line in progress in collaboration with Giovanni Porru.
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2 Radial Solutions

We start considering the radial symmetric boundary value problem (RBVP)

∆u + g(u)|Du|2 + f(u) = 0 in BR, (5)

u > 0 in BR, u = 0 on ∂BR, (6)

where BR = BR(x0) is a ball of radius R, centered at x0, while f(t) > 0
and g(t) are continuous non-increasing functions for t ∈ (0,+∞). Typical
singularity for the function f will be f(t) = 1/tγ with γ ≥ 1. More generally
we will assume ∫ δ

0

f(t)dt = +∞, (7)

for any δ > 0.
We observe that (RBVP) can be solved with the aid of the following

Cauchy Problem (CP) for ordinary differential equations:

v′′ +
n− 1

r
v′ + g(v)|v′|2 + f(v) = 0, (8)

v(0) = v0, v′(0) = 0, (9)

for a positive number v0.
In fact ODE (8) is precisely the ordinary differential equation arising from

RPDE (5) when searching for radial solutions.

Lemma 1. Let v ∈ C2([0, R)) be the maximal positive solution of (CP), then
v is a decreasing and concave function such that

lim
r→R−

v(r) = 0 (10)

and
lim

r→R−
v′(r) = −∞. (11)

From the above Lemma we deduce that u(x) = v(|x − x0|) is a radial
solution of (RBVP) for maximal intervals of (CP) corresponding to any ini-
tial value v0 > 0. The uniqueness and the monotonicity result contained in
the next Lemma follow from comparison results for quasilinear equations of
Gilbarg and Trudinger [GT83].

Lemma 2. Let R = R(v0) be the length of the maximal interval [0, R) for
positive solutions of (CP), then R(v0) is an increasing function such that

lim
v0→0+

R(v0) = 0. (12)

Indeed, as a consequence of the results of the next section, the function R =
R(v0) turns out to be continuous, too. In fact, under the above assumptions,
existence and uniqueness of (RBVP) can be obtained in every ball BR(x0)
with R < supv0>0 R(v0).
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3 Existence Results

Throughout this section, for a general smooth bounded domain D and func-
tions f = f(x, t) and g = g(x, t), we will make the following assumptions:

(0f ) f(x, t) ≥ f(t) as t → 0+; (∞f ) f(x, t) ≤M as t → +∞;
(0g) g(x, t) ≥ g(t) as t → 0+; (∞g) g(x, t) ≤ N as t → +∞.

Here M and N are positive constants, while f and g are smooth non-
increasing functions. Moreover,

f > 0,

∫ δ

0

f(t)dt = +∞. (13)

For ε ≥ 0 we consider the approximating boundary value problems
(BVPε),

∆u + g(x, u)|Du|2 + f(x, u) = 0 in D, (14)

u ≥ ε in D, u = ε on ∂D. (15)

To find a solution we employ the monotone method of Kazdan and Kramer
[KK78] and the classical regularity theory [LU68], [GT83]. We also need a
cross condition between the diameter of D and the product of upper bounds
at infinity for f and g, namely we suppose that
(d) D ⊂ Bd, MNd2 < π2N

4 .
It is worth to observe that condition (d)s satisfied in all bounded domains, no
matter how large is the diameter, in one of the following cases:
(i) lim supt→+∞ supx∈D f(x, t) = 0;
(ii) lim supt→+∞ supx∈D g(x, t) ≤ 0.

Lemma 3. Assuming (∞f ), (∞g) and (d), let a ≥ 1 be such that

f(x, t) ≤ M, g(x, t) ≤ N, t ≥ a. (16)

Then for every 0 < ε < 1 there exists a solution u = uε of (BVPε) such that

ε ≤ uε(x) ≤ a +
log sec(αd)

N
, (17)

where α =
√

MN/n.

Under the additional assumptions at the origin for f ang g, using radial
solutions of the previous section in small balls, comparison principles, interior
gradient estimates and Schauder estimates, we can show that the solutions of
the approximating problem (BVPε) in fact converge to a solution of (BVP).

Theorem 1. Suppose that (∞f ), (∞g),(d), (0f ) and (0g) hold. Then (BVP)
has a classical solution. If we also suppose f(x, t) and g(x, t) to be non-
increasing in the t-variable for all x ∈ D, such a solution is unique.
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We observe that condition (0g) implies that g(t) is bounded from below
as t → 0+. Thus we are not able to treat, with Theorem 1, the cases in which
lim inft→0+ g(t) = −∞.

How get existence and uniqueness results even in this case is under
investigation.

4 Boundary Estimates

For sake of brevity we study the asymptotic behaviour of the solutions of
(BVP) when the functions f and g are independent on x. For the same reason,
we consider the model problem in which the smooth functions f > 0 and g
are non-increasing, as it will be supposed throughout this Section. We also
consider a primitive F of the function f , i.e. F ′(t) = f(t). According to (7),
limt→0+ F (t) = +∞. An important role will be played by the functions

ψ(r) =
∫ r

0

ds√
2F (s)

, (18)

which turns out to be increasing, and its inverse ϕ, that satisfies

ϕ′′ + f(ϕ) = 0, ϕ(0) = 0. (19)

For instance, if f(t) = 1/tγ , γ > 1, we get

ψ(r) = Aγr(γ+1)/2, (20)

and therefore
ϕ(s) = Bγs2/(γ+1) (21)

for positive constants Aγ and Bγ .
We also suppose (∞f ), (∞g) and the cross condition (d), as in the previous

section, but we need an additional hypothesis on g, namely g ∈ L1(I) for all
bounded intervals I ⊂ (0,+∞).

Finally, we make a technical assumption: there exists a positive constant
ρ such that

f(t) ≤ ρF (2t), t→ 0+. (22)

In the case of positive radial solutions u(x) of (BVP) in the ball BR(0) we
have, for all ε > 0,

u(x) ≥ ϕ(R− |x|)√
1 + ε

− β(R− |x|), (23)

for some positive constant β, provided that R− |x| ≤ δε.
Similarly, for solutions u(x) in an annular domain BR′(0)\BR(0),

u(x) ≤ ϕ(|x| −R)√
1− ε

+ β(|x| −R), (24)

provided that |x| −R ≤ δε, i.e. approaching the internal boundary.
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Gathering the above estimates, a typical boundary asymptotic result in a
sufficiently smooth domain is the following.

Theorem 2. Suppose that D is a smooth domain satisfying both internal and
external uniform sphere conditions. Under above assumptions, let u be the
classical positive solution of (BVP). Then for all ε > 0 there exists δε > 0
such that

ϕ(δ(x))√
1 + ε

− βδ(x) ≤ u(x) ≤ ϕ(δ(x))√
1− ε

+ βδ(x) (25)

for x ∈ D such that δ(x) := dist(x, ∂D) ≤ δε with some positive constant β

In the previous example, where f(t) = 1/tγ , the above Theorem yields
u(x)/δ(x)2/(γ+1) → Bγ as x → ∂D.

Note that the presence of gradient term does not affects the first-order
approximation of the solution near the boundary, which is also independent,
as usual in this kind of problems, of the shape of the domain.
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Summary. Recognition of control chart patterns (CCPs) is one of the most im-
portant technique for monitoring and achieving appropriate control of process envi-
ronments to raise production quality. In the last 10 years several approaches have
been proposed for precise and fast CCP recognition, including rule-based and expert
systems, or artificial neural networks, and many efforts have been focused on com-
parative studies of approximate training algorithms.

This chapter presents a new approach for the identification of control chart
patterns by using features dynamically extracted from raw data. Our strategy has
the further advantage of avoiding the use of complex data structures and training
processes.

1 Introduction

Statistical process control (SPC) is a method for achieving quality control in
manufacturing processes. It comprises a collection of techniques, based on the
analysis of statistical quantities such as mean, variance, and others, to detect
at an early stage whether significant deviations of a manufacturing process
from its normal behaviour are taking place.

Control chart patterns (CCPs) are used in SPC to provide information on
the state of a process. Their identification is an important issue in SPC, as
abnormal CCPs can be associated with specific assignable causes which affect
the normal process execution.

Several approaches have been proposed for CCPs recognition, including
rule-based methods [PW97], expert systems [PO92], and, in particular, ar-
tificial neural networks, divided in supervised [PS00], unsupervised [PC98],
and self-organizing with decision tree learning [GS05]. While such approaches
rely on raw data as input vector representation, other possible techniques are
based on enriched data representations by means of features extracted from
raw data [HSSJ03].
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Normal Pattern Cyclic Pattern

Decreasing Trend Pattern Increasing Trend Pattern

Downward Shift Pattern Upward Shift Pattern

Fig. 1. The six main types of CPPs

A control chart is a run chart of a sequence of data points with five hori-
zontal lines: a mean line, drawn at the process mean η, an upper and a lower
warning limit drawn at ±2σ, an upper and lower control-limit drawn at ±3σ.
CCPs are used to identify possible causes behind observations which fall out-
side control-limits. In general, CCPs can be divided into six types of patterns:
normal, cyclic, increasing/decreasing trend, and upward/downward shift (see
Fig. 1). With the obvious exception of normal patterns, the remaining pat-
terns indicate that the process being monitored is not functioning correctly
and requires some adjustments. These six types of patterns can be described,
respectively, by the following functions:

(1) Normal pattern: p(t) = η + r(t) · σ
(2) Cyclic pattern: p(t) = η + r(t) · σ + a · sin(2πt/T )

(3) Increasing/decreasing trend pattern: p(t) = η + r(t) · σ + g · (t − t0)

(4) Upward/downward shift pattern: p(t) = η + r(t) · σ + s · step(t),

where η and σ are, respectively, the nominal mean value and the standard
deviation of the process variable under observation, t is the discrete time
at which the monitored process variable is sampled, p(t) is the value of the
sampled data point at time t, the function r(t) generates random numbers
normally distributed between −3 and 3, and step(t) is a 0/1-step function.

One of the major difficulties in CCPs recognition lies in detecting increas-
ing or decreasing patterns [LP05], especially when slopes are small.

In this chapter we briefly present a new simpler approach for the identifica-
tion of increasing or decreasing trend patterns in CCPs, based on dynamically
computed raw data features such as nominal mean and standard deviation.
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2 Identifying Normal Patterns

A normal pattern, which identifies a controlled process, will exhibit only ran-
dom variations. Thus, for instance, a pattern in which the items at positions
k · n, for k = 1, 2, . . . , are equal is non-random. However, to identify such
patterns is often quite subtle and difficult, and is beyond the scope of this
chapter.

We will make the simplifying hypothesis that random patterns can be
described by equations of type (1) above, namely equations of the form p(t) =
η + r(t)σ, and therefore they are characterized by a nominal mean η̂ ≈ η and
a standard deviation σ̂ ≤ σ.

Given a sample dimension n, we define the CCP at time t = s + n − 1
as the sequence of sample data points P̄ = 〈p(s), p(s + 1), ..., p(s + n− 1)〉 of
length n, with nominal mean η̄ and standard deviation σ̄.

Associated to the pattern P̄ we define the quantities

Γ =
s+n−1∑
t=s

p(t) and ∆ =
s+n−1∑
t=s

p(t)(t− s + 1).

The dynamic nature of SPC requires that information on monitored sample
patterns are quickly computed. Thus, at time t = s + n the sampled pattern
is updated with P̄ ′ = 〈p(s+1), p(s+2), ..., p(s+n)〉, having nominal mean η̄′

and standard deviation σ̄′. The values Γ and ∆ can be dynamically updated
in time O(1) for pattern P̄ ′, while processing the raw data, by simply applying
the following rules:

Γ ′ = Γ − p(s) + p(s + n), ∆′ = ∆− p(s) + (n + 1)p(s + n)− Γ ′.

Thus, the values of the mean, η̄′, and standard deviation, σ̄′, of pattern P̄ ′

can be updated in time O(1) using the following rules, where ρ = η̄ − η̄′:

η̄′ = Γ ′/n;

σ̄′ =

(
1

n

s+n∑
t=s+1

(
p(t) − η̄′)2) 1

2

=

(
1

n

s+n∑
t=s+1

(p(t) − η̄ + ρ)2

) 1
2

=
(

1

n

(
nσ̄2 + nρ2 − 2nρη̄ + 2ρΓ ′ + (p(s + n) − η̄)2 − (p(s) − η̄)2

)) 1
2

.

Such rules allow the automatic identification in constant time of a normal
pattern, as the process is taking place.

3 Identifying Decreasing and Increasing Trend Patterns

A decreasing or increasing trend pattern, as described by (3), is a sequence of
data points obeying an equation of the form p(t) = η + r(t)σ + gt, where g is
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the slope. This type of pattern indicates a drift in the process average. Often,
such drift can be the result of tool wear, deteriorating maintenance, or even
skill improvement.

Suppose to observe, at a given time t = s+n−1 of the production process,
a drift of the mean value η̄, such that |η̄− η| ≥ δ, for same threshold δ > 0. If
the observed pattern P is of the form given by equation (3) and the change
in trend started at time t0 = s− 1, we can rewrite its nominal mean η̄ as

η̄ =
1
n

s+n−1∑
t=s

(η + r(t)σ + g · (t− s + 1)) ≈ η +
1
n

g
n∑

t=1

t = η +
1
2
g(n + 1)

and hence we can estimate the value of the slope by g ≈ 2(η̄ − η)/(n + 1).
Observe that if the sampled pattern P is a decreasing or increasing trend
pattern, with slope g, then the pattern P̂ = 〈p(s)− g, p(s + 1)− 2g, ..., p(s)−
ng〉 is a normal pattern. Figure 2 shows a decreasing trend pattern P and
the pattern P̂ obtained by removing from P the effects of the gradient g. The
standard variation σ̂ of pattern P̂ can be computed in time O(1) using the
following formula

σ̂ =

(
1

n

s+n−1∑
t=s

(p(t) − (t − s + 1)g − η)2

) 1
2

=
(
σ̄2 + gη(n + 1) + (η̄ − η)2 − 2

n
g∆ +

2

n
(η̄ − η)Γ +

1

6
g2(n + 1)(2n + 1)

) 1
2

.

We have carried out four sets of experiments to test the performance of our
proposed algorithm, Test-Slope, shown below. For each test, 200 patterns
have been generated, using (3), with η = 10, σ = 4.5, and where n ∈ {60, 120}
and the slope g is randomly selected in the interval [−α, α], for α ∈ {0.1, 0.2}.

In our tests, we have assumed that a decreasing or increasing pattern with
a very small slope g such that |g| ≤ 0.03 has to be considered as a normal
pattern. The following table shows the percentage errors in our tests. It turns
out from our experimental results that the percentage of error is very low and
decreases for increasing values of the dimension n and of the slope g.

Decreasing Trend Patternp(t)
p(t)-gt
mean

Fig. 2. A decreasing trend pattern and the pattern obtained by deleting the effects
of the slope g
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Test-Slope(P, η, σ, n)
compute η̄ and σ̄
g = 2(η − η̄)/(n + 1)
compute σ̂
if |g| > 0.03 then return True

else return False

Experimental results

n α Error (%)

test n.1 60 0.2 7

test n.2 60 0.1 11.5

test n.3 120 0.2 2

test n.4 120 0.1 4

4 Conclusions and Future Works

In this chapter we have presented a simple method for the identification of
increasing and decreasing trend patterns in control charts, by using features
dynamically extracted from raw data. Such patterns are among the most diffi-
cult ones to be detected, especially for small values of the slope. Experimental
results show that our proposed approach turns out to be precise, simple, and
flexible.

Future works will be directed to apply similar techniques for the identifica-
tion of other classes of CCPs. In addition, we plan to generalize our technique
also to cases in which standard deviation is allowed to change over time.
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Summary. We present in this communication an index-1 characterization for
differential-algebraic circuit models without passivity assumptions. The use of tree-
based methods together with the Cauchy–Binet formula makes it possible to gener-
alize previous results in the literature. The approach can be extended to modified
node analysis (MNA) models and higher index configurations.

1 Introduction

Semistate models based on differential-algebraic equations (DAEs) are nowa-
days extensively used in circuit simulation programs. Modelling approaches
based on node tableau analysis (NTA), augmented node analysis (ANA) or
modified node analysis (MNA) set up the circuit equations in differential-
algebraic form [GF99a,GF99b].

Within the differential-algebraic framework, the index of the circuit model
becomes a standard measure for the numerical problems faced during com-
puter simulation. So far, most index characterizations [ET00, Rei98, Ria06,
RT05,Tis99,Tis03] are based on passivity assumptions, which amount to pos-
itive definiteness hypothesis in the conductance matrix and, in some cases, in
reactance matrices.

In this direction, the goal of the present work is to introduce graph-
theoretic index characterizations relaxing passivity assumptions to algebraic
conditions on some circuit trees. The attention is focused on circuits without
controlled sources and accommodating only certain coupled devices: previous
index characterizations for passive circuits within this scope can be derived
as particular instances of the results here discussed.

Section 2 presents some background on circuit modelling. We then analyse
index-1 configurations in Sect. 3: assuming that there is no coupling among
resistors, we show in Theorem 1 that index-1 in augmented models turns out
to be equivalent to the absence of both V–C loops and I–L cutsets together
with a non-zero sum for the conductance products in so-called proper trees.
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Index equivalences are known that allow one to extend our results to general
Node Tableau Analysis models [RT05].

As indicated in Sect. 4, these procedures can be applied to characterize in-
dex 1 MNA configurations, although the quasilinear structure of these models
involve more technicalities and, for the sake of brevity, details are not in-
cluded here. Networks without coupling restrictions, index 2 configurations,
and circuits with controlled sources stay within the scope of future research.

2 Differential-Algebraic Circuit Models

Mathematical models of lumped electrical circuits usually take the form of a
differential-algebraic equation, including:

– A topological component, characterized by (incidence) matrices describing
the network

– A dynamical component, linked to reactive elements: inductors and capac-
itors

– A physical component, derived from the constitutive relationships of the
network elements.

In this communication, special attention is paid to the formulation known as
ANA. ANA models are simpler than NTA formulations and can be regarded
as an intermediate step to arrive both at MNA and at a state space equation.
The corresponding DAE, which can be derived from general NTA [RT05] by
eliminating several branch and current variables, reads:

C(vC)v′
C = iC , (1a)

L(iL)i′L = AT
Le, (1b)

0 = ARγ(AT
Re) + ACiC + AV iV + ALiL + AIiS(t), (1c)

0 = AT
C e− vC , (1d)

0 = AT
Ve− vS(t), (1e)

where A = (AC AL AR AV AI) is the incidence matrix for the circuit split for
its different elements, and γ stands for the i− v characteristic of resistors. If
the capacitance and inductance matrices C(vC), L(iL) are non-singular, then
this model can be written in the semiexplicit form

u′ = ϕ(u, v, t), (2a)
0 = ψ(u, v, t), (2b)

where the dynamic variables u = (vC , iL) correspond to capacitor voltages
and inductor currents, and the algebraic variables v = (e, iC , iV ) comprise
node voltages, capacitor currents and voltage source currents. Equation (2a)
comprises the dynamic relations (1a)–(1b), whereas (2b) stands for (1c)–(1e):
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note that (1c) expresses Kirchhoff Current Law, whilst (1d)–(1e) correspond
to Kirchhoff Voltage Law for capacitors and voltage sources, respectively. The
excitation terms are defined by current sources iS(t) and voltage sources vS(t).
Semiexplicit systems such as (2) are said to be index 1 if and only if the
derivative ψv(u, v, t) defines a non-singular matrix [BCP96].

3 Index 1 Configurations

Tree-like structures have a fundamental impact on the characterization of
index 1 configurations. In the following, a C–V loop is a loop formed exclusively
by capacitors and/or voltage sources; similarly, an I–L cutset is a cutset formed
exclusively by inductors and/or current sources; proper trees are defined as C–
R–V trees whose branches contain every voltage source, every capacitor and
(possibly) some resistors.

Theorem 1. Assume that L(iL) and C(vC) are non-singular and that there
is no coupling among resistors. Then, system (1) is index 1 if and only if

T1,2 There are neither C–V loops nor I–L cutsets and
A1 The sum of conductance products in proper trees does not vanish.

Proof. If C(vC) and L(iL) are non-singular, (1) is index 1 if and only if

J = ψv(u, v, t) =
(

ARGAT
R ACV

AT
CV 0

)
(3)

is non singular, where ACV = (AC AV) and G(AT
Re) = γ′(AT

Re) has been
written as G to simplify notation. To analyse this matrix we will perform the
following factorization:

J = J1J2J3 =
(

AR ACV 0
0 0 ICV

)⎛⎝G 0 0
0 0 ICV
0 ICV 0

⎞⎠⎛⎝ AT
R 0

AT
CV 0
0 ICV

⎞⎠ , (4)

where we have split the information derived from the topological description
of the circuit, included in J1 and J3, and the relevant information coming
from the constitutive relationships of the circuit elements (amounting in this
case to matrix G), included in J2.

Letting ne+1, nC , nR and nV be respectively the number of nodes, capac-
itors, conductances and voltage sources in the circuit, set n = ne + nC + nV ,
m = nR + 2(nC + nV ). With this notation, the matrices J, J1, J2 and J3

above have dimensions n× n, n×m, m×m and m× n, respectively. Under
the existence of a proper tree, the C–R–V subgraph connects all nodes in the
circuit, which implies that ne ≤ nR + nC + nV and then n ≤ m.

From (3) and (4) it can be proven necessary that there are neither C–V
loops nor I–L cutsets; for if there is a C–V loop, then ACV has not full column
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rank, and if there is an I–L cutset, then (AR ACV) has not full row rank.
These two conditions directly lead to the existence of at least one proper tree.

In order to delve into (4), we can now apply the Cauchy–Binet for-
mula [HJ85] to J ; this is a well-known algebraic property which expands
the determinant of a matrix product into a sum of products of determinants,
namely,

det J1J2J3 =
∑
α,β

det Jω,α
1 detJα,β

2 det Jβ,ω
3 , (5)

where the sum is taken over all index sets α, β ⊆ {1, . . . , m} with cardinality
n, and ω = {1, . . . , n}; Jα,β

2 is the n× n submatrix of J2 defined by the rows
indexed by α and the columns indexed by β, and Jω,α

1 (resp. Jβ,ω
3 ) is the

submatrix of J1 (resp. of J3) including entries from all rows in J1 (resp. all
columns in J3) and the columns indexed by α (resp. the rows indexed by β).

In the terms of expansion (5), it can easily be seen that some matrix
blocks from (4) must be wholly or partially included for the corresponding
determinant not to vanish. Actually, all non-zero terms in the formula can be
shown to have the following structure:∣∣∣∣AR̃ ACV 0

0 0 ICV

∣∣∣∣
∣∣∣∣∣∣
G̃ 0 0
0 0 ICV
0 ICV 0

∣∣∣∣∣∣
∣∣∣∣∣∣
AT

R̃ 0
AT

CV 0
0 ICV

∣∣∣∣∣∣ , (6)

where a tilde stands for a set of conductances of the original circuit. For
(AR̃ ACV) in (6) to have full column rank, C–V–R̃ must be a tree, which is
necessarily proper as it includes all capacitors and voltage sources.

If there is no coupling among conductances, then G is a diagonal matrix
and the calculation of (6) leads to the following sum:

det J = ±
∑

T∈Tp

∏
Gi∈T

Gi, (7)

where Tp is the set of proper trees in the circuit. �

For circuits with no coupling among conductances, previous results such as
Theorem 2 below can be derived from Theorem 1. Specifically, the definiteness
assumption Â1 in cases without conductive coupling can be seen as a particular
instance of condition A1 above. Note the broader scope of Theorem 1 provided
by the full index-1 characterization implicit in the “if and only if” there.

Theorem 2 ( [RT05]). Assume that L(iL) and C(vC) are non-singular.
Then, system (1) is index 1 if

T1,2 There are neither C–V loops nor I–L cutsets and
Â1 G is (positive or negative) definite.

Indeed, if there are neither C–V loops nor I–L cutsets, then there must exist
at least one proper tree within the circuit. Since all conductances are simul-
taneously positive or negative, all conductance products have the same sign
and sum (7) is not null.
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4 Concluding Remarks

As shown in Sect. 3, tree-like structures are central in circuit index charac-
terizations. The case of index 1 in ANA has been examined in the present
communication. Employing an analogous procedure to the one detailed here,
necessary and sufficient conditions for index 0 in MNA can be obtained. A
similar, more complex process can also be used to characterize index 1 for
MNA; this involves the use of projectors and so called normal trees.

The inclusion of couplings, the analysis of index 2 configurations and the
study of models with controlled sources are future research lines.
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1 Introduction

Fingerprints are currently the leading approach to biometric recognition [1].
The reasons are multiple – we mention on the one hand the more than centen-
nial tradition of fingerprint use for forensic purposes and on the other hand
the existence of some well-established experience – based rules derived along
the line. Fingerprints have a specific flow dynamics, which comes in quite
distinct flow patterns – these help define classes of fingerprints. The flow pat-
tern carries various singularities, named minutiae – most important are line
endings and bifurcations.

This chapter treats the classification of fingerprints. In order to establish
the identity of a person from a given fingerprint image, it is necessary to
search large databases. Hence, the first step is to reduce the search field by
assigning a given fingerprint into one of a small number of categories. Then
the matching is performed only among fingerprints which belong to the class
of the template.

Most of the classification schemas currently used worldwide are variants
of Henry’s classification scheme [1]. The six most common classes are: tended
arch, arch, left loop, right loop, whorl and twin loop.

While finger matching is usually performed with the help of local features,
the fingerprints classification is generally based on global features, such as
skin ridge flow. For classifications, one may consider orientation field as a
feature vector [2–4]. Different procedures for reduction of the dimension of
the orientation field, such as e.g. Karhunen–Loève transformation [6, 7] were
proposed. With the reduced vector, the statistical classifiers are involved [5,8].
Further approaches are found in [9–11].
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2 Tracer

We developed an approach for fingeprint recognition which begins with the
extraction of the essential fingerprint data, organised in semantic structures.
We have described the notions and objects for this novel fingerprint data
extraction denoted entracing in [12].

The extracted data contains not only minutiae information but also infor-
mation about interminutiae connections (ridges) as complete connected lines.
The flow of these lines is used in this chapter for classification.

3 Characteristic Lines

An expert analyst’s experience suggested that every Henry class has certain
windings of connected lines which are specific and do not occur in other classes.
They are to be found typically around the centre of the finger (see Fig. 1).
This suggests the fact that, using the entraced connected lines, one may have
a quick search for class – characteristic lines.

Guided by these insight, the research questions which we begin to address
in the present chapter are the following:

A. What simple metric characterisation can be used for defining distinctive,
class dependent, and connected line flows?

B. How accurate is the statistical classification based on the given metric?
C. When applied to large databases, how close can the new method approach

the state of the art performances. Or, can one approach the intrinsic limits
of classification?1

arch tended arch whorl

left loop right loop double loop

Fig. 1. Classes according to Henry’s classification scheme

1It is well known that there are fingerprints which cannot be uniquely assigned
to classes, while others cannot be assigned to any class, even by the human expert.
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0

1

2

Fig. 2. Traversation of a bifurcation

3.1 Defining Characteristic Lines

As a result of tracing we get a usually disconnected graph G = {V,E} where
each vertex v ∈ V has degree either 1 (ending or border point) or 3 (bifurca-
tion). A characteristic line c is a path in the graph

c = 〈v1, e1, v2, . . . , em−1, vm〉,

which connects two vertices v1, vm of degree 1 by edges and bifurcations (ver-
tices of degree 3).

Let C be a set of all such paths with the additional condition that, in
order to respect the natural flow, bifurcations are traversed only by following
the larger angles (Fig. 2).

3.2 Characteristic Lines and Classes

Each edge in the graph e ∈ E is a broken line and is defined, along with the
vertex points p(vi) = pi = (Xi, Yi), i ∈ [1, n(e)], by a set of n(e)− 1 interme-
diate points, thus e =

〈
p1 = (x1, y1), p2, . . . , pn(e)

〉
. The metric features used

for classification are the total sum of orientation changes (TOC):

Φt(c) = |(c, n(e))|

and the maximal orientation change (MOC):

Φm(c) = max
k1,k2∈[0,n(e)]

|Φ (c, k1)− Φ(c, k2)| ,

where Φ(c, k) denotes the sum of arc changes in E:

Φ(c, k) =
k∑

i=1

∠ (pi − pi−1, pi+1 − pi)

The changes in orientation of a connected line around the centre of the
finger appear to be a simple, class – distinctive value. For the main six Henry
classes they vary around the following typical values2:

Class Arch Tended arch Left and right loop Whorl Twin loop
TOC 0 0 π 2π ! 2π
MOC π

3 π π 2π ! 2π

2The distinction between left and right loops is done by considering the orienta-
tion/position of the start point.
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3.3 Statistical Analysis

As mentioned in the previous section, the total orientation change Φt(·) and
the maximal orientation change Φm(·) of a characteristic line are a good dis-
tinctive measure for classifying fingerprints.

In order to find representants for each class, in a training set of fingerprints
whose classes are known, a density of those two features for all characteristic
lines of all fingerprints in one class was estimated. Figure 3 illustrates com-
puted densities of the maximal orientation change.

Consequently a fingerprint is classified according to the maximum likeli-
hood of its feature vector against estimated densities from the training set.

On the test database (230 images from the dataset db02 in the FVC2002
database [1]) the classifier achieves an accuracy of 88.2%; the confusion ma-
trix is reported in Table 1. The results compare well with state of the art
publications and require very few computations.

Fig. 3. Representants for all classes

Table 1. Confusion matrix

A TA LL RL W DL

A 36 3 1 0 0 0
TA 2 29 0 1 0 0
LL 1 1 37 0 0 1
RL 1 2 0 38 2 1
W 0 0 1 0 29 3
DL 0 0 2 1 4 34
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4 Conclusions

We presented a new approach to fingerprint classification, which uses ridge
data extracted by means of entropy sensitive tracing [12]. The approach goes
in the direction of characteristic lines and is expected to have an appealing
balance between the effective amount of information and operations used for
class distinction and the accuracy of the classification. The chapters cover
preliminary tests and statistics which encourage this hypothesis.
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Summary. The second-order MUSCL schemes are considered in the present work.
A new limitation procedure is detailed to enforce relevant robustness properties.
The scheme is thus shown to preserve the invariant domain.

1 Introduction

In general, increasing the order of accuracy remains a delicate question when
numerical finite volume methods are considered to approximate the solutions
of hyperbolic systems. Simpler procedures have been introduced to increase
the order of accuracy. One of the most popular has been proposed by van Leer
[Lee79]; namely the MUSCL scheme. Our purpose is to analyze this scheme
which has been used in many applications (for instance, see [Col90,DEO92]).
For the sake of clarity in the presentation, we focus our attention on the Euler
equations: ⎧⎨⎩∂tρ + ∂xρu = 0,

∂tρu + ∂x(ρu2 + p) = 0,
∂tρE + ∂x(ρE + p)u = 0,

(1)

p = (γ − 1)
(

E − ρ
u2

2

)
, γ ∈ (1, 3]. (2)

The admissible state space Ω is defined by

Ω =
{
w = (ρ, ρu, ρE) ∈ R3; ρ > 0, u ∈ R, e(W) = E − u2

2
> 0
}

.

A MUSCL scheme is considered to approximate the weak solutions of
(1). For the sake of simplicity in the notations, we briefly recall the first-order
conservative scheme based on piecewise constant approximation of the solution
at time tn, with xi+ 1

2
= xi + (xi+1 − xi)/2, where (xi)i∈Z denote the mesh

nodes. To simplify the notations, the mesh is assumed to be uniform with size
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∆x = xi+1−xi. To approximate the solution of (1) at time tn+1 = tn+∆t, the
sequence (wn+1

i )i∈Z is defined by the following conservative scheme [Tor99]:

wn+1
i = wn

i −
∆t

∆x

(
F(wn

i ,wn
i+1)− F(wn

i−1,w
n
i )
)
, (3)

where F : Ω × Ω → R3 denotes the numerical flux function assumed to be
Lipschitz consistent. The time increment ∆t is restricted according to the
following CFL condition:

∆t

∆x
max
i∈Z

(
|λ±(wn

i ,wn
i+1)|

)
≤ 1

2
, (4)

where λ±(wn
i ,wn

i+1) are the numerical velocity of the acoustic waves associ-
ated with the numerical flux function F(wn

i ,wn
i+1).

In the sequel, the first-order scheme (3) is assumed to satisfy the numerical
invariance of Ω: if ρn

i > 0 and eni > 0 for all i ∈ Z then ρn+1
i > 0 and en+1

i > 0
for all i ∈ Z.

The MUSCL schemes use a better reconstruction than a piecewise con-
stant functions since piecewise linear functions are considered. In the cell
(xi− 1

2
, xi+ 1

2
), the inner approximations, located at xi± 1

2
, are considered:

wn,±
i = wh(xi± 1

2
, tn). Let us note that we do not impose a conservative

reconstruction since we do not enforce: wn
i = 1

2 (wn,−
i + wn,+

i ).

2 Stability of the MUSCL Schemes

Arguing the above notations, the space second-order MUSCL scheme reads
as follows:

wn+1
i = wn

i −
∆t

∆x

(
F(wn,+

i ,wn,−
i+1 )− F(wn,+

i−1 ,wn,−
i )

)
, (5)

where F is the numerical flux function introduced in (3).
Following an idea introduced by Perthame–Shu [PS96], the stability of the

MUSCL scheme (5) is considered when involving a non-conservative gradient
reconstruction. Of course, all the following results can be easily extended
in the framework of a conservative gradient reconstruction. The reader is
referred to [Bou04,KP94] where stability results are given when assuming a
conservative reconstruction.

The stability of the scheme is based on the existence of a ghost state,
denoted by wn,!

i , defined as follows: α−
i wn,−

i +α!
i w

n,!
i +α+

i wn,+
i = wn

i , where
the positive coefficients α±!

i are fixed in order to satisfy: α−
i + α!

i + α+
i = 1.

In fact, a new mesh is thus defined where each cell Ii = (xi− 1
2
, xi+ 1

2
) is split

into three sub-cells: I−i = (xi− 1
2
, xi− 1

2
+ α−

i ∆x), I!
i = (xi− 1

2
+ α−

i ∆x, xi− 1
2

+
(α−

i + α!
i )∆x) and I+

i = (xi− 1
2

+ (α−
i + α!

i )∆x, xi+ 1
2
). The vectors wn,±!

i are
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associated with the sub-cell I±!
i . The first-order scheme (3) is thus applied on

the sub-mesh to obtain:

wn+1,−
i = wn,−

i − ∆t

α−
i ∆x

(
F(wn,−

i ,wn,!
i )− F(wn,+

i−1 ,wn,−
i )

)
,

wn+1,!
i = wn,!

i − ∆t

α!
i ∆x

(
F(wn,!

i ,wn,+
i )− F(wn,−

i ,wn,!
i )
)
,

wn+1,+
i = wn,+

i − ∆t

α+
i ∆x

(
F(wn,+

i ,wn,−
i+1 )− F(wn,!

i ,wn,+
i )

)
.

As a consequence, the approximate solution obtained by (5) rewrites as fol-
lows: wn+1

i = α−
i wn+1,−

i + α!
i w

n+1,!
i + α+

i wn+1,+
i . Since the states wn+1,±!

i

result from a first-order scheme which satisfies the invariance of Ω, the fol-
lowing statement is obtained [Ber05] (see also [Ber06(2)] for a time and space
second-order extension):

Theorem 1. Assume that the first-order scheme (3) satisfies the invariance
of Ω. Assume that wn

i ∈ Ω for all i ∈ Z and impose wn,±!
i ∈ Ω. Consider the

following CFL condition:

∆t

∆x
max
i∈Z

(
|λ±(wn,−

i ,wn,!
i )|, |λ±(wn,!

i ,wn,+
i )|, |λ±(wn,+

i ,wn,−
i+1 )|

)
≤ 1

2
min
i∈Z

(α−
i , α!

i , α
+
i ).

If wn
i ∈ Ω for all i ∈ Z then wn+1

i ∈ Ω for all i ∈ Z.

Let us emphasize that the condition wn,±!
i ∈ Ω turns out to be a new slope

limitation. The gradient reconstruction must be modified according to the
new conditions.

Now, we exhibit a non-conservative gradient reconstruction based on the
primitive variables (ρ, u, p). In a cell Ii, the inner approximations located at
xi± 1

2
write as follows:

ρn,±
i = ρn

i ±∆ρ, un,±
i = un

i ±∆u, pn,±
i = pn

i ±∆p, (6)

where (∆ρ,∆u, ∆p) denotes the increment vector which must satisfy the
new limitations. The increments obtained involving some “usual” limitations
(minmod, superbee, MC... [Tor99]) are denoted δX. These standard lim-
iters are thus modified to enforce the condition: wn,±!

i ∈ Ω. To illustrate
our purpose, let us consider the minmod limiter which writes as follows:
δX = 1

2minmod(Xi − Xi−1, Xi+1 − Xi). Under the following assumption:
α−
i = α!

i = α+
i = 1

3 , all the required conditions are satisfied with the choice

∆ρ = ρn
i max

(
−1,min(1,

δρ

ρn
i

)
)

, ∆p = pn
i max

(
−1,min(1,

δp

pn
i

)
)

,
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∆u = sign(δu)

√√√√√√√min

⎛⎜⎜⎝(δu)2,
pn
i

(γ − 1)ρn
i

(
1 + 2

(
∆ρ
ρn

i

)2
)
⎞⎟⎟⎠.

3 MUSCL Schemes for 2D Unstructured Meshes

The above stability results concerning the 1D MUSCL schemes are extended
when considering 2D unstructured meshes [PQ94,KK05,PS96,Ber06]. Once
again, the expected stability results come from the introduction of a relevant
sub-mesh associated with relevant ghost states. Let us note from now on
that the sub-mesh is an artefact useful in the proof but never informatically
computed.

In a cell Ci with Λ(i) adjacent cells j(k), 1 ≤ k ≤ Λ(i), the edge which
separates Ci and Cj(k) is denoted Γij(k) where nij(k) is the associated outer
unit normal. The state wij(k) denotes the second-order approximation of the
solution in the cell Ci but located near the edge Γij(k). With these notations,
the 2D MUSCL scheme reads as follows:

Wn+1
i = Wn

i −
∆t

|Ci|

Λ(i)∑
k=1

|Γij(k)|φ(nij(k),wij(k),wj(k)i), (7)

where φ(n,wL,wR) denotes the numerical flux function.
The cell Ci is thus split into Λ(i)+1 sub-cells as displayed in Fig. 1. A ghost

state w!
i is defined as follows: |C

i |
|Ci| w

!
i +
∑Λ(i)

k=1
|Cij(k)|
|Ci| wij(k) = wn

i . We apply
the same idea used to prove the stability of the 1D MUSCL scheme. To access
such an issue, we introduce the following first-order scheme:

wn+1
i = wn

i −
∆t

|Ci|

Λ(i)∑
k=1

|Γij(k)|φ(nij(k),wi,wj(k)),

Fig. 1. Sub-cell decomposition of the cell Ci

C�
i

Cij(1)

Cij(2)

Cij(3)

Cij(4)

Cij(5)
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This first-order scheme is considered to evolve in time the vectors w!
i and

wij(k) stated on the sub-mesh. The following relation is easily obtained:

wn+1
i =

|C!
i |

|Ci|
wn+1,!

i +
Λ(i)∑
k=1

|Cij(k)|
|Ci|

wn+1
ij(k), (8)

where wn+1
i is given by (7). We thus obtain (see [Ber06])

Theorem 2. Let (wn
i )i∈Z be given by (7). Assume that the states wn

i , wij

and w!
i belong to Ω. Assume that the sub-cells (Cij or C!

i ) are split into
k elementary triangles T k. Let us assume the following CFL restrictions:
∆t |Γ

k|
|Tk| max |λ±(nΓk ,w+

Γk ,w−
Γk)| ≤ 1, where Γ k is the edge of T k which sep-

arates two sub-cells and where the states w±
Γk define the value of the vector

states in each side of this edge. If wn
i ∈ Ω for all i ∈ Z then wn+1

i ∈ Ω for
all i ∈ Z.

From a numerical point of view, let us emphasize that the scheme is free from
the definition of the sub-cells C!

i and Cij . For the sake of simplicity, we adopt
the following condition: |C

i |
|Ci| = |Cij(k)|

|Ci| = 1
Λ(i)+1 .
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Summary. In this chapter an efficient conservation element–solution element (CE–
SE) to construct numerical solutions of time-dependent advection-diffusion equation
initial value problems is presented. Stability conditions of the method are established
in terms of data.

1 Introduction

Time-dependent advection–diffusion equation of the type

ut(x, t) + a(t)ux(x, t)− b(t)uxx(x, t) = 0

u(x, 0) = f(x) ; b(t) ≥ 0 ; (x, t) ∈ R× [0,+∞[

⎫⎬⎭ (1)

appears frequently in the modelization of physical and technological processes
like, for example, the evaluation of the heating through radiations of mi-
crowaves when the properties of medium (dielectric properties, humidity,
etc.) vary with time, [Met83, Poz90]. Equations of type (1) also appear in
the study of the transmission of flows in industrial tubes [Chu84], conduc-
tion of heat in solids [Car95], etc. In order to solve (1) a modified version
of conservation-elements and solution-elements (CE–SE) method was applied
in [Def05]. The standard (CE–SE) method was used for the solution of con-
servation laws [Cha95], offering significant advantages with respect to other
schemes like differences or finite-elements methods: the conservation of the
flow is used as much in time as in space, and it also deals with indepen-
dent variables and their derivative, calculating them simultaneous for each
node. This (CE–SE) method has also been applied to the advection-diffusion
equation with constant coefficients, [Wan99]. The modified method proposed
in [Def05] preserve all these advantages.

For the sake of clarity in the presentation, the modified CE–SE scheme
given in [Def05] can be summarized as follows. We take a mesh in R× [0,+∞[,
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with points (xj , t
n) given by xj = j∆x, tn = n∆t. We define the solution ele-

ment SE(j, n) like the rhombus centered in the mesh point (j, n) with diagonals
∆x and ∆t . For each solution element SE(j, n), the approximate solution of
(1) is defined by

U(x, t; j, n) = Un
j + (Ux)nj [ (x− xj) − a(tn) (t− tn) ] , ∀(x, t) ∈ SE(j, n) ,

(2)
where (U)nj , (Ux)nj are undetermined constants. To obtain them, we define
the vector

q(j, n) =
[
Un

j ,
∆x

4
(Ux)nj

]T
. (3)

In [Def05] it is shown that q(j, n) satisfies

q(j, n + 1) = Q+(n + 1)Q+(n + 1/2) q(j − 1, n)
+ [Q+(n + 1)Q−(n + 1/2) + Q−(n + 1)Q+(n + 1/2)] q(j, n)
+Q−(n + 1)Q−(n + 1/2) q(j + 1, n) , with (4)

Q+(n) =
1
2

⎡⎢⎢⎣
1 + νn

0 1− νn−1/2ν
n−1/2
2 − ξn

−(1− (νn
0 )2)

1− νnνn
1 + ξn

−(1− νn
0 ) (1− νn−1/2ν

n−1/2
2 − ξn)

1− νnνn
1 + ξn

⎤⎥⎥⎦ , (5)

Q−(n) =
1
2

⎡⎢⎢⎣
1− νn

0 −(1− νn−1/2ν
n−1/2
2 − ξn)

1− (νn
0 )2

1− νnνn
1 + ξn

−(1 + νn
0 ) (1− νn−1/2ν

n−1/2
2 − ξn)

1− νnνn
1 + ξn

⎤⎥⎥⎦ , (6)

where the matrix coefficients are given by

νn = a(tn)
∆t

∆x
; νn−1/2 = a(tn−1/2)

∆t

∆x
;

νn
1 = < a >n

1

∆t

∆x
; ν

n−1/2
2 = < a >

n−1/2
2

∆t

∆x
;

νn
0 = < a >n

0

∆t

∆x
; ξn = 4 < b >n

0

∆t

(∆x)2
;

< a >n
0 =

2
∆t

∫ tn

tn−1/2
a(t)dt ; < b >n

0 =
2

∆t

∫ tn

tn−1/2
b(t)dt;

< a >
n−1/2
2 =

8
(∆t)2

∫ tn

tn−1/2
a(t)

(
t− tn−1/2

)
dt;

< a >n
1 =

8
(∆t)2

∫ tn

tn−1/2
a(t) (tn − t) dt . (7)
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The aim of this work is the study of the stability of this numerical scheme
according to definition [Krö97, p.92].

Throughout this work, we will denote by ‖ . ‖ the euclidean norm in

R2. If v : Z �→ R2 / v(j) = [v1(j), v2(j)]
T, we will denote by ‖ . ‖2

the L2−discrete norm with respect to the mesh ∆x, which means ‖v‖22 =
∆x
∑

j∈Z

[
v2
1(j) + v2

2(j)
]
. The discrete Fourier transform of v(j), denoted by

v̂(θ), ant its inverse are defined, respectively, by

v̂(θ) =
∑
j∈Z

e−ijθ [v1(j), v2(j)]
T ; θ ∈ [−π, π] , v(j) =

∫ π

−π

eijθv̂(θ)dθ . (8)

For
{
e−ijθ

}
j∈Z

representing an orthogonal system, the Parseval property gives

‖v̂‖22 =
∫ π

−π

∑
j∈Z

[
(v1(j))2 + (v2(j))2

]
dθ =

2π

∆x
‖v‖22 . (9)

For a matrix A ∈ Cn×n, we denote by ρ(A) its spectral radius, defined by
ρ(A) = max {|λ|;λ ∈ σ(A)}.

2 Stability Analysis

Given the numerical scheme summarized in the previous section, for vector
(6) we define the sequence

q(n) ≡ {q(j, n)}j=+∞
j=−∞ = {. . . , q(−1, n), q(0, n), q(1, n), . . .} . (10)

Let us assume that q(n) satisfies

‖q(n)‖22 =
∑
j∈Z

‖q(j, n)‖22 ∆x <∞ .

Taking the discrete Fourier transform in (10), one gets

q!(n, θ) =
∑
j∈Z

q(j, n)e−ijθ ; −π < θ ≤ π . (11)

By (4) and (4), it follows that

q!(n + 1, θ) =
∑
j∈Z

q(j, n + 1)e−ijθ

=
∑
j∈Z

{
Q+(n + 1)Q+

(
n +

1
2

)
q (j − 1, n)

+
[
Q+(n + 1)Q−(n +

1
2
) + Q−(n + 1)Q+

(
n +

1
2

)]
q(j, n)

+ Q−(n + 1)Q−

(
n +

1
2

)
q (j + 1, n)

}
e−ijθ , (12)
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where matrices {Q+(k), Q−(k)} are defined in (5) and (6), respectively.
Then, one can rewrite (7) in the compact form

q!(n + 1, θ) = Qn+1(θ)Qn+ 1
2 (θ)q!(n, θ),

Qk(θ) = Q+(k)e−i θ
2 + Q−(k)ei

θ
2 ; k = n + 1, n +

1
2

. (13)

We will denote by the amplification matrix Qn+1(θ)Qn+ 1
2 (θ) introduced

by (13). The following result gives a bound on the spectral radius for the
amplification matrix.

Theorem 1. Let T > 0 be fixed. If |ν(t)| = |a(t)| ∆t

∆x
< 1 ; ∀t ∈ [0, T ], and

(ζn + ∆−) > 0,∀n > 0 semi-integer, n∆t < T , ∆− ≡ νn− 1
2 ν

n− 1
2

1 − νnνn
1

2
,

where νk, νk
1 , ζn, k = n, n− 1

2 ; are defined by (1), then

ρ (Qn(θ)) ≤ 1 ; ∀θ ∈ [−π, π] .

Using the previous theorem, we can prove the following result on stability of
the proposed scheme.

Theorem 2. The numerical scheme is stable under conditions of Theorem 1.

Proof. By (9) we can write for each n ≥ 0

‖q(n + 1)‖22 =
∆x

2π
‖q!(n + 1)‖22 =

∆x

2π

∫ π

−π

‖q!(n + 1, θ)‖2 dθ.

By (13) one gets

‖q(n + 1)‖22 ≤
∆x

2π

∫ π

−π

∥∥Qn+1(θ)
∥∥2

2

∥∥∥Qn+ 1
2 (θ)

∥∥∥2
2
‖q!(n, θ)‖2 dθ . (14)

For matrix Qk(θ), 0 ≤ k ≤ n + 1 and δn+1 = (n+1)∆t
2T > 0, there exists a

norm [Ort72], denoted by ‖ . ‖(k,θ), which fulfills∥∥Qk(θ)
∥∥

(k,θ)
≤ ρ
(
Qk(θ)

)
+ δn+1 ≤ 1 + δn+1 ,

and taking into account the equivalence of all matrix norms [Ort72], thus,
there exists M(k, θ) > 0, so that∥∥Qk(θ)

∥∥
2
≤M(k, θ) (1 + δn+1) . (15)

Using (15) in expression (14), it follows that

‖q(n + 1)‖22 ≤
∆x

2π

∫ π

−π

M2(n+1, θ)M2

(
n +

1
2
, θ

)
(1 + δn+1)

4 ‖q!(n, θ)‖2 dθ .
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Taking M(k) = max
θ∈[−π,π]

M(k, θ), one gets

‖q(n + 1)‖22 ≤ M2(n + 1)M2(n +
1
2
) (1 + δn+1)

4 ‖q(n)‖22 .

Iterating from q(0) to q(n), with n∆t ≤ T , the above expression can be
rewritten in the form

‖q(n + 1)‖2 ≤ C(T ) (1 + δn+1)
2(n+1) ‖q(0)‖2 ,

C(T ) = max
n≤ T

∆t

M(n + 1)M(0)

(
n∏

i=1

M2(i)

)
.

Hence, it follows:[
(1 + δn+1)

n+1
]2
≤
(
eδn+1

)2
, δn+1 =

(n + 1)∆t

2T
,

and thus
‖q(n + 1)‖2 ≤ C(T )e(n+1)∆t/T ‖q(0)‖2 .

Taking into account the stability definition of [Krö97, p.92], it follows from
the last expression that the proposed scheme is stable and the result is
established. ./
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Summary. Industrial mathematical models often involve uncertainties in the data
problem. In this chapter a vector random Euler method is proposed for constructing
discrete mean square approximating processes of initial value problems for random
differential equations with uncertainties. Convergence conditions and an illustrative
example are included.

1 Introduction and Preliminaries

Random differential equations are powerful tools in order to model real prob-
lems with uncertainty [AB02] and [Soo73]. This chapter deals with the con-
struction of a numerical method for systems of random differential equations
of the form

Ẋ(t) = F (X(t), t), t ∈ T = [t0, t1],
X(t0) = X0, (1)

where X(t) and F (X(t), t) are m-dimensional vector stochastic processes and
X0 is a m-dimensional random vector. We are interested in second-order ran-
dom variables (2-r.v.’s) Y , having a density function fY , that is, Y satisfies

E
[
Y 2
]

=
∫ ∞

−∞
y2fY (y)dy < ∞,

where E denotes the expectation operator, and it allows us to introduce the
Banach space L2 of all the 2-r.v.’s endowed with the norm ‖Y ‖ =

√
E[Y 2],

[Soo73, Chap 4]. Let Xj , j = 1, ...,m be 2-r.v.’s, the m-dimensional second-
order random vector is given by XT = [X1, ...,Xm]. The space of all
m-dimensional random vectors of second order(2-r.v.v.’s) with the norm

‖X‖m = max
j=1,...,m

‖Xj‖
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is a Banach space and will be called the Lm
2 -space. A stochastic process X(t)

defined on the probability space (Ω,F , P ) is called a second-order stochastic
process (2-s.p.) if for each t, X(t) is a 2-r.v. Let X(t), t ∈ T be a second-order
m-dimensional vector stochastic process (2-v.s.p.), hence the meaning of Ẋ(t)
is the mean square limit in Lm

2 of the

X(t + ∆t)−X(t)
∆t

as ∆ → 0.

Let g : T → Lm
2 be a m.s. bounded function and let h > 0, then the m.s.

modulus of continuity of g is the function

ω(g, h) = sup
|t−t∗|≤h

‖g(t)− g(t∗)‖m, t, t∗ ∈ T. (2)

The function g is said to be m.s. uniformly continuous in T , if limh→0 ω(g, h) =
0. Let F (X, t) be defined on S × T where S is a bounded set in Lm

2 . We say
that F is randomly bounded uniformly continuous in S, if

lim
h→0

ω(F (X, ·), h) = 0, uniformly for X ∈ S. (3)

Example 1. Consider the function F (X, t) = A(t)X + C(t), 0 ≤ t ≤ t1, where
XT =

[
X1, X2

]
, C(t)T = [0, B(t)] and

A(t)= A=
[

0 1
−ω2

0 0

]
. (4)

Note that

(A(t)X + C(t))T =
[
X2, B(t)−X1ω2

0

]
,

(F (X, t)− F (X, t∗))T = [0, B(t)−B(t∗)] . (5)

By expression (3.115) of [Soo73, p. 63] and (5) it follows that

‖F (X, t)− F (X, t∗)‖m = max{‖0‖, ‖B(t)−B(t∗)‖} = |t− t∗| 12 ,

hence F (X, t) is randomly bounded uniformly continuous.

2 On the Random Euler Method

The goal of the present section is to show the mean square convergence in the
fixed station sense of the random Euler scheme defined by

Xn+1 = Xn + hF (Xn, tn),
X(t0) = X0.

}
n ≥ 0, (6)

where Xn and F (Xn, tn) are 2-r.v.v.’s, h = tn − tn−1, tn = t0 + nh and
F : S × T → Lm

2 , S ⊂ Lm
2 such that
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P1: F (X, t) is randomly bounded uniformly continuous,
P2: F (X, t) satisfies the m.s. Lipschitz condition

‖F (X, t)− F (Y, t)‖m ≤ k(t)‖X−Y‖m, (7)

where
∫ t1
t0

k(t)dt <∞.

The following theorem gives conditions for mean square convergence of scheme
(6). It can be proved using the random mean value theorem as in the scalar
case, see [CJV07]. However, due to the limitation of space we omit the proof.

Theorem 1. If F satisfies the conditions P1 and P2 then the random Euler
scheme (6) is m.s. convergent.

3 Numerical Results

In this section we present an application of the random Euler method.

Example 2. Here we consider the vector form of the response of a mass-spring
linear oscillator to a Brownian motion B(t), see [Soo73, p. 158]

Ẋ(t) = A(t)X(t) + C(t), X(0) = X0, 0 ≤ t ≤ t1, (8)

where

X(t)=
[

X1(t)
X2(t)

]
, A(t)= A =

[
0 1
−ω2

0 0

]
, C(t)=

[
0

B(t)

]
, X(0) =

[
0
0

]
. (9)

By [Soo73, p. 154], the unique m.s. solution of (8) is given by

X(t) =
∫ t

0

eA(t−s)

[
0

B(s)

]
ds, (10)

where

eA(t−s) =
[

cos (ω0(t− s)) 1
ω0

sin (ω0(t− s))
−ω0 sin (ω0(t− s)) cos (ω0(t− s))

]
. (11)

Hence

X(t) =

[
1
ω0

∫ t

0
sin (ω0(t− s)) B(s)ds∫ t

0
cos (ω0(t− s)) B(s)ds

]
, (12)

and by [Soo73, p. 104], its expectation

E[X(t)] =

[
1
ω0

∫ t

0
sin (ω0(t− s)) E[B(s)]ds∫ t

0
cos (ω0(t− s)) E[B(s)]ds

]
=
[

0
0

]
.
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The variance of X(t) is obtained from expressions (2.15) and (2.16) of [CJV06].
It has the form

V (t) = Var [X(t)] = E[X(t)XT (t)] =
[

V11(t) V12(t)
V21(t) V22(t)

]
,

where

V11(t) =
1
ω2

0

∫ t

0

∫ t

0

sin (ω0(t− s)) sin (ω0(t− r)) min(r, s)dr ds, (13)

V22(t) =
∫ t

0

∫ t

0

cos (ω0(t− s)) cos (ω0(t− r)) min(r, s)dr ds,

V12(t) = V21(t) =
1
ω0

∫ t

0

∫ t

0

sin (ω0(t− s)) cos (ω0(t− r)) min(r, s)dsdr.

As X0 = 0, expression of the random Euler scheme in this case takes the form

Xn = (I + hA)nX0 + h

n−1∑
i=0

(I + hA)n−i−1C(ti) = h

n−1∑
i=0

(I + hA)n−i−1C(ti)

=
n−1∑
i=0

⎛⎝n−i−1∑
j=0

(
n− i− 1

j

)
Ajhj+1

⎞⎠[ 0
B(ti)

]
.

Hence, as E [B(ti)] = 0, one gets

E [Xn] = 0. (14)

Note that for the matrix A given by (9), it follows that

A2n =
[ (
−ω2

0

)n 0
0

(
−ω2

0

)n ] = (−1)nω2n
0 I, n ≥ 0, (15)

A2n+1 = (−1)nω2n
0

[
0 1
−ω2

0 0

]
= (−1)nω2n

0 A, n ≥ 0, (16)

and

A

[
0

B(t)

]
=
[

B(t)
0

]
, I

[
0

B(t)

]
=
[

0
B(t)

]
,

then, from (14), (15) and (16) one gets

Xn =
n−1∑
i=0

B(ti)
[

cni

dni

]
, (17)

where

cni =
[n−i−1

2 ]∑
j=0

(−1)jω2j
0 h2(j+1)

(
n− i− 1
2j + 1

)
, (18)
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Table 1. Numerical results of the variance with for example 5.1

Points Ṽ11 V11(t) Ṽ22 V22(t) Ṽ21 V21(t)

t = 0.15 2.4 × 10−6 3.7 × 10−6 9.8 × 10−4 1.1 × 10−3 4.6 × 10−5 6.3 × 10−5

t = 0.30 1.3 × 10−4 1.2 × 10−4 8.3 × 10−3 8.8 × 10−3 8.6 × 10−4 9.9 × 10−4

t = 0.55 2.1 × 10−3 2.4 × 10−3 5.0 × 10−2 5.2 × 10−2 1.0 × 10−2 1.0 × 10−2

t = 0.80 1.4 × 10−2 1.5 × 10−2 1.4 × 10−2 1.5 × 10−2 4.4 × 10−2 4.5 × 10−2

t = 1.00 4.2 × 10−2 4.4 × 10−2 2.7 × 10−1 2.7 × 10−1 1.0 × 10−2 1.0 × 10−2

dni =
[n−i−1

2 ]∑
j=0

(−1)jω2j
0 h2j+1

(
n− i− 1

2j

)
. (19)

From (17)–(19) it follows that

Ṽ = Var [Xn] =
n−1∑
i=0

n−1∑
j=0

(min (i, j)) h

[
cnicnj cnidnj

cnjdni dnidnj

]
=
[

Ṽ11 Ṽ12

Ṽ21 Ṽ22

]
.

In Table 1, we compare the variance of the theoretical solution V (t) and
the variance of the approximation random Euler method Ṽ with the step
h = 1/80 and ω0 = 1. It shows that variance of the theoretical solution
and the numerical Euler values are closer as n increases. Furthermore, the
approximation is better when the points are closer to t = 0.
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Summary. We discuss the direct use of cubic-matrix splines to obtain continu-
ous approximations to the unique solution of matrix models of the type Y ′′(x) =
f(x, Y (x)). For numerical illustration, an estimation of the approximation error, an
algorithm for its implementation, and an example are given.

1 Introduction

Matrix initial value problems of the form:
Y ′′(x) = f(x, Y (x))

Y (a) = Y0 , Y ′(a) = Y1

⎫⎬⎭ a ≤ x ≤ b , (1)

are frequently encountered in different fields of physics and engineering (see,
e.g. [Zha02]). In the scalar case, numerical methods for the calculation of ap-
proximate solutions of (1) can be found in [Col93]. For matrix problems, linear
multi-step matrix methods with constant steps have been studied in [Jod93].
Although in this case there exist a priori error bounds for these methods
(expressed as function of the data problem), these error bounds are given
in terms of an exponential which depends on the integration step h. There-
fore, in practice, h will take too small values. Problems of the type (1) can
be written as an extended first-order matrix problem. Such a standard app-
roach, however, involves an increase of the computational cost caused by the
increase of the problem dimension. Recently, cubic-matrix splines were used
in the resolution of first-order matrix differential systems [Def06], obtaining
approximations that, among other advantages, were of class C1 in the inter-
val [a, b], and easy to compute producing an approximation error O(h4). The
present work extends this powerful scheme to the solution of matrix problems
of type (1). Throughout this work, we will adopt the notation for norms and
matrix cubic splines as in [Def06] and common in matrix calculus. The chapter
is organized as follows. Section 2 develops the proposed method. Finally, in
Sect. 3, an example is presented.
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2 Construction of the Method

Let us consider the initial value problem

Y ′′(x) = f(x, Y (x))

Y (a) = Y0 , Y ′(a) = Y1

⎫⎬⎭ a ≤ x ≤ b , (2)

where Y0, Y1, Y (t) ∈ Cr×q, f : [a, b]× Cr×q× �−→ Cr×q, f ∈ C0 (T ), with

T =
{
(x, Y ) ; a ≤ x ≤ b , Y ∈ Cr×q

}
, (3)

and f fulfills the global Lipschitz’s condition

‖f (x, Y1) − f (x, Y2)‖ ≤ L ‖Y1 − Y2‖ , a ≤ x ≤ b , Y1, Y2 ∈ Cr×q . (4)

Let us also use the partition of the interval [a, b] defined by

∆[a,b] = {a = x0 < x1 < . . . < xn = b} , xk = a + kh , k = 0, 1, . . . , n , (5)

where h = (b − a)/n, n being a positive integer. We will construct in each
subinterval [a + kh, a + (k + 1)h] a matrix-cubic spline approximating the
solution of problem (2). For the first interval [a, a + h], we consider that the
matrix-cubic spline is given by

S|[a,a+h]
(x) = Y (a) + Y ′(a)(x−a) +

1
2!

Y ′′(a)(x−a)2 +
1
3!

A0(x−a)3 , (6)

where A0 ∈ Cr×q is a matrix parameter to be determined. It is straightforward
to check: S|[a,a+h]

(a) = Y (a), S′
|[a,a+h]

(a) = Y ′(a), S′′
|[a,a+h]

(a) = Y ′′(a) =

f(a, S|[a,a+h]
(a)). Thus, (6) satisfies the equations of problem (2) at point

x = a. To fully construct the matrix-cubic spline, we must still determine A0.
By imposing that (6) is a solution of problem (2) in x = a + h, we have:

S′′
|[a,a+h]

(a + h) = f
(
a + h, S|[a,a+h]

(a + h)
)

, (7)

and obtain from (7) the matrix equation with only one unknown matrix A0:

A0 =
1
h

[
f

(
a + h, Y (a) + Y ′(a)h +

1
2
Y ′′(a)h2 +

1
6
A0h

3

)
− Y ′′(a)

]
. (8)

Assuming that the matrix equation (8) has only one solution A0, the matrix-
cubic spline is totally determined in the interval [a, a + h]. Now, in the next
interval [a + h, a + 2h], the matrix-cubic spline is defined by:

S|[a+h,a+2h]
(x) = S|[a,a+h]

(a+h)+S′
|[a,a+h]

(a+h)(x− (a + h))

+
1
2!

S′′
|[a,a+h]

(a+h)(x−(a+h))2+
1
3!

A1(x−(a+h))3, (9)



Cubic-Matrix Splines and Second-Order Matrix Models 951

so that S(x) is of class C2([a, a+h]∪ [a+h, a+2h]), and all of the coefficients
of matrix-cubic spline S|[a+h,a+2h]

(x) are determined with the exception of

A1 ∈ Cr×q. By construction, matrix-cubic spline (9) satisfies the differential
equation (2) in x = a+h. We can obtain A1 by requiring that the differential
equation (2) holds at point x = a + 2h:

S′′
|[a+h,a+2h]

(a + 2h) = f
(
a + 2h, S|[a+h,a+2h]

(a + 2h)
)

.

Expanding, we obtain the matrix equation with only one unknown matrix A1:

A1 =
1
h

[
f

(
a+2h, S|[a,a+h]

(a+h)+S′
|[a,a+h]

(a+h)h

+
1
2
S′′
‖[a,a+h]

(a+h)h2+
1
6
A1h

3

)
− S′′

|[a,a+h]
(a+h)

]
. (10)

Let us assume that the matrix equation (10) has only one solution A1.
This way the spline is now totally determined in the interval [a + h, a +
2h]. Iterating this process, let us construct the matrix-cubic spline tak-
ing [a + (k − 1)h, a + kh] as the last subinterval. For the next subinterval
[a + kh, a + (k + 1)h], we define the corresponding matrix-cubic spline as

S|[a+kh,a+(k+1)h]
(x) = βk(x) +

1
3!

Ak(x− (a + kh))3

where βk(x) =
2∑

l=0

1
l!

S
(l)

|[a+(k−1)h,a+kh]
(a + kh)(x− (a + kh))l . (11)

With this definition, it is S(x) ∈ C2

⎛⎝ k⋃
j=0

[a + jh, a + (j + 1)h]

⎞⎠ which fulfills

the differential equation (2) at point x = a+kh. As an additional requirement,
we assume that S(x) satisfies the differential equation (2) at the point x =
a + (k + 1)h, i.e.

S′′
|[a+kh,a+(k+1)h]

(a+(k+1)h) = f
(
a+(k+1)h, S|[a+kh,a+(k+1)h]

(a+(k+1)h)
)

.

Subsequent expansion of this equation with the unknown matrix Ak yields

Ak =
1
h

[
f

(
a + (k + 1)h, βk(a + (k + 1)h) +

1
6
Akh

3

)
− β′′

k (a + (k + 1)h)
]

.

(12)

Note that this matrix equation (12) is analogous to equations (8) and (10),
when k = 0 and k = 1, respectively. For a fixed h, we will consider the matrix
function of matrix variable g : Cr×q �→ Cr×q defined by

g(T ) =
1
h

[
f

(
a + (k + 1)h, βk(a + (k + 1)h) +

1
6
Th3

)
− β′′

k (a + (k + 1)h)
]

.
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Relation (12) holds if and only if Ak = g(Ak), that is, if Ak is a fixed point for
function g(T ). Applying the global Lipschitz’s conditions (4), it follows that

‖g(T1)− g(T2)‖ ≤ Lh2

6 ‖T1 − T2‖ . Taking h <
√

6
L , g(T ) yields a contractive

matrix function, which guarantees that (12) has unique solutions Ak for k =
0, 1, . . . , n−1. Hence, the matrix-cubic spline is now fully determined. Taking
into account [Los67, Theorem 5], the following result has been established:

Theorem 1. If h <
√

6
L , then the matrix-cubic spline S(x) exists in each

subinterval [a + kh, a + (k + 1)h], k = 0, 1, . . . , n−1, as defined by the previous
construction. Furthermore, if f ∈ C1(T ), then ‖Y (x)− S(x)‖ = O(h3) ∀x ∈
[a, b], where Y (x) is the theoretical solution of system (2).

Depending on the function f , matrix equations (8) and (12) can be solved
explicitly or by using some iterative method [Ort72]. Summarizing, we have
the following algorithm:

– Take n >
(b− a)

√
L√

6
, h = (b− a)/n and [a, b] defined by (5).

– Solve (8) and determine S|[a,a+h]
(x) defined by (6).

– For k = 1 to n − 1, solve (12). Determine S|[a+kh,a+(k+1)h]
(x) defined

by (11).

3 Example

The problem
Y ′′(t) + AY (t) = 0 , (13)

with Y (0) = Y0, Y ′(0) = Y1, has the exact solution

Y (t) = cos (
√

At)Y0 +
(√

A
)−1

sin (
√

At)Y1 ,

where
√

A denotes any square root of a non-singular matrix A [Har05]. The
principal drawback of this formal solution is the difficult computation of

√
A,

cos (
√

At) and sin (
√

At). The proposed method avoids this drawback. We

consider problem (13) where A =
(

1 0
2 1

)
, Y0 =

(
0 0
0 0

)
, Y1 =

(
1 0
1 1

)
, t ∈

[0, 1], whose exact solution is Y (t) = sin
[(

1 0
1 1

)
t

]
=
(

sin (t) 0
t cos (t) sin (t)

)
. In

this case L ≈ 2.82843. By Theorem 1, we need to take h < 1.45647, so we
choose h = 0.1 for example. The results are summarized in the following table,
where the numerical estimates have been rounded to the fourth relevant digit.
In each subinterval, we evaluated the difference between the estimates of our
numerical approach and the exact solution. The maximum of these errors are
indicated in the third column.



Cubic-Matrix Splines and Second-Order Matrix Models 953

Interval Approximation Max. error

[0, 0.1]

(
x−0.1664x3 0
x−0.4986x3 x−0.1664x3

)
1.0072×10−6

[0.1, 0.2]

(
1.00005x−0.0005x2−0.1647x3 0
1.0002x−0.0025x2−0.4903x3 1.0001x−0.0005x2−0.1647x3

)
6.3032×10−6

[0.2, 0.3]

(
1.0005x−0.0025x2−0.1614x3 0

−0.0001 + 1.0022x−0.0124x2−0.4738x3 1.0005x−0.0025x2−0.1614x3

)
2.0059×10−5

[0.3, 0.4]

(
−0.0002 + 1.0018x−0.0069x2−0.1565x3 0
−0.0008 + 1.0088x−0.0344x2−0.4494x3 −0.0002 + 1.0018x−0.0069x2−0.1565x3

)
4.6213×10−5

[0.4, 0.5]

(
−0.0006 + 1.0049x−0.0147x2−0.1500x3 0
−0.0028 + 1.0242x−0.0728x2−0.4174x3 −0.0006 + 1.0049x−0.0147x2−0.1500x3

)
8.8359×10−5

[0.5, 0.6]

(
−0.0016 + 1.0109x−0.0266x2−0.1420x3 0
−0.0077 + 1.0536x−0.1316x2−0.3782x3 −0.0016 + 1.0109x−0.0266x2−0.1420x3

)
1.4964×10−4

[0.6, 0.7]

(
−0.0036 + 1.0210x−0.0436x2−0.1327x3 0
−0.0176 + 1.1030x−0.2140x2−0.3324x3 −0.0036 + 1.0210x−0.0436x2−0.1327x3

)
2.3267×10−4

[0.7, 0.8]

(
−0.0073 + 1.0368x−0.0661x2−0.1219x3 0
−0.0354 + 1.1791x−0.3227x2−0.2807x3 −0.0073 + 1.0368x−0.0661x2−0.1219x3

)
3.3941×10−4

[0.8, 0.9]

(
−0.0134 + 1.0597x−0.0947x2−0.1100x3 0
−0.0646 + 1.2885x−0.4595x2−0.2237x3 −0.0134 + 1.0597x−0.0947x2−0.1100x3

)
4.7114×10−4

[0.9, 1]

(
−0.0229 + 1.0914x−0.1299x2−0.0970x3 0
−0.1093 + 1.4378x−0.6253x2−0.1623x3 −0.0229 + 1.0914x−0.1299x2−0.0970x3

)
6.2838×10−4
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Color Plates

Fig. 1. (Capasso et al, p. 6) Fig. 2. Vascularization of an allantoid [Credit:
Dejana et al. 2005]

Fig. 2. (Capasso et al, p. 7) Fig. 3. Left : Angiogenesis on a rat cornea [Credit:
Dejana et al. (2005). The white spot is a pellet implanted in the cornea containing
an angiogenetic substance, emulating the effect of a tumor. Right : A simulation of
an angiogenesis due to a localized tumor mass (black region on the right) (from
[CA99])
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Fig. 3. (Capasso et al, p. 7) Fig. 4. Response of a vascular network to an anti-
angiogenic treatment (from [JK01])
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Fig. 4. (Capasso et al, p. 32) Fig. 18. Vascularization in allantoids. First line,
from left to right : control experiment (untreated), treated with 0.75 mg of antian-
giogenetic substance, treated with 1 mg of antiangiogenic substance. Second line:
scheletonization of the upper images. Third line: 2D representation of the intensity
estimate of the fibres in the skeletons; the space has been divided into ten spherical
concentric shells. Bottom line: comparison of the radial estimates of the intensities
of the three allantoids
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Fig. 5. (Barrero et al, p. 39) Fig. 1. Cone, jet and spray in an electrospray; the
electrosprayed liquid was methanol. The size of the charged droplets ranged between
380 and 720 nm, which are the wavelength of the blue and red radiation. As shown
in the picture, droplets scatter the blue component avoiding its pass throughout the
spray while the other components of the white light pass through the droplet cloud

Fig. 6. (Barrero et al, p. 43) Fig. 5. Collection of near monodisperse capsules.
Magnified views of two capsules formed under different parametrical conditions are
also given in the two pictures on the right. In the upper one picture, the outer
diameter is 10 µm, whereas the diameter of the capsule shown in the lower one is
8 µm
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Fig. 7. (Barrero et al, p. 46) Fig. 8. Taylor cone of glycerol in a bath of hexane.
The needle OD is 0.8 mm. The hydrosol in this case is formed by droplets of two
different sizes: the main droplets, of 2 µm in diameter, and the satellite droplets, of
about 0.8 µm in diameter

Fig. 8. (Bermúdez et al, p. 49) Fig. 1. Induction system

Fig. 9. (Bermúdez et al, p. 49) Fig. 2. Induction furnace
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Fig. 10. (Bermúdez et al, p. 51) Fig. 3. Sketch of the induction furnace and
diametral section

Fig. 11. (Bermúdez et al, p. 62) Fig. 10. Temperature field for t = 30 min (left)
and t = 180 min (right)
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Fig. 12. (Bermúdez et al, p. 62) Fig. 11. Silicon temperature for t = 30 min
(left) and t = 180 min (right)

Fig. 13. (Bermúdez et al, p. 63) Fig. 12. Modulus of current density for t =
30 min (left) and t = 180min (right)
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Fig. 14. (Bermúdez et al, p. 63) Fig. 13. Temperature with and without con-
vection term (t = 180 min)
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Fig. 15. (Bermúdez et al, p. 64) Fig. 15. Velocity field t = 90 min (left) and
t = 180 min (right)
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Fig. 16. (Degond et al, p. 116) Fig. 2. Evolution of the density from the peak
(applied bias: 0.25 V) to the valley (applied bias: 0.31 V)
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Fig. 17. (Degond et al, p. 117) Fig. 3. Density at the peak (applied bias: 0.25 V)
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Fig. 18. (Degond et al, p. 118) Fig. 4. Density at the valley (applied bias:
0.31 V)
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Fig. 19. (Cossu et al, p. 144) Fig. 5. Smoke flow visualizations from above
with flow from left to right. (a) and (b) show the two-dimensional boundary layer,
without streaks, with no excitation and with excitation of 201 mV, respectively. The
flow in (b) is turbulent. (c) shows the streaky base flow with no excitation. In the
presence of streaks with excitation of 450 mV (d), the flow remains laminar. (e)
shows a half-streaky boundary layer obtained removing half the roughness elements
and without forcing. With a forcing at 157 mV (f) the streaky part of the boundary
layer remains laminar while the uncontrolled part undergoes transition (adapted
from [FTBC06])
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Fig. 20. (Martel et al, p. 161) Fig. 1. Neutral stability curves
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Fig. 21. (Martel et al, p. 161) Fig. 2. Wavenumber and damping rate vs.
R = Re1/2 for fixed ω
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Fig. 22. (Martel et al, p. 166) Fig. 6. Streamwise perturbation velocity contours
for the WT wave amplitudes corresponding to the dots marked in Fig. 5 (a =
0, 0.0025, 0.004 and 0.005 from left to right and top to bottom)
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Fig. 23. (González, p. 200) Fig. 4. Eigenfunction û pertaining to the least-
damped mode of a single Batchelor vortex at Re = 100, β = 0.418

Fig. 24. (Corral et al, p. 216) Fig. 2. SG readings for a aerodynamically unstable
LPT rotor blade
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Fig. 25. (Serna, p. 234) Fig. 1. Left : MFF-WENO. Right : MFF-Weighted
PowerENO
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Fig. 26. (Linn et al, p. 252) Fig. 1. Sequential deformation of a discrete,
hyperelastic Kirchhoff rod of symmetric cross section: (a) Starting from a circle
segement, the tangents of the boundary frames are bent inward to produce (b)
an (upside down) Ω-shaped deformation of the rod at zero twist. To demonstrate
the effect of mutual coupling of bending and torsion in the discrete model, the
boundary frame at s = L is twisted counterclockwise by an angle of 2π while the
other boundary frame at s = 0 is held fixed. The pictures (c)–(f) show snapshots
of the deformation state taken at multiples of π/2. The overall deformation from
(a) to (f) was split up into a sequence of 25 consecutive changes of the boundary
conditions defined by the terminal frames of the rod. For a discretization of the cable
into 10 segments, the simulation took 150 ms on 1 CPU of an AMD 2.2 GHz double
processor PC, which amounts to an average computation time of 6 ms per step

Fig. 27. (Speckert et al, p. 257) Fig. 2. Old (left) and new (right) design of the
hexapod
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Fig. 28. (Svanstedt, p. 321) Fig. 1. Periodic cell solution (no convection)

Fig. 29. Svanstedt, p. 321) Fig. 2. Periodic cell solution (large convection)

Fig. 30. (Neuss, p. 327) Fig. 1. Ωε with the initial mesh T ε
h and uε

h
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Fig. 31. (Castro et al, p. 359) Fig. 2. Screenshot of the post-processing tool

Fig. 32. (Castro et al, p. 360) Fig. 3. Mero river flood simulation
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Fig. 33. (Ariza et al, p. 391) Fig. 2. Simulation cell containing one million
Vanadium atoms. Slipped atoms after equilibration

Fig. 34. (Jauho, p. 405) Fig. 1. A semiconductor nanowire grown at Lund
University. The different colors indicate different materials, with different band-gaps.
From [Sam03]

(a) (b) (c) (d) (e)

L

Fig. 35. (Jauho, p. 413) Fig. 8. Generic gold wire supercells containing 3–7
atoms bridging pyramidal bases connected to stacked Au(100) layers
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Fig. 36. (Jauho, p. 414) Fig. 9. Comparison between theory and experiment
[AURV02] for the inelastic conductance of an atomic gold wire. The measured
charactersitics correspond to different states of strain of the wire (around 7 atoms
long). The calculations are for the 7 atom wire at L = 29.20 Å. (Reproduced from
[FPBJ06])

Fig. 37. (Donarini, p. 437) Fig. 3. Phase space picture of the tunnelling-to-
shuttling transition. The respective rows show the Wigner distribution functions for
the discharged (W00), charged (W11), and both (Wtot) states of the oscillator in the
phase space. (Γ = 0.05, λ = 1)
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Fig. 38. (Cortijo et al, p. 492) Fig. 2. First order correction to the local density
of states in a region around two pairs of heptagon–pentagon defects located out of
the image for increasing values of the energy

Fig. 39. (Al̀ı et al, p. 503) Fig. 2. Sensitivity for Dirichlet b.c. (left) and Neumann
b.c. (right)

Fig. 40. (Angulo, p. 544) Fig. 1. Microscopic cell images (left), segmented cell
shapes to be analysed (right)
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Fig. 41. (Angulo, p. 545) Fig. 2. Left, cell population based high content toxicity
biosensor, three examples of toxic concentration. Right, pattern spectra, PS(f, n),
with openings (for size/shape description) and closing (for aggregation study) of size
n = −30 to 30

Fig. 42. (Angulo, p. 547) Fig. 3. Erythrocyte shape analysis: morphological
algorithm for detecting extrusions (left) and intrusions (right)

Fig. 43. (Kowar, p. 552) Fig. 3. Positive and negative part of a 3-D transducer
pressure field with a pulse of 30 cycles. The reconstruction is performed with the lop-
ing Landweber–Kaczmarz method and the data is provided by GE Medical Systems
Kretz Ultrasound
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Fig. 44. (Morozova et al, p. 556) Fig. 2. 1D model with branching. Branching
patterns for different values of parameters in the branching conditions

Fig. 45. (Morozova et al, p. 557) Fig. 3. 2D simulations. Nutrients are supplied
through the internal rectangle (left) or through the internal circle: model without
merging (center), model with merging (right)
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Fig. 46. (Dorn et al, p. 590) Fig. 1. Reconstruction of a small sphere. The true
object is displayed in gray colour, and the reconstructed object by black colour in
each iteration. Top left : after one iteration; top right : after 100 iterations; bottom
left : after 500 iterations. The bottom right shows the evolution of the cost

z=26.3

1

2

3

4

5

6
z=21.0

1

2

3

4

5

6
z=17.2

1

2

3

4

5

6

z=11.0

1

2

3

4

5

6
z=8.3

1

2

3

4

5

6
z=1.0

1

2

3

4

5

6

z=26.3

1

2

3

4

5

6
z=21.0

1

2

3

4

5

6
z=17.2

1

2

3

4

5

6

z=11.0

1

2

3

4

5

6
z=8.3

1

2

3

4

5

6
z=1.0

1

2

3

4

5

6

Fig. 47. (Polydorides, p. 612) Fig. 1. Planes of the simulated (left) and recon-
structed (right) conductivity distributions
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Fig. 48. (Panda et al, p. 686) Fig. 1. Glass wool production: plant, sketch,
simulated fiber motion

Fig. 49. (Al̀ı et al, p. 737) Fig. 1. The demonstrator platform architecture

Fig. 50. (Bermúdez et al, p. 794) Fig. 1. Model results
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Fig. 51. (Arana et al, p. 816) Fig. 4. Electric field profiles during self-oscillations
in a dc voltage biased 61-period undoped SL having a configuration as in Fig. 1. The
voltage between the two ends of the SL is 1.765 V and the contact resistivities are
9.07 (i = 0) and 8.87 Ωcm (i = N)

Fig. 52. (Bermúdez et al, p. 837) Fig. 4. Electromagnet. Intensity of the mag-
netic induction field, |B| in Ω
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Götz, T., 683, 697

Grasso, G.M., 731

Gravesen, J., 719

Guinea, F., 483, 494

Günther, M., 691

Haworth, H., 630

Heiliö, M., 729, 741

Helmig, R., 333

Helzel, C., 312

Hervás, A., 949

Honnorat, M., 361

Howison, S., 613

Igual, L., 863

Iguernane, M., 817
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Méhats, F., 106
Mendez, B., 753

Merino-Garcia, D., 307
Micheletti, A., 3, 123, 537, 538
Micheletti, S., 500
Mieloch, K., 928
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Santamaŕıa, C., 868
Schmitz, K., 613
Schürrer, F., 531
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