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Summary. There is a complex relationship between the architecture of a computer,
the software it needs to run, and the tasks it performs. The most difficult aspect
of building a brain-like computer may not be in its construction, but in its use:
How can it be programmed? What can it do well? What does it do poorly? In the
history of computers, software development has proved far more difficult and far
slower than straightforward hardware development. There is no reason to expect
a brain like computer to be any different. This chapter speculates about its basic
design, provides examples of “programming” and suggests how intermediate level
structures could arise in a sparsely connected massively parallel, brain like computer
using sparse data representations.

1 Introduction

We want to design a suitable computer architecture – hardware and software
– for the efficient execution of the applications now being developed that will
display human-like cognitive abilities. We base our fundamental design on
a few ideas taken from the neurobiology of the mammalian cerebral cortex,
therefore we have named our project the Ersatz Brain Project. We gave it
this name because, given our current state of knowledge, our goal can only
be to build a shoddy second-rate brain. Even so, such a computer may be
a starting point for projects that realize systems with the power, flexibility,
and subtlety of the actual brain. We suggest that a “cortex-power” massively
parallel computer is now technically feasible, requiring on the order of a million
simple CPUs and a terabyte of memory for connections between CPUs.

We approach this problem from the point of view of cognitive computa-
tion. There is little attempt to make a detailed “biologically realistic” neuro-
computer. We are proposing instead a “cortically inspired” computing system
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specifically for cognitive applications. Mammalian cerebral cortex is a remark-
ably uniform, large structure that seems to do much of the work of cognition,
though other structures are involved. We know a good deal about the details
of human cognition and the operations it performs. Our belief is that these
operations will be performed most efficiently by a computer system based to
at least some degree on the design of cerebral cortex.

However, the brain has severe intrinsic limitations on connectivity, speed,
and accuracy and some computational strategies may simply be forced on
the system by hardware limitations. In many respects we have a dual compu-
tational system, one system old, highly evolved, highly optimized, basically
associative, perceptually oriented, memory driven, and alogical, and, a second
system, recent, oddly contoured, unreliable, “symbolic” and “rule based”. (See
Sloman [1] for a cognitive science perspective.) We suggest a successful brain-
like computer system should include aspects of both systems, since they are
complementary and work effectively together, as the remarkable, very rapid
success of our own species indicates.

2 Essentials of the Ersatz Approach

The human brain is composed of on the order of 1010 neurons, connected
together with at least 1014 connections between neurons. These numbers
are likely to be underestimates. Biological neurons and their connections are
extremely complex electrochemical structures that require substantial com-
puter power to model even in poor approximations. The more realistic the
neuron approximation, the smaller is the network that can be modeled. Worse,
there is very strong evidence that a bigger brain is a better brain, thereby
increasing greatly computational demands if biology is followed closely. We
need good approximations to build a practical brain-like computer.

2.1 The Ersatz Cortical Computing Module and the Network
of Networks

Received wisdom has it that neurons are the basic computational units of the
brain. However the Ersatz Brain Project is based on a different assumption.
We will use the Network of Networks [NofN] approximation to structure
the hardware and to reduce the number of connections required [2, 3, 4].

We assume that the basic neural computing units are not neurons, but
small (perhaps 103− 104 neurons) attractor networks, that is, non-linear net-
works (modules) whose behavior is dominated by their attractor states that
may be built in or acquired through learning [5, 6, 7]. Basing computation
on module attractor states – that is, on intermediate level structure – and
not directly on the activities of single neurons reduces the dimensionality of
the system, allows a degree of intrinsic noise immunity, and allows interac-
tions between networks to be approximated as interactions between attrac-
tor states. Interactions between modules are similar to the generic neural
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net unit except scalar connection strengths are replaced by state interaction
matrices. (Fig. 1) The state interaction matrix gives the effect of an attrac-
tor state in one module upon attractor states in a module connected to it.
Because attractors are derived from neuron responses, it is potentially possi-
ble to merge neuron-based preprocessing with attractor dynamics. The basic
Network of Networks system is composed of very many of these basic modules
arranged in a two-dimensional array. (Fig. 2).

2.2 Cortical Columns

The most likely physiological candidate for the basic component of a modular
network is the cortical column. Cerebral cortex is a large two-dimensional
layered sheet, with a repetitive structure. One of its most prominent anatomical
features is the presence of what are called columns, local groups of cells oriented
perpendicular to the cortical surface. There are several types of columns present
at different spatial scales. A recent special issue of the journal Cerebral Cortex
was devoted to cortical columns, their functions, and their connections. The
introduction by Mountcastle [8] provides a useful summary of the two types of
columns that will most concern us:

“The basic unit of cortical operation is the minicolumn . . . It contains
of the order of 80–100 neurons, except in the primate striate cortex, where

Fig. 1. Generic Network of Networks module structure

Fig. 2. Network of Networks 2-D modular architecture
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the number is more than doubled. The minicolumn measures of the order
of 40–50 µm in transverse diameter, separated from adjacent minicolumns by
vertical cell-sparse zones which vary in size in different cortical areas. Each
minicolumn has all cortical phenotypes, and each has several output channels.
. . . By the 26th gestational week the human neocortex is composed of a large
number of minicolumns in parallel vertical arrays.” ([8], p. 2)

Minicolumns form a biologically determined structure of stable size, form
and universal occurrence. What are often called “columns” in the literature are
collections of minicolumns that seem to form functional units. Probably the
best-known examples of functional columns are the orientation columns in V1,
primary visual cortex. Vertical electrode penetrations in V1, that is, parallel
to the axis of the column, found numerous cells that respond to oriented
visual stimuli with the same orientation [9]. The cells in a column are not
identical in their properties and, outside of orientation, may vary widely in
their responses to contrast, spatial frequency, etc. Clusters of minicolumns
make up functional columns:

Mountcastle continues, “Cortical columns are formed by the binding
together of many minicolumns by common input and short range horizontal
connections. The number of minicolumns per column varies probably because
of variation in size of the cell sparse inter-minicolumnar zones; the number
varies between 50 and 80. Long-range, intracortical projections link columns
with similar functional properties. Columns vary between 300 and 500 µm in
transverse diameter, and do not differ significantly in size between brains that
may vary in size over three orders of magnitude . . . Cortical expansion in
evolution is marked by increases in surface area with little change in thick-
ness . . . .” ([8], p. 3).

If we assume there are 100 neurons per minicolumn, and roughly 80 mini-
columns per functional column, this suggests there are roughly 8,000 neurons
in a column.

2.3 Connectivity

Besides modular structure, an important observation about the brain in gen-
eral that strongly influences how it works is its very sparse connectivity
between neurons. Although a given neuron in cortex may have on the order of
100,000 synapses, there are more than 1010 neurons in the brain. Therefore,
the fractional connectivity is very low; for the previous numbers it is 0.001
per cent, even if every synapse connects to a different cell. Connections are
expensive biologically since they take up space, use energy, and are hard to
wire up correctly. The connections that are there are precious and their pat-
tern of connection must be under tight control. This observation puts severe
constraints on the structure of large-scale brain models. One implication of
expensive connections is that short local connections are relatively cheap com-
pared to longer range ones. The cortical approximation we will discuss makes
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extensive use of local connections for computation in addition to the sparse,
accurately targeted long-range connections.

2.4 Interactions between Modules

Let us discuss in a little more detail how to analyze interactions between
small groups of modules. The attractor model we will use is the BSB network
(Anderson, 1993) because it is simple to analyze using the eigenvectors and
eigenvalues of its local connections.

The BSB model (Fig. 3.) was proposed several years ago as a simple feed-
back nonlinear neural network [6]. Its dynamics broke conveniently into a
linear and a non-linear part. The analysis assumed it was a recurrent feed-
back network (See Fig. 3). An input pattern, f , appears on an interconnected
group of neurons, say from a sensory input. There is vector feedback through
a connection matrix, A, weighted by a constant α and an inhibitory decay
constant, γ, with amount of inhibition a function of the amplitude of the
activity. The state of the system is x(t). The system is linear up to the point
where the LIMIT operation starts to operate. LIMIT(x(t)) is a hard limiter
with an upper and lower threshold. Sometimes it is useful to maintain the
outside input f(0) at some level; sometimes it is useful to remove the outside
input. The constant δ performs this function.

The basic algorithm for BSB is:

x(t+ 1) = LIMIT (αAx(t) + γx(t) + δf(0)) (1)

In the nonlinear BSB network with growing activity, the state of the system
will reach an attractor state based on the LIMIT function, usually the corner
of a hypercube of limits. In practice, if f is an eigenvector the final BSB
attractor state is close to the direction of f .

Activity can increase without bound or go to zero. The transition from
increasing activity to decreasing activity is under control of α, γ and, the
eigenvalues of A. These parameters provide a way of controlling network
behavior.

Fig. 3. Basic BSB module
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Fig. 4. Two modules linked by an associative pattern feedback loop. C and D are
state interaction matrices between the two modules

Let us consider the implications of connections from other structures. In
particular, we know two relevant facts about cortex: (1) one cortical region
projects to others and, (2) there are back projections from the target regions
to the first region that are comparable in size to the upward projections.
Therefore let us consider the anatomy shown in Fig. 4. The upward associa-
tion, C, can have almost any pattern as an output association. The downward
association has an eigenvector of A, f , at its output, perhaps mixed with other
eigenvectors. Hebbian learning operating at the start and finish of the loop
will tend to learn f as an eigenvector of the entire loop because it is present
at both input and output. These loops are reminiscent of the Bidirectional
Associative Memory [BAM] of Kosko [10]. Analysis again is easy if f is an
eigenvector. Let us assume δ is zero, as before. Analysis is the same as in
the basic model, except that we now have a new term in the BSB equation
corresponding to the contribution from the loop. (Fig. 4.)

We can also propose a computational mechanism for binding together a
multi-module input pattern using local connections. If two modules are driven
by two simultaneously presented patterns, f and g, associative links between
f and g can be formed, increasing the gain of the module and therefore the
likelihood that later simultaneous presentation of the patterns will lead to
module activity reaching a limit. (Fig. 5) Local pattern co-occurrence will
form local pattern associative bonds, letting larger groupings act as a unit,
that is, a unit that increases and decreases in activity together. Large-scale
patterns will tend to bind many module activities together since learning takes
place embedded in a larger informational structure.

2.5 Interference Patterns and Traveling Waves

Because we have suggested many important connections are local, much
information processing takes place by movement of information laterally from
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Fig. 5. Two coupled modules receiving a pair of linked input patterns, f and g

Fig. 6. Two patterns move laterally across an array and form an interference pat-
tern, and can learn the resulting feature combination

module to module as shown in Fig. 6. This lateral information flow requires
time and some important assumptions about the initial wiring of the mod-
ules. There is currently considerable experimental data supporting the idea
of lateral information transfer in cerebral cortex over significant distances.
The lateral information flow allows the potential for the formation of the fea-
ture combinations in the interference patterns, useful for pattern recognition.
There is no particular reason to suggest that modules just passing information
are in attractor states; for pattern transmission it is better if they re not.

Coincidences, where two patterns collide are of special interest. Since the
individual modules are nonlinear learning networks, we have here the potential
for forming new attractor states when an interference pattern forms, that is,
when two patterns arrive simultaneously at a module over different pathways.
(Fig. 6.)

There have been a number of related computational models specifically
designed for vision that have assumed that image processing involves lateral
spread of information. An early example is Pitts and McCulloch [11] who
suggested, “A square in the visual field, as it moved in and out in successive
constrictions and dilations in Area 17, would trace out four spokes radiating
from a common center upon the recipient mosaic. This four-spoked form, not
at all like a square, would the be the size-invariant figure of a square (p. 55).”
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In the 1970’s Blum [12] proposed the “grassfire” model where visual contours
ignited metaphorical “grassfires” and where the flame fronts intersected pro-
duced a somewhat size invariant representation of an object. The propagating
waves are computing something like the medial axis representation, that
is, the point on the axis lying halfway between contours [13].

There are many examples of traveling waves in cortex. Bringuier, Chavane,
Glaeser, and Fregnac [14] observed long range interactions in V1 with an
inferred conduction velocity of approximately 0.1 m/sec. Lee, Mumford,
Romero, and Lamme [15] discuss units in visual cortex that seem to respond
to the medial axis. Particularly pertinent in this context is Lee [16] who dis-
cuses medial axis representations in the light of the organization of V1. In
psychophysics, Kovacs and Julesz [17] and Kovacs, Feher, and Julesz [18]
demonstrated threshold enhancement at the center of circle and at the foci
of ellipses composed of oriented Gabor patches forming a closed contour.
These models assume that an unspecified form of “activation” is being spread
whereas the Network of Networks assumes that pattern information (a vec-
tor) related to module attractor states is being propagated. We feel that
the traveling wave mechanism and its generalizations may have more general
applications that vision.

2.6 Ersatz Hardware: A Brief Sketch

How hard would it be to implement such a cortex-like system in hardware?
This section is a “back of the envelope” estimate of the numbers. We feel
that there is a size, connectivity, and computational power sweet spot about
the level of the parameters of the network of network model. If we equate an
elementary attractor network with 104 actual neurons, that network might
display perhaps 50 well-defined attractor states. Each elementary network
might connect to 50 others through 50x50 state connection matrices. There-
fore a cortex-sized artificial system might consist of 106 elementary units with
about 1011 to 1012 (0.1 to 1 terabyte) total strengths involved to specify con-
nections. Assume each elementary unit has the processing power of a simple
CPU. If we assume 100 to 1000 CPU’s can be placed on a chip there would
be perhaps 1000 to 10,000 chips in a brain sized system. These numbers are
within the capability of current technology.

Therefore, our basic architecture consists of a large number of simple CPUs
connected to each other and arranged in a two dimensional array. (Fig. 7).
A 2-D arrangement is simple, cheap to implement, and corresponds to the
actual 2-D anatomy of cerebral cortex. An intrinsic 2-D topography can also
make effective use of the spatial data representations used in cortex for vision,
audition, skin senses and motor control.

2.7 Communications

The brain has extensive local and long-range communications. The brain is
unlike a traditional computer in that its program, dynamics, and computations
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Fig. 7. A 2-D array of modules with simple local connectivity. The basic Ersatz
architecture

are determined primarily by strengths of its connections. Details of these rel-
atively sparse interconnections are critical to every aspect of brain function.

Short-range connections

There is extensive local connectivity in cortex. An artificial system has many
options. The simplest connections are purely to its neighbors. Expanding local
connectivity to include modules two or three modules away, often seems to
work better but is more complex to build.

Long-range connections

Many of the most important operations in brain computation involve pattern
association where an input pattern is transformed to an associated output
pattern that can be different from the input. One group of units connects to
other groups with precisely targeted long-range connections.

CPU Functions

The CPUs must handle two quite different sets of operations. First, is com-
munications with other CPUs. Much of the time and effort in brain-based
computation is in getting the data to where it needs to be. Second, when the
data arrives, it is can then be used for numerical computation.

3 Topographic Computation

The cortex, and, in imitation, our computational model is a 2-D sheet of
modules. Connections between modules, slow and expensive in the brain, as
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we have noted, perform the computation. Therefore topographic relationships
between modules and their timing relationships become of critical compu-
tational significance. We suggest that it is possible to use the topographic
structure of the array to perform some interesting computations. Indeed,
topographic computation may be a major mechanism used to direct a
computation in practice, and, therefore, a tool that can be used to program
the array.

The next three sections will describe some uses of topographic organization
to (1) Arithmetic fact learning; (2) Information integration; (3) Filtering based
on spatial organization; (4) Formation of spatial assemblies of modules within
and across layers. This discussion is obviously highly speculative, but suggests
the kinds of intermediate level structures that may be useful in a practical,
programmable, and flexible brain-like computer.

4 Example: Arithmetic in Humans Using Topographic
Control

A few years ago, we suggested a model for elementary arithmetic fact learn-
ing [19] that showed that it was possible to perform what appeared to be
“symbolic” elementary arithmetic operations by using topographically orga-
nized spatial weighting functions. Because this kind of mechanism is sugges-
tive of how an array of modules might be programmed topographically, we
review it here even though the array of modules in the arithmetic model was
one-dimensional. We will expand the array to two dimensions in the next sec-
tions. In addition the problem itself illustrates a few of the peculiarities of
real-world cognitive computation.

When a computer multiplies two single digit integers, it performs a
sequence of formal operations based on logic, the definitions of integers and the
rules of binary arithmetic. Humans do multiplication very differently, using
a combination of estimation and memory. The human algorithm might be
formalized as something like “Choose the product number (that is, a num-
ber that is the answer to some multiplication problem) that is about the
right size.” For example, the most common error for 9x6 is 56. More careful
inspection of the experimental data indicates a complex associative structure
working along with estimation, Errors for 9x6 are frequently “off by one”
multiples of 6 or of 9, for example, 48 or 63. These effects do not seem to arise
because of errors in the application of formal logic to the computation.

The error rate for elementary multiplication facts in college-educated
adults is as high as 8% in some studies. Such a high rate is remarkable consider-
ing that several years are devoted to practicing arithmetic facts in elementary
school, at a time when learning of other complex material – language, for
example – is fast and accurate. However, there are also some positive aspects
to such an error prone algorithm. For example, errors in elementary arith-
metic are usually “close” to the correct answer. Sometimes being “close” is
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good enough to do the job and more useful than the gross magnitude errors
that malfunctioning computers can make.

Attempts by cognitive scientists to model human number performance
have generally assumed the presence of an important “perceptual” part to
the internal human number representation. In many experiments, numbers
act more like “weights” or “light intensities” than abstract quantities. There
is also evidence (Hadamard [20]) that higher mathematics as actually done
by mathematicians or physicists is often more perceptual than abstract. The
classic theorem-proof process is primarily used to check for errors and as a
way of convincing others that results are correct. These ill-defined sensory
and perceptual aspects of mathematics as it is practiced go by the name
“mathematical intuition.”

4.1 The Data Representation for Number

The most difficult problem in any application of neural networks is converting
the input data into the state vectors that can be manipulated by network
dynamics. Data representation often has more influence on system perfor-
mance than the type of learning algorithm or the form of the network. There
are few explicit rules that determine what the best data representations are
for a particular problem. For example, there is constant intrinsic tension
between accuracy and generalization since generalization to be useful requires
an appropriate response to an unlearned pattern. Good generalization is crit-
ically dependent on the needs of the specific application, system history, and
the data representation. In practice, generalization needs to be learnable and
controllable so the same network can generalize one way at one time and in a
different way with different task requirements.

A combination of computer simulations and inference from experimental
data has suggested one useful data representation for number. The starting
point for our formal system will therefore be a suggestion for the representa-
tion of number in a neural network or in a one-dimensional array of modules.

Topographic representations of parameters are very common in the ner-
vous system. For example, in vertebrates, the early stages of the visual corti-
cal representation are topographic in that the image on the retina is roughly
mapped onto the two dimensional cortex. A topographic map of the visual
field is used in vision in animals as diverse as humans and the horseshoe crab,
Limulus. There are many other topographic maps in vertebrate cortex, for
example, somatosensory maps of the body surface and frequency of sound in
audition.

In a neural network, one useful form of such a topographic representation
is called a bar code, as shown in Fig. 8. The value of the parameter repre-
sented depends on the location of a group of active units on a linear array of
units. The price paid for this useful data representation is low precision and
inefficiency in use of units. If a single parameter is represented only as a loca-
tion then many units are required to represent a value that a single unit could
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Fig. 8. Location of the active units on a linear array of units codes the magnitude
of a parameter

represent by an activity level. Such a physical mapping is also inherently low
precision, with precision determined by the number of units devoted to repre-
senting the parameter. Such a representation technique, and its variants are
most naturally implemented in a system that is composed of many relatively
inexpensive units and that is performing a function that is only secondarily
concerned with high accuracy. Some nanocomponent based computing devices
will fall into this category, as does, of course, the nervous system.

Such a representation can convey an essentially continuous range of values.
However, in cognition we often use discrete entities – words, concepts, or num-
bers – to represent many different but somehow related examples. Much of the
computational power of human cognition arises from its ability to keep only
enough information about the world to be useful, and no more. For example,
every physical example of a table is different in detail from every other one,
but the word “table” often captures the essence of the commonalities of the
group and the individual details can be discarded. With our network model,
we can couple a continuous underlying data representation with a nonlinear
attractor neural network with discrete attractors.

4.2 Simple Arithmetic Operations

Learning numbers is only the beginning of arithmetic. If we want to build a
useful computational system, we have to be able to direct the computation
to give answers to specific problems without further learning. Therefore, our
first job is to specify the operations that we would reasonably expect an
“arithmetic” network to perform. Let us suggest several primitive candidate
operations for our computing system.

Counting seems to be present in all human societies of which we have
knowledge and evidence for it goes far back into prehistory. There is good
evidence that nonhuman primates and many higher mammals can count up
to small integers. Formally, we can represent the counting function as two
related operations: starting with a digit, add one to it, that is, increment,
and, the symmetrical operation, subtract one, that is, decrement. Another
valuable arithmetic related function is comparison of two numbers, that is, the



Programming a Parallel Computer: The Ersatz Brain Project 73

equivalent of the formal operations greater-than or lesser-than. Another
useful operation is round-off, that is, two and a bit more can be reported as
“about two.”

Therefore we will suggest that five operations form a useful starting point:

• increment (add 1)
• decrement (subtract 1)
• greater-than (given two numbers, choose the larger)
• lesser-than (given two numbers, choose the smaller)
• round-off to the nearest integer

4.3 Programming Patterns for the Simple Operations

The digits in order are represented as adjacent locations in the array, that is,
the spatial locations follow the order of magnitudes: 1 next to 2, 2 next to 3,
3 next to 4, and so forth. If we use the bar coded data representation we have
discussed (Fig. 9), it is surprisingly easy to find programming patterns that
work. This robustness arises because we are dealing with qualitative properties
of the geometry of representation, that is, representational topology.

In a previous paper [3] a way was suggested to control a network using a
vector programming pattern that multiplied term by term the state vector
derived from the input data. The number data representation we are using
– the overlapping bar codes suggested earlier – contains enough information
about the relations between digits to perform these operations.

The overall architecture of the system we have been describing is presented
in Fig. 10. The system has two branches. One is connected to the physical
world thorough the sensory systems. The other forms the “abstract” branch
and chooses the desired arithmetic manipulation. An operation is chosen. This
operation is associated with a programming pattern. In the other branch of
the computation, information from the world is represented as a bar code.
The two vectors are multiplied term by term. BSB attractor dynamics are

Fig. 9. Bar coded data representation for number magnitude. Bars are arranged
spatially in order of magnitude as in the number line
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Fig. 10. Numerical computation involves merging two components. The left branch
contains the program patterns and the right branch contains input quantities. The
attractor network generates the output

then applied. The state vector then evolves to an attractor that contains the
answer to the problem.

We can present intuitive arguments to support the particular program-
ming patterns used. Consider counting, that is, the “Increment” operation.
If we start from a particular location on the topographic map, we know
that one direction on the map corresponds to larger numbers, the other to
smaller. Therefore, if we differentially weight the map so that nearby larger
numbers are weighted more strongly, the system state can be encouraged to
move toward the attractor corresponding to the next largest digit. (The heavy
dashed line in Fig. 11.)

The “greater-than” operation can also be done with differential weighting
of the input data, so large digits reach attractors before small digits as shown
in Fig. 12.

Round-off is performed slightly differently. A bar for an intermediate value
is generated at a location between the two digits. The network then moves to
the attractor with the largest overlap with the input data bar. The two other
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Fig. 11. The programming pattern for “Increment” weights the input digit and
shifts it to the next attractor to the right

Fig. 12. The programming pattern for “Greater-Than” weights the larger digit
more heavily and drives the state vector to that attractor

operations – less-than and decrement – are simple reflections of the patterns
for greater than and increment.

There are some important properties of the operation of the program that
are worth mentioning. For example, when the ‘greater-than’ program runs, it
displays what is called a symbolic distance effect in cognitive psychology.
The time to an attractor is a function of the difference in magnitude between
the two numbers being compared, that is, the larger of the pair (9, 1) is reaches
its termination state faster than the larger of (5, 4). In our model, this effect
is driven by the magnitude representation in the data representation. The
intrusion of statistical and perceptual components into what appears at first to
be a purely abstract computation is to be expected from our approach, though
perhaps a result not welcomed by purists since it would seem to have no place
in logic. Notice also that the topographic map is effectively a realization of
the number line analogy for integers.

Although these programming techniques work reliably for the digits one
through ten, they are appallingly slow, limited in precision and dynamic range,
and are clearly of no value for constructing a practical computing system
that works with precise numbers. But, then, humans are not very good at
arithmetic either.
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Fig. 13. Four bar codes

5 Example: Sensor Fusion Using Topographic Arrays

One potential application of our Ersatz Brain architecture is to sensor
fusion. Sensor fusion involves integration of information from different types
of sensor into a unified interpretation.

Suppose we have a set of four numerical sensor readings. We can do quite
a bit with these values alone, for example, using them as a set of features
for object recognition. However, this is not really sensor fusion since the sen-
sor data is not integrated but used as information to determine a previously
learned classification. This may not be possible if there is no previous classi-
fication, that is, in unsupervised learning.

Spatializing the data, that is letting it find a natural topographic organiza-
tion that reflects the relationships between multiple data values, is a technique
of great potential power, though an unfamiliar one. It is, however, a natural
and effective way to compute in a two dimensional cortex and our two dimen-
sional Ersatz architecture.

Assume we have four parameters that we want to represent in the activity
pattern that describes a single entity (Fig. 13).

Our architecture assumes local transmission of patterns from module to
module according to the Network of Networks model assumptions. Modules
have multiple stable attractor states. Patterns are transmitted laterally from
module to module. When two different patterns arrive at a module simultane-
ously, there is the possibility for a new pattern to be generated in the module,
now representing the feature coincidence as a new part of the module’s reper-
toire of attractor states. Standard learning rules plus the non-linear network
can perform this operation. There may be many two parameter interference
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Fig. 14. Formation of simple interference patterns

patterns, the straight lines in Fig. 14. Each pair of input patterns gives rise
to an interference pattern, a line perpendicular to the midpoint of the line
between the pair of input locations.

5.1 Higher Level Features

In addition to the interference patterns representing coincidences between
pairs of patterns there are often places where three or even four features
coincide at a module. (Fig. 15) The higher-level combinations represent partial
or whole aspects of the entire input pattern, that is, they respond to the
Gestalt of the pattern. In this sense they have fused a number of aspects of
the input pattern and represented it as a new activity pattern at a specific
location.

5.2 Formation of Hierarchical “Concepts”

One intriguing aspect of this coding technique is the way it allows for the for-
mation of what look a little like hierarchical concept representations. Suppose
we have a set of “objects”. For a simple demonstration, assume we have three
parameter values that are fixed for each object and one value that varies
widely from example to example. After a number of examples are seen, the
system develops two different spatial codes. (Fig. 16).

In the first, a number of high order feature combinations are fixed since
their three input “core” patterns never change. In the second, based on the
additional spatial relations generated by the widely different examples, there
is a varying set of feature combinations corresponding to the details of each
specific example of the object. If the resulting spatial coding is looked at by
an associative system, then two kinds of pattern can be learned.
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Fig. 15. Formation of higher-level feature combinations

Fig. 16. Mechanism for formation of hierarchical structure

The first learned pattern corresponds to an unchanging core and might
correspond to an abstraction of the commonalities of many examples. The
second learned set of patterns corresponds to the core, plus the examples
– patterns associated with each specific learned parameter set. All the spe-
cific examples are related by their common core pattern. This dichotomy has
considerable similarity to the subordinate-superordinate relationships charac-
terizing information stored in a hierarchical semantic network (Murphy [21]).

We have spatialized the logical structure of the hierarchy. Because the
coincidences due to the “core” (three values) and to the “examples” (all four
values) are spatially separated, we have the possibility of using the “core” as
an abstraction of the examples and using it by itself as the descriptor of the
entire set of examples Many of the control mechanisms suggested for cortex,
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most notably attention, are held to work by exciting or inhibiting regions of
the cortical array.

6 Example: Selective Filtering of Vowels

Let us consider a test problem for some of our topographic based ideas on a
real bit of biological signal processing. Let us consider how to build a geomet-
ric data representation inspired by one of the perceptual invariances seen in
human speech.

6.1 Formant Frequencies in Speech Perception

The acoustic signals due to a vowel (and other phonemes) are dominated by
the resonances of the vocal tract, called formants.

The resonant peaks are sometimes not very sharp and not very large. Vocal
tracts come in different sizes, from men, to women, to children. Resonant peaks
change their frequency as a function of vocal tract length.

Remarkably, this frequency shift – which can be substantial between a
bass male voice and a small child – causes little problem for human speech
perception. The important perceptual feature for phoneme recognition seems
to be the based more on the ratios between the formant frequencies than on
their absolute values. This relationship is what we would expect if a vocal
tract simply increased in size without changing its shape. Then differences in
vocal tract length approximately multiply the resonances by a constant.

We can see these properties using a classic set of data [22, 23] for the
formant frequencies of vowels. Table 1 gives the average frequencies (in hz)
of the formants F1, F2, and F3 for three vowels as spoken by men, women
and children. The value of the formant for women is given the value 1.00. It
can be seen the absolute values of the frequency of the formants for the same
vowel vary about 30% between men women and children. If we look instead
at the ratios of the formants the picture changes. Table 2 presents the values
for the ratios of f1 and f2 and f2 and f3 for the same three vowels. Note the
ratios vary only by a few percent over different vocal tract sizes. The ratio of
formants is more constant than the absolute values of frequency.

6.2 Data Representation

We know from many sources there is a roughly logarithmic spatial mapping of
frequency onto the surface of auditory cortex, what is sometimes called a tono-
topic representation. A logarithmic spatial coding has the effect of translating
the all the parameters multiplied by the constant by the same distance.

It might be easy to simply compute ratios of frequencies and use those
values as inputs to a speech processor. However, there might be advantages to



80 James A. Anderson et al.

Table 1. Average Formant Frequencies (Hz) and Ratios of Formant Frequencies for
Men, Women and Children for Three Vowels. Data taken from Watrous [22] derived
originally from Peterson and Barney [23]

[i] [æ] [u]
Men f1 267 (0.86) 664 (0.77) 307 (0.81)

Women f1 310 (1.00) 863 (1.00) 378 (1.00)

Children f1 360 (1.16) 1017 (1.18) 432 (1.14)

Men f2 2294 (0.82) 1727 (0.84) 876 (0.91)

Women f2 2783 (1.00) 2049 (1.00) 961 (1.00)

Children f2 3178 (1.14) 2334 (1.14) 1193 (1.24)

Men f3 2937 (0.89) 2420 (0.85) 2239 (0.84)

Women f3 3312 (1.00) 2832 (1.00) 2666 (1.00)

Children f3 3763 (1.14) 3336 (1.18) 3250 (1.21)

Table 2. Ratios Between Formant Frequencies (Hz) for Men, Women and Children.
Data taken from Watrous [22] derived originally from Peterson and Barney [23]

[i] [æ] [u]
Men f1/f2 0.12 0.38 0.35

Women f1/f2 0.11 0.42 0.39

Children f1/f2 0.11 0.43 0.36

Men f2/f3 0.78 0.71 0.39

Women f2/f3 0.84 0.72 0.36

Children f2/f3 0.84 0.70 0.37

using a more brain-like approach. The transformations are not quite as simple
as simple ratio invariance, the system is intrinsically noisy, the stimuli show
substantial variability both within and between speakers (for example, there
are many different accents), and the system is adaptive.

6.3 Representational Filtering

Our specific goal is to enhance the representation of ratios between “formant”
frequencies, and to de-emphasize the exact values of those frequencies. That
is, we wish to make a kind of filter using the data representation that responds
to one aspect of the input data.

Let us start by assuming our usual information integration square array
of modules with parameters fed in from the edges.

We start by duplicating the frequency representation three times along the
edges of a square. Multiple frequency maps are common in the auditory system
(See Talavage et al. [24] for an fMRI study of tonotopic maps in humans.).
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Fig. 17. The location of the point equidistant from f1, f2 and f3 contains information
about the ratios between them

We will start by assuming that we are interested in locations where three
frequency components come together at a single module at the same time.
Figure 17 shows the point equidistant from f1 on the bottom edge, f2 on the
side, and f3 on the top along with a few geometrical relations between the fre-
quencies. We conjecture that this means the module may form a new internal
representation corresponding to this triple coincidence. If we assume initially
pattern transmission between modules is isotropic we then look for module
locations equidistant from the locations of initial triple sets of frequencies.
These points will be the modules that lie at the center of a circle whose cir-
cumferences contains the three points containing the three different frequency
components, one from each side.

There are multiple combinations of the three formant frequencies. With
three frequencies, the three possibilities are (f1,f2,f3), (f1,f3,f2), (f2,f1,f3),
(f2,f3,f1), (f3,f1,f2), and (f3,f2,f1). Each triple combination produces a slightly
different geometry.

Depending on what triple (location of the frequency combination) is used,
different points are activated. Therefore a three “formant” system has six loca-
tions corresponding to possible triples. (We discuss in Section 8 the possibility
of forming linked assemblies of active modules to function as a higher-level
data representation.)

Figure 18 shows the points (marked with dots) that are equidistant from
various combinations of frequencies. There are actually a lot more possible
combinations possible involving both lower and higher order conjunctions,
but we will start by only looking at triples.

The positions of the coincidences shift slightly if the frequency marks are
translated by a uniform amount, corresponding in our model system to a
change in vocal tract length giving rise to a shift in frequencies.
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Fig. 18. Coincidence locations for various combinations of f1. f2. and f3

Fig. 19. (Top) Modules with triple coincidences for two sets of frequency patterns,
f1, f2, and f3 and g1, g2, and g3

Because the geometry of the triple coincidence points varies with the loca-
tion of the inputs along the edges, a different set of frequencies will give rise
to a different set of coincidences. Figure 19 shows the set of triple coincidences
for another set of frequencies. Note that one triple coincidence for the second
set of frequencies lies outside the array.



Programming a Parallel Computer: The Ersatz Brain Project 83

7 Sparse Connectivity and Sparse Coding

7.1 Full Connectivity

Let us make some general, and highly speculative comments about the
development of possible useful intermediate level structures for brain like
computation.

Most neural network learning models assume full or nearly full connectivity
between layers of units. Units are most often arranged in layers because it is an
arrangement that pays homage to the neuroanatomy of mammalian cerebral
cortex where cortical regions project to other cortical regions over long-range
projection pathways through the white matter. Full connectivity means that
a unit in a layer projects to, and it projected to, by all the units in layers
above and below it.

Fully connected systems can be analyzed with standard mathematical
techniques. They can perform a number of powerful information processing
operations, and, combined with simple local learning algorithms such as the
Hebb rule, they can be used to build adaptive systems with a number of useful
applications in both engineering and science. The number of connections in
fully connected systems grows very rapidly, order n2, where n is the number
of units.

7.2 Sparse Connectivity

Although many neural net models assume full or high connectivity, the actual
cerebral cortex is sparsely connected, that is, each neuron projects to rel-
atively few others given the potential number they could connect to, even in
projections from one cortical region to another. (See Section 2.3).

7.3 Sparse Coding for Data Representation

Besides sparse connectivity, there is reasonably strong experimental evidence
that sparse coding is used for data representation in the cortex, that is,
information is represented by the activities of relatively few units. A review by
Olshausen and Field [25] comments, “In recent years a combination of exper-
imental, computational, and theoretical studies have pointed to the existence
of a common underlying principle involved in sensory information processing,
namely that information is represented by a relatively small number of simul-
taneously active neurons out of a large population, commonly referred to as
‘sparse coding.”’ ([25], p. 481). Many of these ideas first emerged in a classic
paper by Barlow [26].

There are numerous advantages to sparse coding. Olshausen and Field
mention that sparse coding provides increased storage capacity in associative
memories and is easy to work with computationally. Among other virtues,
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sparse coding also “makes structure in natural signals explicit” ([25], p. 481)
and is energy efficient (see [27])

“Higher” regions (for example, inferotemporal cortex) seem to show a
greater degree of sparse coding than lower ones (for example, V1). Cells in
the higher levels of the visual system also have less spontaneous activity than
lower regions, for example, cells in inferotemporal cortex are silent much of
the time until they find a specific stimulus that piques their interest.

7.4 Sparse Coding Combined with Sparse Representation

Fig. 20 shows a cartoon version of a system that shows both sparse coding
(three active units in input layer 1, four in layer 2, and two in output layer 3)
and sparse connectivity.

Instead of trying to derive very general pattern association systems like
back propagation, using high connectivity, let us see if we can make a learning
system that starts from the assumption of both sparse connectivity and
sparse coding.

Such extreme restrictions on connectivity and representation do not seem
at first to form a very promising information processing system. We suspect
this is why it has not been looked at seriously as a nervous system model,
even though it seems to fit the qualitative structure of the cortex better
than the high connectivity assumptions that underlie common neural network
models.

7.5 Paths

In sparse systems, selectivity can come from other sources than a precise
pattern of connection strengths. A useful notion in sparse systems is the idea

Fig. 20. A sparsely connected, sparsely coded three layer system
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of a path. A path connects a sparsely coded input unit with a sparsely coded
output unit. Paths have strengths just as individual connections do, but
the strengths are based on the entire path, from beginning to end, which may
involve several intermediate connections. A path may have initial strength zero
or start with a nonzero strength due to initial connectivity. The concept of a
path is related to useful ways to structure initial wiring of the nervous system.
Connections that are likely to be valuable are sketched in initially. Learning
can then tune and sharpen the pre-existing connections. This strategy seems
to be present in sensory systems. For an example, see a recent discussion of
the development of different aspects of the visual system [28].

Consider a path with several intermediate units. If there is no initial trans-
mission of activity through the path, there will be no learning. If, however,
when the input unit becomes active and gives rise to even low activity at
the output unit, learning can take place and the path can become stronger.
Continued learning will further strengthen that particular path. If the path is
feedforward, connections earlier in the path cannot be changed properly with-
out additional assumptions, for example, some form of backward information
flow. Cortical regions generally project both forward and backwards.

7.6 Initial Biases in Connectivity

For a simple system with scalar weights by far the best, though unrealistic,
strategy would be to somehow construct independent paths for each single
unit association.

If many independent paths were desirable, then a useful initial construction
bias for such a sparsely connected system would be to make available as
many potential paths as possible. This bias differs significantly from back
propagation, where there are almost always fewer units in the hidden layers
than in the input and output layers, therefore fewer potential paths. (Many
of the most important statistical properties of back propagation arise from
the fact that there are a relatively small number of hidden layer units [7].)
In a fully connected system, adding more units than contained in the input
and output layers would be redundant. This is not so in sparser systems. For
example, there is a huge expansion in number of units moving from retina to
thalamus to cortex. A million input fibers drive 200 million V1 neurons.

7.7 Sparseness in Systems Using the Network of Networks

Suppose we assume that modules, not single units, are connected. Simple
scalar activity is not, by nature, selective. Activity arising from different
sources cannot be told apart; there is no “tag” giving its source. But if we
use the Network of Networks approximations, activity along a path is not a
scalar. Activity is now not simple unit activity but module activity. Pat-
terned activity in a single module connected to another single module, can
give rise to a selective pattern associator.
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Fig. 21. About the simplest arrangement of interconnected modules. The S’s are
matrices and A,B, etc. are patterns

For ease in analysis, let us assume the pattern associator is the simplest
kind, the linear associator. Because we aiming for the development of correct
associations over entire paths in a system using non-linear modules, we suspect
the exact details of the network associators are not important.

If a pattern A on module a is input to Layer 1, (see Fig. 21) the activity,
B, on b is given by the matrix-vector product, SabA. We assume as part of
the Network of Networks architecture that there are reciprocal connections
between modules. If pattern B is present on module b of layer 2, the activity
on A is given by SbaB. This loop between a and b is similar to a Bidirectional
Associative Memory [10].

If pattern A on a and pattern B on b are simultaneously present, the
increment in strengths are given by standard Hebb learning, that is,

∆Sab ∼ BAT and ∆Sba ∼ ABT (2)

If no other pattern associations are stored in the connection matrices, after
learning, if pattern A is present at module a, something like pattern B will
appear at module b. The sparsely represented association (the only activity
is on a and b) has been learned.

7.8 Multiple Patterns

Unlike scalar connections between units, a single connection between modules
can learn multiple associations.

In the simplest situation, suppose we look at modules a and b as before,
but assume that a and b can display two different patterns, A and C on
a and B and D on b. Subject to the usual limitations of simple pattern
associators, (that is, it works best if A and B, and C and D, are orthogonal)
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Fig. 22. Two network of networks paths with a common segment

such a network can easily learn to associate A with B and C with D using
the same connections. We can use pattern selectivity to overcome some of the
limitations of scalar systems.

We can also work with more complex systems. Consider a multilayer path
with a common segment as in Fig. 22. We want to associate patterns on two
paths, a-b-c-d and e-b-c-f with link b-c in common.

First, even though parts of the path are physically common they can be
functionally separated if the paths use different module patterns.

Second, because the paths can be functionally separated by their pattern
selectivity, pattern information propagating backwards can now be used to
sharpen and strengthen one path without interfering with the strengths of
another path. The next section gives a very simple example.

7.9 Backwards Projections

There is no reason to assume that the backward projections and the forward
projections must have the same strength. All that may be required initially for
sparse systems is that modules produce activity along all points in the path,
backwards and forwards. We can analyze a simple arrangement of active,
sparsely connected modules, part of a sparse representation, using elementary
outer-product Hebb learning.

First consider the two associative chains, up and down, a > b > c > d
and d > c > b > a.

We assume supervised learning, that is, the desired patterns on a and d
are present at input and output.

We will first consider outer-product learning in the weak signal linear
range of operation of the system. As the path gets strong, we conjecture
that modules in the path will develop internal states corresponding to the
association activation patterns, that is, attractors.
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Consider the two intermediate modules b and c on the path. Patterns on
b and c are the result of information moving upwards from the input layer
and downwards from the output layer, that is, initially with clamped patterns
on a and d, with patterns e and f zero.

Activity on c = Tbcb+ Udcd (3)
Activity on b = Saba+ Tcb (4)

If the activities on b, c and d are non-zero patterns, we have the ability to
use simple Hebb learning to change the strengths of coupling between modules
using their connection matrices so as to change the associative path strength
connecting the pattern on a with the pattern on d.

There are two active modules connected to b, up from a and down from c.
The change in upward coupling between a and b, through Sab is given by

∆(coupling Sab) ∼ baT (5)

The change in upward coupling between b and c is

∆(coupling Tbc) ∼ cbT (6)

and between c and d is

∆(coupling Ucd) ∼ dcT (7)

We assume initial coupling is small, but sufficient to allow some patterns
to emerge at b and c, that is, get through the path, weakly. After multi-
ple learning events, the weak initial connections are small relative to later
learning, and we can compute overall coupling between modules a and d.

If pattern a is presented at layer 1.and the pattern on d is zero, then the
generated pattern on module

d ∼ (Ucd)(Tbc)(Sab)a (8)

∼ (dcT)(cbT )(baT )a (9)
∼ d (10)

The downward associations learn in the same way so that if the supervised
pattern d occurs it will produce a constant times pattern a. Note the poten-
tial for a BAM-like associative loop. These results are well known from the
properties of simple associators. The properties of the system are subject to
the capacity limitations of simple associators and the size of the vectors and
matrices being associated.

The other leg of the association (Fig. 22), the pattern on e linked with
the one on f , potentially can learn independently. It uses a different set of
intermodule connections. One final state after extensive path learning might
consist of a different set of activities on b and c, and, ultimately, different
attractor states developing on b and c from learning on the other path.
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Note that the somewhat arbitrary activities developing on b and c – the
pattern sum of initial upward and downward connections – serves as a random
‘hidden layer’ link between input and output patterns. The argument holds
for more intermediate layers and more associations, as long as sparse initial
paths both up and down exist.

The system gets more complex as more patterns are learned. We know
there are many regular topographic mappings in the cortex, particularly in
the sensory systems. Our hunch is that some of the statistical abstraction and
“concept forming” properties of associators may develop in the intermediate
layers based on representational topography combined with learning in sparse
systems. For example, it is possible, even likely, that sharing paths would
be expected and computationally valuable in associations having a degree of
sensory, perceptual or conceptual similarity. This issue remains to be explored.

7.10 Other Mechanisms

There are numerous other mechanisms that will be required to make this
speculative, sparse system work in practice. For example, we have not con-
sidered here the important gain control mechanisms common in cortex that
could limit the total number of active columns in a region. Besides generalized
regional gain control, there is some evidence that active columns correspond-
ing to a complex object in monkey inferotemporal cortex can inhibit other
columns [29].

With sparse data representations and sparse connectivities, Hebb learning
has the potential to form selective paths that can be used for general associa-
tive learning in Network of Networks systems. Both upward and downward
paths can be used together. Because the modules are non-linear, with limits
on activities and inhibition, stability of learning and dynamics is not likely to
be a problem.

In both multilayer and single layer systems the potential exists for active
feedback loops. Self-exciting loops may be useful intermediate level computa-
tional building blocks, as we suggest next.

8 Module Assemblies

The brain shows large differences in scale. Understanding how neurons work
together in groupings of larger and larger size is perhaps the key to under-
standing brain function. We have already suggested one intermediate level of
structure in the modules comprising the Network of Networks. We can take
this idea a bit further where we speculate about the possibility of the forma-
tion of stable module assemblies as the next higher step in intermediate
level representation.
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Fig. 23. Active modules for two different frequency patterns. (See Section 6.) These
distinct frequency patterns have the potential to form distinct module assemblies

In Section 6, we showed that the information integration model as dis-
cussed in the context of vowel filtering, produced a stimulus dependent series
of nearby excited modules. (See Fig. 23).

Suppose we bind together those nearby excited modules through associa-
tive linkages so they can learn to become mutually self excited in a group.
An intermediate-level representation can arise we call a module assembly,
which we discuss next.

8.1 Physiological Data from Cortex

We reviewed some of the properties of cortical columns in Section 2. It is hard
to study detailed functional properties of columns. However, optical imaging
of intrinsic cortical signals has now allowed visualization of structures of the
size of cortical columns. The spatial resolution of this difficult technique can
be a factor of 50 or more better than fMRI and gets into the size region
where perhaps we can see some of the kinds of specialization for cortical
computation that we need to see. A small body of intrinsic imaging work has
been done on inferotemporal cortex [IT] in primates. As the highest visual
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area, IT contains the results of previous processing presumably in a form that
is congenial for further use. Several groups have studied the organizational
properties of inferotemporal cortex (area TE) from a computational point
of view (See Tsunoda et al., [29]; Tanaka, [30, 31]). They proposed a model
for inferotemporal cortex function that is in rough harmony with the basic
architecture we assume for the Ersatz Brain.

Tanaka’s early work on inferotemporal cortex used (1) computer simplified
stimuli and (2) microelectrode recordings. Cells in area TE respond to few
stimuli and have relatively little spontaneous activity. Once Tanaka found an
image that drove a cell, the next step was to perform a series of abstractions
of it until an optimal simplified image – a “critical feature” – was found that
adequately drove the cell but further simplifications of it did not. Cells in a
small region of TE tended to have similar critical features. For example, a
number of cells in a small region might respond to various “T-junctions.” The
T-junctions would be different from each other in detail, but seemed to be
examples of a basic ‘T’ structure. Regions of similar responses seemed to have
roughly the size (300 µm) and character of the functional columns found in
cortex. Nearby “columns” had quite different critical features. There was no
sign of the continuous gradation of angle of best response found, for example,
in orientation columns in V1.

From four to about a dozen columns were excited by presentation of com-
plex objects and seemed to represent a complex percept. Such sets of obser-
vations led both Tanaka and Tsunoda et al. to propose a sparsely distributed,
column based model of image recognition. From [29]:

“. . . objects are represented by combination of multiple columns in a
sparsely distributed manner. The region activated by a single object image
is only 3.3 ± 2.5% of the entire recording area (number of examined object
images, 37). . . . These results are consistent with feature-based representa-
tion, in which an object is represented by the combined activation of columns
each responding to a specific visual feature of the object.” ([29], p. 835).

8.2 “Cell Assemblies” and the Formation of Module Assemblies

If two modules are reciprocally associatively linked, we have a situation simi-
lar to the Bidirectional Associative Memory. If there are multiple interacting
modules, we have the potential to form other interesting and complex asso-
ciatively linked structures through Hebb learning, what we will call module
assemblies, in harmony with what is seen in IT.

The source for this idea is the cell assembly, first proposed by Donald
Hebb in his 1949 book Organization of Behavior [32]. What has become known
as the Hebb Rule for synaptic coupling modification was originally proposed
specifically to allow for the formation of cell assemblies.

A cell assembly is a closed chain of mutually self-exciting neurons. Hebb
viewed the assembly as the link between cognition and neuroscience. When
an assembly was active, it corresponded to a cognitive entity, for example,
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a concept or a word. Although the idea is an appealing one, it is hard to
make it work in practice because it is difficult to form stable cell assemblies.
Two common pathological situations are (a) no activity in the network after a
period due to inadequate gain around the loop and, (b) spread of activity over
the entire network since neurons in a realistic model system will participate
in multiple assemblies and activity spread will widely. It is possible to control
this behavior to some degree by making strong assumptions about inhibition,
but the resulting systems are not robust.

As we mentioned, a key assumption of the Network of Networks model is
that the basic computing elements are interacting groups of neurons. Module
activity is not a scalar but a pattern of activity, that is, a high dimensional
vector. Connections between modules are in the form of interactions between
patterns. There is an intrinsic degree of selectivity. Patterns are less likely to
spread promiscuously.

Because of this increased selectivity it might be possible that several
nearby modules can become linked together to form loops through Hebb learn-
ing and can remain stable structures. We showed in Section 2 that associa-
tively connecting modules together can increase the feedback coefficients in
both modules (Figs. 4, 5.).

We can make speculations about the local density of connections in neo-
cortex. Data from Lund et al. [33] suggests substantial connectivity over a
region of one or two millimeters. Recurrent collaterals of cortical pyramidal
cells form relatively dense projections around a pyramidal cell. The extent of
lateral spread of recurrent collaterals in cortex seems to be over a circle of
roughly 3 mm diameter [34]. If we assume that a column is roughly a third of
a mm, there are perhaps 10 columns per mm2. A 3 mm diameter circle has
an area of roughly 10 mm2, suggesting that a column could project locally to
perhaps 100 nearby columns.

Let us assume that the intralayer connections are sufficiently dense so that
active modules a little distance apart can become associatively linked.

Consider the set of four active modules, a,b, c,d, in Fig. 24. Assume they
are densely connected locally. That will imply that a is connected to b, c to
d, etc. Suppose that a,b, c,d are forced to hold a particular pattern by some
outside mechanism, say another brain region, an outside supervising input, or
perhaps frequent co-occurance. Then the analysis we just performed on sparse
paths with simple associators suggests that associative links between modules
will develop.

However, the path closes on itself. If the modules a,b, c,d are simultane-
ously active and are associatively linked, then if a is present, after traversing
the linked path a > b > c > d > a, the pattern arriving at a will be a con-
stant times the pattern on a. If the constant is large enough and the starting
pattern is still present, there is the potential for feedback loop gain greater
than one. The same analysis holds true for traversing the loop in the opposite
direction, that is, a > d > c > b > a. Limitations on maximum activity in
each module will stabilize activity as it becomes large so activity in the loop
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Fig. 24. Scheme for formation of a module assembly. Patterns flow around the
loop based on local pairwise associations

will not increase without bounds. All the modules in the loop are likely to
reach attractors in synchrony after extensive learning.

Timing considerations become of critical importance. Adjusting travel time
through the strength of associative connections is a potentially promising way
to control loop dynamics. Note that critical timing relationships also appeared
earlier when we discussed for formation of high order feature coincidences to
form selective filters. The parameters that control module dynamics are also
a potential source of control.

We should note that the capacity of these seemingly impoverished sparse
systems can be very large. For example, suppose columnar sized regions are
about one third mm in diameter. Then one mm2 contains roughly 10 columns
and a cm2 contains roughly 1,000 columns. If something like 10 columns
become active to specify an object in a one cm2 piece of cortex, there are
roughly (1000)10 or 1030 possible different combinations of 10 active columns.
If we assume in addition that each column has 10 attractors, we increase the
number of potential combinations of states shown by those 10 active columns
by 1010 for a total number of states of a one cm2 chunk of cortex to as much as
1040 distinct states, a large enough number to satisfy almost any conceivable
need, especially when we consider that there may be on the order of a million
columns in a human cortex.

8.3 Multi-layer Assemblies

We can speculate on the extension of idea of module assemblies to multiple lay-
ers. Now we can perhaps see the outlines of a dynamic, adaptive computational
architecture that becomes both feasible and interesting. The basic notion is
that local module assemblies form, perhaps at each layer. Sparse connections
between each layer learn to link the assemblies through associative learning.
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Fig. 25. Linkages between modules in a layer and from layer to layer may become
bound into a more complex structure

The individual sparse paths now can work together to form complex multi-
level entities. We might end up with something like that shown in Fig. 25,
tightly connected module assemblies within a layer, sparsely linked together.
This rings (loops in layers) and strings (sparse connections between layers)
sparse architecture becomes a way to get multi-area activation patterns bound
together through common dynamics.

Computation and learning from this point of view is based on the formation
of sparsely interconnected between layers, less sparsely interconnected at a
layer, module assemblies working with sparsely represented data.

8.4 Combinations

A natural way for learning to progress with this approach is to build com-
binations of module assemblies. Early learning, we conjecture, might form
small module assemblies. Fig. 26 shows two such module assemblies that occur
together. They can become bound together by learning through co-occurrence
(Fig. 27).

As learning progresses, groups of module assemblies will bind together
through the linkage mechanisms we have discussed. The small initial assem-
blies perhaps can act as the “sub-symbolic” substrate of cognition and the
larger assemblies, symbols and concepts. Because of sparseness smaller com-
ponents might be largely independent of each other and not interfere with each
other. Cognitive learning would then come to have something of the aspect
of an erector set or Legos, where the parts start by being independent and
then get bound together with associative epoxy to form a sturdy higher-level
spatially extended assembly. Note that there are more associative connections
possible in the bound system than in the parts because there are many more
possible paths. An interesting conjecture is that larger assemblies (words?
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Fig. 26. Suppose we have two previously formed assemblies

Fig. 27. Co-occurrence between assemblies can cause the structures to become
associatively bound, forming a new more complex linked structure

concepts?) can be stable or more so than their component parts because of
extensive cross-linkages.

This process looks somewhat like what is called compositionality. (Geman
[35]). The virtues of compositionality are well known. It is a powerful and
flexible way to build information processing systems because complex mental
and cognitive objects can be built from previously constructed, statistically
well-designed pieces.

What we are suggesting in this discussion is a highly speculative pos-
sible model for the dynamics, intermediate level structure, and learning in
a potentially compositional system. Note however, that this system is built
based on constraints derived from connectivity, learning, and dynamics and
not as a way to do optimal information processing.
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Perhaps compositionality as we see it manifested in cognitive systems is
more like a splendid bug fix than a carefully chosen computational strategy.
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