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Summary. The first part of the paper aims to stressing the analogy between condi-
tional inference and abductive inference, making evident that in both cases what is
here called “reasonable” inference involves a choice between a finite set of incompat-
ible conclusions, selecting the most information preserving-consequent in the case of
standard conditionals and the most information-preserving antecedent in the case of
abductive conditionals. The consequentialist view of conditionals which is endorsed
in this perspective is then extended to cover the case of higher degree condition-
als, introducing in the semantical analysis the notion of inferential agents reasoning
about the activity of other inferential agents. It is then shown (i) that iterated
conditionals are essential in the treatment of redundant causation (ii) that abduc-
tive conditionals are essential parts of iterated conditionals in the analysis of causal
preemption (iii) that there is a widespread use of second-degree conditionals involv-
ing first degree abductive conditionals. The final section is devoted to remind that
Peirce’s original notion of abductive inference was actually defined in terms of second
degree conditionals.

1 The Notion of ε-implication

There is no doubt that Stalnaker-Lewis conditional logics introduced an
important change of paradigm in the study of conditional inference1. How-
ever, many features of the theorems involving Stalnaker-Lewis conditionals
have been object of criticism inasmuch as the truth of such conditionals turns
out to prescind from any kind of relevance or dependence nexus between the
clauses. In front of such difficulty a natural move has been to go back to the
tradition of the so-called “consequentialist” theory of conditionals originally
proposed by Chisholm, Goodman and Reichenbach in the ’40, when the tool
of possible-worlds semantics was not yet developed. The present author has

1 For a survey on conditional logics, see Nute [11], where Stalnaker-Lewis systems
are termed “minimal change theories”.
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defended the idea that the consequentialist view, in the form of what here
will be called reasonable inference, grants a unified treatment of counterfac-
tual, inductive and abductive conditionals. However, even in this trend of
investigations, little attention has been given to two points which I will try
to focus in the following sections: a) Higher degree conditionals, i.e. condi-
tionals having other conditionals as antecedents or consequents, are essential
to the reconstruction of scientific reasoning, even when they do not appear
in the superficial structure of the statements. b) The consequentialist view is
able to provide a clear and straightforward semantical interpretation of higher
degree conditionals and grants a deeper understanding of the relation between
counterfactual and abductive conditionals2.

The treatment will be semiformal. However, it is useful to presuppose
a formal language which may provide a joint formal representation of both
probabilistic and modal notions. Fattorosi-Barnaba’s and Amati’s [5], for
example, offers the instance of a system for additive graded modalities
which may be chosen as a reference formal system. If ♦nA is intended as
A is probable at degree > n, ♦A is coincident with ♦0A and �A with �0A.
Pr(A) = n may be then put equivalent to ¬♦nA ∧ ¬♦1−n¬A and Pr(B|A)
may then be defined in terms of B and A in a standard way, i.e. as:

Pr(A ∧B)
Pr(A)

(Pr(A) �= 0)

In this linguistic framework other operators may be introduced by defini-
tion. For instance, if ε is a negligible value ≥ 0, we may define what we may
call ε-implication in this way:

(1) A ε → B =Df Pr(B|A) = 1− ε

The notion of information content in terms of possible world semantics is
that A ε-implies B iff “almost all the accessible A-worlds are B-worlds”. The
notion of information content (Cont) for sake of simplicity will be introduced
here by definition as Cont(B|A) =Df 1− Pr(B|A)3.

Some obvious properties of this notion are:

1. Pr(A) = 1− Cont(A)
2. Cont(A ∧B) = Cont(A) + Cont(B)− Cont(A ∨B)
3. Cont(A ∧B) ≥ Cont(A)

What about the information content of a physical law L? According to an
extensionalist view of laws, a law L is an infinitary conjunction of statements.
So in normal contexts it happens that if A is any finitary truth-functional
and non contradictory statement, Cont(L) > Cont(A). Let us recall that in

2 For a first outline of this theory see Pizzi [14].
3 For this definition see for instance Hintikka [2].



Abductive Inference and Iterated Conditionals 367

Carnap’s inductive logic any physical law receives probability value 0 – so it
has information content 1 – while in Hintikka’s inductive logics laws receive
a probability value which is different from 0 but anyway low4. These results
give substance to the idea that every law will be normally more informative
than every finite combination of single facts. Something should be said about
the controversial question of second or higher degree probabilities, so about
the content of probabilistic statements5. We are especially interested in giving
a value to Cont(A ε → B), i.e. to the content of Pr(B|A) = 1 − ε. There is
no problem in introducing a S4-style axiom for Pr. i.e.

(2) Pr(q|p) = 1− ε ⊃ Pr(Pr(q|p) = 1− ε) = 1− ε

From (2) of course, if ε is 0 and p is a tautology �, we have:

(3) �q ⊃ ��q

This minimal principle is however not of help in evaluating the content of a
conditional. As we will say in the next section, in evaluating an argument from
A to B, we should take care of the laws which are essentially used in the argu-
ment itself. This suggests that the information value of a conditional should
be proportional to the information content of the laws essentially involved in
the derivation, and such a content, as already said, is very high. This crite-
rion marks a difference between what we shall call rational and reasonable
inference.

2 Rational and Reasonable Inference

A basic idea that we intend to develop here is that every rational inference
rests on the choice of the best consequent in a set of consequents or in the
choice of the best antecedent among a class of possible antecedents for a given
consequent. But which is the best consequent or the best antecedent? We
could leave this notion sufficiently vague or we can make it depend on some
variable parameter of evaluation6, but here we prefer a non-neutral policy:
the best inferential conclusions will be here defined as the ones which are
more information-preserving with respect to some given set of background
knowledge K. Let us call CR (Corpus Rationale) the infinite set of all true
statements, including the laws L1 . . . Ln. CR is closed under logical rules and
may be thought as the infinite set of sentences describing the actual world
w◦. Let K be a finite subset of CR containing a finite set of true statements
and a theory T consisting of a finite subsets of the laws in CR. Let use K
to denote the conjunction of the members of K. K(A) will be a subset of K

4 See Carnap [1] and Hintikka [3, 4].
5 For a recent approach to higher degree probabilities see [6].
6 See for instance Rescher [19].
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revised in dependence of A. Of course K(�) = K More specifically, K(A) is
a subset of K which is obtained by selecting the most informative statements
of K compatible with A. Let us consider, to begin with, the case in which A
and B are truth-functional statements. The symbol >C in wffs whose form
is A >C Ci will be used for standard conditionals, namely for conditionals
which are factual, afactual or counterfactual.

Given a certain finite set K with respect to which the conditional is eval-
uated as true or false, there are two possibilities to be considered:

(a1) ♦(K ∧A) (a2) ¬♦(K ∧A)

In the first case the conditional is afactual or factual, in the second case
it is counterfactual7. We will say that A >C Ci is true or false with respect
to K only if there are at least two statements Ci and Cj such that:

b.1 ¬♦(K ∧A ∧ Ci ∧ Cj)
b.2 There are at least two Ki,Kj ⊆ K such that ♦(A ∧Ki) and ♦(A ∧Kj)
b.3 (A ∧Ki ε− implies Ci) and (A ∧Kj ε− implies Cj)
b.4 Cont(A ∧Ki) � Cont(A ∧Kj)

The underlined clause b.4 makes it clear that Ci is the preferred conclusion
due to the fact that Ki is a subset of K which ε-implies Ci and has higher
information content than the rival set Kj. An instance of rational inference is
offered by the choice between the following two counterfactuals:

(4) If Socrates were a donkey, Socrates would be four-legged: A >C C1

(5) If Socrates were a donkey, Socrates would be a two-legged donkey: A >C

C2

Here K1 is {Every donkey is four-legged}, K2 is {Socrates is two legged},
K is {Socrates is not a donkey} ∪ K1 ∪K2. The theory T is the law in K1.
The two conclusions C1 and C2 are incompatible, and a fortiori A,C1, C2 form
an incompatible triad. The counterfactual (4) is “true” because its rival (5)
relies on a set K2 which has a lower information content, due to the fact that
this singular statement is less informative than the laws belonging to K1. The
case of factual or afactual conditionals suggests that we have to extend our
conditions by making the further assumption that K should be always contain
inside T the metalaw known as principle of Uniformity of Nature (UN). As
Goodman showed in the grue-bleen paradox, one could infer both Ci and Cj

from the same premise A, but if we have in K also UN the conclusion, say,
that emeralds will be blue after 3000 is incompatible with the consequence of
UN stating that the properties of substances are spatio-temporal invariant8.

7 The factual conditionals, or since-conditionals, are conditionals such that A
belongs to K, while this is not required in afactual conditionals.

8 In Rescher [19] a coherence theory of inductive reasoning is introduced. If 100
black ravens have been observed, this is compatible with the conclusion that
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Remark 1. In case there is a tie between different subsets Ki and Kj leading
to incompatible conclusions (as in the famous Bizet-Verdi case) we are not
in conditions to choose between Cont(A ∧Ki) and Cont(A ∧Kj) since they
are identical. So both conditionals are false. This is what has been called a
Gestalt Effect in Pizzi [13].

The relativization to K of the truth of A > Ci might be dropped by
existential quantification over K, in other words by saying that there is some
K that has the mentioned properties. The minimal set of conditions b1-b4)
is sufficient to define what we could call rational inference, but it is plausibile
to require a further restriction. Such condition says that whenever any Ki ∧
A ε-implies some Ci all the elements of Ki must have the property of being
essential to such a derivation (otherwise the information content of Ki could
turn out to be higher than the content of Kj simply for the occurrence in it
of some irrelevant statement A). This means that, for every P belonging to
some Ki, we have to require also the following condition beyond b1–b4:

c) For every P and every Ki, if P belongs to Ki and Ki ∧ A ε −
implies B, the conjunction of statements belonging to {Ki − {P}} ∪
{A} does not ε-imply B.

Note that clause c) solves many cases of irrelevance due to the high prob-
ability of the conclusion. If for instance Pr(Ci) = 1 − ε , it follows that, for
every consistent A,Pr(Ci|A) = 1− ε, but this makes irrelevant every element
of Ki since it is drawn simply via the laws of the background logic. In the
same vein, notice that if Ki contains only B and A this does not legitimate
A >C B even if Pr(B|A ∧ Ki) = 1 for every A and every B. This feature
marks an important difference with Stalnaker-Lewis logics, since they accept
the controversial law:

(A ∧B) ⊃ (A >C B)

Given the preceding conditions, we might distinguish between rational and
reasonable inference, by asking that an inference is reasonable when and only
when it satisfies beyond b1)-b4) the supplementary clause c). So every rea-
sonable inference is also rational, but not vice versa9.

the next raven will be black and also with the conclusion that the next raven
will be of some other color. But since we have to choose, in Rescher’s view, the
“most plausible” subset, we are guided by a rule which says “When the initial
evidence exhibits a marked logical pattern, then pattern- concordant statements
are – ceteris paribus – to be evaluated as more plausibile than pattern-discordant
ones” (p. 226). This criterion introduces a certain arbitrarity, while the Principle
of the Uniformity of Nature appears to provide a firmer foundation to inductive
reasoning.

9 The distinction here drawn between rational and reasonable inference could be
different if the comparison were made between epistemic utilities and not between
information contents. On the notion of epistemic utility see Hintikka and Pietari-
nen [4].
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Up to now we have characterized the properties of factual, afactual
and counterfactual conditionals. What about abductive conditionals? Let us
introduce the symbol >A to denote the abductive conditional. For instance
A >A Ci may be “the match lit (A), so it has been scratched (Ci)” or also
“if the match lit, this means that it has been scratched”. The reliability of
the conclusion lies in the fact that it is preferred in the set of other possible
incompatible conclusions, as for instance the one embodied in the conditional
“the match lit, so it has been put into fire”. It is remarkable that abductive
reasoning has important features in common with counterfactual reasoning,
abstracting from the fact that the antecedent is normally belived to be true
and not false. In both cases, in fact, we are faced with a rational choice
between incompatible conclusions. Let A be “Smith has been killed”. Let K
be for example a set which includes

1. Smith has been killed in New York by only one person who had the keys
of the room

2. No one had the keys except Brown and White
3. White was in Patagonia at the moment of the murder
4. White had a strong interest in killing Smith.

A consequence of K is the disjunction:
D : Brown is the murderer or Smith is the murderer (C1 ∨ C2)

Now there is a subset Ki of K i.e. {1, 2, 3} such that jointly with A
ε-implies

5. Brown is the murderer (C1)
while another subset Kj {1, 2, 4} jointly with A ε -implies

6. White is the murderer (C2)

Note that 5) and 6) are incompatible if conjoined with K, since the premise
1) in K states that only one person was responsible of the murder. The condi-
tional “Smith has been killed, so from the given information [it is reasonable
to conclude that] Brown is the murderer” (A >A C1) is a synthetic expression
of what we call here an abductive conditional. What is the specific difference
between the reasoning underlying a C-conditional and an A-conditional? Let
us recall the schema of Hempel-Oppenheim’s Statistical Inference: as is well
known, such an inference requires a rule of high probability and also the essen-
tiality of the items occurring in the antecedent. Any C-conditional A >C C
implies that there is a potential explanans involving A conjoined with various
true presuppositions Ki and an explanandum C. But in the case of abductive
conditionals the inference, given a certain stock of true presuppositions, is
not from the explanans to the explanandum but in the reverse direction. If
A is an explanandum, given a certain amount of information represented by
Ki, we have at least two explanantia Ki ∧ Ci and Kj ∧ Cj . The schema of
ε-implication is as before, with two important points of difference. In fact we
have not as before
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b.4 Cont(A ∧Ki) � Cont(A ∧Kj)

but

b.4∗ Cont(Ci ∧Ki) � Cont(Cj ∧Kj)

Furthermore, the relation between Ci and A is always definable via ε-
implication, but we have in place of b.3 what follows:

b.3∗ Ci ∧Ki ε -implies A and Cj ∧Kj ε -implies A.

The interesting point of agreement is that, in the case of the example, this
choice is performed on the basis that the supposition Ci (that Brown is the
murderer) implies the explanandum A thanks to a set of data which save more
information than the alternative supposition Cj : so Ci is a component of the
best explanation, in Hempel’s sense, of A.

The two characterizations which we have given for >C and >A suggest that
we could define an abstract notion of a reasonable inference. This step can be
made in different ways. A possibility is to say that a conditional represents
a reasonable inference if it is either a C-conditional A >C C satisfying the
clauses b1)–c) of p. 371 or the converse abductive conditional C >A A. We
may define then a connective >> as follows:

(Def >>) A >> C =Df A >C C ∨ C >A A

A rough characterization of >> is in saying that C is the best explanatory
consequent of A or A is (part of the) best explanatory antecedent of C. Clearly
A >> C is independent from the converse C >> A, which is equivalent to
C >C A ∨ A >A C, so >> is not a symmetric relation. We expect that the
two following properties hold for >>:

TB1 (A >> C) ⊃ ¬(A >> ¬C)
TB2 (A >> C) ⊃ ¬(¬A >> C)10

Needless to say, >A, >C , >> are all non contrapositive. Furthermore, no
one of them satisfies Modus Ponens. This is especially clear for the abductive
conditionals. To say that A is the best available explanation of C does not
mean that A is true given that C is true. In order to reach this conclusion we
need a counterproof of A, or some independent evidence for it.

3 Iterated Conditionals and Causal Reasoning

To complete the theory of rational/reasonable inference an important detail
needs to be added. The definition of rational and reasonable inference has
been introduced in 2) with the restrictive clause that the antecedent clause A
and the consequent C are truth-functional statements. But we have to face

10 For this couple of formulas, often termed “Boethius’ Theses”, see Pizzi [15].
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the possibility that a conditional contains another (negated or non-negated)
conditional in the antecedent or in the consequent, giving rise to statements
which have been named “embedded”, “nested” or “iterated” conditionals. The
first question to treat in this connection concerns the fact that it has been
sometimes claimed that nesting of conditional antecedents lacks an indepen-
dent sense. This skepticism is embodied in so called Generalized Stalnaker’s
Thesis.

(GST ) Pr(B > C/A) = Pr(C/A ∧B) (Pr(A ∧B) �= 0)

But here we have to consider a famous counterexample suggested by R.
Thomason:11

(Th) If the glass would break if thrown against the wall, then it would
break if dropped on the floor.

As Thomason remarked, the logical form of (Th) cannot be A > B |= C >
D, but (A > B) > (C > D). In fact (Th) exhibits the failure of weakening –
which is typical of >, not of |= – since the following conditionals is false:

(Th∗) If the glass would break if thrown against the wall and the floor
were covered with foam rubber, then it would break if dropped on the
floor.

Stalnaker’s Thesis indeed suggests that iterated antecedents might be
paraphrased into a conjunction. If this were true we would have the per-
mutation of antecedents as a theorem:

(Perm) (A > (B > C)) ⊃ (B > (A > C))

But it is clear that permutation does not work:

(HAB) If you will have headache tomorrow, taking an aspirin you will
feel better.

has a meaning which is different from

(AHB) Taking an aspirin, if you will have headache tomorrow you
will feel better.

The phrase “Taking an aspirin” in fact receives a different sense when it is in
the scope of the supposition concerning an headache tomorrow and in a con-
text in which such information does not exist. Other examples give evidence
that in iterated conditionals a premise could be factual in one position, but
not factual in a different position. For instance, the supposition “the lamp is
alight” may be factual or afactual in the following conditional

(LSD) If the lamp is alight, then if you switch off the light we will be
in the dark.

but not in the permutated variant
11 Quoted in van Fraassen [20].
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(SLD) If you switch off the light then, if the lamp is alight we will be
in the dark.

(SLD) in fact appears to be meaningless or false while (LSD) appears to be
true.

In the present section our aim is to outline an analysis of iterated condi-
tionals, both standard and abductive, in the framework of a consequentialist
view of conditionals. A useful step is to introduce a more analytical formal
language in which the symbol > (which we now stipulate to stand ambigu-
ously for >A and >C) is indexed by some variables a, b, c . . . representing
intuitively arbitrary rational inferential agents. We add the assumption that
every agent a, b, c . . . is biunivocally associated to a certain set Ka,Kb,Kc . . .
of presupposed information. We will have then an infinite number of condi-
tional operators >a, >b, >c . . . The intuitive meaning of A >a C is that the
agent a correctly infers C from A (with respect to a certain set Ka associated
to a). Then (A >a C) >b (R >c Q) means then “b reasonably infers, from the
fact that a reasonably infers C from A, that c reasonably infers Q from R”.
The involved sets of information are Ka,Kb,Kc. The move from indexed >
to non-indexed > is provided by the existential quantification on the variables
for agents. In other words, A > B can be made equivalent to ∃x(A >x B).
The intuitive meaning of A > B is then that there is some agent x who rea-
sonably infers B from A and from the background knowledge at his disposal.
According to this definition A > (B > C) means then ∃x(A >x ∃y(B >y C)):
For some x, x reasonably infers from A that (for some y, y infers reasonably
C from A). A negated conditional ¬(A > B) amounts then to ¬∃x(A >x B),
(i.e. must be understood as saying that no subject x infers reasonably B from
A) and is obviously different from A > ¬B. Some remarks are in order.

i. The notion of degree of a conditional is the usual one adopted in condi-
tional logic12. We stipulate that if A >d B is the conditional having the
highest degree in a nested formula, the information set Kd is the basic
information set: in other words every other information set considered in
the formulas is coincident with Kd save for revisions introduced by the
suppositions occurring in lower-degree conditionals (see point iv).

ii. An assumption should be introduced to calculate the information content
of ∃x(A >x B). If >x stands for reasonable inference, it depends on the
laws of nature essentially involved in the inference of B from A, so it is
natural to think that the information content of A > B is as least as high
as the content of the physical laws which are essential to such inference.
Of course Cont¬(A > B) equals 1− Cont(A > B): if no rational subject
can make an inference from A to B this makes A > B something which is
epistemically vacuous (so something having content near to 0).

12 The conditional degree of a statement S may be simply calculated by 1) replacing
> with strict implication 2) eliminating the symbols for strict implications in
favor of � and truth functional operators and 3) calculating the modal degree of
the resulting wff.
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iii. In order to make an inference about other inferences we need the special
laws which are the meta-laws governing the inferential behavior of rational
subjects. Such laws are obviously part of the ordinary stock of background
knowledge, i.e. of CR, but we will also assume that such laws belong to
the T in Kx. Some of such laws describe the already defined behavior of
any rational subject in calculating information and drawing the “best”
conclusion. Other important laws, however, rule the way in which any
agent takes into account what other agents know or do.

iv. A metalaw which here we are willing to endorse – but could be ignored
in different approaches – is that revision is cumulative: in other words
any new supposition S made by some subject y should be added to an
information set modified by the suppositions made by all x1 . . . xn in lower
degree conditionals.

Let us for instance consider the following nested formula and suppose for
sake of simplicity that > is a C-conditional:

(6) A >a ((D >b C) ∧ ¬(H >c R))

Here >a has degree two, while >b and >c have degree one. If K is the
background information set, Ka is here the basic information set, in the sense
that it contains the part of K known by the subject a. Then:

1. The inference of a is performed by adding A to Ka(A)
2. The inference of b is performed by adding D to Ka(A)(D)13

3. The inference of c is performed by adding H to Ka(A)(H)

Since it is different to add B to K(A) and to add A to K(B) this makes
clear why A > (B > C) is different from B > (A > C).

This cumulative character of the suppositions should be made explicit by
suitable axioms. In the light of the preceding interpretation, for instance, it
should be natural to have at our disposition at least two principles, the first
of which is obvious:

Ax1 (A > (A > B)) ≡ A > B
Ax2 (A > (B > C)) ⊃ (A > (A ∧B > C))

We may now go back to the question whether nesting is pleonastic or not in
the reconstruction of scientific reasoning. Our claim is that nesting is essential
to give a correct understanding of important features of scientific arguments.
An important argument in favor of the essentiality of nesting concerns causal
redundancy in the frame of a counterfactual theory of causation. If e1 and e2

are symbols for token events identified by their instant of occurrence and O is
an operator forming propositions from token events, our claim is that there is
an unlimited number of causal notions, which may differ at least in two fea-
tures: 1) the degree of the counterfactual that expresses the relation between

13 For the definition of K(A), to be obiviously extended to Kb(A), see page 367. It
is understood that if K(A) = K′, K(A)(D) = K′(D).
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cause(s) and effect 2) the additional qualification expressing the explanatory
strength of the causes with respect of the effect14.

The statement Oe1∧Oe2∧(¬Oe1 >C ¬Oe2) (to be read “e1 is causally rele-
vant for e2”) defines the minimal notion of causality, in the double sense that
the conditional has degree one and no supplementary qualification is trans-
mitted. But following the given theory we may define, among other notions,
a two-place notion of causal concurrency which is as follows:

(CC) if e1 had not occurred then, in absence of e2, e3 had not occurred.

So two concurring causes for e3 are e1 and e2: ¬Oe1 >C (¬Oe2 >C ¬Oe3)
Standard examples of overdetermination are clear expressions of concurrency
in the given sense: if the first killer had not fired a shot to Smith, the second
would have killed Smith (which means: if also the second had not fired his shot
then Smith would have not died). The paraphrase of this iterated conditional
in terms of inferences performed by rational subjects is not difficult and will
be omitted.

What to say about the kind of asymmetrical redundancy called preemp-
tion? We assume that preempting is a case of concurrency, but it is an asym-
metrical concurrency. A standard definition of preemption says that a cause
prevents the action of some other potential cause which would have reached
the same effect. As argued in Pizzi [16], preemption should not be confused
with causal anticipation or causal delay. The Sarajevo shots have been a trig-
gering cause for the First World War, but the common opinion is that a
macroevent classifiable as the First World War would have anyway taken
place soon after, in absence of the shots, due to some other potential causes.
So strictly speaking this is not a case of pre-emption because the effect-events
involved are different. We remark anyway that a full description of causal
anticipation might be realized by using an additional statement which has in
any case the form of a second degree conditional:

(7) If the Sarajevo shots had not caused the First World War in t, some other
event would have caused the First World War in some instant t′ posterior
to t.

In other cases the seeming preemption is not anticipated causation but
delayed causation. The famous case of the thirsty traveler may be classified
in this category, provided we make the reasonable assumption that poison
is quicker than dehydration15. However, we can imagine a case in which the

14 For this theory see Pizzi [16].
15 The story says that a traveler has to cross desert with a can full of water, but

two enemies try to kill him – the first by making a hole in the can, the second by
poisoning the water. The traveler dies without touching the water. If the traveler
had not died thirsty he would have died poisoned. But the poison is normally
quicker than thirst , so we can say that he would had died poisoned before than
the moment in which he really died. So in a sense the hole delayed his death.This
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poison takes exactly the same time as thirst in killing the victim or a case
in which we are unable to calculate the time of action, so in this case we
conventionally stipulate that the two processes take the same time. In this case
the first event preempts the other even they are not overdetermining. There
is no doubt, to begin with, that the two causes are symmetrically concurring,
since it is true both

(8) ¬Oe1 >C (¬Oe2 >C ¬Oe3)

and

(9) ¬Oe2 >C (¬Oe1 >C ¬Oe3)

But now we have to add the supplementary qualification that one of the
two causes preempts the other. What does it mean to preempt? A näıve idea is
that to preempt means to interrupt a causal chain. Now a causal chain is often
seen as a transference of some quantity (speed, weight, force, energy, . . . ) from
a three-dimensional object to another (as in so-called transference theory of
causation). This idea has surely an appeal for physicists and for Aristotelian
philosophers, but is insufficiently general. Negative events such as silence,
darkness, fast, etc. . . may be causes or effects, and they are at the origin of
the transference of nothing. In the example of the traveler, to say that he died
by thirst (absence of water) is to give the example of a negative event causing
something. If we switch off the light of the lamp this implies that the pressing
of the button causes an interruption of electric current, and this is not clearly
a transference of anything.

The idea that we want to propose here is that what preemption blocks is
not a causal flux but a possible inference from the effect to one of the causes16.
More clearly, the inference which is blocked in the case of preemption is the
abductive inference from the effect to the preempted cause. When a preempt-
ing cause leaves a track in the effect, this means that there is something in the
effect which makes an abduction possible for some or all inferential agents:
but this inference becomes impossible from the effect to the preempted cause.
From the fact that the can has been perforated some rational x infers that no
y can infer from the fact that the victim died in the known conditions (empty
can etc.) that the victim was poisoned. The correct formal rendering of this
simple idea is not straightforward because we have at least two possibilities
of formal rendering:

asymmetry suggested to R. Smullyan the idea that the poisoner is really more
guilty than the perforator.

16 This is not the proper place to make a comment about the philosophical contro-
versy over preemption/overdetermination. According to the ideas of Lewis and
Bunzl no genuine case of overdetermination exists. In fact either 1) the compared
effects are really different or 2) a cause preempts another one, as when an electron
on a wire prevents another electron to reach the bulb. The following example of
of trumping preemption states a case in which we have premption without the
interruption of any transmission of energy or of other entities.
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a1) Oe1 >C ¬(Oe3 >A Oe2)
a2) (Oe3 >A Oe2) >C ¬Oe1

The two formulas are not equivalent since >C and >A are not in general
contrapositive. Both a1) and a2) actually look suitable to the case of what
Jonathan Schaffer in [18] called Trumping Preemption. Let us suppose that a
major and a sergeant are in front of a corporal, both shout “Charge!” at the
same time, and the corporal soon charges (Oe3). From the rules of military
code we understand that the major’s order (Oe1), not the sergeant’s order
(Oe2), caused the corporal’s decision to charge (ubi maior minor cessat). After
examining Lewis’ and Ramachandran’s theories, Schaffer concludes that no
one of these theories is able to treat this kind of pre-emption. Our proposal
appears to be free from the mentioned difficulties since it does not postulate
any interruption of any causal chain. The reason why we say that the major’s
order preempts the sergeant’s order is that, given the mentioned circumstances
and the order of the general Oe1, such an event disallows a correct abduction
from the effect Oe3 to the order of the sergeant Oe2. Let us simply recall that
abduction is inference to the best explanation, and that the military law by
which a soldier obeys the order of the higher-degree military is part of the
background theory T .

The asimmetry of preemption is then granted by the falsity of Oe2 >C

¬(Oe3 >A Oe1) and of (Oe3 >A Oe1).

4 The Role of Iteration in Abductive Reasoning

So what we showed up to now is: i) that iterated conditionals are essential
to reconstructing causal reasoning and ii) that abductive conditionals may
occur as subclauses of iterated conditionals which are important ingredients
of complex causal statements. However, a statement like (a2), in which the
abductive conditional occurs in antecedent position, is an additional statement
and strictly speaking is not part of the statements which identify the core
of the causal statement. We recall here an important remark contained in
Goodman, which states that every counterfactual is equivalent to a factual
conditional17. Goodman suggests that every counterfactual, as for instance

(10) If the match had been scratched it would have lit (A >C B)

is equivalent to

(11) Since that match was not lit it was not scratched (¬B >A ¬A)

If this remark were correct, every counterfactual would be equivalent to the
contrapositive abductive conditional. Unfortunately the development of the
semantics for conditional logics made us familiar with the already mentioned

17 See Goodman [7].
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idea that conditionals are not in general contrapositive. This means that not
every case of iterated counterfactual may be generally turned into an iterated
abductive conditional, even this transformation may be a legitimate one in a
class of cases which can be exactly delimitated. It is however remarkable that
abductive conditionals may occur in iterated conditionals independently from
the equivalence with some iterated counterfactual. Some simple examples are
in order.

Suppose we accept that C is the best explanation of B (B >A C). Suppose
that we know that B′ is similar to B in important features and C ′ is similar
to C in important features, given the same informations which make B >A C
a true conditional. So some inferential agent x could infer from B >A C that
B′ >A C ′: so it turns out that the second degree conditional (B >A C) >C

(B′ >A C ′) is a true conditional. The inferential laws which are involved are
analogical laws of inference. Note that B >A C may be a counterfactual or
afactual antecedent of >C , and that the schema of the argument to apply here
is similar to Thomason’ example.

Examples of the previous schema are not difficult to construct when B and
C stand for singular propositions expressing real possibilities. For instance, if
the best explanation of my cold in the circumstances of yesterday is that I
have been under the rain without umbrella, the best explanation of your cold
in the same circumstances may be a token-event of the same kind.

But the same schema holds for any B > C which is a counterfactual
or counterlegal conditional. Counterlegal or counterpossible suppositions are
legitimate suppositions in scientific reasoning18. An instance is the following.
We know that every planet has an elliptical rotation round the Sun, so to
suppose that some planet, say Venus, has a circular rotation round the Sun is
to suppose something which is impossible. This means that we should remove
from our background knowledge one of Kepler’s laws, i.e. the law that every
planet has an elliptical orbit, and replace it with a different law. However, we
have no reason to reject the more general law.

(12) All planets have orbits of the same form

which is a generic variant of the rejected Keplero’s law. It follows then the
following conditional is true: If planets had a circular rotation (A) some agent
x would infer from this that some rational agent y supposing that Alpha
Centauri were a planet (B) would infer that Alpha Centauri would have a
circular rotation (C):

(13) A >C (B >C C)

But note that also the abductive conditional would be appropriate in this
example:

(14) (B >C C) >A A

18 See Pizzi [17].
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In fact, if someone is able to infer correctly from the supposition that Alpha
Centauri is a planet (B) that Alpha Centauri has a circular orbit (C), the best
explanation of this strange argument would be the belief in the false law that
planets have a circular orbit. This use of abduction in iterated conditionals
will of course seem far-fetched. However, an use of nested abduction may
occur more naturally in other contexts: for instance when we want to test the
normality of background conditions. A rational agent in normal conditions
infers from the existence of smoke the existence of past or present fire. But
smoke may be caused in non- normal conditions by other kinds of phenomena
(for instance by frozen carbon dioxide, i.e. dry ice). So we could say

(15) If some x were able to exclude from other informations that fire was
present, some y would conclude from this and the presence of smoke that
dry ice was present.

The form of (15) is (A >C ¬B) >C (C >A D). With a further step, it is not
difficult to find examples of abductive statements construed over lower-degree
abductive statements. For instance, if someone can make an inference from
smoke to dry ice, we might conclude abductively that in those circumstances
an abduction from smoke to fire is impossible: (C >A D) >A ¬(C >A B).
And this is a meta-abduction about abductions.

5 Abductive Conditionals and Standard Second
Degree Conditionals

In the preceding sections we have treated >C and >A as operators belonging to
the same family, i.e. as subspecies of the same species. But a famous quotation
in which Peirce introduces his notion of abduction makes us reflect deeper on
the properties of abductive conditionals. In fact the most quoted definition of
abduction introduced by Peirce is the following

(16) “The surprising fact, F, is observed; But if H were true, F would be a
matter of course. Hence, There is reason to suspect that H is true” [12,
5.189].

Neglecting the condition that C should describe a “surprising” (i.e. improb-
able) fact, a prima facie formal paraphrase of Peirce’s analysis is as follows:

(17) A >A C is true if and only if C ∧ (A >C C) |= A.

But this rendering could be criticized along the same lines used by Thoma-
son against a similar paraphrase of embedded conditionals. In fact, the con-
sequence relation used here is not monotonic, since the addition in the
antecedent of some supplementary information D might destroy the valid-
ity of the inference. Thus we are justified in supposing that the correct formal
rendering is offered by the equivalence
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(18) (A >A C) if and only if (C ∧ (A >C C)) >C A.

This rendering, however, could also be questioned since >C appears not
to be a proper formalization of “There is reason to suspect”. On the other
hand, “there is reason to suspect” cannot be an abductive conditional since
this would make the definition a circular one. A possible way out is that a
proper rendering of the intended meaning would be to put in place of the
second occurrence of A the formula Pr(A) > δ, where δ is some threshold
probability value. Since we are willing to treat probability as a particular
kind of graded modality (see section 1), this is simply a way to say that
A is true in a reasonably great class of (epistemically) possible worlds. We
have also to remark that the only way to grasp the idea that A is the best
explanatory factor of C (an idea which is not explicit in Peirce’s words) is to
state that A is more information-preserving than every other rival hypotheses
A′

1 . . . A′
n, in the terms which have been formulated in section 3. But this or

some other qualification does not modify the second order characterization of
abduction which is clearly implicit in Peirce’s proposal. As a matter of fact,
Peirce’s definition opens the road to an inquiry about the relations between
>C-conditionals and >A-conditionals which may usefully amplify the limits
of the theory which has been outlined in the present paper.
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