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Summary. The brain has been a source of inspiration for artificial intelligence since
long. With the advance of modern neuro-imaging techniques we have the opportunity
to peek into the active brain in normal human subjects and to measure its activity.
At the present, there is a large gap in knowledge linking results about neuronal
architecture, activity of single neurons, neuro-imaging studies and human cognitive
performance. Bridging this gap is necessary before we can understand the neuronal
encoding of human cognition and consciousness and opens the possibility for Brain-
Computer Interfaces (BCI). BCI applications aim to interpret neuronal activity in
terms of action or intention for action and to use these signals to control external
devices, for example to restore motor function after paralysis in stroke patients.
Before we will be able to use neuronal activity for BCI-applications in an efficient
and reliable way, advanced pattern recognition algorithms have to be developed to
classify the noisy signals from the brain. The main challenge for the future will be to
understand neuronal information processing to such an extent that we can interpret
neuronal activity reliably in terms of cognitive activity of human subjects. This will
provide insight in the cognitive abilities of humans and will help to bridge the gap
between natural and artificial intelligence.

1 Introduction

In July 2005 the journal Science celebrated its 125 years of existence by pub-
lishing a series of ten “hard questions”. These questions were posed to set
new goals for science: “The pressures of the great, hard questions bend and
even break well-established principles, which is what makes science forever
self-renewing—and which is what demolishes the nonsensical notion that sci-
ence’s job will ever be done”. Most of these hard questions were related to
major problems in astronomy, physics, neurobiology, and only one problem
(“What Are the Limits of Conventional Computing?”) was directly related to
Computational Science. Yet, several of the questions, that were posed from
the perspective of Neurobiology, are directly related to computer science and
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artificial/computational intelligence. Questions like “What Is the Biological
Basis of Consciousness?”, “How Are Memories Stored and Retrieved?”, and
“How Did Cooperative Behavior Evolve?” are equally crucial to computer
science, where problems related to autonomous unsupervised decision making
and information retrieval in large, complex data bases, and emergent intel-
ligence are at the heart of Computer Science and Artificial/Computational
Intelligence. In this chapter, I will shortly address some aspects of the “hard”
problems in Neuroscience regarding consciousness, storage and retrieval of
information and the evolution of cooperative behaviour. Then I will ex-
plain how these questions relate to major problems in the field of artifi-
cial/computational intelligence.

Since long, the basic principles of neuronal information processing have
served as a source of inspiration for advanced applications in computer sci-
ence. In this context it is remarkable that after the booming of the neural
network hype in the nineteen eighties, the neural network community has
become separated in two streams : one community (frequently called artificial
neural network, AI or machine learning community) focussed on algorithms
for advanced applications in real-world problems. The other community, called
the computational neuroscience community, focussed on more-or-less realistic
models to describe the behaviour and function of biological neurons and net-
works of neurons. The development of these two research lines along separated
tracks is somewhat surprising and undesirable since these research lines have
many problems in common. Examples of fields of common interest are deci-
sion making in complex situations with incomplete information, the design
of intelligent autonomous agents and advanced data analysis/retrieval. Pre-
sumably the most interesting problems of common interest are related to the
phenomena of emergent intelligence and consciousness and their implementa-
tion in the neural/computer hardware, which belong to the major long-term
goals in both computational intelligence and in AI/machine learning. To some
extent, the separate evolution of both fields reflects the different implementa-
tion (neural wetware versus computer hardware) and the different background
of researchers in both communities. The AI/machine learning community has
many researchers with a background in computer science or statistical physics,
whereas the computational neuroscience has mainly researchers with a back-
ground in neurobiology and theoretical physics.

A particular example of a complex problem that is of relevance to both
research communities is the topic of Brain-Computer Interfaces (BCI). BCI
tries to extract meaningful signals from neuronal signals, among others for the
diagnosis and rehabilitation of patients with neurological disorders. This topic
deals with many problems that belong to the core of the AI/machine learning
community and of the computational neuroscience community. It deals with
pattern recognition and classification of highly complex data with a very poor
signal to noise ratio. Moreover, the neural code, i.e. the meaning and function
of the neuronal signals is hardly known, since we do not know the detailed
functional role of various brain structures, nor do we know how information is
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encoded in the temporal properties of the parallel distributed pathways and
how attention or dysfunction modifies the neuronal signals. A reliable classifi-
cation of neuronal signals not only requires advanced data-analysis techniques;
knowledge about the neural code and about the involvement of neuronal struc-
tures in neuronal information processing is equally important for successful
BCI applications.

2 Brain Computer Interfaces

Any type of goal-directed behaviour is reflected in a characteristic sequence of
neuronal activities in various parts of the brain. In the past decade it has
become clear that not only the decision to start a task and the performance
of the task (which should be taken very general as it can imply both per-
ceptual tasks as well as motor performance), but even the intention to take
action, is reflected in the neuronal activity. In large parts of the human brain
the neuronal activity is very similar to that for subjects who intend or plan
actions and for subjects, who really perform these actions [25]. This feature
is used for BCI applications. A Brain-Computer Interface (BCI) generally
aims to provide a communication channel from a human to a computer that
directly translates brain activity into sequences of control commands. Such
a device may give disabled people direct control over a neuro-prosthesis or
over computer applications as tools for communicating solely by their inten-
tions that are reflected in their brain signals (e.g. [27, 26, 53, 3, 38]). The
hope is that BCI can possibly reach this goal in the near future by recording
brain activity and by using these signals to control a device. For example,
this device could be the limb of a subject when the subject is paralysed (for
example after a stroke or in case of Amyotrophic Lateral Sclerosis (ALS),
which leads to complete paralysis of all muscles for an otherwise intact cen-
tral nervous system). In that case the recorded brain signals could be used for
artificial electrical stimulation of muscles, which leads to muscle contraction
and limb movements. BCI tools are thought to become an important tool
when normal functioning of the brain (such as after a stroke) is limited.

Not only does BCI address the issue of translating brain activity into
control commands, it also deals with interfering with brain activity by elec-
trical stimulation of the brain. At present deep-brain stimulation is used in
severe Parkinson patients, when the traditional treatment of patients with
Parkinson’s disease with levodopa (a drug which replaces the neurotransmit-
ter dopamine which is no longer produced in the basal ganglia in Parkinson
Patients) fails. Deep brain stimulation does not provide a cure for Parkinson’s
Disease, but greatly alleviates the symptoms [18]. Other applications can be
found in the sensory domain. The artificial cochlea, which provides hearing to
deaf people with a disorder in the peripheral auditory system [5, 6, 21, 54], has
become a standard medical treatment. Another application, that is expected
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to become equally successful as the “artificial cochlea”, is the “artificial retina”
[13, 14, 39].

In most BCI applications (both realised as well as planned applications),
brain activity is measured by means of a multi-electrode (typically 128) elec-
troencephalogram (EEG), which is a measure for the weighed activity of many
cells in the brain. The temporal resolution of EEG is excellent (typically in
the range of a millisecond). The main problem of this technique is the poor
signal-to-noise ratio (SNR), which makes it hard to distinguish the location
and contribution of multiple sources of activity in a normal functioning brain.
The accuracy of source localisation is typically in the order of a centimetre
if the number of sources is limited to three, but becomes rather hopeless if
more than 5 sources of neuronal activity are involved. High-resolution EEG
is non-invasive as opposed to invasive work by e.g. Nicolelis [30, 31] who
used implanted electrodes in the brain to record the activity in various brain
structures. Sub-dural electrodes have a much better signal-to-noise ratio, but
have the disadvantage of being invasive. Non-invasive data acquisition is a
requirement for most applications, but has the disadvantage that the signals
of interest are ‘hidden’ in a highly ‘noisy’ environment as EEG signals consist
of a superposition of a large number of simultaneously active brain sources
that are typically distorted by artefacts and even subject to non-stationarity.
The non-stationarity is the consequence of modulation of neuronal signals by
attention or by competition between multiple sensory stimuli. Moreover, the
brain is highly adaptive and can even involve new pathways to compensate for
lesions in the brain. An ideal BCI application should be adaptive to the task
and the subject and should adapt rapidly. Actually, it should be the algorithm,
which adapts itself to the subject, rather than the subject who adapts to the
BCI device. Moreover, BCI should have short yield high information transfer
rates. Therefore, advanced data-analysis techniques are absolutely necessary.

3 The Neural Code

Traditionally the easiest and most accurate method to measure neuronal
activity is to record the action potentials of single neurons. The long tra-
dition of single-unit recording has revealed that information in the brain is
coded in firing rate of a neuron (i.e. the number of action potentials per unit
of time) and in recruitment: the orderly recruitment of neurons as a func-
tion of stimulus intensity or motor output. Single-unit recordings have been
very successful and have revealed many secrets about neuronal information
processing. However, single-unit recordings are not suitable to measure cor-
relations in neuronal activity of various neurons within a neuronal ensemble.
Such correlations might be due to common input or to lateral neuronal in-
teractions. Knowledge about correlations in neuronal activity is important
to understand the nature and amount of information that is encoded by an
ensemble of neurons. For an ensemble of N neurons the firing rate of this
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ensemble to a stimulus s can be represented by the vector 	r with rj represent-
ing the firing rate of neuron j. If the probability for firing rate rj of neuron
j given the stimulus s is p(rj |s), the information encoded by this ensemble
is I(s) = −

∫
p(	r|s) ln p(	r|s)d	r. If neurons do not have neuronal interactions,

such that firing rates are independent, we have p(	r|s) =
∏
j

p(rj |s), such that

the information I(s) can be written as I(s) = −
∑
j

∫
p(rj |s) ln p(rj |s)drj . This

implies that the information in the activity of the ensemble of neurons is
simply the sum of information encoded by each of the neurons. If neuronal in-
formation encoded by different neurons is correlated, it is not longer true that
p(	r|s) =

∏
j

p(rj |s). From a theoretical point of view, this would imply that the

amount of information encoded by the ensemble of neurons is in general less
than the sum of information encoded by the individual neurons (see e.g. [33]).
However, since the generation of an action potential is a stochastic process,
correlated firing allows elimination of noise by averaging. Therefore, correlated
firing may reflect a compromise to obtain optimal information transfer by re-
ducing noise. More detailed information about the information in neuronal
ensembles can be found in [42].

In order to explore the temporal correlation between firing of neurons, the
next logical step was the development of multi-unit recording techniques by
arrays of electrodes. These multi-unit recordings have revealed a third coding
mechanism for neuronal information: coding by temporal correlation of action
potential firing [9, 47]. At any moment in time, many neurons are active in the
brain. Multi-unit recordings have shown that active neurons can be subdivided
in subgroups of neurons, where neurons in the same subgroup reveal a high
temporal correlation of firing. Microelectrode recordings in monkeys, as well
as neuroimaging studies in man have revealed that these ensembles of neurons
can (re)organize rapidly and in a flexible way into subgroups, where activity
of neurons in the same subgroup reveals a high temporal correlation of firing
without changes in mean firing rate (see e.g. [46, 47]. The functional signifi-
cance of the temporal locking is not known, but there are various hypotheses
about its functional significance (see e.g. [44]).

4 Recording Neuronal Signals from the Brain

Each neuron receives spike-input from many other neurons. The input of
action potentials to a neuron arrives at the dendrites of the neuron where
each action potential induces the release of a specific neurotransmitter. This
neurotransmitter opens ion-channels, which allows ions to move through the
cell membrane into the neuron. These ion currents cause a local change in
the membrane potential (the so-called post-synaptic potential). Changes of
the membrane potential of a neuron are the result of the many post-synaptic
potentials due to input by action potentials from other neurons. The flow of
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these currents from the dendrites to the cell body explains why a neuron can
be modelled as a dipole.

Typically a neuron receives input from 103 to 104 neurons. The amount
of synaptic input modulates the strength of the dipole. The EEG activity,
recorded on the skin above the skull, reflects the contribution of the many
dipoles. If all neurons would receive uncorrelated input, the EEG on the
skull would be nothing more than noise. However, the input to ensembles
of neighbouring neurons is not uncorrelated. This is particularly true for so
called Evoked-Brain potentials, where simultaneous onset of neuronal activ-
ity is triggered by the sudden onset of a stimulus. Well-known examples are
the EEG activity above visual cortex due to onset of neuronal activity at the
presentation of a checkerboard pattern or the evoked potentials in the audi-
tory pathway due to sudden onset of a sound. In addition to these transient
components of EEG, the temporal correlation of synchronized neuronal activ-
ity is reflected in rapid oscillations in EEG activity. These oscillations have
been reported at various frequencies, such as the alpha (8–12 Hz) or theta
(5–10 Hz) rhythm and the frequently reported beta (12–28 Hz) and gamma
oscillations (29–80 Hz). EEG activity reflects the activity of neurons with a
dipole orientation orthogonal to the skull. However, since the cortex folds with
various sulci, many neurons have an orientation parallel to the skull, rather
than orthogonal. These neurons do not or hardly contribute to EEG activity
on the skull. However, the ion currents of the neurons parallel to the skull give
rise to tiny magnetic fields with an amplitude smaller than that of the earth
magnetic field. These small magnetic field components can be measured using
SQUIDS in the so-called magneto-encephalogram (MEG). Therefore, MEG is
complementary to EEG. Both reflect neuronal activity, but of different groups
of neurons.

Another important measure of neuronal activity is obtained by functional
Magnetic Resonance Imaging (fMRI). The metabolism related to neuronal
activity causes differences in oxygen consumption. Oxygen is transported
through the blood vessels by means of hemoglobin molecules. Hemoglobin with
oxygen (oxyhemoglobin) is diamagnetic, whereas deoxyhemoglobin (hemoglo-
bin after release of oxygen) is paramagnetic, causing microscopic magnetic
field inhomogeneities that affect the transverse relaxation time (called T2) of
the MRI. Since increased neuronal activity leads to an increased blood flow,
actually overcompensating for the neuronal oxygen need, the oxygen concen-
tration increases in the blood vessels. Hence the relaxation time T2 of brain
tissue to a radio pulse, which deflects the atom spins oriented along the major
magnetic field, is larger for active neuronal tissue than for neuronal tissue
at rest. fMRI measures the magnetic relaxation signal due to the perturbing
radio pulse.

EEG and MEG both have a high temporal resolution. The disadvantage is
that the inverse problem (the problem of finding the location of the electric or
magnetic sources that gave rise to the measured EEG or MEG activity) is an
ill-posed problem since many different sources of activity can provide the same
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EEG or MEG activity on the skull. Therefore, source estimation (estimating
the temporal properties and the location of the electric or magnetic sources)
is possible only if prior knowledge is available about the number of sources
(which should be limited) or if prior knowledge is available about the position
and temporal modulation of the sources. fMRI typically has a high spatial
resolution (typically a few tenths of a millimeter). However, the temporal
resolution (tenth of a second) is way above a millisecond, which is the time
constant to characterise neuronal activity. Therefore, a combination of both
techniques is typically used in advanced neuroimaging research.

5 Basic Questions Regarding the Interpretation
of Neuronal Oscillations

5.1 Functional Role of Neuronal Oscillations

Although no one will deny the existence of neuronal oscillations nowadays,
their functional significance is yet a topic of debate and few hypotheses exist
to explain why and how various ensembles of neurons develop in a flexible
way, each with a high temporal correlation structure. These two issues are
related and reflect two important problems in neuroscience. Understanding
the functional role and the origin of synchronized neural activity is crucial for
research on neuronal information processing with large implications for BCI.
As pointed out before, correlated firing may be a way to obtain more accurate
information coding by eliminating noise. However, other hypotheses have been
put forward that attribute other functional roles to correlated firing. In order
to explain this we will first discuss the various hypotheses about the functional
significance (see also [44]) before we discuss the possible neuronal mechanisms
that can explain the initiation and disappearance of neuronal oscillations.

The first hypothesis to provide a functional significance to synchronized
neuronal activity is that synchronization plays a role in the representation
of sensory information. The most well-known example is the hypothetical
role to solve the binding problem. Visual information comes from the retina
and passes along the LGN (Lateral Geniculate Nucleus) in the thalamus to
the visual cortex (V1). After V1, different features of visual information are
processed along different parallel channels. Each channel encodes a particular
feature of visual objects, such as color, position of the object, nature of object,
and object velocity. For a single object in the visual environment, each channel
carries information about a single feature of the object. However, since the
visual environment contains multiple objects, each channel carries informa-
tion about features from multiple objects and the question is how the central
nervous system knows which feature belongs to which object. For example,
if we have a red pencil and a blue coffee cup, how does the brain know that
the label “blue” belongs to the coffee cup and not to the pencil. The idea has
been proposed (see [47]) that the temporal correlation might serve as a label
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for all features that belong to the same object (however, see [45]). Previous
work hypothesized that neuronal coherence (or phase-locking or synchroniza-
tion) could provide a tag that binds those neurons that represent the same
perceptual object. This binding tag would be a flexible code for linking neu-
rons into assemblies and thereby would greatly enlarge the representational
capacity of a given pool of neurons. In line with this hypothesis, it has been
suggested that object features represented by spatially distinct neural assem-
blies are dynamically linked to a coherent percept by synchronized activity
in the gamma range [10]. This hypothesis can explain why information in the
brain is processed, transferred, and stored by flexible cell assemblies, defined
as distributed networks of neuronal groups that are transiently synchronized
by dynamic connections [10, 52]. A particular example of temporal locking
is the observation of phase-encoding in hippocampal place cells [35]. When a
rodent moves around in a limited area, the phase of firing in the theta-rhythm
carries more information about location of the rodent within this space than
does firing rate [49].

Another hypothesis is that synchrony enhances the saliency of neural
responses. This can be understood from the fact that two action potentials,
arriving simultaneously at the dendrites of a neuron are much more effective
in eliciting an action potential than two action potentials which arrive with a
time interval. This is particularly clear if the neuronal time constant is small,
such that the neuron operates as a coincidence detector [23]. Therefore, cor-
related discharges have a much stronger impact on neuronal populations than
temporally disorganized inputs [11, 41]. The regulation of interaction with
target neurons by coherent firing has been reported in corticospinal projec-
tions from motor cortex to the spinal cord [43]. Thus, the oscillatory activity
might serve as a dynamic filter, which selects the salient and significant inputs
to the network. Along these lines, similar coherent oscillations have also been
reported for recordings in monkey motor cortex (see e.g. [2, 1, 16, 19, 20,
36, 37], who studied the cross-correlation and coherence between local field
potentials and neural spike trains in monkey primary motor cortex, and [40]).

5.2 Neuronal Mechanisms for Neuronal Synchronization

The role of tight neuronal synchronization has raised the question how “noisy”
neurons are able to fire in close synchrony with millisecond accuracy. The
explanation is that the time constant of the neuron can be modified by bal-
anced excitatory and inhibitory input [23]. Changing the amount of balanced
excitation and inhibition changes the time constant of the neuron without
changes in firing rate of the neuron. This can be understood using a popular,
but simplified representation of neuronal dynamics: the leaky integrate-and-
fire model. According to this model, the dynamics of the membrane potential
of the neuron is given by

C
dV (t)
dt

= − 1
R
V (t) +

∑
i

{Gi(t)∗si(t)}(V (t)− Vi) (1)
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where C represents the capacitance of the cell membrane, R represents the
resistance of the cell membrane, si(t) represents the spike input from neuron i,
Gi(t) represents the conductance of the synaptic contact between the cell and
the input from neuron i, and VN represents the Nernst potential. The symbol ∗

represents convolution. The neurotransmitter released by an incoming action
potential opens ion channels and thereby modifies the local conductance Gi of
the post-synaptic membrane. The last term in Eq. (1) represents the synaptic
input current. Eq. (1) can also be written as

τ
dV (t)
dt

= −V (t) +R
∑

i

Ii(t) (2)

where the resistance R is the resistance of the cell membrane which is mod-
ulated by the synaptic input and with τ = RC. A large amount of input
implies a large conductance and a small resistance R. Therefore, input affects
the time constant τ . Obviously, Eq. (2) clearly explains the name of the leaky
integrate-and-fire model. For large values of the time constant τ , the neu-
ron integrates the input until it reaches a threshold (typically near −40 mV).
Then, an action potential is generated and the membrane potential is reset to
the membrane potential at rest, typically near −70 mV. For small values of
τ , the membrane potential decays rapidly to its rest value, such that a small
value of τ turns the neuron into a coincidence detector: the neuron only fires
an action potential if the input from different neurons arrives within a small
time interval. This explains why balanced excitation and inhibition changes
the behaviour of the neuron from a (leaky) integrator into a coincidence detec-
tor, which fires only for tightly synchronized input. Although this can explain
the propagation of synchronized neuronal activity from one brain structure to
another [7], it does not explain the initiation of synchronized activity.

As mentioned above, many studies have reported synchronized oscillations
between various neuronal ensembles. The amount of temporal synchronization
between neuronal ensembles is generally expressed by the coherence function
in the frequency domain. The coherence between two signals x(t) and y(t) is
defined by

γ(ω) =
〈Rxy(ω)〉〈√

Rxx(ω)
〉〈√

Ryy(ω)
〉 (3)

where < · > represents ensemble average over many corresponding time
segments for x(t) and y(t). Rxy(ω) represents the cross-covariance function
between x(t) and y(t) in the frequency domain. Usually, one will find the
squared coherence function |γ(ω)|2 in the literature to explore the relation
between two signals. This squared coherence is a real-valued function of fre-
quency in the range between 0 and 1. If the signal y(t) can be obtained from
the signal x(t) by convolution by a linear system in the absence of noise, the
squared coherence has value 1. This value becomes smaller when noise or non-
linearities are involved. The more noise or the more complex (nonlinear) the
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relation between x(t) and y(t), the more the squared coherence approaches
the lower limit value of zero. This explains why the squared coherence, in
addition to the mutual-information, has often been used to explore the rela-
tion between input and output of an ensemble of neurons or to explore the
similarity between signals in different parts of the brain (see e.g. [29, 17]).

The coherence function γ(ω) has a special property in that it captures the
frequency-dependent phase relation between x(t) and y(t) by the complex-
valued function Rxy(ω). The variability of the relative phase provides infor-
mation about the coupling strength between two signals. If two signals are
tightly coupled, the variability of relative phase will be small. This prop-
erty is highly important in neuronal synchronization (see also [7]). Moreover,
when information goes from x to y, any time delay ∆t will cause a frequency
dependent phase shift ∆φ = ω∆t. One might expect that if one brain struc-
ture provides input to another brain structure, the phase difference between
synchronized activities in these two brain structures will reflect at least the
effect of finite conduction velocity of signals between the two brain structures.
These differences can be quite large in the motor system, where signals from
motor cortex project to neurons in the spinal cord, approximately one meter
away. With a typical axonal conduction velocity of 60 m/s, this gives rise to
as pure time delay of ∆t = 16 ms and to a frequency-dependent phase shift
of ω∆t (see [43]). Quite remarkably, oscillatory neuronal activity in differ-
ent parts of the brain appears to be almost synchronous, without significant
time delays. Significant time delays should be expected for serial processing
in several brain structures due to the conduction velocity of neuronal sig-
nals in the brain. The absence of time delays is what one should expect for a
highly connected network of neuronal ensembles with multiple feedback loops.
Such highly connected networks operate as a functional unit and cannot be
separated into a set of subsystems with clear unambiguous causal relation-
ships between these subsystems. This finding argues against the simple view
of neuronal information processing as a serial process from sensory cortices to
motor cortex, for example in the case of sensory information about position
of objects, which is translated into motor commands to grasp an object.

Comparison of the relative phase of synchronized neuronal oscillations in
two functionally related parts of the nervous system has suggested that the
excitability of neurons is modulated such that excitability is maximal at the
time of arrival of periodic oscillatory activity [43]. This is highly remarkable:
how can the receiving neurons adjust their excitability such that it is opti-
mal at the time of arrival of the synchronized input? Based on the findings
by Schoffelen et al. [43], Fries [12] hypothesized that neuronal communica-
tion is mechanistically subserved by neuronal coherence. The idea is that
activated neuronal groups oscillate and thereby undergo rhythmic excitabil-
ity fluctuations that produce temporal windows for communication. A recent
modelling study showed that coherence is processed accurately between sub-
sequent groups of neurons [57]. Coherence by coherently oscillating neuronal
groups is a requirement for effective interaction, because they ensure that the
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communication windows for input and for output at the interacting neuronal
groups are open at the same times. A recent study [8] suggested a mechanism
for modulation of excitation such that the neuronal excitability is optimal at
the arrival of a period synchronized input. Thus, a flexible pattern of coher-
ence defines a flexible communication structure.

6 Interpreting EEG/MEG Data : Reading Out the Brain

Triggered by the increased knowledge about the neuronal information process-
ing in the central nervous system, the past five years have shown an expo-
nential increase in publications on BCI. These publications mainly referred to
new algorithms for classification of EEG/MEG signals and for transforming
these signals into mechanical or electronic output (for a recent overview see
[32]). Although the aim is to use BCI for the human brain, most experimen-
tal data have been obtained in animal experiments using neuronal activity
recorded invasively in multiple brain areas (see e.g. [30, 31]). Patterns of spike
trains and local field potentials from multi-electrode recordings represent as-
tonishingly well imagined or intended movements. As explained before, the
spatial resolution of source localisation estimation based on EEG or MEG is
rather poor. This causes a great problem in recording the activity in a par-
ticular brain structure with non-invasive EEG electrodes in humans. A recent
study in epileptic patients using invasive presurgically implanted subdural
electrodes over frontal regions [24] has shown a good performance in clas-
sification of neuronal activity, suggesting that it would be a good BCI tool.
With these patients, it was possible in just one session to differentiate without
any training imagination of hand-, tongue-, and mouth movement from the
electrocorticogram (ECoG). However, invasive recordings cannot be used in
standard clinical applications.

These results have created enormous public interest and hope for a rapid
solution to critical clinical problems such as communication in locked-in
patients and movement restoration in patients with spinal cord lesions and
chronic stroke. Unfortunately, there are many problems that have to be solved
and standard clinical use of BCI seems out of the question for the near fu-
ture (see a recent review by Birbaumer [4]) illustrating the complexity of the
problem with great technical and conceptual problems.

Further progress in this field depends on several developments. It will be of
great help, if more detailed knowledge will become available on the precise role
of various brain structures in normal human perception, action, and decision
making. Knowledge about the role of various brain structures in sensori-motor
tasks will provide insight in the spatial and temporal properties of activity in
the brain. Prior information about the source location will enable the exten-
sion of the temporal filtering, which is currently used in BCI-applications, to
spatio-temporal filters that act as templates for classifying EEG/MEG signals.
This will improve the signal to noise ratio of EEG/MEG signals considerably.
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Along these lines, the use of advanced data-analysis tools like multi-taper
techniques (see [29, 57]) will be necessary to reduce the signal-to-noise ratio.
Moreover, more information about the neuronal code will be necessary. What
is the functional role of various rhythms of neuronal activity? How are these
rhythms created and what modulates their amplitude? It is well known that
synchronization (especially in the β and γ range) depends on attention and
expectation [40, 43]. Knowledge of the task-dependent functional role of neu-
ronal oscillations might be useful to extract particular frequency bands in
EEG/MEG for BCI applications in particular tasks. A proper interpretation
of EEG/MEG patterns will also require a better insight in the plasticity of
the brain. Plasticity in the brain takes place on a large range of time scales.
Some processes of plasticity develop on a time scale of seconds, whereas other
processes, such as the activation of some brain region to compensate for dam-
age or dysfunction in another part of the brain, become effective only after
days or weeks. This is particularly important for elderly people, when brain
function deteriorates, where good tools to diagnose symptoms of dementia
and other neurological pathologies might help to alleviate symptoms and to
save expenses by timely and effective treatment.

7 Implications for Artificial/Computational Science

A better understanding of neuronal information processing will have large
implications for artificial/computational science and for BCI in particular.
Although the emergence of intelligent behaviour will remain one of the mys-
teries of the human brain for quite a while, there are many other aspects that
already have an impact.

One example concerns the design of an autonomous system. How can such
a system distinguish irrelevant stimuli from relevant stimuli when operating
in a complex environment. The problem is that the sensory input in a normal
environment contains a huge amount of information. Detailed processing of all
sensory information would require large amounts of time and would prohibit
rapid responses to relevant stimuli. This is where attention starts to play a
role. If prior knowledge is available about the possible relevance of stimuli,
attention might help to focus and select the relevant stimuli to speed up sen-
sory processing. Indeed, attention has been shown to reduce reaction times
and a recent study [43] has shown that the attention-related probability for
the stimulus is highly correlated to the amount of gamma-activity in the EEG,
giving rise to shorter reaction times. Several other studies on neuronal infor-
mation processing have shown that sensory processing is not just a bottom-up
process, driven by peripheral stimuli. Rather, neuronal information process-
ing of sensory stimuli is governed by Bayes’ law, which says that the sensory
interpretation of neuronal activity is determined both by the log-likelihood of
the stimulus given the neuronal activity and by the prior probability for the
stimulus [15, 22, 34, 50, 51, 55, 56].
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Classical theories of sensory processing view the brain as a passive,
stimulus-driven device. By contrast, more recent approaches emphasize the
constructive nature of perception, viewing it as an active and highly selec-
tive process. Indeed, there is ample evidence that the processing of stimuli is
controlled by top–down influences that strongly shape the intrinsic dynamics
of thalamocortical networks and constantly create predictions about forth-
coming sensory events. Coherence among subthreshold membrane potential
fluctuations could be exploited to express selective functional relationships
during states of expectancy or attention, and these dynamic patterns could
allow the grouping and selection of distributed neuronal responses for further
processing. Top-down driven selection and processing of sensory information
has become one of the basic concepts in robotics and in multi-agent tech-
nology, although the implementation is very different from that in the brain.
Without any doubt this is to large extent determined by the differences in
hardware/wetware.

But how do groups of neurons communicate? And how do top-down
influences modify the communication structure within a range of hundred mil-
liseconds while anatomical connections stay unchanged on that time scale? In
very general terms, the dominant model of neuronal communication is that
a neuron sends its message (encoded in e.g. firing rate or in the degree of
action potential synchronization) down its axons to all neurons to which it
is anatomically connected. Those receiving neurons combine (e.g. sum and
threshold) all the inputs and send their output to neurons to which they have
connections. An important aspect of this model is that both the distribution
and the reception of neuronal signals is governed solely by the structure of
the anatomical connections, i.e. there is no further communication structure
beyond the one imposed by anatomical connectedness. However, cognitive
functions require flexibility in the routing of signals through the brain. They
require a flexible effective communication structure on top of the anatomical
communication structure that is fixed, at least on the time scale at which
cognitive demands change.

Fries [12] hypothesized that this effective communication structure is
mechanistically implemented by the pattern of coherence among neuronal
groups, i.e. the pattern of phase-locking among oscillations in the communi-
cating neuronal groups. As explained before, the key factor in this model is
that neuronal communication between two neuronal groups mechanistically
depends on coherence between them while the absence of neuronal coherence
prevents communication. Although this idea has been proposed as a working
hypothesis, which needs firm experimental testing, the idea may be a cru-
cial step to understand the biological basis of consciousness [28]. If we under-
stand the neurobiological basis of consciousness, this may serve as an example
for the implementation of “consciousness” in artificial systems. However, the
diversity of definitions for consciousness hamper progress on this topic both
in neurobiology and in AI.
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The main challenge for the near future will be to understand the neuronal
code and to understand the role of various brain structures in memory, sensori-
motor processing and decision making. It would be a tremendous achievement
if this information could be used for successful BCI applications. On a longer
time scale, we need to understand how self-organization in the brain results
in emergent intelligent behaviour. What are the underlying principles for the
autonomous development of intelligence and can we find where and how these
processes take place in the brain? If so, could we measure this brain activity
for advanced BCI applications? BCI applications so far allow only binary de-
cisions with an information flow of just a few bits per second at best. Will we
be able to implement models for emergent intelligence and will we be able to
use these models to solve complex real-world problems? This information will
be crucially important to develop advanced adaptive algorithms to interpret
EEG/MEG activity, which can then be used for the diagnosis and therapy of
patients with neurological disorders.
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