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Summary. The Korean Brain Neuroinformatics Research Program has dual goals,
i.e., to understand the information processing mechanism in the brain and to develop
intelligent machine based on the mechanism. The basic form of the intelligent
machine is called Artificial Brain, which is capable of conducting essential human
functions such as vision, auditory, inference, and emergent behavior. By the proac-
tive learning from human and environments the Artificial Brain may develop oneself
to become more sophisticated entity. The OfficeMate will be the first demonstration
of these intelligent entities, and will help human workers at offices for scheduling,
telephone reception, document preparation, etc. The research scopes for the Artifi-
cial Brain and OfficeMate are presented with some recent results.

1 Introduction

Although people had tried to understand the mechanism of brain for a long
time, still only a few are understood. Even with the limited knowledge on bio-
logical brain artificial neural network researchers have come up with powerful
information processing models and developed useful applications in the real
world. Here we report an ambitious research program to develop human-like
intelligent systems, called ‘Artificial Brain’, based on the brain information
processing mechanism.

The Korean Brain Neuroinformatics Research Program got into the third
phase in July 2004 for 4 years, which is regarded as the final phase of Korean
brain national research program started in November 1998 for 10 years [1].
The program was initially sponsored by Ministry of Science and Technology,
and is now sponsored by Ministry of Commerce, Industry, and Energy. It is
a joint effort of researchers from many different disciplines including neuro-
science, cognitive science, electrical engineering, and computer science, and
currently about 35 PhDs and about 70 graduate students are involved in the
program.

The Korean Brain Neuroinformatics Research Program has two goals, i.e.,
to understand information processing mechanisms in biological brains and to
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develop intelligent machines with human-like functions based on these mech-
anisms. In the third phase we are developing an integrated hardware and
software platform for the brain-like intelligent systems, which combine all the
technologies developed for the brain functions in the second phase. With two
microphones, two cameras (or retina chips), and one speaker, the Artificial
Brain looks like a human head, and has the functions of vision, auditory, cog-
nition, and behavior. Also, with this platform, we plan to develop a testbed
application, i.e., “artificial secretary” alias OfficeMate, which will reduce the
working time of human secretary by a half.

In this chapter the goals and current status of the Korean Brain Neuroin-
formatics Research Program will be presented with some recent developments.
The research goals and scopes are first described, and recent developments are
presented latter.

2 Research Goals

To set up the research goals we incorporated two approaches, i.e., the bottom-
up and top-down approaches, and set common goals for them. The bottom-
up approach we incorporated is to extrapolate technology development trends
and foresee future technology. The prediction of technology demands in future
society has always been the main force of technology developments, and we
regard it as the top-down approach.

Scientific progress has a tendency to be greatly influenced by unforeseeable
breakthroughs, and the reliability of long-term prediction in scientific discov-
ery is always questionable. However, it is still safe to say that recent develop-
ments in high performance brain imaging and signal processing equipment will
greatly speed up understanding of brain architecture and information process-
ing mechanisms. By reducing resolution both in time and space, it may be
possible to record neuronal signals with sufficient accuracy for precise mathe-
matical modeling. Although there still exists a big gap between the molecular
neuroscience and system neuroscience, the existing gap between microscopic
cellular models and macroscopic behavior models may eventually be bridged
resulting in a unified brain information processing model.

Prediction in technology developments is regarded as more reliable.
Especially, there exists a well-accepted theory, called “Moore’s Law”, in semi-
conductor industry. In 1965 Gordon Moore realized that each new chip con-
tained roughly twice as many structures as its predecessor and each chip
was released within 18–24 months of the previous chip. This trend is still
remarkably accurate, and an increase rate of about 50 times is expected for
the next 10 years. With more than 10 billion transistors in a single chip
one may be able to implement a small part of human brain functions. More
powerful systems may be built with multiple chips. Even in conventional com-
puting architectures, the communication bottleneck between processors and
memories will become more serious, and distributed computing and storage
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architectures will be pursued. Therefore, neuro-chip technology will fit into
the main stream of computer and semiconductor industries.

Another interesting law, called “Machrone’s Law”, says that the machine
you want always costs US$5,000. Actually it seems the cost is going down to
US$1,000. People always wanted more powerful systems, and engineers had
always come up with powerful systems with the same or lower price range.
Therefore, the bottom-up prediction says that the enormous computing power
will be available with affordable price in the future.

In human history the Industrial Revolution is regarded as the first big
step to utilize machines for human welfare. With the help of powerful energy-
conversion machines such as steam engines, the Industrial Revolution paved
a road to overcome the physical limitation of humans and result in mass-
production of consumer products. The second big step may be the Computer
Revolution, which is based on electronic technology with accurate number
crunching and mass data storage. Nowadays we can not imagine the world
without the mass-production machines and computers.

What the future human society will be? People always wanted to resolve
present difficulties and found ways to overcome the difficulties for the bet-
ter life. The Machrone’s law may be a simple example. Although the Com-
puter Revolution has provided better human life, it also creates problems, too.
Computers are not yet sufficiently intelligent to work in a friendly way with
humans. To make use of computers people must learn how to use it. In many
cases it means learning tedious programming languages or memorizing the
meaning of graphic user interface icons. Also, current computers do whatever
they are programmed for, and do not have generalization and self-learning
capabilities. Therefore, the programmers should take into account all possible
cases for the specific application, and provide a solution for each case. Only
a few people have these programming and logical-thinking abilities. To make
computers useful to everybody, it is strongly recommended to make computers
as human-friendly as possible. People shall be able to use computers as their
friends or colleagues. Computers shall have human-like interfaces, self-learning
capabilities, and self-esteem. The best way to accomplish this goal is to learn
from the mother nature.

In Figure 1 information processing functions in brains are divided into 4
modules. A human has 5 sensors to receive information from environment,
does some information processing based on these sensor signals, and provides
motor controls. Among 5 sensors the vision and the auditory sensors provide
the richest information, and complex information processing is performed. All
the sensory information is integrated in the inference module, which provides
learning, memory, and decision-making functions. The last module, Action
Module, generates signals for required sensory motor controls. Although there
may be many feedback pathways in biological brains, feed-forward signal path-
ways are mainly depicted here for simplicity.

Although the role of early vision systems is relatively well understood,
we believe what we know about the brain is much less than what we do not
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Fig. 1. Four functional modules in brain information processing systems. The
Artificial Brain should also have 4 functional modules for vision, auditory, infer-
ence, and action systems

know. Compared to the vision and auditory modules the knowledge on the
inference module is much more limited. However, even with a small hint from
biological brains, we believe much more intelligent systems can be built. If
neuroscientists concentrate on functions required to fill in the gaps of engi-
neering functions, much faster progress may be achieved. Issues on invari-
ant feature extraction, selective attention, adaptive dynamic ranges, sensory
fusion, knowledge representation, generalization, self-learning, emotion, and
cooperative behavior are only a few examples. Specific hardware implemen-
tations are also essential for the success. Therefore, a “system approach” is
required to integrate efforts of researchers from many different disciplines for
each module. Finally, the four modules need to be integrated as a single sys-
tem, i.e., Artificial Brain.

The Artificial Brain may be trained to work for specific applications, and
the OfficeMate is our choice of the application test-bed. Similar to office sec-
retaries the OfficeMate will help users for office jobs such as scheduling, tele-
phone calls, data search, and document preparation. The OfficeMate should
be able to localize sound in normal office environment, rotate the head and
cameras for visual attention and speech enhancement. Then it will segment
and recognize the face. The lip reading will provide additional information
for robust speech recognition in noisy environment, and both visual and au-
dio features will be used for the recognition and representation of “machine
emotion.” The OfficeMate will use natural speech for communications with
the human users, while electronic data communication may be used between
OfficeMates. A demonstration version of the Artificial Brain hardware is
shown in Figure 2.



Artificial Brain and OfficeMateTR based on Brain Information 127

Fig. 2. Artificial Brain with two eyes, two ears, and one microphone. The lips
are used for lip-sink, and 2 LCD displays are used for camera inputs and internal
processor status

3 Research Scope

As shown in Figure 3 the Artificial Brain should have sensory modules for
human like speech and visual capabilities, internal state module for the infer-
ence, and the output module for human-like behavioral control.

The sensory modules receive audio and video signals from the environ-
ment, and conduct feature extraction and recognition in the forward path.
The backward path conducts top-down attention, which greatly improves the
recognition performance of the real-world noisy speech and occluded patterns.
The fusion of video and audio signals is also greatly influenced by this back-
ward path.

The internal state module is largely responsible for intelligent functions
and has a recurrent architecture. The recurrent architecture is required to
model human-like emotion and self-esteem. Also, the user adaptation and
proactive learning are performed at this internal state module.

The output module generates human-like behavior with speech synthesizer
and facial representation controller. Also, it provides computer-based services
for OfficeMate applications.

In the Korean Brain Research Program we are trying to develop detail
mathematical models for the Artificial Brain. In the mathematical model the
internal state value H[n+1] is defined as a function of sensory inputs, previous
internal states, and system outputs, i.e.,
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H [n+ 1] = f (V [n],A[n],H [n],O [n]), (1)

where V[n],A[n],H[n], and O[n] denote video inputs, audio inputs, internal
state values, and outputs at time n, respectively, and f(·) is a nonlinear func-
tion. The output is defined as a function of the internal states and sensory
inputs, i.e.,

O [n+ 1] = g(H [n+ 1], V [n],A[n]), (2)

where g(·) is a nonlinear function. It is also worth noting that the sensory
inputs are functions of both the system outputs and environment states as

V [n] = p(O [n], E [n]), A[n] = q(O [n],E [n]), (3)

where E[n] is the environment state value and p(·) and q(·) are nonlinear
functions.

Although the basic technologies had been developed for the visual and
audio perception during the last 8 years, the most challenging part is the devel-
opment of the “Machine Ego” with human-like flexibility, self-learning perfor-
mance, and emotional complexity. It will also have user-modeling capabilities
for practical user interfaces. We believe the Artificial Brain should have active
learning capability, i.e., the ability to ask “right” questions interacting with
people. To ask right questions the Artificial Brain should be able to monitor
itself and pinpoint what it may need to improve. Based on this observation
we would like to develop a mathematical model of the Machine Ego, which
is the most important component of the Artificial Brain. Research scopes for
the four modules are summarized as follows.
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3.1 Auditory Module

The research activities on the auditory module are based on the simplified dia-
gram of the human auditory central nervous system. Detail functions currently
under modeling are summarized in Figure 4. The object path, or “what” path,
includes nonlinear feature extraction, time-frequency masking, and complex
feature formation from cochlea to auditory cortex. These are the basic compo-
nents of speech feature extraction for speech recognition. The spatial path, or
“where” path, consists of sound localization and noise reduction with binaural
processing. The attention path includes both bottom-up (BU) and top-down
(TD) attention. However, all of these components are coupled together. Espe-
cially, the combined efforts of both BU and TD attention control the object
and spatial signal paths.

The nonlinear feature extraction model is based on cochlear filter bank and
logarithmic nonlinearity. The cochlear filter bank consists of many bandpass
filters, of which center frequencies are distributed linearly in logarithmic scale.
The quality factor Q, i.e., ratio of center frequency to bandwidth, of band-
pass filters is quite low, and there are overlaps in frequency characteristics.
The logarithmic nonlinearity provides wide dynamic range and robustness
to additive noise. Time-frequency masking is a psychoacoustic phenomenon,

Fig. 4. Block diagram of auditory pathway model. The object path and spatial
path deal with speech feature extraction and sound localization, respectively, and
the attention path controls the other two paths for robust speech recognition
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where a stronger signal suppresses weaker signals in nearby time and frequency
domains.

For the binaural processing at the spatial path conventional models
estimate interaural time delay, i.e., time-delay between signals from left and
right ears, based on cross-correlation, and utilize the time-delay for sound
localization and noise reduction. Interaural intensity difference is also uti-
lized for advanced models. However, these models assume only direct sound
paths from a sound source to two ears, which is not valid for many real-
world environments with multipath reverberation and multiple sound sources
(e.g., speech inside an automobile with external road and wind noise, and
reverberation of speech mixed with music from the audio system). Therefore,
it is required to incorporate deconvolution and separation algorithms in the
binaural processing.

For the attention path, a model is being developed to combine both the
bottom-up (BU) and top-down (TD) attention mechanisms. The BU atten-
tion usually results from strong sound intensity and/or rapid intensity changes
in time, and is closely related to the time-frequency masking. However, TD
attention comes from familiarity and importance of the sound, and relies on
existing knowledge of each person. For example, a specific word or a per-
son’s voice may trigger TD attention for relevant people only. Therefore, TD
attention originates from the higher-level brain areas that may be modeled in
a speech recognition system.

3.2 Vision Module

The vision module also consists of submodules for feature extraction in the
object path, stereo vision in the spatial path, and image recognition in the
attention path. Also, it is closely coupled to the action module for the active
vision and facial representation of emotion.

The object path starts from the bottom-up saliency map [2] to identify
the area of interests, and pattern recognition with top-down attention is per-
formed only at those areas. The saliency map consists of colors and orientation
edges with several different scales. The recognition submodule will visit each
area with high saliency one by one, and classify the images. In the first ver-
sion of Artificial Brain the vision module mainly identifies the facial areas
from background images, and recognizes the name and emotional status of
the person. Similar to the auditory module the top-down attention greatly
improves the recognition performance of occluded or confusing patterns in
complex backgrounds.

An important research topic for this module is the color constancy with
different illumination conditions.

In future lip-reading will be added for robust recognition in very noisy
environment. Since the human perception of motion goes through two different
pathways, i.e., the lateral fusiform gyrus for the invariant aspects and the supe-
rior temporal sulcus for the changeable aspects of faces [3], the dynamic video
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features may be different from static image features, and efficient unsupervised
learning algorithm should be developed to extract the dynamic features.

3.3 Inference Module

The inference module performs knowledge acquisition, emotional transition,
and user adaptation. Applications of inference functions for OfficeMates are
also integrated in this module.

The knowledge acquisition should be autonomous and proactive. For the
autonomous learning it should be able to learn without intervention of users.
For example, if a textbook on medicine is provided, the Artificial Brain should
be able to learn the knowledge of medical doctors. To accomplish this goal
we develop unsupervised learning algorithms to extract the basic components
of knowledge from the text. A hierarchical architecture may be adopted to
build complex knowledge systems from these basic components. The proactive
learning then improves the knowledge by asking proper questions. The module
estimates what need to be learnt more, phrases proper questions, figures out
appropriate person to ask, and incorporates the answers into its knowledge
system.

Even with the proactive learning the inference module may experience new
circumstances that it has never been exposed to before in the real world appli-
cations. Therefore, another important characteristic of the learning system is
the generalization capability, which may be obtained by additional constraints
on the cost function during learning [4].

The emotional transition is one important characteristic of human-like
behavior. To incorporate the emotional transitions we use recurrent neural
networks in the inference module, and one hidden neuron is assigned to each
independent emotional axis. The transition may be triggered by sensory per-
ception and its own actions to the environment. However, in the future the
emotion assignment and transition will be learnt autonomously, and the effi-
cient learning algorithm of this emotional network still need be investigated.
If successful, it may lead us to the more complex topics of consciousness and
self esteem.

The user adaptation has many different levels, and the simplest level may
be implemented by adjusting some parameters of the inference system. How-
ever, we plan to implement the user adaptation as the training of another
inference system for the user. In this framework both the Artificial Brain and
users share the same inference architecture, and the two inference modules
are learnt simultaneously.

The applications of the inference module include language understand-
ing, meeting scheduling, and document preparation. Actually the language
understanding is the fundamental function for efficient man-machine inter-
face. Also, the extraction of emotional components from speech and texts is
conducted during this process.
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The Artificial Brain need to be trained for specific applications of the
OfficeMates. We focus on two jobs of office secretaries, i.e., meeting scheduling
and document preparation. Of course we do not expect perfect performance
at the early stage, but hope to save time of human secretaries by a half.

3.4 Action Module

The action module consists of speech synthesizer and facial representation
controller. Both are expected to have capabilities of emotional representation,
which is very important for the natural interaction between the Artificial
Brain and its users. The speech synthesizer is based on commercial TTS
(Text-To-Speech) software, and we are just adding capability of emotional
speech expressions. The emotional facial representation has been analyzed,
and the robot head of the Artificial Brain is capable of representing simple
emotions.

Another important function of the action module is the communica-
tion with other office equipments such as telephone, computer, fax machine,
copier, etc. Although it does not require intelligence, it is needed to work as
OfficeMates.

4 Research Results

In this section some research results are reported mainly for the auditory and
vision modules. The inference and action modules are still at the early stage
of research.

4.1 Self-Organized Speech Feature

The nonlinear feature extraction in auditory pathway is based on cochlear
filter bank and logarithmic nonlinearity. The cochlear filter bank consists of
many bandpass filters, of which center frequencies are distributed linearly in
logarithmic scale. Based on the information-theoretic sparse coding principle
we present the frequency-selective responses at the cochlea and complex time-
frequency responses at the auditory cortex.

At cochlea we assume that speech signal is a linear combination of the
independent basis features, and find these basis features by unsupervised
learning from the observed speech. The Independent Component Analysis
(ICA) minimizes the mutual information and extracts the statistically inde-
pendent features [5]. For speech signals we assume the Laplacian distribution,
of which sparsity was supported by an experiment on the dynamic functional
connectivity in auditory cortex [6].



Artificial Brain and OfficeMateTR based on Brain Information 133

10
0

0
50

−10

−5
0.50

0
−0.5

0.50
0

−0.5
0.50

0
−0.5

0.20
0

−0.2
0.050

−0.05
0.050

0

0

−0.05

−0.02

0.020
0

0 50 0

−0.05
0.050

0

10
0

0
50   50

−10

10
0

50   50
−10

4
2

50   20
0

−5

500.50

500.50

500.50

500.20

0
−0.5

0
−0.5

0
−0.5

0
−0.2

50.050

−0.05
50.050

0

0

−0.05

−0.02

50.020
0

−0.05
50.050

0

50 0

0

50   10
−5

500.50

500.20

500.10

0
−1

0
−0.5

0
−0.2

0
−0.1

500.10

−0.1
50.050

0

0

−0.05

−0.01

50.010
0

−0.05
50.050

0

50 0

0

500.50
−2

500.50

500.20

500.10

0
−0.5

0
−0.5

0
−0.2

0
−0.1

50.050

−0.05
50.050

0

0

−0.05

−0.01

50.010
0

−0.05
50.050

0

5
0

50   20 50

50

50

50

50

50

50

50

50

50

−5

50 0

0

500.50
−2

500.50

500.20

50.050

0
−0.5

0
−0.5

0
−0.2

0
−0.05

50.050

−0.05
50.050

0

0

−0.05

−5

50  50
0

−0.05
50.050

0

Fig. 5. Fifty simple speech features extracted by independent component analysis
from raw speech signals

The training data consist of 60 sentences from six speakers in the TIMIT
continuous speech corpus (http://www.ldc.upenn.edu/Catalog/docs/
LDC93S2/timit.html), and speech segments composed of 50 samples, i.e.,
10 ms time interval at 16 kHz sampling rates, are randomly generated.

As shown in Figure 5, the obtained 50 basis feature vectors are localized
in both time and frequency [7]. Average normalized kurtosis of the extracted
features is 60.3, which shows very high sparseness. By applying the topology-
preserving ICA [8], the basis features are extracted in the order of the center
frequency [9].

After the frequency-selective filtering at the cochlea, more complex audi-
tory features are extracted at the latter part of the human auditory pathway,
i.e., inferior colliculus and auditory cortex. This complex features may also
be understood as the information-theoretic sparse coding. Here we model the
earlier part of the human auditory pathway as a simple mel-scaled cochlear fil-
terbank and the logarithmic compression. The time-frequency representation
of the speech signal is estimated at each time frame with 10 msec intervals,
and the ICA algorithm is applied to this two-dimensional data. The 23 mel-
scaled filters and 5 time frames are selected with the local feature dimension
of 115, which is reduced to 81 using the principal component analysis (PCA).
Topology-preserving self-organization is also incorporated [8].
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Fig. 6. Eighty one complex speech features extracted by independent component
analysis from time-frequency spectrum

As shown in Figure 6, the resulting complex speech features show many
aspects of the features extracted at the auditory cortex [10]. At the lower left
side of the map, vertical lines represent frequency-maintaining components
with complex harmonics structures. The horizontal lines at the upper right
side of the map represent on-set and off-set components. In the center of the
map, there exist frequency-modulation components such as frequency-rising
and frequency-falling components. In fact, there exist neurons responding to
these three basic sound components in the human auditory pathways, i.e.,
the steady complex harmonics, on/off-sets, and frequency modulation. Many
auditory cortical areas are tonotopically organized, and are specialized to
specific sound features [11].

4.2 Time-Frequency Masking

Another important characteristic of the signal processing in the human audi-
tory pathway is the time-frequency masking, which had been successfully mod-
eled and applied to the noise-robust speech recognition [12]. Time-frequency
masking is a psychoacoustic phenomenon, where the stronger signal suppresses
the weaker signals in nearby time and frequency domains [13]. It also helps
to increase frequency selectivity with overlapping filters.

As shown in Figure 7, the frequency masking is modeled by the lateral
inhibition in frequency domain, and incorporated at the output of the Mel-
scale filterbank. The time masking is also implemented as lateral inhibition,
but only the forward (progressive) time masking is incorporated.

The developed time-frequency masking model is applied to the isolated
word recognition task. Frequency masking reduces the misclassification rates
greatly, and the temporal masking reduces the error rate even further [12].

4.3 Binaural Speech Separation and Enhancement

For the binaural processing the usual model estimates interaural time delay
based on cross-correlation, and utilizes the time-delay for sound localization
and noise reduction. Interaural intensity difference is also utilized for advanced
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models [13]. However, these models assume only direct sound paths from one
sound source to two ears, which is not true for many real-world environ-
ments with multipath reverberation and multiple sound sources. Therefore,
it is required to incorporate deconvolution and separation algorithms, and an
extended binaural processing model has been developed based on informa-
tion theory. We have extended the convolutive ICA algorithm [14] to multiple
filterbanks [15] and further extended the cochlea filterbank.

As shown in Figure 8, the signals from the left ear and the right ear first
go through the same filterbank, and the outputs of each filter are de-mixed by
separate ICA networks. Then, the clean signals are recovered through inverse
filterbanks. If two signal sources exist, each signal can be recovered. If only
one signal source exists, the signal and a noise will be recovered.

In ref. [15] the ICA-based binaural signal separation with uniform fil-
terbank results in much higher final SIR than the fullband time-domain
approach and the frequency-domain approach. The poor performance of the
frequency-domain approach comes from the boundary effects of the frame-
based short-time Fourier transform as well as the permutation problem of the
ICA algorithm. Although the permutation problems still needs to be solved,
compared to the standard time-domain approach without the filterbank, the
filterbank approach converges much faster giving better SNR. Basically the
filterbank approach divides the complex problem into many easier problems.
Due to the decimation at each filter the computational complexity is also
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Fig. 9. Performance of ICA-based binaural signal separation methods from convolu-
tive mixtures. The ICA with cochlea filterbank converges much faster than uniform
filterbank approach. (a) Speech and music; (b) two speeches; (c) speech and car
noise

reduced. Also, it is more biologically plausible. As shown in Figure 9, the uti-
lization of cochlea filterbank greatly improves the convergence.

The de-mixing matrices include information on the relative positions of the
sources from the microphones, and the sound localization is also achievable
from the de-mixing coefficients. The filterbank approach is quite advantageous
for the accurate estimation of the sound direction, especially for noisy multi-
source cases. Also, the estimated sound direction may also be utilized to solve
the permutation problem [16].

4.4 Top-Down Selective Attention

In the cognitive science literature two different processes are presented with
the word “selective attention”, i.e., the bottom-up (BU) and top-down (TD)
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attention mechanisms. The BU attention usually incurs from strong sound
intensity and/or fast intensity changes in time. However, the TD attention
comes from familiarity and perceptual importance of the sound, and relies on
existing knowledge of each person. For example, a specific word or a person’s
voice may trigger TD attention for relevant people only.

The TD attention originates from the higher brain areas, which may be
modeled as a speech recognition system. A simple but efficient TD atten-
tion model has been developed with a multilayer perceptron classifier for the
pattern and speech recognition systems [17][18]. As shown in Figure 10, the
sensory input pattern is fed to a multi-layer Perceptron (MLP), which gener-
ates a classified output. Then, an attention cue may be generated either from
the classified output or from an external source. The attended output class
estimates an attended input pattern based on the top-down attention. It may
be done by adjusting the attention gain coefficients for each input neuron by
error backpropagation. For unattended input features the attention gain may
become very small, while those of attended features remains close to 1. Once
a pattern is classified, the attention shifting may occurs to find the remain-
ing patterns. In this case the attention gain coefficients of highly-attended
features may be set to 0, while the other may be adapted.

The main difficulty of this top-down expectation comes from the basic
nature of the pattern classification. For pattern classification problems many
input patterns may belong to the same output class, and the reverse is not
unique. However, for many practical applications, one only needs to find the
closest input pattern to the attended class, and the gradient-descent algorithm
does just that.

Figure 11 shows examples of selective attention and attention switching
algorithm in action for confusing patterns [19] and overlapped numerals [17].

Fig. 10. Block diagram of top-down attention mechanism. The top-down expec-
tation is estimated from the attended output class by the multi-layer perceptron
classifier, which mimics the previous knowledge on the words and sounds
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Fig. 11. Examples of selective attention and attention switching. The four images
in each row show from the left the test input, attended input, attention-switched
input, and the second-round input, respectively. (a) Results for 3 confusing images,
i.e. Eskimo and the facial side view, lady face and old man face, and trumpet player
and facial front view; (b) results from overlapped 10 numeric characters

The four images on the horizontal sequences show results on one test. The first
image shows the confusing or overlapped test pattern. The second image shows
the attended input for the first round classification. The third image shows the
masking pattern for attention switching. The fourth image shows the residual
input pattern for the second round classification. Figure 11 clearly shows that
selective attention and attention switching are performed effectively, and the
remaining input patterns for the second round classification are quite visi-
ble. The top-down attention algorithm recognized much better than standard
MLP classifier, and the attention shifting successfully recognized two super-
imposed patterns in sequence. It also achieved much better recognition rates
for speech recognition applications in real-world noisy environment [18].

We also combined the ICA-based blind signal separation and top-down
attention algorithms [20]. The ICA algorithm assumes that the source signals
are statistically independent, which is not true for many real-world speech
signals. Therefore, the ICA-based binaural signal separation algorithm results
in non-exact source signals. By incorporating attention layer at the output of
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Fig. 12. Block diagram of ICA-based signal separation with deviation correction
from top-down attention. It may be understood as a BU-TD combined approach, in
which the ICA network serves for the bottom-up attention

the ICA network, this deviation may be compensated for the reference signal
provided by the top-down attention. For speech recognition tasks the Mel-
Frequency Cepstral Coefficient (MFCC) feature is the popular choice, and the
backward evaluation becomes complicated. However, as shown in Figure 12,
it is still applicable. Basically one may consider the calculation steps of the
MFCC as another layer of a nonlinear neural network, and apply the error
backpropagation with the specific network architecture.

4.5 Dynamic Features for Lip-reading

In previous studies the lip-motion features are extracted from single-frame
images and the sequential nature of the motion video is not utilized. How-
ever, it is commonly understood that the human perception of static images
and motion go through different pathways. The features of motion video may
be different from the features for the face recognition, and requires more
representation from consecutive multiple frames.

Figure 13 shows the dynamic features extracted by 3 decomposition tech-
niques, i.e., Principal Component Analysis (PCA), Non-negative Matrix
Factorization (NMF), and Independent Component Analysis (ICA), from
multi-frame lip videos [21]. While the PCA results in global features, the ICA
results in local features with high sparsity. The sparsity of the NMF-based
features resides between those of the PCA and ICA-based features. The
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Fig. 13. Extracted lip motion features by PCA (left figures), NMF (center figures),
and ICA (right figures) algorithms. Only features from 2-frames are shown for
simplicity

Fig. 14. Demonstration system for the blind signal processing and adaptive noise
canceling. Two microphones received 6 signals, i.e., one human speech, one car
noise from the right speaker, and 4 background music signals from the remaining 4
speakers

probability density functions and kurtosis of these features are almost in-
dependent on the number of the consecutive frames, and the multiple-frame
features require less number of coefficients to represent video clips than the
single-frame static features. It was also found that the ICA-based features
result in the best recognition performance for the lip-reading.

4.6 Hardware Implementations

Many auditory models require intensive computing, and special hardware
has been developed for real-time applications. A speech recognition chip had
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been developed as a System-On-Chip, which consists of circuit blocks for AD
conversion, nonlinear speech feature extraction, programmable processor for
recognition system, and DA conversion. Also, the extended binaural process-
ing model has been implemented in FPGAs [22].

The developed FPGA-chip was tested with a board with two microphones
and 5 speakers. Four of these speakers mimic car audio signals, of which orig-
inal waveforms are available from electric line jacks. The other speaker gener-
ates car noise signal. Also, there is another human speaker. Therefore, the two
microphones receive 6 audio signals as shown in the upper part of Figure 14.
The developed chip and board demonstrated great signal enhancement, and
result in about 19 dB final SNR or 18 dB enhancements. The performance
of the FPGA-chip is tested for speech recognition tasks, and the achieved
recognition rates are almost the same as those of a clean speech.

5 The Future

The intelligent machines will help human as friends and family members in the
early 21st century, and provide services for the prosperity of human beings.
In 2020 each family will have at-least one intelligent machine to help their
household jobs. At offices intelligent machines, such as the OfficeMates, will
help human to work efficiently for the organizations. We expect the number
of working people may be reduced by a half with the help of OfficeMates, and
the other half may work on more intelligent jobs. Or, they may just relax and
enjoy their freedom.

Intelligence to machines, and freedom to mankind!
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