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Summary. In this Chapter, we review the virtues and limitations of the Hopfield
neural network for tackling NP-hard combinatorial optimization problems (COPs).
Then we discuss two new neural network models based on the noisy chaotic neural
network, and applied the two methods to solving two different NP-hard COPs in
communication networks. The simulation results show that our methods are superior
to previous methods in solution quality. We also point out several future challenges
and possible directions in this domain.

1 Introduction

Since Hopfield and Tank’s innovative work on solving the traveling sales man
problem (TSP) using neural networks, there are numerous research efforts on
applying the Hopfield neural network (HNN) and HNN-based neural network
techniques to solving combinatorial optimization problems (COPs) [3, 10, 26,
42, 36, 27, 24]. However, Wilson and Pawley [43] raise doubts on the validity
of the HNN to solving COPs after they were unable to reproduce the results
in Hopfield and Tank’s work. They claimed that the original HNN formulation
for the TSP is unreliable even for small-sized problems. Many explanations
for the poor solution quality of the TSP had been made in terms of energy
function formulation [8, 29, 4] and parameter selection [15, 25, 22, 7].

Poor solution quality, dependences on energy function formulations, and
the difficulties in parameter selection of the original HNN are due to its gra-
dient descent dynamics leading local minima. This chapter introduces the
chaotic neurodynamics which can help to avoid local minima and converge to
better solutions in solving NP-hard combinatorial optimizations (COPs).

In 1983, Kirkpatrick et al [23] developed simulated annealing, which
emulates the annealing processing in metals by first heating the metal to
its melting point and then slowly cooling the material. Because of the sto-
chastic nature of the optimization process, simulated annealing can also be
called stochastic simulated annealing (SSA) [23]. SSA is known to relax to
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a global minimum with probability 1 if the annealing takes place sufficiently
slowly, i.e., at least inversely proportional to the logarithm of time [13]. In a
practical term, this means that SSA is capable of producing good (optimal
or near-optimal) solutions for many applications, if the annealing parameter
(temperature) is reduced exponentially with a reasonably small exponent [40].

SSA has been widely used in various optimization problems with great
success, but it still suffers from several deficiencies:

1) For large problems, the method requires prohibitively long relaxation time
in order to find solutions with acceptable quality, i.e., SSA consumes too
much iteration time due to its Monte Carlo scheme. To guarantee conver-
gence to an exact solution, SSA will require more iterations than complete
enumeration does for some problems [5].

2) SSA often requires subtle adjustments of parameters in the annealing
schedule, such as the length of the temperature steps during annealing,
the temperature range, the number of re-starts and re-direction during
the search [32, 1, 19, 20, 23].

In order to improve the searching ability of the SSA, complex neurodynam-
ics such as chaotic simulated annealing (CSA) was proposed [46]. Compared
with the gradient descent dynamics of the HNN models and neural networks
with SSA dynamics, neural networks with CSA have a richer spectrum of dy-
namic behaviors, such as stable fixed points, periodic oscillations, and chaos.

Nozawa demonstrated the search ability of the chaotic neural networks
(CNN) [30, 45]. Chen and Aihara [46, 5] proposed the chaotic simulated an-
nealing (CSA) by starting with a sufficiently large negative self-coupling in
the Aihara-Takabe-Toyoda [2] network when the dynamics is chaotic, and
gradually decreasing the self-coupling so that the network eventually stabi-
lizes, thereby obtaining a transiently chaotic neural network (TCNN). Their
computer simulations showed that the CSA leads to good solutions for the
TSP much more easily compared to the Hopfield-Tank approach [16, 17] and
SSA. Chen and Aihara [6] offered the following theoretical explanation for
the global searching ability of the chaotic neural network: its attracting set
contains all global and local optima of the optimization problem under cer-
tain conditions, and since the chaotic attracting set has a fractal structure
and covers only a very small fraction of the entire state space, CSA is more
efficient in searching for good solutions for optimization problems compared
to other global search algorithms such as SSA.

Other kinds of CSA have also been proposed. Wang and Smith proposed
another chaotic annealing by annealing the time-step in the Euler approxima-
tion of the continuous Hopfield network [41]. Hayakawa et al. [14] obtained
the CSA by adding the chaotic noise into the Hopfield network. Zheng et al.
[47] improved the Wang-Smith’s chaotic simulated annealing which reaps the
benefits of Wang-Smith model and Chen-Aihara model.
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There are mainly three significant differences between SSA and CSA [5]:

1) SSA is stochastic on the basis of the Monte Carlo scheme while CSA is
deterministic with transiently chaotic dynamics.

2) The convergent processing of SSA is controlled by stochastic ”thermal”
fluctuations while that of CSA is controlled by bifurcation structures.

3) SSA essentially searches all possible states while temporally changing
probability distributions, whereas CSA restricts to a fractal subspace.
Because the searching region in CSA is usually smaller compared with
the entire state space, CSA can be expected to perform efficient searching
if the restriction is adequate to include a global optimum state or some
near-global optimum states.

However, CSA has completely deterministic dynamics and is not guaran-
teed to settle down at a global optimum no matter how slowly the anneal-
ing parameter (the neuronal self-coupling) is reduced [37]. Different from the
searching direction of SSA that is probabilistically determined by mutual in-
teractions among neurons, CSA is uniquely determined by mutual interactions
among neurons. In practical terms, this means that CSA sometimes may not
be able to provide a good solution at the end of annealing for some initial
conditions of the network, no matter how slowly annealing takes place, i.e.,
CSA sometimes may not be able to provide a good solution at the conclusion
of annealing even after a long time of searching.

Wang and Tian [40] proposed a new approach to simulated annealing, i.e.,
stochastic chaotic simulated annealing (SCSA), using a noisy chaotic neural
network (NCNN) by adding decaying stochastic noise into the TCNN. Com-
pared with CSA, SCSA performs stochastic searching both before and after
chaos disappears and is more likely to find optimal or sub-optimal solutions.

2 Mathematical Formulations of the NCNN

The NCNN model is described as follows [40]:

1
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where the notations are:

x;j) : output of neuron jk ;

Y;k : input of neuron jk ;

Wjky: connection weight from neuron jk to neuron #l, with wjxry = wik
and wjg;r = 0;

M

N
Z Z Wik Tk + L = —(9E/(9:L‘jk (5)
i=1,ij I=1,I#k

E : energy function;

I, : input bias of neuron jk ;

k : damping factor of nerve membrane (0 < k < 1);

« : positive scaling parameter for inputs ;

01 : damping factor for neuronal self-coupling (0 < 5, < 1);

02 : damping factor for stochastic noise (0 < 2 < 1);

z(t) : self-feedback connection weight or refractory strength (z(t) > 0),
2(0) is a constant;

Iy : positive parameter, which is used as threshold for each neuron, can be
a fixed number or variable one;

¢ : steepness parameter of the output function (¢ > 0) ;

n(t): random noise injected into the neurons, in [—A, A] with a uniform
distribution;

A[n]: amplitude of noise n.

This NCNN model is a general form of chaotic neural networks with tran-
sient chaos and decaying noise. In the absence of noise, i.e., n(t) = 0, for all
t, the NCNN as proposed in eqns. (1) - (4) reduces to the TCNN in [5].

3 Gradual Noisy Chaotic Neural Network (G-INCNN)

Compared with the constant number of neurons used in conventional neural
networks, the gradual neural network [11] adopts an increasing number of
neurons. Usually, the number of neurons that a neural networks needs for
solving a COP is determined by the problem, e.g., N-city TSP problem, N x N
neurons are needed to compose a solution space. For the NCNN, N? neurons
are needed at the start of neural network updating. But if using the gradual
neural network, the neural network needs only a fraction of N x N neurons at
the beginning of neuron computation, which are the most likely selected group
of neurons in the final results (each neuron stands for a status in the solution
matrix based on different problems, e.g., if neuron ¢j fires, it means the ith
element is assigned to jth element in the assignment problem). The rest of all
N x N neurons are gradually added to the current commutating group.

The reason why the gradual scheme is needed instead of a constant number
of neurons is that the gradual scheme can be considered as one kind of objec-
tive in the optimization. There are objectives in COPs that need to find the
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minimal “cost”, where the cost can have many different meanings in different
problems, e.g., interference, delay, or length of a path. In order to achieve the
objective that the solution found by the neural network is with the minimal
cost, neurons are divided into several groups and activated or added in several
stages with each stage only adopt one group of neurons with smallest cost left
over. Through the gradual scheme, we do not need to formulate the objective
(“minimal cost”) in the energy function, because we think that the objective
is realized in the gradual expansion stages which let the neurons with smaller
cost be included in neuron computation in an earlier stage. When dealing with
this kind of objective, we can adopt the gradual scheme naturally through the
following steps [11]:

1) Assume there are N x M neurons needed for the problem. Compute the
cost matrix C[N x M], i.e., the cost of neuron 4j if neuron ij is selected
in the final solution. Here N and M can have the same value.

2) Sort the neuron in ascending order of the cost.

3) Divide the N x M neurons into P groups (G1,Ga,...,Gp), with each
group have p neurons, where p is the maximum integer less than or equal
to NM/P. Group G; is the group of neurons with smallest cost and
the other groups Go to Gp contain the neurons with larger cost with an
ascending order of cost.

4) Add the neurons in the first group G; to the neural network and let the
neural network update. If a feasible solution is found, exit, the solution
found is the final solution. If the pre-defined steps are used up and still no
solutions are found, then apply the gradual expansion scheme by adding
the neurons in G2 and let the neural network update again.

We found that although using gradual scheme can help to reduce the
objectives in optimizations, it cannot guarantee to achieve the objective. But
it can be made up by adding the objective again into the energy function.

4 Noisy Chaotic Neural Network with Variable
Threshold (NCNN-VT)

Besides the gradual noisy chaotic neural network, another extension of the
noisy chaotic neural network is proposed by using the variable threshold in
the neural network, instead of the fixed threshold value. It can be found that
the variable threshold can be used to achieve the objective of the NP-hard
optimization problem, and again reduces the number of objectives needed to
be formulated in the energy function.

4.1 Adaptive Mapping Scheme

Adaptive Mapping Scheme (AMS) aims to map the objective of optimization
problem into the probability of firing of each neuron. If the objective of the
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problem is to find the solution with minimal cost, then the neurons with
smaller cost will have larger probability to be selected in the final solution
matrix. By investigating the single neuron dynamics of the NCNN model, it
can be seen that the positive parameter Iy in the NCNN model is responsible
for the neuron firing probability. The single neuron dynamics of the NCNN
by varying the parameter Iy is shown in Figs. 1 to 4 (the x-axis is the time
steps t, the y-axis is the output of neuron z;;(t)). We can see clearly that if
the value of parameter I is 0.3, the output of neuron is very close to 0.3 after
the network passes the last bifurcation-2 in Fig. 2. After the bifurcation point,
the neural network slowly converge to a stable point at about 0.5. The same
pattern can be observed in other figures. It means that different value of I
(0 < Iy < 1) induces different probability of neuron firing. The neuron with
large value of Iy will be selected to be firing (neuron output equals 1) with
bigger probability, whereas, the small value of Iy will result in less chance the
neuron to be firing.

4.2 Model Definition

The difference between the NCNN and the NCNN-VT model is that the pos-
itive parameter I in eqn. (2) of the NCNN becomes a variant labeled as I,
where jk stands for the neuron jk, i.e.,
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Fig. 1. The single neuron dynamics of the noisy chaotic neural network with variable
threshold, Ip = 0.1
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Fig. 2. The single neuron dynamics of the noisy chaotic neural network with variable
threshold, Ip = 0.3
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Fig. 3. The single neuron dynamics of the noisy chaotic neural network with variable
threshold, Ip = 0.6
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Fig. 4. The single neuron dynamics of the noisy chaotic neural network with variable
threshold, Ip = 0.9
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where I, is not a constant parameter but a variable which determines the
selection of firing of each neuron. The value of I} is related to the problem
optimization term.

4.3 Mapping Functions
The mapping function connects the problem’s cost with the parameter I;;.
Iijf(Cjk), jZl,Q,...,N;k:LZ,...,M (7)

The mapping function can be a linear or nonlinear function which trans-
form the cost into the probability value between 0 and 1. Normally, a linear
mapping is adopted:

Cik — Cmi
flejp) =1 — ———=—. (8)
Cmax — Cmin

where c;i, is the jk element in the cost matrix C, ¢4y is the maximum value
among the cost matrix and ¢;,;, is the minimum value in the cost matrix.
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From the mapping functions in eqn. (8), it can be seen that the neuron ij
with smaller cost d;; will have larger or higher probability to fire while the
ones with larger cost will be inhibited to fire.

5 Using G-NCNN to Solve the Broadcast Scheduling
Problem

5.1 Problem Introduction

In a time-division-multiple-access (TDMA) network, time is divided into
frames and each TDMA frame is a collection of time slots. A time slot has
a unit time length required for a single packet to be communicated between
adjacent nodes. When nodes transmit simultaneously, conflicts will occur if
the nodes are in a close range. Therefore, adjacent nodes must be scheduled
to transmit in different time slots, while nodes some distance away may be
arranged to transmit in the same time slot without causing conflict [39]. The
goal of the broadcast scheduling problem (BSP) is to find an optimal TDMA
frame structure that fulfills the following two objectives. The first is to sched-
ule transmissions of all nodes in a minimal TDMA frame length without any
conflict. The second is to maximize channel utilization or total conflict-free
transmissions.

5.2 Energy Function Formulation

For the two objectives, a two-stage methods using the NCNN are used to
solve the problem. The first stage aims to find the minimal TDMA frame
cycle length (M), whereas the objective in the second stage is to maximize
the total node transmissions in order to fulfill the channel utilization.

The G-NCNN consists of M x N neurons. M is initially set as its lower
bound value L,,, which can be easily obtained using graph theory [21]. The
network can be formulated to a graph G = (V, E). The graph G can be
transformed into G’ = (V, E’), where E in G stands for one-hop-away edges,
and E' in G’ stands for one-hop-away and two-hop-away edges. The lower
bound is:

L, =w(G@). (9)

where w(G’) is the maximal cardinality of a clique in G’ [33].
The energy function E; for the first stage is given as follows [9]:

W MM wo NMN
FEi = 71 Z(Z Tjk — 1)2 + 72 Z Z Z kT Th (10)
=1 k=1 j=1i=1 k=1,k#i

where W7 and Wy are weighting coefficients. The W; term represents the
constraint that each of the N nodes in the PRN must transmit exactly once
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during each TDMA cycle. The W5 term indicates the constraint that any pair
of nodes which is one-hop-away or two-hop-away must not transmit simulta-
neously during each TDMA cycle.

From eqn. (2), eqn. (5), and eqn. (10), we obtain the dynamics of the
G-NCNN as follows:

N
yjk(t+ 1) = kyjk( +« W1 Zﬂjjk — 1 W Z djkl‘]ﬂ‘
k=1 k4]

—2(t) [ (t) — Lo] +n(t) . (11)

The G-NCNN stops when the it finds a feasible assignment and the cur-
rent number of time slots together with its transmission assignments are the
optimal results for phase I of the BSP. In this chapter, different from the GNN
in [9], where the neurons are expanded gradually at every P iterations during
the iterative computation of the neural network, we implement the GES based
on a convergence index 4(t) of the network energy, which we defined as:

t

5(t)= Y |E(q) - E(q—1)| /E(0). (12)

q=t—4

where E(q) is the value of energy function at time step ¢. If index §(t) is
less than a very small value, e.g., §(t) < 10™* in our simulation, the neural
network is considered as having fully converged. If the network has converged
but no feasible solutions are found using the current number of time slots, the
number of time slots is increased by 1, i.e., M — M + 1, and the G-NCNN
re-starts to search for optimal solutions with the updated number of neurons.

In the second stage, the minimal TDMA frame length M is found and
each node is assigned with one and exactly one time slot. In phase II, we
aim at maximizing the channel utilization by adding as many conflict-free
transmissions as possible to the TDMA frame. Because in phase I one node
is assigned with exactly one slot in order to find a minimal frame length,
there are many nodes which can use other time slots without violating the
no-conflict constraint. Thus, additional transmissions may be found on some
nodes but frame length M and the assigned transmissions in phase I are
fixed [9].

M

N M N N
= %ZZ Z Jk;v”:v;ﬂ %Z ]- _xm y (13)

J=1i=1 k=1,k j=1i=1

where W3 and W, are weighting coeflicients. W3 represents the constraint
term that any pair of nodes which is one-hop-away or two-hop-away must not
transmit simultaneously during each TDMA cycle. W, is the optimization
term which maximizes the total number of firing neurons.
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From eqn. (2), eqn. (5), and eqn. (13), we obtain the dynamics of the
NCNN for phase II of the BSP as follows:

N
yjk(t + 1) = k‘yjk(t) + « —Wg Z djkl'ki + W4(1 — .’L‘ij)
k=1,k#j

—z(t) [zjx(t) — Io) + n(t) . (14)

The NCNN is updated cyclically and asynchronously, which means we
update the neurons in two loops and the neuron is selected to be computed in
a fixed order. The new state information of a updated neuron is immediately
available for the other neurons in the computation. The iteration is terminated
once a feasible transmission schedule is obtained, i.e., the transmissions of all
nodes are conflict-free.

5.3 Results Discussions

The benchmark examples are get from other published papers. Each prob-
lem is simulated 50 different times and the best and the average values are
displayed in Table 1.

Table 1. Comparisons of average delay time 7 and numbers of time slots M and
computation time 7' obtained by the G-NCNN and other algorithms for the three
benchmark problems in 50 runs, where Best/Avg stands for the best value and
average value in multiple runs.

Case BM 1 BM 2 BM 3
Best/Avg Best/Avg Best/Avg

n  6.8/7.0 9.0/9.5 5.7/6.1
G-NCNN M  8/8.0 10/10.5 8/8.0
T 6.0/72 16.0/183  6.0/6.5

n  7.0/7.0 9.3/9. 6.3/6.5
HNN-GA M  8/8.0 10/10.0 8/9.0
T  4.0/47  17/19.0  13.0/14.0

n  72/74 100/120  6.8/7.2

SVC M 8/8.0 10/11.0 8/10.0
T 25/28 15.0/154 10.0/12.0

n  71/7.2  95/100  6.2/65

GNN M  8/80 10/10.5 8/8.5
T 15.0/16.4 18.0/20.0 17.0/19.5

n  72/75 105/125  6.9/8.2

MFA M 8/9.0 12/13,5 9/10.0
T 25.0/72 325/385 28.0/29.0
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From the results, we can see that our G-NCNN method can find shorter
frame length than previous methods. In addition, our proposed method can
find the smallest average time delay 1 among all methods in all three cases.
The computation time (T in the table) needed by the G-NCNN is relatively
lower than the previous MFA and comparable to other methods.

6 Applying the NCNN-VT to the Frequency Assignment
Problem

6.1 Problem Introduction

Due to the economic effect on the average person in everyday life, there is an
increasing number of satellites in geostationary orbits. In order to accommo-
date the crowded satellites in the same orbit, optimal design of satellites are
necessary in order to provide high quality transmissions. In satellite communi-
cation systems, the major impairments in transmission design include thermal
noise, rain attenuation, inter-modulation, and co-channel interference, among
which, co-channel interference dominates because it seriously affects system
design and operation [28]. Hence, the reduction of the co-channel interference
has arisen as a major problem in satellite communications with the dramatic
increase of geostationary satellites in orbits.

In order to reduce the interference, re-arrangements of frequency assign-
ments, which take advantage of carrier interleaving, is thought as an effective
way in practical situations. Early efforts have focused on various analytical
methods for evaluations of co-channel interference [31, 18] and very few sys-
tematic methods have been adopted to optimize frequency assignments to
reduce co-channel interference. The later work of Muzuike and Ito [28] re-
vealed the importance of mathematical models for reduction of co-channel
interference. They proposed a basic mathematical model to formulate the
co-channel interference reduction problem as the “assignment problem”. The
assignment problem aims to minimize the largest interference among carriers.
Fig. 6 shows the co-channel interference model for the system in Fig. 5. In the
inter-system context, the two sets of carriers share the same frequency band.
One set of carriers (Cq; to Ci3) is in satellite system 1 and the other set of
carriers (Co1 to Cay) corresponds to satellite system 2 in Fig. 5.

In the model shown in Fig. 6, carrier frequencies for one set of carriers
are to be rearranged while keeping the other set fixed, i.e., the frequencies
for carriers in system 2 are chosen to be re-arranged while the frequencies
for system 1 are fixed. Fig. 5 shows the inter-system co-channel interference
between two adjacent satellite systems. The communications are assumed to
operated between F, and Fj as showed in Fig. 6, where F, and F} are fre-
quency band. The co-channel interference can be evaluated by calculating
the each pair of carriers using the same frequency, which varies with differ-
ent pairs. The objective of this assignment problem is to find the optimal
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Fig. 5. Inter-system co-channel interference
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Fig. 6. Co-channel interference model for the system in Fig. 5, where the Cy, stands
for the carrier y in system =z, e.g., Cas stands for the carrier 3 in system 2
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assignment of frequencies in system 2 in order to reduce the co-channel inter-
ference. The largest interference is considered as a limiting factor, and the
optimal assignment is the one which can minimize the limiting factor.

In this chapter, we use a two-dimensional neural network which consists
of N x M neurons for the FAP of N carriers and M segments. The output of
each neuron V;; will be converted into binary values Vl‘j Vg represents whether
carrier 7 is assigned to segment j — (j +¢; —1),(i=1,...,N;j=1,..., M),
where ¢; indicates the length of carrier i, i.e.:

1 carrier ¢ is assigned to segment j — (j +¢; — 1),
Ve =
0 otherwise.

Fig. 7 shows the neural network formulation for the 4-carrier-6-segment
problem. This neural network consists of 24 (= 4 x 6) neurons as shown in
Fig. 7 (a). Fig. 7 (b) is the convergence state, with the black squares stand for
the neurons with output Vg = 1. Fig. 7 (c) shows the full assignment for each
carrier. And Fig. 7 (d) is the final frequency assignment for the FAP. Note
that it can be easy to expand the convergence state in Fig. 7 (c) to the final
assignment in Fig. 7 (d) given the carrier length for each carrier. We provide
only the solution format in Fig. 7 (c) to represent the final assignment in this
Chapter.

Our objective is to minimize the largest element of the interference matrix
selected in the assignment and at the same time minimize the sum of inter-
ference of all selected elements. Thus we define the choice of the mapping
function of I;; as follows:

Ly=1- dij — di min
di,mam - di,min
_ di,mam - dij (15)
di,maz - di,min
where d;; is the ij-th element in cost matrix D = (d;;,4 = 1,...,N;j =
1,...,M), and diymaxl is the maximum value in line 4 of matrix D and d; min

is the minimum value line ¢ of matrix D. We will label d; yq0 aS dias and
di min 8 dpmipn for simplicity.

Through the mapping in eqn. (15), not only can we achieve the objectives
of FAP, but also separate the objective from the energy function, which will
make the tuning of weighting coefficients in the energy function easier without
the need to balance the optimization term and constraint term in one energy
function. Moreover, it will improve the convergence speed of the noisy chaotic
neural network as shown in the result discussion section.

! Note that the maximum value of cost does not include the infinity value of in the
interference matrix. Actually the neurons corresponding to the infinite interfer-
ence will never fire due to its inhibitive cost.
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Fig. 7. The neural network formulation for the FAP. (a) The 24 neurons for the
4-carrier-6-segment FAP. (b) the convergence state of the neural network. (c¢) the
full assignment of the neural network formulation. (d) the final assignment of the
segments for the FAP through the expansion from the neural network formulation

6.2 Energy Function and Results

Recall that the goal of the FAP has been separated from the constraints. Only
the two constraints of the FAP need to be formulated in the energy function.
The first constraint of an N-carrier-M-segment problem is that each first
segment of the IV carriers in system 2 must be assigned to one and only one of
the M segments. Hence, one and only one neuron among the M neurons for
each carrier has output 1. Then the first constraint can be formulated as [11]:

N M
B =3 (3 Vi~ 12 (16)

=1 g=1
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Fig. 8. Violation condition for the second and third constraints of the FAP

The second and third constraints are that each segment in system 1 can
be assigned to at most one segment in system 2 and the assignment of carriers
in system 2 should be in consecutive segments in system 1 in the same order.
If carrier ¢ is assigned to segment j — (j + ¢; — 1), any other carrier p(p # 1)
must not be assigned to the consecutive segment (j —cp, +1) — (j + ¢ —1)).
The violation condition of the two constraints is shown in Fig. 8, where ¢;
is the carrier length of carrier 7. In other words, if carrier ¢ is assigned with
consecutive ¢; segments, the segments occupied by any other carrier cannot
occupy with the segment j — (j + ¢; — 1). The first segment of each carrier
p, (p # i) should be (j — ¢p + 1) before and j — (j + ¢; — 1) after the first
segment of carrier .

Hence these two constraints give raise to the second part of the energy
function to be minimized, as formulated in [11]:

N M N jtc—1

=220 D> ViVa (17)

i=1 j=1p=1qg=j—cp+1
pFi

Note that because (j — ¢, + 1) can be negative and (j 4+ ¢; — 1) can exceed
the total number of segments M. The original formulation in eqn. (17) [11]
has errors in dealing with the bounds and produces the program bugs when
searching the solutions. We formulate the second term in our energy function
in a revised version as follows:

N M N min(j+c;,—1,M)

=222 2 ViV 1s)

i=1 j=1p=1g=maz(j—cp+1,1)
pF#i

where function max(z, y) returns the maximum value between (z, y) two num-
bers and min(x,y) finds the minimum value between (z,y).

We use the following convergence term in our energy function to help the
neuron output converge to the corner (0 or 1) of the hypercube:
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Table 2. Comparisons of the simulation results (largest interference and total inter-
ference) obtained by the NCNN-VT, GNN and HopSA in the benchmark examples.

Instance GNNJ11] HopSA[34] NCNN-VT
largest total largest total largest total
BM 1 30 100 30 100 30 100
BM 2 4 13 4 13 4 13
BM 3 7 85 7 85 7 88
BM 4 64 880 84 886 64 880
BM 5 640 8693 817 6851 640 7246
N M
ESZZZVij(l_Vij)a (19)
i=1 j=1

The total energy function of the NCNN-VT is given by the summation of
the three parts Ey, Ej, and Es:

W N M W N M N min(j+c;,—1,M)
1 2
E=3 0 V=253 00> > ViV
i=1 g=1 i=1 j=1p=1 g=maz(j—cp+1,1)
pF#i
w. N M
3
+7ZZVU(1—V¢J‘)~ (20)
i=1 j=1

where Wy, Ws, and W3 are weighting coefficients.

6.3 Result Discussions

Table 2 shows the results obtained by the NCNN-VT and a comparison with
other previous methods. For the benchmark problems from BM 1 to BM 5,
the NCNN-VT algorithm matches or improves the results of other existing
algorithms. The results on the benchmark examples show that the NCNN-
VT can find better or similar solution compared with the previous methods.

7 Future Challenges

We have reviewed neural-network-based techniques for solving NP-hard COPs,
especially neural networks with chaotic neuro-dynamics. Two applications in
telecommunication networks demonstrated that chaotic neural networks have
effective search abilities compared to other methods. Despite the computa-
tional advantages of these methods, there still exist tremendous challenges
from both methodology and applications points of view.
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The “no free lunch” theorem proposed by Wolpert and Macready [44]
showed that all algorithms that search for an extremum of a cost function
perform exactly the same, when averaged over all possible cost functions.
They claimed that if algorithm A outperforms algorithm B on some cost
functions, then loosely speaking there must exist exactly as many other func-
tions where B outperforms A. The no free lunch theorem also applies for the
NCNN and the extensions (G-NCNN and NCNN-VT). Actually, the NCNN-
based methods are facing difficities on solving problems besides combinatorial
optimizations, for example, they are opt for solving combinatorial optimiza-
tion problems, other than applications like non-linear or multi-dimensional
function optimization. We may ask the question: how do chaotic neural net-
works compare to other computational intelligence methods, such as genetic
algorithms and ant colonies, in solving other practical COPs?

Problem modeling can also cause difficulties when solving COPs using
neural networks. Every COP, whether simple or hard, needs to be constructed
into an energy function formulation before using the NCNN to solve it. And
the form of this energy function is critical for neural-network-based methods
to search for optimal solutions. Different formulations may lead to different
solution quality and search time. It is common to see various formulations of
energy funcations made by different researchers on the same problem, e.g. the
TSP problem [4, 43, 38]. In order to improve solution quality, the formulation
needs to be revised and upgraded from time to time. The state-of-the-art
energy function formulation, if not difficult to formulate, is actually time-
consuming to find.

Another tough problem when using neural-network-based methods is the
selection of the parameters. The various parameters, including system pa-
rameters and weighting coefficients in the energy functions, are influential to
solution quality and search efficiency. There are basic guidelines for parameter
selections [35]; however, it can be challenging to find the optimal parameters,
which in turn will lead to optimal solution quality and search efficiency.

For applications in the communications domain, comparisons performed in
the research studies have usually been undertaken in simplified scenarios sim-
ulated in servers or desktop PCs. Except for some partial implementations on
real hardware [12], algorithm testing using hardware is usually not undertaken.
It will be necessary to place a greater emphasis on demonstrating advantages
of computational intelligence methods in real communications hardware, in
order to convince industrialists to adopt computational intelligence methods
in telecommunications companies and equipment manufacturers.
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