
Computational Intelligence in Mind Games

Jacek Mańdziuk

Faculty of Mathematics and Information Science
Warsaw University of Technology, Poland.
mandziuk@mini.pw.edu.pl

Summary. The chapter considers recent achievements and perspectives of Com-
putational Intelligence (CI) applied to mind games. Several notable examples of
unguided, autonomous CI learning systems are presented and discussed. Based on
advantages and limitations of existing approaches a list of challenging issues and
open problems in the area of intelligent game playing is proposed and motivated.

It is generally concluded in the paper that the ultimate goal of CI in mind
game research is the ability to mimic human approach to game playing in all its
major aspects including learning methods (learning from scratch, multitask learning,
unsupervised learning, pattern-based knowledge acquisition) as well as reasoning
and decision making (efficient position estimation, abstraction and generalization
of game features, autonomous development of evaluation functions, effective pre-
ordering of moves and selective, contextual search).

Key words: challenges, CI in games, game playing, soft-computing methods,
Chess, Checkers, Go, Othello, Give-Away Checkers, Backgammon, Bridge,
Poker, Scrabble.

1 Introduction

Playing games has always been an important part of human activities and the
oldest mind games still played in their original form (Go and Backgammon)
date back to 1,000 - 2,000 BC.

Games also became a fascinating topic for Artificial Intelligence (AI). The
first widely known “AI approach” to mind games was noted as early as 1769
when Baron Wolfgang von Kempelen’s automaton Chess player named The
Turk was presented at the court of Empress Maria Theresa. The Turk ap-
peared to be a very clever, actually unbeatable, Chess player who defeated
among others Napoleon and the Empress Catherine of All the Russias. It took
a few decades to uncover a very smart deception: a grandmaster human player
was hidden inside the Turk’s machinery and through a complicated construc-
tion of levers and straddle-mounted gears was able to perceive opponent’s
Jacek Mańdziuk: Computational Intelligence in Mind Games, Studies in Computational

Intelligence (SCI) 63, 407–442 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



408 Jacek Mańdziuk

moves and make its own ones. The history of The Turk was described inde-
pendently by several people, including the famous American novelist Edgar
Allan Poe[78]. Although The Turk had apparently nothing in common with
AI, the automaton is a good illustration of humans’ perennial aspiration for
creating intelligent machines able to defeat the strongest human players in
popular mind games.

Serious, scientific attempts to invent “thinking machines” able to play
mind games began in the middle of the previous century. Thanks to seminal
papers devoted to programming Chess [93, 110, 74] and Checkers [82] in the
1950s., games remained through decades an interesting topic for both classical
AI and CI based approaches.

One of the main reasons for games’ popularity in AI/CI community is the
possibility to obtain cheap, reproducible environments suitable for testing new
search algorithms, pattern-based evaluation methods or learning concepts.

On the other hand the “human aspect” of game playing should not be
underestimated. This is why from the very beginning of AI “involvement”
in games, it was Chess - the queen of mind games - that attracted special
attention and in 1965 was even announced “the Drosophila of Artificial Intel-
ligence” by the Russian mathematician Alexander Kronrod.

The focus of this chapter is on the most popular mind games, such as
Chess, Checkers, Go, Othello, Backgammon, Bridge, Poker and Scrabble. The
reason for choosing these particular games is two-fold: (1) they are all very
popular and played all over the world, (2) for decades they have been a target
for AI/CI research aiming at surpassing human supremacy. Certainly, there
are many other interesting and highly competitive mind games (e.g. Shogi,
Chinese Chess, Hex, Amazons, Octi, Lines of Actions, Sokoban), which do
not appear in this chapter, mainly due to their lesser popularity - although,
some of them are becoming more and more prominent. Also other types of
computer games different from mind games, such as skill, adventure, strategic,
war, sport, negotiating, racing and others are not considered in this chapter.

In order to make the notation clear and concise, henceforth any refer-
ence to CI systems (approaches) will address soft-computing-based systems
(neural networks, genetic or evolutionary algorithms, fuzzy systems, reinforce-
ment learning, Bayesian methods, probabilistic reasoning, rough sets) capable
of learning and autonomous improvement of behavior1.

It seems worth noting that the aim of this chapter is by no means to criti-
cize the achievements of traditional AI methods in the game playing domain.
On the contrary the hitherto accomplishments of AI approaches are undis-
putable and speak for themselves. Our goal is rather to express the belief that
other, alternative ways of developing “thinking machines” are possible and ur-
gently needed. These methods include cognitive, knowledge-free approaches
capable of learning from scratch based merely on an unguided training process,

1 Certainly, a distinction between AI and CI is to some extent a matter of conven-
tion. The above proposal is consistent with the author’s point of view.



Computational Intelligence in Mind Games 409

e.g. evolutionary or reinforcement-type, or based on an agent’s experience ob-
tained gradually through (self-)playing or in a supervised training process,
e.g. with neural nets, but again without explicit implementation of human
experts’ knowledge.

In our opinion the need for further development of these, knowledge-free
methods is unquestionable, and the ultimate goal that can be defined is build-
ing a truly autonomous, human-like multi-game playing agent. In order to
achieve this goal several challenging problems have to be addressed and solved
on the way.

The chapter is organized as follows. In the next section a brief description
of state-of-the-art accomplishments in the most popular mind games are pre-
sented. Section 3 starts with a general discussion on the challenging issues in
the game playing domain and presents further motivation for pursuing this re-
search topic. Next, in several subsections particular challenges are considered
one-by-one in more detail. Conclusions are presented in the last section.

2 State-of-the-Art Playing Programs

In this section some of the best playing programs in the most popular games
are briefly introduced. In some games (Scrabble, Chess, Checkers, Othello,
Backgammon) the supremacy of the presented systems over humans and other
artificial agents was officially acclaimed either by gaining the respective World
Champion title or by defeating the best human players. In the remaining
games considered here (Poker, Bridge, Go) humans are still far ahead of ma-
chines.

Scrabble. One of the first programs that achieved a world-class human
level in a non-trivial game was Maven - a Scrabble playing program written
by Brian Sheppard [94]. In the 1990s. Maven successfully challenged several
world top Scrabble players including (then) North America Champion Adam
Logan and world champion Joel Sherman (both matches took place in 1998).
Strictly speaking the supremacy of Maven was demonstrated only in North
America - i.e. for US English, but adaptation of Maven to another dictionary is
straightforward. Actually, it was later on adapted to UK English, International
English, French, Dutch and German.

Scrabble is a game of imperfect information with a large branching factor,
and as such is very demanding for AI research. The key to Maven’s success lies
in efficient, selective move generation and perfect endgame play supported by
B∗ search algorithm2. Maven, similarly to TD-Gammon described in sect. 3.1,
uses game scenarios simulation or “rollouts”, which proved to be a strong
evaluation technique. The implementation details are presented in [94].

2 As soon as the bag is empty, Scrabble becomes a perfect information game, since
one can deduce the opponent’s rack by subtracting the tiles one can see from the
initial distribution.



410 Jacek Mańdziuk

In [94] Sheppard stated: “There is no doubt in my mind that Maven is
superhuman in every language. No human can compete with this level of con-
sistency. Anyone who does not agree should contact me directly to arrange a
challenge match”. So far, no-one tried ...

Chess. Presumably the most striking achievement of AI in games was
Deep Blue II’s victory over Garry Kasparov - the World Chess Champion (at
the time the match was held) and one of the strongest Chess players in the
history. This event ended a nearly 50-year era of Chess programming efforts
which started in Shannon’s paper [93]. The evaluation function of Deep Blue
II was composed of over 8, 000 features implemented in a single chess chip. 480
such chips formed an extremely fast, massively parallel search system based
on 30-node cluster allowing for total search speed between 100 million and
330 million positions per second depending on their tactical complexity [20]
or 50 billion positions in three minutes - the average time allotted for each
move [48]. Certainly, except for tuning thousands of weights in the evaluation
function, a lot of other problems concerning massively-parallel, non-uniform,
highly-selective search or creation and analysis of the extended opening book
and endgame database had to be solved in order to achieve the final result.
There in no doubt that Deep Blue II is a milestone achievement from an
engineering and programming point of view [45, 20]. From a CI viewpoint
much less can be said since the system did not take advantage of any learning
or self-improvement mechanisms.

The victory of Deep Blue II attracted tremendous interest among game
playing researches and also had an undisputed social and philosophical impact
on other people, not professionally related to science (New York’s Kasparov
vs. Deep Blue II match was followed on the Internet by thousands of people all
over the world). On the other hand the result of the match should not lessen
further research efforts aiming at developing an “intelligent” Chess playing
program equipped with cognitive skills similar to those used by human Chess
grandmasters.

Since Deep Blue’s era several other Chess programs, e.g. Shredder, Fritz,
Deep Junior or the recent Chess supercomputer - Hydra played successfully
against human grandmasters, but none of these matches gained comparable
public attention and esteem.

Checkers. The first computer program that won a human world cham-
pionship was Chinook - the World Man-Machine Champion developed by
Jonathan Schaeffer and his collaborators from the University of Alberta
[87, 89, 84]. Chinook’s opponent in both 1992 and 1994 was Dr Marion Tinsley
- the ultimate Checkers genius, who was leading the scene of Checkers com-
petitions for over 40 years losing during that period as few as only 7 games
(including the 2 lost to Chinook)! As Schaffer stated: Tinsley was “as close
to perfection as was possible in a human” [89].

Similarly to Deep Blue, Chinook can be regarded as a large scale AI engi-
neering project including all vital aspects of AI design: efficient search, well-



Computational Intelligence in Mind Games 411

tuned evaluation function, opening book and endgame database. Special care
was taken over specific tactical combinations (e.g. exchanging one of our own
pawns for two of an opponent’s) and these situations were carefully analyzed
and coded in special tables. The evaluation function was linear and composed
of over 20 major components, each of which having several heuristic parame-
ters. All evaluation function weights were hand-tuned. During the re-match
in 1994 Chinook was equipped with a complete 7-piece endgame database
(i.e. exact solutions of all endings of 7 pieces or less) and with a 4× 4 subset
of an 8-piece database (i.e. all endings in which each side was left with ex-
actly 4 pieces) [89]. At the time of writing this chapter the 9-piece database
is completed and the 10-piece one is on the way [85].

The ultimate goal of Schaeffer and his group is to build the perfect Check-
ers player by solving the game of Checkers. Recently it was announced that
another opening (already the second one) has been solved - proven to be a
draw [85].

Othello. Another game in which computers outperformed over humans
is Othello. In 1997, just a few months after Deep Blue’s victory, Michael
Buro’s program Logistello [19], running on a single PC machine, decisively
defeated the then Othello World Champion Takeshi Murakami with the score
6 − 0. Taking into account that Logistello was not implemented in a special
hardware and considering the convincing result of the match as well as post-
mortem analysis of the games which showed that program was not in trouble
in any of the six games played, further advances Buro’s achievement.

The main factors contributing to this strong victory were: (1) new, effi-
cient way of feature selection for the evaluation function [17]. Starting from
a set of predefined, atomic features, various Boolean conjunctions of these
simple features were considered and their weights calculated by the linear re-
gression based on several million training positions labelled either by their
true mini-max value or an approximation of it. (2) Forward pruning method
ProbCut (and Multi-ProbCut) capable of cutting out the most probably irrele-
vant subtrees with predefined confidence [16]. In short, the method generalizes
from shallow search results to deeper search levels by statistically estimating
the coefficients in the linear model approximating the relationship between
shallow and deep mini-max search results. (3) Automatic opening book de-
velopment, which takes advantage of the search results along the promising
lines not played so far and consequently allows potentially interesting opening
alternatives in the future [18].

All three above mentioned aspects of game playing are game independent
and possibly applicable to other two-player board games. On a more general
note these methods are in line with a human way of playing which includes
building up the evaluation function, performing selective search or looking for
new variants in the known game openings.

Backgammon. The state-of-the-art Backgammon playing program is TD-
Gammon [103, 104, 105] written by Gerald Tesauro. The program implements



412 Jacek Mańdziuk

Temporal Difference learning and is one of the archetypal examples of success-
ful CI approaches in games. The main features of TD-Gammon are discussed
in more detail in sect. 3.1.

In the above mentioned games the human supremacy has already been
successfully challenged by AI/CI programs. Among the most popular games
there are only three left in which humans have not been conquered - (yet!).
These are: Poker, Bridge and Go.

Poker. According to the results of the World Poker Robot Championship
that took place in July 2005 the world’s best playing Poker program is
PokerProbotTM [40] - the Amateur Robot Champion and, at the same event,
the winner of the match with Poki-X [86] written by Jonathan Schaeffer and
his group from the University of Alberta.

Since PokerProbot, written by Hilton Givens, is commercial software, very
little is known about its internal characteristics and the history of its devel-
opment. On the contrary the knowledge behind its main opponent Poki-X
has been revealed [13]. Both programs were also confronted with one of the
game’s most accomplished professionals and World Series of Poker champion,
Phil Laak - and both lost by a large margin.

The reasons why Poker is so difficult for AI/CI is related to the fact that
it is an imperfect information game since the other player’s cards are hidden.
Additionally Poker players often use various kinds of deception or bluffing.
Non-accessibility to the whole information (as opposed to Chess, Checkers,
and other board games not involving elements of chance) requires (1) model-
ing of the opponents, (2) applying risk management techniques and (3) using
a dynamical, context sensitive and in most cases probabilistic evaluation func-
tion rather than a static one. These issues are expanded in [13] with regard
to the Poki system. Poki uses a sophisticated, multi-stage betting strategy
which includes the evaluation of effective and potential hand strength, oppo-
nent’s modeling and probabilistic simulations based on selective sampling3.
All the above issues are essential for successful machine Poker playing. For
the scope of this chapter the problem of opponent modeling (discussed further
in sect. 3.6) is of particular interest.

Bridge. Since 1997 the World Computer-Bridge Championship has been
organized each year by The American Contract Bridge League. The regular
participants in this annual event are Jack, Bridge Baron, WBridge5, Micro
Bridge, Q-Plus Bridge and Blue Chip Bridge. Each of these programs enjoyed
some success in previous contests but the most renowned one is the Dutch
program named Jack by Hans Kuijf and his team [53]. Jack won the title in
2001, 2002, 2003, 2004 and was placed second in 2005 after WBridge5, though
was in the first place in the so-called Round Robin - the aggregated result of
direct pairwise comparison.

3 The idea of selective sampling in a world-class playing programs was also applied
to Backgammon [105], Scrabble [94] and Bridge[38].



Computational Intelligence in Mind Games 413

An interesting phenomenon among top bridge programs is GIB (Ginsberg’s
Intelligent BridgePlayer) written by Matthew L. Ginsberg - historically the
first strong bridge playing program. GIB uses partition search (the cutting
tree technique defined by Ginsberg) and Monte Carlo sampling techniques for
both the bidding and cardplay phases [39].

The level of play of the best computer programs is gradually improving
and currently they are able to play on equal terms against intermediate human
players.

Go. The game of Go is widely considered as the most demanding, grand
AI/CI challenge in the mind games domain. Despite simple rules and no pieces
differential, playing the game well is yet a non-achievable task for machines.
The most advanced Go programs can still be easily beaten by intermediate
amateur human players 4. There are several reasons for this situation. First
of all, Go has a very high branching factor, which effectively eliminates brute-
force-type exhaustive search methods. But the huge search space is not the
only impediment in efficient play. The very distinctive feature that separates
Go and other popular board games is the fact that static positional analysis
of the board is orders of magnitude slower in Go than in other games [73].
Additionally, proper positional board judgement requires performing several
auxiliary tactical searches oriented on particular tactical issues [73]. Due to
the variety of positional features and tactical threats it is highly probable
that, as stated in [73], “no simple yet reasonable evaluation function will ever
be found for Go”. Another difficult problem for machine play is the “pattern
nature” of Go. On the contrary to humans, who posses strong pattern analysis
abilities, machine players are very inefficient in this task, mainly due to the
lack of mechanisms (either predefined or autonomously developed) allowing
flexible subtask separation. The solutions for these subtasks need then to be
aggregated - considering complex mutual relations - at a higher level and
provide the ultimate estimation of the board position. Instead, only relatively
simple pattern matching techniques are implemented in the current playing
programs [72, 73].

Due to the still preliminary stage of Go playing programs’ development
it is hard to point out the stable leader among them. Instead, there exists a
group of about ten programs playing on a more or less comparable level. These
include: Many Faces of Go, Go4++, Handtalk, GoIntellect, Explorer, Indigo
and a few more. A detailed discussion on the development of Go playing agents
can be found in [14, 73]. An interesting proposition for researchers aiming to
write their own Go program is the open source application GnuGo [15].

4 Unless otherwise stated in the whole paper we will refer to the game played on a
regular 19 x 19 board.



414 Jacek Mańdziuk

3 The Challenges

Recent advances of AI in the most popular mind games, which led to spectacu-
lar challenging the human supremacy in Chess, Checkers, Othello or Backgam-
mon provoke the question: “Quo vadis mind games research?”. Do we still
need to pursue mind game research or maybe defeating human world cham-
pions is (was) the ultimate, satisfying goal?

Naturally, when considering the quality of machine playing in particular
game as the sole reference point the only remaining target might be the further
extension of the machines’ leading margin in the man-machine competition
(since it is doubtful that the improvement of human players would be adequate
to the one of computer players). But improvement of efficiency is not the only
and not even a sufficient motivation for further research.

I would argue that good reasons for game research concern the way in
which high playing competency is accomplished by machines. On one side
there are extremely powerful AI approaches in which playing agents are
equipped with carefully designed evaluation functions, look-up tables, per-
fect endgame databases, opening databases, grandmaster game repositories,
sophisticated search methods (e.g. B∗[11], SSS∗[99], NegaScout [80], MTD(f)
[76, 77], conspiracy numbers [65]) or search enhancements (e.g. singular ex-
tensions [2], null moves [9, 44], ProbCut [16], and other [83]) and a lot of
other predefined, knowledge-based tools and techniques that allow making
high quality moves with enormous search speed. On the other side there are
soft, CI-based methods relying mainly on knowledge-free approaches, exten-
sive training methods including reinforcement learning, neural networks, self-
playing and even learning from scratch based merely on the final outcomes
of the games played. Application and development of these soft techniques
pose several challenging questions which are discussed in the remainder of
this section. First, in section 3.1 some well-known successful examples of au-
tonomous learning in game playing and challenging, open problems related
to this type of learning are discussed. Section 3.2 addresses the issue of cre-
ativity understood as ad hoc knowledge discovery which may emerge as a
result of deliberately designed training process. Section 3.3 is devoted to in-
tuition, implementation of which in artificially built systems seems to be one
of the grand challenges not only in game playing domain. Section 3.4 consid-
ers the problem of abstraction and generalization of knowledge possessed
during the learning process. In particular the problem of how to generalize
from shallow-depth search is still unsolved and considered a challenge. An-
other challenging problem is efficient pre-ordering of moves in the search
algorithms (section 3.5). Although a lot of results have been published in
this area, the problem - addressed generally - still remains open. Section 3.6
touches on the problem of opponent modeling which is one of the central is-
sues in games with imperfect information, especially those in which deception
and bluffing are inherent elements, such as Poker or Perudo. Finally, section
3.7 concerns universality of approaches and tools applied within CI. The



Computational Intelligence in Mind Games 415

development of game independent, universal training processes applicable to a
wide range of games is one of the relevant current research problems. Possible
approaches include multitask learning and lifelong learning.

3.1 Autonomous Learning

One of the most distinctive features of CI-based systems is the ability to
improve themselves through a (self)-learning process. Unlike classical AI ap-
proaches which rely on carefully designed, hand-crafted evaluation functions
reflecting expert knowledge about various game aspects, the CI systems, given
some initial knowledge, are able to improve their performance through learn-
ing or evolution.

Construction of game playing agents capable of learning based on expe-
rience is one of the challenging issues. There are several notable examples
of such systems, e.g. Tesauro’s Neurogammon and TD-Gammon, Baxter’s
KnightCap, Schaeffer’s TDL-Chinook, Thrun’s NeuroChess, or Fogel’s Ana-
conda - to mention only a few of them. A brief description of the above
seminal achievements is presented in the remainder of this section, followed
by a general discussion on their strengths and weaknesses as well as related
open problems.

Certainly the systems described below by no means pretend to be a com-
plete catalogue of CI achievements in games. They are rather a partial collec-
tion of milestone accomplishments subjectively chosen by the author. Other CI
approaches to most popular games include for example [112, 109, 36, 50, 41, 34]
in Chess, [1, 61] in Checkers, [63, 75, 54] in Give-Away Checkers, [69, 113] in
Othello, [52] in Rummy, [26, 22, 92] in Iterated Prisoner’s Dilemma, [79] in
Backgammon, [4, 5] in Poker, [90, 91, 29, 81] in Go.

Neurogammon and TD-Gammon. The first world-class accomplish-
ment in the field of CI in games was TD-Gammon program [103, 104, 105]
and its predecessor - Neurogammon [102], both written by Gerald Tesauro
for playing Backgammon - an ancient two-player board game. In short, the
goal of the game is to move one’s checkers from their initial position on the
one-dimensional track to the final position (players make moves in the oppo-
site directions). The total distance that pieces belonging to one player can
move at a given turn depends on the score of the two dices which are thrown
by a player at the beginning of a move. Rolling dices introduces randomness
into the game. Based on the dices’ score the player makes a decision regard-
ing which pieces to move forward and of how many fields. The game has a
high branching factor (due to dices’ throwing) and when played by masters be-
comes a highly complex battle, full of tactical and positional threats including
sophisticated blocking strategies.

The evaluation function in Neurogammon was implemented by Multilayer
Perceptron (MLP) neural network trained with backpropagation, having as
the input the location of pieces on the board and a set of game features



416 Jacek Mańdziuk

carefully designed by human experts. Board positions were extracted from
the corpus of master-level games. Neurogammon achieved a steady human
intermediate level of play which allowed it to convincingly win the computer
olympic competition [102].

Quite a different approach was adopted in TD-Gammon - the successor of
Neurogammon. TD-Gammon was also utilizing the MLP network, but it dif-
fered from Neurogammon in three key aspects: (1) instead of backpropagation
training the temporal difference learning introduced by Sutton [100, 101, 49]
was used; (2) the input to the network was a raw board state without any ex-
pert features5; (3) training was essentially based on self-playing as opposed to
training based on board positions that occurred in games played by experts.

Initially, i.e. in a knowledge-free approach, TD-Gammon reached an in-
termediate human level of play roughly equivalent to Neurogammon’s level.
In subsequent experiments - still in a self-playing regime, but with the input
layer extended by adding expert board features (the ones used in Neurogam-
mon) to the raw board data - the level of play eventually became equivalent
to the best world-class human players.

Following Tesauro’s work, various attempts to repeat his successful TD
approach in other game domains were undertaken, but none of the subsequent
trials reached as high level of playing competency in any other game as TD-
Gammon did in Backgammon. One of the possible reasons of TD-Gammon’s
striking efficiency is the stochastic nature of the game which allows broad
search of the entire state space and a real-valued, smooth, continuous target
evaluation function, as opposed to discrete and discontinuous functions in
most of the popular perfect information, deterministic games. Another reason
is ascribed to the impact of TD learning strategy on the course of neural
net’s training: first simple linear associations were learnt, and only then a
representation of nonlinear, context-sensitive concepts and exceptional cases
was built [105].

KnightCap. Another well known example of TD-type learning in games is
Chess playing program KnightCap written by Baxter, Tridgell and Weaver [6,
7, 8]. The authors applied TDLeaf(λ) method - a variant of TD(λ) introduced
in [10]6. As opposed to Samuel [82], Tesauro [103], Thrun [106], Beal and
Smith [10] and later on Schaeffer et al. [88] KnightCap’s designers found self-
playing to be a very poor way of learning and preferred the use of external
trainers instead. Hence, the TDLeaf(λ) learning was carried out by playing
on the Internet Chess site. The program started from the blitz rating of 1650
and required only three days of playing (308 games) to reach the blitz rating
of 2150, which is roughly equivalent to master candidate player. Afterwards
the rating curve entered a plateau.

5 Some experiments with adding expert features to the input vector were carried
out in subsequent studies.

6 Although the idea of TDLeaf(λ) was first presented in [10], the algorithm’s name
was coined in Baxter et al.’s papers.



Computational Intelligence in Mind Games 417

The success of KnightCap laid, according to the authors, in appropri-
ate choice of TD learning parameters, and first of all in “intelligent mater-
ial parameters” initialization, which reflected the common knowledge of the
pieces’ values in Chess. Additional contribution to rapid rating increase was
attributed to the fact that the weights of all other (i.e. non-material) parame-
ters were initially set to zero, and therefore even small changes in their values
potentially caused a relatively significant increase in the quality of play.

The main lesson from KnighCap’s experiment was that the choice of ini-
tial weights in the evaluation function is crucial for the speed and quality of
training. Another conclusion concerned the choice of training opponents who,
according to authors’ suggestions, should be comparable in playing strength
to the learning program. This observation is in line with common human in-
tuition that too strong or too weak opponents are not as valuable as the ones
playing on approximately the same level.

The weakest feature of KnightCap was playing in the opening phase7. One
possible remedy to this problem is the idea of “permanent brain” introduced
in Crafty [46] - the strongest publicly available freeware Chess program and
a direct descendant of a former Computer Chess Champion - Cray Blitz [47].
“Permanent brain” stores a number of losing positions and their evaluations in
a hash table, which is used in every search. Thus the program avoids playing
into these unfavorable lines.

TDL-Chinook. Jonathan Schaeffer, the author of Chinook (the Man-
Machine Checkers Champion described in sect. 2), together with Markian
Hlynka and Vili Jussila applied TD learning to Checkers [88] in order to
verify its efficacy in another (after Backgammon and Chess) demanding game.
The authors used the TDLeaf(λ) learning scheme. Their direct goal was a
comparison between Chinook’s evaluation function and the TD-based learnt
one. In order to make this comparison the TD learning player was initially
equipped with Chinook’s evaluation function but with a different set of weights
assigned to its components. Two main approaches were considered: in the first
one, Chinook served as the training opponent for the TD player whereas the
second approach relied on self-playing. In the first case training was performed
in a predefined regime involving the use of some number of standard Checkers
openings (afterwards the game was continued and finally completed by the
players).

Surprisingly enough it turned out that by applying the TDLeaf(λ) learning
scheme the program was capable of reaching the level of play comparable to
the teacher’s even though Chinook evaluation function’s weights had been
carefully tuned for more than five years. More surprisingly, the other approach
(self-playing) also led to the Chinook caliber program, which implies that

7 Due to the way TD learning is performed the relatively poorer play in the openings
is common to practically all TD implementations regardless of the choice of the
game.



418 Jacek Mańdziuk

external teacher is not indispensable for achieving the human championship
level of play in a complex game as Checkers is!

It is interesting that the weighting of features in the evaluation function
of the learning program was very different from that of Chinook. Closer ex-
amination of weights developed during training revealed several interesting
insights into how some “human-type” features (i.e. the ones which very rarely
occur in machine vs machine play) are compensated by other components in
the evaluation function.

NeuroChess. Another interesting application of CI methods in games
is NeuroChess program written by Sebastian Thrun [106], which combines
TD learning with Explanation-Based Neural Network learning (EBNN) de-
scribed in [68, 107]. The evaluation function in NeuroChess is represented by
a neural network which inputs and outputs are board features (defined by a
human expert) of the current position and the one expected after the next
two half-moves, respectively. The challenge of Thrun’s approach is to learn
the evaluation function (i.e. weights of a network) with TD algorithm based
solely on the final outcomes of the training games. Training is also supported
by self-playing. The role of EBNN is to speed up the training process by al-
lowing better generalization. This goal is accomplished by defining a separate
neural network called the Chess model which represents the domain knowl-
edge, obtained based on a large number of grandmaster games.

Although NeuroChess never reached the level of play of GNU-Chess (being
its test opponent) defeating it in about 13% of times, the experiment pointed
out some important advantages and weaknesses of TD learning based on the
final games’ outcomes. First of all NeuroChess’s ability of playing openings
was very poor, which was the consequence of increasing inaccuracy of position
estimation from the final position backwards to the opening one. Another
characteristic feature of NeuroChess play was mixing very strong moves with
schoolboy mistakes, which according to Thrun happened quite frequently.

The main conclusion from Thrun’s work is that learning based solely on
observation of grandmaster play (TD learning in here) is not efficient enough
and may lead to several artifacts in agent’s evaluation function. An example
of such inefficiency it the tendency of NeuroChess (when trained without self-
playing) to move its queen into the center of the board in the early stage of the
game. This behavior was learnt from grandmasters’ games, but the program
was unable to observe that grandmasters make such moves only when the
queen is safe from being harassed by the opponent. In other words the basic
idea of EBNN, i.e. using domain knowledge for finding explanations for a given
set of examples in order to generalize based on them is not sufficient in the
game of chess since some moves cannot be fully explained based exclusively
on the accessible domain theory, ergo cannot be properly learnt.

Anaconda (vel Blondie24). Kumar Chellapilla and David Fogel carried
out an experiment in which an ensemble of feed-forward neural networks, each
representing an evaluation function for the game of Checkers, was evolved in



Computational Intelligence in Mind Games 419

appropriately designed evolutionary process. The input data for each network
consisted of locations of pieces on a game board. This data was further decom-
posed in the first hidden layer into all possible subsets of size 3× 3, 4× 4, . . .,
8× 8 of the entire board. The two subsequent hidden layers operated on fea-
tures originated in the first hidden layer. A single output neuron represented
the evaluation of a Checkers’ position presented in the input.

In each generation offspring networks were created and then each network
(being either parent or offspring) played against five randomly selected oppo-
nents from that population. The best networks constituted the population for
the next generation. After 250 generations the top network was tested against
human competitors on the Internet site where it achieved the rating of an A-
class player (immediately below the expert level) [22, 23]. After another 590
evolutionary generations the best network achieved the rating of an expert
player (just below the master level) according to the U.S. Chess Federation
rating system on the same Internet gaming site [25, 33]. This network was
also tested against three characters (Beatrice, Natasha, and Leopold) from
the Hoyle’s Classis Games - commercially available software - winning a six
game match with the score 6 : 0 [24]. Chellapilla and Fogel used two names for
their network: Anaconda and Blondie24. The former one was related to the
system’s style of playing (this issue is further discussed in the next section)
while the latter - most probably - to attract other player’s attention on the
Internet gaming zone.

It should be underlined that except for the sum of all board inputs (reflect-
ing difference in material), which was presented as an additional input value
directly to the output neuron, no expert knowledge about the game of Check-
ers was incorporated into the neural networks or the evolutionary process. The
only “knowledge” available during the process was the location of pieces on
the board, the rules of making (generating) all legal moves in a given position
and the minimax heuristic for selecting the most favorable move at a given
search depth. In majority of the games the search depth was defined to be
equal to 6 or 8. The search was extended further for non-quiescent positions.

The common feature of all playing agents described above is the ability
to autonomously improve their playing strength basing on experience (games
played). This improvement is achieved either in the self-playing regime or
in the course of playing against external opponents. Interestingly, the above
mentioned experiments and other works presented in the literature are in-
conclusive with regard to whether it is more profitably to favor self-playing
or rather to train with external opponents. Hence, one of the interesting and
challenging issues is further investigation and formalization of the strengths
and weaknesses of both training approaches.

In the case of training with external opponents additional key issue is the
choice of the opponent players and the scheme of training [6, 63]. According
to intuition, too strong or too weak opponents may not lead to expected im-
provement since weak opponents play badly and the strong ones are too good



420 Jacek Mańdziuk

to be followed by the learner. Also the training scheme, when playing against
external opponents, may have a great impact on the speed and quality of the
learning process. In particular, in TD learning one may consider updating
weights of the evaluation function after each game or only after the games
lost or drawn. Another possibility is to update the weights regardless of the
game’s outcome, but with elimination of weak moves which most probably
may be misleading for the training process [6, 7]. One may also consider play-
ing against stronger opponent a few times in a raw if only the learner keeps
losing against that opponent. The results for the game of Give-Away Check-
ers presented in [75] suggest the superiority of such approach over classical
TD learning based on either all games played or only the ones not won by
the learner. Other constructions of the learning scheme, e.g. the tournament
choice of the opponents, can also be considered. The issue of how to define
the optimal training scheme deserves further investigation and hopefully new
conclusions across various game domains will come into light.

Another relevant issue is the choice of initial weights in the evaluation
function. Regardless of the training method (being either TD, neural nets
or evolutionary approach) the choice of the starting point is in most cases
crucial for the final outcome of the learning process. Usually these initial
settings are based on human expert knowledge. Another possibility would be
to define a universal, game-independent procedure allowing the development
of “reasonable” initial settings that approximate the relative importance of
particular features or their combinations.

Naturally, the problem of how to define the optimal set of features that
compose the evaluation function for a particular game is also a challenge.
A more demanding question would be how to define the human-guided, but
semi-autonomous and game-independent process that would have led to the
construction of suboptimal set of board (game) features. This issue was dis-
cussed by Paul Utgoff who stated in [111]: “Constructing good features is a
major development bottleneck in building a system that will make high quality
decisions. We must continue to study how to enhance our ability to automate
this process”. Utgoff suggested that game features should be overlapping and
form a layered, hierarchical system in which more complex features are built
based on simpler ones.

Another challenge concerns autonomous learning with zero initial knowl-
edge (except for the rules of the game). The majority of game playing pro-
grams rely on carefully designed expert features reflecting positional and tac-
tical nuances of the game. A good counterexample is Anaconda which does
not rely on built-in human knowledge at all, and as such is an apparent,
successful example of learning from scratch using Computational Intelligence
techniques. Chellapilla and Fogel’s success contradicts Allen Newell’s opinion
(supported also by Marvin Minsky): “It is extremely doubtful whether there is
enough information in ‘win, lose, or draw’ when referred to the whole play of
the game to permit any learning at all over available time scales” [67].



Computational Intelligence in Mind Games 421

3.2 Creativity - Knowledge Discovery

One of the long-term goals of CI in game playing is development of creativ-
ity mechanisms which implemented in the playing program might lead to
spontaneous knowledge discovery.

Some successful examples of such “emerging intelligent behavior” have
already been presented in the literature however, according to the author’s
knowledge, all of them were merely “the side effects” of the training process.
The most famous example is probably Tesauro’s TD-Gammon described in
the previous section, which according to former Backgammon world champion
Robertie, came up with genuinely novel strategies that no one had used before.
TD-Gammon’s play caused revision in human positional judgement in this
game leading, for example, to invention of new opening moves - proposed by
TD-Gammon and subsequently proved (in exhaustive, statistical analysis as
well as tournament play) to be successful. Another interesting observation
concerning TD-Gammon is the development of spatial weight patterns in the
MLP, responsible for representation of particular game concepts, which were
not explicitly presented in the course of training [103].

Similar observations about ad-hoc feature discovery and feature represen-
tation in neural network weights were reported in [70, 62, 71] concerning the
game of Bridge. The authors considered the so-called Double-Dummy Bridge
Problem, which consists in answering the question about the number of tricks
to be taken by a pair of players assuming perfect play of all four hands with
all cards being revealed.

Several MLP networks with 0, 1 or 2 hidden layers were trained in a super-
vised manner and tested based on the data from the GIB Library [37], created
by Ginsberg using his GIB program [39]8. The input layer was composed of
52 neurons and each of them was assigned to a particular card from a deal.
The value of this neuron denoted the hand containing this card (e.g. N : 1.0,
S : 0.8, W : −1.0, E : −0.8). A single output neuron yielded the predicted
number of tricks to be taken (the output range - [0.1, 0.9] was divided into 14
intervals of equal length). Besides deal assignment, no additional information
e.g. the rules of the game or the strength of particular cards was provided
to the network. Except for achieving satisfying numerical results the other
main goal of that research was exploration of networks’ knowledge represen-
tation and search for patterns in the weight space that possibly represented
particular “Bridge features” (e.g. the relative strength of cards). Examining
the weights in the trained networks revealed several interesting observations.

Firstly, weights of outgoing connections from input neurons representing
aces and kings always had the biggest absolute values. This feature was simple
to explain (for humans) - these cards are the most important in the game of
Bridge, especially in no trump contracts.

Secondly, in each trained network there were exactly four connections from
input to hidden neurons with weights’ absolute values noticeably bigger than
8 GIB is considered one of the top machine Bridge players.



422 Jacek Mańdziuk

all the others (about 25.0 vs less than 7.0). Not surprisingly these favored
connections started from four input neurons assigned to aces.

Thirdly, in all networks it was possible to point out four hidden neurons fo-
cused on particular suits (one neuron per suit). Absolute values of connection
weights from inputs representing the respective suit to such hidden neuron
were much bigger than absolute weight values from the remaining inputs.

Finally, a very interesting feature which appeared in all trained networks
with sufficient number of hidden neurons, was the presence of four hidden
neurons, each of which focused on five top cards from one particular suit: ten,
jack, queen, king and ace. In each of these five-card groups the most important
connections were from queens and kings, jacks were less important, but still
much more relevant than aces and tens. The hypothesis is that these hidden
neurons were responsible for a very important aspect of the game - the finesses.

All the above observations are in line with human knowledge about the
game of Bridge. Estimation of the strength of individual cards as well as entire
suits is the basic information considered in the process of a hand’s evaluation.
Even though these game features are trivial to understand for human players
they are not necessarily easy to discover by a neural network. Moreover, quite
surprisingly, in the simple training process, the networks were also able to
independently discover the notion of the finesses, which is a subtle mechanism
- not rarely deciding about the final number of tricks taken by a playing pair.

Interesting observations concerning knowledge discovery in the game of
Chess were reported in the MORPH experiment [56, 42] which implemented
pattern based learning with the weights of patterns being modified through
the TD(λ) method combined with simulated annealing. Although the strength
of MORPH was far inferior to GNU Chess, the patterns learned by the system
were consistent with human Chess knowledge. In particular MORPH was able
to play openings on a reasonable level, despite the fact that no information
about the significance of development or controlling the center of the board in
the opening phase had been added to the system. On the other hand, one of
the weaknesses of MORPH was poor scalability with respect to the number of
patterns, due to the lack of efficient selection mechanisms. Nevertheless, the
system was able to defeat human novices while searching only 1-ply.

A general approach to automatic feature generation was presented by Faw-
cett and Utgoff [32]. Given only domain theory and the ability to solve prob-
lems in this domain the system called Zenith was able to automatically gener-
ate a set of relevant domain features. The system started from a single feature
created automatically from the problem’s goal (e.g. “win of white”) and by
using four predefined types of transformations: decomposition, abstraction,
regression and specialization, gradually extended the set of features in an
iterative manner. Zenith was applied to Othello with promising results. For
example, the system autonomously discovered the importance of stable pieces,
i.e. the ones which cannot be reversed [32].

Another well-known example of independent feature discovery in games is
Anaconda [25, 33] described in sect. 3.1, which received its name due to the



Computational Intelligence in Mind Games 423

“snake-like” way of playing - in most of the games won by the program its
opponent was blocked and therefore forced to make a weak move. However,
neither in the input data nor in the evolutionary process of Anaconda’s de-
velopment the concept of mobility was ever explicitly considered. Hence the
importance of mobility must have been “invented” by the system or more
precisely by the evolutionary process, which guided Anaconda’s development.

The potential strength of neuro-evolutionary approach was also reported
in Othello [69]. The evolved networks “discovered” positional features and
advanced mobility issues indispensable for high-profile tournament play.

All the above examples led to discovering new features, previously un-
known to the system, induced from the training data. The ultimate goal that
can be put forward in this context is autonomous discovering of all relevant
components of the evaluation function in a way allowing their separation and
explanation. Such a requirement goes beyond Anaconda experiment and other
neural or neuro-evolutionary type approaches that resulted in efficient numer-
ical approximation of the board state, but lack the feature-based formulation
of the evaluation function.

3.3 Intuition

Implementation of the concept of intuition is definitely one of the greatest
challenges in computer games and also in computer science in general. Nowa-
days, despite the major breakthroughs made in several disciplines and despite
increasingly deeper, scientific understanding of the nature, intuition - para-
doxically - becomes more important than ever.

One of the most salient research studies focused on understanding (and
implementation of) intuition was performed by Herbert Simon - a Nobel Prize
Winner in Economics. According to Simon intuition is nothing mysterious or
extraordinary and simply relates to a subconscious pattern recognition process
able to immediately provide appropriate pattern(s) among those stored in the
memory, based on our knowledge and experience. According to Simon, this
does not mean that intuition is an irrational process - he considered it to be
a rational but neither conscious nor analytical one [95].

Simon was optimistic about the potential abilities of “thinking machines”
and predicted that any “intelligent” human activity (thinking, creativity, de-
cision making, intuition and other) will ultimately be implemented in artificial
systems.

In most of mind board games intuition plays a leading role at master
level of play. Consider for example Chess. With a branching factor of about
30, in a 50 move (100 ply) game there are about 10147 contingencies, which
is an enormous number for any human being (grandmasters are believed to
search no more than a few hundred contingencies during the entire game).
How then it is possible that Chess champions are able to play at such a high
level? One of the factors is intuition which allows them to perform highly
selective search in this huge space, although in many cases they are not able



424 Jacek Mańdziuk

to explain why they have chosen to search a particular contingency and skipped
the others. Moreover, when playing simultaneous games, Chess grandmasters
usually need only a few seconds to make a move, which generally proves to
be very strong (often optimal). This means that they have the ability to
immediately find the most relevant information characterizing board position
and recognize the most promising continuation (move), usually without deep,
precise calculation of its contingencies.

Another aspect of intuition in board games is the ability to almost in-
stantaneous recognition of strengths and weaknesses of a given position. A
grandmaster usually needs only a few seconds of board analysis in order to
tell which side is in the winning or favorable position. One of the possible psy-
chological explanations of this phenomenon is the ability of advanced players
to link the new position with previously explored familiar ones and conse-
quently to focus on moves and plans associated with these, already known,
positions [27] (this topic is further discussed in sect. 3.4).

Based on the above described results of applying intuition in games, one
can provide the operational definition of intuition as an instantaneous, sub-
conscious recognition/reasoning process which does not rely on precise, deep
calculations, but instead rather refers to past experiences and previously ac-
quired general knowledge. Consequently, in most mind games, intuition is one
of the main factors contributing to the beauty and attraction of the game.
Its application often leads, for example, to long term material sacrifices with-
out apparent possibility of its recovery. A well known example in Chess is
the immortal game played in London in 1851 by Adolf Anderssen and Lionel
Kieseritzky in which white sacrificed bishop (on move 11 - see Fig. 1(a)) and
subsequently two rooks and a queen (starting on move 18 - see Fig. 1(b)) in
order to checkmate on move 23 - (Fig. 1(c)). Certainly, the last three sacrifices
were tactical ones, i.e. their consequences could have been precisely calculated
by Anderssen, but the introductory sacrifice (bishop on move 11) is an exam-
ple of an intuitive type of move based on players experience and his “feeling”
of the board position.

a

1

2

3

4

5

6

7

8

b c d e f g h

(a) After 11. Rg1 ...

a

1

2

3

4

5

6

7

8

b c d e f g h

(b) After 17. ... Qxb2

a

1

2

3

4

5

6

7

8

b c d e f g h

(c) 23. Be7++.
White won

Fig. 1. Anderssen vs Kieseritzky, Immortal game, London, 1851



Computational Intelligence in Mind Games 425

a

1

2

3

4

5

6

7

8

b c d e f g h

(a) After 16. Nb6 ...

a

1

2

3

4

5

6

7

8

b c d e f g h

(b) After 16. ... axb6,
17. Rxd7 Bxd7

Fig. 2. Karpov vs Kasparov, New York, 1990

Another interesting example of intuitive sacrifice occurred in the game
played between two great archenemies: Anatoly Karpov and Garry Kasparov
in the New York match in 1990. In the middle-game position Kasparov sac-
rificed queen for a rook and knight on moves 16 − 17 (see Fig. 2) and this
sacrifice was clearly positional with no immediate tactical or material threats.
The game continued up to 53th move, when players agreed for a draw.

Theoretically, human-type intuition in machine playing may possibly
emerge as a “side effect” of using a close to optimal evaluation function
(on condition that such a function could be practically specified and imple-
mented). Examples of “intuition” of such origin have been observed in the
famous Kasparov vs Deep Blue re-match, in which some of the machine’s
moves were described by grandmasters commentating on the match as phe-
nomenal and extremely human.

One of very few published attempts focusing on formalization of intuitive
concepts in Chess was recently described by Arbiser [3]. The author proposes
the way of formalizing such concepts as capture, attack, threat, sacrifice, etc.
as well as the notion of style of opponent’s play, i.e. aggressive, defensive,
conservative, tactical or positional. The underlying idea is based on general-
ization of the null-move heuristic in such a way that instead of hypothetical
opponent’s moving twice in a row, the opponent is allowed to virtually change
one of his or our pieces or add/delete a piece and then make a move. For
example the notion of aggressive play will be implemented by exchanging one
of the opponent’s or our pieces into a strong opponent’s piece before deciding
a move. Such an exchange would most probably cause immediate threats to
us thus forcing the choice of an appropriate response. In short, the following
scheme is proposed: modify the board in an adequate manner before calling
a regular search algorithm and ensure that the chosen move would be valid
and sound in the original board position i.e. the one without initial, fictitious
modification. Although the description of the method raises several questions
concerning its time complexity as well as the omitted implementation details,
overall the algorithm seems to be a step in the right direction.



426 Jacek Mańdziuk

Understanding and furthermore implementation of the mechanism of intu-
ition in artificial players is one of the main challenges for CI in games. Several
issues described in the remainder of this chapter, e.g. geometrical trajectories,
positional generalization, feature abstraction may partly compliment to the
implementation of intuition, but the efficient and general approach to this
wonderful human ability is yet to be specified. I would argue that unless pro-
grams (machines) capable of making intuitive moves (in the above described
sense) in Chess and other mind board games are created, we should be very
cautious about announcing the end of the human era in these games.

In 1931 Albert Einstein wrote [28]: “The intuitive mind is a sacred gift and
the rational mind is a faithful servant. We have created a society that honors
the servant and has forgotten the gift”. This aphorism, originally related to
religion, can also be referred to other human activities including the domain
of machine game playing development.

3.4 Abstraction and Generalization

As discussed in the previous section, one of the facets of human game playing is
the ability to abstract particularly relevant game features from a given board
position. This skill allows experienced players almost immediate estimation of
positional and tactical strengths and weaknesses on both sides as well as to
point out future possibilities and potentially promising moves. For example
in Chess these crucial features include pawn structure, cooperation of figures
(e.g. two rooks on the 2nd (resp. 7th) line or multiple attack on point F2 (F7
resp.)), mobility, tempo and many more.

In practically all popular mind board games vital positional and tacti-
cal features are context-sensitive. Due to the presence of other pieces on the
board their appropriate classification is not a straightforward task for machine
players and requires both abstraction and generalization capabilities.

Another generalization task is an attempt to reason on the quality of a
move based on shallow search. On one hand it is hard not to agree with
Schaeffer, Hlynka and Jussila who stated in [88]: “There is no free lunch; you
can’t use shallow search results to approximate deep results” and therefore
advised: “the weights [of an evaluation function] must be trained using depths
of search expected to be seen in practice”.

On the other hand the above claims are not necessarily valid when estimat-
ing the relative strength of the moves without focusing of their true numerical
evaluation. A crude relative estimation of possible moves is crucial for the ef-
ficacy of several search algorithms (e.g. the alpha-beta based ones). This issue
is further discussed in the next section.

A challenging test of generalization skills applicable to machines is solving
game problems defined on arbitrarily large game boards. Intelligent approach
to such problems requires efficient generalization from shallow search results.
John McCarthy in 1998 in his comments to intelligent Chess problem solving,
referring to the famous Reti problem (Fig. 3), stated: “Note that Reti’s idea can



Computational Intelligence in Mind Games 427

a

1

2

3

4

5

6

7

8

b c d e f g h

Fig. 3. Reti ending. White to begin and draw.

be implemented on a 100×100 board, and humans will still solve the problem,
but present programs will not ... AI will not advance to human level if AI
researchers remain satisfied with brute force as a substitute for intelligence ...
Would anyone seriously argue that it is impossible for a computer to solve the
Reti problem by other than brute force?” [66]. An interesting approach to this
type of generalization is expressed by the Linguistic Geometry (LG) which
focuses on evaluation of trajectories of possible solutions rather than on exact
exploration of the game tree [98]. Instead of traditional search-based approach,
LG proposes methods for construction of problem solving strategies. These
strategies can be represented as trajectories on the board (e.g. in the endgame
problems) and to some extent allow formalization of expert knowledge and
intuition (see [98] for details).

Another challenge related to abstraction and generalization is the quest
for learning methods capable of generalizing knowledge across game boards
of different sizes. One particularly interesting question is: how to apply the
outcomes of learning on small boards to the learning process performed on
larger boards? One possible approach is to use incremental training methods
implemented in neural networks according to the following procedure. Learn-
ing starts off in the environment (game board) smaller than the target one.
During the training process the environment is gradually increased - up to
desired size - and after each change of size the limited number of training ex-
amples is modified/added in order to capture new features that arose in this
larger, more complicated environment. The claim is that after some training
time, the system should be able to recognize features, which are invariant to
the size (degree of complication) of the environment. In such cases these fea-
tures will be shared among several instances of the environment and during
the training process used to make generalizations about the learning task.

Consider, for example, a game which is played on a board of size n. In the
proposed approach the training process begins on a game board of smaller
size k, k < n and after the agent learns how to play or solve problems on
this board, the board size is increased to k+ t, where t depends on particular



428 Jacek Mańdziuk

game (t ∈ {1, 2} for the majority of popular games). Then the agent is re-
trained in a limited manner based on the new set of problems presented on
the increased board. The re-training procedure is significantly shorter than the
regular training performed on the board of size k. Once again the board size
is increased and the agent is re-trained, etc. The whole procedure is stopped
after the re-training on board of size n is completed.

The underlying idea is that after the preliminary phase, learning should
become relatively easier, and solutions for problems defined on larger boards
would be developed by the system based on already defined solutions for prob-
lems stated on smaller-size boards. Hence, subsequent learning would mostly
involve efficient use of previously acquired knowledge.

The above described learning scheme is problem independent, but can be
applied only to a certain type of games such as Checkers, Othello or Go,
which can be easily defined on boards of different sizes. Such training scheme
was used in Othello on 6 × 6, 8 × 8 and 10 × 10 boards (the board of size
10 × 10 being the target one) [59, 60]. The MLP neural network was fully
trained on examples from 6×6 board and subsequently re-trained, in a limited
manner, on 8×8 and 10×10 boards’ examples. The training goal was to point
out the best move in a given position. The results of the above-described
incremental training procedure were compared with the full backpropagation
training carried out exclusively on 10×10 board examples. The amount of time
required for incremental training was considerably lower than in the opposite
case. Also numerical results showed a slight improvement over a one-shot
training procedure: after incremental training the network responded with
the best move (selected according to applied heuristic) in 40% of the cases,
compared to 34% achieved in the full backpropagation training on 10 × 10
board [60].

3.5 Pre-Ordering of Moves

In practical applications, efficient moves pre-ordering should rely on shallow
search or no search at all, otherwise, the remaining time devoted to deeper,
selective search may be insufficient. Efficacious pre-ordering of moves is again
a “very human” skill. Human Chess players, for example, can estimate roughly
2 positions per second - compared to 200 billion ones checked in a second by
Deep Blue - and therefore must be extremely effective in preliminary selection
of moves.

There exist a few popular, search-free strategies of moves pre-ordering
basing on historical goodness of the move in previous games played. These
include the history heuristics, transposition tables or the killer move heuristics.
In most cases these methods are highly effective since the assumption that a
move which often appeared to be efficient in the past is more likely to be
suitable for the current game position than other “less popular” moves is
generally correct (see e.g. [83] for further discussion and experimental results
in Checkers).



Computational Intelligence in Mind Games 429

An interesting approach to moves pre-ordering in Chess was presented
by Greer [43]. The method relies on pattern-oriented classification of moves
based on heuristically defined influence of a particular move on certain board
regions. At first, each square is assigned a label that represents heuristical
belief in which of the two players controls this square. Combining this infor-
mation for all squares leads to the chessmap which represents the regions of
the board that are in favor for each side as well as the neutral areas, where
none of the players has a visible advantage9. Additionally, for each square (or
more generally each sector composed of some number of squares) the so-called
valueboard is defined based on the relative strength of the control that one
side has over that square (sector). The influence of a move on a given square
(or sector) is defined as the sign of a difference between the valueboard after
that move would have been made and before (i.e. in a current position). This
allows to detect the squares that would be strengthened by that move as well
as the ones that would be weakened.

In order to learn the influence relationship for Chess positions a neural
network was trained based on 10, 000 positions extracted from master and
grandmaster games. The input layer represented influence labels of 64 squares
and the kings’ locations. The desired output values in the 64 element output
layer (one neuron per square) were the influence labels after a move had been
made in the actual game. After training, the outputs of the network were
used to order board squares according to their predicted influence values.
Consequently moves that influenced the highest ranked sector(s) of the board
were considered as the most promising ones.

The above procedure was further enhanced by giving priority to forced and
capture moves. Several tests of this interesting pattern-based heuristic were
carried out including the ones on the set of 24 Bratko-Kopec positions [51],
for which the quality of the method - calculated as the number of searched
nodes - was comparable to the result of applying the history heuristic.

Pattern-based pre-ordering of moves is in line with psychological observa-
tions of how human grandmasters make decisions about which moves to con-
sider first. As Johannes Fürnkranz stated in his excellent review of a decade
of research in AI and computer chess [35] referring to the work of deGroot [27]
“the differences in playing strengths between experts and novices are not so
much due to differences in the ability to calculate long moves sequences, but
to which moves they start to calculate. For this preselection of moves chess
players make use of chess patterns and accompanying promising moves and
plans”.

Pattern-based approaches seem to be perfectly suited for Go, which is a
territory game. Since today’s Go programs are far from being a threat to
human players and rely only on simple pattern matching [73] application

9 The idea of calculating the influence of white and black pieces in order to divide
the board into sections controlled by the respective players was initially intro-
duced by Zorbist [114] in Go.



430 Jacek Mańdziuk

of pattern-oriented methods of moves pre-selection in this game may be a
promising research direction.

3.6 Opponent Modeling

Modeling the opponent is another fundamental issue in current AI/CI re-
search. The problem actually extends far beyond the game playing domain
and is considered as a crucial aspect of any competitive multi-agent environ-
ment (e.g. decision support systems, stock markets, trading systems, etc.). In
game domain the relevance of opponent modeling strongly depends on the
choice of a game. Relatively lesser impact on the quality of playing programs
concerns perfect information games, such as Chess, Checkers, Go, Othello,
etc. However, also in these games the problem is not negligible. The style of
play (tactical vs positional, aggressive vs conservative, etc.), if properly mod-
eled, can provide an important indication for a game playing program. For
example, in a disadvantageous position a program could use a specific style
of play in order to hinder the potential victory of the opponent and strive to
achieve a draw. Another example is seeking the chance to win an even game
by steering it to inconvenient (for the opponent) positions and thus provoking
an opponent’s mistake.

A similar situation is observed among human players. Nearly each of the
top players in any popular board game has opponents who are “less conve-
nient for him”, i.e. achieve relatively better results against that player than
is indicated by their ranking (e.g. ELO in Chess). In other words the “win-
ning relation” is non-transitive and the ranking points provide only general,
statistical information about player’s strength.

Modeling the opponent is far more important in imperfect information
games, especially the ones, in which deception (bluffing) is an inherent part
of the rules. A simple, though instructive, example is the kids’ game Rock-
Paper-Scissors, also known as RoShamBo [12]. In this game, each of the players
independently and simultaneously chooses among Rock, Paper and Scissors.
In the simplest case of two players the winner is the one whose choice “beats”
the opponent’s choice under the following rules: Rock beats Scissors, Scissors
beat Paper and Paper beats Rock. If both players point out the same object
the turn ends with a draw. Even though the rules of the game are trivial,
the game itself is more demanding that one might expect at first glance. A
simple solution is of course choosing actions randomly according to uniform
distribution. Such approach would statistically lead to a draw, however it
does not take into account the opponent’s playing policy which may possibly
be inferred from his/her previous play. Moreover, except for trying to pre-
dict the opponent’s next move, a skilful player (program) should avoid to be
predictable itself. Hence, simple rule-based approaches are not sufficient and
more sophisticated methods are to be employed.

Another example of the game in which opponent modeling is crucial for
efficient playing is a dice game Perudo [57] also known as Liar’s Dice. The



Computational Intelligence in Mind Games 431

rules of Perudo are not very complicated [58], though not as simple as those
of RoShamBo. Playing the game well requires quite sophisticated analysis of
opponents’ past actions in order to detect possible bluffing, since the game
significantly consists in bluffing and straightforward playing most probably
would not lead to success against experienced opponents.

Certainly the most popular “game of deception” is Poker. Here the notion
of (objectively) optimal playing is hard to define due to the huge amount of
uncertainty regarding hidden opponents’ cards (the hole cards) and the la-
tent community cards10. Hence the optimal behavior can only be estimated
with some probability and its calculation strongly depends on the opponents’
actions. A simple example given in [13] concerns the frequency of bluffing by
the opponent. The one who bluffs more frequently should be called more often
compared to the one who bluffs relatively rarely. One possibility of modeling
opponent’s behavior is to construct a statistical model for the next move pre-
diction based on sufficiently large number of games already played against
that opponent. Another possibility is to train a neural network to predict
the opponent’s next action. Poki-X team (cf. sect. 2) employed a standard,
one-hidden-layer MLP network with 19 inputs representing particular aspects
of the game and three outputs corresponding to three possible opponent’s
decisions (fold, raise or call). The outcome of the network provided a prob-
ability distribution (after output normalization) of the opponent’s action in
a given context defined by the input features. After training on deals played
by a given opponent, magnitudes of network’s weights reflected the relative
impact of particular input features on the predicted outcome, which allowed
further exploration of the input data, e.g. finding new features and defining a
relatively small number of context equivalence classes in the input space.

Additional advantage of using neural nets for the opponent modeling task
is their ability to adapt to changes observed in the training patterns (repre-
senting the opponent’s behavior) by adequate weights’ tuning11.

Computational Intelligence methods are very well suited to the problem of
opponent modeling. Probabilistic methods allow building a generic opponent’s
model for a given game, which can be further optimized, e.g. with the use of
genetic algorithms. An alternative approach, especially in the case when the
opponent’s patterns of activity vary in time, is to use neural networks, due
to their capability of adapting internal parameters to the gradually changing
input training data. Another promising avenue is to use TD learning and adapt
internal parameters of the playing system according to achieved results.

Definitely, on-line, adaptable and close to reality modeling of the oppo-
nent is one of the fundamental challenging problems in any non-trivial game,
10 We refer to the Texas Hold’em variant of Poker, which is now the most popular

version of this game. The rules of the game can be found for example in the
excellent books by David Sklansky [96, 97]

11 Certainly such network weights’ adjustment requires the use of appropriate train-
ing scheme and is possible on condition that changes in the opponent’s behavior
are relatively smooth.



432 Jacek Mańdziuk

in particular in imperfect information games, in which data hidden by the
opponent can only be inferred by analysis of his/her past actions in similar
game situations. Proper prediction of this hidden information increases the
expected outcome by decreasing the amount of uncertainty.

It is worth to note that the problem of opponent modeling becomes much
more demanding when multi-player situation is considered, in which players
can form ad-hoc coalitions (formal or informal) against the current leader or
in order to gain some benefits. In such a case players’ decisions are highly
contextual and strongly depend on short-term and long-term goals of the
coalitions they belong to.

3.7 Universality of Tools

One of the grand challenges in game playing is associated with designing
general-purpose methods and algorithms that abstract from particular games.
CI is well located in this stream and several CI-based attempts to create game-
independent methods were presented in the literature.

Game-Independent Learning

Research concerning game-independent learning aims at developing systems
capable of learning any game belonging to a certain class of games. This topic
was very popular in the mid 1990’s when some renowned methods and systems
originated.

One of the well known universal learning systems is Michael Gherrity’s
SAL program [36] capable of learning any two-player, perfect information,
deterministic game. SAL consists of a kernel that uses TD learning combined
with neural network’s backprop learning in order to learn the evaluation func-
tion for a given game. The kernel is game-independent and remains unchanged
for different games. The rules of making valid moves for any particular game
are represented by the game-specific module. SAL learns by trial and error
from the games it has played hitherto. It generates two evaluation functions,
one for each playing side which allows learning non-symmetric games or im-
posing asymmetry in symmetric games, if necessary. The system uses only
2-ply search of the game tree. SAL’s success is strongly hindered by slow
learning. For example, it took the program 20, 000 games to learn to play the
Tic-Tac-Toe game.

Another interesting approach to game-independent learning is represented
by Susan Epstein’s HOYLE system [30, 31], able to learn two-person, deter-
ministic, perfect information games. The underlying idea of HOYLE is to use
a set of game independent advisors each specializing in a narrow, specific as-
pect of game-playing (e.g. one advisor may focus on material advantage while
another one on finding the winning moves or sequences of moves, etc.). Each
of the advisors may recommend some moves and all of them can comment
on these proposals from their specialized viewpoint. Finally the advisors vote



Computational Intelligence in Mind Games 433

using a simple arithmetic voting system. Similarly to SAL, HOYLE uses only
shallow search (2-ply ahead at most).

The diversity of advisors plays a crucial role in learning a new game. Each
of the advisors learns patterns from played games chosen according to its in-
dividual priorities. One advisor may be focused on patterns related to the
opening moves while another, for example, on those related to strong, win-
ning moves, etc. Besides game-specific knowledge that can be acquired by the
advisors based on analysis of the played games, HOYLE is a priori equipped
with some general knowledge about the domain of two-person, deterministic
games.

The efficacy of HOYLE has been demonstrated by playing Tic-Tac-Toe and
Nine-Men’s Morris. The potential of Epstein’s approach in more complicated
games (Chess, Checkers, ...) has not been experimentally proven.

MORPH II developed by Robert Levinson [55] is another example of game-
independent learning system and also a problem solver. MORPH II is a direct
extension of MORPH - a Chess learning program mentioned in sect. 3.2.
MORPH II uses several CI learning techniques which include neural network-
like weights propagation and genetic algorithm-type pattern evolution. Ad-
ditionally, MORPH II implements symbolic learning. The system is capable
of autonomous abstraction of new features and patterns and development of
its own learning modules. Like its predecessor, MORPH II relies on shallow
search equal to only 2 plies on average. The system has successfully learnt to
play Chess on a novice level. Its strength against more demanding opponents
hasn’t been demonstrated.

All the above-mentioned general learning systems are potentially capable
of picking up any game within a certain class of games. They use CI techniques
combined with AI symbolic learning and multi-agent approach. They all rely
on shallow search, just 1 or 2 plies. All of them have demonstrated the ability
to efficiently learn how to play very simple games or more complicated ones,
but at a novice level only. Definitely this direction deserves further exploration
and the issue of how to design universal, game-independent learning systems
is one of the grand challenges for CI community in the area of intelligent game
playing.

Multitask Learning

The idea of designing game-independent learning systems can also be real-
ized within the multitask or incremental learning schemes. Multitask learning
utilizes simultaneous learning of a few tasks and sharing the representation
issues, experience and knowledge among all of them in order to make the over-
all learning process faster and more effective. Incremental, lifelong learning is
usually implemented as a sequential learning process, i.e. tasks are being learnt
one after another, but again representation of problems as well as knowledge
acquired in previous learning are widely shared and involved in subsequent
learning, consequently making the latter easier.



434 Jacek Mańdziuk

Several approaches to multitask and lifelong learning (not only within
game playing domain) has been developed in the last 10 years (e.g. [108, 107,
21, 64]), but there is still a strong demand for new concepts in this area. In case
of game playing one may think of using the experience gained in learning one
or more games in order to alleviate the effort of learning another, similar game.
This type of learning is typical for humans. For example, previous experience
in playing cards is one of the fundamental factors in efficient learning of a new
card game.

Generally speaking, in case of similar games some representation issues
and high level game rules are either common or very similar. Therefore, when
learning a new game there is no need to start from the very beginning. The
learning system may exploit already possessed knowledge - albeit usually its
appropriate tuning will be required.

4 Conclusions

Mind games provide cheap, replicable environments, perfectly suited for test-
ing new Computational Intelligence learning methods and search algorithms.
They also serve as an excellent framework for testing and validating various
implementations of human-type cognitive skills, e.g. intuitive behavior, cre-
ativity, knowledge discovery, or unguided, autonomous and context-sensitive
learning.

All the above skills are crucial in achieving the long-term goal of CI in
mind game playing research, which is the ability to mimic human methods of
learning, reasoning and decision making. Several challenging problems have
to be addressed on this path. Some of them are proposed and motivated in
this chapter.

One of the most interesting issues is implementation of mechanisms of
autonomous knowledge discovery that would lead to creation of new game
features and new playing strategies. In particular a very challenging task is
autonomous choice of board features that compose efficient (close to opti-
mal), descriptive game representation allowing adequate evaluation of board
positions. At the moment the development of a world-class playing program
requires that the set of features be predefined by human experts. Even though
there exist a few notable examples of learning how to play certain games with-
out human expertise, there is still a lot of work ahead.

Another fundamental issue is the ability to improve artificial player’s be-
havior through the learning process resting solely on the experience-based
knowledge acquired from previously played games. An interesting, open prob-
lem in this area is analysis of pros and cons of two main learning schemes
used so-far, i.e. playing against external opponents vs self-playing. In the for-
mer case, additional open problems concern the optimal choice of the training
opponents and the training schedule. Both types of learning were successfully



Computational Intelligence in Mind Games 435

applied to various board games especially with TD learning algorithms. Fur-
ther exploration of these two directions may ultimtely lead to the development
of a general purpose learning engine (system) capable of learning any board
mind game.

Another formidable challenge is implementation of intuition in the game-
playing systems or, more precisely, implementation of mechanisms that would
efficiently pretend human-type intuitive behavior. Such achievement would
straightforwardly lead to the efficacious search-free pre-selection of moves and
instantaneous estimation of position strength as well as the ability to play
strong positional moves relying on shallow search only. All three above men-
tioned skills are typical for experienced human players, but still generally
non-attainable for machines.

Yet another challenging issue concerns game independent learning, in par-
ticular incremental learning methods allowing for sequential or simultaneous
learning of a few games. Sequential incremental game learning may rely on
appropriate tuning of already possessed knowledge and generation of new fea-
tures only when necessary, i.e. when they are “sufficiently different” from al-
ready discovered ones. Simultaneous learning requires that representational
and computational issues be shared on-line among various learning tasks
(games) and each learning task benefits from this synergy.

Achieving the above challenging goals does not necessarily mean construc-
tion of an omnipotent, unbeatable program/machine capable to play “in God’s
way”. On the contrary, as humans make mistakes and are not infallible, also
the CI-based playing systems may possibly suffer from “human” weaknesses,
though to a much lesser extent.

In summary, CI-based methods focus on the way the game playing is-
sues are implemented and solved rather than on the quality of play, which is
regarded as relevant, yet subservient, supplementary goal. This distinguishes
CI-based game-learning systems from traditional AI-based approaches focused
mainly on maximization of the level of play. Consequently, in the near future
AI playing systems are with high probability hardly to be defeated by CI-
based ones.

The above conclusion, on the other hand, does not mean that application
of CI methods to mind game playing is not interesting or not advantageous.
On the contrary, I would argue that the mind game playing research will more
and more be tied with Computational Intelligence methods and its future will
be closely related to the development of psychologically motivated learning
processes attempting to follow higher-level human competencies.

Acknowledgement

The author is grateful for the support from the Warsaw University of Tech-
nology, grant no. 504G 1120 0008 000.



436 Jacek Mańdziuk

References

[1] I. Aleksander. Neural networks - evolutionary checkers. Nature,
402(6764):857, 1999.

[2] T. Anantharaman and M. Campbell. Singular extensions: Adding selec-
tivity to brute-force searching. Artificial Intelligence, 43:99–109, 1990.

[3] A. Arbiser. Towards the unification of intuitive and formal game con-
cepts with applications to computer chess. In Proceedings of the Digi-
tal Games Research Conference 2005 (DIGRA’2005), Vancouver, B.C.,
Canada, 2005.

[4] L. Barone and L. While. An adaptive learning model for simplified
poker using evolutionary algorithms. In Proceedings of the Congress of
Evolutionary Computation (GECCO-1999), pages 153–160, 1999.

[5] L. Barone and L. While. Adaptive learning for poker. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 566–573,
2000.

[6] J. Baxter, A. Tridgell, and L. Weaver. Experiments in parameter learn-
ing using temporal differences. ICCA Journal, 21(2):84–99, 1998.

[7] J. Baxter, A. Tridgell, and L. Weaver. Knightcap: A chess program that
learns by combining td(λ) with game-tree search. In Machine Learning,
Proceedings of the Fifteenth International Conference (ICML ’98), pages
28–36, Madison Wisconsin, July 1998.

[8] J. Baxter, A. Tridgell, and L. Weaver. Learning to play chess using
temporal differences. Machine Learning, 40(3):243–263, 2000.

[9] D. Beal. A generalised quiescence search algorithm. Artificial Intelli-
gence, 43:85–98, 1990.

[10] D. F. Beal and M. C. Smith. Learning piece values using temporal
differences. ICCA Journal, 20(3):147–151, 1997.

[11] H. Berliner. The B∗ tree search algorithm: A best-first proof procedure.
Artificial Intelligence, 12(1):23–40, 1979.

[12] D. Billings. Thoughts on RoShamBo. ICGA Journal, 23(1):3–8, 2000.
[13] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge of

poker. Artificial Intelligence, 134:201–240, 2002.
[14] B. Bouzy and T. Cazenave. Computer Go: an AI oriented survey. Ar-

tificial Intelligence, 132(1):39–103, 2001.
[15] D. Bump. GNU Go. http://www.gnu.org/software/gnugo/gnugo.html,

1999.
[16] M. Buro. Probcut: An effective selective extension of the alpha-beta

algorithm. ICCA Journal, 18(2):71–76, 1995.
[17] M. Buro. From simple features to sophisticated evaluation functions. In

H. J. van den Herik and H. Iida, editors, Proceedings of Computers and
Games Conference (CG98), volume 1558 of Lecture Notes in Computer
Science, pages 126–145, Springer, Berlin, 1999.

[18] M. Buro. Toward opening book learning. ICCA Journal, 22(2):98–102,
1999.



Computational Intelligence in Mind Games 437

[19] M. Buro. Improving heuristic mini-max search by supervised learning.
Artificial Intelligence, 134:85–99, 2002.

[20] M. Campbell, A. J. Hoane Jr., and F.-h. Hsu. Deep Blue. Artificial
Intelligence, 134:57–83, 2002.

[21] R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.
[22] K. Chellapilla and D. B. Fogel. Evolution, neural networks, games, and

intelligence. Proceedings of the IEEE, 87(9):1471–1496, 1999.
[23] K. Chellapilla and D. B. Fogel. Evolving neural networks to play check-

ers without relying on expert knowledge. IEEE Transactions on Neural
Networks, 10(6):1382–1391, 1999.

[24] K. Chellapilla and D. B. Fogel. Anaconda defeats Hoyle 6-0: A case
study competing an evolved checkers program against commercially
available software. In Congress on Evolutionary Computation, La Jolla,
CA, USA, pages 857–863, 2000.

[25] K. Chellapilla and D. B. Fogel. Evolving a neural network to play
checkers without human expertise. In N. Baba and L. C. Jain, editors,
Computational Intelligence in Games, volume 62, pages 39–56. Springer
Verlag, Berlin, 2001.

[26] P. Darwen and X. Yao. On evolving robust strategies for iterated pris-
oner’s dilemma. volume 956 of LNCS, pages 276–292. Springer, 1995.

[27] A. D. de Groot. Thought and Choice in Chess. Mouton Publishers, The
Hague, 1965.

[28] A. Einstein. Cosmic Religion, with Other Opinions and Aphorisms.
1931.

[29] M. Enzenberger. Evaluation in Go by a neural network using soft
segmentation. In Advances in Computer Games: Many Games, Many
Challenges: Proceedings of the International Conference on Advances in
Computer Games (ACG-10), pages 97–108, Graz, Austria, 2003.

[30] S. Epstein. Identifying the right reasons: Learning to filter decision
makers. In R. Greiner and D. Subramanian, editors, Proceedings of the
AAAI 1994 Fall Symposium on Relevance, pages 68–71, New Orleans,
1994. AAAI Press.

[31] S. L. Epstein, J. Gelfand, and J. Lesniak. Pattern-based learning and
spatially-oriented concept formation in a multi-agent, decision-making
expert. Computational Intelligence, 12(1):199–221, 1996.

[32] T. E. Fawcett and P. E. Utgoff. Automatic feature generation for prob-
lem solving systems. In D. Sleeman and P. Edwards, editors, Proceedings
of the 9th International Conference on Machine Learning, pages 144–
153. Morgan Kaufmann, 1992.

[33] D. B. Fogel. Blondie24: Playing at the Edge of Artificial Intelligence.
Morgan Kaufmann, 2001.

[34] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. A self-learning
evolutionary chess program. Proceedings of the IEEE, 92(12):1947–1954,
2004.



438 Jacek Mańdziuk

[35] J. Fürnkranz. Machine learning in computer chess: the next generation.
ICGA Journal, 19(3):147–161, 1996.

[36] M. Gherrity. A game-learning machine. PhD Thesis, University of
California, San Diego, CA, 1993.

[37] M. L. Ginsberg. GIB Library.
http://www.cirl.uoregon.edu/ginsberg/gibresearch.html.

[38] M. L. Ginsberg. GIB: Steps toward an expert-level bridge-playing pro-
gram. In International Joint Conference on Artificial Intelligence (IJ-
CAI’99), pages 584–589, Stockholm, SWEDEN, 1999.

[39] M. L. Ginsberg. GIB: Imperfect information in a computationally chal-
lenging game. Journal of Artificial Intelligence Research, 14:303–358,
2001.

[40] H. Givens. PokerProbot. http://www.pokerprobot.com/, 2006.
[41] D. Gomboc, T. A. Marsland, and M. Buro. Evaluation function tun-

ing via ordinal correlation. In Advances in Computer Games: Many
Games, Many Challenges: Proceedings of the International Conference
on Advances in Computer Games (ACG-10), pages 1–18, Graz, Austria,
2003.

[42] J. Gould and R. Levinson. Experience-based adaptive search. In
R. Michalski and G. Tecuci, editors, Machine Learning: A Multi-Strategy
Approach, pages 579–604. Morgan Kaufmann, 1994.

[43] K. Greer. Computer chess move-ordering schemes using move influence.
Artificial Intelligence, 120:235–250, 2000.

[44] E. A. Heinz. Adaptive null-move pruning. ICCA Journal, 22(3):123–
132, 1999.

[45] F.-h. Hsu. Behind Deep Blue. Princeton University Press, Princeton,
NJ, 2002.

[46] R. M. Hyatt. Crafty. ftp.cis.uab.edu/pub/hyatt, 2006.
[47] R. M. Hyatt, H. L. Nelson, and A. E. Gower. Cray Blitz. In T. A.

Marsland and J. Schaeffer, editors, Computers, Chess, and Cognition,
pages 111–130. Springer Verlag, New York, 1990.

[48] IBM Corporation. Deep Blue technology.
http://www.research.ibm.com/know/blue.html, 2006.

[49] L. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[50] G. Kendall and G. Whitwell. An evolutionary approach for the tuning of
a chess evaluation function using population dynamics. In Proceedings
of the 2001 Congress on Evolutionary Computation CEC2001, pages
995–1002. IEEE Press, 2001.

[51] D. Kopec and I. Bratko. The Bratko-Kopec experiment: A comparison
of human and computer performance in chess. In M. R. B. Clarke,
editor, Advances on Computer Chess 3, pages 57–72. Pergamon Press,
Oxford, 1982.

[52] C. Kotnik and J. K. Kalita. The significance of temporal-difference
learning in self-play training td-rummy versus evo-rummy. In T. Fawcett



Computational Intelligence in Mind Games 439

and N. Mishra, editors, Machine Learning, Proceedings of the Twenti-
eth International Conference (ICML 2003), pages 369–375, Washington,
DC, USA, August 2003. AAAI Press.

[53] H. Kuijf. Jack - computer bridge playing program.
http://www.jackbridge.com, 2006.

[54] M. Kusiak, K. Walȩdzik, and J. Mańdziuk. Evolution of heuristics for
give-away checkers. In W. Duch et al., editors, Artificial Neural Net-
works: Formal Models and Their Applications - Proc. ICANN 2005, Part
2, Warszawa, Poland, volume 3697 of LNCS, pages 981–987. Springer,
2005.

[55] R. Levinson. MORPH II: A universal agent: Progress report and pro-
posal. Technical Report UCSC-CRL-94-22, Jack Baskin School of En-
gineering, Department of Computer Science, University of California,
Santa Cruz, 1994.

[56] R. A. Levinson and R. Snyder. Adaptive pattern-oriented chess. In
L. Birnbaum and G. Collins, editors, Proceedings of the 8th International
Workshop on Machine Learning, pages 85–89. Morgan Kaufmann, 1991.

[57] A. Macleod. Perudo as a development platform for Artificial Intelligence.
In 13th Game-On International Conference (CGAIDE’04), pages 268–
272, Reading, UK, 2004.

[58] A. Macleod. Perudo game. http://www.playperudo.com/, 2006.
[59] J. Mańdziuk. Incremental learning approach for board game playing

agents. In Proceedings of the 2000 International Conference on Artificial
Intelligence (IC-AI2000), volume 2, pages 705–711, Las Vegas, USA,
2000.

[60] J. Mańdziuk. Incremental training in game playing domain. In Pro-
ceedings of the International ICSC Congress on Intelligent Systems &
Applications (ISA2000), volume 2, pages 18–23, Wollongong, Australia,
2000.

[61] J. Mańdziuk, M. Kusiak, and K. Walȩdzik. Evolutionary-based heuristic
generators for checkers and give-away checkers. Expert Systems, 2007,
(accepted).

[62] J. Mańdziuk and K. Mossakowski. Looking inside neural networks
trained to solve double-dummy bridge problems. In 5th Game-On Inter-
national Conference on Computer Games: Artificial Intelligence, Design
and Education (CGAIDE04), pages 182–186, Reading, UK, 2004.

[63] J. Mańdziuk and D. Osman. Temporal difference approach to playing
give-away checkers. In L. Rutkowski et al., editors, 7th Int. Conf. on
Art. Intell. and Soft Comp. (ICAISC 2004), Zakopane, Poland, volume
3070 of LNAI, pages 909–914. Springer, 2004.

[64] J. Mańdziuk and L. Shastri. Incremental Class Learning approach and
its application to handwritten digit recognition. Information Sciences,
141(3–4):193–217, 2002.

[65] D. McAllester. Conspiracy numbers for min-max search. Artificial In-
telligence, 35:287–310, 1988.



440 Jacek Mańdziuk

[66] J. McCarthy. Homepage of John McCarthy.
http://www-formal.stanford.edu/jmc/reti.html, 1998.

[67] M. L. Minsky. Steps towards artificial intelligence. In Proceedings of
IRE, volume 49, pages 8–30, 1961.

[68] T. M. Mitchell and S. Thrun. Explanation based learning: A comparison
of symbolic and neural network approaches. In P. E. Utgoff, editor,
Proceedings of the 10th International Conference on Machine Learning,
pages 197–204, San Mateo, CA, 1993. Morgan Kaufmann.

[69] D. E. Moriarty and R. Miikkulainen. Discovering complex othello strate-
gies through evolutionary neural systems. Connection Science, 7(3):195–
209, 1995.

[70] K. Mossakowski and J. Mańdziuk. Artificial neural networks for solving
double dummy bridge problems. Lecture Notes in Artificial Intelligence,
3070:915–921, 2004.

[71] K. Mossakowski and J. Mańdziuk. Neural networks and the estimation
of hands’ strength in contract bridge. In L. Rutkowski et al., editors, 8th
International Conference on Artificial Intelligence and Soft Computing
(ICAISC06), Lecture Notes in Artificial Intelligence, pages 1189–1198,
Zakopane, POLAND, 2006.

[72] M. Müller. Computer Go as a sum of local games: An application
of combinatorial game theory. PhD Thesis, ETH Zürich, Switzerland,
1995.

[73] M. Müller. Computer Go. Artificial Intelligence, 134:145–179, 2002.
[74] A. Newell, J. C. Shaw, and H. A. Simon. Chess-playing programs and

the problem of complexity. IBM Journal of Research and Development,
2(4):320–335, 1958.

[75] D. Osman and J. Mańdziuk. Comparison of tdleaf(λ) and td(λ) learning
in game playing domain. In N. R. Pal et al., editors, 11th Int. Conf.
on Neural Inf. Proc. (ICONIP 2004), Calcutta, India, volume 3316 of
LNCS, pages 549–554. Springer, 2004.

[76] A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin. Best-first fixed-depth
minimax algorithms. Artificial Intelligence, 87(1–2):255–293, 1996.

[77] A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin. Exploiting graph
properties of game trees. In 13th National Conference on Artificial In-
telligence (AAAI-96), volume 1, pages 234–239, Menlo Park, CA, 1996.

[78] E. A. Poe. Maelzel’s chess player. Southern Literary Messenger, (April),
1936.

[79] J. B. Pollack, A. D. Blair, and M. Land. Coevolution of a backgammon
player. In C. G. Langton and K. Shimokara, editors, Proceedings of the
Fifth Artificial Life Conference, pages 92–98. MIT Press, 1997.

[80] A. Reinefeld. An improvement to the scout tree-search algorithm. ICCA
Journal, 6(4):4–14, 1983.

[81] T. P. Runarsson and S. M. Lucas. Coevolution versus self-play temporal
difference learning for acquiring position evaluation on small-board Go.
IEEE Transactions on Evolutionary Computation, 9(6):628–640, 2005.



Computational Intelligence in Mind Games 441

[82] A. L. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, 3(3):210–229,
1959.

[83] J. Schaeffer. The history heuristic and alpha-beta search enhancements
in practice. IEEE PAMI, 11(11):1203–1212, 1989.

[84] J. Schaeffer. One Jump Ahead: Challenging Human Supremacy in
Checkers. New York: Springer-Verlag, 1997.

[85] J. Schaeffer. Chinook. http://www.cs.ualberta.ca/˜ chinook/, 2006.
[86] J. Schaeffer. Poki-X. http://www.cs.ualberta.ca/˜ games/poker/, 2006.
[87] J. Schaeffer, J. C. Culberson, N. Treloar, B. Knight, P. Lu, and

D. Szafron. A world championship caliber checkers program. Artifi-
cial Intelligence, 53(2-3):273–289, 1992.

[88] J. Schaeffer, M. Hlynka, and V. Jussila. Temporal difference learn-
ing applied to a high-performance game-playing program. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 529–
534, 2001.

[89] J. Schaeffer, R. Lake, P. Lu, and M. Bryant. Chinook: The world man-
machine checkers champion. AI Magazine, 17(1):21–29, 1996.

[90] N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Temporal difference
learning of position evaluation in the game of go. In J. D. Cowan,
G. Tesauro, and J. Alspector, editors, Advances in Neural Information
Processing 6, pages 817–824. Morgan Kaufmann, San Francisco, 1994.

[91] N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Learning to evaluate
go positions via temporal difference methods. In N. Baba and L. C. Jain,
editors, Computational Intelligence in Games, volume 62, pages 77–98.
Springer Verlag, Berlin, 2001.

[92] Y. G. Seo, S. B. Cho, and X. Yao. Exploiting coalition in co-evolutionary
learning. In Proceedings of the 2000 Congress on Evolutionary Compu-
tation, volume 2, pages 1268–1275. IEEE Press, 2000.

[93] C. E. Shannon. Programming a computer for playing chess. Philosoph-
ical Magazine, 41 (7th series)(314):256–275, 1950.

[94] B. Sheppard. World-championship-caliber scrabble. Artificial Intelli-
gence, 134:241–275, 2002.

[95] H. Simon. Making managenet decisions: The role of intuition and emo-
tion. In Weston Agor, editor, Intuition in Organizations, pages 23–39.
Sage Pubs., London, 1987.

[96] D. Sklansky. Hold’Em Poker. Two Plus Two Publishing, Nevada, USA,
1996.

[97] D. Sklansky and M. Malmuth. Hold’Em Poker for Advanced Players,
21st Century Edition. Two Plus Two Publishing, Nevada, USA, 2001.

[98] B. Stilman. Liguistic Geometry. From search to construction. Kluwer
Academic Publishers, Boston, Dordrecht, London, 2000.

[99] G. Stockman. A minimax algorithm better than alfa-beta? Artificial
Intelligence, 12(2):179–196, 1979.



442 Jacek Mańdziuk

[100] R. Sutton. Learning to predict by the method of temporal differences.
Machine Learning, 3:9–44, 1988.

[101] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[102] G. Tesauro. Neurogammon wins computer olympiad. Neural Computa-
tion, 1:321–323, 1989.

[103] G. Tesauro. Practical issues in Temporal Difference Learning. Machine
Learning, 8:257–277, 1992.

[104] G. Tesauro. TD-Gammon, a self-teaching backgammon program,
achieves master-level play. Neural Computation, 6(2):215–219, 1994.

[105] G. Tesauro. Temporal Difference Learning and TD-Gammon. Commu-
nications of the ACM, 38(3):58–68, March 1995.

[106] S. Thrun. Learning to play the game of chess. In G. Tesauro, D. Touret-
zky, and T. Leen, editors, Advances in Neural Information Processing
Systems 7, pages 1069–1076. The MIT Press, Cambridge, MA, 1995.

[107] S. Thrun. Explanation-Based Neural Network Learning: A Lifelong
Learning Approach. Kluwer Academic Publishers, Boston, MA, 1996.

[108] S. Thrun and T. M. Mitchell. Learning one more thing. Technical
report, Carnegie Mellon University, USA, CMU-CS-94-184, 1994.

[109] W. Tunstall-Pedoe. Genetic algorithms optimizing evaluation functions.
ICCA Journal, 14(3):119–128, 1991.

[110] A. M. Turing. Digital computers applied to games. In B. V. Bowden,
editor, Faster than thought: a symposium on digital computing machines,
chapter 25. Pitman, London, UK, 1953.

[111] P. E. Utgoff. Feature construction for game playing. In J. Fürnkranz and
M. Kubat, editors, Machines that Learn to Play Games, pages 131–152.
Nova Science Publishers, Huntington, NY, 2001.

[112] A. van Tiggelen. Neural networks as a guide to opitimization. The chess
middle game explored. ICCA Journal, 14(3):115–118, 1991.

[113] T. Yoshioka, S. Ishii, and M. Ito. Strategy acquisition for the game
“othello” based on reinforcement learning. IEICE Transactions on In-
formation and Systems, E82-D(12):1618–1626, 1999.

[114] A. Zorbist. Feature extractions and representation for pattern recogni-
tion and the game of go. PhD Thesis, University of Wisconsin, 1970.




