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Summary. Clustering is commonly regarded as a synonym of unsupervised learn-
ing aimed at the discovery of structure in highly dimensional data. With the evident
plethora of existing algorithms, the area offers an outstanding diversity of possible
approaches along with their underlying features and potential applications. With
the inclusion of fuzzy sets, fuzzy clustering became an integral component of Com-
putational Intelligence (CI) and is now broadly exploited in fuzzy modeling, fuzzy
control, pattern recognition, and exploratory data analysis. A lot of pursuits of CI are
human-centric in the sense they are either initiated or driven by some domain knowl-
edge or the results generated by the CI constructs are made easily interpretable. In
this sense, to follow the tendency of human-centricity so profoundly visible in the
CI domain, the very concept of fuzzy clustering needs to be carefully revisited. We
propose a certain paradigm shift that brings us to the idea of knowledge-based clus-
tering in which the development of information granules – fuzzy sets is governed by
the use of data as well as domain knowledge supplied through an interaction with
the developers, users and experts. In this study, we elaborate on the concepts and
algorithms of knowledge-based clustering by considering the well known scheme of
Fuzzy C-Means (FCM) and viewing it as an operational model using which a num-
ber of essential developments could be easily explained. The fundamental concepts
discussed here involve clustering with domain knowledge articulated through partial
supervision and proximity-based knowledge hints. Furthermore we exploit the con-
cepts of collaborative as well as consensus driven clustering. Interesting and useful
linkages between information granularity and privacy and security of data are also
discussed.

1 Introductory Comments

The human-centric facet of Computational Intelligence (CI) becomes pro-
foundly visible in a significant number of developments. One could mention
here system modeling, pattern recognition, and decision-making. In data
analysis tasks completed in the setting of the CI, the phenomenon of human-
centricity manifests quite vividly in several ways and the needs there are well
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articulated. First, the results are presented at some suitable level of abstrac-
tion secured by the use of information granules. Likewise the semantics of the
information granules that are used to organize findings about data is conveyed
in the language of fuzzy sets whose interpretation is quite intuitive. In this
sense, we envision that the available mechanisms of presentation of results to
the end-user are quite effective. Second, the communication with the human
at the entry point when the data sets become analyzed is not that well devel-
oped. Domain knowledge available there is crucial to the build up of models
(say, fuzzy models) and the establishment of their transparency and read-
ability. It is worth stressing that the transparency and accuracy are the two
dominant requirements of fuzzy models we are interested in satisfying to the
highest possible extent.

The effective two-way communication is a key to the success of CI
constructs, especially if we are concerned with the ways how all comput-
ing becomes navigated. For instance, the mechanisms of relevance feedback
that become more visible in various interactive systems hinge upon the well-
established and effective human-centric schemes of processing in which we
effectively accept user hints and directives and release results in a highly
comprehensible format.

Given the existing algorithms of clustering that are pivotal to the design
of information granules (and as such playing an important role in the CI con-
structs), we become cognizant that the principles guiding processing realized
by them need to be augmented. The main quest is to assure that the fuzzy
clustering operates not only on data (its data-driven optimization underpin-
nings are well known) but takes full advantage of various sources of knowledge
available when dealing with the problem at hand. In particular, we anticipate
that any guidance available from the user could be incorporated as a part
of the optimization environment. This point of view as to the unified treat-
ment of data and knowledge in clustering augments the existing principle of
data analysis and gives rise to the concept of knowledge-based clustering. The
ultimate objective of this study is to introduce and explore various scenarios
where knowledge could be seamlessly included into the algorithmic architec-
ture of fuzzy clustering. We discuss several fundamental concepts such as
clustering with partial supervision and proximity knowledge hints, collabora-
tive clustering and a consensus mode of clustering.

The organization of the material reflects the main concepts discussed in
the study. For the sake of completeness, in Section 3, we study with a brief
note on the FCM algorithm by highlighting the main features that make its
role visible in the CI domain. Section 3 is devoted to the formulation of the
main challenges and spells out a number of open questions. In Section 4, we
cover the mechanisms of human-oriented guidance such as partial supervision
and proximity-based clustering. Distributed data mining in the unsupervised
mode is discussed in Section 5. Collaborative fuzzy clustering is presented in
Section 6 where we formulate the problem, discuss privacy aspects linked with
information granularity, and present the underlying principles. The vertical
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mode of collaboration is presented along with the detailed design phases
(Section 7). Further we elaborate on consensus based clustering. Concluding
comments are covered in Section 9.

2 Fuzzy C-Means (FCM) as an Example of the CI
Algorithm of Data Analysis

To make a consistent exposure of the overall material and assure linkages
with the ensuing optimization developments, we confine ourselves to one of
the objective function based fuzzy clustering. More specifically, we consider a
Fuzzy C-Means (FCM) [4] governed by the following objective function

Q =
c∑

i=1

N∑
k=1

um
ik‖xk − vi‖2 (1)

where xk denotes an multidimensional data point (pattern), vi is an i-th pro-
totype and U = [uik], i = 1, 2, . . . , c; k = 1, 2,. . . ,N is a partition matrix.
‖.‖ denotes a certain distance function and “m” stands for a fuzzification
coefficient; m > 1.0. The minimization of (1) is realized with respect to the
partition matrix and the prototypes. The optimization scheme and all specific
features of the minimization of Q are well reported in the literature, refer
for instance to [1, 20]. What is of interest to us here is an observation that
fuzzy clustering is inherently associated with the granularity of information.
In a nutshell fuzzy clustering leads to the abstraction of data into a format of
information granules. Two essential and somewhat orthogonal dimensions of
the granulation process are envisioned: (a) numeric realization of the granula-
tion through a collection of the prototypes, and (b) a collection of information
granules – fuzzy sets represented by successive rows of the partition matrix.
Interestingly enough, there is a direct correspondence between these two rep-
resentations. Given a collection of prototypes we can determine the entries
of the partition matrix. And vice versa, a given partition matrix along with
the data gives rise to the prototypes. The interpretability of the results of
the FCM is its significant and highly valuable feature of the algorithm. As a
collection of fuzzy sets (described by the corresponding rows of the generated
partition matrix) offer a holistic view at the structure of data, this feature
of the FCM emphasizes its linkages with the main thrusts of Computational
Intelligence.

3 Challenges and Open Issues

Indisputably, fuzzy clustering (including FCM) is one of the well-established
conceptual and algorithmic avenues that has become an integral, highly visible
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construct present in numerous modeling pursuits encountered in fuzzy sys-
tems, neurofuzzy systems, and Computational Intelligence, in general. Given
all of those, arises an obvious question as to the further developments that
could support some open issues and anticipated or already existing challenges.
They could eventually contribute to the changes of the landscape of this area
in the years to come.

While any projection in the rapidly developing areas could be quire risky,
there are several challenges which could be quite visible and influential in the
buildup and progression of the area in the future.

Knowledge-based orientation of fuzzy clustering. A heavy and visible
reliance on numeric data is an evident feature of fuzzy clustering as it could be
seen today. There are, however, other important factors one has to take into
account when discovering the structure in data. Various sources of knowledge
are available from experts, data analysts, users and they come in various for-
mats. The fundamental challenge concerns efficient ways of their incorporation
into the clustering schemes, both as a concept and the algorithmic enhance-
ment. This is not a straightforward task given the fact that clustering has to
reconcile numeric aspects (data) and knowledge component (human factors).
In essence, the knowledge-based orientation of clustering is in line of human-
centricity of Computational Intelligence and the development of interaction
schemes.

Distributed character of processing This challenge has emerged
because of the inherently distributed nature of data. Those tend to be
distributed at individual locations (say, sensor networks) and this poses an
interesting quest as to the distributed clustering. The centralized mode that
is predominant today in fuzzy clustering requires a careful revision. The clus-
tering techniques available nowadays that predominantly revolve around a
single, huge and centrally available dataset do require a careful re-visiting
and reformulation.

Communication, collaboration and consensus building All of those
aspects are associated in one way or another with the distributed nature of
data sets. Given the distributed character of data, it is also very likely that
they cannot be shared because of the privacy and security restrictions. On
the other hand, some collaboration and interaction would be highly desirable
given the fact that the structure in some datasets could be quite similar and
sharing the knowledge about the discovery of clusters within one dataset with
other sites could be beneficial. How to facilitate collaboration and consensus
building in data analysis while respecting security requirements becomes an
evident challenge.

Each of these challenges comes with a suite of their own quite specific
problems that do require a very careful attention both at the conceptual as
well as algorithmic level. We have highlighted the list of challenges and in
the remainder of this study present some of the possible formulations of the
associated problems and look at their solutions. It is needless to say that our
proposal points at some direction that deems to be of relevance however does
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not pretend to offer a complete solution to the problem. Some algorithmic pur-
suits are also presented as an illustration of some possibilities emerging there.

4 Data and Knowledge in Clustering: Forming
a Human-Centric Perspective of Computational
Intelligence in Data Analysis

In fuzzy clustering, we are ultimately faced with the problem of optimization
driven by data. This clearly emphasizes the role of data in the processes of
revealing the structure. While this is the evident and dominant tendency, a
shift of this data-oriented paradigm is contemplated in light of the fact that
not only the data are essential but any domain knowledge available from users,
designers has to play a pivotal role. Considering such domain knowledge as
an important and indispensable component of data analysis, it becomes clear
that it cast data analysis in some human-centric perspective. To be more
descriptive, we may refer to pursuits carried out in this way as a knowledge-
based clustering. There are two fundamental issues that need to be addressed
in the setting of the knowledge-based clustering: (a) what type of knowledge-
based hints could be envisioned, and (b) how they could be incorporated as a
part of the optimization (more specifically, what needs to be done with regard
to the possible augmentation of the objective function and how the ensuing
optimization scheme has to be augmented to efficiently cope with the modified
objective function).

5 Fuzzy Clustering and Mechanisms of Human-Oriented
Guidance

In this section, we highlight several commonly encountered alternatives that
emerge when dealing with domain knowledge and building formal mechanisms
which reformulate the underlying objective function. We focus on two formats
of domain knowledge being available in this setting that is labeling of some
selected data points and assessments of proximity of some pairs of data.

5.1 Mechanisms of Partial Supervision

The effect of partial supervision involves a subset of labeled data, which come
with their class membership. These knowledge-based hints have to be included
into the objective function and reflect that some patterns have been labeled.
In the optimization, we expect that the structure to be discovered conforms
to the membership grades already provided for these selected patterns. More
descriptively, we can treat the labeled patterns to form a grid of “anchor”
points using which we attempt to discover the entire structure in the data set.



322 Witold Pedrycz

Put it differently, such labeled data should help us navigate a process of
revealing the structure. The generic objective function shown in the form (1)
has to be revisited and expanded so that the structural information (labeled
data points) is taken into consideration. While there could be different alter-
natives possible with this regard, we consider the following additive expansion
of the objective function, [20, 21, 22]

Q =
c∑

i=1

N∑
k=1

u2
ik‖xk − vi‖2 + α

c∑
i=1

N∑
k=1

(uik − fikbk)2‖xk − vi‖2 (2)

The first term is aimed at the discovery of the structure in data and
is the same as in the standard FCM. The second term (weighted by some
positive scaling factor α) addresses the effect of partial supervision. It requires
careful attention because of the way in which it has been introduced into the
objective function and the role it plays during its optimization. There are
two essential data structures containing information about the initial labeling
process (labeled data points)

– the vector of labels, denoted by b = [b1b2 . . . bN]T. Each pattern xk comes
with a Boolean indicator: we assign bk equal to1 if the pattern has been
already labeled and bk = 0 otherwise.

– The partition matrix F = [fik], i = 1, 2, . . . , c; k = 1, 2, . . .N which contains
membership grades assigned to the selected patterns (already identified
by the nonzero values of b). If bk = 1 then the corresponding column
shows the provided membership grades. If bk = 0 then the entries of the
corresponding k-th column of F do not matter; technically we could set
them up to zero.

The nonnegative weight factor (α) helps set up a suitable balance between
the supervised and unsupervised mode of learning. Apparently when α = 0
then we end up with the standard FCM. Likewise if there are no labeled
patterns (b = 0) then the objective function reads as

Q = (1 + α)
c∑

i=1

N∑
k=1

u2
ikd2

ik (3)

and becomes nothing but a scaled version of the standard objective function
encountered in the FCM optimization process. If the values of α increase signi-
ficantly, we start discounting any structural aspect of optimization (where
properly developed clusters tend to minimize) and rely primarily on the
information contained in the labels of the patterns. Subsequently, any depar-
ture from the required membership values in F would lead to the significant
increase in the values of the objective function.

One could consider a slightly modified version of the objective function

Q =
c∑

i=1

N∑
k=1

u2
ikd2

ik + α
c∑

i=1

N∑
k=1

(uik − fik)2bk d2
ik (4)
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where the labeling vector b shows up in a slightly different format. In essence,
this function captures the essence of partial supervision. For some slight vari-
ations on the issue of partial supervision, the reader may refer to the work by
[3, 1, 15, 17, 28].

Once the objective function (2) has been optimized, the resulting entries
of the partition matrix U assume the form

uik =
1

1 + α

⎡
⎢⎢⎢⎣

1 + α
(

1− bk

c∑
i=1

fik

)
c∑

j=1

(
dik

djk

)2 + αfikbk

⎤
⎥⎥⎥⎦ (5)

For α = 0, the formula returns the result produced by the “standard”
FCM. Moving on to the computations of the prototypes, the necessary con-
dition for the minimum of Q with respect to the prototypes comes in the

form
∂Q
∂vst

= 0, s = 1, 2, .., c; t = 1, 2, . . . ,n. Calculating the respective partial

derivatives one obtains

∂Q
∂vst

=
∂

∂vst

⎡
⎣ c∑

i=1

N∑
k=1

u2
ik

n∑
j=1

(xkj − vij)2

+ α
c∑

i=1

N∑
k=1

(uik − fikbk)2
n∑

j=1

(xkj − vij)2 (6)

=
∂

∂vst

⎡
⎣ c∑

i=1

N∑
k=1

[
u2

ik + (uik − fikbk)2
] n∑

j=1

(xkj − vij)2

⎤
⎦

Let us introduce the following shorthand notation

Ψik = u2
ik + (uik − fikbk)2 (7)

This leads to the optimality condition of the form

∂Q
∂vst

= 2
N∑

k=1

Ψsk(xkt − vst) = 0 (8)

and finally we derive the prototypes in the following form

vs =

N∑
k=1

Ψskxk

N∑
k=1

Ψsk

(9)
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5.2 Clustering with Proximity Hints

The concept of proximity is one of the fundamental notions when assessing
the mutual dependency between membership occurring two patterns. Consider
two patterns with their corresponding columns in the partition matrix denoted
by “k” and “l”, that is uk and ul, respectively. The proximity between them,
Prox(uk,ul), is defined in the following form [23, 25]

Prox(uk,ul) =
c∑

i=1

min(uik,uil) (10)

Note that the proximity function is symmetric and returns 1 for the same
pattern (k = 1); however this relationship is not transitive. In virtue of the
properties of any partition matrix we immediately obtain

Prox(uk,u1) =
c∑

i=1

min(uik,uil) = Prox(u1,uk) (11)

Prox(uk,uk) =
c∑

i=1

min(uik,uik) = 1

Let us illustrate the concept of proximity for c = 2. In this case u1k =
1 − u2k so that we can confine ourselves to a single argument. The resulting
plot (with the first coordinates of the patterns, u1k and u1l) is included in
Figure 1.

The incorporation of the proximity-based knowledge hints leads to the
two optimization processes. The first one is the same as captured by the
original objective function. In the second one we reconcile the proximity hints

Fig. 1. Proximity function as a function of membership grades encountered in the
partition matrix
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with the proximity values induced by the partition matrix generated by the
generic FCM. Denote the proximity values delivered by the user as Prox[k1, k2]
where k1 and k2 are the indexes of the data points for which the proximity
value is provided. Obviously these hints are given for some pairs of data so
to emphasize that we introduce a Boolean predicate B[k1, k2] defined in the
following manner

B[k1, k2] =

⎧⎨
⎩

1, if the value of Prox[k1, k2] has
been specified for the pair (k1, k2)

0, otherwise
(12)

Note that for any pair of data, the corresponding induced level of proximity
that is associated with the partition matrix produced by the FCM is computed
as given by (10). We request that the proximity knowledge-based hints offered
by the designer coincide with the induced proximity values implied by the
structure revealed by the FCM on the basis of numeric data. Computationally,
we express this requirement by computing the expression (which is a sum of
distances between the corresponding values of the proximity values)

∑
k1

∑
k2

‖Prox[k1, k2]−
c∑

i=1

min(uik1 ,uik2)‖2B[k1, k2] (13)

By making changes to the entries of the partition matrix U, we mini-
mize the value of the expression given above thus arriving at some agreement
between the data and the domain knowledge. The optimization activities are
then organized into two processes exchanging results as outlined in Figure 2.
There are two optimization activities. The first one, being driven by data

induced
proximity(U)

U

knowledge

Data-driven
optimization

Knowledge-driven
optimization

Data

FCM Proximity
optimization

Fig. 2. The optimization data – and knowledge-driven processes of proximity-based
fuzzy clustering
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produces some partition matrix. The values of this matrix are communicated
to the second optimization process driven by the proximity-based knowledge
hints. At this stage, the proximity values induced by the partition matrix are
compared with the proximities coming as knowledge hints and (13) is mini-
mized giving rise to the new values of the partition matrix U which in turn
is communicated to the data driven optimization phase. At this point, this
“revised” partition matrix is used to further minimize the objective function
following the iterative scheme of the FCM.

6 Distributed Data Mining

Quite commonly we encounter situations where databases are distributed
rather than centralized [10, 19, 29]. There are different outlets of the same
company and each of them operates independently and collects data about
customers populating their independent databases. The data are not available
to others. In banking, each branch may run its own database and such data-
bases could be geographically remote from each other. In health institutions,
there could be separate datasets with a very limited communication between
the individual institutions. In sensor networks (which become quite popular
given the nature of various initiatives such as intelligent houses, information
highway, etc.), we encounter local databases that operate independently from
each other and are inherently distributed. They are also subject to numerous
technical constraints (e.g., a fairly limited communication bandwidth, limited
power supply, etc) which significantly reduce possible interaction between the
datasets. Under these circumstances, the “standard” data mining activities
are faced now new challenges that need to be addressed. It becomes apparent
that processing all data in a centralized manner cannot be exercised. On the
other hand, data mining of each of the individual databases could benefit from
availability of findings coming from others. The technical constraints and pri-
vacy issues dictate a certain level of interaction. There are two general modes
of interaction that is collaborative clustering and consensus clustering both of
which are aimed at the data mining realized in the distributed environment.
The main difference lies in the level of interaction. The collaborative cluster-
ing is positioned at the more active side where the structures are revealed in
a more collective manner through some ongoing interaction. The consensus
driven clustering is focused on the reconciliation of the findings while there is
no active involvement at the stage of constructing clusters.

7 Collaborative Clustering

Given the distributed character of data residing at separate databases, we
are ultimately faced with the need for some collaborative activities of data
mining. With the distributed character of available data come various issues of
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privacy, security, limited communication capabilities that have to be carefully
investigated. We show that the notion of information granularity that is at
heart of fuzzy sets plays a pivotal role in this setting.

7.1 Privacy and Security of Computing Versus Levels
of Information Granularity

While the direct access to the numeric data is not allowed because of the
privacy constraints [2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 30, 32, 33] all
possible interaction could be realized through some interaction occurring at
the higher level of abstraction delivered by information granules. In objective
function based fuzzy clustering, there are two important facets of information
granulation conveyed by (a) partition matrices and (b) prototypes. Partition
matrices are, in essence, a collection of fuzzy sets which reflect the nature
of the data. They do not reveal detailed numeric information. In this sense,
there is no breach of privacy and partition matrices could be communicated
not revealing details about individual data points. Likewise prototypes are
reflective of the structure of data and form a summarization of data. Given
a prototype, detailed numeric data are hidden behind them and cannot be
reconstructed back to the original form of the individual data points. In either
case, no numeric data are directly made available.

The level of information granularity [34] is linked with the level of detail
and in this sense when changing the level of granularity possible leakage of pri-
vacy could occur. For instance, in limit when the number of clusters becomes
equal to the number of data points, each prototype is just the data point
and not privacy is retained. Obviously, this scenario is quite unrealistic as the
structure (the number of clusters) is kept quite condensed when contrasted
with all data. The schematic view of privacy offered through information gran-
ulation resulting within the process of clustering is illustrated in Figure 3. We
note here that the granular constructs (either prototypes or partition matri-
ces) build some granular interfaces.

Numeric data

Granular interface

Fig. 3. Granular interface offering secure communication and formed by the results
of the fuzzy clustering (partition matrices and prototypes)



328 Witold Pedrycz

7.2 The Underlying Principle of Collaborative Clustering

When dealing with distributed databases we are often interested in a collabo-
rative style of discovery of relationships [24, 25] that could be common to all
of the databases. There are a lot of scenarios where such collaborative pur-
suits could be deemed highly beneficial. We could envision a situation where
the databases are located in quite remote locations and given some privacy
requirements as well as possible technical constraints we are not allowed to
collect (transfer) all data into a single location and run any centralized algo-
rithm of data mining, say clustering. On the other hand, at the level of each
database each administrator/analyst involved in its collection, maintenance
and other activities could easily appreciate the need for some joint activi-
ties of data mining. Schematically, we can envision the overall situation as
schematically visualized in Figure 4.

While the collaboration can assume a variety of detailed schemes, the two
of them are the most essential. We refer to them as horizontal and verti-
cal modes of collaboration or briefly horizontal and vertical clustering. More
descriptively, given are “P” data sets X[1], X[2], .. X[p] where X[ii] stands for
the ii-th dataset (we adhere to the consistent notation of using square brack-
ets to identify a certain data set) in horizontal clustering we have the same
objects that are described in different feature spaces. In other words, these
could be the same collection of patients coming with their records built within
each medical institution. The schematic illustration of this mode of cluster-
ing portrayed in Figure 4 underlines the fact that any possible collaboration
occurs at the structural level viz. through the information granules (clusters)
built over the data; the clusters are shown in the form of auxiliary interface
layer surrounding the data. The net of directed links shows how the collabora-
tion between different data sets takes place. The width of the links emphasizes
the fact that an intensity of collaboration could be different depending upon

X[ii]

X[jj]

X[kk]

Fig. 4. A scheme of collaborative clustering involving several datasets and interact-
ing at the level of granular interfaces
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DATA SETS

CLUSTERING

Fig. 5. A general scheme of horizontal clustering; all communication is realized
through some granular interface

DATA SETS CLUSTERING

Fig. 6. A general scheme of vertical clustering; note a “stack” of data sets commu-
nicating through some layer of granular communication

the dataset being involved and the intension of the collaboration say, a will-
ingness of some organization to accept findings from external sources).

The mode of vertical clustering, Figure 6, is complementary to the one
already presented. Here the data sets are described in the same feature space
but deal with different patterns. In other words, we consider that X[1], X[2],
. . . , X[P] are defined in the same feature space while each of them consists of
different patterns, dim(X[1]) = dim(X[2]) = . . . dim(X[P]) while X[ii] X[jj].
We can show the data sets as being stack on each other (hence the name of
this clustering mode).

Collaboration happens through some mechanisms of interaction. While the
algorithmic details are presented in the subsequent section, it is instructive to
underline the nature of the possible collaboration.
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• in horizontal clustering we deal with the same patterns and different fea-
ture spaces. The communication platform one can establish is through the
partition matrix. As we have the same objects, this type of collaboration
makes sense. The confidentiality of data has not been breached: we do
not operate on individual patterns but the resulting information granules
(fuzzy relations, that is partition matrices). As this number is far lower
than the number of data, the low granularity of these constructs moves us
quite far from the original data

• in vertical clustering we are concerned with different patterns but the
same feature space. Hence the communication at the level of the proto-
types (which are high level representatives of the data) becomes feasible.
Again, because of the aggregate nature of the prototypes, the confidential-
ity requirement has been satisfied.

There are also a number of hybrid models of collaboration where we
encounter data sets with possible links of vertical and horizontal collaboration.
The collaborative clustering exhibits two important features:

• The databases are distributed and there is no sharing of their content in
terms of the individual records. This restriction is caused by some privacy
and security concerns. The communication between the databases can be
realized at the higher level of abstraction (which prevents us from any
sharing of the detailed numeric data).

• Given the existing communication mechanisms, the clustering realized for
the individual datasets takes into account the results about the structures
of other datasets and actively engages them in the determination of the
clusters; hence the term of collaborative clustering.

Depending upon the nature of the data located at each database and their
mutual characteristics, we distinguish between two main fundamental modes
of clustering such as horizontal and vertical clustering.

8 The Vertical Mode of Collaboration – The Main Flow
of Processing

Let us start with setting up all necessary notation which will be subsequently
used in the main phases of the development scheme. Let consider “P” data-
bases X1, X2, . . .,XP whose elements (data points, patterns) are defined in
the same feature space however each of these datasets consists of different
data. Schematically, we can portray it in Figure 6. Given the privacy con-
cerns, it becomes evident that sharing the data becomes impossible however
as all data points are defined in the same space, communicating at the level
of the prototypes becomes feasible. By noting that, we follow the same nota-
tion as included in Figure 6. The collections of the prototypes formed at the
individual datasets are denoted by v1[ii], v2[ii], . . . , vc[ii] (the index in the
square brackets pertains to the ii-th dataset).
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The mode of vertical clustering, refer to Figure 6, is complementary to the
one already presented. Here the data sets are described in the same feature
space but deal with different patterns (data points). In other words, we con-
sider that X[1], X[2], . . . , X[P] are defined in the same feature space while each
of them consists of different patterns, dim(X[1]) = dim(X[2]) = . . . dim(X[P])
while X[ii] X[jj]. We can show the data sets as being stack on each other (hence
the name of this clustering mode).

In the discussion, we make a fundamental assumption about the same
number of clusters. Whether this assumption is realistic or not, it still deserves
more discussion. Later on we show how to relax this constraint and how this
could be handled in an efficient manner.

8.1 The Development of Collaboration

The collaboration in the clustering process deserves a careful treatment. We
do not know in advance if the structures emerging (or being discovered) at the
level of the individual datasets are somewhat compatible and in this manner
supportive of some collaborative activities. It could well be that in some cases
the inherent structures of datasets are very different thus preventing from
any effective collaboration to occur. The fundamental decision is whether we
allow some datasets to collaborate or they should be eliminated from the
collaboration from the very beginning. This important decision needs to be
made upfront. One of the feasible possibilities would be to exercise some
mechanisms of evaluating consistency of the clusters (structure) at site “ii”
and some other dataset “jj”. Consider that the fuzzy clustering has been
completed separately for each dataset. The resulting structures represented by
the prototypes are denoted by ∼v1[ii], ∼v2[ii], . . .,∼vc[ii] for the ii-the dataset
and ∼v1[jj], ∼v2[jj], . . . , ∼vc[jj]. Consider the ii-th data set. The equivalent
representation of the structure comes in the form of the partition matrix. For
the ii-th dataset, the partition matrix is denoted by ∼U[ii] whose elements are
computed on the basis of the prototypes when using the dataset X[ii].

∼uik[ii] =
1

c∑
j=1

(
‖xk − ∼vi[ii]‖
|xk − ∼vj[ii]‖

)2/(m−1)
(14)

xk ∈ X[ii]. The prototypes of the jj-th dataset being available for collaborative
purposes when presented to X[ii] give rise to the partition matrix ∼U[ii|jj]
formed for the elements of X[ii] in the standard manner

∼uik[ii|jj] =
1

c∑
j=1

(
‖xk − ∼vi[jj]‖
|xk − ∼vj[jj]‖

)2/(m−1)
(15)
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X[ii] 

X[jj] 

~vi[ii] 

~vi[jj] 

partition matrix 

induced partition matrix 

Fig. 7. Statistical verification of possibility of collaboration between datasets “ii”
and “jj”

Again the calculations concern the data points of X[ii]. Refer to Figure 7
that highlights the essence of the interaction.

Given the partition matrix ∼U[ii] and ∼U[ii|jj] (induced partition matrix)
we can check whether they are “compatible” meaning that the collaboration
between these two datasets could be meaningful. We can test whether the
histograms of membership grades of ∼U[ii] and ∼U[ii|jj] are statistically dif-
ferent (that is there is a statistically significant difference). This could be
done using e.g., a standard nonparametric test such as χ2. If the hypothesis
of significant statistical difference between the partition matrices (that is cor-
responding structures) is not rejected, then we consider that the ii-th dataset
can collaborate with the jj-th one. Noticeably, the relationship is not recipro-
cal so the issue of collaboration of the jj-th dataset with the ii-th needs to be
investigated separately.

8.2 The Augmented Objective Function

The “standard” objective function minimized at the level of the ii-th dataset

comes in the well-known form of the double sum,
c[ii]∑
i=1

N[ii]∑
k=1

um
ik[ii]‖xk − v[ii]‖2.

Given that the we admit collaboration with the jj-th dataset, in the search
for the structure we take advantage of the knowledge of the prototypes
representing the jj-th dataset and attempt to make the prototypes v1[ii],
v2[ii], . . . , vc[ii] to be positioned closer to the corresponding prototypes
v1[jj], v2[jj[, . . .,vc[jj]. This request is reflected in the form of the augmented
objective function to come in the following format

Q[ii] =
N[ii]∑
k=1

c∑
i=1

u2
ik[ii]d2

ik[ii] +
P∑

jj=1
jj �=ii

β[ii, jj]
c∑

i=1

N[ii]∑
k=1

u2
ik[ii]‖vi[ii]− vi[jj]‖2 (16)

The first component is the same as the one guiding the clustering at the
dataset X[ii] while the second part reflects the guidance coming from all other
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datasets that we identified as potential collaborators (which is done using the
χ2 test described in the previous section). The level of collaboration (which
is asymmetric) is guided by the value collaboration coefficient. Its value is
chosen on a basis of potential benefits of collaboration. This will be discussed
in more detail in the next section. More specifically, β[ii,jj] is a collaboration
coefficient supporting an impact coming from the jj-th dataset and affecting
the structure to be determined in the ii-th data set. The number of patterns
in the ii-th dataset is denoted by N[ii]. We use different letter to distinguish
between the horizontal and vertical collaboration. The interpretation of (20)
is quite obvious: the first term is the objective function directed towards the
search of structure the ii-th dataset while the second articulates the differences
between the prototypes (weighted by the partition matrix of the ii-th data set)
which have to be made smaller through the refinement of the partition matrix
(or effectively the moves of the prototypes in the feature space).

The optimization of Q[ii] involves the determination of the partition matrix
U[ii] and the prototypes vi[ii]. As before we solve the problem for each dataset
separately and allow the results interact so that this forms collaboration
between the sets. The minimization of the objective function with respect
to the partition matrix requires the use of the technique of Lagrange mul-
tipliers because of the existence of the standard constraints imposed on the
partition matrix. We form an augmented objective function V incorporat-
ing the Lagrange multiplier λ and deal with each individual pattern (where
t = 1, 2, . . .,N[ii]),

V =
c∑

i=1

u2
it[ii]d

2
it[ii] +

P∑
jj=1
jj�=ii

β[ii, jj]
c∑

i=1

u2
it[ii]‖vi[ii]− vi[jj]‖2 − λ

(
c∑

i=1

uit − 1

)

(17)
Taking the derivative of V with respect to ust[ii] and making it zero, we have

∂V
∂ust

= 2ust[ii]d2
st[ii] + 2

P∑
jj=1
jj �=ii

β[ii, jj]ust[ii]‖vi[ii]− vi[jj]‖ − λ (18)

For notational convenience, let us introduce the shorthand expression

Dii,jj = ‖vi[ii]− vi[jj]‖2 (19)

From (18) we derive

ust[ii] =
λ

2

⎛
⎜⎝d2

st[ii] +
P∑

jj=1
jj �=ii

β[ii, jj]Dii,jj

⎞
⎟⎠

(20)
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In virtue of the standard normalization condition
c∑

j=1

ujt[ii] = 1 one has

λ
2

=
1

c∑
j=1

1

d2
jt[ii] +

P∑
jj=1
jj �=ii

β[ii, jj]Dii,jj

(21)

With the following abbreviated notation

ϕ[ii] =
P∑

jj �=ii

β[ii, jj] Dii,jj (22)

the partition matrix

ust[ii] =
1

c∑
j=1

d2
st[ii] + ϕ[ii]

d2
jt[ii] + ϕ[ii]

(23)

For the prototypes, we complete calculations of the gradient of Q with
respect to the coordinates of the prototype v[ii] and the solve the following
system of equations

∂Q[ii]
∂vst[ii]

= 0, s = 1, 2, .., c; t = 1, 2, ..n (24)

We obtain

∂Q[ii]
∂vst[ii]

= 2
N∑

k=1

u2
sk[ii](xkt− vst[ii]) + 2

P∑
jj �=ii

β[ii, jj]
N∑

k=1

u2
sk[ii](vst[ii]− vst[jj]) = 0

(25)
Next

vst[ii]

⎛
⎝ P∑

jj�=ii

β[ii, jj]
N[ii]∑
k=1

u2
sk[ii]−

N[ii]∑
k=1

u2
sk[ii]

⎞
⎠=

P∑
jj �=ii

β[ii, jj]
N[ii]∑
k=1

u2
sk[ii]vst[jj] (26)

−
N[ii]∑
k=1

u2
sk[ii]xkt

Finally we get

vst[ii] =

P∑
jj �=ii

β[ii, jj]
N[ii]∑
k=1

u2
sk[ii]vst[jj]− 2

N[ii]∑
k=1

u2
sk[ii]xkt

P∑
jj�=ii

β[ii, jj]
N[ii]∑
k=1

u2
sk[ii]−

N[ii]∑
k=1

u2
sk[ii])

(27)
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An interesting application of vertical clustering occurs when dealing with
huge data sets. Instead of clustering them in a single pass, we split them into
individual data sets, cluster each of them separately and actively reconcile the
results through the collaborative exchange of prototypes.

8.3 The Assessment of the Strength of Collaboration

The choice of a suitable level of collaboration realized between the datasets
through clustering denoted by β[ii,jj] deserves attention. Too high values of
collaboration coefficient may lead to some instability of collaboration. Too low
values of this coefficient may produce a very limited effect of collaboration
that could be eventually made almost nonexistent in this manner. Generally
speaking, the values of the collaboration coefficient could be asymmetric that
is β[ii, jj] �= β[jj, ii]. This is not surprising: we might have a case where at the
level of dataset “ii” we are eager to collaborate and quite seriously accept find-
ings coming from what has been discovered at dataset “jj” while the opposite
might not be true. As the values of the collaboration coefficients could be dif-
ferent for any pair of datasets, the optimization of their values could be quite
demanding and computationally intensive. To alleviate these shortcomings, let
us express the coefficient β[ii, jj] as the following product β[ii, jj] = ω f(ii, jj)
meaning that we view it as a function of the specific datasets under collabo-
ration calibrated by some constant ω (>0) whose value does not depend upon
the indexes of the datasets. The choice of the function f(ii, jj) can be done
in several different ways. In general, we can envision the following intuitive
requirement: if the structure revealed at the site of the jj-th dataset is quite
different from the one present at the ii-th data set, the level of collaboration
could be set up quite low. If there is a high level of agreement between the
structure revealed at the jj-th set with what has been found so far at the ii-th
dataset, then f(ii, jj) should assume high values. Given these guidelines, we
propose the following form of f(ii, jj)

f(ii, jj) = 1− Q[ii| jj]
Q[ii] + Q[ii| jj] (28)

Here Q[ii] denotes a value of the objective function obtained for clustering
without any collaboration (viz. the partition matrix and the prototypes are
formed on the basis of optimization realized for X[ii] only). Q[ii|jj] denotes
the value of the objective function computed for the prototypes obtained for
X[jj] (without any collaboration) and used for data in X[ii]; refer to Figure 8.

In essence, the values of Q[ii] and Q[ii|jj] reflect the compatibility of the
structures in the corresponding data sets and in this manner tell us about
a possible level of successful collaboration. The prototypes obtained for the
dataset “jj” being used to determine the value of the objective function for the
ii-th dataset could lead to quite comparable values of the objective function if
the structure in X[jj] resembles the structure of X[ii]. In this case we envision
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X[ii] 
X[jj]

{vi[jj]} 

Q[ii] 

Q[ii|jj] 

Fig. 8. Computing the values of Q[ii|jj] realized on a basis of the prototypes com-
puted for X[jj]

Q[ii] < Q[ii|jj] yet Q[ii] ≈ Q[ii|jj]. On the other hand, if the structure in X[jj]
is very different meaning that Q[ii|jj] >> Q[ii], the collaborative impact from
what has been established for X[jj] could not be very advantageous. If Q[ii|jj]
is close to Q[ii], f(ii, jj) approaches 1/2. In the second case, Q[ii|jj] >> Q[ii],
the values of f(ii, jj) are close to zero.

Following the process described above, we are left now with a single
coefficient (ω) controlling all collaborative activities for all datasets. This is
far more practical yet its value needs to be properly selected. Here several
alternatives could be sought:

(a) One could monitor the values of the overall objective function (1) during
the course of optimization (minimization). The plot of the minimized
objective function could be helpful here. The oscillations and a lack of con-
vergence in the successive values of the objective function might strongly
suggest that the values of ω are too high (too tight and intensive collab-
oration) and need to be reduced to assure smooth interaction between
the datasets.

(b) We could also look at the differences between the results obtained without
collaboration and with collaboration. For instance, a difference between
the proximity matrices formed on a basis of the partition matrices con-
structed for the same dataset X[ii] without collaboration and with collab-
oration could serve as an indicator of the differences between the results.
Such differences could be constrained by allowing only for some limited
changes caused by the collaboration.

8.4 Dealing with Different Level of Granularity
in the Collaboration Process

So far, we have made a strong assumption about the same number of clusters
being formed at each individual dataset. This conjuncture could well be valid
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in many cases (as we consider collaboration realized at the same level of
information granularity). It could be also quite inappropriate to made in some
other cases. To cope with this problem, we need to move the optimization
activities at the higher conceptual level by comparing results of clustering at
the level of the proximity matrices. As indicated, when operating at this level
of abstraction we are relieved from making any assumption about the uniform
level of granularity occurring across all constructs.

9 Consensus–Based Fuzzy Clustering

In contrast to the collaborative clustering in which there is an ongoing
active involvement of all datasets and the clustering algorithms running for
individual datasets are impacted by the results developed at other sites,
consensus-based clustering focuses mainly on the reconciliation of the indi-
vidually developed structures. In this sense, building consensus is concerned
with the formation of structure on the basis of the individual results of cluster-
ing developed separately (without any interaction) at the time of running the
clustering algorithm. In this section, we are concerned with a collection of clus-
tering methods being run on the same dataset. Hence U[ii], U[jj] stand here for
the partition matrices produced by the corresponding clustering method. The
essential step is concerned with the determination of some correspondence
between the prototypes (partition matrices) formed for by each clustering
method. Since there has not been any interaction when building clusters,
there are no linkages between them once the clustering has been completed.
The determination of this correspondence is an NP complete problem and
this limits the feasibility of finding an optimal solution. One way of alleviat-
ing this problem is to develop consensus at the level of the partition matrix
and the proximity matrices being induced by the partition matrices associ-
ated with other data. The use of the proximity matrices helps eliminate the
need to identify correspondence between the clusters and handle the cases
where there are different numbers of clusters used when running the specific
clustering method.

The overall development process of consensus forming is accomplished
in the following manner. Given the partition matrix U[ii], U[jj], etc. being
developed individually, let us focus on the building consensus focused on U[ii].
Given the information about the structure coming in the form of U[ii] and
other partition matrices U[jj], jj �= ii, the implied consensus-driven partition
matrix ∼U[ii] comes as a result of forming a sound agreement between the
original partition matrix U[ii]. In other words, we would like to make ∼U[ii]
to be as close as possible to U[ii]. The minimization of the distance of the form
‖U[ii] − ∼U[ii]‖2 could be a viable optimization alternative. There are some
other sources of structural information, see Figure 9. Here, however, we cannot
establish a direct relationship between U[ii] (and ∼U[ii]) and U[jj] given the
reasons outlined before. The difficulties of this nature could be alleviated by
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X

U[ii] U[1] U[jj] 

~U[ii] Prox(U[1]) Prox(U[jj]) 

Fig. 9. A development of consensus-based clustering; the consensus building is
focused on the partition matrix generated by the ii-th clustering method, U[ii]; here
Prox(U[ii]) denotes a matrix of proximity values

considering the corresponding induced proximity matrices, say Prox(U[jj]). It
is worth noting that a way in which the proximity matrix has been formed
relieves us from the correspondence between the rows of the partition matrices
(fuzzy clusters) and the number of clusters. In this sense, we may compare
Prox (∼U[ii]) and Prox (U[jj]) and searching for consensus by minimizing the
distance ‖Prox(∼U[ii])-Prox(U[jj])‖2. Considering all sources of structural in-
formation, the consensus building can be translated into the minimization of
the following optimization problem

‖U[ii]− ∼U[ii]‖2 + γ
P∑

jj �=ii

‖Prox(U[jj])− Prox(∼U[ii])‖2 (29)

The two components are reflective of the two essential sources of informa-
tion about the structure. The positive weight factor (γ) is aimed at striking
a sound compromise between the partition matrix U[ii] associated with the
ii-th dataset. The result of the consensus reached for the ii-th method is the
fuzzy partition matrix ∼U[ii] minimizing the above performance index (29).

10 Concluding Notes

In this study, we emphasized the need for a revision of the paradigm of fuzzy
clustering by augmenting it by the mechanisms of domain knowledge into its
algorithmic layer. We have presented and discussed the key open issues and
associate those to some evident challenges lying ahead in the progression of
the discipline. Likewise we showed some pertinent links and outlined some
promising avenues of algorithmic developments that might support the design
of required conceptual platforms and specific detailed solutions.

We offered a number of algorithmic developments including clustering with
partial supervision, collaborative clustering and clustering aimed at building
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consensus. In all of these we emphasized the role of human-centricity of the
clustering framework and a distributed character of the available data. It has
been shown how the issues of data privacy and security are alleviated through
the use of granular information being inherently associated with the format
of results generated in the process of clustering.
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